
swimm.io

Writing an effective

code document in

5 steps

This guide will teach you how to write effective documentation, and how

to do so easily with Swimm.

Effective documentation helps other developers,
technical staff and users achieve their goals.

Our experience stems from documenting ourselves, and accompanying many

engineers creating effective documentation. We have seen again and again

how following a few guidelines can make a huge difference - both for creating

more effective documentation and making the process easier for the writer.

Introduction

go here

now here!

or here!

start here

CODE DOC

App setup

.swm/my-app.js

{

:
},

46

47

48

49

https://swimm.io

This section assumes you know what document you want to write. If you

are unsure, refer to the specific use cases section.

Writing an effective code document in 5 steps

This flow is easy to follow, and already gets you far

ahead in creating effective documentation.

1. Give your document an actionable title

Don’t skip this step. It will help you focus.  

When it makes sense, use one of these formats:

“How to…” (e.g., “How to add a new Plugin”)

“How X works”(e.g., “How the recommendations engine works”)

“How we built X” (e.g., “How we built our CLI”)

The title should tell the reader what they will learn from reading this doc.

NEW DOC

How to add a new Plugin
AI doc structure suggestions:

Introduction A simple plugin example Design decision

How to write an
effective document

2. Select code snippets first, before writing any text

Use the Swimm command /Code snippet Before explaining why

your code is important, focus on adding all code snippets that show  

the flow you are describing. If you are not describing a flow, select  

an example that demonstrates what you are describing, or any code

snippet that might be relevant. If you are unsure what snippets you

should add, it might be helpful to think of someone who doesn’t know

the code and highlight what you would show if you walked them

through it.

Make sure you add all relevant snippets.

NEW DOC

How to add a new Plugin
add live lines of code from your repo /

Live code snippet

Highlight code from your repository

Live token

Insert a file path relative to your codebase

Live diagram

Add flow charts, user flows and more

How to write an
effective document

3. Describe the snippets

Now that you have your snippets, you can re-order them (if necessary),

and describe them. Pro tips:

Explain why things are implemented the way they are.

Focus on the information that’s not in the code.

Explain how a single snippet relates to the other snippets -
its role in the flow.

Refrain from explaining what exactly each line of code
does. The code speaks for itself in isolation, and can tell
parts of the story for you.

Use smart tokens that are coupled to elements from the snippet or

other locations in the code. Type backtick ׳ to search for code

references in your repo and convert them to tokens.

The title should tell the reader what they will learn from reading this doc.
Swimm doc
add live lines of code from your repo /

To make our engine “aware” of the new Plugin, add it to Plugins array:

src/plugins/engine.ts

: {

:
:

},

16

17

18

19

How to write an
effective document

4. Add an Introduction section

Explain what this doc is about in an introduction section.

Introduction

To make our engine “aware” of the new Plugin, add it to Plugins array:

src/plugins/engine.ts

: {16

5. When applicable, split into sections

Create sections using headings. They make the document easier to

follow and navigate.

In the Swimm web app, a Table of Contents navigation is automatically
created on your right sidebar based on Markdown headings.  
Review it to make sure your structure is clear.

Adding a simple provider

Advanced examples

Table of contents

Introduction

Adding a simple plugin

Advanced examples

Some plugins need DB access, like DataPlugin

src/plugins/dataPlugin.ts

: {16

How to write an
effective document

It helps avoid writer’s block. By focusing first on selecting code snippets,
you don’t mind your brain with copy or styling choices. When you get to
actual writing, you’ll already have a structure and code to prompt you,

which is much better than a blank page.

It makes you select a real example.

The code speaks for itself, at least in isolation. By including these parts of
the code, you don’t need to explain them in English. You can then focus on
parts of the story that are not clear within the code itself.

Why are these
steps so effective?

1. It's easy to understand. As a developer, a real example is easy to relate to.
It also provides a good basis to rely on when the developer would look to

use the tool themselves.

2. It's easy to create such a document. If an example already exists in your
codebase, there's no need to invent a new one. All you have to do is

describe it.

3. It helps you remember. When you look at a concrete, real example - you
see all the small implementation details. Not all of them are important to

mention or explain, yet it makes sure you don't forget about those that are.

4. It's maintainable. By code coupling to an existing example, if something
ever changes in the system and the example changes, your document will

be updated.

4. It's easy to discover. Thanks to the discoverability of Swimm documents,
they are found when someone uses this tool. For example, when using a

library for the first time, a developer may look for other usages of this library
in the codebase, such as the wrapper function. Thanks to Swimm's IDE

plugins, developers are likely to find the relevant document next to the
wrapper function because it was referenced and code-coupled in the
document.

4. It’s the right example. When writing new code, developers often look for
previous examples in the code to copy or learn from. Some of these

examples are sub-optimal, don’t follow best practices or new conventions or
just are not a good fit for the use case you’re describing. Adding the right

example from the code helps to avoid the perpetuation of errors and “bad
habits” in your codebase.

Why a real
example?

When describing code, use the code as part of the explanation (with
snippets, tokens, and paths). This serves both to make the explanation more
concise and explicit as well as make sure it remains up to date.

Add tags, and add the doc to relevant playlists and folders.

Consider adding a Mermaid diagram. Code-couple your
diagram with smart tokens!

Consider creating doc rules to help people find this document
when it’s most relevant.

Pro tips

https://docs.swimm.io/Features/organizing-and-finding-docs/
https://docs.swimm.io/Features/organizing-and-finding-docs/
https://docs.swimm.io/Features/diagrams-and-charts/
https://docs.swimm.io/Features/doc-rules/

We maintain a section on our documentation site with descriptions of

various use cases and how to approach them. Some of these use cases are:

Increase your bus factor

Support an infrastructure change

Explore and document legacy code

Onboard new developers

Promote a new tool

Promote testing best practices

Please check out on our documentation site.this section

Have questions?

Please reach out to the Swimm team!

Use cases

https://docs.swimm.io/use-case-guides/

