- (1) Let μ be a complex measure on (X, \mathcal{F}) . For $E \in \mathcal{F}$ define $\nu(E)$ to be the supremum of $\{\sum |\mu(E_j)|\}$ where the supremum is taken over finite measurable partitions $\{E_i\}$ of E. Which of the following are correct?
 - (A) $\nu = |\mu|$
 - (B) There exists $E \in \mathcal{F}$ such that $\nu(E) < |\mu|(E)$
 - (C) ν is not a measure

Solution: A

From the definition we have $\nu(E) \leq |\mu|(E)$ for $E \in \mathcal{F}$. Now let $\{E_i\}$ be a countable partition of E and $\epsilon > 0$. The series $\sum |\mu(E_i)|$ is convergent, hence there is an N such that $|\mu(E_N)| + |\mu(E_{N+1}| + \cdots < \epsilon$. Define the finite partition $\{F_i\}$ of E by $F_i = E_i$ for $i = 1, 2, \cdots N - 1$, $F_n = E_n \cup E_{N+1} \cup \cdots$. It follows that $\sum |\mu(E_i)| < \sum_{i=1}^N |\mu(F_i)| + \epsilon$. Hence $|\mu|(E) \le \nu(E) + \epsilon \implies |\mu|(E) \le \nu(E)$ for $E \in \mathbb{F}$. Hence $\nu = \mu$

- (2) Let μ be a real measure defined on $(\mathbb{N}, 2^{\mathbb{N}})$, $\mu(\{j\}) = a_j$ where $a_i \in \mathbb{R}$ and $\sum |a_i| < \infty$. Which of the following are correct?

 - (A) $\mu^{+}(A) = \sum_{\{j \in A; a_{j} \geq 0\}} a_{j}$ (B) $\mu^{-}(A) = -\sum_{\{j \in A; a_{j} < 0\}} a_{j}$ (C) $|\mu|(A) = \sum_{j \in A} |a_{j}|$

Solutions: A,B,C

Follows directly from definitions.

- (3) Which of the following are correct?
 - (A) For a complex measure λ , λ is concentrated on A then $|\lambda|$ is concentrated on A
 - (B) For a complex measure λ , if $|\lambda|$ is concentrated on A then so is λ

Solutions: A,B

Refer Theorem 6.8 of Rudin-Real and Complex analysis

- (4) Let λ be the Borel measure defined by $\lambda(A) = \sum_{n \in \mathbb{Z} \cap A} \frac{(i)^n}{n^2}$, $A \in \mathcal{B}(\mathbb{R})$. Which of the following are correct?
 - (A) λ is concentrated on the set $\{\frac{1}{n^2}: n \in \mathbb{Z}\}$
 - (B) λ is concentrated on \mathbb{Z}

(C) $|\lambda|$ is concentrated on \mathbb{Z}

Solutions: B,C

Follows directly from definition.

- (5) Let m be the Lebesgue measure on \mathbb{R} and let μ be the measure defined by $\mu(A) = \text{number of rationals in A, for } A \in \mathcal{B}(\mathbb{R}).$ Which of the following is correct?
 - (A) μ is mutually singular to m
 - (B) μ is absolutely continuous with respect to m

Solutions: A

A) μ is concentrated on rationals and m is concentrated on Irrationals.

- B)Singleton set {1} is a counter example
- (6) Let (X, \mathcal{F}, μ) be a positive measure space. Which of the following sets are convex?

 - $\begin{array}{l} \text{(A) } \{f \in L^2(\mu): \ \int_X \ |f|^2 \ d\mu \leq 1\} \\ \text{(B) } \{f \in L^2(\mu): \ \int_X \ |f|^2 \ d\mu = 1\} \\ \text{(C) } \{f \in L^2(\mu): \ 1 \leq \int_X \ |f|^2 \ d\mu \leq 2\} \end{array}$

Solutions: A

A is the unit ball in the Hilbert space and hence convex. For B and C we can find counter examples from \mathbb{R}^2 which also can be considered as L^2 space.

- (7) Let (X, \mathcal{F}, μ) be a positive measure space and let $f \in L^2(\mu)$. Which of the following are convex sets?
 - $\begin{array}{ll} \text{(A) } \{g \in L^2(\mu): \ \int_X \ fg \ d\mu = 2 \} \\ \text{(B) } \{g \in L^2(\mu): \ \left| \int_X \ fg \right| \leq 1 \} \\ \text{(C) } \{g \in L^2(\mu): \ \left| \int_X \ fg \right| \geq 2 \} \end{array}$

Solutions: A,B

A and B follows from direct computation.

For C we can get counter example from \mathbb{R} which is also a L^2 space.

- (8) Let (X, \mathcal{F}, μ) be a positive measure space and $f \in L^2(\mu)$ be a non-zero function. Let $M = \{g \in L^2(\mu) : \int_X fg d\mu = 0\}.$ Which of the following is correct?
 - (A) M is closed
 - (B M is closed and convex
 - (C) The vector with minimal norm in M is f

Solution: A,B

Here M is the null space of a continuous linear functional hence it is closed and convex.

Vector with minimal norm in M is 0, not f.

(9) Which of the following sets have a vector with minimal norm?

(A)
$$\{\frac{n+1}{n} f_n : f_n \in L^2[0,1], ||f_n||_2 = 1, \langle f_n, f_m \rangle = 0 \text{ for } n \neq m\}$$

(B)
$$\{g \in L^2(\mathbb{R}) : \left| \int_0^1 g(t) dt \right| > 1 \}$$

(C) $\{g \in L^2[0,1]: T(g) = 2\}$ where $T: L^2[0,1] \to \mathbb{C}$ is a continuous linear functional.

Solutions: C

- A) Minimum norm is 1, but all the elements in set have norm greater than 1.
- B)Consider the sequence $g_n = (1 + \frac{1}{n})\chi_{[0,1]}$ in $L^2(\mathbb{R})$ with $||g_n|| =$ $1+\frac{1}{n}$ and hence belongs to the given set. But $1<|\int_0^1 g|\leq$ $||g||_2$ for all g in the given set. Hence there is no element with minimum norm.
- C)Closed and convex set in a Hilbert space has an element with minimum norm by projection theorem.
- (10) Let (X, \mathcal{F}, μ) be a positive measure space and $X = \bigcup_{n=1}^{\infty} A_n$ where $A_n \in \mathcal{F}$ and $A_k \cap A_j = \phi$ if $k \neq j$. Let $\{a_n\}$ be a sequence of complex numbers and consider the map $T: L^2(\mu) \to \mathbb{C}$ defined by $T(f) = \sum_{n} a_{n} \int_{A_{n}} f d\mu$. Which of the following are correct?

 - (A) T is a continuous linear functional if and only if $\sum |a_n| < \infty$ (B) T is continuous linear functional if and only if $\sum |a_n|^2 < \infty$ (C) T is a continuous linear functional if and only if $\sum |a_n|^2 \mu(A_n) < \infty$

Solutions: C

$$T(f) = \sum a_n \int_{A_n} f \ d\mu = \sum \int_X \chi_{A_n} f \ d\mu = \sum a_n \langle f, \chi_{A_n} \rangle = \sum \langle f, \bar{a}_n \chi_{A_n} \rangle \le \sum \|f\|_2^2 \|a_n \chi_{A_n}\|_2^2 = \|f\|_2^2 \sum |a_n|^2 \mu(A_n)$$