Solutions to Week 2 Assessments with some hints to the solutions.

1. $X = \mathbb{R}, \mathcal{F} = \{A \subset \mathbb{R} \mid A \text{ is countable or } A^c \text{ is countable}\}$. Let

$$\mu(A) = \begin{cases} 1 & \text{if } A^c \text{ is countable} \\ 0 & \text{if } A \text{ is countable} \end{cases}$$

Let $f: (X, \mathcal{F}, \mu) \to \mathbb{R}$ be measurable. Which of the following are always true?

- (a) f is constant ae. (μ)
- (b) f is a non-constant continuous function
- (c) f is a non constant polynomial
- (d) $f(x) = 0 \forall x \in \mathbb{R}$

Solutions : (a)

 $f^{-1}([n, n + 1])$ is uncountable for some integer n. If this is true for 2 integers say m and n with m < n, then n = m + 1 and hence $f^{-1}(n)$ is co-countable. Then we are done with f = n ae. Now if the integer n is unique, then divide the interval [n, n + 1] to 2 and repeat the same arguments. The we get a decreasing sequence of compact intervals with length decreases to 0. Then we have an element in the intersection which is the required constant.

2. Let (X, \mathcal{F}, μ) be a measure space and let E be a proper subset of $X, E \in \mathcal{F}$ and $0 < \mu(E) < \mu(X)$.

$$f_n = \begin{cases} \chi_E & \text{if } n \text{ is odd} \\ 1 - \chi_E & \text{if } n \text{ is even} \end{cases}$$

Which of the following are true?

- (a) $\int_X \liminf f_n d\mu < \liminf \int_X f_n d\mu$
- (b) $\int_X \liminf f_n d\mu = \liminf \int_X f_n d\mu$
- (c) $\int_X \limsup f_n d\mu < \limsup \int_X f_n d\mu$
- (d) $\int_X \limsup f_n d\mu = \limsup \int_X f_n d\mu$

Solutions : (a)

lim inf $f_n = 0$ and lim sup $f_n = 1$. So their integrals are 0 and $\mu(E)$ respectively. While limit of integrals are $\mu(E)$ and $\mu(E^C)$

3. Consider the space \mathbb{N} with power set sigma algebra and counting measure μ . Let $f : \mathbb{N} \to \mathbb{R}$ be measurable and zero $\operatorname{ae}(\mu)$. Which of the following are always true?

(a)
$$f(n) = 0 \ \forall n \in \mathbb{N}$$

- (b) $f(1) \neq 0, f(n) = 0 \ \forall n > 1$
- (c) f(n) = 0 except for finitely many $n \in \mathbb{N}$
- (d) f(n) = 0 only when n is a prime number

Solutions : (a) and (c)

Since singleton sets has measure 1 f cannot be non zero at any point.

- 4. Let X be a non empty set and $A \subset X$ be a proper subset. Consider the sigma algebra $\mathcal{F} = \{\phi, X, A, A^c\}$. Let $f : (X, (F) \to \mathbb{R})$ be measurable. Which of the following are always true?
 - (a) $f = \alpha \chi_A + \beta \chi_{A^c}$ for some $\alpha, \beta \in \mathbb{R}$
 - (b) $f = \alpha \chi_A$ for some $\alpha \in \mathbb{R}$
 - (c) $f = \beta \chi_{A^c}$ for some $\beta \in \mathbb{R}$
 - (d) $f \equiv 0$

Solutions : (a)

Suppose f is a constant say α , then $f = \alpha \chi_A + \alpha \chi_{A^c}$. Now if f is not constant, f takes at least 2 values say α and β , then $f^{-1}(\alpha), f^{-1}(\beta)$ must be in \mathcal{F} . Let $f^{-1}(\alpha) = \chi_A$ and $f^{-1}(\beta) = \chi_{A^c}$. Then $f = \alpha \chi_A + \beta \chi_{A^c}$

- 5. Let (X, \mathcal{F}, μ) be a measure space. Let $A_n \in \mathcal{F}$ be such that $A_1 \subset A_2 \subset A_3 \subset \cdots$ and $\bigcup_{n=1}^{\infty} A_n = X$. Let $f : (X, \mathcal{F}, \mu) \to \mathbb{R}$ be a measurable function and $f(x) \geq 0$ ae(μ). Which of the following are always true?
 - (a) $f\chi_{A_n} \uparrow f$ ae
 - (b) $\int_{A_n} f d\mu \uparrow \int_X f d$
 - (c) $\int_{A_n} f d\mu \downarrow \int_X f d\mu$
 - (d) $f\chi_{A_n} \downarrow f$

Solutions : (a) and (b)

- (a) is trivially true and (b) follows from monotone convergence theorem.
- 6. Let (X, \mathcal{F}, μ) be a measure space and μ be a probability measure, that is $\mu(X) = 1$. Let $\{A_n\}$ be a sequence in \mathcal{F} . Which of the following are true?
 - (a) $\mu(\limsup A_n) \ge \limsup \mu(A_n)$
 - (b) $\mu(\limsup A_n) \le \limsup \mu(A_n)$
 - (c) $\mu(\liminf A_n) \ge \liminf \mu(A_n)$
 - (d) $\mu(\liminf A_n) \leq \liminf \mu(A_n)$

Solutions : (a) and (d)

 $\limsup_{k=n} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k. \text{ Let } B_n = \bigcup_{k=n}^{\infty} A_k. \text{ Then } B_n \text{ is a decreasing sequence with } \mu(B_1) \text{ is finite. Hence } \mu(B_n) \downarrow \mu(\limsup_{n \to \infty} A_n). \text{ Also } A_n \subset B_n \text{ for all } n. \text{ So } \mu(A_n) \leq \mu(B_n) \text{ implies } \limsup_{n \to \infty} \mu(A_n) \leq \lim_{n \to \infty} \mu(B_n) = \mu(\limsup_{n \to \infty} A_n).$

(d) also can be proved by similar arguments

- 7. Let (X, \mathcal{F}, μ) be a measure space. Let $f_n : X \to \mathbb{R}$ be measurable, $A = \{x \in X \mid \lim f_n(x) \text{ exists}\}$. Then,
 - (a) $A \in \mathcal{F}$ (b) $A = \phi$ (c) A = X
 - (d) $A^c \in \mathcal{F}$

Solution : (a) and (d)

which is a count-

 $= \bigcap_{k=1}^{\infty} \bigcup_{p=1}^{\infty} \bigcap_{m,n=p}^{\infty} \{x \in X : |f_n(x) - f_m(x)| < \frac{1}{k}\}$ able union of measurable sets and hence measurable.

- 8. Let (X, \mathcal{F}, μ) be a measure space and $A_n \in \mathcal{F}$. Suppose $\mu(X) = 1, \sum \mu(A_n) < \infty$. Then which of the following are true?
 - (a) $\mu(\limsup A_n) = 0$
 - (b) $\mu(\liminf A_n) = 0$
 - (c) $\mu(\limsup A_n) = 1$
 - (d) $\mu(\liminf A_n) = 1$

Solution : (a) and (b)

Let $B_n = \bigcup_{k=n}^{\infty} A_k$. Then $\mu(B_n) \leq \sum_{k=n}^{\infty} \mu(A_n) \to 0$ as $n \to \infty$. Hence $\mu(\limsup A_n) = 0$. Then $\mu(\liminf A_n) = 0$ also.

- 9. (X, \mathcal{F}, μ) be a probability measure space. Suppose $f_n : X \to \mathbb{R}$ are measurable and $|f_n| \leq 1$ $ae(\mu) \forall n$. Suppose $f_n \to 1$ $ae(\mu)$. Then,
 - (a) $\int_X f_n d\mu \to 1$
 - (b) $\int_X f_n d\mu \to 0$
 - (c) $\int_X f_n d\mu \to \infty$
 - (d) $\int_X f_n d\mu$ does not converge

Solution : (a)

By Dominated convergence theorem

- 10. Let (X, \mathcal{F}, μ) be a measure space and $A_n \in \mathcal{F}$ such that $\mu(A_n) = 0 \ \forall n$. Which of the following are true?
 - (a) $\mu(\bigcup_{n=1}^{\infty} A_n) = 0$ (b) $\mu(\bigcup_{n=1}^{\infty} A_n) = 1$ (c) $\mu(\bigcup_{n=1}^{\infty} A_n) = \infty$
 - (d) $\mu(\cup_{n=1}^{\infty} A_n) > 0$

Solution : (a)

By countable sub-additivity