- (1) Which of the following sets are of Lebesgue measure zero?
 - (A) Any countable subset of \mathbb{R}
 - (B) Cantor set
 - (C) The set of irrationals in the Cantor set
 - (D) k-dimensional subspace of \mathbb{R}^n , where k < n

Solution: All of the above.

Reason:

- (A) Singletons have measure 0.
- (B) The Cantor set $C = \bigcap_{k=1}^{n} C_k$ where $m(C_k) < \infty$ and $m(C_k) \to 0$ as $k \to \infty$.
- (C) Subset of a measure 0 set.
- (D) For k < n a k-dimensional subspace $S \subset \mathbb{R}^n$ can be realized as image of a linear transformation A of rank k. That is, there exists $A: \mathbb{R}^n \to \mathbb{R}^n$ such that $A(\mathbb{R}^n) = S$ and A is singular. From the lectures, $m(S) = m(A(\mathbb{R}^n)) = |det(A)|m(\mathbb{R}^n) = 0$.
- (2) Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be an invertible linear map. Which of the following are correct?
 - (A) If E is a Lebesgue set then T(E) is a Lebesgue set
 - (B) If E is a Borel set then T(E) is a Borel set

Solution: (A),(B).

Reason: Follows from the relation $E = T^{-1}T(E)$.

- (3) Which of the following are true?
 - (A) The outer measure m_* on \mathbb{R} is translation invariant
 - (B) The Lebesgue measure m on \mathbb{R} is translation invariant
 - (C) If μ is any Borel measure on \mathbb{R} and $\mu(K) < \infty$ for all compact set K, then μ is a constant multiple of the Lebesgue measure

Solution: (A), (B)

Reason:

(A) and (B) are standard facts.

Counter-example for (C) is the Dirac measure δ_0 on \mathbb{R} .

- (4) Let μ be a Borel measure on \mathbb{R} such that $\mu(A+n)=\mu(A)$ for all Borel sets A and $n\in\mathbb{Z}$. Then which of the following are always correct?
 - (A) μ is the zero measure
 - (B) μ is a constant multiple of the Lebesgue measure
 - (C) Counting measure on \mathbb{R} satisfies the property $\mu(A+n) = \mu(A)$ for all A and $n \in \mathbb{Z}$.

Solution:(C)

Reason:

Any Borel measure is translation invariant therefore, (A) and

- (B) does not hold.
- (C) For any set |A| = |A + n| for any $n \in \mathbb{Z}$.
- (5) Let $A: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Which of the following are correct?
 - (A) If A is singular, then A(E) is a Lebesgue set for all $E \subset \mathbb{R}^n$
 - (B) If A is invertible, then A(E) is a Lebesgue set for all $E \subset \mathbb{R}^n$
 - (C) If A is invertible, then A(E) is a Lebesgue set for all Lebesgue sets $E \subset \mathbb{R}^n$

Solution:(A) and (C)

Reason:

(A) if A is singular the A(E) is a k-dimensional subspace of \mathbb{R}^n where k < n. Therefore, A(E) is a measure 0 set and hence, Lebesgue measurable.

Counter-example for (B) is the following: Let \mathcal{N} be a non-measurable set in \mathbb{R}^n then $A^{-1}(E)$ is never measurable. For otherwise, $E = A(A^{-1}(E))$ becomes measurable, which is a contradiction.

- (C) follows from the relation $E = A^{-1}A(E)$.
- (6) Let $f: \mathbb{R}^n \to \mathbb{R}$ be a positive measurable function and let m denote the Lebesgue measure on \mathbb{R} . Which of the following are true?
 - (A) $\int_{E+x_0} f \ dm = \int_E f \ dm$ for all $E \in \mathcal{L}(\mathbb{R}^n)$ and $x_0 \in \mathbb{R}^n$
 - (B) $\int_{\mathbb{R}^n} f(x+x_0) dx = \int_{\mathbb{R}^n} f dm$ for all $x_0 \in \mathbb{R}^n$
 - (C) $\int_{\mathbb{R}^n} f(Ax) \ dx = \int_{\mathbb{R}^n} f(x) \ dx$ for all linear maps $A: \mathbb{R}^n \to \mathbb{R}^n$

Solution: (B)

Reason:

Counter-example for (A): Let E = (0,1) and $x_0 = 1$ then $E + x_0 = (1, 2)$. Take $f = \chi_{(1,2)}$. Then, $\int_E f \ dm = 0$ but, $\int_{E+x_0} f \ dm = m((1,2)) = 1.$

(B) Let us first consider a simple function that is, $f = \sum_{k=1}^{m} a_k \chi_{A_k}$ wher A_k are measurable sets in \mathbb{R}^n and $a_k \geq 0$. Then

$$\int_{\mathbb{R}^n} f(x+x_0) \, dx = \sum_{k=1}^m a_k m(A_k + a)$$
$$= \sum_{k=1}^m a_k m(A_k) = \int_{\mathbb{R}^n} f(x) \, dx$$

Now, any positive measurable function can be pointwise approximated by monotone sequence of simple functions. Hence, by monotone convergence theorem we obtain the result.

Counter-example for (C): From the lectures it can be observed that m(A(E)) = |det(A)|m(E) for $E \in \mathcal{L}(\mathbb{R}^n)$. Therefore, if we take $f = \chi_E$ then, $\int_{\mathbb{R}^n} f(Ax) dx = m(A(E))$ and $\int_{\mathbb{R}^n} f(x) dx =$ m(E). So, if we take A to be singular then $\int_{\mathbb{R}^n} f(Ax) dx \neq$ $\int_{\mathbb{R}^n} f(x) dx$.

- (7) Which of the following are true?
 - (A) If $O \subset [0,1]$ is a dense open set then m(O)=1
 - (B) If $O \subset [0,1]$ is open then m(O) > 0
 - (C) If $F \subset [0,1]$ is closed and has no interior then m(F)=0Solutions: (B)

Reason:

- (A) Consider the set of rational numbers $\{r_n\}_n$ in (0,1). Let us form the open set $U = \bigcup_{k=1}^{\infty} (r_k - \frac{1}{2^{k+1}} \frac{1}{m}, r_k + \frac{1}{2^{k+1}} \frac{1}{m})$ for some m > 1. Then U is an open dense set in [0,1]. But, $m(U) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{1}{m} = \frac{1}{m} < 1$. (B) Any open set is countable union of disjoint open intervals
- and since, any open interval has strictly positive measure.
- (C) Consider the same open set U as in (A). Then complement of U in [0, 1] is a closed set with no interior. But, $m(U) = \frac{1}{m} < 1$ therefore, $m(U^{\complement}) \neq 0$.

- (8) Which of the following sets are of Lebesgue measure zero?
 - (A) $C \times \mathbb{R} \subset \mathbb{R}^2$ where $C \subset [0,1]$ is the Cantor set
 - (B) $\mathbb{Q} \times \mathbb{R} \subset \mathbb{R}^2$
 - (C) Countable union of lines passing through the origin in \mathbb{R}^2 Solution: All of the above.

Reason:

- (A) Cantor set has measure 0.
- (B) \mathbb{Q} has measure 0.
- (C) Any line in \mathbb{R}^2 has measure 0.
- (9) Which of the following sets have positive Lebesgue measure?
 - (A) Any unbounded set in \mathbb{R}^2
 - (B) Any unbounded closed set in \mathbb{R}^2
 - (C) $(\mathbb{R} \setminus \mathbb{Q}) \times \mathbb{R} \subset \mathbb{R}^2$

Solution: (C)

Reason:

Counter-examples of (A) and (B) is $\mathbb{R} \times \{0\}$.

- (C) is true since, $\mathbb{R}^2 = ((\mathbb{R} \setminus \mathbb{Q}) \times \mathbb{R}) \sqcup (\mathbb{Q} \times \mathbb{R})$ and measure of $(\mathbb{R} \setminus \mathbb{Q}) \times \mathbb{R}$ is 0 will imply measure of \mathbb{R}^2 to be 0.
- (10) Which of the following are correct?
 - (A) The Cantor set is a closed set
 - (B) The Cantor set is a perfect set
 - (C) The complement of Cantor set in [0,1] has positive Lebesgue measure
 - (D) The Cantor set is uncountable

Solution: All of the above.

Reason: (A) A Cantor set is countable intersection of closed sets.

- (B) Every point of the Cantor set is a limit point.
- (C) Since, Cantor set has Lebesgue measure 0.
- (D) Every perfect set has to be uncountable.