- (1) Let $\{f_n\}$ be a sequence in $L^1(\mathbb{R})$ which converges to f in $L^1(\mathbb{R})$. Which of the following are correct?

 - (A) $\int_{\mathbb{R}} |f_n(x)| dx$ converges to $\int_{\mathbb{R}} |f(x)| dx$ (B) $\{f_n\}$ converges to f almost everywhere on \mathbb{R}
 - (C) There exists a subsequence of $\{f_n\}$ which converges to falmost everywhere on \mathbb{R}
 - (D) $\int_{\mathbb{R}} f_n(x) \ g(x) \ dx$ converges to $\int_{\mathbb{R}} f(x) \ g(x) \ dx$ for any $g \in L^{\infty}(\mathbb{R})$

Solutions: A,C,D

A)
$$\left| \int |f_n| - \int |f| \right| \le \int \left| |f_n| - |f| \right| \le \int |f_n - f| \to 0$$

- A) $\left| \int |f_n| \int |f| \right| \le \int \left| |f_n| |f| \right| \le \int |f_n f| \to 0$ B) Consider the sequence $f_1 = \chi_{[0,\frac{1}{2}]}, f_2 = \chi_{[\frac{1}{2},1]}, f_3 = \chi_{[0,\frac{1}{4}]}, f_4 = \chi_{[\frac{1}{4},\frac{1}{2}]}, f_5 = \chi_{[\frac{1}{2},\frac{3}{4}]}, f_6 = \chi_{[\frac{3}{4},1]}, f_7 = \chi_{[0,\frac{1}{8}]} \cdots$ Then f_n converges to 0 in $L^1(\mathbb{R})$ but does not converge pointwise at any point in [0, 1].
- C) Refer Theorem 3.12 of Rudin-Real and Complex

D)
$$|\int f_n g - \int f g| \le \int |(f_n - f)g| \le ||g||_{\infty} \int |f_n - f| \to 0$$

- (2) Let $\nu(A) = \int_A \frac{1}{1+x^2} dx$ for $A \in \mathcal{B}(\mathbb{R})$. Which of the following are correct?
 - (A) ν is absolutely continuous with respect to the Lebesgue measure on \mathbb{R}
 - (B) Lebesgue measure on \mathbb{R} is absolutely continuous with respect to ν

Solutions: A,B

Since $\frac{1}{1+x^2}$ is positive everywhere.

- (3) Which of the following are correct statements?
 - (A) $T(f) = \int_0^1 f(x)dx$ is a continuous linear functional on
 - (B) $T(f) = \int_0^1 f(x)dx$ is a continuous linear functional on $L^2(\mathbb{R})$
 - (C) $T(f) = \int_0^1 f(x)dx$ is a continuous linear functional on $L^p[0,1]$ for all $1 \leq p \leq \infty$

Solution: A,B,C

A and B follows directly

C)It is a finite measure space and hence, $L^p \subset L^1$ for all p > 1.

- (4) Let T be an $n \times n$ invertible real matrix. Let μ be the measure defined by $\mu(A) = m(TA)$ where m is the Lebesgue measure on \mathbb{R}^n . Which of the following are correct?
 - (A) μ is absolutely continuous with respect to m
 - (B) m is absolutely continuous with respect to μ

Solution: A,B

$$\mu(A) = m(TA) = det(T)m(A)$$
 and $det(T) \neq 0$. Hence $\mu(A) = 0 \iff m(A) = 0$

- (5) For $A \in \mathcal{B}(\mathbb{R}^2)$ define $A_{\mathbb{R}} = \{(x,0) \in A : x \in \mathbb{R}\} = A \cap (\mathbb{R} \times \{0\})$. Define a measure ν on $\mathcal{B}(\mathbb{R}^2)$ by $\nu(A) = \int_{A_{\mathbb{R}}} e^{-x^2} dx$. Which of the following statements are correct?
 - (A) ν is absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^2
 - (B) μ is mutually singular with respect to the Lebesgue measure on \mathbb{R}^2

Solutions: B

- A) $[0,1] \times \{0\}$ gives counter example.
- B) μ concentrates on $\mathbb{R} \times \{0\}$ while Lebesgue Measure concentrates in its complement.
- (6) Let μ be a non-zero complex measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ which is absolutely continuous with respect to the Lebesgue measure m on \mathbb{R} . Let h denote the Radon-Nikodym derivative $\frac{d\mu}{dm}$. Which of the following are possible?
 - (A) h is zero outside [0,1]
 - (B) h is zero on irrationals
 - (C) h is one on the set $\{\frac{1}{n}: n \in \mathbb{N}\}$ and zero otherwise

Solutions: A

B and C implies μ is zero.

- (7) Let m be the Lebesgue measure on \mathbb{R} and μ be the measure defined by $\mu(A) = m(A) + 1$ if $0 \in A$, $\mu(A) = m(A)$ otherwise. Which of the following are correct?
 - (A) m is not absolutely continuous with respect to μ
 - (B) m is absolutely continuous with respect to μ

(C) μ is absolutely continuous with respect to m

Solutions: B

Follow directly from definitions.

- (8) Let δ_0 be the measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ defined by $\delta_0(A) = 1$ if $0 \in A$ and zero otherwise. Which of the following is correct?
 - (A) $m \delta_0$ is absolutely continuous with respect to m
 - (B) $m \delta_0$ is not absolutely continuous with respect to m

Solutions: B

Follows directly from definitions.

- (9) Let $f \in L^p[0,1]$ for some $1 . Define <math>T(g) = \int_0^1 f(x)g(x)dx$. Which of the following are correct?
 - (A) T defines a continuous linear functional on $L^{\infty}[0,1]$
 - (B) T defines a continuous linear functional on $L^2[0,1]$
 - (C) T defines a continuous linear functional on $L^q[0,1]$ for all $q \ge p^*$ where $\frac{1}{p} + \frac{1}{p^*} = 1$

Solutions: A,C

- A) $|Tg| \leq \int_0^1 |fg| \leq ||f||_p ||g||_{p^*} \leq ||f||_p ||g||_{\infty} \text{ where } \frac{1}{p} + \frac{1}{p^*} = 1$ B)If p < 2 then it is not even well defined. C) $|Tg| \leq \int_0^1 |fg| \leq ||f||_p ||g||_{p^*} \leq ||f||_p ||g||_q$
- (10) Let $f_1, f_2 \in L^2(\mathbb{R})$ and let $T(g) = \int_{\mathbb{R}} f_1(x) f_2(x) g(x) dx$. Which of the following is correct?
 - (A) T defines a continuous linear functional on $L^2(\mathbb{R})$
 - (B) T defines a continuous linear functional on $L^1(\mathbb{R})$
 - (C) T defines a continuous linear functional on $L^{\infty}(\mathbb{R})$

Solutions: C

- A) Product of 3 L^2 functions need not be integrable and hence T is not well defined.
- B) Same reason as A
- C)Since $f_1, f_2 \in L^2(\mathbb{R}), f_1 f_2 \in L^1(\mathbb{R})$ and hence T is a continuous linear functional.