- (1) Let (X, \mathcal{F}, μ) be a measure space. Then,
 - (A) $f, g \in L^1(\mu)$ implies $fg \in L^1(\mu)$
 - (B) $f, g \in L^2(\mu)$ implies $fg \in L^2(\mu)$
 - (C) $f, g \in L^1(\mu)$ implies $fg \in L^1(\mu)$
 - (D) $f \in L^1(\mu)$ and $f \in L^{\infty}(\mu)$ implies $f \in L^2(\mu)$

Solutions: C,D.

Reason:

- (A) $x^{-\frac{1}{2}} \in L^2(0,1)$ but $x^{-1} \notin L^1(0,1)$
- (B) $x^{-\frac{1}{4}} \in L^2(0,1)$ but $x^{-\frac{1}{2}} \notin L^1(0,1)$
- (C) By Holder's inequality.
- (D) $\int |f|^2 d\mu \le ||f||_{\infty} \int |f|^2 d\mu < \infty$
- (2) Which of the following are true?
 - (A) $L^1[0,1] \subset L^2[0,1]$
 - (B) $L^{1}[0,\infty) \subset L^{2}[0,\infty)$
 - (C) $L^2[0,1] \subset L^1[0,1]$
 - (D) $L^{2}[0,\infty) \subset L^{1}[0,\infty)$

Solutions: C

Reason:

- (A) Counter example: $\frac{1}{\sqrt{x}}$ (B) Counter example: $\frac{1}{\sqrt{x}}\chi_{(0,1)}$ (C) $\int_0^1 |f| d\mu = (\int_0^1 |f|^2 d\mu)^{\frac{1}{2}} (\int_0^1 1^2 d\mu)^{\frac{1}{2}} < \infty$ (D) Counter example: $\frac{1}{x}\chi_{(1,\infty)}$
- (3) Let $f = \chi_{[0,\frac{1}{2}]}$. Then,
 - (A) f is continuous almost every where with respect to the Lebesgue measure on \mathbb{R}
 - (B) f can be approximated by continuous functions in the L^{∞} norm
 - (C) There exists a continuous function g such that f = g almost every where

Solutions: C

Reason:

(A) f is continuous except at 0 and $\frac{1}{2}$.

- (B) Limit of continuous functions in sup norm is also continuous.
- (C) Since there is a jump at 2 points we can't find such a function.
- (4) Which of the following are correct?
 - (A) $\chi_{|x|<1}(x) |x|^a \in L^1(\mathbb{R}^n) \text{ iff } a > -n$
 - (B) $\chi_{|x| \le 1}(x) |x|^a \in L^1(\mathbb{R}^n) \text{ iff } a < -n$
 - $(C)\chi_{|x|>1}(x) |x|^a \in L^1(\mathbb{R}^n) \text{ iff } a > -n$
 - (D) $\chi_{|x|>1}(x) |x|^a \in L^1(\mathbb{R}^n)$ iff a < -n

Solutions: A,D

Reason:

It is a well known result.

- (5) Let $f: \mathbb{R} \to \mathbb{R}$ be a measurable function. Then,
 - $(A) f \in L^1(\mathbb{R})$ implies f is bounded.
 - $(B)f \in L^1(\mathbb{R})$ and f is continuous implies f is bounded.
 - $(C)f \in L^1(\mathbb{R})$ and f is continuous implies $\lim_{|x|\to\infty} |f| = 0$.
 - $(D)f \in L^1(\mathbb{R})$ and f is uniformly continuous implies f is bounded.

Solutions: D

Reason:

Counter example for (A), (B) and (C) is the following function: $f: \mathbb{R} \to \mathbb{R}^+$ where $f(x) = 0, x \in [-\infty, 1], f(n) = n$ for $n \ge 2$, $f(n - \frac{1}{n^3}) = 0 = f(n + \frac{1}{n^3}), f$ is affine (tent-like) in the interval $[n - \frac{1}{n^3}, n + \frac{1}{n^3}]$ and f = 0 elsewhere.

- (D) Show that $\lim_{|x|\to\infty} |f| = 0$ and hence, the conclusion follows.
- (6) Let $f_n: [0,1] \to \mathbb{R}$ be defined by $f_n(x) = x^n, x \in [0,1]$ for $n = 1, 2, 3, \cdots$. Which of the following are correct?
 - (A) f_n converges to zero uniformly in [0,1]
 - (B) f_n converges to zero in $L^1[0,1]$
 - (C) f_n converges to zero in $L^p[0,1]$ for all $1 \le p < \infty$

Solutions: B,C

Reason:

Follows from direct arguments.

- (7) Let $f_n: [1, \infty) \to \mathbb{R}$ be defined by $f_n(x) = x^{-n}, x \in [1, \infty)$ for $n = 1, 2, 3, \cdots$. Which of the following are correct?
 - (A) f_n converges to zero uniformly
 - (B) f_n converges to zero in $L^1[1,\infty)$
 - (C) f_n converges to zero in $L^p[1,\infty)$ for all $1 \leq p < \infty$

Solutions: B,C

Reason:

Follows from direct arguments.

- (8) Let $f_n: [2, \infty) \to \mathbb{R}$ be defined by $f_n(x) = x^{-n}, x \in [2, \infty)$ for $n = 1, 2, 3, \cdots$. Which of the following are correct?
 - (A) f_n converges to zero uniformly
 - (B) f_n converges to zero in $L^1[2,\infty)$
 - (C) f_n converges to zero in $L^p[2,\infty)$ for all $1 \leq p \leq \infty$

Solutions: A,B,C

Reason:

Follows from direct arguments.

- (9) Let (X, \mathcal{F}, μ) be a measure space and $1 \leq p, r, s \leq \infty$. Which of the following are correct?
 - (A) If p < r < s, then $L^p \cap L^s(\mu) \subset L^r(\mu)$
 - (B) If $\mu(X) < \infty$, then $L^p(\mu) \subset L^r(\mu)$ if r < p
 - (C) If $\mu(X) < \infty$ and $f \in L^{\infty}(\mu)$ then $||f||_p \to ||f||_{\infty}$ as $p \to \infty$

Solutions: A,B,C

Reason:

(A) Let $0 and <math>r = \lambda p + (1 - \lambda q)$. Take $f \in L^p \cap L^q$ then

$$\int |f|^r = \int |f|^{p\lambda} |f|^{q(1-\lambda)} d\mu$$

Then by applying Holder's inequality

$$\int |f|^r \le (\int |f|^p)^{\lambda} (\int |f|^q)^{1-\lambda} = ||f||_p^{p\lambda} ||f||_q^{q(1-\lambda)}$$

In the case $q = \infty$,

$$\| f \|_{r} = \int_{X} |f(x)|^{r-p} |f(x)|^{p} = (\operatorname{esssup}_{x \in X} |f(x)|^{r-p})^{\frac{1}{r}} (\int_{X} |f(x)|^{p} dx)^{\frac{1}{r}}$$
$$= \| f \|_{p}^{\frac{p}{r}} \| f \|_{\infty}^{1-\frac{p}{r}}$$

(B)
$$\int |f|^r d\mu = \int (|f|^p)^{\frac{r}{p}} d\mu \le \int (|f|^r)^{\frac{p}{r}} \mu(X)^{1-\frac{r}{p}} < \infty$$

(C) Let $\delta > 0$ and let $X_\delta := \{x \in X : |f(x)| > ||f||_\infty - \delta\}$ then,

(C) Let
$$\delta > 0$$
 and let $X_{\delta} := \{x \in X : |f(x)| > \|f\|_{\infty} - \delta\}$ then

$$\parallel f \parallel_p \geq \left(\int_{X_{\delta}} (\parallel f \parallel_{\infty} - \delta)^p d\mu \right)^{\frac{1}{p}} = (\parallel f \parallel_{\infty} - \delta) \mu(X_{\delta})^{\frac{1}{p}}$$

hence, $\liminf_{p\to\infty} \|f\|_p \ge \|f\|_{\infty}$.

But, again we have for p > q

$$|| f ||_p \le \left(\int_X |f(x)|^{p-q} |f(x)|^q d\mu \right)^{\frac{1}{p}} \le || f ||_{\infty}^{\frac{p-q}{p}} || f ||_q^{\frac{q}{p}}.$$

Hence, the conclusion follows.

(10) Let (X, \mathcal{F}, μ) be a measure space and let f and g be positive measurable functions such that $fg \geq a$ for some a > 0. Then,

(A) If
$$\mu(X) = 1$$
, $\left(\int_X f d\mu \right) \left(\int_X g d\mu \right) \ge a$
(B) If $\mu(X) < 1$, $\left(\int_X f d\mu \right) \left(\int_X g d\mu \right) \ge a$

(B) If
$$\mu(X) < 1$$
, $\left(\int_X f d\mu \right) \left(\int_X g d\mu \right) \ge a$

Solutions: A

Reason:

- (A) Apply Holder's inequality to $\sqrt(fg)$ (B) Counter example: $X=[0,\frac12],\,f=g=\frac12,\,a=\frac14$