Total coverage: 65832 (4%)of 1656697
1 23 23 23 23 23 23 149 151 9 9 9 9 9 23 14 9 9 9 23 9 14 23 23 23 23 23 23 23 23 23 23 23 42 20 47 16 16 16 15 16 16 1 16 16 10 10 5 5 6 6 4 4 47 48 48 48 45 47 48 48 41 38 5 38 4 3 3 3 1 106 1 1 106 106 23 82 34 36 10 1 5 11 1 2 1 3 2 3 2 1 23 26 26 48 48 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 // SPDX-License-Identifier: GPL-2.0-only /* * Shared Memory Communications over RDMA (SMC-R) and RoCE * * AF_SMC protocol family socket handler keeping the AF_INET sock address type * applies to SOCK_STREAM sockets only * offers an alternative communication option for TCP-protocol sockets * applicable with RoCE-cards only * * Initial restrictions: * - support for alternate links postponed * * Copyright IBM Corp. 2016, 2018 * * Author(s): Ursula Braun <ubraun@linux.vnet.ibm.com> * based on prototype from Frank Blaschka */ #define KMSG_COMPONENT "smc" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/module.h> #include <linux/socket.h> #include <linux/workqueue.h> #include <linux/in.h> #include <linux/sched/signal.h> #include <linux/if_vlan.h> #include <linux/rcupdate_wait.h> #include <linux/ctype.h> #include <net/sock.h> #include <net/tcp.h> #include <net/smc.h> #include <asm/ioctls.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include "smc_netns.h" #include "smc.h" #include "smc_clc.h" #include "smc_llc.h" #include "smc_cdc.h" #include "smc_core.h" #include "smc_ib.h" #include "smc_ism.h" #include "smc_pnet.h" #include "smc_netlink.h" #include "smc_tx.h" #include "smc_rx.h" #include "smc_close.h" #include "smc_stats.h" #include "smc_tracepoint.h" #include "smc_sysctl.h" static DEFINE_MUTEX(smc_server_lgr_pending); /* serialize link group * creation on server */ static DEFINE_MUTEX(smc_client_lgr_pending); /* serialize link group * creation on client */ static struct workqueue_struct *smc_tcp_ls_wq; /* wq for tcp listen work */ struct workqueue_struct *smc_hs_wq; /* wq for handshake work */ struct workqueue_struct *smc_close_wq; /* wq for close work */ static void smc_tcp_listen_work(struct work_struct *); static void smc_connect_work(struct work_struct *); int smc_nl_dump_hs_limitation(struct sk_buff *skb, struct netlink_callback *cb) { struct smc_nl_dmp_ctx *cb_ctx = smc_nl_dmp_ctx(cb); void *hdr; if (cb_ctx->pos[0]) goto out; hdr = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, &smc_gen_nl_family, NLM_F_MULTI, SMC_NETLINK_DUMP_HS_LIMITATION); if (!hdr) return -ENOMEM; if (nla_put_u8(skb, SMC_NLA_HS_LIMITATION_ENABLED, sock_net(skb->sk)->smc.limit_smc_hs)) goto err; genlmsg_end(skb, hdr); cb_ctx->pos[0] = 1; out: return skb->len; err: genlmsg_cancel(skb, hdr); return -EMSGSIZE; } int smc_nl_enable_hs_limitation(struct sk_buff *skb, struct genl_info *info) { sock_net(skb->sk)->smc.limit_smc_hs = true; return 0; } int smc_nl_disable_hs_limitation(struct sk_buff *skb, struct genl_info *info) { sock_net(skb->sk)->smc.limit_smc_hs = false; return 0; } static void smc_set_keepalive(struct sock *sk, int val) { struct smc_sock *smc = smc_sk(sk); smc->clcsock->sk->sk_prot->keepalive(smc->clcsock->sk, val); } static struct sock *smc_tcp_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct dst_entry *dst, struct request_sock *req_unhash, bool *own_req) { struct smc_sock *smc; struct sock *child; smc = smc_clcsock_user_data(sk); if (READ_ONCE(sk->sk_ack_backlog) + atomic_read(&smc->queued_smc_hs) > sk->sk_max_ack_backlog) goto drop; if (sk_acceptq_is_full(&smc->sk)) { NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); goto drop; } /* passthrough to original syn recv sock fct */ child = smc->ori_af_ops->syn_recv_sock(sk, skb, req, dst, req_unhash, own_req); /* child must not inherit smc or its ops */ if (child) { rcu_assign_sk_user_data(child, NULL); /* v4-mapped sockets don't inherit parent ops. Don't restore. */ if (inet_csk(child)->icsk_af_ops == inet_csk(sk)->icsk_af_ops) inet_csk(child)->icsk_af_ops = smc->ori_af_ops; } return child; drop: dst_release(dst); tcp_listendrop(sk); return NULL; } static bool smc_hs_congested(const struct sock *sk) { const struct smc_sock *smc; smc = smc_clcsock_user_data(sk); if (!smc) return true; if (workqueue_congested(WORK_CPU_UNBOUND, smc_hs_wq)) return true; return false; } static struct smc_hashinfo smc_v4_hashinfo = { .lock = __RW_LOCK_UNLOCKED(smc_v4_hashinfo.lock), }; static struct smc_hashinfo smc_v6_hashinfo = { .lock = __RW_LOCK_UNLOCKED(smc_v6_hashinfo.lock), }; int smc_hash_sk(struct sock *sk) { struct smc_hashinfo *h = sk->sk_prot->h.smc_hash; struct hlist_head *head; head = &h->ht; write_lock_bh(&h->lock); sk_add_node(sk, head); write_unlock_bh(&h->lock); sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); return 0; } EXPORT_SYMBOL_GPL(smc_hash_sk); void smc_unhash_sk(struct sock *sk) { struct smc_hashinfo *h = sk->sk_prot->h.smc_hash; write_lock_bh(&h->lock); if (sk_del_node_init(sk)) sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); write_unlock_bh(&h->lock); } EXPORT_SYMBOL_GPL(smc_unhash_sk); /* This will be called before user really release sock_lock. So do the * work which we didn't do because of user hold the sock_lock in the * BH context */ static void smc_release_cb(struct sock *sk) { struct smc_sock *smc = smc_sk(sk); if (smc->conn.tx_in_release_sock) { smc_tx_pending(&smc->conn); smc->conn.tx_in_release_sock = false; } } struct proto smc_proto = { .name = "SMC", .owner = THIS_MODULE, .keepalive = smc_set_keepalive, .hash = smc_hash_sk, .unhash = smc_unhash_sk, .release_cb = smc_release_cb, .obj_size = sizeof(struct smc_sock), .h.smc_hash = &smc_v4_hashinfo, .slab_flags = SLAB_TYPESAFE_BY_RCU, }; EXPORT_SYMBOL_GPL(smc_proto); struct proto smc_proto6 = { .name = "SMC6", .owner = THIS_MODULE, .keepalive = smc_set_keepalive, .hash = smc_hash_sk, .unhash = smc_unhash_sk, .release_cb = smc_release_cb, .obj_size = sizeof(struct smc_sock), .h.smc_hash = &smc_v6_hashinfo, .slab_flags = SLAB_TYPESAFE_BY_RCU, }; EXPORT_SYMBOL_GPL(smc_proto6); static void smc_fback_restore_callbacks(struct smc_sock *smc) { struct sock *clcsk = smc->clcsock->sk; write_lock_bh(&clcsk->sk_callback_lock); clcsk->sk_user_data = NULL; smc_clcsock_restore_cb(&clcsk->sk_state_change, &smc->clcsk_state_change); smc_clcsock_restore_cb(&clcsk->sk_data_ready, &smc->clcsk_data_ready); smc_clcsock_restore_cb(&clcsk->sk_write_space, &smc->clcsk_write_space); smc_clcsock_restore_cb(&clcsk->sk_error_report, &smc->clcsk_error_report); write_unlock_bh(&clcsk->sk_callback_lock); } static void smc_restore_fallback_changes(struct smc_sock *smc) { if (smc->clcsock->file) { /* non-accepted sockets have no file yet */ smc->clcsock->file->private_data = smc->sk.sk_socket; smc->clcsock->file = NULL; smc_fback_restore_callbacks(smc); } } static int __smc_release(struct smc_sock *smc) { struct sock *sk = &smc->sk; int rc = 0; if (!smc->use_fallback) { rc = smc_close_active(smc); smc_sock_set_flag(sk, SOCK_DEAD); sk->sk_shutdown |= SHUTDOWN_MASK; } else { if (sk->sk_state != SMC_CLOSED) { if (sk->sk_state != SMC_LISTEN && sk->sk_state != SMC_INIT) sock_put(sk); /* passive closing */ if (sk->sk_state == SMC_LISTEN) { /* wake up clcsock accept */ rc = kernel_sock_shutdown(smc->clcsock, SHUT_RDWR); } sk->sk_state = SMC_CLOSED; sk->sk_state_change(sk); } smc_restore_fallback_changes(smc); } sk->sk_prot->unhash(sk); if (sk->sk_state == SMC_CLOSED) { if (smc->clcsock) { release_sock(sk); smc_clcsock_release(smc); lock_sock(sk); } if (!smc->use_fallback) smc_conn_free(&smc->conn); } return rc; } static int smc_release(struct socket *sock) { struct sock *sk = sock->sk; struct smc_sock *smc; int old_state, rc = 0; if (!sk) goto out; sock_hold(sk); /* sock_put below */ smc = smc_sk(sk); old_state = sk->sk_state; /* cleanup for a dangling non-blocking connect */ if (smc->connect_nonblock && old_state == SMC_INIT) tcp_abort(smc->clcsock->sk, ECONNABORTED); if (cancel_work_sync(&smc->connect_work)) sock_put(&smc->sk); /* sock_hold in smc_connect for passive closing */ if (sk->sk_state == SMC_LISTEN) /* smc_close_non_accepted() is called and acquires * sock lock for child sockets again */ lock_sock_nested(sk, SINGLE_DEPTH_NESTING); else lock_sock(sk); if (old_state == SMC_INIT && sk->sk_state == SMC_ACTIVE && !smc->use_fallback) smc_close_active_abort(smc); rc = __smc_release(smc); /* detach socket */ sock_orphan(sk); sock->sk = NULL; release_sock(sk); sock_put(sk); /* sock_hold above */ sock_put(sk); /* final sock_put */ out: return rc; } static void smc_destruct(struct sock *sk) { if (sk->sk_state != SMC_CLOSED) return; if (!sock_flag(sk, SOCK_DEAD)) return; sk_refcnt_debug_dec(sk); } static struct sock *smc_sock_alloc(struct net *net, struct socket *sock, int protocol) { struct smc_sock *smc; struct proto *prot; struct sock *sk; prot = (protocol == SMCPROTO_SMC6) ? &smc_proto6 : &smc_proto; sk = sk_alloc(net, PF_SMC, GFP_KERNEL, prot, 0); if (!sk) return NULL; sock_init_data(sock, sk); /* sets sk_refcnt to 1 */ sk->sk_state = SMC_INIT; sk->sk_destruct = smc_destruct; sk->sk_protocol = protocol; WRITE_ONCE(sk->sk_sndbuf, 2 * READ_ONCE(net->smc.sysctl_wmem)); WRITE_ONCE(sk->sk_rcvbuf, 2 * READ_ONCE(net->smc.sysctl_rmem)); smc = smc_sk(sk); INIT_WORK(&smc->tcp_listen_work, smc_tcp_listen_work); INIT_WORK(&smc->connect_work, smc_connect_work); INIT_DELAYED_WORK(&smc->conn.tx_work, smc_tx_work); INIT_LIST_HEAD(&smc->accept_q); spin_lock_init(&smc->accept_q_lock); spin_lock_init(&smc->conn.send_lock); sk->sk_prot->hash(sk); sk_refcnt_debug_inc(sk); mutex_init(&smc->clcsock_release_lock); smc_init_saved_callbacks(smc); return sk; } static int smc_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; struct sock *sk = sock->sk; struct smc_sock *smc; int rc; smc = smc_sk(sk); /* replicate tests from inet_bind(), to be safe wrt. future changes */ rc = -EINVAL; if (addr_len < sizeof(struct sockaddr_in)) goto out; rc = -EAFNOSUPPORT; if (addr->sin_family != AF_INET && addr->sin_family != AF_INET6 && addr->sin_family != AF_UNSPEC) goto out; /* accept AF_UNSPEC (mapped to AF_INET) only if s_addr is INADDR_ANY */ if (addr->sin_family == AF_UNSPEC && addr->sin_addr.s_addr != htonl(INADDR_ANY)) goto out; lock_sock(sk); /* Check if socket is already active */ rc = -EINVAL; if (sk->sk_state != SMC_INIT || smc->connect_nonblock) goto out_rel; smc->clcsock->sk->sk_reuse = sk->sk_reuse; smc->clcsock->sk->sk_reuseport = sk->sk_reuseport; rc = kernel_bind(smc->clcsock, uaddr, addr_len); out_rel: release_sock(sk); out: return rc; } /* copy only relevant settings and flags of SOL_SOCKET level from smc to * clc socket (since smc is not called for these options from net/core) */ #define SK_FLAGS_SMC_TO_CLC ((1UL << SOCK_URGINLINE) | \ (1UL << SOCK_KEEPOPEN) | \ (1UL << SOCK_LINGER) | \ (1UL << SOCK_BROADCAST) | \ (1UL << SOCK_TIMESTAMP) | \ (1UL << SOCK_DBG) | \ (1UL << SOCK_RCVTSTAMP) | \ (1UL << SOCK_RCVTSTAMPNS) | \ (1UL << SOCK_LOCALROUTE) | \ (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \ (1UL << SOCK_RXQ_OVFL) | \ (1UL << SOCK_WIFI_STATUS) | \ (1UL << SOCK_NOFCS) | \ (1UL << SOCK_FILTER_LOCKED) | \ (1UL << SOCK_TSTAMP_NEW)) /* if set, use value set by setsockopt() - else use IPv4 or SMC sysctl value */ static void smc_adjust_sock_bufsizes(struct sock *nsk, struct sock *osk, unsigned long mask) { nsk->sk_userlocks = osk->sk_userlocks; if (osk->sk_userlocks & SOCK_SNDBUF_LOCK) nsk->sk_sndbuf = osk->sk_sndbuf; if (osk->sk_userlocks & SOCK_RCVBUF_LOCK) nsk->sk_rcvbuf = osk->sk_rcvbuf; } static void smc_copy_sock_settings(struct sock *nsk, struct sock *osk, unsigned long mask) { /* options we don't get control via setsockopt for */ nsk->sk_type = osk->sk_type; nsk->sk_sndtimeo = osk->sk_sndtimeo; nsk->sk_rcvtimeo = osk->sk_rcvtimeo; nsk->sk_mark = READ_ONCE(osk->sk_mark); nsk->sk_priority = osk->sk_priority; nsk->sk_rcvlowat = osk->sk_rcvlowat; nsk->sk_bound_dev_if = osk->sk_bound_dev_if; nsk->sk_err = osk->sk_err; nsk->sk_flags &= ~mask; nsk->sk_flags |= osk->sk_flags & mask; smc_adjust_sock_bufsizes(nsk, osk, mask); } static void smc_copy_sock_settings_to_clc(struct smc_sock *smc) { smc_copy_sock_settings(smc->clcsock->sk, &smc->sk, SK_FLAGS_SMC_TO_CLC); } #define SK_FLAGS_CLC_TO_SMC ((1UL << SOCK_URGINLINE) | \ (1UL << SOCK_KEEPOPEN) | \ (1UL << SOCK_LINGER) | \ (1UL << SOCK_DBG)) /* copy only settings and flags relevant for smc from clc to smc socket */ static void smc_copy_sock_settings_to_smc(struct smc_sock *smc) { smc_copy_sock_settings(&smc->sk, smc->clcsock->sk, SK_FLAGS_CLC_TO_SMC); } /* register the new vzalloced sndbuf on all links */ static int smcr_lgr_reg_sndbufs(struct smc_link *link, struct smc_buf_desc *snd_desc) { struct smc_link_group *lgr = link->lgr; int i, rc = 0; if (!snd_desc->is_vm) return -EINVAL; /* protect against parallel smcr_link_reg_buf() */ mutex_lock(&lgr->llc_conf_mutex); for (i = 0; i < SMC_LINKS_PER_LGR_MAX; i++) { if (!smc_link_active(&lgr->lnk[i])) continue; rc = smcr_link_reg_buf(&lgr->lnk[i], snd_desc); if (rc) break; } mutex_unlock(&lgr->llc_conf_mutex); return rc; } /* register the new rmb on all links */ static int smcr_lgr_reg_rmbs(struct smc_link *link, struct smc_buf_desc *rmb_desc) { struct smc_link_group *lgr = link->lgr; int i, rc = 0; rc = smc_llc_flow_initiate(lgr, SMC_LLC_FLOW_RKEY); if (rc) return rc; /* protect against parallel smc_llc_cli_rkey_exchange() and * parallel smcr_link_reg_buf() */ mutex_lock(&lgr->llc_conf_mutex); for (i = 0; i < SMC_LINKS_PER_LGR_MAX; i++) { if (!smc_link_active(&lgr->lnk[i])) continue; rc = smcr_link_reg_buf(&lgr->lnk[i], rmb_desc); if (rc) goto out; } /* exchange confirm_rkey msg with peer */ rc = smc_llc_do_confirm_rkey(link, rmb_desc); if (rc) { rc = -EFAULT; goto out; } rmb_desc->is_conf_rkey = true; out: mutex_unlock(&lgr->llc_conf_mutex); smc_llc_flow_stop(lgr, &lgr->llc_flow_lcl); return rc; } static int smcr_clnt_conf_first_link(struct smc_sock *smc) { struct smc_link *link = smc->conn.lnk; struct smc_llc_qentry *qentry; int rc; /* Receive CONFIRM LINK request from server over RoCE fabric. * Increasing the client's timeout by twice as much as the server's * timeout by default can temporarily avoid decline messages of * both sides crossing or colliding */ qentry = smc_llc_wait(link->lgr, NULL, 2 * SMC_LLC_WAIT_TIME, SMC_LLC_CONFIRM_LINK); if (!qentry) { struct smc_clc_msg_decline dclc; rc = smc_clc_wait_msg(smc, &dclc, sizeof(dclc), SMC_CLC_DECLINE, CLC_WAIT_TIME_SHORT); return rc == -EAGAIN ? SMC_CLC_DECL_TIMEOUT_CL : rc; } smc_llc_save_peer_uid(qentry); rc = smc_llc_eval_conf_link(qentry, SMC_LLC_REQ); smc_llc_flow_qentry_del(&link->lgr->llc_flow_lcl); if (rc) return SMC_CLC_DECL_RMBE_EC; rc = smc_ib_modify_qp_rts(link); if (rc) return SMC_CLC_DECL_ERR_RDYLNK; smc_wr_remember_qp_attr(link); /* reg the sndbuf if it was vzalloced */ if (smc->conn.sndbuf_desc->is_vm) { if (smcr_link_reg_buf(link, smc->conn.sndbuf_desc)) return SMC_CLC_DECL_ERR_REGBUF; } /* reg the rmb */ if (smcr_link_reg_buf(link, smc->conn.rmb_desc)) return SMC_CLC_DECL_ERR_REGBUF; /* confirm_rkey is implicit on 1st contact */ smc->conn.rmb_desc->is_conf_rkey = true; /* send CONFIRM LINK response over RoCE fabric */ rc = smc_llc_send_confirm_link(link, SMC_LLC_RESP); if (rc < 0) return SMC_CLC_DECL_TIMEOUT_CL; smc_llc_link_active(link); smcr_lgr_set_type(link->lgr, SMC_LGR_SINGLE); /* optional 2nd link, receive ADD LINK request from server */ qentry = smc_llc_wait(link->lgr, NULL, SMC_LLC_WAIT_TIME, SMC_LLC_ADD_LINK); if (!qentry) { struct smc_clc_msg_decline dclc; rc = smc_clc_wait_msg(smc, &dclc, sizeof(dclc), SMC_CLC_DECLINE, CLC_WAIT_TIME_SHORT); if (rc == -EAGAIN) rc = 0; /* no DECLINE received, go with one link */ return rc; } smc_llc_flow_qentry_clr(&link->lgr->llc_flow_lcl); smc_llc_cli_add_link(link, qentry); return 0; } static bool smc_isascii(char *hostname) { int i; for (i = 0; i < SMC_MAX_HOSTNAME_LEN; i++) if (!isascii(hostname[i])) return false; return true; } static void smc_conn_save_peer_info_fce(struct smc_sock *smc, struct smc_clc_msg_accept_confirm *clc) { struct smc_clc_msg_accept_confirm_v2 *clc_v2 = (struct smc_clc_msg_accept_confirm_v2 *)clc; struct smc_clc_first_contact_ext *fce; int clc_v2_len; if (clc->hdr.version == SMC_V1 || !(clc->hdr.typev2 & SMC_FIRST_CONTACT_MASK)) return; if (smc->conn.lgr->is_smcd) { memcpy(smc->conn.lgr->negotiated_eid, clc_v2->d1.eid, SMC_MAX_EID_LEN); clc_v2_len = offsetofend(struct smc_clc_msg_accept_confirm_v2, d1); } else { memcpy(smc->conn.lgr->negotiated_eid, clc_v2->r1.eid, SMC_MAX_EID_LEN); clc_v2_len = offsetofend(struct smc_clc_msg_accept_confirm_v2, r1); } fce = (struct smc_clc_first_contact_ext *)(((u8 *)clc_v2) + clc_v2_len); smc->conn.lgr->peer_os = fce->os_type; smc->conn.lgr->peer_smc_release = fce->release; if (smc_isascii(fce->hostname)) memcpy(smc->conn.lgr->peer_hostname, fce->hostname, SMC_MAX_HOSTNAME_LEN); } static void smcr_conn_save_peer_info(struct smc_sock *smc, struct smc_clc_msg_accept_confirm *clc) { int bufsize = smc_uncompress_bufsize(clc->r0.rmbe_size); smc->conn.peer_rmbe_idx = clc->r0.rmbe_idx; smc->conn.local_tx_ctrl.token = ntohl(clc->r0.rmbe_alert_token); smc->conn.peer_rmbe_size = bufsize; atomic_set(&smc->conn.peer_rmbe_space, smc->conn.peer_rmbe_size); smc->conn.tx_off = bufsize * (smc->conn.peer_rmbe_idx - 1); } static void smcd_conn_save_peer_info(struct smc_sock *smc, struct smc_clc_msg_accept_confirm *clc) { int bufsize = smc_uncompress_bufsize(clc->d0.dmbe_size); smc->conn.peer_rmbe_idx = clc->d0.dmbe_idx; smc->conn.peer_token = clc->d0.token; /* msg header takes up space in the buffer */ smc->conn.peer_rmbe_size = bufsize - sizeof(struct smcd_cdc_msg); atomic_set(&smc->conn.peer_rmbe_space, smc->conn.peer_rmbe_size); smc->conn.tx_off = bufsize * smc->conn.peer_rmbe_idx; } static void smc_conn_save_peer_info(struct smc_sock *smc, struct smc_clc_msg_accept_confirm *clc) { if (smc->conn.lgr->is_smcd) smcd_conn_save_peer_info(smc, clc); else smcr_conn_save_peer_info(smc, clc); smc_conn_save_peer_info_fce(smc, clc); } static void smc_link_save_peer_info(struct smc_link *link, struct smc_clc_msg_accept_confirm *clc, struct smc_init_info *ini) { link->peer_qpn = ntoh24(clc->r0.qpn); memcpy(link->peer_gid, ini->peer_gid, SMC_GID_SIZE); memcpy(link->peer_mac, ini->peer_mac, sizeof(link->peer_mac)); link->peer_psn = ntoh24(clc->r0.psn); link->peer_mtu = clc->r0.qp_mtu; } static void smc_stat_inc_fback_rsn_cnt(struct smc_sock *smc, struct smc_stats_fback *fback_arr) { int cnt; for (cnt = 0; cnt < SMC_MAX_FBACK_RSN_CNT; cnt++) { if (fback_arr[cnt].fback_code == smc->fallback_rsn) { fback_arr[cnt].count++; break; } if (!fback_arr[cnt].fback_code) { fback_arr[cnt].fback_code = smc->fallback_rsn; fback_arr[cnt].count++; break; } } } static void smc_stat_fallback(struct smc_sock *smc) { struct net *net = sock_net(&smc->sk); mutex_lock(&net->smc.mutex_fback_rsn); if (smc->listen_smc) { smc_stat_inc_fback_rsn_cnt(smc, net->smc.fback_rsn->srv); net->smc.fback_rsn->srv_fback_cnt++; } else { smc_stat_inc_fback_rsn_cnt(smc, net->smc.fback_rsn->clnt); net->smc.fback_rsn->clnt_fback_cnt++; } mutex_unlock(&net->smc.mutex_fback_rsn); } /* must be called under rcu read lock */ static void smc_fback_wakeup_waitqueue(struct smc_sock *smc, void *key) { struct socket_wq *wq; __poll_t flags; wq = rcu_dereference(smc->sk.sk_wq); if (!skwq_has_sleeper(wq)) return; /* wake up smc sk->sk_wq */ if (!key) { /* sk_state_change */ wake_up_interruptible_all(&wq->wait); } else { flags = key_to_poll(key); if (flags & (EPOLLIN | EPOLLOUT)) /* sk_data_ready or sk_write_space */ wake_up_interruptible_sync_poll(&wq->wait, flags); else if (flags & EPOLLERR) /* sk_error_report */ wake_up_interruptible_poll(&wq->wait, flags); } } static int smc_fback_mark_woken(wait_queue_entry_t *wait, unsigned int mode, int sync, void *key) { struct smc_mark_woken *mark = container_of(wait, struct smc_mark_woken, wait_entry); mark->woken = true; mark->key = key; return 0; } static void smc_fback_forward_wakeup(struct smc_sock *smc, struct sock *clcsk, void (*clcsock_callback)(struct sock *sk)) { struct smc_mark_woken mark = { .woken = false }; struct socket_wq *wq; init_waitqueue_func_entry(&mark.wait_entry, smc_fback_mark_woken); rcu_read_lock(); wq = rcu_dereference(clcsk->sk_wq); if (!wq) goto out; add_wait_queue(sk_sleep(clcsk), &mark.wait_entry); clcsock_callback(clcsk); remove_wait_queue(sk_sleep(clcsk), &mark.wait_entry); if (mark.woken) smc_fback_wakeup_waitqueue(smc, mark.key); out: rcu_read_unlock(); } static void smc_fback_state_change(struct sock *clcsk) { struct smc_sock *smc; read_lock_bh(&clcsk->sk_callback_lock); smc = smc_clcsock_user_data(clcsk); if (smc) smc_fback_forward_wakeup(smc, clcsk, smc->clcsk_state_change); read_unlock_bh(&clcsk->sk_callback_lock); } static void smc_fback_data_ready(struct sock *clcsk) { struct smc_sock *smc; read_lock_bh(&clcsk->sk_callback_lock); smc = smc_clcsock_user_data(clcsk); if (smc) smc_fback_forward_wakeup(smc, clcsk, smc->clcsk_data_ready); read_unlock_bh(&clcsk->sk_callback_lock); } static void smc_fback_write_space(struct sock *clcsk) { struct smc_sock *smc; read_lock_bh(&clcsk->sk_callback_lock); smc = smc_clcsock_user_data(clcsk); if (smc) smc_fback_forward_wakeup(smc, clcsk, smc->clcsk_write_space); read_unlock_bh(&clcsk->sk_callback_lock); } static void smc_fback_error_report(struct sock *clcsk) { struct smc_sock *smc; read_lock_bh(&clcsk->sk_callback_lock); smc = smc_clcsock_user_data(clcsk); if (smc) smc_fback_forward_wakeup(smc, clcsk, smc->clcsk_error_report); read_unlock_bh(&clcsk->sk_callback_lock); } static void smc_fback_replace_callbacks(struct smc_sock *smc) { struct sock *clcsk = smc->clcsock->sk; write_lock_bh(&clcsk->sk_callback_lock); clcsk->sk_user_data = (void *)((uintptr_t)smc | SK_USER_DATA_NOCOPY); smc_clcsock_replace_cb(&clcsk->sk_state_change, smc_fback_state_change, &smc->clcsk_state_change); smc_clcsock_replace_cb(&clcsk->sk_data_ready, smc_fback_data_ready, &smc->clcsk_data_ready); smc_clcsock_replace_cb(&clcsk->sk_write_space, smc_fback_write_space, &smc->clcsk_write_space); smc_clcsock_replace_cb(&clcsk->sk_error_report, smc_fback_error_report, &smc->clcsk_error_report); write_unlock_bh(&clcsk->sk_callback_lock); } static int smc_switch_to_fallback(struct smc_sock *smc, int reason_code) { int rc = 0; mutex_lock(&smc->clcsock_release_lock); if (!smc->clcsock) { rc = -EBADF; goto out; } smc->use_fallback = true; smc->fallback_rsn = reason_code; smc_stat_fallback(smc); trace_smc_switch_to_fallback(smc, reason_code); if (smc->sk.sk_socket && smc->sk.sk_socket->file) { smc->clcsock->file = smc->sk.sk_socket->file; smc->clcsock->file->private_data = smc->clcsock; smc->clcsock->wq.fasync_list = smc->sk.sk_socket->wq.fasync_list; /* There might be some wait entries remaining * in smc sk->sk_wq and they should be woken up * as clcsock's wait queue is woken up. */ smc_fback_replace_callbacks(smc); } out: mutex_unlock(&smc->clcsock_release_lock); return rc; } /* fall back during connect */ static int smc_connect_fallback(struct smc_sock *smc, int reason_code) { struct net *net = sock_net(&smc->sk); int rc = 0; rc = smc_switch_to_fallback(smc, reason_code); if (rc) { /* fallback fails */ this_cpu_inc(net->smc.smc_stats->clnt_hshake_err_cnt); if (smc->sk.sk_state == SMC_INIT) sock_put(&smc->sk); /* passive closing */ return rc; } smc_copy_sock_settings_to_clc(smc); smc->connect_nonblock = 0; if (smc->sk.sk_state == SMC_INIT) smc->sk.sk_state = SMC_ACTIVE; return 0; } /* decline and fall back during connect */ static int smc_connect_decline_fallback(struct smc_sock *smc, int reason_code, u8 version) { struct net *net = sock_net(&smc->sk); int rc; if (reason_code < 0) { /* error, fallback is not possible */ this_cpu_inc(net->smc.smc_stats->clnt_hshake_err_cnt); if (smc->sk.sk_state == SMC_INIT) sock_put(&smc->sk); /* passive closing */ return reason_code; } if (reason_code != SMC_CLC_DECL_PEERDECL) { rc = smc_clc_send_decline(smc, reason_code, version); if (rc < 0) { this_cpu_inc(net->smc.smc_stats->clnt_hshake_err_cnt); if (smc->sk.sk_state == SMC_INIT) sock_put(&smc->sk); /* passive closing */ return rc; } } return smc_connect_fallback(smc, reason_code); } static void smc_conn_abort(struct smc_sock *smc, int local_first) { struct smc_connection *conn = &smc->conn; struct smc_link_group *lgr = conn->lgr; bool lgr_valid = false; if (smc_conn_lgr_valid(conn)) lgr_valid = true; smc_conn_free(conn); if (local_first && lgr_valid) smc_lgr_cleanup_early(lgr); } /* check if there is a rdma device available for this connection. */ /* called for connect and listen */ static int smc_find_rdma_device(struct smc_sock *smc, struct smc_init_info *ini) { /* PNET table look up: search active ib_device and port * within same PNETID that also contains the ethernet device * used for the internal TCP socket */ smc_pnet_find_roce_resource(smc->clcsock->sk, ini); if (!ini->check_smcrv2 && !ini->ib_dev) return SMC_CLC_DECL_NOSMCRDEV; if (ini->check_smcrv2 && !ini->smcrv2.ib_dev_v2) return SMC_CLC_DECL_NOSMCRDEV; return 0; } /* check if there is an ISM device available for this connection. */ /* called for connect and listen */ static int smc_find_ism_device(struct smc_sock *smc, struct smc_init_info *ini) { /* Find ISM device with same PNETID as connecting interface */ smc_pnet_find_ism_resource(smc->clcsock->sk, ini); if (!ini->ism_dev[0]) return SMC_CLC_DECL_NOSMCDDEV; else ini->ism_chid[0] = smc_ism_get_chid(ini->ism_dev[0]); return 0; } /* is chid unique for the ism devices that are already determined? */ static bool smc_find_ism_v2_is_unique_chid(u16 chid, struct smc_init_info *ini, int cnt) { int i = (!ini->ism_dev[0]) ? 1 : 0; for (; i < cnt; i++) if (ini->ism_chid[i] == chid) return false; return true; } /* determine possible V2 ISM devices (either without PNETID or with PNETID plus * PNETID matching net_device) */ static int smc_find_ism_v2_device_clnt(struct smc_sock *smc, struct smc_init_info *ini) { int rc = SMC_CLC_DECL_NOSMCDDEV; struct smcd_dev *smcd; int i = 1; u16 chid; if (smcd_indicated(ini->smc_type_v1)) rc = 0; /* already initialized for V1 */ mutex_lock(&smcd_dev_list.mutex); list_for_each_entry(smcd, &smcd_dev_list.list, list) { if (smcd->going_away || smcd == ini->ism_dev[0]) continue; chid = smc_ism_get_chid(smcd); if (!smc_find_ism_v2_is_unique_chid(chid, ini, i)) continue; if (!smc_pnet_is_pnetid_set(smcd->pnetid) || smc_pnet_is_ndev_pnetid(sock_net(&smc->sk), smcd->pnetid)) { ini->ism_dev[i] = smcd; ini->ism_chid[i] = chid; ini->is_smcd = true; rc = 0; i++; if (i > SMC_MAX_ISM_DEVS) break; } } mutex_unlock(&smcd_dev_list.mutex); ini->ism_offered_cnt = i - 1; if (!ini->ism_dev[0] && !ini->ism_dev[1]) ini->smcd_version = 0; return rc; } /* Check for VLAN ID and register it on ISM device just for CLC handshake */ static int smc_connect_ism_vlan_setup(struct smc_sock *smc, struct smc_init_info *ini) { if (ini->vlan_id && smc_ism_get_vlan(ini->ism_dev[0], ini->vlan_id)) return SMC_CLC_DECL_ISMVLANERR; return 0; } static int smc_find_proposal_devices(struct smc_sock *smc, struct smc_init_info *ini) { int rc = 0; /* check if there is an ism device available */ if (!(ini->smcd_version & SMC_V1) || smc_find_ism_device(smc, ini) || smc_connect_ism_vlan_setup(smc, ini)) ini->smcd_version &= ~SMC_V1; /* else ISM V1 is supported for this connection */ /* check if there is an rdma device available */ if (!(ini->smcr_version & SMC_V1) || smc_find_rdma_device(smc, ini)) ini->smcr_version &= ~SMC_V1; /* else RDMA is supported for this connection */ ini->smc_type_v1 = smc_indicated_type(ini->smcd_version & SMC_V1, ini->smcr_version & SMC_V1); /* check if there is an ism v2 device available */ if (!(ini->smcd_version & SMC_V2) || !smc_ism_is_v2_capable() || smc_find_ism_v2_device_clnt(smc, ini)) ini->smcd_version &= ~SMC_V2; /* check if there is an rdma v2 device available */ ini->check_smcrv2 = true; ini->smcrv2.saddr = smc->clcsock->sk->sk_rcv_saddr; if (!(ini->smcr_version & SMC_V2) || smc->clcsock->sk->sk_family != AF_INET || !smc_clc_ueid_count() || smc_find_rdma_device(smc, ini)) ini->smcr_version &= ~SMC_V2; ini->check_smcrv2 = false; ini->smc_type_v2 = smc_indicated_type(ini->smcd_version & SMC_V2, ini->smcr_version & SMC_V2); /* if neither ISM nor RDMA are supported, fallback */ if (ini->smc_type_v1 == SMC_TYPE_N && ini->smc_type_v2 == SMC_TYPE_N) rc = SMC_CLC_DECL_NOSMCDEV; return rc; } /* cleanup temporary VLAN ID registration used for CLC handshake. If ISM is * used, the VLAN ID will be registered again during the connection setup. */ static int smc_connect_ism_vlan_cleanup(struct smc_sock *smc, struct smc_init_info *ini) { if (!smcd_indicated(ini->smc_type_v1)) return 0; if (ini->vlan_id && smc_ism_put_vlan(ini->ism_dev[0], ini->vlan_id)) return SMC_CLC_DECL_CNFERR; return 0; } #define SMC_CLC_MAX_ACCEPT_LEN \ (sizeof(struct smc_clc_msg_accept_confirm_v2) + \ sizeof(struct smc_clc_first_contact_ext) + \ sizeof(struct smc_clc_msg_trail)) /* CLC handshake during connect */ static int smc_connect_clc(struct smc_sock *smc, struct smc_clc_msg_accept_confirm_v2 *aclc2, struct smc_init_info *ini) { int rc = 0; /* do inband token exchange */ rc = smc_clc_send_proposal(smc, ini); if (rc) return rc; /* receive SMC Accept CLC message */ return smc_clc_wait_msg(smc, aclc2, SMC_CLC_MAX_ACCEPT_LEN, SMC_CLC_ACCEPT, CLC_WAIT_TIME); } void smc_fill_gid_list(struct smc_link_group *lgr, struct smc_gidlist *gidlist, struct smc_ib_device *known_dev, u8 *known_gid) { struct smc_init_info *alt_ini = NULL; memset(gidlist, 0, sizeof(*gidlist)); memcpy(gidlist->list[gidlist->len++], known_gid, SMC_GID_SIZE); alt_ini = kzalloc(sizeof(*alt_ini), GFP_KERNEL); if (!alt_ini) goto out; alt_ini->vlan_id = lgr->vlan_id; alt_ini->check_smcrv2 = true; alt_ini->smcrv2.saddr = lgr->saddr; smc_pnet_find_alt_roce(lgr, alt_ini, known_dev); if (!alt_ini->smcrv2.ib_dev_v2) goto out; memcpy(gidlist->list[gidlist->len++], alt_ini->smcrv2.ib_gid_v2, SMC_GID_SIZE); out: kfree(alt_ini); } static int smc_connect_rdma_v2_prepare(struct smc_sock *smc, struct smc_clc_msg_accept_confirm *aclc, struct smc_init_info *ini) { struct smc_clc_msg_accept_confirm_v2 *clc_v2 = (struct smc_clc_msg_accept_confirm_v2 *)aclc; struct smc_clc_first_contact_ext *fce = (struct smc_clc_first_contact_ext *) (((u8 *)clc_v2) + sizeof(*clc_v2)); struct net *net = sock_net(&smc->sk); if (!ini->first_contact_peer || aclc->hdr.version == SMC_V1) return 0; if (fce->v2_direct) { memcpy(ini->smcrv2.nexthop_mac, &aclc->r0.lcl.mac, ETH_ALEN); ini->smcrv2.uses_gateway = false; } else { if (smc_ib_find_route(net, smc->clcsock->sk->sk_rcv_saddr, smc_ib_gid_to_ipv4(aclc->r0.lcl.gid), ini->smcrv2.nexthop_mac, &ini->smcrv2.uses_gateway)) return SMC_CLC_DECL_NOROUTE; if (!ini->smcrv2.uses_gateway) { /* mismatch: peer claims indirect, but its direct */ return SMC_CLC_DECL_NOINDIRECT; } } return 0; } /* setup for RDMA connection of client */ static int smc_connect_rdma(struct smc_sock *smc, struct smc_clc_msg_accept_confirm *aclc, struct smc_init_info *ini) { int i, reason_code = 0; struct smc_link *link; u8 *eid = NULL; ini->is_smcd = false; ini->ib_clcqpn = ntoh24(aclc->r0.qpn); ini->first_contact_peer = aclc->hdr.typev2 & SMC_FIRST_CONTACT_MASK; memcpy(ini->peer_systemid, aclc->r0.lcl.id_for_peer, SMC_SYSTEMID_LEN); memcpy(ini->peer_gid, aclc->r0.lcl.gid, SMC_GID_SIZE); memcpy(ini->peer_mac, aclc->r0.lcl.mac, ETH_ALEN); reason_code = smc_connect_rdma_v2_prepare(smc, aclc, ini); if (reason_code) return reason_code; mutex_lock(&smc_client_lgr_pending); reason_code = smc_conn_create(smc, ini); if (reason_code) { mutex_unlock(&smc_client_lgr_pending); return reason_code; } smc_conn_save_peer_info(smc, aclc); if (ini->first_contact_local) { link = smc->conn.lnk; } else { /* set link that was assigned by server */ link = NULL; for (i = 0; i < SMC_LINKS_PER_LGR_MAX; i++) { struct smc_link *l = &smc->conn.lgr->lnk[i]; if (l->peer_qpn == ntoh24(aclc->r0.qpn) && !memcmp(l->peer_gid, &aclc->r0.lcl.gid, SMC_GID_SIZE) && (aclc->hdr.version > SMC_V1 || !memcmp(l->peer_mac, &aclc->r0.lcl.mac, sizeof(l->peer_mac)))) { link = l; break; } } if (!link) { reason_code = SMC_CLC_DECL_NOSRVLINK; goto connect_abort; } smc_switch_link_and_count(&smc->conn, link); } /* create send buffer and rmb */ if (smc_buf_create(smc, false)) { reason_code = SMC_CLC_DECL_MEM; goto connect_abort; } if (ini->first_contact_local) smc_link_save_peer_info(link, aclc, ini); if (smc_rmb_rtoken_handling(&smc->conn, link, aclc)) { reason_code = SMC_CLC_DECL_ERR_RTOK; goto connect_abort; } smc_close_init(smc); smc_rx_init(smc); if (ini->first_contact_local) { if (smc_ib_ready_link(link)) { reason_code = SMC_CLC_DECL_ERR_RDYLNK; goto connect_abort; } } else { /* reg sendbufs if they were vzalloced */ if (smc->conn.sndbuf_desc->is_vm) { if (smcr_lgr_reg_sndbufs(link, smc->conn.sndbuf_desc)) { reason_code = SMC_CLC_DECL_ERR_REGBUF; goto connect_abort; } } if (smcr_lgr_reg_rmbs(link, smc->conn.rmb_desc)) { reason_code = SMC_CLC_DECL_ERR_REGBUF; goto connect_abort; } } if (aclc->hdr.version > SMC_V1) { struct smc_clc_msg_accept_confirm_v2 *clc_v2 = (struct smc_clc_msg_accept_confirm_v2 *)aclc; eid = clc_v2->r1.eid; if (ini->first_contact_local) smc_fill_gid_list(link->lgr, &ini->smcrv2.gidlist, link->smcibdev, link->gid); } reason_code = smc_clc_send_confirm(smc, ini->first_contact_local, aclc->hdr.version, eid, ini); if (reason_code) goto connect_abort; smc_tx_init(smc); if (ini->first_contact_local) { /* QP confirmation over RoCE fabric */ smc_llc_flow_initiate(link->lgr, SMC_LLC_FLOW_ADD_LINK); reason_code = smcr_clnt_conf_first_link(smc); smc_llc_flow_stop(link->lgr, &link->lgr->llc_flow_lcl); if (reason_code) goto connect_abort; } mutex_unlock(&smc_client_lgr_pending); smc_copy_sock_settings_to_clc(smc); smc->connect_nonblock = 0; if (smc->sk.sk_state == SMC_INIT) smc->sk.sk_state = SMC_ACTIVE; return 0; connect_abort: smc_conn_abort(smc, ini->first_contact_local); mutex_unlock(&smc_client_lgr_pending); smc->connect_nonblock = 0; return reason_code; } /* The server has chosen one of the proposed ISM devices for the communication. * Determine from the CHID of the received CLC ACCEPT the ISM device chosen. */ static int smc_v2_determine_accepted_chid(struct smc_clc_msg_accept_confirm_v2 *aclc, struct smc_init_info *ini) { int i; for (i = 0; i < ini->ism_offered_cnt + 1; i++) { if (ini->ism_chid[i] == ntohs(aclc->d1.chid)) { ini->ism_selected = i; return 0; } } return -EPROTO; } /* setup for ISM connection of client */ static int smc_connect_ism(struct smc_sock *smc, struct smc_clc_msg_accept_confirm *aclc, struct smc_init_info *ini) { u8 *eid = NULL; int rc = 0; ini->is_smcd = true; ini->first_contact_peer = aclc->hdr.typev2 & SMC_FIRST_CONTACT_MASK; if (aclc->hdr.version == SMC_V2) { struct smc_clc_msg_accept_confirm_v2 *aclc_v2 = (struct smc_clc_msg_accept_confirm_v2 *)aclc; rc = smc_v2_determine_accepted_chid(aclc_v2, ini); if (rc) return rc; } ini->ism_peer_gid[ini->ism_selected] = aclc->d0.gid; /* there is only one lgr role for SMC-D; use server lock */ mutex_lock(&smc_server_lgr_pending); rc = smc_conn_create(smc, ini); if (rc) { mutex_unlock(&smc_server_lgr_pending); return rc; } /* Create send and receive buffers */ rc = smc_buf_create(smc, true); if (rc) { rc = (rc == -ENOSPC) ? SMC_CLC_DECL_MAX_DMB : SMC_CLC_DECL_MEM; goto connect_abort; } smc_conn_save_peer_info(smc, aclc); smc_close_init(smc); smc_rx_init(smc); smc_tx_init(smc); if (aclc->hdr.version > SMC_V1) { struct smc_clc_msg_accept_confirm_v2 *clc_v2 = (struct smc_clc_msg_accept_confirm_v2 *)aclc; eid = clc_v2->d1.eid; } rc = smc_clc_send_confirm(smc, ini->first_contact_local, aclc->hdr.version, eid, NULL); if (rc) goto connect_abort; mutex_unlock(&smc_server_lgr_pending); smc_copy_sock_settings_to_clc(smc); smc->connect_nonblock = 0; if (smc->sk.sk_state == SMC_INIT) smc->sk.sk_state = SMC_ACTIVE; return 0; connect_abort: smc_conn_abort(smc, ini->first_contact_local); mutex_unlock(&smc_server_lgr_pending); smc->connect_nonblock = 0; return rc; } /* check if received accept type and version matches a proposed one */ static int smc_connect_check_aclc(struct smc_init_info *ini, struct smc_clc_msg_accept_confirm *aclc) { if (aclc->hdr.typev1 != SMC_TYPE_R && aclc->hdr.typev1 != SMC_TYPE_D) return SMC_CLC_DECL_MODEUNSUPP; if (aclc->hdr.version >= SMC_V2) { if ((aclc->hdr.typev1 == SMC_TYPE_R && !smcr_indicated(ini->smc_type_v2)) || (aclc->hdr.typev1 == SMC_TYPE_D && !smcd_indicated(ini->smc_type_v2))) return SMC_CLC_DECL_MODEUNSUPP; } else { if ((aclc->hdr.typev1 == SMC_TYPE_R && !smcr_indicated(ini->smc_type_v1)) || (aclc->hdr.typev1 == SMC_TYPE_D && !smcd_indicated(ini->smc_type_v1))) return SMC_CLC_DECL_MODEUNSUPP; } return 0; } /* perform steps before actually connecting */ static int __smc_connect(struct smc_sock *smc) { u8 version = smc_ism_is_v2_capable() ? SMC_V2 : SMC_V1; struct smc_clc_msg_accept_confirm_v2 *aclc2; struct smc_clc_msg_accept_confirm *aclc; struct smc_init_info *ini = NULL; u8 *buf = NULL; int rc = 0; if (smc->use_fallback) return smc_connect_fallback(smc, smc->fallback_rsn); /* if peer has not signalled SMC-capability, fall back */ if (!tcp_sk(smc->clcsock->sk)->syn_smc) return smc_connect_fallback(smc, SMC_CLC_DECL_PEERNOSMC); /* IPSec connections opt out of SMC optimizations */ if (using_ipsec(smc)) return smc_connect_decline_fallback(smc, SMC_CLC_DECL_IPSEC, version); ini = kzalloc(sizeof(*ini), GFP_KERNEL); if (!ini) return smc_connect_decline_fallback(smc, SMC_CLC_DECL_MEM, version); ini->smcd_version = SMC_V1 | SMC_V2; ini->smcr_version = SMC_V1 | SMC_V2; ini->smc_type_v1 = SMC_TYPE_B; ini->smc_type_v2 = SMC_TYPE_B; /* get vlan id from IP device */ if (smc_vlan_by_tcpsk(smc->clcsock, ini)) { ini->smcd_version &= ~SMC_V1; ini->smcr_version = 0; ini->smc_type_v1 = SMC_TYPE_N; if (!ini->smcd_version) { rc = SMC_CLC_DECL_GETVLANERR; goto fallback; } } rc = smc_find_proposal_devices(smc, ini); if (rc) goto fallback; buf = kzalloc(SMC_CLC_MAX_ACCEPT_LEN, GFP_KERNEL); if (!buf) { rc = SMC_CLC_DECL_MEM; goto fallback; } aclc2 = (struct smc_clc_msg_accept_confirm_v2 *)buf; aclc = (struct smc_clc_msg_accept_confirm *)aclc2; /* perform CLC handshake */ rc = smc_connect_clc(smc, aclc2, ini); if (rc) { /* -EAGAIN on timeout, see tcp_recvmsg() */ if (rc == -EAGAIN) { rc = -ETIMEDOUT; smc->sk.sk_err = ETIMEDOUT; } goto vlan_cleanup; } /* check if smc modes and versions of CLC proposal and accept match */ rc = smc_connect_check_aclc(ini, aclc); version = aclc->hdr.version == SMC_V1 ? SMC_V1 : SMC_V2; if (rc) goto vlan_cleanup; /* depending on previous steps, connect using rdma or ism */ if (aclc->hdr.typev1 == SMC_TYPE_R) { ini->smcr_version = version; rc = smc_connect_rdma(smc, aclc, ini); } else if (aclc->hdr.typev1 == SMC_TYPE_D) { ini->smcd_version = version; rc = smc_connect_ism(smc, aclc, ini); } if (rc) goto vlan_cleanup; SMC_STAT_CLNT_SUCC_INC(sock_net(smc->clcsock->sk), aclc); smc_connect_ism_vlan_cleanup(smc, ini); kfree(buf); kfree(ini); return 0; vlan_cleanup: smc_connect_ism_vlan_cleanup(smc, ini); kfree(buf); fallback: kfree(ini); return smc_connect_decline_fallback(smc, rc, version); } static void smc_connect_work(struct work_struct *work) { struct smc_sock *smc = container_of(work, struct smc_sock, connect_work); long timeo = smc->sk.sk_sndtimeo; int rc = 0; if (!timeo) timeo = MAX_SCHEDULE_TIMEOUT; lock_sock(smc->clcsock->sk); if (smc->clcsock->sk->sk_err) { smc->sk.sk_err = smc->clcsock->sk->sk_err; } else if ((1 << smc->clcsock->sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { rc = sk_stream_wait_connect(smc->clcsock->sk, &timeo); if ((rc == -EPIPE) && ((1 << smc->clcsock->sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))) rc = 0; } release_sock(smc->clcsock->sk); lock_sock(&smc->sk); if (rc != 0 || smc->sk.sk_err) { smc->sk.sk_state = SMC_CLOSED; if (rc == -EPIPE || rc == -EAGAIN) smc->sk.sk_err = EPIPE; else if (rc == -ECONNREFUSED) smc->sk.sk_err = ECONNREFUSED; else if (signal_pending(current)) smc->sk.sk_err = -sock_intr_errno(timeo); sock_put(&smc->sk); /* passive closing */ goto out; } rc = __smc_connect(smc); if (rc < 0) smc->sk.sk_err = -rc; out: if (!sock_flag(&smc->sk, SOCK_DEAD)) { if (smc->sk.sk_err) { smc->sk.sk_state_change(&smc->sk); } else { /* allow polling before and after fallback decision */ smc->clcsock->sk->sk_write_space(smc->clcsock->sk); smc->sk.sk_write_space(&smc->sk); } } release_sock(&smc->sk); } static int smc_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags) { struct sock *sk = sock->sk; struct smc_sock *smc; int rc = -EINVAL; smc = smc_sk(sk); /* separate smc parameter checking to be safe */ if (alen < sizeof(addr->sa_family)) goto out_err; if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6) goto out_err; lock_sock(sk); switch (sock->state) { default: rc = -EINVAL; goto out; case SS_CONNECTED: rc = sk->sk_state == SMC_ACTIVE ? -EISCONN : -EINVAL; goto out; case SS_CONNECTING: if (sk->sk_state == SMC_ACTIVE) goto connected; break; case SS_UNCONNECTED: sock->state = SS_CONNECTING; break; } switch (sk->sk_state) { default: goto out; case SMC_CLOSED: rc = sock_error(sk) ? : -ECONNABORTED; sock->state = SS_UNCONNECTED; goto out; case SMC_ACTIVE: rc = -EISCONN; goto out; case SMC_INIT: break; } smc_copy_sock_settings_to_clc(smc); tcp_sk(smc->clcsock->sk)->syn_smc = 1; if (smc->connect_nonblock) { rc = -EALREADY; goto out; } rc = kernel_connect(smc->clcsock, addr, alen, flags); if (rc && rc != -EINPROGRESS) goto out; if (smc->use_fallback) { sock->state = rc ? SS_CONNECTING : SS_CONNECTED; goto out; } sock_hold(&smc->sk); /* sock put in passive closing */ if (flags & O_NONBLOCK) { if (queue_work(smc_hs_wq, &smc->connect_work)) smc->connect_nonblock = 1; rc = -EINPROGRESS; goto out; } else { rc = __smc_connect(smc); if (rc < 0) goto out; } connected: rc = 0; sock->state = SS_CONNECTED; out: release_sock(sk); out_err: return rc; } static int smc_clcsock_accept(struct smc_sock *lsmc, struct smc_sock **new_smc) { struct socket *new_clcsock = NULL; struct sock *lsk = &lsmc->sk; struct sock *new_sk; int rc = -EINVAL; release_sock(lsk); new_sk = smc_sock_alloc(sock_net(lsk), NULL, lsk->sk_protocol); if (!new_sk) { rc = -ENOMEM; lsk->sk_err = ENOMEM; *new_smc = NULL; lock_sock(lsk); goto out; } *new_smc = smc_sk(new_sk); mutex_lock(&lsmc->clcsock_release_lock); if (lsmc->clcsock) rc = kernel_accept(lsmc->clcsock, &new_clcsock, SOCK_NONBLOCK); mutex_unlock(&lsmc->clcsock_release_lock); lock_sock(lsk); if (rc < 0 && rc != -EAGAIN) lsk->sk_err = -rc; if (rc < 0 || lsk->sk_state == SMC_CLOSED) { new_sk->sk_prot->unhash(new_sk); if (new_clcsock) sock_release(new_clcsock); new_sk->sk_state = SMC_CLOSED; smc_sock_set_flag(new_sk, SOCK_DEAD); sock_put(new_sk); /* final */ *new_smc = NULL; goto out; } /* new clcsock has inherited the smc listen-specific sk_data_ready * function; switch it back to the original sk_data_ready function */ new_clcsock->sk->sk_data_ready = lsmc->clcsk_data_ready; /* if new clcsock has also inherited the fallback-specific callback * functions, switch them back to the original ones. */ if (lsmc->use_fallback) { if (lsmc->clcsk_state_change) new_clcsock->sk->sk_state_change = lsmc->clcsk_state_change; if (lsmc->clcsk_write_space) new_clcsock->sk->sk_write_space = lsmc->clcsk_write_space; if (lsmc->clcsk_error_report) new_clcsock->sk->sk_error_report = lsmc->clcsk_error_report; } (*new_smc)->clcsock = new_clcsock; out: return rc; } /* add a just created sock to the accept queue of the listen sock as * candidate for a following socket accept call from user space */ static void smc_accept_enqueue(struct sock *parent, struct sock *sk) { struct smc_sock *par = smc_sk(parent); sock_hold(sk); /* sock_put in smc_accept_unlink () */ spin_lock(&par->accept_q_lock); list_add_tail(&smc_sk(sk)->accept_q, &par->accept_q); spin_unlock(&par->accept_q_lock); sk_acceptq_added(parent); } /* remove a socket from the accept queue of its parental listening socket */ static void smc_accept_unlink(struct sock *sk) { struct smc_sock *par = smc_sk(sk)->listen_smc; spin_lock(&par->accept_q_lock); list_del_init(&smc_sk(sk)->accept_q); spin_unlock(&par->accept_q_lock); sk_acceptq_removed(&smc_sk(sk)->listen_smc->sk); sock_put(sk); /* sock_hold in smc_accept_enqueue */ } /* remove a sock from the accept queue to bind it to a new socket created * for a socket accept call from user space */ struct sock *smc_accept_dequeue(struct sock *parent, struct socket *new_sock) { struct smc_sock *isk, *n; struct sock *new_sk; list_for_each_entry_safe(isk, n, &smc_sk(parent)->accept_q, accept_q) { new_sk = (struct sock *)isk; smc_accept_unlink(new_sk); if (new_sk->sk_state == SMC_CLOSED) { new_sk->sk_prot->unhash(new_sk); if (isk->clcsock) { sock_release(isk->clcsock); isk->clcsock = NULL; } sock_put(new_sk); /* final */ continue; } if (new_sock) { sock_graft(new_sk, new_sock); new_sock->state = SS_CONNECTED; if (isk->use_fallback) { smc_sk(new_sk)->clcsock->file = new_sock->file; isk->clcsock->file->private_data = isk->clcsock; } } return new_sk; } return NULL; } /* clean up for a created but never accepted sock */ void smc_close_non_accepted(struct sock *sk) { struct smc_sock *smc = smc_sk(sk); sock_hold(sk); /* sock_put below */ lock_sock(sk); if (!sk->sk_lingertime) /* wait for peer closing */ WRITE_ONCE(sk->sk_lingertime, SMC_MAX_STREAM_WAIT_TIMEOUT); __smc_release(smc); release_sock(sk); sock_put(sk); /* sock_hold above */ sock_put(sk); /* final sock_put */ } static int smcr_serv_conf_first_link(struct smc_sock *smc) { struct smc_link *link = smc->conn.lnk; struct smc_llc_qentry *qentry; int rc; /* reg the sndbuf if it was vzalloced*/ if (smc->conn.sndbuf_desc->is_vm) { if (smcr_link_reg_buf(link, smc->conn.sndbuf_desc)) return SMC_CLC_DECL_ERR_REGBUF; } /* reg the rmb */ if (smcr_link_reg_buf(link, smc->conn.rmb_desc)) return SMC_CLC_DECL_ERR_REGBUF; /* send CONFIRM LINK request to client over the RoCE fabric */ rc = smc_llc_send_confirm_link(link, SMC_LLC_REQ); if (rc < 0) return SMC_CLC_DECL_TIMEOUT_CL; /* receive CONFIRM LINK response from client over the RoCE fabric */ qentry = smc_llc_wait(link->lgr, link, SMC_LLC_WAIT_TIME, SMC_LLC_CONFIRM_LINK); if (!qentry) { struct smc_clc_msg_decline dclc; rc = smc_clc_wait_msg(smc, &dclc, sizeof(dclc), SMC_CLC_DECLINE, CLC_WAIT_TIME_SHORT); return rc == -EAGAIN ? SMC_CLC_DECL_TIMEOUT_CL : rc; } smc_llc_save_peer_uid(qentry); rc = smc_llc_eval_conf_link(qentry, SMC_LLC_RESP); smc_llc_flow_qentry_del(&link->lgr->llc_flow_lcl); if (rc) return SMC_CLC_DECL_RMBE_EC; /* confirm_rkey is implicit on 1st contact */ smc->conn.rmb_desc->is_conf_rkey = true; smc_llc_link_active(link); smcr_lgr_set_type(link->lgr, SMC_LGR_SINGLE); mutex_lock(&link->lgr->llc_conf_mutex); /* initial contact - try to establish second link */ smc_llc_srv_add_link(link, NULL); mutex_unlock(&link->lgr->llc_conf_mutex); return 0; } /* listen worker: finish */ static void smc_listen_out(struct smc_sock *new_smc) { struct smc_sock *lsmc = new_smc->listen_smc; struct sock *newsmcsk = &new_smc->sk; if (tcp_sk(new_smc->clcsock->sk)->syn_smc) atomic_dec(&lsmc->queued_smc_hs); release_sock(newsmcsk); /* lock in smc_listen_work() */ if (lsmc->sk.sk_state == SMC_LISTEN) { lock_sock_nested(&lsmc->sk, SINGLE_DEPTH_NESTING); smc_accept_enqueue(&lsmc->sk, newsmcsk); release_sock(&lsmc->sk); } else { /* no longer listening */ smc_close_non_accepted(newsmcsk); } /* Wake up accept */ lsmc->sk.sk_data_ready(&lsmc->sk); sock_put(&lsmc->sk); /* sock_hold in smc_tcp_listen_work */ } /* listen worker: finish in state connected */ static void smc_listen_out_connected(struct smc_sock *new_smc) { struct sock *newsmcsk = &new_smc->sk; if (newsmcsk->sk_state == SMC_INIT) newsmcsk->sk_state = SMC_ACTIVE; smc_listen_out(new_smc); } /* listen worker: finish in error state */ static void smc_listen_out_err(struct smc_sock *new_smc) { struct sock *newsmcsk = &new_smc->sk; struct net *net = sock_net(newsmcsk); this_cpu_inc(net->smc.smc_stats->srv_hshake_err_cnt); if (newsmcsk->sk_state == SMC_INIT) sock_put(&new_smc->sk); /* passive closing */ newsmcsk->sk_state = SMC_CLOSED; smc_listen_out(new_smc); } /* listen worker: decline and fall back if possible */ static void smc_listen_decline(struct smc_sock *new_smc, int reason_code, int local_first, u8 version) { /* RDMA setup failed, switch back to TCP */ smc_conn_abort(new_smc, local_first); if (reason_code < 0 || smc_switch_to_fallback(new_smc, reason_code)) { /* error, no fallback possible */ smc_listen_out_err(new_smc); return; } if (reason_code && reason_code != SMC_CLC_DECL_PEERDECL) { if (smc_clc_send_decline(new_smc, reason_code, version) < 0) { smc_listen_out_err(new_smc); return; } } smc_listen_out_connected(new_smc); } /* listen worker: version checking */ static int smc_listen_v2_check(struct smc_sock *new_smc, struct smc_clc_msg_proposal *pclc, struct smc_init_info *ini) { struct smc_clc_smcd_v2_extension *pclc_smcd_v2_ext; struct smc_clc_v2_extension *pclc_v2_ext; int rc = SMC_CLC_DECL_PEERNOSMC; ini->smc_type_v1 = pclc->hdr.typev1; ini->smc_type_v2 = pclc->hdr.typev2; ini->smcd_version = smcd_indicated(ini->smc_type_v1) ? SMC_V1 : 0; ini->smcr_version = smcr_indicated(ini->smc_type_v1) ? SMC_V1 : 0; if (pclc->hdr.version > SMC_V1) { if (smcd_indicated(ini->smc_type_v2)) ini->smcd_version |= SMC_V2; if (smcr_indicated(ini->smc_type_v2)) ini->smcr_version |= SMC_V2; } if (!(ini->smcd_version & SMC_V2) && !(ini->smcr_version & SMC_V2)) { rc = SMC_CLC_DECL_PEERNOSMC; goto out; } pclc_v2_ext = smc_get_clc_v2_ext(pclc); if (!pclc_v2_ext) { ini->smcd_version &= ~SMC_V2; ini->smcr_version &= ~SMC_V2; rc = SMC_CLC_DECL_NOV2EXT; goto out; } pclc_smcd_v2_ext = smc_get_clc_smcd_v2_ext(pclc_v2_ext); if (ini->smcd_version & SMC_V2) { if (!smc_ism_is_v2_capable()) { ini->smcd_version &= ~SMC_V2; rc = SMC_CLC_DECL_NOISM2SUPP; } else if (!pclc_smcd_v2_ext) { ini->smcd_version &= ~SMC_V2; rc = SMC_CLC_DECL_NOV2DEXT; } else if (!pclc_v2_ext->hdr.eid_cnt && !pclc_v2_ext->hdr.flag.seid) { ini->smcd_version &= ~SMC_V2; rc = SMC_CLC_DECL_NOUEID; } } if (ini->smcr_version & SMC_V2) { if (!pclc_v2_ext->hdr.eid_cnt) { ini->smcr_version &= ~SMC_V2; rc = SMC_CLC_DECL_NOUEID; } } out: if (!ini->smcd_version && !ini->smcr_version) return rc; return 0; } /* listen worker: check prefixes */ static int smc_listen_prfx_check(struct smc_sock *new_smc, struct smc_clc_msg_proposal *pclc) { struct smc_clc_msg_proposal_prefix *pclc_prfx; struct socket *newclcsock = new_smc->clcsock; if (pclc->hdr.typev1 == SMC_TYPE_N) return 0; pclc_prfx = smc_clc_proposal_get_prefix(pclc); if (!pclc_prfx) return -EPROTO; if (smc_clc_prfx_match(newclcsock, pclc_prfx)) return SMC_CLC_DECL_DIFFPREFIX; return 0; } /* listen worker: initialize connection and buffers */ static int smc_listen_rdma_init(struct smc_sock *new_smc, struct smc_init_info *ini) { int rc; /* allocate connection / link group */ rc = smc_conn_create(new_smc, ini); if (rc) return rc; /* create send buffer and rmb */ if (smc_buf_create(new_smc, false)) { smc_conn_abort(new_smc, ini->first_contact_local); return SMC_CLC_DECL_MEM; } return 0; } /* listen worker: initialize connection and buffers for SMC-D */ static int smc_listen_ism_init(struct smc_sock *new_smc, struct smc_init_info *ini) { int rc; rc = smc_conn_create(new_smc, ini); if (rc) return rc; /* Create send and receive buffers */ rc = smc_buf_create(new_smc, true); if (rc) { smc_conn_abort(new_smc, ini->first_contact_local); return (rc == -ENOSPC) ? SMC_CLC_DECL_MAX_DMB : SMC_CLC_DECL_MEM; } return 0; } static bool smc_is_already_selected(struct smcd_dev *smcd, struct smc_init_info *ini, int matches) { int i; for (i = 0; i < matches; i++) if (smcd == ini->ism_dev[i]) return true; return false; } /* check for ISM devices matching proposed ISM devices */ static void smc_check_ism_v2_match(struct smc_init_info *ini, u16 proposed_chid, u64 proposed_gid, unsigned int *matches) { struct smcd_dev *smcd; list_for_each_entry(smcd, &smcd_dev_list.list, list) { if (smcd->going_away) continue; if (smc_is_already_selected(smcd, ini, *matches)) continue; if (smc_ism_get_chid(smcd) == proposed_chid && !smc_ism_cantalk(proposed_gid, ISM_RESERVED_VLANID, smcd)) { ini->ism_peer_gid[*matches] = proposed_gid; ini->ism_dev[*matches] = smcd; (*matches)++; break; } } } static void smc_find_ism_store_rc(u32 rc, struct smc_init_info *ini) { if (!ini->rc) ini->rc = rc; } static void smc_find_ism_v2_device_serv(struct smc_sock *new_smc, struct smc_clc_msg_proposal *pclc, struct smc_init_info *ini) { struct smc_clc_smcd_v2_extension *smcd_v2_ext; struct smc_clc_v2_extension *smc_v2_ext; struct smc_clc_msg_smcd *pclc_smcd; unsigned int matches = 0; u8 smcd_version; u8 *eid = NULL; int i, rc; if (!(ini->smcd_version & SMC_V2) || !smcd_indicated(ini->smc_type_v2)) goto not_found; pclc_smcd = smc_get_clc_msg_smcd(pclc); smc_v2_ext = smc_get_clc_v2_ext(pclc); smcd_v2_ext = smc_get_clc_smcd_v2_ext(smc_v2_ext); if (!pclc_smcd || !smc_v2_ext || !smcd_v2_ext) goto not_found; mutex_lock(&smcd_dev_list.mutex); if (pclc_smcd->ism.chid) /* check for ISM device matching proposed native ISM device */ smc_check_ism_v2_match(ini, ntohs(pclc_smcd->ism.chid), ntohll(pclc_smcd->ism.gid), &matches); for (i = 1; i <= smc_v2_ext->hdr.ism_gid_cnt; i++) { /* check for ISM devices matching proposed non-native ISM * devices */ smc_check_ism_v2_match(ini, ntohs(smcd_v2_ext->gidchid[i - 1].chid), ntohll(smcd_v2_ext->gidchid[i - 1].gid), &matches); } mutex_unlock(&smcd_dev_list.mutex); if (!ini->ism_dev[0]) { smc_find_ism_store_rc(SMC_CLC_DECL_NOSMCD2DEV, ini); goto not_found; } smc_ism_get_system_eid(&eid); if (!smc_clc_match_eid(ini->negotiated_eid, smc_v2_ext, smcd_v2_ext->system_eid, eid)) goto not_found; /* separate - outside the smcd_dev_list.lock */ smcd_version = ini->smcd_version; for (i = 0; i < matches; i++) { ini->smcd_version = SMC_V2; ini->is_smcd = true; ini->ism_selected = i; rc = smc_listen_ism_init(new_smc, ini); if (rc) { smc_find_ism_store_rc(rc, ini); /* try next active ISM device */ continue; } return; /* matching and usable V2 ISM device found */ } /* no V2 ISM device could be initialized */ ini->smcd_version = smcd_version; /* restore original value */ ini->negotiated_eid[0] = 0; not_found: ini->smcd_version &= ~SMC_V2; ini->ism_dev[0] = NULL; ini->is_smcd = false; } static void smc_find_ism_v1_device_serv(struct smc_sock *new_smc, struct smc_clc_msg_proposal *pclc, struct smc_init_info *ini) { struct smc_clc_msg_smcd *pclc_smcd = smc_get_clc_msg_smcd(pclc); int rc = 0; /* check if ISM V1 is available */ if (!(ini->smcd_version & SMC_V1) || !smcd_indicated(ini->smc_type_v1) || !pclc_smcd) goto not_found; ini->is_smcd = true; /* prepare ISM check */ ini->ism_peer_gid[0] = ntohll(pclc_smcd->ism.gid); rc = smc_find_ism_device(new_smc, ini); if (rc) goto not_found; ini->ism_selected = 0; rc = smc_listen_ism_init(new_smc, ini); if (!rc) return; /* V1 ISM device found */ not_found: smc_find_ism_store_rc(rc, ini); ini->smcd_version &= ~SMC_V1; ini->ism_dev[0] = NULL; ini->is_smcd = false; } /* listen worker: register buffers */ static int smc_listen_rdma_reg(struct smc_sock *new_smc, bool local_first) { struct smc_connection *conn = &new_smc->conn; if (!local_first) { /* reg sendbufs if they were vzalloced */ if (conn->sndbuf_desc->is_vm) { if (smcr_lgr_reg_sndbufs(conn->lnk, conn->sndbuf_desc)) return SMC_CLC_DECL_ERR_REGBUF; } if (smcr_lgr_reg_rmbs(conn->lnk, conn->rmb_desc)) return SMC_CLC_DECL_ERR_REGBUF; } return 0; } static void smc_find_rdma_v2_device_serv(struct smc_sock *new_smc, struct smc_clc_msg_proposal *pclc, struct smc_init_info *ini) { struct smc_clc_v2_extension *smc_v2_ext; u8 smcr_version; int rc; if (!(ini->smcr_version & SMC_V2) || !smcr_indicated(ini->smc_type_v2)) goto not_found; smc_v2_ext = smc_get_clc_v2_ext(pclc); if (!smc_clc_match_eid(ini->negotiated_eid, smc_v2_ext, NULL, NULL)) goto not_found; /* prepare RDMA check */ memcpy(ini->peer_systemid, pclc->lcl.id_for_peer, SMC_SYSTEMID_LEN); memcpy(ini->peer_gid, smc_v2_ext->roce, SMC_GID_SIZE); memcpy(ini->peer_mac, pclc->lcl.mac, ETH_ALEN); ini->check_smcrv2 = true; ini->smcrv2.clc_sk = new_smc->clcsock->sk; ini->smcrv2.saddr = new_smc->clcsock->sk->sk_rcv_saddr; ini->smcrv2.daddr = smc_ib_gid_to_ipv4(smc_v2_ext->roce); rc = smc_find_rdma_device(new_smc, ini); if (rc) { smc_find_ism_store_rc(rc, ini); goto not_found; } if (!ini->smcrv2.uses_gateway) memcpy(ini->smcrv2.nexthop_mac, pclc->lcl.mac, ETH_ALEN); smcr_version = ini->smcr_version; ini->smcr_version = SMC_V2; rc = smc_listen_rdma_init(new_smc, ini); if (!rc) { rc = smc_listen_rdma_reg(new_smc, ini->first_contact_local); if (rc) smc_conn_abort(new_smc, ini->first_contact_local); } if (!rc) return; ini->smcr_version = smcr_version; smc_find_ism_store_rc(rc, ini); not_found: ini->smcr_version &= ~SMC_V2; ini->smcrv2.ib_dev_v2 = NULL; ini->check_smcrv2 = false; } static int smc_find_rdma_v1_device_serv(struct smc_sock *new_smc, struct smc_clc_msg_proposal *pclc, struct smc_init_info *ini) { int rc; if (!(ini->smcr_version & SMC_V1) || !smcr_indicated(ini->smc_type_v1)) return SMC_CLC_DECL_NOSMCDEV; /* prepare RDMA check */ memcpy(ini->peer_systemid, pclc->lcl.id_for_peer, SMC_SYSTEMID_LEN); memcpy(ini->peer_gid, pclc->lcl.gid, SMC_GID_SIZE); memcpy(ini->peer_mac, pclc->lcl.mac, ETH_ALEN); rc = smc_find_rdma_device(new_smc, ini); if (rc) { /* no RDMA device found */ return SMC_CLC_DECL_NOSMCDEV; } rc = smc_listen_rdma_init(new_smc, ini); if (rc) return rc; return smc_listen_rdma_reg(new_smc, ini->first_contact_local); } /* determine the local device matching to proposal */ static int smc_listen_find_device(struct smc_sock *new_smc, struct smc_clc_msg_proposal *pclc, struct smc_init_info *ini) { int prfx_rc; /* check for ISM device matching V2 proposed device */ smc_find_ism_v2_device_serv(new_smc, pclc, ini); if (ini->ism_dev[0]) return 0; /* check for matching IP prefix and subnet length (V1) */ prfx_rc = smc_listen_prfx_check(new_smc, pclc); if (prfx_rc) smc_find_ism_store_rc(prfx_rc, ini); /* get vlan id from IP device */ if (smc_vlan_by_tcpsk(new_smc->clcsock, ini)) return ini->rc ?: SMC_CLC_DECL_GETVLANERR; /* check for ISM device matching V1 proposed device */ if (!prfx_rc) smc_find_ism_v1_device_serv(new_smc, pclc, ini); if (ini->ism_dev[0]) return 0; if (!smcr_indicated(pclc->hdr.typev1) && !smcr_indicated(pclc->hdr.typev2)) /* skip RDMA and decline */ return ini->rc ?: SMC_CLC_DECL_NOSMCDDEV; /* check if RDMA V2 is available */ smc_find_rdma_v2_device_serv(new_smc, pclc, ini); if (ini->smcrv2.ib_dev_v2) return 0; /* check if RDMA V1 is available */ if (!prfx_rc) { int rc; rc = smc_find_rdma_v1_device_serv(new_smc, pclc, ini); smc_find_ism_store_rc(rc, ini); return (!rc) ? 0 : ini->rc; } return prfx_rc; } /* listen worker: finish RDMA setup */ static int smc_listen_rdma_finish(struct smc_sock *new_smc, struct smc_clc_msg_accept_confirm *cclc, bool local_first, struct smc_init_info *ini) { struct smc_link *link = new_smc->conn.lnk; int reason_code = 0; if (local_first) smc_link_save_peer_info(link, cclc, ini); if (smc_rmb_rtoken_handling(&new_smc->conn, link, cclc)) return SMC_CLC_DECL_ERR_RTOK; if (local_first) { if (smc_ib_ready_link(link)) return SMC_CLC_DECL_ERR_RDYLNK; /* QP confirmation over RoCE fabric */ smc_llc_flow_initiate(link->lgr, SMC_LLC_FLOW_ADD_LINK); reason_code = smcr_serv_conf_first_link(new_smc); smc_llc_flow_stop(link->lgr, &link->lgr->llc_flow_lcl); } return reason_code; } /* setup for connection of server */ static void smc_listen_work(struct work_struct *work) { struct smc_sock *new_smc = container_of(work, struct smc_sock, smc_listen_work); struct socket *newclcsock = new_smc->clcsock; struct smc_clc_msg_accept_confirm *cclc; struct smc_clc_msg_proposal_area *buf; struct smc_clc_msg_proposal *pclc; struct smc_init_info *ini = NULL; u8 proposal_version = SMC_V1; u8 accept_version; int rc = 0; lock_sock(&new_smc->sk); /* release in smc_listen_out() */ if (new_smc->listen_smc->sk.sk_state != SMC_LISTEN) return smc_listen_out_err(new_smc); if (new_smc->use_fallback) { smc_listen_out_connected(new_smc); return; } /* check if peer is smc capable */ if (!tcp_sk(newclcsock->sk)->syn_smc) { rc = smc_switch_to_fallback(new_smc, SMC_CLC_DECL_PEERNOSMC); if (rc) smc_listen_out_err(new_smc); else smc_listen_out_connected(new_smc); return; } /* do inband token exchange - * wait for and receive SMC Proposal CLC message */ buf = kzalloc(sizeof(*buf), GFP_KERNEL); if (!buf) { rc = SMC_CLC_DECL_MEM; goto out_decl; } pclc = (struct smc_clc_msg_proposal *)buf; rc = smc_clc_wait_msg(new_smc, pclc, sizeof(*buf), SMC_CLC_PROPOSAL, CLC_WAIT_TIME); if (rc) goto out_decl; if (pclc->hdr.version > SMC_V1) proposal_version = SMC_V2; /* IPSec connections opt out of SMC optimizations */ if (using_ipsec(new_smc)) { rc = SMC_CLC_DECL_IPSEC; goto out_decl; } ini = kzalloc(sizeof(*ini), GFP_KERNEL); if (!ini) { rc = SMC_CLC_DECL_MEM; goto out_decl; } /* initial version checking */ rc = smc_listen_v2_check(new_smc, pclc, ini); if (rc) goto out_decl; mutex_lock(&smc_server_lgr_pending); smc_close_init(new_smc); smc_rx_init(new_smc); smc_tx_init(new_smc); /* determine ISM or RoCE device used for connection */ rc = smc_listen_find_device(new_smc, pclc, ini); if (rc) goto out_unlock; /* send SMC Accept CLC message */ accept_version = ini->is_smcd ? ini->smcd_version : ini->smcr_version; rc = smc_clc_send_accept(new_smc, ini->first_contact_local, accept_version, ini->negotiated_eid); if (rc) goto out_unlock; /* SMC-D does not need this lock any more */ if (ini->is_smcd) mutex_unlock(&smc_server_lgr_pending); /* receive SMC Confirm CLC message */ memset(buf, 0, sizeof(*buf)); cclc = (struct smc_clc_msg_accept_confirm *)buf; rc = smc_clc_wait_msg(new_smc, cclc, sizeof(*buf), SMC_CLC_CONFIRM, CLC_WAIT_TIME); if (rc) { if (!ini->is_smcd) goto out_unlock; goto out_decl; } /* finish worker */ if (!ini->is_smcd) { rc = smc_listen_rdma_finish(new_smc, cclc, ini->first_contact_local, ini); if (rc) goto out_unlock; mutex_unlock(&smc_server_lgr_pending); } smc_conn_save_peer_info(new_smc, cclc); smc_listen_out_connected(new_smc); SMC_STAT_SERV_SUCC_INC(sock_net(newclcsock->sk), ini); goto out_free; out_unlock: mutex_unlock(&smc_server_lgr_pending); out_decl: smc_listen_decline(new_smc, rc, ini ? ini->first_contact_local : 0, proposal_version); out_free: kfree(ini); kfree(buf); } static void smc_tcp_listen_work(struct work_struct *work) { struct smc_sock *lsmc = container_of(work, struct smc_sock, tcp_listen_work); struct sock *lsk = &lsmc->sk; struct smc_sock *new_smc; int rc = 0; lock_sock(lsk); while (lsk->sk_state == SMC_LISTEN) { rc = smc_clcsock_accept(lsmc, &new_smc); if (rc) /* clcsock accept queue empty or error */ goto out; if (!new_smc) continue; if (tcp_sk(new_smc->clcsock->sk)->syn_smc) atomic_inc(&lsmc->queued_smc_hs); new_smc->listen_smc = lsmc; new_smc->use_fallback = lsmc->use_fallback; new_smc->fallback_rsn = lsmc->fallback_rsn; sock_hold(lsk); /* sock_put in smc_listen_work */ INIT_WORK(&new_smc->smc_listen_work, smc_listen_work); smc_copy_sock_settings_to_smc(new_smc); sock_hold(&new_smc->sk); /* sock_put in passive closing */ if (!queue_work(smc_hs_wq, &new_smc->smc_listen_work)) sock_put(&new_smc->sk); } out: release_sock(lsk); sock_put(&lsmc->sk); /* sock_hold in smc_clcsock_data_ready() */ } static void smc_clcsock_data_ready(struct sock *listen_clcsock) { struct smc_sock *lsmc; read_lock_bh(&listen_clcsock->sk_callback_lock); lsmc = smc_clcsock_user_data(listen_clcsock); if (!lsmc) goto out; lsmc->clcsk_data_ready(listen_clcsock); if (lsmc->sk.sk_state == SMC_LISTEN) { sock_hold(&lsmc->sk); /* sock_put in smc_tcp_listen_work() */ if (!queue_work(smc_tcp_ls_wq, &lsmc->tcp_listen_work)) sock_put(&lsmc->sk); } out: read_unlock_bh(&listen_clcsock->sk_callback_lock); } static int smc_listen(struct socket *sock, int backlog) { struct sock *sk = sock->sk; struct smc_sock *smc; int rc; smc = smc_sk(sk); lock_sock(sk); rc = -EINVAL; if ((sk->sk_state != SMC_INIT && sk->sk_state != SMC_LISTEN) || smc->connect_nonblock || sock->state != SS_UNCONNECTED) goto out; rc = 0; if (sk->sk_state == SMC_LISTEN) { sk->sk_max_ack_backlog = backlog; goto out; } /* some socket options are handled in core, so we could not apply * them to the clc socket -- copy smc socket options to clc socket */ smc_copy_sock_settings_to_clc(smc); if (!smc->use_fallback) tcp_sk(smc->clcsock->sk)->syn_smc = 1; /* save original sk_data_ready function and establish * smc-specific sk_data_ready function */ write_lock_bh(&smc->clcsock->sk->sk_callback_lock); smc->clcsock->sk->sk_user_data = (void *)((uintptr_t)smc | SK_USER_DATA_NOCOPY); smc_clcsock_replace_cb(&smc->clcsock->sk->sk_data_ready, smc_clcsock_data_ready, &smc->clcsk_data_ready); write_unlock_bh(&smc->clcsock->sk->sk_callback_lock); /* save original ops */ smc->ori_af_ops = inet_csk(smc->clcsock->sk)->icsk_af_ops; smc->af_ops = *smc->ori_af_ops; smc->af_ops.syn_recv_sock = smc_tcp_syn_recv_sock; inet_csk(smc->clcsock->sk)->icsk_af_ops = &smc->af_ops; if (smc->limit_smc_hs) tcp_sk(smc->clcsock->sk)->smc_hs_congested = smc_hs_congested; rc = kernel_listen(smc->clcsock, backlog); if (rc) { write_lock_bh(&smc->clcsock->sk->sk_callback_lock); smc_clcsock_restore_cb(&smc->clcsock->sk->sk_data_ready, &smc->clcsk_data_ready); smc->clcsock->sk->sk_user_data = NULL; write_unlock_bh(&smc->clcsock->sk->sk_callback_lock); goto out; } sk->sk_max_ack_backlog = backlog; sk->sk_ack_backlog = 0; sk->sk_state = SMC_LISTEN; out: release_sock(sk); return rc; } static int smc_accept(struct socket *sock, struct socket *new_sock, int flags, bool kern) { struct sock *sk = sock->sk, *nsk; DECLARE_WAITQUEUE(wait, current); struct smc_sock *lsmc; long timeo; int rc = 0; lsmc = smc_sk(sk); sock_hold(sk); /* sock_put below */ lock_sock(sk); if (lsmc->sk.sk_state != SMC_LISTEN) { rc = -EINVAL; release_sock(sk); goto out; } /* Wait for an incoming connection */ timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); add_wait_queue_exclusive(sk_sleep(sk), &wait); while (!(nsk = smc_accept_dequeue(sk, new_sock))) { set_current_state(TASK_INTERRUPTIBLE); if (!timeo) { rc = -EAGAIN; break; } release_sock(sk); timeo = schedule_timeout(timeo); /* wakeup by sk_data_ready in smc_listen_work() */ sched_annotate_sleep(); lock_sock(sk); if (signal_pending(current)) { rc = sock_intr_errno(timeo); break; } } set_current_state(TASK_RUNNING); remove_wait_queue(sk_sleep(sk), &wait); if (!rc) rc = sock_error(nsk); release_sock(sk); if (rc) goto out; if (lsmc->sockopt_defer_accept && !(flags & O_NONBLOCK)) { /* wait till data arrives on the socket */ timeo = msecs_to_jiffies(lsmc->sockopt_defer_accept * MSEC_PER_SEC); if (smc_sk(nsk)->use_fallback) { struct sock *clcsk = smc_sk(nsk)->clcsock->sk; lock_sock(clcsk); if (skb_queue_empty(&clcsk->sk_receive_queue)) sk_wait_data(clcsk, &timeo, NULL); release_sock(clcsk); } else if (!atomic_read(&smc_sk(nsk)->conn.bytes_to_rcv)) { lock_sock(nsk); smc_rx_wait(smc_sk(nsk), &timeo, 0, smc_rx_data_available); release_sock(nsk); } } out: sock_put(sk); /* sock_hold above */ return rc; } static int smc_getname(struct socket *sock, struct sockaddr *addr, int peer) { struct smc_sock *smc; if (peer && (sock->sk->sk_state != SMC_ACTIVE) && (sock->sk->sk_state != SMC_APPCLOSEWAIT1)) return -ENOTCONN; smc = smc_sk(sock->sk); return smc->clcsock->ops->getname(smc->clcsock, addr, peer); } static int smc_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct smc_sock *smc; int rc; smc = smc_sk(sk); lock_sock(sk); /* SMC does not support connect with fastopen */ if (msg->msg_flags & MSG_FASTOPEN) { /* not connected yet, fallback */ if (sk->sk_state == SMC_INIT && !smc->connect_nonblock) { rc = smc_switch_to_fallback(smc, SMC_CLC_DECL_OPTUNSUPP); if (rc) goto out; } else { rc = -EINVAL; goto out; } } else if ((sk->sk_state != SMC_ACTIVE) && (sk->sk_state != SMC_APPCLOSEWAIT1) && (sk->sk_state != SMC_INIT)) { rc = -EPIPE; goto out; } if (smc->use_fallback) { rc = smc->clcsock->ops->sendmsg(smc->clcsock, msg, len); } else { rc = smc_tx_sendmsg(smc, msg, len); SMC_STAT_TX_PAYLOAD(smc, len, rc); } out: release_sock(sk); return rc; } static int smc_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags) { struct sock *sk = sock->sk; struct smc_sock *smc; int rc = -ENOTCONN; smc = smc_sk(sk); lock_sock(sk); if (sk->sk_state == SMC_CLOSED && (sk->sk_shutdown & RCV_SHUTDOWN)) { /* socket was connected before, no more data to read */ rc = 0; goto out; } if ((sk->sk_state == SMC_INIT) || (sk->sk_state == SMC_LISTEN) || (sk->sk_state == SMC_CLOSED)) goto out; if (sk->sk_state == SMC_PEERFINCLOSEWAIT) { rc = 0; goto out; } if (smc->use_fallback) { rc = smc->clcsock->ops->recvmsg(smc->clcsock, msg, len, flags); } else { msg->msg_namelen = 0; rc = smc_rx_recvmsg(smc, msg, NULL, len, flags); SMC_STAT_RX_PAYLOAD(smc, rc, rc); } out: release_sock(sk); return rc; } static __poll_t smc_accept_poll(struct sock *parent) { struct smc_sock *isk = smc_sk(parent); __poll_t mask = 0; spin_lock(&isk->accept_q_lock); if (!list_empty(&isk->accept_q)) mask = EPOLLIN | EPOLLRDNORM; spin_unlock(&isk->accept_q_lock); return mask; } static __poll_t smc_poll(struct file *file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; struct smc_sock *smc; __poll_t mask = 0; if (!sk) return EPOLLNVAL; smc = smc_sk(sock->sk); if (smc->use_fallback) { /* delegate to CLC child sock */ mask = smc->clcsock->ops->poll(file, smc->clcsock, wait); sk->sk_err = smc->clcsock->sk->sk_err; } else { if (sk->sk_state != SMC_CLOSED) sock_poll_wait(file, sock, wait); if (sk->sk_err) mask |= EPOLLERR; if ((sk->sk_shutdown == SHUTDOWN_MASK) || (sk->sk_state == SMC_CLOSED)) mask |= EPOLLHUP; if (sk->sk_state == SMC_LISTEN) { /* woken up by sk_data_ready in smc_listen_work() */ mask |= smc_accept_poll(sk); } else if (smc->use_fallback) { /* as result of connect_work()*/ mask |= smc->clcsock->ops->poll(file, smc->clcsock, wait); sk->sk_err = smc->clcsock->sk->sk_err; } else { if ((sk->sk_state != SMC_INIT && atomic_read(&smc->conn.sndbuf_space)) || sk->sk_shutdown & SEND_SHUTDOWN) { mask |= EPOLLOUT | EPOLLWRNORM; } else { sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); if (sk->sk_state != SMC_INIT) { /* Race breaker the same way as tcp_poll(). */ smp_mb__after_atomic(); if (atomic_read(&smc->conn.sndbuf_space)) mask |= EPOLLOUT | EPOLLWRNORM; } } if (atomic_read(&smc->conn.bytes_to_rcv)) mask |= EPOLLIN | EPOLLRDNORM; if (sk->sk_shutdown & RCV_SHUTDOWN) mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; if (sk->sk_state == SMC_APPCLOSEWAIT1) mask |= EPOLLIN; if (smc->conn.urg_state == SMC_URG_VALID) mask |= EPOLLPRI; } } return mask; } static int smc_shutdown(struct socket *sock, int how) { struct sock *sk = sock->sk; bool do_shutdown = true; struct smc_sock *smc; int rc = -EINVAL; int old_state; int rc1 = 0; smc = smc_sk(sk); if ((how < SHUT_RD) || (how > SHUT_RDWR)) return rc; lock_sock(sk); if (sock->state == SS_CONNECTING) { if (sk->sk_state == SMC_ACTIVE) sock->state = SS_CONNECTED; else if (sk->sk_state == SMC_PEERCLOSEWAIT1 || sk->sk_state == SMC_PEERCLOSEWAIT2 || sk->sk_state == SMC_APPCLOSEWAIT1 || sk->sk_state == SMC_APPCLOSEWAIT2 || sk->sk_state == SMC_APPFINCLOSEWAIT) sock->state = SS_DISCONNECTING; } rc = -ENOTCONN; if ((sk->sk_state != SMC_ACTIVE) && (sk->sk_state != SMC_PEERCLOSEWAIT1) && (sk->sk_state != SMC_PEERCLOSEWAIT2) && (sk->sk_state != SMC_APPCLOSEWAIT1) && (sk->sk_state != SMC_APPCLOSEWAIT2) && (sk->sk_state != SMC_APPFINCLOSEWAIT)) goto out; if (smc->use_fallback) { rc = kernel_sock_shutdown(smc->clcsock, how); sk->sk_shutdown = smc->clcsock->sk->sk_shutdown; if (sk->sk_shutdown == SHUTDOWN_MASK) { sk->sk_state = SMC_CLOSED; sk->sk_socket->state = SS_UNCONNECTED; sock_put(sk); } goto out; } switch (how) { case SHUT_RDWR: /* shutdown in both directions */ old_state = sk->sk_state; rc = smc_close_active(smc); if (old_state == SMC_ACTIVE && sk->sk_state == SMC_PEERCLOSEWAIT1) do_shutdown = false; break; case SHUT_WR: rc = smc_close_shutdown_write(smc); break; case SHUT_RD: rc = 0; /* nothing more to do because peer is not involved */ break; } if (do_shutdown && smc->clcsock) rc1 = kernel_sock_shutdown(smc->clcsock, how); /* map sock_shutdown_cmd constants to sk_shutdown value range */ sk->sk_shutdown |= how + 1; if (sk->sk_state == SMC_CLOSED) sock->state = SS_UNCONNECTED; else sock->state = SS_DISCONNECTING; out: release_sock(sk); return rc ? rc : rc1; } static int __smc_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct smc_sock *smc; int val, len; smc = smc_sk(sock->sk); if (get_user(len, optlen)) return -EFAULT; len = min_t(int, len, sizeof(int)); if (len < 0) return -EINVAL; switch (optname) { case SMC_LIMIT_HS: val = smc->limit_smc_hs; break; default: return -EOPNOTSUPP; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } static int __smc_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = sock->sk; struct smc_sock *smc; int val, rc; smc = smc_sk(sk); lock_sock(sk); switch (optname) { case SMC_LIMIT_HS: if (optlen < sizeof(int)) { rc = -EINVAL; break; } if (copy_from_sockptr(&val, optval, sizeof(int))) { rc = -EFAULT; break; } smc->limit_smc_hs = !!val; rc = 0; break; default: rc = -EOPNOTSUPP; break; } release_sock(sk); return rc; } static int smc_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = sock->sk; struct smc_sock *smc; int val, rc; if (level == SOL_TCP && optname == TCP_ULP) return -EOPNOTSUPP; else if (level == SOL_SMC) return __smc_setsockopt(sock, level, optname, optval, optlen); smc = smc_sk(sk); /* generic setsockopts reaching us here always apply to the * CLC socket */ mutex_lock(&smc->clcsock_release_lock); if (!smc->clcsock) { mutex_unlock(&smc->clcsock_release_lock); return -EBADF; } if (unlikely(!smc->clcsock->ops->setsockopt)) rc = -EOPNOTSUPP; else rc = smc->clcsock->ops->setsockopt(smc->clcsock, level, optname, optval, optlen); if (smc->clcsock->sk->sk_err) { sk->sk_err = smc->clcsock->sk->sk_err; sk_error_report(sk); } mutex_unlock(&smc->clcsock_release_lock); if (optlen < sizeof(int)) return -EINVAL; if (copy_from_sockptr(&val, optval, sizeof(int))) return -EFAULT; lock_sock(sk); if (rc || smc->use_fallback) goto out; switch (optname) { case TCP_FASTOPEN: case TCP_FASTOPEN_CONNECT: case TCP_FASTOPEN_KEY: case TCP_FASTOPEN_NO_COOKIE: /* option not supported by SMC */ if (sk->sk_state == SMC_INIT && !smc->connect_nonblock) { rc = smc_switch_to_fallback(smc, SMC_CLC_DECL_OPTUNSUPP); } else { rc = -EINVAL; } break; case TCP_NODELAY: if (sk->sk_state != SMC_INIT && sk->sk_state != SMC_LISTEN && sk->sk_state != SMC_CLOSED) { if (val) { SMC_STAT_INC(smc, ndly_cnt); smc_tx_pending(&smc->conn); cancel_delayed_work(&smc->conn.tx_work); } } break; case TCP_CORK: if (sk->sk_state != SMC_INIT && sk->sk_state != SMC_LISTEN && sk->sk_state != SMC_CLOSED) { if (!val) { SMC_STAT_INC(smc, cork_cnt); smc_tx_pending(&smc->conn); cancel_delayed_work(&smc->conn.tx_work); } } break; case TCP_DEFER_ACCEPT: smc->sockopt_defer_accept = val; break; default: break; } out: release_sock(sk); return rc; } static int smc_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct smc_sock *smc; int rc; if (level == SOL_SMC) return __smc_getsockopt(sock, level, optname, optval, optlen); smc = smc_sk(sock->sk); mutex_lock(&smc->clcsock_release_lock); if (!smc->clcsock) { mutex_unlock(&smc->clcsock_release_lock); return -EBADF; } /* socket options apply to the CLC socket */ if (unlikely(!smc->clcsock->ops->getsockopt)) { mutex_unlock(&smc->clcsock_release_lock); return -EOPNOTSUPP; } rc = smc->clcsock->ops->getsockopt(smc->clcsock, level, optname, optval, optlen); mutex_unlock(&smc->clcsock_release_lock); return rc; } static int smc_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { union smc_host_cursor cons, urg; struct smc_connection *conn; struct smc_sock *smc; int answ; smc = smc_sk(sock->sk); conn = &smc->conn; lock_sock(&smc->sk); if (smc->use_fallback) { if (!smc->clcsock) { release_sock(&smc->sk); return -EBADF; } answ = smc->clcsock->ops->ioctl(smc->clcsock, cmd, arg); release_sock(&smc->sk); return answ; } switch (cmd) { case SIOCINQ: /* same as FIONREAD */ if (smc->sk.sk_state == SMC_LISTEN) { release_sock(&smc->sk); return -EINVAL; } if (smc->sk.sk_state == SMC_INIT || smc->sk.sk_state == SMC_CLOSED) answ = 0; else answ = atomic_read(&smc->conn.bytes_to_rcv); break; case SIOCOUTQ: /* output queue size (not send + not acked) */ if (smc->sk.sk_state == SMC_LISTEN) { release_sock(&smc->sk); return -EINVAL; } if (smc->sk.sk_state == SMC_INIT || smc->sk.sk_state == SMC_CLOSED) answ = 0; else answ = smc->conn.sndbuf_desc->len - atomic_read(&smc->conn.sndbuf_space); break; case SIOCOUTQNSD: /* output queue size (not send only) */ if (smc->sk.sk_state == SMC_LISTEN) { release_sock(&smc->sk); return -EINVAL; } if (smc->sk.sk_state == SMC_INIT || smc->sk.sk_state == SMC_CLOSED) answ = 0; else answ = smc_tx_prepared_sends(&smc->conn); break; case SIOCATMARK: if (smc->sk.sk_state == SMC_LISTEN) { release_sock(&smc->sk); return -EINVAL; } if (smc->sk.sk_state == SMC_INIT || smc->sk.sk_state == SMC_CLOSED) { answ = 0; } else { smc_curs_copy(&cons, &conn->local_tx_ctrl.cons, conn); smc_curs_copy(&urg, &conn->urg_curs, conn); answ = smc_curs_diff(conn->rmb_desc->len, &cons, &urg) == 1; } break; default: release_sock(&smc->sk); return -ENOIOCTLCMD; } release_sock(&smc->sk); return put_user(answ, (int __user *)arg); } static ssize_t smc_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags) { struct sock *sk = sock->sk; struct smc_sock *smc; int rc = -EPIPE; smc = smc_sk(sk); lock_sock(sk); if (sk->sk_state != SMC_ACTIVE) { release_sock(sk); goto out; } release_sock(sk); if (smc->use_fallback) { rc = kernel_sendpage(smc->clcsock, page, offset, size, flags); } else { lock_sock(sk); rc = smc_tx_sendpage(smc, page, offset, size, flags); release_sock(sk); SMC_STAT_INC(smc, sendpage_cnt); } out: return rc; } /* Map the affected portions of the rmbe into an spd, note the number of bytes * to splice in conn->splice_pending, and press 'go'. Delays consumer cursor * updates till whenever a respective page has been fully processed. * Note that subsequent recv() calls have to wait till all splice() processing * completed. */ static ssize_t smc_splice_read(struct socket *sock, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags) { struct sock *sk = sock->sk; struct smc_sock *smc; int rc = -ENOTCONN; smc = smc_sk(sk); lock_sock(sk); if (sk->sk_state == SMC_CLOSED && (sk->sk_shutdown & RCV_SHUTDOWN)) { /* socket was connected before, no more data to read */ rc = 0; goto out; } if (sk->sk_state == SMC_INIT || sk->sk_state == SMC_LISTEN || sk->sk_state == SMC_CLOSED) goto out; if (sk->sk_state == SMC_PEERFINCLOSEWAIT) { rc = 0; goto out; } if (smc->use_fallback) { rc = smc->clcsock->ops->splice_read(smc->clcsock, ppos, pipe, len, flags); } else { if (*ppos) { rc = -ESPIPE; goto out; } if (flags & SPLICE_F_NONBLOCK) flags = MSG_DONTWAIT; else flags = 0; SMC_STAT_INC(smc, splice_cnt); rc = smc_rx_recvmsg(smc, NULL, pipe, len, flags); } out: release_sock(sk); return rc; } /* must look like tcp */ static const struct proto_ops smc_sock_ops = { .family = PF_SMC, .owner = THIS_MODULE, .release = smc_release, .bind = smc_bind, .connect = smc_connect, .socketpair = sock_no_socketpair, .accept = smc_accept, .getname = smc_getname, .poll = smc_poll, .ioctl = smc_ioctl, .listen = smc_listen, .shutdown = smc_shutdown, .setsockopt = smc_setsockopt, .getsockopt = smc_getsockopt, .sendmsg = smc_sendmsg, .recvmsg = smc_recvmsg, .mmap = sock_no_mmap, .sendpage = smc_sendpage, .splice_read = smc_splice_read, }; static int __smc_create(struct net *net, struct socket *sock, int protocol, int kern, struct socket *clcsock) { int family = (protocol == SMCPROTO_SMC6) ? PF_INET6 : PF_INET; struct smc_sock *smc; struct sock *sk; int rc; rc = -ESOCKTNOSUPPORT; if (sock->type != SOCK_STREAM) goto out; rc = -EPROTONOSUPPORT; if (protocol != SMCPROTO_SMC && protocol != SMCPROTO_SMC6) goto out; rc = -ENOBUFS; sock->ops = &smc_sock_ops; sock->state = SS_UNCONNECTED; sk = smc_sock_alloc(net, sock, protocol); if (!sk) goto out; /* create internal TCP socket for CLC handshake and fallback */ smc = smc_sk(sk); smc->use_fallback = false; /* assume rdma capability first */ smc->fallback_rsn = 0; /* default behavior from limit_smc_hs in every net namespace */ smc->limit_smc_hs = net->smc.limit_smc_hs; rc = 0; if (!clcsock) { rc = sock_create_kern(net, family, SOCK_STREAM, IPPROTO_TCP, &smc->clcsock); if (rc) { sk_common_release(sk); goto out; } } else { smc->clcsock = clcsock; } out: return rc; } static int smc_create(struct net *net, struct socket *sock, int protocol, int kern) { return __smc_create(net, sock, protocol, kern, NULL); } static const struct net_proto_family smc_sock_family_ops = { .family = PF_SMC, .owner = THIS_MODULE, .create = smc_create, }; static int smc_ulp_init(struct sock *sk) { struct socket *tcp = sk->sk_socket; struct net *net = sock_net(sk); struct socket *smcsock; int protocol, ret; /* only TCP can be replaced */ if (tcp->type != SOCK_STREAM || sk->sk_protocol != IPPROTO_TCP || (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)) return -ESOCKTNOSUPPORT; /* don't handle wq now */ if (tcp->state != SS_UNCONNECTED || !tcp->file || tcp->wq.fasync_list) return -ENOTCONN; if (sk->sk_family == AF_INET) protocol = SMCPROTO_SMC; else protocol = SMCPROTO_SMC6; smcsock = sock_alloc(); if (!smcsock) return -ENFILE; smcsock->type = SOCK_STREAM; __module_get(THIS_MODULE); /* tried in __tcp_ulp_find_autoload */ ret = __smc_create(net, smcsock, protocol, 1, tcp); if (ret) { sock_release(smcsock); /* module_put() which ops won't be NULL */ return ret; } /* replace tcp socket to smc */ smcsock->file = tcp->file; smcsock->file->private_data = smcsock; smcsock->file->f_inode = SOCK_INODE(smcsock); /* replace inode when sock_close */ smcsock->file->f_path.dentry->d_inode = SOCK_INODE(smcsock); /* dput() in __fput */ tcp->file = NULL; return ret; } static void smc_ulp_clone(const struct request_sock *req, struct sock *newsk, const gfp_t priority) { struct inet_connection_sock *icsk = inet_csk(newsk); /* don't inherit ulp ops to child when listen */ icsk->icsk_ulp_ops = NULL; } static struct tcp_ulp_ops smc_ulp_ops __read_mostly = { .name = "smc", .owner = THIS_MODULE, .init = smc_ulp_init, .clone = smc_ulp_clone, }; unsigned int smc_net_id; static __net_init int smc_net_init(struct net *net) { int rc; rc = smc_sysctl_net_init(net); if (rc) return rc; return smc_pnet_net_init(net); } static void __net_exit smc_net_exit(struct net *net) { smc_sysctl_net_exit(net); smc_pnet_net_exit(net); } static __net_init int smc_net_stat_init(struct net *net) { return smc_stats_init(net); } static void __net_exit smc_net_stat_exit(struct net *net) { smc_stats_exit(net); } static struct pernet_operations smc_net_ops = { .init = smc_net_init, .exit = smc_net_exit, .id = &smc_net_id, .size = sizeof(struct smc_net), }; static struct pernet_operations smc_net_stat_ops = { .init = smc_net_stat_init, .exit = smc_net_stat_exit, }; static int __init smc_init(void) { int rc; rc = register_pernet_subsys(&smc_net_ops); if (rc) return rc; rc = register_pernet_subsys(&smc_net_stat_ops); if (rc) goto out_pernet_subsys; smc_ism_init(); smc_clc_init(); rc = smc_nl_init(); if (rc) goto out_pernet_subsys_stat; rc = smc_pnet_init(); if (rc) goto out_nl; rc = -ENOMEM; smc_tcp_ls_wq = alloc_workqueue("smc_tcp_ls_wq", 0, 0); if (!smc_tcp_ls_wq) goto out_pnet; smc_hs_wq = alloc_workqueue("smc_hs_wq", 0, 0); if (!smc_hs_wq) goto out_alloc_tcp_ls_wq; smc_close_wq = alloc_workqueue("smc_close_wq", 0, 0); if (!smc_close_wq) goto out_alloc_hs_wq; rc = smc_core_init(); if (rc) { pr_err("%s: smc_core_init fails with %d\n", __func__, rc); goto out_alloc_wqs; } rc = smc_llc_init(); if (rc) { pr_err("%s: smc_llc_init fails with %d\n", __func__, rc); goto out_core; } rc = smc_cdc_init(); if (rc) { pr_err("%s: smc_cdc_init fails with %d\n", __func__, rc); goto out_core; } rc = proto_register(&smc_proto, 1); if (rc) { pr_err("%s: proto_register(v4) fails with %d\n", __func__, rc); goto out_core; } rc = proto_register(&smc_proto6, 1); if (rc) { pr_err("%s: proto_register(v6) fails with %d\n", __func__, rc); goto out_proto; } rc = sock_register(&smc_sock_family_ops); if (rc) { pr_err("%s: sock_register fails with %d\n", __func__, rc); goto out_proto6; } INIT_HLIST_HEAD(&smc_v4_hashinfo.ht); INIT_HLIST_HEAD(&smc_v6_hashinfo.ht); rc = smc_ib_register_client(); if (rc) { pr_err("%s: ib_register fails with %d\n", __func__, rc); goto out_sock; } rc = tcp_register_ulp(&smc_ulp_ops); if (rc) { pr_err("%s: tcp_ulp_register fails with %d\n", __func__, rc); goto out_ib; } static_branch_enable(&tcp_have_smc); return 0; out_ib: smc_ib_unregister_client(); out_sock: sock_unregister(PF_SMC); out_proto6: proto_unregister(&smc_proto6); out_proto: proto_unregister(&smc_proto); out_core: smc_core_exit(); out_alloc_wqs: destroy_workqueue(smc_close_wq); out_alloc_hs_wq: destroy_workqueue(smc_hs_wq); out_alloc_tcp_ls_wq: destroy_workqueue(smc_tcp_ls_wq); out_pnet: smc_pnet_exit(); out_nl: smc_nl_exit(); out_pernet_subsys_stat: unregister_pernet_subsys(&smc_net_stat_ops); out_pernet_subsys: unregister_pernet_subsys(&smc_net_ops); return rc; } static void __exit smc_exit(void) { static_branch_disable(&tcp_have_smc); tcp_unregister_ulp(&smc_ulp_ops); sock_unregister(PF_SMC); smc_core_exit(); smc_ib_unregister_client(); destroy_workqueue(smc_close_wq); destroy_workqueue(smc_tcp_ls_wq); destroy_workqueue(smc_hs_wq); proto_unregister(&smc_proto6); proto_unregister(&smc_proto); smc_pnet_exit(); smc_nl_exit(); smc_clc_exit(); unregister_pernet_subsys(&smc_net_stat_ops); unregister_pernet_subsys(&smc_net_ops); rcu_barrier(); } module_init(smc_init); module_exit(smc_exit); MODULE_AUTHOR("Ursula Braun <ubraun@linux.vnet.ibm.com>"); MODULE_DESCRIPTION("smc socket address family"); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_SMC); MODULE_ALIAS_TCP_ULP("smc"); MODULE_ALIAS_GENL_FAMILY(SMC_GENL_FAMILY_NAME);
692 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM fib6 #if !defined(_TRACE_FIB6_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_FIB6_H #include <linux/in6.h> #include <net/flow.h> #include <net/ip6_fib.h> #include <linux/tracepoint.h> TRACE_EVENT(fib6_table_lookup, TP_PROTO(const struct net *net, const struct fib6_result *res, struct fib6_table *table, const struct flowi6 *flp), TP_ARGS(net, res, table, flp), TP_STRUCT__entry( __field( u32, tb_id ) __field( int, err ) __field( int, oif ) __field( int, iif ) __field( __u8, tos ) __field( __u8, scope ) __field( __u8, flags ) __array( __u8, src, 16 ) __array( __u8, dst, 16 ) __field( u16, sport ) __field( u16, dport ) __field( u8, proto ) __field( u8, rt_type ) __array( char, name, IFNAMSIZ ) __array( __u8, gw, 16 ) ), TP_fast_assign( struct in6_addr *in6; __entry->tb_id = table->tb6_id; __entry->err = ip6_rt_type_to_error(res->fib6_type); __entry->oif = flp->flowi6_oif; __entry->iif = flp->flowi6_iif; __entry->tos = ip6_tclass(flp->flowlabel); __entry->scope = flp->flowi6_scope; __entry->flags = flp->flowi6_flags; in6 = (struct in6_addr *)__entry->src; *in6 = flp->saddr; in6 = (struct in6_addr *)__entry->dst; *in6 = flp->daddr; __entry->proto = flp->flowi6_proto; if (__entry->proto == IPPROTO_TCP || __entry->proto == IPPROTO_UDP) { __entry->sport = ntohs(flp->fl6_sport); __entry->dport = ntohs(flp->fl6_dport); } else { __entry->sport = 0; __entry->dport = 0; } if (res->nh && res->nh->fib_nh_dev) { strlcpy(__entry->name, res->nh->fib_nh_dev->name, IFNAMSIZ); } else { strcpy(__entry->name, "-"); } if (res->f6i == net->ipv6.fib6_null_entry) { in6 = (struct in6_addr *)__entry->gw; *in6 = in6addr_any; } else if (res->nh) { in6 = (struct in6_addr *)__entry->gw; *in6 = res->nh->fib_nh_gw6; } ), TP_printk("table %3u oif %d iif %d proto %u %pI6c/%u -> %pI6c/%u tos %d scope %d flags %x ==> dev %s gw %pI6c err %d", __entry->tb_id, __entry->oif, __entry->iif, __entry->proto, __entry->src, __entry->sport, __entry->dst, __entry->dport, __entry->tos, __entry->scope, __entry->flags, __entry->name, __entry->gw, __entry->err) ); #endif /* _TRACE_FIB6_H */ /* This part must be outside protection */ #include <trace/define_trace.h>
154 155 155 155 155 154 155 155 155 155 155 155 155 155 155 155 154 155 155 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2002,2003 by Andreas Gruenbacher <a.gruenbacher@computer.org> * * Fixes from William Schumacher incorporated on 15 March 2001. * (Reported by Charles Bertsch, <CBertsch@microtest.com>). */ /* * This file contains generic functions for manipulating * POSIX 1003.1e draft standard 17 ACLs. */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/atomic.h> #include <linux/fs.h> #include <linux/sched.h> #include <linux/cred.h> #include <linux/posix_acl.h> #include <linux/posix_acl_xattr.h> #include <linux/xattr.h> #include <linux/export.h> #include <linux/user_namespace.h> #include <linux/namei.h> #include <linux/mnt_idmapping.h> #include <linux/iversion.h> static struct posix_acl **acl_by_type(struct inode *inode, int type) { switch (type) { case ACL_TYPE_ACCESS: return &inode->i_acl; case ACL_TYPE_DEFAULT: return &inode->i_default_acl; default: BUG(); } } struct posix_acl *get_cached_acl(struct inode *inode, int type) { struct posix_acl **p = acl_by_type(inode, type); struct posix_acl *acl; for (;;) { rcu_read_lock(); acl = rcu_dereference(*p); if (!acl || is_uncached_acl(acl) || refcount_inc_not_zero(&acl->a_refcount)) break; rcu_read_unlock(); cpu_relax(); } rcu_read_unlock(); return acl; } EXPORT_SYMBOL(get_cached_acl); struct posix_acl *get_cached_acl_rcu(struct inode *inode, int type) { struct posix_acl *acl = rcu_dereference(*acl_by_type(inode, type)); if (acl == ACL_DONT_CACHE) { struct posix_acl *ret; ret = inode->i_op->get_acl(inode, type, LOOKUP_RCU); if (!IS_ERR(ret)) acl = ret; } return acl; } EXPORT_SYMBOL(get_cached_acl_rcu); void set_cached_acl(struct inode *inode, int type, struct posix_acl *acl) { struct posix_acl **p = acl_by_type(inode, type); struct posix_acl *old; old = xchg(p, posix_acl_dup(acl)); if (!is_uncached_acl(old)) posix_acl_release(old); } EXPORT_SYMBOL(set_cached_acl); static void __forget_cached_acl(struct posix_acl **p) { struct posix_acl *old; old = xchg(p, ACL_NOT_CACHED); if (!is_uncached_acl(old)) posix_acl_release(old); } void forget_cached_acl(struct inode *inode, int type) { __forget_cached_acl(acl_by_type(inode, type)); } EXPORT_SYMBOL(forget_cached_acl); void forget_all_cached_acls(struct inode *inode) { __forget_cached_acl(&inode->i_acl); __forget_cached_acl(&inode->i_default_acl); } EXPORT_SYMBOL(forget_all_cached_acls); struct posix_acl *get_acl(struct inode *inode, int type) { void *sentinel; struct posix_acl **p; struct posix_acl *acl; /* * The sentinel is used to detect when another operation like * set_cached_acl() or forget_cached_acl() races with get_acl(). * It is guaranteed that is_uncached_acl(sentinel) is true. */ acl = get_cached_acl(inode, type); if (!is_uncached_acl(acl)) return acl; if (!IS_POSIXACL(inode)) return NULL; sentinel = uncached_acl_sentinel(current); p = acl_by_type(inode, type); /* * If the ACL isn't being read yet, set our sentinel. Otherwise, the * current value of the ACL will not be ACL_NOT_CACHED and so our own * sentinel will not be set; another task will update the cache. We * could wait for that other task to complete its job, but it's easier * to just call ->get_acl to fetch the ACL ourself. (This is going to * be an unlikely race.) */ cmpxchg(p, ACL_NOT_CACHED, sentinel); /* * Normally, the ACL returned by ->get_acl will be cached. * A filesystem can prevent that by calling * forget_cached_acl(inode, type) in ->get_acl. * * If the filesystem doesn't have a get_acl() function at all, we'll * just create the negative cache entry. */ if (!inode->i_op->get_acl) { set_cached_acl(inode, type, NULL); return NULL; } acl = inode->i_op->get_acl(inode, type, false); if (IS_ERR(acl)) { /* * Remove our sentinel so that we don't block future attempts * to cache the ACL. */ cmpxchg(p, sentinel, ACL_NOT_CACHED); return acl; } /* * Cache the result, but only if our sentinel is still in place. */ posix_acl_dup(acl); if (unlikely(cmpxchg(p, sentinel, acl) != sentinel)) posix_acl_release(acl); return acl; } EXPORT_SYMBOL(get_acl); /* * Init a fresh posix_acl */ void posix_acl_init(struct posix_acl *acl, int count) { refcount_set(&acl->a_refcount, 1); acl->a_count = count; } EXPORT_SYMBOL(posix_acl_init); /* * Allocate a new ACL with the specified number of entries. */ struct posix_acl * posix_acl_alloc(int count, gfp_t flags) { const size_t size = sizeof(struct posix_acl) + count * sizeof(struct posix_acl_entry); struct posix_acl *acl = kmalloc(size, flags); if (acl) posix_acl_init(acl, count); return acl; } EXPORT_SYMBOL(posix_acl_alloc); /* * Clone an ACL. */ struct posix_acl * posix_acl_clone(const struct posix_acl *acl, gfp_t flags) { struct posix_acl *clone = NULL; if (acl) { int size = sizeof(struct posix_acl) + acl->a_count * sizeof(struct posix_acl_entry); clone = kmemdup(acl, size, flags); if (clone) refcount_set(&clone->a_refcount, 1); } return clone; } EXPORT_SYMBOL_GPL(posix_acl_clone); /* * Check if an acl is valid. Returns 0 if it is, or -E... otherwise. */ int posix_acl_valid(struct user_namespace *user_ns, const struct posix_acl *acl) { const struct posix_acl_entry *pa, *pe; int state = ACL_USER_OBJ; int needs_mask = 0; FOREACH_ACL_ENTRY(pa, acl, pe) { if (pa->e_perm & ~(ACL_READ|ACL_WRITE|ACL_EXECUTE)) return -EINVAL; switch (pa->e_tag) { case ACL_USER_OBJ: if (state == ACL_USER_OBJ) { state = ACL_USER; break; } return -EINVAL; case ACL_USER: if (state != ACL_USER) return -EINVAL; if (!kuid_has_mapping(user_ns, pa->e_uid)) return -EINVAL; needs_mask = 1; break; case ACL_GROUP_OBJ: if (state == ACL_USER) { state = ACL_GROUP; break; } return -EINVAL; case ACL_GROUP: if (state != ACL_GROUP) return -EINVAL; if (!kgid_has_mapping(user_ns, pa->e_gid)) return -EINVAL; needs_mask = 1; break; case ACL_MASK: if (state != ACL_GROUP) return -EINVAL; state = ACL_OTHER; break; case ACL_OTHER: if (state == ACL_OTHER || (state == ACL_GROUP && !needs_mask)) { state = 0; break; } return -EINVAL; default: return -EINVAL; } } if (state == 0) return 0; return -EINVAL; } EXPORT_SYMBOL(posix_acl_valid); /* * Returns 0 if the acl can be exactly represented in the traditional * file mode permission bits, or else 1. Returns -E... on error. */ int posix_acl_equiv_mode(const struct posix_acl *acl, umode_t *mode_p) { const struct posix_acl_entry *pa, *pe; umode_t mode = 0; int not_equiv = 0; /* * A null ACL can always be presented as mode bits. */ if (!acl) return 0; FOREACH_ACL_ENTRY(pa, acl, pe) { switch (pa->e_tag) { case ACL_USER_OBJ: mode |= (pa->e_perm & S_IRWXO) << 6; break; case ACL_GROUP_OBJ: mode |= (pa->e_perm & S_IRWXO) << 3; break; case ACL_OTHER: mode |= pa->e_perm & S_IRWXO; break; case ACL_MASK: mode = (mode & ~S_IRWXG) | ((pa->e_perm & S_IRWXO) << 3); not_equiv = 1; break; case ACL_USER: case ACL_GROUP: not_equiv = 1; break; default: return -EINVAL; } } if (mode_p) *mode_p = (*mode_p & ~S_IRWXUGO) | mode; return not_equiv; } EXPORT_SYMBOL(posix_acl_equiv_mode); /* * Create an ACL representing the file mode permission bits of an inode. */ struct posix_acl * posix_acl_from_mode(umode_t mode, gfp_t flags) { struct posix_acl *acl = posix_acl_alloc(3, flags); if (!acl) return ERR_PTR(-ENOMEM); acl->a_entries[0].e_tag = ACL_USER_OBJ; acl->a_entries[0].e_perm = (mode & S_IRWXU) >> 6; acl->a_entries[1].e_tag = ACL_GROUP_OBJ; acl->a_entries[1].e_perm = (mode & S_IRWXG) >> 3; acl->a_entries[2].e_tag = ACL_OTHER; acl->a_entries[2].e_perm = (mode & S_IRWXO); return acl; } EXPORT_SYMBOL(posix_acl_from_mode); /* * Return 0 if current is granted want access to the inode * by the acl. Returns -E... otherwise. */ int posix_acl_permission(struct user_namespace *mnt_userns, struct inode *inode, const struct posix_acl *acl, int want) { const struct posix_acl_entry *pa, *pe, *mask_obj; struct user_namespace *fs_userns = i_user_ns(inode); int found = 0; vfsuid_t vfsuid; vfsgid_t vfsgid; want &= MAY_READ | MAY_WRITE | MAY_EXEC; FOREACH_ACL_ENTRY(pa, acl, pe) { switch(pa->e_tag) { case ACL_USER_OBJ: /* (May have been checked already) */ vfsuid = i_uid_into_vfsuid(mnt_userns, inode); if (vfsuid_eq_kuid(vfsuid, current_fsuid())) goto check_perm; break; case ACL_USER: vfsuid = make_vfsuid(mnt_userns, fs_userns, pa->e_uid); if (vfsuid_eq_kuid(vfsuid, current_fsuid())) goto mask; break; case ACL_GROUP_OBJ: vfsgid = i_gid_into_vfsgid(mnt_userns, inode); if (vfsgid_in_group_p(vfsgid)) { found = 1; if ((pa->e_perm & want) == want) goto mask; } break; case ACL_GROUP: vfsgid = make_vfsgid(mnt_userns, fs_userns, pa->e_gid); if (vfsgid_in_group_p(vfsgid)) { found = 1; if ((pa->e_perm & want) == want) goto mask; } break; case ACL_MASK: break; case ACL_OTHER: if (found) return -EACCES; else goto check_perm; default: return -EIO; } } return -EIO; mask: for (mask_obj = pa+1; mask_obj != pe; mask_obj++) { if (mask_obj->e_tag == ACL_MASK) { if ((pa->e_perm & mask_obj->e_perm & want) == want) return 0; return -EACCES; } } check_perm: if ((pa->e_perm & want) == want) return 0; return -EACCES; } /* * Modify acl when creating a new inode. The caller must ensure the acl is * only referenced once. * * mode_p initially must contain the mode parameter to the open() / creat() * system calls. All permissions that are not granted by the acl are removed. * The permissions in the acl are changed to reflect the mode_p parameter. */ static int posix_acl_create_masq(struct posix_acl *acl, umode_t *mode_p) { struct posix_acl_entry *pa, *pe; struct posix_acl_entry *group_obj = NULL, *mask_obj = NULL; umode_t mode = *mode_p; int not_equiv = 0; /* assert(atomic_read(acl->a_refcount) == 1); */ FOREACH_ACL_ENTRY(pa, acl, pe) { switch(pa->e_tag) { case ACL_USER_OBJ: pa->e_perm &= (mode >> 6) | ~S_IRWXO; mode &= (pa->e_perm << 6) | ~S_IRWXU; break; case ACL_USER: case ACL_GROUP: not_equiv = 1; break; case ACL_GROUP_OBJ: group_obj = pa; break; case ACL_OTHER: pa->e_perm &= mode | ~S_IRWXO; mode &= pa->e_perm | ~S_IRWXO; break; case ACL_MASK: mask_obj = pa; not_equiv = 1; break; default: return -EIO; } } if (mask_obj) { mask_obj->e_perm &= (mode >> 3) | ~S_IRWXO; mode &= (mask_obj->e_perm << 3) | ~S_IRWXG; } else { if (!group_obj) return -EIO; group_obj->e_perm &= (mode >> 3) | ~S_IRWXO; mode &= (group_obj->e_perm << 3) | ~S_IRWXG; } *mode_p = (*mode_p & ~S_IRWXUGO) | mode; return not_equiv; } /* * Modify the ACL for the chmod syscall. */ static int __posix_acl_chmod_masq(struct posix_acl *acl, umode_t mode) { struct posix_acl_entry *group_obj = NULL, *mask_obj = NULL; struct posix_acl_entry *pa, *pe; /* assert(atomic_read(acl->a_refcount) == 1); */ FOREACH_ACL_ENTRY(pa, acl, pe) { switch(pa->e_tag) { case ACL_USER_OBJ: pa->e_perm = (mode & S_IRWXU) >> 6; break; case ACL_USER: case ACL_GROUP: break; case ACL_GROUP_OBJ: group_obj = pa; break; case ACL_MASK: mask_obj = pa; break; case ACL_OTHER: pa->e_perm = (mode & S_IRWXO); break; default: return -EIO; } } if (mask_obj) { mask_obj->e_perm = (mode & S_IRWXG) >> 3; } else { if (!group_obj) return -EIO; group_obj->e_perm = (mode & S_IRWXG) >> 3; } return 0; } int __posix_acl_create(struct posix_acl **acl, gfp_t gfp, umode_t *mode_p) { struct posix_acl *clone = posix_acl_clone(*acl, gfp); int err = -ENOMEM; if (clone) { err = posix_acl_create_masq(clone, mode_p); if (err < 0) { posix_acl_release(clone); clone = NULL; } } posix_acl_release(*acl); *acl = clone; return err; } EXPORT_SYMBOL(__posix_acl_create); int __posix_acl_chmod(struct posix_acl **acl, gfp_t gfp, umode_t mode) { struct posix_acl *clone = posix_acl_clone(*acl, gfp); int err = -ENOMEM; if (clone) { err = __posix_acl_chmod_masq(clone, mode); if (err) { posix_acl_release(clone); clone = NULL; } } posix_acl_release(*acl); *acl = clone; return err; } EXPORT_SYMBOL(__posix_acl_chmod); /** * posix_acl_chmod - chmod a posix acl * * @mnt_userns: user namespace of the mount @inode was found from * @inode: inode to check permissions on * @mode: the new mode of @inode * * If the inode has been found through an idmapped mount the user namespace of * the vfsmount must be passed through @mnt_userns. This function will then * take care to map the inode according to @mnt_userns before checking * permissions. On non-idmapped mounts or if permission checking is to be * performed on the raw inode simply passs init_user_ns. */ int posix_acl_chmod(struct user_namespace *mnt_userns, struct inode *inode, umode_t mode) { struct posix_acl *acl; int ret = 0; if (!IS_POSIXACL(inode)) return 0; if (!inode->i_op->set_acl) return -EOPNOTSUPP; acl = get_acl(inode, ACL_TYPE_ACCESS); if (IS_ERR_OR_NULL(acl)) { if (acl == ERR_PTR(-EOPNOTSUPP)) return 0; return PTR_ERR(acl); } ret = __posix_acl_chmod(&acl, GFP_KERNEL, mode); if (ret) return ret; ret = inode->i_op->set_acl(mnt_userns, inode, acl, ACL_TYPE_ACCESS); posix_acl_release(acl); return ret; } EXPORT_SYMBOL(posix_acl_chmod); int posix_acl_create(struct inode *dir, umode_t *mode, struct posix_acl **default_acl, struct posix_acl **acl) { struct posix_acl *p; struct posix_acl *clone; int ret; *acl = NULL; *default_acl = NULL; if (S_ISLNK(*mode) || !IS_POSIXACL(dir)) return 0; p = get_acl(dir, ACL_TYPE_DEFAULT); if (!p || p == ERR_PTR(-EOPNOTSUPP)) { *mode &= ~current_umask(); return 0; } if (IS_ERR(p)) return PTR_ERR(p); ret = -ENOMEM; clone = posix_acl_clone(p, GFP_NOFS); if (!clone) goto err_release; ret = posix_acl_create_masq(clone, mode); if (ret < 0) goto err_release_clone; if (ret == 0) posix_acl_release(clone); else *acl = clone; if (!S_ISDIR(*mode)) posix_acl_release(p); else *default_acl = p; return 0; err_release_clone: posix_acl_release(clone); err_release: posix_acl_release(p); return ret; } EXPORT_SYMBOL_GPL(posix_acl_create); /** * posix_acl_update_mode - update mode in set_acl * @mnt_userns: user namespace of the mount @inode was found from * @inode: target inode * @mode_p: mode (pointer) for update * @acl: acl pointer * * Update the file mode when setting an ACL: compute the new file permission * bits based on the ACL. In addition, if the ACL is equivalent to the new * file mode, set *@acl to NULL to indicate that no ACL should be set. * * As with chmod, clear the setgid bit if the caller is not in the owning group * or capable of CAP_FSETID (see inode_change_ok). * * If the inode has been found through an idmapped mount the user namespace of * the vfsmount must be passed through @mnt_userns. This function will then * take care to map the inode according to @mnt_userns before checking * permissions. On non-idmapped mounts or if permission checking is to be * performed on the raw inode simply passs init_user_ns. * * Called from set_acl inode operations. */ int posix_acl_update_mode(struct user_namespace *mnt_userns, struct inode *inode, umode_t *mode_p, struct posix_acl **acl) { umode_t mode = inode->i_mode; int error; error = posix_acl_equiv_mode(*acl, &mode); if (error < 0) return error; if (error == 0) *acl = NULL; if (!vfsgid_in_group_p(i_gid_into_vfsgid(mnt_userns, inode)) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID)) mode &= ~S_ISGID; *mode_p = mode; return 0; } EXPORT_SYMBOL(posix_acl_update_mode); /* * Fix up the uids and gids in posix acl extended attributes in place. */ static int posix_acl_fix_xattr_common(const void *value, size_t size) { const struct posix_acl_xattr_header *header = value; int count; if (!header) return -EINVAL; if (size < sizeof(struct posix_acl_xattr_header)) return -EINVAL; if (header->a_version != cpu_to_le32(POSIX_ACL_XATTR_VERSION)) return -EOPNOTSUPP; count = posix_acl_xattr_count(size); if (count < 0) return -EINVAL; if (count == 0) return 0; return count; } void posix_acl_getxattr_idmapped_mnt(struct user_namespace *mnt_userns, const struct inode *inode, void *value, size_t size) { struct posix_acl_xattr_header *header = value; struct posix_acl_xattr_entry *entry = (void *)(header + 1), *end; struct user_namespace *fs_userns = i_user_ns(inode); int count; vfsuid_t vfsuid; vfsgid_t vfsgid; kuid_t uid; kgid_t gid; if (no_idmapping(mnt_userns, i_user_ns(inode))) return; count = posix_acl_fix_xattr_common(value, size); if (count <= 0) return; for (end = entry + count; entry != end; entry++) { switch (le16_to_cpu(entry->e_tag)) { case ACL_USER: uid = make_kuid(&init_user_ns, le32_to_cpu(entry->e_id)); vfsuid = make_vfsuid(mnt_userns, fs_userns, uid); entry->e_id = cpu_to_le32(from_kuid(&init_user_ns, vfsuid_into_kuid(vfsuid))); break; case ACL_GROUP: gid = make_kgid(&init_user_ns, le32_to_cpu(entry->e_id)); vfsgid = make_vfsgid(mnt_userns, fs_userns, gid); entry->e_id = cpu_to_le32(from_kgid(&init_user_ns, vfsgid_into_kgid(vfsgid))); break; default: break; } } } static void posix_acl_fix_xattr_userns( struct user_namespace *to, struct user_namespace *from, void *value, size_t size) { struct posix_acl_xattr_header *header = value; struct posix_acl_xattr_entry *entry = (void *)(header + 1), *end; int count; kuid_t uid; kgid_t gid; count = posix_acl_fix_xattr_common(value, size); if (count <= 0) return; for (end = entry + count; entry != end; entry++) { switch(le16_to_cpu(entry->e_tag)) { case ACL_USER: uid = make_kuid(from, le32_to_cpu(entry->e_id)); entry->e_id = cpu_to_le32(from_kuid(to, uid)); break; case ACL_GROUP: gid = make_kgid(from, le32_to_cpu(entry->e_id)); entry->e_id = cpu_to_le32(from_kgid(to, gid)); break; default: break; } } } void posix_acl_fix_xattr_from_user(void *value, size_t size) { struct user_namespace *user_ns = current_user_ns(); if (user_ns == &init_user_ns) return; posix_acl_fix_xattr_userns(&init_user_ns, user_ns, value, size); } void posix_acl_fix_xattr_to_user(void *value, size_t size) { struct user_namespace *user_ns = current_user_ns(); if (user_ns == &init_user_ns) return; posix_acl_fix_xattr_userns(user_ns, &init_user_ns, value, size); } /** * make_posix_acl - convert POSIX ACLs from uapi to VFS format using the * provided callbacks to map ACL_{GROUP,USER} entries into the * appropriate format * @mnt_userns: the mount's idmapping * @fs_userns: the filesystem's idmapping * @value: the uapi representation of POSIX ACLs * @size: the size of @void * @uid_cb: callback to use for mapping the uid stored in ACL_USER entries * @gid_cb: callback to use for mapping the gid stored in ACL_GROUP entries * * The make_posix_acl() helper is an abstraction to translate from uapi format * into the VFS format allowing the caller to specific callbacks to map * ACL_{GROUP,USER} entries into the expected format. This is used in * posix_acl_from_xattr() and vfs_set_acl_prepare() and avoids pointless code * duplication. * * Return: Allocated struct posix_acl on success, NULL for a valid header but * without actual POSIX ACL entries, or ERR_PTR() encoded error code. */ static struct posix_acl *make_posix_acl(struct user_namespace *mnt_userns, struct user_namespace *fs_userns, const void *value, size_t size, kuid_t (*uid_cb)(struct user_namespace *, struct user_namespace *, const struct posix_acl_xattr_entry *), kgid_t (*gid_cb)(struct user_namespace *, struct user_namespace *, const struct posix_acl_xattr_entry *)) { const struct posix_acl_xattr_header *header = value; const struct posix_acl_xattr_entry *entry = (const void *)(header + 1), *end; int count; struct posix_acl *acl; struct posix_acl_entry *acl_e; count = posix_acl_fix_xattr_common(value, size); if (count < 0) return ERR_PTR(count); if (count == 0) return NULL; acl = posix_acl_alloc(count, GFP_NOFS); if (!acl) return ERR_PTR(-ENOMEM); acl_e = acl->a_entries; for (end = entry + count; entry != end; acl_e++, entry++) { acl_e->e_tag = le16_to_cpu(entry->e_tag); acl_e->e_perm = le16_to_cpu(entry->e_perm); switch(acl_e->e_tag) { case ACL_USER_OBJ: case ACL_GROUP_OBJ: case ACL_MASK: case ACL_OTHER: break; case ACL_USER: acl_e->e_uid = uid_cb(mnt_userns, fs_userns, entry); if (!uid_valid(acl_e->e_uid)) goto fail; break; case ACL_GROUP: acl_e->e_gid = gid_cb(mnt_userns, fs_userns, entry); if (!gid_valid(acl_e->e_gid)) goto fail; break; default: goto fail; } } return acl; fail: posix_acl_release(acl); return ERR_PTR(-EINVAL); } /** * vfs_set_acl_prepare_kuid - map ACL_USER uid according to mount- and * filesystem idmapping * @mnt_userns: the mount's idmapping * @fs_userns: the filesystem's idmapping * @e: a ACL_USER entry in POSIX ACL uapi format * * The uid stored as ACL_USER entry in @e is a kuid_t stored as a raw {g,u}id * value. The vfs_set_acl_prepare_kuid() will recover the kuid_t through * KUIDT_INIT() and then map it according to the idmapped mount. The resulting * kuid_t is the value which the filesystem can map up into a raw backing store * id in the filesystem's idmapping. * * This is used in vfs_set_acl_prepare() to generate the proper VFS * representation of POSIX ACLs with ACL_USER entries during setxattr(). * * Return: A kuid in @fs_userns for the uid stored in @e. */ static inline kuid_t vfs_set_acl_prepare_kuid(struct user_namespace *mnt_userns, struct user_namespace *fs_userns, const struct posix_acl_xattr_entry *e) { kuid_t kuid = KUIDT_INIT(le32_to_cpu(e->e_id)); return from_vfsuid(mnt_userns, fs_userns, VFSUIDT_INIT(kuid)); } /** * vfs_set_acl_prepare_kgid - map ACL_GROUP gid according to mount- and * filesystem idmapping * @mnt_userns: the mount's idmapping * @fs_userns: the filesystem's idmapping * @e: a ACL_GROUP entry in POSIX ACL uapi format * * The gid stored as ACL_GROUP entry in @e is a kgid_t stored as a raw {g,u}id * value. The vfs_set_acl_prepare_kgid() will recover the kgid_t through * KGIDT_INIT() and then map it according to the idmapped mount. The resulting * kgid_t is the value which the filesystem can map up into a raw backing store * id in the filesystem's idmapping. * * This is used in vfs_set_acl_prepare() to generate the proper VFS * representation of POSIX ACLs with ACL_GROUP entries during setxattr(). * * Return: A kgid in @fs_userns for the gid stored in @e. */ static inline kgid_t vfs_set_acl_prepare_kgid(struct user_namespace *mnt_userns, struct user_namespace *fs_userns, const struct posix_acl_xattr_entry *e) { kgid_t kgid = KGIDT_INIT(le32_to_cpu(e->e_id)); return from_vfsgid(mnt_userns, fs_userns, VFSGIDT_INIT(kgid)); } /** * vfs_set_acl_prepare - convert POSIX ACLs from uapi to VFS format taking * mount and filesystem idmappings into account * @mnt_userns: the mount's idmapping * @fs_userns: the filesystem's idmapping * @value: the uapi representation of POSIX ACLs * @size: the size of @void * * When setting POSIX ACLs with ACL_{GROUP,USER} entries they need to be * mapped according to the relevant mount- and filesystem idmapping. It is * important that the ACL_{GROUP,USER} entries in struct posix_acl will be * mapped into k{g,u}id_t that are supposed to be mapped up in the filesystem * idmapping. This is crucial since the resulting struct posix_acl might be * cached filesystem wide. The vfs_set_acl_prepare() function will take care to * perform all necessary idmappings. * * Note, that since basically forever the {g,u}id values encoded as * ACL_{GROUP,USER} entries in the uapi POSIX ACLs passed via @value contain * values that have been mapped according to the caller's idmapping. In other * words, POSIX ACLs passed in uapi format as @value during setxattr() contain * {g,u}id values in their ACL_{GROUP,USER} entries that should actually have * been stored as k{g,u}id_t. * * This means, vfs_set_acl_prepare() needs to first recover the k{g,u}id_t by * calling K{G,U}IDT_INIT(). Afterwards they can be interpreted as vfs{g,u}id_t * through from_vfs{g,u}id() to account for any idmapped mounts. The * vfs_set_acl_prepare_k{g,u}id() helpers will take care to generate the * correct k{g,u}id_t. * * The filesystem will then receive the POSIX ACLs ready to be cached * filesystem wide and ready to be written to the backing store taking the * filesystem's idmapping into account. * * Return: Allocated struct posix_acl on success, NULL for a valid header but * without actual POSIX ACL entries, or ERR_PTR() encoded error code. */ struct posix_acl *vfs_set_acl_prepare(struct user_namespace *mnt_userns, struct user_namespace *fs_userns, const void *value, size_t size) { return make_posix_acl(mnt_userns, fs_userns, value, size, vfs_set_acl_prepare_kuid, vfs_set_acl_prepare_kgid); } EXPORT_SYMBOL(vfs_set_acl_prepare); /** * posix_acl_from_xattr_kuid - map ACL_USER uid into filesystem idmapping * @mnt_userns: unused * @fs_userns: the filesystem's idmapping * @e: a ACL_USER entry in POSIX ACL uapi format * * Map the uid stored as ACL_USER entry in @e into the filesystem's idmapping. * This is used in posix_acl_from_xattr() to generate the proper VFS * representation of POSIX ACLs with ACL_USER entries. * * Return: A kuid in @fs_userns for the uid stored in @e. */ static inline kuid_t posix_acl_from_xattr_kuid(struct user_namespace *mnt_userns, struct user_namespace *fs_userns, const struct posix_acl_xattr_entry *e) { return make_kuid(fs_userns, le32_to_cpu(e->e_id)); } /** * posix_acl_from_xattr_kgid - map ACL_GROUP gid into filesystem idmapping * @mnt_userns: unused * @fs_userns: the filesystem's idmapping * @e: a ACL_GROUP entry in POSIX ACL uapi format * * Map the gid stored as ACL_GROUP entry in @e into the filesystem's idmapping. * This is used in posix_acl_from_xattr() to generate the proper VFS * representation of POSIX ACLs with ACL_GROUP entries. * * Return: A kgid in @fs_userns for the gid stored in @e. */ static inline kgid_t posix_acl_from_xattr_kgid(struct user_namespace *mnt_userns, struct user_namespace *fs_userns, const struct posix_acl_xattr_entry *e) { return make_kgid(fs_userns, le32_to_cpu(e->e_id)); } /** * posix_acl_from_xattr - convert POSIX ACLs from backing store to VFS format * @fs_userns: the filesystem's idmapping * @value: the uapi representation of POSIX ACLs * @size: the size of @void * * Filesystems that store POSIX ACLs in the unaltered uapi format should use * posix_acl_from_xattr() when reading them from the backing store and * converting them into the struct posix_acl VFS format. The helper is * specifically intended to be called from the ->get_acl() inode operation. * * The posix_acl_from_xattr() function will map the raw {g,u}id values stored * in ACL_{GROUP,USER} entries into the filesystem idmapping in @fs_userns. The * posix_acl_from_xattr_k{g,u}id() helpers will take care to generate the * correct k{g,u}id_t. The returned struct posix_acl can be cached. * * Note that posix_acl_from_xattr() does not take idmapped mounts into account. * If it did it calling is from the ->get_acl() inode operation would return * POSIX ACLs mapped according to an idmapped mount which would mean that the * value couldn't be cached for the filesystem. Idmapped mounts are taken into * account on the fly during permission checking or right at the VFS - * userspace boundary before reporting them to the user. * * Return: Allocated struct posix_acl on success, NULL for a valid header but * without actual POSIX ACL entries, or ERR_PTR() encoded error code. */ struct posix_acl * posix_acl_from_xattr(struct user_namespace *fs_userns, const void *value, size_t size) { return make_posix_acl(&init_user_ns, fs_userns, value, size, posix_acl_from_xattr_kuid, posix_acl_from_xattr_kgid); } EXPORT_SYMBOL (posix_acl_from_xattr); /* * Convert from in-memory to extended attribute representation. */ int posix_acl_to_xattr(struct user_namespace *user_ns, const struct posix_acl *acl, void *buffer, size_t size) { struct posix_acl_xattr_header *ext_acl = buffer; struct posix_acl_xattr_entry *ext_entry; int real_size, n; real_size = posix_acl_xattr_size(acl->a_count); if (!buffer) return real_size; if (real_size > size) return -ERANGE; ext_entry = (void *)(ext_acl + 1); ext_acl->a_version = cpu_to_le32(POSIX_ACL_XATTR_VERSION); for (n=0; n < acl->a_count; n++, ext_entry++) { const struct posix_acl_entry *acl_e = &acl->a_entries[n]; ext_entry->e_tag = cpu_to_le16(acl_e->e_tag); ext_entry->e_perm = cpu_to_le16(acl_e->e_perm); switch(acl_e->e_tag) { case ACL_USER: ext_entry->e_id = cpu_to_le32(from_kuid(user_ns, acl_e->e_uid)); break; case ACL_GROUP: ext_entry->e_id = cpu_to_le32(from_kgid(user_ns, acl_e->e_gid)); break; default: ext_entry->e_id = cpu_to_le32(ACL_UNDEFINED_ID); break; } } return real_size; } EXPORT_SYMBOL (posix_acl_to_xattr); static int posix_acl_xattr_get(const struct xattr_handler *handler, struct dentry *unused, struct inode *inode, const char *name, void *value, size_t size) { struct posix_acl *acl; int error; if (!IS_POSIXACL(inode)) return -EOPNOTSUPP; if (S_ISLNK(inode->i_mode)) return -EOPNOTSUPP; acl = get_acl(inode, handler->flags); if (IS_ERR(acl)) return PTR_ERR(acl); if (acl == NULL) return -ENODATA; error = posix_acl_to_xattr(&init_user_ns, acl, value, size); posix_acl_release(acl); return error; } int set_posix_acl(struct user_namespace *mnt_userns, struct inode *inode, int type, struct posix_acl *acl) { if (!IS_POSIXACL(inode)) return -EOPNOTSUPP; if (!inode->i_op->set_acl) return -EOPNOTSUPP; if (type == ACL_TYPE_DEFAULT && !S_ISDIR(inode->i_mode)) return acl ? -EACCES : 0; if (!inode_owner_or_capable(mnt_userns, inode)) return -EPERM; if (acl) { int ret = posix_acl_valid(inode->i_sb->s_user_ns, acl); if (ret) return ret; } return inode->i_op->set_acl(mnt_userns, inode, acl, type); } EXPORT_SYMBOL(set_posix_acl); static int posix_acl_xattr_set(const struct xattr_handler *handler, struct user_namespace *mnt_userns, struct dentry *unused, struct inode *inode, const char *name, const void *value, size_t size, int flags) { struct posix_acl *acl = NULL; int ret; if (value) { /* * By the time we end up here the {g,u}ids stored in * ACL_{GROUP,USER} have already been mapped according to the * caller's idmapping. The vfs_set_acl_prepare() helper will * recover them and take idmapped mounts into account. The * filesystem will receive the POSIX ACLs in the correct * format ready to be cached or written to the backing store * taking the filesystem idmapping into account. */ acl = vfs_set_acl_prepare(mnt_userns, i_user_ns(inode), value, size); if (IS_ERR(acl)) return PTR_ERR(acl); } ret = set_posix_acl(mnt_userns, inode, handler->flags, acl); posix_acl_release(acl); return ret; } static bool posix_acl_xattr_list(struct dentry *dentry) { return IS_POSIXACL(d_backing_inode(dentry)); } const struct xattr_handler posix_acl_access_xattr_handler = { .name = XATTR_NAME_POSIX_ACL_ACCESS, .flags = ACL_TYPE_ACCESS, .list = posix_acl_xattr_list, .get = posix_acl_xattr_get, .set = posix_acl_xattr_set, }; EXPORT_SYMBOL_GPL(posix_acl_access_xattr_handler); const struct xattr_handler posix_acl_default_xattr_handler = { .name = XATTR_NAME_POSIX_ACL_DEFAULT, .flags = ACL_TYPE_DEFAULT, .list = posix_acl_xattr_list, .get = posix_acl_xattr_get, .set = posix_acl_xattr_set, }; EXPORT_SYMBOL_GPL(posix_acl_default_xattr_handler); int simple_set_acl(struct user_namespace *mnt_userns, struct inode *inode, struct posix_acl *acl, int type) { int error; if (type == ACL_TYPE_ACCESS) { error = posix_acl_update_mode(mnt_userns, inode, &inode->i_mode, &acl); if (error) return error; } inode->i_ctime = current_time(inode); if (IS_I_VERSION(inode)) inode_inc_iversion(inode); set_cached_acl(inode, type, acl); return 0; } int simple_acl_create(struct inode *dir, struct inode *inode) { struct posix_acl *default_acl, *acl; int error; error = posix_acl_create(dir, &inode->i_mode, &default_acl, &acl); if (error) return error; set_cached_acl(inode, ACL_TYPE_DEFAULT, default_acl); set_cached_acl(inode, ACL_TYPE_ACCESS, acl); if (default_acl) posix_acl_release(default_acl); if (acl) posix_acl_release(acl); return 0; }
16 16 48 48 47 48 48 46 3 3 3 1 1 3 3 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 // SPDX-License-Identifier: GPL-2.0 /* * This file contains helper code to handle channel * settings and keeping track of what is possible at * any point in time. * * Copyright 2009 Johannes Berg <johannes@sipsolutions.net> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright 2018-2022 Intel Corporation */ #include <linux/export.h> #include <linux/bitfield.h> #include <net/cfg80211.h> #include "core.h" #include "rdev-ops.h" static bool cfg80211_valid_60g_freq(u32 freq) { return freq >= 58320 && freq <= 70200; } void cfg80211_chandef_create(struct cfg80211_chan_def *chandef, struct ieee80211_channel *chan, enum nl80211_channel_type chan_type) { if (WARN_ON(!chan)) return; chandef->chan = chan; chandef->freq1_offset = chan->freq_offset; chandef->center_freq2 = 0; chandef->edmg.bw_config = 0; chandef->edmg.channels = 0; switch (chan_type) { case NL80211_CHAN_NO_HT: chandef->width = NL80211_CHAN_WIDTH_20_NOHT; chandef->center_freq1 = chan->center_freq; break; case NL80211_CHAN_HT20: chandef->width = NL80211_CHAN_WIDTH_20; chandef->center_freq1 = chan->center_freq; break; case NL80211_CHAN_HT40PLUS: chandef->width = NL80211_CHAN_WIDTH_40; chandef->center_freq1 = chan->center_freq + 10; break; case NL80211_CHAN_HT40MINUS: chandef->width = NL80211_CHAN_WIDTH_40; chandef->center_freq1 = chan->center_freq - 10; break; default: WARN_ON(1); } } EXPORT_SYMBOL(cfg80211_chandef_create); static bool cfg80211_edmg_chandef_valid(const struct cfg80211_chan_def *chandef) { int max_contiguous = 0; int num_of_enabled = 0; int contiguous = 0; int i; if (!chandef->edmg.channels || !chandef->edmg.bw_config) return false; if (!cfg80211_valid_60g_freq(chandef->chan->center_freq)) return false; for (i = 0; i < 6; i++) { if (chandef->edmg.channels & BIT(i)) { contiguous++; num_of_enabled++; } else { contiguous = 0; } max_contiguous = max(contiguous, max_contiguous); } /* basic verification of edmg configuration according to * IEEE P802.11ay/D4.0 section 9.4.2.251 */ /* check bw_config against contiguous edmg channels */ switch (chandef->edmg.bw_config) { case IEEE80211_EDMG_BW_CONFIG_4: case IEEE80211_EDMG_BW_CONFIG_8: case IEEE80211_EDMG_BW_CONFIG_12: if (max_contiguous < 1) return false; break; case IEEE80211_EDMG_BW_CONFIG_5: case IEEE80211_EDMG_BW_CONFIG_9: case IEEE80211_EDMG_BW_CONFIG_13: if (max_contiguous < 2) return false; break; case IEEE80211_EDMG_BW_CONFIG_6: case IEEE80211_EDMG_BW_CONFIG_10: case IEEE80211_EDMG_BW_CONFIG_14: if (max_contiguous < 3) return false; break; case IEEE80211_EDMG_BW_CONFIG_7: case IEEE80211_EDMG_BW_CONFIG_11: case IEEE80211_EDMG_BW_CONFIG_15: if (max_contiguous < 4) return false; break; default: return false; } /* check bw_config against aggregated (non contiguous) edmg channels */ switch (chandef->edmg.bw_config) { case IEEE80211_EDMG_BW_CONFIG_4: case IEEE80211_EDMG_BW_CONFIG_5: case IEEE80211_EDMG_BW_CONFIG_6: case IEEE80211_EDMG_BW_CONFIG_7: break; case IEEE80211_EDMG_BW_CONFIG_8: case IEEE80211_EDMG_BW_CONFIG_9: case IEEE80211_EDMG_BW_CONFIG_10: case IEEE80211_EDMG_BW_CONFIG_11: if (num_of_enabled < 2) return false; break; case IEEE80211_EDMG_BW_CONFIG_12: case IEEE80211_EDMG_BW_CONFIG_13: case IEEE80211_EDMG_BW_CONFIG_14: case IEEE80211_EDMG_BW_CONFIG_15: if (num_of_enabled < 4 || max_contiguous < 2) return false; break; default: return false; } return true; } static int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width) { int mhz; switch (chan_width) { case NL80211_CHAN_WIDTH_1: mhz = 1; break; case NL80211_CHAN_WIDTH_2: mhz = 2; break; case NL80211_CHAN_WIDTH_4: mhz = 4; break; case NL80211_CHAN_WIDTH_8: mhz = 8; break; case NL80211_CHAN_WIDTH_16: mhz = 16; break; case NL80211_CHAN_WIDTH_5: mhz = 5; break; case NL80211_CHAN_WIDTH_10: mhz = 10; break; case NL80211_CHAN_WIDTH_20: case NL80211_CHAN_WIDTH_20_NOHT: mhz = 20; break; case NL80211_CHAN_WIDTH_40: mhz = 40; break; case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_80: mhz = 80; break; case NL80211_CHAN_WIDTH_160: mhz = 160; break; case NL80211_CHAN_WIDTH_320: mhz = 320; break; default: WARN_ON_ONCE(1); return -1; } return mhz; } static int cfg80211_chandef_get_width(const struct cfg80211_chan_def *c) { return nl80211_chan_width_to_mhz(c->width); } bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef) { u32 control_freq, oper_freq; int oper_width, control_width; if (!chandef->chan) return false; if (chandef->freq1_offset >= 1000) return false; control_freq = chandef->chan->center_freq; switch (chandef->width) { case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: case NL80211_CHAN_WIDTH_20: case NL80211_CHAN_WIDTH_20_NOHT: if (ieee80211_chandef_to_khz(chandef) != ieee80211_channel_to_khz(chandef->chan)) return false; if (chandef->center_freq2) return false; break; case NL80211_CHAN_WIDTH_1: case NL80211_CHAN_WIDTH_2: case NL80211_CHAN_WIDTH_4: case NL80211_CHAN_WIDTH_8: case NL80211_CHAN_WIDTH_16: if (chandef->chan->band != NL80211_BAND_S1GHZ) return false; control_freq = ieee80211_channel_to_khz(chandef->chan); oper_freq = ieee80211_chandef_to_khz(chandef); control_width = nl80211_chan_width_to_mhz( ieee80211_s1g_channel_width( chandef->chan)); oper_width = cfg80211_chandef_get_width(chandef); if (oper_width < 0 || control_width < 0) return false; if (chandef->center_freq2) return false; if (control_freq + MHZ_TO_KHZ(control_width) / 2 > oper_freq + MHZ_TO_KHZ(oper_width) / 2) return false; if (control_freq - MHZ_TO_KHZ(control_width) / 2 < oper_freq - MHZ_TO_KHZ(oper_width) / 2) return false; break; case NL80211_CHAN_WIDTH_80P80: if (!chandef->center_freq2) return false; /* adjacent is not allowed -- that's a 160 MHz channel */ if (chandef->center_freq1 - chandef->center_freq2 == 80 || chandef->center_freq2 - chandef->center_freq1 == 80) return false; break; default: if (chandef->center_freq2) return false; break; } switch (chandef->width) { case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: case NL80211_CHAN_WIDTH_20: case NL80211_CHAN_WIDTH_20_NOHT: case NL80211_CHAN_WIDTH_1: case NL80211_CHAN_WIDTH_2: case NL80211_CHAN_WIDTH_4: case NL80211_CHAN_WIDTH_8: case NL80211_CHAN_WIDTH_16: /* all checked above */ break; case NL80211_CHAN_WIDTH_320: if (chandef->center_freq1 == control_freq + 150 || chandef->center_freq1 == control_freq + 130 || chandef->center_freq1 == control_freq + 110 || chandef->center_freq1 == control_freq + 90 || chandef->center_freq1 == control_freq - 90 || chandef->center_freq1 == control_freq - 110 || chandef->center_freq1 == control_freq - 130 || chandef->center_freq1 == control_freq - 150) break; fallthrough; case NL80211_CHAN_WIDTH_160: if (chandef->center_freq1 == control_freq + 70 || chandef->center_freq1 == control_freq + 50 || chandef->center_freq1 == control_freq - 50 || chandef->center_freq1 == control_freq - 70) break; fallthrough; case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_80: if (chandef->center_freq1 == control_freq + 30 || chandef->center_freq1 == control_freq - 30) break; fallthrough; case NL80211_CHAN_WIDTH_40: if (chandef->center_freq1 == control_freq + 10 || chandef->center_freq1 == control_freq - 10) break; fallthrough; default: return false; } /* channel 14 is only for IEEE 802.11b */ if (chandef->center_freq1 == 2484 && chandef->width != NL80211_CHAN_WIDTH_20_NOHT) return false; if (cfg80211_chandef_is_edmg(chandef) && !cfg80211_edmg_chandef_valid(chandef)) return false; return true; } EXPORT_SYMBOL(cfg80211_chandef_valid); static void chandef_primary_freqs(const struct cfg80211_chan_def *c, u32 *pri40, u32 *pri80, u32 *pri160) { int tmp; switch (c->width) { case NL80211_CHAN_WIDTH_40: *pri40 = c->center_freq1; *pri80 = 0; *pri160 = 0; break; case NL80211_CHAN_WIDTH_80: case NL80211_CHAN_WIDTH_80P80: *pri160 = 0; *pri80 = c->center_freq1; /* n_P20 */ tmp = (30 + c->chan->center_freq - c->center_freq1)/20; /* n_P40 */ tmp /= 2; /* freq_P40 */ *pri40 = c->center_freq1 - 20 + 40 * tmp; break; case NL80211_CHAN_WIDTH_160: *pri160 = c->center_freq1; /* n_P20 */ tmp = (70 + c->chan->center_freq - c->center_freq1)/20; /* n_P40 */ tmp /= 2; /* freq_P40 */ *pri40 = c->center_freq1 - 60 + 40 * tmp; /* n_P80 */ tmp /= 2; *pri80 = c->center_freq1 - 40 + 80 * tmp; break; case NL80211_CHAN_WIDTH_320: /* n_P20 */ tmp = (150 + c->chan->center_freq - c->center_freq1) / 20; /* n_P40 */ tmp /= 2; /* freq_P40 */ *pri40 = c->center_freq1 - 140 + 40 * tmp; /* n_P80 */ tmp /= 2; *pri80 = c->center_freq1 - 120 + 80 * tmp; /* n_P160 */ tmp /= 2; *pri160 = c->center_freq1 - 80 + 160 * tmp; break; default: WARN_ON_ONCE(1); } } const struct cfg80211_chan_def * cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1, const struct cfg80211_chan_def *c2) { u32 c1_pri40, c1_pri80, c2_pri40, c2_pri80, c1_pri160, c2_pri160; /* If they are identical, return */ if (cfg80211_chandef_identical(c1, c2)) return c1; /* otherwise, must have same control channel */ if (c1->chan != c2->chan) return NULL; /* * If they have the same width, but aren't identical, * then they can't be compatible. */ if (c1->width == c2->width) return NULL; /* * can't be compatible if one of them is 5 or 10 MHz, * but they don't have the same width. */ if (c1->width == NL80211_CHAN_WIDTH_5 || c1->width == NL80211_CHAN_WIDTH_10 || c2->width == NL80211_CHAN_WIDTH_5 || c2->width == NL80211_CHAN_WIDTH_10) return NULL; if (c1->width == NL80211_CHAN_WIDTH_20_NOHT || c1->width == NL80211_CHAN_WIDTH_20) return c2; if (c2->width == NL80211_CHAN_WIDTH_20_NOHT || c2->width == NL80211_CHAN_WIDTH_20) return c1; chandef_primary_freqs(c1, &c1_pri40, &c1_pri80, &c1_pri160); chandef_primary_freqs(c2, &c2_pri40, &c2_pri80, &c2_pri160); if (c1_pri40 != c2_pri40) return NULL; if (c1->width == NL80211_CHAN_WIDTH_40) return c2; if (c2->width == NL80211_CHAN_WIDTH_40) return c1; if (c1_pri80 != c2_pri80) return NULL; if (c1->width == NL80211_CHAN_WIDTH_80 && c2->width > NL80211_CHAN_WIDTH_80) return c2; if (c2->width == NL80211_CHAN_WIDTH_80 && c1->width > NL80211_CHAN_WIDTH_80) return c1; WARN_ON(!c1_pri160 && !c2_pri160); if (c1_pri160 && c2_pri160 && c1_pri160 != c2_pri160) return NULL; if (c1->width > c2->width) return c1; return c2; } EXPORT_SYMBOL(cfg80211_chandef_compatible); static void cfg80211_set_chans_dfs_state(struct wiphy *wiphy, u32 center_freq, u32 bandwidth, enum nl80211_dfs_state dfs_state) { struct ieee80211_channel *c; u32 freq; for (freq = center_freq - bandwidth/2 + 10; freq <= center_freq + bandwidth/2 - 10; freq += 20) { c = ieee80211_get_channel(wiphy, freq); if (!c || !(c->flags & IEEE80211_CHAN_RADAR)) continue; c->dfs_state = dfs_state; c->dfs_state_entered = jiffies; } } void cfg80211_set_dfs_state(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef, enum nl80211_dfs_state dfs_state) { int width; if (WARN_ON(!cfg80211_chandef_valid(chandef))) return; width = cfg80211_chandef_get_width(chandef); if (width < 0) return; cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq1, width, dfs_state); if (!chandef->center_freq2) return; cfg80211_set_chans_dfs_state(wiphy, chandef->center_freq2, width, dfs_state); } static u32 cfg80211_get_start_freq(u32 center_freq, u32 bandwidth) { u32 start_freq; bandwidth = MHZ_TO_KHZ(bandwidth); if (bandwidth <= MHZ_TO_KHZ(20)) start_freq = center_freq; else start_freq = center_freq - bandwidth / 2 + MHZ_TO_KHZ(10); return start_freq; } static u32 cfg80211_get_end_freq(u32 center_freq, u32 bandwidth) { u32 end_freq; bandwidth = MHZ_TO_KHZ(bandwidth); if (bandwidth <= MHZ_TO_KHZ(20)) end_freq = center_freq; else end_freq = center_freq + bandwidth / 2 - MHZ_TO_KHZ(10); return end_freq; } static int cfg80211_get_chans_dfs_required(struct wiphy *wiphy, u32 center_freq, u32 bandwidth) { struct ieee80211_channel *c; u32 freq, start_freq, end_freq; start_freq = cfg80211_get_start_freq(center_freq, bandwidth); end_freq = cfg80211_get_end_freq(center_freq, bandwidth); for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { c = ieee80211_get_channel_khz(wiphy, freq); if (!c) return -EINVAL; if (c->flags & IEEE80211_CHAN_RADAR) return 1; } return 0; } int cfg80211_chandef_dfs_required(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef, enum nl80211_iftype iftype) { int width; int ret; if (WARN_ON(!cfg80211_chandef_valid(chandef))) return -EINVAL; switch (iftype) { case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_MESH_POINT: width = cfg80211_chandef_get_width(chandef); if (width < 0) return -EINVAL; ret = cfg80211_get_chans_dfs_required(wiphy, ieee80211_chandef_to_khz(chandef), width); if (ret < 0) return ret; else if (ret > 0) return BIT(chandef->width); if (!chandef->center_freq2) return 0; ret = cfg80211_get_chans_dfs_required(wiphy, MHZ_TO_KHZ(chandef->center_freq2), width); if (ret < 0) return ret; else if (ret > 0) return BIT(chandef->width); break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_OCB: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_P2P_DEVICE: case NL80211_IFTYPE_NAN: break; case NL80211_IFTYPE_WDS: case NL80211_IFTYPE_UNSPECIFIED: case NUM_NL80211_IFTYPES: WARN_ON(1); } return 0; } EXPORT_SYMBOL(cfg80211_chandef_dfs_required); static int cfg80211_get_chans_dfs_usable(struct wiphy *wiphy, u32 center_freq, u32 bandwidth) { struct ieee80211_channel *c; u32 freq, start_freq, end_freq; int count = 0; start_freq = cfg80211_get_start_freq(center_freq, bandwidth); end_freq = cfg80211_get_end_freq(center_freq, bandwidth); /* * Check entire range of channels for the bandwidth. * Check all channels are DFS channels (DFS_USABLE or * DFS_AVAILABLE). Return number of usable channels * (require CAC). Allow DFS and non-DFS channel mix. */ for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { c = ieee80211_get_channel_khz(wiphy, freq); if (!c) return -EINVAL; if (c->flags & IEEE80211_CHAN_DISABLED) return -EINVAL; if (c->flags & IEEE80211_CHAN_RADAR) { if (c->dfs_state == NL80211_DFS_UNAVAILABLE) return -EINVAL; if (c->dfs_state == NL80211_DFS_USABLE) count++; } } return count; } bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef) { int width; int r1, r2 = 0; if (WARN_ON(!cfg80211_chandef_valid(chandef))) return false; width = cfg80211_chandef_get_width(chandef); if (width < 0) return false; r1 = cfg80211_get_chans_dfs_usable(wiphy, MHZ_TO_KHZ(chandef->center_freq1), width); if (r1 < 0) return false; switch (chandef->width) { case NL80211_CHAN_WIDTH_80P80: WARN_ON(!chandef->center_freq2); r2 = cfg80211_get_chans_dfs_usable(wiphy, MHZ_TO_KHZ(chandef->center_freq2), width); if (r2 < 0) return false; break; default: WARN_ON(chandef->center_freq2); break; } return (r1 + r2 > 0); } /* * Checks if center frequency of chan falls with in the bandwidth * range of chandef. */ bool cfg80211_is_sub_chan(struct cfg80211_chan_def *chandef, struct ieee80211_channel *chan, bool primary_only) { int width; u32 freq; if (!chandef->chan) return false; if (chandef->chan->center_freq == chan->center_freq) return true; if (primary_only) return false; width = cfg80211_chandef_get_width(chandef); if (width <= 20) return false; for (freq = chandef->center_freq1 - width / 2 + 10; freq <= chandef->center_freq1 + width / 2 - 10; freq += 20) { if (chan->center_freq == freq) return true; } if (!chandef->center_freq2) return false; for (freq = chandef->center_freq2 - width / 2 + 10; freq <= chandef->center_freq2 + width / 2 - 10; freq += 20) { if (chan->center_freq == freq) return true; } return false; } bool cfg80211_beaconing_iface_active(struct wireless_dev *wdev) { unsigned int link; ASSERT_WDEV_LOCK(wdev); switch (wdev->iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: for_each_valid_link(wdev, link) { if (wdev->links[link].ap.beacon_interval) return true; } break; case NL80211_IFTYPE_ADHOC: if (wdev->u.ibss.ssid_len) return true; break; case NL80211_IFTYPE_MESH_POINT: if (wdev->u.mesh.id_len) return true; break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_OCB: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_P2P_DEVICE: /* Can NAN type be considered as beaconing interface? */ case NL80211_IFTYPE_NAN: break; case NL80211_IFTYPE_UNSPECIFIED: case NL80211_IFTYPE_WDS: case NUM_NL80211_IFTYPES: WARN_ON(1); } return false; } bool cfg80211_wdev_on_sub_chan(struct wireless_dev *wdev, struct ieee80211_channel *chan, bool primary_only) { unsigned int link; switch (wdev->iftype) { case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: for_each_valid_link(wdev, link) { if (cfg80211_is_sub_chan(&wdev->links[link].ap.chandef, chan, primary_only)) return true; } break; case NL80211_IFTYPE_ADHOC: return cfg80211_is_sub_chan(&wdev->u.ibss.chandef, chan, primary_only); case NL80211_IFTYPE_MESH_POINT: return cfg80211_is_sub_chan(&wdev->u.mesh.chandef, chan, primary_only); default: break; } return false; } static bool cfg80211_is_wiphy_oper_chan(struct wiphy *wiphy, struct ieee80211_channel *chan) { struct wireless_dev *wdev; list_for_each_entry(wdev, &wiphy->wdev_list, list) { wdev_lock(wdev); if (!cfg80211_beaconing_iface_active(wdev)) { wdev_unlock(wdev); continue; } if (cfg80211_wdev_on_sub_chan(wdev, chan, false)) { wdev_unlock(wdev); return true; } wdev_unlock(wdev); } return false; } static bool cfg80211_offchan_chain_is_active(struct cfg80211_registered_device *rdev, struct ieee80211_channel *channel) { if (!rdev->background_radar_wdev) return false; if (!cfg80211_chandef_valid(&rdev->background_radar_chandef)) return false; return cfg80211_is_sub_chan(&rdev->background_radar_chandef, channel, false); } bool cfg80211_any_wiphy_oper_chan(struct wiphy *wiphy, struct ieee80211_channel *chan) { struct cfg80211_registered_device *rdev; ASSERT_RTNL(); if (!(chan->flags & IEEE80211_CHAN_RADAR)) return false; list_for_each_entry(rdev, &cfg80211_rdev_list, list) { if (!reg_dfs_domain_same(wiphy, &rdev->wiphy)) continue; if (cfg80211_is_wiphy_oper_chan(&rdev->wiphy, chan)) return true; if (cfg80211_offchan_chain_is_active(rdev, chan)) return true; } return false; } static bool cfg80211_get_chans_dfs_available(struct wiphy *wiphy, u32 center_freq, u32 bandwidth) { struct ieee80211_channel *c; u32 freq, start_freq, end_freq; bool dfs_offload; dfs_offload = wiphy_ext_feature_isset(wiphy, NL80211_EXT_FEATURE_DFS_OFFLOAD); start_freq = cfg80211_get_start_freq(center_freq, bandwidth); end_freq = cfg80211_get_end_freq(center_freq, bandwidth); /* * Check entire range of channels for the bandwidth. * If any channel in between is disabled or has not * had gone through CAC return false */ for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { c = ieee80211_get_channel_khz(wiphy, freq); if (!c) return false; if (c->flags & IEEE80211_CHAN_DISABLED) return false; if ((c->flags & IEEE80211_CHAN_RADAR) && (c->dfs_state != NL80211_DFS_AVAILABLE) && !(c->dfs_state == NL80211_DFS_USABLE && dfs_offload)) return false; } return true; } static bool cfg80211_chandef_dfs_available(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef) { int width; int r; if (WARN_ON(!cfg80211_chandef_valid(chandef))) return false; width = cfg80211_chandef_get_width(chandef); if (width < 0) return false; r = cfg80211_get_chans_dfs_available(wiphy, MHZ_TO_KHZ(chandef->center_freq1), width); /* If any of channels unavailable for cf1 just return */ if (!r) return r; switch (chandef->width) { case NL80211_CHAN_WIDTH_80P80: WARN_ON(!chandef->center_freq2); r = cfg80211_get_chans_dfs_available(wiphy, MHZ_TO_KHZ(chandef->center_freq2), width); break; default: WARN_ON(chandef->center_freq2); break; } return r; } static unsigned int cfg80211_get_chans_dfs_cac_time(struct wiphy *wiphy, u32 center_freq, u32 bandwidth) { struct ieee80211_channel *c; u32 start_freq, end_freq, freq; unsigned int dfs_cac_ms = 0; start_freq = cfg80211_get_start_freq(center_freq, bandwidth); end_freq = cfg80211_get_end_freq(center_freq, bandwidth); for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { c = ieee80211_get_channel_khz(wiphy, freq); if (!c) return 0; if (c->flags & IEEE80211_CHAN_DISABLED) return 0; if (!(c->flags & IEEE80211_CHAN_RADAR)) continue; if (c->dfs_cac_ms > dfs_cac_ms) dfs_cac_ms = c->dfs_cac_ms; } return dfs_cac_ms; } unsigned int cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef) { int width; unsigned int t1 = 0, t2 = 0; if (WARN_ON(!cfg80211_chandef_valid(chandef))) return 0; width = cfg80211_chandef_get_width(chandef); if (width < 0) return 0; t1 = cfg80211_get_chans_dfs_cac_time(wiphy, MHZ_TO_KHZ(chandef->center_freq1), width); if (!chandef->center_freq2) return t1; t2 = cfg80211_get_chans_dfs_cac_time(wiphy, MHZ_TO_KHZ(chandef->center_freq2), width); return max(t1, t2); } static bool cfg80211_secondary_chans_ok(struct wiphy *wiphy, u32 center_freq, u32 bandwidth, u32 prohibited_flags) { struct ieee80211_channel *c; u32 freq, start_freq, end_freq; start_freq = cfg80211_get_start_freq(center_freq, bandwidth); end_freq = cfg80211_get_end_freq(center_freq, bandwidth); for (freq = start_freq; freq <= end_freq; freq += MHZ_TO_KHZ(20)) { c = ieee80211_get_channel_khz(wiphy, freq); if (!c || c->flags & prohibited_flags) return false; } return true; } /* check if the operating channels are valid and supported */ static bool cfg80211_edmg_usable(struct wiphy *wiphy, u8 edmg_channels, enum ieee80211_edmg_bw_config edmg_bw_config, int primary_channel, struct ieee80211_edmg *edmg_cap) { struct ieee80211_channel *chan; int i, freq; int channels_counter = 0; if (!edmg_channels && !edmg_bw_config) return true; if ((!edmg_channels && edmg_bw_config) || (edmg_channels && !edmg_bw_config)) return false; if (!(edmg_channels & BIT(primary_channel - 1))) return false; /* 60GHz channels 1..6 */ for (i = 0; i < 6; i++) { if (!(edmg_channels & BIT(i))) continue; if (!(edmg_cap->channels & BIT(i))) return false; channels_counter++; freq = ieee80211_channel_to_frequency(i + 1, NL80211_BAND_60GHZ); chan = ieee80211_get_channel(wiphy, freq); if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) return false; } /* IEEE802.11 allows max 4 channels */ if (channels_counter > 4) return false; /* check bw_config is a subset of what driver supports * (see IEEE P802.11ay/D4.0 section 9.4.2.251, Table 13) */ if ((edmg_bw_config % 4) > (edmg_cap->bw_config % 4)) return false; if (edmg_bw_config > edmg_cap->bw_config) return false; return true; } bool cfg80211_chandef_usable(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef, u32 prohibited_flags) { struct ieee80211_sta_ht_cap *ht_cap; struct ieee80211_sta_vht_cap *vht_cap; struct ieee80211_edmg *edmg_cap; u32 width, control_freq, cap; bool ext_nss_cap, support_80_80 = false, support_320 = false; const struct ieee80211_sband_iftype_data *iftd; struct ieee80211_supported_band *sband; int i; if (WARN_ON(!cfg80211_chandef_valid(chandef))) return false; ht_cap = &wiphy->bands[chandef->chan->band]->ht_cap; vht_cap = &wiphy->bands[chandef->chan->band]->vht_cap; edmg_cap = &wiphy->bands[chandef->chan->band]->edmg_cap; ext_nss_cap = __le16_to_cpu(vht_cap->vht_mcs.tx_highest) & IEEE80211_VHT_EXT_NSS_BW_CAPABLE; if (edmg_cap->channels && !cfg80211_edmg_usable(wiphy, chandef->edmg.channels, chandef->edmg.bw_config, chandef->chan->hw_value, edmg_cap)) return false; control_freq = chandef->chan->center_freq; switch (chandef->width) { case NL80211_CHAN_WIDTH_1: width = 1; break; case NL80211_CHAN_WIDTH_2: width = 2; break; case NL80211_CHAN_WIDTH_4: width = 4; break; case NL80211_CHAN_WIDTH_8: width = 8; break; case NL80211_CHAN_WIDTH_16: width = 16; break; case NL80211_CHAN_WIDTH_5: width = 5; break; case NL80211_CHAN_WIDTH_10: prohibited_flags |= IEEE80211_CHAN_NO_10MHZ; width = 10; break; case NL80211_CHAN_WIDTH_20: if (!ht_cap->ht_supported && chandef->chan->band != NL80211_BAND_6GHZ) return false; fallthrough; case NL80211_CHAN_WIDTH_20_NOHT: prohibited_flags |= IEEE80211_CHAN_NO_20MHZ; width = 20; break; case NL80211_CHAN_WIDTH_40: width = 40; if (chandef->chan->band == NL80211_BAND_6GHZ) break; if (!ht_cap->ht_supported) return false; if (!(ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) || ht_cap->cap & IEEE80211_HT_CAP_40MHZ_INTOLERANT) return false; if (chandef->center_freq1 < control_freq && chandef->chan->flags & IEEE80211_CHAN_NO_HT40MINUS) return false; if (chandef->center_freq1 > control_freq && chandef->chan->flags & IEEE80211_CHAN_NO_HT40PLUS) return false; break; case NL80211_CHAN_WIDTH_80P80: cap = vht_cap->cap; support_80_80 = (cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || (cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || (ext_nss_cap && u32_get_bits(cap, IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) > 1); if (chandef->chan->band != NL80211_BAND_6GHZ && !support_80_80) return false; fallthrough; case NL80211_CHAN_WIDTH_80: prohibited_flags |= IEEE80211_CHAN_NO_80MHZ; width = 80; if (chandef->chan->band == NL80211_BAND_6GHZ) break; if (!vht_cap->vht_supported) return false; break; case NL80211_CHAN_WIDTH_160: prohibited_flags |= IEEE80211_CHAN_NO_160MHZ; width = 160; if (chandef->chan->band == NL80211_BAND_6GHZ) break; if (!vht_cap->vht_supported) return false; cap = vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK; if (cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ && !(ext_nss_cap && (vht_cap->cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK))) return false; break; case NL80211_CHAN_WIDTH_320: prohibited_flags |= IEEE80211_CHAN_NO_320MHZ; width = 320; if (chandef->chan->band != NL80211_BAND_6GHZ) return false; sband = wiphy->bands[NL80211_BAND_6GHZ]; if (!sband) return false; for (i = 0; i < sband->n_iftype_data; i++) { iftd = &sband->iftype_data[i]; if (!iftd->eht_cap.has_eht) continue; if (iftd->eht_cap.eht_cap_elem.phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) { support_320 = true; break; } } if (!support_320) return false; break; default: WARN_ON_ONCE(1); return false; } /* * TODO: What if there are only certain 80/160/80+80 MHz channels * allowed by the driver, or only certain combinations? * For 40 MHz the driver can set the NO_HT40 flags, but for * 80/160 MHz and in particular 80+80 MHz this isn't really * feasible and we only have NO_80MHZ/NO_160MHZ so far but * no way to cover 80+80 MHz or more complex restrictions. * Note that such restrictions also need to be advertised to * userspace, for example for P2P channel selection. */ if (width > 20) prohibited_flags |= IEEE80211_CHAN_NO_OFDM; /* 5 and 10 MHz are only defined for the OFDM PHY */ if (width < 20) prohibited_flags |= IEEE80211_CHAN_NO_OFDM; if (!cfg80211_secondary_chans_ok(wiphy, ieee80211_chandef_to_khz(chandef), width, prohibited_flags)) return false; if (!chandef->center_freq2) return true; return cfg80211_secondary_chans_ok(wiphy, MHZ_TO_KHZ(chandef->center_freq2), width, prohibited_flags); } EXPORT_SYMBOL(cfg80211_chandef_usable); static bool cfg80211_ir_permissive_check_wdev(enum nl80211_iftype iftype, struct wireless_dev *wdev, struct ieee80211_channel *chan) { struct ieee80211_channel *other_chan = NULL; unsigned int link_id; int r1, r2; for_each_valid_link(wdev, link_id) { if (wdev->iftype == NL80211_IFTYPE_STATION && wdev->links[link_id].client.current_bss) other_chan = wdev->links[link_id].client.current_bss->pub.channel; /* * If a GO already operates on the same GO_CONCURRENT channel, * this one (maybe the same one) can beacon as well. We allow * the operation even if the station we relied on with * GO_CONCURRENT is disconnected now. But then we must make sure * we're not outdoor on an indoor-only channel. */ if (iftype == NL80211_IFTYPE_P2P_GO && wdev->iftype == NL80211_IFTYPE_P2P_GO && wdev->links[link_id].ap.beacon_interval && !(chan->flags & IEEE80211_CHAN_INDOOR_ONLY)) other_chan = wdev->links[link_id].ap.chandef.chan; if (!other_chan) continue; if (chan == other_chan) return true; if (chan->band != NL80211_BAND_5GHZ && chan->band != NL80211_BAND_6GHZ) continue; r1 = cfg80211_get_unii(chan->center_freq); r2 = cfg80211_get_unii(other_chan->center_freq); if (r1 != -EINVAL && r1 == r2) { /* * At some locations channels 149-165 are considered a * bundle, but at other locations, e.g., Indonesia, * channels 149-161 are considered a bundle while * channel 165 is left out and considered to be in a * different bundle. Thus, in case that there is a * station interface connected to an AP on channel 165, * it is assumed that channels 149-161 are allowed for * GO operations. However, having a station interface * connected to an AP on channels 149-161, does not * allow GO operation on channel 165. */ if (chan->center_freq == 5825 && other_chan->center_freq != 5825) continue; return true; } } return false; } /* * Check if the channel can be used under permissive conditions mandated by * some regulatory bodies, i.e., the channel is marked with * IEEE80211_CHAN_IR_CONCURRENT and there is an additional station interface * associated to an AP on the same channel or on the same UNII band * (assuming that the AP is an authorized master). * In addition allow operation on a channel on which indoor operation is * allowed, iff we are currently operating in an indoor environment. */ static bool cfg80211_ir_permissive_chan(struct wiphy *wiphy, enum nl80211_iftype iftype, struct ieee80211_channel *chan) { struct wireless_dev *wdev; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); lockdep_assert_held(&rdev->wiphy.mtx); if (!IS_ENABLED(CONFIG_CFG80211_REG_RELAX_NO_IR) || !(wiphy->regulatory_flags & REGULATORY_ENABLE_RELAX_NO_IR)) return false; /* only valid for GO and TDLS off-channel (station/p2p-CL) */ if (iftype != NL80211_IFTYPE_P2P_GO && iftype != NL80211_IFTYPE_STATION && iftype != NL80211_IFTYPE_P2P_CLIENT) return false; if (regulatory_indoor_allowed() && (chan->flags & IEEE80211_CHAN_INDOOR_ONLY)) return true; if (!(chan->flags & IEEE80211_CHAN_IR_CONCURRENT)) return false; /* * Generally, it is possible to rely on another device/driver to allow * the IR concurrent relaxation, however, since the device can further * enforce the relaxation (by doing a similar verifications as this), * and thus fail the GO instantiation, consider only the interfaces of * the current registered device. */ list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { bool ret; wdev_lock(wdev); ret = cfg80211_ir_permissive_check_wdev(iftype, wdev, chan); wdev_unlock(wdev); if (ret) return ret; } return false; } static bool _cfg80211_reg_can_beacon(struct wiphy *wiphy, struct cfg80211_chan_def *chandef, enum nl80211_iftype iftype, bool check_no_ir) { bool res; u32 prohibited_flags = IEEE80211_CHAN_DISABLED | IEEE80211_CHAN_RADAR; trace_cfg80211_reg_can_beacon(wiphy, chandef, iftype, check_no_ir); if (check_no_ir) prohibited_flags |= IEEE80211_CHAN_NO_IR; if (cfg80211_chandef_dfs_required(wiphy, chandef, iftype) > 0 && cfg80211_chandef_dfs_available(wiphy, chandef)) { /* We can skip IEEE80211_CHAN_NO_IR if chandef dfs available */ prohibited_flags = IEEE80211_CHAN_DISABLED; } res = cfg80211_chandef_usable(wiphy, chandef, prohibited_flags); trace_cfg80211_return_bool(res); return res; } bool cfg80211_reg_can_beacon(struct wiphy *wiphy, struct cfg80211_chan_def *chandef, enum nl80211_iftype iftype) { return _cfg80211_reg_can_beacon(wiphy, chandef, iftype, true); } EXPORT_SYMBOL(cfg80211_reg_can_beacon); bool cfg80211_reg_can_beacon_relax(struct wiphy *wiphy, struct cfg80211_chan_def *chandef, enum nl80211_iftype iftype) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); bool check_no_ir; lockdep_assert_held(&rdev->wiphy.mtx); /* * Under certain conditions suggested by some regulatory bodies a * GO/STA can IR on channels marked with IEEE80211_NO_IR. Set this flag * only if such relaxations are not enabled and the conditions are not * met. */ check_no_ir = !cfg80211_ir_permissive_chan(wiphy, iftype, chandef->chan); return _cfg80211_reg_can_beacon(wiphy, chandef, iftype, check_no_ir); } EXPORT_SYMBOL(cfg80211_reg_can_beacon_relax); int cfg80211_set_monitor_channel(struct cfg80211_registered_device *rdev, struct cfg80211_chan_def *chandef) { if (!rdev->ops->set_monitor_channel) return -EOPNOTSUPP; if (!cfg80211_has_monitors_only(rdev)) return -EBUSY; return rdev_set_monitor_channel(rdev, chandef); } bool cfg80211_any_usable_channels(struct wiphy *wiphy, unsigned long sband_mask, u32 prohibited_flags) { int idx; prohibited_flags |= IEEE80211_CHAN_DISABLED; for_each_set_bit(idx, &sband_mask, NUM_NL80211_BANDS) { struct ieee80211_supported_band *sband = wiphy->bands[idx]; int chanidx; if (!sband) continue; for (chanidx = 0; chanidx < sband->n_channels; chanidx++) { struct ieee80211_channel *chan; chan = &sband->channels[chanidx]; if (chan->flags & prohibited_flags) continue; return true; } } return false; } EXPORT_SYMBOL(cfg80211_any_usable_channels); struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev, unsigned int link_id) { /* * We need to sort out the locking here - in some cases * where we get here we really just don't care (yet) * about the valid links, but in others we do. But we * get here with various driver cases, so we cannot * easily require the wdev mutex. */ if (link_id || wdev->valid_links & BIT(0)) { ASSERT_WDEV_LOCK(wdev); WARN_ON(!(wdev->valid_links & BIT(link_id))); } switch (wdev->iftype) { case NL80211_IFTYPE_MESH_POINT: return &wdev->u.mesh.chandef; case NL80211_IFTYPE_ADHOC: return &wdev->u.ibss.chandef; case NL80211_IFTYPE_OCB: return &wdev->u.ocb.chandef; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: return &wdev->links[link_id].ap.chandef; default: return NULL; } } EXPORT_SYMBOL(wdev_chandef);
50 1048 2 1088 10 10 1050 1050 1047 1050 1050 1050 1048 1 1050 1049 1045 1051 1051 1049 1048 1051 1047 1050 1050 1051 3 1048 1831 1838 41 41 41 41 41 41 39 41 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 /* SPDX-License-Identifier: GPL-2.0 */ #include <linux/syscalls.h> #include <linux/export.h> #include <linux/uaccess.h> #include <linux/fs_struct.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/prefetch.h> #include "mount.h" struct prepend_buffer { char *buf; int len; }; #define DECLARE_BUFFER(__name, __buf, __len) \ struct prepend_buffer __name = {.buf = __buf + __len, .len = __len} static char *extract_string(struct prepend_buffer *p) { if (likely(p->len >= 0)) return p->buf; return ERR_PTR(-ENAMETOOLONG); } static bool prepend_char(struct prepend_buffer *p, unsigned char c) { if (likely(p->len > 0)) { p->len--; *--p->buf = c; return true; } p->len = -1; return false; } /* * The source of the prepend data can be an optimistic load * of a dentry name and length. And because we don't hold any * locks, the length and the pointer to the name may not be * in sync if a concurrent rename happens, and the kernel * copy might fault as a result. * * The end result will correct itself when we check the * rename sequence count, but we need to be able to handle * the fault gracefully. */ static bool prepend_copy(void *dst, const void *src, int len) { if (unlikely(copy_from_kernel_nofault(dst, src, len))) { memset(dst, 'x', len); return false; } return true; } static bool prepend(struct prepend_buffer *p, const char *str, int namelen) { // Already overflowed? if (p->len < 0) return false; // Will overflow? if (p->len < namelen) { // Fill as much as possible from the end of the name str += namelen - p->len; p->buf -= p->len; prepend_copy(p->buf, str, p->len); p->len = -1; return false; } // Fits fully p->len -= namelen; p->buf -= namelen; return prepend_copy(p->buf, str, namelen); } /** * prepend_name - prepend a pathname in front of current buffer pointer * @p: prepend buffer which contains buffer pointer and allocated length * @name: name string and length qstr structure * * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to * make sure that either the old or the new name pointer and length are * fetched. However, there may be mismatch between length and pointer. * But since the length cannot be trusted, we need to copy the name very * carefully when doing the prepend_copy(). It also prepends "/" at * the beginning of the name. The sequence number check at the caller will * retry it again when a d_move() does happen. So any garbage in the buffer * due to mismatched pointer and length will be discarded. * * Load acquire is needed to make sure that we see the new name data even * if we might get the length wrong. */ static bool prepend_name(struct prepend_buffer *p, const struct qstr *name) { const char *dname = smp_load_acquire(&name->name); /* ^^^ */ u32 dlen = READ_ONCE(name->len); return prepend(p, dname, dlen) && prepend_char(p, '/'); } static int __prepend_path(const struct dentry *dentry, const struct mount *mnt, const struct path *root, struct prepend_buffer *p) { while (dentry != root->dentry || &mnt->mnt != root->mnt) { const struct dentry *parent = READ_ONCE(dentry->d_parent); if (dentry == mnt->mnt.mnt_root) { struct mount *m = READ_ONCE(mnt->mnt_parent); struct mnt_namespace *mnt_ns; if (likely(mnt != m)) { dentry = READ_ONCE(mnt->mnt_mountpoint); mnt = m; continue; } /* Global root */ mnt_ns = READ_ONCE(mnt->mnt_ns); /* open-coded is_mounted() to use local mnt_ns */ if (!IS_ERR_OR_NULL(mnt_ns) && !is_anon_ns(mnt_ns)) return 1; // absolute root else return 2; // detached or not attached yet } if (unlikely(dentry == parent)) /* Escaped? */ return 3; prefetch(parent); if (!prepend_name(p, &dentry->d_name)) break; dentry = parent; } return 0; } /** * prepend_path - Prepend path string to a buffer * @path: the dentry/vfsmount to report * @root: root vfsmnt/dentry * @p: prepend buffer which contains buffer pointer and allocated length * * The function will first try to write out the pathname without taking any * lock other than the RCU read lock to make sure that dentries won't go away. * It only checks the sequence number of the global rename_lock as any change * in the dentry's d_seq will be preceded by changes in the rename_lock * sequence number. If the sequence number had been changed, it will restart * the whole pathname back-tracing sequence again by taking the rename_lock. * In this case, there is no need to take the RCU read lock as the recursive * parent pointer references will keep the dentry chain alive as long as no * rename operation is performed. */ static int prepend_path(const struct path *path, const struct path *root, struct prepend_buffer *p) { unsigned seq, m_seq = 0; struct prepend_buffer b; int error; rcu_read_lock(); restart_mnt: read_seqbegin_or_lock(&mount_lock, &m_seq); seq = 0; rcu_read_lock(); restart: b = *p; read_seqbegin_or_lock(&rename_lock, &seq); error = __prepend_path(path->dentry, real_mount(path->mnt), root, &b); if (!(seq & 1)) rcu_read_unlock(); if (need_seqretry(&rename_lock, seq)) { seq = 1; goto restart; } done_seqretry(&rename_lock, seq); if (!(m_seq & 1)) rcu_read_unlock(); if (need_seqretry(&mount_lock, m_seq)) { m_seq = 1; goto restart_mnt; } done_seqretry(&mount_lock, m_seq); if (unlikely(error == 3)) b = *p; if (b.len == p->len) prepend_char(&b, '/'); *p = b; return error; } /** * __d_path - return the path of a dentry * @path: the dentry/vfsmount to report * @root: root vfsmnt/dentry * @buf: buffer to return value in * @buflen: buffer length * * Convert a dentry into an ASCII path name. * * Returns a pointer into the buffer or an error code if the * path was too long. * * "buflen" should be positive. * * If the path is not reachable from the supplied root, return %NULL. */ char *__d_path(const struct path *path, const struct path *root, char *buf, int buflen) { DECLARE_BUFFER(b, buf, buflen); prepend_char(&b, 0); if (unlikely(prepend_path(path, root, &b) > 0)) return NULL; return extract_string(&b); } char *d_absolute_path(const struct path *path, char *buf, int buflen) { struct path root = {}; DECLARE_BUFFER(b, buf, buflen); prepend_char(&b, 0); if (unlikely(prepend_path(path, &root, &b) > 1)) return ERR_PTR(-EINVAL); return extract_string(&b); } static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) { unsigned seq; do { seq = read_seqcount_begin(&fs->seq); *root = fs->root; } while (read_seqcount_retry(&fs->seq, seq)); } /** * d_path - return the path of a dentry * @path: path to report * @buf: buffer to return value in * @buflen: buffer length * * Convert a dentry into an ASCII path name. If the entry has been deleted * the string " (deleted)" is appended. Note that this is ambiguous. * * Returns a pointer into the buffer or an error code if the path was * too long. Note: Callers should use the returned pointer, not the passed * in buffer, to use the name! The implementation often starts at an offset * into the buffer, and may leave 0 bytes at the start. * * "buflen" should be positive. */ char *d_path(const struct path *path, char *buf, int buflen) { DECLARE_BUFFER(b, buf, buflen); struct path root; /* * We have various synthetic filesystems that never get mounted. On * these filesystems dentries are never used for lookup purposes, and * thus don't need to be hashed. They also don't need a name until a * user wants to identify the object in /proc/pid/fd/. The little hack * below allows us to generate a name for these objects on demand: * * Some pseudo inodes are mountable. When they are mounted * path->dentry == path->mnt->mnt_root. In that case don't call d_dname * and instead have d_path return the mounted path. */ if (path->dentry->d_op && path->dentry->d_op->d_dname && (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) return path->dentry->d_op->d_dname(path->dentry, buf, buflen); rcu_read_lock(); get_fs_root_rcu(current->fs, &root); if (unlikely(d_unlinked(path->dentry))) prepend(&b, " (deleted)", 11); else prepend_char(&b, 0); prepend_path(path, &root, &b); rcu_read_unlock(); return extract_string(&b); } EXPORT_SYMBOL(d_path); /* * Helper function for dentry_operations.d_dname() members */ char *dynamic_dname(char *buffer, int buflen, const char *fmt, ...) { va_list args; char temp[64]; int sz; va_start(args, fmt); sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; va_end(args); if (sz > sizeof(temp) || sz > buflen) return ERR_PTR(-ENAMETOOLONG); buffer += buflen - sz; return memcpy(buffer, temp, sz); } char *simple_dname(struct dentry *dentry, char *buffer, int buflen) { DECLARE_BUFFER(b, buffer, buflen); /* these dentries are never renamed, so d_lock is not needed */ prepend(&b, " (deleted)", 11); prepend(&b, dentry->d_name.name, dentry->d_name.len); prepend_char(&b, '/'); return extract_string(&b); } /* * Write full pathname from the root of the filesystem into the buffer. */ static char *__dentry_path(const struct dentry *d, struct prepend_buffer *p) { const struct dentry *dentry; struct prepend_buffer b; int seq = 0; rcu_read_lock(); restart: dentry = d; b = *p; read_seqbegin_or_lock(&rename_lock, &seq); while (!IS_ROOT(dentry)) { const struct dentry *parent = dentry->d_parent; prefetch(parent); if (!prepend_name(&b, &dentry->d_name)) break; dentry = parent; } if (!(seq & 1)) rcu_read_unlock(); if (need_seqretry(&rename_lock, seq)) { seq = 1; goto restart; } done_seqretry(&rename_lock, seq); if (b.len == p->len) prepend_char(&b, '/'); return extract_string(&b); } char *dentry_path_raw(const struct dentry *dentry, char *buf, int buflen) { DECLARE_BUFFER(b, buf, buflen); prepend_char(&b, 0); return __dentry_path(dentry, &b); } EXPORT_SYMBOL(dentry_path_raw); char *dentry_path(const struct dentry *dentry, char *buf, int buflen) { DECLARE_BUFFER(b, buf, buflen); if (unlikely(d_unlinked(dentry))) prepend(&b, "//deleted", 10); else prepend_char(&b, 0); return __dentry_path(dentry, &b); } static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, struct path *pwd) { unsigned seq; do { seq = read_seqcount_begin(&fs->seq); *root = fs->root; *pwd = fs->pwd; } while (read_seqcount_retry(&fs->seq, seq)); } /* * NOTE! The user-level library version returns a * character pointer. The kernel system call just * returns the length of the buffer filled (which * includes the ending '\0' character), or a negative * error value. So libc would do something like * * char *getcwd(char * buf, size_t size) * { * int retval; * * retval = sys_getcwd(buf, size); * if (retval >= 0) * return buf; * errno = -retval; * return NULL; * } */ SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) { int error; struct path pwd, root; char *page = __getname(); if (!page) return -ENOMEM; rcu_read_lock(); get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); if (unlikely(d_unlinked(pwd.dentry))) { rcu_read_unlock(); error = -ENOENT; } else { unsigned len; DECLARE_BUFFER(b, page, PATH_MAX); prepend_char(&b, 0); if (unlikely(prepend_path(&pwd, &root, &b) > 0)) prepend(&b, "(unreachable)", 13); rcu_read_unlock(); len = PATH_MAX - b.len; if (unlikely(len > PATH_MAX)) error = -ENAMETOOLONG; else if (unlikely(len > size)) error = -ERANGE; else if (copy_to_user(buf, b.buf, len)) error = -EFAULT; else error = len; } __putname(page); return error; }
49 49 49 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 // SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/nfs/inode.c * * Copyright (C) 1992 Rick Sladkey * * nfs inode and superblock handling functions * * Modularised by Alan Cox <alan@lxorguk.ukuu.org.uk>, while hacking some * experimental NFS changes. Modularisation taken straight from SYS5 fs. * * Change to nfs_read_super() to permit NFS mounts to multi-homed hosts. * J.S.Peatfield@damtp.cam.ac.uk * */ #include <linux/module.h> #include <linux/init.h> #include <linux/sched/signal.h> #include <linux/time.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/string.h> #include <linux/stat.h> #include <linux/errno.h> #include <linux/unistd.h> #include <linux/sunrpc/clnt.h> #include <linux/sunrpc/stats.h> #include <linux/sunrpc/metrics.h> #include <linux/nfs_fs.h> #include <linux/nfs_mount.h> #include <linux/nfs4_mount.h> #include <linux/lockd/bind.h> #include <linux/seq_file.h> #include <linux/mount.h> #include <linux/vfs.h> #include <linux/inet.h> #include <linux/nfs_xdr.h> #include <linux/slab.h> #include <linux/compat.h> #include <linux/freezer.h> #include <linux/uaccess.h> #include <linux/iversion.h> #include "nfs4_fs.h" #include "callback.h" #include "delegation.h" #include "iostat.h" #include "internal.h" #include "fscache.h" #include "pnfs.h" #include "nfs.h" #include "netns.h" #include "sysfs.h" #include "nfstrace.h" #define NFSDBG_FACILITY NFSDBG_VFS #define NFS_64_BIT_INODE_NUMBERS_ENABLED 1 /* Default is to see 64-bit inode numbers */ static bool enable_ino64 = NFS_64_BIT_INODE_NUMBERS_ENABLED; static int nfs_update_inode(struct inode *, struct nfs_fattr *); static struct kmem_cache * nfs_inode_cachep; static inline unsigned long nfs_fattr_to_ino_t(struct nfs_fattr *fattr) { return nfs_fileid_to_ino_t(fattr->fileid); } int nfs_wait_bit_killable(struct wait_bit_key *key, int mode) { schedule(); if (signal_pending_state(mode, current)) return -ERESTARTSYS; return 0; } EXPORT_SYMBOL_GPL(nfs_wait_bit_killable); /** * nfs_compat_user_ino64 - returns the user-visible inode number * @fileid: 64-bit fileid * * This function returns a 32-bit inode number if the boot parameter * nfs.enable_ino64 is zero. */ u64 nfs_compat_user_ino64(u64 fileid) { #ifdef CONFIG_COMPAT compat_ulong_t ino; #else unsigned long ino; #endif if (enable_ino64) return fileid; ino = fileid; if (sizeof(ino) < sizeof(fileid)) ino ^= fileid >> (sizeof(fileid)-sizeof(ino)) * 8; return ino; } int nfs_drop_inode(struct inode *inode) { return NFS_STALE(inode) || generic_drop_inode(inode); } EXPORT_SYMBOL_GPL(nfs_drop_inode); void nfs_clear_inode(struct inode *inode) { /* * The following should never happen... */ WARN_ON_ONCE(nfs_have_writebacks(inode)); WARN_ON_ONCE(!list_empty(&NFS_I(inode)->open_files)); nfs_zap_acl_cache(inode); nfs_access_zap_cache(inode); nfs_fscache_clear_inode(inode); } EXPORT_SYMBOL_GPL(nfs_clear_inode); void nfs_evict_inode(struct inode *inode) { truncate_inode_pages_final(&inode->i_data); clear_inode(inode); nfs_clear_inode(inode); } int nfs_sync_inode(struct inode *inode) { inode_dio_wait(inode); return nfs_wb_all(inode); } EXPORT_SYMBOL_GPL(nfs_sync_inode); /** * nfs_sync_mapping - helper to flush all mmapped dirty data to disk * @mapping: pointer to struct address_space */ int nfs_sync_mapping(struct address_space *mapping) { int ret = 0; if (mapping->nrpages != 0) { unmap_mapping_range(mapping, 0, 0, 0); ret = nfs_wb_all(mapping->host); } return ret; } static int nfs_attribute_timeout(struct inode *inode) { struct nfs_inode *nfsi = NFS_I(inode); return !time_in_range_open(jiffies, nfsi->read_cache_jiffies, nfsi->read_cache_jiffies + nfsi->attrtimeo); } static bool nfs_check_cache_flags_invalid(struct inode *inode, unsigned long flags) { unsigned long cache_validity = READ_ONCE(NFS_I(inode)->cache_validity); return (cache_validity & flags) != 0; } bool nfs_check_cache_invalid(struct inode *inode, unsigned long flags) { if (nfs_check_cache_flags_invalid(inode, flags)) return true; return nfs_attribute_cache_expired(inode); } EXPORT_SYMBOL_GPL(nfs_check_cache_invalid); #ifdef CONFIG_NFS_V4_2 static bool nfs_has_xattr_cache(const struct nfs_inode *nfsi) { return nfsi->xattr_cache != NULL; } #else static bool nfs_has_xattr_cache(const struct nfs_inode *nfsi) { return false; } #endif void nfs_set_cache_invalid(struct inode *inode, unsigned long flags) { struct nfs_inode *nfsi = NFS_I(inode); bool have_delegation = NFS_PROTO(inode)->have_delegation(inode, FMODE_READ); if (have_delegation) { if (!(flags & NFS_INO_REVAL_FORCED)) flags &= ~(NFS_INO_INVALID_MODE | NFS_INO_INVALID_OTHER | NFS_INO_INVALID_XATTR); flags &= ~(NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_SIZE); } if (!nfs_has_xattr_cache(nfsi)) flags &= ~NFS_INO_INVALID_XATTR; if (flags & NFS_INO_INVALID_DATA) nfs_fscache_invalidate(inode, 0); flags &= ~NFS_INO_REVAL_FORCED; flags |= nfsi->cache_validity; if (inode->i_mapping->nrpages == 0) flags &= ~NFS_INO_INVALID_DATA; /* pairs with nfs_clear_invalid_mapping()'s smp_load_acquire() */ smp_store_release(&nfsi->cache_validity, flags); if (inode->i_mapping->nrpages == 0 || nfsi->cache_validity & NFS_INO_INVALID_DATA) { nfs_ooo_clear(nfsi); } trace_nfs_set_cache_invalid(inode, 0); } EXPORT_SYMBOL_GPL(nfs_set_cache_invalid); /* * Invalidate the local caches */ static void nfs_zap_caches_locked(struct inode *inode) { struct nfs_inode *nfsi = NFS_I(inode); int mode = inode->i_mode; nfs_inc_stats(inode, NFSIOS_ATTRINVALIDATE); nfsi->attrtimeo = NFS_MINATTRTIMEO(inode); nfsi->attrtimeo_timestamp = jiffies; if (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATTR | NFS_INO_INVALID_DATA | NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL | NFS_INO_INVALID_XATTR); else nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATTR | NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL | NFS_INO_INVALID_XATTR); nfs_zap_label_cache_locked(nfsi); } void nfs_zap_caches(struct inode *inode) { spin_lock(&inode->i_lock); nfs_zap_caches_locked(inode); spin_unlock(&inode->i_lock); } void nfs_zap_mapping(struct inode *inode, struct address_space *mapping) { if (mapping->nrpages != 0) { spin_lock(&inode->i_lock); nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA); spin_unlock(&inode->i_lock); } } void nfs_zap_acl_cache(struct inode *inode) { void (*clear_acl_cache)(struct inode *); clear_acl_cache = NFS_PROTO(inode)->clear_acl_cache; if (clear_acl_cache != NULL) clear_acl_cache(inode); spin_lock(&inode->i_lock); NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_ACL; spin_unlock(&inode->i_lock); } EXPORT_SYMBOL_GPL(nfs_zap_acl_cache); void nfs_invalidate_atime(struct inode *inode) { spin_lock(&inode->i_lock); nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATIME); spin_unlock(&inode->i_lock); } EXPORT_SYMBOL_GPL(nfs_invalidate_atime); /* * Invalidate, but do not unhash, the inode. * NB: must be called with inode->i_lock held! */ static void nfs_set_inode_stale_locked(struct inode *inode) { set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); nfs_zap_caches_locked(inode); trace_nfs_set_inode_stale(inode); } void nfs_set_inode_stale(struct inode *inode) { spin_lock(&inode->i_lock); nfs_set_inode_stale_locked(inode); spin_unlock(&inode->i_lock); } struct nfs_find_desc { struct nfs_fh *fh; struct nfs_fattr *fattr; }; /* * In NFSv3 we can have 64bit inode numbers. In order to support * this, and re-exported directories (also seen in NFSv2) * we are forced to allow 2 different inodes to have the same * i_ino. */ static int nfs_find_actor(struct inode *inode, void *opaque) { struct nfs_find_desc *desc = opaque; struct nfs_fh *fh = desc->fh; struct nfs_fattr *fattr = desc->fattr; if (NFS_FILEID(inode) != fattr->fileid) return 0; if (inode_wrong_type(inode, fattr->mode)) return 0; if (nfs_compare_fh(NFS_FH(inode), fh)) return 0; if (is_bad_inode(inode) || NFS_STALE(inode)) return 0; return 1; } static int nfs_init_locked(struct inode *inode, void *opaque) { struct nfs_find_desc *desc = opaque; struct nfs_fattr *fattr = desc->fattr; set_nfs_fileid(inode, fattr->fileid); inode->i_mode = fattr->mode; nfs_copy_fh(NFS_FH(inode), desc->fh); return 0; } #ifdef CONFIG_NFS_V4_SECURITY_LABEL static void nfs_clear_label_invalid(struct inode *inode) { spin_lock(&inode->i_lock); NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_LABEL; spin_unlock(&inode->i_lock); } void nfs_setsecurity(struct inode *inode, struct nfs_fattr *fattr) { int error; if (fattr->label == NULL) return; if ((fattr->valid & NFS_ATTR_FATTR_V4_SECURITY_LABEL) && inode->i_security) { error = security_inode_notifysecctx(inode, fattr->label->label, fattr->label->len); if (error) printk(KERN_ERR "%s() %s %d " "security_inode_notifysecctx() %d\n", __func__, (char *)fattr->label->label, fattr->label->len, error); nfs_clear_label_invalid(inode); } } struct nfs4_label *nfs4_label_alloc(struct nfs_server *server, gfp_t flags) { struct nfs4_label *label; if (!(server->caps & NFS_CAP_SECURITY_LABEL)) return NULL; label = kzalloc(sizeof(struct nfs4_label), flags); if (label == NULL) return ERR_PTR(-ENOMEM); label->label = kzalloc(NFS4_MAXLABELLEN, flags); if (label->label == NULL) { kfree(label); return ERR_PTR(-ENOMEM); } label->len = NFS4_MAXLABELLEN; return label; } EXPORT_SYMBOL_GPL(nfs4_label_alloc); #else void nfs_setsecurity(struct inode *inode, struct nfs_fattr *fattr) { } #endif EXPORT_SYMBOL_GPL(nfs_setsecurity); /* Search for inode identified by fh, fileid and i_mode in inode cache. */ struct inode * nfs_ilookup(struct super_block *sb, struct nfs_fattr *fattr, struct nfs_fh *fh) { struct nfs_find_desc desc = { .fh = fh, .fattr = fattr, }; struct inode *inode; unsigned long hash; if (!(fattr->valid & NFS_ATTR_FATTR_FILEID) || !(fattr->valid & NFS_ATTR_FATTR_TYPE)) return NULL; hash = nfs_fattr_to_ino_t(fattr); inode = ilookup5(sb, hash, nfs_find_actor, &desc); dprintk("%s: returning %p\n", __func__, inode); return inode; } static void nfs_inode_init_regular(struct nfs_inode *nfsi) { atomic_long_set(&nfsi->nrequests, 0); atomic_long_set(&nfsi->redirtied_pages, 0); INIT_LIST_HEAD(&nfsi->commit_info.list); atomic_long_set(&nfsi->commit_info.ncommit, 0); atomic_set(&nfsi->commit_info.rpcs_out, 0); mutex_init(&nfsi->commit_mutex); } static void nfs_inode_init_dir(struct nfs_inode *nfsi) { nfsi->cache_change_attribute = 0; memset(nfsi->cookieverf, 0, sizeof(nfsi->cookieverf)); init_rwsem(&nfsi->rmdir_sem); } /* * This is our front-end to iget that looks up inodes by file handle * instead of inode number. */ struct inode * nfs_fhget(struct super_block *sb, struct nfs_fh *fh, struct nfs_fattr *fattr) { struct nfs_find_desc desc = { .fh = fh, .fattr = fattr }; struct inode *inode = ERR_PTR(-ENOENT); u64 fattr_supported = NFS_SB(sb)->fattr_valid; unsigned long hash; nfs_attr_check_mountpoint(sb, fattr); if (nfs_attr_use_mounted_on_fileid(fattr)) fattr->fileid = fattr->mounted_on_fileid; else if ((fattr->valid & NFS_ATTR_FATTR_FILEID) == 0) goto out_no_inode; if ((fattr->valid & NFS_ATTR_FATTR_TYPE) == 0) goto out_no_inode; hash = nfs_fattr_to_ino_t(fattr); inode = iget5_locked(sb, hash, nfs_find_actor, nfs_init_locked, &desc); if (inode == NULL) { inode = ERR_PTR(-ENOMEM); goto out_no_inode; } if (inode->i_state & I_NEW) { struct nfs_inode *nfsi = NFS_I(inode); unsigned long now = jiffies; /* We set i_ino for the few things that still rely on it, * such as stat(2) */ inode->i_ino = hash; /* We can't support update_atime(), since the server will reset it */ inode->i_flags |= S_NOATIME|S_NOCMTIME; inode->i_mode = fattr->mode; nfsi->cache_validity = 0; if ((fattr->valid & NFS_ATTR_FATTR_MODE) == 0 && (fattr_supported & NFS_ATTR_FATTR_MODE)) nfs_set_cache_invalid(inode, NFS_INO_INVALID_MODE); /* Why so? Because we want revalidate for devices/FIFOs, and * that's precisely what we have in nfs_file_inode_operations. */ inode->i_op = NFS_SB(sb)->nfs_client->rpc_ops->file_inode_ops; if (S_ISREG(inode->i_mode)) { inode->i_fop = NFS_SB(sb)->nfs_client->rpc_ops->file_ops; inode->i_data.a_ops = &nfs_file_aops; nfs_inode_init_regular(nfsi); } else if (S_ISDIR(inode->i_mode)) { inode->i_op = NFS_SB(sb)->nfs_client->rpc_ops->dir_inode_ops; inode->i_fop = &nfs_dir_operations; inode->i_data.a_ops = &nfs_dir_aops; nfs_inode_init_dir(nfsi); /* Deal with crossing mountpoints */ if (fattr->valid & NFS_ATTR_FATTR_MOUNTPOINT || fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL) { if (fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL) inode->i_op = &nfs_referral_inode_operations; else inode->i_op = &nfs_mountpoint_inode_operations; inode->i_fop = NULL; inode->i_flags |= S_AUTOMOUNT; } } else if (S_ISLNK(inode->i_mode)) { inode->i_op = &nfs_symlink_inode_operations; inode_nohighmem(inode); } else init_special_inode(inode, inode->i_mode, fattr->rdev); memset(&inode->i_atime, 0, sizeof(inode->i_atime)); memset(&inode->i_mtime, 0, sizeof(inode->i_mtime)); memset(&inode->i_ctime, 0, sizeof(inode->i_ctime)); inode_set_iversion_raw(inode, 0); inode->i_size = 0; clear_nlink(inode); inode->i_uid = make_kuid(&init_user_ns, -2); inode->i_gid = make_kgid(&init_user_ns, -2); inode->i_blocks = 0; nfsi->write_io = 0; nfsi->read_io = 0; nfsi->read_cache_jiffies = fattr->time_start; nfsi->attr_gencount = fattr->gencount; if (fattr->valid & NFS_ATTR_FATTR_ATIME) inode->i_atime = fattr->atime; else if (fattr_supported & NFS_ATTR_FATTR_ATIME) nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATIME); if (fattr->valid & NFS_ATTR_FATTR_MTIME) inode->i_mtime = fattr->mtime; else if (fattr_supported & NFS_ATTR_FATTR_MTIME) nfs_set_cache_invalid(inode, NFS_INO_INVALID_MTIME); if (fattr->valid & NFS_ATTR_FATTR_CTIME) inode->i_ctime = fattr->ctime; else if (fattr_supported & NFS_ATTR_FATTR_CTIME) nfs_set_cache_invalid(inode, NFS_INO_INVALID_CTIME); if (fattr->valid & NFS_ATTR_FATTR_CHANGE) inode_set_iversion_raw(inode, fattr->change_attr); else nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE); if (fattr->valid & NFS_ATTR_FATTR_SIZE) inode->i_size = nfs_size_to_loff_t(fattr->size); else nfs_set_cache_invalid(inode, NFS_INO_INVALID_SIZE); if (fattr->valid & NFS_ATTR_FATTR_NLINK) set_nlink(inode, fattr->nlink); else if (fattr_supported & NFS_ATTR_FATTR_NLINK) nfs_set_cache_invalid(inode, NFS_INO_INVALID_NLINK); if (fattr->valid & NFS_ATTR_FATTR_OWNER) inode->i_uid = fattr->uid; else if (fattr_supported & NFS_ATTR_FATTR_OWNER) nfs_set_cache_invalid(inode, NFS_INO_INVALID_OTHER); if (fattr->valid & NFS_ATTR_FATTR_GROUP) inode->i_gid = fattr->gid; else if (fattr_supported & NFS_ATTR_FATTR_GROUP) nfs_set_cache_invalid(inode, NFS_INO_INVALID_OTHER); if (fattr->valid & NFS_ATTR_FATTR_BLOCKS_USED) inode->i_blocks = fattr->du.nfs2.blocks; else if (fattr_supported & NFS_ATTR_FATTR_BLOCKS_USED && fattr->size != 0) nfs_set_cache_invalid(inode, NFS_INO_INVALID_BLOCKS); if (fattr->valid & NFS_ATTR_FATTR_SPACE_USED) { /* * report the blocks in 512byte units */ inode->i_blocks = nfs_calc_block_size(fattr->du.nfs3.used); } else if (fattr_supported & NFS_ATTR_FATTR_SPACE_USED && fattr->size != 0) nfs_set_cache_invalid(inode, NFS_INO_INVALID_BLOCKS); nfs_setsecurity(inode, fattr); nfsi->attrtimeo = NFS_MINATTRTIMEO(inode); nfsi->attrtimeo_timestamp = now; nfsi->access_cache = RB_ROOT; nfs_fscache_init_inode(inode); unlock_new_inode(inode); } else { int err = nfs_refresh_inode(inode, fattr); if (err < 0) { iput(inode); inode = ERR_PTR(err); goto out_no_inode; } } dprintk("NFS: nfs_fhget(%s/%Lu fh_crc=0x%08x ct=%d)\n", inode->i_sb->s_id, (unsigned long long)NFS_FILEID(inode), nfs_display_fhandle_hash(fh), atomic_read(&inode->i_count)); out: return inode; out_no_inode: dprintk("nfs_fhget: iget failed with error %ld\n", PTR_ERR(inode)); goto out; } EXPORT_SYMBOL_GPL(nfs_fhget); #define NFS_VALID_ATTRS (ATTR_MODE|ATTR_UID|ATTR_GID|ATTR_SIZE|ATTR_ATIME|ATTR_ATIME_SET|ATTR_MTIME|ATTR_MTIME_SET|ATTR_FILE|ATTR_OPEN) int nfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, struct iattr *attr) { struct inode *inode = d_inode(dentry); struct nfs_fattr *fattr; int error = 0; nfs_inc_stats(inode, NFSIOS_VFSSETATTR); /* skip mode change if it's just for clearing setuid/setgid */ if (attr->ia_valid & (ATTR_KILL_SUID | ATTR_KILL_SGID)) attr->ia_valid &= ~ATTR_MODE; if (attr->ia_valid & ATTR_SIZE) { BUG_ON(!S_ISREG(inode->i_mode)); error = inode_newsize_ok(inode, attr->ia_size); if (error) return error; if (attr->ia_size == i_size_read(inode)) attr->ia_valid &= ~ATTR_SIZE; } /* Optimization: if the end result is no change, don't RPC */ if (((attr->ia_valid & NFS_VALID_ATTRS) & ~(ATTR_FILE|ATTR_OPEN)) == 0) return 0; trace_nfs_setattr_enter(inode); /* Write all dirty data */ if (S_ISREG(inode->i_mode)) nfs_sync_inode(inode); fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); if (fattr == NULL) { error = -ENOMEM; goto out; } error = NFS_PROTO(inode)->setattr(dentry, fattr, attr); if (error == 0) error = nfs_refresh_inode(inode, fattr); nfs_free_fattr(fattr); out: trace_nfs_setattr_exit(inode, error); return error; } EXPORT_SYMBOL_GPL(nfs_setattr); /** * nfs_vmtruncate - unmap mappings "freed" by truncate() syscall * @inode: inode of the file used * @offset: file offset to start truncating * * This is a copy of the common vmtruncate, but with the locking * corrected to take into account the fact that NFS requires * inode->i_size to be updated under the inode->i_lock. * Note: must be called with inode->i_lock held! */ static int nfs_vmtruncate(struct inode * inode, loff_t offset) { int err; err = inode_newsize_ok(inode, offset); if (err) goto out; trace_nfs_size_truncate(inode, offset); i_size_write(inode, offset); /* Optimisation */ if (offset == 0) { NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_DATA; nfs_ooo_clear(NFS_I(inode)); } NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE; spin_unlock(&inode->i_lock); truncate_pagecache(inode, offset); spin_lock(&inode->i_lock); out: return err; } /** * nfs_setattr_update_inode - Update inode metadata after a setattr call. * @inode: pointer to struct inode * @attr: pointer to struct iattr * @fattr: pointer to struct nfs_fattr * * Note: we do this in the *proc.c in order to ensure that * it works for things like exclusive creates too. */ void nfs_setattr_update_inode(struct inode *inode, struct iattr *attr, struct nfs_fattr *fattr) { /* Barrier: bump the attribute generation count. */ nfs_fattr_set_barrier(fattr); spin_lock(&inode->i_lock); NFS_I(inode)->attr_gencount = fattr->gencount; if ((attr->ia_valid & ATTR_SIZE) != 0) { nfs_set_cache_invalid(inode, NFS_INO_INVALID_MTIME | NFS_INO_INVALID_BLOCKS); nfs_inc_stats(inode, NFSIOS_SETATTRTRUNC); nfs_vmtruncate(inode, attr->ia_size); } if ((attr->ia_valid & (ATTR_MODE|ATTR_UID|ATTR_GID)) != 0) { NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_CTIME; if ((attr->ia_valid & ATTR_KILL_SUID) != 0 && inode->i_mode & S_ISUID) inode->i_mode &= ~S_ISUID; if (setattr_should_drop_sgid(&init_user_ns, inode)) inode->i_mode &= ~S_ISGID; if ((attr->ia_valid & ATTR_MODE) != 0) { int mode = attr->ia_mode & S_IALLUGO; mode |= inode->i_mode & ~S_IALLUGO; inode->i_mode = mode; } if ((attr->ia_valid & ATTR_UID) != 0) inode->i_uid = attr->ia_uid; if ((attr->ia_valid & ATTR_GID) != 0) inode->i_gid = attr->ia_gid; if (fattr->valid & NFS_ATTR_FATTR_CTIME) inode->i_ctime = fattr->ctime; else nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME); nfs_set_cache_invalid(inode, NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL); } if (attr->ia_valid & (ATTR_ATIME_SET|ATTR_ATIME)) { NFS_I(inode)->cache_validity &= ~(NFS_INO_INVALID_ATIME | NFS_INO_INVALID_CTIME); if (fattr->valid & NFS_ATTR_FATTR_ATIME) inode->i_atime = fattr->atime; else if (attr->ia_valid & ATTR_ATIME_SET) inode->i_atime = attr->ia_atime; else nfs_set_cache_invalid(inode, NFS_INO_INVALID_ATIME); if (fattr->valid & NFS_ATTR_FATTR_CTIME) inode->i_ctime = fattr->ctime; else nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME); } if (attr->ia_valid & (ATTR_MTIME_SET|ATTR_MTIME)) { NFS_I(inode)->cache_validity &= ~(NFS_INO_INVALID_MTIME | NFS_INO_INVALID_CTIME); if (fattr->valid & NFS_ATTR_FATTR_MTIME) inode->i_mtime = fattr->mtime; else if (attr->ia_valid & ATTR_MTIME_SET) inode->i_mtime = attr->ia_mtime; else nfs_set_cache_invalid(inode, NFS_INO_INVALID_MTIME); if (fattr->valid & NFS_ATTR_FATTR_CTIME) inode->i_ctime = fattr->ctime; else nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME); } if (fattr->valid) nfs_update_inode(inode, fattr); spin_unlock(&inode->i_lock); } EXPORT_SYMBOL_GPL(nfs_setattr_update_inode); /* * Don't request help from readdirplus if the file is being written to, * or if attribute caching is turned off */ static bool nfs_getattr_readdirplus_enable(const struct inode *inode) { return nfs_server_capable(inode, NFS_CAP_READDIRPLUS) && !nfs_have_writebacks(inode) && NFS_MAXATTRTIMEO(inode) > 5 * HZ; } static void nfs_readdirplus_parent_cache_miss(struct dentry *dentry) { if (!IS_ROOT(dentry)) { struct dentry *parent = dget_parent(dentry); nfs_readdir_record_entry_cache_miss(d_inode(parent)); dput(parent); } } static void nfs_readdirplus_parent_cache_hit(struct dentry *dentry) { if (!IS_ROOT(dentry)) { struct dentry *parent = dget_parent(dentry); nfs_readdir_record_entry_cache_hit(d_inode(parent)); dput(parent); } } static u32 nfs_get_valid_attrmask(struct inode *inode) { unsigned long cache_validity = READ_ONCE(NFS_I(inode)->cache_validity); u32 reply_mask = STATX_INO | STATX_TYPE; if (!(cache_validity & NFS_INO_INVALID_ATIME)) reply_mask |= STATX_ATIME; if (!(cache_validity & NFS_INO_INVALID_CTIME)) reply_mask |= STATX_CTIME; if (!(cache_validity & NFS_INO_INVALID_MTIME)) reply_mask |= STATX_MTIME; if (!(cache_validity & NFS_INO_INVALID_SIZE)) reply_mask |= STATX_SIZE; if (!(cache_validity & NFS_INO_INVALID_NLINK)) reply_mask |= STATX_NLINK; if (!(cache_validity & NFS_INO_INVALID_MODE)) reply_mask |= STATX_MODE; if (!(cache_validity & NFS_INO_INVALID_OTHER)) reply_mask |= STATX_UID | STATX_GID; if (!(cache_validity & NFS_INO_INVALID_BLOCKS)) reply_mask |= STATX_BLOCKS; return reply_mask; } int nfs_getattr(struct user_namespace *mnt_userns, const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { struct inode *inode = d_inode(path->dentry); struct nfs_server *server = NFS_SERVER(inode); unsigned long cache_validity; int err = 0; bool force_sync = query_flags & AT_STATX_FORCE_SYNC; bool do_update = false; bool readdirplus_enabled = nfs_getattr_readdirplus_enable(inode); trace_nfs_getattr_enter(inode); request_mask &= STATX_TYPE | STATX_MODE | STATX_NLINK | STATX_UID | STATX_GID | STATX_ATIME | STATX_MTIME | STATX_CTIME | STATX_INO | STATX_SIZE | STATX_BLOCKS; if ((query_flags & AT_STATX_DONT_SYNC) && !force_sync) { if (readdirplus_enabled) nfs_readdirplus_parent_cache_hit(path->dentry); goto out_no_revalidate; } /* Flush out writes to the server in order to update c/mtime. */ if ((request_mask & (STATX_CTIME | STATX_MTIME)) && S_ISREG(inode->i_mode)) filemap_write_and_wait(inode->i_mapping); /* * We may force a getattr if the user cares about atime. * * Note that we only have to check the vfsmount flags here: * - NFS always sets S_NOATIME by so checking it would give a * bogus result * - NFS never sets SB_NOATIME or SB_NODIRATIME so there is * no point in checking those. */ if ((path->mnt->mnt_flags & MNT_NOATIME) || ((path->mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) request_mask &= ~STATX_ATIME; /* Is the user requesting attributes that might need revalidation? */ if (!(request_mask & (STATX_MODE|STATX_NLINK|STATX_ATIME|STATX_CTIME| STATX_MTIME|STATX_UID|STATX_GID| STATX_SIZE|STATX_BLOCKS))) goto out_no_revalidate; /* Check whether the cached attributes are stale */ do_update |= force_sync || nfs_attribute_cache_expired(inode); cache_validity = READ_ONCE(NFS_I(inode)->cache_validity); do_update |= cache_validity & NFS_INO_INVALID_CHANGE; if (request_mask & STATX_ATIME) do_update |= cache_validity & NFS_INO_INVALID_ATIME; if (request_mask & STATX_CTIME) do_update |= cache_validity & NFS_INO_INVALID_CTIME; if (request_mask & STATX_MTIME) do_update |= cache_validity & NFS_INO_INVALID_MTIME; if (request_mask & STATX_SIZE) do_update |= cache_validity & NFS_INO_INVALID_SIZE; if (request_mask & STATX_NLINK) do_update |= cache_validity & NFS_INO_INVALID_NLINK; if (request_mask & STATX_MODE) do_update |= cache_validity & NFS_INO_INVALID_MODE; if (request_mask & (STATX_UID | STATX_GID)) do_update |= cache_validity & NFS_INO_INVALID_OTHER; if (request_mask & STATX_BLOCKS) do_update |= cache_validity & NFS_INO_INVALID_BLOCKS; if (do_update) { if (readdirplus_enabled) nfs_readdirplus_parent_cache_miss(path->dentry); err = __nfs_revalidate_inode(server, inode); if (err) goto out; } else if (readdirplus_enabled) nfs_readdirplus_parent_cache_hit(path->dentry); out_no_revalidate: /* Only return attributes that were revalidated. */ stat->result_mask = nfs_get_valid_attrmask(inode) | request_mask; generic_fillattr(&init_user_ns, inode, stat); stat->ino = nfs_compat_user_ino64(NFS_FILEID(inode)); if (S_ISDIR(inode->i_mode)) stat->blksize = NFS_SERVER(inode)->dtsize; out: trace_nfs_getattr_exit(inode, err); return err; } EXPORT_SYMBOL_GPL(nfs_getattr); static void nfs_init_lock_context(struct nfs_lock_context *l_ctx) { refcount_set(&l_ctx->count, 1); l_ctx->lockowner = current->files; INIT_LIST_HEAD(&l_ctx->list); atomic_set(&l_ctx->io_count, 0); } static struct nfs_lock_context *__nfs_find_lock_context(struct nfs_open_context *ctx) { struct nfs_lock_context *pos; list_for_each_entry_rcu(pos, &ctx->lock_context.list, list) { if (pos->lockowner != current->files) continue; if (refcount_inc_not_zero(&pos->count)) return pos; } return NULL; } struct nfs_lock_context *nfs_get_lock_context(struct nfs_open_context *ctx) { struct nfs_lock_context *res, *new = NULL; struct inode *inode = d_inode(ctx->dentry); rcu_read_lock(); res = __nfs_find_lock_context(ctx); rcu_read_unlock(); if (res == NULL) { new = kmalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); if (new == NULL) return ERR_PTR(-ENOMEM); nfs_init_lock_context(new); spin_lock(&inode->i_lock); res = __nfs_find_lock_context(ctx); if (res == NULL) { new->open_context = get_nfs_open_context(ctx); if (new->open_context) { list_add_tail_rcu(&new->list, &ctx->lock_context.list); res = new; new = NULL; } else res = ERR_PTR(-EBADF); } spin_unlock(&inode->i_lock); kfree(new); } return res; } EXPORT_SYMBOL_GPL(nfs_get_lock_context); void nfs_put_lock_context(struct nfs_lock_context *l_ctx) { struct nfs_open_context *ctx = l_ctx->open_context; struct inode *inode = d_inode(ctx->dentry); if (!refcount_dec_and_lock(&l_ctx->count, &inode->i_lock)) return; list_del_rcu(&l_ctx->list); spin_unlock(&inode->i_lock); put_nfs_open_context(ctx); kfree_rcu(l_ctx, rcu_head); } EXPORT_SYMBOL_GPL(nfs_put_lock_context); /** * nfs_close_context - Common close_context() routine NFSv2/v3 * @ctx: pointer to context * @is_sync: is this a synchronous close * * Ensure that the attributes are up to date if we're mounted * with close-to-open semantics and we have cached data that will * need to be revalidated on open. */ void nfs_close_context(struct nfs_open_context *ctx, int is_sync) { struct nfs_inode *nfsi; struct inode *inode; if (!(ctx->mode & FMODE_WRITE)) return; if (!is_sync) return; inode = d_inode(ctx->dentry); if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) return; nfsi = NFS_I(inode); if (inode->i_mapping->nrpages == 0) return; if (nfsi->cache_validity & NFS_INO_INVALID_DATA) return; if (!list_empty(&nfsi->open_files)) return; if (NFS_SERVER(inode)->flags & NFS_MOUNT_NOCTO) return; nfs_revalidate_inode(inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_SIZE); } EXPORT_SYMBOL_GPL(nfs_close_context); struct nfs_open_context *alloc_nfs_open_context(struct dentry *dentry, fmode_t f_mode, struct file *filp) { struct nfs_open_context *ctx; ctx = kmalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT); if (!ctx) return ERR_PTR(-ENOMEM); nfs_sb_active(dentry->d_sb); ctx->dentry = dget(dentry); if (filp) ctx->cred = get_cred(filp->f_cred); else ctx->cred = get_current_cred(); rcu_assign_pointer(ctx->ll_cred, NULL); ctx->state = NULL; ctx->mode = f_mode; ctx->flags = 0; ctx->error = 0; ctx->flock_owner = (fl_owner_t)filp; nfs_init_lock_context(&ctx->lock_context); ctx->lock_context.open_context = ctx; INIT_LIST_HEAD(&ctx->list); ctx->mdsthreshold = NULL; return ctx; } EXPORT_SYMBOL_GPL(alloc_nfs_open_context); struct nfs_open_context *get_nfs_open_context(struct nfs_open_context *ctx) { if (ctx != NULL && refcount_inc_not_zero(&ctx->lock_context.count)) return ctx; return NULL; } EXPORT_SYMBOL_GPL(get_nfs_open_context); static void __put_nfs_open_context(struct nfs_open_context *ctx, int is_sync) { struct inode *inode = d_inode(ctx->dentry); struct super_block *sb = ctx->dentry->d_sb; if (!refcount_dec_and_test(&ctx->lock_context.count)) return; if (!list_empty(&ctx->list)) { spin_lock(&inode->i_lock); list_del_rcu(&ctx->list); spin_unlock(&inode->i_lock); } if (inode != NULL) NFS_PROTO(inode)->close_context(ctx, is_sync); put_cred(ctx->cred); dput(ctx->dentry); nfs_sb_deactive(sb); put_rpccred(rcu_dereference_protected(ctx->ll_cred, 1)); kfree(ctx->mdsthreshold); kfree_rcu(ctx, rcu_head); } void put_nfs_open_context(struct nfs_open_context *ctx) { __put_nfs_open_context(ctx, 0); } EXPORT_SYMBOL_GPL(put_nfs_open_context); static void put_nfs_open_context_sync(struct nfs_open_context *ctx) { __put_nfs_open_context(ctx, 1); } /* * Ensure that mmap has a recent RPC credential for use when writing out * shared pages */ void nfs_inode_attach_open_context(struct nfs_open_context *ctx) { struct inode *inode = d_inode(ctx->dentry); struct nfs_inode *nfsi = NFS_I(inode); spin_lock(&inode->i_lock); if (list_empty(&nfsi->open_files) && nfs_ooo_test(nfsi)) nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA | NFS_INO_REVAL_FORCED); list_add_tail_rcu(&ctx->list, &nfsi->open_files); spin_unlock(&inode->i_lock); } EXPORT_SYMBOL_GPL(nfs_inode_attach_open_context); void nfs_file_set_open_context(struct file *filp, struct nfs_open_context *ctx) { filp->private_data = get_nfs_open_context(ctx); set_bit(NFS_CONTEXT_FILE_OPEN, &ctx->flags); if (list_empty(&ctx->list)) nfs_inode_attach_open_context(ctx); } EXPORT_SYMBOL_GPL(nfs_file_set_open_context); /* * Given an inode, search for an open context with the desired characteristics */ struct nfs_open_context *nfs_find_open_context(struct inode *inode, const struct cred *cred, fmode_t mode) { struct nfs_inode *nfsi = NFS_I(inode); struct nfs_open_context *pos, *ctx = NULL; rcu_read_lock(); list_for_each_entry_rcu(pos, &nfsi->open_files, list) { if (cred != NULL && cred_fscmp(pos->cred, cred) != 0) continue; if ((pos->mode & (FMODE_READ|FMODE_WRITE)) != mode) continue; if (!test_bit(NFS_CONTEXT_FILE_OPEN, &pos->flags)) continue; ctx = get_nfs_open_context(pos); if (ctx) break; } rcu_read_unlock(); return ctx; } void nfs_file_clear_open_context(struct file *filp) { struct nfs_open_context *ctx = nfs_file_open_context(filp); if (ctx) { struct inode *inode = d_inode(ctx->dentry); clear_bit(NFS_CONTEXT_FILE_OPEN, &ctx->flags); /* * We fatal error on write before. Try to writeback * every page again. */ if (ctx->error < 0) invalidate_inode_pages2(inode->i_mapping); filp->private_data = NULL; put_nfs_open_context_sync(ctx); } } /* * These allocate and release file read/write context information. */ int nfs_open(struct inode *inode, struct file *filp) { struct nfs_open_context *ctx; ctx = alloc_nfs_open_context(file_dentry(filp), filp->f_mode, filp); if (IS_ERR(ctx)) return PTR_ERR(ctx); nfs_file_set_open_context(filp, ctx); put_nfs_open_context(ctx); nfs_fscache_open_file(inode, filp); return 0; } /* * This function is called whenever some part of NFS notices that * the cached attributes have to be refreshed. */ int __nfs_revalidate_inode(struct nfs_server *server, struct inode *inode) { int status = -ESTALE; struct nfs_fattr *fattr = NULL; struct nfs_inode *nfsi = NFS_I(inode); dfprintk(PAGECACHE, "NFS: revalidating (%s/%Lu)\n", inode->i_sb->s_id, (unsigned long long)NFS_FILEID(inode)); trace_nfs_revalidate_inode_enter(inode); if (is_bad_inode(inode)) goto out; if (NFS_STALE(inode)) goto out; /* pNFS: Attributes aren't updated until we layoutcommit */ if (S_ISREG(inode->i_mode)) { status = pnfs_sync_inode(inode, false); if (status) goto out; } status = -ENOMEM; fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); if (fattr == NULL) goto out; nfs_inc_stats(inode, NFSIOS_INODEREVALIDATE); status = NFS_PROTO(inode)->getattr(server, NFS_FH(inode), fattr, inode); if (status != 0) { dfprintk(PAGECACHE, "nfs_revalidate_inode: (%s/%Lu) getattr failed, error=%d\n", inode->i_sb->s_id, (unsigned long long)NFS_FILEID(inode), status); switch (status) { case -ETIMEDOUT: /* A soft timeout occurred. Use cached information? */ if (server->flags & NFS_MOUNT_SOFTREVAL) status = 0; break; case -ESTALE: if (!S_ISDIR(inode->i_mode)) nfs_set_inode_stale(inode); else nfs_zap_caches(inode); } goto out; } status = nfs_refresh_inode(inode, fattr); if (status) { dfprintk(PAGECACHE, "nfs_revalidate_inode: (%s/%Lu) refresh failed, error=%d\n", inode->i_sb->s_id, (unsigned long long)NFS_FILEID(inode), status); goto out; } if (nfsi->cache_validity & NFS_INO_INVALID_ACL) nfs_zap_acl_cache(inode); nfs_setsecurity(inode, fattr); dfprintk(PAGECACHE, "NFS: (%s/%Lu) revalidation complete\n", inode->i_sb->s_id, (unsigned long long)NFS_FILEID(inode)); out: nfs_free_fattr(fattr); trace_nfs_revalidate_inode_exit(inode, status); return status; } int nfs_attribute_cache_expired(struct inode *inode) { if (nfs_have_delegated_attributes(inode)) return 0; return nfs_attribute_timeout(inode); } /** * nfs_revalidate_inode - Revalidate the inode attributes * @inode: pointer to inode struct * @flags: cache flags to check * * Updates inode attribute information by retrieving the data from the server. */ int nfs_revalidate_inode(struct inode *inode, unsigned long flags) { if (!nfs_check_cache_invalid(inode, flags)) return NFS_STALE(inode) ? -ESTALE : 0; return __nfs_revalidate_inode(NFS_SERVER(inode), inode); } EXPORT_SYMBOL_GPL(nfs_revalidate_inode); static int nfs_invalidate_mapping(struct inode *inode, struct address_space *mapping) { int ret; nfs_fscache_invalidate(inode, 0); if (mapping->nrpages != 0) { if (S_ISREG(inode->i_mode)) { ret = nfs_sync_mapping(mapping); if (ret < 0) return ret; } ret = invalidate_inode_pages2(mapping); if (ret < 0) return ret; } nfs_inc_stats(inode, NFSIOS_DATAINVALIDATE); dfprintk(PAGECACHE, "NFS: (%s/%Lu) data cache invalidated\n", inode->i_sb->s_id, (unsigned long long)NFS_FILEID(inode)); return 0; } /** * nfs_clear_invalid_mapping - Conditionally clear a mapping * @mapping: pointer to mapping * * If the NFS_INO_INVALID_DATA inode flag is set, clear the mapping. */ int nfs_clear_invalid_mapping(struct address_space *mapping) { struct inode *inode = mapping->host; struct nfs_inode *nfsi = NFS_I(inode); unsigned long *bitlock = &nfsi->flags; int ret = 0; /* * We must clear NFS_INO_INVALID_DATA first to ensure that * invalidations that come in while we're shooting down the mappings * are respected. But, that leaves a race window where one revalidator * can clear the flag, and then another checks it before the mapping * gets invalidated. Fix that by serializing access to this part of * the function. * * At the same time, we need to allow other tasks to see whether we * might be in the middle of invalidating the pages, so we only set * the bit lock here if it looks like we're going to be doing that. */ for (;;) { ret = wait_on_bit_action(bitlock, NFS_INO_INVALIDATING, nfs_wait_bit_killable, TASK_KILLABLE|TASK_FREEZABLE_UNSAFE); if (ret) goto out; smp_rmb(); /* pairs with smp_wmb() below */ if (test_bit(NFS_INO_INVALIDATING, bitlock)) continue; /* pairs with nfs_set_cache_invalid()'s smp_store_release() */ if (!(smp_load_acquire(&nfsi->cache_validity) & NFS_INO_INVALID_DATA)) goto out; /* Slow-path that double-checks with spinlock held */ spin_lock(&inode->i_lock); if (test_bit(NFS_INO_INVALIDATING, bitlock)) { spin_unlock(&inode->i_lock); continue; } if (nfsi->cache_validity & NFS_INO_INVALID_DATA) break; spin_unlock(&inode->i_lock); goto out; } set_bit(NFS_INO_INVALIDATING, bitlock); smp_wmb(); nfsi->cache_validity &= ~NFS_INO_INVALID_DATA; nfs_ooo_clear(nfsi); spin_unlock(&inode->i_lock); trace_nfs_invalidate_mapping_enter(inode); ret = nfs_invalidate_mapping(inode, mapping); trace_nfs_invalidate_mapping_exit(inode, ret); clear_bit_unlock(NFS_INO_INVALIDATING, bitlock); smp_mb__after_atomic(); wake_up_bit(bitlock, NFS_INO_INVALIDATING); out: return ret; } bool nfs_mapping_need_revalidate_inode(struct inode *inode) { return nfs_check_cache_invalid(inode, NFS_INO_INVALID_CHANGE) || NFS_STALE(inode); } int nfs_revalidate_mapping_rcu(struct inode *inode) { struct nfs_inode *nfsi = NFS_I(inode); unsigned long *bitlock = &nfsi->flags; int ret = 0; if (IS_SWAPFILE(inode)) goto out; if (nfs_mapping_need_revalidate_inode(inode)) { ret = -ECHILD; goto out; } spin_lock(&inode->i_lock); if (test_bit(NFS_INO_INVALIDATING, bitlock) || (nfsi->cache_validity & NFS_INO_INVALID_DATA)) ret = -ECHILD; spin_unlock(&inode->i_lock); out: return ret; } /** * nfs_revalidate_mapping - Revalidate the pagecache * @inode: pointer to host inode * @mapping: pointer to mapping */ int nfs_revalidate_mapping(struct inode *inode, struct address_space *mapping) { /* swapfiles are not supposed to be shared. */ if (IS_SWAPFILE(inode)) return 0; if (nfs_mapping_need_revalidate_inode(inode)) { int ret = __nfs_revalidate_inode(NFS_SERVER(inode), inode); if (ret < 0) return ret; } return nfs_clear_invalid_mapping(mapping); } static bool nfs_file_has_writers(struct nfs_inode *nfsi) { struct inode *inode = &nfsi->vfs_inode; if (!S_ISREG(inode->i_mode)) return false; if (list_empty(&nfsi->open_files)) return false; return inode_is_open_for_write(inode); } static bool nfs_file_has_buffered_writers(struct nfs_inode *nfsi) { return nfs_file_has_writers(nfsi) && nfs_file_io_is_buffered(nfsi); } static void nfs_wcc_update_inode(struct inode *inode, struct nfs_fattr *fattr) { struct timespec64 ts; if ((fattr->valid & NFS_ATTR_FATTR_PRECHANGE) && (fattr->valid & NFS_ATTR_FATTR_CHANGE) && inode_eq_iversion_raw(inode, fattr->pre_change_attr)) { inode_set_iversion_raw(inode, fattr->change_attr); if (S_ISDIR(inode->i_mode)) nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA); else if (nfs_server_capable(inode, NFS_CAP_XATTR)) nfs_set_cache_invalid(inode, NFS_INO_INVALID_XATTR); } /* If we have atomic WCC data, we may update some attributes */ ts = inode->i_ctime; if ((fattr->valid & NFS_ATTR_FATTR_PRECTIME) && (fattr->valid & NFS_ATTR_FATTR_CTIME) && timespec64_equal(&ts, &fattr->pre_ctime)) { inode->i_ctime = fattr->ctime; } ts = inode->i_mtime; if ((fattr->valid & NFS_ATTR_FATTR_PREMTIME) && (fattr->valid & NFS_ATTR_FATTR_MTIME) && timespec64_equal(&ts, &fattr->pre_mtime)) { inode->i_mtime = fattr->mtime; } if ((fattr->valid & NFS_ATTR_FATTR_PRESIZE) && (fattr->valid & NFS_ATTR_FATTR_SIZE) && i_size_read(inode) == nfs_size_to_loff_t(fattr->pre_size) && !nfs_have_writebacks(inode)) { trace_nfs_size_wcc(inode, fattr->size); i_size_write(inode, nfs_size_to_loff_t(fattr->size)); } } /** * nfs_check_inode_attributes - verify consistency of the inode attribute cache * @inode: pointer to inode * @fattr: updated attributes * * Verifies the attribute cache. If we have just changed the attributes, * so that fattr carries weak cache consistency data, then it may * also update the ctime/mtime/change_attribute. */ static int nfs_check_inode_attributes(struct inode *inode, struct nfs_fattr *fattr) { struct nfs_inode *nfsi = NFS_I(inode); loff_t cur_size, new_isize; unsigned long invalid = 0; struct timespec64 ts; if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) return 0; if (!(fattr->valid & NFS_ATTR_FATTR_FILEID)) { /* Only a mounted-on-fileid? Just exit */ if (fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID) return 0; /* Has the inode gone and changed behind our back? */ } else if (nfsi->fileid != fattr->fileid) { /* Is this perhaps the mounted-on fileid? */ if ((fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID) && nfsi->fileid == fattr->mounted_on_fileid) return 0; return -ESTALE; } if ((fattr->valid & NFS_ATTR_FATTR_TYPE) && inode_wrong_type(inode, fattr->mode)) return -ESTALE; if (!nfs_file_has_buffered_writers(nfsi)) { /* Verify a few of the more important attributes */ if ((fattr->valid & NFS_ATTR_FATTR_CHANGE) != 0 && !inode_eq_iversion_raw(inode, fattr->change_attr)) invalid |= NFS_INO_INVALID_CHANGE; ts = inode->i_mtime; if ((fattr->valid & NFS_ATTR_FATTR_MTIME) && !timespec64_equal(&ts, &fattr->mtime)) invalid |= NFS_INO_INVALID_MTIME; ts = inode->i_ctime; if ((fattr->valid & NFS_ATTR_FATTR_CTIME) && !timespec64_equal(&ts, &fattr->ctime)) invalid |= NFS_INO_INVALID_CTIME; if (fattr->valid & NFS_ATTR_FATTR_SIZE) { cur_size = i_size_read(inode); new_isize = nfs_size_to_loff_t(fattr->size); if (cur_size != new_isize) invalid |= NFS_INO_INVALID_SIZE; } } /* Have any file permissions changed? */ if ((fattr->valid & NFS_ATTR_FATTR_MODE) && (inode->i_mode & S_IALLUGO) != (fattr->mode & S_IALLUGO)) invalid |= NFS_INO_INVALID_MODE; if ((fattr->valid & NFS_ATTR_FATTR_OWNER) && !uid_eq(inode->i_uid, fattr->uid)) invalid |= NFS_INO_INVALID_OTHER; if ((fattr->valid & NFS_ATTR_FATTR_GROUP) && !gid_eq(inode->i_gid, fattr->gid)) invalid |= NFS_INO_INVALID_OTHER; /* Has the link count changed? */ if ((fattr->valid & NFS_ATTR_FATTR_NLINK) && inode->i_nlink != fattr->nlink) invalid |= NFS_INO_INVALID_NLINK; ts = inode->i_atime; if ((fattr->valid & NFS_ATTR_FATTR_ATIME) && !timespec64_equal(&ts, &fattr->atime)) invalid |= NFS_INO_INVALID_ATIME; if (invalid != 0) nfs_set_cache_invalid(inode, invalid); nfsi->read_cache_jiffies = fattr->time_start; return 0; } static atomic_long_t nfs_attr_generation_counter; static unsigned long nfs_read_attr_generation_counter(void) { return atomic_long_read(&nfs_attr_generation_counter); } unsigned long nfs_inc_attr_generation_counter(void) { return atomic_long_inc_return(&nfs_attr_generation_counter); } EXPORT_SYMBOL_GPL(nfs_inc_attr_generation_counter); void nfs_fattr_init(struct nfs_fattr *fattr) { fattr->valid = 0; fattr->time_start = jiffies; fattr->gencount = nfs_inc_attr_generation_counter(); fattr->owner_name = NULL; fattr->group_name = NULL; fattr->mdsthreshold = NULL; } EXPORT_SYMBOL_GPL(nfs_fattr_init); /** * nfs_fattr_set_barrier * @fattr: attributes * * Used to set a barrier after an attribute was updated. This * barrier ensures that older attributes from RPC calls that may * have raced with our update cannot clobber these new values. * Note that you are still responsible for ensuring that other * operations which change the attribute on the server do not * collide. */ void nfs_fattr_set_barrier(struct nfs_fattr *fattr) { fattr->gencount = nfs_inc_attr_generation_counter(); } struct nfs_fattr *nfs_alloc_fattr(void) { struct nfs_fattr *fattr; fattr = kmalloc(sizeof(*fattr), GFP_KERNEL); if (fattr != NULL) { nfs_fattr_init(fattr); fattr->label = NULL; } return fattr; } EXPORT_SYMBOL_GPL(nfs_alloc_fattr); struct nfs_fattr *nfs_alloc_fattr_with_label(struct nfs_server *server) { struct nfs_fattr *fattr = nfs_alloc_fattr(); if (!fattr) return NULL; fattr->label = nfs4_label_alloc(server, GFP_KERNEL); if (IS_ERR(fattr->label)) { kfree(fattr); return NULL; } return fattr; } EXPORT_SYMBOL_GPL(nfs_alloc_fattr_with_label); struct nfs_fh *nfs_alloc_fhandle(void) { struct nfs_fh *fh; fh = kmalloc(sizeof(struct nfs_fh), GFP_KERNEL); if (fh != NULL) fh->size = 0; return fh; } EXPORT_SYMBOL_GPL(nfs_alloc_fhandle); #ifdef NFS_DEBUG /* * _nfs_display_fhandle_hash - calculate the crc32 hash for the filehandle * in the same way that wireshark does * * @fh: file handle * * For debugging only. */ u32 _nfs_display_fhandle_hash(const struct nfs_fh *fh) { /* wireshark uses 32-bit AUTODIN crc and does a bitwise * not on the result */ return nfs_fhandle_hash(fh); } EXPORT_SYMBOL_GPL(_nfs_display_fhandle_hash); /* * _nfs_display_fhandle - display an NFS file handle on the console * * @fh: file handle to display * @caption: display caption * * For debugging only. */ void _nfs_display_fhandle(const struct nfs_fh *fh, const char *caption) { unsigned short i; if (fh == NULL || fh->size == 0) { printk(KERN_DEFAULT "%s at %p is empty\n", caption, fh); return; } printk(KERN_DEFAULT "%s at %p is %u bytes, crc: 0x%08x:\n", caption, fh, fh->size, _nfs_display_fhandle_hash(fh)); for (i = 0; i < fh->size; i += 16) { __be32 *pos = (__be32 *)&fh->data[i]; switch ((fh->size - i - 1) >> 2) { case 0: printk(KERN_DEFAULT " %08x\n", be32_to_cpup(pos)); break; case 1: printk(KERN_DEFAULT " %08x %08x\n", be32_to_cpup(pos), be32_to_cpup(pos + 1)); break; case 2: printk(KERN_DEFAULT " %08x %08x %08x\n", be32_to_cpup(pos), be32_to_cpup(pos + 1), be32_to_cpup(pos + 2)); break; default: printk(KERN_DEFAULT " %08x %08x %08x %08x\n", be32_to_cpup(pos), be32_to_cpup(pos + 1), be32_to_cpup(pos + 2), be32_to_cpup(pos + 3)); } } } EXPORT_SYMBOL_GPL(_nfs_display_fhandle); #endif /** * nfs_inode_attrs_cmp_generic - compare attributes * @fattr: attributes * @inode: pointer to inode * * Attempt to divine whether or not an RPC call reply carrying stale * attributes got scheduled after another call carrying updated ones. * Note also the check for wraparound of 'attr_gencount' * * The function returns '1' if it thinks the attributes in @fattr are * more recent than the ones cached in @inode. Otherwise it returns * the value '0'. */ static int nfs_inode_attrs_cmp_generic(const struct nfs_fattr *fattr, const struct inode *inode) { unsigned long attr_gencount = NFS_I(inode)->attr_gencount; return (long)(fattr->gencount - attr_gencount) > 0 || (long)(attr_gencount - nfs_read_attr_generation_counter()) > 0; } /** * nfs_inode_attrs_cmp_monotonic - compare attributes * @fattr: attributes * @inode: pointer to inode * * Attempt to divine whether or not an RPC call reply carrying stale * attributes got scheduled after another call carrying updated ones. * * We assume that the server observes monotonic semantics for * the change attribute, so a larger value means that the attributes in * @fattr are more recent, in which case the function returns the * value '1'. * A return value of '0' indicates no measurable change * A return value of '-1' means that the attributes in @inode are * more recent. */ static int nfs_inode_attrs_cmp_monotonic(const struct nfs_fattr *fattr, const struct inode *inode) { s64 diff = fattr->change_attr - inode_peek_iversion_raw(inode); if (diff > 0) return 1; return diff == 0 ? 0 : -1; } /** * nfs_inode_attrs_cmp_strict_monotonic - compare attributes * @fattr: attributes * @inode: pointer to inode * * Attempt to divine whether or not an RPC call reply carrying stale * attributes got scheduled after another call carrying updated ones. * * We assume that the server observes strictly monotonic semantics for * the change attribute, so a larger value means that the attributes in * @fattr are more recent, in which case the function returns the * value '1'. * A return value of '-1' means that the attributes in @inode are * more recent or unchanged. */ static int nfs_inode_attrs_cmp_strict_monotonic(const struct nfs_fattr *fattr, const struct inode *inode) { return nfs_inode_attrs_cmp_monotonic(fattr, inode) > 0 ? 1 : -1; } /** * nfs_inode_attrs_cmp - compare attributes * @fattr: attributes * @inode: pointer to inode * * This function returns '1' if it thinks the attributes in @fattr are * more recent than the ones cached in @inode. It returns '-1' if * the attributes in @inode are more recent than the ones in @fattr, * and it returns 0 if not sure. */ static int nfs_inode_attrs_cmp(const struct nfs_fattr *fattr, const struct inode *inode) { if (nfs_inode_attrs_cmp_generic(fattr, inode) > 0) return 1; switch (NFS_SERVER(inode)->change_attr_type) { case NFS4_CHANGE_TYPE_IS_UNDEFINED: break; case NFS4_CHANGE_TYPE_IS_TIME_METADATA: if (!(fattr->valid & NFS_ATTR_FATTR_CHANGE)) break; return nfs_inode_attrs_cmp_monotonic(fattr, inode); default: if (!(fattr->valid & NFS_ATTR_FATTR_CHANGE)) break; return nfs_inode_attrs_cmp_strict_monotonic(fattr, inode); } return 0; } /** * nfs_inode_finish_partial_attr_update - complete a previous inode update * @fattr: attributes * @inode: pointer to inode * * Returns '1' if the last attribute update left the inode cached * attributes in a partially unrevalidated state, and @fattr * matches the change attribute of that partial update. * Otherwise returns '0'. */ static int nfs_inode_finish_partial_attr_update(const struct nfs_fattr *fattr, const struct inode *inode) { const unsigned long check_valid = NFS_INO_INVALID_ATIME | NFS_INO_INVALID_CTIME | NFS_INO_INVALID_MTIME | NFS_INO_INVALID_SIZE | NFS_INO_INVALID_BLOCKS | NFS_INO_INVALID_OTHER | NFS_INO_INVALID_NLINK; unsigned long cache_validity = NFS_I(inode)->cache_validity; enum nfs4_change_attr_type ctype = NFS_SERVER(inode)->change_attr_type; if (ctype != NFS4_CHANGE_TYPE_IS_UNDEFINED && !(cache_validity & NFS_INO_INVALID_CHANGE) && (cache_validity & check_valid) != 0 && (fattr->valid & NFS_ATTR_FATTR_CHANGE) != 0 && nfs_inode_attrs_cmp_monotonic(fattr, inode) == 0) return 1; return 0; } static void nfs_ooo_merge(struct nfs_inode *nfsi, u64 start, u64 end) { int i, cnt; if (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER) /* No point merging anything */ return; if (!nfsi->ooo) { nfsi->ooo = kmalloc(sizeof(*nfsi->ooo), GFP_ATOMIC); if (!nfsi->ooo) { nfsi->cache_validity |= NFS_INO_DATA_INVAL_DEFER; return; } nfsi->ooo->cnt = 0; } /* add this range, merging if possible */ cnt = nfsi->ooo->cnt; for (i = 0; i < cnt; i++) { if (end == nfsi->ooo->gap[i].start) end = nfsi->ooo->gap[i].end; else if (start == nfsi->ooo->gap[i].end) start = nfsi->ooo->gap[i].start; else continue; /* Remove 'i' from table and loop to insert the new range */ cnt -= 1; nfsi->ooo->gap[i] = nfsi->ooo->gap[cnt]; i = -1; } if (start != end) { if (cnt >= ARRAY_SIZE(nfsi->ooo->gap)) { nfsi->cache_validity |= NFS_INO_DATA_INVAL_DEFER; kfree(nfsi->ooo); nfsi->ooo = NULL; return; } nfsi->ooo->gap[cnt].start = start; nfsi->ooo->gap[cnt].end = end; cnt += 1; } nfsi->ooo->cnt = cnt; } static void nfs_ooo_record(struct nfs_inode *nfsi, struct nfs_fattr *fattr) { /* This reply was out-of-order, so record in the * pre/post change id, possibly cancelling * gaps created when iversion was jumpped forward. */ if ((fattr->valid & NFS_ATTR_FATTR_CHANGE) && (fattr->valid & NFS_ATTR_FATTR_PRECHANGE)) nfs_ooo_merge(nfsi, fattr->change_attr, fattr->pre_change_attr); } static int nfs_refresh_inode_locked(struct inode *inode, struct nfs_fattr *fattr) { int attr_cmp = nfs_inode_attrs_cmp(fattr, inode); int ret = 0; trace_nfs_refresh_inode_enter(inode); if (attr_cmp > 0 || nfs_inode_finish_partial_attr_update(fattr, inode)) ret = nfs_update_inode(inode, fattr); else { nfs_ooo_record(NFS_I(inode), fattr); if (attr_cmp == 0) ret = nfs_check_inode_attributes(inode, fattr); } trace_nfs_refresh_inode_exit(inode, ret); return ret; } /** * nfs_refresh_inode - try to update the inode attribute cache * @inode: pointer to inode * @fattr: updated attributes * * Check that an RPC call that returned attributes has not overlapped with * other recent updates of the inode metadata, then decide whether it is * safe to do a full update of the inode attributes, or whether just to * call nfs_check_inode_attributes. */ int nfs_refresh_inode(struct inode *inode, struct nfs_fattr *fattr) { int status; if ((fattr->valid & NFS_ATTR_FATTR) == 0) return 0; spin_lock(&inode->i_lock); status = nfs_refresh_inode_locked(inode, fattr); spin_unlock(&inode->i_lock); return status; } EXPORT_SYMBOL_GPL(nfs_refresh_inode); static int nfs_post_op_update_inode_locked(struct inode *inode, struct nfs_fattr *fattr, unsigned int invalid) { if (S_ISDIR(inode->i_mode)) invalid |= NFS_INO_INVALID_DATA; nfs_set_cache_invalid(inode, invalid); if ((fattr->valid & NFS_ATTR_FATTR) == 0) return 0; return nfs_refresh_inode_locked(inode, fattr); } /** * nfs_post_op_update_inode - try to update the inode attribute cache * @inode: pointer to inode * @fattr: updated attributes * * After an operation that has changed the inode metadata, mark the * attribute cache as being invalid, then try to update it. * * NB: if the server didn't return any post op attributes, this * function will force the retrieval of attributes before the next * NFS request. Thus it should be used only for operations that * are expected to change one or more attributes, to avoid * unnecessary NFS requests and trips through nfs_update_inode(). */ int nfs_post_op_update_inode(struct inode *inode, struct nfs_fattr *fattr) { int status; spin_lock(&inode->i_lock); nfs_fattr_set_barrier(fattr); status = nfs_post_op_update_inode_locked(inode, fattr, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME | NFS_INO_REVAL_FORCED); spin_unlock(&inode->i_lock); return status; } EXPORT_SYMBOL_GPL(nfs_post_op_update_inode); /** * nfs_post_op_update_inode_force_wcc_locked - update the inode attribute cache * @inode: pointer to inode * @fattr: updated attributes * * After an operation that has changed the inode metadata, mark the * attribute cache as being invalid, then try to update it. Fake up * weak cache consistency data, if none exist. * * This function is mainly designed to be used by the ->write_done() functions. */ int nfs_post_op_update_inode_force_wcc_locked(struct inode *inode, struct nfs_fattr *fattr) { int attr_cmp = nfs_inode_attrs_cmp(fattr, inode); int status; /* Don't do a WCC update if these attributes are already stale */ if (attr_cmp < 0) return 0; if ((fattr->valid & NFS_ATTR_FATTR) == 0 || !attr_cmp) { /* Record the pre/post change info before clearing PRECHANGE */ nfs_ooo_record(NFS_I(inode), fattr); fattr->valid &= ~(NFS_ATTR_FATTR_PRECHANGE | NFS_ATTR_FATTR_PRESIZE | NFS_ATTR_FATTR_PREMTIME | NFS_ATTR_FATTR_PRECTIME); goto out_noforce; } if ((fattr->valid & NFS_ATTR_FATTR_CHANGE) != 0 && (fattr->valid & NFS_ATTR_FATTR_PRECHANGE) == 0) { fattr->pre_change_attr = inode_peek_iversion_raw(inode); fattr->valid |= NFS_ATTR_FATTR_PRECHANGE; } if ((fattr->valid & NFS_ATTR_FATTR_CTIME) != 0 && (fattr->valid & NFS_ATTR_FATTR_PRECTIME) == 0) { fattr->pre_ctime = inode->i_ctime; fattr->valid |= NFS_ATTR_FATTR_PRECTIME; } if ((fattr->valid & NFS_ATTR_FATTR_MTIME) != 0 && (fattr->valid & NFS_ATTR_FATTR_PREMTIME) == 0) { fattr->pre_mtime = inode->i_mtime; fattr->valid |= NFS_ATTR_FATTR_PREMTIME; } if ((fattr->valid & NFS_ATTR_FATTR_SIZE) != 0 && (fattr->valid & NFS_ATTR_FATTR_PRESIZE) == 0) { fattr->pre_size = i_size_read(inode); fattr->valid |= NFS_ATTR_FATTR_PRESIZE; } out_noforce: status = nfs_post_op_update_inode_locked(inode, fattr, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME | NFS_INO_INVALID_MTIME | NFS_INO_INVALID_BLOCKS); return status; } /** * nfs_post_op_update_inode_force_wcc - try to update the inode attribute cache * @inode: pointer to inode * @fattr: updated attributes * * After an operation that has changed the inode metadata, mark the * attribute cache as being invalid, then try to update it. Fake up * weak cache consistency data, if none exist. * * This function is mainly designed to be used by the ->write_done() functions. */ int nfs_post_op_update_inode_force_wcc(struct inode *inode, struct nfs_fattr *fattr) { int status; spin_lock(&inode->i_lock); nfs_fattr_set_barrier(fattr); status = nfs_post_op_update_inode_force_wcc_locked(inode, fattr); spin_unlock(&inode->i_lock); return status; } EXPORT_SYMBOL_GPL(nfs_post_op_update_inode_force_wcc); /* * Many nfs protocol calls return the new file attributes after * an operation. Here we update the inode to reflect the state * of the server's inode. * * This is a bit tricky because we have to make sure all dirty pages * have been sent off to the server before calling invalidate_inode_pages. * To make sure no other process adds more write requests while we try * our best to flush them, we make them sleep during the attribute refresh. * * A very similar scenario holds for the dir cache. */ static int nfs_update_inode(struct inode *inode, struct nfs_fattr *fattr) { struct nfs_server *server = NFS_SERVER(inode); struct nfs_inode *nfsi = NFS_I(inode); loff_t cur_isize, new_isize; u64 fattr_supported = server->fattr_valid; unsigned long invalid = 0; unsigned long now = jiffies; unsigned long save_cache_validity; bool have_writers = nfs_file_has_buffered_writers(nfsi); bool cache_revalidated = true; bool attr_changed = false; bool have_delegation; dfprintk(VFS, "NFS: %s(%s/%lu fh_crc=0x%08x ct=%d info=0x%x)\n", __func__, inode->i_sb->s_id, inode->i_ino, nfs_display_fhandle_hash(NFS_FH(inode)), atomic_read(&inode->i_count), fattr->valid); if (!(fattr->valid & NFS_ATTR_FATTR_FILEID)) { /* Only a mounted-on-fileid? Just exit */ if (fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID) return 0; /* Has the inode gone and changed behind our back? */ } else if (nfsi->fileid != fattr->fileid) { /* Is this perhaps the mounted-on fileid? */ if ((fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID) && nfsi->fileid == fattr->mounted_on_fileid) return 0; printk(KERN_ERR "NFS: server %s error: fileid changed\n" "fsid %s: expected fileid 0x%Lx, got 0x%Lx\n", NFS_SERVER(inode)->nfs_client->cl_hostname, inode->i_sb->s_id, (long long)nfsi->fileid, (long long)fattr->fileid); goto out_err; } /* * Make sure the inode's type hasn't changed. */ if ((fattr->valid & NFS_ATTR_FATTR_TYPE) && inode_wrong_type(inode, fattr->mode)) { /* * Big trouble! The inode has become a different object. */ printk(KERN_DEBUG "NFS: %s: inode %lu mode changed, %07o to %07o\n", __func__, inode->i_ino, inode->i_mode, fattr->mode); goto out_err; } /* Update the fsid? */ if (S_ISDIR(inode->i_mode) && (fattr->valid & NFS_ATTR_FATTR_FSID) && !nfs_fsid_equal(&server->fsid, &fattr->fsid) && !IS_AUTOMOUNT(inode)) server->fsid = fattr->fsid; /* Save the delegation state before clearing cache_validity */ have_delegation = nfs_have_delegated_attributes(inode); /* * Update the read time so we don't revalidate too often. */ nfsi->read_cache_jiffies = fattr->time_start; save_cache_validity = nfsi->cache_validity; nfsi->cache_validity &= ~(NFS_INO_INVALID_ATTR | NFS_INO_INVALID_ATIME | NFS_INO_REVAL_FORCED | NFS_INO_INVALID_BLOCKS); /* Do atomic weak cache consistency updates */ nfs_wcc_update_inode(inode, fattr); if (pnfs_layoutcommit_outstanding(inode)) { nfsi->cache_validity |= save_cache_validity & (NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME | NFS_INO_INVALID_MTIME | NFS_INO_INVALID_SIZE | NFS_INO_INVALID_BLOCKS); cache_revalidated = false; } /* More cache consistency checks */ if (fattr->valid & NFS_ATTR_FATTR_CHANGE) { if (!have_writers && nfsi->ooo && nfsi->ooo->cnt == 1 && nfsi->ooo->gap[0].end == inode_peek_iversion_raw(inode)) { /* There is one remaining gap that hasn't been * merged into iversion - do that now. */ inode_set_iversion_raw(inode, nfsi->ooo->gap[0].start); kfree(nfsi->ooo); nfsi->ooo = NULL; } if (!inode_eq_iversion_raw(inode, fattr->change_attr)) { /* Could it be a race with writeback? */ if (!(have_writers || have_delegation)) { invalid |= NFS_INO_INVALID_DATA | NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL | NFS_INO_INVALID_XATTR; /* Force revalidate of all attributes */ save_cache_validity |= NFS_INO_INVALID_CTIME | NFS_INO_INVALID_MTIME | NFS_INO_INVALID_SIZE | NFS_INO_INVALID_BLOCKS | NFS_INO_INVALID_NLINK | NFS_INO_INVALID_MODE | NFS_INO_INVALID_OTHER; if (S_ISDIR(inode->i_mode)) nfs_force_lookup_revalidate(inode); attr_changed = true; dprintk("NFS: change_attr change on server for file %s/%ld\n", inode->i_sb->s_id, inode->i_ino); } else if (!have_delegation) { nfs_ooo_record(nfsi, fattr); nfs_ooo_merge(nfsi, inode_peek_iversion_raw(inode), fattr->change_attr); } inode_set_iversion_raw(inode, fattr->change_attr); } } else { nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_CHANGE; if (!have_delegation || (nfsi->cache_validity & NFS_INO_INVALID_CHANGE) != 0) cache_revalidated = false; } if (fattr->valid & NFS_ATTR_FATTR_MTIME) inode->i_mtime = fattr->mtime; else if (fattr_supported & NFS_ATTR_FATTR_MTIME) nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_MTIME; if (fattr->valid & NFS_ATTR_FATTR_CTIME) inode->i_ctime = fattr->ctime; else if (fattr_supported & NFS_ATTR_FATTR_CTIME) nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_CTIME; /* Check if our cached file size is stale */ if (fattr->valid & NFS_ATTR_FATTR_SIZE) { new_isize = nfs_size_to_loff_t(fattr->size); cur_isize = i_size_read(inode); if (new_isize != cur_isize && !have_delegation) { /* Do we perhaps have any outstanding writes, or has * the file grown beyond our last write? */ if (!nfs_have_writebacks(inode) || new_isize > cur_isize) { trace_nfs_size_update(inode, new_isize); i_size_write(inode, new_isize); if (!have_writers) invalid |= NFS_INO_INVALID_DATA; } } if (new_isize == 0 && !(fattr->valid & (NFS_ATTR_FATTR_SPACE_USED | NFS_ATTR_FATTR_BLOCKS_USED))) { fattr->du.nfs3.used = 0; fattr->valid |= NFS_ATTR_FATTR_SPACE_USED; } } else nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_SIZE; if (fattr->valid & NFS_ATTR_FATTR_ATIME) inode->i_atime = fattr->atime; else if (fattr_supported & NFS_ATTR_FATTR_ATIME) nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_ATIME; if (fattr->valid & NFS_ATTR_FATTR_MODE) { if ((inode->i_mode & S_IALLUGO) != (fattr->mode & S_IALLUGO)) { umode_t newmode = inode->i_mode & S_IFMT; newmode |= fattr->mode & S_IALLUGO; inode->i_mode = newmode; invalid |= NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL; } } else if (fattr_supported & NFS_ATTR_FATTR_MODE) nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_MODE; if (fattr->valid & NFS_ATTR_FATTR_OWNER) { if (!uid_eq(inode->i_uid, fattr->uid)) { invalid |= NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL; inode->i_uid = fattr->uid; } } else if (fattr_supported & NFS_ATTR_FATTR_OWNER) nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_OTHER; if (fattr->valid & NFS_ATTR_FATTR_GROUP) { if (!gid_eq(inode->i_gid, fattr->gid)) { invalid |= NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL; inode->i_gid = fattr->gid; } } else if (fattr_supported & NFS_ATTR_FATTR_GROUP) nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_OTHER; if (fattr->valid & NFS_ATTR_FATTR_NLINK) { if (inode->i_nlink != fattr->nlink) set_nlink(inode, fattr->nlink); } else if (fattr_supported & NFS_ATTR_FATTR_NLINK) nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_NLINK; if (fattr->valid & NFS_ATTR_FATTR_SPACE_USED) { /* * report the blocks in 512byte units */ inode->i_blocks = nfs_calc_block_size(fattr->du.nfs3.used); } else if (fattr_supported & NFS_ATTR_FATTR_SPACE_USED) nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_BLOCKS; if (fattr->valid & NFS_ATTR_FATTR_BLOCKS_USED) inode->i_blocks = fattr->du.nfs2.blocks; else if (fattr_supported & NFS_ATTR_FATTR_BLOCKS_USED) nfsi->cache_validity |= save_cache_validity & NFS_INO_INVALID_BLOCKS; /* Update attrtimeo value if we're out of the unstable period */ if (attr_changed) { nfs_inc_stats(inode, NFSIOS_ATTRINVALIDATE); nfsi->attrtimeo = NFS_MINATTRTIMEO(inode); nfsi->attrtimeo_timestamp = now; /* Set barrier to be more recent than all outstanding updates */ nfsi->attr_gencount = nfs_inc_attr_generation_counter(); } else { if (cache_revalidated) { if (!time_in_range_open(now, nfsi->attrtimeo_timestamp, nfsi->attrtimeo_timestamp + nfsi->attrtimeo)) { nfsi->attrtimeo <<= 1; if (nfsi->attrtimeo > NFS_MAXATTRTIMEO(inode)) nfsi->attrtimeo = NFS_MAXATTRTIMEO(inode); } nfsi->attrtimeo_timestamp = now; } /* Set the barrier to be more recent than this fattr */ if ((long)(fattr->gencount - nfsi->attr_gencount) > 0) nfsi->attr_gencount = fattr->gencount; } /* Don't invalidate the data if we were to blame */ if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) invalid &= ~NFS_INO_INVALID_DATA; nfs_set_cache_invalid(inode, invalid); return 0; out_err: /* * No need to worry about unhashing the dentry, as the * lookup validation will know that the inode is bad. * (But we fall through to invalidate the caches.) */ nfs_set_inode_stale_locked(inode); return -ESTALE; } struct inode *nfs_alloc_inode(struct super_block *sb) { struct nfs_inode *nfsi; nfsi = alloc_inode_sb(sb, nfs_inode_cachep, GFP_KERNEL); if (!nfsi) return NULL; nfsi->flags = 0UL; nfsi->cache_validity = 0UL; nfsi->ooo = NULL; #if IS_ENABLED(CONFIG_NFS_V4) nfsi->nfs4_acl = NULL; #endif /* CONFIG_NFS_V4 */ #ifdef CONFIG_NFS_V4_2 nfsi->xattr_cache = NULL; #endif return &nfsi->vfs_inode; } EXPORT_SYMBOL_GPL(nfs_alloc_inode); void nfs_free_inode(struct inode *inode) { kfree(NFS_I(inode)->ooo); kmem_cache_free(nfs_inode_cachep, NFS_I(inode)); } EXPORT_SYMBOL_GPL(nfs_free_inode); static inline void nfs4_init_once(struct nfs_inode *nfsi) { #if IS_ENABLED(CONFIG_NFS_V4) INIT_LIST_HEAD(&nfsi->open_states); nfsi->delegation = NULL; init_rwsem(&nfsi->rwsem); nfsi->layout = NULL; #endif } static void init_once(void *foo) { struct nfs_inode *nfsi = foo; inode_init_once(&nfsi->vfs_inode); INIT_LIST_HEAD(&nfsi->open_files); INIT_LIST_HEAD(&nfsi->access_cache_entry_lru); INIT_LIST_HEAD(&nfsi->access_cache_inode_lru); nfs4_init_once(nfsi); } static int __init nfs_init_inodecache(void) { nfs_inode_cachep = kmem_cache_create("nfs_inode_cache", sizeof(struct nfs_inode), 0, (SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD|SLAB_ACCOUNT), init_once); if (nfs_inode_cachep == NULL) return -ENOMEM; return 0; } static void nfs_destroy_inodecache(void) { /* * Make sure all delayed rcu free inodes are flushed before we * destroy cache. */ rcu_barrier(); kmem_cache_destroy(nfs_inode_cachep); } struct workqueue_struct *nfsiod_workqueue; EXPORT_SYMBOL_GPL(nfsiod_workqueue); /* * start up the nfsiod workqueue */ static int nfsiod_start(void) { struct workqueue_struct *wq; dprintk("RPC: creating workqueue nfsiod\n"); wq = alloc_workqueue("nfsiod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0); if (wq == NULL) return -ENOMEM; nfsiod_workqueue = wq; return 0; } /* * Destroy the nfsiod workqueue */ static void nfsiod_stop(void) { struct workqueue_struct *wq; wq = nfsiod_workqueue; if (wq == NULL) return; nfsiod_workqueue = NULL; destroy_workqueue(wq); } unsigned int nfs_net_id; EXPORT_SYMBOL_GPL(nfs_net_id); static int nfs_net_init(struct net *net) { struct nfs_net *nn = net_generic(net, nfs_net_id); nfs_clients_init(net); if (!rpc_proc_register(net, &nn->rpcstats)) { nfs_clients_exit(net); return -ENOMEM; } return nfs_fs_proc_net_init(net); } static void nfs_net_exit(struct net *net) { rpc_proc_unregister(net, "nfs"); nfs_fs_proc_net_exit(net); nfs_clients_exit(net); } static struct pernet_operations nfs_net_ops = { .init = nfs_net_init, .exit = nfs_net_exit, .id = &nfs_net_id, .size = sizeof(struct nfs_net), }; /* * Initialize NFS */ static int __init init_nfs_fs(void) { int err; err = nfs_sysfs_init(); if (err < 0) goto out10; err = register_pernet_subsys(&nfs_net_ops); if (err < 0) goto out9; err = nfsiod_start(); if (err) goto out7; err = nfs_fs_proc_init(); if (err) goto out6; err = nfs_init_nfspagecache(); if (err) goto out5; err = nfs_init_inodecache(); if (err) goto out4; err = nfs_init_readpagecache(); if (err) goto out3; err = nfs_init_writepagecache(); if (err) goto out2; err = nfs_init_directcache(); if (err) goto out1; err = register_nfs_fs(); if (err) goto out0; return 0; out0: nfs_destroy_directcache(); out1: nfs_destroy_writepagecache(); out2: nfs_destroy_readpagecache(); out3: nfs_destroy_inodecache(); out4: nfs_destroy_nfspagecache(); out5: nfs_fs_proc_exit(); out6: nfsiod_stop(); out7: unregister_pernet_subsys(&nfs_net_ops); out9: nfs_sysfs_exit(); out10: return err; } static void __exit exit_nfs_fs(void) { nfs_destroy_directcache(); nfs_destroy_writepagecache(); nfs_destroy_readpagecache(); nfs_destroy_inodecache(); nfs_destroy_nfspagecache(); unregister_pernet_subsys(&nfs_net_ops); unregister_nfs_fs(); nfs_fs_proc_exit(); nfsiod_stop(); nfs_sysfs_exit(); } /* Not quite true; I just maintain it */ MODULE_AUTHOR("Olaf Kirch <okir@monad.swb.de>"); MODULE_LICENSE("GPL"); module_param(enable_ino64, bool, 0644); module_init(init_nfs_fs) module_exit(exit_nfs_fs)
26 2855 2855 5 2839 16 2817 2829 14 1045 5 2 23 18 41 41 4 6 4 2817 1086 1833 1048 37 1050 1047 3 11 2814 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 // SPDX-License-Identifier: GPL-2.0 /* * security/tomoyo/realpath.c * * Copyright (C) 2005-2011 NTT DATA CORPORATION */ #include "common.h" #include <linux/magic.h> #include <linux/proc_fs.h> /** * tomoyo_encode2 - Encode binary string to ascii string. * * @str: String in binary format. * @str_len: Size of @str in byte. * * Returns pointer to @str in ascii format on success, NULL otherwise. * * This function uses kzalloc(), so caller must kfree() if this function * didn't return NULL. */ char *tomoyo_encode2(const char *str, int str_len) { int i; int len = 0; const char *p = str; char *cp; char *cp0; if (!p) return NULL; for (i = 0; i < str_len; i++) { const unsigned char c = p[i]; if (c == '\\') len += 2; else if (c > ' ' && c < 127) len++; else len += 4; } len++; /* Reserve space for appending "/". */ cp = kzalloc(len + 10, GFP_NOFS); if (!cp) return NULL; cp0 = cp; p = str; for (i = 0; i < str_len; i++) { const unsigned char c = p[i]; if (c == '\\') { *cp++ = '\\'; *cp++ = '\\'; } else if (c > ' ' && c < 127) { *cp++ = c; } else { *cp++ = '\\'; *cp++ = (c >> 6) + '0'; *cp++ = ((c >> 3) & 7) + '0'; *cp++ = (c & 7) + '0'; } } return cp0; } /** * tomoyo_encode - Encode binary string to ascii string. * * @str: String in binary format. * * Returns pointer to @str in ascii format on success, NULL otherwise. * * This function uses kzalloc(), so caller must kfree() if this function * didn't return NULL. */ char *tomoyo_encode(const char *str) { return str ? tomoyo_encode2(str, strlen(str)) : NULL; } /** * tomoyo_get_absolute_path - Get the path of a dentry but ignores chroot'ed root. * * @path: Pointer to "struct path". * @buffer: Pointer to buffer to return value in. * @buflen: Sizeof @buffer. * * Returns the buffer on success, an error code otherwise. * * If dentry is a directory, trailing '/' is appended. */ static char *tomoyo_get_absolute_path(const struct path *path, char * const buffer, const int buflen) { char *pos = ERR_PTR(-ENOMEM); if (buflen >= 256) { /* go to whatever namespace root we are under */ pos = d_absolute_path(path, buffer, buflen - 1); if (!IS_ERR(pos) && *pos == '/' && pos[1]) { struct inode *inode = d_backing_inode(path->dentry); if (inode && S_ISDIR(inode->i_mode)) { buffer[buflen - 2] = '/'; buffer[buflen - 1] = '\0'; } } } return pos; } /** * tomoyo_get_dentry_path - Get the path of a dentry. * * @dentry: Pointer to "struct dentry". * @buffer: Pointer to buffer to return value in. * @buflen: Sizeof @buffer. * * Returns the buffer on success, an error code otherwise. * * If dentry is a directory, trailing '/' is appended. */ static char *tomoyo_get_dentry_path(struct dentry *dentry, char * const buffer, const int buflen) { char *pos = ERR_PTR(-ENOMEM); if (buflen >= 256) { pos = dentry_path_raw(dentry, buffer, buflen - 1); if (!IS_ERR(pos) && *pos == '/' && pos[1]) { struct inode *inode = d_backing_inode(dentry); if (inode && S_ISDIR(inode->i_mode)) { buffer[buflen - 2] = '/'; buffer[buflen - 1] = '\0'; } } } return pos; } /** * tomoyo_get_local_path - Get the path of a dentry. * * @dentry: Pointer to "struct dentry". * @buffer: Pointer to buffer to return value in. * @buflen: Sizeof @buffer. * * Returns the buffer on success, an error code otherwise. */ static char *tomoyo_get_local_path(struct dentry *dentry, char * const buffer, const int buflen) { struct super_block *sb = dentry->d_sb; char *pos = tomoyo_get_dentry_path(dentry, buffer, buflen); if (IS_ERR(pos)) return pos; /* Convert from $PID to self if $PID is current thread. */ if (sb->s_magic == PROC_SUPER_MAGIC && *pos == '/') { char *ep; const pid_t pid = (pid_t) simple_strtoul(pos + 1, &ep, 10); struct pid_namespace *proc_pidns = proc_pid_ns(sb); if (*ep == '/' && pid && pid == task_tgid_nr_ns(current, proc_pidns)) { pos = ep - 5; if (pos < buffer) goto out; memmove(pos, "/self", 5); } goto prepend_filesystem_name; } /* Use filesystem name for unnamed devices. */ if (!MAJOR(sb->s_dev)) goto prepend_filesystem_name; { struct inode *inode = d_backing_inode(sb->s_root); /* * Use filesystem name if filesystem does not support rename() * operation. */ if (!inode->i_op->rename) goto prepend_filesystem_name; } /* Prepend device name. */ { char name[64]; int name_len; const dev_t dev = sb->s_dev; name[sizeof(name) - 1] = '\0'; snprintf(name, sizeof(name) - 1, "dev(%u,%u):", MAJOR(dev), MINOR(dev)); name_len = strlen(name); pos -= name_len; if (pos < buffer) goto out; memmove(pos, name, name_len); return pos; } /* Prepend filesystem name. */ prepend_filesystem_name: { const char *name = sb->s_type->name; const int name_len = strlen(name); pos -= name_len + 1; if (pos < buffer) goto out; memmove(pos, name, name_len); pos[name_len] = ':'; } return pos; out: return ERR_PTR(-ENOMEM); } /** * tomoyo_realpath_from_path - Returns realpath(3) of the given pathname but ignores chroot'ed root. * * @path: Pointer to "struct path". * * Returns the realpath of the given @path on success, NULL otherwise. * * If dentry is a directory, trailing '/' is appended. * Characters out of 0x20 < c < 0x7F range are converted to * \ooo style octal string. * Character \ is converted to \\ string. * * These functions use kzalloc(), so the caller must call kfree() * if these functions didn't return NULL. */ char *tomoyo_realpath_from_path(const struct path *path) { char *buf = NULL; char *name = NULL; unsigned int buf_len = PAGE_SIZE / 2; struct dentry *dentry = path->dentry; struct super_block *sb = dentry->d_sb; while (1) { char *pos; struct inode *inode; buf_len <<= 1; kfree(buf); buf = kmalloc(buf_len, GFP_NOFS); if (!buf) break; /* To make sure that pos is '\0' terminated. */ buf[buf_len - 1] = '\0'; /* For "pipe:[\$]" and "socket:[\$]". */ if (dentry->d_op && dentry->d_op->d_dname) { pos = dentry->d_op->d_dname(dentry, buf, buf_len - 1); goto encode; } inode = d_backing_inode(sb->s_root); /* * Get local name for filesystems without rename() operation */ if ((!inode->i_op->rename && !(sb->s_type->fs_flags & FS_REQUIRES_DEV))) pos = tomoyo_get_local_path(path->dentry, buf, buf_len - 1); /* Get absolute name for the rest. */ else { pos = tomoyo_get_absolute_path(path, buf, buf_len - 1); /* * Fall back to local name if absolute name is not * available. */ if (pos == ERR_PTR(-EINVAL)) pos = tomoyo_get_local_path(path->dentry, buf, buf_len - 1); } encode: if (IS_ERR(pos)) continue; name = tomoyo_encode(pos); break; } kfree(buf); if (!name) tomoyo_warn_oom(__func__); return name; } /** * tomoyo_realpath_nofollow - Get realpath of a pathname. * * @pathname: The pathname to solve. * * Returns the realpath of @pathname on success, NULL otherwise. */ char *tomoyo_realpath_nofollow(const char *pathname) { struct path path; if (pathname && kern_path(pathname, 0, &path) == 0) { char *buf = tomoyo_realpath_from_path(&path); path_put(&path); return buf; } return NULL; }
5 5 5 5 903 896 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 // SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2010-2011 EIA Electronics, // Pieter Beyens <pieter.beyens@eia.be> // Copyright (c) 2010-2011 EIA Electronics, // Kurt Van Dijck <kurt.van.dijck@eia.be> // Copyright (c) 2018 Protonic, // Robin van der Gracht <robin@protonic.nl> // Copyright (c) 2017-2019 Pengutronix, // Marc Kleine-Budde <kernel@pengutronix.de> // Copyright (c) 2017-2019 Pengutronix, // Oleksij Rempel <kernel@pengutronix.de> /* Core of can-j1939 that links j1939 to CAN. */ #include <linux/can/can-ml.h> #include <linux/can/core.h> #include <linux/can/skb.h> #include <linux/if_arp.h> #include <linux/module.h> #include "j1939-priv.h" MODULE_DESCRIPTION("PF_CAN SAE J1939"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("EIA Electronics (Kurt Van Dijck & Pieter Beyens)"); MODULE_ALIAS("can-proto-" __stringify(CAN_J1939)); /* LOWLEVEL CAN interface */ /* CAN_HDR: #bytes before can_frame data part */ #define J1939_CAN_HDR (offsetof(struct can_frame, data)) /* lowest layer */ static void j1939_can_recv(struct sk_buff *iskb, void *data) { struct j1939_priv *priv = data; struct sk_buff *skb; struct j1939_sk_buff_cb *skcb, *iskcb; struct can_frame *cf; /* make sure we only get Classical CAN frames */ if (!can_is_can_skb(iskb)) return; /* create a copy of the skb * j1939 only delivers the real data bytes, * the header goes into sockaddr. * j1939 may not touch the incoming skb in such way */ skb = skb_clone(iskb, GFP_ATOMIC); if (!skb) return; j1939_priv_get(priv); can_skb_set_owner(skb, iskb->sk); /* get a pointer to the header of the skb * the skb payload (pointer) is moved, so that the next skb_data * returns the actual payload */ cf = (void *)skb->data; skb_pull(skb, J1939_CAN_HDR); /* fix length, set to dlc, with 8 maximum */ skb_trim(skb, min_t(uint8_t, cf->len, 8)); /* set addr */ skcb = j1939_skb_to_cb(skb); memset(skcb, 0, sizeof(*skcb)); iskcb = j1939_skb_to_cb(iskb); skcb->tskey = iskcb->tskey; skcb->priority = (cf->can_id >> 26) & 0x7; skcb->addr.sa = cf->can_id; skcb->addr.pgn = (cf->can_id >> 8) & J1939_PGN_MAX; /* set default message type */ skcb->addr.type = J1939_TP; if (!j1939_address_is_valid(skcb->addr.sa)) { netdev_err_once(priv->ndev, "%s: sa is broadcast address, ignoring!\n", __func__); goto done; } if (j1939_pgn_is_pdu1(skcb->addr.pgn)) { /* Type 1: with destination address */ skcb->addr.da = skcb->addr.pgn; /* normalize pgn: strip dst address */ skcb->addr.pgn &= 0x3ff00; } else { /* set broadcast address */ skcb->addr.da = J1939_NO_ADDR; } /* update localflags */ read_lock_bh(&priv->lock); if (j1939_address_is_unicast(skcb->addr.sa) && priv->ents[skcb->addr.sa].nusers) skcb->flags |= J1939_ECU_LOCAL_SRC; if (j1939_address_is_unicast(skcb->addr.da) && priv->ents[skcb->addr.da].nusers) skcb->flags |= J1939_ECU_LOCAL_DST; read_unlock_bh(&priv->lock); /* deliver into the j1939 stack ... */ j1939_ac_recv(priv, skb); if (j1939_tp_recv(priv, skb)) /* this means the transport layer processed the message */ goto done; j1939_simple_recv(priv, skb); j1939_sk_recv(priv, skb); done: j1939_priv_put(priv); kfree_skb(skb); } /* NETDEV MANAGEMENT */ /* values for can_rx_(un)register */ #define J1939_CAN_ID CAN_EFF_FLAG #define J1939_CAN_MASK (CAN_EFF_FLAG | CAN_RTR_FLAG) static DEFINE_MUTEX(j1939_netdev_lock); static struct j1939_priv *j1939_priv_create(struct net_device *ndev) { struct j1939_priv *priv; priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) return NULL; rwlock_init(&priv->lock); INIT_LIST_HEAD(&priv->ecus); priv->ndev = ndev; kref_init(&priv->kref); kref_init(&priv->rx_kref); dev_hold(ndev); netdev_dbg(priv->ndev, "%s : 0x%p\n", __func__, priv); return priv; } static inline void j1939_priv_set(struct net_device *ndev, struct j1939_priv *priv) { struct can_ml_priv *can_ml = can_get_ml_priv(ndev); can_ml->j1939_priv = priv; } static void __j1939_priv_release(struct kref *kref) { struct j1939_priv *priv = container_of(kref, struct j1939_priv, kref); struct net_device *ndev = priv->ndev; netdev_dbg(priv->ndev, "%s: 0x%p\n", __func__, priv); WARN_ON_ONCE(!list_empty(&priv->active_session_list)); WARN_ON_ONCE(!list_empty(&priv->ecus)); WARN_ON_ONCE(!list_empty(&priv->j1939_socks)); dev_put(ndev); kfree(priv); } void j1939_priv_put(struct j1939_priv *priv) { kref_put(&priv->kref, __j1939_priv_release); } void j1939_priv_get(struct j1939_priv *priv) { kref_get(&priv->kref); } static int j1939_can_rx_register(struct j1939_priv *priv) { struct net_device *ndev = priv->ndev; int ret; j1939_priv_get(priv); ret = can_rx_register(dev_net(ndev), ndev, J1939_CAN_ID, J1939_CAN_MASK, j1939_can_recv, priv, "j1939", NULL); if (ret < 0) { j1939_priv_put(priv); return ret; } return 0; } static void j1939_can_rx_unregister(struct j1939_priv *priv) { struct net_device *ndev = priv->ndev; can_rx_unregister(dev_net(ndev), ndev, J1939_CAN_ID, J1939_CAN_MASK, j1939_can_recv, priv); /* The last reference of priv is dropped by the RCU deferred * j1939_sk_sock_destruct() of the last socket, so we can * safely drop this reference here. */ j1939_priv_put(priv); } static void __j1939_rx_release(struct kref *kref) __releases(&j1939_netdev_lock) { struct j1939_priv *priv = container_of(kref, struct j1939_priv, rx_kref); j1939_can_rx_unregister(priv); j1939_ecu_unmap_all(priv); j1939_priv_set(priv->ndev, NULL); mutex_unlock(&j1939_netdev_lock); } /* get pointer to priv without increasing ref counter */ static inline struct j1939_priv *j1939_ndev_to_priv(struct net_device *ndev) { struct can_ml_priv *can_ml = can_get_ml_priv(ndev); return can_ml->j1939_priv; } static struct j1939_priv *j1939_priv_get_by_ndev_locked(struct net_device *ndev) { struct j1939_priv *priv; lockdep_assert_held(&j1939_netdev_lock); priv = j1939_ndev_to_priv(ndev); if (priv) j1939_priv_get(priv); return priv; } static struct j1939_priv *j1939_priv_get_by_ndev(struct net_device *ndev) { struct j1939_priv *priv; mutex_lock(&j1939_netdev_lock); priv = j1939_priv_get_by_ndev_locked(ndev); mutex_unlock(&j1939_netdev_lock); return priv; } struct j1939_priv *j1939_netdev_start(struct net_device *ndev) { struct j1939_priv *priv, *priv_new; int ret; mutex_lock(&j1939_netdev_lock); priv = j1939_priv_get_by_ndev_locked(ndev); if (priv) { kref_get(&priv->rx_kref); mutex_unlock(&j1939_netdev_lock); return priv; } mutex_unlock(&j1939_netdev_lock); priv = j1939_priv_create(ndev); if (!priv) return ERR_PTR(-ENOMEM); j1939_tp_init(priv); rwlock_init(&priv->j1939_socks_lock); INIT_LIST_HEAD(&priv->j1939_socks); mutex_lock(&j1939_netdev_lock); priv_new = j1939_priv_get_by_ndev_locked(ndev); if (priv_new) { /* Someone was faster than us, use their priv and roll * back our's. */ kref_get(&priv_new->rx_kref); mutex_unlock(&j1939_netdev_lock); dev_put(ndev); kfree(priv); return priv_new; } j1939_priv_set(ndev, priv); ret = j1939_can_rx_register(priv); if (ret < 0) goto out_priv_put; mutex_unlock(&j1939_netdev_lock); return priv; out_priv_put: j1939_priv_set(ndev, NULL); mutex_unlock(&j1939_netdev_lock); dev_put(ndev); kfree(priv); return ERR_PTR(ret); } void j1939_netdev_stop(struct j1939_priv *priv) { kref_put_mutex(&priv->rx_kref, __j1939_rx_release, &j1939_netdev_lock); j1939_priv_put(priv); } int j1939_send_one(struct j1939_priv *priv, struct sk_buff *skb) { int ret, dlc; canid_t canid; struct j1939_sk_buff_cb *skcb = j1939_skb_to_cb(skb); struct can_frame *cf; /* apply sanity checks */ if (j1939_pgn_is_pdu1(skcb->addr.pgn)) skcb->addr.pgn &= J1939_PGN_PDU1_MAX; else skcb->addr.pgn &= J1939_PGN_MAX; if (skcb->priority > 7) skcb->priority = 6; ret = j1939_ac_fixup(priv, skb); if (unlikely(ret)) goto failed; dlc = skb->len; /* re-claim the CAN_HDR from the SKB */ cf = skb_push(skb, J1939_CAN_HDR); /* initialize header structure */ memset(cf, 0, J1939_CAN_HDR); /* make it a full can frame again */ skb_put_zero(skb, 8 - dlc); canid = CAN_EFF_FLAG | (skcb->priority << 26) | (skcb->addr.pgn << 8) | skcb->addr.sa; if (j1939_pgn_is_pdu1(skcb->addr.pgn)) canid |= skcb->addr.da << 8; cf->can_id = canid; cf->len = dlc; return can_send(skb, 1); failed: kfree_skb(skb); return ret; } static int j1939_netdev_notify(struct notifier_block *nb, unsigned long msg, void *data) { struct net_device *ndev = netdev_notifier_info_to_dev(data); struct can_ml_priv *can_ml = can_get_ml_priv(ndev); struct j1939_priv *priv; if (!can_ml) goto notify_done; priv = j1939_priv_get_by_ndev(ndev); if (!priv) goto notify_done; switch (msg) { case NETDEV_DOWN: j1939_cancel_active_session(priv, NULL); j1939_sk_netdev_event_netdown(priv); j1939_ecu_unmap_all(priv); break; } j1939_priv_put(priv); notify_done: return NOTIFY_DONE; } static struct notifier_block j1939_netdev_notifier = { .notifier_call = j1939_netdev_notify, }; /* MODULE interface */ static __init int j1939_module_init(void) { int ret; pr_info("can: SAE J1939\n"); ret = register_netdevice_notifier(&j1939_netdev_notifier); if (ret) goto fail_notifier; ret = can_proto_register(&j1939_can_proto); if (ret < 0) { pr_err("can: registration of j1939 protocol failed\n"); goto fail_sk; } return 0; fail_sk: unregister_netdevice_notifier(&j1939_netdev_notifier); fail_notifier: return ret; } static __exit void j1939_module_exit(void) { can_proto_unregister(&j1939_can_proto); unregister_netdevice_notifier(&j1939_netdev_notifier); } module_init(j1939_module_init); module_exit(j1939_module_exit);
432 432 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 /* SPDX-License-Identifier: GPL-2.0 */ #include <linux/pm_qos.h> static inline void device_pm_init_common(struct device *dev) { if (!dev->power.early_init) { spin_lock_init(&dev->power.lock); dev->power.qos = NULL; dev->power.early_init = true; } } #ifdef CONFIG_PM static inline void pm_runtime_early_init(struct device *dev) { dev->power.disable_depth = 1; device_pm_init_common(dev); } extern void pm_runtime_init(struct device *dev); extern void pm_runtime_reinit(struct device *dev); extern void pm_runtime_remove(struct device *dev); extern u64 pm_runtime_active_time(struct device *dev); #define WAKE_IRQ_DEDICATED_ALLOCATED BIT(0) #define WAKE_IRQ_DEDICATED_MANAGED BIT(1) #define WAKE_IRQ_DEDICATED_REVERSE BIT(2) #define WAKE_IRQ_DEDICATED_MASK (WAKE_IRQ_DEDICATED_ALLOCATED | \ WAKE_IRQ_DEDICATED_MANAGED | \ WAKE_IRQ_DEDICATED_REVERSE) #define WAKE_IRQ_DEDICATED_ENABLED BIT(3) struct wake_irq { struct device *dev; unsigned int status; int irq; const char *name; }; extern void dev_pm_arm_wake_irq(struct wake_irq *wirq); extern void dev_pm_disarm_wake_irq(struct wake_irq *wirq); extern void dev_pm_enable_wake_irq_check(struct device *dev, bool can_change_status); extern void dev_pm_disable_wake_irq_check(struct device *dev, bool cond_disable); extern void dev_pm_enable_wake_irq_complete(struct device *dev); #ifdef CONFIG_PM_SLEEP extern void device_wakeup_attach_irq(struct device *dev, struct wake_irq *wakeirq); extern void device_wakeup_detach_irq(struct device *dev); extern void device_wakeup_arm_wake_irqs(void); extern void device_wakeup_disarm_wake_irqs(void); #else static inline void device_wakeup_attach_irq(struct device *dev, struct wake_irq *wakeirq) {} static inline void device_wakeup_detach_irq(struct device *dev) { } #endif /* CONFIG_PM_SLEEP */ /* * sysfs.c */ extern int dpm_sysfs_add(struct device *dev); extern void dpm_sysfs_remove(struct device *dev); extern void rpm_sysfs_remove(struct device *dev); extern int wakeup_sysfs_add(struct device *dev); extern void wakeup_sysfs_remove(struct device *dev); extern int pm_qos_sysfs_add_resume_latency(struct device *dev); extern void pm_qos_sysfs_remove_resume_latency(struct device *dev); extern int pm_qos_sysfs_add_flags(struct device *dev); extern void pm_qos_sysfs_remove_flags(struct device *dev); extern int pm_qos_sysfs_add_latency_tolerance(struct device *dev); extern void pm_qos_sysfs_remove_latency_tolerance(struct device *dev); extern int dpm_sysfs_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid); #else /* CONFIG_PM */ static inline void pm_runtime_early_init(struct device *dev) { device_pm_init_common(dev); } static inline void pm_runtime_init(struct device *dev) {} static inline void pm_runtime_reinit(struct device *dev) {} static inline void pm_runtime_remove(struct device *dev) {} static inline int dpm_sysfs_add(struct device *dev) { return 0; } static inline void dpm_sysfs_remove(struct device *dev) {} static inline int dpm_sysfs_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) { return 0; } #endif #ifdef CONFIG_PM_SLEEP /* kernel/power/main.c */ extern int pm_async_enabled; /* drivers/base/power/main.c */ extern struct list_head dpm_list; /* The active device list */ static inline struct device *to_device(struct list_head *entry) { return container_of(entry, struct device, power.entry); } extern void device_pm_sleep_init(struct device *dev); extern void device_pm_add(struct device *); extern void device_pm_remove(struct device *); extern void device_pm_move_before(struct device *, struct device *); extern void device_pm_move_after(struct device *, struct device *); extern void device_pm_move_last(struct device *); extern void device_pm_check_callbacks(struct device *dev); static inline bool device_pm_initialized(struct device *dev) { return dev->power.in_dpm_list; } /* drivers/base/power/wakeup_stats.c */ extern int wakeup_source_sysfs_add(struct device *parent, struct wakeup_source *ws); extern void wakeup_source_sysfs_remove(struct wakeup_source *ws); extern int pm_wakeup_source_sysfs_add(struct device *parent); #else /* !CONFIG_PM_SLEEP */ static inline void device_pm_sleep_init(struct device *dev) {} static inline void device_pm_add(struct device *dev) {} static inline void device_pm_remove(struct device *dev) { pm_runtime_remove(dev); } static inline void device_pm_move_before(struct device *deva, struct device *devb) {} static inline void device_pm_move_after(struct device *deva, struct device *devb) {} static inline void device_pm_move_last(struct device *dev) {} static inline void device_pm_check_callbacks(struct device *dev) {} static inline bool device_pm_initialized(struct device *dev) { return device_is_registered(dev); } static inline int pm_wakeup_source_sysfs_add(struct device *parent) { return 0; } #endif /* !CONFIG_PM_SLEEP */ static inline void device_pm_init(struct device *dev) { device_pm_init_common(dev); device_pm_sleep_init(dev); pm_runtime_init(dev); }
24 6 1 4 2 11 1 10 17 448 422 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 // SPDX-License-Identifier: GPL-2.0-only #include <linux/netlink.h> #include <linux/nospec.h> #include <linux/rtnetlink.h> #include <linux/types.h> #include <net/ip.h> #include <net/net_namespace.h> #include <net/tcp.h> static int ip_metrics_convert(struct net *net, struct nlattr *fc_mx, int fc_mx_len, u32 *metrics, struct netlink_ext_ack *extack) { bool ecn_ca = false; struct nlattr *nla; int remaining; if (!fc_mx) return 0; nla_for_each_attr(nla, fc_mx, fc_mx_len, remaining) { int type = nla_type(nla); u32 val; if (!type) continue; if (type > RTAX_MAX) { NL_SET_ERR_MSG(extack, "Invalid metric type"); return -EINVAL; } type = array_index_nospec(type, RTAX_MAX + 1); if (type == RTAX_CC_ALGO) { char tmp[TCP_CA_NAME_MAX]; nla_strscpy(tmp, nla, sizeof(tmp)); val = tcp_ca_get_key_by_name(net, tmp, &ecn_ca); if (val == TCP_CA_UNSPEC) { NL_SET_ERR_MSG(extack, "Unknown tcp congestion algorithm"); return -EINVAL; } } else { if (nla_len(nla) != sizeof(u32)) { NL_SET_ERR_MSG_ATTR(extack, nla, "Invalid attribute in metrics"); return -EINVAL; } val = nla_get_u32(nla); } if (type == RTAX_ADVMSS && val > 65535 - 40) val = 65535 - 40; if (type == RTAX_MTU && val > 65535 - 15) val = 65535 - 15; if (type == RTAX_HOPLIMIT && val > 255) val = 255; if (type == RTAX_FEATURES && (val & ~RTAX_FEATURE_MASK)) { NL_SET_ERR_MSG(extack, "Unknown flag set in feature mask in metrics attribute"); return -EINVAL; } metrics[type - 1] = val; } if (ecn_ca) metrics[RTAX_FEATURES - 1] |= DST_FEATURE_ECN_CA; return 0; } struct dst_metrics *ip_fib_metrics_init(struct net *net, struct nlattr *fc_mx, int fc_mx_len, struct netlink_ext_ack *extack) { struct dst_metrics *fib_metrics; int err; if (!fc_mx) return (struct dst_metrics *)&dst_default_metrics; fib_metrics = kzalloc(sizeof(*fib_metrics), GFP_KERNEL); if (unlikely(!fib_metrics)) return ERR_PTR(-ENOMEM); err = ip_metrics_convert(net, fc_mx, fc_mx_len, fib_metrics->metrics, extack); if (!err) { refcount_set(&fib_metrics->refcnt, 1); } else { kfree(fib_metrics); fib_metrics = ERR_PTR(err); } return fib_metrics; } EXPORT_SYMBOL_GPL(ip_fib_metrics_init);
15339 15309 15330 15169 3896 3894 3854 1186 1185 11 1165 7 35 1131 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 // SPDX-License-Identifier: GPL-2.0 #include <linux/bitops.h> #include <linux/fault-inject-usercopy.h> #include <linux/instrumented.h> #include <linux/uaccess.h> #include <linux/nospec.h> /* out-of-line parts */ #ifndef INLINE_COPY_FROM_USER unsigned long _copy_from_user(void *to, const void __user *from, unsigned long n) { unsigned long res = n; might_fault(); if (!should_fail_usercopy() && likely(access_ok(from, n))) { /* * Ensure that bad access_ok() speculation will not * lead to nasty side effects *after* the copy is * finished: */ barrier_nospec(); instrument_copy_from_user_before(to, from, n); res = raw_copy_from_user(to, from, n); instrument_copy_from_user_after(to, from, n, res); } if (unlikely(res)) memset(to + (n - res), 0, res); return res; } EXPORT_SYMBOL(_copy_from_user); #endif #ifndef INLINE_COPY_TO_USER unsigned long _copy_to_user(void __user *to, const void *from, unsigned long n) { might_fault(); if (should_fail_usercopy()) return n; if (likely(access_ok(to, n))) { instrument_copy_to_user(to, from, n); n = raw_copy_to_user(to, from, n); } return n; } EXPORT_SYMBOL(_copy_to_user); #endif /** * check_zeroed_user: check if a userspace buffer only contains zero bytes * @from: Source address, in userspace. * @size: Size of buffer. * * This is effectively shorthand for "memchr_inv(from, 0, size) == NULL" for * userspace addresses (and is more efficient because we don't care where the * first non-zero byte is). * * Returns: * * 0: There were non-zero bytes present in the buffer. * * 1: The buffer was full of zero bytes. * * -EFAULT: access to userspace failed. */ int check_zeroed_user(const void __user *from, size_t size) { unsigned long val; uintptr_t align = (uintptr_t) from % sizeof(unsigned long); if (unlikely(size == 0)) return 1; from -= align; size += align; if (!user_read_access_begin(from, size)) return -EFAULT; unsafe_get_user(val, (unsigned long __user *) from, err_fault); if (align) val &= ~aligned_byte_mask(align); while (size > sizeof(unsigned long)) { if (unlikely(val)) goto done; from += sizeof(unsigned long); size -= sizeof(unsigned long); unsafe_get_user(val, (unsigned long __user *) from, err_fault); } if (size < sizeof(unsigned long)) val &= aligned_byte_mask(size); done: user_read_access_end(); return (val == 0); err_fault: user_read_access_end(); return -EFAULT; } EXPORT_SYMBOL(check_zeroed_user);
1 2 7 7 7 7 2 1 2 1 1 2 1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 /* BlueZ - Bluetooth protocol stack for Linux Copyright (C) 2010 Nokia Corporation Copyright (C) 2011-2012 Intel Corporation This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ /* Bluetooth HCI Management interface */ #include <linux/module.h> #include <asm/unaligned.h> #include <net/bluetooth/bluetooth.h> #include <net/bluetooth/hci_core.h> #include <net/bluetooth/hci_sock.h> #include <net/bluetooth/l2cap.h> #include <net/bluetooth/mgmt.h> #include "hci_request.h" #include "smp.h" #include "mgmt_util.h" #include "mgmt_config.h" #include "msft.h" #include "eir.h" #include "aosp.h" #define MGMT_VERSION 1 #define MGMT_REVISION 22 static const u16 mgmt_commands[] = { MGMT_OP_READ_INDEX_LIST, MGMT_OP_READ_INFO, MGMT_OP_SET_POWERED, MGMT_OP_SET_DISCOVERABLE, MGMT_OP_SET_CONNECTABLE, MGMT_OP_SET_FAST_CONNECTABLE, MGMT_OP_SET_BONDABLE, MGMT_OP_SET_LINK_SECURITY, MGMT_OP_SET_SSP, MGMT_OP_SET_HS, MGMT_OP_SET_LE, MGMT_OP_SET_DEV_CLASS, MGMT_OP_SET_LOCAL_NAME, MGMT_OP_ADD_UUID, MGMT_OP_REMOVE_UUID, MGMT_OP_LOAD_LINK_KEYS, MGMT_OP_LOAD_LONG_TERM_KEYS, MGMT_OP_DISCONNECT, MGMT_OP_GET_CONNECTIONS, MGMT_OP_PIN_CODE_REPLY, MGMT_OP_PIN_CODE_NEG_REPLY, MGMT_OP_SET_IO_CAPABILITY, MGMT_OP_PAIR_DEVICE, MGMT_OP_CANCEL_PAIR_DEVICE, MGMT_OP_UNPAIR_DEVICE, MGMT_OP_USER_CONFIRM_REPLY, MGMT_OP_USER_CONFIRM_NEG_REPLY, MGMT_OP_USER_PASSKEY_REPLY, MGMT_OP_USER_PASSKEY_NEG_REPLY, MGMT_OP_READ_LOCAL_OOB_DATA, MGMT_OP_ADD_REMOTE_OOB_DATA, MGMT_OP_REMOVE_REMOTE_OOB_DATA, MGMT_OP_START_DISCOVERY, MGMT_OP_STOP_DISCOVERY, MGMT_OP_CONFIRM_NAME, MGMT_OP_BLOCK_DEVICE, MGMT_OP_UNBLOCK_DEVICE, MGMT_OP_SET_DEVICE_ID, MGMT_OP_SET_ADVERTISING, MGMT_OP_SET_BREDR, MGMT_OP_SET_STATIC_ADDRESS, MGMT_OP_SET_SCAN_PARAMS, MGMT_OP_SET_SECURE_CONN, MGMT_OP_SET_DEBUG_KEYS, MGMT_OP_SET_PRIVACY, MGMT_OP_LOAD_IRKS, MGMT_OP_GET_CONN_INFO, MGMT_OP_GET_CLOCK_INFO, MGMT_OP_ADD_DEVICE, MGMT_OP_REMOVE_DEVICE, MGMT_OP_LOAD_CONN_PARAM, MGMT_OP_READ_UNCONF_INDEX_LIST, MGMT_OP_READ_CONFIG_INFO, MGMT_OP_SET_EXTERNAL_CONFIG, MGMT_OP_SET_PUBLIC_ADDRESS, MGMT_OP_START_SERVICE_DISCOVERY, MGMT_OP_READ_LOCAL_OOB_EXT_DATA, MGMT_OP_READ_EXT_INDEX_LIST, MGMT_OP_READ_ADV_FEATURES, MGMT_OP_ADD_ADVERTISING, MGMT_OP_REMOVE_ADVERTISING, MGMT_OP_GET_ADV_SIZE_INFO, MGMT_OP_START_LIMITED_DISCOVERY, MGMT_OP_READ_EXT_INFO, MGMT_OP_SET_APPEARANCE, MGMT_OP_GET_PHY_CONFIGURATION, MGMT_OP_SET_PHY_CONFIGURATION, MGMT_OP_SET_BLOCKED_KEYS, MGMT_OP_SET_WIDEBAND_SPEECH, MGMT_OP_READ_CONTROLLER_CAP, MGMT_OP_READ_EXP_FEATURES_INFO, MGMT_OP_SET_EXP_FEATURE, MGMT_OP_READ_DEF_SYSTEM_CONFIG, MGMT_OP_SET_DEF_SYSTEM_CONFIG, MGMT_OP_READ_DEF_RUNTIME_CONFIG, MGMT_OP_SET_DEF_RUNTIME_CONFIG, MGMT_OP_GET_DEVICE_FLAGS, MGMT_OP_SET_DEVICE_FLAGS, MGMT_OP_READ_ADV_MONITOR_FEATURES, MGMT_OP_ADD_ADV_PATTERNS_MONITOR, MGMT_OP_REMOVE_ADV_MONITOR, MGMT_OP_ADD_EXT_ADV_PARAMS, MGMT_OP_ADD_EXT_ADV_DATA, MGMT_OP_ADD_ADV_PATTERNS_MONITOR_RSSI, MGMT_OP_SET_MESH_RECEIVER, MGMT_OP_MESH_READ_FEATURES, MGMT_OP_MESH_SEND, MGMT_OP_MESH_SEND_CANCEL, }; static const u16 mgmt_events[] = { MGMT_EV_CONTROLLER_ERROR, MGMT_EV_INDEX_ADDED, MGMT_EV_INDEX_REMOVED, MGMT_EV_NEW_SETTINGS, MGMT_EV_CLASS_OF_DEV_CHANGED, MGMT_EV_LOCAL_NAME_CHANGED, MGMT_EV_NEW_LINK_KEY, MGMT_EV_NEW_LONG_TERM_KEY, MGMT_EV_DEVICE_CONNECTED, MGMT_EV_DEVICE_DISCONNECTED, MGMT_EV_CONNECT_FAILED, MGMT_EV_PIN_CODE_REQUEST, MGMT_EV_USER_CONFIRM_REQUEST, MGMT_EV_USER_PASSKEY_REQUEST, MGMT_EV_AUTH_FAILED, MGMT_EV_DEVICE_FOUND, MGMT_EV_DISCOVERING, MGMT_EV_DEVICE_BLOCKED, MGMT_EV_DEVICE_UNBLOCKED, MGMT_EV_DEVICE_UNPAIRED, MGMT_EV_PASSKEY_NOTIFY, MGMT_EV_NEW_IRK, MGMT_EV_NEW_CSRK, MGMT_EV_DEVICE_ADDED, MGMT_EV_DEVICE_REMOVED, MGMT_EV_NEW_CONN_PARAM, MGMT_EV_UNCONF_INDEX_ADDED, MGMT_EV_UNCONF_INDEX_REMOVED, MGMT_EV_NEW_CONFIG_OPTIONS, MGMT_EV_EXT_INDEX_ADDED, MGMT_EV_EXT_INDEX_REMOVED, MGMT_EV_LOCAL_OOB_DATA_UPDATED, MGMT_EV_ADVERTISING_ADDED, MGMT_EV_ADVERTISING_REMOVED, MGMT_EV_EXT_INFO_CHANGED, MGMT_EV_PHY_CONFIGURATION_CHANGED, MGMT_EV_EXP_FEATURE_CHANGED, MGMT_EV_DEVICE_FLAGS_CHANGED, MGMT_EV_ADV_MONITOR_ADDED, MGMT_EV_ADV_MONITOR_REMOVED, MGMT_EV_CONTROLLER_SUSPEND, MGMT_EV_CONTROLLER_RESUME, MGMT_EV_ADV_MONITOR_DEVICE_FOUND, MGMT_EV_ADV_MONITOR_DEVICE_LOST, }; static const u16 mgmt_untrusted_commands[] = { MGMT_OP_READ_INDEX_LIST, MGMT_OP_READ_INFO, MGMT_OP_READ_UNCONF_INDEX_LIST, MGMT_OP_READ_CONFIG_INFO, MGMT_OP_READ_EXT_INDEX_LIST, MGMT_OP_READ_EXT_INFO, MGMT_OP_READ_CONTROLLER_CAP, MGMT_OP_READ_EXP_FEATURES_INFO, MGMT_OP_READ_DEF_SYSTEM_CONFIG, MGMT_OP_READ_DEF_RUNTIME_CONFIG, }; static const u16 mgmt_untrusted_events[] = { MGMT_EV_INDEX_ADDED, MGMT_EV_INDEX_REMOVED, MGMT_EV_NEW_SETTINGS, MGMT_EV_CLASS_OF_DEV_CHANGED, MGMT_EV_LOCAL_NAME_CHANGED, MGMT_EV_UNCONF_INDEX_ADDED, MGMT_EV_UNCONF_INDEX_REMOVED, MGMT_EV_NEW_CONFIG_OPTIONS, MGMT_EV_EXT_INDEX_ADDED, MGMT_EV_EXT_INDEX_REMOVED, MGMT_EV_EXT_INFO_CHANGED, MGMT_EV_EXP_FEATURE_CHANGED, }; #define CACHE_TIMEOUT msecs_to_jiffies(2 * 1000) #define ZERO_KEY "\x00\x00\x00\x00\x00\x00\x00\x00" \ "\x00\x00\x00\x00\x00\x00\x00\x00" /* HCI to MGMT error code conversion table */ static const u8 mgmt_status_table[] = { MGMT_STATUS_SUCCESS, MGMT_STATUS_UNKNOWN_COMMAND, /* Unknown Command */ MGMT_STATUS_NOT_CONNECTED, /* No Connection */ MGMT_STATUS_FAILED, /* Hardware Failure */ MGMT_STATUS_CONNECT_FAILED, /* Page Timeout */ MGMT_STATUS_AUTH_FAILED, /* Authentication Failed */ MGMT_STATUS_AUTH_FAILED, /* PIN or Key Missing */ MGMT_STATUS_NO_RESOURCES, /* Memory Full */ MGMT_STATUS_TIMEOUT, /* Connection Timeout */ MGMT_STATUS_NO_RESOURCES, /* Max Number of Connections */ MGMT_STATUS_NO_RESOURCES, /* Max Number of SCO Connections */ MGMT_STATUS_ALREADY_CONNECTED, /* ACL Connection Exists */ MGMT_STATUS_BUSY, /* Command Disallowed */ MGMT_STATUS_NO_RESOURCES, /* Rejected Limited Resources */ MGMT_STATUS_REJECTED, /* Rejected Security */ MGMT_STATUS_REJECTED, /* Rejected Personal */ MGMT_STATUS_TIMEOUT, /* Host Timeout */ MGMT_STATUS_NOT_SUPPORTED, /* Unsupported Feature */ MGMT_STATUS_INVALID_PARAMS, /* Invalid Parameters */ MGMT_STATUS_DISCONNECTED, /* OE User Ended Connection */ MGMT_STATUS_NO_RESOURCES, /* OE Low Resources */ MGMT_STATUS_DISCONNECTED, /* OE Power Off */ MGMT_STATUS_DISCONNECTED, /* Connection Terminated */ MGMT_STATUS_BUSY, /* Repeated Attempts */ MGMT_STATUS_REJECTED, /* Pairing Not Allowed */ MGMT_STATUS_FAILED, /* Unknown LMP PDU */ MGMT_STATUS_NOT_SUPPORTED, /* Unsupported Remote Feature */ MGMT_STATUS_REJECTED, /* SCO Offset Rejected */ MGMT_STATUS_REJECTED, /* SCO Interval Rejected */ MGMT_STATUS_REJECTED, /* Air Mode Rejected */ MGMT_STATUS_INVALID_PARAMS, /* Invalid LMP Parameters */ MGMT_STATUS_FAILED, /* Unspecified Error */ MGMT_STATUS_NOT_SUPPORTED, /* Unsupported LMP Parameter Value */ MGMT_STATUS_FAILED, /* Role Change Not Allowed */ MGMT_STATUS_TIMEOUT, /* LMP Response Timeout */ MGMT_STATUS_FAILED, /* LMP Error Transaction Collision */ MGMT_STATUS_FAILED, /* LMP PDU Not Allowed */ MGMT_STATUS_REJECTED, /* Encryption Mode Not Accepted */ MGMT_STATUS_FAILED, /* Unit Link Key Used */ MGMT_STATUS_NOT_SUPPORTED, /* QoS Not Supported */ MGMT_STATUS_TIMEOUT, /* Instant Passed */ MGMT_STATUS_NOT_SUPPORTED, /* Pairing Not Supported */ MGMT_STATUS_FAILED, /* Transaction Collision */ MGMT_STATUS_FAILED, /* Reserved for future use */ MGMT_STATUS_INVALID_PARAMS, /* Unacceptable Parameter */ MGMT_STATUS_REJECTED, /* QoS Rejected */ MGMT_STATUS_NOT_SUPPORTED, /* Classification Not Supported */ MGMT_STATUS_REJECTED, /* Insufficient Security */ MGMT_STATUS_INVALID_PARAMS, /* Parameter Out Of Range */ MGMT_STATUS_FAILED, /* Reserved for future use */ MGMT_STATUS_BUSY, /* Role Switch Pending */ MGMT_STATUS_FAILED, /* Reserved for future use */ MGMT_STATUS_FAILED, /* Slot Violation */ MGMT_STATUS_FAILED, /* Role Switch Failed */ MGMT_STATUS_INVALID_PARAMS, /* EIR Too Large */ MGMT_STATUS_NOT_SUPPORTED, /* Simple Pairing Not Supported */ MGMT_STATUS_BUSY, /* Host Busy Pairing */ MGMT_STATUS_REJECTED, /* Rejected, No Suitable Channel */ MGMT_STATUS_BUSY, /* Controller Busy */ MGMT_STATUS_INVALID_PARAMS, /* Unsuitable Connection Interval */ MGMT_STATUS_TIMEOUT, /* Directed Advertising Timeout */ MGMT_STATUS_AUTH_FAILED, /* Terminated Due to MIC Failure */ MGMT_STATUS_CONNECT_FAILED, /* Connection Establishment Failed */ MGMT_STATUS_CONNECT_FAILED, /* MAC Connection Failed */ }; static u8 mgmt_errno_status(int err) { switch (err) { case 0: return MGMT_STATUS_SUCCESS; case -EPERM: return MGMT_STATUS_REJECTED; case -EINVAL: return MGMT_STATUS_INVALID_PARAMS; case -EOPNOTSUPP: return MGMT_STATUS_NOT_SUPPORTED; case -EBUSY: return MGMT_STATUS_BUSY; case -ETIMEDOUT: return MGMT_STATUS_AUTH_FAILED; case -ENOMEM: return MGMT_STATUS_NO_RESOURCES; case -EISCONN: return MGMT_STATUS_ALREADY_CONNECTED; case -ENOTCONN: return MGMT_STATUS_DISCONNECTED; } return MGMT_STATUS_FAILED; } static u8 mgmt_status(int err) { if (err < 0) return mgmt_errno_status(err); if (err < ARRAY_SIZE(mgmt_status_table)) return mgmt_status_table[err]; return MGMT_STATUS_FAILED; } static int mgmt_index_event(u16 event, struct hci_dev *hdev, void *data, u16 len, int flag) { return mgmt_send_event(event, hdev, HCI_CHANNEL_CONTROL, data, len, flag, NULL); } static int mgmt_limited_event(u16 event, struct hci_dev *hdev, void *data, u16 len, int flag, struct sock *skip_sk) { return mgmt_send_event(event, hdev, HCI_CHANNEL_CONTROL, data, len, flag, skip_sk); } static int mgmt_event(u16 event, struct hci_dev *hdev, void *data, u16 len, struct sock *skip_sk) { return mgmt_send_event(event, hdev, HCI_CHANNEL_CONTROL, data, len, HCI_SOCK_TRUSTED, skip_sk); } static int mgmt_event_skb(struct sk_buff *skb, struct sock *skip_sk) { return mgmt_send_event_skb(HCI_CHANNEL_CONTROL, skb, HCI_SOCK_TRUSTED, skip_sk); } static u8 le_addr_type(u8 mgmt_addr_type) { if (mgmt_addr_type == BDADDR_LE_PUBLIC) return ADDR_LE_DEV_PUBLIC; else return ADDR_LE_DEV_RANDOM; } void mgmt_fill_version_info(void *ver) { struct mgmt_rp_read_version *rp = ver; rp->version = MGMT_VERSION; rp->revision = cpu_to_le16(MGMT_REVISION); } static int read_version(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_rp_read_version rp; bt_dev_dbg(hdev, "sock %p", sk); mgmt_fill_version_info(&rp); return mgmt_cmd_complete(sk, MGMT_INDEX_NONE, MGMT_OP_READ_VERSION, 0, &rp, sizeof(rp)); } static int read_commands(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_rp_read_commands *rp; u16 num_commands, num_events; size_t rp_size; int i, err; bt_dev_dbg(hdev, "sock %p", sk); if (hci_sock_test_flag(sk, HCI_SOCK_TRUSTED)) { num_commands = ARRAY_SIZE(mgmt_commands); num_events = ARRAY_SIZE(mgmt_events); } else { num_commands = ARRAY_SIZE(mgmt_untrusted_commands); num_events = ARRAY_SIZE(mgmt_untrusted_events); } rp_size = sizeof(*rp) + ((num_commands + num_events) * sizeof(u16)); rp = kmalloc(rp_size, GFP_KERNEL); if (!rp) return -ENOMEM; rp->num_commands = cpu_to_le16(num_commands); rp->num_events = cpu_to_le16(num_events); if (hci_sock_test_flag(sk, HCI_SOCK_TRUSTED)) { __le16 *opcode = rp->opcodes; for (i = 0; i < num_commands; i++, opcode++) put_unaligned_le16(mgmt_commands[i], opcode); for (i = 0; i < num_events; i++, opcode++) put_unaligned_le16(mgmt_events[i], opcode); } else { __le16 *opcode = rp->opcodes; for (i = 0; i < num_commands; i++, opcode++) put_unaligned_le16(mgmt_untrusted_commands[i], opcode); for (i = 0; i < num_events; i++, opcode++) put_unaligned_le16(mgmt_untrusted_events[i], opcode); } err = mgmt_cmd_complete(sk, MGMT_INDEX_NONE, MGMT_OP_READ_COMMANDS, 0, rp, rp_size); kfree(rp); return err; } static int read_index_list(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_rp_read_index_list *rp; struct hci_dev *d; size_t rp_len; u16 count; int err; bt_dev_dbg(hdev, "sock %p", sk); read_lock(&hci_dev_list_lock); count = 0; list_for_each_entry(d, &hci_dev_list, list) { if (d->dev_type == HCI_PRIMARY && !hci_dev_test_flag(d, HCI_UNCONFIGURED)) count++; } rp_len = sizeof(*rp) + (2 * count); rp = kmalloc(rp_len, GFP_ATOMIC); if (!rp) { read_unlock(&hci_dev_list_lock); return -ENOMEM; } count = 0; list_for_each_entry(d, &hci_dev_list, list) { if (hci_dev_test_flag(d, HCI_SETUP) || hci_dev_test_flag(d, HCI_CONFIG) || hci_dev_test_flag(d, HCI_USER_CHANNEL)) continue; /* Devices marked as raw-only are neither configured * nor unconfigured controllers. */ if (test_bit(HCI_QUIRK_RAW_DEVICE, &d->quirks)) continue; if (d->dev_type == HCI_PRIMARY && !hci_dev_test_flag(d, HCI_UNCONFIGURED)) { rp->index[count++] = cpu_to_le16(d->id); bt_dev_dbg(hdev, "Added hci%u", d->id); } } rp->num_controllers = cpu_to_le16(count); rp_len = sizeof(*rp) + (2 * count); read_unlock(&hci_dev_list_lock); err = mgmt_cmd_complete(sk, MGMT_INDEX_NONE, MGMT_OP_READ_INDEX_LIST, 0, rp, rp_len); kfree(rp); return err; } static int read_unconf_index_list(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_rp_read_unconf_index_list *rp; struct hci_dev *d; size_t rp_len; u16 count; int err; bt_dev_dbg(hdev, "sock %p", sk); read_lock(&hci_dev_list_lock); count = 0; list_for_each_entry(d, &hci_dev_list, list) { if (d->dev_type == HCI_PRIMARY && hci_dev_test_flag(d, HCI_UNCONFIGURED)) count++; } rp_len = sizeof(*rp) + (2 * count); rp = kmalloc(rp_len, GFP_ATOMIC); if (!rp) { read_unlock(&hci_dev_list_lock); return -ENOMEM; } count = 0; list_for_each_entry(d, &hci_dev_list, list) { if (hci_dev_test_flag(d, HCI_SETUP) || hci_dev_test_flag(d, HCI_CONFIG) || hci_dev_test_flag(d, HCI_USER_CHANNEL)) continue; /* Devices marked as raw-only are neither configured * nor unconfigured controllers. */ if (test_bit(HCI_QUIRK_RAW_DEVICE, &d->quirks)) continue; if (d->dev_type == HCI_PRIMARY && hci_dev_test_flag(d, HCI_UNCONFIGURED)) { rp->index[count++] = cpu_to_le16(d->id); bt_dev_dbg(hdev, "Added hci%u", d->id); } } rp->num_controllers = cpu_to_le16(count); rp_len = sizeof(*rp) + (2 * count); read_unlock(&hci_dev_list_lock); err = mgmt_cmd_complete(sk, MGMT_INDEX_NONE, MGMT_OP_READ_UNCONF_INDEX_LIST, 0, rp, rp_len); kfree(rp); return err; } static int read_ext_index_list(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_rp_read_ext_index_list *rp; struct hci_dev *d; u16 count; int err; bt_dev_dbg(hdev, "sock %p", sk); read_lock(&hci_dev_list_lock); count = 0; list_for_each_entry(d, &hci_dev_list, list) { if (d->dev_type == HCI_PRIMARY || d->dev_type == HCI_AMP) count++; } rp = kmalloc(struct_size(rp, entry, count), GFP_ATOMIC); if (!rp) { read_unlock(&hci_dev_list_lock); return -ENOMEM; } count = 0; list_for_each_entry(d, &hci_dev_list, list) { if (hci_dev_test_flag(d, HCI_SETUP) || hci_dev_test_flag(d, HCI_CONFIG) || hci_dev_test_flag(d, HCI_USER_CHANNEL)) continue; /* Devices marked as raw-only are neither configured * nor unconfigured controllers. */ if (test_bit(HCI_QUIRK_RAW_DEVICE, &d->quirks)) continue; if (d->dev_type == HCI_PRIMARY) { if (hci_dev_test_flag(d, HCI_UNCONFIGURED)) rp->entry[count].type = 0x01; else rp->entry[count].type = 0x00; } else if (d->dev_type == HCI_AMP) { rp->entry[count].type = 0x02; } else { continue; } rp->entry[count].bus = d->bus; rp->entry[count++].index = cpu_to_le16(d->id); bt_dev_dbg(hdev, "Added hci%u", d->id); } rp->num_controllers = cpu_to_le16(count); read_unlock(&hci_dev_list_lock); /* If this command is called at least once, then all the * default index and unconfigured index events are disabled * and from now on only extended index events are used. */ hci_sock_set_flag(sk, HCI_MGMT_EXT_INDEX_EVENTS); hci_sock_clear_flag(sk, HCI_MGMT_INDEX_EVENTS); hci_sock_clear_flag(sk, HCI_MGMT_UNCONF_INDEX_EVENTS); err = mgmt_cmd_complete(sk, MGMT_INDEX_NONE, MGMT_OP_READ_EXT_INDEX_LIST, 0, rp, struct_size(rp, entry, count)); kfree(rp); return err; } static bool is_configured(struct hci_dev *hdev) { if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) && !hci_dev_test_flag(hdev, HCI_EXT_CONFIGURED)) return false; if ((test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) || test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) && !bacmp(&hdev->public_addr, BDADDR_ANY)) return false; return true; } static __le32 get_missing_options(struct hci_dev *hdev) { u32 options = 0; if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) && !hci_dev_test_flag(hdev, HCI_EXT_CONFIGURED)) options |= MGMT_OPTION_EXTERNAL_CONFIG; if ((test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) || test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) && !bacmp(&hdev->public_addr, BDADDR_ANY)) options |= MGMT_OPTION_PUBLIC_ADDRESS; return cpu_to_le32(options); } static int new_options(struct hci_dev *hdev, struct sock *skip) { __le32 options = get_missing_options(hdev); return mgmt_limited_event(MGMT_EV_NEW_CONFIG_OPTIONS, hdev, &options, sizeof(options), HCI_MGMT_OPTION_EVENTS, skip); } static int send_options_rsp(struct sock *sk, u16 opcode, struct hci_dev *hdev) { __le32 options = get_missing_options(hdev); return mgmt_cmd_complete(sk, hdev->id, opcode, 0, &options, sizeof(options)); } static int read_config_info(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_rp_read_config_info rp; u32 options = 0; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); memset(&rp, 0, sizeof(rp)); rp.manufacturer = cpu_to_le16(hdev->manufacturer); if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks)) options |= MGMT_OPTION_EXTERNAL_CONFIG; if (hdev->set_bdaddr) options |= MGMT_OPTION_PUBLIC_ADDRESS; rp.supported_options = cpu_to_le32(options); rp.missing_options = get_missing_options(hdev); hci_dev_unlock(hdev); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_READ_CONFIG_INFO, 0, &rp, sizeof(rp)); } static u32 get_supported_phys(struct hci_dev *hdev) { u32 supported_phys = 0; if (lmp_bredr_capable(hdev)) { supported_phys |= MGMT_PHY_BR_1M_1SLOT; if (hdev->features[0][0] & LMP_3SLOT) supported_phys |= MGMT_PHY_BR_1M_3SLOT; if (hdev->features[0][0] & LMP_5SLOT) supported_phys |= MGMT_PHY_BR_1M_5SLOT; if (lmp_edr_2m_capable(hdev)) { supported_phys |= MGMT_PHY_EDR_2M_1SLOT; if (lmp_edr_3slot_capable(hdev)) supported_phys |= MGMT_PHY_EDR_2M_3SLOT; if (lmp_edr_5slot_capable(hdev)) supported_phys |= MGMT_PHY_EDR_2M_5SLOT; if (lmp_edr_3m_capable(hdev)) { supported_phys |= MGMT_PHY_EDR_3M_1SLOT; if (lmp_edr_3slot_capable(hdev)) supported_phys |= MGMT_PHY_EDR_3M_3SLOT; if (lmp_edr_5slot_capable(hdev)) supported_phys |= MGMT_PHY_EDR_3M_5SLOT; } } } if (lmp_le_capable(hdev)) { supported_phys |= MGMT_PHY_LE_1M_TX; supported_phys |= MGMT_PHY_LE_1M_RX; if (hdev->le_features[1] & HCI_LE_PHY_2M) { supported_phys |= MGMT_PHY_LE_2M_TX; supported_phys |= MGMT_PHY_LE_2M_RX; } if (hdev->le_features[1] & HCI_LE_PHY_CODED) { supported_phys |= MGMT_PHY_LE_CODED_TX; supported_phys |= MGMT_PHY_LE_CODED_RX; } } return supported_phys; } static u32 get_selected_phys(struct hci_dev *hdev) { u32 selected_phys = 0; if (lmp_bredr_capable(hdev)) { selected_phys |= MGMT_PHY_BR_1M_1SLOT; if (hdev->pkt_type & (HCI_DM3 | HCI_DH3)) selected_phys |= MGMT_PHY_BR_1M_3SLOT; if (hdev->pkt_type & (HCI_DM5 | HCI_DH5)) selected_phys |= MGMT_PHY_BR_1M_5SLOT; if (lmp_edr_2m_capable(hdev)) { if (!(hdev->pkt_type & HCI_2DH1)) selected_phys |= MGMT_PHY_EDR_2M_1SLOT; if (lmp_edr_3slot_capable(hdev) && !(hdev->pkt_type & HCI_2DH3)) selected_phys |= MGMT_PHY_EDR_2M_3SLOT; if (lmp_edr_5slot_capable(hdev) && !(hdev->pkt_type & HCI_2DH5)) selected_phys |= MGMT_PHY_EDR_2M_5SLOT; if (lmp_edr_3m_capable(hdev)) { if (!(hdev->pkt_type & HCI_3DH1)) selected_phys |= MGMT_PHY_EDR_3M_1SLOT; if (lmp_edr_3slot_capable(hdev) && !(hdev->pkt_type & HCI_3DH3)) selected_phys |= MGMT_PHY_EDR_3M_3SLOT; if (lmp_edr_5slot_capable(hdev) && !(hdev->pkt_type & HCI_3DH5)) selected_phys |= MGMT_PHY_EDR_3M_5SLOT; } } } if (lmp_le_capable(hdev)) { if (hdev->le_tx_def_phys & HCI_LE_SET_PHY_1M) selected_phys |= MGMT_PHY_LE_1M_TX; if (hdev->le_rx_def_phys & HCI_LE_SET_PHY_1M) selected_phys |= MGMT_PHY_LE_1M_RX; if (hdev->le_tx_def_phys & HCI_LE_SET_PHY_2M) selected_phys |= MGMT_PHY_LE_2M_TX; if (hdev->le_rx_def_phys & HCI_LE_SET_PHY_2M) selected_phys |= MGMT_PHY_LE_2M_RX; if (hdev->le_tx_def_phys & HCI_LE_SET_PHY_CODED) selected_phys |= MGMT_PHY_LE_CODED_TX; if (hdev->le_rx_def_phys & HCI_LE_SET_PHY_CODED) selected_phys |= MGMT_PHY_LE_CODED_RX; } return selected_phys; } static u32 get_configurable_phys(struct hci_dev *hdev) { return (get_supported_phys(hdev) & ~MGMT_PHY_BR_1M_1SLOT & ~MGMT_PHY_LE_1M_TX & ~MGMT_PHY_LE_1M_RX); } static u32 get_supported_settings(struct hci_dev *hdev) { u32 settings = 0; settings |= MGMT_SETTING_POWERED; settings |= MGMT_SETTING_BONDABLE; settings |= MGMT_SETTING_DEBUG_KEYS; settings |= MGMT_SETTING_CONNECTABLE; settings |= MGMT_SETTING_DISCOVERABLE; if (lmp_bredr_capable(hdev)) { if (hdev->hci_ver >= BLUETOOTH_VER_1_2) settings |= MGMT_SETTING_FAST_CONNECTABLE; settings |= MGMT_SETTING_BREDR; settings |= MGMT_SETTING_LINK_SECURITY; if (lmp_ssp_capable(hdev)) { settings |= MGMT_SETTING_SSP; if (IS_ENABLED(CONFIG_BT_HS)) settings |= MGMT_SETTING_HS; } if (lmp_sc_capable(hdev)) settings |= MGMT_SETTING_SECURE_CONN; if (test_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks)) settings |= MGMT_SETTING_WIDEBAND_SPEECH; } if (lmp_le_capable(hdev)) { settings |= MGMT_SETTING_LE; settings |= MGMT_SETTING_SECURE_CONN; settings |= MGMT_SETTING_PRIVACY; settings |= MGMT_SETTING_STATIC_ADDRESS; settings |= MGMT_SETTING_ADVERTISING; } if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || hdev->set_bdaddr) settings |= MGMT_SETTING_CONFIGURATION; if (cis_central_capable(hdev)) settings |= MGMT_SETTING_CIS_CENTRAL; if (cis_peripheral_capable(hdev)) settings |= MGMT_SETTING_CIS_PERIPHERAL; settings |= MGMT_SETTING_PHY_CONFIGURATION; return settings; } static u32 get_current_settings(struct hci_dev *hdev) { u32 settings = 0; if (hdev_is_powered(hdev)) settings |= MGMT_SETTING_POWERED; if (hci_dev_test_flag(hdev, HCI_CONNECTABLE)) settings |= MGMT_SETTING_CONNECTABLE; if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) settings |= MGMT_SETTING_FAST_CONNECTABLE; if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) settings |= MGMT_SETTING_DISCOVERABLE; if (hci_dev_test_flag(hdev, HCI_BONDABLE)) settings |= MGMT_SETTING_BONDABLE; if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) settings |= MGMT_SETTING_BREDR; if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) settings |= MGMT_SETTING_LE; if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) settings |= MGMT_SETTING_LINK_SECURITY; if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) settings |= MGMT_SETTING_SSP; if (hci_dev_test_flag(hdev, HCI_HS_ENABLED)) settings |= MGMT_SETTING_HS; if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) settings |= MGMT_SETTING_ADVERTISING; if (hci_dev_test_flag(hdev, HCI_SC_ENABLED)) settings |= MGMT_SETTING_SECURE_CONN; if (hci_dev_test_flag(hdev, HCI_KEEP_DEBUG_KEYS)) settings |= MGMT_SETTING_DEBUG_KEYS; if (hci_dev_test_flag(hdev, HCI_PRIVACY)) settings |= MGMT_SETTING_PRIVACY; /* The current setting for static address has two purposes. The * first is to indicate if the static address will be used and * the second is to indicate if it is actually set. * * This means if the static address is not configured, this flag * will never be set. If the address is configured, then if the * address is actually used decides if the flag is set or not. * * For single mode LE only controllers and dual-mode controllers * with BR/EDR disabled, the existence of the static address will * be evaluated. */ if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) || !bacmp(&hdev->bdaddr, BDADDR_ANY)) { if (bacmp(&hdev->static_addr, BDADDR_ANY)) settings |= MGMT_SETTING_STATIC_ADDRESS; } if (hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED)) settings |= MGMT_SETTING_WIDEBAND_SPEECH; if (cis_central_capable(hdev)) settings |= MGMT_SETTING_CIS_CENTRAL; if (cis_peripheral_capable(hdev)) settings |= MGMT_SETTING_CIS_PERIPHERAL; return settings; } static struct mgmt_pending_cmd *pending_find(u16 opcode, struct hci_dev *hdev) { return mgmt_pending_find(HCI_CHANNEL_CONTROL, opcode, hdev); } u8 mgmt_get_adv_discov_flags(struct hci_dev *hdev) { struct mgmt_pending_cmd *cmd; /* If there's a pending mgmt command the flags will not yet have * their final values, so check for this first. */ cmd = pending_find(MGMT_OP_SET_DISCOVERABLE, hdev); if (cmd) { struct mgmt_mode *cp = cmd->param; if (cp->val == 0x01) return LE_AD_GENERAL; else if (cp->val == 0x02) return LE_AD_LIMITED; } else { if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) return LE_AD_LIMITED; else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) return LE_AD_GENERAL; } return 0; } bool mgmt_get_connectable(struct hci_dev *hdev) { struct mgmt_pending_cmd *cmd; /* If there's a pending mgmt command the flag will not yet have * it's final value, so check for this first. */ cmd = pending_find(MGMT_OP_SET_CONNECTABLE, hdev); if (cmd) { struct mgmt_mode *cp = cmd->param; return cp->val; } return hci_dev_test_flag(hdev, HCI_CONNECTABLE); } static int service_cache_sync(struct hci_dev *hdev, void *data) { hci_update_eir_sync(hdev); hci_update_class_sync(hdev); return 0; } static void service_cache_off(struct work_struct *work) { struct hci_dev *hdev = container_of(work, struct hci_dev, service_cache.work); if (!hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) return; hci_cmd_sync_queue(hdev, service_cache_sync, NULL, NULL); } static int rpa_expired_sync(struct hci_dev *hdev, void *data) { /* The generation of a new RPA and programming it into the * controller happens in the hci_req_enable_advertising() * function. */ if (ext_adv_capable(hdev)) return hci_start_ext_adv_sync(hdev, hdev->cur_adv_instance); else return hci_enable_advertising_sync(hdev); } static void rpa_expired(struct work_struct *work) { struct hci_dev *hdev = container_of(work, struct hci_dev, rpa_expired.work); bt_dev_dbg(hdev, ""); hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); if (!hci_dev_test_flag(hdev, HCI_ADVERTISING)) return; hci_cmd_sync_queue(hdev, rpa_expired_sync, NULL, NULL); } static int set_discoverable_sync(struct hci_dev *hdev, void *data); static void discov_off(struct work_struct *work) { struct hci_dev *hdev = container_of(work, struct hci_dev, discov_off.work); bt_dev_dbg(hdev, ""); hci_dev_lock(hdev); /* When discoverable timeout triggers, then just make sure * the limited discoverable flag is cleared. Even in the case * of a timeout triggered from general discoverable, it is * safe to unconditionally clear the flag. */ hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); hdev->discov_timeout = 0; hci_cmd_sync_queue(hdev, set_discoverable_sync, NULL, NULL); mgmt_new_settings(hdev); hci_dev_unlock(hdev); } static int send_settings_rsp(struct sock *sk, u16 opcode, struct hci_dev *hdev); static void mesh_send_complete(struct hci_dev *hdev, struct mgmt_mesh_tx *mesh_tx, bool silent) { u8 handle = mesh_tx->handle; if (!silent) mgmt_event(MGMT_EV_MESH_PACKET_CMPLT, hdev, &handle, sizeof(handle), NULL); mgmt_mesh_remove(mesh_tx); } static int mesh_send_done_sync(struct hci_dev *hdev, void *data) { struct mgmt_mesh_tx *mesh_tx; hci_dev_clear_flag(hdev, HCI_MESH_SENDING); hci_disable_advertising_sync(hdev); mesh_tx = mgmt_mesh_next(hdev, NULL); if (mesh_tx) mesh_send_complete(hdev, mesh_tx, false); return 0; } static int mesh_send_sync(struct hci_dev *hdev, void *data); static void mesh_send_start_complete(struct hci_dev *hdev, void *data, int err); static void mesh_next(struct hci_dev *hdev, void *data, int err) { struct mgmt_mesh_tx *mesh_tx = mgmt_mesh_next(hdev, NULL); if (!mesh_tx) return; err = hci_cmd_sync_queue(hdev, mesh_send_sync, mesh_tx, mesh_send_start_complete); if (err < 0) mesh_send_complete(hdev, mesh_tx, false); else hci_dev_set_flag(hdev, HCI_MESH_SENDING); } static void mesh_send_done(struct work_struct *work) { struct hci_dev *hdev = container_of(work, struct hci_dev, mesh_send_done.work); if (!hci_dev_test_flag(hdev, HCI_MESH_SENDING)) return; hci_cmd_sync_queue(hdev, mesh_send_done_sync, NULL, mesh_next); } static void mgmt_init_hdev(struct sock *sk, struct hci_dev *hdev) { if (hci_dev_test_flag(hdev, HCI_MGMT)) return; BT_INFO("MGMT ver %d.%d", MGMT_VERSION, MGMT_REVISION); INIT_DELAYED_WORK(&hdev->discov_off, discov_off); INIT_DELAYED_WORK(&hdev->service_cache, service_cache_off); INIT_DELAYED_WORK(&hdev->rpa_expired, rpa_expired); INIT_DELAYED_WORK(&hdev->mesh_send_done, mesh_send_done); /* Non-mgmt controlled devices get this bit set * implicitly so that pairing works for them, however * for mgmt we require user-space to explicitly enable * it */ hci_dev_clear_flag(hdev, HCI_BONDABLE); hci_dev_set_flag(hdev, HCI_MGMT); } static int read_controller_info(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_rp_read_info rp; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); memset(&rp, 0, sizeof(rp)); bacpy(&rp.bdaddr, &hdev->bdaddr); rp.version = hdev->hci_ver; rp.manufacturer = cpu_to_le16(hdev->manufacturer); rp.supported_settings = cpu_to_le32(get_supported_settings(hdev)); rp.current_settings = cpu_to_le32(get_current_settings(hdev)); memcpy(rp.dev_class, hdev->dev_class, 3); memcpy(rp.name, hdev->dev_name, sizeof(hdev->dev_name)); memcpy(rp.short_name, hdev->short_name, sizeof(hdev->short_name)); hci_dev_unlock(hdev); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_READ_INFO, 0, &rp, sizeof(rp)); } static u16 append_eir_data_to_buf(struct hci_dev *hdev, u8 *eir) { u16 eir_len = 0; size_t name_len; if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) eir_len = eir_append_data(eir, eir_len, EIR_CLASS_OF_DEV, hdev->dev_class, 3); if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) eir_len = eir_append_le16(eir, eir_len, EIR_APPEARANCE, hdev->appearance); name_len = strnlen(hdev->dev_name, sizeof(hdev->dev_name)); eir_len = eir_append_data(eir, eir_len, EIR_NAME_COMPLETE, hdev->dev_name, name_len); name_len = strnlen(hdev->short_name, sizeof(hdev->short_name)); eir_len = eir_append_data(eir, eir_len, EIR_NAME_SHORT, hdev->short_name, name_len); return eir_len; } static int read_ext_controller_info(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { char buf[512]; struct mgmt_rp_read_ext_info *rp = (void *)buf; u16 eir_len; bt_dev_dbg(hdev, "sock %p", sk); memset(&buf, 0, sizeof(buf)); hci_dev_lock(hdev); bacpy(&rp->bdaddr, &hdev->bdaddr); rp->version = hdev->hci_ver; rp->manufacturer = cpu_to_le16(hdev->manufacturer); rp->supported_settings = cpu_to_le32(get_supported_settings(hdev)); rp->current_settings = cpu_to_le32(get_current_settings(hdev)); eir_len = append_eir_data_to_buf(hdev, rp->eir); rp->eir_len = cpu_to_le16(eir_len); hci_dev_unlock(hdev); /* If this command is called at least once, then the events * for class of device and local name changes are disabled * and only the new extended controller information event * is used. */ hci_sock_set_flag(sk, HCI_MGMT_EXT_INFO_EVENTS); hci_sock_clear_flag(sk, HCI_MGMT_DEV_CLASS_EVENTS); hci_sock_clear_flag(sk, HCI_MGMT_LOCAL_NAME_EVENTS); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_READ_EXT_INFO, 0, rp, sizeof(*rp) + eir_len); } static int ext_info_changed(struct hci_dev *hdev, struct sock *skip) { char buf[512]; struct mgmt_ev_ext_info_changed *ev = (void *)buf; u16 eir_len; memset(buf, 0, sizeof(buf)); eir_len = append_eir_data_to_buf(hdev, ev->eir); ev->eir_len = cpu_to_le16(eir_len); return mgmt_limited_event(MGMT_EV_EXT_INFO_CHANGED, hdev, ev, sizeof(*ev) + eir_len, HCI_MGMT_EXT_INFO_EVENTS, skip); } static int send_settings_rsp(struct sock *sk, u16 opcode, struct hci_dev *hdev) { __le32 settings = cpu_to_le32(get_current_settings(hdev)); return mgmt_cmd_complete(sk, hdev->id, opcode, 0, &settings, sizeof(settings)); } void mgmt_advertising_added(struct sock *sk, struct hci_dev *hdev, u8 instance) { struct mgmt_ev_advertising_added ev; ev.instance = instance; mgmt_event(MGMT_EV_ADVERTISING_ADDED, hdev, &ev, sizeof(ev), sk); } void mgmt_advertising_removed(struct sock *sk, struct hci_dev *hdev, u8 instance) { struct mgmt_ev_advertising_removed ev; ev.instance = instance; mgmt_event(MGMT_EV_ADVERTISING_REMOVED, hdev, &ev, sizeof(ev), sk); } static void cancel_adv_timeout(struct hci_dev *hdev) { if (hdev->adv_instance_timeout) { hdev->adv_instance_timeout = 0; cancel_delayed_work(&hdev->adv_instance_expire); } } /* This function requires the caller holds hdev->lock */ static void restart_le_actions(struct hci_dev *hdev) { struct hci_conn_params *p; list_for_each_entry(p, &hdev->le_conn_params, list) { /* Needed for AUTO_OFF case where might not "really" * have been powered off. */ hci_pend_le_list_del_init(p); switch (p->auto_connect) { case HCI_AUTO_CONN_DIRECT: case HCI_AUTO_CONN_ALWAYS: hci_pend_le_list_add(p, &hdev->pend_le_conns); break; case HCI_AUTO_CONN_REPORT: hci_pend_le_list_add(p, &hdev->pend_le_reports); break; default: break; } } } static int new_settings(struct hci_dev *hdev, struct sock *skip) { __le32 ev = cpu_to_le32(get_current_settings(hdev)); return mgmt_limited_event(MGMT_EV_NEW_SETTINGS, hdev, &ev, sizeof(ev), HCI_MGMT_SETTING_EVENTS, skip); } static void mgmt_set_powered_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct mgmt_mode *cp; /* Make sure cmd still outstanding. */ if (err == -ECANCELED || cmd != pending_find(MGMT_OP_SET_POWERED, hdev)) return; cp = cmd->param; bt_dev_dbg(hdev, "err %d", err); if (!err) { if (cp->val) { hci_dev_lock(hdev); restart_le_actions(hdev); hci_update_passive_scan(hdev); hci_dev_unlock(hdev); } send_settings_rsp(cmd->sk, cmd->opcode, hdev); /* Only call new_setting for power on as power off is deferred * to hdev->power_off work which does call hci_dev_do_close. */ if (cp->val) new_settings(hdev, cmd->sk); } else { mgmt_cmd_status(cmd->sk, hdev->id, MGMT_OP_SET_POWERED, mgmt_status(err)); } mgmt_pending_remove(cmd); } static int set_powered_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_mode *cp; /* Make sure cmd still outstanding. */ if (cmd != pending_find(MGMT_OP_SET_POWERED, hdev)) return -ECANCELED; cp = cmd->param; BT_DBG("%s", hdev->name); return hci_set_powered_sync(hdev, cp->val); } static int set_powered(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; struct mgmt_pending_cmd *cmd; int err; bt_dev_dbg(hdev, "sock %p", sk); if (cp->val != 0x00 && cp->val != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_POWERED, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (pending_find(MGMT_OP_SET_POWERED, hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_POWERED, MGMT_STATUS_BUSY); goto failed; } if (!!cp->val == hdev_is_powered(hdev)) { err = send_settings_rsp(sk, MGMT_OP_SET_POWERED, hdev); goto failed; } cmd = mgmt_pending_add(sk, MGMT_OP_SET_POWERED, hdev, data, len); if (!cmd) { err = -ENOMEM; goto failed; } /* Cancel potentially blocking sync operation before power off */ if (cp->val == 0x00) { hci_cmd_sync_cancel_sync(hdev, -EHOSTDOWN); err = hci_cmd_sync_queue(hdev, set_powered_sync, cmd, mgmt_set_powered_complete); } else { /* Use hci_cmd_sync_submit since hdev might not be running */ err = hci_cmd_sync_submit(hdev, set_powered_sync, cmd, mgmt_set_powered_complete); } if (err < 0) mgmt_pending_remove(cmd); failed: hci_dev_unlock(hdev); return err; } int mgmt_new_settings(struct hci_dev *hdev) { return new_settings(hdev, NULL); } struct cmd_lookup { struct sock *sk; struct hci_dev *hdev; u8 mgmt_status; }; static void settings_rsp(struct mgmt_pending_cmd *cmd, void *data) { struct cmd_lookup *match = data; send_settings_rsp(cmd->sk, cmd->opcode, match->hdev); list_del(&cmd->list); if (match->sk == NULL) { match->sk = cmd->sk; sock_hold(match->sk); } mgmt_pending_free(cmd); } static void cmd_status_rsp(struct mgmt_pending_cmd *cmd, void *data) { u8 *status = data; mgmt_cmd_status(cmd->sk, cmd->index, cmd->opcode, *status); mgmt_pending_remove(cmd); } static void cmd_complete_rsp(struct mgmt_pending_cmd *cmd, void *data) { struct cmd_lookup *match = data; /* dequeue cmd_sync entries using cmd as data as that is about to be * removed/freed. */ hci_cmd_sync_dequeue(match->hdev, NULL, cmd, NULL); if (cmd->cmd_complete) { cmd->cmd_complete(cmd, match->mgmt_status); mgmt_pending_remove(cmd); return; } cmd_status_rsp(cmd, data); } static int generic_cmd_complete(struct mgmt_pending_cmd *cmd, u8 status) { return mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, status, cmd->param, cmd->param_len); } static int addr_cmd_complete(struct mgmt_pending_cmd *cmd, u8 status) { return mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, status, cmd->param, sizeof(struct mgmt_addr_info)); } static u8 mgmt_bredr_support(struct hci_dev *hdev) { if (!lmp_bredr_capable(hdev)) return MGMT_STATUS_NOT_SUPPORTED; else if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) return MGMT_STATUS_REJECTED; else return MGMT_STATUS_SUCCESS; } static u8 mgmt_le_support(struct hci_dev *hdev) { if (!lmp_le_capable(hdev)) return MGMT_STATUS_NOT_SUPPORTED; else if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) return MGMT_STATUS_REJECTED; else return MGMT_STATUS_SUCCESS; } static void mgmt_set_discoverable_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; bt_dev_dbg(hdev, "err %d", err); /* Make sure cmd still outstanding. */ if (err == -ECANCELED || cmd != pending_find(MGMT_OP_SET_DISCOVERABLE, hdev)) return; hci_dev_lock(hdev); if (err) { u8 mgmt_err = mgmt_status(err); mgmt_cmd_status(cmd->sk, cmd->index, cmd->opcode, mgmt_err); hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); goto done; } if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && hdev->discov_timeout > 0) { int to = msecs_to_jiffies(hdev->discov_timeout * 1000); queue_delayed_work(hdev->req_workqueue, &hdev->discov_off, to); } send_settings_rsp(cmd->sk, MGMT_OP_SET_DISCOVERABLE, hdev); new_settings(hdev, cmd->sk); done: mgmt_pending_remove(cmd); hci_dev_unlock(hdev); } static int set_discoverable_sync(struct hci_dev *hdev, void *data) { BT_DBG("%s", hdev->name); return hci_update_discoverable_sync(hdev); } static int set_discoverable(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_discoverable *cp = data; struct mgmt_pending_cmd *cmd; u16 timeout; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) && !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DISCOVERABLE, MGMT_STATUS_REJECTED); if (cp->val != 0x00 && cp->val != 0x01 && cp->val != 0x02) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DISCOVERABLE, MGMT_STATUS_INVALID_PARAMS); timeout = __le16_to_cpu(cp->timeout); /* Disabling discoverable requires that no timeout is set, * and enabling limited discoverable requires a timeout. */ if ((cp->val == 0x00 && timeout > 0) || (cp->val == 0x02 && timeout == 0)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DISCOVERABLE, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (!hdev_is_powered(hdev) && timeout > 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DISCOVERABLE, MGMT_STATUS_NOT_POWERED); goto failed; } if (pending_find(MGMT_OP_SET_DISCOVERABLE, hdev) || pending_find(MGMT_OP_SET_CONNECTABLE, hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DISCOVERABLE, MGMT_STATUS_BUSY); goto failed; } if (!hci_dev_test_flag(hdev, HCI_CONNECTABLE)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DISCOVERABLE, MGMT_STATUS_REJECTED); goto failed; } if (hdev->advertising_paused) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DISCOVERABLE, MGMT_STATUS_BUSY); goto failed; } if (!hdev_is_powered(hdev)) { bool changed = false; /* Setting limited discoverable when powered off is * not a valid operation since it requires a timeout * and so no need to check HCI_LIMITED_DISCOVERABLE. */ if (!!cp->val != hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) { hci_dev_change_flag(hdev, HCI_DISCOVERABLE); changed = true; } err = send_settings_rsp(sk, MGMT_OP_SET_DISCOVERABLE, hdev); if (err < 0) goto failed; if (changed) err = new_settings(hdev, sk); goto failed; } /* If the current mode is the same, then just update the timeout * value with the new value. And if only the timeout gets updated, * then no need for any HCI transactions. */ if (!!cp->val == hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && (cp->val == 0x02) == hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { cancel_delayed_work(&hdev->discov_off); hdev->discov_timeout = timeout; if (cp->val && hdev->discov_timeout > 0) { int to = msecs_to_jiffies(hdev->discov_timeout * 1000); queue_delayed_work(hdev->req_workqueue, &hdev->discov_off, to); } err = send_settings_rsp(sk, MGMT_OP_SET_DISCOVERABLE, hdev); goto failed; } cmd = mgmt_pending_add(sk, MGMT_OP_SET_DISCOVERABLE, hdev, data, len); if (!cmd) { err = -ENOMEM; goto failed; } /* Cancel any potential discoverable timeout that might be * still active and store new timeout value. The arming of * the timeout happens in the complete handler. */ cancel_delayed_work(&hdev->discov_off); hdev->discov_timeout = timeout; if (cp->val) hci_dev_set_flag(hdev, HCI_DISCOVERABLE); else hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); /* Limited discoverable mode */ if (cp->val == 0x02) hci_dev_set_flag(hdev, HCI_LIMITED_DISCOVERABLE); else hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); err = hci_cmd_sync_queue(hdev, set_discoverable_sync, cmd, mgmt_set_discoverable_complete); if (err < 0) mgmt_pending_remove(cmd); failed: hci_dev_unlock(hdev); return err; } static void mgmt_set_connectable_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; bt_dev_dbg(hdev, "err %d", err); /* Make sure cmd still outstanding. */ if (err == -ECANCELED || cmd != pending_find(MGMT_OP_SET_CONNECTABLE, hdev)) return; hci_dev_lock(hdev); if (err) { u8 mgmt_err = mgmt_status(err); mgmt_cmd_status(cmd->sk, cmd->index, cmd->opcode, mgmt_err); goto done; } send_settings_rsp(cmd->sk, MGMT_OP_SET_CONNECTABLE, hdev); new_settings(hdev, cmd->sk); done: if (cmd) mgmt_pending_remove(cmd); hci_dev_unlock(hdev); } static int set_connectable_update_settings(struct hci_dev *hdev, struct sock *sk, u8 val) { bool changed = false; int err; if (!!val != hci_dev_test_flag(hdev, HCI_CONNECTABLE)) changed = true; if (val) { hci_dev_set_flag(hdev, HCI_CONNECTABLE); } else { hci_dev_clear_flag(hdev, HCI_CONNECTABLE); hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); } err = send_settings_rsp(sk, MGMT_OP_SET_CONNECTABLE, hdev); if (err < 0) return err; if (changed) { hci_update_scan(hdev); hci_update_passive_scan(hdev); return new_settings(hdev, sk); } return 0; } static int set_connectable_sync(struct hci_dev *hdev, void *data) { BT_DBG("%s", hdev->name); return hci_update_connectable_sync(hdev); } static int set_connectable(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; struct mgmt_pending_cmd *cmd; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) && !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_CONNECTABLE, MGMT_STATUS_REJECTED); if (cp->val != 0x00 && cp->val != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_CONNECTABLE, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = set_connectable_update_settings(hdev, sk, cp->val); goto failed; } if (pending_find(MGMT_OP_SET_DISCOVERABLE, hdev) || pending_find(MGMT_OP_SET_CONNECTABLE, hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_CONNECTABLE, MGMT_STATUS_BUSY); goto failed; } cmd = mgmt_pending_add(sk, MGMT_OP_SET_CONNECTABLE, hdev, data, len); if (!cmd) { err = -ENOMEM; goto failed; } if (cp->val) { hci_dev_set_flag(hdev, HCI_CONNECTABLE); } else { if (hdev->discov_timeout > 0) cancel_delayed_work(&hdev->discov_off); hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); hci_dev_clear_flag(hdev, HCI_CONNECTABLE); } err = hci_cmd_sync_queue(hdev, set_connectable_sync, cmd, mgmt_set_connectable_complete); if (err < 0) mgmt_pending_remove(cmd); failed: hci_dev_unlock(hdev); return err; } static int set_bondable(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; bool changed; int err; bt_dev_dbg(hdev, "sock %p", sk); if (cp->val != 0x00 && cp->val != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_BONDABLE, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (cp->val) changed = !hci_dev_test_and_set_flag(hdev, HCI_BONDABLE); else changed = hci_dev_test_and_clear_flag(hdev, HCI_BONDABLE); err = send_settings_rsp(sk, MGMT_OP_SET_BONDABLE, hdev); if (err < 0) goto unlock; if (changed) { /* In limited privacy mode the change of bondable mode * may affect the local advertising address. */ hci_update_discoverable(hdev); err = new_settings(hdev, sk); } unlock: hci_dev_unlock(hdev); return err; } static int set_link_security(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; struct mgmt_pending_cmd *cmd; u8 val, status; int err; bt_dev_dbg(hdev, "sock %p", sk); status = mgmt_bredr_support(hdev); if (status) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_LINK_SECURITY, status); if (cp->val != 0x00 && cp->val != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_LINK_SECURITY, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { bool changed = false; if (!!cp->val != hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) { hci_dev_change_flag(hdev, HCI_LINK_SECURITY); changed = true; } err = send_settings_rsp(sk, MGMT_OP_SET_LINK_SECURITY, hdev); if (err < 0) goto failed; if (changed) err = new_settings(hdev, sk); goto failed; } if (pending_find(MGMT_OP_SET_LINK_SECURITY, hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_LINK_SECURITY, MGMT_STATUS_BUSY); goto failed; } val = !!cp->val; if (test_bit(HCI_AUTH, &hdev->flags) == val) { err = send_settings_rsp(sk, MGMT_OP_SET_LINK_SECURITY, hdev); goto failed; } cmd = mgmt_pending_add(sk, MGMT_OP_SET_LINK_SECURITY, hdev, data, len); if (!cmd) { err = -ENOMEM; goto failed; } err = hci_send_cmd(hdev, HCI_OP_WRITE_AUTH_ENABLE, sizeof(val), &val); if (err < 0) { mgmt_pending_remove(cmd); goto failed; } failed: hci_dev_unlock(hdev); return err; } static void set_ssp_complete(struct hci_dev *hdev, void *data, int err) { struct cmd_lookup match = { NULL, hdev }; struct mgmt_pending_cmd *cmd = data; struct mgmt_mode *cp = cmd->param; u8 enable = cp->val; bool changed; /* Make sure cmd still outstanding. */ if (err == -ECANCELED || cmd != pending_find(MGMT_OP_SET_SSP, hdev)) return; if (err) { u8 mgmt_err = mgmt_status(err); if (enable && hci_dev_test_and_clear_flag(hdev, HCI_SSP_ENABLED)) { hci_dev_clear_flag(hdev, HCI_HS_ENABLED); new_settings(hdev, NULL); } mgmt_pending_foreach(MGMT_OP_SET_SSP, hdev, cmd_status_rsp, &mgmt_err); return; } if (enable) { changed = !hci_dev_test_and_set_flag(hdev, HCI_SSP_ENABLED); } else { changed = hci_dev_test_and_clear_flag(hdev, HCI_SSP_ENABLED); if (!changed) changed = hci_dev_test_and_clear_flag(hdev, HCI_HS_ENABLED); else hci_dev_clear_flag(hdev, HCI_HS_ENABLED); } mgmt_pending_foreach(MGMT_OP_SET_SSP, hdev, settings_rsp, &match); if (changed) new_settings(hdev, match.sk); if (match.sk) sock_put(match.sk); hci_update_eir_sync(hdev); } static int set_ssp_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_mode *cp = cmd->param; bool changed = false; int err; if (cp->val) changed = !hci_dev_test_and_set_flag(hdev, HCI_SSP_ENABLED); err = hci_write_ssp_mode_sync(hdev, cp->val); if (!err && changed) hci_dev_clear_flag(hdev, HCI_SSP_ENABLED); return err; } static int set_ssp(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; struct mgmt_pending_cmd *cmd; u8 status; int err; bt_dev_dbg(hdev, "sock %p", sk); status = mgmt_bredr_support(hdev); if (status) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SSP, status); if (!lmp_ssp_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SSP, MGMT_STATUS_NOT_SUPPORTED); if (cp->val != 0x00 && cp->val != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SSP, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { bool changed; if (cp->val) { changed = !hci_dev_test_and_set_flag(hdev, HCI_SSP_ENABLED); } else { changed = hci_dev_test_and_clear_flag(hdev, HCI_SSP_ENABLED); if (!changed) changed = hci_dev_test_and_clear_flag(hdev, HCI_HS_ENABLED); else hci_dev_clear_flag(hdev, HCI_HS_ENABLED); } err = send_settings_rsp(sk, MGMT_OP_SET_SSP, hdev); if (err < 0) goto failed; if (changed) err = new_settings(hdev, sk); goto failed; } if (pending_find(MGMT_OP_SET_SSP, hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SSP, MGMT_STATUS_BUSY); goto failed; } if (!!cp->val == hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) { err = send_settings_rsp(sk, MGMT_OP_SET_SSP, hdev); goto failed; } cmd = mgmt_pending_add(sk, MGMT_OP_SET_SSP, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, set_ssp_sync, cmd, set_ssp_complete); if (err < 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SSP, MGMT_STATUS_FAILED); if (cmd) mgmt_pending_remove(cmd); } failed: hci_dev_unlock(hdev); return err; } static int set_hs(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; bool changed; u8 status; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!IS_ENABLED(CONFIG_BT_HS)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_HS, MGMT_STATUS_NOT_SUPPORTED); status = mgmt_bredr_support(hdev); if (status) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_HS, status); if (!lmp_ssp_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_HS, MGMT_STATUS_NOT_SUPPORTED); if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_HS, MGMT_STATUS_REJECTED); if (cp->val != 0x00 && cp->val != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_HS, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (pending_find(MGMT_OP_SET_SSP, hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_HS, MGMT_STATUS_BUSY); goto unlock; } if (cp->val) { changed = !hci_dev_test_and_set_flag(hdev, HCI_HS_ENABLED); } else { if (hdev_is_powered(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_HS, MGMT_STATUS_REJECTED); goto unlock; } changed = hci_dev_test_and_clear_flag(hdev, HCI_HS_ENABLED); } err = send_settings_rsp(sk, MGMT_OP_SET_HS, hdev); if (err < 0) goto unlock; if (changed) err = new_settings(hdev, sk); unlock: hci_dev_unlock(hdev); return err; } static void set_le_complete(struct hci_dev *hdev, void *data, int err) { struct cmd_lookup match = { NULL, hdev }; u8 status = mgmt_status(err); bt_dev_dbg(hdev, "err %d", err); if (status) { mgmt_pending_foreach(MGMT_OP_SET_LE, hdev, cmd_status_rsp, &status); return; } mgmt_pending_foreach(MGMT_OP_SET_LE, hdev, settings_rsp, &match); new_settings(hdev, match.sk); if (match.sk) sock_put(match.sk); } static int set_le_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_mode *cp = cmd->param; u8 val = !!cp->val; int err; if (!val) { hci_clear_adv_instance_sync(hdev, NULL, 0x00, true); if (hci_dev_test_flag(hdev, HCI_LE_ADV)) hci_disable_advertising_sync(hdev); if (ext_adv_capable(hdev)) hci_remove_ext_adv_instance_sync(hdev, 0, cmd->sk); } else { hci_dev_set_flag(hdev, HCI_LE_ENABLED); } err = hci_write_le_host_supported_sync(hdev, val, 0); /* Make sure the controller has a good default for * advertising data. Restrict the update to when LE * has actually been enabled. During power on, the * update in powered_update_hci will take care of it. */ if (!err && hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { if (ext_adv_capable(hdev)) { int status; status = hci_setup_ext_adv_instance_sync(hdev, 0x00); if (!status) hci_update_scan_rsp_data_sync(hdev, 0x00); } else { hci_update_adv_data_sync(hdev, 0x00); hci_update_scan_rsp_data_sync(hdev, 0x00); } hci_update_passive_scan(hdev); } return err; } static void set_mesh_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; u8 status = mgmt_status(err); struct sock *sk = cmd->sk; if (status) { mgmt_pending_foreach(MGMT_OP_SET_MESH_RECEIVER, hdev, cmd_status_rsp, &status); return; } mgmt_pending_remove(cmd); mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_MESH_RECEIVER, 0, NULL, 0); } static int set_mesh_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_set_mesh *cp = cmd->param; size_t len = cmd->param_len; memset(hdev->mesh_ad_types, 0, sizeof(hdev->mesh_ad_types)); if (cp->enable) hci_dev_set_flag(hdev, HCI_MESH); else hci_dev_clear_flag(hdev, HCI_MESH); len -= sizeof(*cp); /* If filters don't fit, forward all adv pkts */ if (len <= sizeof(hdev->mesh_ad_types)) memcpy(hdev->mesh_ad_types, cp->ad_types, len); hci_update_passive_scan_sync(hdev); return 0; } static int set_mesh(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_mesh *cp = data; struct mgmt_pending_cmd *cmd; int err = 0; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_le_capable(hdev) || !hci_dev_test_flag(hdev, HCI_MESH_EXPERIMENTAL)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_MESH_RECEIVER, MGMT_STATUS_NOT_SUPPORTED); if (cp->enable != 0x00 && cp->enable != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_MESH_RECEIVER, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); cmd = mgmt_pending_add(sk, MGMT_OP_SET_MESH_RECEIVER, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, set_mesh_sync, cmd, set_mesh_complete); if (err < 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_MESH_RECEIVER, MGMT_STATUS_FAILED); if (cmd) mgmt_pending_remove(cmd); } hci_dev_unlock(hdev); return err; } static void mesh_send_start_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_mesh_tx *mesh_tx = data; struct mgmt_cp_mesh_send *send = (void *)mesh_tx->param; unsigned long mesh_send_interval; u8 mgmt_err = mgmt_status(err); /* Report any errors here, but don't report completion */ if (mgmt_err) { hci_dev_clear_flag(hdev, HCI_MESH_SENDING); /* Send Complete Error Code for handle */ mesh_send_complete(hdev, mesh_tx, false); return; } mesh_send_interval = msecs_to_jiffies((send->cnt) * 25); queue_delayed_work(hdev->req_workqueue, &hdev->mesh_send_done, mesh_send_interval); } static int mesh_send_sync(struct hci_dev *hdev, void *data) { struct mgmt_mesh_tx *mesh_tx = data; struct mgmt_cp_mesh_send *send = (void *)mesh_tx->param; struct adv_info *adv, *next_instance; u8 instance = hdev->le_num_of_adv_sets + 1; u16 timeout, duration; int err = 0; if (hdev->le_num_of_adv_sets <= hdev->adv_instance_cnt) return MGMT_STATUS_BUSY; timeout = 1000; duration = send->cnt * INTERVAL_TO_MS(hdev->le_adv_max_interval); adv = hci_add_adv_instance(hdev, instance, 0, send->adv_data_len, send->adv_data, 0, NULL, timeout, duration, HCI_ADV_TX_POWER_NO_PREFERENCE, hdev->le_adv_min_interval, hdev->le_adv_max_interval, mesh_tx->handle); if (!IS_ERR(adv)) mesh_tx->instance = instance; else err = PTR_ERR(adv); if (hdev->cur_adv_instance == instance) { /* If the currently advertised instance is being changed then * cancel the current advertising and schedule the next * instance. If there is only one instance then the overridden * advertising data will be visible right away. */ cancel_adv_timeout(hdev); next_instance = hci_get_next_instance(hdev, instance); if (next_instance) instance = next_instance->instance; else instance = 0; } else if (hdev->adv_instance_timeout) { /* Immediately advertise the new instance if no other, or * let it go naturally from queue if ADV is already happening */ instance = 0; } if (instance) return hci_schedule_adv_instance_sync(hdev, instance, true); return err; } static void send_count(struct mgmt_mesh_tx *mesh_tx, void *data) { struct mgmt_rp_mesh_read_features *rp = data; if (rp->used_handles >= rp->max_handles) return; rp->handles[rp->used_handles++] = mesh_tx->handle; } static int mesh_features(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_rp_mesh_read_features rp; if (!lmp_le_capable(hdev) || !hci_dev_test_flag(hdev, HCI_MESH_EXPERIMENTAL)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_MESH_READ_FEATURES, MGMT_STATUS_NOT_SUPPORTED); memset(&rp, 0, sizeof(rp)); rp.index = cpu_to_le16(hdev->id); if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) rp.max_handles = MESH_HANDLES_MAX; hci_dev_lock(hdev); if (rp.max_handles) mgmt_mesh_foreach(hdev, send_count, &rp, sk); mgmt_cmd_complete(sk, hdev->id, MGMT_OP_MESH_READ_FEATURES, 0, &rp, rp.used_handles + sizeof(rp) - MESH_HANDLES_MAX); hci_dev_unlock(hdev); return 0; } static int send_cancel(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_mesh_send_cancel *cancel = (void *)cmd->param; struct mgmt_mesh_tx *mesh_tx; if (!cancel->handle) { do { mesh_tx = mgmt_mesh_next(hdev, cmd->sk); if (mesh_tx) mesh_send_complete(hdev, mesh_tx, false); } while (mesh_tx); } else { mesh_tx = mgmt_mesh_find(hdev, cancel->handle); if (mesh_tx && mesh_tx->sk == cmd->sk) mesh_send_complete(hdev, mesh_tx, false); } mgmt_cmd_complete(cmd->sk, hdev->id, MGMT_OP_MESH_SEND_CANCEL, 0, NULL, 0); mgmt_pending_free(cmd); return 0; } static int mesh_send_cancel(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_pending_cmd *cmd; int err; if (!lmp_le_capable(hdev) || !hci_dev_test_flag(hdev, HCI_MESH_EXPERIMENTAL)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_MESH_SEND_CANCEL, MGMT_STATUS_NOT_SUPPORTED); if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_MESH_SEND_CANCEL, MGMT_STATUS_REJECTED); hci_dev_lock(hdev); cmd = mgmt_pending_new(sk, MGMT_OP_MESH_SEND_CANCEL, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, send_cancel, cmd, NULL); if (err < 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_MESH_SEND_CANCEL, MGMT_STATUS_FAILED); if (cmd) mgmt_pending_free(cmd); } hci_dev_unlock(hdev); return err; } static int mesh_send(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mesh_tx *mesh_tx; struct mgmt_cp_mesh_send *send = data; struct mgmt_rp_mesh_read_features rp; bool sending; int err = 0; if (!lmp_le_capable(hdev) || !hci_dev_test_flag(hdev, HCI_MESH_EXPERIMENTAL)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_MESH_SEND, MGMT_STATUS_NOT_SUPPORTED); if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || len <= MGMT_MESH_SEND_SIZE || len > (MGMT_MESH_SEND_SIZE + 31)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_MESH_SEND, MGMT_STATUS_REJECTED); hci_dev_lock(hdev); memset(&rp, 0, sizeof(rp)); rp.max_handles = MESH_HANDLES_MAX; mgmt_mesh_foreach(hdev, send_count, &rp, sk); if (rp.max_handles <= rp.used_handles) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_MESH_SEND, MGMT_STATUS_BUSY); goto done; } sending = hci_dev_test_flag(hdev, HCI_MESH_SENDING); mesh_tx = mgmt_mesh_add(sk, hdev, send, len); if (!mesh_tx) err = -ENOMEM; else if (!sending) err = hci_cmd_sync_queue(hdev, mesh_send_sync, mesh_tx, mesh_send_start_complete); if (err < 0) { bt_dev_err(hdev, "Send Mesh Failed %d", err); err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_MESH_SEND, MGMT_STATUS_FAILED); if (mesh_tx) { if (sending) mgmt_mesh_remove(mesh_tx); } } else { hci_dev_set_flag(hdev, HCI_MESH_SENDING); mgmt_cmd_complete(sk, hdev->id, MGMT_OP_MESH_SEND, 0, &mesh_tx->handle, 1); } done: hci_dev_unlock(hdev); return err; } static int set_le(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; struct mgmt_pending_cmd *cmd; int err; u8 val, enabled; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_LE, MGMT_STATUS_NOT_SUPPORTED); if (cp->val != 0x00 && cp->val != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_LE, MGMT_STATUS_INVALID_PARAMS); /* Bluetooth single mode LE only controllers or dual-mode * controllers configured as LE only devices, do not allow * switching LE off. These have either LE enabled explicitly * or BR/EDR has been previously switched off. * * When trying to enable an already enabled LE, then gracefully * send a positive response. Trying to disable it however will * result into rejection. */ if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { if (cp->val == 0x01) return send_settings_rsp(sk, MGMT_OP_SET_LE, hdev); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_LE, MGMT_STATUS_REJECTED); } hci_dev_lock(hdev); val = !!cp->val; enabled = lmp_host_le_capable(hdev); if (!hdev_is_powered(hdev) || val == enabled) { bool changed = false; if (val != hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { hci_dev_change_flag(hdev, HCI_LE_ENABLED); changed = true; } if (!val && hci_dev_test_flag(hdev, HCI_ADVERTISING)) { hci_dev_clear_flag(hdev, HCI_ADVERTISING); changed = true; } err = send_settings_rsp(sk, MGMT_OP_SET_LE, hdev); if (err < 0) goto unlock; if (changed) err = new_settings(hdev, sk); goto unlock; } if (pending_find(MGMT_OP_SET_LE, hdev) || pending_find(MGMT_OP_SET_ADVERTISING, hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_LE, MGMT_STATUS_BUSY); goto unlock; } cmd = mgmt_pending_add(sk, MGMT_OP_SET_LE, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, set_le_sync, cmd, set_le_complete); if (err < 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_LE, MGMT_STATUS_FAILED); if (cmd) mgmt_pending_remove(cmd); } unlock: hci_dev_unlock(hdev); return err; } /* This is a helper function to test for pending mgmt commands that can * cause CoD or EIR HCI commands. We can only allow one such pending * mgmt command at a time since otherwise we cannot easily track what * the current values are, will be, and based on that calculate if a new * HCI command needs to be sent and if yes with what value. */ static bool pending_eir_or_class(struct hci_dev *hdev) { struct mgmt_pending_cmd *cmd; list_for_each_entry(cmd, &hdev->mgmt_pending, list) { switch (cmd->opcode) { case MGMT_OP_ADD_UUID: case MGMT_OP_REMOVE_UUID: case MGMT_OP_SET_DEV_CLASS: case MGMT_OP_SET_POWERED: return true; } } return false; } static const u8 bluetooth_base_uuid[] = { 0xfb, 0x34, 0x9b, 0x5f, 0x80, 0x00, 0x00, 0x80, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; static u8 get_uuid_size(const u8 *uuid) { u32 val; if (memcmp(uuid, bluetooth_base_uuid, 12)) return 128; val = get_unaligned_le32(&uuid[12]); if (val > 0xffff) return 32; return 16; } static void mgmt_class_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; bt_dev_dbg(hdev, "err %d", err); mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, mgmt_status(err), hdev->dev_class, 3); mgmt_pending_free(cmd); } static int add_uuid_sync(struct hci_dev *hdev, void *data) { int err; err = hci_update_class_sync(hdev); if (err) return err; return hci_update_eir_sync(hdev); } static int add_uuid(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_add_uuid *cp = data; struct mgmt_pending_cmd *cmd; struct bt_uuid *uuid; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (pending_eir_or_class(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_UUID, MGMT_STATUS_BUSY); goto failed; } uuid = kmalloc(sizeof(*uuid), GFP_KERNEL); if (!uuid) { err = -ENOMEM; goto failed; } memcpy(uuid->uuid, cp->uuid, 16); uuid->svc_hint = cp->svc_hint; uuid->size = get_uuid_size(cp->uuid); list_add_tail(&uuid->list, &hdev->uuids); cmd = mgmt_pending_new(sk, MGMT_OP_ADD_UUID, hdev, data, len); if (!cmd) { err = -ENOMEM; goto failed; } /* MGMT_OP_ADD_UUID don't require adapter the UP/Running so use * hci_cmd_sync_submit instead of hci_cmd_sync_queue. */ err = hci_cmd_sync_submit(hdev, add_uuid_sync, cmd, mgmt_class_complete); if (err < 0) { mgmt_pending_free(cmd); goto failed; } failed: hci_dev_unlock(hdev); return err; } static bool enable_service_cache(struct hci_dev *hdev) { if (!hdev_is_powered(hdev)) return false; if (!hci_dev_test_and_set_flag(hdev, HCI_SERVICE_CACHE)) { queue_delayed_work(hdev->workqueue, &hdev->service_cache, CACHE_TIMEOUT); return true; } return false; } static int remove_uuid_sync(struct hci_dev *hdev, void *data) { int err; err = hci_update_class_sync(hdev); if (err) return err; return hci_update_eir_sync(hdev); } static int remove_uuid(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_remove_uuid *cp = data; struct mgmt_pending_cmd *cmd; struct bt_uuid *match, *tmp; static const u8 bt_uuid_any[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int err, found; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (pending_eir_or_class(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_REMOVE_UUID, MGMT_STATUS_BUSY); goto unlock; } if (memcmp(cp->uuid, bt_uuid_any, 16) == 0) { hci_uuids_clear(hdev); if (enable_service_cache(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_REMOVE_UUID, 0, hdev->dev_class, 3); goto unlock; } goto update_class; } found = 0; list_for_each_entry_safe(match, tmp, &hdev->uuids, list) { if (memcmp(match->uuid, cp->uuid, 16) != 0) continue; list_del(&match->list); kfree(match); found++; } if (found == 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_REMOVE_UUID, MGMT_STATUS_INVALID_PARAMS); goto unlock; } update_class: cmd = mgmt_pending_new(sk, MGMT_OP_REMOVE_UUID, hdev, data, len); if (!cmd) { err = -ENOMEM; goto unlock; } /* MGMT_OP_REMOVE_UUID don't require adapter the UP/Running so use * hci_cmd_sync_submit instead of hci_cmd_sync_queue. */ err = hci_cmd_sync_submit(hdev, remove_uuid_sync, cmd, mgmt_class_complete); if (err < 0) mgmt_pending_free(cmd); unlock: hci_dev_unlock(hdev); return err; } static int set_class_sync(struct hci_dev *hdev, void *data) { int err = 0; if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) { cancel_delayed_work_sync(&hdev->service_cache); err = hci_update_eir_sync(hdev); } if (err) return err; return hci_update_class_sync(hdev); } static int set_dev_class(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_dev_class *cp = data; struct mgmt_pending_cmd *cmd; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_bredr_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DEV_CLASS, MGMT_STATUS_NOT_SUPPORTED); hci_dev_lock(hdev); if (pending_eir_or_class(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DEV_CLASS, MGMT_STATUS_BUSY); goto unlock; } if ((cp->minor & 0x03) != 0 || (cp->major & 0xe0) != 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DEV_CLASS, MGMT_STATUS_INVALID_PARAMS); goto unlock; } hdev->major_class = cp->major; hdev->minor_class = cp->minor; if (!hdev_is_powered(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_DEV_CLASS, 0, hdev->dev_class, 3); goto unlock; } cmd = mgmt_pending_new(sk, MGMT_OP_SET_DEV_CLASS, hdev, data, len); if (!cmd) { err = -ENOMEM; goto unlock; } /* MGMT_OP_SET_DEV_CLASS don't require adapter the UP/Running so use * hci_cmd_sync_submit instead of hci_cmd_sync_queue. */ err = hci_cmd_sync_submit(hdev, set_class_sync, cmd, mgmt_class_complete); if (err < 0) mgmt_pending_free(cmd); unlock: hci_dev_unlock(hdev); return err; } static int load_link_keys(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_load_link_keys *cp = data; const u16 max_key_count = ((U16_MAX - sizeof(*cp)) / sizeof(struct mgmt_link_key_info)); u16 key_count, expected_len; bool changed; int i; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_bredr_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_LINK_KEYS, MGMT_STATUS_NOT_SUPPORTED); key_count = __le16_to_cpu(cp->key_count); if (key_count > max_key_count) { bt_dev_err(hdev, "load_link_keys: too big key_count value %u", key_count); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_LINK_KEYS, MGMT_STATUS_INVALID_PARAMS); } expected_len = struct_size(cp, keys, key_count); if (expected_len != len) { bt_dev_err(hdev, "load_link_keys: expected %u bytes, got %u bytes", expected_len, len); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_LINK_KEYS, MGMT_STATUS_INVALID_PARAMS); } if (cp->debug_keys != 0x00 && cp->debug_keys != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_LINK_KEYS, MGMT_STATUS_INVALID_PARAMS); bt_dev_dbg(hdev, "debug_keys %u key_count %u", cp->debug_keys, key_count); hci_dev_lock(hdev); hci_link_keys_clear(hdev); if (cp->debug_keys) changed = !hci_dev_test_and_set_flag(hdev, HCI_KEEP_DEBUG_KEYS); else changed = hci_dev_test_and_clear_flag(hdev, HCI_KEEP_DEBUG_KEYS); if (changed) new_settings(hdev, NULL); for (i = 0; i < key_count; i++) { struct mgmt_link_key_info *key = &cp->keys[i]; if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LINKKEY, key->val)) { bt_dev_warn(hdev, "Skipping blocked link key for %pMR", &key->addr.bdaddr); continue; } if (key->addr.type != BDADDR_BREDR) { bt_dev_warn(hdev, "Invalid link address type %u for %pMR", key->addr.type, &key->addr.bdaddr); continue; } if (key->type > 0x08) { bt_dev_warn(hdev, "Invalid link key type %u for %pMR", key->type, &key->addr.bdaddr); continue; } /* Always ignore debug keys and require a new pairing if * the user wants to use them. */ if (key->type == HCI_LK_DEBUG_COMBINATION) continue; hci_add_link_key(hdev, NULL, &key->addr.bdaddr, key->val, key->type, key->pin_len, NULL); } mgmt_cmd_complete(sk, hdev->id, MGMT_OP_LOAD_LINK_KEYS, 0, NULL, 0); hci_dev_unlock(hdev); return 0; } static int device_unpaired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, struct sock *skip_sk) { struct mgmt_ev_device_unpaired ev; bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = addr_type; return mgmt_event(MGMT_EV_DEVICE_UNPAIRED, hdev, &ev, sizeof(ev), skip_sk); } static void unpair_device_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_unpair_device *cp = cmd->param; if (!err) device_unpaired(hdev, &cp->addr.bdaddr, cp->addr.type, cmd->sk); cmd->cmd_complete(cmd, err); mgmt_pending_free(cmd); } static int unpair_device_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_unpair_device *cp = cmd->param; struct hci_conn *conn; if (cp->addr.type == BDADDR_BREDR) conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->addr.bdaddr); else conn = hci_conn_hash_lookup_le(hdev, &cp->addr.bdaddr, le_addr_type(cp->addr.type)); if (!conn) return 0; return hci_abort_conn_sync(hdev, conn, HCI_ERROR_REMOTE_USER_TERM); } static int unpair_device(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_unpair_device *cp = data; struct mgmt_rp_unpair_device rp; struct hci_conn_params *params; struct mgmt_pending_cmd *cmd; struct hci_conn *conn; u8 addr_type; int err; memset(&rp, 0, sizeof(rp)); bacpy(&rp.addr.bdaddr, &cp->addr.bdaddr); rp.addr.type = cp->addr.type; if (!bdaddr_type_is_valid(cp->addr.type)) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_UNPAIR_DEVICE, MGMT_STATUS_INVALID_PARAMS, &rp, sizeof(rp)); if (cp->disconnect != 0x00 && cp->disconnect != 0x01) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_UNPAIR_DEVICE, MGMT_STATUS_INVALID_PARAMS, &rp, sizeof(rp)); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_UNPAIR_DEVICE, MGMT_STATUS_NOT_POWERED, &rp, sizeof(rp)); goto unlock; } if (cp->addr.type == BDADDR_BREDR) { /* If disconnection is requested, then look up the * connection. If the remote device is connected, it * will be later used to terminate the link. * * Setting it to NULL explicitly will cause no * termination of the link. */ if (cp->disconnect) conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->addr.bdaddr); else conn = NULL; err = hci_remove_link_key(hdev, &cp->addr.bdaddr); if (err < 0) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_UNPAIR_DEVICE, MGMT_STATUS_NOT_PAIRED, &rp, sizeof(rp)); goto unlock; } goto done; } /* LE address type */ addr_type = le_addr_type(cp->addr.type); /* Abort any ongoing SMP pairing. Removes ltk and irk if they exist. */ err = smp_cancel_and_remove_pairing(hdev, &cp->addr.bdaddr, addr_type); if (err < 0) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_UNPAIR_DEVICE, MGMT_STATUS_NOT_PAIRED, &rp, sizeof(rp)); goto unlock; } conn = hci_conn_hash_lookup_le(hdev, &cp->addr.bdaddr, addr_type); if (!conn) { hci_conn_params_del(hdev, &cp->addr.bdaddr, addr_type); goto done; } /* Defer clearing up the connection parameters until closing to * give a chance of keeping them if a repairing happens. */ set_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags); /* Disable auto-connection parameters if present */ params = hci_conn_params_lookup(hdev, &cp->addr.bdaddr, addr_type); if (params) { if (params->explicit_connect) params->auto_connect = HCI_AUTO_CONN_EXPLICIT; else params->auto_connect = HCI_AUTO_CONN_DISABLED; } /* If disconnection is not requested, then clear the connection * variable so that the link is not terminated. */ if (!cp->disconnect) conn = NULL; done: /* If the connection variable is set, then termination of the * link is requested. */ if (!conn) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_UNPAIR_DEVICE, 0, &rp, sizeof(rp)); device_unpaired(hdev, &cp->addr.bdaddr, cp->addr.type, sk); goto unlock; } cmd = mgmt_pending_new(sk, MGMT_OP_UNPAIR_DEVICE, hdev, cp, sizeof(*cp)); if (!cmd) { err = -ENOMEM; goto unlock; } cmd->cmd_complete = addr_cmd_complete; err = hci_cmd_sync_queue(hdev, unpair_device_sync, cmd, unpair_device_complete); if (err < 0) mgmt_pending_free(cmd); unlock: hci_dev_unlock(hdev); return err; } static int disconnect(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_disconnect *cp = data; struct mgmt_rp_disconnect rp; struct mgmt_pending_cmd *cmd; struct hci_conn *conn; int err; bt_dev_dbg(hdev, "sock %p", sk); memset(&rp, 0, sizeof(rp)); bacpy(&rp.addr.bdaddr, &cp->addr.bdaddr); rp.addr.type = cp->addr.type; if (!bdaddr_type_is_valid(cp->addr.type)) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_DISCONNECT, MGMT_STATUS_INVALID_PARAMS, &rp, sizeof(rp)); hci_dev_lock(hdev); if (!test_bit(HCI_UP, &hdev->flags)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_DISCONNECT, MGMT_STATUS_NOT_POWERED, &rp, sizeof(rp)); goto failed; } if (pending_find(MGMT_OP_DISCONNECT, hdev)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_DISCONNECT, MGMT_STATUS_BUSY, &rp, sizeof(rp)); goto failed; } if (cp->addr.type == BDADDR_BREDR) conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->addr.bdaddr); else conn = hci_conn_hash_lookup_le(hdev, &cp->addr.bdaddr, le_addr_type(cp->addr.type)); if (!conn || conn->state == BT_OPEN || conn->state == BT_CLOSED) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_DISCONNECT, MGMT_STATUS_NOT_CONNECTED, &rp, sizeof(rp)); goto failed; } cmd = mgmt_pending_add(sk, MGMT_OP_DISCONNECT, hdev, data, len); if (!cmd) { err = -ENOMEM; goto failed; } cmd->cmd_complete = generic_cmd_complete; err = hci_disconnect(conn, HCI_ERROR_REMOTE_USER_TERM); if (err < 0) mgmt_pending_remove(cmd); failed: hci_dev_unlock(hdev); return err; } static u8 link_to_bdaddr(u8 link_type, u8 addr_type) { switch (link_type) { case LE_LINK: switch (addr_type) { case ADDR_LE_DEV_PUBLIC: return BDADDR_LE_PUBLIC; default: /* Fallback to LE Random address type */ return BDADDR_LE_RANDOM; } default: /* Fallback to BR/EDR type */ return BDADDR_BREDR; } } static int get_connections(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_rp_get_connections *rp; struct hci_conn *c; int err; u16 i; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_GET_CONNECTIONS, MGMT_STATUS_NOT_POWERED); goto unlock; } i = 0; list_for_each_entry(c, &hdev->conn_hash.list, list) { if (test_bit(HCI_CONN_MGMT_CONNECTED, &c->flags)) i++; } rp = kmalloc(struct_size(rp, addr, i), GFP_KERNEL); if (!rp) { err = -ENOMEM; goto unlock; } i = 0; list_for_each_entry(c, &hdev->conn_hash.list, list) { if (!test_bit(HCI_CONN_MGMT_CONNECTED, &c->flags)) continue; bacpy(&rp->addr[i].bdaddr, &c->dst); rp->addr[i].type = link_to_bdaddr(c->type, c->dst_type); if (c->type == SCO_LINK || c->type == ESCO_LINK) continue; i++; } rp->conn_count = cpu_to_le16(i); /* Recalculate length in case of filtered SCO connections, etc */ err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_CONNECTIONS, 0, rp, struct_size(rp, addr, i)); kfree(rp); unlock: hci_dev_unlock(hdev); return err; } static int send_pin_code_neg_reply(struct sock *sk, struct hci_dev *hdev, struct mgmt_cp_pin_code_neg_reply *cp) { struct mgmt_pending_cmd *cmd; int err; cmd = mgmt_pending_add(sk, MGMT_OP_PIN_CODE_NEG_REPLY, hdev, cp, sizeof(*cp)); if (!cmd) return -ENOMEM; cmd->cmd_complete = addr_cmd_complete; err = hci_send_cmd(hdev, HCI_OP_PIN_CODE_NEG_REPLY, sizeof(cp->addr.bdaddr), &cp->addr.bdaddr); if (err < 0) mgmt_pending_remove(cmd); return err; } static int pin_code_reply(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct hci_conn *conn; struct mgmt_cp_pin_code_reply *cp = data; struct hci_cp_pin_code_reply reply; struct mgmt_pending_cmd *cmd; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_PIN_CODE_REPLY, MGMT_STATUS_NOT_POWERED); goto failed; } conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->addr.bdaddr); if (!conn) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_PIN_CODE_REPLY, MGMT_STATUS_NOT_CONNECTED); goto failed; } if (conn->pending_sec_level == BT_SECURITY_HIGH && cp->pin_len != 16) { struct mgmt_cp_pin_code_neg_reply ncp; memcpy(&ncp.addr, &cp->addr, sizeof(ncp.addr)); bt_dev_err(hdev, "PIN code is not 16 bytes long"); err = send_pin_code_neg_reply(sk, hdev, &ncp); if (err >= 0) err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_PIN_CODE_REPLY, MGMT_STATUS_INVALID_PARAMS); goto failed; } cmd = mgmt_pending_add(sk, MGMT_OP_PIN_CODE_REPLY, hdev, data, len); if (!cmd) { err = -ENOMEM; goto failed; } cmd->cmd_complete = addr_cmd_complete; bacpy(&reply.bdaddr, &cp->addr.bdaddr); reply.pin_len = cp->pin_len; memcpy(reply.pin_code, cp->pin_code, sizeof(reply.pin_code)); err = hci_send_cmd(hdev, HCI_OP_PIN_CODE_REPLY, sizeof(reply), &reply); if (err < 0) mgmt_pending_remove(cmd); failed: hci_dev_unlock(hdev); return err; } static int set_io_capability(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_io_capability *cp = data; bt_dev_dbg(hdev, "sock %p", sk); if (cp->io_capability > SMP_IO_KEYBOARD_DISPLAY) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_IO_CAPABILITY, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); hdev->io_capability = cp->io_capability; bt_dev_dbg(hdev, "IO capability set to 0x%02x", hdev->io_capability); hci_dev_unlock(hdev); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_IO_CAPABILITY, 0, NULL, 0); } static struct mgmt_pending_cmd *find_pairing(struct hci_conn *conn) { struct hci_dev *hdev = conn->hdev; struct mgmt_pending_cmd *cmd; list_for_each_entry(cmd, &hdev->mgmt_pending, list) { if (cmd->opcode != MGMT_OP_PAIR_DEVICE) continue; if (cmd->user_data != conn) continue; return cmd; } return NULL; } static int pairing_complete(struct mgmt_pending_cmd *cmd, u8 status) { struct mgmt_rp_pair_device rp; struct hci_conn *conn = cmd->user_data; int err; bacpy(&rp.addr.bdaddr, &conn->dst); rp.addr.type = link_to_bdaddr(conn->type, conn->dst_type); err = mgmt_cmd_complete(cmd->sk, cmd->index, MGMT_OP_PAIR_DEVICE, status, &rp, sizeof(rp)); /* So we don't get further callbacks for this connection */ conn->connect_cfm_cb = NULL; conn->security_cfm_cb = NULL; conn->disconn_cfm_cb = NULL; hci_conn_drop(conn); /* The device is paired so there is no need to remove * its connection parameters anymore. */ clear_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags); hci_conn_put(conn); return err; } void mgmt_smp_complete(struct hci_conn *conn, bool complete) { u8 status = complete ? MGMT_STATUS_SUCCESS : MGMT_STATUS_FAILED; struct mgmt_pending_cmd *cmd; cmd = find_pairing(conn); if (cmd) { cmd->cmd_complete(cmd, status); mgmt_pending_remove(cmd); } } static void pairing_complete_cb(struct hci_conn *conn, u8 status) { struct mgmt_pending_cmd *cmd; BT_DBG("status %u", status); cmd = find_pairing(conn); if (!cmd) { BT_DBG("Unable to find a pending command"); return; } cmd->cmd_complete(cmd, mgmt_status(status)); mgmt_pending_remove(cmd); } static void le_pairing_complete_cb(struct hci_conn *conn, u8 status) { struct mgmt_pending_cmd *cmd; BT_DBG("status %u", status); if (!status) return; cmd = find_pairing(conn); if (!cmd) { BT_DBG("Unable to find a pending command"); return; } cmd->cmd_complete(cmd, mgmt_status(status)); mgmt_pending_remove(cmd); } static int pair_device(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_pair_device *cp = data; struct mgmt_rp_pair_device rp; struct mgmt_pending_cmd *cmd; u8 sec_level, auth_type; struct hci_conn *conn; int err; bt_dev_dbg(hdev, "sock %p", sk); memset(&rp, 0, sizeof(rp)); bacpy(&rp.addr.bdaddr, &cp->addr.bdaddr); rp.addr.type = cp->addr.type; if (!bdaddr_type_is_valid(cp->addr.type)) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_PAIR_DEVICE, MGMT_STATUS_INVALID_PARAMS, &rp, sizeof(rp)); if (cp->io_cap > SMP_IO_KEYBOARD_DISPLAY) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_PAIR_DEVICE, MGMT_STATUS_INVALID_PARAMS, &rp, sizeof(rp)); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_PAIR_DEVICE, MGMT_STATUS_NOT_POWERED, &rp, sizeof(rp)); goto unlock; } if (hci_bdaddr_is_paired(hdev, &cp->addr.bdaddr, cp->addr.type)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_PAIR_DEVICE, MGMT_STATUS_ALREADY_PAIRED, &rp, sizeof(rp)); goto unlock; } sec_level = BT_SECURITY_MEDIUM; auth_type = HCI_AT_DEDICATED_BONDING; if (cp->addr.type == BDADDR_BREDR) { conn = hci_connect_acl(hdev, &cp->addr.bdaddr, sec_level, auth_type, CONN_REASON_PAIR_DEVICE); } else { u8 addr_type = le_addr_type(cp->addr.type); struct hci_conn_params *p; /* When pairing a new device, it is expected to remember * this device for future connections. Adding the connection * parameter information ahead of time allows tracking * of the peripheral preferred values and will speed up any * further connection establishment. * * If connection parameters already exist, then they * will be kept and this function does nothing. */ p = hci_conn_params_add(hdev, &cp->addr.bdaddr, addr_type); if (!p) { err = -EIO; goto unlock; } if (p->auto_connect == HCI_AUTO_CONN_EXPLICIT) p->auto_connect = HCI_AUTO_CONN_DISABLED; conn = hci_connect_le_scan(hdev, &cp->addr.bdaddr, addr_type, sec_level, HCI_LE_CONN_TIMEOUT, CONN_REASON_PAIR_DEVICE); } if (IS_ERR(conn)) { int status; if (PTR_ERR(conn) == -EBUSY) status = MGMT_STATUS_BUSY; else if (PTR_ERR(conn) == -EOPNOTSUPP) status = MGMT_STATUS_NOT_SUPPORTED; else if (PTR_ERR(conn) == -ECONNREFUSED) status = MGMT_STATUS_REJECTED; else status = MGMT_STATUS_CONNECT_FAILED; err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_PAIR_DEVICE, status, &rp, sizeof(rp)); goto unlock; } if (conn->connect_cfm_cb) { hci_conn_drop(conn); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_PAIR_DEVICE, MGMT_STATUS_BUSY, &rp, sizeof(rp)); goto unlock; } cmd = mgmt_pending_add(sk, MGMT_OP_PAIR_DEVICE, hdev, data, len); if (!cmd) { err = -ENOMEM; hci_conn_drop(conn); goto unlock; } cmd->cmd_complete = pairing_complete; /* For LE, just connecting isn't a proof that the pairing finished */ if (cp->addr.type == BDADDR_BREDR) { conn->connect_cfm_cb = pairing_complete_cb; conn->security_cfm_cb = pairing_complete_cb; conn->disconn_cfm_cb = pairing_complete_cb; } else { conn->connect_cfm_cb = le_pairing_complete_cb; conn->security_cfm_cb = le_pairing_complete_cb; conn->disconn_cfm_cb = le_pairing_complete_cb; } conn->io_capability = cp->io_cap; cmd->user_data = hci_conn_get(conn); if ((conn->state == BT_CONNECTED || conn->state == BT_CONFIG) && hci_conn_security(conn, sec_level, auth_type, true)) { cmd->cmd_complete(cmd, 0); mgmt_pending_remove(cmd); } err = 0; unlock: hci_dev_unlock(hdev); return err; } static int abort_conn_sync(struct hci_dev *hdev, void *data) { struct hci_conn *conn; u16 handle = PTR_ERR(data); conn = hci_conn_hash_lookup_handle(hdev, handle); if (!conn) return 0; return hci_abort_conn_sync(hdev, conn, HCI_ERROR_REMOTE_USER_TERM); } static int cancel_pair_device(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_addr_info *addr = data; struct mgmt_pending_cmd *cmd; struct hci_conn *conn; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_CANCEL_PAIR_DEVICE, MGMT_STATUS_NOT_POWERED); goto unlock; } cmd = pending_find(MGMT_OP_PAIR_DEVICE, hdev); if (!cmd) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_CANCEL_PAIR_DEVICE, MGMT_STATUS_INVALID_PARAMS); goto unlock; } conn = cmd->user_data; if (bacmp(&addr->bdaddr, &conn->dst) != 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_CANCEL_PAIR_DEVICE, MGMT_STATUS_INVALID_PARAMS); goto unlock; } cmd->cmd_complete(cmd, MGMT_STATUS_CANCELLED); mgmt_pending_remove(cmd); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_CANCEL_PAIR_DEVICE, 0, addr, sizeof(*addr)); /* Since user doesn't want to proceed with the connection, abort any * ongoing pairing and then terminate the link if it was created * because of the pair device action. */ if (addr->type == BDADDR_BREDR) hci_remove_link_key(hdev, &addr->bdaddr); else smp_cancel_and_remove_pairing(hdev, &addr->bdaddr, le_addr_type(addr->type)); if (conn->conn_reason == CONN_REASON_PAIR_DEVICE) hci_cmd_sync_queue(hdev, abort_conn_sync, ERR_PTR(conn->handle), NULL); unlock: hci_dev_unlock(hdev); return err; } static int user_pairing_resp(struct sock *sk, struct hci_dev *hdev, struct mgmt_addr_info *addr, u16 mgmt_op, u16 hci_op, __le32 passkey) { struct mgmt_pending_cmd *cmd; struct hci_conn *conn; int err; hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, mgmt_op, MGMT_STATUS_NOT_POWERED, addr, sizeof(*addr)); goto done; } if (addr->type == BDADDR_BREDR) conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &addr->bdaddr); else conn = hci_conn_hash_lookup_le(hdev, &addr->bdaddr, le_addr_type(addr->type)); if (!conn) { err = mgmt_cmd_complete(sk, hdev->id, mgmt_op, MGMT_STATUS_NOT_CONNECTED, addr, sizeof(*addr)); goto done; } if (addr->type == BDADDR_LE_PUBLIC || addr->type == BDADDR_LE_RANDOM) { err = smp_user_confirm_reply(conn, mgmt_op, passkey); if (!err) err = mgmt_cmd_complete(sk, hdev->id, mgmt_op, MGMT_STATUS_SUCCESS, addr, sizeof(*addr)); else err = mgmt_cmd_complete(sk, hdev->id, mgmt_op, MGMT_STATUS_FAILED, addr, sizeof(*addr)); goto done; } cmd = mgmt_pending_add(sk, mgmt_op, hdev, addr, sizeof(*addr)); if (!cmd) { err = -ENOMEM; goto done; } cmd->cmd_complete = addr_cmd_complete; /* Continue with pairing via HCI */ if (hci_op == HCI_OP_USER_PASSKEY_REPLY) { struct hci_cp_user_passkey_reply cp; bacpy(&cp.bdaddr, &addr->bdaddr); cp.passkey = passkey; err = hci_send_cmd(hdev, hci_op, sizeof(cp), &cp); } else err = hci_send_cmd(hdev, hci_op, sizeof(addr->bdaddr), &addr->bdaddr); if (err < 0) mgmt_pending_remove(cmd); done: hci_dev_unlock(hdev); return err; } static int pin_code_neg_reply(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_pin_code_neg_reply *cp = data; bt_dev_dbg(hdev, "sock %p", sk); return user_pairing_resp(sk, hdev, &cp->addr, MGMT_OP_PIN_CODE_NEG_REPLY, HCI_OP_PIN_CODE_NEG_REPLY, 0); } static int user_confirm_reply(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_user_confirm_reply *cp = data; bt_dev_dbg(hdev, "sock %p", sk); if (len != sizeof(*cp)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_USER_CONFIRM_REPLY, MGMT_STATUS_INVALID_PARAMS); return user_pairing_resp(sk, hdev, &cp->addr, MGMT_OP_USER_CONFIRM_REPLY, HCI_OP_USER_CONFIRM_REPLY, 0); } static int user_confirm_neg_reply(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_user_confirm_neg_reply *cp = data; bt_dev_dbg(hdev, "sock %p", sk); return user_pairing_resp(sk, hdev, &cp->addr, MGMT_OP_USER_CONFIRM_NEG_REPLY, HCI_OP_USER_CONFIRM_NEG_REPLY, 0); } static int user_passkey_reply(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_user_passkey_reply *cp = data; bt_dev_dbg(hdev, "sock %p", sk); return user_pairing_resp(sk, hdev, &cp->addr, MGMT_OP_USER_PASSKEY_REPLY, HCI_OP_USER_PASSKEY_REPLY, cp->passkey); } static int user_passkey_neg_reply(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_user_passkey_neg_reply *cp = data; bt_dev_dbg(hdev, "sock %p", sk); return user_pairing_resp(sk, hdev, &cp->addr, MGMT_OP_USER_PASSKEY_NEG_REPLY, HCI_OP_USER_PASSKEY_NEG_REPLY, 0); } static int adv_expire_sync(struct hci_dev *hdev, u32 flags) { struct adv_info *adv_instance; adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); if (!adv_instance) return 0; /* stop if current instance doesn't need to be changed */ if (!(adv_instance->flags & flags)) return 0; cancel_adv_timeout(hdev); adv_instance = hci_get_next_instance(hdev, adv_instance->instance); if (!adv_instance) return 0; hci_schedule_adv_instance_sync(hdev, adv_instance->instance, true); return 0; } static int name_changed_sync(struct hci_dev *hdev, void *data) { return adv_expire_sync(hdev, MGMT_ADV_FLAG_LOCAL_NAME); } static void set_name_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_set_local_name *cp = cmd->param; u8 status = mgmt_status(err); bt_dev_dbg(hdev, "err %d", err); if (err == -ECANCELED || cmd != pending_find(MGMT_OP_SET_LOCAL_NAME, hdev)) return; if (status) { mgmt_cmd_status(cmd->sk, hdev->id, MGMT_OP_SET_LOCAL_NAME, status); } else { mgmt_cmd_complete(cmd->sk, hdev->id, MGMT_OP_SET_LOCAL_NAME, 0, cp, sizeof(*cp)); if (hci_dev_test_flag(hdev, HCI_LE_ADV)) hci_cmd_sync_queue(hdev, name_changed_sync, NULL, NULL); } mgmt_pending_remove(cmd); } static int set_name_sync(struct hci_dev *hdev, void *data) { if (lmp_bredr_capable(hdev)) { hci_update_name_sync(hdev); hci_update_eir_sync(hdev); } /* The name is stored in the scan response data and so * no need to update the advertising data here. */ if (lmp_le_capable(hdev) && hci_dev_test_flag(hdev, HCI_ADVERTISING)) hci_update_scan_rsp_data_sync(hdev, hdev->cur_adv_instance); return 0; } static int set_local_name(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_local_name *cp = data; struct mgmt_pending_cmd *cmd; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); /* If the old values are the same as the new ones just return a * direct command complete event. */ if (!memcmp(hdev->dev_name, cp->name, sizeof(hdev->dev_name)) && !memcmp(hdev->short_name, cp->short_name, sizeof(hdev->short_name))) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_LOCAL_NAME, 0, data, len); goto failed; } memcpy(hdev->short_name, cp->short_name, sizeof(hdev->short_name)); if (!hdev_is_powered(hdev)) { memcpy(hdev->dev_name, cp->name, sizeof(hdev->dev_name)); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_LOCAL_NAME, 0, data, len); if (err < 0) goto failed; err = mgmt_limited_event(MGMT_EV_LOCAL_NAME_CHANGED, hdev, data, len, HCI_MGMT_LOCAL_NAME_EVENTS, sk); ext_info_changed(hdev, sk); goto failed; } cmd = mgmt_pending_add(sk, MGMT_OP_SET_LOCAL_NAME, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, set_name_sync, cmd, set_name_complete); if (err < 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_LOCAL_NAME, MGMT_STATUS_FAILED); if (cmd) mgmt_pending_remove(cmd); goto failed; } memcpy(hdev->dev_name, cp->name, sizeof(hdev->dev_name)); failed: hci_dev_unlock(hdev); return err; } static int appearance_changed_sync(struct hci_dev *hdev, void *data) { return adv_expire_sync(hdev, MGMT_ADV_FLAG_APPEARANCE); } static int set_appearance(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_appearance *cp = data; u16 appearance; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_APPEARANCE, MGMT_STATUS_NOT_SUPPORTED); appearance = le16_to_cpu(cp->appearance); hci_dev_lock(hdev); if (hdev->appearance != appearance) { hdev->appearance = appearance; if (hci_dev_test_flag(hdev, HCI_LE_ADV)) hci_cmd_sync_queue(hdev, appearance_changed_sync, NULL, NULL); ext_info_changed(hdev, sk); } err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_APPEARANCE, 0, NULL, 0); hci_dev_unlock(hdev); return err; } static int get_phy_configuration(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_rp_get_phy_configuration rp; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); memset(&rp, 0, sizeof(rp)); rp.supported_phys = cpu_to_le32(get_supported_phys(hdev)); rp.selected_phys = cpu_to_le32(get_selected_phys(hdev)); rp.configurable_phys = cpu_to_le32(get_configurable_phys(hdev)); hci_dev_unlock(hdev); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_PHY_CONFIGURATION, 0, &rp, sizeof(rp)); } int mgmt_phy_configuration_changed(struct hci_dev *hdev, struct sock *skip) { struct mgmt_ev_phy_configuration_changed ev; memset(&ev, 0, sizeof(ev)); ev.selected_phys = cpu_to_le32(get_selected_phys(hdev)); return mgmt_event(MGMT_EV_PHY_CONFIGURATION_CHANGED, hdev, &ev, sizeof(ev), skip); } static void set_default_phy_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct sk_buff *skb = cmd->skb; u8 status = mgmt_status(err); if (err == -ECANCELED || cmd != pending_find(MGMT_OP_SET_PHY_CONFIGURATION, hdev)) return; if (!status) { if (!skb) status = MGMT_STATUS_FAILED; else if (IS_ERR(skb)) status = mgmt_status(PTR_ERR(skb)); else status = mgmt_status(skb->data[0]); } bt_dev_dbg(hdev, "status %d", status); if (status) { mgmt_cmd_status(cmd->sk, hdev->id, MGMT_OP_SET_PHY_CONFIGURATION, status); } else { mgmt_cmd_complete(cmd->sk, hdev->id, MGMT_OP_SET_PHY_CONFIGURATION, 0, NULL, 0); mgmt_phy_configuration_changed(hdev, cmd->sk); } if (skb && !IS_ERR(skb)) kfree_skb(skb); mgmt_pending_remove(cmd); } static int set_default_phy_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_set_phy_configuration *cp = cmd->param; struct hci_cp_le_set_default_phy cp_phy; u32 selected_phys = __le32_to_cpu(cp->selected_phys); memset(&cp_phy, 0, sizeof(cp_phy)); if (!(selected_phys & MGMT_PHY_LE_TX_MASK)) cp_phy.all_phys |= 0x01; if (!(selected_phys & MGMT_PHY_LE_RX_MASK)) cp_phy.all_phys |= 0x02; if (selected_phys & MGMT_PHY_LE_1M_TX) cp_phy.tx_phys |= HCI_LE_SET_PHY_1M; if (selected_phys & MGMT_PHY_LE_2M_TX) cp_phy.tx_phys |= HCI_LE_SET_PHY_2M; if (selected_phys & MGMT_PHY_LE_CODED_TX) cp_phy.tx_phys |= HCI_LE_SET_PHY_CODED; if (selected_phys & MGMT_PHY_LE_1M_RX) cp_phy.rx_phys |= HCI_LE_SET_PHY_1M; if (selected_phys & MGMT_PHY_LE_2M_RX) cp_phy.rx_phys |= HCI_LE_SET_PHY_2M; if (selected_phys & MGMT_PHY_LE_CODED_RX) cp_phy.rx_phys |= HCI_LE_SET_PHY_CODED; cmd->skb = __hci_cmd_sync(hdev, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp_phy), &cp_phy, HCI_CMD_TIMEOUT); return 0; } static int set_phy_configuration(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_phy_configuration *cp = data; struct mgmt_pending_cmd *cmd; u32 selected_phys, configurable_phys, supported_phys, unconfigure_phys; u16 pkt_type = (HCI_DH1 | HCI_DM1); bool changed = false; int err; bt_dev_dbg(hdev, "sock %p", sk); configurable_phys = get_configurable_phys(hdev); supported_phys = get_supported_phys(hdev); selected_phys = __le32_to_cpu(cp->selected_phys); if (selected_phys & ~supported_phys) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PHY_CONFIGURATION, MGMT_STATUS_INVALID_PARAMS); unconfigure_phys = supported_phys & ~configurable_phys; if ((selected_phys & unconfigure_phys) != unconfigure_phys) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PHY_CONFIGURATION, MGMT_STATUS_INVALID_PARAMS); if (selected_phys == get_selected_phys(hdev)) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_PHY_CONFIGURATION, 0, NULL, 0); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PHY_CONFIGURATION, MGMT_STATUS_REJECTED); goto unlock; } if (pending_find(MGMT_OP_SET_PHY_CONFIGURATION, hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PHY_CONFIGURATION, MGMT_STATUS_BUSY); goto unlock; } if (selected_phys & MGMT_PHY_BR_1M_3SLOT) pkt_type |= (HCI_DH3 | HCI_DM3); else pkt_type &= ~(HCI_DH3 | HCI_DM3); if (selected_phys & MGMT_PHY_BR_1M_5SLOT) pkt_type |= (HCI_DH5 | HCI_DM5); else pkt_type &= ~(HCI_DH5 | HCI_DM5); if (selected_phys & MGMT_PHY_EDR_2M_1SLOT) pkt_type &= ~HCI_2DH1; else pkt_type |= HCI_2DH1; if (selected_phys & MGMT_PHY_EDR_2M_3SLOT) pkt_type &= ~HCI_2DH3; else pkt_type |= HCI_2DH3; if (selected_phys & MGMT_PHY_EDR_2M_5SLOT) pkt_type &= ~HCI_2DH5; else pkt_type |= HCI_2DH5; if (selected_phys & MGMT_PHY_EDR_3M_1SLOT) pkt_type &= ~HCI_3DH1; else pkt_type |= HCI_3DH1; if (selected_phys & MGMT_PHY_EDR_3M_3SLOT) pkt_type &= ~HCI_3DH3; else pkt_type |= HCI_3DH3; if (selected_phys & MGMT_PHY_EDR_3M_5SLOT) pkt_type &= ~HCI_3DH5; else pkt_type |= HCI_3DH5; if (pkt_type != hdev->pkt_type) { hdev->pkt_type = pkt_type; changed = true; } if ((selected_phys & MGMT_PHY_LE_MASK) == (get_selected_phys(hdev) & MGMT_PHY_LE_MASK)) { if (changed) mgmt_phy_configuration_changed(hdev, sk); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_PHY_CONFIGURATION, 0, NULL, 0); goto unlock; } cmd = mgmt_pending_add(sk, MGMT_OP_SET_PHY_CONFIGURATION, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, set_default_phy_sync, cmd, set_default_phy_complete); if (err < 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PHY_CONFIGURATION, MGMT_STATUS_FAILED); if (cmd) mgmt_pending_remove(cmd); } unlock: hci_dev_unlock(hdev); return err; } static int set_blocked_keys(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { int err = MGMT_STATUS_SUCCESS; struct mgmt_cp_set_blocked_keys *keys = data; const u16 max_key_count = ((U16_MAX - sizeof(*keys)) / sizeof(struct mgmt_blocked_key_info)); u16 key_count, expected_len; int i; bt_dev_dbg(hdev, "sock %p", sk); key_count = __le16_to_cpu(keys->key_count); if (key_count > max_key_count) { bt_dev_err(hdev, "too big key_count value %u", key_count); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_BLOCKED_KEYS, MGMT_STATUS_INVALID_PARAMS); } expected_len = struct_size(keys, keys, key_count); if (expected_len != len) { bt_dev_err(hdev, "expected %u bytes, got %u bytes", expected_len, len); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_BLOCKED_KEYS, MGMT_STATUS_INVALID_PARAMS); } hci_dev_lock(hdev); hci_blocked_keys_clear(hdev); for (i = 0; i < key_count; ++i) { struct blocked_key *b = kzalloc(sizeof(*b), GFP_KERNEL); if (!b) { err = MGMT_STATUS_NO_RESOURCES; break; } b->type = keys->keys[i].type; memcpy(b->val, keys->keys[i].val, sizeof(b->val)); list_add_rcu(&b->list, &hdev->blocked_keys); } hci_dev_unlock(hdev); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_BLOCKED_KEYS, err, NULL, 0); } static int set_wideband_speech(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; int err; bool changed = false; bt_dev_dbg(hdev, "sock %p", sk); if (!test_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_WIDEBAND_SPEECH, MGMT_STATUS_NOT_SUPPORTED); if (cp->val != 0x00 && cp->val != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_WIDEBAND_SPEECH, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (hdev_is_powered(hdev) && !!cp->val != hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_WIDEBAND_SPEECH, MGMT_STATUS_REJECTED); goto unlock; } if (cp->val) changed = !hci_dev_test_and_set_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); else changed = hci_dev_test_and_clear_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); err = send_settings_rsp(sk, MGMT_OP_SET_WIDEBAND_SPEECH, hdev); if (err < 0) goto unlock; if (changed) err = new_settings(hdev, sk); unlock: hci_dev_unlock(hdev); return err; } static int read_controller_cap(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { char buf[20]; struct mgmt_rp_read_controller_cap *rp = (void *)buf; u16 cap_len = 0; u8 flags = 0; u8 tx_power_range[2]; bt_dev_dbg(hdev, "sock %p", sk); memset(&buf, 0, sizeof(buf)); hci_dev_lock(hdev); /* When the Read Simple Pairing Options command is supported, then * the remote public key validation is supported. * * Alternatively, when Microsoft extensions are available, they can * indicate support for public key validation as well. */ if ((hdev->commands[41] & 0x08) || msft_curve_validity(hdev)) flags |= 0x01; /* Remote public key validation (BR/EDR) */ flags |= 0x02; /* Remote public key validation (LE) */ /* When the Read Encryption Key Size command is supported, then the * encryption key size is enforced. */ if (hdev->commands[20] & 0x10) flags |= 0x04; /* Encryption key size enforcement (BR/EDR) */ flags |= 0x08; /* Encryption key size enforcement (LE) */ cap_len = eir_append_data(rp->cap, cap_len, MGMT_CAP_SEC_FLAGS, &flags, 1); /* When the Read Simple Pairing Options command is supported, then * also max encryption key size information is provided. */ if (hdev->commands[41] & 0x08) cap_len = eir_append_le16(rp->cap, cap_len, MGMT_CAP_MAX_ENC_KEY_SIZE, hdev->max_enc_key_size); cap_len = eir_append_le16(rp->cap, cap_len, MGMT_CAP_SMP_MAX_ENC_KEY_SIZE, SMP_MAX_ENC_KEY_SIZE); /* Append the min/max LE tx power parameters if we were able to fetch * it from the controller */ if (hdev->commands[38] & 0x80) { memcpy(&tx_power_range[0], &hdev->min_le_tx_power, 1); memcpy(&tx_power_range[1], &hdev->max_le_tx_power, 1); cap_len = eir_append_data(rp->cap, cap_len, MGMT_CAP_LE_TX_PWR, tx_power_range, 2); } rp->cap_len = cpu_to_le16(cap_len); hci_dev_unlock(hdev); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_READ_CONTROLLER_CAP, 0, rp, sizeof(*rp) + cap_len); } #ifdef CONFIG_BT_FEATURE_DEBUG /* d4992530-b9ec-469f-ab01-6c481c47da1c */ static const u8 debug_uuid[16] = { 0x1c, 0xda, 0x47, 0x1c, 0x48, 0x6c, 0x01, 0xab, 0x9f, 0x46, 0xec, 0xb9, 0x30, 0x25, 0x99, 0xd4, }; #endif /* 330859bc-7506-492d-9370-9a6f0614037f */ static const u8 quality_report_uuid[16] = { 0x7f, 0x03, 0x14, 0x06, 0x6f, 0x9a, 0x70, 0x93, 0x2d, 0x49, 0x06, 0x75, 0xbc, 0x59, 0x08, 0x33, }; /* a6695ace-ee7f-4fb9-881a-5fac66c629af */ static const u8 offload_codecs_uuid[16] = { 0xaf, 0x29, 0xc6, 0x66, 0xac, 0x5f, 0x1a, 0x88, 0xb9, 0x4f, 0x7f, 0xee, 0xce, 0x5a, 0x69, 0xa6, }; /* 671b10b5-42c0-4696-9227-eb28d1b049d6 */ static const u8 le_simultaneous_roles_uuid[16] = { 0xd6, 0x49, 0xb0, 0xd1, 0x28, 0xeb, 0x27, 0x92, 0x96, 0x46, 0xc0, 0x42, 0xb5, 0x10, 0x1b, 0x67, }; /* 15c0a148-c273-11ea-b3de-0242ac130004 */ static const u8 rpa_resolution_uuid[16] = { 0x04, 0x00, 0x13, 0xac, 0x42, 0x02, 0xde, 0xb3, 0xea, 0x11, 0x73, 0xc2, 0x48, 0xa1, 0xc0, 0x15, }; /* 6fbaf188-05e0-496a-9885-d6ddfdb4e03e */ static const u8 iso_socket_uuid[16] = { 0x3e, 0xe0, 0xb4, 0xfd, 0xdd, 0xd6, 0x85, 0x98, 0x6a, 0x49, 0xe0, 0x05, 0x88, 0xf1, 0xba, 0x6f, }; /* 2ce463d7-7a03-4d8d-bf05-5f24e8f36e76 */ static const u8 mgmt_mesh_uuid[16] = { 0x76, 0x6e, 0xf3, 0xe8, 0x24, 0x5f, 0x05, 0xbf, 0x8d, 0x4d, 0x03, 0x7a, 0xd7, 0x63, 0xe4, 0x2c, }; static int read_exp_features_info(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_rp_read_exp_features_info *rp; size_t len; u16 idx = 0; u32 flags; int status; bt_dev_dbg(hdev, "sock %p", sk); /* Enough space for 7 features */ len = sizeof(*rp) + (sizeof(rp->features[0]) * 7); rp = kzalloc(len, GFP_KERNEL); if (!rp) return -ENOMEM; #ifdef CONFIG_BT_FEATURE_DEBUG if (!hdev) { flags = bt_dbg_get() ? BIT(0) : 0; memcpy(rp->features[idx].uuid, debug_uuid, 16); rp->features[idx].flags = cpu_to_le32(flags); idx++; } #endif if (hdev && hci_dev_le_state_simultaneous(hdev)) { if (hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) flags = BIT(0); else flags = 0; memcpy(rp->features[idx].uuid, le_simultaneous_roles_uuid, 16); rp->features[idx].flags = cpu_to_le32(flags); idx++; } if (hdev && ll_privacy_capable(hdev)) { if (hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY)) flags = BIT(0) | BIT(1); else flags = BIT(1); memcpy(rp->features[idx].uuid, rpa_resolution_uuid, 16); rp->features[idx].flags = cpu_to_le32(flags); idx++; } if (hdev && (aosp_has_quality_report(hdev) || hdev->set_quality_report)) { if (hci_dev_test_flag(hdev, HCI_QUALITY_REPORT)) flags = BIT(0); else flags = 0; memcpy(rp->features[idx].uuid, quality_report_uuid, 16); rp->features[idx].flags = cpu_to_le32(flags); idx++; } if (hdev && hdev->get_data_path_id) { if (hci_dev_test_flag(hdev, HCI_OFFLOAD_CODECS_ENABLED)) flags = BIT(0); else flags = 0; memcpy(rp->features[idx].uuid, offload_codecs_uuid, 16); rp->features[idx].flags = cpu_to_le32(flags); idx++; } if (IS_ENABLED(CONFIG_BT_LE)) { flags = iso_enabled() ? BIT(0) : 0; memcpy(rp->features[idx].uuid, iso_socket_uuid, 16); rp->features[idx].flags = cpu_to_le32(flags); idx++; } if (hdev && lmp_le_capable(hdev)) { if (hci_dev_test_flag(hdev, HCI_MESH_EXPERIMENTAL)) flags = BIT(0); else flags = 0; memcpy(rp->features[idx].uuid, mgmt_mesh_uuid, 16); rp->features[idx].flags = cpu_to_le32(flags); idx++; } rp->feature_count = cpu_to_le16(idx); /* After reading the experimental features information, enable * the events to update client on any future change. */ hci_sock_set_flag(sk, HCI_MGMT_EXP_FEATURE_EVENTS); status = mgmt_cmd_complete(sk, hdev ? hdev->id : MGMT_INDEX_NONE, MGMT_OP_READ_EXP_FEATURES_INFO, 0, rp, sizeof(*rp) + (20 * idx)); kfree(rp); return status; } static int exp_ll_privacy_feature_changed(bool enabled, struct hci_dev *hdev, struct sock *skip) { struct mgmt_ev_exp_feature_changed ev; memset(&ev, 0, sizeof(ev)); memcpy(ev.uuid, rpa_resolution_uuid, 16); ev.flags = cpu_to_le32((enabled ? BIT(0) : 0) | BIT(1)); // Do we need to be atomic with the conn_flags? if (enabled && privacy_mode_capable(hdev)) hdev->conn_flags |= HCI_CONN_FLAG_DEVICE_PRIVACY; else hdev->conn_flags &= ~HCI_CONN_FLAG_DEVICE_PRIVACY; return mgmt_limited_event(MGMT_EV_EXP_FEATURE_CHANGED, hdev, &ev, sizeof(ev), HCI_MGMT_EXP_FEATURE_EVENTS, skip); } static int exp_feature_changed(struct hci_dev *hdev, const u8 *uuid, bool enabled, struct sock *skip) { struct mgmt_ev_exp_feature_changed ev; memset(&ev, 0, sizeof(ev)); memcpy(ev.uuid, uuid, 16); ev.flags = cpu_to_le32(enabled ? BIT(0) : 0); return mgmt_limited_event(MGMT_EV_EXP_FEATURE_CHANGED, hdev, &ev, sizeof(ev), HCI_MGMT_EXP_FEATURE_EVENTS, skip); } #define EXP_FEAT(_uuid, _set_func) \ { \ .uuid = _uuid, \ .set_func = _set_func, \ } /* The zero key uuid is special. Multiple exp features are set through it. */ static int set_zero_key_func(struct sock *sk, struct hci_dev *hdev, struct mgmt_cp_set_exp_feature *cp, u16 data_len) { struct mgmt_rp_set_exp_feature rp; memset(rp.uuid, 0, 16); rp.flags = cpu_to_le32(0); #ifdef CONFIG_BT_FEATURE_DEBUG if (!hdev) { bool changed = bt_dbg_get(); bt_dbg_set(false); if (changed) exp_feature_changed(NULL, ZERO_KEY, false, sk); } #endif if (hdev && use_ll_privacy(hdev) && !hdev_is_powered(hdev)) { bool changed; changed = hci_dev_test_and_clear_flag(hdev, HCI_ENABLE_LL_PRIVACY); if (changed) exp_feature_changed(hdev, rpa_resolution_uuid, false, sk); } hci_sock_set_flag(sk, HCI_MGMT_EXP_FEATURE_EVENTS); return mgmt_cmd_complete(sk, hdev ? hdev->id : MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, 0, &rp, sizeof(rp)); } #ifdef CONFIG_BT_FEATURE_DEBUG static int set_debug_func(struct sock *sk, struct hci_dev *hdev, struct mgmt_cp_set_exp_feature *cp, u16 data_len) { struct mgmt_rp_set_exp_feature rp; bool val, changed; int err; /* Command requires to use the non-controller index */ if (hdev) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_INDEX); /* Parameters are limited to a single octet */ if (data_len != MGMT_SET_EXP_FEATURE_SIZE + 1) return mgmt_cmd_status(sk, MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); /* Only boolean on/off is supported */ if (cp->param[0] != 0x00 && cp->param[0] != 0x01) return mgmt_cmd_status(sk, MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); val = !!cp->param[0]; changed = val ? !bt_dbg_get() : bt_dbg_get(); bt_dbg_set(val); memcpy(rp.uuid, debug_uuid, 16); rp.flags = cpu_to_le32(val ? BIT(0) : 0); hci_sock_set_flag(sk, HCI_MGMT_EXP_FEATURE_EVENTS); err = mgmt_cmd_complete(sk, MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, 0, &rp, sizeof(rp)); if (changed) exp_feature_changed(hdev, debug_uuid, val, sk); return err; } #endif static int set_mgmt_mesh_func(struct sock *sk, struct hci_dev *hdev, struct mgmt_cp_set_exp_feature *cp, u16 data_len) { struct mgmt_rp_set_exp_feature rp; bool val, changed; int err; /* Command requires to use the controller index */ if (!hdev) return mgmt_cmd_status(sk, MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_INDEX); /* Parameters are limited to a single octet */ if (data_len != MGMT_SET_EXP_FEATURE_SIZE + 1) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); /* Only boolean on/off is supported */ if (cp->param[0] != 0x00 && cp->param[0] != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); val = !!cp->param[0]; if (val) { changed = !hci_dev_test_and_set_flag(hdev, HCI_MESH_EXPERIMENTAL); } else { hci_dev_clear_flag(hdev, HCI_MESH); changed = hci_dev_test_and_clear_flag(hdev, HCI_MESH_EXPERIMENTAL); } memcpy(rp.uuid, mgmt_mesh_uuid, 16); rp.flags = cpu_to_le32(val ? BIT(0) : 0); hci_sock_set_flag(sk, HCI_MGMT_EXP_FEATURE_EVENTS); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, 0, &rp, sizeof(rp)); if (changed) exp_feature_changed(hdev, mgmt_mesh_uuid, val, sk); return err; } static int set_rpa_resolution_func(struct sock *sk, struct hci_dev *hdev, struct mgmt_cp_set_exp_feature *cp, u16 data_len) { struct mgmt_rp_set_exp_feature rp; bool val, changed; int err; u32 flags; /* Command requires to use the controller index */ if (!hdev) return mgmt_cmd_status(sk, MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_INDEX); /* Changes can only be made when controller is powered down */ if (hdev_is_powered(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_REJECTED); /* Parameters are limited to a single octet */ if (data_len != MGMT_SET_EXP_FEATURE_SIZE + 1) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); /* Only boolean on/off is supported */ if (cp->param[0] != 0x00 && cp->param[0] != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); val = !!cp->param[0]; if (val) { changed = !hci_dev_test_and_set_flag(hdev, HCI_ENABLE_LL_PRIVACY); hci_dev_clear_flag(hdev, HCI_ADVERTISING); /* Enable LL privacy + supported settings changed */ flags = BIT(0) | BIT(1); } else { changed = hci_dev_test_and_clear_flag(hdev, HCI_ENABLE_LL_PRIVACY); /* Disable LL privacy + supported settings changed */ flags = BIT(1); } memcpy(rp.uuid, rpa_resolution_uuid, 16); rp.flags = cpu_to_le32(flags); hci_sock_set_flag(sk, HCI_MGMT_EXP_FEATURE_EVENTS); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, 0, &rp, sizeof(rp)); if (changed) exp_ll_privacy_feature_changed(val, hdev, sk); return err; } static int set_quality_report_func(struct sock *sk, struct hci_dev *hdev, struct mgmt_cp_set_exp_feature *cp, u16 data_len) { struct mgmt_rp_set_exp_feature rp; bool val, changed; int err; /* Command requires to use a valid controller index */ if (!hdev) return mgmt_cmd_status(sk, MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_INDEX); /* Parameters are limited to a single octet */ if (data_len != MGMT_SET_EXP_FEATURE_SIZE + 1) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); /* Only boolean on/off is supported */ if (cp->param[0] != 0x00 && cp->param[0] != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); hci_req_sync_lock(hdev); val = !!cp->param[0]; changed = (val != hci_dev_test_flag(hdev, HCI_QUALITY_REPORT)); if (!aosp_has_quality_report(hdev) && !hdev->set_quality_report) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_NOT_SUPPORTED); goto unlock_quality_report; } if (changed) { if (hdev->set_quality_report) err = hdev->set_quality_report(hdev, val); else err = aosp_set_quality_report(hdev, val); if (err) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_FAILED); goto unlock_quality_report; } if (val) hci_dev_set_flag(hdev, HCI_QUALITY_REPORT); else hci_dev_clear_flag(hdev, HCI_QUALITY_REPORT); } bt_dev_dbg(hdev, "quality report enable %d changed %d", val, changed); memcpy(rp.uuid, quality_report_uuid, 16); rp.flags = cpu_to_le32(val ? BIT(0) : 0); hci_sock_set_flag(sk, HCI_MGMT_EXP_FEATURE_EVENTS); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, 0, &rp, sizeof(rp)); if (changed) exp_feature_changed(hdev, quality_report_uuid, val, sk); unlock_quality_report: hci_req_sync_unlock(hdev); return err; } static int set_offload_codec_func(struct sock *sk, struct hci_dev *hdev, struct mgmt_cp_set_exp_feature *cp, u16 data_len) { bool val, changed; int err; struct mgmt_rp_set_exp_feature rp; /* Command requires to use a valid controller index */ if (!hdev) return mgmt_cmd_status(sk, MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_INDEX); /* Parameters are limited to a single octet */ if (data_len != MGMT_SET_EXP_FEATURE_SIZE + 1) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); /* Only boolean on/off is supported */ if (cp->param[0] != 0x00 && cp->param[0] != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); val = !!cp->param[0]; changed = (val != hci_dev_test_flag(hdev, HCI_OFFLOAD_CODECS_ENABLED)); if (!hdev->get_data_path_id) { return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_NOT_SUPPORTED); } if (changed) { if (val) hci_dev_set_flag(hdev, HCI_OFFLOAD_CODECS_ENABLED); else hci_dev_clear_flag(hdev, HCI_OFFLOAD_CODECS_ENABLED); } bt_dev_info(hdev, "offload codecs enable %d changed %d", val, changed); memcpy(rp.uuid, offload_codecs_uuid, 16); rp.flags = cpu_to_le32(val ? BIT(0) : 0); hci_sock_set_flag(sk, HCI_MGMT_EXP_FEATURE_EVENTS); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, 0, &rp, sizeof(rp)); if (changed) exp_feature_changed(hdev, offload_codecs_uuid, val, sk); return err; } static int set_le_simultaneous_roles_func(struct sock *sk, struct hci_dev *hdev, struct mgmt_cp_set_exp_feature *cp, u16 data_len) { bool val, changed; int err; struct mgmt_rp_set_exp_feature rp; /* Command requires to use a valid controller index */ if (!hdev) return mgmt_cmd_status(sk, MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_INDEX); /* Parameters are limited to a single octet */ if (data_len != MGMT_SET_EXP_FEATURE_SIZE + 1) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); /* Only boolean on/off is supported */ if (cp->param[0] != 0x00 && cp->param[0] != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); val = !!cp->param[0]; changed = (val != hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)); if (!hci_dev_le_state_simultaneous(hdev)) { return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_NOT_SUPPORTED); } if (changed) { if (val) hci_dev_set_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES); else hci_dev_clear_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES); } bt_dev_info(hdev, "LE simultaneous roles enable %d changed %d", val, changed); memcpy(rp.uuid, le_simultaneous_roles_uuid, 16); rp.flags = cpu_to_le32(val ? BIT(0) : 0); hci_sock_set_flag(sk, HCI_MGMT_EXP_FEATURE_EVENTS); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, 0, &rp, sizeof(rp)); if (changed) exp_feature_changed(hdev, le_simultaneous_roles_uuid, val, sk); return err; } #ifdef CONFIG_BT_LE static int set_iso_socket_func(struct sock *sk, struct hci_dev *hdev, struct mgmt_cp_set_exp_feature *cp, u16 data_len) { struct mgmt_rp_set_exp_feature rp; bool val, changed = false; int err; /* Command requires to use the non-controller index */ if (hdev) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_INDEX); /* Parameters are limited to a single octet */ if (data_len != MGMT_SET_EXP_FEATURE_SIZE + 1) return mgmt_cmd_status(sk, MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); /* Only boolean on/off is supported */ if (cp->param[0] != 0x00 && cp->param[0] != 0x01) return mgmt_cmd_status(sk, MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_INVALID_PARAMS); val = cp->param[0] ? true : false; if (val) err = iso_init(); else err = iso_exit(); if (!err) changed = true; memcpy(rp.uuid, iso_socket_uuid, 16); rp.flags = cpu_to_le32(val ? BIT(0) : 0); hci_sock_set_flag(sk, HCI_MGMT_EXP_FEATURE_EVENTS); err = mgmt_cmd_complete(sk, MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, 0, &rp, sizeof(rp)); if (changed) exp_feature_changed(hdev, iso_socket_uuid, val, sk); return err; } #endif static const struct mgmt_exp_feature { const u8 *uuid; int (*set_func)(struct sock *sk, struct hci_dev *hdev, struct mgmt_cp_set_exp_feature *cp, u16 data_len); } exp_features[] = { EXP_FEAT(ZERO_KEY, set_zero_key_func), #ifdef CONFIG_BT_FEATURE_DEBUG EXP_FEAT(debug_uuid, set_debug_func), #endif EXP_FEAT(mgmt_mesh_uuid, set_mgmt_mesh_func), EXP_FEAT(rpa_resolution_uuid, set_rpa_resolution_func), EXP_FEAT(quality_report_uuid, set_quality_report_func), EXP_FEAT(offload_codecs_uuid, set_offload_codec_func), EXP_FEAT(le_simultaneous_roles_uuid, set_le_simultaneous_roles_func), #ifdef CONFIG_BT_LE EXP_FEAT(iso_socket_uuid, set_iso_socket_func), #endif /* end with a null feature */ EXP_FEAT(NULL, NULL) }; static int set_exp_feature(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_cp_set_exp_feature *cp = data; size_t i = 0; bt_dev_dbg(hdev, "sock %p", sk); for (i = 0; exp_features[i].uuid; i++) { if (!memcmp(cp->uuid, exp_features[i].uuid, 16)) return exp_features[i].set_func(sk, hdev, cp, data_len); } return mgmt_cmd_status(sk, hdev ? hdev->id : MGMT_INDEX_NONE, MGMT_OP_SET_EXP_FEATURE, MGMT_STATUS_NOT_SUPPORTED); } static u32 get_params_flags(struct hci_dev *hdev, struct hci_conn_params *params) { u32 flags = hdev->conn_flags; /* Devices using RPAs can only be programmed in the acceptlist if * LL Privacy has been enable otherwise they cannot mark * HCI_CONN_FLAG_REMOTE_WAKEUP. */ if ((flags & HCI_CONN_FLAG_REMOTE_WAKEUP) && !use_ll_privacy(hdev) && hci_find_irk_by_addr(hdev, &params->addr, params->addr_type)) flags &= ~HCI_CONN_FLAG_REMOTE_WAKEUP; return flags; } static int get_device_flags(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_cp_get_device_flags *cp = data; struct mgmt_rp_get_device_flags rp; struct bdaddr_list_with_flags *br_params; struct hci_conn_params *params; u32 supported_flags; u32 current_flags = 0; u8 status = MGMT_STATUS_INVALID_PARAMS; bt_dev_dbg(hdev, "Get device flags %pMR (type 0x%x)\n", &cp->addr.bdaddr, cp->addr.type); hci_dev_lock(hdev); supported_flags = hdev->conn_flags; memset(&rp, 0, sizeof(rp)); if (cp->addr.type == BDADDR_BREDR) { br_params = hci_bdaddr_list_lookup_with_flags(&hdev->accept_list, &cp->addr.bdaddr, cp->addr.type); if (!br_params) goto done; current_flags = br_params->flags; } else { params = hci_conn_params_lookup(hdev, &cp->addr.bdaddr, le_addr_type(cp->addr.type)); if (!params) goto done; supported_flags = get_params_flags(hdev, params); current_flags = params->flags; } bacpy(&rp.addr.bdaddr, &cp->addr.bdaddr); rp.addr.type = cp->addr.type; rp.supported_flags = cpu_to_le32(supported_flags); rp.current_flags = cpu_to_le32(current_flags); status = MGMT_STATUS_SUCCESS; done: hci_dev_unlock(hdev); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_DEVICE_FLAGS, status, &rp, sizeof(rp)); } static void device_flags_changed(struct sock *sk, struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type, u32 supported_flags, u32 current_flags) { struct mgmt_ev_device_flags_changed ev; bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = bdaddr_type; ev.supported_flags = cpu_to_le32(supported_flags); ev.current_flags = cpu_to_le32(current_flags); mgmt_event(MGMT_EV_DEVICE_FLAGS_CHANGED, hdev, &ev, sizeof(ev), sk); } static int set_device_flags(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_device_flags *cp = data; struct bdaddr_list_with_flags *br_params; struct hci_conn_params *params; u8 status = MGMT_STATUS_INVALID_PARAMS; u32 supported_flags; u32 current_flags = __le32_to_cpu(cp->current_flags); bt_dev_dbg(hdev, "Set device flags %pMR (type 0x%x) = 0x%x", &cp->addr.bdaddr, cp->addr.type, current_flags); // We should take hci_dev_lock() early, I think.. conn_flags can change supported_flags = hdev->conn_flags; if ((supported_flags | current_flags) != supported_flags) { bt_dev_warn(hdev, "Bad flag given (0x%x) vs supported (0x%0x)", current_flags, supported_flags); goto done; } hci_dev_lock(hdev); if (cp->addr.type == BDADDR_BREDR) { br_params = hci_bdaddr_list_lookup_with_flags(&hdev->accept_list, &cp->addr.bdaddr, cp->addr.type); if (br_params) { br_params->flags = current_flags; status = MGMT_STATUS_SUCCESS; } else { bt_dev_warn(hdev, "No such BR/EDR device %pMR (0x%x)", &cp->addr.bdaddr, cp->addr.type); } goto unlock; } params = hci_conn_params_lookup(hdev, &cp->addr.bdaddr, le_addr_type(cp->addr.type)); if (!params) { bt_dev_warn(hdev, "No such LE device %pMR (0x%x)", &cp->addr.bdaddr, le_addr_type(cp->addr.type)); goto unlock; } supported_flags = get_params_flags(hdev, params); if ((supported_flags | current_flags) != supported_flags) { bt_dev_warn(hdev, "Bad flag given (0x%x) vs supported (0x%0x)", current_flags, supported_flags); goto unlock; } WRITE_ONCE(params->flags, current_flags); status = MGMT_STATUS_SUCCESS; /* Update passive scan if HCI_CONN_FLAG_DEVICE_PRIVACY * has been set. */ if (params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY) hci_update_passive_scan(hdev); unlock: hci_dev_unlock(hdev); done: if (status == MGMT_STATUS_SUCCESS) device_flags_changed(sk, hdev, &cp->addr.bdaddr, cp->addr.type, supported_flags, current_flags); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_DEVICE_FLAGS, status, &cp->addr, sizeof(cp->addr)); } static void mgmt_adv_monitor_added(struct sock *sk, struct hci_dev *hdev, u16 handle) { struct mgmt_ev_adv_monitor_added ev; ev.monitor_handle = cpu_to_le16(handle); mgmt_event(MGMT_EV_ADV_MONITOR_ADDED, hdev, &ev, sizeof(ev), sk); } void mgmt_adv_monitor_removed(struct hci_dev *hdev, u16 handle) { struct mgmt_ev_adv_monitor_removed ev; struct mgmt_pending_cmd *cmd; struct sock *sk_skip = NULL; struct mgmt_cp_remove_adv_monitor *cp; cmd = pending_find(MGMT_OP_REMOVE_ADV_MONITOR, hdev); if (cmd) { cp = cmd->param; if (cp->monitor_handle) sk_skip = cmd->sk; } ev.monitor_handle = cpu_to_le16(handle); mgmt_event(MGMT_EV_ADV_MONITOR_REMOVED, hdev, &ev, sizeof(ev), sk_skip); } static int read_adv_mon_features(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct adv_monitor *monitor = NULL; struct mgmt_rp_read_adv_monitor_features *rp = NULL; int handle, err; size_t rp_size = 0; __u32 supported = 0; __u32 enabled = 0; __u16 num_handles = 0; __u16 handles[HCI_MAX_ADV_MONITOR_NUM_HANDLES]; BT_DBG("request for %s", hdev->name); hci_dev_lock(hdev); if (msft_monitor_supported(hdev)) supported |= MGMT_ADV_MONITOR_FEATURE_MASK_OR_PATTERNS; idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle) handles[num_handles++] = monitor->handle; hci_dev_unlock(hdev); rp_size = sizeof(*rp) + (num_handles * sizeof(u16)); rp = kmalloc(rp_size, GFP_KERNEL); if (!rp) return -ENOMEM; /* All supported features are currently enabled */ enabled = supported; rp->supported_features = cpu_to_le32(supported); rp->enabled_features = cpu_to_le32(enabled); rp->max_num_handles = cpu_to_le16(HCI_MAX_ADV_MONITOR_NUM_HANDLES); rp->max_num_patterns = HCI_MAX_ADV_MONITOR_NUM_PATTERNS; rp->num_handles = cpu_to_le16(num_handles); if (num_handles) memcpy(&rp->handles, &handles, (num_handles * sizeof(u16))); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_READ_ADV_MONITOR_FEATURES, MGMT_STATUS_SUCCESS, rp, rp_size); kfree(rp); return err; } static void mgmt_add_adv_patterns_monitor_complete(struct hci_dev *hdev, void *data, int status) { struct mgmt_rp_add_adv_patterns_monitor rp; struct mgmt_pending_cmd *cmd = data; struct adv_monitor *monitor = cmd->user_data; hci_dev_lock(hdev); rp.monitor_handle = cpu_to_le16(monitor->handle); if (!status) { mgmt_adv_monitor_added(cmd->sk, hdev, monitor->handle); hdev->adv_monitors_cnt++; if (monitor->state == ADV_MONITOR_STATE_NOT_REGISTERED) monitor->state = ADV_MONITOR_STATE_REGISTERED; hci_update_passive_scan(hdev); } mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, mgmt_status(status), &rp, sizeof(rp)); mgmt_pending_remove(cmd); hci_dev_unlock(hdev); bt_dev_dbg(hdev, "add monitor %d complete, status %d", rp.monitor_handle, status); } static int mgmt_add_adv_patterns_monitor_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct adv_monitor *monitor = cmd->user_data; return hci_add_adv_monitor(hdev, monitor); } static int __add_adv_patterns_monitor(struct sock *sk, struct hci_dev *hdev, struct adv_monitor *m, u8 status, void *data, u16 len, u16 op) { struct mgmt_pending_cmd *cmd; int err; hci_dev_lock(hdev); if (status) goto unlock; if (pending_find(MGMT_OP_SET_LE, hdev) || pending_find(MGMT_OP_ADD_ADV_PATTERNS_MONITOR, hdev) || pending_find(MGMT_OP_ADD_ADV_PATTERNS_MONITOR_RSSI, hdev) || pending_find(MGMT_OP_REMOVE_ADV_MONITOR, hdev)) { status = MGMT_STATUS_BUSY; goto unlock; } cmd = mgmt_pending_add(sk, op, hdev, data, len); if (!cmd) { status = MGMT_STATUS_NO_RESOURCES; goto unlock; } cmd->user_data = m; err = hci_cmd_sync_queue(hdev, mgmt_add_adv_patterns_monitor_sync, cmd, mgmt_add_adv_patterns_monitor_complete); if (err) { if (err == -ENOMEM) status = MGMT_STATUS_NO_RESOURCES; else status = MGMT_STATUS_FAILED; goto unlock; } hci_dev_unlock(hdev); return 0; unlock: hci_free_adv_monitor(hdev, m); hci_dev_unlock(hdev); return mgmt_cmd_status(sk, hdev->id, op, status); } static void parse_adv_monitor_rssi(struct adv_monitor *m, struct mgmt_adv_rssi_thresholds *rssi) { if (rssi) { m->rssi.low_threshold = rssi->low_threshold; m->rssi.low_threshold_timeout = __le16_to_cpu(rssi->low_threshold_timeout); m->rssi.high_threshold = rssi->high_threshold; m->rssi.high_threshold_timeout = __le16_to_cpu(rssi->high_threshold_timeout); m->rssi.sampling_period = rssi->sampling_period; } else { /* Default values. These numbers are the least constricting * parameters for MSFT API to work, so it behaves as if there * are no rssi parameter to consider. May need to be changed * if other API are to be supported. */ m->rssi.low_threshold = -127; m->rssi.low_threshold_timeout = 60; m->rssi.high_threshold = -127; m->rssi.high_threshold_timeout = 0; m->rssi.sampling_period = 0; } } static u8 parse_adv_monitor_pattern(struct adv_monitor *m, u8 pattern_count, struct mgmt_adv_pattern *patterns) { u8 offset = 0, length = 0; struct adv_pattern *p = NULL; int i; for (i = 0; i < pattern_count; i++) { offset = patterns[i].offset; length = patterns[i].length; if (offset >= HCI_MAX_EXT_AD_LENGTH || length > HCI_MAX_EXT_AD_LENGTH || (offset + length) > HCI_MAX_EXT_AD_LENGTH) return MGMT_STATUS_INVALID_PARAMS; p = kmalloc(sizeof(*p), GFP_KERNEL); if (!p) return MGMT_STATUS_NO_RESOURCES; p->ad_type = patterns[i].ad_type; p->offset = patterns[i].offset; p->length = patterns[i].length; memcpy(p->value, patterns[i].value, p->length); INIT_LIST_HEAD(&p->list); list_add(&p->list, &m->patterns); } return MGMT_STATUS_SUCCESS; } static int add_adv_patterns_monitor(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_add_adv_patterns_monitor *cp = data; struct adv_monitor *m = NULL; u8 status = MGMT_STATUS_SUCCESS; size_t expected_size = sizeof(*cp); BT_DBG("request for %s", hdev->name); if (len <= sizeof(*cp)) { status = MGMT_STATUS_INVALID_PARAMS; goto done; } expected_size += cp->pattern_count * sizeof(struct mgmt_adv_pattern); if (len != expected_size) { status = MGMT_STATUS_INVALID_PARAMS; goto done; } m = kzalloc(sizeof(*m), GFP_KERNEL); if (!m) { status = MGMT_STATUS_NO_RESOURCES; goto done; } INIT_LIST_HEAD(&m->patterns); parse_adv_monitor_rssi(m, NULL); status = parse_adv_monitor_pattern(m, cp->pattern_count, cp->patterns); done: return __add_adv_patterns_monitor(sk, hdev, m, status, data, len, MGMT_OP_ADD_ADV_PATTERNS_MONITOR); } static int add_adv_patterns_monitor_rssi(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_add_adv_patterns_monitor_rssi *cp = data; struct adv_monitor *m = NULL; u8 status = MGMT_STATUS_SUCCESS; size_t expected_size = sizeof(*cp); BT_DBG("request for %s", hdev->name); if (len <= sizeof(*cp)) { status = MGMT_STATUS_INVALID_PARAMS; goto done; } expected_size += cp->pattern_count * sizeof(struct mgmt_adv_pattern); if (len != expected_size) { status = MGMT_STATUS_INVALID_PARAMS; goto done; } m = kzalloc(sizeof(*m), GFP_KERNEL); if (!m) { status = MGMT_STATUS_NO_RESOURCES; goto done; } INIT_LIST_HEAD(&m->patterns); parse_adv_monitor_rssi(m, &cp->rssi); status = parse_adv_monitor_pattern(m, cp->pattern_count, cp->patterns); done: return __add_adv_patterns_monitor(sk, hdev, m, status, data, len, MGMT_OP_ADD_ADV_PATTERNS_MONITOR_RSSI); } static void mgmt_remove_adv_monitor_complete(struct hci_dev *hdev, void *data, int status) { struct mgmt_rp_remove_adv_monitor rp; struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_remove_adv_monitor *cp; if (status == -ECANCELED || cmd != pending_find(MGMT_OP_REMOVE_ADV_MONITOR, hdev)) return; hci_dev_lock(hdev); cp = cmd->param; rp.monitor_handle = cp->monitor_handle; if (!status) hci_update_passive_scan(hdev); mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, mgmt_status(status), &rp, sizeof(rp)); mgmt_pending_remove(cmd); hci_dev_unlock(hdev); bt_dev_dbg(hdev, "remove monitor %d complete, status %d", rp.monitor_handle, status); } static int mgmt_remove_adv_monitor_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; if (cmd != pending_find(MGMT_OP_REMOVE_ADV_MONITOR, hdev)) return -ECANCELED; struct mgmt_cp_remove_adv_monitor *cp = cmd->param; u16 handle = __le16_to_cpu(cp->monitor_handle); if (!handle) return hci_remove_all_adv_monitor(hdev); return hci_remove_single_adv_monitor(hdev, handle); } static int remove_adv_monitor(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_pending_cmd *cmd; int err, status; hci_dev_lock(hdev); if (pending_find(MGMT_OP_SET_LE, hdev) || pending_find(MGMT_OP_REMOVE_ADV_MONITOR, hdev) || pending_find(MGMT_OP_ADD_ADV_PATTERNS_MONITOR, hdev) || pending_find(MGMT_OP_ADD_ADV_PATTERNS_MONITOR_RSSI, hdev)) { status = MGMT_STATUS_BUSY; goto unlock; } cmd = mgmt_pending_add(sk, MGMT_OP_REMOVE_ADV_MONITOR, hdev, data, len); if (!cmd) { status = MGMT_STATUS_NO_RESOURCES; goto unlock; } err = hci_cmd_sync_submit(hdev, mgmt_remove_adv_monitor_sync, cmd, mgmt_remove_adv_monitor_complete); if (err) { mgmt_pending_remove(cmd); if (err == -ENOMEM) status = MGMT_STATUS_NO_RESOURCES; else status = MGMT_STATUS_FAILED; goto unlock; } hci_dev_unlock(hdev); return 0; unlock: hci_dev_unlock(hdev); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_REMOVE_ADV_MONITOR, status); } static void read_local_oob_data_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_rp_read_local_oob_data mgmt_rp; size_t rp_size = sizeof(mgmt_rp); struct mgmt_pending_cmd *cmd = data; struct sk_buff *skb = cmd->skb; u8 status = mgmt_status(err); if (!status) { if (!skb) status = MGMT_STATUS_FAILED; else if (IS_ERR(skb)) status = mgmt_status(PTR_ERR(skb)); else status = mgmt_status(skb->data[0]); } bt_dev_dbg(hdev, "status %d", status); if (status) { mgmt_cmd_status(cmd->sk, hdev->id, MGMT_OP_READ_LOCAL_OOB_DATA, status); goto remove; } memset(&mgmt_rp, 0, sizeof(mgmt_rp)); if (!bredr_sc_enabled(hdev)) { struct hci_rp_read_local_oob_data *rp = (void *) skb->data; if (skb->len < sizeof(*rp)) { mgmt_cmd_status(cmd->sk, hdev->id, MGMT_OP_READ_LOCAL_OOB_DATA, MGMT_STATUS_FAILED); goto remove; } memcpy(mgmt_rp.hash192, rp->hash, sizeof(rp->hash)); memcpy(mgmt_rp.rand192, rp->rand, sizeof(rp->rand)); rp_size -= sizeof(mgmt_rp.hash256) + sizeof(mgmt_rp.rand256); } else { struct hci_rp_read_local_oob_ext_data *rp = (void *) skb->data; if (skb->len < sizeof(*rp)) { mgmt_cmd_status(cmd->sk, hdev->id, MGMT_OP_READ_LOCAL_OOB_DATA, MGMT_STATUS_FAILED); goto remove; } memcpy(mgmt_rp.hash192, rp->hash192, sizeof(rp->hash192)); memcpy(mgmt_rp.rand192, rp->rand192, sizeof(rp->rand192)); memcpy(mgmt_rp.hash256, rp->hash256, sizeof(rp->hash256)); memcpy(mgmt_rp.rand256, rp->rand256, sizeof(rp->rand256)); } mgmt_cmd_complete(cmd->sk, hdev->id, MGMT_OP_READ_LOCAL_OOB_DATA, MGMT_STATUS_SUCCESS, &mgmt_rp, rp_size); remove: if (skb && !IS_ERR(skb)) kfree_skb(skb); mgmt_pending_free(cmd); } static int read_local_oob_data_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; if (bredr_sc_enabled(hdev)) cmd->skb = hci_read_local_oob_data_sync(hdev, true, cmd->sk); else cmd->skb = hci_read_local_oob_data_sync(hdev, false, cmd->sk); if (IS_ERR(cmd->skb)) return PTR_ERR(cmd->skb); else return 0; } static int read_local_oob_data(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_pending_cmd *cmd; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_READ_LOCAL_OOB_DATA, MGMT_STATUS_NOT_POWERED); goto unlock; } if (!lmp_ssp_capable(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_READ_LOCAL_OOB_DATA, MGMT_STATUS_NOT_SUPPORTED); goto unlock; } cmd = mgmt_pending_new(sk, MGMT_OP_READ_LOCAL_OOB_DATA, hdev, NULL, 0); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, read_local_oob_data_sync, cmd, read_local_oob_data_complete); if (err < 0) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_READ_LOCAL_OOB_DATA, MGMT_STATUS_FAILED); if (cmd) mgmt_pending_free(cmd); } unlock: hci_dev_unlock(hdev); return err; } static int add_remote_oob_data(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_addr_info *addr = data; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!bdaddr_type_is_valid(addr->type)) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_REMOTE_OOB_DATA, MGMT_STATUS_INVALID_PARAMS, addr, sizeof(*addr)); hci_dev_lock(hdev); if (len == MGMT_ADD_REMOTE_OOB_DATA_SIZE) { struct mgmt_cp_add_remote_oob_data *cp = data; u8 status; if (cp->addr.type != BDADDR_BREDR) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_REMOTE_OOB_DATA, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); goto unlock; } err = hci_add_remote_oob_data(hdev, &cp->addr.bdaddr, cp->addr.type, cp->hash, cp->rand, NULL, NULL); if (err < 0) status = MGMT_STATUS_FAILED; else status = MGMT_STATUS_SUCCESS; err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_REMOTE_OOB_DATA, status, &cp->addr, sizeof(cp->addr)); } else if (len == MGMT_ADD_REMOTE_OOB_EXT_DATA_SIZE) { struct mgmt_cp_add_remote_oob_ext_data *cp = data; u8 *rand192, *hash192, *rand256, *hash256; u8 status; if (bdaddr_type_is_le(cp->addr.type)) { /* Enforce zero-valued 192-bit parameters as * long as legacy SMP OOB isn't implemented. */ if (memcmp(cp->rand192, ZERO_KEY, 16) || memcmp(cp->hash192, ZERO_KEY, 16)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_REMOTE_OOB_DATA, MGMT_STATUS_INVALID_PARAMS, addr, sizeof(*addr)); goto unlock; } rand192 = NULL; hash192 = NULL; } else { /* In case one of the P-192 values is set to zero, * then just disable OOB data for P-192. */ if (!memcmp(cp->rand192, ZERO_KEY, 16) || !memcmp(cp->hash192, ZERO_KEY, 16)) { rand192 = NULL; hash192 = NULL; } else { rand192 = cp->rand192; hash192 = cp->hash192; } } /* In case one of the P-256 values is set to zero, then just * disable OOB data for P-256. */ if (!memcmp(cp->rand256, ZERO_KEY, 16) || !memcmp(cp->hash256, ZERO_KEY, 16)) { rand256 = NULL; hash256 = NULL; } else { rand256 = cp->rand256; hash256 = cp->hash256; } err = hci_add_remote_oob_data(hdev, &cp->addr.bdaddr, cp->addr.type, hash192, rand192, hash256, rand256); if (err < 0) status = MGMT_STATUS_FAILED; else status = MGMT_STATUS_SUCCESS; err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_REMOTE_OOB_DATA, status, &cp->addr, sizeof(cp->addr)); } else { bt_dev_err(hdev, "add_remote_oob_data: invalid len of %u bytes", len); err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_REMOTE_OOB_DATA, MGMT_STATUS_INVALID_PARAMS); } unlock: hci_dev_unlock(hdev); return err; } static int remove_remote_oob_data(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_remove_remote_oob_data *cp = data; u8 status; int err; bt_dev_dbg(hdev, "sock %p", sk); if (cp->addr.type != BDADDR_BREDR) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_REMOVE_REMOTE_OOB_DATA, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); hci_dev_lock(hdev); if (!bacmp(&cp->addr.bdaddr, BDADDR_ANY)) { hci_remote_oob_data_clear(hdev); status = MGMT_STATUS_SUCCESS; goto done; } err = hci_remove_remote_oob_data(hdev, &cp->addr.bdaddr, cp->addr.type); if (err < 0) status = MGMT_STATUS_INVALID_PARAMS; else status = MGMT_STATUS_SUCCESS; done: err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_REMOVE_REMOTE_OOB_DATA, status, &cp->addr, sizeof(cp->addr)); hci_dev_unlock(hdev); return err; } void mgmt_start_discovery_complete(struct hci_dev *hdev, u8 status) { struct mgmt_pending_cmd *cmd; bt_dev_dbg(hdev, "status %u", status); hci_dev_lock(hdev); cmd = pending_find(MGMT_OP_START_DISCOVERY, hdev); if (!cmd) cmd = pending_find(MGMT_OP_START_SERVICE_DISCOVERY, hdev); if (!cmd) cmd = pending_find(MGMT_OP_START_LIMITED_DISCOVERY, hdev); if (cmd) { cmd->cmd_complete(cmd, mgmt_status(status)); mgmt_pending_remove(cmd); } hci_dev_unlock(hdev); } static bool discovery_type_is_valid(struct hci_dev *hdev, uint8_t type, uint8_t *mgmt_status) { switch (type) { case DISCOV_TYPE_LE: *mgmt_status = mgmt_le_support(hdev); if (*mgmt_status) return false; break; case DISCOV_TYPE_INTERLEAVED: *mgmt_status = mgmt_le_support(hdev); if (*mgmt_status) return false; fallthrough; case DISCOV_TYPE_BREDR: *mgmt_status = mgmt_bredr_support(hdev); if (*mgmt_status) return false; break; default: *mgmt_status = MGMT_STATUS_INVALID_PARAMS; return false; } return true; } static void start_discovery_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; bt_dev_dbg(hdev, "err %d", err); if (err == -ECANCELED) return; if (cmd != pending_find(MGMT_OP_START_DISCOVERY, hdev) && cmd != pending_find(MGMT_OP_START_LIMITED_DISCOVERY, hdev) && cmd != pending_find(MGMT_OP_START_SERVICE_DISCOVERY, hdev)) return; mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, mgmt_status(err), cmd->param, 1); mgmt_pending_remove(cmd); hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED: DISCOVERY_FINDING); } static int start_discovery_sync(struct hci_dev *hdev, void *data) { return hci_start_discovery_sync(hdev); } static int start_discovery_internal(struct sock *sk, struct hci_dev *hdev, u16 op, void *data, u16 len) { struct mgmt_cp_start_discovery *cp = data; struct mgmt_pending_cmd *cmd; u8 status; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, op, MGMT_STATUS_NOT_POWERED, &cp->type, sizeof(cp->type)); goto failed; } if (hdev->discovery.state != DISCOVERY_STOPPED || hci_dev_test_flag(hdev, HCI_PERIODIC_INQ)) { err = mgmt_cmd_complete(sk, hdev->id, op, MGMT_STATUS_BUSY, &cp->type, sizeof(cp->type)); goto failed; } if (!discovery_type_is_valid(hdev, cp->type, &status)) { err = mgmt_cmd_complete(sk, hdev->id, op, status, &cp->type, sizeof(cp->type)); goto failed; } /* Can't start discovery when it is paused */ if (hdev->discovery_paused) { err = mgmt_cmd_complete(sk, hdev->id, op, MGMT_STATUS_BUSY, &cp->type, sizeof(cp->type)); goto failed; } /* Clear the discovery filter first to free any previously * allocated memory for the UUID list. */ hci_discovery_filter_clear(hdev); hdev->discovery.type = cp->type; hdev->discovery.report_invalid_rssi = false; if (op == MGMT_OP_START_LIMITED_DISCOVERY) hdev->discovery.limited = true; else hdev->discovery.limited = false; cmd = mgmt_pending_add(sk, op, hdev, data, len); if (!cmd) { err = -ENOMEM; goto failed; } err = hci_cmd_sync_queue(hdev, start_discovery_sync, cmd, start_discovery_complete); if (err < 0) { mgmt_pending_remove(cmd); goto failed; } hci_discovery_set_state(hdev, DISCOVERY_STARTING); failed: hci_dev_unlock(hdev); return err; } static int start_discovery(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { return start_discovery_internal(sk, hdev, MGMT_OP_START_DISCOVERY, data, len); } static int start_limited_discovery(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { return start_discovery_internal(sk, hdev, MGMT_OP_START_LIMITED_DISCOVERY, data, len); } static int start_service_discovery(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_start_service_discovery *cp = data; struct mgmt_pending_cmd *cmd; const u16 max_uuid_count = ((U16_MAX - sizeof(*cp)) / 16); u16 uuid_count, expected_len; u8 status; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_START_SERVICE_DISCOVERY, MGMT_STATUS_NOT_POWERED, &cp->type, sizeof(cp->type)); goto failed; } if (hdev->discovery.state != DISCOVERY_STOPPED || hci_dev_test_flag(hdev, HCI_PERIODIC_INQ)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_START_SERVICE_DISCOVERY, MGMT_STATUS_BUSY, &cp->type, sizeof(cp->type)); goto failed; } if (hdev->discovery_paused) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_START_SERVICE_DISCOVERY, MGMT_STATUS_BUSY, &cp->type, sizeof(cp->type)); goto failed; } uuid_count = __le16_to_cpu(cp->uuid_count); if (uuid_count > max_uuid_count) { bt_dev_err(hdev, "service_discovery: too big uuid_count value %u", uuid_count); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_START_SERVICE_DISCOVERY, MGMT_STATUS_INVALID_PARAMS, &cp->type, sizeof(cp->type)); goto failed; } expected_len = sizeof(*cp) + uuid_count * 16; if (expected_len != len) { bt_dev_err(hdev, "service_discovery: expected %u bytes, got %u bytes", expected_len, len); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_START_SERVICE_DISCOVERY, MGMT_STATUS_INVALID_PARAMS, &cp->type, sizeof(cp->type)); goto failed; } if (!discovery_type_is_valid(hdev, cp->type, &status)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_START_SERVICE_DISCOVERY, status, &cp->type, sizeof(cp->type)); goto failed; } cmd = mgmt_pending_add(sk, MGMT_OP_START_SERVICE_DISCOVERY, hdev, data, len); if (!cmd) { err = -ENOMEM; goto failed; } /* Clear the discovery filter first to free any previously * allocated memory for the UUID list. */ hci_discovery_filter_clear(hdev); hdev->discovery.result_filtering = true; hdev->discovery.type = cp->type; hdev->discovery.rssi = cp->rssi; hdev->discovery.uuid_count = uuid_count; if (uuid_count > 0) { hdev->discovery.uuids = kmemdup(cp->uuids, uuid_count * 16, GFP_KERNEL); if (!hdev->discovery.uuids) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_START_SERVICE_DISCOVERY, MGMT_STATUS_FAILED, &cp->type, sizeof(cp->type)); mgmt_pending_remove(cmd); goto failed; } } err = hci_cmd_sync_queue(hdev, start_discovery_sync, cmd, start_discovery_complete); if (err < 0) { mgmt_pending_remove(cmd); goto failed; } hci_discovery_set_state(hdev, DISCOVERY_STARTING); failed: hci_dev_unlock(hdev); return err; } void mgmt_stop_discovery_complete(struct hci_dev *hdev, u8 status) { struct mgmt_pending_cmd *cmd; bt_dev_dbg(hdev, "status %u", status); hci_dev_lock(hdev); cmd = pending_find(MGMT_OP_STOP_DISCOVERY, hdev); if (cmd) { cmd->cmd_complete(cmd, mgmt_status(status)); mgmt_pending_remove(cmd); } hci_dev_unlock(hdev); } static void stop_discovery_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; if (err == -ECANCELED || cmd != pending_find(MGMT_OP_STOP_DISCOVERY, hdev)) return; bt_dev_dbg(hdev, "err %d", err); mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, mgmt_status(err), cmd->param, 1); mgmt_pending_remove(cmd); if (!err) hci_discovery_set_state(hdev, DISCOVERY_STOPPED); } static int stop_discovery_sync(struct hci_dev *hdev, void *data) { return hci_stop_discovery_sync(hdev); } static int stop_discovery(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_stop_discovery *mgmt_cp = data; struct mgmt_pending_cmd *cmd; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (!hci_discovery_active(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_STOP_DISCOVERY, MGMT_STATUS_REJECTED, &mgmt_cp->type, sizeof(mgmt_cp->type)); goto unlock; } if (hdev->discovery.type != mgmt_cp->type) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_STOP_DISCOVERY, MGMT_STATUS_INVALID_PARAMS, &mgmt_cp->type, sizeof(mgmt_cp->type)); goto unlock; } cmd = mgmt_pending_add(sk, MGMT_OP_STOP_DISCOVERY, hdev, data, len); if (!cmd) { err = -ENOMEM; goto unlock; } err = hci_cmd_sync_queue(hdev, stop_discovery_sync, cmd, stop_discovery_complete); if (err < 0) { mgmt_pending_remove(cmd); goto unlock; } hci_discovery_set_state(hdev, DISCOVERY_STOPPING); unlock: hci_dev_unlock(hdev); return err; } static int confirm_name(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_confirm_name *cp = data; struct inquiry_entry *e; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (!hci_discovery_active(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_CONFIRM_NAME, MGMT_STATUS_FAILED, &cp->addr, sizeof(cp->addr)); goto failed; } e = hci_inquiry_cache_lookup_unknown(hdev, &cp->addr.bdaddr); if (!e) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_CONFIRM_NAME, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); goto failed; } if (cp->name_known) { e->name_state = NAME_KNOWN; list_del(&e->list); } else { e->name_state = NAME_NEEDED; hci_inquiry_cache_update_resolve(hdev, e); } err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_CONFIRM_NAME, 0, &cp->addr, sizeof(cp->addr)); failed: hci_dev_unlock(hdev); return err; } static int block_device(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_block_device *cp = data; u8 status; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!bdaddr_type_is_valid(cp->addr.type)) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_BLOCK_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); hci_dev_lock(hdev); err = hci_bdaddr_list_add(&hdev->reject_list, &cp->addr.bdaddr, cp->addr.type); if (err < 0) { status = MGMT_STATUS_FAILED; goto done; } mgmt_event(MGMT_EV_DEVICE_BLOCKED, hdev, &cp->addr, sizeof(cp->addr), sk); status = MGMT_STATUS_SUCCESS; done: err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_BLOCK_DEVICE, status, &cp->addr, sizeof(cp->addr)); hci_dev_unlock(hdev); return err; } static int unblock_device(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_unblock_device *cp = data; u8 status; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!bdaddr_type_is_valid(cp->addr.type)) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_UNBLOCK_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); hci_dev_lock(hdev); err = hci_bdaddr_list_del(&hdev->reject_list, &cp->addr.bdaddr, cp->addr.type); if (err < 0) { status = MGMT_STATUS_INVALID_PARAMS; goto done; } mgmt_event(MGMT_EV_DEVICE_UNBLOCKED, hdev, &cp->addr, sizeof(cp->addr), sk); status = MGMT_STATUS_SUCCESS; done: err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_UNBLOCK_DEVICE, status, &cp->addr, sizeof(cp->addr)); hci_dev_unlock(hdev); return err; } static int set_device_id_sync(struct hci_dev *hdev, void *data) { return hci_update_eir_sync(hdev); } static int set_device_id(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_device_id *cp = data; int err; __u16 source; bt_dev_dbg(hdev, "sock %p", sk); source = __le16_to_cpu(cp->source); if (source > 0x0002) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DEVICE_ID, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); hdev->devid_source = source; hdev->devid_vendor = __le16_to_cpu(cp->vendor); hdev->devid_product = __le16_to_cpu(cp->product); hdev->devid_version = __le16_to_cpu(cp->version); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_DEVICE_ID, 0, NULL, 0); hci_cmd_sync_queue(hdev, set_device_id_sync, NULL, NULL); hci_dev_unlock(hdev); return err; } static void enable_advertising_instance(struct hci_dev *hdev, int err) { if (err) bt_dev_err(hdev, "failed to re-configure advertising %d", err); else bt_dev_dbg(hdev, "status %d", err); } static void set_advertising_complete(struct hci_dev *hdev, void *data, int err) { struct cmd_lookup match = { NULL, hdev }; u8 instance; struct adv_info *adv_instance; u8 status = mgmt_status(err); if (status) { mgmt_pending_foreach(MGMT_OP_SET_ADVERTISING, hdev, cmd_status_rsp, &status); return; } if (hci_dev_test_flag(hdev, HCI_LE_ADV)) hci_dev_set_flag(hdev, HCI_ADVERTISING); else hci_dev_clear_flag(hdev, HCI_ADVERTISING); mgmt_pending_foreach(MGMT_OP_SET_ADVERTISING, hdev, settings_rsp, &match); new_settings(hdev, match.sk); if (match.sk) sock_put(match.sk); /* If "Set Advertising" was just disabled and instance advertising was * set up earlier, then re-enable multi-instance advertising. */ if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || list_empty(&hdev->adv_instances)) return; instance = hdev->cur_adv_instance; if (!instance) { adv_instance = list_first_entry_or_null(&hdev->adv_instances, struct adv_info, list); if (!adv_instance) return; instance = adv_instance->instance; } err = hci_schedule_adv_instance_sync(hdev, instance, true); enable_advertising_instance(hdev, err); } static int set_adv_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_mode *cp = cmd->param; u8 val = !!cp->val; if (cp->val == 0x02) hci_dev_set_flag(hdev, HCI_ADVERTISING_CONNECTABLE); else hci_dev_clear_flag(hdev, HCI_ADVERTISING_CONNECTABLE); cancel_adv_timeout(hdev); if (val) { /* Switch to instance "0" for the Set Advertising setting. * We cannot use update_[adv|scan_rsp]_data() here as the * HCI_ADVERTISING flag is not yet set. */ hdev->cur_adv_instance = 0x00; if (ext_adv_capable(hdev)) { hci_start_ext_adv_sync(hdev, 0x00); } else { hci_update_adv_data_sync(hdev, 0x00); hci_update_scan_rsp_data_sync(hdev, 0x00); hci_enable_advertising_sync(hdev); } } else { hci_disable_advertising_sync(hdev); } return 0; } static int set_advertising(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; struct mgmt_pending_cmd *cmd; u8 val, status; int err; bt_dev_dbg(hdev, "sock %p", sk); status = mgmt_le_support(hdev); if (status) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_ADVERTISING, status); if (cp->val != 0x00 && cp->val != 0x01 && cp->val != 0x02) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_ADVERTISING, MGMT_STATUS_INVALID_PARAMS); if (hdev->advertising_paused) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_ADVERTISING, MGMT_STATUS_BUSY); hci_dev_lock(hdev); val = !!cp->val; /* The following conditions are ones which mean that we should * not do any HCI communication but directly send a mgmt * response to user space (after toggling the flag if * necessary). */ if (!hdev_is_powered(hdev) || (val == hci_dev_test_flag(hdev, HCI_ADVERTISING) && (cp->val == 0x02) == hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE)) || hci_dev_test_flag(hdev, HCI_MESH) || hci_conn_num(hdev, LE_LINK) > 0 || (hci_dev_test_flag(hdev, HCI_LE_SCAN) && hdev->le_scan_type == LE_SCAN_ACTIVE)) { bool changed; if (cp->val) { hdev->cur_adv_instance = 0x00; changed = !hci_dev_test_and_set_flag(hdev, HCI_ADVERTISING); if (cp->val == 0x02) hci_dev_set_flag(hdev, HCI_ADVERTISING_CONNECTABLE); else hci_dev_clear_flag(hdev, HCI_ADVERTISING_CONNECTABLE); } else { changed = hci_dev_test_and_clear_flag(hdev, HCI_ADVERTISING); hci_dev_clear_flag(hdev, HCI_ADVERTISING_CONNECTABLE); } err = send_settings_rsp(sk, MGMT_OP_SET_ADVERTISING, hdev); if (err < 0) goto unlock; if (changed) err = new_settings(hdev, sk); goto unlock; } if (pending_find(MGMT_OP_SET_ADVERTISING, hdev) || pending_find(MGMT_OP_SET_LE, hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_ADVERTISING, MGMT_STATUS_BUSY); goto unlock; } cmd = mgmt_pending_add(sk, MGMT_OP_SET_ADVERTISING, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, set_adv_sync, cmd, set_advertising_complete); if (err < 0 && cmd) mgmt_pending_remove(cmd); unlock: hci_dev_unlock(hdev); return err; } static int set_static_address(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_static_address *cp = data; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_STATIC_ADDRESS, MGMT_STATUS_NOT_SUPPORTED); if (hdev_is_powered(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_STATIC_ADDRESS, MGMT_STATUS_REJECTED); if (bacmp(&cp->bdaddr, BDADDR_ANY)) { if (!bacmp(&cp->bdaddr, BDADDR_NONE)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_STATIC_ADDRESS, MGMT_STATUS_INVALID_PARAMS); /* Two most significant bits shall be set */ if ((cp->bdaddr.b[5] & 0xc0) != 0xc0) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_STATIC_ADDRESS, MGMT_STATUS_INVALID_PARAMS); } hci_dev_lock(hdev); bacpy(&hdev->static_addr, &cp->bdaddr); err = send_settings_rsp(sk, MGMT_OP_SET_STATIC_ADDRESS, hdev); if (err < 0) goto unlock; err = new_settings(hdev, sk); unlock: hci_dev_unlock(hdev); return err; } static int set_scan_params(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_scan_params *cp = data; __u16 interval, window; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SCAN_PARAMS, MGMT_STATUS_NOT_SUPPORTED); interval = __le16_to_cpu(cp->interval); if (interval < 0x0004 || interval > 0x4000) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SCAN_PARAMS, MGMT_STATUS_INVALID_PARAMS); window = __le16_to_cpu(cp->window); if (window < 0x0004 || window > 0x4000) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SCAN_PARAMS, MGMT_STATUS_INVALID_PARAMS); if (window > interval) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SCAN_PARAMS, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); hdev->le_scan_interval = interval; hdev->le_scan_window = window; err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_SET_SCAN_PARAMS, 0, NULL, 0); /* If background scan is running, restart it so new parameters are * loaded. */ if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && hdev->discovery.state == DISCOVERY_STOPPED) hci_update_passive_scan(hdev); hci_dev_unlock(hdev); return err; } static void fast_connectable_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; bt_dev_dbg(hdev, "err %d", err); if (err) { mgmt_cmd_status(cmd->sk, hdev->id, MGMT_OP_SET_FAST_CONNECTABLE, mgmt_status(err)); } else { struct mgmt_mode *cp = cmd->param; if (cp->val) hci_dev_set_flag(hdev, HCI_FAST_CONNECTABLE); else hci_dev_clear_flag(hdev, HCI_FAST_CONNECTABLE); send_settings_rsp(cmd->sk, MGMT_OP_SET_FAST_CONNECTABLE, hdev); new_settings(hdev, cmd->sk); } mgmt_pending_free(cmd); } static int write_fast_connectable_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_mode *cp = cmd->param; return hci_write_fast_connectable_sync(hdev, cp->val); } static int set_fast_connectable(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; struct mgmt_pending_cmd *cmd; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) || hdev->hci_ver < BLUETOOTH_VER_1_2) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_FAST_CONNECTABLE, MGMT_STATUS_NOT_SUPPORTED); if (cp->val != 0x00 && cp->val != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_FAST_CONNECTABLE, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (!!cp->val == hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) { err = send_settings_rsp(sk, MGMT_OP_SET_FAST_CONNECTABLE, hdev); goto unlock; } if (!hdev_is_powered(hdev)) { hci_dev_change_flag(hdev, HCI_FAST_CONNECTABLE); err = send_settings_rsp(sk, MGMT_OP_SET_FAST_CONNECTABLE, hdev); new_settings(hdev, sk); goto unlock; } cmd = mgmt_pending_new(sk, MGMT_OP_SET_FAST_CONNECTABLE, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, write_fast_connectable_sync, cmd, fast_connectable_complete); if (err < 0) { mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_FAST_CONNECTABLE, MGMT_STATUS_FAILED); if (cmd) mgmt_pending_free(cmd); } unlock: hci_dev_unlock(hdev); return err; } static void set_bredr_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; bt_dev_dbg(hdev, "err %d", err); if (err) { u8 mgmt_err = mgmt_status(err); /* We need to restore the flag if related HCI commands * failed. */ hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); mgmt_cmd_status(cmd->sk, cmd->index, cmd->opcode, mgmt_err); } else { send_settings_rsp(cmd->sk, MGMT_OP_SET_BREDR, hdev); new_settings(hdev, cmd->sk); } mgmt_pending_free(cmd); } static int set_bredr_sync(struct hci_dev *hdev, void *data) { int status; status = hci_write_fast_connectable_sync(hdev, false); if (!status) status = hci_update_scan_sync(hdev); /* Since only the advertising data flags will change, there * is no need to update the scan response data. */ if (!status) status = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); return status; } static int set_bredr(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; struct mgmt_pending_cmd *cmd; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_bredr_capable(hdev) || !lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_BREDR, MGMT_STATUS_NOT_SUPPORTED); if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_BREDR, MGMT_STATUS_REJECTED); if (cp->val != 0x00 && cp->val != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_BREDR, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (cp->val == hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { err = send_settings_rsp(sk, MGMT_OP_SET_BREDR, hdev); goto unlock; } if (!hdev_is_powered(hdev)) { if (!cp->val) { hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); hci_dev_clear_flag(hdev, HCI_SSP_ENABLED); hci_dev_clear_flag(hdev, HCI_LINK_SECURITY); hci_dev_clear_flag(hdev, HCI_FAST_CONNECTABLE); hci_dev_clear_flag(hdev, HCI_HS_ENABLED); } hci_dev_change_flag(hdev, HCI_BREDR_ENABLED); err = send_settings_rsp(sk, MGMT_OP_SET_BREDR, hdev); if (err < 0) goto unlock; err = new_settings(hdev, sk); goto unlock; } /* Reject disabling when powered on */ if (!cp->val) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_BREDR, MGMT_STATUS_REJECTED); goto unlock; } else { /* When configuring a dual-mode controller to operate * with LE only and using a static address, then switching * BR/EDR back on is not allowed. * * Dual-mode controllers shall operate with the public * address as its identity address for BR/EDR and LE. So * reject the attempt to create an invalid configuration. * * The same restrictions applies when secure connections * has been enabled. For BR/EDR this is a controller feature * while for LE it is a host stack feature. This means that * switching BR/EDR back on when secure connections has been * enabled is not a supported transaction. */ if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && (bacmp(&hdev->static_addr, BDADDR_ANY) || hci_dev_test_flag(hdev, HCI_SC_ENABLED))) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_BREDR, MGMT_STATUS_REJECTED); goto unlock; } } cmd = mgmt_pending_new(sk, MGMT_OP_SET_BREDR, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, set_bredr_sync, cmd, set_bredr_complete); if (err < 0) { mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_BREDR, MGMT_STATUS_FAILED); if (cmd) mgmt_pending_free(cmd); goto unlock; } /* We need to flip the bit already here so that * hci_req_update_adv_data generates the correct flags. */ hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); unlock: hci_dev_unlock(hdev); return err; } static void set_secure_conn_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct mgmt_mode *cp; bt_dev_dbg(hdev, "err %d", err); if (err) { u8 mgmt_err = mgmt_status(err); mgmt_cmd_status(cmd->sk, cmd->index, cmd->opcode, mgmt_err); goto done; } cp = cmd->param; switch (cp->val) { case 0x00: hci_dev_clear_flag(hdev, HCI_SC_ENABLED); hci_dev_clear_flag(hdev, HCI_SC_ONLY); break; case 0x01: hci_dev_set_flag(hdev, HCI_SC_ENABLED); hci_dev_clear_flag(hdev, HCI_SC_ONLY); break; case 0x02: hci_dev_set_flag(hdev, HCI_SC_ENABLED); hci_dev_set_flag(hdev, HCI_SC_ONLY); break; } send_settings_rsp(cmd->sk, cmd->opcode, hdev); new_settings(hdev, cmd->sk); done: mgmt_pending_free(cmd); } static int set_secure_conn_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_mode *cp = cmd->param; u8 val = !!cp->val; /* Force write of val */ hci_dev_set_flag(hdev, HCI_SC_ENABLED); return hci_write_sc_support_sync(hdev, val); } static int set_secure_conn(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; struct mgmt_pending_cmd *cmd; u8 val; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_sc_capable(hdev) && !hci_dev_test_flag(hdev, HCI_LE_ENABLED)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SECURE_CONN, MGMT_STATUS_NOT_SUPPORTED); if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && lmp_sc_capable(hdev) && !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SECURE_CONN, MGMT_STATUS_REJECTED); if (cp->val != 0x00 && cp->val != 0x01 && cp->val != 0x02) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SECURE_CONN, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (!hdev_is_powered(hdev) || !lmp_sc_capable(hdev) || !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { bool changed; if (cp->val) { changed = !hci_dev_test_and_set_flag(hdev, HCI_SC_ENABLED); if (cp->val == 0x02) hci_dev_set_flag(hdev, HCI_SC_ONLY); else hci_dev_clear_flag(hdev, HCI_SC_ONLY); } else { changed = hci_dev_test_and_clear_flag(hdev, HCI_SC_ENABLED); hci_dev_clear_flag(hdev, HCI_SC_ONLY); } err = send_settings_rsp(sk, MGMT_OP_SET_SECURE_CONN, hdev); if (err < 0) goto failed; if (changed) err = new_settings(hdev, sk); goto failed; } val = !!cp->val; if (val == hci_dev_test_flag(hdev, HCI_SC_ENABLED) && (cp->val == 0x02) == hci_dev_test_flag(hdev, HCI_SC_ONLY)) { err = send_settings_rsp(sk, MGMT_OP_SET_SECURE_CONN, hdev); goto failed; } cmd = mgmt_pending_new(sk, MGMT_OP_SET_SECURE_CONN, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, set_secure_conn_sync, cmd, set_secure_conn_complete); if (err < 0) { mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_SECURE_CONN, MGMT_STATUS_FAILED); if (cmd) mgmt_pending_free(cmd); } failed: hci_dev_unlock(hdev); return err; } static int set_debug_keys(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_mode *cp = data; bool changed, use_changed; int err; bt_dev_dbg(hdev, "sock %p", sk); if (cp->val != 0x00 && cp->val != 0x01 && cp->val != 0x02) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_DEBUG_KEYS, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (cp->val) changed = !hci_dev_test_and_set_flag(hdev, HCI_KEEP_DEBUG_KEYS); else changed = hci_dev_test_and_clear_flag(hdev, HCI_KEEP_DEBUG_KEYS); if (cp->val == 0x02) use_changed = !hci_dev_test_and_set_flag(hdev, HCI_USE_DEBUG_KEYS); else use_changed = hci_dev_test_and_clear_flag(hdev, HCI_USE_DEBUG_KEYS); if (hdev_is_powered(hdev) && use_changed && hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) { u8 mode = (cp->val == 0x02) ? 0x01 : 0x00; hci_send_cmd(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, sizeof(mode), &mode); } err = send_settings_rsp(sk, MGMT_OP_SET_DEBUG_KEYS, hdev); if (err < 0) goto unlock; if (changed) err = new_settings(hdev, sk); unlock: hci_dev_unlock(hdev); return err; } static int set_privacy(struct sock *sk, struct hci_dev *hdev, void *cp_data, u16 len) { struct mgmt_cp_set_privacy *cp = cp_data; bool changed; int err; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PRIVACY, MGMT_STATUS_NOT_SUPPORTED); if (cp->privacy != 0x00 && cp->privacy != 0x01 && cp->privacy != 0x02) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PRIVACY, MGMT_STATUS_INVALID_PARAMS); if (hdev_is_powered(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PRIVACY, MGMT_STATUS_REJECTED); hci_dev_lock(hdev); /* If user space supports this command it is also expected to * handle IRKs. Therefore, set the HCI_RPA_RESOLVING flag. */ hci_dev_set_flag(hdev, HCI_RPA_RESOLVING); if (cp->privacy) { changed = !hci_dev_test_and_set_flag(hdev, HCI_PRIVACY); memcpy(hdev->irk, cp->irk, sizeof(hdev->irk)); hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); hci_adv_instances_set_rpa_expired(hdev, true); if (cp->privacy == 0x02) hci_dev_set_flag(hdev, HCI_LIMITED_PRIVACY); else hci_dev_clear_flag(hdev, HCI_LIMITED_PRIVACY); } else { changed = hci_dev_test_and_clear_flag(hdev, HCI_PRIVACY); memset(hdev->irk, 0, sizeof(hdev->irk)); hci_dev_clear_flag(hdev, HCI_RPA_EXPIRED); hci_adv_instances_set_rpa_expired(hdev, false); hci_dev_clear_flag(hdev, HCI_LIMITED_PRIVACY); } err = send_settings_rsp(sk, MGMT_OP_SET_PRIVACY, hdev); if (err < 0) goto unlock; if (changed) err = new_settings(hdev, sk); unlock: hci_dev_unlock(hdev); return err; } static bool irk_is_valid(struct mgmt_irk_info *irk) { switch (irk->addr.type) { case BDADDR_LE_PUBLIC: return true; case BDADDR_LE_RANDOM: /* Two most significant bits shall be set */ if ((irk->addr.bdaddr.b[5] & 0xc0) != 0xc0) return false; return true; } return false; } static int load_irks(struct sock *sk, struct hci_dev *hdev, void *cp_data, u16 len) { struct mgmt_cp_load_irks *cp = cp_data; const u16 max_irk_count = ((U16_MAX - sizeof(*cp)) / sizeof(struct mgmt_irk_info)); u16 irk_count, expected_len; int i, err; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_IRKS, MGMT_STATUS_NOT_SUPPORTED); irk_count = __le16_to_cpu(cp->irk_count); if (irk_count > max_irk_count) { bt_dev_err(hdev, "load_irks: too big irk_count value %u", irk_count); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_IRKS, MGMT_STATUS_INVALID_PARAMS); } expected_len = struct_size(cp, irks, irk_count); if (expected_len != len) { bt_dev_err(hdev, "load_irks: expected %u bytes, got %u bytes", expected_len, len); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_IRKS, MGMT_STATUS_INVALID_PARAMS); } bt_dev_dbg(hdev, "irk_count %u", irk_count); for (i = 0; i < irk_count; i++) { struct mgmt_irk_info *key = &cp->irks[i]; if (!irk_is_valid(key)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_IRKS, MGMT_STATUS_INVALID_PARAMS); } hci_dev_lock(hdev); hci_smp_irks_clear(hdev); for (i = 0; i < irk_count; i++) { struct mgmt_irk_info *irk = &cp->irks[i]; if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, irk->val)) { bt_dev_warn(hdev, "Skipping blocked IRK for %pMR", &irk->addr.bdaddr); continue; } hci_add_irk(hdev, &irk->addr.bdaddr, le_addr_type(irk->addr.type), irk->val, BDADDR_ANY); } hci_dev_set_flag(hdev, HCI_RPA_RESOLVING); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_LOAD_IRKS, 0, NULL, 0); hci_dev_unlock(hdev); return err; } static bool ltk_is_valid(struct mgmt_ltk_info *key) { if (key->initiator != 0x00 && key->initiator != 0x01) return false; switch (key->addr.type) { case BDADDR_LE_PUBLIC: return true; case BDADDR_LE_RANDOM: /* Two most significant bits shall be set */ if ((key->addr.bdaddr.b[5] & 0xc0) != 0xc0) return false; return true; } return false; } static int load_long_term_keys(struct sock *sk, struct hci_dev *hdev, void *cp_data, u16 len) { struct mgmt_cp_load_long_term_keys *cp = cp_data; const u16 max_key_count = ((U16_MAX - sizeof(*cp)) / sizeof(struct mgmt_ltk_info)); u16 key_count, expected_len; int i, err; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_LONG_TERM_KEYS, MGMT_STATUS_NOT_SUPPORTED); key_count = __le16_to_cpu(cp->key_count); if (key_count > max_key_count) { bt_dev_err(hdev, "load_ltks: too big key_count value %u", key_count); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_LONG_TERM_KEYS, MGMT_STATUS_INVALID_PARAMS); } expected_len = struct_size(cp, keys, key_count); if (expected_len != len) { bt_dev_err(hdev, "load_keys: expected %u bytes, got %u bytes", expected_len, len); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_LONG_TERM_KEYS, MGMT_STATUS_INVALID_PARAMS); } bt_dev_dbg(hdev, "key_count %u", key_count); hci_dev_lock(hdev); hci_smp_ltks_clear(hdev); for (i = 0; i < key_count; i++) { struct mgmt_ltk_info *key = &cp->keys[i]; u8 type, authenticated; if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK, key->val)) { bt_dev_warn(hdev, "Skipping blocked LTK for %pMR", &key->addr.bdaddr); continue; } if (!ltk_is_valid(key)) { bt_dev_warn(hdev, "Invalid LTK for %pMR", &key->addr.bdaddr); continue; } switch (key->type) { case MGMT_LTK_UNAUTHENTICATED: authenticated = 0x00; type = key->initiator ? SMP_LTK : SMP_LTK_RESPONDER; break; case MGMT_LTK_AUTHENTICATED: authenticated = 0x01; type = key->initiator ? SMP_LTK : SMP_LTK_RESPONDER; break; case MGMT_LTK_P256_UNAUTH: authenticated = 0x00; type = SMP_LTK_P256; break; case MGMT_LTK_P256_AUTH: authenticated = 0x01; type = SMP_LTK_P256; break; case MGMT_LTK_P256_DEBUG: authenticated = 0x00; type = SMP_LTK_P256_DEBUG; fallthrough; default: continue; } hci_add_ltk(hdev, &key->addr.bdaddr, le_addr_type(key->addr.type), type, authenticated, key->val, key->enc_size, key->ediv, key->rand); } err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_LOAD_LONG_TERM_KEYS, 0, NULL, 0); hci_dev_unlock(hdev); return err; } static void get_conn_info_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct hci_conn *conn = cmd->user_data; struct mgmt_cp_get_conn_info *cp = cmd->param; struct mgmt_rp_get_conn_info rp; u8 status; bt_dev_dbg(hdev, "err %d", err); memcpy(&rp.addr, &cp->addr, sizeof(rp.addr)); status = mgmt_status(err); if (status == MGMT_STATUS_SUCCESS) { rp.rssi = conn->rssi; rp.tx_power = conn->tx_power; rp.max_tx_power = conn->max_tx_power; } else { rp.rssi = HCI_RSSI_INVALID; rp.tx_power = HCI_TX_POWER_INVALID; rp.max_tx_power = HCI_TX_POWER_INVALID; } mgmt_cmd_complete(cmd->sk, cmd->index, MGMT_OP_GET_CONN_INFO, status, &rp, sizeof(rp)); mgmt_pending_free(cmd); } static int get_conn_info_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_get_conn_info *cp = cmd->param; struct hci_conn *conn; int err; __le16 handle; /* Make sure we are still connected */ if (cp->addr.type == BDADDR_BREDR) conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->addr.bdaddr); else conn = hci_conn_hash_lookup_ba(hdev, LE_LINK, &cp->addr.bdaddr); if (!conn || conn->state != BT_CONNECTED) return MGMT_STATUS_NOT_CONNECTED; cmd->user_data = conn; handle = cpu_to_le16(conn->handle); /* Refresh RSSI each time */ err = hci_read_rssi_sync(hdev, handle); /* For LE links TX power does not change thus we don't need to * query for it once value is known. */ if (!err && (!bdaddr_type_is_le(cp->addr.type) || conn->tx_power == HCI_TX_POWER_INVALID)) err = hci_read_tx_power_sync(hdev, handle, 0x00); /* Max TX power needs to be read only once per connection */ if (!err && conn->max_tx_power == HCI_TX_POWER_INVALID) err = hci_read_tx_power_sync(hdev, handle, 0x01); return err; } static int get_conn_info(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_get_conn_info *cp = data; struct mgmt_rp_get_conn_info rp; struct hci_conn *conn; unsigned long conn_info_age; int err = 0; bt_dev_dbg(hdev, "sock %p", sk); memset(&rp, 0, sizeof(rp)); bacpy(&rp.addr.bdaddr, &cp->addr.bdaddr); rp.addr.type = cp->addr.type; if (!bdaddr_type_is_valid(cp->addr.type)) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_CONN_INFO, MGMT_STATUS_INVALID_PARAMS, &rp, sizeof(rp)); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_CONN_INFO, MGMT_STATUS_NOT_POWERED, &rp, sizeof(rp)); goto unlock; } if (cp->addr.type == BDADDR_BREDR) conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->addr.bdaddr); else conn = hci_conn_hash_lookup_ba(hdev, LE_LINK, &cp->addr.bdaddr); if (!conn || conn->state != BT_CONNECTED) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_CONN_INFO, MGMT_STATUS_NOT_CONNECTED, &rp, sizeof(rp)); goto unlock; } /* To avoid client trying to guess when to poll again for information we * calculate conn info age as random value between min/max set in hdev. */ conn_info_age = hdev->conn_info_min_age + prandom_u32_max(hdev->conn_info_max_age - hdev->conn_info_min_age); /* Query controller to refresh cached values if they are too old or were * never read. */ if (time_after(jiffies, conn->conn_info_timestamp + msecs_to_jiffies(conn_info_age)) || !conn->conn_info_timestamp) { struct mgmt_pending_cmd *cmd; cmd = mgmt_pending_new(sk, MGMT_OP_GET_CONN_INFO, hdev, data, len); if (!cmd) { err = -ENOMEM; } else { err = hci_cmd_sync_queue(hdev, get_conn_info_sync, cmd, get_conn_info_complete); } if (err < 0) { mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_CONN_INFO, MGMT_STATUS_FAILED, &rp, sizeof(rp)); if (cmd) mgmt_pending_free(cmd); goto unlock; } conn->conn_info_timestamp = jiffies; } else { /* Cache is valid, just reply with values cached in hci_conn */ rp.rssi = conn->rssi; rp.tx_power = conn->tx_power; rp.max_tx_power = conn->max_tx_power; err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_CONN_INFO, MGMT_STATUS_SUCCESS, &rp, sizeof(rp)); } unlock: hci_dev_unlock(hdev); return err; } static void get_clock_info_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_get_clock_info *cp = cmd->param; struct mgmt_rp_get_clock_info rp; struct hci_conn *conn = cmd->user_data; u8 status = mgmt_status(err); bt_dev_dbg(hdev, "err %d", err); memset(&rp, 0, sizeof(rp)); bacpy(&rp.addr.bdaddr, &cp->addr.bdaddr); rp.addr.type = cp->addr.type; if (err) goto complete; rp.local_clock = cpu_to_le32(hdev->clock); if (conn) { rp.piconet_clock = cpu_to_le32(conn->clock); rp.accuracy = cpu_to_le16(conn->clock_accuracy); } complete: mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, status, &rp, sizeof(rp)); mgmt_pending_free(cmd); } static int get_clock_info_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_get_clock_info *cp = cmd->param; struct hci_cp_read_clock hci_cp; struct hci_conn *conn; memset(&hci_cp, 0, sizeof(hci_cp)); hci_read_clock_sync(hdev, &hci_cp); /* Make sure connection still exists */ conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->addr.bdaddr); if (!conn || conn->state != BT_CONNECTED) return MGMT_STATUS_NOT_CONNECTED; cmd->user_data = conn; hci_cp.handle = cpu_to_le16(conn->handle); hci_cp.which = 0x01; /* Piconet clock */ return hci_read_clock_sync(hdev, &hci_cp); } static int get_clock_info(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_get_clock_info *cp = data; struct mgmt_rp_get_clock_info rp; struct mgmt_pending_cmd *cmd; struct hci_conn *conn; int err; bt_dev_dbg(hdev, "sock %p", sk); memset(&rp, 0, sizeof(rp)); bacpy(&rp.addr.bdaddr, &cp->addr.bdaddr); rp.addr.type = cp->addr.type; if (cp->addr.type != BDADDR_BREDR) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_CLOCK_INFO, MGMT_STATUS_INVALID_PARAMS, &rp, sizeof(rp)); hci_dev_lock(hdev); if (!hdev_is_powered(hdev)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_CLOCK_INFO, MGMT_STATUS_NOT_POWERED, &rp, sizeof(rp)); goto unlock; } if (bacmp(&cp->addr.bdaddr, BDADDR_ANY)) { conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->addr.bdaddr); if (!conn || conn->state != BT_CONNECTED) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_CLOCK_INFO, MGMT_STATUS_NOT_CONNECTED, &rp, sizeof(rp)); goto unlock; } } else { conn = NULL; } cmd = mgmt_pending_new(sk, MGMT_OP_GET_CLOCK_INFO, hdev, data, len); if (!cmd) err = -ENOMEM; else err = hci_cmd_sync_queue(hdev, get_clock_info_sync, cmd, get_clock_info_complete); if (err < 0) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_CLOCK_INFO, MGMT_STATUS_FAILED, &rp, sizeof(rp)); if (cmd) mgmt_pending_free(cmd); } unlock: hci_dev_unlock(hdev); return err; } static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type) { struct hci_conn *conn; conn = hci_conn_hash_lookup_ba(hdev, LE_LINK, addr); if (!conn) return false; if (conn->dst_type != type) return false; if (conn->state != BT_CONNECTED) return false; return true; } /* This function requires the caller holds hdev->lock */ static int hci_conn_params_set(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type, u8 auto_connect) { struct hci_conn_params *params; params = hci_conn_params_add(hdev, addr, addr_type); if (!params) return -EIO; if (params->auto_connect == auto_connect) return 0; hci_pend_le_list_del_init(params); switch (auto_connect) { case HCI_AUTO_CONN_DISABLED: case HCI_AUTO_CONN_LINK_LOSS: /* If auto connect is being disabled when we're trying to * connect to device, keep connecting. */ if (params->explicit_connect) hci_pend_le_list_add(params, &hdev->pend_le_conns); break; case HCI_AUTO_CONN_REPORT: if (params->explicit_connect) hci_pend_le_list_add(params, &hdev->pend_le_conns); else hci_pend_le_list_add(params, &hdev->pend_le_reports); break; case HCI_AUTO_CONN_DIRECT: case HCI_AUTO_CONN_ALWAYS: if (!is_connected(hdev, addr, addr_type)) hci_pend_le_list_add(params, &hdev->pend_le_conns); break; } params->auto_connect = auto_connect; bt_dev_dbg(hdev, "addr %pMR (type %u) auto_connect %u", addr, addr_type, auto_connect); return 0; } static void device_added(struct sock *sk, struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type, u8 action) { struct mgmt_ev_device_added ev; bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = type; ev.action = action; mgmt_event(MGMT_EV_DEVICE_ADDED, hdev, &ev, sizeof(ev), sk); } static int add_device_sync(struct hci_dev *hdev, void *data) { return hci_update_passive_scan_sync(hdev); } static int add_device(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_add_device *cp = data; u8 auto_conn, addr_type; struct hci_conn_params *params; int err; u32 current_flags = 0; u32 supported_flags; bt_dev_dbg(hdev, "sock %p", sk); if (!bdaddr_type_is_valid(cp->addr.type) || !bacmp(&cp->addr.bdaddr, BDADDR_ANY)) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); if (cp->action != 0x00 && cp->action != 0x01 && cp->action != 0x02) return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); hci_dev_lock(hdev); if (cp->addr.type == BDADDR_BREDR) { /* Only incoming connections action is supported for now */ if (cp->action != 0x01) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); goto unlock; } err = hci_bdaddr_list_add_with_flags(&hdev->accept_list, &cp->addr.bdaddr, cp->addr.type, 0); if (err) goto unlock; hci_update_scan(hdev); goto added; } addr_type = le_addr_type(cp->addr.type); if (cp->action == 0x02) auto_conn = HCI_AUTO_CONN_ALWAYS; else if (cp->action == 0x01) auto_conn = HCI_AUTO_CONN_DIRECT; else auto_conn = HCI_AUTO_CONN_REPORT; /* Kernel internally uses conn_params with resolvable private * address, but Add Device allows only identity addresses. * Make sure it is enforced before calling * hci_conn_params_lookup. */ if (!hci_is_identity_address(&cp->addr.bdaddr, addr_type)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); goto unlock; } /* If the connection parameters don't exist for this device, * they will be created and configured with defaults. */ if (hci_conn_params_set(hdev, &cp->addr.bdaddr, addr_type, auto_conn) < 0) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_DEVICE, MGMT_STATUS_FAILED, &cp->addr, sizeof(cp->addr)); goto unlock; } else { params = hci_conn_params_lookup(hdev, &cp->addr.bdaddr, addr_type); if (params) current_flags = params->flags; } err = hci_cmd_sync_queue(hdev, add_device_sync, NULL, NULL); if (err < 0) goto unlock; added: device_added(sk, hdev, &cp->addr.bdaddr, cp->addr.type, cp->action); supported_flags = hdev->conn_flags; device_flags_changed(NULL, hdev, &cp->addr.bdaddr, cp->addr.type, supported_flags, current_flags); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_DEVICE, MGMT_STATUS_SUCCESS, &cp->addr, sizeof(cp->addr)); unlock: hci_dev_unlock(hdev); return err; } static void device_removed(struct sock *sk, struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type) { struct mgmt_ev_device_removed ev; bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = type; mgmt_event(MGMT_EV_DEVICE_REMOVED, hdev, &ev, sizeof(ev), sk); } static int remove_device_sync(struct hci_dev *hdev, void *data) { return hci_update_passive_scan_sync(hdev); } static int remove_device(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_remove_device *cp = data; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (bacmp(&cp->addr.bdaddr, BDADDR_ANY)) { struct hci_conn_params *params; u8 addr_type; if (!bdaddr_type_is_valid(cp->addr.type)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_REMOVE_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); goto unlock; } if (cp->addr.type == BDADDR_BREDR) { err = hci_bdaddr_list_del(&hdev->accept_list, &cp->addr.bdaddr, cp->addr.type); if (err) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_REMOVE_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); goto unlock; } hci_update_scan(hdev); device_removed(sk, hdev, &cp->addr.bdaddr, cp->addr.type); goto complete; } addr_type = le_addr_type(cp->addr.type); /* Kernel internally uses conn_params with resolvable private * address, but Remove Device allows only identity addresses. * Make sure it is enforced before calling * hci_conn_params_lookup. */ if (!hci_is_identity_address(&cp->addr.bdaddr, addr_type)) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_REMOVE_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); goto unlock; } params = hci_conn_params_lookup(hdev, &cp->addr.bdaddr, addr_type); if (!params) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_REMOVE_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); goto unlock; } if (params->auto_connect == HCI_AUTO_CONN_DISABLED || params->auto_connect == HCI_AUTO_CONN_EXPLICIT) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_REMOVE_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); goto unlock; } hci_conn_params_free(params); device_removed(sk, hdev, &cp->addr.bdaddr, cp->addr.type); } else { struct hci_conn_params *p, *tmp; struct bdaddr_list *b, *btmp; if (cp->addr.type) { err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_REMOVE_DEVICE, MGMT_STATUS_INVALID_PARAMS, &cp->addr, sizeof(cp->addr)); goto unlock; } list_for_each_entry_safe(b, btmp, &hdev->accept_list, list) { device_removed(sk, hdev, &b->bdaddr, b->bdaddr_type); list_del(&b->list); kfree(b); } hci_update_scan(hdev); list_for_each_entry_safe(p, tmp, &hdev->le_conn_params, list) { if (p->auto_connect == HCI_AUTO_CONN_DISABLED) continue; device_removed(sk, hdev, &p->addr, p->addr_type); if (p->explicit_connect) { p->auto_connect = HCI_AUTO_CONN_EXPLICIT; continue; } hci_conn_params_free(p); } bt_dev_dbg(hdev, "All LE connection parameters were removed"); } hci_cmd_sync_queue(hdev, remove_device_sync, NULL, NULL); complete: err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_REMOVE_DEVICE, MGMT_STATUS_SUCCESS, &cp->addr, sizeof(cp->addr)); unlock: hci_dev_unlock(hdev); return err; } static int load_conn_param(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_load_conn_param *cp = data; const u16 max_param_count = ((U16_MAX - sizeof(*cp)) / sizeof(struct mgmt_conn_param)); u16 param_count, expected_len; int i; if (!lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_CONN_PARAM, MGMT_STATUS_NOT_SUPPORTED); param_count = __le16_to_cpu(cp->param_count); if (param_count > max_param_count) { bt_dev_err(hdev, "load_conn_param: too big param_count value %u", param_count); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_CONN_PARAM, MGMT_STATUS_INVALID_PARAMS); } expected_len = struct_size(cp, params, param_count); if (expected_len != len) { bt_dev_err(hdev, "load_conn_param: expected %u bytes, got %u bytes", expected_len, len); return mgmt_cmd_status(sk, hdev->id, MGMT_OP_LOAD_CONN_PARAM, MGMT_STATUS_INVALID_PARAMS); } bt_dev_dbg(hdev, "param_count %u", param_count); hci_dev_lock(hdev); hci_conn_params_clear_disabled(hdev); for (i = 0; i < param_count; i++) { struct mgmt_conn_param *param = &cp->params[i]; struct hci_conn_params *hci_param; u16 min, max, latency, timeout; u8 addr_type; bt_dev_dbg(hdev, "Adding %pMR (type %u)", &param->addr.bdaddr, param->addr.type); if (param->addr.type == BDADDR_LE_PUBLIC) { addr_type = ADDR_LE_DEV_PUBLIC; } else if (param->addr.type == BDADDR_LE_RANDOM) { addr_type = ADDR_LE_DEV_RANDOM; } else { bt_dev_err(hdev, "ignoring invalid connection parameters"); continue; } min = le16_to_cpu(param->min_interval); max = le16_to_cpu(param->max_interval); latency = le16_to_cpu(param->latency); timeout = le16_to_cpu(param->timeout); bt_dev_dbg(hdev, "min 0x%04x max 0x%04x latency 0x%04x timeout 0x%04x", min, max, latency, timeout); if (hci_check_conn_params(min, max, latency, timeout) < 0) { bt_dev_err(hdev, "ignoring invalid connection parameters"); continue; } hci_param = hci_conn_params_add(hdev, &param->addr.bdaddr, addr_type); if (!hci_param) { bt_dev_err(hdev, "failed to add connection parameters"); continue; } hci_param->conn_min_interval = min; hci_param->conn_max_interval = max; hci_param->conn_latency = latency; hci_param->supervision_timeout = timeout; } hci_dev_unlock(hdev); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_LOAD_CONN_PARAM, 0, NULL, 0); } static int set_external_config(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_external_config *cp = data; bool changed; int err; bt_dev_dbg(hdev, "sock %p", sk); if (hdev_is_powered(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXTERNAL_CONFIG, MGMT_STATUS_REJECTED); if (cp->config != 0x00 && cp->config != 0x01) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXTERNAL_CONFIG, MGMT_STATUS_INVALID_PARAMS); if (!test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_EXTERNAL_CONFIG, MGMT_STATUS_NOT_SUPPORTED); hci_dev_lock(hdev); if (cp->config) changed = !hci_dev_test_and_set_flag(hdev, HCI_EXT_CONFIGURED); else changed = hci_dev_test_and_clear_flag(hdev, HCI_EXT_CONFIGURED); err = send_options_rsp(sk, MGMT_OP_SET_EXTERNAL_CONFIG, hdev); if (err < 0) goto unlock; if (!changed) goto unlock; err = new_options(hdev, sk); if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) == is_configured(hdev)) { mgmt_index_removed(hdev); if (hci_dev_test_and_change_flag(hdev, HCI_UNCONFIGURED)) { hci_dev_set_flag(hdev, HCI_CONFIG); hci_dev_set_flag(hdev, HCI_AUTO_OFF); queue_work(hdev->req_workqueue, &hdev->power_on); } else { set_bit(HCI_RAW, &hdev->flags); mgmt_index_added(hdev); } } unlock: hci_dev_unlock(hdev); return err; } static int set_public_address(struct sock *sk, struct hci_dev *hdev, void *data, u16 len) { struct mgmt_cp_set_public_address *cp = data; bool changed; int err; bt_dev_dbg(hdev, "sock %p", sk); if (hdev_is_powered(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PUBLIC_ADDRESS, MGMT_STATUS_REJECTED); if (!bacmp(&cp->bdaddr, BDADDR_ANY)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PUBLIC_ADDRESS, MGMT_STATUS_INVALID_PARAMS); if (!hdev->set_bdaddr) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_SET_PUBLIC_ADDRESS, MGMT_STATUS_NOT_SUPPORTED); hci_dev_lock(hdev); changed = !!bacmp(&hdev->public_addr, &cp->bdaddr); bacpy(&hdev->public_addr, &cp->bdaddr); err = send_options_rsp(sk, MGMT_OP_SET_PUBLIC_ADDRESS, hdev); if (err < 0) goto unlock; if (!changed) goto unlock; if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) err = new_options(hdev, sk); if (is_configured(hdev)) { mgmt_index_removed(hdev); hci_dev_clear_flag(hdev, HCI_UNCONFIGURED); hci_dev_set_flag(hdev, HCI_CONFIG); hci_dev_set_flag(hdev, HCI_AUTO_OFF); queue_work(hdev->req_workqueue, &hdev->power_on); } unlock: hci_dev_unlock(hdev); return err; } static void read_local_oob_ext_data_complete(struct hci_dev *hdev, void *data, int err) { const struct mgmt_cp_read_local_oob_ext_data *mgmt_cp; struct mgmt_rp_read_local_oob_ext_data *mgmt_rp; u8 *h192, *r192, *h256, *r256; struct mgmt_pending_cmd *cmd = data; struct sk_buff *skb = cmd->skb; u8 status = mgmt_status(err); u16 eir_len; if (err == -ECANCELED || cmd != pending_find(MGMT_OP_READ_LOCAL_OOB_EXT_DATA, hdev)) return; if (!status) { if (!skb) status = MGMT_STATUS_FAILED; else if (IS_ERR(skb)) status = mgmt_status(PTR_ERR(skb)); else status = mgmt_status(skb->data[0]); } bt_dev_dbg(hdev, "status %u", status); mgmt_cp = cmd->param; if (status) { status = mgmt_status(status); eir_len = 0; h192 = NULL; r192 = NULL; h256 = NULL; r256 = NULL; } else if (!bredr_sc_enabled(hdev)) { struct hci_rp_read_local_oob_data *rp; if (skb->len != sizeof(*rp)) { status = MGMT_STATUS_FAILED; eir_len = 0; } else { status = MGMT_STATUS_SUCCESS; rp = (void *)skb->data; eir_len = 5 + 18 + 18; h192 = rp->hash; r192 = rp->rand; h256 = NULL; r256 = NULL; } } else { struct hci_rp_read_local_oob_ext_data *rp; if (skb->len != sizeof(*rp)) { status = MGMT_STATUS_FAILED; eir_len = 0; } else { status = MGMT_STATUS_SUCCESS; rp = (void *)skb->data; if (hci_dev_test_flag(hdev, HCI_SC_ONLY)) { eir_len = 5 + 18 + 18; h192 = NULL; r192 = NULL; } else { eir_len = 5 + 18 + 18 + 18 + 18; h192 = rp->hash192; r192 = rp->rand192; } h256 = rp->hash256; r256 = rp->rand256; } } mgmt_rp = kmalloc(sizeof(*mgmt_rp) + eir_len, GFP_KERNEL); if (!mgmt_rp) goto done; if (eir_len == 0) goto send_rsp; eir_len = eir_append_data(mgmt_rp->eir, 0, EIR_CLASS_OF_DEV, hdev->dev_class, 3); if (h192 && r192) { eir_len = eir_append_data(mgmt_rp->eir, eir_len, EIR_SSP_HASH_C192, h192, 16); eir_len = eir_append_data(mgmt_rp->eir, eir_len, EIR_SSP_RAND_R192, r192, 16); } if (h256 && r256) { eir_len = eir_append_data(mgmt_rp->eir, eir_len, EIR_SSP_HASH_C256, h256, 16); eir_len = eir_append_data(mgmt_rp->eir, eir_len, EIR_SSP_RAND_R256, r256, 16); } send_rsp: mgmt_rp->type = mgmt_cp->type; mgmt_rp->eir_len = cpu_to_le16(eir_len); err = mgmt_cmd_complete(cmd->sk, hdev->id, MGMT_OP_READ_LOCAL_OOB_EXT_DATA, status, mgmt_rp, sizeof(*mgmt_rp) + eir_len); if (err < 0 || status) goto done; hci_sock_set_flag(cmd->sk, HCI_MGMT_OOB_DATA_EVENTS); err = mgmt_limited_event(MGMT_EV_LOCAL_OOB_DATA_UPDATED, hdev, mgmt_rp, sizeof(*mgmt_rp) + eir_len, HCI_MGMT_OOB_DATA_EVENTS, cmd->sk); done: if (skb && !IS_ERR(skb)) kfree_skb(skb); kfree(mgmt_rp); mgmt_pending_remove(cmd); } static int read_local_ssp_oob_req(struct hci_dev *hdev, struct sock *sk, struct mgmt_cp_read_local_oob_ext_data *cp) { struct mgmt_pending_cmd *cmd; int err; cmd = mgmt_pending_add(sk, MGMT_OP_READ_LOCAL_OOB_EXT_DATA, hdev, cp, sizeof(*cp)); if (!cmd) return -ENOMEM; err = hci_cmd_sync_queue(hdev, read_local_oob_data_sync, cmd, read_local_oob_ext_data_complete); if (err < 0) { mgmt_pending_remove(cmd); return err; } return 0; } static int read_local_oob_ext_data(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_cp_read_local_oob_ext_data *cp = data; struct mgmt_rp_read_local_oob_ext_data *rp; size_t rp_len; u16 eir_len; u8 status, flags, role, addr[7], hash[16], rand[16]; int err; bt_dev_dbg(hdev, "sock %p", sk); if (hdev_is_powered(hdev)) { switch (cp->type) { case BIT(BDADDR_BREDR): status = mgmt_bredr_support(hdev); if (status) eir_len = 0; else eir_len = 5; break; case (BIT(BDADDR_LE_PUBLIC) | BIT(BDADDR_LE_RANDOM)): status = mgmt_le_support(hdev); if (status) eir_len = 0; else eir_len = 9 + 3 + 18 + 18 + 3; break; default: status = MGMT_STATUS_INVALID_PARAMS; eir_len = 0; break; } } else { status = MGMT_STATUS_NOT_POWERED; eir_len = 0; } rp_len = sizeof(*rp) + eir_len; rp = kmalloc(rp_len, GFP_ATOMIC); if (!rp) return -ENOMEM; if (!status && !lmp_ssp_capable(hdev)) { status = MGMT_STATUS_NOT_SUPPORTED; eir_len = 0; } if (status) goto complete; hci_dev_lock(hdev); eir_len = 0; switch (cp->type) { case BIT(BDADDR_BREDR): if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) { err = read_local_ssp_oob_req(hdev, sk, cp); hci_dev_unlock(hdev); if (!err) goto done; status = MGMT_STATUS_FAILED; goto complete; } else { eir_len = eir_append_data(rp->eir, eir_len, EIR_CLASS_OF_DEV, hdev->dev_class, 3); } break; case (BIT(BDADDR_LE_PUBLIC) | BIT(BDADDR_LE_RANDOM)): if (hci_dev_test_flag(hdev, HCI_SC_ENABLED) && smp_generate_oob(hdev, hash, rand) < 0) { hci_dev_unlock(hdev); status = MGMT_STATUS_FAILED; goto complete; } /* This should return the active RPA, but since the RPA * is only programmed on demand, it is really hard to fill * this in at the moment. For now disallow retrieving * local out-of-band data when privacy is in use. * * Returning the identity address will not help here since * pairing happens before the identity resolving key is * known and thus the connection establishment happens * based on the RPA and not the identity address. */ if (hci_dev_test_flag(hdev, HCI_PRIVACY)) { hci_dev_unlock(hdev); status = MGMT_STATUS_REJECTED; goto complete; } if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || !bacmp(&hdev->bdaddr, BDADDR_ANY) || (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && bacmp(&hdev->static_addr, BDADDR_ANY))) { memcpy(addr, &hdev->static_addr, 6); addr[6] = 0x01; } else { memcpy(addr, &hdev->bdaddr, 6); addr[6] = 0x00; } eir_len = eir_append_data(rp->eir, eir_len, EIR_LE_BDADDR, addr, sizeof(addr)); if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) role = 0x02; else role = 0x01; eir_len = eir_append_data(rp->eir, eir_len, EIR_LE_ROLE, &role, sizeof(role)); if (hci_dev_test_flag(hdev, HCI_SC_ENABLED)) { eir_len = eir_append_data(rp->eir, eir_len, EIR_LE_SC_CONFIRM, hash, sizeof(hash)); eir_len = eir_append_data(rp->eir, eir_len, EIR_LE_SC_RANDOM, rand, sizeof(rand)); } flags = mgmt_get_adv_discov_flags(hdev); if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) flags |= LE_AD_NO_BREDR; eir_len = eir_append_data(rp->eir, eir_len, EIR_FLAGS, &flags, sizeof(flags)); break; } hci_dev_unlock(hdev); hci_sock_set_flag(sk, HCI_MGMT_OOB_DATA_EVENTS); status = MGMT_STATUS_SUCCESS; complete: rp->type = cp->type; rp->eir_len = cpu_to_le16(eir_len); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_READ_LOCAL_OOB_EXT_DATA, status, rp, sizeof(*rp) + eir_len); if (err < 0 || status) goto done; err = mgmt_limited_event(MGMT_EV_LOCAL_OOB_DATA_UPDATED, hdev, rp, sizeof(*rp) + eir_len, HCI_MGMT_OOB_DATA_EVENTS, sk); done: kfree(rp); return err; } static u32 get_supported_adv_flags(struct hci_dev *hdev) { u32 flags = 0; flags |= MGMT_ADV_FLAG_CONNECTABLE; flags |= MGMT_ADV_FLAG_DISCOV; flags |= MGMT_ADV_FLAG_LIMITED_DISCOV; flags |= MGMT_ADV_FLAG_MANAGED_FLAGS; flags |= MGMT_ADV_FLAG_APPEARANCE; flags |= MGMT_ADV_FLAG_LOCAL_NAME; flags |= MGMT_ADV_PARAM_DURATION; flags |= MGMT_ADV_PARAM_TIMEOUT; flags |= MGMT_ADV_PARAM_INTERVALS; flags |= MGMT_ADV_PARAM_TX_POWER; flags |= MGMT_ADV_PARAM_SCAN_RSP; /* In extended adv TX_POWER returned from Set Adv Param * will be always valid. */ if (hdev->adv_tx_power != HCI_TX_POWER_INVALID || ext_adv_capable(hdev)) flags |= MGMT_ADV_FLAG_TX_POWER; if (ext_adv_capable(hdev)) { flags |= MGMT_ADV_FLAG_SEC_1M; flags |= MGMT_ADV_FLAG_HW_OFFLOAD; flags |= MGMT_ADV_FLAG_CAN_SET_TX_POWER; if (hdev->le_features[1] & HCI_LE_PHY_2M) flags |= MGMT_ADV_FLAG_SEC_2M; if (hdev->le_features[1] & HCI_LE_PHY_CODED) flags |= MGMT_ADV_FLAG_SEC_CODED; } return flags; } static int read_adv_features(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_rp_read_adv_features *rp; size_t rp_len; int err; struct adv_info *adv_instance; u32 supported_flags; u8 *instance; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_READ_ADV_FEATURES, MGMT_STATUS_REJECTED); hci_dev_lock(hdev); rp_len = sizeof(*rp) + hdev->adv_instance_cnt; rp = kmalloc(rp_len, GFP_ATOMIC); if (!rp) { hci_dev_unlock(hdev); return -ENOMEM; } supported_flags = get_supported_adv_flags(hdev); rp->supported_flags = cpu_to_le32(supported_flags); rp->max_adv_data_len = max_adv_len(hdev); rp->max_scan_rsp_len = max_adv_len(hdev); rp->max_instances = hdev->le_num_of_adv_sets; rp->num_instances = hdev->adv_instance_cnt; instance = rp->instance; list_for_each_entry(adv_instance, &hdev->adv_instances, list) { /* Only instances 1-le_num_of_adv_sets are externally visible */ if (adv_instance->instance <= hdev->adv_instance_cnt) { *instance = adv_instance->instance; instance++; } else { rp->num_instances--; rp_len--; } } hci_dev_unlock(hdev); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_READ_ADV_FEATURES, MGMT_STATUS_SUCCESS, rp, rp_len); kfree(rp); return err; } static u8 calculate_name_len(struct hci_dev *hdev) { u8 buf[HCI_MAX_SHORT_NAME_LENGTH + 2]; /* len + type + name */ return eir_append_local_name(hdev, buf, 0); } static u8 tlv_data_max_len(struct hci_dev *hdev, u32 adv_flags, bool is_adv_data) { u8 max_len = max_adv_len(hdev); if (is_adv_data) { if (adv_flags & (MGMT_ADV_FLAG_DISCOV | MGMT_ADV_FLAG_LIMITED_DISCOV | MGMT_ADV_FLAG_MANAGED_FLAGS)) max_len -= 3; if (adv_flags & MGMT_ADV_FLAG_TX_POWER) max_len -= 3; } else { if (adv_flags & MGMT_ADV_FLAG_LOCAL_NAME) max_len -= calculate_name_len(hdev); if (adv_flags & (MGMT_ADV_FLAG_APPEARANCE)) max_len -= 4; } return max_len; } static bool flags_managed(u32 adv_flags) { return adv_flags & (MGMT_ADV_FLAG_DISCOV | MGMT_ADV_FLAG_LIMITED_DISCOV | MGMT_ADV_FLAG_MANAGED_FLAGS); } static bool tx_power_managed(u32 adv_flags) { return adv_flags & MGMT_ADV_FLAG_TX_POWER; } static bool name_managed(u32 adv_flags) { return adv_flags & MGMT_ADV_FLAG_LOCAL_NAME; } static bool appearance_managed(u32 adv_flags) { return adv_flags & MGMT_ADV_FLAG_APPEARANCE; } static bool tlv_data_is_valid(struct hci_dev *hdev, u32 adv_flags, u8 *data, u8 len, bool is_adv_data) { int i, cur_len; u8 max_len; max_len = tlv_data_max_len(hdev, adv_flags, is_adv_data); if (len > max_len) return false; /* Make sure that the data is correctly formatted. */ for (i = 0; i < len; i += (cur_len + 1)) { cur_len = data[i]; if (!cur_len) continue; if (data[i + 1] == EIR_FLAGS && (!is_adv_data || flags_managed(adv_flags))) return false; if (data[i + 1] == EIR_TX_POWER && tx_power_managed(adv_flags)) return false; if (data[i + 1] == EIR_NAME_COMPLETE && name_managed(adv_flags)) return false; if (data[i + 1] == EIR_NAME_SHORT && name_managed(adv_flags)) return false; if (data[i + 1] == EIR_APPEARANCE && appearance_managed(adv_flags)) return false; /* If the current field length would exceed the total data * length, then it's invalid. */ if (i + cur_len >= len) return false; } return true; } static bool requested_adv_flags_are_valid(struct hci_dev *hdev, u32 adv_flags) { u32 supported_flags, phy_flags; /* The current implementation only supports a subset of the specified * flags. Also need to check mutual exclusiveness of sec flags. */ supported_flags = get_supported_adv_flags(hdev); phy_flags = adv_flags & MGMT_ADV_FLAG_SEC_MASK; if (adv_flags & ~supported_flags || ((phy_flags && (phy_flags ^ (phy_flags & -phy_flags))))) return false; return true; } static bool adv_busy(struct hci_dev *hdev) { return pending_find(MGMT_OP_SET_LE, hdev); } static void add_adv_complete(struct hci_dev *hdev, struct sock *sk, u8 instance, int err) { struct adv_info *adv, *n; bt_dev_dbg(hdev, "err %d", err); hci_dev_lock(hdev); list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { u8 instance; if (!adv->pending) continue; if (!err) { adv->pending = false; continue; } instance = adv->instance; if (hdev->cur_adv_instance == instance) cancel_adv_timeout(hdev); hci_remove_adv_instance(hdev, instance); mgmt_advertising_removed(sk, hdev, instance); } hci_dev_unlock(hdev); } static void add_advertising_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_add_advertising *cp = cmd->param; struct mgmt_rp_add_advertising rp; memset(&rp, 0, sizeof(rp)); rp.instance = cp->instance; if (err) mgmt_cmd_status(cmd->sk, cmd->index, cmd->opcode, mgmt_status(err)); else mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, mgmt_status(err), &rp, sizeof(rp)); add_adv_complete(hdev, cmd->sk, cp->instance, err); mgmt_pending_free(cmd); } static int add_advertising_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_add_advertising *cp = cmd->param; return hci_schedule_adv_instance_sync(hdev, cp->instance, true); } static int add_advertising(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_cp_add_advertising *cp = data; struct mgmt_rp_add_advertising rp; u32 flags; u8 status; u16 timeout, duration; unsigned int prev_instance_cnt; u8 schedule_instance = 0; struct adv_info *adv, *next_instance; int err; struct mgmt_pending_cmd *cmd; bt_dev_dbg(hdev, "sock %p", sk); status = mgmt_le_support(hdev); if (status) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_ADVERTISING, status); if (cp->instance < 1 || cp->instance > hdev->le_num_of_adv_sets) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_ADVERTISING, MGMT_STATUS_INVALID_PARAMS); if (data_len != sizeof(*cp) + cp->adv_data_len + cp->scan_rsp_len) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_ADVERTISING, MGMT_STATUS_INVALID_PARAMS); flags = __le32_to_cpu(cp->flags); timeout = __le16_to_cpu(cp->timeout); duration = __le16_to_cpu(cp->duration); if (!requested_adv_flags_are_valid(hdev, flags)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_ADVERTISING, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); if (timeout && !hdev_is_powered(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_ADVERTISING, MGMT_STATUS_REJECTED); goto unlock; } if (adv_busy(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_ADVERTISING, MGMT_STATUS_BUSY); goto unlock; } if (!tlv_data_is_valid(hdev, flags, cp->data, cp->adv_data_len, true) || !tlv_data_is_valid(hdev, flags, cp->data + cp->adv_data_len, cp->scan_rsp_len, false)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_ADVERTISING, MGMT_STATUS_INVALID_PARAMS); goto unlock; } prev_instance_cnt = hdev->adv_instance_cnt; adv = hci_add_adv_instance(hdev, cp->instance, flags, cp->adv_data_len, cp->data, cp->scan_rsp_len, cp->data + cp->adv_data_len, timeout, duration, HCI_ADV_TX_POWER_NO_PREFERENCE, hdev->le_adv_min_interval, hdev->le_adv_max_interval, 0); if (IS_ERR(adv)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_ADVERTISING, MGMT_STATUS_FAILED); goto unlock; } /* Only trigger an advertising added event if a new instance was * actually added. */ if (hdev->adv_instance_cnt > prev_instance_cnt) mgmt_advertising_added(sk, hdev, cp->instance); if (hdev->cur_adv_instance == cp->instance) { /* If the currently advertised instance is being changed then * cancel the current advertising and schedule the next * instance. If there is only one instance then the overridden * advertising data will be visible right away. */ cancel_adv_timeout(hdev); next_instance = hci_get_next_instance(hdev, cp->instance); if (next_instance) schedule_instance = next_instance->instance; } else if (!hdev->adv_instance_timeout) { /* Immediately advertise the new instance if no other * instance is currently being advertised. */ schedule_instance = cp->instance; } /* If the HCI_ADVERTISING flag is set or the device isn't powered or * there is no instance to be advertised then we have no HCI * communication to make. Simply return. */ if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING) || !schedule_instance) { rp.instance = cp->instance; err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_ADVERTISING, MGMT_STATUS_SUCCESS, &rp, sizeof(rp)); goto unlock; } /* We're good to go, update advertising data, parameters, and start * advertising. */ cmd = mgmt_pending_new(sk, MGMT_OP_ADD_ADVERTISING, hdev, data, data_len); if (!cmd) { err = -ENOMEM; goto unlock; } cp->instance = schedule_instance; err = hci_cmd_sync_queue(hdev, add_advertising_sync, cmd, add_advertising_complete); if (err < 0) mgmt_pending_free(cmd); unlock: hci_dev_unlock(hdev); return err; } static void add_ext_adv_params_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_add_ext_adv_params *cp = cmd->param; struct mgmt_rp_add_ext_adv_params rp; struct adv_info *adv; u32 flags; BT_DBG("%s", hdev->name); hci_dev_lock(hdev); adv = hci_find_adv_instance(hdev, cp->instance); if (!adv) goto unlock; rp.instance = cp->instance; rp.tx_power = adv->tx_power; /* While we're at it, inform userspace of the available space for this * advertisement, given the flags that will be used. */ flags = __le32_to_cpu(cp->flags); rp.max_adv_data_len = tlv_data_max_len(hdev, flags, true); rp.max_scan_rsp_len = tlv_data_max_len(hdev, flags, false); if (err) { /* If this advertisement was previously advertising and we * failed to update it, we signal that it has been removed and * delete its structure */ if (!adv->pending) mgmt_advertising_removed(cmd->sk, hdev, cp->instance); hci_remove_adv_instance(hdev, cp->instance); mgmt_cmd_status(cmd->sk, cmd->index, cmd->opcode, mgmt_status(err)); } else { mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, mgmt_status(err), &rp, sizeof(rp)); } unlock: if (cmd) mgmt_pending_free(cmd); hci_dev_unlock(hdev); } static int add_ext_adv_params_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_add_ext_adv_params *cp = cmd->param; return hci_setup_ext_adv_instance_sync(hdev, cp->instance); } static int add_ext_adv_params(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_cp_add_ext_adv_params *cp = data; struct mgmt_rp_add_ext_adv_params rp; struct mgmt_pending_cmd *cmd = NULL; struct adv_info *adv; u32 flags, min_interval, max_interval; u16 timeout, duration; u8 status; s8 tx_power; int err; BT_DBG("%s", hdev->name); status = mgmt_le_support(hdev); if (status) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_PARAMS, status); if (cp->instance < 1 || cp->instance > hdev->le_num_of_adv_sets) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_PARAMS, MGMT_STATUS_INVALID_PARAMS); /* The purpose of breaking add_advertising into two separate MGMT calls * for params and data is to allow more parameters to be added to this * structure in the future. For this reason, we verify that we have the * bare minimum structure we know of when the interface was defined. Any * extra parameters we don't know about will be ignored in this request. */ if (data_len < MGMT_ADD_EXT_ADV_PARAMS_MIN_SIZE) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_PARAMS, MGMT_STATUS_INVALID_PARAMS); flags = __le32_to_cpu(cp->flags); if (!requested_adv_flags_are_valid(hdev, flags)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_PARAMS, MGMT_STATUS_INVALID_PARAMS); hci_dev_lock(hdev); /* In new interface, we require that we are powered to register */ if (!hdev_is_powered(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_PARAMS, MGMT_STATUS_REJECTED); goto unlock; } if (adv_busy(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_PARAMS, MGMT_STATUS_BUSY); goto unlock; } /* Parse defined parameters from request, use defaults otherwise */ timeout = (flags & MGMT_ADV_PARAM_TIMEOUT) ? __le16_to_cpu(cp->timeout) : 0; duration = (flags & MGMT_ADV_PARAM_DURATION) ? __le16_to_cpu(cp->duration) : hdev->def_multi_adv_rotation_duration; min_interval = (flags & MGMT_ADV_PARAM_INTERVALS) ? __le32_to_cpu(cp->min_interval) : hdev->le_adv_min_interval; max_interval = (flags & MGMT_ADV_PARAM_INTERVALS) ? __le32_to_cpu(cp->max_interval) : hdev->le_adv_max_interval; tx_power = (flags & MGMT_ADV_PARAM_TX_POWER) ? cp->tx_power : HCI_ADV_TX_POWER_NO_PREFERENCE; /* Create advertising instance with no advertising or response data */ adv = hci_add_adv_instance(hdev, cp->instance, flags, 0, NULL, 0, NULL, timeout, duration, tx_power, min_interval, max_interval, 0); if (IS_ERR(adv)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_PARAMS, MGMT_STATUS_FAILED); goto unlock; } /* Submit request for advertising params if ext adv available */ if (ext_adv_capable(hdev)) { cmd = mgmt_pending_new(sk, MGMT_OP_ADD_EXT_ADV_PARAMS, hdev, data, data_len); if (!cmd) { err = -ENOMEM; hci_remove_adv_instance(hdev, cp->instance); goto unlock; } err = hci_cmd_sync_queue(hdev, add_ext_adv_params_sync, cmd, add_ext_adv_params_complete); if (err < 0) mgmt_pending_free(cmd); } else { rp.instance = cp->instance; rp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; rp.max_adv_data_len = tlv_data_max_len(hdev, flags, true); rp.max_scan_rsp_len = tlv_data_max_len(hdev, flags, false); err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_PARAMS, MGMT_STATUS_SUCCESS, &rp, sizeof(rp)); } unlock: hci_dev_unlock(hdev); return err; } static void add_ext_adv_data_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_add_ext_adv_data *cp = cmd->param; struct mgmt_rp_add_advertising rp; add_adv_complete(hdev, cmd->sk, cp->instance, err); memset(&rp, 0, sizeof(rp)); rp.instance = cp->instance; if (err) mgmt_cmd_status(cmd->sk, cmd->index, cmd->opcode, mgmt_status(err)); else mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, mgmt_status(err), &rp, sizeof(rp)); mgmt_pending_free(cmd); } static int add_ext_adv_data_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_add_ext_adv_data *cp = cmd->param; int err; if (ext_adv_capable(hdev)) { err = hci_update_adv_data_sync(hdev, cp->instance); if (err) return err; err = hci_update_scan_rsp_data_sync(hdev, cp->instance); if (err) return err; return hci_enable_ext_advertising_sync(hdev, cp->instance); } return hci_schedule_adv_instance_sync(hdev, cp->instance, true); } static int add_ext_adv_data(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_cp_add_ext_adv_data *cp = data; struct mgmt_rp_add_ext_adv_data rp; u8 schedule_instance = 0; struct adv_info *next_instance; struct adv_info *adv_instance; int err = 0; struct mgmt_pending_cmd *cmd; BT_DBG("%s", hdev->name); hci_dev_lock(hdev); adv_instance = hci_find_adv_instance(hdev, cp->instance); if (!adv_instance) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_DATA, MGMT_STATUS_INVALID_PARAMS); goto unlock; } /* In new interface, we require that we are powered to register */ if (!hdev_is_powered(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_DATA, MGMT_STATUS_REJECTED); goto clear_new_instance; } if (adv_busy(hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_DATA, MGMT_STATUS_BUSY); goto clear_new_instance; } /* Validate new data */ if (!tlv_data_is_valid(hdev, adv_instance->flags, cp->data, cp->adv_data_len, true) || !tlv_data_is_valid(hdev, adv_instance->flags, cp->data + cp->adv_data_len, cp->scan_rsp_len, false)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_DATA, MGMT_STATUS_INVALID_PARAMS); goto clear_new_instance; } /* Set the data in the advertising instance */ hci_set_adv_instance_data(hdev, cp->instance, cp->adv_data_len, cp->data, cp->scan_rsp_len, cp->data + cp->adv_data_len); /* If using software rotation, determine next instance to use */ if (hdev->cur_adv_instance == cp->instance) { /* If the currently advertised instance is being changed * then cancel the current advertising and schedule the * next instance. If there is only one instance then the * overridden advertising data will be visible right * away */ cancel_adv_timeout(hdev); next_instance = hci_get_next_instance(hdev, cp->instance); if (next_instance) schedule_instance = next_instance->instance; } else if (!hdev->adv_instance_timeout) { /* Immediately advertise the new instance if no other * instance is currently being advertised. */ schedule_instance = cp->instance; } /* If the HCI_ADVERTISING flag is set or there is no instance to * be advertised then we have no HCI communication to make. * Simply return. */ if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || !schedule_instance) { if (adv_instance->pending) { mgmt_advertising_added(sk, hdev, cp->instance); adv_instance->pending = false; } rp.instance = cp->instance; err = mgmt_cmd_complete(sk, hdev->id, MGMT_OP_ADD_EXT_ADV_DATA, MGMT_STATUS_SUCCESS, &rp, sizeof(rp)); goto unlock; } cmd = mgmt_pending_new(sk, MGMT_OP_ADD_EXT_ADV_DATA, hdev, data, data_len); if (!cmd) { err = -ENOMEM; goto clear_new_instance; } err = hci_cmd_sync_queue(hdev, add_ext_adv_data_sync, cmd, add_ext_adv_data_complete); if (err < 0) { mgmt_pending_free(cmd); goto clear_new_instance; } /* We were successful in updating data, so trigger advertising_added * event if this is an instance that wasn't previously advertising. If * a failure occurs in the requests we initiated, we will remove the * instance again in add_advertising_complete */ if (adv_instance->pending) mgmt_advertising_added(sk, hdev, cp->instance); goto unlock; clear_new_instance: hci_remove_adv_instance(hdev, cp->instance); unlock: hci_dev_unlock(hdev); return err; } static void remove_advertising_complete(struct hci_dev *hdev, void *data, int err) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_remove_advertising *cp = cmd->param; struct mgmt_rp_remove_advertising rp; bt_dev_dbg(hdev, "err %d", err); memset(&rp, 0, sizeof(rp)); rp.instance = cp->instance; if (err) mgmt_cmd_status(cmd->sk, cmd->index, cmd->opcode, mgmt_status(err)); else mgmt_cmd_complete(cmd->sk, cmd->index, cmd->opcode, MGMT_STATUS_SUCCESS, &rp, sizeof(rp)); mgmt_pending_free(cmd); } static int remove_advertising_sync(struct hci_dev *hdev, void *data) { struct mgmt_pending_cmd *cmd = data; struct mgmt_cp_remove_advertising *cp = cmd->param; int err; err = hci_remove_advertising_sync(hdev, cmd->sk, cp->instance, true); if (err) return err; if (list_empty(&hdev->adv_instances)) err = hci_disable_advertising_sync(hdev); return err; } static int remove_advertising(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_cp_remove_advertising *cp = data; struct mgmt_pending_cmd *cmd; int err; bt_dev_dbg(hdev, "sock %p", sk); hci_dev_lock(hdev); if (cp->instance && !hci_find_adv_instance(hdev, cp->instance)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_REMOVE_ADVERTISING, MGMT_STATUS_INVALID_PARAMS); goto unlock; } if (pending_find(MGMT_OP_SET_LE, hdev)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_REMOVE_ADVERTISING, MGMT_STATUS_BUSY); goto unlock; } if (list_empty(&hdev->adv_instances)) { err = mgmt_cmd_status(sk, hdev->id, MGMT_OP_REMOVE_ADVERTISING, MGMT_STATUS_INVALID_PARAMS); goto unlock; } cmd = mgmt_pending_new(sk, MGMT_OP_REMOVE_ADVERTISING, hdev, data, data_len); if (!cmd) { err = -ENOMEM; goto unlock; } err = hci_cmd_sync_queue(hdev, remove_advertising_sync, cmd, remove_advertising_complete); if (err < 0) mgmt_pending_free(cmd); unlock: hci_dev_unlock(hdev); return err; } static int get_adv_size_info(struct sock *sk, struct hci_dev *hdev, void *data, u16 data_len) { struct mgmt_cp_get_adv_size_info *cp = data; struct mgmt_rp_get_adv_size_info rp; u32 flags, supported_flags; bt_dev_dbg(hdev, "sock %p", sk); if (!lmp_le_capable(hdev)) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_GET_ADV_SIZE_INFO, MGMT_STATUS_REJECTED); if (cp->instance < 1 || cp->instance > hdev->le_num_of_adv_sets) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_GET_ADV_SIZE_INFO, MGMT_STATUS_INVALID_PARAMS); flags = __le32_to_cpu(cp->flags); /* The current implementation only supports a subset of the specified * flags. */ supported_flags = get_supported_adv_flags(hdev); if (flags & ~supported_flags) return mgmt_cmd_status(sk, hdev->id, MGMT_OP_GET_ADV_SIZE_INFO, MGMT_STATUS_INVALID_PARAMS); rp.instance = cp->instance; rp.flags = cp->flags; rp.max_adv_data_len = tlv_data_max_len(hdev, flags, true); rp.max_scan_rsp_len = tlv_data_max_len(hdev, flags, false); return mgmt_cmd_complete(sk, hdev->id, MGMT_OP_GET_ADV_SIZE_INFO, MGMT_STATUS_SUCCESS, &rp, sizeof(rp)); } static const struct hci_mgmt_handler mgmt_handlers[] = { { NULL }, /* 0x0000 (no command) */ { read_version, MGMT_READ_VERSION_SIZE, HCI_MGMT_NO_HDEV | HCI_MGMT_UNTRUSTED }, { read_commands, MGMT_READ_COMMANDS_SIZE, HCI_MGMT_NO_HDEV | HCI_MGMT_UNTRUSTED }, { read_index_list, MGMT_READ_INDEX_LIST_SIZE, HCI_MGMT_NO_HDEV | HCI_MGMT_UNTRUSTED }, { read_controller_info, MGMT_READ_INFO_SIZE, HCI_MGMT_UNTRUSTED }, { set_powered, MGMT_SETTING_SIZE }, { set_discoverable, MGMT_SET_DISCOVERABLE_SIZE }, { set_connectable, MGMT_SETTING_SIZE }, { set_fast_connectable, MGMT_SETTING_SIZE }, { set_bondable, MGMT_SETTING_SIZE }, { set_link_security, MGMT_SETTING_SIZE }, { set_ssp, MGMT_SETTING_SIZE }, { set_hs, MGMT_SETTING_SIZE }, { set_le, MGMT_SETTING_SIZE }, { set_dev_class, MGMT_SET_DEV_CLASS_SIZE }, { set_local_name, MGMT_SET_LOCAL_NAME_SIZE }, { add_uuid, MGMT_ADD_UUID_SIZE }, { remove_uuid, MGMT_REMOVE_UUID_SIZE }, { load_link_keys, MGMT_LOAD_LINK_KEYS_SIZE, HCI_MGMT_VAR_LEN }, { load_long_term_keys, MGMT_LOAD_LONG_TERM_KEYS_SIZE, HCI_MGMT_VAR_LEN }, { disconnect, MGMT_DISCONNECT_SIZE }, { get_connections, MGMT_GET_CONNECTIONS_SIZE }, { pin_code_reply, MGMT_PIN_CODE_REPLY_SIZE }, { pin_code_neg_reply, MGMT_PIN_CODE_NEG_REPLY_SIZE }, { set_io_capability, MGMT_SET_IO_CAPABILITY_SIZE }, { pair_device, MGMT_PAIR_DEVICE_SIZE }, { cancel_pair_device, MGMT_CANCEL_PAIR_DEVICE_SIZE }, { unpair_device, MGMT_UNPAIR_DEVICE_SIZE }, { user_confirm_reply, MGMT_USER_CONFIRM_REPLY_SIZE }, { user_confirm_neg_reply, MGMT_USER_CONFIRM_NEG_REPLY_SIZE }, { user_passkey_reply, MGMT_USER_PASSKEY_REPLY_SIZE }, { user_passkey_neg_reply, MGMT_USER_PASSKEY_NEG_REPLY_SIZE }, { read_local_oob_data, MGMT_READ_LOCAL_OOB_DATA_SIZE }, { add_remote_oob_data, MGMT_ADD_REMOTE_OOB_DATA_SIZE, HCI_MGMT_VAR_LEN }, { remove_remote_oob_data, MGMT_REMOVE_REMOTE_OOB_DATA_SIZE }, { start_discovery, MGMT_START_DISCOVERY_SIZE }, { stop_discovery, MGMT_STOP_DISCOVERY_SIZE }, { confirm_name, MGMT_CONFIRM_NAME_SIZE }, { block_device, MGMT_BLOCK_DEVICE_SIZE }, { unblock_device, MGMT_UNBLOCK_DEVICE_SIZE }, { set_device_id, MGMT_SET_DEVICE_ID_SIZE }, { set_advertising, MGMT_SETTING_SIZE }, { set_bredr, MGMT_SETTING_SIZE }, { set_static_address, MGMT_SET_STATIC_ADDRESS_SIZE }, { set_scan_params, MGMT_SET_SCAN_PARAMS_SIZE }, { set_secure_conn, MGMT_SETTING_SIZE }, { set_debug_keys, MGMT_SETTING_SIZE }, { set_privacy, MGMT_SET_PRIVACY_SIZE }, { load_irks, MGMT_LOAD_IRKS_SIZE, HCI_MGMT_VAR_LEN }, { get_conn_info, MGMT_GET_CONN_INFO_SIZE }, { get_clock_info, MGMT_GET_CLOCK_INFO_SIZE }, { add_device, MGMT_ADD_DEVICE_SIZE }, { remove_device, MGMT_REMOVE_DEVICE_SIZE }, { load_conn_param, MGMT_LOAD_CONN_PARAM_SIZE, HCI_MGMT_VAR_LEN }, { read_unconf_index_list, MGMT_READ_UNCONF_INDEX_LIST_SIZE, HCI_MGMT_NO_HDEV | HCI_MGMT_UNTRUSTED }, { read_config_info, MGMT_READ_CONFIG_INFO_SIZE, HCI_MGMT_UNCONFIGURED | HCI_MGMT_UNTRUSTED }, { set_external_config, MGMT_SET_EXTERNAL_CONFIG_SIZE, HCI_MGMT_UNCONFIGURED }, { set_public_address, MGMT_SET_PUBLIC_ADDRESS_SIZE, HCI_MGMT_UNCONFIGURED }, { start_service_discovery, MGMT_START_SERVICE_DISCOVERY_SIZE, HCI_MGMT_VAR_LEN }, { read_local_oob_ext_data, MGMT_READ_LOCAL_OOB_EXT_DATA_SIZE }, { read_ext_index_list, MGMT_READ_EXT_INDEX_LIST_SIZE, HCI_MGMT_NO_HDEV | HCI_MGMT_UNTRUSTED }, { read_adv_features, MGMT_READ_ADV_FEATURES_SIZE }, { add_advertising, MGMT_ADD_ADVERTISING_SIZE, HCI_MGMT_VAR_LEN }, { remove_advertising, MGMT_REMOVE_ADVERTISING_SIZE }, { get_adv_size_info, MGMT_GET_ADV_SIZE_INFO_SIZE }, { start_limited_discovery, MGMT_START_DISCOVERY_SIZE }, { read_ext_controller_info,MGMT_READ_EXT_INFO_SIZE, HCI_MGMT_UNTRUSTED }, { set_appearance, MGMT_SET_APPEARANCE_SIZE }, { get_phy_configuration, MGMT_GET_PHY_CONFIGURATION_SIZE }, { set_phy_configuration, MGMT_SET_PHY_CONFIGURATION_SIZE }, { set_blocked_keys, MGMT_OP_SET_BLOCKED_KEYS_SIZE, HCI_MGMT_VAR_LEN }, { set_wideband_speech, MGMT_SETTING_SIZE }, { read_controller_cap, MGMT_READ_CONTROLLER_CAP_SIZE, HCI_MGMT_UNTRUSTED }, { read_exp_features_info, MGMT_READ_EXP_FEATURES_INFO_SIZE, HCI_MGMT_UNTRUSTED | HCI_MGMT_HDEV_OPTIONAL }, { set_exp_feature, MGMT_SET_EXP_FEATURE_SIZE, HCI_MGMT_VAR_LEN | HCI_MGMT_HDEV_OPTIONAL }, { read_def_system_config, MGMT_READ_DEF_SYSTEM_CONFIG_SIZE, HCI_MGMT_UNTRUSTED }, { set_def_system_config, MGMT_SET_DEF_SYSTEM_CONFIG_SIZE, HCI_MGMT_VAR_LEN }, { read_def_runtime_config, MGMT_READ_DEF_RUNTIME_CONFIG_SIZE, HCI_MGMT_UNTRUSTED }, { set_def_runtime_config, MGMT_SET_DEF_RUNTIME_CONFIG_SIZE, HCI_MGMT_VAR_LEN }, { get_device_flags, MGMT_GET_DEVICE_FLAGS_SIZE }, { set_device_flags, MGMT_SET_DEVICE_FLAGS_SIZE }, { read_adv_mon_features, MGMT_READ_ADV_MONITOR_FEATURES_SIZE }, { add_adv_patterns_monitor,MGMT_ADD_ADV_PATTERNS_MONITOR_SIZE, HCI_MGMT_VAR_LEN }, { remove_adv_monitor, MGMT_REMOVE_ADV_MONITOR_SIZE }, { add_ext_adv_params, MGMT_ADD_EXT_ADV_PARAMS_MIN_SIZE, HCI_MGMT_VAR_LEN }, { add_ext_adv_data, MGMT_ADD_EXT_ADV_DATA_SIZE, HCI_MGMT_VAR_LEN }, { add_adv_patterns_monitor_rssi, MGMT_ADD_ADV_PATTERNS_MONITOR_RSSI_SIZE, HCI_MGMT_VAR_LEN }, { set_mesh, MGMT_SET_MESH_RECEIVER_SIZE, HCI_MGMT_VAR_LEN }, { mesh_features, MGMT_MESH_READ_FEATURES_SIZE }, { mesh_send, MGMT_MESH_SEND_SIZE, HCI_MGMT_VAR_LEN }, { mesh_send_cancel, MGMT_MESH_SEND_CANCEL_SIZE }, }; void mgmt_index_added(struct hci_dev *hdev) { struct mgmt_ev_ext_index ev; if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) return; switch (hdev->dev_type) { case HCI_PRIMARY: if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { mgmt_index_event(MGMT_EV_UNCONF_INDEX_ADDED, hdev, NULL, 0, HCI_MGMT_UNCONF_INDEX_EVENTS); ev.type = 0x01; } else { mgmt_index_event(MGMT_EV_INDEX_ADDED, hdev, NULL, 0, HCI_MGMT_INDEX_EVENTS); ev.type = 0x00; } break; case HCI_AMP: ev.type = 0x02; break; default: return; } ev.bus = hdev->bus; mgmt_index_event(MGMT_EV_EXT_INDEX_ADDED, hdev, &ev, sizeof(ev), HCI_MGMT_EXT_INDEX_EVENTS); } void mgmt_index_removed(struct hci_dev *hdev) { struct mgmt_ev_ext_index ev; struct cmd_lookup match = { NULL, hdev, MGMT_STATUS_INVALID_INDEX }; if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) return; switch (hdev->dev_type) { case HCI_PRIMARY: mgmt_pending_foreach(0, hdev, cmd_complete_rsp, &match); if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { mgmt_index_event(MGMT_EV_UNCONF_INDEX_REMOVED, hdev, NULL, 0, HCI_MGMT_UNCONF_INDEX_EVENTS); ev.type = 0x01; } else { mgmt_index_event(MGMT_EV_INDEX_REMOVED, hdev, NULL, 0, HCI_MGMT_INDEX_EVENTS); ev.type = 0x00; } break; case HCI_AMP: ev.type = 0x02; break; default: return; } ev.bus = hdev->bus; mgmt_index_event(MGMT_EV_EXT_INDEX_REMOVED, hdev, &ev, sizeof(ev), HCI_MGMT_EXT_INDEX_EVENTS); /* Cancel any remaining timed work */ if (!hci_dev_test_flag(hdev, HCI_MGMT)) return; cancel_delayed_work_sync(&hdev->discov_off); cancel_delayed_work_sync(&hdev->service_cache); cancel_delayed_work_sync(&hdev->rpa_expired); } void mgmt_power_on(struct hci_dev *hdev, int err) { struct cmd_lookup match = { NULL, hdev }; bt_dev_dbg(hdev, "err %d", err); hci_dev_lock(hdev); if (!err) { restart_le_actions(hdev); hci_update_passive_scan(hdev); } mgmt_pending_foreach(MGMT_OP_SET_POWERED, hdev, settings_rsp, &match); new_settings(hdev, match.sk); if (match.sk) sock_put(match.sk); hci_dev_unlock(hdev); } void __mgmt_power_off(struct hci_dev *hdev) { struct cmd_lookup match = { NULL, hdev }; u8 zero_cod[] = { 0, 0, 0 }; mgmt_pending_foreach(MGMT_OP_SET_POWERED, hdev, settings_rsp, &match); /* If the power off is because of hdev unregistration let * use the appropriate INVALID_INDEX status. Otherwise use * NOT_POWERED. We cover both scenarios here since later in * mgmt_index_removed() any hci_conn callbacks will have already * been triggered, potentially causing misleading DISCONNECTED * status responses. */ if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) match.mgmt_status = MGMT_STATUS_INVALID_INDEX; else match.mgmt_status = MGMT_STATUS_NOT_POWERED; mgmt_pending_foreach(0, hdev, cmd_complete_rsp, &match); if (memcmp(hdev->dev_class, zero_cod, sizeof(zero_cod)) != 0) { mgmt_limited_event(MGMT_EV_CLASS_OF_DEV_CHANGED, hdev, zero_cod, sizeof(zero_cod), HCI_MGMT_DEV_CLASS_EVENTS, NULL); ext_info_changed(hdev, NULL); } new_settings(hdev, match.sk); if (match.sk) sock_put(match.sk); } void mgmt_set_powered_failed(struct hci_dev *hdev, int err) { struct mgmt_pending_cmd *cmd; u8 status; cmd = pending_find(MGMT_OP_SET_POWERED, hdev); if (!cmd) return; if (err == -ERFKILL) status = MGMT_STATUS_RFKILLED; else status = MGMT_STATUS_FAILED; mgmt_cmd_status(cmd->sk, hdev->id, MGMT_OP_SET_POWERED, status); mgmt_pending_remove(cmd); } void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key, bool persistent) { struct mgmt_ev_new_link_key ev; memset(&ev, 0, sizeof(ev)); ev.store_hint = persistent; bacpy(&ev.key.addr.bdaddr, &key->bdaddr); ev.key.addr.type = BDADDR_BREDR; ev.key.type = key->type; memcpy(ev.key.val, key->val, HCI_LINK_KEY_SIZE); ev.key.pin_len = key->pin_len; mgmt_event(MGMT_EV_NEW_LINK_KEY, hdev, &ev, sizeof(ev), NULL); } static u8 mgmt_ltk_type(struct smp_ltk *ltk) { switch (ltk->type) { case SMP_LTK: case SMP_LTK_RESPONDER: if (ltk->authenticated) return MGMT_LTK_AUTHENTICATED; return MGMT_LTK_UNAUTHENTICATED; case SMP_LTK_P256: if (ltk->authenticated) return MGMT_LTK_P256_AUTH; return MGMT_LTK_P256_UNAUTH; case SMP_LTK_P256_DEBUG: return MGMT_LTK_P256_DEBUG; } return MGMT_LTK_UNAUTHENTICATED; } void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent) { struct mgmt_ev_new_long_term_key ev; memset(&ev, 0, sizeof(ev)); /* Devices using resolvable or non-resolvable random addresses * without providing an identity resolving key don't require * to store long term keys. Their addresses will change the * next time around. * * Only when a remote device provides an identity address * make sure the long term key is stored. If the remote * identity is known, the long term keys are internally * mapped to the identity address. So allow static random * and public addresses here. */ if (key->bdaddr_type == ADDR_LE_DEV_RANDOM && (key->bdaddr.b[5] & 0xc0) != 0xc0) ev.store_hint = 0x00; else ev.store_hint = persistent; bacpy(&ev.key.addr.bdaddr, &key->bdaddr); ev.key.addr.type = link_to_bdaddr(LE_LINK, key->bdaddr_type); ev.key.type = mgmt_ltk_type(key); ev.key.enc_size = key->enc_size; ev.key.ediv = key->ediv; ev.key.rand = key->rand; if (key->type == SMP_LTK) ev.key.initiator = 1; /* Make sure we copy only the significant bytes based on the * encryption key size, and set the rest of the value to zeroes. */ memcpy(ev.key.val, key->val, key->enc_size); memset(ev.key.val + key->enc_size, 0, sizeof(ev.key.val) - key->enc_size); mgmt_event(MGMT_EV_NEW_LONG_TERM_KEY, hdev, &ev, sizeof(ev), NULL); } void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk, bool persistent) { struct mgmt_ev_new_irk ev; memset(&ev, 0, sizeof(ev)); ev.store_hint = persistent; bacpy(&ev.rpa, &irk->rpa); bacpy(&ev.irk.addr.bdaddr, &irk->bdaddr); ev.irk.addr.type = link_to_bdaddr(LE_LINK, irk->addr_type); memcpy(ev.irk.val, irk->val, sizeof(irk->val)); mgmt_event(MGMT_EV_NEW_IRK, hdev, &ev, sizeof(ev), NULL); } void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk, bool persistent) { struct mgmt_ev_new_csrk ev; memset(&ev, 0, sizeof(ev)); /* Devices using resolvable or non-resolvable random addresses * without providing an identity resolving key don't require * to store signature resolving keys. Their addresses will change * the next time around. * * Only when a remote device provides an identity address * make sure the signature resolving key is stored. So allow * static random and public addresses here. */ if (csrk->bdaddr_type == ADDR_LE_DEV_RANDOM && (csrk->bdaddr.b[5] & 0xc0) != 0xc0) ev.store_hint = 0x00; else ev.store_hint = persistent; bacpy(&ev.key.addr.bdaddr, &csrk->bdaddr); ev.key.addr.type = link_to_bdaddr(LE_LINK, csrk->bdaddr_type); ev.key.type = csrk->type; memcpy(ev.key.val, csrk->val, sizeof(csrk->val)); mgmt_event(MGMT_EV_NEW_CSRK, hdev, &ev, sizeof(ev), NULL); } void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type, u8 store_hint, u16 min_interval, u16 max_interval, u16 latency, u16 timeout) { struct mgmt_ev_new_conn_param ev; if (!hci_is_identity_address(bdaddr, bdaddr_type)) return; memset(&ev, 0, sizeof(ev)); bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = link_to_bdaddr(LE_LINK, bdaddr_type); ev.store_hint = store_hint; ev.min_interval = cpu_to_le16(min_interval); ev.max_interval = cpu_to_le16(max_interval); ev.latency = cpu_to_le16(latency); ev.timeout = cpu_to_le16(timeout); mgmt_event(MGMT_EV_NEW_CONN_PARAM, hdev, &ev, sizeof(ev), NULL); } void mgmt_device_connected(struct hci_dev *hdev, struct hci_conn *conn, u8 *name, u8 name_len) { struct sk_buff *skb; struct mgmt_ev_device_connected *ev; u16 eir_len = 0; u32 flags = 0; /* allocate buff for LE or BR/EDR adv */ if (conn->le_adv_data_len > 0) skb = mgmt_alloc_skb(hdev, MGMT_EV_DEVICE_CONNECTED, sizeof(*ev) + conn->le_adv_data_len); else skb = mgmt_alloc_skb(hdev, MGMT_EV_DEVICE_CONNECTED, sizeof(*ev) + (name ? eir_precalc_len(name_len) : 0) + eir_precalc_len(sizeof(conn->dev_class))); if (!skb) return; ev = skb_put(skb, sizeof(*ev)); bacpy(&ev->addr.bdaddr, &conn->dst); ev->addr.type = link_to_bdaddr(conn->type, conn->dst_type); if (conn->out) flags |= MGMT_DEV_FOUND_INITIATED_CONN; ev->flags = __cpu_to_le32(flags); /* We must ensure that the EIR Data fields are ordered and * unique. Keep it simple for now and avoid the problem by not * adding any BR/EDR data to the LE adv. */ if (conn->le_adv_data_len > 0) { skb_put_data(skb, conn->le_adv_data, conn->le_adv_data_len); eir_len = conn->le_adv_data_len; } else { if (name) eir_len += eir_skb_put_data(skb, EIR_NAME_COMPLETE, name, name_len); if (memcmp(conn->dev_class, "\0\0\0", sizeof(conn->dev_class))) eir_len += eir_skb_put_data(skb, EIR_CLASS_OF_DEV, conn->dev_class, sizeof(conn->dev_class)); } ev->eir_len = cpu_to_le16(eir_len); mgmt_event_skb(skb, NULL); } static void disconnect_rsp(struct mgmt_pending_cmd *cmd, void *data) { struct sock **sk = data; cmd->cmd_complete(cmd, 0); *sk = cmd->sk; sock_hold(*sk); mgmt_pending_remove(cmd); } static void unpair_device_rsp(struct mgmt_pending_cmd *cmd, void *data) { struct hci_dev *hdev = data; struct mgmt_cp_unpair_device *cp = cmd->param; device_unpaired(hdev, &cp->addr.bdaddr, cp->addr.type, cmd->sk); cmd->cmd_complete(cmd, 0); mgmt_pending_remove(cmd); } bool mgmt_powering_down(struct hci_dev *hdev) { struct mgmt_pending_cmd *cmd; struct mgmt_mode *cp; cmd = pending_find(MGMT_OP_SET_POWERED, hdev); if (!cmd) return false; cp = cmd->param; if (!cp->val) return true; return false; } void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 reason, bool mgmt_connected) { struct mgmt_ev_device_disconnected ev; struct sock *sk = NULL; if (!mgmt_connected) return; if (link_type != ACL_LINK && link_type != LE_LINK) return; mgmt_pending_foreach(MGMT_OP_DISCONNECT, hdev, disconnect_rsp, &sk); bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = link_to_bdaddr(link_type, addr_type); ev.reason = reason; /* Report disconnects due to suspend */ if (hdev->suspended) ev.reason = MGMT_DEV_DISCONN_LOCAL_HOST_SUSPEND; mgmt_event(MGMT_EV_DEVICE_DISCONNECTED, hdev, &ev, sizeof(ev), sk); if (sk) sock_put(sk); mgmt_pending_foreach(MGMT_OP_UNPAIR_DEVICE, hdev, unpair_device_rsp, hdev); } void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status) { u8 bdaddr_type = link_to_bdaddr(link_type, addr_type); struct mgmt_cp_disconnect *cp; struct mgmt_pending_cmd *cmd; mgmt_pending_foreach(MGMT_OP_UNPAIR_DEVICE, hdev, unpair_device_rsp, hdev); cmd = pending_find(MGMT_OP_DISCONNECT, hdev); if (!cmd) return; cp = cmd->param; if (bacmp(bdaddr, &cp->addr.bdaddr)) return; if (cp->addr.type != bdaddr_type) return; cmd->cmd_complete(cmd, mgmt_status(status)); mgmt_pending_remove(cmd); } void mgmt_connect_failed(struct hci_dev *hdev, struct hci_conn *conn, u8 status) { struct mgmt_ev_connect_failed ev; if (test_and_clear_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags)) { mgmt_device_disconnected(hdev, &conn->dst, conn->type, conn->dst_type, status, true); return; } bacpy(&ev.addr.bdaddr, &conn->dst); ev.addr.type = link_to_bdaddr(conn->type, conn->dst_type); ev.status = mgmt_status(status); mgmt_event(MGMT_EV_CONNECT_FAILED, hdev, &ev, sizeof(ev), NULL); } void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure) { struct mgmt_ev_pin_code_request ev; bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = BDADDR_BREDR; ev.secure = secure; mgmt_event(MGMT_EV_PIN_CODE_REQUEST, hdev, &ev, sizeof(ev), NULL); } void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 status) { struct mgmt_pending_cmd *cmd; cmd = pending_find(MGMT_OP_PIN_CODE_REPLY, hdev); if (!cmd) return; cmd->cmd_complete(cmd, mgmt_status(status)); mgmt_pending_remove(cmd); } void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 status) { struct mgmt_pending_cmd *cmd; cmd = pending_find(MGMT_OP_PIN_CODE_NEG_REPLY, hdev); if (!cmd) return; cmd->cmd_complete(cmd, mgmt_status(status)); mgmt_pending_remove(cmd); } int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u32 value, u8 confirm_hint) { struct mgmt_ev_user_confirm_request ev; bt_dev_dbg(hdev, "bdaddr %pMR", bdaddr); bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = link_to_bdaddr(link_type, addr_type); ev.confirm_hint = confirm_hint; ev.value = cpu_to_le32(value); return mgmt_event(MGMT_EV_USER_CONFIRM_REQUEST, hdev, &ev, sizeof(ev), NULL); } int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type) { struct mgmt_ev_user_passkey_request ev; bt_dev_dbg(hdev, "bdaddr %pMR", bdaddr); bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = link_to_bdaddr(link_type, addr_type); return mgmt_event(MGMT_EV_USER_PASSKEY_REQUEST, hdev, &ev, sizeof(ev), NULL); } static int user_pairing_resp_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status, u8 opcode) { struct mgmt_pending_cmd *cmd; cmd = pending_find(opcode, hdev); if (!cmd) return -ENOENT; cmd->cmd_complete(cmd, mgmt_status(status)); mgmt_pending_remove(cmd); return 0; } int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status) { return user_pairing_resp_complete(hdev, bdaddr, link_type, addr_type, status, MGMT_OP_USER_CONFIRM_REPLY); } int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status) { return user_pairing_resp_complete(hdev, bdaddr, link_type, addr_type, status, MGMT_OP_USER_CONFIRM_NEG_REPLY); } int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status) { return user_pairing_resp_complete(hdev, bdaddr, link_type, addr_type, status, MGMT_OP_USER_PASSKEY_REPLY); } int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 status) { return user_pairing_resp_complete(hdev, bdaddr, link_type, addr_type, status, MGMT_OP_USER_PASSKEY_NEG_REPLY); } int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u32 passkey, u8 entered) { struct mgmt_ev_passkey_notify ev; bt_dev_dbg(hdev, "bdaddr %pMR", bdaddr); bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = link_to_bdaddr(link_type, addr_type); ev.passkey = __cpu_to_le32(passkey); ev.entered = entered; return mgmt_event(MGMT_EV_PASSKEY_NOTIFY, hdev, &ev, sizeof(ev), NULL); } void mgmt_auth_failed(struct hci_conn *conn, u8 hci_status) { struct mgmt_ev_auth_failed ev; struct mgmt_pending_cmd *cmd; u8 status = mgmt_status(hci_status); bacpy(&ev.addr.bdaddr, &conn->dst); ev.addr.type = link_to_bdaddr(conn->type, conn->dst_type); ev.status = status; cmd = find_pairing(conn); mgmt_event(MGMT_EV_AUTH_FAILED, conn->hdev, &ev, sizeof(ev), cmd ? cmd->sk : NULL); if (cmd) { cmd->cmd_complete(cmd, status); mgmt_pending_remove(cmd); } } void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status) { struct cmd_lookup match = { NULL, hdev }; bool changed; if (status) { u8 mgmt_err = mgmt_status(status); mgmt_pending_foreach(MGMT_OP_SET_LINK_SECURITY, hdev, cmd_status_rsp, &mgmt_err); return; } if (test_bit(HCI_AUTH, &hdev->flags)) changed = !hci_dev_test_and_set_flag(hdev, HCI_LINK_SECURITY); else changed = hci_dev_test_and_clear_flag(hdev, HCI_LINK_SECURITY); mgmt_pending_foreach(MGMT_OP_SET_LINK_SECURITY, hdev, settings_rsp, &match); if (changed) new_settings(hdev, match.sk); if (match.sk) sock_put(match.sk); } static void sk_lookup(struct mgmt_pending_cmd *cmd, void *data) { struct cmd_lookup *match = data; if (match->sk == NULL) { match->sk = cmd->sk; sock_hold(match->sk); } } void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class, u8 status) { struct cmd_lookup match = { NULL, hdev, mgmt_status(status) }; mgmt_pending_foreach(MGMT_OP_SET_DEV_CLASS, hdev, sk_lookup, &match); mgmt_pending_foreach(MGMT_OP_ADD_UUID, hdev, sk_lookup, &match); mgmt_pending_foreach(MGMT_OP_REMOVE_UUID, hdev, sk_lookup, &match); if (!status) { mgmt_limited_event(MGMT_EV_CLASS_OF_DEV_CHANGED, hdev, dev_class, 3, HCI_MGMT_DEV_CLASS_EVENTS, NULL); ext_info_changed(hdev, NULL); } if (match.sk) sock_put(match.sk); } void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status) { struct mgmt_cp_set_local_name ev; struct mgmt_pending_cmd *cmd; if (status) return; memset(&ev, 0, sizeof(ev)); memcpy(ev.name, name, HCI_MAX_NAME_LENGTH); memcpy(ev.short_name, hdev->short_name, HCI_MAX_SHORT_NAME_LENGTH); cmd = pending_find(MGMT_OP_SET_LOCAL_NAME, hdev); if (!cmd) { memcpy(hdev->dev_name, name, sizeof(hdev->dev_name)); /* If this is a HCI command related to powering on the * HCI dev don't send any mgmt signals. */ if (pending_find(MGMT_OP_SET_POWERED, hdev)) return; } mgmt_limited_event(MGMT_EV_LOCAL_NAME_CHANGED, hdev, &ev, sizeof(ev), HCI_MGMT_LOCAL_NAME_EVENTS, cmd ? cmd->sk : NULL); ext_info_changed(hdev, cmd ? cmd->sk : NULL); } static inline bool has_uuid(u8 *uuid, u16 uuid_count, u8 (*uuids)[16]) { int i; for (i = 0; i < uuid_count; i++) { if (!memcmp(uuid, uuids[i], 16)) return true; } return false; } static bool eir_has_uuids(u8 *eir, u16 eir_len, u16 uuid_count, u8 (*uuids)[16]) { u16 parsed = 0; while (parsed < eir_len) { u8 field_len = eir[0]; u8 uuid[16]; int i; if (field_len == 0) break; if (eir_len - parsed < field_len + 1) break; switch (eir[1]) { case EIR_UUID16_ALL: case EIR_UUID16_SOME: for (i = 0; i + 3 <= field_len; i += 2) { memcpy(uuid, bluetooth_base_uuid, 16); uuid[13] = eir[i + 3]; uuid[12] = eir[i + 2]; if (has_uuid(uuid, uuid_count, uuids)) return true; } break; case EIR_UUID32_ALL: case EIR_UUID32_SOME: for (i = 0; i + 5 <= field_len; i += 4) { memcpy(uuid, bluetooth_base_uuid, 16); uuid[15] = eir[i + 5]; uuid[14] = eir[i + 4]; uuid[13] = eir[i + 3]; uuid[12] = eir[i + 2]; if (has_uuid(uuid, uuid_count, uuids)) return true; } break; case EIR_UUID128_ALL: case EIR_UUID128_SOME: for (i = 0; i + 17 <= field_len; i += 16) { memcpy(uuid, eir + i + 2, 16); if (has_uuid(uuid, uuid_count, uuids)) return true; } break; } parsed += field_len + 1; eir += field_len + 1; } return false; } static void restart_le_scan(struct hci_dev *hdev) { /* If controller is not scanning we are done. */ if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) return; if (time_after(jiffies + DISCOV_LE_RESTART_DELAY, hdev->discovery.scan_start + hdev->discovery.scan_duration)) return; queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_restart, DISCOV_LE_RESTART_DELAY); } static bool is_filter_match(struct hci_dev *hdev, s8 rssi, u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len) { /* If a RSSI threshold has been specified, and * HCI_QUIRK_STRICT_DUPLICATE_FILTER is not set, then all results with * a RSSI smaller than the RSSI threshold will be dropped. If the quirk * is set, let it through for further processing, as we might need to * restart the scan. * * For BR/EDR devices (pre 1.2) providing no RSSI during inquiry, * the results are also dropped. */ if (hdev->discovery.rssi != HCI_RSSI_INVALID && (rssi == HCI_RSSI_INVALID || (rssi < hdev->discovery.rssi && !test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks)))) return false; if (hdev->discovery.uuid_count != 0) { /* If a list of UUIDs is provided in filter, results with no * matching UUID should be dropped. */ if (!eir_has_uuids(eir, eir_len, hdev->discovery.uuid_count, hdev->discovery.uuids) && !eir_has_uuids(scan_rsp, scan_rsp_len, hdev->discovery.uuid_count, hdev->discovery.uuids)) return false; } /* If duplicate filtering does not report RSSI changes, then restart * scanning to ensure updated result with updated RSSI values. */ if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks)) { restart_le_scan(hdev); /* Validate RSSI value against the RSSI threshold once more. */ if (hdev->discovery.rssi != HCI_RSSI_INVALID && rssi < hdev->discovery.rssi) return false; } return true; } void mgmt_adv_monitor_device_lost(struct hci_dev *hdev, u16 handle, bdaddr_t *bdaddr, u8 addr_type) { struct mgmt_ev_adv_monitor_device_lost ev; ev.monitor_handle = cpu_to_le16(handle); bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = addr_type; mgmt_event(MGMT_EV_ADV_MONITOR_DEVICE_LOST, hdev, &ev, sizeof(ev), NULL); } static void mgmt_send_adv_monitor_device_found(struct hci_dev *hdev, struct sk_buff *skb, struct sock *skip_sk, u16 handle) { struct sk_buff *advmon_skb; size_t advmon_skb_len; __le16 *monitor_handle; if (!skb) return; advmon_skb_len = (sizeof(struct mgmt_ev_adv_monitor_device_found) - sizeof(struct mgmt_ev_device_found)) + skb->len; advmon_skb = mgmt_alloc_skb(hdev, MGMT_EV_ADV_MONITOR_DEVICE_FOUND, advmon_skb_len); if (!advmon_skb) return; /* ADV_MONITOR_DEVICE_FOUND is similar to DEVICE_FOUND event except * that it also has 'monitor_handle'. Make a copy of DEVICE_FOUND and * store monitor_handle of the matched monitor. */ monitor_handle = skb_put(advmon_skb, sizeof(*monitor_handle)); *monitor_handle = cpu_to_le16(handle); skb_put_data(advmon_skb, skb->data, skb->len); mgmt_event_skb(advmon_skb, skip_sk); } static void mgmt_adv_monitor_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, bool report_device, struct sk_buff *skb, struct sock *skip_sk) { struct monitored_device *dev, *tmp; bool matched = false; bool notified = false; /* We have received the Advertisement Report because: * 1. the kernel has initiated active discovery * 2. if not, we have pend_le_reports > 0 in which case we are doing * passive scanning * 3. if none of the above is true, we have one or more active * Advertisement Monitor * * For case 1 and 2, report all advertisements via MGMT_EV_DEVICE_FOUND * and report ONLY one advertisement per device for the matched Monitor * via MGMT_EV_ADV_MONITOR_DEVICE_FOUND event. * * For case 3, since we are not active scanning and all advertisements * received are due to a matched Advertisement Monitor, report all * advertisements ONLY via MGMT_EV_ADV_MONITOR_DEVICE_FOUND event. */ if (report_device && !hdev->advmon_pend_notify) { mgmt_event_skb(skb, skip_sk); return; } hdev->advmon_pend_notify = false; list_for_each_entry_safe(dev, tmp, &hdev->monitored_devices, list) { if (!bacmp(&dev->bdaddr, bdaddr)) { matched = true; if (!dev->notified) { mgmt_send_adv_monitor_device_found(hdev, skb, skip_sk, dev->handle); notified = true; dev->notified = true; } } if (!dev->notified) hdev->advmon_pend_notify = true; } if (!report_device && ((matched && !notified) || !msft_monitor_supported(hdev))) { /* Handle 0 indicates that we are not active scanning and this * is a subsequent advertisement report for an already matched * Advertisement Monitor or the controller offloading support * is not available. */ mgmt_send_adv_monitor_device_found(hdev, skb, skip_sk, 0); } if (report_device) mgmt_event_skb(skb, skip_sk); else kfree_skb(skb); } static void mesh_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, s8 rssi, u32 flags, u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len, u64 instant) { struct sk_buff *skb; struct mgmt_ev_mesh_device_found *ev; int i, j; if (!hdev->mesh_ad_types[0]) goto accepted; /* Scan for requested AD types */ if (eir_len > 0) { for (i = 0; i + 1 < eir_len; i += eir[i] + 1) { for (j = 0; j < sizeof(hdev->mesh_ad_types); j++) { if (!hdev->mesh_ad_types[j]) break; if (hdev->mesh_ad_types[j] == eir[i + 1]) goto accepted; } } } if (scan_rsp_len > 0) { for (i = 0; i + 1 < scan_rsp_len; i += scan_rsp[i] + 1) { for (j = 0; j < sizeof(hdev->mesh_ad_types); j++) { if (!hdev->mesh_ad_types[j]) break; if (hdev->mesh_ad_types[j] == scan_rsp[i + 1]) goto accepted; } } } return; accepted: skb = mgmt_alloc_skb(hdev, MGMT_EV_MESH_DEVICE_FOUND, sizeof(*ev) + eir_len + scan_rsp_len); if (!skb) return; ev = skb_put(skb, sizeof(*ev)); bacpy(&ev->addr.bdaddr, bdaddr); ev->addr.type = link_to_bdaddr(LE_LINK, addr_type); ev->rssi = rssi; ev->flags = cpu_to_le32(flags); ev->instant = cpu_to_le64(instant); if (eir_len > 0) /* Copy EIR or advertising data into event */ skb_put_data(skb, eir, eir_len); if (scan_rsp_len > 0) /* Append scan response data to event */ skb_put_data(skb, scan_rsp, scan_rsp_len); ev->eir_len = cpu_to_le16(eir_len + scan_rsp_len); mgmt_event_skb(skb, NULL); } void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, u8 *dev_class, s8 rssi, u32 flags, u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len, u64 instant) { struct sk_buff *skb; struct mgmt_ev_device_found *ev; bool report_device = hci_discovery_active(hdev); if (hci_dev_test_flag(hdev, HCI_MESH) && link_type == LE_LINK) mesh_device_found(hdev, bdaddr, addr_type, rssi, flags, eir, eir_len, scan_rsp, scan_rsp_len, instant); /* Don't send events for a non-kernel initiated discovery. With * LE one exception is if we have pend_le_reports > 0 in which * case we're doing passive scanning and want these events. */ if (!hci_discovery_active(hdev)) { if (link_type == ACL_LINK) return; if (link_type == LE_LINK && !list_empty(&hdev->pend_le_reports)) report_device = true; else if (!hci_is_adv_monitoring(hdev)) return; } if (hdev->discovery.result_filtering) { /* We are using service discovery */ if (!is_filter_match(hdev, rssi, eir, eir_len, scan_rsp, scan_rsp_len)) return; } if (hdev->discovery.limited) { /* Check for limited discoverable bit */ if (dev_class) { if (!(dev_class[1] & 0x20)) return; } else { u8 *flags = eir_get_data(eir, eir_len, EIR_FLAGS, NULL); if (!flags || !(flags[0] & LE_AD_LIMITED)) return; } } /* Allocate skb. The 5 extra bytes are for the potential CoD field */ skb = mgmt_alloc_skb(hdev, MGMT_EV_DEVICE_FOUND, sizeof(*ev) + eir_len + scan_rsp_len + 5); if (!skb) return; ev = skb_put(skb, sizeof(*ev)); /* In case of device discovery with BR/EDR devices (pre 1.2), the * RSSI value was reported as 0 when not available. This behavior * is kept when using device discovery. This is required for full * backwards compatibility with the API. * * However when using service discovery, the value 127 will be * returned when the RSSI is not available. */ if (rssi == HCI_RSSI_INVALID && !hdev->discovery.report_invalid_rssi && link_type == ACL_LINK) rssi = 0; bacpy(&ev->addr.bdaddr, bdaddr); ev->addr.type = link_to_bdaddr(link_type, addr_type); ev->rssi = rssi; ev->flags = cpu_to_le32(flags); if (eir_len > 0) /* Copy EIR or advertising data into event */ skb_put_data(skb, eir, eir_len); if (dev_class && !eir_get_data(eir, eir_len, EIR_CLASS_OF_DEV, NULL)) { u8 eir_cod[5]; eir_len += eir_append_data(eir_cod, 0, EIR_CLASS_OF_DEV, dev_class, 3); skb_put_data(skb, eir_cod, sizeof(eir_cod)); } if (scan_rsp_len > 0) /* Append scan response data to event */ skb_put_data(skb, scan_rsp, scan_rsp_len); ev->eir_len = cpu_to_le16(eir_len + scan_rsp_len); mgmt_adv_monitor_device_found(hdev, bdaddr, report_device, skb, NULL); } void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type, u8 addr_type, s8 rssi, u8 *name, u8 name_len) { struct sk_buff *skb; struct mgmt_ev_device_found *ev; u16 eir_len = 0; u32 flags = 0; skb = mgmt_alloc_skb(hdev, MGMT_EV_DEVICE_FOUND, sizeof(*ev) + (name ? eir_precalc_len(name_len) : 0)); if (!skb) return; ev = skb_put(skb, sizeof(*ev)); bacpy(&ev->addr.bdaddr, bdaddr); ev->addr.type = link_to_bdaddr(link_type, addr_type); ev->rssi = rssi; if (name) eir_len += eir_skb_put_data(skb, EIR_NAME_COMPLETE, name, name_len); else flags = MGMT_DEV_FOUND_NAME_REQUEST_FAILED; ev->eir_len = cpu_to_le16(eir_len); ev->flags = cpu_to_le32(flags); mgmt_event_skb(skb, NULL); } void mgmt_discovering(struct hci_dev *hdev, u8 discovering) { struct mgmt_ev_discovering ev; bt_dev_dbg(hdev, "discovering %u", discovering); memset(&ev, 0, sizeof(ev)); ev.type = hdev->discovery.type; ev.discovering = discovering; mgmt_event(MGMT_EV_DISCOVERING, hdev, &ev, sizeof(ev), NULL); } void mgmt_suspending(struct hci_dev *hdev, u8 state) { struct mgmt_ev_controller_suspend ev; ev.suspend_state = state; mgmt_event(MGMT_EV_CONTROLLER_SUSPEND, hdev, &ev, sizeof(ev), NULL); } void mgmt_resuming(struct hci_dev *hdev, u8 reason, bdaddr_t *bdaddr, u8 addr_type) { struct mgmt_ev_controller_resume ev; ev.wake_reason = reason; if (bdaddr) { bacpy(&ev.addr.bdaddr, bdaddr); ev.addr.type = addr_type; } else { memset(&ev.addr, 0, sizeof(ev.addr)); } mgmt_event(MGMT_EV_CONTROLLER_RESUME, hdev, &ev, sizeof(ev), NULL); } static struct hci_mgmt_chan chan = { .channel = HCI_CHANNEL_CONTROL, .handler_count = ARRAY_SIZE(mgmt_handlers), .handlers = mgmt_handlers, .hdev_init = mgmt_init_hdev, }; int mgmt_init(void) { return hci_mgmt_chan_register(&chan); } void mgmt_exit(void) { hci_mgmt_chan_unregister(&chan); } void mgmt_cleanup(struct sock *sk) { struct mgmt_mesh_tx *mesh_tx; struct hci_dev *hdev; read_lock(&hci_dev_list_lock); list_for_each_entry(hdev, &hci_dev_list, list) { do { mesh_tx = mgmt_mesh_next(hdev, sk); if (mesh_tx) mesh_send_complete(hdev, mesh_tx, true); } while (mesh_tx); } read_unlock(&hci_dev_list_lock); }
17 17 9 2 7 5 20 1 18 1 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 // SPDX-License-Identifier: GPL-2.0-or-later /** -*- linux-c -*- *********************************************************** * Linux PPP over X/Ethernet (PPPoX/PPPoE) Sockets * * PPPoX --- Generic PPP encapsulation socket family * PPPoE --- PPP over Ethernet (RFC 2516) * * Version: 0.5.2 * * Author: Michal Ostrowski <mostrows@speakeasy.net> * * 051000 : Initialization cleanup * * License: */ #include <linux/string.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/compat.h> #include <linux/errno.h> #include <linux/netdevice.h> #include <linux/net.h> #include <linux/init.h> #include <linux/if_pppox.h> #include <linux/ppp_defs.h> #include <linux/ppp-ioctl.h> #include <linux/ppp_channel.h> #include <linux/kmod.h> #include <net/sock.h> #include <linux/uaccess.h> static const struct pppox_proto *pppox_protos[PX_MAX_PROTO + 1]; int register_pppox_proto(int proto_num, const struct pppox_proto *pp) { if (proto_num < 0 || proto_num > PX_MAX_PROTO) return -EINVAL; if (pppox_protos[proto_num]) return -EALREADY; pppox_protos[proto_num] = pp; return 0; } void unregister_pppox_proto(int proto_num) { if (proto_num >= 0 && proto_num <= PX_MAX_PROTO) pppox_protos[proto_num] = NULL; } void pppox_unbind_sock(struct sock *sk) { /* Clear connection to ppp device, if attached. */ if (sk->sk_state & (PPPOX_BOUND | PPPOX_CONNECTED)) { ppp_unregister_channel(&pppox_sk(sk)->chan); sk->sk_state = PPPOX_DEAD; } } EXPORT_SYMBOL(register_pppox_proto); EXPORT_SYMBOL(unregister_pppox_proto); EXPORT_SYMBOL(pppox_unbind_sock); int pppox_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk = sock->sk; struct pppox_sock *po = pppox_sk(sk); int rc; lock_sock(sk); switch (cmd) { case PPPIOCGCHAN: { int index; rc = -ENOTCONN; if (!(sk->sk_state & PPPOX_CONNECTED)) break; rc = -EINVAL; index = ppp_channel_index(&po->chan); if (put_user(index , (int __user *) arg)) break; rc = 0; sk->sk_state |= PPPOX_BOUND; break; } default: rc = pppox_protos[sk->sk_protocol]->ioctl ? pppox_protos[sk->sk_protocol]->ioctl(sock, cmd, arg) : -ENOTTY; } release_sock(sk); return rc; } EXPORT_SYMBOL(pppox_ioctl); #ifdef CONFIG_COMPAT int pppox_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { if (cmd == PPPOEIOCSFWD32) cmd = PPPOEIOCSFWD; return pppox_ioctl(sock, cmd, (unsigned long)compat_ptr(arg)); } EXPORT_SYMBOL(pppox_compat_ioctl); #endif static int pppox_create(struct net *net, struct socket *sock, int protocol, int kern) { int rc = -EPROTOTYPE; if (protocol < 0 || protocol > PX_MAX_PROTO) goto out; rc = -EPROTONOSUPPORT; if (!pppox_protos[protocol]) request_module("net-pf-%d-proto-%d", PF_PPPOX, protocol); if (!pppox_protos[protocol] || !try_module_get(pppox_protos[protocol]->owner)) goto out; rc = pppox_protos[protocol]->create(net, sock, kern); module_put(pppox_protos[protocol]->owner); out: return rc; } static const struct net_proto_family pppox_proto_family = { .family = PF_PPPOX, .create = pppox_create, .owner = THIS_MODULE, }; static int __init pppox_init(void) { return sock_register(&pppox_proto_family); } static void __exit pppox_exit(void) { sock_unregister(PF_PPPOX); } module_init(pppox_init); module_exit(pppox_exit); MODULE_AUTHOR("Michal Ostrowski <mostrows@speakeasy.net>"); MODULE_DESCRIPTION("PPP over Ethernet driver (generic socket layer)"); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_PPPOX);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _FUTEX_H #define _FUTEX_H #include <linux/futex.h> #include <linux/rtmutex.h> #include <linux/sched/wake_q.h> #ifdef CONFIG_PREEMPT_RT #include <linux/rcuwait.h> #endif #include <asm/futex.h> /* * Futex flags used to encode options to functions and preserve them across * restarts. */ #ifdef CONFIG_MMU # define FLAGS_SHARED 0x01 #else /* * NOMMU does not have per process address space. Let the compiler optimize * code away. */ # define FLAGS_SHARED 0x00 #endif #define FLAGS_CLOCKRT 0x02 #define FLAGS_HAS_TIMEOUT 0x04 #ifdef CONFIG_FAIL_FUTEX extern bool should_fail_futex(bool fshared); #else static inline bool should_fail_futex(bool fshared) { return false; } #endif /* * Hash buckets are shared by all the futex_keys that hash to the same * location. Each key may have multiple futex_q structures, one for each task * waiting on a futex. */ struct futex_hash_bucket { atomic_t waiters; spinlock_t lock; struct plist_head chain; } ____cacheline_aligned_in_smp; /* * Priority Inheritance state: */ struct futex_pi_state { /* * list of 'owned' pi_state instances - these have to be * cleaned up in do_exit() if the task exits prematurely: */ struct list_head list; /* * The PI object: */ struct rt_mutex_base pi_mutex; struct task_struct *owner; refcount_t refcount; union futex_key key; } __randomize_layout; /** * struct futex_q - The hashed futex queue entry, one per waiting task * @list: priority-sorted list of tasks waiting on this futex * @task: the task waiting on the futex * @lock_ptr: the hash bucket lock * @key: the key the futex is hashed on * @pi_state: optional priority inheritance state * @rt_waiter: rt_waiter storage for use with requeue_pi * @requeue_pi_key: the requeue_pi target futex key * @bitset: bitset for the optional bitmasked wakeup * @requeue_state: State field for futex_requeue_pi() * @requeue_wait: RCU wait for futex_requeue_pi() (RT only) * * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so * we can wake only the relevant ones (hashed queues may be shared). * * A futex_q has a woken state, just like tasks have TASK_RUNNING. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. * The order of wakeup is always to make the first condition true, then * the second. * * PI futexes are typically woken before they are removed from the hash list via * the rt_mutex code. See futex_unqueue_pi(). */ struct futex_q { struct plist_node list; struct task_struct *task; spinlock_t *lock_ptr; union futex_key key; struct futex_pi_state *pi_state; struct rt_mutex_waiter *rt_waiter; union futex_key *requeue_pi_key; u32 bitset; atomic_t requeue_state; #ifdef CONFIG_PREEMPT_RT struct rcuwait requeue_wait; #endif } __randomize_layout; extern const struct futex_q futex_q_init; enum futex_access { FUTEX_READ, FUTEX_WRITE }; extern int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key, enum futex_access rw); extern struct hrtimer_sleeper * futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout, int flags, u64 range_ns); extern struct futex_hash_bucket *futex_hash(union futex_key *key); /** * futex_match - Check whether two futex keys are equal * @key1: Pointer to key1 * @key2: Pointer to key2 * * Return 1 if two futex_keys are equal, 0 otherwise. */ static inline int futex_match(union futex_key *key1, union futex_key *key2) { return (key1 && key2 && key1->both.word == key2->both.word && key1->both.ptr == key2->both.ptr && key1->both.offset == key2->both.offset); } extern int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags, struct futex_q *q, struct futex_hash_bucket **hb); extern void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q, struct hrtimer_sleeper *timeout); extern void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q); extern int fault_in_user_writeable(u32 __user *uaddr); extern int futex_cmpxchg_value_locked(u32 *curval, u32 __user *uaddr, u32 uval, u32 newval); extern int futex_get_value_locked(u32 *dest, u32 __user *from); extern struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key); extern void __futex_unqueue(struct futex_q *q); extern void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb); extern int futex_unqueue(struct futex_q *q); /** * futex_queue() - Enqueue the futex_q on the futex_hash_bucket * @q: The futex_q to enqueue * @hb: The destination hash bucket * * The hb->lock must be held by the caller, and is released here. A call to * futex_queue() is typically paired with exactly one call to futex_unqueue(). The * exceptions involve the PI related operations, which may use futex_unqueue_pi() * or nothing if the unqueue is done as part of the wake process and the unqueue * state is implicit in the state of woken task (see futex_wait_requeue_pi() for * an example). */ static inline void futex_queue(struct futex_q *q, struct futex_hash_bucket *hb) __releases(&hb->lock) { __futex_queue(q, hb); spin_unlock(&hb->lock); } extern void futex_unqueue_pi(struct futex_q *q); extern void wait_for_owner_exiting(int ret, struct task_struct *exiting); /* * Reflects a new waiter being added to the waitqueue. */ static inline void futex_hb_waiters_inc(struct futex_hash_bucket *hb) { #ifdef CONFIG_SMP atomic_inc(&hb->waiters); /* * Full barrier (A), see the ordering comment above. */ smp_mb__after_atomic(); #endif } /* * Reflects a waiter being removed from the waitqueue by wakeup * paths. */ static inline void futex_hb_waiters_dec(struct futex_hash_bucket *hb) { #ifdef CONFIG_SMP atomic_dec(&hb->waiters); #endif } static inline int futex_hb_waiters_pending(struct futex_hash_bucket *hb) { #ifdef CONFIG_SMP /* * Full barrier (B), see the ordering comment above. */ smp_mb(); return atomic_read(&hb->waiters); #else return 1; #endif } extern struct futex_hash_bucket *futex_q_lock(struct futex_q *q); extern void futex_q_unlock(struct futex_hash_bucket *hb); extern int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb, union futex_key *key, struct futex_pi_state **ps, struct task_struct *task, struct task_struct **exiting, int set_waiters); extern int refill_pi_state_cache(void); extern void get_pi_state(struct futex_pi_state *pi_state); extern void put_pi_state(struct futex_pi_state *pi_state); extern int fixup_pi_owner(u32 __user *uaddr, struct futex_q *q, int locked); /* * Express the locking dependencies for lockdep: */ static inline void double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) { if (hb1 > hb2) swap(hb1, hb2); spin_lock(&hb1->lock); if (hb1 != hb2) spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING); } static inline void double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) { spin_unlock(&hb1->lock); if (hb1 != hb2) spin_unlock(&hb2->lock); } /* syscalls */ extern int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset, u32 __user *uaddr2); extern int futex_requeue(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, int nr_wake, int nr_requeue, u32 *cmpval, int requeue_pi); extern int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset); /** * struct futex_vector - Auxiliary struct for futex_waitv() * @w: Userspace provided data * @q: Kernel side data * * Struct used to build an array with all data need for futex_waitv() */ struct futex_vector { struct futex_waitv w; struct futex_q q; }; extern int futex_wait_multiple(struct futex_vector *vs, unsigned int count, struct hrtimer_sleeper *to); extern int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset); extern int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, int nr_wake, int nr_wake2, int op); extern int futex_unlock_pi(u32 __user *uaddr, unsigned int flags); extern int futex_lock_pi(u32 __user *uaddr, unsigned int flags, ktime_t *time, int trylock); #endif /* _FUTEX_H */
150 721 61 253 9120 79 150 628 628 112 420 452 267 32 599 627 628 628 281 511 626 336 336 281 61 5449 5450 591 62 427 45 45 5 5 5310 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_MM_H #define _LINUX_MM_H #include <linux/errno.h> #include <linux/mmdebug.h> #include <linux/gfp.h> #include <linux/bug.h> #include <linux/list.h> #include <linux/mmzone.h> #include <linux/rbtree.h> #include <linux/atomic.h> #include <linux/debug_locks.h> #include <linux/mm_types.h> #include <linux/mmap_lock.h> #include <linux/range.h> #include <linux/pfn.h> #include <linux/percpu-refcount.h> #include <linux/bit_spinlock.h> #include <linux/shrinker.h> #include <linux/resource.h> #include <linux/page_ext.h> #include <linux/err.h> #include <linux/page-flags.h> #include <linux/page_ref.h> #include <linux/overflow.h> #include <linux/sizes.h> #include <linux/sched.h> #include <linux/pgtable.h> #include <linux/kasan.h> #include <linux/memremap.h> struct mempolicy; struct anon_vma; struct anon_vma_chain; struct user_struct; struct pt_regs; extern int sysctl_page_lock_unfairness; void init_mm_internals(void); #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ extern unsigned long max_mapnr; static inline void set_max_mapnr(unsigned long limit) { max_mapnr = limit; } #else static inline void set_max_mapnr(unsigned long limit) { } #endif extern atomic_long_t _totalram_pages; static inline unsigned long totalram_pages(void) { return (unsigned long)atomic_long_read(&_totalram_pages); } static inline void totalram_pages_inc(void) { atomic_long_inc(&_totalram_pages); } static inline void totalram_pages_dec(void) { atomic_long_dec(&_totalram_pages); } static inline void totalram_pages_add(long count) { atomic_long_add(count, &_totalram_pages); } extern void * high_memory; extern int page_cluster; #ifdef CONFIG_SYSCTL extern int sysctl_legacy_va_layout; #else #define sysctl_legacy_va_layout 0 #endif #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS extern const int mmap_rnd_bits_min; extern const int mmap_rnd_bits_max; extern int mmap_rnd_bits __read_mostly; #endif #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS extern const int mmap_rnd_compat_bits_min; extern const int mmap_rnd_compat_bits_max; extern int mmap_rnd_compat_bits __read_mostly; #endif #ifndef PHYSMEM_END # define PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) #endif #include <asm/page.h> #include <asm/processor.h> /* * Architectures that support memory tagging (assigning tags to memory regions, * embedding these tags into addresses that point to these memory regions, and * checking that the memory and the pointer tags match on memory accesses) * redefine this macro to strip tags from pointers. * It's defined as noop for architectures that don't support memory tagging. */ #ifndef untagged_addr #define untagged_addr(addr) (addr) #endif #ifndef __pa_symbol #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) #endif #ifndef page_to_virt #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) #endif #ifndef lm_alias #define lm_alias(x) __va(__pa_symbol(x)) #endif /* * To prevent common memory management code establishing * a zero page mapping on a read fault. * This macro should be defined within <asm/pgtable.h>. * s390 does this to prevent multiplexing of hardware bits * related to the physical page in case of virtualization. */ #ifndef mm_forbids_zeropage #define mm_forbids_zeropage(X) (0) #endif /* * On some architectures it is expensive to call memset() for small sizes. * If an architecture decides to implement their own version of * mm_zero_struct_page they should wrap the defines below in a #ifndef and * define their own version of this macro in <asm/pgtable.h> */ #if BITS_PER_LONG == 64 /* This function must be updated when the size of struct page grows above 96 * or reduces below 56. The idea that compiler optimizes out switch() * statement, and only leaves move/store instructions. Also the compiler can * combine write statements if they are both assignments and can be reordered, * this can result in several of the writes here being dropped. */ #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) static inline void __mm_zero_struct_page(struct page *page) { unsigned long *_pp = (void *)page; /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ BUILD_BUG_ON(sizeof(struct page) & 7); BUILD_BUG_ON(sizeof(struct page) < 56); BUILD_BUG_ON(sizeof(struct page) > 96); switch (sizeof(struct page)) { case 96: _pp[11] = 0; fallthrough; case 88: _pp[10] = 0; fallthrough; case 80: _pp[9] = 0; fallthrough; case 72: _pp[8] = 0; fallthrough; case 64: _pp[7] = 0; fallthrough; case 56: _pp[6] = 0; _pp[5] = 0; _pp[4] = 0; _pp[3] = 0; _pp[2] = 0; _pp[1] = 0; _pp[0] = 0; } } #else #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) #endif /* * Default maximum number of active map areas, this limits the number of vmas * per mm struct. Users can overwrite this number by sysctl but there is a * problem. * * When a program's coredump is generated as ELF format, a section is created * per a vma. In ELF, the number of sections is represented in unsigned short. * This means the number of sections should be smaller than 65535 at coredump. * Because the kernel adds some informative sections to a image of program at * generating coredump, we need some margin. The number of extra sections is * 1-3 now and depends on arch. We use "5" as safe margin, here. * * ELF extended numbering allows more than 65535 sections, so 16-bit bound is * not a hard limit any more. Although some userspace tools can be surprised by * that. */ #define MAPCOUNT_ELF_CORE_MARGIN (5) #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) extern int sysctl_max_map_count; extern unsigned long sysctl_user_reserve_kbytes; extern unsigned long sysctl_admin_reserve_kbytes; extern int sysctl_overcommit_memory; extern int sysctl_overcommit_ratio; extern unsigned long sysctl_overcommit_kbytes; int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, loff_t *); int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, loff_t *); int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, loff_t *); #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) #else #define nth_page(page,n) ((page) + (n)) #define folio_page_idx(folio, p) ((p) - &(folio)->page) #endif /* to align the pointer to the (next) page boundary */ #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) /* to align the pointer to the (prev) page boundary */ #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) static inline struct folio *lru_to_folio(struct list_head *head) { return list_entry((head)->prev, struct folio, lru); } void setup_initial_init_mm(void *start_code, void *end_code, void *end_data, void *brk); /* * Linux kernel virtual memory manager primitives. * The idea being to have a "virtual" mm in the same way * we have a virtual fs - giving a cleaner interface to the * mm details, and allowing different kinds of memory mappings * (from shared memory to executable loading to arbitrary * mmap() functions). */ struct vm_area_struct *vm_area_alloc(struct mm_struct *); struct vm_area_struct *vm_area_dup(struct vm_area_struct *); void vm_area_free(struct vm_area_struct *); #ifndef CONFIG_MMU extern struct rb_root nommu_region_tree; extern struct rw_semaphore nommu_region_sem; extern unsigned int kobjsize(const void *objp); #endif /* * vm_flags in vm_area_struct, see mm_types.h. * When changing, update also include/trace/events/mmflags.h */ #define VM_NONE 0x00000000 #define VM_READ 0x00000001 /* currently active flags */ #define VM_WRITE 0x00000002 #define VM_EXEC 0x00000004 #define VM_SHARED 0x00000008 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ #define VM_MAYWRITE 0x00000020 #define VM_MAYEXEC 0x00000040 #define VM_MAYSHARE 0x00000080 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ #define VM_LOCKED 0x00002000 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ /* Used by sys_madvise() */ #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ #define VM_SYNC 0x00800000 /* Synchronous page faults */ #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ #ifdef CONFIG_MEM_SOFT_DIRTY # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ #else # define VM_SOFTDIRTY 0 #endif #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ #ifdef CONFIG_ARCH_HAS_PKEYS # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 #ifdef CONFIG_PPC # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 #else # define VM_PKEY_BIT4 0 #endif #endif /* CONFIG_ARCH_HAS_PKEYS */ #if defined(CONFIG_X86) # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ #elif defined(CONFIG_PPC) # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ #elif defined(CONFIG_PARISC) # define VM_GROWSUP VM_ARCH_1 #elif defined(CONFIG_IA64) # define VM_GROWSUP VM_ARCH_1 #elif defined(CONFIG_SPARC64) # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ # define VM_ARCH_CLEAR VM_SPARC_ADI #elif defined(CONFIG_ARM64) # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ # define VM_ARCH_CLEAR VM_ARM64_BTI #elif !defined(CONFIG_MMU) # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ #endif #if defined(CONFIG_ARM64_MTE) # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ #else # define VM_MTE VM_NONE # define VM_MTE_ALLOWED VM_NONE #endif #ifndef VM_GROWSUP # define VM_GROWSUP VM_NONE #endif #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR # define VM_UFFD_MINOR_BIT 37 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ # define VM_UFFD_MINOR VM_NONE #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ /* Bits set in the VMA until the stack is in its final location */ #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) /* Common data flag combinations */ #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ VM_MAYWRITE | VM_MAYEXEC) #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC #endif #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS #endif #ifdef CONFIG_STACK_GROWSUP #define VM_STACK VM_GROWSUP #define VM_STACK_EARLY VM_GROWSDOWN #else #define VM_STACK VM_GROWSDOWN #define VM_STACK_EARLY 0 #endif #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) /* VMA basic access permission flags */ #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) /* * Special vmas that are non-mergable, non-mlock()able. */ #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) /* This mask prevents VMA from being scanned with khugepaged */ #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) /* This mask defines which mm->def_flags a process can inherit its parent */ #define VM_INIT_DEF_MASK VM_NOHUGEPAGE /* This mask is used to clear all the VMA flags used by mlock */ #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) /* Arch-specific flags to clear when updating VM flags on protection change */ #ifndef VM_ARCH_CLEAR # define VM_ARCH_CLEAR VM_NONE #endif #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) /* * mapping from the currently active vm_flags protection bits (the * low four bits) to a page protection mask.. */ /* * The default fault flags that should be used by most of the * arch-specific page fault handlers. */ #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ FAULT_FLAG_KILLABLE | \ FAULT_FLAG_INTERRUPTIBLE) /** * fault_flag_allow_retry_first - check ALLOW_RETRY the first time * @flags: Fault flags. * * This is mostly used for places where we want to try to avoid taking * the mmap_lock for too long a time when waiting for another condition * to change, in which case we can try to be polite to release the * mmap_lock in the first round to avoid potential starvation of other * processes that would also want the mmap_lock. * * Return: true if the page fault allows retry and this is the first * attempt of the fault handling; false otherwise. */ static inline bool fault_flag_allow_retry_first(enum fault_flag flags) { return (flags & FAULT_FLAG_ALLOW_RETRY) && (!(flags & FAULT_FLAG_TRIED)); } #define FAULT_FLAG_TRACE \ { FAULT_FLAG_WRITE, "WRITE" }, \ { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ { FAULT_FLAG_TRIED, "TRIED" }, \ { FAULT_FLAG_USER, "USER" }, \ { FAULT_FLAG_REMOTE, "REMOTE" }, \ { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } /* * vm_fault is filled by the pagefault handler and passed to the vma's * ->fault function. The vma's ->fault is responsible for returning a bitmask * of VM_FAULT_xxx flags that give details about how the fault was handled. * * MM layer fills up gfp_mask for page allocations but fault handler might * alter it if its implementation requires a different allocation context. * * pgoff should be used in favour of virtual_address, if possible. */ struct vm_fault { const struct { struct vm_area_struct *vma; /* Target VMA */ gfp_t gfp_mask; /* gfp mask to be used for allocations */ pgoff_t pgoff; /* Logical page offset based on vma */ unsigned long address; /* Faulting virtual address - masked */ unsigned long real_address; /* Faulting virtual address - unmasked */ }; enum fault_flag flags; /* FAULT_FLAG_xxx flags * XXX: should really be 'const' */ pmd_t *pmd; /* Pointer to pmd entry matching * the 'address' */ pud_t *pud; /* Pointer to pud entry matching * the 'address' */ union { pte_t orig_pte; /* Value of PTE at the time of fault */ pmd_t orig_pmd; /* Value of PMD at the time of fault, * used by PMD fault only. */ }; struct page *cow_page; /* Page handler may use for COW fault */ struct page *page; /* ->fault handlers should return a * page here, unless VM_FAULT_NOPAGE * is set (which is also implied by * VM_FAULT_ERROR). */ /* These three entries are valid only while holding ptl lock */ pte_t *pte; /* Pointer to pte entry matching * the 'address'. NULL if the page * table hasn't been allocated. */ spinlock_t *ptl; /* Page table lock. * Protects pte page table if 'pte' * is not NULL, otherwise pmd. */ pgtable_t prealloc_pte; /* Pre-allocated pte page table. * vm_ops->map_pages() sets up a page * table from atomic context. * do_fault_around() pre-allocates * page table to avoid allocation from * atomic context. */ }; /* page entry size for vm->huge_fault() */ enum page_entry_size { PE_SIZE_PTE = 0, PE_SIZE_PMD, PE_SIZE_PUD, }; /* * These are the virtual MM functions - opening of an area, closing and * unmapping it (needed to keep files on disk up-to-date etc), pointer * to the functions called when a no-page or a wp-page exception occurs. */ struct vm_operations_struct { void (*open)(struct vm_area_struct * area); /** * @close: Called when the VMA is being removed from the MM. * Context: User context. May sleep. Caller holds mmap_lock. */ void (*close)(struct vm_area_struct * area); /* Called any time before splitting to check if it's allowed */ int (*may_split)(struct vm_area_struct *area, unsigned long addr); int (*mremap)(struct vm_area_struct *area); /* * Called by mprotect() to make driver-specific permission * checks before mprotect() is finalised. The VMA must not * be modified. Returns 0 if eprotect() can proceed. */ int (*mprotect)(struct vm_area_struct *vma, unsigned long start, unsigned long end, unsigned long newflags); vm_fault_t (*fault)(struct vm_fault *vmf); vm_fault_t (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size); vm_fault_t (*map_pages)(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff); unsigned long (*pagesize)(struct vm_area_struct * area); /* notification that a previously read-only page is about to become * writable, if an error is returned it will cause a SIGBUS */ vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); /* called by access_process_vm when get_user_pages() fails, typically * for use by special VMAs. See also generic_access_phys() for a generic * implementation useful for any iomem mapping. */ int (*access)(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write); /* Called by the /proc/PID/maps code to ask the vma whether it * has a special name. Returning non-NULL will also cause this * vma to be dumped unconditionally. */ const char *(*name)(struct vm_area_struct *vma); #ifdef CONFIG_NUMA /* * set_policy() op must add a reference to any non-NULL @new mempolicy * to hold the policy upon return. Caller should pass NULL @new to * remove a policy and fall back to surrounding context--i.e. do not * install a MPOL_DEFAULT policy, nor the task or system default * mempolicy. */ int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); /* * get_policy() op must add reference [mpol_get()] to any policy at * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure * in mm/mempolicy.c will do this automatically. * get_policy() must NOT add a ref if the policy at (vma,addr) is not * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. * If no [shared/vma] mempolicy exists at the addr, get_policy() op * must return NULL--i.e., do not "fallback" to task or system default * policy. */ struct mempolicy *(*get_policy)(struct vm_area_struct *vma, unsigned long addr); #endif /* * Called by vm_normal_page() for special PTEs to find the * page for @addr. This is useful if the default behavior * (using pte_page()) would not find the correct page. */ struct page *(*find_special_page)(struct vm_area_struct *vma, unsigned long addr); }; static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) { static const struct vm_operations_struct dummy_vm_ops = {}; memset(vma, 0, sizeof(*vma)); vma->vm_mm = mm; vma->vm_ops = &dummy_vm_ops; INIT_LIST_HEAD(&vma->anon_vma_chain); } static inline void vma_set_anonymous(struct vm_area_struct *vma) { vma->vm_ops = NULL; } static inline bool vma_is_anonymous(struct vm_area_struct *vma) { return !vma->vm_ops; } static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) { int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); if (!maybe_stack) return false; if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == VM_STACK_INCOMPLETE_SETUP) return true; return false; } static inline bool vma_is_foreign(struct vm_area_struct *vma) { if (!current->mm) return true; if (current->mm != vma->vm_mm) return true; return false; } static inline bool vma_is_accessible(struct vm_area_struct *vma) { return vma->vm_flags & VM_ACCESS_FLAGS; } static inline struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) { return mas_find(&vmi->mas, max); } static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) { /* * Uses vma_find() to get the first VMA when the iterator starts. * Calling mas_next() could skip the first entry. */ return vma_find(vmi, ULONG_MAX); } static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) { return mas_prev(&vmi->mas, 0); } static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) { return vmi->mas.index; } #define for_each_vma(__vmi, __vma) \ while (((__vma) = vma_next(&(__vmi))) != NULL) /* The MM code likes to work with exclusive end addresses */ #define for_each_vma_range(__vmi, __vma, __end) \ while (((__vma) = vma_find(&(__vmi), (__end) - 1)) != NULL) #ifdef CONFIG_SHMEM /* * The vma_is_shmem is not inline because it is used only by slow * paths in userfault. */ bool vma_is_shmem(struct vm_area_struct *vma); #else static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } #endif int vma_is_stack_for_current(struct vm_area_struct *vma); /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } struct mmu_gather; struct inode; static inline unsigned int compound_order(struct page *page) { if (!PageHead(page)) return 0; return page[1].compound_order; } /** * folio_order - The allocation order of a folio. * @folio: The folio. * * A folio is composed of 2^order pages. See get_order() for the definition * of order. * * Return: The order of the folio. */ static inline unsigned int folio_order(struct folio *folio) { if (!folio_test_large(folio)) return 0; return folio->_folio_order; } #include <linux/huge_mm.h> /* * Methods to modify the page usage count. * * What counts for a page usage: * - cache mapping (page->mapping) * - private data (page->private) * - page mapped in a task's page tables, each mapping * is counted separately * * Also, many kernel routines increase the page count before a critical * routine so they can be sure the page doesn't go away from under them. */ /* * Drop a ref, return true if the refcount fell to zero (the page has no users) */ static inline int put_page_testzero(struct page *page) { VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); return page_ref_dec_and_test(page); } static inline int folio_put_testzero(struct folio *folio) { return put_page_testzero(&folio->page); } /* * Try to grab a ref unless the page has a refcount of zero, return false if * that is the case. * This can be called when MMU is off so it must not access * any of the virtual mappings. */ static inline bool get_page_unless_zero(struct page *page) { return page_ref_add_unless(page, 1, 0); } extern int page_is_ram(unsigned long pfn); enum { REGION_INTERSECTS, REGION_DISJOINT, REGION_MIXED, }; int region_intersects(resource_size_t offset, size_t size, unsigned long flags, unsigned long desc); /* Support for virtually mapped pages */ struct page *vmalloc_to_page(const void *addr); unsigned long vmalloc_to_pfn(const void *addr); /* * Determine if an address is within the vmalloc range * * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there * is no special casing required. */ #ifndef is_ioremap_addr #define is_ioremap_addr(x) is_vmalloc_addr(x) #endif #ifdef CONFIG_MMU extern bool is_vmalloc_addr(const void *x); extern int is_vmalloc_or_module_addr(const void *x); #else static inline bool is_vmalloc_addr(const void *x) { return false; } static inline int is_vmalloc_or_module_addr(const void *x) { return 0; } #endif /* * How many times the entire folio is mapped as a single unit (eg by a * PMD or PUD entry). This is probably not what you want, except for * debugging purposes; look at folio_mapcount() or page_mapcount() * instead. */ static inline int folio_entire_mapcount(struct folio *folio) { VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); return atomic_read(folio_mapcount_ptr(folio)) + 1; } /* * Mapcount of compound page as a whole, does not include mapped sub-pages. * * Must be called only for compound pages. */ static inline int compound_mapcount(struct page *page) { return folio_entire_mapcount(page_folio(page)); } /* * The atomic page->_mapcount, starts from -1: so that transitions * both from it and to it can be tracked, using atomic_inc_and_test * and atomic_add_negative(-1). */ static inline void page_mapcount_reset(struct page *page) { atomic_set(&(page)->_mapcount, -1); } int __page_mapcount(struct page *page); /* * Mapcount of 0-order page; when compound sub-page, includes * compound_mapcount(). * * Result is undefined for pages which cannot be mapped into userspace. * For example SLAB or special types of pages. See function page_has_type(). * They use this place in struct page differently. */ static inline int page_mapcount(struct page *page) { if (unlikely(PageCompound(page))) return __page_mapcount(page); return atomic_read(&page->_mapcount) + 1; } int folio_mapcount(struct folio *folio); #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline int total_mapcount(struct page *page) { return folio_mapcount(page_folio(page)); } #else static inline int total_mapcount(struct page *page) { return page_mapcount(page); } #endif static inline struct page *virt_to_head_page(const void *x) { struct page *page = virt_to_page(x); return compound_head(page); } static inline struct folio *virt_to_folio(const void *x) { struct page *page = virt_to_page(x); return page_folio(page); } void __folio_put(struct folio *folio); void put_pages_list(struct list_head *pages); void split_page(struct page *page, unsigned int order); void folio_copy(struct folio *dst, struct folio *src); unsigned long nr_free_buffer_pages(void); /* * Compound pages have a destructor function. Provide a * prototype for that function and accessor functions. * These are _only_ valid on the head of a compound page. */ typedef void compound_page_dtor(struct page *); /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ enum compound_dtor_id { NULL_COMPOUND_DTOR, COMPOUND_PAGE_DTOR, #ifdef CONFIG_HUGETLB_PAGE HUGETLB_PAGE_DTOR, #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE TRANSHUGE_PAGE_DTOR, #endif NR_COMPOUND_DTORS, }; extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; static inline void set_compound_page_dtor(struct page *page, enum compound_dtor_id compound_dtor) { VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); page[1].compound_dtor = compound_dtor; } void destroy_large_folio(struct folio *folio); static inline int head_compound_pincount(struct page *head) { return atomic_read(compound_pincount_ptr(head)); } static inline void set_compound_order(struct page *page, unsigned int order) { page[1].compound_order = order; #ifdef CONFIG_64BIT page[1].compound_nr = 1U << order; #endif } /* Returns the number of pages in this potentially compound page. */ static inline unsigned long compound_nr(struct page *page) { if (!PageHead(page)) return 1; #ifdef CONFIG_64BIT return page[1].compound_nr; #else return 1UL << compound_order(page); #endif } /* Returns the number of bytes in this potentially compound page. */ static inline unsigned long page_size(struct page *page) { return PAGE_SIZE << compound_order(page); } /* Returns the number of bits needed for the number of bytes in a page */ static inline unsigned int page_shift(struct page *page) { return PAGE_SHIFT + compound_order(page); } /** * thp_order - Order of a transparent huge page. * @page: Head page of a transparent huge page. */ static inline unsigned int thp_order(struct page *page) { VM_BUG_ON_PGFLAGS(PageTail(page), page); return compound_order(page); } /** * thp_nr_pages - The number of regular pages in this huge page. * @page: The head page of a huge page. */ static inline int thp_nr_pages(struct page *page) { VM_BUG_ON_PGFLAGS(PageTail(page), page); return compound_nr(page); } /** * thp_size - Size of a transparent huge page. * @page: Head page of a transparent huge page. * * Return: Number of bytes in this page. */ static inline unsigned long thp_size(struct page *page) { return PAGE_SIZE << thp_order(page); } void free_compound_page(struct page *page); #ifdef CONFIG_MMU /* * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when * servicing faults for write access. In the normal case, do always want * pte_mkwrite. But get_user_pages can cause write faults for mappings * that do not have writing enabled, when used by access_process_vm. */ static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) { if (likely(vma->vm_flags & VM_WRITE)) pte = pte_mkwrite(pte); return pte; } vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); vm_fault_t finish_fault(struct vm_fault *vmf); vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); #endif /* * Multiple processes may "see" the same page. E.g. for untouched * mappings of /dev/null, all processes see the same page full of * zeroes, and text pages of executables and shared libraries have * only one copy in memory, at most, normally. * * For the non-reserved pages, page_count(page) denotes a reference count. * page_count() == 0 means the page is free. page->lru is then used for * freelist management in the buddy allocator. * page_count() > 0 means the page has been allocated. * * Pages are allocated by the slab allocator in order to provide memory * to kmalloc and kmem_cache_alloc. In this case, the management of the * page, and the fields in 'struct page' are the responsibility of mm/slab.c * unless a particular usage is carefully commented. (the responsibility of * freeing the kmalloc memory is the caller's, of course). * * A page may be used by anyone else who does a __get_free_page(). * In this case, page_count still tracks the references, and should only * be used through the normal accessor functions. The top bits of page->flags * and page->virtual store page management information, but all other fields * are unused and could be used privately, carefully. The management of this * page is the responsibility of the one who allocated it, and those who have * subsequently been given references to it. * * The other pages (we may call them "pagecache pages") are completely * managed by the Linux memory manager: I/O, buffers, swapping etc. * The following discussion applies only to them. * * A pagecache page contains an opaque `private' member, which belongs to the * page's address_space. Usually, this is the address of a circular list of * the page's disk buffers. PG_private must be set to tell the VM to call * into the filesystem to release these pages. * * A page may belong to an inode's memory mapping. In this case, page->mapping * is the pointer to the inode, and page->index is the file offset of the page, * in units of PAGE_SIZE. * * If pagecache pages are not associated with an inode, they are said to be * anonymous pages. These may become associated with the swapcache, and in that * case PG_swapcache is set, and page->private is an offset into the swapcache. * * In either case (swapcache or inode backed), the pagecache itself holds one * reference to the page. Setting PG_private should also increment the * refcount. The each user mapping also has a reference to the page. * * The pagecache pages are stored in a per-mapping radix tree, which is * rooted at mapping->i_pages, and indexed by offset. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space * lists, we instead now tag pages as dirty/writeback in the radix tree. * * All pagecache pages may be subject to I/O: * - inode pages may need to be read from disk, * - inode pages which have been modified and are MAP_SHARED may need * to be written back to the inode on disk, * - anonymous pages (including MAP_PRIVATE file mappings) which have been * modified may need to be swapped out to swap space and (later) to be read * back into memory. */ #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) DECLARE_STATIC_KEY_FALSE(devmap_managed_key); bool __put_devmap_managed_page_refs(struct page *page, int refs); static inline bool put_devmap_managed_page_refs(struct page *page, int refs) { if (!static_branch_unlikely(&devmap_managed_key)) return false; if (!is_zone_device_page(page)) return false; return __put_devmap_managed_page_refs(page, refs); } #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ static inline bool put_devmap_managed_page_refs(struct page *page, int refs) { return false; } #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ static inline bool put_devmap_managed_page(struct page *page) { return put_devmap_managed_page_refs(page, 1); } /* 127: arbitrary random number, small enough to assemble well */ #define folio_ref_zero_or_close_to_overflow(folio) \ ((unsigned int) folio_ref_count(folio) + 127u <= 127u) /** * folio_get - Increment the reference count on a folio. * @folio: The folio. * * Context: May be called in any context, as long as you know that * you have a refcount on the folio. If you do not already have one, * folio_try_get() may be the right interface for you to use. */ static inline void folio_get(struct folio *folio) { VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); folio_ref_inc(folio); } static inline void get_page(struct page *page) { folio_get(page_folio(page)); } bool __must_check try_grab_page(struct page *page, unsigned int flags); static inline __must_check bool try_get_page(struct page *page) { page = compound_head(page); if (WARN_ON_ONCE(page_ref_count(page) <= 0)) return false; page_ref_inc(page); return true; } /** * folio_put - Decrement the reference count on a folio. * @folio: The folio. * * If the folio's reference count reaches zero, the memory will be * released back to the page allocator and may be used by another * allocation immediately. Do not access the memory or the struct folio * after calling folio_put() unless you can be sure that it wasn't the * last reference. * * Context: May be called in process or interrupt context, but not in NMI * context. May be called while holding a spinlock. */ static inline void folio_put(struct folio *folio) { if (folio_put_testzero(folio)) __folio_put(folio); } /** * folio_put_refs - Reduce the reference count on a folio. * @folio: The folio. * @refs: The amount to subtract from the folio's reference count. * * If the folio's reference count reaches zero, the memory will be * released back to the page allocator and may be used by another * allocation immediately. Do not access the memory or the struct folio * after calling folio_put_refs() unless you can be sure that these weren't * the last references. * * Context: May be called in process or interrupt context, but not in NMI * context. May be called while holding a spinlock. */ static inline void folio_put_refs(struct folio *folio, int refs) { if (folio_ref_sub_and_test(folio, refs)) __folio_put(folio); } void release_pages(struct page **pages, int nr); /** * folios_put - Decrement the reference count on an array of folios. * @folios: The folios. * @nr: How many folios there are. * * Like folio_put(), but for an array of folios. This is more efficient * than writing the loop yourself as it will optimise the locks which * need to be taken if the folios are freed. * * Context: May be called in process or interrupt context, but not in NMI * context. May be called while holding a spinlock. */ static inline void folios_put(struct folio **folios, unsigned int nr) { release_pages((struct page **)folios, nr); } static inline void put_page(struct page *page) { struct folio *folio = page_folio(page); /* * For some devmap managed pages we need to catch refcount transition * from 2 to 1: */ if (put_devmap_managed_page(&folio->page)) return; folio_put(folio); } /* * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload * the page's refcount so that two separate items are tracked: the original page * reference count, and also a new count of how many pin_user_pages() calls were * made against the page. ("gup-pinned" is another term for the latter). * * With this scheme, pin_user_pages() becomes special: such pages are marked as * distinct from normal pages. As such, the unpin_user_page() call (and its * variants) must be used in order to release gup-pinned pages. * * Choice of value: * * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference * counts with respect to pin_user_pages() and unpin_user_page() becomes * simpler, due to the fact that adding an even power of two to the page * refcount has the effect of using only the upper N bits, for the code that * counts up using the bias value. This means that the lower bits are left for * the exclusive use of the original code that increments and decrements by one * (or at least, by much smaller values than the bias value). * * Of course, once the lower bits overflow into the upper bits (and this is * OK, because subtraction recovers the original values), then visual inspection * no longer suffices to directly view the separate counts. However, for normal * applications that don't have huge page reference counts, this won't be an * issue. * * Locking: the lockless algorithm described in folio_try_get_rcu() * provides safe operation for get_user_pages(), page_mkclean() and * other calls that race to set up page table entries. */ #define GUP_PIN_COUNTING_BIAS (1U << 10) void unpin_user_page(struct page *page); void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, bool make_dirty); void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, bool make_dirty); void unpin_user_pages(struct page **pages, unsigned long npages); static inline bool is_cow_mapping(vm_flags_t flags) { return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; } #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) #define SECTION_IN_PAGE_FLAGS #endif /* * The identification function is mainly used by the buddy allocator for * determining if two pages could be buddies. We are not really identifying * the zone since we could be using the section number id if we do not have * node id available in page flags. * We only guarantee that it will return the same value for two combinable * pages in a zone. */ static inline int page_zone_id(struct page *page) { return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; } #ifdef NODE_NOT_IN_PAGE_FLAGS extern int page_to_nid(const struct page *page); #else static inline int page_to_nid(const struct page *page) { struct page *p = (struct page *)page; return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; } #endif static inline int folio_nid(const struct folio *folio) { return page_to_nid(&folio->page); } #ifdef CONFIG_NUMA_BALANCING /* page access time bits needs to hold at least 4 seconds */ #define PAGE_ACCESS_TIME_MIN_BITS 12 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS #define PAGE_ACCESS_TIME_BUCKETS \ (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) #else #define PAGE_ACCESS_TIME_BUCKETS 0 #endif #define PAGE_ACCESS_TIME_MASK \ (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) static inline int cpu_pid_to_cpupid(int cpu, int pid) { return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); } static inline int cpupid_to_pid(int cpupid) { return cpupid & LAST__PID_MASK; } static inline int cpupid_to_cpu(int cpupid) { return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; } static inline int cpupid_to_nid(int cpupid) { return cpu_to_node(cpupid_to_cpu(cpupid)); } static inline bool cpupid_pid_unset(int cpupid) { return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); } static inline bool cpupid_cpu_unset(int cpupid) { return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); } static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) { return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); } #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS static inline int page_cpupid_xchg_last(struct page *page, int cpupid) { return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); } static inline int page_cpupid_last(struct page *page) { return page->_last_cpupid; } static inline void page_cpupid_reset_last(struct page *page) { page->_last_cpupid = -1 & LAST_CPUPID_MASK; } #else static inline int page_cpupid_last(struct page *page) { return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; } extern int page_cpupid_xchg_last(struct page *page, int cpupid); static inline void page_cpupid_reset_last(struct page *page) { page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; } #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ static inline int xchg_page_access_time(struct page *page, int time) { int last_time; last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS); return last_time << PAGE_ACCESS_TIME_BUCKETS; } #else /* !CONFIG_NUMA_BALANCING */ static inline int page_cpupid_xchg_last(struct page *page, int cpupid) { return page_to_nid(page); /* XXX */ } static inline int xchg_page_access_time(struct page *page, int time) { return 0; } static inline int page_cpupid_last(struct page *page) { return page_to_nid(page); /* XXX */ } static inline int cpupid_to_nid(int cpupid) { return -1; } static inline int cpupid_to_pid(int cpupid) { return -1; } static inline int cpupid_to_cpu(int cpupid) { return -1; } static inline int cpu_pid_to_cpupid(int nid, int pid) { return -1; } static inline bool cpupid_pid_unset(int cpupid) { return true; } static inline void page_cpupid_reset_last(struct page *page) { } static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) { return false; } #endif /* CONFIG_NUMA_BALANCING */ #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) /* * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid * setting tags for all pages to native kernel tag value 0xff, as the default * value 0x00 maps to 0xff. */ static inline u8 page_kasan_tag(const struct page *page) { u8 tag = 0xff; if (kasan_enabled()) { tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; tag ^= 0xff; } return tag; } static inline void page_kasan_tag_set(struct page *page, u8 tag) { unsigned long old_flags, flags; if (!kasan_enabled()) return; tag ^= 0xff; old_flags = READ_ONCE(page->flags); do { flags = old_flags; flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); } static inline void page_kasan_tag_reset(struct page *page) { if (kasan_enabled()) page_kasan_tag_set(page, 0xff); } #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ static inline u8 page_kasan_tag(const struct page *page) { return 0xff; } static inline void page_kasan_tag_set(struct page *page, u8 tag) { } static inline void page_kasan_tag_reset(struct page *page) { } #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ static inline struct zone *page_zone(const struct page *page) { return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; } static inline pg_data_t *page_pgdat(const struct page *page) { return NODE_DATA(page_to_nid(page)); } static inline struct zone *folio_zone(const struct folio *folio) { return page_zone(&folio->page); } static inline pg_data_t *folio_pgdat(const struct folio *folio) { return page_pgdat(&folio->page); } #ifdef SECTION_IN_PAGE_FLAGS static inline void set_page_section(struct page *page, unsigned long section) { page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; } static inline unsigned long page_to_section(const struct page *page) { return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; } #endif /** * folio_pfn - Return the Page Frame Number of a folio. * @folio: The folio. * * A folio may contain multiple pages. The pages have consecutive * Page Frame Numbers. * * Return: The Page Frame Number of the first page in the folio. */ static inline unsigned long folio_pfn(struct folio *folio) { return page_to_pfn(&folio->page); } static inline struct folio *pfn_folio(unsigned long pfn) { return page_folio(pfn_to_page(pfn)); } static inline atomic_t *folio_pincount_ptr(struct folio *folio) { return &folio_page(folio, 1)->compound_pincount; } /** * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. * @folio: The folio. * * This function checks if a folio has been pinned via a call to * a function in the pin_user_pages() family. * * For small folios, the return value is partially fuzzy: false is not fuzzy, * because it means "definitely not pinned for DMA", but true means "probably * pinned for DMA, but possibly a false positive due to having at least * GUP_PIN_COUNTING_BIAS worth of normal folio references". * * False positives are OK, because: a) it's unlikely for a folio to * get that many refcounts, and b) all the callers of this routine are * expected to be able to deal gracefully with a false positive. * * For large folios, the result will be exactly correct. That's because * we have more tracking data available: the compound_pincount is used * instead of the GUP_PIN_COUNTING_BIAS scheme. * * For more information, please see Documentation/core-api/pin_user_pages.rst. * * Return: True, if it is likely that the page has been "dma-pinned". * False, if the page is definitely not dma-pinned. */ static inline bool folio_maybe_dma_pinned(struct folio *folio) { if (folio_test_large(folio)) return atomic_read(folio_pincount_ptr(folio)) > 0; /* * folio_ref_count() is signed. If that refcount overflows, then * folio_ref_count() returns a negative value, and callers will avoid * further incrementing the refcount. * * Here, for that overflow case, use the sign bit to count a little * bit higher via unsigned math, and thus still get an accurate result. */ return ((unsigned int)folio_ref_count(folio)) >= GUP_PIN_COUNTING_BIAS; } static inline bool page_maybe_dma_pinned(struct page *page) { return folio_maybe_dma_pinned(page_folio(page)); } /* * This should most likely only be called during fork() to see whether we * should break the cow immediately for an anon page on the src mm. * * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. */ static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, struct page *page) { VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) return false; return page_maybe_dma_pinned(page); } /** * is_zero_page - Query if a page is a zero page * @page: The page to query * * This returns true if @page is one of the permanent zero pages. */ static inline bool is_zero_page(const struct page *page) { return is_zero_pfn(page_to_pfn(page)); } /** * is_zero_folio - Query if a folio is a zero page * @folio: The folio to query * * This returns true if @folio is one of the permanent zero pages. */ static inline bool is_zero_folio(const struct folio *folio) { return is_zero_page(&folio->page); } /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */ #ifdef CONFIG_MIGRATION static inline bool is_longterm_pinnable_page(struct page *page) { #ifdef CONFIG_CMA int mt = get_pageblock_migratetype(page); if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) return false; #endif /* The zero page can be "pinned" but gets special handling. */ if (is_zero_page(page)) return true; /* Coherent device memory must always allow eviction. */ if (is_device_coherent_page(page)) return false; /* Otherwise, non-movable zone pages can be pinned. */ return !is_zone_movable_page(page); } #else static inline bool is_longterm_pinnable_page(struct page *page) { return true; } #endif static inline bool folio_is_longterm_pinnable(struct folio *folio) { return is_longterm_pinnable_page(&folio->page); } static inline void set_page_zone(struct page *page, enum zone_type zone) { page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; } static inline void set_page_node(struct page *page, unsigned long node) { page->flags &= ~(NODES_MASK << NODES_PGSHIFT); page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; } static inline void set_page_links(struct page *page, enum zone_type zone, unsigned long node, unsigned long pfn) { set_page_zone(page, zone); set_page_node(page, node); #ifdef SECTION_IN_PAGE_FLAGS set_page_section(page, pfn_to_section_nr(pfn)); #endif } /** * folio_nr_pages - The number of pages in the folio. * @folio: The folio. * * Return: A positive power of two. */ static inline long folio_nr_pages(struct folio *folio) { if (!folio_test_large(folio)) return 1; #ifdef CONFIG_64BIT return folio->_folio_nr_pages; #else return 1L << folio->_folio_order; #endif } /** * folio_next - Move to the next physical folio. * @folio: The folio we're currently operating on. * * If you have physically contiguous memory which may span more than * one folio (eg a &struct bio_vec), use this function to move from one * folio to the next. Do not use it if the memory is only virtually * contiguous as the folios are almost certainly not adjacent to each * other. This is the folio equivalent to writing ``page++``. * * Context: We assume that the folios are refcounted and/or locked at a * higher level and do not adjust the reference counts. * Return: The next struct folio. */ static inline struct folio *folio_next(struct folio *folio) { return (struct folio *)folio_page(folio, folio_nr_pages(folio)); } /** * folio_shift - The size of the memory described by this folio. * @folio: The folio. * * A folio represents a number of bytes which is a power-of-two in size. * This function tells you which power-of-two the folio is. See also * folio_size() and folio_order(). * * Context: The caller should have a reference on the folio to prevent * it from being split. It is not necessary for the folio to be locked. * Return: The base-2 logarithm of the size of this folio. */ static inline unsigned int folio_shift(struct folio *folio) { return PAGE_SHIFT + folio_order(folio); } /** * folio_size - The number of bytes in a folio. * @folio: The folio. * * Context: The caller should have a reference on the folio to prevent * it from being split. It is not necessary for the folio to be locked. * Return: The number of bytes in this folio. */ static inline size_t folio_size(struct folio *folio) { return PAGE_SIZE << folio_order(folio); } /** * folio_estimated_sharers - Estimate the number of sharers of a folio. * @folio: The folio. * * folio_estimated_sharers() aims to serve as a function to efficiently * estimate the number of processes sharing a folio. This is done by * looking at the precise mapcount of the first subpage in the folio, and * assuming the other subpages are the same. This may not be true for large * folios. If you want exact mapcounts for exact calculations, look at * page_mapcount() or folio_total_mapcount(). * * Return: The estimated number of processes sharing a folio. */ static inline int folio_estimated_sharers(struct folio *folio) { return page_mapcount(folio_page(folio, 0)); } #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE static inline int arch_make_page_accessible(struct page *page) { return 0; } #endif #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE static inline int arch_make_folio_accessible(struct folio *folio) { int ret; long i, nr = folio_nr_pages(folio); for (i = 0; i < nr; i++) { ret = arch_make_page_accessible(folio_page(folio, i)); if (ret) break; } return ret; } #endif /* * Some inline functions in vmstat.h depend on page_zone() */ #include <linux/vmstat.h> static __always_inline void *lowmem_page_address(const struct page *page) { return page_to_virt(page); } #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) #define HASHED_PAGE_VIRTUAL #endif #if defined(WANT_PAGE_VIRTUAL) static inline void *page_address(const struct page *page) { return page->virtual; } static inline void set_page_address(struct page *page, void *address) { page->virtual = address; } #define page_address_init() do { } while(0) #endif #if defined(HASHED_PAGE_VIRTUAL) void *page_address(const struct page *page); void set_page_address(struct page *page, void *virtual); void page_address_init(void); #endif #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) #define page_address(page) lowmem_page_address(page) #define set_page_address(page, address) do { } while(0) #define page_address_init() do { } while(0) #endif static inline void *folio_address(const struct folio *folio) { return page_address(&folio->page); } extern void *page_rmapping(struct page *page); extern pgoff_t __page_file_index(struct page *page); /* * Return the pagecache index of the passed page. Regular pagecache pages * use ->index whereas swapcache pages use swp_offset(->private) */ static inline pgoff_t page_index(struct page *page) { if (unlikely(PageSwapCache(page))) return __page_file_index(page); return page->index; } bool page_mapped(struct page *page); bool folio_mapped(struct folio *folio); /* * Return true only if the page has been allocated with * ALLOC_NO_WATERMARKS and the low watermark was not * met implying that the system is under some pressure. */ static inline bool page_is_pfmemalloc(const struct page *page) { /* * lru.next has bit 1 set if the page is allocated from the * pfmemalloc reserves. Callers may simply overwrite it if * they do not need to preserve that information. */ return (uintptr_t)page->lru.next & BIT(1); } /* * Only to be called by the page allocator on a freshly allocated * page. */ static inline void set_page_pfmemalloc(struct page *page) { page->lru.next = (void *)BIT(1); } static inline void clear_page_pfmemalloc(struct page *page) { page->lru.next = NULL; } /* * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. */ extern void pagefault_out_of_memory(void); #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) /* * Flags passed to show_mem() and show_free_areas() to suppress output in * various contexts. */ #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask) { __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1); } /* * Parameter block passed down to zap_pte_range in exceptional cases. */ struct zap_details { struct folio *single_folio; /* Locked folio to be unmapped */ bool even_cows; /* Zap COWed private pages too? */ zap_flags_t zap_flags; /* Extra flags for zapping */ }; /* * Whether to drop the pte markers, for example, the uffd-wp information for * file-backed memory. This should only be specified when we will completely * drop the page in the mm, either by truncation or unmapping of the vma. By * default, the flag is not set. */ #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) #ifdef CONFIG_MMU extern bool can_do_mlock(void); #else static inline bool can_do_mlock(void) { return false; } #endif extern int user_shm_lock(size_t, struct ucounts *); extern void user_shm_unlock(size_t, struct ucounts *); struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, pte_t pte); struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte); struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd); void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, unsigned long size); void zap_page_range(struct vm_area_struct *vma, unsigned long address, unsigned long size); void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, unsigned long size, struct zap_details *details); void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, struct vm_area_struct *start_vma, unsigned long start, unsigned long end); struct mmu_notifier_range; void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling); int copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp, spinlock_t **ptlp); int follow_pfn(struct vm_area_struct *vma, unsigned long address, unsigned long *pfn); int follow_phys(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned long *prot, resource_size_t *phys); int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write); extern void truncate_pagecache(struct inode *inode, loff_t new); extern void truncate_setsize(struct inode *inode, loff_t newsize); void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); int generic_error_remove_page(struct address_space *mapping, struct page *page); struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, unsigned long address, struct pt_regs *regs); #ifdef CONFIG_MMU extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags, struct pt_regs *regs); extern int fixup_user_fault(struct mm_struct *mm, unsigned long address, unsigned int fault_flags, bool *unlocked); void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows); void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows); #else static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags, struct pt_regs *regs) { /* should never happen if there's no MMU */ BUG(); return VM_FAULT_SIGBUS; } static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, unsigned int fault_flags, bool *unlocked) { /* should never happen if there's no MMU */ BUG(); return -EFAULT; } static inline void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t nr, bool even_cows) { } static inline void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows) { } #endif static inline void unmap_shared_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen) { unmap_mapping_range(mapping, holebegin, holelen, 0); } extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags); extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags); extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags); long get_user_pages_remote(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas, int *locked); long pin_user_pages_remote(struct mm_struct *mm, unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas, int *locked); long get_user_pages(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas); long pin_user_pages(unsigned long start, unsigned long nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas); long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, struct page **pages, unsigned int gup_flags); long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, struct page **pages, unsigned int gup_flags); int get_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages); int pin_user_pages_fast(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages); int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, struct task_struct *task, bool bypass_rlim); struct kvec; int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, struct page **pages); struct page *get_dump_page(unsigned long addr); bool folio_mark_dirty(struct folio *folio); bool set_page_dirty(struct page *page); int set_page_dirty_lock(struct page *page); int get_cmdline(struct task_struct *task, char *buffer, int buflen); extern unsigned long move_page_tables(struct vm_area_struct *vma, unsigned long old_addr, struct vm_area_struct *new_vma, unsigned long new_addr, unsigned long len, bool need_rmap_locks); /* * Flags used by change_protection(). For now we make it a bitmap so * that we can pass in multiple flags just like parameters. However * for now all the callers are only use one of the flags at the same * time. */ /* * Whether we should manually check if we can map individual PTEs writable, * because something (e.g., COW, uffd-wp) blocks that from happening for all * PTEs automatically in a writable mapping. */ #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) /* Whether this protection change is for NUMA hints */ #define MM_CP_PROT_NUMA (1UL << 1) /* Whether this change is for write protecting */ #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ MM_CP_UFFD_WP_RESOLVE) extern unsigned long change_protection(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start, unsigned long end, pgprot_t newprot, unsigned long cp_flags); extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma, struct vm_area_struct **pprev, unsigned long start, unsigned long end, unsigned long newflags); /* * doesn't attempt to fault and will return short. */ int get_user_pages_fast_only(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages); int pin_user_pages_fast_only(unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages); static inline bool get_user_page_fast_only(unsigned long addr, unsigned int gup_flags, struct page **pagep) { return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; } /* * per-process(per-mm_struct) statistics. */ static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) { long val = atomic_long_read(&mm->rss_stat.count[member]); #ifdef SPLIT_RSS_COUNTING /* * counter is updated in asynchronous manner and may go to minus. * But it's never be expected number for users. */ if (val < 0) val = 0; #endif return (unsigned long)val; } void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); static inline void add_mm_counter(struct mm_struct *mm, int member, long value) { long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); mm_trace_rss_stat(mm, member, count); } static inline void inc_mm_counter(struct mm_struct *mm, int member) { long count = atomic_long_inc_return(&mm->rss_stat.count[member]); mm_trace_rss_stat(mm, member, count); } static inline void dec_mm_counter(struct mm_struct *mm, int member) { long count = atomic_long_dec_return(&mm->rss_stat.count[member]); mm_trace_rss_stat(mm, member, count); } /* Optimized variant when page is already known not to be PageAnon */ static inline int mm_counter_file(struct page *page) { if (PageSwapBacked(page)) return MM_SHMEMPAGES; return MM_FILEPAGES; } static inline int mm_counter(struct page *page) { if (PageAnon(page)) return MM_ANONPAGES; return mm_counter_file(page); } static inline unsigned long get_mm_rss(struct mm_struct *mm) { return get_mm_counter(mm, MM_FILEPAGES) + get_mm_counter(mm, MM_ANONPAGES) + get_mm_counter(mm, MM_SHMEMPAGES); } static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) { return max(mm->hiwater_rss, get_mm_rss(mm)); } static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) { return max(mm->hiwater_vm, mm->total_vm); } static inline void update_hiwater_rss(struct mm_struct *mm) { unsigned long _rss = get_mm_rss(mm); if ((mm)->hiwater_rss < _rss) (mm)->hiwater_rss = _rss; } static inline void update_hiwater_vm(struct mm_struct *mm) { if (mm->hiwater_vm < mm->total_vm) mm->hiwater_vm = mm->total_vm; } static inline void reset_mm_hiwater_rss(struct mm_struct *mm) { mm->hiwater_rss = get_mm_rss(mm); } static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, struct mm_struct *mm) { unsigned long hiwater_rss = get_mm_hiwater_rss(mm); if (*maxrss < hiwater_rss) *maxrss = hiwater_rss; } #if defined(SPLIT_RSS_COUNTING) void sync_mm_rss(struct mm_struct *mm); #else static inline void sync_mm_rss(struct mm_struct *mm) { } #endif #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL static inline int pte_special(pte_t pte) { return 0; } static inline pte_t pte_mkspecial(pte_t pte) { return pte; } #endif #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP static inline int pte_devmap(pte_t pte) { return 0; } #endif int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl); static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) { pte_t *ptep; __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); return ptep; } #ifdef __PAGETABLE_P4D_FOLDED static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { return 0; } #else int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); #endif #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) { return 0; } static inline void mm_inc_nr_puds(struct mm_struct *mm) {} static inline void mm_dec_nr_puds(struct mm_struct *mm) {} #else int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); static inline void mm_inc_nr_puds(struct mm_struct *mm) { if (mm_pud_folded(mm)) return; atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); } static inline void mm_dec_nr_puds(struct mm_struct *mm) { if (mm_pud_folded(mm)) return; atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); } #endif #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { return 0; } static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} #else int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); static inline void mm_inc_nr_pmds(struct mm_struct *mm) { if (mm_pmd_folded(mm)) return; atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); } static inline void mm_dec_nr_pmds(struct mm_struct *mm) { if (mm_pmd_folded(mm)) return; atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); } #endif #ifdef CONFIG_MMU static inline void mm_pgtables_bytes_init(struct mm_struct *mm) { atomic_long_set(&mm->pgtables_bytes, 0); } static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) { return atomic_long_read(&mm->pgtables_bytes); } static inline void mm_inc_nr_ptes(struct mm_struct *mm) { atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); } static inline void mm_dec_nr_ptes(struct mm_struct *mm) { atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); } #else static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) { return 0; } static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} #endif int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); int __pte_alloc_kernel(pmd_t *pmd); #if defined(CONFIG_MMU) static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? NULL : p4d_offset(pgd, address); } static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) { return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? NULL : pud_offset(p4d, address); } static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? NULL: pmd_offset(pud, address); } #endif /* CONFIG_MMU */ #if USE_SPLIT_PTE_PTLOCKS #if ALLOC_SPLIT_PTLOCKS void __init ptlock_cache_init(void); extern bool ptlock_alloc(struct page *page); extern void ptlock_free(struct page *page); static inline spinlock_t *ptlock_ptr(struct page *page) { return page->ptl; } #else /* ALLOC_SPLIT_PTLOCKS */ static inline void ptlock_cache_init(void) { } static inline bool ptlock_alloc(struct page *page) { return true; } static inline void ptlock_free(struct page *page) { } static inline spinlock_t *ptlock_ptr(struct page *page) { return &page->ptl; } #endif /* ALLOC_SPLIT_PTLOCKS */ static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) { return ptlock_ptr(pmd_page(*pmd)); } static inline bool ptlock_init(struct page *page) { /* * prep_new_page() initialize page->private (and therefore page->ptl) * with 0. Make sure nobody took it in use in between. * * It can happen if arch try to use slab for page table allocation: * slab code uses page->slab_cache, which share storage with page->ptl. */ VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); if (!ptlock_alloc(page)) return false; spin_lock_init(ptlock_ptr(page)); return true; } #else /* !USE_SPLIT_PTE_PTLOCKS */ /* * We use mm->page_table_lock to guard all pagetable pages of the mm. */ static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) { return &mm->page_table_lock; } static inline void ptlock_cache_init(void) {} static inline bool ptlock_init(struct page *page) { return true; } static inline void ptlock_free(struct page *page) {} #endif /* USE_SPLIT_PTE_PTLOCKS */ static inline void pgtable_init(void) { ptlock_cache_init(); pgtable_cache_init(); } static inline bool pgtable_pte_page_ctor(struct page *page) { if (!ptlock_init(page)) return false; __SetPageTable(page); inc_lruvec_page_state(page, NR_PAGETABLE); return true; } static inline void pgtable_pte_page_dtor(struct page *page) { ptlock_free(page); __ClearPageTable(page); dec_lruvec_page_state(page, NR_PAGETABLE); } #define pte_offset_map_lock(mm, pmd, address, ptlp) \ ({ \ spinlock_t *__ptl = pte_lockptr(mm, pmd); \ pte_t *__pte = pte_offset_map(pmd, address); \ *(ptlp) = __ptl; \ spin_lock(__ptl); \ __pte; \ }) #define pte_unmap_unlock(pte, ptl) do { \ spin_unlock(ptl); \ pte_unmap(pte); \ } while (0) #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) #define pte_alloc_map(mm, pmd, address) \ (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ (pte_alloc(mm, pmd) ? \ NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) #define pte_alloc_kernel(pmd, address) \ ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ NULL: pte_offset_kernel(pmd, address)) #if USE_SPLIT_PMD_PTLOCKS static struct page *pmd_to_page(pmd_t *pmd) { unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); return virt_to_page((void *)((unsigned long) pmd & mask)); } static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) { return ptlock_ptr(pmd_to_page(pmd)); } static inline bool pmd_ptlock_init(struct page *page) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE page->pmd_huge_pte = NULL; #endif return ptlock_init(page); } static inline void pmd_ptlock_free(struct page *page) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE VM_BUG_ON_PAGE(page->pmd_huge_pte, page); #endif ptlock_free(page); } #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) #else static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) { return &mm->page_table_lock; } static inline bool pmd_ptlock_init(struct page *page) { return true; } static inline void pmd_ptlock_free(struct page *page) {} #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) #endif static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) { spinlock_t *ptl = pmd_lockptr(mm, pmd); spin_lock(ptl); return ptl; } static inline bool pgtable_pmd_page_ctor(struct page *page) { if (!pmd_ptlock_init(page)) return false; __SetPageTable(page); inc_lruvec_page_state(page, NR_PAGETABLE); return true; } static inline void pgtable_pmd_page_dtor(struct page *page) { pmd_ptlock_free(page); __ClearPageTable(page); dec_lruvec_page_state(page, NR_PAGETABLE); } /* * No scalability reason to split PUD locks yet, but follow the same pattern * as the PMD locks to make it easier if we decide to. The VM should not be * considered ready to switch to split PUD locks yet; there may be places * which need to be converted from page_table_lock. */ static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) { return &mm->page_table_lock; } static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) { spinlock_t *ptl = pud_lockptr(mm, pud); spin_lock(ptl); return ptl; } extern void __init pagecache_init(void); extern void free_initmem(void); /* * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) * into the buddy system. The freed pages will be poisoned with pattern * "poison" if it's within range [0, UCHAR_MAX]. * Return pages freed into the buddy system. */ extern unsigned long free_reserved_area(void *start, void *end, int poison, const char *s); extern void adjust_managed_page_count(struct page *page, long count); extern void mem_init_print_info(void); extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); /* Free the reserved page into the buddy system, so it gets managed. */ static inline void free_reserved_page(struct page *page) { ClearPageReserved(page); init_page_count(page); __free_page(page); adjust_managed_page_count(page, 1); } #define free_highmem_page(page) free_reserved_page(page) static inline void mark_page_reserved(struct page *page) { SetPageReserved(page); adjust_managed_page_count(page, -1); } /* * Default method to free all the __init memory into the buddy system. * The freed pages will be poisoned with pattern "poison" if it's within * range [0, UCHAR_MAX]. * Return pages freed into the buddy system. */ static inline unsigned long free_initmem_default(int poison) { extern char __init_begin[], __init_end[]; return free_reserved_area(&__init_begin, &__init_end, poison, "unused kernel image (initmem)"); } static inline unsigned long get_num_physpages(void) { int nid; unsigned long phys_pages = 0; for_each_online_node(nid) phys_pages += node_present_pages(nid); return phys_pages; } /* * Using memblock node mappings, an architecture may initialise its * zones, allocate the backing mem_map and account for memory holes in an * architecture independent manner. * * An architecture is expected to register range of page frames backed by * physical memory with memblock_add[_node]() before calling * free_area_init() passing in the PFN each zone ends at. At a basic * usage, an architecture is expected to do something like * * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, * max_highmem_pfn}; * for_each_valid_physical_page_range() * memblock_add_node(base, size, nid, MEMBLOCK_NONE) * free_area_init(max_zone_pfns); */ void free_area_init(unsigned long *max_zone_pfn); unsigned long node_map_pfn_alignment(void); unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, unsigned long end_pfn); extern unsigned long absent_pages_in_range(unsigned long start_pfn, unsigned long end_pfn); extern void get_pfn_range_for_nid(unsigned int nid, unsigned long *start_pfn, unsigned long *end_pfn); #ifndef CONFIG_NUMA static inline int early_pfn_to_nid(unsigned long pfn) { return 0; } #else /* please see mm/page_alloc.c */ extern int __meminit early_pfn_to_nid(unsigned long pfn); #endif extern void set_dma_reserve(unsigned long new_dma_reserve); extern void memmap_init_range(unsigned long, int, unsigned long, unsigned long, unsigned long, enum meminit_context, struct vmem_altmap *, int migratetype); extern void setup_per_zone_wmarks(void); extern void calculate_min_free_kbytes(void); extern int __meminit init_per_zone_wmark_min(void); extern void mem_init(void); extern void __init mmap_init(void); extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); static inline void show_mem(unsigned int flags, nodemask_t *nodemask) { __show_mem(flags, nodemask, MAX_NR_ZONES - 1); } extern long si_mem_available(void); extern void si_meminfo(struct sysinfo * val); extern void si_meminfo_node(struct sysinfo *val, int nid); #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES extern unsigned long arch_reserved_kernel_pages(void); #endif extern __printf(3, 4) void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); extern void setup_per_cpu_pageset(void); /* page_alloc.c */ extern int min_free_kbytes; extern int watermark_boost_factor; extern int watermark_scale_factor; extern bool arch_has_descending_max_zone_pfns(void); /* nommu.c */ extern atomic_long_t mmap_pages_allocated; extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); /* interval_tree.c */ void vma_interval_tree_insert(struct vm_area_struct *node, struct rb_root_cached *root); void vma_interval_tree_insert_after(struct vm_area_struct *node, struct vm_area_struct *prev, struct rb_root_cached *root); void vma_interval_tree_remove(struct vm_area_struct *node, struct rb_root_cached *root); struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, unsigned long start, unsigned long last); struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, unsigned long start, unsigned long last); #define vma_interval_tree_foreach(vma, root, start, last) \ for (vma = vma_interval_tree_iter_first(root, start, last); \ vma; vma = vma_interval_tree_iter_next(vma, start, last)) void anon_vma_interval_tree_insert(struct anon_vma_chain *node, struct rb_root_cached *root); void anon_vma_interval_tree_remove(struct anon_vma_chain *node, struct rb_root_cached *root); struct anon_vma_chain * anon_vma_interval_tree_iter_first(struct rb_root_cached *root, unsigned long start, unsigned long last); struct anon_vma_chain *anon_vma_interval_tree_iter_next( struct anon_vma_chain *node, unsigned long start, unsigned long last); #ifdef CONFIG_DEBUG_VM_RB void anon_vma_interval_tree_verify(struct anon_vma_chain *node); #endif #define anon_vma_interval_tree_foreach(avc, root, start, last) \ for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) /* mmap.c */ extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, struct vm_area_struct *expand); static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) { return __vma_adjust(vma, start, end, pgoff, insert, NULL); } extern struct vm_area_struct *vma_merge(struct mm_struct *, struct vm_area_struct *prev, unsigned long addr, unsigned long end, unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *); extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); extern int __split_vma(struct mm_struct *, struct vm_area_struct *, unsigned long addr, int new_below); extern int split_vma(struct mm_struct *, struct vm_area_struct *, unsigned long addr, int new_below); extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); extern void unlink_file_vma(struct vm_area_struct *); extern struct vm_area_struct *copy_vma(struct vm_area_struct **, unsigned long addr, unsigned long len, pgoff_t pgoff, bool *need_rmap_locks); extern void exit_mmap(struct mm_struct *); void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas); void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas); static inline int check_data_rlimit(unsigned long rlim, unsigned long new, unsigned long start, unsigned long end_data, unsigned long start_data) { if (rlim < RLIM_INFINITY) { if (((new - start) + (end_data - start_data)) > rlim) return -ENOSPC; } return 0; } extern int mm_take_all_locks(struct mm_struct *mm); extern void mm_drop_all_locks(struct mm_struct *mm); extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); extern struct file *get_mm_exe_file(struct mm_struct *mm); extern struct file *get_task_exe_file(struct task_struct *task); extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); extern bool vma_is_special_mapping(const struct vm_area_struct *vma, const struct vm_special_mapping *sm); extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, unsigned long addr, unsigned long len, unsigned long flags, const struct vm_special_mapping *spec); /* This is an obsolete alternative to _install_special_mapping. */ extern int install_special_mapping(struct mm_struct *mm, unsigned long addr, unsigned long len, unsigned long flags, struct page **pages); unsigned long randomize_stack_top(unsigned long stack_top); unsigned long randomize_page(unsigned long start, unsigned long range); extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); extern unsigned long mmap_region(struct file *file, unsigned long addr, unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, struct list_head *uf); extern unsigned long do_mmap(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flags, unsigned long pgoff, unsigned long *populate, struct list_head *uf); extern int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf, bool downgrade); extern int do_munmap(struct mm_struct *, unsigned long, size_t, struct list_head *uf); extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); #ifdef CONFIG_MMU extern int __mm_populate(unsigned long addr, unsigned long len, int ignore_errors); static inline void mm_populate(unsigned long addr, unsigned long len) { /* Ignore errors */ (void) __mm_populate(addr, len, 1); } #else static inline void mm_populate(unsigned long addr, unsigned long len) {} #endif /* These take the mm semaphore themselves */ extern int __must_check vm_brk(unsigned long, unsigned long); extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); extern int vm_munmap(unsigned long, size_t); extern unsigned long __must_check vm_mmap(struct file *, unsigned long, unsigned long, unsigned long, unsigned long, unsigned long); struct vm_unmapped_area_info { #define VM_UNMAPPED_AREA_TOPDOWN 1 unsigned long flags; unsigned long length; unsigned long low_limit; unsigned long high_limit; unsigned long align_mask; unsigned long align_offset; }; extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); /* truncate.c */ extern void truncate_inode_pages(struct address_space *, loff_t); extern void truncate_inode_pages_range(struct address_space *, loff_t lstart, loff_t lend); extern void truncate_inode_pages_final(struct address_space *); /* generic vm_area_ops exported for stackable file systems */ extern vm_fault_t filemap_fault(struct vm_fault *vmf); extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff); extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); extern unsigned long stack_guard_gap; /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ int expand_downwards(struct vm_area_struct *vma, unsigned long address); /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, struct vm_area_struct **pprev); /* * Look up the first VMA which intersects the interval [start_addr, end_addr) * NULL if none. Assume start_addr < end_addr. */ struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, unsigned long start_addr, unsigned long end_addr); /** * vma_lookup() - Find a VMA at a specific address * @mm: The process address space. * @addr: The user address. * * Return: The vm_area_struct at the given address, %NULL otherwise. */ static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) { return mtree_load(&mm->mm_mt, addr); } static inline unsigned long vm_start_gap(struct vm_area_struct *vma) { unsigned long vm_start = vma->vm_start; if (vma->vm_flags & VM_GROWSDOWN) { vm_start -= stack_guard_gap; if (vm_start > vma->vm_start) vm_start = 0; } return vm_start; } static inline unsigned long vm_end_gap(struct vm_area_struct *vma) { unsigned long vm_end = vma->vm_end; if (vma->vm_flags & VM_GROWSUP) { vm_end += stack_guard_gap; if (vm_end < vma->vm_end) vm_end = -PAGE_SIZE; } return vm_end; } static inline unsigned long vma_pages(struct vm_area_struct *vma) { return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; } /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, unsigned long vm_start, unsigned long vm_end) { struct vm_area_struct *vma = vma_lookup(mm, vm_start); if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) vma = NULL; return vma; } static inline bool range_in_vma(struct vm_area_struct *vma, unsigned long start, unsigned long end) { return (vma && vma->vm_start <= start && end <= vma->vm_end); } #ifdef CONFIG_MMU pgprot_t vm_get_page_prot(unsigned long vm_flags); void vma_set_page_prot(struct vm_area_struct *vma); #else static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) { return __pgprot(0); } static inline void vma_set_page_prot(struct vm_area_struct *vma) { vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); } #endif void vma_set_file(struct vm_area_struct *vma, struct file *file); #ifdef CONFIG_NUMA_BALANCING unsigned long change_prot_numa(struct vm_area_struct *vma, unsigned long start, unsigned long end); #endif struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, unsigned long addr); int remap_pfn_range(struct vm_area_struct *, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t); int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot); int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, struct page **pages, unsigned long *num); int vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num); int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, unsigned long num); vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn); vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, pgprot_t pgprot); vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn); vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t pgprot); vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn); int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) { int err = vm_insert_page(vma, addr, page); if (err == -ENOMEM) return VM_FAULT_OOM; if (err < 0 && err != -EBUSY) return VM_FAULT_SIGBUS; return VM_FAULT_NOPAGE; } #ifndef io_remap_pfn_range static inline int io_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot) { return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); } #endif static inline vm_fault_t vmf_error(int err) { if (err == -ENOMEM) return VM_FAULT_OOM; return VM_FAULT_SIGBUS; } struct page *follow_page(struct vm_area_struct *vma, unsigned long address, unsigned int foll_flags); #define FOLL_WRITE 0x01 /* check pte is writable */ #define FOLL_TOUCH 0x02 /* mark page accessed */ #define FOLL_GET 0x04 /* do get_page on page */ #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO * and return without waiting upon it */ #define FOLL_NOFAULT 0x80 /* do not fault in pages */ #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ #define FOLL_ANON 0x8000 /* don't do file mappings */ #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ /* * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each * other. Here is what they mean, and how to use them: * * FOLL_LONGTERM indicates that the page will be held for an indefinite time * period _often_ under userspace control. This is in contrast to * iov_iter_get_pages(), whose usages are transient. * * FIXME: For pages which are part of a filesystem, mappings are subject to the * lifetime enforced by the filesystem and we need guarantees that longterm * users like RDMA and V4L2 only establish mappings which coordinate usage with * the filesystem. Ideas for this coordination include revoking the longterm * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was * added after the problem with filesystems was found FS DAX VMAs are * specifically failed. Filesystem pages are still subject to bugs and use of * FOLL_LONGTERM should be avoided on those pages. * * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. * Currently only get_user_pages() and get_user_pages_fast() support this flag * and calls to get_user_pages_[un]locked are specifically not allowed. This * is due to an incompatibility with the FS DAX check and * FAULT_FLAG_ALLOW_RETRY. * * In the CMA case: long term pins in a CMA region would unnecessarily fragment * that region. And so, CMA attempts to migrate the page before pinning, when * FOLL_LONGTERM is specified. * * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, * but an additional pin counting system) will be invoked. This is intended for * anything that gets a page reference and then touches page data (for example, * Direct IO). This lets the filesystem know that some non-file-system entity is * potentially changing the pages' data. In contrast to FOLL_GET (whose pages * are released via put_page()), FOLL_PIN pages must be released, ultimately, by * a call to unpin_user_page(). * * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different * and separate refcounting mechanisms, however, and that means that each has * its own acquire and release mechanisms: * * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. * * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. * * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based * calls applied to them, and that's perfectly OK. This is a constraint on the * callers, not on the pages.) * * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never * directly by the caller. That's in order to help avoid mismatches when * releasing pages: get_user_pages*() pages must be released via put_page(), * while pin_user_pages*() pages must be released via unpin_user_page(). * * Please see Documentation/core-api/pin_user_pages.rst for more information. */ static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) { if (vm_fault & VM_FAULT_OOM) return -ENOMEM; if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) return -EFAULT; return 0; } /* * Indicates for which pages that are write-protected in the page table, * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the * GUP pin will remain consistent with the pages mapped into the page tables * of the MM. * * Temporary unmapping of PageAnonExclusive() pages or clearing of * PageAnonExclusive() has to protect against concurrent GUP: * * Ordinary GUP: Using the PT lock * * GUP-fast and fork(): mm->write_protect_seq * * GUP-fast and KSM or temporary unmapping (swap, migration): see * page_try_share_anon_rmap() * * Must be called with the (sub)page that's actually referenced via the * page table entry, which might not necessarily be the head page for a * PTE-mapped THP. */ static inline bool gup_must_unshare(unsigned int flags, struct page *page) { /* * FOLL_WRITE is implicitly handled correctly as the page table entry * has to be writable -- and if it references (part of) an anonymous * folio, that part is required to be marked exclusive. */ if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) return false; /* * Note: PageAnon(page) is stable until the page is actually getting * freed. */ if (!PageAnon(page)) return false; /* Paired with a memory barrier in page_try_share_anon_rmap(). */ if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) smp_rmb(); /* * During GUP-fast we might not get called on the head page for a * hugetlb page that is mapped using cont-PTE, because GUP-fast does * not work with the abstracted hugetlb PTEs that always point at the * head page. For hugetlb, PageAnonExclusive only applies on the head * page (as it cannot be partially COW-shared), so lookup the head page. */ if (unlikely(!PageHead(page) && PageHuge(page))) page = compound_head(page); /* * Note that PageKsm() pages cannot be exclusive, and consequently, * cannot get pinned. */ return !PageAnonExclusive(page); } /* * Indicates whether GUP can follow a PROT_NONE mapped page, or whether * a (NUMA hinting) fault is required. */ static inline bool gup_can_follow_protnone(unsigned int flags) { /* * FOLL_FORCE has to be able to make progress even if the VMA is * inaccessible. Further, FOLL_FORCE access usually does not represent * application behaviour and we should avoid triggering NUMA hinting * faults. */ return flags & FOLL_FORCE; } typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, unsigned long size, pte_fn_t fn, void *data); extern int apply_to_existing_page_range(struct mm_struct *mm, unsigned long address, unsigned long size, pte_fn_t fn, void *data); extern void __init init_mem_debugging_and_hardening(void); #ifdef CONFIG_PAGE_POISONING extern void __kernel_poison_pages(struct page *page, int numpages); extern void __kernel_unpoison_pages(struct page *page, int numpages); extern bool _page_poisoning_enabled_early; DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); static inline bool page_poisoning_enabled(void) { return _page_poisoning_enabled_early; } /* * For use in fast paths after init_mem_debugging() has run, or when a * false negative result is not harmful when called too early. */ static inline bool page_poisoning_enabled_static(void) { return static_branch_unlikely(&_page_poisoning_enabled); } static inline void kernel_poison_pages(struct page *page, int numpages) { if (page_poisoning_enabled_static()) __kernel_poison_pages(page, numpages); } static inline void kernel_unpoison_pages(struct page *page, int numpages) { if (page_poisoning_enabled_static()) __kernel_unpoison_pages(page, numpages); } #else static inline bool page_poisoning_enabled(void) { return false; } static inline bool page_poisoning_enabled_static(void) { return false; } static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } static inline void kernel_poison_pages(struct page *page, int numpages) { } static inline void kernel_unpoison_pages(struct page *page, int numpages) { } #endif DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); static inline bool want_init_on_alloc(gfp_t flags) { if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, &init_on_alloc)) return true; return flags & __GFP_ZERO; } DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); static inline bool want_init_on_free(void) { return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, &init_on_free); } extern bool _debug_pagealloc_enabled_early; DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); static inline bool debug_pagealloc_enabled(void) { return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && _debug_pagealloc_enabled_early; } /* * For use in fast paths after init_debug_pagealloc() has run, or when a * false negative result is not harmful when called too early. */ static inline bool debug_pagealloc_enabled_static(void) { if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) return false; return static_branch_unlikely(&_debug_pagealloc_enabled); } #ifdef CONFIG_DEBUG_PAGEALLOC /* * To support DEBUG_PAGEALLOC architecture must ensure that * __kernel_map_pages() never fails */ extern void __kernel_map_pages(struct page *page, int numpages, int enable); static inline void debug_pagealloc_map_pages(struct page *page, int numpages) { if (debug_pagealloc_enabled_static()) __kernel_map_pages(page, numpages, 1); } static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) { if (debug_pagealloc_enabled_static()) __kernel_map_pages(page, numpages, 0); } #else /* CONFIG_DEBUG_PAGEALLOC */ static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} #endif /* CONFIG_DEBUG_PAGEALLOC */ #ifdef __HAVE_ARCH_GATE_AREA extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); extern int in_gate_area_no_mm(unsigned long addr); extern int in_gate_area(struct mm_struct *mm, unsigned long addr); #else static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) { return NULL; } static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) { return 0; } #endif /* __HAVE_ARCH_GATE_AREA */ extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); #ifdef CONFIG_SYSCTL extern int sysctl_drop_caches; int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, loff_t *); #endif void drop_slab(void); #ifndef CONFIG_MMU #define randomize_va_space 0 #else extern int randomize_va_space; #endif const char * arch_vma_name(struct vm_area_struct *vma); #ifdef CONFIG_MMU void print_vma_addr(char *prefix, unsigned long rip); #else static inline void print_vma_addr(char *prefix, unsigned long rip) { } #endif void *sparse_buffer_alloc(unsigned long size); struct page * __populate_section_memmap(unsigned long pfn, unsigned long nr_pages, int nid, struct vmem_altmap *altmap, struct dev_pagemap *pgmap); pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, struct vmem_altmap *altmap, struct page *reuse); void *vmemmap_alloc_block(unsigned long size, int node); struct vmem_altmap; void *vmemmap_alloc_block_buf(unsigned long size, int node, struct vmem_altmap *altmap); void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); int vmemmap_populate_basepages(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap); int vmemmap_populate(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap); void vmemmap_populate_print_last(void); #ifdef CONFIG_MEMORY_HOTPLUG void vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap); #endif void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, unsigned long nr_pages); enum mf_flags { MF_COUNT_INCREASED = 1 << 0, MF_ACTION_REQUIRED = 1 << 1, MF_MUST_KILL = 1 << 2, MF_SOFT_OFFLINE = 1 << 3, MF_UNPOISON = 1 << 4, MF_SW_SIMULATED = 1 << 5, MF_NO_RETRY = 1 << 6, }; int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, unsigned long count, int mf_flags); extern int memory_failure(unsigned long pfn, int flags); extern void memory_failure_queue_kick(int cpu); extern int unpoison_memory(unsigned long pfn); extern int sysctl_memory_failure_early_kill; extern int sysctl_memory_failure_recovery; extern void shake_page(struct page *p); extern atomic_long_t num_poisoned_pages __read_mostly; extern int soft_offline_page(unsigned long pfn, int flags); #ifdef CONFIG_MEMORY_FAILURE extern void memory_failure_queue(unsigned long pfn, int flags); extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags); #else static inline void memory_failure_queue(unsigned long pfn, int flags) { } static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags) { return 0; } #endif #ifndef arch_memory_failure static inline int arch_memory_failure(unsigned long pfn, int flags) { return -ENXIO; } #endif #ifndef arch_is_platform_page static inline bool arch_is_platform_page(u64 paddr) { return false; } #endif /* * Error handlers for various types of pages. */ enum mf_result { MF_IGNORED, /* Error: cannot be handled */ MF_FAILED, /* Error: handling failed */ MF_DELAYED, /* Will be handled later */ MF_RECOVERED, /* Successfully recovered */ }; enum mf_action_page_type { MF_MSG_KERNEL, MF_MSG_KERNEL_HIGH_ORDER, MF_MSG_SLAB, MF_MSG_DIFFERENT_COMPOUND, MF_MSG_HUGE, MF_MSG_FREE_HUGE, MF_MSG_UNMAP_FAILED, MF_MSG_DIRTY_SWAPCACHE, MF_MSG_CLEAN_SWAPCACHE, MF_MSG_DIRTY_MLOCKED_LRU, MF_MSG_CLEAN_MLOCKED_LRU, MF_MSG_DIRTY_UNEVICTABLE_LRU, MF_MSG_CLEAN_UNEVICTABLE_LRU, MF_MSG_DIRTY_LRU, MF_MSG_CLEAN_LRU, MF_MSG_TRUNCATED_LRU, MF_MSG_BUDDY, MF_MSG_DAX, MF_MSG_UNSPLIT_THP, MF_MSG_UNKNOWN, }; #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) extern void clear_huge_page(struct page *page, unsigned long addr_hint, unsigned int pages_per_huge_page); extern void copy_user_huge_page(struct page *dst, struct page *src, unsigned long addr_hint, struct vm_area_struct *vma, unsigned int pages_per_huge_page); extern long copy_huge_page_from_user(struct page *dst_page, const void __user *usr_src, unsigned int pages_per_huge_page, bool allow_pagefault); /** * vma_is_special_huge - Are transhuge page-table entries considered special? * @vma: Pointer to the struct vm_area_struct to consider * * Whether transhuge page-table entries are considered "special" following * the definition in vm_normal_page(). * * Return: true if transhuge page-table entries should be considered special, * false otherwise. */ static inline bool vma_is_special_huge(const struct vm_area_struct *vma) { return vma_is_dax(vma) || (vma->vm_file && (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ #ifdef CONFIG_DEBUG_PAGEALLOC extern unsigned int _debug_guardpage_minorder; DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); static inline unsigned int debug_guardpage_minorder(void) { return _debug_guardpage_minorder; } static inline bool debug_guardpage_enabled(void) { return static_branch_unlikely(&_debug_guardpage_enabled); } static inline bool page_is_guard(struct page *page) { if (!debug_guardpage_enabled()) return false; return PageGuard(page); } #else static inline unsigned int debug_guardpage_minorder(void) { return 0; } static inline bool debug_guardpage_enabled(void) { return false; } static inline bool page_is_guard(struct page *page) { return false; } #endif /* CONFIG_DEBUG_PAGEALLOC */ #if MAX_NUMNODES > 1 void __init setup_nr_node_ids(void); #else static inline void setup_nr_node_ids(void) {} #endif extern int memcmp_pages(struct page *page1, struct page *page2); static inline int pages_identical(struct page *page1, struct page *page2) { return !memcmp_pages(page1, page2); } #ifdef CONFIG_MAPPING_DIRTY_HELPERS unsigned long clean_record_shared_mapping_range(struct address_space *mapping, pgoff_t first_index, pgoff_t nr, pgoff_t bitmap_pgoff, unsigned long *bitmap, pgoff_t *start, pgoff_t *end); unsigned long wp_shared_mapping_range(struct address_space *mapping, pgoff_t first_index, pgoff_t nr); #endif extern int sysctl_nr_trim_pages; #ifdef CONFIG_PRINTK void mem_dump_obj(void *object); #else static inline void mem_dump_obj(void *object) {} #endif /** * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it * @seals: the seals to check * @vma: the vma to operate on * * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on * the vma flags. Return 0 if check pass, or <0 for errors. */ static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) { if (seals & F_SEAL_FUTURE_WRITE) { /* * New PROT_WRITE and MAP_SHARED mmaps are not allowed when * "future write" seal active. */ if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) return -EPERM; /* * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as * MAP_SHARED and read-only, take care to not allow mprotect to * revert protections on such mappings. Do this only for shared * mappings. For private mappings, don't need to mask * VM_MAYWRITE as we still want them to be COW-writable. */ if (vma->vm_flags & VM_SHARED) vma->vm_flags &= ~(VM_MAYWRITE); } return 0; } #ifdef CONFIG_ANON_VMA_NAME int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, unsigned long len_in, struct anon_vma_name *anon_name); #else static inline int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, unsigned long len_in, struct anon_vma_name *anon_name) { return 0; } #endif #endif /* _LINUX_MM_H */
14 21 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 #ifndef LLC_PDU_H #define LLC_PDU_H /* * Copyright (c) 1997 by Procom Technology,Inc. * 2001-2003 by Arnaldo Carvalho de Melo <acme@conectiva.com.br> * * This program can be redistributed or modified under the terms of the * GNU General Public License as published by the Free Software Foundation. * This program is distributed without any warranty or implied warranty * of merchantability or fitness for a particular purpose. * * See the GNU General Public License for more details. */ #include <linux/if_ether.h> /* Lengths of frame formats */ #define LLC_PDU_LEN_I 4 /* header and 2 control bytes */ #define LLC_PDU_LEN_S 4 #define LLC_PDU_LEN_U 3 /* header and 1 control byte */ /* header and 1 control byte and XID info */ #define LLC_PDU_LEN_U_XID (LLC_PDU_LEN_U + sizeof(struct llc_xid_info)) /* Known SAP addresses */ #define LLC_GLOBAL_SAP 0xFF #define LLC_NULL_SAP 0x00 /* not network-layer visible */ #define LLC_MGMT_INDIV 0x02 /* station LLC mgmt indiv addr */ #define LLC_MGMT_GRP 0x03 /* station LLC mgmt group addr */ #define LLC_RDE_SAP 0xA6 /* route ... */ /* SAP field bit masks */ #define LLC_ISO_RESERVED_SAP 0x02 #define LLC_SAP_GROUP_DSAP 0x01 #define LLC_SAP_RESP_SSAP 0x01 /* Group/individual DSAP indicator is DSAP field */ #define LLC_PDU_GROUP_DSAP_MASK 0x01 #define LLC_PDU_IS_GROUP_DSAP(pdu) \ ((pdu->dsap & LLC_PDU_GROUP_DSAP_MASK) ? 0 : 1) #define LLC_PDU_IS_INDIV_DSAP(pdu) \ (!(pdu->dsap & LLC_PDU_GROUP_DSAP_MASK) ? 0 : 1) /* Command/response PDU indicator in SSAP field */ #define LLC_PDU_CMD_RSP_MASK 0x01 #define LLC_PDU_CMD 0 #define LLC_PDU_RSP 1 #define LLC_PDU_IS_CMD(pdu) ((pdu->ssap & LLC_PDU_RSP) ? 0 : 1) #define LLC_PDU_IS_RSP(pdu) ((pdu->ssap & LLC_PDU_RSP) ? 1 : 0) /* Get PDU type from 2 lowest-order bits of control field first byte */ #define LLC_PDU_TYPE_I_MASK 0x01 /* 16-bit control field */ #define LLC_PDU_TYPE_S_MASK 0x03 #define LLC_PDU_TYPE_U_MASK 0x03 /* 8-bit control field */ #define LLC_PDU_TYPE_MASK 0x03 #define LLC_PDU_TYPE_I 0 /* first bit */ #define LLC_PDU_TYPE_S 1 /* first two bits */ #define LLC_PDU_TYPE_U 3 /* first two bits */ #define LLC_PDU_TYPE_U_XID 4 /* private type for detecting XID commands */ #define LLC_PDU_TYPE_IS_I(pdu) \ ((!(pdu->ctrl_1 & LLC_PDU_TYPE_I_MASK)) ? 1 : 0) #define LLC_PDU_TYPE_IS_U(pdu) \ (((pdu->ctrl_1 & LLC_PDU_TYPE_U_MASK) == LLC_PDU_TYPE_U) ? 1 : 0) #define LLC_PDU_TYPE_IS_S(pdu) \ (((pdu->ctrl_1 & LLC_PDU_TYPE_S_MASK) == LLC_PDU_TYPE_S) ? 1 : 0) /* U-format PDU control field masks */ #define LLC_U_PF_BIT_MASK 0x10 /* P/F bit mask */ #define LLC_U_PF_IS_1(pdu) ((pdu->ctrl_1 & LLC_U_PF_BIT_MASK) ? 1 : 0) #define LLC_U_PF_IS_0(pdu) ((!(pdu->ctrl_1 & LLC_U_PF_BIT_MASK)) ? 1 : 0) #define LLC_U_PDU_CMD_MASK 0xEC /* cmd/rsp mask */ #define LLC_U_PDU_CMD(pdu) (pdu->ctrl_1 & LLC_U_PDU_CMD_MASK) #define LLC_U_PDU_RSP(pdu) (pdu->ctrl_1 & LLC_U_PDU_CMD_MASK) #define LLC_1_PDU_CMD_UI 0x00 /* Type 1 cmds/rsps */ #define LLC_1_PDU_CMD_XID 0xAC #define LLC_1_PDU_CMD_TEST 0xE0 #define LLC_2_PDU_CMD_SABME 0x6C /* Type 2 cmds/rsps */ #define LLC_2_PDU_CMD_DISC 0x40 #define LLC_2_PDU_RSP_UA 0x60 #define LLC_2_PDU_RSP_DM 0x0C #define LLC_2_PDU_RSP_FRMR 0x84 /* Type 1 operations */ /* XID information field bit masks */ /* LLC format identifier (byte 1) */ #define LLC_XID_FMT_ID 0x81 /* first byte must be this */ /* LLC types/classes identifier (byte 2) */ #define LLC_XID_CLASS_ZEROS_MASK 0xE0 /* these must be zeros */ #define LLC_XID_CLASS_MASK 0x1F /* AND with byte to get below */ #define LLC_XID_NULL_CLASS_1 0x01 /* if NULL LSAP...use these */ #define LLC_XID_NULL_CLASS_2 0x03 #define LLC_XID_NULL_CLASS_3 0x05 #define LLC_XID_NULL_CLASS_4 0x07 #define LLC_XID_NNULL_TYPE_1 0x01 /* if non-NULL LSAP...use these */ #define LLC_XID_NNULL_TYPE_2 0x02 #define LLC_XID_NNULL_TYPE_3 0x04 #define LLC_XID_NNULL_TYPE_1_2 0x03 #define LLC_XID_NNULL_TYPE_1_3 0x05 #define LLC_XID_NNULL_TYPE_2_3 0x06 #define LLC_XID_NNULL_ALL 0x07 /* Sender Receive Window (byte 3) */ #define LLC_XID_RW_MASK 0xFE /* AND with value to get below */ #define LLC_XID_MIN_RW 0x02 /* lowest-order bit always zero */ /* Type 2 operations */ #define LLC_2_SEQ_NBR_MODULO ((u8) 128) /* I-PDU masks ('ctrl' is I-PDU control word) */ #define LLC_I_GET_NS(pdu) (u8)((pdu->ctrl_1 & 0xFE) >> 1) #define LLC_I_GET_NR(pdu) (u8)((pdu->ctrl_2 & 0xFE) >> 1) #define LLC_I_PF_BIT_MASK 0x01 #define LLC_I_PF_IS_0(pdu) ((!(pdu->ctrl_2 & LLC_I_PF_BIT_MASK)) ? 1 : 0) #define LLC_I_PF_IS_1(pdu) ((pdu->ctrl_2 & LLC_I_PF_BIT_MASK) ? 1 : 0) /* S-PDU supervisory commands and responses */ #define LLC_S_PDU_CMD_MASK 0x0C #define LLC_S_PDU_CMD(pdu) (pdu->ctrl_1 & LLC_S_PDU_CMD_MASK) #define LLC_S_PDU_RSP(pdu) (pdu->ctrl_1 & LLC_S_PDU_CMD_MASK) #define LLC_2_PDU_CMD_RR 0x00 /* rx ready cmd */ #define LLC_2_PDU_RSP_RR 0x00 /* rx ready rsp */ #define LLC_2_PDU_CMD_REJ 0x08 /* reject PDU cmd */ #define LLC_2_PDU_RSP_REJ 0x08 /* reject PDU rsp */ #define LLC_2_PDU_CMD_RNR 0x04 /* rx not ready cmd */ #define LLC_2_PDU_RSP_RNR 0x04 /* rx not ready rsp */ #define LLC_S_PF_BIT_MASK 0x01 #define LLC_S_PF_IS_0(pdu) ((!(pdu->ctrl_2 & LLC_S_PF_BIT_MASK)) ? 1 : 0) #define LLC_S_PF_IS_1(pdu) ((pdu->ctrl_2 & LLC_S_PF_BIT_MASK) ? 1 : 0) #define PDU_SUPV_GET_Nr(pdu) ((pdu->ctrl_2 & 0xFE) >> 1) #define PDU_GET_NEXT_Vr(sn) (((sn) + 1) & ~LLC_2_SEQ_NBR_MODULO) /* FRMR information field macros */ #define FRMR_INFO_LENGTH 5 /* 5 bytes of information */ /* * info is pointer to FRMR info field structure; 'rej_ctrl' is byte pointer * (if U-PDU) or word pointer to rejected PDU control field */ #define FRMR_INFO_SET_REJ_CNTRL(info,rej_ctrl) \ info->rej_pdu_ctrl = ((*((u8 *) rej_ctrl) & \ LLC_PDU_TYPE_U) != LLC_PDU_TYPE_U ? \ (u16)*((u16 *) rej_ctrl) : \ (((u16) *((u8 *) rej_ctrl)) & 0x00FF)) /* * Info is pointer to FRMR info field structure; 'vs' is a byte containing * send state variable value in low-order 7 bits (insure the lowest-order * bit remains zero (0)) */ #define FRMR_INFO_SET_Vs(info,vs) (info->curr_ssv = (((u8) vs) << 1)) #define FRMR_INFO_SET_Vr(info,vr) (info->curr_rsv = (((u8) vr) << 1)) /* * Info is pointer to FRMR info field structure; 'cr' is a byte containing * the C/R bit value in the low-order bit */ #define FRMR_INFO_SET_C_R_BIT(info, cr) (info->curr_rsv |= (((u8) cr) & 0x01)) /* * In the remaining five macros, 'info' is pointer to FRMR info field * structure; 'ind' is a byte containing the bit value to set in the * lowest-order bit) */ #define FRMR_INFO_SET_INVALID_PDU_CTRL_IND(info, ind) \ (info->ind_bits = ((info->ind_bits & 0xFE) | (((u8) ind) & 0x01))) #define FRMR_INFO_SET_INVALID_PDU_INFO_IND(info, ind) \ (info->ind_bits = ( (info->ind_bits & 0xFD) | (((u8) ind) & 0x02))) #define FRMR_INFO_SET_PDU_INFO_2LONG_IND(info, ind) \ (info->ind_bits = ( (info->ind_bits & 0xFB) | (((u8) ind) & 0x04))) #define FRMR_INFO_SET_PDU_INVALID_Nr_IND(info, ind) \ (info->ind_bits = ( (info->ind_bits & 0xF7) | (((u8) ind) & 0x08))) #define FRMR_INFO_SET_PDU_INVALID_Ns_IND(info, ind) \ (info->ind_bits = ( (info->ind_bits & 0xEF) | (((u8) ind) & 0x10))) /* Sequence-numbered PDU format (4 bytes in length) */ struct llc_pdu_sn { u8 dsap; u8 ssap; u8 ctrl_1; u8 ctrl_2; } __packed; static inline struct llc_pdu_sn *llc_pdu_sn_hdr(struct sk_buff *skb) { return (struct llc_pdu_sn *)skb_network_header(skb); } /* Un-numbered PDU format (3 bytes in length) */ struct llc_pdu_un { u8 dsap; u8 ssap; u8 ctrl_1; } __packed; static inline struct llc_pdu_un *llc_pdu_un_hdr(struct sk_buff *skb) { return (struct llc_pdu_un *)skb_network_header(skb); } /** * llc_pdu_header_init - initializes pdu header * @skb: input skb that header must be set into it. * @type: type of PDU (U, I or S). * @ssap: source sap. * @dsap: destination sap. * @cr: command/response bit (0 or 1). * * This function sets DSAP, SSAP and command/Response bit in LLC header. */ static inline void llc_pdu_header_init(struct sk_buff *skb, u8 type, u8 ssap, u8 dsap, u8 cr) { int hlen = 4; /* default value for I and S types */ struct llc_pdu_un *pdu; switch (type) { case LLC_PDU_TYPE_U: hlen = 3; break; case LLC_PDU_TYPE_U_XID: hlen = 6; break; } skb_push(skb, hlen); skb_reset_network_header(skb); pdu = llc_pdu_un_hdr(skb); pdu->dsap = dsap; pdu->ssap = ssap; pdu->ssap |= cr; } /** * llc_pdu_decode_sa - extracs source address (MAC) of input frame * @skb: input skb that source address must be extracted from it. * @sa: pointer to source address (6 byte array). * * This function extracts source address(MAC) of input frame. */ static inline void llc_pdu_decode_sa(struct sk_buff *skb, u8 *sa) { memcpy(sa, eth_hdr(skb)->h_source, ETH_ALEN); } /** * llc_pdu_decode_da - extracts dest address of input frame * @skb: input skb that destination address must be extracted from it * @sa: pointer to destination address (6 byte array). * * This function extracts destination address(MAC) of input frame. */ static inline void llc_pdu_decode_da(struct sk_buff *skb, u8 *da) { memcpy(da, eth_hdr(skb)->h_dest, ETH_ALEN); } /** * llc_pdu_decode_ssap - extracts source SAP of input frame * @skb: input skb that source SAP must be extracted from it. * @ssap: source SAP (output argument). * * This function extracts source SAP of input frame. Right bit of SSAP is * command/response bit. */ static inline void llc_pdu_decode_ssap(struct sk_buff *skb, u8 *ssap) { *ssap = llc_pdu_un_hdr(skb)->ssap & 0xFE; } /** * llc_pdu_decode_dsap - extracts dest SAP of input frame * @skb: input skb that destination SAP must be extracted from it. * @dsap: destination SAP (output argument). * * This function extracts destination SAP of input frame. right bit of * DSAP designates individual/group SAP. */ static inline void llc_pdu_decode_dsap(struct sk_buff *skb, u8 *dsap) { *dsap = llc_pdu_un_hdr(skb)->dsap & 0xFE; } /** * llc_pdu_init_as_ui_cmd - sets LLC header as UI PDU * @skb: input skb that header must be set into it. * * This function sets third byte of LLC header as a UI PDU. */ static inline void llc_pdu_init_as_ui_cmd(struct sk_buff *skb) { struct llc_pdu_un *pdu = llc_pdu_un_hdr(skb); pdu->ctrl_1 = LLC_PDU_TYPE_U; pdu->ctrl_1 |= LLC_1_PDU_CMD_UI; } /** * llc_pdu_init_as_test_cmd - sets PDU as TEST * @skb - Address of the skb to build * * Sets a PDU as TEST */ static inline void llc_pdu_init_as_test_cmd(struct sk_buff *skb) { struct llc_pdu_un *pdu = llc_pdu_un_hdr(skb); pdu->ctrl_1 = LLC_PDU_TYPE_U; pdu->ctrl_1 |= LLC_1_PDU_CMD_TEST; pdu->ctrl_1 |= LLC_U_PF_BIT_MASK; } /** * llc_pdu_init_as_test_rsp - build TEST response PDU * @skb: Address of the skb to build * @ev_skb: The received TEST command PDU frame * * Builds a pdu frame as a TEST response. */ static inline void llc_pdu_init_as_test_rsp(struct sk_buff *skb, struct sk_buff *ev_skb) { struct llc_pdu_un *pdu = llc_pdu_un_hdr(skb); pdu->ctrl_1 = LLC_PDU_TYPE_U; pdu->ctrl_1 |= LLC_1_PDU_CMD_TEST; pdu->ctrl_1 |= LLC_U_PF_BIT_MASK; if (ev_skb->protocol == htons(ETH_P_802_2)) { struct llc_pdu_un *ev_pdu = llc_pdu_un_hdr(ev_skb); int dsize; dsize = ntohs(eth_hdr(ev_skb)->h_proto) - 3; memcpy(((u8 *)pdu) + 3, ((u8 *)ev_pdu) + 3, dsize); skb_put(skb, dsize); } } /* LLC Type 1 XID command/response information fields format */ struct llc_xid_info { u8 fmt_id; /* always 0x81 for LLC */ u8 type; /* different if NULL/non-NULL LSAP */ u8 rw; /* sender receive window */ } __packed; /** * llc_pdu_init_as_xid_cmd - sets bytes 3, 4 & 5 of LLC header as XID * @skb: input skb that header must be set into it. * * This function sets third,fourth,fifth and sixth bytes of LLC header as * a XID PDU. */ static inline void llc_pdu_init_as_xid_cmd(struct sk_buff *skb, u8 svcs_supported, u8 rx_window) { struct llc_xid_info *xid_info; struct llc_pdu_un *pdu = llc_pdu_un_hdr(skb); pdu->ctrl_1 = LLC_PDU_TYPE_U; pdu->ctrl_1 |= LLC_1_PDU_CMD_XID; pdu->ctrl_1 |= LLC_U_PF_BIT_MASK; xid_info = (struct llc_xid_info *)(((u8 *)&pdu->ctrl_1) + 1); xid_info->fmt_id = LLC_XID_FMT_ID; /* 0x81 */ xid_info->type = svcs_supported; xid_info->rw = rx_window << 1; /* size of receive window */ /* no need to push/put since llc_pdu_header_init() has already * pushed 3 + 3 bytes */ } /** * llc_pdu_init_as_xid_rsp - builds XID response PDU * @skb: Address of the skb to build * @svcs_supported: The class of the LLC (I or II) * @rx_window: The size of the receive window of the LLC * * Builds a pdu frame as an XID response. */ static inline void llc_pdu_init_as_xid_rsp(struct sk_buff *skb, u8 svcs_supported, u8 rx_window) { struct llc_xid_info *xid_info; struct llc_pdu_un *pdu = llc_pdu_un_hdr(skb); pdu->ctrl_1 = LLC_PDU_TYPE_U; pdu->ctrl_1 |= LLC_1_PDU_CMD_XID; pdu->ctrl_1 |= LLC_U_PF_BIT_MASK; xid_info = (struct llc_xid_info *)(((u8 *)&pdu->ctrl_1) + 1); xid_info->fmt_id = LLC_XID_FMT_ID; xid_info->type = svcs_supported; xid_info->rw = rx_window << 1; skb_put(skb, sizeof(struct llc_xid_info)); } /* LLC Type 2 FRMR response information field format */ struct llc_frmr_info { u16 rej_pdu_ctrl; /* bits 1-8 if U-PDU */ u8 curr_ssv; /* current send state variable val */ u8 curr_rsv; /* current receive state variable */ u8 ind_bits; /* indicator bits set with macro */ } __packed; void llc_pdu_set_cmd_rsp(struct sk_buff *skb, u8 type); void llc_pdu_set_pf_bit(struct sk_buff *skb, u8 bit_value); void llc_pdu_decode_pf_bit(struct sk_buff *skb, u8 *pf_bit); void llc_pdu_init_as_disc_cmd(struct sk_buff *skb, u8 p_bit); void llc_pdu_init_as_i_cmd(struct sk_buff *skb, u8 p_bit, u8 ns, u8 nr); void llc_pdu_init_as_rej_cmd(struct sk_buff *skb, u8 p_bit, u8 nr); void llc_pdu_init_as_rnr_cmd(struct sk_buff *skb, u8 p_bit, u8 nr); void llc_pdu_init_as_rr_cmd(struct sk_buff *skb, u8 p_bit, u8 nr); void llc_pdu_init_as_sabme_cmd(struct sk_buff *skb, u8 p_bit); void llc_pdu_init_as_dm_rsp(struct sk_buff *skb, u8 f_bit); void llc_pdu_init_as_frmr_rsp(struct sk_buff *skb, struct llc_pdu_sn *prev_pdu, u8 f_bit, u8 vs, u8 vr, u8 vzyxw); void llc_pdu_init_as_rr_rsp(struct sk_buff *skb, u8 f_bit, u8 nr); void llc_pdu_init_as_rej_rsp(struct sk_buff *skb, u8 f_bit, u8 nr); void llc_pdu_init_as_rnr_rsp(struct sk_buff *skb, u8 f_bit, u8 nr); void llc_pdu_init_as_ua_rsp(struct sk_buff *skb, u8 f_bit); #endif /* LLC_PDU_H */
5 5 5 11 2 5 5 5 7 4 3 3 3 1 5 1 3 1 2 1 1 49 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 // SPDX-License-Identifier: GPL-2.0 #include <linux/bpf.h> #include <linux/bpf-netns.h> #include <linux/filter.h> #include <net/net_namespace.h> /* * Functions to manage BPF programs attached to netns */ struct bpf_netns_link { struct bpf_link link; enum bpf_attach_type type; enum netns_bpf_attach_type netns_type; /* We don't hold a ref to net in order to auto-detach the link * when netns is going away. Instead we rely on pernet * pre_exit callback to clear this pointer. Must be accessed * with netns_bpf_mutex held. */ struct net *net; struct list_head node; /* node in list of links attached to net */ }; /* Protects updates to netns_bpf */ DEFINE_MUTEX(netns_bpf_mutex); static void netns_bpf_attach_type_unneed(enum netns_bpf_attach_type type) { switch (type) { #ifdef CONFIG_INET case NETNS_BPF_SK_LOOKUP: static_branch_dec(&bpf_sk_lookup_enabled); break; #endif default: break; } } static void netns_bpf_attach_type_need(enum netns_bpf_attach_type type) { switch (type) { #ifdef CONFIG_INET case NETNS_BPF_SK_LOOKUP: static_branch_inc(&bpf_sk_lookup_enabled); break; #endif default: break; } } /* Must be called with netns_bpf_mutex held. */ static void netns_bpf_run_array_detach(struct net *net, enum netns_bpf_attach_type type) { struct bpf_prog_array *run_array; run_array = rcu_replace_pointer(net->bpf.run_array[type], NULL, lockdep_is_held(&netns_bpf_mutex)); bpf_prog_array_free(run_array); } static int link_index(struct net *net, enum netns_bpf_attach_type type, struct bpf_netns_link *link) { struct bpf_netns_link *pos; int i = 0; list_for_each_entry(pos, &net->bpf.links[type], node) { if (pos == link) return i; i++; } return -ENOENT; } static int link_count(struct net *net, enum netns_bpf_attach_type type) { struct list_head *pos; int i = 0; list_for_each(pos, &net->bpf.links[type]) i++; return i; } static void fill_prog_array(struct net *net, enum netns_bpf_attach_type type, struct bpf_prog_array *prog_array) { struct bpf_netns_link *pos; unsigned int i = 0; list_for_each_entry(pos, &net->bpf.links[type], node) { prog_array->items[i].prog = pos->link.prog; i++; } } static void bpf_netns_link_release(struct bpf_link *link) { struct bpf_netns_link *net_link = container_of(link, struct bpf_netns_link, link); enum netns_bpf_attach_type type = net_link->netns_type; struct bpf_prog_array *old_array, *new_array; struct net *net; int cnt, idx; mutex_lock(&netns_bpf_mutex); /* We can race with cleanup_net, but if we see a non-NULL * struct net pointer, pre_exit has not run yet and wait for * netns_bpf_mutex. */ net = net_link->net; if (!net) goto out_unlock; /* Mark attach point as unused */ netns_bpf_attach_type_unneed(type); /* Remember link position in case of safe delete */ idx = link_index(net, type, net_link); list_del(&net_link->node); cnt = link_count(net, type); if (!cnt) { netns_bpf_run_array_detach(net, type); goto out_unlock; } old_array = rcu_dereference_protected(net->bpf.run_array[type], lockdep_is_held(&netns_bpf_mutex)); new_array = bpf_prog_array_alloc(cnt, GFP_KERNEL); if (!new_array) { WARN_ON(bpf_prog_array_delete_safe_at(old_array, idx)); goto out_unlock; } fill_prog_array(net, type, new_array); rcu_assign_pointer(net->bpf.run_array[type], new_array); bpf_prog_array_free(old_array); out_unlock: net_link->net = NULL; mutex_unlock(&netns_bpf_mutex); } static int bpf_netns_link_detach(struct bpf_link *link) { bpf_netns_link_release(link); return 0; } static void bpf_netns_link_dealloc(struct bpf_link *link) { struct bpf_netns_link *net_link = container_of(link, struct bpf_netns_link, link); kfree(net_link); } static int bpf_netns_link_update_prog(struct bpf_link *link, struct bpf_prog *new_prog, struct bpf_prog *old_prog) { struct bpf_netns_link *net_link = container_of(link, struct bpf_netns_link, link); enum netns_bpf_attach_type type = net_link->netns_type; struct bpf_prog_array *run_array; struct net *net; int idx, ret; if (old_prog && old_prog != link->prog) return -EPERM; if (new_prog->type != link->prog->type) return -EINVAL; mutex_lock(&netns_bpf_mutex); net = net_link->net; if (!net || !check_net(net)) { /* Link auto-detached or netns dying */ ret = -ENOLINK; goto out_unlock; } run_array = rcu_dereference_protected(net->bpf.run_array[type], lockdep_is_held(&netns_bpf_mutex)); idx = link_index(net, type, net_link); ret = bpf_prog_array_update_at(run_array, idx, new_prog); if (ret) goto out_unlock; old_prog = xchg(&link->prog, new_prog); bpf_prog_put(old_prog); out_unlock: mutex_unlock(&netns_bpf_mutex); return ret; } static int bpf_netns_link_fill_info(const struct bpf_link *link, struct bpf_link_info *info) { const struct bpf_netns_link *net_link = container_of(link, struct bpf_netns_link, link); unsigned int inum = 0; struct net *net; mutex_lock(&netns_bpf_mutex); net = net_link->net; if (net && check_net(net)) inum = net->ns.inum; mutex_unlock(&netns_bpf_mutex); info->netns.netns_ino = inum; info->netns.attach_type = net_link->type; return 0; } static void bpf_netns_link_show_fdinfo(const struct bpf_link *link, struct seq_file *seq) { struct bpf_link_info info = {}; bpf_netns_link_fill_info(link, &info); seq_printf(seq, "netns_ino:\t%u\n" "attach_type:\t%u\n", info.netns.netns_ino, info.netns.attach_type); } static const struct bpf_link_ops bpf_netns_link_ops = { .release = bpf_netns_link_release, .dealloc = bpf_netns_link_dealloc, .detach = bpf_netns_link_detach, .update_prog = bpf_netns_link_update_prog, .fill_link_info = bpf_netns_link_fill_info, .show_fdinfo = bpf_netns_link_show_fdinfo, }; /* Must be called with netns_bpf_mutex held. */ static int __netns_bpf_prog_query(const union bpf_attr *attr, union bpf_attr __user *uattr, struct net *net, enum netns_bpf_attach_type type) { __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids); struct bpf_prog_array *run_array; u32 prog_cnt = 0, flags = 0; run_array = rcu_dereference_protected(net->bpf.run_array[type], lockdep_is_held(&netns_bpf_mutex)); if (run_array) prog_cnt = bpf_prog_array_length(run_array); if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags))) return -EFAULT; if (copy_to_user(&uattr->query.prog_cnt, &prog_cnt, sizeof(prog_cnt))) return -EFAULT; if (!attr->query.prog_cnt || !prog_ids || !prog_cnt) return 0; return bpf_prog_array_copy_to_user(run_array, prog_ids, attr->query.prog_cnt); } int netns_bpf_prog_query(const union bpf_attr *attr, union bpf_attr __user *uattr) { enum netns_bpf_attach_type type; struct net *net; int ret; if (attr->query.query_flags) return -EINVAL; type = to_netns_bpf_attach_type(attr->query.attach_type); if (type < 0) return -EINVAL; net = get_net_ns_by_fd(attr->query.target_fd); if (IS_ERR(net)) return PTR_ERR(net); mutex_lock(&netns_bpf_mutex); ret = __netns_bpf_prog_query(attr, uattr, net, type); mutex_unlock(&netns_bpf_mutex); put_net(net); return ret; } int netns_bpf_prog_attach(const union bpf_attr *attr, struct bpf_prog *prog) { struct bpf_prog_array *run_array; enum netns_bpf_attach_type type; struct bpf_prog *attached; struct net *net; int ret; if (attr->target_fd || attr->attach_flags || attr->replace_bpf_fd) return -EINVAL; type = to_netns_bpf_attach_type(attr->attach_type); if (type < 0) return -EINVAL; net = current->nsproxy->net_ns; mutex_lock(&netns_bpf_mutex); /* Attaching prog directly is not compatible with links */ if (!list_empty(&net->bpf.links[type])) { ret = -EEXIST; goto out_unlock; } switch (type) { case NETNS_BPF_FLOW_DISSECTOR: ret = flow_dissector_bpf_prog_attach_check(net, prog); break; default: ret = -EINVAL; break; } if (ret) goto out_unlock; attached = net->bpf.progs[type]; if (attached == prog) { /* The same program cannot be attached twice */ ret = -EINVAL; goto out_unlock; } run_array = rcu_dereference_protected(net->bpf.run_array[type], lockdep_is_held(&netns_bpf_mutex)); if (run_array) { WRITE_ONCE(run_array->items[0].prog, prog); } else { run_array = bpf_prog_array_alloc(1, GFP_KERNEL); if (!run_array) { ret = -ENOMEM; goto out_unlock; } run_array->items[0].prog = prog; rcu_assign_pointer(net->bpf.run_array[type], run_array); } net->bpf.progs[type] = prog; if (attached) bpf_prog_put(attached); out_unlock: mutex_unlock(&netns_bpf_mutex); return ret; } /* Must be called with netns_bpf_mutex held. */ static int __netns_bpf_prog_detach(struct net *net, enum netns_bpf_attach_type type, struct bpf_prog *old) { struct bpf_prog *attached; /* Progs attached via links cannot be detached */ if (!list_empty(&net->bpf.links[type])) return -EINVAL; attached = net->bpf.progs[type]; if (!attached || attached != old) return -ENOENT; netns_bpf_run_array_detach(net, type); net->bpf.progs[type] = NULL; bpf_prog_put(attached); return 0; } int netns_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype) { enum netns_bpf_attach_type type; struct bpf_prog *prog; int ret; if (attr->target_fd) return -EINVAL; type = to_netns_bpf_attach_type(attr->attach_type); if (type < 0) return -EINVAL; prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype); if (IS_ERR(prog)) return PTR_ERR(prog); mutex_lock(&netns_bpf_mutex); ret = __netns_bpf_prog_detach(current->nsproxy->net_ns, type, prog); mutex_unlock(&netns_bpf_mutex); bpf_prog_put(prog); return ret; } static int netns_bpf_max_progs(enum netns_bpf_attach_type type) { switch (type) { case NETNS_BPF_FLOW_DISSECTOR: return 1; case NETNS_BPF_SK_LOOKUP: return 64; default: return 0; } } static int netns_bpf_link_attach(struct net *net, struct bpf_link *link, enum netns_bpf_attach_type type) { struct bpf_netns_link *net_link = container_of(link, struct bpf_netns_link, link); struct bpf_prog_array *run_array; int cnt, err; mutex_lock(&netns_bpf_mutex); cnt = link_count(net, type); if (cnt >= netns_bpf_max_progs(type)) { err = -E2BIG; goto out_unlock; } /* Links are not compatible with attaching prog directly */ if (net->bpf.progs[type]) { err = -EEXIST; goto out_unlock; } switch (type) { case NETNS_BPF_FLOW_DISSECTOR: err = flow_dissector_bpf_prog_attach_check(net, link->prog); break; case NETNS_BPF_SK_LOOKUP: err = 0; /* nothing to check */ break; default: err = -EINVAL; break; } if (err) goto out_unlock; run_array = bpf_prog_array_alloc(cnt + 1, GFP_KERNEL); if (!run_array) { err = -ENOMEM; goto out_unlock; } list_add_tail(&net_link->node, &net->bpf.links[type]); fill_prog_array(net, type, run_array); run_array = rcu_replace_pointer(net->bpf.run_array[type], run_array, lockdep_is_held(&netns_bpf_mutex)); bpf_prog_array_free(run_array); /* Mark attach point as used */ netns_bpf_attach_type_need(type); out_unlock: mutex_unlock(&netns_bpf_mutex); return err; } int netns_bpf_link_create(const union bpf_attr *attr, struct bpf_prog *prog) { enum netns_bpf_attach_type netns_type; struct bpf_link_primer link_primer; struct bpf_netns_link *net_link; enum bpf_attach_type type; struct net *net; int err; if (attr->link_create.flags) return -EINVAL; type = attr->link_create.attach_type; netns_type = to_netns_bpf_attach_type(type); if (netns_type < 0) return -EINVAL; net = get_net_ns_by_fd(attr->link_create.target_fd); if (IS_ERR(net)) return PTR_ERR(net); net_link = kzalloc(sizeof(*net_link), GFP_USER); if (!net_link) { err = -ENOMEM; goto out_put_net; } bpf_link_init(&net_link->link, BPF_LINK_TYPE_NETNS, &bpf_netns_link_ops, prog); net_link->net = net; net_link->type = type; net_link->netns_type = netns_type; err = bpf_link_prime(&net_link->link, &link_primer); if (err) { kfree(net_link); goto out_put_net; } err = netns_bpf_link_attach(net, &net_link->link, netns_type); if (err) { bpf_link_cleanup(&link_primer); goto out_put_net; } put_net(net); return bpf_link_settle(&link_primer); out_put_net: put_net(net); return err; } static int __net_init netns_bpf_pernet_init(struct net *net) { int type; for (type = 0; type < MAX_NETNS_BPF_ATTACH_TYPE; type++) INIT_LIST_HEAD(&net->bpf.links[type]); return 0; } static void __net_exit netns_bpf_pernet_pre_exit(struct net *net) { enum netns_bpf_attach_type type; struct bpf_netns_link *net_link; mutex_lock(&netns_bpf_mutex); for (type = 0; type < MAX_NETNS_BPF_ATTACH_TYPE; type++) { netns_bpf_run_array_detach(net, type); list_for_each_entry(net_link, &net->bpf.links[type], node) { net_link->net = NULL; /* auto-detach link */ netns_bpf_attach_type_unneed(type); } if (net->bpf.progs[type]) bpf_prog_put(net->bpf.progs[type]); } mutex_unlock(&netns_bpf_mutex); } static struct pernet_operations netns_bpf_pernet_ops __net_initdata = { .init = netns_bpf_pernet_init, .pre_exit = netns_bpf_pernet_pre_exit, }; static int __init netns_bpf_init(void) { return register_pernet_subsys(&netns_bpf_pernet_ops); } subsys_initcall(netns_bpf_init);
145 243 15 58 105 21 1 1 10 10 10 22 96 329 44 105 9 492 15 492 129 46 329 11 315 289 287 246 128 199 54 89 110 21 58 46 379 36 359 2 62 169 210 211 488 488 144 143 3 141 114 48 100 99 20 6 9 11 15 12 28 28 10 2 6 7 356 170 249 357 163 163 163 163 386 385 385 389 385 3 3 1848 1849 213 102 42 42 117 4 14 281 47 46 267 27 20 192 282 123 92 91 21 195 195 87 102 23 17 83 84 84 33 36 11 4 108 55 6 1 5 4 4 20 20 10 3 6 13 80 1 1 1 1 1 1 73 1 9 9 9 3 6 12 3 9 6 1 5 151 1 1 1 29 31 13 13 120 1 104 102 3 88 38 44 46 9 45 23 1 87 50 50 2 34 38 34 14 14 5 29 46 46 3 36 15 36 10 9 5 32 7 32 6 1 34 37 38 1 1 1 35 30 10 4 1 2 1 67 1 1 1 1 1 1 59 59 60 4 2 48 10 6 43 40 5 4 30 2 28 20 6 13 6 1 6 157 1 151 24 136 99 90 17 2 3 2 2 125 124 23 20 11 12 82 78 4 2 46 26 27 27 19 81 34 2 2 2 2 5 3 3 1 2 6 26 26 15 5 6 26 15 11 26 15 11 26 16 10 7 2 5 7 3 5 6 52 1 47 21 38 21 1 16 12 25 35 1 1 28 17 20 18 1 14 10 110 1 1 108 35 13 21 3 21 21 10 6 9 6 37 1 36 2 2 27 22 22 18 64 1 1 2 60 1 1 53 9 59 1 1 1 2 54 29 4 5 4 4 8 3 20 14 6 2 1 1 14 24 14 1 1 11 1 6 1 6 1 27 1 28 1 1 1 1 24 22 22 21 13 19 6 3 2 2 2 2 8 1 52 31 3 27 15 7 14 25 31 2 23 36 3 28 20 18 28 15 9 22 2 19 5 3 8 492 489 495 492 358 499 153 359 172 95 75 21 85 86 15 281 282 282 282 114 14 173 229 330 329 258 226 83 504 1 498 4 166 330 507 1 1 501 510 511 508 2 2 1 2 504 541 13 2 516 8 2 526 5 2 3 510 3 167 167 168 168 51 6 47 6 51 51 1 366 184 548 38 3 335 2 166 7 386 105 104 5 5 5 5 5 5 4 1 1 4 4 4 3190 3176 4 1 223 224 2 558 558 390 161 1 207 120 4 93 93 17 1 1 2 9 4 11 18 18 18 18 16 1 1 15 90 1 12 10 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 // SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018 Facebook */ #include <uapi/linux/btf.h> #include <uapi/linux/bpf.h> #include <uapi/linux/bpf_perf_event.h> #include <uapi/linux/types.h> #include <linux/seq_file.h> #include <linux/compiler.h> #include <linux/ctype.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/anon_inodes.h> #include <linux/file.h> #include <linux/uaccess.h> #include <linux/kernel.h> #include <linux/idr.h> #include <linux/sort.h> #include <linux/bpf_verifier.h> #include <linux/btf.h> #include <linux/btf_ids.h> #include <linux/skmsg.h> #include <linux/perf_event.h> #include <linux/bsearch.h> #include <linux/kobject.h> #include <linux/sysfs.h> #include <net/sock.h> #include "../tools/lib/bpf/relo_core.h" /* BTF (BPF Type Format) is the meta data format which describes * the data types of BPF program/map. Hence, it basically focus * on the C programming language which the modern BPF is primary * using. * * ELF Section: * ~~~~~~~~~~~ * The BTF data is stored under the ".BTF" ELF section * * struct btf_type: * ~~~~~~~~~~~~~~~ * Each 'struct btf_type' object describes a C data type. * Depending on the type it is describing, a 'struct btf_type' * object may be followed by more data. F.e. * To describe an array, 'struct btf_type' is followed by * 'struct btf_array'. * * 'struct btf_type' and any extra data following it are * 4 bytes aligned. * * Type section: * ~~~~~~~~~~~~~ * The BTF type section contains a list of 'struct btf_type' objects. * Each one describes a C type. Recall from the above section * that a 'struct btf_type' object could be immediately followed by extra * data in order to describe some particular C types. * * type_id: * ~~~~~~~ * Each btf_type object is identified by a type_id. The type_id * is implicitly implied by the location of the btf_type object in * the BTF type section. The first one has type_id 1. The second * one has type_id 2...etc. Hence, an earlier btf_type has * a smaller type_id. * * A btf_type object may refer to another btf_type object by using * type_id (i.e. the "type" in the "struct btf_type"). * * NOTE that we cannot assume any reference-order. * A btf_type object can refer to an earlier btf_type object * but it can also refer to a later btf_type object. * * For example, to describe "const void *". A btf_type * object describing "const" may refer to another btf_type * object describing "void *". This type-reference is done * by specifying type_id: * * [1] CONST (anon) type_id=2 * [2] PTR (anon) type_id=0 * * The above is the btf_verifier debug log: * - Each line started with "[?]" is a btf_type object * - [?] is the type_id of the btf_type object. * - CONST/PTR is the BTF_KIND_XXX * - "(anon)" is the name of the type. It just * happens that CONST and PTR has no name. * - type_id=XXX is the 'u32 type' in btf_type * * NOTE: "void" has type_id 0 * * String section: * ~~~~~~~~~~~~~~ * The BTF string section contains the names used by the type section. * Each string is referred by an "offset" from the beginning of the * string section. * * Each string is '\0' terminated. * * The first character in the string section must be '\0' * which is used to mean 'anonymous'. Some btf_type may not * have a name. */ /* BTF verification: * * To verify BTF data, two passes are needed. * * Pass #1 * ~~~~~~~ * The first pass is to collect all btf_type objects to * an array: "btf->types". * * Depending on the C type that a btf_type is describing, * a btf_type may be followed by extra data. We don't know * how many btf_type is there, and more importantly we don't * know where each btf_type is located in the type section. * * Without knowing the location of each type_id, most verifications * cannot be done. e.g. an earlier btf_type may refer to a later * btf_type (recall the "const void *" above), so we cannot * check this type-reference in the first pass. * * In the first pass, it still does some verifications (e.g. * checking the name is a valid offset to the string section). * * Pass #2 * ~~~~~~~ * The main focus is to resolve a btf_type that is referring * to another type. * * We have to ensure the referring type: * 1) does exist in the BTF (i.e. in btf->types[]) * 2) does not cause a loop: * struct A { * struct B b; * }; * * struct B { * struct A a; * }; * * btf_type_needs_resolve() decides if a btf_type needs * to be resolved. * * The needs_resolve type implements the "resolve()" ops which * essentially does a DFS and detects backedge. * * During resolve (or DFS), different C types have different * "RESOLVED" conditions. * * When resolving a BTF_KIND_STRUCT, we need to resolve all its * members because a member is always referring to another * type. A struct's member can be treated as "RESOLVED" if * it is referring to a BTF_KIND_PTR. Otherwise, the * following valid C struct would be rejected: * * struct A { * int m; * struct A *a; * }; * * When resolving a BTF_KIND_PTR, it needs to keep resolving if * it is referring to another BTF_KIND_PTR. Otherwise, we cannot * detect a pointer loop, e.g.: * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + * ^ | * +-----------------------------------------+ * */ #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) #define BITS_ROUNDUP_BYTES(bits) \ (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) #define BTF_INFO_MASK 0x9f00ffff #define BTF_INT_MASK 0x0fffffff #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) /* 16MB for 64k structs and each has 16 members and * a few MB spaces for the string section. * The hard limit is S32_MAX. */ #define BTF_MAX_SIZE (16 * 1024 * 1024) #define for_each_member_from(i, from, struct_type, member) \ for (i = from, member = btf_type_member(struct_type) + from; \ i < btf_type_vlen(struct_type); \ i++, member++) #define for_each_vsi_from(i, from, struct_type, member) \ for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ i < btf_type_vlen(struct_type); \ i++, member++) DEFINE_IDR(btf_idr); DEFINE_SPINLOCK(btf_idr_lock); enum btf_kfunc_hook { BTF_KFUNC_HOOK_XDP, BTF_KFUNC_HOOK_TC, BTF_KFUNC_HOOK_STRUCT_OPS, BTF_KFUNC_HOOK_TRACING, BTF_KFUNC_HOOK_SYSCALL, BTF_KFUNC_HOOK_MAX, }; enum { BTF_KFUNC_SET_MAX_CNT = 256, BTF_DTOR_KFUNC_MAX_CNT = 256, }; struct btf_kfunc_set_tab { struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; }; struct btf_id_dtor_kfunc_tab { u32 cnt; struct btf_id_dtor_kfunc dtors[]; }; struct btf { void *data; struct btf_type **types; u32 *resolved_ids; u32 *resolved_sizes; const char *strings; void *nohdr_data; struct btf_header hdr; u32 nr_types; /* includes VOID for base BTF */ u32 types_size; u32 data_size; refcount_t refcnt; u32 id; struct rcu_head rcu; struct btf_kfunc_set_tab *kfunc_set_tab; struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; /* split BTF support */ struct btf *base_btf; u32 start_id; /* first type ID in this BTF (0 for base BTF) */ u32 start_str_off; /* first string offset (0 for base BTF) */ char name[MODULE_NAME_LEN]; bool kernel_btf; }; enum verifier_phase { CHECK_META, CHECK_TYPE, }; struct resolve_vertex { const struct btf_type *t; u32 type_id; u16 next_member; }; enum visit_state { NOT_VISITED, VISITED, RESOLVED, }; enum resolve_mode { RESOLVE_TBD, /* To Be Determined */ RESOLVE_PTR, /* Resolving for Pointer */ RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union * or array */ }; #define MAX_RESOLVE_DEPTH 32 struct btf_sec_info { u32 off; u32 len; }; struct btf_verifier_env { struct btf *btf; u8 *visit_states; struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; struct bpf_verifier_log log; u32 log_type_id; u32 top_stack; enum verifier_phase phase; enum resolve_mode resolve_mode; }; static const char * const btf_kind_str[NR_BTF_KINDS] = { [BTF_KIND_UNKN] = "UNKNOWN", [BTF_KIND_INT] = "INT", [BTF_KIND_PTR] = "PTR", [BTF_KIND_ARRAY] = "ARRAY", [BTF_KIND_STRUCT] = "STRUCT", [BTF_KIND_UNION] = "UNION", [BTF_KIND_ENUM] = "ENUM", [BTF_KIND_FWD] = "FWD", [BTF_KIND_TYPEDEF] = "TYPEDEF", [BTF_KIND_VOLATILE] = "VOLATILE", [BTF_KIND_CONST] = "CONST", [BTF_KIND_RESTRICT] = "RESTRICT", [BTF_KIND_FUNC] = "FUNC", [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", [BTF_KIND_VAR] = "VAR", [BTF_KIND_DATASEC] = "DATASEC", [BTF_KIND_FLOAT] = "FLOAT", [BTF_KIND_DECL_TAG] = "DECL_TAG", [BTF_KIND_TYPE_TAG] = "TYPE_TAG", [BTF_KIND_ENUM64] = "ENUM64", }; const char *btf_type_str(const struct btf_type *t) { return btf_kind_str[BTF_INFO_KIND(t->info)]; } /* Chunk size we use in safe copy of data to be shown. */ #define BTF_SHOW_OBJ_SAFE_SIZE 32 /* * This is the maximum size of a base type value (equivalent to a * 128-bit int); if we are at the end of our safe buffer and have * less than 16 bytes space we can't be assured of being able * to copy the next type safely, so in such cases we will initiate * a new copy. */ #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 /* Type name size */ #define BTF_SHOW_NAME_SIZE 80 /* * Common data to all BTF show operations. Private show functions can add * their own data to a structure containing a struct btf_show and consult it * in the show callback. See btf_type_show() below. * * One challenge with showing nested data is we want to skip 0-valued * data, but in order to figure out whether a nested object is all zeros * we need to walk through it. As a result, we need to make two passes * when handling structs, unions and arrays; the first path simply looks * for nonzero data, while the second actually does the display. The first * pass is signalled by show->state.depth_check being set, and if we * encounter a non-zero value we set show->state.depth_to_show to * the depth at which we encountered it. When we have completed the * first pass, we will know if anything needs to be displayed if * depth_to_show > depth. See btf_[struct,array]_show() for the * implementation of this. * * Another problem is we want to ensure the data for display is safe to * access. To support this, the anonymous "struct {} obj" tracks the data * object and our safe copy of it. We copy portions of the data needed * to the object "copy" buffer, but because its size is limited to * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we * traverse larger objects for display. * * The various data type show functions all start with a call to * btf_show_start_type() which returns a pointer to the safe copy * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the * raw data itself). btf_show_obj_safe() is responsible for * using copy_from_kernel_nofault() to update the safe data if necessary * as we traverse the object's data. skbuff-like semantics are * used: * * - obj.head points to the start of the toplevel object for display * - obj.size is the size of the toplevel object * - obj.data points to the current point in the original data at * which our safe data starts. obj.data will advance as we copy * portions of the data. * * In most cases a single copy will suffice, but larger data structures * such as "struct task_struct" will require many copies. The logic in * btf_show_obj_safe() handles the logic that determines if a new * copy_from_kernel_nofault() is needed. */ struct btf_show { u64 flags; void *target; /* target of show operation (seq file, buffer) */ __printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args); const struct btf *btf; /* below are used during iteration */ struct { u8 depth; u8 depth_to_show; u8 depth_check; u8 array_member:1, array_terminated:1; u16 array_encoding; u32 type_id; int status; /* non-zero for error */ const struct btf_type *type; const struct btf_member *member; char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ } state; struct { u32 size; void *head; void *data; u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; } obj; }; struct btf_kind_operations { s32 (*check_meta)(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left); int (*resolve)(struct btf_verifier_env *env, const struct resolve_vertex *v); int (*check_member)(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type); int (*check_kflag_member)(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type); void (*log_details)(struct btf_verifier_env *env, const struct btf_type *t); void (*show)(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offsets, struct btf_show *show); }; static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; static struct btf_type btf_void; static int btf_resolve(struct btf_verifier_env *env, const struct btf_type *t, u32 type_id); static int btf_func_check(struct btf_verifier_env *env, const struct btf_type *t); static bool btf_type_is_modifier(const struct btf_type *t) { /* Some of them is not strictly a C modifier * but they are grouped into the same bucket * for BTF concern: * A type (t) that refers to another * type through t->type AND its size cannot * be determined without following the t->type. * * ptr does not fall into this bucket * because its size is always sizeof(void *). */ switch (BTF_INFO_KIND(t->info)) { case BTF_KIND_TYPEDEF: case BTF_KIND_VOLATILE: case BTF_KIND_CONST: case BTF_KIND_RESTRICT: case BTF_KIND_TYPE_TAG: return true; } return false; } bool btf_type_is_void(const struct btf_type *t) { return t == &btf_void; } static bool btf_type_is_fwd(const struct btf_type *t) { return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; } static bool btf_type_is_decl_tag(const struct btf_type *t) { return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; } static bool btf_type_nosize(const struct btf_type *t) { return btf_type_is_void(t) || btf_type_is_fwd(t) || btf_type_is_func(t) || btf_type_is_func_proto(t) || btf_type_is_decl_tag(t); } static bool btf_type_nosize_or_null(const struct btf_type *t) { return !t || btf_type_nosize(t); } static bool __btf_type_is_struct(const struct btf_type *t) { return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT; } static bool btf_type_is_array(const struct btf_type *t) { return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; } static bool btf_type_is_datasec(const struct btf_type *t) { return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; } static bool btf_type_is_decl_tag_target(const struct btf_type *t) { return btf_type_is_func(t) || btf_type_is_struct(t) || btf_type_is_var(t) || btf_type_is_typedef(t); } u32 btf_nr_types(const struct btf *btf) { u32 total = 0; while (btf) { total += btf->nr_types; btf = btf->base_btf; } return total; } s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) { const struct btf_type *t; const char *tname; u32 i, total; total = btf_nr_types(btf); for (i = 1; i < total; i++) { t = btf_type_by_id(btf, i); if (BTF_INFO_KIND(t->info) != kind) continue; tname = btf_name_by_offset(btf, t->name_off); if (!strcmp(tname, name)) return i; } return -ENOENT; } static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) { struct btf *btf; s32 ret; int id; btf = bpf_get_btf_vmlinux(); if (IS_ERR(btf)) return PTR_ERR(btf); if (!btf) return -EINVAL; ret = btf_find_by_name_kind(btf, name, kind); /* ret is never zero, since btf_find_by_name_kind returns * positive btf_id or negative error. */ if (ret > 0) { btf_get(btf); *btf_p = btf; return ret; } /* If name is not found in vmlinux's BTF then search in module's BTFs */ spin_lock_bh(&btf_idr_lock); idr_for_each_entry(&btf_idr, btf, id) { if (!btf_is_module(btf)) continue; /* linear search could be slow hence unlock/lock * the IDR to avoiding holding it for too long */ btf_get(btf); spin_unlock_bh(&btf_idr_lock); ret = btf_find_by_name_kind(btf, name, kind); if (ret > 0) { *btf_p = btf; return ret; } btf_put(btf); spin_lock_bh(&btf_idr_lock); } spin_unlock_bh(&btf_idr_lock); return ret; } const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, u32 id, u32 *res_id) { const struct btf_type *t = btf_type_by_id(btf, id); while (btf_type_is_modifier(t)) { id = t->type; t = btf_type_by_id(btf, t->type); } if (res_id) *res_id = id; return t; } const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, u32 id, u32 *res_id) { const struct btf_type *t; t = btf_type_skip_modifiers(btf, id, NULL); if (!btf_type_is_ptr(t)) return NULL; return btf_type_skip_modifiers(btf, t->type, res_id); } const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, u32 id, u32 *res_id) { const struct btf_type *ptype; ptype = btf_type_resolve_ptr(btf, id, res_id); if (ptype && btf_type_is_func_proto(ptype)) return ptype; return NULL; } /* Types that act only as a source, not sink or intermediate * type when resolving. */ static bool btf_type_is_resolve_source_only(const struct btf_type *t) { return btf_type_is_var(t) || btf_type_is_decl_tag(t) || btf_type_is_datasec(t); } /* What types need to be resolved? * * btf_type_is_modifier() is an obvious one. * * btf_type_is_struct() because its member refers to * another type (through member->type). * * btf_type_is_var() because the variable refers to * another type. btf_type_is_datasec() holds multiple * btf_type_is_var() types that need resolving. * * btf_type_is_array() because its element (array->type) * refers to another type. Array can be thought of a * special case of struct while array just has the same * member-type repeated by array->nelems of times. */ static bool btf_type_needs_resolve(const struct btf_type *t) { return btf_type_is_modifier(t) || btf_type_is_ptr(t) || btf_type_is_struct(t) || btf_type_is_array(t) || btf_type_is_var(t) || btf_type_is_func(t) || btf_type_is_decl_tag(t) || btf_type_is_datasec(t); } /* t->size can be used */ static bool btf_type_has_size(const struct btf_type *t) { switch (BTF_INFO_KIND(t->info)) { case BTF_KIND_INT: case BTF_KIND_STRUCT: case BTF_KIND_UNION: case BTF_KIND_ENUM: case BTF_KIND_DATASEC: case BTF_KIND_FLOAT: case BTF_KIND_ENUM64: return true; } return false; } static const char *btf_int_encoding_str(u8 encoding) { if (encoding == 0) return "(none)"; else if (encoding == BTF_INT_SIGNED) return "SIGNED"; else if (encoding == BTF_INT_CHAR) return "CHAR"; else if (encoding == BTF_INT_BOOL) return "BOOL"; else return "UNKN"; } static u32 btf_type_int(const struct btf_type *t) { return *(u32 *)(t + 1); } static const struct btf_array *btf_type_array(const struct btf_type *t) { return (const struct btf_array *)(t + 1); } static const struct btf_enum *btf_type_enum(const struct btf_type *t) { return (const struct btf_enum *)(t + 1); } static const struct btf_var *btf_type_var(const struct btf_type *t) { return (const struct btf_var *)(t + 1); } static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) { return (const struct btf_decl_tag *)(t + 1); } static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) { return (const struct btf_enum64 *)(t + 1); } static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) { return kind_ops[BTF_INFO_KIND(t->info)]; } static bool btf_name_offset_valid(const struct btf *btf, u32 offset) { if (!BTF_STR_OFFSET_VALID(offset)) return false; while (offset < btf->start_str_off) btf = btf->base_btf; offset -= btf->start_str_off; return offset < btf->hdr.str_len; } static bool __btf_name_char_ok(char c, bool first) { if ((first ? !isalpha(c) : !isalnum(c)) && c != '_' && c != '.') return false; return true; } static const char *btf_str_by_offset(const struct btf *btf, u32 offset) { while (offset < btf->start_str_off) btf = btf->base_btf; offset -= btf->start_str_off; if (offset < btf->hdr.str_len) return &btf->strings[offset]; return NULL; } static bool __btf_name_valid(const struct btf *btf, u32 offset) { /* offset must be valid */ const char *src = btf_str_by_offset(btf, offset); const char *src_limit; if (!__btf_name_char_ok(*src, true)) return false; /* set a limit on identifier length */ src_limit = src + KSYM_NAME_LEN; src++; while (*src && src < src_limit) { if (!__btf_name_char_ok(*src, false)) return false; src++; } return !*src; } static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) { return __btf_name_valid(btf, offset); } static bool btf_name_valid_section(const struct btf *btf, u32 offset) { return __btf_name_valid(btf, offset); } static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) { const char *name; if (!offset) return "(anon)"; name = btf_str_by_offset(btf, offset); return name ?: "(invalid-name-offset)"; } const char *btf_name_by_offset(const struct btf *btf, u32 offset) { return btf_str_by_offset(btf, offset); } const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) { while (type_id < btf->start_id) btf = btf->base_btf; type_id -= btf->start_id; if (type_id >= btf->nr_types) return NULL; return btf->types[type_id]; } EXPORT_SYMBOL_GPL(btf_type_by_id); /* * Regular int is not a bit field and it must be either * u8/u16/u32/u64 or __int128. */ static bool btf_type_int_is_regular(const struct btf_type *t) { u8 nr_bits, nr_bytes; u32 int_data; int_data = btf_type_int(t); nr_bits = BTF_INT_BITS(int_data); nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); if (BITS_PER_BYTE_MASKED(nr_bits) || BTF_INT_OFFSET(int_data) || (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && nr_bytes != (2 * sizeof(u64)))) { return false; } return true; } /* * Check that given struct member is a regular int with expected * offset and size. */ bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, const struct btf_member *m, u32 expected_offset, u32 expected_size) { const struct btf_type *t; u32 id, int_data; u8 nr_bits; id = m->type; t = btf_type_id_size(btf, &id, NULL); if (!t || !btf_type_is_int(t)) return false; int_data = btf_type_int(t); nr_bits = BTF_INT_BITS(int_data); if (btf_type_kflag(s)) { u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); /* if kflag set, int should be a regular int and * bit offset should be at byte boundary. */ return !bitfield_size && BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && BITS_ROUNDUP_BYTES(nr_bits) == expected_size; } if (BTF_INT_OFFSET(int_data) || BITS_PER_BYTE_MASKED(m->offset) || BITS_ROUNDUP_BYTES(m->offset) != expected_offset || BITS_PER_BYTE_MASKED(nr_bits) || BITS_ROUNDUP_BYTES(nr_bits) != expected_size) return false; return true; } /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, u32 id) { const struct btf_type *t = btf_type_by_id(btf, id); while (btf_type_is_modifier(t) && BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { t = btf_type_by_id(btf, t->type); } return t; } #define BTF_SHOW_MAX_ITER 10 #define BTF_KIND_BIT(kind) (1ULL << kind) /* * Populate show->state.name with type name information. * Format of type name is * * [.member_name = ] (type_name) */ static const char *btf_show_name(struct btf_show *show) { /* BTF_MAX_ITER array suffixes "[]" */ const char *array_suffixes = "[][][][][][][][][][]"; const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; /* BTF_MAX_ITER pointer suffixes "*" */ const char *ptr_suffixes = "**********"; const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; const char *name = NULL, *prefix = "", *parens = ""; const struct btf_member *m = show->state.member; const struct btf_type *t; const struct btf_array *array; u32 id = show->state.type_id; const char *member = NULL; bool show_member = false; u64 kinds = 0; int i; show->state.name[0] = '\0'; /* * Don't show type name if we're showing an array member; * in that case we show the array type so don't need to repeat * ourselves for each member. */ if (show->state.array_member) return ""; /* Retrieve member name, if any. */ if (m) { member = btf_name_by_offset(show->btf, m->name_off); show_member = strlen(member) > 0; id = m->type; } /* * Start with type_id, as we have resolved the struct btf_type * * via btf_modifier_show() past the parent typedef to the child * struct, int etc it is defined as. In such cases, the type_id * still represents the starting type while the struct btf_type * * in our show->state points at the resolved type of the typedef. */ t = btf_type_by_id(show->btf, id); if (!t) return ""; /* * The goal here is to build up the right number of pointer and * array suffixes while ensuring the type name for a typedef * is represented. Along the way we accumulate a list of * BTF kinds we have encountered, since these will inform later * display; for example, pointer types will not require an * opening "{" for struct, we will just display the pointer value. * * We also want to accumulate the right number of pointer or array * indices in the format string while iterating until we get to * the typedef/pointee/array member target type. * * We start by pointing at the end of pointer and array suffix * strings; as we accumulate pointers and arrays we move the pointer * or array string backwards so it will show the expected number of * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers * and/or arrays and typedefs are supported as a precaution. * * We also want to get typedef name while proceeding to resolve * type it points to so that we can add parentheses if it is a * "typedef struct" etc. */ for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { switch (BTF_INFO_KIND(t->info)) { case BTF_KIND_TYPEDEF: if (!name) name = btf_name_by_offset(show->btf, t->name_off); kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); id = t->type; break; case BTF_KIND_ARRAY: kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); parens = "["; if (!t) return ""; array = btf_type_array(t); if (array_suffix > array_suffixes) array_suffix -= 2; id = array->type; break; case BTF_KIND_PTR: kinds |= BTF_KIND_BIT(BTF_KIND_PTR); if (ptr_suffix > ptr_suffixes) ptr_suffix -= 1; id = t->type; break; default: id = 0; break; } if (!id) break; t = btf_type_skip_qualifiers(show->btf, id); } /* We may not be able to represent this type; bail to be safe */ if (i == BTF_SHOW_MAX_ITER) return ""; if (!name) name = btf_name_by_offset(show->btf, t->name_off); switch (BTF_INFO_KIND(t->info)) { case BTF_KIND_STRUCT: case BTF_KIND_UNION: prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? "struct" : "union"; /* if it's an array of struct/union, parens is already set */ if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) parens = "{"; break; case BTF_KIND_ENUM: case BTF_KIND_ENUM64: prefix = "enum"; break; default: break; } /* pointer does not require parens */ if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) parens = ""; /* typedef does not require struct/union/enum prefix */ if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) prefix = ""; if (!name) name = ""; /* Even if we don't want type name info, we want parentheses etc */ if (show->flags & BTF_SHOW_NONAME) snprintf(show->state.name, sizeof(show->state.name), "%s", parens); else snprintf(show->state.name, sizeof(show->state.name), "%s%s%s(%s%s%s%s%s%s)%s", /* first 3 strings comprise ".member = " */ show_member ? "." : "", show_member ? member : "", show_member ? " = " : "", /* ...next is our prefix (struct, enum, etc) */ prefix, strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", /* ...this is the type name itself */ name, /* ...suffixed by the appropriate '*', '[]' suffixes */ strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, array_suffix, parens); return show->state.name; } static const char *__btf_show_indent(struct btf_show *show) { const char *indents = " "; const char *indent = &indents[strlen(indents)]; if ((indent - show->state.depth) >= indents) return indent - show->state.depth; return indents; } static const char *btf_show_indent(struct btf_show *show) { return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); } static const char *btf_show_newline(struct btf_show *show) { return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; } static const char *btf_show_delim(struct btf_show *show) { if (show->state.depth == 0) return ""; if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) return "|"; return ","; } __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) { va_list args; if (!show->state.depth_check) { va_start(args, fmt); show->showfn(show, fmt, args); va_end(args); } } /* Macros are used here as btf_show_type_value[s]() prepends and appends * format specifiers to the format specifier passed in; these do the work of * adding indentation, delimiters etc while the caller simply has to specify * the type value(s) in the format specifier + value(s). */ #define btf_show_type_value(show, fmt, value) \ do { \ if ((value) != (__typeof__(value))0 || \ (show->flags & BTF_SHOW_ZERO) || \ show->state.depth == 0) { \ btf_show(show, "%s%s" fmt "%s%s", \ btf_show_indent(show), \ btf_show_name(show), \ value, btf_show_delim(show), \ btf_show_newline(show)); \ if (show->state.depth > show->state.depth_to_show) \ show->state.depth_to_show = show->state.depth; \ } \ } while (0) #define btf_show_type_values(show, fmt, ...) \ do { \ btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ btf_show_name(show), \ __VA_ARGS__, btf_show_delim(show), \ btf_show_newline(show)); \ if (show->state.depth > show->state.depth_to_show) \ show->state.depth_to_show = show->state.depth; \ } while (0) /* How much is left to copy to safe buffer after @data? */ static int btf_show_obj_size_left(struct btf_show *show, void *data) { return show->obj.head + show->obj.size - data; } /* Is object pointed to by @data of @size already copied to our safe buffer? */ static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) { return data >= show->obj.data && (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); } /* * If object pointed to by @data of @size falls within our safe buffer, return * the equivalent pointer to the same safe data. Assumes * copy_from_kernel_nofault() has already happened and our safe buffer is * populated. */ static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) { if (btf_show_obj_is_safe(show, data, size)) return show->obj.safe + (data - show->obj.data); return NULL; } /* * Return a safe-to-access version of data pointed to by @data. * We do this by copying the relevant amount of information * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). * * If BTF_SHOW_UNSAFE is specified, just return data as-is; no * safe copy is needed. * * Otherwise we need to determine if we have the required amount * of data (determined by the @data pointer and the size of the * largest base type we can encounter (represented by * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures * that we will be able to print some of the current object, * and if more is needed a copy will be triggered. * Some objects such as structs will not fit into the buffer; * in such cases additional copies when we iterate over their * members may be needed. * * btf_show_obj_safe() is used to return a safe buffer for * btf_show_start_type(); this ensures that as we recurse into * nested types we always have safe data for the given type. * This approach is somewhat wasteful; it's possible for example * that when iterating over a large union we'll end up copying the * same data repeatedly, but the goal is safety not performance. * We use stack data as opposed to per-CPU buffers because the * iteration over a type can take some time, and preemption handling * would greatly complicate use of the safe buffer. */ static void *btf_show_obj_safe(struct btf_show *show, const struct btf_type *t, void *data) { const struct btf_type *rt; int size_left, size; void *safe = NULL; if (show->flags & BTF_SHOW_UNSAFE) return data; rt = btf_resolve_size(show->btf, t, &size); if (IS_ERR(rt)) { show->state.status = PTR_ERR(rt); return NULL; } /* * Is this toplevel object? If so, set total object size and * initialize pointers. Otherwise check if we still fall within * our safe object data. */ if (show->state.depth == 0) { show->obj.size = size; show->obj.head = data; } else { /* * If the size of the current object is > our remaining * safe buffer we _may_ need to do a new copy. However * consider the case of a nested struct; it's size pushes * us over the safe buffer limit, but showing any individual * struct members does not. In such cases, we don't need * to initiate a fresh copy yet; however we definitely need * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left * in our buffer, regardless of the current object size. * The logic here is that as we resolve types we will * hit a base type at some point, and we need to be sure * the next chunk of data is safely available to display * that type info safely. We cannot rely on the size of * the current object here because it may be much larger * than our current buffer (e.g. task_struct is 8k). * All we want to do here is ensure that we can print the * next basic type, which we can if either * - the current type size is within the safe buffer; or * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in * the safe buffer. */ safe = __btf_show_obj_safe(show, data, min(size, BTF_SHOW_OBJ_BASE_TYPE_SIZE)); } /* * We need a new copy to our safe object, either because we haven't * yet copied and are initializing safe data, or because the data * we want falls outside the boundaries of the safe object. */ if (!safe) { size_left = btf_show_obj_size_left(show, data); if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) size_left = BTF_SHOW_OBJ_SAFE_SIZE; show->state.status = copy_from_kernel_nofault(show->obj.safe, data, size_left); if (!show->state.status) { show->obj.data = data; safe = show->obj.safe; } } return safe; } /* * Set the type we are starting to show and return a safe data pointer * to be used for showing the associated data. */ static void *btf_show_start_type(struct btf_show *show, const struct btf_type *t, u32 type_id, void *data) { show->state.type = t; show->state.type_id = type_id; show->state.name[0] = '\0'; return btf_show_obj_safe(show, t, data); } static void btf_show_end_type(struct btf_show *show) { show->state.type = NULL; show->state.type_id = 0; show->state.name[0] = '\0'; } static void *btf_show_start_aggr_type(struct btf_show *show, const struct btf_type *t, u32 type_id, void *data) { void *safe_data = btf_show_start_type(show, t, type_id, data); if (!safe_data) return safe_data; btf_show(show, "%s%s%s", btf_show_indent(show), btf_show_name(show), btf_show_newline(show)); show->state.depth++; return safe_data; } static void btf_show_end_aggr_type(struct btf_show *show, const char *suffix) { show->state.depth--; btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, btf_show_delim(show), btf_show_newline(show)); btf_show_end_type(show); } static void btf_show_start_member(struct btf_show *show, const struct btf_member *m) { show->state.member = m; } static void btf_show_start_array_member(struct btf_show *show) { show->state.array_member = 1; btf_show_start_member(show, NULL); } static void btf_show_end_member(struct btf_show *show) { show->state.member = NULL; } static void btf_show_end_array_member(struct btf_show *show) { show->state.array_member = 0; btf_show_end_member(show); } static void *btf_show_start_array_type(struct btf_show *show, const struct btf_type *t, u32 type_id, u16 array_encoding, void *data) { show->state.array_encoding = array_encoding; show->state.array_terminated = 0; return btf_show_start_aggr_type(show, t, type_id, data); } static void btf_show_end_array_type(struct btf_show *show) { show->state.array_encoding = 0; show->state.array_terminated = 0; btf_show_end_aggr_type(show, "]"); } static void *btf_show_start_struct_type(struct btf_show *show, const struct btf_type *t, u32 type_id, void *data) { return btf_show_start_aggr_type(show, t, type_id, data); } static void btf_show_end_struct_type(struct btf_show *show) { btf_show_end_aggr_type(show, "}"); } __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, const char *fmt, ...) { va_list args; va_start(args, fmt); bpf_verifier_vlog(log, fmt, args); va_end(args); } __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, const char *fmt, ...) { struct bpf_verifier_log *log = &env->log; va_list args; if (!bpf_verifier_log_needed(log)) return; va_start(args, fmt); bpf_verifier_vlog(log, fmt, args); va_end(args); } __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, const struct btf_type *t, bool log_details, const char *fmt, ...) { struct bpf_verifier_log *log = &env->log; struct btf *btf = env->btf; va_list args; if (!bpf_verifier_log_needed(log)) return; /* btf verifier prints all types it is processing via * btf_verifier_log_type(..., fmt = NULL). * Skip those prints for in-kernel BTF verification. */ if (log->level == BPF_LOG_KERNEL && !fmt) return; __btf_verifier_log(log, "[%u] %s %s%s", env->log_type_id, btf_type_str(t), __btf_name_by_offset(btf, t->name_off), log_details ? " " : ""); if (log_details) btf_type_ops(t)->log_details(env, t); if (fmt && *fmt) { __btf_verifier_log(log, " "); va_start(args, fmt); bpf_verifier_vlog(log, fmt, args); va_end(args); } __btf_verifier_log(log, "\n"); } #define btf_verifier_log_type(env, t, ...) \ __btf_verifier_log_type((env), (t), true, __VA_ARGS__) #define btf_verifier_log_basic(env, t, ...) \ __btf_verifier_log_type((env), (t), false, __VA_ARGS__) __printf(4, 5) static void btf_verifier_log_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const char *fmt, ...) { struct bpf_verifier_log *log = &env->log; struct btf *btf = env->btf; va_list args; if (!bpf_verifier_log_needed(log)) return; if (log->level == BPF_LOG_KERNEL && !fmt) return; /* The CHECK_META phase already did a btf dump. * * If member is logged again, it must hit an error in * parsing this member. It is useful to print out which * struct this member belongs to. */ if (env->phase != CHECK_META) btf_verifier_log_type(env, struct_type, NULL); if (btf_type_kflag(struct_type)) __btf_verifier_log(log, "\t%s type_id=%u bitfield_size=%u bits_offset=%u", __btf_name_by_offset(btf, member->name_off), member->type, BTF_MEMBER_BITFIELD_SIZE(member->offset), BTF_MEMBER_BIT_OFFSET(member->offset)); else __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", __btf_name_by_offset(btf, member->name_off), member->type, member->offset); if (fmt && *fmt) { __btf_verifier_log(log, " "); va_start(args, fmt); bpf_verifier_vlog(log, fmt, args); va_end(args); } __btf_verifier_log(log, "\n"); } __printf(4, 5) static void btf_verifier_log_vsi(struct btf_verifier_env *env, const struct btf_type *datasec_type, const struct btf_var_secinfo *vsi, const char *fmt, ...) { struct bpf_verifier_log *log = &env->log; va_list args; if (!bpf_verifier_log_needed(log)) return; if (log->level == BPF_LOG_KERNEL && !fmt) return; if (env->phase != CHECK_META) btf_verifier_log_type(env, datasec_type, NULL); __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", vsi->type, vsi->offset, vsi->size); if (fmt && *fmt) { __btf_verifier_log(log, " "); va_start(args, fmt); bpf_verifier_vlog(log, fmt, args); va_end(args); } __btf_verifier_log(log, "\n"); } static void btf_verifier_log_hdr(struct btf_verifier_env *env, u32 btf_data_size) { struct bpf_verifier_log *log = &env->log; const struct btf *btf = env->btf; const struct btf_header *hdr; if (!bpf_verifier_log_needed(log)) return; if (log->level == BPF_LOG_KERNEL) return; hdr = &btf->hdr; __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); __btf_verifier_log(log, "version: %u\n", hdr->version); __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); } static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) { struct btf *btf = env->btf; if (btf->types_size == btf->nr_types) { /* Expand 'types' array */ struct btf_type **new_types; u32 expand_by, new_size; if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { btf_verifier_log(env, "Exceeded max num of types"); return -E2BIG; } expand_by = max_t(u32, btf->types_size >> 2, 16); new_size = min_t(u32, BTF_MAX_TYPE, btf->types_size + expand_by); new_types = kvcalloc(new_size, sizeof(*new_types), GFP_KERNEL | __GFP_NOWARN); if (!new_types) return -ENOMEM; if (btf->nr_types == 0) { if (!btf->base_btf) { /* lazily init VOID type */ new_types[0] = &btf_void; btf->nr_types++; } } else { memcpy(new_types, btf->types, sizeof(*btf->types) * btf->nr_types); } kvfree(btf->types); btf->types = new_types; btf->types_size = new_size; } btf->types[btf->nr_types++] = t; return 0; } static int btf_alloc_id(struct btf *btf) { int id; idr_preload(GFP_KERNEL); spin_lock_bh(&btf_idr_lock); id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); if (id > 0) btf->id = id; spin_unlock_bh(&btf_idr_lock); idr_preload_end(); if (WARN_ON_ONCE(!id)) return -ENOSPC; return id > 0 ? 0 : id; } static void btf_free_id(struct btf *btf) { unsigned long flags; /* * In map-in-map, calling map_delete_elem() on outer * map will call bpf_map_put on the inner map. * It will then eventually call btf_free_id() * on the inner map. Some of the map_delete_elem() * implementation may have irq disabled, so * we need to use the _irqsave() version instead * of the _bh() version. */ spin_lock_irqsave(&btf_idr_lock, flags); idr_remove(&btf_idr, btf->id); spin_unlock_irqrestore(&btf_idr_lock, flags); } static void btf_free_kfunc_set_tab(struct btf *btf) { struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; int hook; if (!tab) return; /* For module BTF, we directly assign the sets being registered, so * there is nothing to free except kfunc_set_tab. */ if (btf_is_module(btf)) goto free_tab; for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) kfree(tab->sets[hook]); free_tab: kfree(tab); btf->kfunc_set_tab = NULL; } static void btf_free_dtor_kfunc_tab(struct btf *btf) { struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; if (!tab) return; kfree(tab); btf->dtor_kfunc_tab = NULL; } static void btf_free(struct btf *btf) { btf_free_dtor_kfunc_tab(btf); btf_free_kfunc_set_tab(btf); kvfree(btf->types); kvfree(btf->resolved_sizes); kvfree(btf->resolved_ids); kvfree(btf->data); kfree(btf); } static void btf_free_rcu(struct rcu_head *rcu) { struct btf *btf = container_of(rcu, struct btf, rcu); btf_free(btf); } void btf_get(struct btf *btf) { refcount_inc(&btf->refcnt); } void btf_put(struct btf *btf) { if (btf && refcount_dec_and_test(&btf->refcnt)) { btf_free_id(btf); call_rcu(&btf->rcu, btf_free_rcu); } } static int env_resolve_init(struct btf_verifier_env *env) { struct btf *btf = env->btf; u32 nr_types = btf->nr_types; u32 *resolved_sizes = NULL; u32 *resolved_ids = NULL; u8 *visit_states = NULL; resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), GFP_KERNEL | __GFP_NOWARN); if (!resolved_sizes) goto nomem; resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), GFP_KERNEL | __GFP_NOWARN); if (!resolved_ids) goto nomem; visit_states = kvcalloc(nr_types, sizeof(*visit_states), GFP_KERNEL | __GFP_NOWARN); if (!visit_states) goto nomem; btf->resolved_sizes = resolved_sizes; btf->resolved_ids = resolved_ids; env->visit_states = visit_states; return 0; nomem: kvfree(resolved_sizes); kvfree(resolved_ids); kvfree(visit_states); return -ENOMEM; } static void btf_verifier_env_free(struct btf_verifier_env *env) { kvfree(env->visit_states); kfree(env); } static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, const struct btf_type *next_type) { switch (env->resolve_mode) { case RESOLVE_TBD: /* int, enum or void is a sink */ return !btf_type_needs_resolve(next_type); case RESOLVE_PTR: /* int, enum, void, struct, array, func or func_proto is a sink * for ptr */ return !btf_type_is_modifier(next_type) && !btf_type_is_ptr(next_type); case RESOLVE_STRUCT_OR_ARRAY: /* int, enum, void, ptr, func or func_proto is a sink * for struct and array */ return !btf_type_is_modifier(next_type) && !btf_type_is_array(next_type) && !btf_type_is_struct(next_type); default: BUG(); } } static bool env_type_is_resolved(const struct btf_verifier_env *env, u32 type_id) { /* base BTF types should be resolved by now */ if (type_id < env->btf->start_id) return true; return env->visit_states[type_id - env->btf->start_id] == RESOLVED; } static int env_stack_push(struct btf_verifier_env *env, const struct btf_type *t, u32 type_id) { const struct btf *btf = env->btf; struct resolve_vertex *v; if (env->top_stack == MAX_RESOLVE_DEPTH) return -E2BIG; if (type_id < btf->start_id || env->visit_states[type_id - btf->start_id] != NOT_VISITED) return -EEXIST; env->visit_states[type_id - btf->start_id] = VISITED; v = &env->stack[env->top_stack++]; v->t = t; v->type_id = type_id; v->next_member = 0; if (env->resolve_mode == RESOLVE_TBD) { if (btf_type_is_ptr(t)) env->resolve_mode = RESOLVE_PTR; else if (btf_type_is_struct(t) || btf_type_is_array(t)) env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; } return 0; } static void env_stack_set_next_member(struct btf_verifier_env *env, u16 next_member) { env->stack[env->top_stack - 1].next_member = next_member; } static void env_stack_pop_resolved(struct btf_verifier_env *env, u32 resolved_type_id, u32 resolved_size) { u32 type_id = env->stack[--(env->top_stack)].type_id; struct btf *btf = env->btf; type_id -= btf->start_id; /* adjust to local type id */ btf->resolved_sizes[type_id] = resolved_size; btf->resolved_ids[type_id] = resolved_type_id; env->visit_states[type_id] = RESOLVED; } static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) { return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; } /* Resolve the size of a passed-in "type" * * type: is an array (e.g. u32 array[x][y]) * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, * *type_size: (x * y * sizeof(u32)). Hence, *type_size always * corresponds to the return type. * *elem_type: u32 * *elem_id: id of u32 * *total_nelems: (x * y). Hence, individual elem size is * (*type_size / *total_nelems) * *type_id: id of type if it's changed within the function, 0 if not * * type: is not an array (e.g. const struct X) * return type: type "struct X" * *type_size: sizeof(struct X) * *elem_type: same as return type ("struct X") * *elem_id: 0 * *total_nelems: 1 * *type_id: id of type if it's changed within the function, 0 if not */ static const struct btf_type * __btf_resolve_size(const struct btf *btf, const struct btf_type *type, u32 *type_size, const struct btf_type **elem_type, u32 *elem_id, u32 *total_nelems, u32 *type_id) { const struct btf_type *array_type = NULL; const struct btf_array *array = NULL; u32 i, size, nelems = 1, id = 0; for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { switch (BTF_INFO_KIND(type->info)) { /* type->size can be used */ case BTF_KIND_INT: case BTF_KIND_STRUCT: case BTF_KIND_UNION: case BTF_KIND_ENUM: case BTF_KIND_FLOAT: case BTF_KIND_ENUM64: size = type->size; goto resolved; case BTF_KIND_PTR: size = sizeof(void *); goto resolved; /* Modifiers */ case BTF_KIND_TYPEDEF: case BTF_KIND_VOLATILE: case BTF_KIND_CONST: case BTF_KIND_RESTRICT: case BTF_KIND_TYPE_TAG: id = type->type; type = btf_type_by_id(btf, type->type); break; case BTF_KIND_ARRAY: if (!array_type) array_type = type; array = btf_type_array(type); if (nelems && array->nelems > U32_MAX / nelems) return ERR_PTR(-EINVAL); nelems *= array->nelems; type = btf_type_by_id(btf, array->type); break; /* type without size */ default: return ERR_PTR(-EINVAL); } } return ERR_PTR(-EINVAL); resolved: if (nelems && size > U32_MAX / nelems) return ERR_PTR(-EINVAL); *type_size = nelems * size; if (total_nelems) *total_nelems = nelems; if (elem_type) *elem_type = type; if (elem_id) *elem_id = array ? array->type : 0; if (type_id && id) *type_id = id; return array_type ? : type; } const struct btf_type * btf_resolve_size(const struct btf *btf, const struct btf_type *type, u32 *type_size) { return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); } static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) { while (type_id < btf->start_id) btf = btf->base_btf; return btf->resolved_ids[type_id - btf->start_id]; } /* The input param "type_id" must point to a needs_resolve type */ static const struct btf_type *btf_type_id_resolve(const struct btf *btf, u32 *type_id) { *type_id = btf_resolved_type_id(btf, *type_id); return btf_type_by_id(btf, *type_id); } static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) { while (type_id < btf->start_id) btf = btf->base_btf; return btf->resolved_sizes[type_id - btf->start_id]; } const struct btf_type *btf_type_id_size(const struct btf *btf, u32 *type_id, u32 *ret_size) { const struct btf_type *size_type; u32 size_type_id = *type_id; u32 size = 0; size_type = btf_type_by_id(btf, size_type_id); if (btf_type_nosize_or_null(size_type)) return NULL; if (btf_type_has_size(size_type)) { size = size_type->size; } else if (btf_type_is_array(size_type)) { size = btf_resolved_type_size(btf, size_type_id); } else if (btf_type_is_ptr(size_type)) { size = sizeof(void *); } else { if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && !btf_type_is_var(size_type))) return NULL; size_type_id = btf_resolved_type_id(btf, size_type_id); size_type = btf_type_by_id(btf, size_type_id); if (btf_type_nosize_or_null(size_type)) return NULL; else if (btf_type_has_size(size_type)) size = size_type->size; else if (btf_type_is_array(size_type)) size = btf_resolved_type_size(btf, size_type_id); else if (btf_type_is_ptr(size_type)) size = sizeof(void *); else return NULL; } *type_id = size_type_id; if (ret_size) *ret_size = size; return size_type; } static int btf_df_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { btf_verifier_log_basic(env, struct_type, "Unsupported check_member"); return -EINVAL; } static int btf_df_check_kflag_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { btf_verifier_log_basic(env, struct_type, "Unsupported check_kflag_member"); return -EINVAL; } /* Used for ptr, array struct/union and float type members. * int, enum and modifier types have their specific callback functions. */ static int btf_generic_check_kflag_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { btf_verifier_log_member(env, struct_type, member, "Invalid member bitfield_size"); return -EINVAL; } /* bitfield size is 0, so member->offset represents bit offset only. * It is safe to call non kflag check_member variants. */ return btf_type_ops(member_type)->check_member(env, struct_type, member, member_type); } static int btf_df_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { btf_verifier_log_basic(env, v->t, "Unsupported resolve"); return -EINVAL; } static void btf_df_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offsets, struct btf_show *show) { btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); } static int btf_int_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u32 int_data = btf_type_int(member_type); u32 struct_bits_off = member->offset; u32 struct_size = struct_type->size; u32 nr_copy_bits; u32 bytes_offset; if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { btf_verifier_log_member(env, struct_type, member, "bits_offset exceeds U32_MAX"); return -EINVAL; } struct_bits_off += BTF_INT_OFFSET(int_data); bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); nr_copy_bits = BTF_INT_BITS(int_data) + BITS_PER_BYTE_MASKED(struct_bits_off); if (nr_copy_bits > BITS_PER_U128) { btf_verifier_log_member(env, struct_type, member, "nr_copy_bits exceeds 128"); return -EINVAL; } if (struct_size < bytes_offset || struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static int btf_int_check_kflag_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; u32 int_data = btf_type_int(member_type); u32 struct_size = struct_type->size; u32 nr_copy_bits; /* a regular int type is required for the kflag int member */ if (!btf_type_int_is_regular(member_type)) { btf_verifier_log_member(env, struct_type, member, "Invalid member base type"); return -EINVAL; } /* check sanity of bitfield size */ nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); nr_int_data_bits = BTF_INT_BITS(int_data); if (!nr_bits) { /* Not a bitfield member, member offset must be at byte * boundary. */ if (BITS_PER_BYTE_MASKED(struct_bits_off)) { btf_verifier_log_member(env, struct_type, member, "Invalid member offset"); return -EINVAL; } nr_bits = nr_int_data_bits; } else if (nr_bits > nr_int_data_bits) { btf_verifier_log_member(env, struct_type, member, "Invalid member bitfield_size"); return -EINVAL; } bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); if (nr_copy_bits > BITS_PER_U128) { btf_verifier_log_member(env, struct_type, member, "nr_copy_bits exceeds 128"); return -EINVAL; } if (struct_size < bytes_offset || struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static s32 btf_int_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { u32 int_data, nr_bits, meta_needed = sizeof(int_data); u16 encoding; if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } if (btf_type_vlen(t)) { btf_verifier_log_type(env, t, "vlen != 0"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } int_data = btf_type_int(t); if (int_data & ~BTF_INT_MASK) { btf_verifier_log_basic(env, t, "Invalid int_data:%x", int_data); return -EINVAL; } nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); if (nr_bits > BITS_PER_U128) { btf_verifier_log_type(env, t, "nr_bits exceeds %zu", BITS_PER_U128); return -EINVAL; } if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); return -EINVAL; } /* * Only one of the encoding bits is allowed and it * should be sufficient for the pretty print purpose (i.e. decoding). * Multiple bits can be allowed later if it is found * to be insufficient. */ encoding = BTF_INT_ENCODING(int_data); if (encoding && encoding != BTF_INT_SIGNED && encoding != BTF_INT_CHAR && encoding != BTF_INT_BOOL) { btf_verifier_log_type(env, t, "Unsupported encoding"); return -ENOTSUPP; } btf_verifier_log_type(env, t, NULL); return meta_needed; } static void btf_int_log(struct btf_verifier_env *env, const struct btf_type *t) { int int_data = btf_type_int(t); btf_verifier_log(env, "size=%u bits_offset=%u nr_bits=%u encoding=%s", t->size, BTF_INT_OFFSET(int_data), BTF_INT_BITS(int_data), btf_int_encoding_str(BTF_INT_ENCODING(int_data))); } static void btf_int128_print(struct btf_show *show, void *data) { /* data points to a __int128 number. * Suppose * int128_num = *(__int128 *)data; * The below formulas shows what upper_num and lower_num represents: * upper_num = int128_num >> 64; * lower_num = int128_num & 0xffffffffFFFFFFFFULL; */ u64 upper_num, lower_num; #ifdef __BIG_ENDIAN_BITFIELD upper_num = *(u64 *)data; lower_num = *(u64 *)(data + 8); #else upper_num = *(u64 *)(data + 8); lower_num = *(u64 *)data; #endif if (upper_num == 0) btf_show_type_value(show, "0x%llx", lower_num); else btf_show_type_values(show, "0x%llx%016llx", upper_num, lower_num); } static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, u16 right_shift_bits) { u64 upper_num, lower_num; #ifdef __BIG_ENDIAN_BITFIELD upper_num = print_num[0]; lower_num = print_num[1]; #else upper_num = print_num[1]; lower_num = print_num[0]; #endif /* shake out un-needed bits by shift/or operations */ if (left_shift_bits >= 64) { upper_num = lower_num << (left_shift_bits - 64); lower_num = 0; } else { upper_num = (upper_num << left_shift_bits) | (lower_num >> (64 - left_shift_bits)); lower_num = lower_num << left_shift_bits; } if (right_shift_bits >= 64) { lower_num = upper_num >> (right_shift_bits - 64); upper_num = 0; } else { lower_num = (lower_num >> right_shift_bits) | (upper_num << (64 - right_shift_bits)); upper_num = upper_num >> right_shift_bits; } #ifdef __BIG_ENDIAN_BITFIELD print_num[0] = upper_num; print_num[1] = lower_num; #else print_num[0] = lower_num; print_num[1] = upper_num; #endif } static void btf_bitfield_show(void *data, u8 bits_offset, u8 nr_bits, struct btf_show *show) { u16 left_shift_bits, right_shift_bits; u8 nr_copy_bytes; u8 nr_copy_bits; u64 print_num[2] = {}; nr_copy_bits = nr_bits + bits_offset; nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); memcpy(print_num, data, nr_copy_bytes); #ifdef __BIG_ENDIAN_BITFIELD left_shift_bits = bits_offset; #else left_shift_bits = BITS_PER_U128 - nr_copy_bits; #endif right_shift_bits = BITS_PER_U128 - nr_bits; btf_int128_shift(print_num, left_shift_bits, right_shift_bits); btf_int128_print(show, print_num); } static void btf_int_bits_show(const struct btf *btf, const struct btf_type *t, void *data, u8 bits_offset, struct btf_show *show) { u32 int_data = btf_type_int(t); u8 nr_bits = BTF_INT_BITS(int_data); u8 total_bits_offset; /* * bits_offset is at most 7. * BTF_INT_OFFSET() cannot exceed 128 bits. */ total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); data += BITS_ROUNDDOWN_BYTES(total_bits_offset); bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); btf_bitfield_show(data, bits_offset, nr_bits, show); } static void btf_int_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { u32 int_data = btf_type_int(t); u8 encoding = BTF_INT_ENCODING(int_data); bool sign = encoding & BTF_INT_SIGNED; u8 nr_bits = BTF_INT_BITS(int_data); void *safe_data; safe_data = btf_show_start_type(show, t, type_id, data); if (!safe_data) return; if (bits_offset || BTF_INT_OFFSET(int_data) || BITS_PER_BYTE_MASKED(nr_bits)) { btf_int_bits_show(btf, t, safe_data, bits_offset, show); goto out; } switch (nr_bits) { case 128: btf_int128_print(show, safe_data); break; case 64: if (sign) btf_show_type_value(show, "%lld", *(s64 *)safe_data); else btf_show_type_value(show, "%llu", *(u64 *)safe_data); break; case 32: if (sign) btf_show_type_value(show, "%d", *(s32 *)safe_data); else btf_show_type_value(show, "%u", *(u32 *)safe_data); break; case 16: if (sign) btf_show_type_value(show, "%d", *(s16 *)safe_data); else btf_show_type_value(show, "%u", *(u16 *)safe_data); break; case 8: if (show->state.array_encoding == BTF_INT_CHAR) { /* check for null terminator */ if (show->state.array_terminated) break; if (*(char *)data == '\0') { show->state.array_terminated = 1; break; } if (isprint(*(char *)data)) { btf_show_type_value(show, "'%c'", *(char *)safe_data); break; } } if (sign) btf_show_type_value(show, "%d", *(s8 *)safe_data); else btf_show_type_value(show, "%u", *(u8 *)safe_data); break; default: btf_int_bits_show(btf, t, safe_data, bits_offset, show); break; } out: btf_show_end_type(show); } static const struct btf_kind_operations int_ops = { .check_meta = btf_int_check_meta, .resolve = btf_df_resolve, .check_member = btf_int_check_member, .check_kflag_member = btf_int_check_kflag_member, .log_details = btf_int_log, .show = btf_int_show, }; static int btf_modifier_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { const struct btf_type *resolved_type; u32 resolved_type_id = member->type; struct btf_member resolved_member; struct btf *btf = env->btf; resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); if (!resolved_type) { btf_verifier_log_member(env, struct_type, member, "Invalid member"); return -EINVAL; } resolved_member = *member; resolved_member.type = resolved_type_id; return btf_type_ops(resolved_type)->check_member(env, struct_type, &resolved_member, resolved_type); } static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { const struct btf_type *resolved_type; u32 resolved_type_id = member->type; struct btf_member resolved_member; struct btf *btf = env->btf; resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); if (!resolved_type) { btf_verifier_log_member(env, struct_type, member, "Invalid member"); return -EINVAL; } resolved_member = *member; resolved_member.type = resolved_type_id; return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, &resolved_member, resolved_type); } static int btf_ptr_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u32 struct_size, struct_bits_off, bytes_offset; struct_size = struct_type->size; struct_bits_off = member->offset; bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); if (BITS_PER_BYTE_MASKED(struct_bits_off)) { btf_verifier_log_member(env, struct_type, member, "Member is not byte aligned"); return -EINVAL; } if (struct_size - bytes_offset < sizeof(void *)) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static int btf_ref_type_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { const char *value; if (btf_type_vlen(t)) { btf_verifier_log_type(env, t, "vlen != 0"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } if (!BTF_TYPE_ID_VALID(t->type)) { btf_verifier_log_type(env, t, "Invalid type_id"); return -EINVAL; } /* typedef/type_tag type must have a valid name, and other ref types, * volatile, const, restrict, should have a null name. */ if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { if (!t->name_off || !btf_name_valid_identifier(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { value = btf_name_by_offset(env->btf, t->name_off); if (!value || !value[0]) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } } else { if (t->name_off) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } } btf_verifier_log_type(env, t, NULL); return 0; } static int btf_modifier_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_type *t = v->t; const struct btf_type *next_type; u32 next_type_id = t->type; struct btf *btf = env->btf; next_type = btf_type_by_id(btf, next_type_id); if (!next_type || btf_type_is_resolve_source_only(next_type)) { btf_verifier_log_type(env, v->t, "Invalid type_id"); return -EINVAL; } if (!env_type_is_resolve_sink(env, next_type) && !env_type_is_resolved(env, next_type_id)) return env_stack_push(env, next_type, next_type_id); /* Figure out the resolved next_type_id with size. * They will be stored in the current modifier's * resolved_ids and resolved_sizes such that it can * save us a few type-following when we use it later (e.g. in * pretty print). */ if (!btf_type_id_size(btf, &next_type_id, NULL)) { if (env_type_is_resolved(env, next_type_id)) next_type = btf_type_id_resolve(btf, &next_type_id); /* "typedef void new_void", "const void"...etc */ if (!btf_type_is_void(next_type) && !btf_type_is_fwd(next_type) && !btf_type_is_func_proto(next_type)) { btf_verifier_log_type(env, v->t, "Invalid type_id"); return -EINVAL; } } env_stack_pop_resolved(env, next_type_id, 0); return 0; } static int btf_var_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_type *next_type; const struct btf_type *t = v->t; u32 next_type_id = t->type; struct btf *btf = env->btf; next_type = btf_type_by_id(btf, next_type_id); if (!next_type || btf_type_is_resolve_source_only(next_type)) { btf_verifier_log_type(env, v->t, "Invalid type_id"); return -EINVAL; } if (!env_type_is_resolve_sink(env, next_type) && !env_type_is_resolved(env, next_type_id)) return env_stack_push(env, next_type, next_type_id); if (btf_type_is_modifier(next_type)) { const struct btf_type *resolved_type; u32 resolved_type_id; resolved_type_id = next_type_id; resolved_type = btf_type_id_resolve(btf, &resolved_type_id); if (btf_type_is_ptr(resolved_type) && !env_type_is_resolve_sink(env, resolved_type) && !env_type_is_resolved(env, resolved_type_id)) return env_stack_push(env, resolved_type, resolved_type_id); } /* We must resolve to something concrete at this point, no * forward types or similar that would resolve to size of * zero is allowed. */ if (!btf_type_id_size(btf, &next_type_id, NULL)) { btf_verifier_log_type(env, v->t, "Invalid type_id"); return -EINVAL; } env_stack_pop_resolved(env, next_type_id, 0); return 0; } static int btf_ptr_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_type *next_type; const struct btf_type *t = v->t; u32 next_type_id = t->type; struct btf *btf = env->btf; next_type = btf_type_by_id(btf, next_type_id); if (!next_type || btf_type_is_resolve_source_only(next_type)) { btf_verifier_log_type(env, v->t, "Invalid type_id"); return -EINVAL; } if (!env_type_is_resolve_sink(env, next_type) && !env_type_is_resolved(env, next_type_id)) return env_stack_push(env, next_type, next_type_id); /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, * the modifier may have stopped resolving when it was resolved * to a ptr (last-resolved-ptr). * * We now need to continue from the last-resolved-ptr to * ensure the last-resolved-ptr will not referring back to * the current ptr (t). */ if (btf_type_is_modifier(next_type)) { const struct btf_type *resolved_type; u32 resolved_type_id; resolved_type_id = next_type_id; resolved_type = btf_type_id_resolve(btf, &resolved_type_id); if (btf_type_is_ptr(resolved_type) && !env_type_is_resolve_sink(env, resolved_type) && !env_type_is_resolved(env, resolved_type_id)) return env_stack_push(env, resolved_type, resolved_type_id); } if (!btf_type_id_size(btf, &next_type_id, NULL)) { if (env_type_is_resolved(env, next_type_id)) next_type = btf_type_id_resolve(btf, &next_type_id); if (!btf_type_is_void(next_type) && !btf_type_is_fwd(next_type) && !btf_type_is_func_proto(next_type)) { btf_verifier_log_type(env, v->t, "Invalid type_id"); return -EINVAL; } } env_stack_pop_resolved(env, next_type_id, 0); return 0; } static void btf_modifier_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { if (btf->resolved_ids) t = btf_type_id_resolve(btf, &type_id); else t = btf_type_skip_modifiers(btf, type_id, NULL); btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); } static void btf_var_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { t = btf_type_id_resolve(btf, &type_id); btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); } static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { void *safe_data; safe_data = btf_show_start_type(show, t, type_id, data); if (!safe_data) return; /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ if (show->flags & BTF_SHOW_PTR_RAW) btf_show_type_value(show, "0x%px", *(void **)safe_data); else btf_show_type_value(show, "0x%p", *(void **)safe_data); btf_show_end_type(show); } static void btf_ref_type_log(struct btf_verifier_env *env, const struct btf_type *t) { btf_verifier_log(env, "type_id=%u", t->type); } static struct btf_kind_operations modifier_ops = { .check_meta = btf_ref_type_check_meta, .resolve = btf_modifier_resolve, .check_member = btf_modifier_check_member, .check_kflag_member = btf_modifier_check_kflag_member, .log_details = btf_ref_type_log, .show = btf_modifier_show, }; static struct btf_kind_operations ptr_ops = { .check_meta = btf_ref_type_check_meta, .resolve = btf_ptr_resolve, .check_member = btf_ptr_check_member, .check_kflag_member = btf_generic_check_kflag_member, .log_details = btf_ref_type_log, .show = btf_ptr_show, }; static s32 btf_fwd_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { if (btf_type_vlen(t)) { btf_verifier_log_type(env, t, "vlen != 0"); return -EINVAL; } if (t->type) { btf_verifier_log_type(env, t, "type != 0"); return -EINVAL; } /* fwd type must have a valid name */ if (!t->name_off || !btf_name_valid_identifier(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); return 0; } static void btf_fwd_type_log(struct btf_verifier_env *env, const struct btf_type *t) { btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); } static struct btf_kind_operations fwd_ops = { .check_meta = btf_fwd_check_meta, .resolve = btf_df_resolve, .check_member = btf_df_check_member, .check_kflag_member = btf_df_check_kflag_member, .log_details = btf_fwd_type_log, .show = btf_df_show, }; static int btf_array_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u32 struct_bits_off = member->offset; u32 struct_size, bytes_offset; u32 array_type_id, array_size; struct btf *btf = env->btf; if (BITS_PER_BYTE_MASKED(struct_bits_off)) { btf_verifier_log_member(env, struct_type, member, "Member is not byte aligned"); return -EINVAL; } array_type_id = member->type; btf_type_id_size(btf, &array_type_id, &array_size); struct_size = struct_type->size; bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); if (struct_size - bytes_offset < array_size) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static s32 btf_array_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { const struct btf_array *array = btf_type_array(t); u32 meta_needed = sizeof(*array); if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } /* array type should not have a name */ if (t->name_off) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } if (btf_type_vlen(t)) { btf_verifier_log_type(env, t, "vlen != 0"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } if (t->size) { btf_verifier_log_type(env, t, "size != 0"); return -EINVAL; } /* Array elem type and index type cannot be in type void, * so !array->type and !array->index_type are not allowed. */ if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { btf_verifier_log_type(env, t, "Invalid elem"); return -EINVAL; } if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { btf_verifier_log_type(env, t, "Invalid index"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); return meta_needed; } static int btf_array_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_array *array = btf_type_array(v->t); const struct btf_type *elem_type, *index_type; u32 elem_type_id, index_type_id; struct btf *btf = env->btf; u32 elem_size; /* Check array->index_type */ index_type_id = array->index_type; index_type = btf_type_by_id(btf, index_type_id); if (btf_type_nosize_or_null(index_type) || btf_type_is_resolve_source_only(index_type)) { btf_verifier_log_type(env, v->t, "Invalid index"); return -EINVAL; } if (!env_type_is_resolve_sink(env, index_type) && !env_type_is_resolved(env, index_type_id)) return env_stack_push(env, index_type, index_type_id); index_type = btf_type_id_size(btf, &index_type_id, NULL); if (!index_type || !btf_type_is_int(index_type) || !btf_type_int_is_regular(index_type)) { btf_verifier_log_type(env, v->t, "Invalid index"); return -EINVAL; } /* Check array->type */ elem_type_id = array->type; elem_type = btf_type_by_id(btf, elem_type_id); if (btf_type_nosize_or_null(elem_type) || btf_type_is_resolve_source_only(elem_type)) { btf_verifier_log_type(env, v->t, "Invalid elem"); return -EINVAL; } if (!env_type_is_resolve_sink(env, elem_type) && !env_type_is_resolved(env, elem_type_id)) return env_stack_push(env, elem_type, elem_type_id); elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); if (!elem_type) { btf_verifier_log_type(env, v->t, "Invalid elem"); return -EINVAL; } if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { btf_verifier_log_type(env, v->t, "Invalid array of int"); return -EINVAL; } if (array->nelems && elem_size > U32_MAX / array->nelems) { btf_verifier_log_type(env, v->t, "Array size overflows U32_MAX"); return -EINVAL; } env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); return 0; } static void btf_array_log(struct btf_verifier_env *env, const struct btf_type *t) { const struct btf_array *array = btf_type_array(t); btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", array->type, array->index_type, array->nelems); } static void __btf_array_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { const struct btf_array *array = btf_type_array(t); const struct btf_kind_operations *elem_ops; const struct btf_type *elem_type; u32 i, elem_size = 0, elem_type_id; u16 encoding = 0; elem_type_id = array->type; elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); if (elem_type && btf_type_has_size(elem_type)) elem_size = elem_type->size; if (elem_type && btf_type_is_int(elem_type)) { u32 int_type = btf_type_int(elem_type); encoding = BTF_INT_ENCODING(int_type); /* * BTF_INT_CHAR encoding never seems to be set for * char arrays, so if size is 1 and element is * printable as a char, we'll do that. */ if (elem_size == 1) encoding = BTF_INT_CHAR; } if (!btf_show_start_array_type(show, t, type_id, encoding, data)) return; if (!elem_type) goto out; elem_ops = btf_type_ops(elem_type); for (i = 0; i < array->nelems; i++) { btf_show_start_array_member(show); elem_ops->show(btf, elem_type, elem_type_id, data, bits_offset, show); data += elem_size; btf_show_end_array_member(show); if (show->state.array_terminated) break; } out: btf_show_end_array_type(show); } static void btf_array_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { const struct btf_member *m = show->state.member; /* * First check if any members would be shown (are non-zero). * See comments above "struct btf_show" definition for more * details on how this works at a high-level. */ if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { if (!show->state.depth_check) { show->state.depth_check = show->state.depth + 1; show->state.depth_to_show = 0; } __btf_array_show(btf, t, type_id, data, bits_offset, show); show->state.member = m; if (show->state.depth_check != show->state.depth + 1) return; show->state.depth_check = 0; if (show->state.depth_to_show <= show->state.depth) return; /* * Reaching here indicates we have recursed and found * non-zero array member(s). */ } __btf_array_show(btf, t, type_id, data, bits_offset, show); } static struct btf_kind_operations array_ops = { .check_meta = btf_array_check_meta, .resolve = btf_array_resolve, .check_member = btf_array_check_member, .check_kflag_member = btf_generic_check_kflag_member, .log_details = btf_array_log, .show = btf_array_show, }; static int btf_struct_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u32 struct_bits_off = member->offset; u32 struct_size, bytes_offset; if (BITS_PER_BYTE_MASKED(struct_bits_off)) { btf_verifier_log_member(env, struct_type, member, "Member is not byte aligned"); return -EINVAL; } struct_size = struct_type->size; bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); if (struct_size - bytes_offset < member_type->size) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static s32 btf_struct_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; const struct btf_member *member; u32 meta_needed, last_offset; struct btf *btf = env->btf; u32 struct_size = t->size; u32 offset; u16 i; meta_needed = btf_type_vlen(t) * sizeof(*member); if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } /* struct type either no name or a valid one */ if (t->name_off && !btf_name_valid_identifier(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); last_offset = 0; for_each_member(i, t, member) { if (!btf_name_offset_valid(btf, member->name_off)) { btf_verifier_log_member(env, t, member, "Invalid member name_offset:%u", member->name_off); return -EINVAL; } /* struct member either no name or a valid one */ if (member->name_off && !btf_name_valid_identifier(btf, member->name_off)) { btf_verifier_log_member(env, t, member, "Invalid name"); return -EINVAL; } /* A member cannot be in type void */ if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { btf_verifier_log_member(env, t, member, "Invalid type_id"); return -EINVAL; } offset = __btf_member_bit_offset(t, member); if (is_union && offset) { btf_verifier_log_member(env, t, member, "Invalid member bits_offset"); return -EINVAL; } /* * ">" instead of ">=" because the last member could be * "char a[0];" */ if (last_offset > offset) { btf_verifier_log_member(env, t, member, "Invalid member bits_offset"); return -EINVAL; } if (BITS_ROUNDUP_BYTES(offset) > struct_size) { btf_verifier_log_member(env, t, member, "Member bits_offset exceeds its struct size"); return -EINVAL; } btf_verifier_log_member(env, t, member, NULL); last_offset = offset; } return meta_needed; } static int btf_struct_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_member *member; int err; u16 i; /* Before continue resolving the next_member, * ensure the last member is indeed resolved to a * type with size info. */ if (v->next_member) { const struct btf_type *last_member_type; const struct btf_member *last_member; u32 last_member_type_id; last_member = btf_type_member(v->t) + v->next_member - 1; last_member_type_id = last_member->type; if (WARN_ON_ONCE(!env_type_is_resolved(env, last_member_type_id))) return -EINVAL; last_member_type = btf_type_by_id(env->btf, last_member_type_id); if (btf_type_kflag(v->t)) err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, last_member, last_member_type); else err = btf_type_ops(last_member_type)->check_member(env, v->t, last_member, last_member_type); if (err) return err; } for_each_member_from(i, v->next_member, v->t, member) { u32 member_type_id = member->type; const struct btf_type *member_type = btf_type_by_id(env->btf, member_type_id); if (btf_type_nosize_or_null(member_type) || btf_type_is_resolve_source_only(member_type)) { btf_verifier_log_member(env, v->t, member, "Invalid member"); return -EINVAL; } if (!env_type_is_resolve_sink(env, member_type) && !env_type_is_resolved(env, member_type_id)) { env_stack_set_next_member(env, i + 1); return env_stack_push(env, member_type, member_type_id); } if (btf_type_kflag(v->t)) err = btf_type_ops(member_type)->check_kflag_member(env, v->t, member, member_type); else err = btf_type_ops(member_type)->check_member(env, v->t, member, member_type); if (err) return err; } env_stack_pop_resolved(env, 0, 0); return 0; } static void btf_struct_log(struct btf_verifier_env *env, const struct btf_type *t) { btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); } enum btf_field_type { BTF_FIELD_SPIN_LOCK, BTF_FIELD_TIMER, BTF_FIELD_KPTR, }; enum { BTF_FIELD_IGNORE = 0, BTF_FIELD_FOUND = 1, }; struct btf_field_info { u32 type_id; u32 off; enum bpf_kptr_type type; }; static int btf_find_struct(const struct btf *btf, const struct btf_type *t, u32 off, int sz, struct btf_field_info *info) { if (!__btf_type_is_struct(t)) return BTF_FIELD_IGNORE; if (t->size != sz) return BTF_FIELD_IGNORE; info->off = off; return BTF_FIELD_FOUND; } static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, u32 off, int sz, struct btf_field_info *info) { enum bpf_kptr_type type; u32 res_id; /* For PTR, sz is always == 8 */ if (!btf_type_is_ptr(t)) return BTF_FIELD_IGNORE; t = btf_type_by_id(btf, t->type); if (!btf_type_is_type_tag(t)) return BTF_FIELD_IGNORE; /* Reject extra tags */ if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) return -EINVAL; if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off))) type = BPF_KPTR_UNREF; else if (!strcmp("kptr_ref", __btf_name_by_offset(btf, t->name_off))) type = BPF_KPTR_REF; else return -EINVAL; /* Get the base type */ t = btf_type_skip_modifiers(btf, t->type, &res_id); /* Only pointer to struct is allowed */ if (!__btf_type_is_struct(t)) return -EINVAL; info->type_id = res_id; info->off = off; info->type = type; return BTF_FIELD_FOUND; } static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t, const char *name, int sz, int align, enum btf_field_type field_type, struct btf_field_info *info, int info_cnt) { const struct btf_member *member; struct btf_field_info tmp; int ret, idx = 0; u32 i, off; for_each_member(i, t, member) { const struct btf_type *member_type = btf_type_by_id(btf, member->type); if (name && strcmp(__btf_name_by_offset(btf, member_type->name_off), name)) continue; off = __btf_member_bit_offset(t, member); if (off % 8) /* valid C code cannot generate such BTF */ return -EINVAL; off /= 8; if (off % align) return -EINVAL; switch (field_type) { case BTF_FIELD_SPIN_LOCK: case BTF_FIELD_TIMER: ret = btf_find_struct(btf, member_type, off, sz, idx < info_cnt ? &info[idx] : &tmp); if (ret < 0) return ret; break; case BTF_FIELD_KPTR: ret = btf_find_kptr(btf, member_type, off, sz, idx < info_cnt ? &info[idx] : &tmp); if (ret < 0) return ret; break; default: return -EFAULT; } if (ret == BTF_FIELD_IGNORE) continue; if (idx >= info_cnt) return -E2BIG; ++idx; } return idx; } static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, const char *name, int sz, int align, enum btf_field_type field_type, struct btf_field_info *info, int info_cnt) { const struct btf_var_secinfo *vsi; struct btf_field_info tmp; int ret, idx = 0; u32 i, off; for_each_vsi(i, t, vsi) { const struct btf_type *var = btf_type_by_id(btf, vsi->type); const struct btf_type *var_type = btf_type_by_id(btf, var->type); off = vsi->offset; if (name && strcmp(__btf_name_by_offset(btf, var_type->name_off), name)) continue; if (vsi->size != sz) continue; if (off % align) return -EINVAL; switch (field_type) { case BTF_FIELD_SPIN_LOCK: case BTF_FIELD_TIMER: ret = btf_find_struct(btf, var_type, off, sz, idx < info_cnt ? &info[idx] : &tmp); if (ret < 0) return ret; break; case BTF_FIELD_KPTR: ret = btf_find_kptr(btf, var_type, off, sz, idx < info_cnt ? &info[idx] : &tmp); if (ret < 0) return ret; break; default: return -EFAULT; } if (ret == BTF_FIELD_IGNORE) continue; if (idx >= info_cnt) return -E2BIG; ++idx; } return idx; } static int btf_find_field(const struct btf *btf, const struct btf_type *t, enum btf_field_type field_type, struct btf_field_info *info, int info_cnt) { const char *name; int sz, align; switch (field_type) { case BTF_FIELD_SPIN_LOCK: name = "bpf_spin_lock"; sz = sizeof(struct bpf_spin_lock); align = __alignof__(struct bpf_spin_lock); break; case BTF_FIELD_TIMER: name = "bpf_timer"; sz = sizeof(struct bpf_timer); align = __alignof__(struct bpf_timer); break; case BTF_FIELD_KPTR: name = NULL; sz = sizeof(u64); align = 8; break; default: return -EFAULT; } if (__btf_type_is_struct(t)) return btf_find_struct_field(btf, t, name, sz, align, field_type, info, info_cnt); else if (btf_type_is_datasec(t)) return btf_find_datasec_var(btf, t, name, sz, align, field_type, info, info_cnt); return -EINVAL; } /* find 'struct bpf_spin_lock' in map value. * return >= 0 offset if found * and < 0 in case of error */ int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t) { struct btf_field_info info; int ret; ret = btf_find_field(btf, t, BTF_FIELD_SPIN_LOCK, &info, 1); if (ret < 0) return ret; if (!ret) return -ENOENT; return info.off; } int btf_find_timer(const struct btf *btf, const struct btf_type *t) { struct btf_field_info info; int ret; ret = btf_find_field(btf, t, BTF_FIELD_TIMER, &info, 1); if (ret < 0) return ret; if (!ret) return -ENOENT; return info.off; } struct bpf_map_value_off *btf_parse_kptrs(const struct btf *btf, const struct btf_type *t) { struct btf_field_info info_arr[BPF_MAP_VALUE_OFF_MAX]; struct bpf_map_value_off *tab; struct btf *kernel_btf = NULL; struct module *mod = NULL; int ret, i, nr_off; ret = btf_find_field(btf, t, BTF_FIELD_KPTR, info_arr, ARRAY_SIZE(info_arr)); if (ret < 0) return ERR_PTR(ret); if (!ret) return NULL; nr_off = ret; tab = kzalloc(offsetof(struct bpf_map_value_off, off[nr_off]), GFP_KERNEL | __GFP_NOWARN); if (!tab) return ERR_PTR(-ENOMEM); for (i = 0; i < nr_off; i++) { const struct btf_type *t; s32 id; /* Find type in map BTF, and use it to look up the matching type * in vmlinux or module BTFs, by name and kind. */ t = btf_type_by_id(btf, info_arr[i].type_id); id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), &kernel_btf); if (id < 0) { ret = id; goto end; } /* Find and stash the function pointer for the destruction function that * needs to be eventually invoked from the map free path. */ if (info_arr[i].type == BPF_KPTR_REF) { const struct btf_type *dtor_func; const char *dtor_func_name; unsigned long addr; s32 dtor_btf_id; /* This call also serves as a whitelist of allowed objects that * can be used as a referenced pointer and be stored in a map at * the same time. */ dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id); if (dtor_btf_id < 0) { ret = dtor_btf_id; goto end_btf; } dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id); if (!dtor_func) { ret = -ENOENT; goto end_btf; } if (btf_is_module(kernel_btf)) { mod = btf_try_get_module(kernel_btf); if (!mod) { ret = -ENXIO; goto end_btf; } } /* We already verified dtor_func to be btf_type_is_func * in register_btf_id_dtor_kfuncs. */ dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off); addr = kallsyms_lookup_name(dtor_func_name); if (!addr) { ret = -EINVAL; goto end_mod; } tab->off[i].kptr.dtor = (void *)addr; } tab->off[i].offset = info_arr[i].off; tab->off[i].type = info_arr[i].type; tab->off[i].kptr.btf_id = id; tab->off[i].kptr.btf = kernel_btf; tab->off[i].kptr.module = mod; } tab->nr_off = nr_off; return tab; end_mod: module_put(mod); end_btf: btf_put(kernel_btf); end: while (i--) { btf_put(tab->off[i].kptr.btf); if (tab->off[i].kptr.module) module_put(tab->off[i].kptr.module); } kfree(tab); return ERR_PTR(ret); } static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { const struct btf_member *member; void *safe_data; u32 i; safe_data = btf_show_start_struct_type(show, t, type_id, data); if (!safe_data) return; for_each_member(i, t, member) { const struct btf_type *member_type = btf_type_by_id(btf, member->type); const struct btf_kind_operations *ops; u32 member_offset, bitfield_size; u32 bytes_offset; u8 bits8_offset; btf_show_start_member(show, member); member_offset = __btf_member_bit_offset(t, member); bitfield_size = __btf_member_bitfield_size(t, member); bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); bits8_offset = BITS_PER_BYTE_MASKED(member_offset); if (bitfield_size) { safe_data = btf_show_start_type(show, member_type, member->type, data + bytes_offset); if (safe_data) btf_bitfield_show(safe_data, bits8_offset, bitfield_size, show); btf_show_end_type(show); } else { ops = btf_type_ops(member_type); ops->show(btf, member_type, member->type, data + bytes_offset, bits8_offset, show); } btf_show_end_member(show); } btf_show_end_struct_type(show); } static void btf_struct_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { const struct btf_member *m = show->state.member; /* * First check if any members would be shown (are non-zero). * See comments above "struct btf_show" definition for more * details on how this works at a high-level. */ if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { if (!show->state.depth_check) { show->state.depth_check = show->state.depth + 1; show->state.depth_to_show = 0; } __btf_struct_show(btf, t, type_id, data, bits_offset, show); /* Restore saved member data here */ show->state.member = m; if (show->state.depth_check != show->state.depth + 1) return; show->state.depth_check = 0; if (show->state.depth_to_show <= show->state.depth) return; /* * Reaching here indicates we have recursed and found * non-zero child values. */ } __btf_struct_show(btf, t, type_id, data, bits_offset, show); } static struct btf_kind_operations struct_ops = { .check_meta = btf_struct_check_meta, .resolve = btf_struct_resolve, .check_member = btf_struct_check_member, .check_kflag_member = btf_generic_check_kflag_member, .log_details = btf_struct_log, .show = btf_struct_show, }; static int btf_enum_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u32 struct_bits_off = member->offset; u32 struct_size, bytes_offset; if (BITS_PER_BYTE_MASKED(struct_bits_off)) { btf_verifier_log_member(env, struct_type, member, "Member is not byte aligned"); return -EINVAL; } struct_size = struct_type->size; bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); if (struct_size - bytes_offset < member_type->size) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static int btf_enum_check_kflag_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u32 struct_bits_off, nr_bits, bytes_end, struct_size; u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); if (!nr_bits) { if (BITS_PER_BYTE_MASKED(struct_bits_off)) { btf_verifier_log_member(env, struct_type, member, "Member is not byte aligned"); return -EINVAL; } nr_bits = int_bitsize; } else if (nr_bits > int_bitsize) { btf_verifier_log_member(env, struct_type, member, "Invalid member bitfield_size"); return -EINVAL; } struct_size = struct_type->size; bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); if (struct_size < bytes_end) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static s32 btf_enum_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { const struct btf_enum *enums = btf_type_enum(t); struct btf *btf = env->btf; const char *fmt_str; u16 i, nr_enums; u32 meta_needed; nr_enums = btf_type_vlen(t); meta_needed = nr_enums * sizeof(*enums); if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } if (t->size > 8 || !is_power_of_2(t->size)) { btf_verifier_log_type(env, t, "Unexpected size"); return -EINVAL; } /* enum type either no name or a valid one */ if (t->name_off && !btf_name_valid_identifier(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); for (i = 0; i < nr_enums; i++) { if (!btf_name_offset_valid(btf, enums[i].name_off)) { btf_verifier_log(env, "\tInvalid name_offset:%u", enums[i].name_off); return -EINVAL; } /* enum member must have a valid name */ if (!enums[i].name_off || !btf_name_valid_identifier(btf, enums[i].name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } if (env->log.level == BPF_LOG_KERNEL) continue; fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; btf_verifier_log(env, fmt_str, __btf_name_by_offset(btf, enums[i].name_off), enums[i].val); } return meta_needed; } static void btf_enum_log(struct btf_verifier_env *env, const struct btf_type *t) { btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); } static void btf_enum_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { const struct btf_enum *enums = btf_type_enum(t); u32 i, nr_enums = btf_type_vlen(t); void *safe_data; int v; safe_data = btf_show_start_type(show, t, type_id, data); if (!safe_data) return; v = *(int *)safe_data; for (i = 0; i < nr_enums; i++) { if (v != enums[i].val) continue; btf_show_type_value(show, "%s", __btf_name_by_offset(btf, enums[i].name_off)); btf_show_end_type(show); return; } if (btf_type_kflag(t)) btf_show_type_value(show, "%d", v); else btf_show_type_value(show, "%u", v); btf_show_end_type(show); } static struct btf_kind_operations enum_ops = { .check_meta = btf_enum_check_meta, .resolve = btf_df_resolve, .check_member = btf_enum_check_member, .check_kflag_member = btf_enum_check_kflag_member, .log_details = btf_enum_log, .show = btf_enum_show, }; static s32 btf_enum64_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { const struct btf_enum64 *enums = btf_type_enum64(t); struct btf *btf = env->btf; const char *fmt_str; u16 i, nr_enums; u32 meta_needed; nr_enums = btf_type_vlen(t); meta_needed = nr_enums * sizeof(*enums); if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } if (t->size > 8 || !is_power_of_2(t->size)) { btf_verifier_log_type(env, t, "Unexpected size"); return -EINVAL; } /* enum type either no name or a valid one */ if (t->name_off && !btf_name_valid_identifier(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); for (i = 0; i < nr_enums; i++) { if (!btf_name_offset_valid(btf, enums[i].name_off)) { btf_verifier_log(env, "\tInvalid name_offset:%u", enums[i].name_off); return -EINVAL; } /* enum member must have a valid name */ if (!enums[i].name_off || !btf_name_valid_identifier(btf, enums[i].name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } if (env->log.level == BPF_LOG_KERNEL) continue; fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; btf_verifier_log(env, fmt_str, __btf_name_by_offset(btf, enums[i].name_off), btf_enum64_value(enums + i)); } return meta_needed; } static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { const struct btf_enum64 *enums = btf_type_enum64(t); u32 i, nr_enums = btf_type_vlen(t); void *safe_data; s64 v; safe_data = btf_show_start_type(show, t, type_id, data); if (!safe_data) return; v = *(u64 *)safe_data; for (i = 0; i < nr_enums; i++) { if (v != btf_enum64_value(enums + i)) continue; btf_show_type_value(show, "%s", __btf_name_by_offset(btf, enums[i].name_off)); btf_show_end_type(show); return; } if (btf_type_kflag(t)) btf_show_type_value(show, "%lld", v); else btf_show_type_value(show, "%llu", v); btf_show_end_type(show); } static struct btf_kind_operations enum64_ops = { .check_meta = btf_enum64_check_meta, .resolve = btf_df_resolve, .check_member = btf_enum_check_member, .check_kflag_member = btf_enum_check_kflag_member, .log_details = btf_enum_log, .show = btf_enum64_show, }; static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } if (t->name_off) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); return meta_needed; } static void btf_func_proto_log(struct btf_verifier_env *env, const struct btf_type *t) { const struct btf_param *args = (const struct btf_param *)(t + 1); u16 nr_args = btf_type_vlen(t), i; btf_verifier_log(env, "return=%u args=(", t->type); if (!nr_args) { btf_verifier_log(env, "void"); goto done; } if (nr_args == 1 && !args[0].type) { /* Only one vararg */ btf_verifier_log(env, "vararg"); goto done; } btf_verifier_log(env, "%u %s", args[0].type, __btf_name_by_offset(env->btf, args[0].name_off)); for (i = 1; i < nr_args - 1; i++) btf_verifier_log(env, ", %u %s", args[i].type, __btf_name_by_offset(env->btf, args[i].name_off)); if (nr_args > 1) { const struct btf_param *last_arg = &args[nr_args - 1]; if (last_arg->type) btf_verifier_log(env, ", %u %s", last_arg->type, __btf_name_by_offset(env->btf, last_arg->name_off)); else btf_verifier_log(env, ", vararg"); } done: btf_verifier_log(env, ")"); } static struct btf_kind_operations func_proto_ops = { .check_meta = btf_func_proto_check_meta, .resolve = btf_df_resolve, /* * BTF_KIND_FUNC_PROTO cannot be directly referred by * a struct's member. * * It should be a function pointer instead. * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) * * Hence, there is no btf_func_check_member(). */ .check_member = btf_df_check_member, .check_kflag_member = btf_df_check_kflag_member, .log_details = btf_func_proto_log, .show = btf_df_show, }; static s32 btf_func_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { if (!t->name_off || !btf_name_valid_identifier(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { btf_verifier_log_type(env, t, "Invalid func linkage"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); return 0; } static int btf_func_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_type *t = v->t; u32 next_type_id = t->type; int err; err = btf_func_check(env, t); if (err) return err; env_stack_pop_resolved(env, next_type_id, 0); return 0; } static struct btf_kind_operations func_ops = { .check_meta = btf_func_check_meta, .resolve = btf_func_resolve, .check_member = btf_df_check_member, .check_kflag_member = btf_df_check_kflag_member, .log_details = btf_ref_type_log, .show = btf_df_show, }; static s32 btf_var_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { const struct btf_var *var; u32 meta_needed = sizeof(*var); if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } if (btf_type_vlen(t)) { btf_verifier_log_type(env, t, "vlen != 0"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } if (!t->name_off || !__btf_name_valid(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } /* A var cannot be in type void */ if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { btf_verifier_log_type(env, t, "Invalid type_id"); return -EINVAL; } var = btf_type_var(t); if (var->linkage != BTF_VAR_STATIC && var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { btf_verifier_log_type(env, t, "Linkage not supported"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); return meta_needed; } static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) { const struct btf_var *var = btf_type_var(t); btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); } static const struct btf_kind_operations var_ops = { .check_meta = btf_var_check_meta, .resolve = btf_var_resolve, .check_member = btf_df_check_member, .check_kflag_member = btf_df_check_kflag_member, .log_details = btf_var_log, .show = btf_var_show, }; static s32 btf_datasec_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { const struct btf_var_secinfo *vsi; u64 last_vsi_end_off = 0, sum = 0; u32 i, meta_needed; meta_needed = btf_type_vlen(t) * sizeof(*vsi); if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } if (!t->size) { btf_verifier_log_type(env, t, "size == 0"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } if (!t->name_off || !btf_name_valid_section(env->btf, t->name_off)) { btf_verifier_log_type(env, t, "Invalid name"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); for_each_vsi(i, t, vsi) { /* A var cannot be in type void */ if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { btf_verifier_log_vsi(env, t, vsi, "Invalid type_id"); return -EINVAL; } if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { btf_verifier_log_vsi(env, t, vsi, "Invalid offset"); return -EINVAL; } if (!vsi->size || vsi->size > t->size) { btf_verifier_log_vsi(env, t, vsi, "Invalid size"); return -EINVAL; } last_vsi_end_off = vsi->offset + vsi->size; if (last_vsi_end_off > t->size) { btf_verifier_log_vsi(env, t, vsi, "Invalid offset+size"); return -EINVAL; } btf_verifier_log_vsi(env, t, vsi, NULL); sum += vsi->size; } if (t->size < sum) { btf_verifier_log_type(env, t, "Invalid btf_info size"); return -EINVAL; } return meta_needed; } static int btf_datasec_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_var_secinfo *vsi; struct btf *btf = env->btf; u16 i; env->resolve_mode = RESOLVE_TBD; for_each_vsi_from(i, v->next_member, v->t, vsi) { u32 var_type_id = vsi->type, type_id, type_size = 0; const struct btf_type *var_type = btf_type_by_id(env->btf, var_type_id); if (!var_type || !btf_type_is_var(var_type)) { btf_verifier_log_vsi(env, v->t, vsi, "Not a VAR kind member"); return -EINVAL; } if (!env_type_is_resolve_sink(env, var_type) && !env_type_is_resolved(env, var_type_id)) { env_stack_set_next_member(env, i + 1); return env_stack_push(env, var_type, var_type_id); } type_id = var_type->type; if (!btf_type_id_size(btf, &type_id, &type_size)) { btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); return -EINVAL; } if (vsi->size < type_size) { btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); return -EINVAL; } } env_stack_pop_resolved(env, 0, 0); return 0; } static void btf_datasec_log(struct btf_verifier_env *env, const struct btf_type *t) { btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); } static void btf_datasec_show(const struct btf *btf, const struct btf_type *t, u32 type_id, void *data, u8 bits_offset, struct btf_show *show) { const struct btf_var_secinfo *vsi; const struct btf_type *var; u32 i; if (!btf_show_start_type(show, t, type_id, data)) return; btf_show_type_value(show, "section (\"%s\") = {", __btf_name_by_offset(btf, t->name_off)); for_each_vsi(i, t, vsi) { var = btf_type_by_id(btf, vsi->type); if (i) btf_show(show, ","); btf_type_ops(var)->show(btf, var, vsi->type, data + vsi->offset, bits_offset, show); } btf_show_end_type(show); } static const struct btf_kind_operations datasec_ops = { .check_meta = btf_datasec_check_meta, .resolve = btf_datasec_resolve, .check_member = btf_df_check_member, .check_kflag_member = btf_df_check_kflag_member, .log_details = btf_datasec_log, .show = btf_datasec_show, }; static s32 btf_float_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { if (btf_type_vlen(t)) { btf_verifier_log_type(env, t, "vlen != 0"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && t->size != 16) { btf_verifier_log_type(env, t, "Invalid type_size"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); return 0; } static int btf_float_check_member(struct btf_verifier_env *env, const struct btf_type *struct_type, const struct btf_member *member, const struct btf_type *member_type) { u64 start_offset_bytes; u64 end_offset_bytes; u64 misalign_bits; u64 align_bytes; u64 align_bits; /* Different architectures have different alignment requirements, so * here we check only for the reasonable minimum. This way we ensure * that types after CO-RE can pass the kernel BTF verifier. */ align_bytes = min_t(u64, sizeof(void *), member_type->size); align_bits = align_bytes * BITS_PER_BYTE; div64_u64_rem(member->offset, align_bits, &misalign_bits); if (misalign_bits) { btf_verifier_log_member(env, struct_type, member, "Member is not properly aligned"); return -EINVAL; } start_offset_bytes = member->offset / BITS_PER_BYTE; end_offset_bytes = start_offset_bytes + member_type->size; if (end_offset_bytes > struct_type->size) { btf_verifier_log_member(env, struct_type, member, "Member exceeds struct_size"); return -EINVAL; } return 0; } static void btf_float_log(struct btf_verifier_env *env, const struct btf_type *t) { btf_verifier_log(env, "size=%u", t->size); } static const struct btf_kind_operations float_ops = { .check_meta = btf_float_check_meta, .resolve = btf_df_resolve, .check_member = btf_float_check_member, .check_kflag_member = btf_generic_check_kflag_member, .log_details = btf_float_log, .show = btf_df_show, }; static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { const struct btf_decl_tag *tag; u32 meta_needed = sizeof(*tag); s32 component_idx; const char *value; if (meta_left < meta_needed) { btf_verifier_log_basic(env, t, "meta_left:%u meta_needed:%u", meta_left, meta_needed); return -EINVAL; } value = btf_name_by_offset(env->btf, t->name_off); if (!value || !value[0]) { btf_verifier_log_type(env, t, "Invalid value"); return -EINVAL; } if (btf_type_vlen(t)) { btf_verifier_log_type(env, t, "vlen != 0"); return -EINVAL; } if (btf_type_kflag(t)) { btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); return -EINVAL; } component_idx = btf_type_decl_tag(t)->component_idx; if (component_idx < -1) { btf_verifier_log_type(env, t, "Invalid component_idx"); return -EINVAL; } btf_verifier_log_type(env, t, NULL); return meta_needed; } static int btf_decl_tag_resolve(struct btf_verifier_env *env, const struct resolve_vertex *v) { const struct btf_type *next_type; const struct btf_type *t = v->t; u32 next_type_id = t->type; struct btf *btf = env->btf; s32 component_idx; u32 vlen; next_type = btf_type_by_id(btf, next_type_id); if (!next_type || !btf_type_is_decl_tag_target(next_type)) { btf_verifier_log_type(env, v->t, "Invalid type_id"); return -EINVAL; } if (!env_type_is_resolve_sink(env, next_type) && !env_type_is_resolved(env, next_type_id)) return env_stack_push(env, next_type, next_type_id); component_idx = btf_type_decl_tag(t)->component_idx; if (component_idx != -1) { if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { btf_verifier_log_type(env, v->t, "Invalid component_idx"); return -EINVAL; } if (btf_type_is_struct(next_type)) { vlen = btf_type_vlen(next_type); } else { /* next_type should be a function */ next_type = btf_type_by_id(btf, next_type->type); vlen = btf_type_vlen(next_type); } if ((u32)component_idx >= vlen) { btf_verifier_log_type(env, v->t, "Invalid component_idx"); return -EINVAL; } } env_stack_pop_resolved(env, next_type_id, 0); return 0; } static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) { btf_verifier_log(env, "type=%u component_idx=%d", t->type, btf_type_decl_tag(t)->component_idx); } static const struct btf_kind_operations decl_tag_ops = { .check_meta = btf_decl_tag_check_meta, .resolve = btf_decl_tag_resolve, .check_member = btf_df_check_member, .check_kflag_member = btf_df_check_kflag_member, .log_details = btf_decl_tag_log, .show = btf_df_show, }; static int btf_func_proto_check(struct btf_verifier_env *env, const struct btf_type *t) { const struct btf_type *ret_type; const struct btf_param *args; const struct btf *btf; u16 nr_args, i; int err; btf = env->btf; args = (const struct btf_param *)(t + 1); nr_args = btf_type_vlen(t); /* Check func return type which could be "void" (t->type == 0) */ if (t->type) { u32 ret_type_id = t->type; ret_type = btf_type_by_id(btf, ret_type_id); if (!ret_type) { btf_verifier_log_type(env, t, "Invalid return type"); return -EINVAL; } if (btf_type_is_resolve_source_only(ret_type)) { btf_verifier_log_type(env, t, "Invalid return type"); return -EINVAL; } if (btf_type_needs_resolve(ret_type) && !env_type_is_resolved(env, ret_type_id)) { err = btf_resolve(env, ret_type, ret_type_id); if (err) return err; } /* Ensure the return type is a type that has a size */ if (!btf_type_id_size(btf, &ret_type_id, NULL)) { btf_verifier_log_type(env, t, "Invalid return type"); return -EINVAL; } } if (!nr_args) return 0; /* Last func arg type_id could be 0 if it is a vararg */ if (!args[nr_args - 1].type) { if (args[nr_args - 1].name_off) { btf_verifier_log_type(env, t, "Invalid arg#%u", nr_args); return -EINVAL; } nr_args--; } err = 0; for (i = 0; i < nr_args; i++) { const struct btf_type *arg_type; u32 arg_type_id; arg_type_id = args[i].type; arg_type = btf_type_by_id(btf, arg_type_id); if (!arg_type) { btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); err = -EINVAL; break; } if (btf_type_is_resolve_source_only(arg_type)) { btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); return -EINVAL; } if (args[i].name_off && (!btf_name_offset_valid(btf, args[i].name_off) || !btf_name_valid_identifier(btf, args[i].name_off))) { btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); err = -EINVAL; break; } if (btf_type_needs_resolve(arg_type) && !env_type_is_resolved(env, arg_type_id)) { err = btf_resolve(env, arg_type, arg_type_id); if (err) break; } if (!btf_type_id_size(btf, &arg_type_id, NULL)) { btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); err = -EINVAL; break; } } return err; } static int btf_func_check(struct btf_verifier_env *env, const struct btf_type *t) { const struct btf_type *proto_type; const struct btf_param *args; const struct btf *btf; u16 nr_args, i; btf = env->btf; proto_type = btf_type_by_id(btf, t->type); if (!proto_type || !btf_type_is_func_proto(proto_type)) { btf_verifier_log_type(env, t, "Invalid type_id"); return -EINVAL; } args = (const struct btf_param *)(proto_type + 1); nr_args = btf_type_vlen(proto_type); for (i = 0; i < nr_args; i++) { if (!args[i].name_off && args[i].type) { btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); return -EINVAL; } } return 0; } static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { [BTF_KIND_INT] = &int_ops, [BTF_KIND_PTR] = &ptr_ops, [BTF_KIND_ARRAY] = &array_ops, [BTF_KIND_STRUCT] = &struct_ops, [BTF_KIND_UNION] = &struct_ops, [BTF_KIND_ENUM] = &enum_ops, [BTF_KIND_FWD] = &fwd_ops, [BTF_KIND_TYPEDEF] = &modifier_ops, [BTF_KIND_VOLATILE] = &modifier_ops, [BTF_KIND_CONST] = &modifier_ops, [BTF_KIND_RESTRICT] = &modifier_ops, [BTF_KIND_FUNC] = &func_ops, [BTF_KIND_FUNC_PROTO] = &func_proto_ops, [BTF_KIND_VAR] = &var_ops, [BTF_KIND_DATASEC] = &datasec_ops, [BTF_KIND_FLOAT] = &float_ops, [BTF_KIND_DECL_TAG] = &decl_tag_ops, [BTF_KIND_TYPE_TAG] = &modifier_ops, [BTF_KIND_ENUM64] = &enum64_ops, }; static s32 btf_check_meta(struct btf_verifier_env *env, const struct btf_type *t, u32 meta_left) { u32 saved_meta_left = meta_left; s32 var_meta_size; if (meta_left < sizeof(*t)) { btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", env->log_type_id, meta_left, sizeof(*t)); return -EINVAL; } meta_left -= sizeof(*t); if (t->info & ~BTF_INFO_MASK) { btf_verifier_log(env, "[%u] Invalid btf_info:%x", env->log_type_id, t->info); return -EINVAL; } if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { btf_verifier_log(env, "[%u] Invalid kind:%u", env->log_type_id, BTF_INFO_KIND(t->info)); return -EINVAL; } if (!btf_name_offset_valid(env->btf, t->name_off)) { btf_verifier_log(env, "[%u] Invalid name_offset:%u", env->log_type_id, t->name_off); return -EINVAL; } var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); if (var_meta_size < 0) return var_meta_size; meta_left -= var_meta_size; return saved_meta_left - meta_left; } static int btf_check_all_metas(struct btf_verifier_env *env) { struct btf *btf = env->btf; struct btf_header *hdr; void *cur, *end; hdr = &btf->hdr; cur = btf->nohdr_data + hdr->type_off; end = cur + hdr->type_len; env->log_type_id = btf->base_btf ? btf->start_id : 1; while (cur < end) { struct btf_type *t = cur; s32 meta_size; meta_size = btf_check_meta(env, t, end - cur); if (meta_size < 0) return meta_size; btf_add_type(env, t); cur += meta_size; env->log_type_id++; } return 0; } static bool btf_resolve_valid(struct btf_verifier_env *env, const struct btf_type *t, u32 type_id) { struct btf *btf = env->btf; if (!env_type_is_resolved(env, type_id)) return false; if (btf_type_is_struct(t) || btf_type_is_datasec(t)) return !btf_resolved_type_id(btf, type_id) && !btf_resolved_type_size(btf, type_id); if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) return btf_resolved_type_id(btf, type_id) && !btf_resolved_type_size(btf, type_id); if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || btf_type_is_var(t)) { t = btf_type_id_resolve(btf, &type_id); return t && !btf_type_is_modifier(t) && !btf_type_is_var(t) && !btf_type_is_datasec(t); } if (btf_type_is_array(t)) { const struct btf_array *array = btf_type_array(t); const struct btf_type *elem_type; u32 elem_type_id = array->type; u32 elem_size; elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); return elem_type && !btf_type_is_modifier(elem_type) && (array->nelems * elem_size == btf_resolved_type_size(btf, type_id)); } return false; } static int btf_resolve(struct btf_verifier_env *env, const struct btf_type *t, u32 type_id) { u32 save_log_type_id = env->log_type_id; const struct resolve_vertex *v; int err = 0; env->resolve_mode = RESOLVE_TBD; env_stack_push(env, t, type_id); while (!err && (v = env_stack_peak(env))) { env->log_type_id = v->type_id; err = btf_type_ops(v->t)->resolve(env, v); } env->log_type_id = type_id; if (err == -E2BIG) { btf_verifier_log_type(env, t, "Exceeded max resolving depth:%u", MAX_RESOLVE_DEPTH); } else if (err == -EEXIST) { btf_verifier_log_type(env, t, "Loop detected"); } /* Final sanity check */ if (!err && !btf_resolve_valid(env, t, type_id)) { btf_verifier_log_type(env, t, "Invalid resolve state"); err = -EINVAL; } env->log_type_id = save_log_type_id; return err; } static int btf_check_all_types(struct btf_verifier_env *env) { struct btf *btf = env->btf; const struct btf_type *t; u32 type_id, i; int err; err = env_resolve_init(env); if (err) return err; env->phase++; for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { type_id = btf->start_id + i; t = btf_type_by_id(btf, type_id); env->log_type_id = type_id; if (btf_type_needs_resolve(t) && !env_type_is_resolved(env, type_id)) { err = btf_resolve(env, t, type_id); if (err) return err; } if (btf_type_is_func_proto(t)) { err = btf_func_proto_check(env, t); if (err) return err; } } return 0; } static int btf_parse_type_sec(struct btf_verifier_env *env) { const struct btf_header *hdr = &env->btf->hdr; int err; /* Type section must align to 4 bytes */ if (hdr->type_off & (sizeof(u32) - 1)) { btf_verifier_log(env, "Unaligned type_off"); return -EINVAL; } if (!env->btf->base_btf && !hdr->type_len) { btf_verifier_log(env, "No type found"); return -EINVAL; } err = btf_check_all_metas(env); if (err) return err; return btf_check_all_types(env); } static int btf_parse_str_sec(struct btf_verifier_env *env) { const struct btf_header *hdr; struct btf *btf = env->btf; const char *start, *end; hdr = &btf->hdr; start = btf->nohdr_data + hdr->str_off; end = start + hdr->str_len; if (end != btf->data + btf->data_size) { btf_verifier_log(env, "String section is not at the end"); return -EINVAL; } btf->strings = start; if (btf->base_btf && !hdr->str_len) return 0; if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { btf_verifier_log(env, "Invalid string section"); return -EINVAL; } if (!btf->base_btf && start[0]) { btf_verifier_log(env, "Invalid string section"); return -EINVAL; } return 0; } static const size_t btf_sec_info_offset[] = { offsetof(struct btf_header, type_off), offsetof(struct btf_header, str_off), }; static int btf_sec_info_cmp(const void *a, const void *b) { const struct btf_sec_info *x = a; const struct btf_sec_info *y = b; return (int)(x->off - y->off) ? : (int)(x->len - y->len); } static int btf_check_sec_info(struct btf_verifier_env *env, u32 btf_data_size) { struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; u32 total, expected_total, i; const struct btf_header *hdr; const struct btf *btf; btf = env->btf; hdr = &btf->hdr; /* Populate the secs from hdr */ for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) secs[i] = *(struct btf_sec_info *)((void *)hdr + btf_sec_info_offset[i]); sort(secs, ARRAY_SIZE(btf_sec_info_offset), sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); /* Check for gaps and overlap among sections */ total = 0; expected_total = btf_data_size - hdr->hdr_len; for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { if (expected_total < secs[i].off) { btf_verifier_log(env, "Invalid section offset"); return -EINVAL; } if (total < secs[i].off) { /* gap */ btf_verifier_log(env, "Unsupported section found"); return -EINVAL; } if (total > secs[i].off) { btf_verifier_log(env, "Section overlap found"); return -EINVAL; } if (expected_total - total < secs[i].len) { btf_verifier_log(env, "Total section length too long"); return -EINVAL; } total += secs[i].len; } /* There is data other than hdr and known sections */ if (expected_total != total) { btf_verifier_log(env, "Unsupported section found"); return -EINVAL; } return 0; } static int btf_parse_hdr(struct btf_verifier_env *env) { u32 hdr_len, hdr_copy, btf_data_size; const struct btf_header *hdr; struct btf *btf; btf = env->btf; btf_data_size = btf->data_size; if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { btf_verifier_log(env, "hdr_len not found"); return -EINVAL; } hdr = btf->data; hdr_len = hdr->hdr_len; if (btf_data_size < hdr_len) { btf_verifier_log(env, "btf_header not found"); return -EINVAL; } /* Ensure the unsupported header fields are zero */ if (hdr_len > sizeof(btf->hdr)) { u8 *expected_zero = btf->data + sizeof(btf->hdr); u8 *end = btf->data + hdr_len; for (; expected_zero < end; expected_zero++) { if (*expected_zero) { btf_verifier_log(env, "Unsupported btf_header"); return -E2BIG; } } } hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); memcpy(&btf->hdr, btf->data, hdr_copy); hdr = &btf->hdr; btf_verifier_log_hdr(env, btf_data_size); if (hdr->magic != BTF_MAGIC) { btf_verifier_log(env, "Invalid magic"); return -EINVAL; } if (hdr->version != BTF_VERSION) { btf_verifier_log(env, "Unsupported version"); return -ENOTSUPP; } if (hdr->flags) { btf_verifier_log(env, "Unsupported flags"); return -ENOTSUPP; } if (!btf->base_btf && btf_data_size == hdr->hdr_len) { btf_verifier_log(env, "No data"); return -EINVAL; } return btf_check_sec_info(env, btf_data_size); } static int btf_check_type_tags(struct btf_verifier_env *env, struct btf *btf, int start_id) { int i, n, good_id = start_id - 1; bool in_tags; n = btf_nr_types(btf); for (i = start_id; i < n; i++) { const struct btf_type *t; int chain_limit = 32; u32 cur_id = i; t = btf_type_by_id(btf, i); if (!t) return -EINVAL; if (!btf_type_is_modifier(t)) continue; cond_resched(); in_tags = btf_type_is_type_tag(t); while (btf_type_is_modifier(t)) { if (!chain_limit--) { btf_verifier_log(env, "Max chain length or cycle detected"); return -ELOOP; } if (btf_type_is_type_tag(t)) { if (!in_tags) { btf_verifier_log(env, "Type tags don't precede modifiers"); return -EINVAL; } } else if (in_tags) { in_tags = false; } if (cur_id <= good_id) break; /* Move to next type */ cur_id = t->type; t = btf_type_by_id(btf, cur_id); if (!t) return -EINVAL; } good_id = i; } return 0; } static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size, u32 log_level, char __user *log_ubuf, u32 log_size) { struct btf_verifier_env *env = NULL; struct bpf_verifier_log *log; struct btf *btf = NULL; u8 *data; int err; if (btf_data_size > BTF_MAX_SIZE) return ERR_PTR(-E2BIG); env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); if (!env) return ERR_PTR(-ENOMEM); log = &env->log; if (log_level || log_ubuf || log_size) { /* user requested verbose verifier output * and supplied buffer to store the verification trace */ log->level = log_level; log->ubuf = log_ubuf; log->len_total = log_size; /* log attributes have to be sane */ if (!bpf_verifier_log_attr_valid(log)) { err = -EINVAL; goto errout; } } btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); if (!btf) { err = -ENOMEM; goto errout; } env->btf = btf; data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); if (!data) { err = -ENOMEM; goto errout; } btf->data = data; btf->data_size = btf_data_size; if (copy_from_bpfptr(data, btf_data, btf_data_size)) { err = -EFAULT; goto errout; } err = btf_parse_hdr(env); if (err) goto errout; btf->nohdr_data = btf->data + btf->hdr.hdr_len; err = btf_parse_str_sec(env); if (err) goto errout; err = btf_parse_type_sec(env); if (err) goto errout; err = btf_check_type_tags(env, btf, 1); if (err) goto errout; if (log->level && bpf_verifier_log_full(log)) { err = -ENOSPC; goto errout; } btf_verifier_env_free(env); refcount_set(&btf->refcnt, 1); return btf; errout: btf_verifier_env_free(env); if (btf) btf_free(btf); return ERR_PTR(err); } extern char __weak __start_BTF[]; extern char __weak __stop_BTF[]; extern struct btf *btf_vmlinux; #define BPF_MAP_TYPE(_id, _ops) #define BPF_LINK_TYPE(_id, _name) static union { struct bpf_ctx_convert { #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ prog_ctx_type _id##_prog; \ kern_ctx_type _id##_kern; #include <linux/bpf_types.h> #undef BPF_PROG_TYPE } *__t; /* 't' is written once under lock. Read many times. */ const struct btf_type *t; } bpf_ctx_convert; enum { #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ __ctx_convert##_id, #include <linux/bpf_types.h> #undef BPF_PROG_TYPE __ctx_convert_unused, /* to avoid empty enum in extreme .config */ }; static u8 bpf_ctx_convert_map[] = { #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ [_id] = __ctx_convert##_id, #include <linux/bpf_types.h> #undef BPF_PROG_TYPE 0, /* avoid empty array */ }; #undef BPF_MAP_TYPE #undef BPF_LINK_TYPE static const struct btf_member * btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, const struct btf_type *t, enum bpf_prog_type prog_type, int arg) { const struct btf_type *conv_struct; const struct btf_type *ctx_struct; const struct btf_member *ctx_type; const char *tname, *ctx_tname; conv_struct = bpf_ctx_convert.t; if (!conv_struct) { bpf_log(log, "btf_vmlinux is malformed\n"); return NULL; } t = btf_type_by_id(btf, t->type); while (btf_type_is_modifier(t)) t = btf_type_by_id(btf, t->type); if (!btf_type_is_struct(t)) { /* Only pointer to struct is supported for now. * That means that BPF_PROG_TYPE_TRACEPOINT with BTF * is not supported yet. * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. */ return NULL; } tname = btf_name_by_offset(btf, t->name_off); if (!tname) { bpf_log(log, "arg#%d struct doesn't have a name\n", arg); return NULL; } /* prog_type is valid bpf program type. No need for bounds check. */ ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; /* ctx_struct is a pointer to prog_ctx_type in vmlinux. * Like 'struct __sk_buff' */ ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); if (!ctx_struct) /* should not happen */ return NULL; again: ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); if (!ctx_tname) { /* should not happen */ bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); return NULL; } /* only compare that prog's ctx type name is the same as * kernel expects. No need to compare field by field. * It's ok for bpf prog to do: * struct __sk_buff {}; * int socket_filter_bpf_prog(struct __sk_buff *skb) * { // no fields of skb are ever used } */ if (strcmp(ctx_tname, tname)) { /* bpf_user_pt_regs_t is a typedef, so resolve it to * underlying struct and check name again */ if (!btf_type_is_modifier(ctx_struct)) return NULL; while (btf_type_is_modifier(ctx_struct)) ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type); goto again; } return ctx_type; } static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, struct btf *btf, const struct btf_type *t, enum bpf_prog_type prog_type, int arg) { const struct btf_member *prog_ctx_type, *kern_ctx_type; prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); if (!prog_ctx_type) return -ENOENT; kern_ctx_type = prog_ctx_type + 1; return kern_ctx_type->type; } BTF_ID_LIST(bpf_ctx_convert_btf_id) BTF_ID(struct, bpf_ctx_convert) struct btf *btf_parse_vmlinux(void) { struct btf_verifier_env *env = NULL; struct bpf_verifier_log *log; struct btf *btf = NULL; int err; env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); if (!env) return ERR_PTR(-ENOMEM); log = &env->log; log->level = BPF_LOG_KERNEL; btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); if (!btf) { err = -ENOMEM; goto errout; } env->btf = btf; btf->data = __start_BTF; btf->data_size = __stop_BTF - __start_BTF; btf->kernel_btf = true; snprintf(btf->name, sizeof(btf->name), "vmlinux"); err = btf_parse_hdr(env); if (err) goto errout; btf->nohdr_data = btf->data + btf->hdr.hdr_len; err = btf_parse_str_sec(env); if (err) goto errout; err = btf_check_all_metas(env); if (err) goto errout; err = btf_check_type_tags(env, btf, 1); if (err) goto errout; /* btf_parse_vmlinux() runs under bpf_verifier_lock */ bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); bpf_struct_ops_init(btf, log); refcount_set(&btf->refcnt, 1); err = btf_alloc_id(btf); if (err) goto errout; btf_verifier_env_free(env); return btf; errout: btf_verifier_env_free(env); if (btf) { kvfree(btf->types); kfree(btf); } return ERR_PTR(err); } #ifdef CONFIG_DEBUG_INFO_BTF_MODULES static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) { struct btf_verifier_env *env = NULL; struct bpf_verifier_log *log; struct btf *btf = NULL, *base_btf; int err; base_btf = bpf_get_btf_vmlinux(); if (IS_ERR(base_btf)) return base_btf; if (!base_btf) return ERR_PTR(-EINVAL); env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); if (!env) return ERR_PTR(-ENOMEM); log = &env->log; log->level = BPF_LOG_KERNEL; btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); if (!btf) { err = -ENOMEM; goto errout; } env->btf = btf; btf->base_btf = base_btf; btf->start_id = base_btf->nr_types; btf->start_str_off = base_btf->hdr.str_len; btf->kernel_btf = true; snprintf(btf->name, sizeof(btf->name), "%s", module_name); btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); if (!btf->data) { err = -ENOMEM; goto errout; } memcpy(btf->data, data, data_size); btf->data_size = data_size; err = btf_parse_hdr(env); if (err) goto errout; btf->nohdr_data = btf->data + btf->hdr.hdr_len; err = btf_parse_str_sec(env); if (err) goto errout; err = btf_check_all_metas(env); if (err) goto errout; err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); if (err) goto errout; btf_verifier_env_free(env); refcount_set(&btf->refcnt, 1); return btf; errout: btf_verifier_env_free(env); if (btf) { kvfree(btf->data); kvfree(btf->types); kfree(btf); } return ERR_PTR(err); } #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) { struct bpf_prog *tgt_prog = prog->aux->dst_prog; if (tgt_prog) return tgt_prog->aux->btf; else return prog->aux->attach_btf; } static bool is_int_ptr(struct btf *btf, const struct btf_type *t) { /* skip modifiers */ t = btf_type_skip_modifiers(btf, t->type, NULL); return btf_type_is_int(t); } static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, int off) { const struct btf_param *args; const struct btf_type *t; u32 offset = 0, nr_args; int i; if (!func_proto) return off / 8; nr_args = btf_type_vlen(func_proto); args = (const struct btf_param *)(func_proto + 1); for (i = 0; i < nr_args; i++) { t = btf_type_skip_modifiers(btf, args[i].type, NULL); offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); if (off < offset) return i; } t = btf_type_skip_modifiers(btf, func_proto->type, NULL); offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); if (off < offset) return nr_args; return nr_args + 1; } bool btf_ctx_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { const struct btf_type *t = prog->aux->attach_func_proto; struct bpf_prog *tgt_prog = prog->aux->dst_prog; struct btf *btf = bpf_prog_get_target_btf(prog); const char *tname = prog->aux->attach_func_name; struct bpf_verifier_log *log = info->log; const struct btf_param *args; const char *tag_value; u32 nr_args, arg; int i, ret; if (off % 8) { bpf_log(log, "func '%s' offset %d is not multiple of 8\n", tname, off); return false; } arg = get_ctx_arg_idx(btf, t, off); args = (const struct btf_param *)(t + 1); /* if (t == NULL) Fall back to default BPF prog with * MAX_BPF_FUNC_REG_ARGS u64 arguments. */ nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; if (prog->aux->attach_btf_trace) { /* skip first 'void *__data' argument in btf_trace_##name typedef */ args++; nr_args--; } if (arg > nr_args) { bpf_log(log, "func '%s' doesn't have %d-th argument\n", tname, arg + 1); return false; } if (arg == nr_args) { switch (prog->expected_attach_type) { case BPF_LSM_CGROUP: case BPF_LSM_MAC: case BPF_TRACE_FEXIT: /* When LSM programs are attached to void LSM hooks * they use FEXIT trampolines and when attached to * int LSM hooks, they use MODIFY_RETURN trampolines. * * While the LSM programs are BPF_MODIFY_RETURN-like * the check: * * if (ret_type != 'int') * return -EINVAL; * * is _not_ done here. This is still safe as LSM hooks * have only void and int return types. */ if (!t) return true; t = btf_type_by_id(btf, t->type); break; case BPF_MODIFY_RETURN: /* For now the BPF_MODIFY_RETURN can only be attached to * functions that return an int. */ if (!t) return false; t = btf_type_skip_modifiers(btf, t->type, NULL); if (!btf_type_is_small_int(t)) { bpf_log(log, "ret type %s not allowed for fmod_ret\n", btf_type_str(t)); return false; } break; default: bpf_log(log, "func '%s' doesn't have %d-th argument\n", tname, arg + 1); return false; } } else { if (!t) /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ return true; t = btf_type_by_id(btf, args[arg].type); } /* skip modifiers */ while (btf_type_is_modifier(t)) t = btf_type_by_id(btf, t->type); if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) /* accessing a scalar */ return true; if (!btf_type_is_ptr(t)) { bpf_log(log, "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", tname, arg, __btf_name_by_offset(btf, t->name_off), btf_type_str(t)); return false; } /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; u32 type, flag; type = base_type(ctx_arg_info->reg_type); flag = type_flag(ctx_arg_info->reg_type); if (ctx_arg_info->offset == off && type == PTR_TO_BUF && (flag & PTR_MAYBE_NULL)) { info->reg_type = ctx_arg_info->reg_type; return true; } } if (t->type == 0) /* This is a pointer to void. * It is the same as scalar from the verifier safety pov. * No further pointer walking is allowed. */ return true; if (is_int_ptr(btf, t)) return true; /* this is a pointer to another type */ for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; if (ctx_arg_info->offset == off) { if (!ctx_arg_info->btf_id) { bpf_log(log,"invalid btf_id for context argument offset %u\n", off); return false; } info->reg_type = ctx_arg_info->reg_type; info->btf = btf_vmlinux; info->btf_id = ctx_arg_info->btf_id; return true; } } info->reg_type = PTR_TO_BTF_ID; if (tgt_prog) { enum bpf_prog_type tgt_type; if (tgt_prog->type == BPF_PROG_TYPE_EXT) tgt_type = tgt_prog->aux->saved_dst_prog_type; else tgt_type = tgt_prog->type; ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); if (ret > 0) { info->btf = btf_vmlinux; info->btf_id = ret; return true; } else { return false; } } info->btf = btf; info->btf_id = t->type; t = btf_type_by_id(btf, t->type); if (btf_type_is_type_tag(t)) { tag_value = __btf_name_by_offset(btf, t->name_off); if (strcmp(tag_value, "user") == 0) info->reg_type |= MEM_USER; if (strcmp(tag_value, "percpu") == 0) info->reg_type |= MEM_PERCPU; } /* skip modifiers */ while (btf_type_is_modifier(t)) { info->btf_id = t->type; t = btf_type_by_id(btf, t->type); } if (!btf_type_is_struct(t)) { bpf_log(log, "func '%s' arg%d type %s is not a struct\n", tname, arg, btf_type_str(t)); return false; } bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", tname, arg, info->btf_id, btf_type_str(t), __btf_name_by_offset(btf, t->name_off)); return true; } enum bpf_struct_walk_result { /* < 0 error */ WALK_SCALAR = 0, WALK_PTR, WALK_STRUCT, }; static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, const struct btf_type *t, int off, int size, u32 *next_btf_id, enum bpf_type_flag *flag) { u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; const struct btf_type *mtype, *elem_type = NULL; const struct btf_member *member; const char *tname, *mname, *tag_value; u32 vlen, elem_id, mid; again: tname = __btf_name_by_offset(btf, t->name_off); if (!btf_type_is_struct(t)) { bpf_log(log, "Type '%s' is not a struct\n", tname); return -EINVAL; } vlen = btf_type_vlen(t); if (off + size > t->size) { /* If the last element is a variable size array, we may * need to relax the rule. */ struct btf_array *array_elem; if (vlen == 0) goto error; member = btf_type_member(t) + vlen - 1; mtype = btf_type_skip_modifiers(btf, member->type, NULL); if (!btf_type_is_array(mtype)) goto error; array_elem = (struct btf_array *)(mtype + 1); if (array_elem->nelems != 0) goto error; moff = __btf_member_bit_offset(t, member) / 8; if (off < moff) goto error; /* Only allow structure for now, can be relaxed for * other types later. */ t = btf_type_skip_modifiers(btf, array_elem->type, NULL); if (!btf_type_is_struct(t)) goto error; off = (off - moff) % t->size; goto again; error: bpf_log(log, "access beyond struct %s at off %u size %u\n", tname, off, size); return -EACCES; } for_each_member(i, t, member) { /* offset of the field in bytes */ moff = __btf_member_bit_offset(t, member) / 8; if (off + size <= moff) /* won't find anything, field is already too far */ break; if (__btf_member_bitfield_size(t, member)) { u32 end_bit = __btf_member_bit_offset(t, member) + __btf_member_bitfield_size(t, member); /* off <= moff instead of off == moff because clang * does not generate a BTF member for anonymous * bitfield like the ":16" here: * struct { * int :16; * int x:8; * }; */ if (off <= moff && BITS_ROUNDUP_BYTES(end_bit) <= off + size) return WALK_SCALAR; /* off may be accessing a following member * * or * * Doing partial access at either end of this * bitfield. Continue on this case also to * treat it as not accessing this bitfield * and eventually error out as field not * found to keep it simple. * It could be relaxed if there was a legit * partial access case later. */ continue; } /* In case of "off" is pointing to holes of a struct */ if (off < moff) break; /* type of the field */ mid = member->type; mtype = btf_type_by_id(btf, member->type); mname = __btf_name_by_offset(btf, member->name_off); mtype = __btf_resolve_size(btf, mtype, &msize, &elem_type, &elem_id, &total_nelems, &mid); if (IS_ERR(mtype)) { bpf_log(log, "field %s doesn't have size\n", mname); return -EFAULT; } mtrue_end = moff + msize; if (off >= mtrue_end) /* no overlap with member, keep iterating */ continue; if (btf_type_is_array(mtype)) { u32 elem_idx; /* __btf_resolve_size() above helps to * linearize a multi-dimensional array. * * The logic here is treating an array * in a struct as the following way: * * struct outer { * struct inner array[2][2]; * }; * * looks like: * * struct outer { * struct inner array_elem0; * struct inner array_elem1; * struct inner array_elem2; * struct inner array_elem3; * }; * * When accessing outer->array[1][0], it moves * moff to "array_elem2", set mtype to * "struct inner", and msize also becomes * sizeof(struct inner). Then most of the * remaining logic will fall through without * caring the current member is an array or * not. * * Unlike mtype/msize/moff, mtrue_end does not * change. The naming difference ("_true") tells * that it is not always corresponding to * the current mtype/msize/moff. * It is the true end of the current * member (i.e. array in this case). That * will allow an int array to be accessed like * a scratch space, * i.e. allow access beyond the size of * the array's element as long as it is * within the mtrue_end boundary. */ /* skip empty array */ if (moff == mtrue_end) continue; msize /= total_nelems; elem_idx = (off - moff) / msize; moff += elem_idx * msize; mtype = elem_type; mid = elem_id; } /* the 'off' we're looking for is either equal to start * of this field or inside of this struct */ if (btf_type_is_struct(mtype)) { /* our field must be inside that union or struct */ t = mtype; /* return if the offset matches the member offset */ if (off == moff) { *next_btf_id = mid; return WALK_STRUCT; } /* adjust offset we're looking for */ off -= moff; goto again; } if (btf_type_is_ptr(mtype)) { const struct btf_type *stype, *t; enum bpf_type_flag tmp_flag = 0; u32 id; if (msize != size || off != moff) { bpf_log(log, "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", mname, moff, tname, off, size); return -EACCES; } /* check type tag */ t = btf_type_by_id(btf, mtype->type); if (btf_type_is_type_tag(t)) { tag_value = __btf_name_by_offset(btf, t->name_off); /* check __user tag */ if (strcmp(tag_value, "user") == 0) tmp_flag = MEM_USER; /* check __percpu tag */ if (strcmp(tag_value, "percpu") == 0) tmp_flag = MEM_PERCPU; } stype = btf_type_skip_modifiers(btf, mtype->type, &id); if (btf_type_is_struct(stype)) { *next_btf_id = id; *flag = tmp_flag; return WALK_PTR; } } /* Allow more flexible access within an int as long as * it is within mtrue_end. * Since mtrue_end could be the end of an array, * that also allows using an array of int as a scratch * space. e.g. skb->cb[]. */ if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) { bpf_log(log, "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", mname, mtrue_end, tname, off, size); return -EACCES; } return WALK_SCALAR; } bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); return -EINVAL; } int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf, const struct btf_type *t, int off, int size, enum bpf_access_type atype __maybe_unused, u32 *next_btf_id, enum bpf_type_flag *flag) { enum bpf_type_flag tmp_flag = 0; int err; u32 id; do { err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag); switch (err) { case WALK_PTR: /* If we found the pointer or scalar on t+off, * we're done. */ *next_btf_id = id; *flag = tmp_flag; return PTR_TO_BTF_ID; case WALK_SCALAR: return SCALAR_VALUE; case WALK_STRUCT: /* We found nested struct, so continue the search * by diving in it. At this point the offset is * aligned with the new type, so set it to 0. */ t = btf_type_by_id(btf, id); off = 0; break; default: /* It's either error or unknown return value.. * scream and leave. */ if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) return -EINVAL; return err; } } while (t); return -EINVAL; } /* Check that two BTF types, each specified as an BTF object + id, are exactly * the same. Trivial ID check is not enough due to module BTFs, because we can * end up with two different module BTFs, but IDs point to the common type in * vmlinux BTF. */ static bool btf_types_are_same(const struct btf *btf1, u32 id1, const struct btf *btf2, u32 id2) { if (id1 != id2) return false; if (btf1 == btf2) return true; return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); } bool btf_struct_ids_match(struct bpf_verifier_log *log, const struct btf *btf, u32 id, int off, const struct btf *need_btf, u32 need_type_id, bool strict) { const struct btf_type *type; enum bpf_type_flag flag; int err; /* Are we already done? */ if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) return true; /* In case of strict type match, we do not walk struct, the top level * type match must succeed. When strict is true, off should have already * been 0. */ if (strict) return false; again: type = btf_type_by_id(btf, id); if (!type) return false; err = btf_struct_walk(log, btf, type, off, 1, &id, &flag); if (err != WALK_STRUCT) return false; /* We found nested struct object. If it matches * the requested ID, we're done. Otherwise let's * continue the search with offset 0 in the new * type. */ if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { off = 0; goto again; } return true; } static int __get_type_size(struct btf *btf, u32 btf_id, const struct btf_type **ret_type) { const struct btf_type *t; *ret_type = btf_type_by_id(btf, 0); if (!btf_id) /* void */ return 0; t = btf_type_by_id(btf, btf_id); while (t && btf_type_is_modifier(t)) t = btf_type_by_id(btf, t->type); if (!t) return -EINVAL; *ret_type = t; if (btf_type_is_ptr(t)) /* kernel size of pointer. Not BPF's size of pointer*/ return sizeof(void *); if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) return t->size; return -EINVAL; } int btf_distill_func_proto(struct bpf_verifier_log *log, struct btf *btf, const struct btf_type *func, const char *tname, struct btf_func_model *m) { const struct btf_param *args; const struct btf_type *t; u32 i, nargs; int ret; if (!func) { /* BTF function prototype doesn't match the verifier types. * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. */ for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { m->arg_size[i] = 8; m->arg_flags[i] = 0; } m->ret_size = 8; m->nr_args = MAX_BPF_FUNC_REG_ARGS; return 0; } args = (const struct btf_param *)(func + 1); nargs = btf_type_vlen(func); if (nargs > MAX_BPF_FUNC_ARGS) { bpf_log(log, "The function %s has %d arguments. Too many.\n", tname, nargs); return -EINVAL; } ret = __get_type_size(btf, func->type, &t); if (ret < 0 || __btf_type_is_struct(t)) { bpf_log(log, "The function %s return type %s is unsupported.\n", tname, btf_type_str(t)); return -EINVAL; } m->ret_size = ret; for (i = 0; i < nargs; i++) { if (i == nargs - 1 && args[i].type == 0) { bpf_log(log, "The function %s with variable args is unsupported.\n", tname); return -EINVAL; } ret = __get_type_size(btf, args[i].type, &t); /* No support of struct argument size greater than 16 bytes */ if (ret < 0 || ret > 16) { bpf_log(log, "The function %s arg%d type %s is unsupported.\n", tname, i, btf_type_str(t)); return -EINVAL; } if (ret == 0) { bpf_log(log, "The function %s has malformed void argument.\n", tname); return -EINVAL; } m->arg_size[i] = ret; m->arg_flags[i] = __btf_type_is_struct(t) ? BTF_FMODEL_STRUCT_ARG : 0; } m->nr_args = nargs; return 0; } /* Compare BTFs of two functions assuming only scalars and pointers to context. * t1 points to BTF_KIND_FUNC in btf1 * t2 points to BTF_KIND_FUNC in btf2 * Returns: * EINVAL - function prototype mismatch * EFAULT - verifier bug * 0 - 99% match. The last 1% is validated by the verifier. */ static int btf_check_func_type_match(struct bpf_verifier_log *log, struct btf *btf1, const struct btf_type *t1, struct btf *btf2, const struct btf_type *t2) { const struct btf_param *args1, *args2; const char *fn1, *fn2, *s1, *s2; u32 nargs1, nargs2, i; fn1 = btf_name_by_offset(btf1, t1->name_off); fn2 = btf_name_by_offset(btf2, t2->name_off); if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { bpf_log(log, "%s() is not a global function\n", fn1); return -EINVAL; } if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { bpf_log(log, "%s() is not a global function\n", fn2); return -EINVAL; } t1 = btf_type_by_id(btf1, t1->type); if (!t1 || !btf_type_is_func_proto(t1)) return -EFAULT; t2 = btf_type_by_id(btf2, t2->type); if (!t2 || !btf_type_is_func_proto(t2)) return -EFAULT; args1 = (const struct btf_param *)(t1 + 1); nargs1 = btf_type_vlen(t1); args2 = (const struct btf_param *)(t2 + 1); nargs2 = btf_type_vlen(t2); if (nargs1 != nargs2) { bpf_log(log, "%s() has %d args while %s() has %d args\n", fn1, nargs1, fn2, nargs2); return -EINVAL; } t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); if (t1->info != t2->info) { bpf_log(log, "Return type %s of %s() doesn't match type %s of %s()\n", btf_type_str(t1), fn1, btf_type_str(t2), fn2); return -EINVAL; } for (i = 0; i < nargs1; i++) { t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); if (t1->info != t2->info) { bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", i, fn1, btf_type_str(t1), fn2, btf_type_str(t2)); return -EINVAL; } if (btf_type_has_size(t1) && t1->size != t2->size) { bpf_log(log, "arg%d in %s() has size %d while %s() has %d\n", i, fn1, t1->size, fn2, t2->size); return -EINVAL; } /* global functions are validated with scalars and pointers * to context only. And only global functions can be replaced. * Hence type check only those types. */ if (btf_type_is_int(t1) || btf_is_any_enum(t1)) continue; if (!btf_type_is_ptr(t1)) { bpf_log(log, "arg%d in %s() has unrecognized type\n", i, fn1); return -EINVAL; } t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); if (!btf_type_is_struct(t1)) { bpf_log(log, "arg%d in %s() is not a pointer to context\n", i, fn1); return -EINVAL; } if (!btf_type_is_struct(t2)) { bpf_log(log, "arg%d in %s() is not a pointer to context\n", i, fn2); return -EINVAL; } /* This is an optional check to make program writing easier. * Compare names of structs and report an error to the user. * btf_prepare_func_args() already checked that t2 struct * is a context type. btf_prepare_func_args() will check * later that t1 struct is a context type as well. */ s1 = btf_name_by_offset(btf1, t1->name_off); s2 = btf_name_by_offset(btf2, t2->name_off); if (strcmp(s1, s2)) { bpf_log(log, "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", i, fn1, s1, fn2, s2); return -EINVAL; } } return 0; } /* Compare BTFs of given program with BTF of target program */ int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, struct btf *btf2, const struct btf_type *t2) { struct btf *btf1 = prog->aux->btf; const struct btf_type *t1; u32 btf_id = 0; if (!prog->aux->func_info) { bpf_log(log, "Program extension requires BTF\n"); return -EINVAL; } btf_id = prog->aux->func_info[0].type_id; if (!btf_id) return -EFAULT; t1 = btf_type_by_id(btf1, btf_id); if (!t1 || !btf_type_is_func(t1)) return -EFAULT; return btf_check_func_type_match(log, btf1, t1, btf2, t2); } static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { #ifdef CONFIG_NET [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], #endif }; /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ static bool __btf_type_is_scalar_struct(struct bpf_verifier_log *log, const struct btf *btf, const struct btf_type *t, int rec) { const struct btf_type *member_type; const struct btf_member *member; u32 i; if (!btf_type_is_struct(t)) return false; for_each_member(i, t, member) { const struct btf_array *array; member_type = btf_type_skip_modifiers(btf, member->type, NULL); if (btf_type_is_struct(member_type)) { if (rec >= 3) { bpf_log(log, "max struct nesting depth exceeded\n"); return false; } if (!__btf_type_is_scalar_struct(log, btf, member_type, rec + 1)) return false; continue; } if (btf_type_is_array(member_type)) { array = btf_type_array(member_type); if (!array->nelems) return false; member_type = btf_type_skip_modifiers(btf, array->type, NULL); if (!btf_type_is_scalar(member_type)) return false; continue; } if (!btf_type_is_scalar(member_type)) return false; } return true; } static bool is_kfunc_arg_mem_size(const struct btf *btf, const struct btf_param *arg, const struct bpf_reg_state *reg) { int len, sfx_len = sizeof("__sz") - 1; const struct btf_type *t; const char *param_name; t = btf_type_skip_modifiers(btf, arg->type, NULL); if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) return false; /* In the future, this can be ported to use BTF tagging */ param_name = btf_name_by_offset(btf, arg->name_off); if (str_is_empty(param_name)) return false; len = strlen(param_name); if (len < sfx_len) return false; param_name += len - sfx_len; if (strncmp(param_name, "__sz", sfx_len)) return false; return true; } static bool btf_is_kfunc_arg_mem_size(const struct btf *btf, const struct btf_param *arg, const struct bpf_reg_state *reg, const char *name) { int len, target_len = strlen(name); const struct btf_type *t; const char *param_name; t = btf_type_skip_modifiers(btf, arg->type, NULL); if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) return false; param_name = btf_name_by_offset(btf, arg->name_off); if (str_is_empty(param_name)) return false; len = strlen(param_name); if (len != target_len) return false; if (strcmp(param_name, name)) return false; return true; } static int btf_check_func_arg_match(struct bpf_verifier_env *env, const struct btf *btf, u32 func_id, struct bpf_reg_state *regs, bool ptr_to_mem_ok, struct bpf_kfunc_arg_meta *kfunc_meta, bool processing_call) { enum bpf_prog_type prog_type = resolve_prog_type(env->prog); bool rel = false, kptr_get = false, trusted_args = false; bool sleepable = false; struct bpf_verifier_log *log = &env->log; u32 i, nargs, ref_id, ref_obj_id = 0; bool is_kfunc = btf_is_kernel(btf); const char *func_name, *ref_tname; const struct btf_type *t, *ref_t; const struct btf_param *args; int ref_regno = 0, ret; t = btf_type_by_id(btf, func_id); if (!t || !btf_type_is_func(t)) { /* These checks were already done by the verifier while loading * struct bpf_func_info or in add_kfunc_call(). */ bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n", func_id); return -EFAULT; } func_name = btf_name_by_offset(btf, t->name_off); t = btf_type_by_id(btf, t->type); if (!t || !btf_type_is_func_proto(t)) { bpf_log(log, "Invalid BTF of func %s\n", func_name); return -EFAULT; } args = (const struct btf_param *)(t + 1); nargs = btf_type_vlen(t); if (nargs > MAX_BPF_FUNC_REG_ARGS) { bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs, MAX_BPF_FUNC_REG_ARGS); return -EINVAL; } if (is_kfunc && kfunc_meta) { /* Only kfunc can be release func */ rel = kfunc_meta->flags & KF_RELEASE; kptr_get = kfunc_meta->flags & KF_KPTR_GET; trusted_args = kfunc_meta->flags & KF_TRUSTED_ARGS; sleepable = kfunc_meta->flags & KF_SLEEPABLE; } /* check that BTF function arguments match actual types that the * verifier sees. */ for (i = 0; i < nargs; i++) { enum bpf_arg_type arg_type = ARG_DONTCARE; u32 regno = i + 1; struct bpf_reg_state *reg = &regs[regno]; bool obj_ptr = false; t = btf_type_skip_modifiers(btf, args[i].type, NULL); if (btf_type_is_scalar(t)) { if (is_kfunc && kfunc_meta) { bool is_buf_size = false; /* check for any const scalar parameter of name "rdonly_buf_size" * or "rdwr_buf_size" */ if (btf_is_kfunc_arg_mem_size(btf, &args[i], reg, "rdonly_buf_size")) { kfunc_meta->r0_rdonly = true; is_buf_size = true; } else if (btf_is_kfunc_arg_mem_size(btf, &args[i], reg, "rdwr_buf_size")) is_buf_size = true; if (is_buf_size) { if (kfunc_meta->r0_size) { bpf_log(log, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); return -EINVAL; } if (!tnum_is_const(reg->var_off)) { bpf_log(log, "R%d is not a const\n", regno); return -EINVAL; } kfunc_meta->r0_size = reg->var_off.value; ret = mark_chain_precision(env, regno); if (ret) return ret; } } if (reg->type == SCALAR_VALUE) continue; bpf_log(log, "R%d is not a scalar\n", regno); return -EINVAL; } if (!btf_type_is_ptr(t)) { bpf_log(log, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); return -EINVAL; } /* These register types have special constraints wrt ref_obj_id * and offset checks. The rest of trusted args don't. */ obj_ptr = reg->type == PTR_TO_CTX || reg->type == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)]; /* Check if argument must be a referenced pointer, args + i has * been verified to be a pointer (after skipping modifiers). * PTR_TO_CTX is ok without having non-zero ref_obj_id. */ if (is_kfunc && trusted_args && (obj_ptr && reg->type != PTR_TO_CTX) && !reg->ref_obj_id) { bpf_log(log, "R%d must be referenced\n", regno); return -EINVAL; } ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); ref_tname = btf_name_by_offset(btf, ref_t->name_off); /* Trusted args have the same offset checks as release arguments */ if ((trusted_args && obj_ptr) || (rel && reg->ref_obj_id)) arg_type |= OBJ_RELEASE; ret = check_func_arg_reg_off(env, reg, regno, arg_type); if (ret < 0) return ret; if (is_kfunc && reg->ref_obj_id) { /* Ensure only one argument is referenced PTR_TO_BTF_ID */ if (ref_obj_id) { bpf_log(log, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", regno, reg->ref_obj_id, ref_obj_id); return -EFAULT; } ref_regno = regno; ref_obj_id = reg->ref_obj_id; } /* kptr_get is only true for kfunc */ if (i == 0 && kptr_get) { struct bpf_map_value_off_desc *off_desc; if (reg->type != PTR_TO_MAP_VALUE) { bpf_log(log, "arg#0 expected pointer to map value\n"); return -EINVAL; } /* check_func_arg_reg_off allows var_off for * PTR_TO_MAP_VALUE, but we need fixed offset to find * off_desc. */ if (!tnum_is_const(reg->var_off)) { bpf_log(log, "arg#0 must have constant offset\n"); return -EINVAL; } off_desc = bpf_map_kptr_off_contains(reg->map_ptr, reg->off + reg->var_off.value); if (!off_desc || off_desc->type != BPF_KPTR_REF) { bpf_log(log, "arg#0 no referenced kptr at map value offset=%llu\n", reg->off + reg->var_off.value); return -EINVAL; } if (!btf_type_is_ptr(ref_t)) { bpf_log(log, "arg#0 BTF type must be a double pointer\n"); return -EINVAL; } ref_t = btf_type_skip_modifiers(btf, ref_t->type, &ref_id); ref_tname = btf_name_by_offset(btf, ref_t->name_off); if (!btf_type_is_struct(ref_t)) { bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n", func_name, i, btf_type_str(ref_t), ref_tname); return -EINVAL; } if (!btf_struct_ids_match(log, btf, ref_id, 0, off_desc->kptr.btf, off_desc->kptr.btf_id, true)) { bpf_log(log, "kernel function %s args#%d expected pointer to %s %s\n", func_name, i, btf_type_str(ref_t), ref_tname); return -EINVAL; } /* rest of the arguments can be anything, like normal kfunc */ } else if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { /* If function expects ctx type in BTF check that caller * is passing PTR_TO_CTX. */ if (reg->type != PTR_TO_CTX) { bpf_log(log, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); return -EINVAL; } } else if (is_kfunc && (reg->type == PTR_TO_BTF_ID || (reg2btf_ids[base_type(reg->type)] && !type_flag(reg->type)))) { const struct btf_type *reg_ref_t; const struct btf *reg_btf; const char *reg_ref_tname; u32 reg_ref_id; if (!btf_type_is_struct(ref_t)) { bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n", func_name, i, btf_type_str(ref_t), ref_tname); return -EINVAL; } if (reg->type == PTR_TO_BTF_ID) { reg_btf = reg->btf; reg_ref_id = reg->btf_id; } else { reg_btf = btf_vmlinux; reg_ref_id = *reg2btf_ids[base_type(reg->type)]; } reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id); reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); if (!btf_struct_ids_match(log, reg_btf, reg_ref_id, reg->off, btf, ref_id, trusted_args || (rel && reg->ref_obj_id))) { bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", func_name, i, btf_type_str(ref_t), ref_tname, regno, btf_type_str(reg_ref_t), reg_ref_tname); return -EINVAL; } } else if (ptr_to_mem_ok && processing_call) { const struct btf_type *resolve_ret; u32 type_size; if (is_kfunc) { bool arg_mem_size = i + 1 < nargs && is_kfunc_arg_mem_size(btf, &args[i + 1], &regs[regno + 1]); bool arg_dynptr = btf_type_is_struct(ref_t) && !strcmp(ref_tname, stringify_struct(bpf_dynptr_kern)); /* Permit pointer to mem, but only when argument * type is pointer to scalar, or struct composed * (recursively) of scalars. * When arg_mem_size is true, the pointer can be * void *. * Also permit initialized local dynamic pointers. */ if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(log, btf, ref_t, 0) && !arg_dynptr && (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { bpf_log(log, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", i, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); return -EINVAL; } if (arg_dynptr) { if (reg->type != PTR_TO_STACK) { bpf_log(log, "arg#%d pointer type %s %s not to stack\n", i, btf_type_str(ref_t), ref_tname); return -EINVAL; } if (!is_dynptr_reg_valid_init(env, reg)) { bpf_log(log, "arg#%d pointer type %s %s must be valid and initialized\n", i, btf_type_str(ref_t), ref_tname); return -EINVAL; } if (!is_dynptr_type_expected(env, reg, ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL)) { bpf_log(log, "arg#%d pointer type %s %s points to unsupported dynamic pointer type\n", i, btf_type_str(ref_t), ref_tname); return -EINVAL; } continue; } /* Check for mem, len pair */ if (arg_mem_size) { if (check_kfunc_mem_size_reg(env, &regs[regno + 1], regno + 1)) { bpf_log(log, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); return -EINVAL; } i++; continue; } } resolve_ret = btf_resolve_size(btf, ref_t, &type_size); if (IS_ERR(resolve_ret)) { bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); return -EINVAL; } if (check_mem_reg(env, reg, regno, type_size)) return -EINVAL; } else { bpf_log(log, "reg type unsupported for arg#%d %sfunction %s#%d\n", i, is_kfunc ? "kernel " : "", func_name, func_id); return -EINVAL; } } /* Either both are set, or neither */ WARN_ON_ONCE((ref_obj_id && !ref_regno) || (!ref_obj_id && ref_regno)); /* We already made sure ref_obj_id is set only for one argument. We do * allow (!rel && ref_obj_id), so that passing such referenced * PTR_TO_BTF_ID to other kfuncs works. Note that rel is only true when * is_kfunc is true. */ if (rel && !ref_obj_id) { bpf_log(log, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", func_name); return -EINVAL; } if (sleepable && !env->prog->aux->sleepable) { bpf_log(log, "kernel function %s is sleepable but the program is not\n", func_name); return -EINVAL; } if (kfunc_meta && ref_obj_id) kfunc_meta->ref_obj_id = ref_obj_id; /* returns argument register number > 0 in case of reference release kfunc */ return rel ? ref_regno : 0; } /* Compare BTF of a function declaration with given bpf_reg_state. * Returns: * EFAULT - there is a verifier bug. Abort verification. * EINVAL - there is a type mismatch or BTF is not available. * 0 - BTF matches with what bpf_reg_state expects. * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. */ int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, struct bpf_reg_state *regs) { struct bpf_prog *prog = env->prog; struct btf *btf = prog->aux->btf; bool is_global; u32 btf_id; int err; if (!prog->aux->func_info) return -EINVAL; btf_id = prog->aux->func_info[subprog].type_id; if (!btf_id) return -EFAULT; if (prog->aux->func_info_aux[subprog].unreliable) return -EINVAL; is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, NULL, false); /* Compiler optimizations can remove arguments from static functions * or mismatched type can be passed into a global function. * In such cases mark the function as unreliable from BTF point of view. */ if (err) prog->aux->func_info_aux[subprog].unreliable = true; return err; } /* Compare BTF of a function call with given bpf_reg_state. * Returns: * EFAULT - there is a verifier bug. Abort verification. * EINVAL - there is a type mismatch or BTF is not available. * 0 - BTF matches with what bpf_reg_state expects. * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. * * NOTE: the code is duplicated from btf_check_subprog_arg_match() * because btf_check_func_arg_match() is still doing both. Once that * function is split in 2, we can call from here btf_check_subprog_arg_match() * first, and then treat the calling part in a new code path. */ int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, struct bpf_reg_state *regs) { struct bpf_prog *prog = env->prog; struct btf *btf = prog->aux->btf; bool is_global; u32 btf_id; int err; if (!prog->aux->func_info) return -EINVAL; btf_id = prog->aux->func_info[subprog].type_id; if (!btf_id) return -EFAULT; if (prog->aux->func_info_aux[subprog].unreliable) return -EINVAL; is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, NULL, true); /* Compiler optimizations can remove arguments from static functions * or mismatched type can be passed into a global function. * In such cases mark the function as unreliable from BTF point of view. */ if (err) prog->aux->func_info_aux[subprog].unreliable = true; return err; } int btf_check_kfunc_arg_match(struct bpf_verifier_env *env, const struct btf *btf, u32 func_id, struct bpf_reg_state *regs, struct bpf_kfunc_arg_meta *meta) { return btf_check_func_arg_match(env, btf, func_id, regs, true, meta, true); } /* Convert BTF of a function into bpf_reg_state if possible * Returns: * EFAULT - there is a verifier bug. Abort verification. * EINVAL - cannot convert BTF. * 0 - Successfully converted BTF into bpf_reg_state * (either PTR_TO_CTX or SCALAR_VALUE). */ int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, struct bpf_reg_state *regs) { struct bpf_verifier_log *log = &env->log; struct bpf_prog *prog = env->prog; enum bpf_prog_type prog_type = prog->type; struct btf *btf = prog->aux->btf; const struct btf_param *args; const struct btf_type *t, *ref_t; u32 i, nargs, btf_id; const char *tname; if (!prog->aux->func_info || prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { bpf_log(log, "Verifier bug\n"); return -EFAULT; } btf_id = prog->aux->func_info[subprog].type_id; if (!btf_id) { bpf_log(log, "Global functions need valid BTF\n"); return -EFAULT; } t = btf_type_by_id(btf, btf_id); if (!t || !btf_type_is_func(t)) { /* These checks were already done by the verifier while loading * struct bpf_func_info */ bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", subprog); return -EFAULT; } tname = btf_name_by_offset(btf, t->name_off); if (log->level & BPF_LOG_LEVEL) bpf_log(log, "Validating %s() func#%d...\n", tname, subprog); if (prog->aux->func_info_aux[subprog].unreliable) { bpf_log(log, "Verifier bug in function %s()\n", tname); return -EFAULT; } if (prog_type == BPF_PROG_TYPE_EXT) prog_type = prog->aux->dst_prog->type; t = btf_type_by_id(btf, t->type); if (!t || !btf_type_is_func_proto(t)) { bpf_log(log, "Invalid type of function %s()\n", tname); return -EFAULT; } args = (const struct btf_param *)(t + 1); nargs = btf_type_vlen(t); if (nargs > MAX_BPF_FUNC_REG_ARGS) { bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", tname, nargs, MAX_BPF_FUNC_REG_ARGS); return -EINVAL; } /* check that function returns int */ t = btf_type_by_id(btf, t->type); while (btf_type_is_modifier(t)) t = btf_type_by_id(btf, t->type); if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { bpf_log(log, "Global function %s() doesn't return scalar. Only those are supported.\n", tname); return -EINVAL; } /* Convert BTF function arguments into verifier types. * Only PTR_TO_CTX and SCALAR are supported atm. */ for (i = 0; i < nargs; i++) { struct bpf_reg_state *reg = &regs[i + 1]; t = btf_type_by_id(btf, args[i].type); while (btf_type_is_modifier(t)) t = btf_type_by_id(btf, t->type); if (btf_type_is_int(t) || btf_is_any_enum(t)) { reg->type = SCALAR_VALUE; continue; } if (btf_type_is_ptr(t)) { if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { reg->type = PTR_TO_CTX; continue; } t = btf_type_skip_modifiers(btf, t->type, NULL); ref_t = btf_resolve_size(btf, t, &reg->mem_size); if (IS_ERR(ref_t)) { bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), PTR_ERR(ref_t)); return -EINVAL; } reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; reg->id = ++env->id_gen; continue; } bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", i, btf_type_str(t), tname); return -EINVAL; } return 0; } static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, struct btf_show *show) { const struct btf_type *t = btf_type_by_id(btf, type_id); show->btf = btf; memset(&show->state, 0, sizeof(show->state)); memset(&show->obj, 0, sizeof(show->obj)); btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); } __printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt, va_list args) { seq_vprintf((struct seq_file *)show->target, fmt, args); } int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, void *obj, struct seq_file *m, u64 flags) { struct btf_show sseq; sseq.target = m; sseq.showfn = btf_seq_show; sseq.flags = flags; btf_type_show(btf, type_id, obj, &sseq); return sseq.state.status; } void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, struct seq_file *m) { (void) btf_type_seq_show_flags(btf, type_id, obj, m, BTF_SHOW_NONAME | BTF_SHOW_COMPACT | BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); } struct btf_show_snprintf { struct btf_show show; int len_left; /* space left in string */ int len; /* length we would have written */ }; __printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt, va_list args) { struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; int len; len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); if (len < 0) { ssnprintf->len_left = 0; ssnprintf->len = len; } else if (len >= ssnprintf->len_left) { /* no space, drive on to get length we would have written */ ssnprintf->len_left = 0; ssnprintf->len += len; } else { ssnprintf->len_left -= len; ssnprintf->len += len; show->target += len; } } int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, char *buf, int len, u64 flags) { struct btf_show_snprintf ssnprintf; ssnprintf.show.target = buf; ssnprintf.show.flags = flags; ssnprintf.show.showfn = btf_snprintf_show; ssnprintf.len_left = len; ssnprintf.len = 0; btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); /* If we encountered an error, return it. */ if (ssnprintf.show.state.status) return ssnprintf.show.state.status; /* Otherwise return length we would have written */ return ssnprintf.len; } #ifdef CONFIG_PROC_FS static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) { const struct btf *btf = filp->private_data; seq_printf(m, "btf_id:\t%u\n", btf->id); } #endif static int btf_release(struct inode *inode, struct file *filp) { btf_put(filp->private_data); return 0; } const struct file_operations btf_fops = { #ifdef CONFIG_PROC_FS .show_fdinfo = bpf_btf_show_fdinfo, #endif .release = btf_release, }; static int __btf_new_fd(struct btf *btf) { return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); } int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr) { struct btf *btf; int ret; btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel), attr->btf_size, attr->btf_log_level, u64_to_user_ptr(attr->btf_log_buf), attr->btf_log_size); if (IS_ERR(btf)) return PTR_ERR(btf); ret = btf_alloc_id(btf); if (ret) { btf_free(btf); return ret; } /* * The BTF ID is published to the userspace. * All BTF free must go through call_rcu() from * now on (i.e. free by calling btf_put()). */ ret = __btf_new_fd(btf); if (ret < 0) btf_put(btf); return ret; } struct btf *btf_get_by_fd(int fd) { struct btf *btf; struct fd f; f = fdget(fd); if (!f.file) return ERR_PTR(-EBADF); if (f.file->f_op != &btf_fops) { fdput(f); return ERR_PTR(-EINVAL); } btf = f.file->private_data; refcount_inc(&btf->refcnt); fdput(f); return btf; } int btf_get_info_by_fd(const struct btf *btf, const union bpf_attr *attr, union bpf_attr __user *uattr) { struct bpf_btf_info __user *uinfo; struct bpf_btf_info info; u32 info_copy, btf_copy; void __user *ubtf; char __user *uname; u32 uinfo_len, uname_len, name_len; int ret = 0; uinfo = u64_to_user_ptr(attr->info.info); uinfo_len = attr->info.info_len; info_copy = min_t(u32, uinfo_len, sizeof(info)); memset(&info, 0, sizeof(info)); if (copy_from_user(&info, uinfo, info_copy)) return -EFAULT; info.id = btf->id; ubtf = u64_to_user_ptr(info.btf); btf_copy = min_t(u32, btf->data_size, info.btf_size); if (copy_to_user(ubtf, btf->data, btf_copy)) return -EFAULT; info.btf_size = btf->data_size; info.kernel_btf = btf->kernel_btf; uname = u64_to_user_ptr(info.name); uname_len = info.name_len; if (!uname ^ !uname_len) return -EINVAL; name_len = strlen(btf->name); info.name_len = name_len; if (uname) { if (uname_len >= name_len + 1) { if (copy_to_user(uname, btf->name, name_len + 1)) return -EFAULT; } else { char zero = '\0'; if (copy_to_user(uname, btf->name, uname_len - 1)) return -EFAULT; if (put_user(zero, uname + uname_len - 1)) return -EFAULT; /* let user-space know about too short buffer */ ret = -ENOSPC; } } if (copy_to_user(uinfo, &info, info_copy) || put_user(info_copy, &uattr->info.info_len)) return -EFAULT; return ret; } int btf_get_fd_by_id(u32 id) { struct btf *btf; int fd; rcu_read_lock(); btf = idr_find(&btf_idr, id); if (!btf || !refcount_inc_not_zero(&btf->refcnt)) btf = ERR_PTR(-ENOENT); rcu_read_unlock(); if (IS_ERR(btf)) return PTR_ERR(btf); fd = __btf_new_fd(btf); if (fd < 0) btf_put(btf); return fd; } u32 btf_obj_id(const struct btf *btf) { return btf->id; } bool btf_is_kernel(const struct btf *btf) { return btf->kernel_btf; } bool btf_is_module(const struct btf *btf) { return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; } static int btf_id_cmp_func(const void *a, const void *b) { const int *pa = a, *pb = b; return *pa - *pb; } bool btf_id_set_contains(const struct btf_id_set *set, u32 id) { return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL; } static void *btf_id_set8_contains(const struct btf_id_set8 *set, u32 id) { return bsearch(&id, set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func); } enum { BTF_MODULE_F_LIVE = (1 << 0), }; #ifdef CONFIG_DEBUG_INFO_BTF_MODULES struct btf_module { struct list_head list; struct module *module; struct btf *btf; struct bin_attribute *sysfs_attr; int flags; }; static LIST_HEAD(btf_modules); static DEFINE_MUTEX(btf_module_mutex); static ssize_t btf_module_read(struct file *file, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t len) { const struct btf *btf = bin_attr->private; memcpy(buf, btf->data + off, len); return len; } static void purge_cand_cache(struct btf *btf); static int btf_module_notify(struct notifier_block *nb, unsigned long op, void *module) { struct btf_module *btf_mod, *tmp; struct module *mod = module; struct btf *btf; int err = 0; if (mod->btf_data_size == 0 || (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && op != MODULE_STATE_GOING)) goto out; switch (op) { case MODULE_STATE_COMING: btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); if (!btf_mod) { err = -ENOMEM; goto out; } btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); if (IS_ERR(btf)) { pr_warn("failed to validate module [%s] BTF: %ld\n", mod->name, PTR_ERR(btf)); kfree(btf_mod); if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) err = PTR_ERR(btf); goto out; } err = btf_alloc_id(btf); if (err) { btf_free(btf); kfree(btf_mod); goto out; } purge_cand_cache(NULL); mutex_lock(&btf_module_mutex); btf_mod->module = module; btf_mod->btf = btf; list_add(&btf_mod->list, &btf_modules); mutex_unlock(&btf_module_mutex); if (IS_ENABLED(CONFIG_SYSFS)) { struct bin_attribute *attr; attr = kzalloc(sizeof(*attr), GFP_KERNEL); if (!attr) goto out; sysfs_bin_attr_init(attr); attr->attr.name = btf->name; attr->attr.mode = 0444; attr->size = btf->data_size; attr->private = btf; attr->read = btf_module_read; err = sysfs_create_bin_file(btf_kobj, attr); if (err) { pr_warn("failed to register module [%s] BTF in sysfs: %d\n", mod->name, err); kfree(attr); err = 0; goto out; } btf_mod->sysfs_attr = attr; } break; case MODULE_STATE_LIVE: mutex_lock(&btf_module_mutex); list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { if (btf_mod->module != module) continue; btf_mod->flags |= BTF_MODULE_F_LIVE; break; } mutex_unlock(&btf_module_mutex); break; case MODULE_STATE_GOING: mutex_lock(&btf_module_mutex); list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { if (btf_mod->module != module) continue; list_del(&btf_mod->list); if (btf_mod->sysfs_attr) sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); purge_cand_cache(btf_mod->btf); btf_put(btf_mod->btf); kfree(btf_mod->sysfs_attr); kfree(btf_mod); break; } mutex_unlock(&btf_module_mutex); break; } out: return notifier_from_errno(err); } static struct notifier_block btf_module_nb = { .notifier_call = btf_module_notify, }; static int __init btf_module_init(void) { register_module_notifier(&btf_module_nb); return 0; } fs_initcall(btf_module_init); #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ struct module *btf_try_get_module(const struct btf *btf) { struct module *res = NULL; #ifdef CONFIG_DEBUG_INFO_BTF_MODULES struct btf_module *btf_mod, *tmp; mutex_lock(&btf_module_mutex); list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { if (btf_mod->btf != btf) continue; /* We must only consider module whose __init routine has * finished, hence we must check for BTF_MODULE_F_LIVE flag, * which is set from the notifier callback for * MODULE_STATE_LIVE. */ if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) res = btf_mod->module; break; } mutex_unlock(&btf_module_mutex); #endif return res; } /* Returns struct btf corresponding to the struct module. * This function can return NULL or ERR_PTR. */ static struct btf *btf_get_module_btf(const struct module *module) { #ifdef CONFIG_DEBUG_INFO_BTF_MODULES struct btf_module *btf_mod, *tmp; #endif struct btf *btf = NULL; if (!module) { btf = bpf_get_btf_vmlinux(); if (!IS_ERR_OR_NULL(btf)) btf_get(btf); return btf; } #ifdef CONFIG_DEBUG_INFO_BTF_MODULES mutex_lock(&btf_module_mutex); list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { if (btf_mod->module != module) continue; btf_get(btf_mod->btf); btf = btf_mod->btf; break; } mutex_unlock(&btf_module_mutex); #endif return btf; } BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) { struct btf *btf = NULL; int btf_obj_fd = 0; long ret; if (flags) return -EINVAL; if (name_sz <= 1 || name[name_sz - 1]) return -EINVAL; ret = bpf_find_btf_id(name, kind, &btf); if (ret > 0 && btf_is_module(btf)) { btf_obj_fd = __btf_new_fd(btf); if (btf_obj_fd < 0) { btf_put(btf); return btf_obj_fd; } return ret | (((u64)btf_obj_fd) << 32); } if (ret > 0) btf_put(btf); return ret; } const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { .func = bpf_btf_find_by_name_kind, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, }; BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) BTF_TRACING_TYPE_xxx #undef BTF_TRACING_TYPE /* Kernel Function (kfunc) BTF ID set registration API */ static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, struct btf_id_set8 *add_set) { bool vmlinux_set = !btf_is_module(btf); struct btf_kfunc_set_tab *tab; struct btf_id_set8 *set; u32 set_cnt; int ret; if (hook >= BTF_KFUNC_HOOK_MAX) { ret = -EINVAL; goto end; } if (!add_set->cnt) return 0; tab = btf->kfunc_set_tab; if (!tab) { tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); if (!tab) return -ENOMEM; btf->kfunc_set_tab = tab; } set = tab->sets[hook]; /* Warn when register_btf_kfunc_id_set is called twice for the same hook * for module sets. */ if (WARN_ON_ONCE(set && !vmlinux_set)) { ret = -EINVAL; goto end; } /* We don't need to allocate, concatenate, and sort module sets, because * only one is allowed per hook. Hence, we can directly assign the * pointer and return. */ if (!vmlinux_set) { tab->sets[hook] = add_set; return 0; } /* In case of vmlinux sets, there may be more than one set being * registered per hook. To create a unified set, we allocate a new set * and concatenate all individual sets being registered. While each set * is individually sorted, they may become unsorted when concatenated, * hence re-sorting the final set again is required to make binary * searching the set using btf_id_set8_contains function work. */ set_cnt = set ? set->cnt : 0; if (set_cnt > U32_MAX - add_set->cnt) { ret = -EOVERFLOW; goto end; } if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { ret = -E2BIG; goto end; } /* Grow set */ set = krealloc(tab->sets[hook], offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]), GFP_KERNEL | __GFP_NOWARN); if (!set) { ret = -ENOMEM; goto end; } /* For newly allocated set, initialize set->cnt to 0 */ if (!tab->sets[hook]) set->cnt = 0; tab->sets[hook] = set; /* Concatenate the two sets */ memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); set->cnt += add_set->cnt; sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); return 0; end: btf_free_kfunc_set_tab(btf); return ret; } static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, enum btf_kfunc_hook hook, u32 kfunc_btf_id) { struct btf_id_set8 *set; u32 *id; if (hook >= BTF_KFUNC_HOOK_MAX) return NULL; if (!btf->kfunc_set_tab) return NULL; set = btf->kfunc_set_tab->sets[hook]; if (!set) return NULL; id = btf_id_set8_contains(set, kfunc_btf_id); if (!id) return NULL; /* The flags for BTF ID are located next to it */ return id + 1; } static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) { switch (prog_type) { case BPF_PROG_TYPE_XDP: return BTF_KFUNC_HOOK_XDP; case BPF_PROG_TYPE_SCHED_CLS: return BTF_KFUNC_HOOK_TC; case BPF_PROG_TYPE_STRUCT_OPS: return BTF_KFUNC_HOOK_STRUCT_OPS; case BPF_PROG_TYPE_TRACING: case BPF_PROG_TYPE_LSM: return BTF_KFUNC_HOOK_TRACING; case BPF_PROG_TYPE_SYSCALL: return BTF_KFUNC_HOOK_SYSCALL; default: return BTF_KFUNC_HOOK_MAX; } } /* Caution: * Reference to the module (obtained using btf_try_get_module) corresponding to * the struct btf *MUST* be held when calling this function from verifier * context. This is usually true as we stash references in prog's kfunc_btf_tab; * keeping the reference for the duration of the call provides the necessary * protection for looking up a well-formed btf->kfunc_set_tab. */ u32 *btf_kfunc_id_set_contains(const struct btf *btf, enum bpf_prog_type prog_type, u32 kfunc_btf_id) { enum btf_kfunc_hook hook; hook = bpf_prog_type_to_kfunc_hook(prog_type); return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id); } /* This function must be invoked only from initcalls/module init functions */ int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, const struct btf_kfunc_id_set *kset) { enum btf_kfunc_hook hook; struct btf *btf; int ret; btf = btf_get_module_btf(kset->owner); if (!btf) { if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { pr_err("missing vmlinux BTF, cannot register kfuncs\n"); return -ENOENT; } if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) pr_warn("missing module BTF, cannot register kfuncs\n"); return 0; } if (IS_ERR(btf)) return PTR_ERR(btf); hook = bpf_prog_type_to_kfunc_hook(prog_type); ret = btf_populate_kfunc_set(btf, hook, kset->set); btf_put(btf); return ret; } EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) { struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; struct btf_id_dtor_kfunc *dtor; if (!tab) return -ENOENT; /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. */ BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); if (!dtor) return -ENOENT; return dtor->kfunc_btf_id; } static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) { const struct btf_type *dtor_func, *dtor_func_proto, *t; const struct btf_param *args; s32 dtor_btf_id; u32 nr_args, i; for (i = 0; i < cnt; i++) { dtor_btf_id = dtors[i].kfunc_btf_id; dtor_func = btf_type_by_id(btf, dtor_btf_id); if (!dtor_func || !btf_type_is_func(dtor_func)) return -EINVAL; dtor_func_proto = btf_type_by_id(btf, dtor_func->type); if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) return -EINVAL; /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ t = btf_type_by_id(btf, dtor_func_proto->type); if (!t || !btf_type_is_void(t)) return -EINVAL; nr_args = btf_type_vlen(dtor_func_proto); if (nr_args != 1) return -EINVAL; args = btf_params(dtor_func_proto); t = btf_type_by_id(btf, args[0].type); /* Allow any pointer type, as width on targets Linux supports * will be same for all pointer types (i.e. sizeof(void *)) */ if (!t || !btf_type_is_ptr(t)) return -EINVAL; } return 0; } /* This function must be invoked only from initcalls/module init functions */ int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, struct module *owner) { struct btf_id_dtor_kfunc_tab *tab; struct btf *btf; u32 tab_cnt; int ret; btf = btf_get_module_btf(owner); if (!btf) { if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n"); return -ENOENT; } if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { pr_err("missing module BTF, cannot register dtor kfuncs\n"); return -ENOENT; } return 0; } if (IS_ERR(btf)) return PTR_ERR(btf); if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); ret = -E2BIG; goto end; } /* Ensure that the prototype of dtor kfuncs being registered is sane */ ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); if (ret < 0) goto end; tab = btf->dtor_kfunc_tab; /* Only one call allowed for modules */ if (WARN_ON_ONCE(tab && btf_is_module(btf))) { ret = -EINVAL; goto end; } tab_cnt = tab ? tab->cnt : 0; if (tab_cnt > U32_MAX - add_cnt) { ret = -EOVERFLOW; goto end; } if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); ret = -E2BIG; goto end; } tab = krealloc(btf->dtor_kfunc_tab, offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]), GFP_KERNEL | __GFP_NOWARN); if (!tab) { ret = -ENOMEM; goto end; } if (!btf->dtor_kfunc_tab) tab->cnt = 0; btf->dtor_kfunc_tab = tab; memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); tab->cnt += add_cnt; sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); end: if (ret) btf_free_dtor_kfunc_tab(btf); btf_put(btf); return ret; } EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); #define MAX_TYPES_ARE_COMPAT_DEPTH 2 /* Check local and target types for compatibility. This check is used for * type-based CO-RE relocations and follow slightly different rules than * field-based relocations. This function assumes that root types were already * checked for name match. Beyond that initial root-level name check, names * are completely ignored. Compatibility rules are as follows: * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but * kind should match for local and target types (i.e., STRUCT is not * compatible with UNION); * - for ENUMs/ENUM64s, the size is ignored; * - for INT, size and signedness are ignored; * - for ARRAY, dimensionality is ignored, element types are checked for * compatibility recursively; * - CONST/VOLATILE/RESTRICT modifiers are ignored; * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; * - FUNC_PROTOs are compatible if they have compatible signature: same * number of input args and compatible return and argument types. * These rules are not set in stone and probably will be adjusted as we get * more experience with using BPF CO-RE relocations. */ int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, const struct btf *targ_btf, __u32 targ_id) { return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, MAX_TYPES_ARE_COMPAT_DEPTH); } #define MAX_TYPES_MATCH_DEPTH 2 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, const struct btf *targ_btf, u32 targ_id) { return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, MAX_TYPES_MATCH_DEPTH); } static bool bpf_core_is_flavor_sep(const char *s) { /* check X___Y name pattern, where X and Y are not underscores */ return s[0] != '_' && /* X */ s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ s[4] != '_'; /* Y */ } size_t bpf_core_essential_name_len(const char *name) { size_t n = strlen(name); int i; for (i = n - 5; i >= 0; i--) { if (bpf_core_is_flavor_sep(name + i)) return i + 1; } return n; } struct bpf_cand_cache { const char *name; u32 name_len; u16 kind; u16 cnt; struct { const struct btf *btf; u32 id; } cands[]; }; static void bpf_free_cands(struct bpf_cand_cache *cands) { if (!cands->cnt) /* empty candidate array was allocated on stack */ return; kfree(cands); } static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) { kfree(cands->name); kfree(cands); } #define VMLINUX_CAND_CACHE_SIZE 31 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; #define MODULE_CAND_CACHE_SIZE 31 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; static DEFINE_MUTEX(cand_cache_mutex); static void __print_cand_cache(struct bpf_verifier_log *log, struct bpf_cand_cache **cache, int cache_size) { struct bpf_cand_cache *cc; int i, j; for (i = 0; i < cache_size; i++) { cc = cache[i]; if (!cc) continue; bpf_log(log, "[%d]%s(", i, cc->name); for (j = 0; j < cc->cnt; j++) { bpf_log(log, "%d", cc->cands[j].id); if (j < cc->cnt - 1) bpf_log(log, " "); } bpf_log(log, "), "); } } static void print_cand_cache(struct bpf_verifier_log *log) { mutex_lock(&cand_cache_mutex); bpf_log(log, "vmlinux_cand_cache:"); __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); bpf_log(log, "\nmodule_cand_cache:"); __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); bpf_log(log, "\n"); mutex_unlock(&cand_cache_mutex); } static u32 hash_cands(struct bpf_cand_cache *cands) { return jhash(cands->name, cands->name_len, 0); } static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, struct bpf_cand_cache **cache, int cache_size) { struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; if (cc && cc->name_len == cands->name_len && !strncmp(cc->name, cands->name, cands->name_len)) return cc; return NULL; } static size_t sizeof_cands(int cnt) { return offsetof(struct bpf_cand_cache, cands[cnt]); } static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, struct bpf_cand_cache **cache, int cache_size) { struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; if (*cc) { bpf_free_cands_from_cache(*cc); *cc = NULL; } new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); if (!new_cands) { bpf_free_cands(cands); return ERR_PTR(-ENOMEM); } /* strdup the name, since it will stay in cache. * the cands->name points to strings in prog's BTF and the prog can be unloaded. */ new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); bpf_free_cands(cands); if (!new_cands->name) { kfree(new_cands); return ERR_PTR(-ENOMEM); } *cc = new_cands; return new_cands; } #ifdef CONFIG_DEBUG_INFO_BTF_MODULES static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, int cache_size) { struct bpf_cand_cache *cc; int i, j; for (i = 0; i < cache_size; i++) { cc = cache[i]; if (!cc) continue; if (!btf) { /* when new module is loaded purge all of module_cand_cache, * since new module might have candidates with the name * that matches cached cands. */ bpf_free_cands_from_cache(cc); cache[i] = NULL; continue; } /* when module is unloaded purge cache entries * that match module's btf */ for (j = 0; j < cc->cnt; j++) if (cc->cands[j].btf == btf) { bpf_free_cands_from_cache(cc); cache[i] = NULL; break; } } } static void purge_cand_cache(struct btf *btf) { mutex_lock(&cand_cache_mutex); __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); mutex_unlock(&cand_cache_mutex); } #endif static struct bpf_cand_cache * bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, int targ_start_id) { struct bpf_cand_cache *new_cands; const struct btf_type *t; const char *targ_name; size_t targ_essent_len; int n, i; n = btf_nr_types(targ_btf); for (i = targ_start_id; i < n; i++) { t = btf_type_by_id(targ_btf, i); if (btf_kind(t) != cands->kind) continue; targ_name = btf_name_by_offset(targ_btf, t->name_off); if (!targ_name) continue; /* the resched point is before strncmp to make sure that search * for non-existing name will have a chance to schedule(). */ cond_resched(); if (strncmp(cands->name, targ_name, cands->name_len) != 0) continue; targ_essent_len = bpf_core_essential_name_len(targ_name); if (targ_essent_len != cands->name_len) continue; /* most of the time there is only one candidate for a given kind+name pair */ new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); if (!new_cands) { bpf_free_cands(cands); return ERR_PTR(-ENOMEM); } memcpy(new_cands, cands, sizeof_cands(cands->cnt)); bpf_free_cands(cands); cands = new_cands; cands->cands[cands->cnt].btf = targ_btf; cands->cands[cands->cnt].id = i; cands->cnt++; } return cands; } static struct bpf_cand_cache * bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) { struct bpf_cand_cache *cands, *cc, local_cand = {}; const struct btf *local_btf = ctx->btf; const struct btf_type *local_type; const struct btf *main_btf; size_t local_essent_len; struct btf *mod_btf; const char *name; int id; main_btf = bpf_get_btf_vmlinux(); if (IS_ERR(main_btf)) return ERR_CAST(main_btf); if (!main_btf) return ERR_PTR(-EINVAL); local_type = btf_type_by_id(local_btf, local_type_id); if (!local_type) return ERR_PTR(-EINVAL); name = btf_name_by_offset(local_btf, local_type->name_off); if (str_is_empty(name)) return ERR_PTR(-EINVAL); local_essent_len = bpf_core_essential_name_len(name); cands = &local_cand; cands->name = name; cands->kind = btf_kind(local_type); cands->name_len = local_essent_len; cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); /* cands is a pointer to stack here */ if (cc) { if (cc->cnt) return cc; goto check_modules; } /* Attempt to find target candidates in vmlinux BTF first */ cands = bpf_core_add_cands(cands, main_btf, 1); if (IS_ERR(cands)) return ERR_CAST(cands); /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ /* populate cache even when cands->cnt == 0 */ cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); if (IS_ERR(cc)) return ERR_CAST(cc); /* if vmlinux BTF has any candidate, don't go for module BTFs */ if (cc->cnt) return cc; check_modules: /* cands is a pointer to stack here and cands->cnt == 0 */ cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); if (cc) /* if cache has it return it even if cc->cnt == 0 */ return cc; /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ spin_lock_bh(&btf_idr_lock); idr_for_each_entry(&btf_idr, mod_btf, id) { if (!btf_is_module(mod_btf)) continue; /* linear search could be slow hence unlock/lock * the IDR to avoiding holding it for too long */ btf_get(mod_btf); spin_unlock_bh(&btf_idr_lock); cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); btf_put(mod_btf); if (IS_ERR(cands)) return ERR_CAST(cands); spin_lock_bh(&btf_idr_lock); } spin_unlock_bh(&btf_idr_lock); /* cands is a pointer to kmalloced memory here if cands->cnt > 0 * or pointer to stack if cands->cnd == 0. * Copy it into the cache even when cands->cnt == 0 and * return the result. */ return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); } int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, int relo_idx, void *insn) { bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; struct bpf_core_cand_list cands = {}; struct bpf_core_relo_res targ_res; struct bpf_core_spec *specs; const struct btf_type *type; int err; /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" * into arrays of btf_ids of struct fields and array indices. */ specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); if (!specs) return -ENOMEM; type = btf_type_by_id(ctx->btf, relo->type_id); if (!type) { bpf_log(ctx->log, "relo #%u: bad type id %u\n", relo_idx, relo->type_id); kfree(specs); return -EINVAL; } if (need_cands) { struct bpf_cand_cache *cc; int i; mutex_lock(&cand_cache_mutex); cc = bpf_core_find_cands(ctx, relo->type_id); if (IS_ERR(cc)) { bpf_log(ctx->log, "target candidate search failed for %d\n", relo->type_id); err = PTR_ERR(cc); goto out; } if (cc->cnt) { cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); if (!cands.cands) { err = -ENOMEM; goto out; } } for (i = 0; i < cc->cnt; i++) { bpf_log(ctx->log, "CO-RE relocating %s %s: found target candidate [%d]\n", btf_kind_str[cc->kind], cc->name, cc->cands[i].id); cands.cands[i].btf = cc->cands[i].btf; cands.cands[i].id = cc->cands[i].id; } cands.len = cc->cnt; /* cand_cache_mutex needs to span the cache lookup and * copy of btf pointer into bpf_core_cand_list, * since module can be unloaded while bpf_core_calc_relo_insn * is working with module's btf. */ } err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, &targ_res); if (err) goto out; err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, &targ_res); out: kfree(specs); if (need_cands) { kfree(cands.cands); mutex_unlock(&cand_cache_mutex); if (ctx->log->level & BPF_LOG_LEVEL2) print_cand_cache(ctx->log); } return err; }
404 49 49 49 49 49 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 #include <linux/rtnetlink.h> #include <linux/notifier.h> #include <linux/rcupdate.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <net/fib_notifier.h> static unsigned int fib_notifier_net_id; struct fib_notifier_net { struct list_head fib_notifier_ops; struct atomic_notifier_head fib_chain; }; int call_fib_notifier(struct notifier_block *nb, enum fib_event_type event_type, struct fib_notifier_info *info) { int err; err = nb->notifier_call(nb, event_type, info); return notifier_to_errno(err); } EXPORT_SYMBOL(call_fib_notifier); int call_fib_notifiers(struct net *net, enum fib_event_type event_type, struct fib_notifier_info *info) { struct fib_notifier_net *fn_net = net_generic(net, fib_notifier_net_id); int err; err = atomic_notifier_call_chain(&fn_net->fib_chain, event_type, info); return notifier_to_errno(err); } EXPORT_SYMBOL(call_fib_notifiers); static unsigned int fib_seq_sum(struct net *net) { struct fib_notifier_net *fn_net = net_generic(net, fib_notifier_net_id); struct fib_notifier_ops *ops; unsigned int fib_seq = 0; rtnl_lock(); rcu_read_lock(); list_for_each_entry_rcu(ops, &fn_net->fib_notifier_ops, list) { if (!try_module_get(ops->owner)) continue; fib_seq += ops->fib_seq_read(net); module_put(ops->owner); } rcu_read_unlock(); rtnl_unlock(); return fib_seq; } static int fib_net_dump(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack) { struct fib_notifier_net *fn_net = net_generic(net, fib_notifier_net_id); struct fib_notifier_ops *ops; int err = 0; rcu_read_lock(); list_for_each_entry_rcu(ops, &fn_net->fib_notifier_ops, list) { if (!try_module_get(ops->owner)) continue; err = ops->fib_dump(net, nb, extack); module_put(ops->owner); if (err) goto unlock; } unlock: rcu_read_unlock(); return err; } static bool fib_dump_is_consistent(struct net *net, struct notifier_block *nb, void (*cb)(struct notifier_block *nb), unsigned int fib_seq) { struct fib_notifier_net *fn_net = net_generic(net, fib_notifier_net_id); atomic_notifier_chain_register(&fn_net->fib_chain, nb); if (fib_seq == fib_seq_sum(net)) return true; atomic_notifier_chain_unregister(&fn_net->fib_chain, nb); if (cb) cb(nb); return false; } #define FIB_DUMP_MAX_RETRIES 5 int register_fib_notifier(struct net *net, struct notifier_block *nb, void (*cb)(struct notifier_block *nb), struct netlink_ext_ack *extack) { int retries = 0; int err; do { unsigned int fib_seq = fib_seq_sum(net); err = fib_net_dump(net, nb, extack); if (err) return err; if (fib_dump_is_consistent(net, nb, cb, fib_seq)) return 0; } while (++retries < FIB_DUMP_MAX_RETRIES); return -EBUSY; } EXPORT_SYMBOL(register_fib_notifier); int unregister_fib_notifier(struct net *net, struct notifier_block *nb) { struct fib_notifier_net *fn_net = net_generic(net, fib_notifier_net_id); return atomic_notifier_chain_unregister(&fn_net->fib_chain, nb); } EXPORT_SYMBOL(unregister_fib_notifier); static int __fib_notifier_ops_register(struct fib_notifier_ops *ops, struct net *net) { struct fib_notifier_net *fn_net = net_generic(net, fib_notifier_net_id); struct fib_notifier_ops *o; list_for_each_entry(o, &fn_net->fib_notifier_ops, list) if (ops->family == o->family) return -EEXIST; list_add_tail_rcu(&ops->list, &fn_net->fib_notifier_ops); return 0; } struct fib_notifier_ops * fib_notifier_ops_register(const struct fib_notifier_ops *tmpl, struct net *net) { struct fib_notifier_ops *ops; int err; ops = kmemdup(tmpl, sizeof(*ops), GFP_KERNEL); if (!ops) return ERR_PTR(-ENOMEM); err = __fib_notifier_ops_register(ops, net); if (err) goto err_register; return ops; err_register: kfree(ops); return ERR_PTR(err); } EXPORT_SYMBOL(fib_notifier_ops_register); void fib_notifier_ops_unregister(struct fib_notifier_ops *ops) { list_del_rcu(&ops->list); kfree_rcu(ops, rcu); } EXPORT_SYMBOL(fib_notifier_ops_unregister); static int __net_init fib_notifier_net_init(struct net *net) { struct fib_notifier_net *fn_net = net_generic(net, fib_notifier_net_id); INIT_LIST_HEAD(&fn_net->fib_notifier_ops); ATOMIC_INIT_NOTIFIER_HEAD(&fn_net->fib_chain); return 0; } static void __net_exit fib_notifier_net_exit(struct net *net) { struct fib_notifier_net *fn_net = net_generic(net, fib_notifier_net_id); WARN_ON_ONCE(!list_empty(&fn_net->fib_notifier_ops)); } static struct pernet_operations fib_notifier_net_ops = { .init = fib_notifier_net_init, .exit = fib_notifier_net_exit, .id = &fib_notifier_net_id, .size = sizeof(struct fib_notifier_net), }; static int __init fib_notifier_init(void) { return register_pernet_subsys(&fib_notifier_net_ops); } subsys_initcall(fib_notifier_init);
418 138 272 581 150 395 10 265 118 402 403 402 403 402 403 122 121 121 121 122 122 289 404 423 404 421 400 59 104 47 103 47 13 7 58 11 11 11 1024 717 530 1157 556 1007 470 1 1 1 1 671 547 581 1181 696 778 751 750 107 664 752 5 5 4 1 5 456 1 3 8 441 438 165 5 160 160 160 5 69 160 437 10 157 203 315 8 8 8 27 20 20 20 2 16 16 16 16 33 16 34 29 978 981 978 965 82 981 8 139 98 54 167 168 169 104 70 138 57 1 57 263 262 262 262 34 162 128 128 193 195 89 76 194 10 81 46 28 26 26 64 64 64 64 7 7 903 905 900 118 157 156 1 1 515 23 23 60 60 56 55 5 5 199 198 407 394 360 67 417 217 721 518 517 518 518 118 515 514 518 3 515 517 129 129 129 129 129 129 198 46 26 26 19 9 9 154 198 46 154 26 26 124 129 77 80 5 5 5 227 226 227 225 92 227 211 211 3 208 208 32 8 24 25 24 13 13 23 23 23 15 15 15 3503 3504 13 3524 61 49 14 63 63 3509 3509 3297 295 192 3418 25 43 42 3506 3440 68 3512 2 78 78 194 3429 3526 3449 3462 3444 3461 3439 3451 3462 3516 1 218 43 166 15 3512 3517 3509 3527 3506 44 4 14 3452 3295 216 44 250 276 35 239 3434 70 15 15 47 8 9 61 86 80 5 313 5 248 251 246 5 250 5 80 2 81 81 81 2 81 81 81 3 3504 3492 94 95 95 95 23 23 23 23 23 23 23 23 23 23 23 3505 93 3470 46 46 3503 3489 3497 3486 13 3498 3515 3501 3499 2847 780 3497 3501 3516 314 4 9 3300 3291 4 4 4 3501 27 2 27 27 18 27 27 2 480 479 480 478 463 463 460 463 477 478 43 463 53 460 43 8 8 475 476 480 317 315 80 3 172 1 3 77 86 87 87 82 4 5 72 72 72 414 414 416 197 414 8 8 416 34 409 88 13 408 405 408 380 15 14 27 409 408 408 9 19 2 4 407 407 407 19 389 19 9 226 181 106 57 56 181 129 179 19 120 163 161 181 235 234 234 181 180 179 179 11 11 2 2 7 234 234 234 234 180 181 181 181 179 181 181 179 181 179 232 235 235 235 135 133 134 121 1 122 122 1 1 1 20 20 20 20 66 66 460 46 46 46 46 46 46 46 46 15 180 15 15 15 45 195 195 195 195 195 52 51 196 196 196 45 45 45 45 45 45 74 96 44 45 46 120 1070 1070 1007 262 90 77 76 1 119 31 542 541 119 45 33 116 119 38 119 40 118 37 30 46 30 31 16 76 77 77 74 67 92 91 88 125 112 568 52 119 52 51 50 52 51 52 52 118 119 40 119 40 40 118 84 84 136 24 76 90 90 91 33 106 106 76 118 35 118 88 119 77 75 118 72 73 49 73 49 73 49 6 6 1001 967 97 217 77 77 77 77 77 77 77 77 78 57 78 63 78 78 77 78 77 77 2 77 76 77 77 78 78 77 78 77 120 120 120 18 18 138 18 16 16 1 16 3 24 22 24 70 70 244 60 201 201 173 79 71 188 189 154 93 93 55 72 181 181 158 60 40 169 115 78 87 446 498 60 78 331 145 244 339 339 1087 814 551 307 309 223 149 167 128 113 235 16 116 238 334 171 290 218 109 127 244 135 309 4 7 3 45 5 5 1 167 103 6 2 41 49 69 142 139 5 23 2 1 21 2 8 88 5 1 13 70 26 11 10 8 11 7 3 4 980 980 981 980 979 982 980 4 4 4 12 2 13 29 22 986 7 21 980 978 980 25 8 17 20 120 118 120 30 30 29 1 1 28 28 2 27 8 1 26 4 1 21 24 1 24 17 1 23 15 3 3 3 3 3 3 2 17 2 1 1 12 1 11 3 4 2 32 2 1 16 15 17 400 400 120 70 70 70 4 107 106 107 534 534 3 533 1 532 1 426 182 533 535 533 534 534 533 534 534 287 293 535 535 70 257 354 336 22 534 107 255 354 354 352 91 88 40 71 17 17 17 6 13 93 141 423 424 421 41 41 404 403 112 421 421 421 25 13 391 404 404 400 4 404 48 403 157 297 233 171 404 398 5 264 187 403 2 2 2 48 48 115 4 4 3 4 3 3214 3213 114 3180 115 3212 115 3211 115 114 115 115 114 17 98 20 95 8 115 721 61 108 991 32 59 977 215 216 856 858 858 701 701 3 3 3 8 8 114 420 297 170 421 93 235 235 141 141 141 28 113 350 341 43 123 123 52 71 134 134 130 13 122 123 121 122 122 121 119 120 120 118 33 91 120 120 120 120 120 120 120 119 2 2 1 1 106 49 49 49 165 7 7 161 1 30 5 131 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 // SPDX-License-Identifier: GPL-2.0-or-later /* * NET3 Protocol independent device support routines. * * Derived from the non IP parts of dev.c 1.0.19 * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Mark Evans, <evansmp@uhura.aston.ac.uk> * * Additional Authors: * Florian la Roche <rzsfl@rz.uni-sb.de> * Alan Cox <gw4pts@gw4pts.ampr.org> * David Hinds <dahinds@users.sourceforge.net> * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> * Adam Sulmicki <adam@cfar.umd.edu> * Pekka Riikonen <priikone@poesidon.pspt.fi> * * Changes: * D.J. Barrow : Fixed bug where dev->refcnt gets set * to 2 if register_netdev gets called * before net_dev_init & also removed a * few lines of code in the process. * Alan Cox : device private ioctl copies fields back. * Alan Cox : Transmit queue code does relevant * stunts to keep the queue safe. * Alan Cox : Fixed double lock. * Alan Cox : Fixed promisc NULL pointer trap * ???????? : Support the full private ioctl range * Alan Cox : Moved ioctl permission check into * drivers * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI * Alan Cox : 100 backlog just doesn't cut it when * you start doing multicast video 8) * Alan Cox : Rewrote net_bh and list manager. * Alan Cox : Fix ETH_P_ALL echoback lengths. * Alan Cox : Took out transmit every packet pass * Saved a few bytes in the ioctl handler * Alan Cox : Network driver sets packet type before * calling netif_rx. Saves a function * call a packet. * Alan Cox : Hashed net_bh() * Richard Kooijman: Timestamp fixes. * Alan Cox : Wrong field in SIOCGIFDSTADDR * Alan Cox : Device lock protection. * Alan Cox : Fixed nasty side effect of device close * changes. * Rudi Cilibrasi : Pass the right thing to * set_mac_address() * Dave Miller : 32bit quantity for the device lock to * make it work out on a Sparc. * Bjorn Ekwall : Added KERNELD hack. * Alan Cox : Cleaned up the backlog initialise. * Craig Metz : SIOCGIFCONF fix if space for under * 1 device. * Thomas Bogendoerfer : Return ENODEV for dev_open, if there * is no device open function. * Andi Kleen : Fix error reporting for SIOCGIFCONF * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF * Cyrus Durgin : Cleaned for KMOD * Adam Sulmicki : Bug Fix : Network Device Unload * A network device unload needs to purge * the backlog queue. * Paul Rusty Russell : SIOCSIFNAME * Pekka Riikonen : Netdev boot-time settings code * Andrew Morton : Make unregister_netdevice wait * indefinitely on dev->refcnt * J Hadi Salim : - Backlog queue sampling * - netif_rx() feedback */ #include <linux/uaccess.h> #include <linux/bitops.h> #include <linux/capability.h> #include <linux/cpu.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/hash.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/mutex.h> #include <linux/rwsem.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/if_ether.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/skbuff.h> #include <linux/kthread.h> #include <linux/bpf.h> #include <linux/bpf_trace.h> #include <net/net_namespace.h> #include <net/sock.h> #include <net/busy_poll.h> #include <linux/rtnetlink.h> #include <linux/stat.h> #include <net/dsa.h> #include <net/dst.h> #include <net/dst_metadata.h> #include <net/gro.h> #include <net/pkt_sched.h> #include <net/pkt_cls.h> #include <net/checksum.h> #include <net/xfrm.h> #include <linux/highmem.h> #include <linux/init.h> #include <linux/module.h> #include <linux/netpoll.h> #include <linux/rcupdate.h> #include <linux/delay.h> #include <net/iw_handler.h> #include <asm/current.h> #include <linux/audit.h> #include <linux/dmaengine.h> #include <linux/err.h> #include <linux/ctype.h> #include <linux/if_arp.h> #include <linux/if_vlan.h> #include <linux/ip.h> #include <net/ip.h> #include <net/mpls.h> #include <linux/ipv6.h> #include <linux/in.h> #include <linux/jhash.h> #include <linux/random.h> #include <trace/events/napi.h> #include <trace/events/net.h> #include <trace/events/skb.h> #include <trace/events/qdisc.h> #include <linux/inetdevice.h> #include <linux/cpu_rmap.h> #include <linux/static_key.h> #include <linux/hashtable.h> #include <linux/vmalloc.h> #include <linux/if_macvlan.h> #include <linux/errqueue.h> #include <linux/hrtimer.h> #include <linux/netfilter_netdev.h> #include <linux/crash_dump.h> #include <linux/sctp.h> #include <net/udp_tunnel.h> #include <linux/net_namespace.h> #include <linux/indirect_call_wrapper.h> #include <net/devlink.h> #include <linux/pm_runtime.h> #include <linux/prandom.h> #include <linux/once_lite.h> #include "dev.h" #include "net-sysfs.h" static DEFINE_SPINLOCK(ptype_lock); struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; struct list_head ptype_all __read_mostly; /* Taps */ static int netif_rx_internal(struct sk_buff *skb); static int call_netdevice_notifiers_info(unsigned long val, struct netdev_notifier_info *info); static int call_netdevice_notifiers_extack(unsigned long val, struct net_device *dev, struct netlink_ext_ack *extack); static struct napi_struct *napi_by_id(unsigned int napi_id); /* * The @dev_base_head list is protected by @dev_base_lock and the rtnl * semaphore. * * Pure readers hold dev_base_lock for reading, or rcu_read_lock() * * Writers must hold the rtnl semaphore while they loop through the * dev_base_head list, and hold dev_base_lock for writing when they do the * actual updates. This allows pure readers to access the list even * while a writer is preparing to update it. * * To put it another way, dev_base_lock is held for writing only to * protect against pure readers; the rtnl semaphore provides the * protection against other writers. * * See, for example usages, register_netdevice() and * unregister_netdevice(), which must be called with the rtnl * semaphore held. */ DEFINE_RWLOCK(dev_base_lock); EXPORT_SYMBOL(dev_base_lock); static DEFINE_MUTEX(ifalias_mutex); /* protects napi_hash addition/deletion and napi_gen_id */ static DEFINE_SPINLOCK(napi_hash_lock); static unsigned int napi_gen_id = NR_CPUS; static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); static DECLARE_RWSEM(devnet_rename_sem); static inline void dev_base_seq_inc(struct net *net) { while (++net->dev_base_seq == 0) ; } static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) { unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; } static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) { return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; } static inline void rps_lock_irqsave(struct softnet_data *sd, unsigned long *flags) { if (IS_ENABLED(CONFIG_RPS)) spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) local_irq_save(*flags); } static inline void rps_lock_irq_disable(struct softnet_data *sd) { if (IS_ENABLED(CONFIG_RPS)) spin_lock_irq(&sd->input_pkt_queue.lock); else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) local_irq_disable(); } static inline void rps_unlock_irq_restore(struct softnet_data *sd, unsigned long *flags) { if (IS_ENABLED(CONFIG_RPS)) spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) local_irq_restore(*flags); } static inline void rps_unlock_irq_enable(struct softnet_data *sd) { if (IS_ENABLED(CONFIG_RPS)) spin_unlock_irq(&sd->input_pkt_queue.lock); else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) local_irq_enable(); } static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, const char *name) { struct netdev_name_node *name_node; name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); if (!name_node) return NULL; INIT_HLIST_NODE(&name_node->hlist); name_node->dev = dev; name_node->name = name; return name_node; } static struct netdev_name_node * netdev_name_node_head_alloc(struct net_device *dev) { struct netdev_name_node *name_node; name_node = netdev_name_node_alloc(dev, dev->name); if (!name_node) return NULL; INIT_LIST_HEAD(&name_node->list); return name_node; } static void netdev_name_node_free(struct netdev_name_node *name_node) { kfree(name_node); } static void netdev_name_node_add(struct net *net, struct netdev_name_node *name_node) { hlist_add_head_rcu(&name_node->hlist, dev_name_hash(net, name_node->name)); } static void netdev_name_node_del(struct netdev_name_node *name_node) { hlist_del_rcu(&name_node->hlist); } static struct netdev_name_node *netdev_name_node_lookup(struct net *net, const char *name) { struct hlist_head *head = dev_name_hash(net, name); struct netdev_name_node *name_node; hlist_for_each_entry(name_node, head, hlist) if (!strcmp(name_node->name, name)) return name_node; return NULL; } static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, const char *name) { struct hlist_head *head = dev_name_hash(net, name); struct netdev_name_node *name_node; hlist_for_each_entry_rcu(name_node, head, hlist) if (!strcmp(name_node->name, name)) return name_node; return NULL; } bool netdev_name_in_use(struct net *net, const char *name) { return netdev_name_node_lookup(net, name); } EXPORT_SYMBOL(netdev_name_in_use); int netdev_name_node_alt_create(struct net_device *dev, const char *name) { struct netdev_name_node *name_node; struct net *net = dev_net(dev); name_node = netdev_name_node_lookup(net, name); if (name_node) return -EEXIST; name_node = netdev_name_node_alloc(dev, name); if (!name_node) return -ENOMEM; netdev_name_node_add(net, name_node); /* The node that holds dev->name acts as a head of per-device list. */ list_add_tail(&name_node->list, &dev->name_node->list); return 0; } static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) { list_del(&name_node->list); kfree(name_node->name); netdev_name_node_free(name_node); } int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) { struct netdev_name_node *name_node; struct net *net = dev_net(dev); name_node = netdev_name_node_lookup(net, name); if (!name_node) return -ENOENT; /* lookup might have found our primary name or a name belonging * to another device. */ if (name_node == dev->name_node || name_node->dev != dev) return -EINVAL; netdev_name_node_del(name_node); synchronize_rcu(); __netdev_name_node_alt_destroy(name_node); return 0; } static void netdev_name_node_alt_flush(struct net_device *dev) { struct netdev_name_node *name_node, *tmp; list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) __netdev_name_node_alt_destroy(name_node); } /* Device list insertion */ static void list_netdevice(struct net_device *dev) { struct netdev_name_node *name_node; struct net *net = dev_net(dev); ASSERT_RTNL(); write_lock(&dev_base_lock); list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); netdev_name_node_add(net, dev->name_node); hlist_add_head_rcu(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); write_unlock(&dev_base_lock); netdev_for_each_altname(dev, name_node) netdev_name_node_add(net, name_node); dev_base_seq_inc(net); } /* Device list removal * caller must respect a RCU grace period before freeing/reusing dev */ static void unlist_netdevice(struct net_device *dev, bool lock) { struct netdev_name_node *name_node; ASSERT_RTNL(); netdev_for_each_altname(dev, name_node) netdev_name_node_del(name_node); /* Unlink dev from the device chain */ if (lock) write_lock(&dev_base_lock); list_del_rcu(&dev->dev_list); netdev_name_node_del(dev->name_node); hlist_del_rcu(&dev->index_hlist); if (lock) write_unlock(&dev_base_lock); dev_base_seq_inc(dev_net(dev)); } /* * Our notifier list */ static RAW_NOTIFIER_HEAD(netdev_chain); /* * Device drivers call our routines to queue packets here. We empty the * queue in the local softnet handler. */ DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); EXPORT_PER_CPU_SYMBOL(softnet_data); #ifdef CONFIG_LOCKDEP /* * register_netdevice() inits txq->_xmit_lock and sets lockdep class * according to dev->type */ static const unsigned short netdev_lock_type[] = { ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; static const char *const netdev_lock_name[] = { "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; static inline unsigned short netdev_lock_pos(unsigned short dev_type) { int i; for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) if (netdev_lock_type[i] == dev_type) return i; /* the last key is used by default */ return ARRAY_SIZE(netdev_lock_type) - 1; } static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, unsigned short dev_type) { int i; i = netdev_lock_pos(dev_type); lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], netdev_lock_name[i]); } static inline void netdev_set_addr_lockdep_class(struct net_device *dev) { int i; i = netdev_lock_pos(dev->type); lockdep_set_class_and_name(&dev->addr_list_lock, &netdev_addr_lock_key[i], netdev_lock_name[i]); } #else static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, unsigned short dev_type) { } static inline void netdev_set_addr_lockdep_class(struct net_device *dev) { } #endif /******************************************************************************* * * Protocol management and registration routines * *******************************************************************************/ /* * Add a protocol ID to the list. Now that the input handler is * smarter we can dispense with all the messy stuff that used to be * here. * * BEWARE!!! Protocol handlers, mangling input packets, * MUST BE last in hash buckets and checking protocol handlers * MUST start from promiscuous ptype_all chain in net_bh. * It is true now, do not change it. * Explanation follows: if protocol handler, mangling packet, will * be the first on list, it is not able to sense, that packet * is cloned and should be copied-on-write, so that it will * change it and subsequent readers will get broken packet. * --ANK (980803) */ static inline struct list_head *ptype_head(const struct packet_type *pt) { if (pt->type == htons(ETH_P_ALL)) return pt->dev ? &pt->dev->ptype_all : &ptype_all; else return pt->dev ? &pt->dev->ptype_specific : &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; } /** * dev_add_pack - add packet handler * @pt: packet type declaration * * Add a protocol handler to the networking stack. The passed &packet_type * is linked into kernel lists and may not be freed until it has been * removed from the kernel lists. * * This call does not sleep therefore it can not * guarantee all CPU's that are in middle of receiving packets * will see the new packet type (until the next received packet). */ void dev_add_pack(struct packet_type *pt) { struct list_head *head = ptype_head(pt); spin_lock(&ptype_lock); list_add_rcu(&pt->list, head); spin_unlock(&ptype_lock); } EXPORT_SYMBOL(dev_add_pack); /** * __dev_remove_pack - remove packet handler * @pt: packet type declaration * * Remove a protocol handler that was previously added to the kernel * protocol handlers by dev_add_pack(). The passed &packet_type is removed * from the kernel lists and can be freed or reused once this function * returns. * * The packet type might still be in use by receivers * and must not be freed until after all the CPU's have gone * through a quiescent state. */ void __dev_remove_pack(struct packet_type *pt) { struct list_head *head = ptype_head(pt); struct packet_type *pt1; spin_lock(&ptype_lock); list_for_each_entry(pt1, head, list) { if (pt == pt1) { list_del_rcu(&pt->list); goto out; } } pr_warn("dev_remove_pack: %p not found\n", pt); out: spin_unlock(&ptype_lock); } EXPORT_SYMBOL(__dev_remove_pack); /** * dev_remove_pack - remove packet handler * @pt: packet type declaration * * Remove a protocol handler that was previously added to the kernel * protocol handlers by dev_add_pack(). The passed &packet_type is removed * from the kernel lists and can be freed or reused once this function * returns. * * This call sleeps to guarantee that no CPU is looking at the packet * type after return. */ void dev_remove_pack(struct packet_type *pt) { __dev_remove_pack(pt); synchronize_net(); } EXPORT_SYMBOL(dev_remove_pack); /******************************************************************************* * * Device Interface Subroutines * *******************************************************************************/ /** * dev_get_iflink - get 'iflink' value of a interface * @dev: targeted interface * * Indicates the ifindex the interface is linked to. * Physical interfaces have the same 'ifindex' and 'iflink' values. */ int dev_get_iflink(const struct net_device *dev) { if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) return dev->netdev_ops->ndo_get_iflink(dev); return dev->ifindex; } EXPORT_SYMBOL(dev_get_iflink); /** * dev_fill_metadata_dst - Retrieve tunnel egress information. * @dev: targeted interface * @skb: The packet. * * For better visibility of tunnel traffic OVS needs to retrieve * egress tunnel information for a packet. Following API allows * user to get this info. */ int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) { struct ip_tunnel_info *info; if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) return -EINVAL; info = skb_tunnel_info_unclone(skb); if (!info) return -ENOMEM; if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) return -EINVAL; return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); } EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) { int k = stack->num_paths++; if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) return NULL; return &stack->path[k]; } int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, struct net_device_path_stack *stack) { const struct net_device *last_dev; struct net_device_path_ctx ctx = { .dev = dev, }; struct net_device_path *path; int ret = 0; memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); stack->num_paths = 0; while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { last_dev = ctx.dev; path = dev_fwd_path(stack); if (!path) return -1; memset(path, 0, sizeof(struct net_device_path)); ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); if (ret < 0) return -1; if (WARN_ON_ONCE(last_dev == ctx.dev)) return -1; } if (!ctx.dev) return ret; path = dev_fwd_path(stack); if (!path) return -1; path->type = DEV_PATH_ETHERNET; path->dev = ctx.dev; return ret; } EXPORT_SYMBOL_GPL(dev_fill_forward_path); /** * __dev_get_by_name - find a device by its name * @net: the applicable net namespace * @name: name to find * * Find an interface by name. Must be called under RTNL semaphore * or @dev_base_lock. If the name is found a pointer to the device * is returned. If the name is not found then %NULL is returned. The * reference counters are not incremented so the caller must be * careful with locks. */ struct net_device *__dev_get_by_name(struct net *net, const char *name) { struct netdev_name_node *node_name; node_name = netdev_name_node_lookup(net, name); return node_name ? node_name->dev : NULL; } EXPORT_SYMBOL(__dev_get_by_name); /** * dev_get_by_name_rcu - find a device by its name * @net: the applicable net namespace * @name: name to find * * Find an interface by name. * If the name is found a pointer to the device is returned. * If the name is not found then %NULL is returned. * The reference counters are not incremented so the caller must be * careful with locks. The caller must hold RCU lock. */ struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) { struct netdev_name_node *node_name; node_name = netdev_name_node_lookup_rcu(net, name); return node_name ? node_name->dev : NULL; } EXPORT_SYMBOL(dev_get_by_name_rcu); /** * dev_get_by_name - find a device by its name * @net: the applicable net namespace * @name: name to find * * Find an interface by name. This can be called from any * context and does its own locking. The returned handle has * the usage count incremented and the caller must use dev_put() to * release it when it is no longer needed. %NULL is returned if no * matching device is found. */ struct net_device *dev_get_by_name(struct net *net, const char *name) { struct net_device *dev; rcu_read_lock(); dev = dev_get_by_name_rcu(net, name); dev_hold(dev); rcu_read_unlock(); return dev; } EXPORT_SYMBOL(dev_get_by_name); /** * __dev_get_by_index - find a device by its ifindex * @net: the applicable net namespace * @ifindex: index of device * * Search for an interface by index. Returns %NULL if the device * is not found or a pointer to the device. The device has not * had its reference counter increased so the caller must be careful * about locking. The caller must hold either the RTNL semaphore * or @dev_base_lock. */ struct net_device *__dev_get_by_index(struct net *net, int ifindex) { struct net_device *dev; struct hlist_head *head = dev_index_hash(net, ifindex); hlist_for_each_entry(dev, head, index_hlist) if (dev->ifindex == ifindex) return dev; return NULL; } EXPORT_SYMBOL(__dev_get_by_index); /** * dev_get_by_index_rcu - find a device by its ifindex * @net: the applicable net namespace * @ifindex: index of device * * Search for an interface by index. Returns %NULL if the device * is not found or a pointer to the device. The device has not * had its reference counter increased so the caller must be careful * about locking. The caller must hold RCU lock. */ struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) { struct net_device *dev; struct hlist_head *head = dev_index_hash(net, ifindex); hlist_for_each_entry_rcu(dev, head, index_hlist) if (dev->ifindex == ifindex) return dev; return NULL; } EXPORT_SYMBOL(dev_get_by_index_rcu); /** * dev_get_by_index - find a device by its ifindex * @net: the applicable net namespace * @ifindex: index of device * * Search for an interface by index. Returns NULL if the device * is not found or a pointer to the device. The device returned has * had a reference added and the pointer is safe until the user calls * dev_put to indicate they have finished with it. */ struct net_device *dev_get_by_index(struct net *net, int ifindex) { struct net_device *dev; rcu_read_lock(); dev = dev_get_by_index_rcu(net, ifindex); dev_hold(dev); rcu_read_unlock(); return dev; } EXPORT_SYMBOL(dev_get_by_index); /** * dev_get_by_napi_id - find a device by napi_id * @napi_id: ID of the NAPI struct * * Search for an interface by NAPI ID. Returns %NULL if the device * is not found or a pointer to the device. The device has not had * its reference counter increased so the caller must be careful * about locking. The caller must hold RCU lock. */ struct net_device *dev_get_by_napi_id(unsigned int napi_id) { struct napi_struct *napi; WARN_ON_ONCE(!rcu_read_lock_held()); if (napi_id < MIN_NAPI_ID) return NULL; napi = napi_by_id(napi_id); return napi ? napi->dev : NULL; } EXPORT_SYMBOL(dev_get_by_napi_id); /** * netdev_get_name - get a netdevice name, knowing its ifindex. * @net: network namespace * @name: a pointer to the buffer where the name will be stored. * @ifindex: the ifindex of the interface to get the name from. */ int netdev_get_name(struct net *net, char *name, int ifindex) { struct net_device *dev; int ret; down_read(&devnet_rename_sem); rcu_read_lock(); dev = dev_get_by_index_rcu(net, ifindex); if (!dev) { ret = -ENODEV; goto out; } strcpy(name, dev->name); ret = 0; out: rcu_read_unlock(); up_read(&devnet_rename_sem); return ret; } static bool dev_addr_cmp(struct net_device *dev, unsigned short type, const char *ha) { return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len); } /** * dev_getbyhwaddr_rcu - find a device by its hardware address * @net: the applicable net namespace * @type: media type of device * @ha: hardware address * * Search for an interface by MAC address. Returns NULL if the device * is not found or a pointer to the device. * The caller must hold RCU. * The returned device has not had its ref count increased * and the caller must therefore be careful about locking * */ struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, const char *ha) { struct net_device *dev; for_each_netdev_rcu(net, dev) if (dev_addr_cmp(dev, type, ha)) return dev; return NULL; } EXPORT_SYMBOL(dev_getbyhwaddr_rcu); /** * dev_getbyhwaddr() - find a device by its hardware address * @net: the applicable net namespace * @type: media type of device * @ha: hardware address * * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold * rtnl_lock. * * Context: rtnl_lock() must be held. * Return: pointer to the net_device, or NULL if not found */ struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, const char *ha) { struct net_device *dev; ASSERT_RTNL(); for_each_netdev(net, dev) if (dev_addr_cmp(dev, type, ha)) return dev; return NULL; } EXPORT_SYMBOL(dev_getbyhwaddr); struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) { struct net_device *dev, *ret = NULL; rcu_read_lock(); for_each_netdev_rcu(net, dev) if (dev->type == type) { dev_hold(dev); ret = dev; break; } rcu_read_unlock(); return ret; } EXPORT_SYMBOL(dev_getfirstbyhwtype); /** * __dev_get_by_flags - find any device with given flags * @net: the applicable net namespace * @if_flags: IFF_* values * @mask: bitmask of bits in if_flags to check * * Search for any interface with the given flags. Returns NULL if a device * is not found or a pointer to the device. Must be called inside * rtnl_lock(), and result refcount is unchanged. */ struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) { struct net_device *dev, *ret; ASSERT_RTNL(); ret = NULL; for_each_netdev(net, dev) { if (((dev->flags ^ if_flags) & mask) == 0) { ret = dev; break; } } return ret; } EXPORT_SYMBOL(__dev_get_by_flags); /** * dev_valid_name - check if name is okay for network device * @name: name string * * Network device names need to be valid file names to * allow sysfs to work. We also disallow any kind of * whitespace. */ bool dev_valid_name(const char *name) { if (*name == '\0') return false; if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) return false; if (!strcmp(name, ".") || !strcmp(name, "..")) return false; while (*name) { if (*name == '/' || *name == ':' || isspace(*name)) return false; name++; } return true; } EXPORT_SYMBOL(dev_valid_name); /** * __dev_alloc_name - allocate a name for a device * @net: network namespace to allocate the device name in * @name: name format string * @buf: scratch buffer and result name string * * Passed a format string - eg "lt%d" it will try and find a suitable * id. It scans list of devices to build up a free map, then chooses * the first empty slot. The caller must hold the dev_base or rtnl lock * while allocating the name and adding the device in order to avoid * duplicates. * Limited to bits_per_byte * page size devices (ie 32K on most platforms). * Returns the number of the unit assigned or a negative errno code. */ static int __dev_alloc_name(struct net *net, const char *name, char *buf) { int i = 0; const char *p; const int max_netdevices = 8*PAGE_SIZE; unsigned long *inuse; struct net_device *d; if (!dev_valid_name(name)) return -EINVAL; p = strchr(name, '%'); if (p) { /* * Verify the string as this thing may have come from * the user. There must be either one "%d" and no other "%" * characters. */ if (p[1] != 'd' || strchr(p + 2, '%')) return -EINVAL; /* Use one page as a bit array of possible slots */ inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); if (!inuse) return -ENOMEM; for_each_netdev(net, d) { struct netdev_name_node *name_node; netdev_for_each_altname(d, name_node) { if (!sscanf(name_node->name, name, &i)) continue; if (i < 0 || i >= max_netdevices) continue; /* avoid cases where sscanf is not exact inverse of printf */ snprintf(buf, IFNAMSIZ, name, i); if (!strncmp(buf, name_node->name, IFNAMSIZ)) __set_bit(i, inuse); } if (!sscanf(d->name, name, &i)) continue; if (i < 0 || i >= max_netdevices) continue; /* avoid cases where sscanf is not exact inverse of printf */ snprintf(buf, IFNAMSIZ, name, i); if (!strncmp(buf, d->name, IFNAMSIZ)) __set_bit(i, inuse); } i = find_first_zero_bit(inuse, max_netdevices); free_page((unsigned long) inuse); } snprintf(buf, IFNAMSIZ, name, i); if (!netdev_name_in_use(net, buf)) return i; /* It is possible to run out of possible slots * when the name is long and there isn't enough space left * for the digits, or if all bits are used. */ return -ENFILE; } static int dev_prep_valid_name(struct net *net, struct net_device *dev, const char *want_name, char *out_name) { int ret; if (!dev_valid_name(want_name)) return -EINVAL; if (strchr(want_name, '%')) { ret = __dev_alloc_name(net, want_name, out_name); return ret < 0 ? ret : 0; } else if (netdev_name_in_use(net, want_name)) { return -EEXIST; } else if (out_name != want_name) { strscpy(out_name, want_name, IFNAMSIZ); } return 0; } static int dev_alloc_name_ns(struct net *net, struct net_device *dev, const char *name) { char buf[IFNAMSIZ]; int ret; BUG_ON(!net); ret = __dev_alloc_name(net, name, buf); if (ret >= 0) strscpy(dev->name, buf, IFNAMSIZ); return ret; } /** * dev_alloc_name - allocate a name for a device * @dev: device * @name: name format string * * Passed a format string - eg "lt%d" it will try and find a suitable * id. It scans list of devices to build up a free map, then chooses * the first empty slot. The caller must hold the dev_base or rtnl lock * while allocating the name and adding the device in order to avoid * duplicates. * Limited to bits_per_byte * page size devices (ie 32K on most platforms). * Returns the number of the unit assigned or a negative errno code. */ int dev_alloc_name(struct net_device *dev, const char *name) { return dev_alloc_name_ns(dev_net(dev), dev, name); } EXPORT_SYMBOL(dev_alloc_name); static int dev_get_valid_name(struct net *net, struct net_device *dev, const char *name) { char buf[IFNAMSIZ]; int ret; ret = dev_prep_valid_name(net, dev, name, buf); if (ret >= 0) strscpy(dev->name, buf, IFNAMSIZ); return ret; } /** * dev_change_name - change name of a device * @dev: device * @newname: name (or format string) must be at least IFNAMSIZ * * Change name of a device, can pass format strings "eth%d". * for wildcarding. */ int dev_change_name(struct net_device *dev, const char *newname) { unsigned char old_assign_type; char oldname[IFNAMSIZ]; int err = 0; int ret; struct net *net; ASSERT_RTNL(); BUG_ON(!dev_net(dev)); net = dev_net(dev); /* Some auto-enslaved devices e.g. failover slaves are * special, as userspace might rename the device after * the interface had been brought up and running since * the point kernel initiated auto-enslavement. Allow * live name change even when these slave devices are * up and running. * * Typically, users of these auto-enslaving devices * don't actually care about slave name change, as * they are supposed to operate on master interface * directly. */ if (dev->flags & IFF_UP && likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) return -EBUSY; down_write(&devnet_rename_sem); if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { up_write(&devnet_rename_sem); return 0; } memcpy(oldname, dev->name, IFNAMSIZ); err = dev_get_valid_name(net, dev, newname); if (err < 0) { up_write(&devnet_rename_sem); return err; } if (oldname[0] && !strchr(oldname, '%')) netdev_info(dev, "renamed from %s\n", oldname); old_assign_type = dev->name_assign_type; dev->name_assign_type = NET_NAME_RENAMED; rollback: ret = device_rename(&dev->dev, dev->name); if (ret) { memcpy(dev->name, oldname, IFNAMSIZ); dev->name_assign_type = old_assign_type; up_write(&devnet_rename_sem); return ret; } up_write(&devnet_rename_sem); netdev_adjacent_rename_links(dev, oldname); write_lock(&dev_base_lock); netdev_name_node_del(dev->name_node); write_unlock(&dev_base_lock); synchronize_rcu(); write_lock(&dev_base_lock); netdev_name_node_add(net, dev->name_node); write_unlock(&dev_base_lock); ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); ret = notifier_to_errno(ret); if (ret) { /* err >= 0 after dev_alloc_name() or stores the first errno */ if (err >= 0) { err = ret; down_write(&devnet_rename_sem); memcpy(dev->name, oldname, IFNAMSIZ); memcpy(oldname, newname, IFNAMSIZ); dev->name_assign_type = old_assign_type; old_assign_type = NET_NAME_RENAMED; goto rollback; } else { netdev_err(dev, "name change rollback failed: %d\n", ret); } } return err; } /** * dev_set_alias - change ifalias of a device * @dev: device * @alias: name up to IFALIASZ * @len: limit of bytes to copy from info * * Set ifalias for a device, */ int dev_set_alias(struct net_device *dev, const char *alias, size_t len) { struct dev_ifalias *new_alias = NULL; if (len >= IFALIASZ) return -EINVAL; if (len) { new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); if (!new_alias) return -ENOMEM; memcpy(new_alias->ifalias, alias, len); new_alias->ifalias[len] = 0; } mutex_lock(&ifalias_mutex); new_alias = rcu_replace_pointer(dev->ifalias, new_alias, mutex_is_locked(&ifalias_mutex)); mutex_unlock(&ifalias_mutex); if (new_alias) kfree_rcu(new_alias, rcuhead); return len; } EXPORT_SYMBOL(dev_set_alias); /** * dev_get_alias - get ifalias of a device * @dev: device * @name: buffer to store name of ifalias * @len: size of buffer * * get ifalias for a device. Caller must make sure dev cannot go * away, e.g. rcu read lock or own a reference count to device. */ int dev_get_alias(const struct net_device *dev, char *name, size_t len) { const struct dev_ifalias *alias; int ret = 0; rcu_read_lock(); alias = rcu_dereference(dev->ifalias); if (alias) ret = snprintf(name, len, "%s", alias->ifalias); rcu_read_unlock(); return ret; } /** * netdev_features_change - device changes features * @dev: device to cause notification * * Called to indicate a device has changed features. */ void netdev_features_change(struct net_device *dev) { call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); } EXPORT_SYMBOL(netdev_features_change); /** * netdev_state_change - device changes state * @dev: device to cause notification * * Called to indicate a device has changed state. This function calls * the notifier chains for netdev_chain and sends a NEWLINK message * to the routing socket. */ void netdev_state_change(struct net_device *dev) { if (dev->flags & IFF_UP) { struct netdev_notifier_change_info change_info = { .info.dev = dev, }; call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); } } EXPORT_SYMBOL(netdev_state_change); /** * __netdev_notify_peers - notify network peers about existence of @dev, * to be called when rtnl lock is already held. * @dev: network device * * Generate traffic such that interested network peers are aware of * @dev, such as by generating a gratuitous ARP. This may be used when * a device wants to inform the rest of the network about some sort of * reconfiguration such as a failover event or virtual machine * migration. */ void __netdev_notify_peers(struct net_device *dev) { ASSERT_RTNL(); call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); } EXPORT_SYMBOL(__netdev_notify_peers); /** * netdev_notify_peers - notify network peers about existence of @dev * @dev: network device * * Generate traffic such that interested network peers are aware of * @dev, such as by generating a gratuitous ARP. This may be used when * a device wants to inform the rest of the network about some sort of * reconfiguration such as a failover event or virtual machine * migration. */ void netdev_notify_peers(struct net_device *dev) { rtnl_lock(); __netdev_notify_peers(dev); rtnl_unlock(); } EXPORT_SYMBOL(netdev_notify_peers); static int napi_threaded_poll(void *data); static int napi_kthread_create(struct napi_struct *n) { int err = 0; /* Create and wake up the kthread once to put it in * TASK_INTERRUPTIBLE mode to avoid the blocked task * warning and work with loadavg. */ n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", n->dev->name, n->napi_id); if (IS_ERR(n->thread)) { err = PTR_ERR(n->thread); pr_err("kthread_run failed with err %d\n", err); n->thread = NULL; } return err; } static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) { const struct net_device_ops *ops = dev->netdev_ops; int ret; ASSERT_RTNL(); dev_addr_check(dev); if (!netif_device_present(dev)) { /* may be detached because parent is runtime-suspended */ if (dev->dev.parent) pm_runtime_resume(dev->dev.parent); if (!netif_device_present(dev)) return -ENODEV; } /* Block netpoll from trying to do any rx path servicing. * If we don't do this there is a chance ndo_poll_controller * or ndo_poll may be running while we open the device */ netpoll_poll_disable(dev); ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); ret = notifier_to_errno(ret); if (ret) return ret; set_bit(__LINK_STATE_START, &dev->state); if (ops->ndo_validate_addr) ret = ops->ndo_validate_addr(dev); if (!ret && ops->ndo_open) ret = ops->ndo_open(dev); netpoll_poll_enable(dev); if (ret) clear_bit(__LINK_STATE_START, &dev->state); else { dev->flags |= IFF_UP; dev_set_rx_mode(dev); dev_activate(dev); add_device_randomness(dev->dev_addr, dev->addr_len); } return ret; } /** * dev_open - prepare an interface for use. * @dev: device to open * @extack: netlink extended ack * * Takes a device from down to up state. The device's private open * function is invoked and then the multicast lists are loaded. Finally * the device is moved into the up state and a %NETDEV_UP message is * sent to the netdev notifier chain. * * Calling this function on an active interface is a nop. On a failure * a negative errno code is returned. */ int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) { int ret; if (dev->flags & IFF_UP) return 0; ret = __dev_open(dev, extack); if (ret < 0) return ret; rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); call_netdevice_notifiers(NETDEV_UP, dev); return ret; } EXPORT_SYMBOL(dev_open); static void __dev_close_many(struct list_head *head) { struct net_device *dev; ASSERT_RTNL(); might_sleep(); list_for_each_entry(dev, head, close_list) { /* Temporarily disable netpoll until the interface is down */ netpoll_poll_disable(dev); call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); clear_bit(__LINK_STATE_START, &dev->state); /* Synchronize to scheduled poll. We cannot touch poll list, it * can be even on different cpu. So just clear netif_running(). * * dev->stop() will invoke napi_disable() on all of it's * napi_struct instances on this device. */ smp_mb__after_atomic(); /* Commit netif_running(). */ } dev_deactivate_many(head); list_for_each_entry(dev, head, close_list) { const struct net_device_ops *ops = dev->netdev_ops; /* * Call the device specific close. This cannot fail. * Only if device is UP * * We allow it to be called even after a DETACH hot-plug * event. */ if (ops->ndo_stop) ops->ndo_stop(dev); dev->flags &= ~IFF_UP; netpoll_poll_enable(dev); } } static void __dev_close(struct net_device *dev) { LIST_HEAD(single); list_add(&dev->close_list, &single); __dev_close_many(&single); list_del(&single); } void dev_close_many(struct list_head *head, bool unlink) { struct net_device *dev, *tmp; /* Remove the devices that don't need to be closed */ list_for_each_entry_safe(dev, tmp, head, close_list) if (!(dev->flags & IFF_UP)) list_del_init(&dev->close_list); __dev_close_many(head); list_for_each_entry_safe(dev, tmp, head, close_list) { rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); call_netdevice_notifiers(NETDEV_DOWN, dev); if (unlink) list_del_init(&dev->close_list); } } EXPORT_SYMBOL(dev_close_many); /** * dev_close - shutdown an interface. * @dev: device to shutdown * * This function moves an active device into down state. A * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier * chain. */ void dev_close(struct net_device *dev) { if (dev->flags & IFF_UP) { LIST_HEAD(single); list_add(&dev->close_list, &single); dev_close_many(&single, true); list_del(&single); } } EXPORT_SYMBOL(dev_close); /** * dev_disable_lro - disable Large Receive Offload on a device * @dev: device * * Disable Large Receive Offload (LRO) on a net device. Must be * called under RTNL. This is needed if received packets may be * forwarded to another interface. */ void dev_disable_lro(struct net_device *dev) { struct net_device *lower_dev; struct list_head *iter; dev->wanted_features &= ~NETIF_F_LRO; netdev_update_features(dev); if (unlikely(dev->features & NETIF_F_LRO)) netdev_WARN(dev, "failed to disable LRO!\n"); netdev_for_each_lower_dev(dev, lower_dev, iter) dev_disable_lro(lower_dev); } EXPORT_SYMBOL(dev_disable_lro); /** * dev_disable_gro_hw - disable HW Generic Receive Offload on a device * @dev: device * * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be * called under RTNL. This is needed if Generic XDP is installed on * the device. */ static void dev_disable_gro_hw(struct net_device *dev) { dev->wanted_features &= ~NETIF_F_GRO_HW; netdev_update_features(dev); if (unlikely(dev->features & NETIF_F_GRO_HW)) netdev_WARN(dev, "failed to disable GRO_HW!\n"); } const char *netdev_cmd_to_name(enum netdev_cmd cmd) { #define N(val) \ case NETDEV_##val: \ return "NETDEV_" __stringify(val); switch (cmd) { N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) } #undef N return "UNKNOWN_NETDEV_EVENT"; } EXPORT_SYMBOL_GPL(netdev_cmd_to_name); static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, struct net_device *dev) { struct netdev_notifier_info info = { .dev = dev, }; return nb->notifier_call(nb, val, &info); } static int call_netdevice_register_notifiers(struct notifier_block *nb, struct net_device *dev) { int err; err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); err = notifier_to_errno(err); if (err) return err; if (!(dev->flags & IFF_UP)) return 0; call_netdevice_notifier(nb, NETDEV_UP, dev); return 0; } static void call_netdevice_unregister_notifiers(struct notifier_block *nb, struct net_device *dev) { if (dev->flags & IFF_UP) { call_netdevice_notifier(nb, NETDEV_GOING_DOWN, dev); call_netdevice_notifier(nb, NETDEV_DOWN, dev); } call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); } static int call_netdevice_register_net_notifiers(struct notifier_block *nb, struct net *net) { struct net_device *dev; int err; for_each_netdev(net, dev) { err = call_netdevice_register_notifiers(nb, dev); if (err) goto rollback; } return 0; rollback: for_each_netdev_continue_reverse(net, dev) call_netdevice_unregister_notifiers(nb, dev); return err; } static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, struct net *net) { struct net_device *dev; for_each_netdev(net, dev) call_netdevice_unregister_notifiers(nb, dev); } static int dev_boot_phase = 1; /** * register_netdevice_notifier - register a network notifier block * @nb: notifier * * Register a notifier to be called when network device events occur. * The notifier passed is linked into the kernel structures and must * not be reused until it has been unregistered. A negative errno code * is returned on a failure. * * When registered all registration and up events are replayed * to the new notifier to allow device to have a race free * view of the network device list. */ int register_netdevice_notifier(struct notifier_block *nb) { struct net *net; int err; /* Close race with setup_net() and cleanup_net() */ down_write(&pernet_ops_rwsem); rtnl_lock(); err = raw_notifier_chain_register(&netdev_chain, nb); if (err) goto unlock; if (dev_boot_phase) goto unlock; for_each_net(net) { err = call_netdevice_register_net_notifiers(nb, net); if (err) goto rollback; } unlock: rtnl_unlock(); up_write(&pernet_ops_rwsem); return err; rollback: for_each_net_continue_reverse(net) call_netdevice_unregister_net_notifiers(nb, net); raw_notifier_chain_unregister(&netdev_chain, nb); goto unlock; } EXPORT_SYMBOL(register_netdevice_notifier); /** * unregister_netdevice_notifier - unregister a network notifier block * @nb: notifier * * Unregister a notifier previously registered by * register_netdevice_notifier(). The notifier is unlinked into the * kernel structures and may then be reused. A negative errno code * is returned on a failure. * * After unregistering unregister and down device events are synthesized * for all devices on the device list to the removed notifier to remove * the need for special case cleanup code. */ int unregister_netdevice_notifier(struct notifier_block *nb) { struct net *net; int err; /* Close race with setup_net() and cleanup_net() */ down_write(&pernet_ops_rwsem); rtnl_lock(); err = raw_notifier_chain_unregister(&netdev_chain, nb); if (err) goto unlock; for_each_net(net) call_netdevice_unregister_net_notifiers(nb, net); unlock: rtnl_unlock(); up_write(&pernet_ops_rwsem); return err; } EXPORT_SYMBOL(unregister_netdevice_notifier); static int __register_netdevice_notifier_net(struct net *net, struct notifier_block *nb, bool ignore_call_fail) { int err; err = raw_notifier_chain_register(&net->netdev_chain, nb); if (err) return err; if (dev_boot_phase) return 0; err = call_netdevice_register_net_notifiers(nb, net); if (err && !ignore_call_fail) goto chain_unregister; return 0; chain_unregister: raw_notifier_chain_unregister(&net->netdev_chain, nb); return err; } static int __unregister_netdevice_notifier_net(struct net *net, struct notifier_block *nb) { int err; err = raw_notifier_chain_unregister(&net->netdev_chain, nb); if (err) return err; call_netdevice_unregister_net_notifiers(nb, net); return 0; } /** * register_netdevice_notifier_net - register a per-netns network notifier block * @net: network namespace * @nb: notifier * * Register a notifier to be called when network device events occur. * The notifier passed is linked into the kernel structures and must * not be reused until it has been unregistered. A negative errno code * is returned on a failure. * * When registered all registration and up events are replayed * to the new notifier to allow device to have a race free * view of the network device list. */ int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) { int err; rtnl_lock(); err = __register_netdevice_notifier_net(net, nb, false); rtnl_unlock(); return err; } EXPORT_SYMBOL(register_netdevice_notifier_net); /** * unregister_netdevice_notifier_net - unregister a per-netns * network notifier block * @net: network namespace * @nb: notifier * * Unregister a notifier previously registered by * register_netdevice_notifier(). The notifier is unlinked into the * kernel structures and may then be reused. A negative errno code * is returned on a failure. * * After unregistering unregister and down device events are synthesized * for all devices on the device list to the removed notifier to remove * the need for special case cleanup code. */ int unregister_netdevice_notifier_net(struct net *net, struct notifier_block *nb) { int err; rtnl_lock(); err = __unregister_netdevice_notifier_net(net, nb); rtnl_unlock(); return err; } EXPORT_SYMBOL(unregister_netdevice_notifier_net); int register_netdevice_notifier_dev_net(struct net_device *dev, struct notifier_block *nb, struct netdev_net_notifier *nn) { int err; rtnl_lock(); err = __register_netdevice_notifier_net(dev_net(dev), nb, false); if (!err) { nn->nb = nb; list_add(&nn->list, &dev->net_notifier_list); } rtnl_unlock(); return err; } EXPORT_SYMBOL(register_netdevice_notifier_dev_net); int unregister_netdevice_notifier_dev_net(struct net_device *dev, struct notifier_block *nb, struct netdev_net_notifier *nn) { int err; rtnl_lock(); list_del(&nn->list); err = __unregister_netdevice_notifier_net(dev_net(dev), nb); rtnl_unlock(); return err; } EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); static void move_netdevice_notifiers_dev_net(struct net_device *dev, struct net *net) { struct netdev_net_notifier *nn; list_for_each_entry(nn, &dev->net_notifier_list, list) { __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); __register_netdevice_notifier_net(net, nn->nb, true); } } /** * call_netdevice_notifiers_info - call all network notifier blocks * @val: value passed unmodified to notifier function * @info: notifier information data * * Call all network notifier blocks. Parameters and return value * are as for raw_notifier_call_chain(). */ static int call_netdevice_notifiers_info(unsigned long val, struct netdev_notifier_info *info) { struct net *net = dev_net(info->dev); int ret; ASSERT_RTNL(); /* Run per-netns notifier block chain first, then run the global one. * Hopefully, one day, the global one is going to be removed after * all notifier block registrators get converted to be per-netns. */ ret = raw_notifier_call_chain(&net->netdev_chain, val, info); if (ret & NOTIFY_STOP_MASK) return ret; return raw_notifier_call_chain(&netdev_chain, val, info); } /** * call_netdevice_notifiers_info_robust - call per-netns notifier blocks * for and rollback on error * @val_up: value passed unmodified to notifier function * @val_down: value passed unmodified to the notifier function when * recovering from an error on @val_up * @info: notifier information data * * Call all per-netns network notifier blocks, but not notifier blocks on * the global notifier chain. Parameters and return value are as for * raw_notifier_call_chain_robust(). */ static int call_netdevice_notifiers_info_robust(unsigned long val_up, unsigned long val_down, struct netdev_notifier_info *info) { struct net *net = dev_net(info->dev); ASSERT_RTNL(); return raw_notifier_call_chain_robust(&net->netdev_chain, val_up, val_down, info); } static int call_netdevice_notifiers_extack(unsigned long val, struct net_device *dev, struct netlink_ext_ack *extack) { struct netdev_notifier_info info = { .dev = dev, .extack = extack, }; return call_netdevice_notifiers_info(val, &info); } /** * call_netdevice_notifiers - call all network notifier blocks * @val: value passed unmodified to notifier function * @dev: net_device pointer passed unmodified to notifier function * * Call all network notifier blocks. Parameters and return value * are as for raw_notifier_call_chain(). */ int call_netdevice_notifiers(unsigned long val, struct net_device *dev) { return call_netdevice_notifiers_extack(val, dev, NULL); } EXPORT_SYMBOL(call_netdevice_notifiers); /** * call_netdevice_notifiers_mtu - call all network notifier blocks * @val: value passed unmodified to notifier function * @dev: net_device pointer passed unmodified to notifier function * @arg: additional u32 argument passed to the notifier function * * Call all network notifier blocks. Parameters and return value * are as for raw_notifier_call_chain(). */ static int call_netdevice_notifiers_mtu(unsigned long val, struct net_device *dev, u32 arg) { struct netdev_notifier_info_ext info = { .info.dev = dev, .ext.mtu = arg, }; BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); return call_netdevice_notifiers_info(val, &info.info); } #ifdef CONFIG_NET_INGRESS static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); void net_inc_ingress_queue(void) { static_branch_inc(&ingress_needed_key); } EXPORT_SYMBOL_GPL(net_inc_ingress_queue); void net_dec_ingress_queue(void) { static_branch_dec(&ingress_needed_key); } EXPORT_SYMBOL_GPL(net_dec_ingress_queue); #endif #ifdef CONFIG_NET_EGRESS static DEFINE_STATIC_KEY_FALSE(egress_needed_key); void net_inc_egress_queue(void) { static_branch_inc(&egress_needed_key); } EXPORT_SYMBOL_GPL(net_inc_egress_queue); void net_dec_egress_queue(void) { static_branch_dec(&egress_needed_key); } EXPORT_SYMBOL_GPL(net_dec_egress_queue); #endif DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); EXPORT_SYMBOL(netstamp_needed_key); #ifdef CONFIG_JUMP_LABEL static atomic_t netstamp_needed_deferred; static atomic_t netstamp_wanted; static void netstamp_clear(struct work_struct *work) { int deferred = atomic_xchg(&netstamp_needed_deferred, 0); int wanted; wanted = atomic_add_return(deferred, &netstamp_wanted); if (wanted > 0) static_branch_enable(&netstamp_needed_key); else static_branch_disable(&netstamp_needed_key); } static DECLARE_WORK(netstamp_work, netstamp_clear); #endif void net_enable_timestamp(void) { #ifdef CONFIG_JUMP_LABEL int wanted; while (1) { wanted = atomic_read(&netstamp_wanted); if (wanted <= 0) break; if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) return; } atomic_inc(&netstamp_needed_deferred); schedule_work(&netstamp_work); #else static_branch_inc(&netstamp_needed_key); #endif } EXPORT_SYMBOL(net_enable_timestamp); void net_disable_timestamp(void) { #ifdef CONFIG_JUMP_LABEL int wanted; while (1) { wanted = atomic_read(&netstamp_wanted); if (wanted <= 1) break; if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) return; } atomic_dec(&netstamp_needed_deferred); schedule_work(&netstamp_work); #else static_branch_dec(&netstamp_needed_key); #endif } EXPORT_SYMBOL(net_disable_timestamp); static inline void net_timestamp_set(struct sk_buff *skb) { skb->tstamp = 0; skb->mono_delivery_time = 0; if (static_branch_unlikely(&netstamp_needed_key)) skb->tstamp = ktime_get_real(); } #define net_timestamp_check(COND, SKB) \ if (static_branch_unlikely(&netstamp_needed_key)) { \ if ((COND) && !(SKB)->tstamp) \ (SKB)->tstamp = ktime_get_real(); \ } \ bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) { return __is_skb_forwardable(dev, skb, true); } EXPORT_SYMBOL_GPL(is_skb_forwardable); static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, bool check_mtu) { int ret = ____dev_forward_skb(dev, skb, check_mtu); if (likely(!ret)) { skb->protocol = eth_type_trans(skb, dev); skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); } return ret; } int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) { return __dev_forward_skb2(dev, skb, true); } EXPORT_SYMBOL_GPL(__dev_forward_skb); /** * dev_forward_skb - loopback an skb to another netif * * @dev: destination network device * @skb: buffer to forward * * return values: * NET_RX_SUCCESS (no congestion) * NET_RX_DROP (packet was dropped, but freed) * * dev_forward_skb can be used for injecting an skb from the * start_xmit function of one device into the receive queue * of another device. * * The receiving device may be in another namespace, so * we have to clear all information in the skb that could * impact namespace isolation. */ int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) { return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); } EXPORT_SYMBOL_GPL(dev_forward_skb); int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) { return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); } static inline int deliver_skb(struct sk_buff *skb, struct packet_type *pt_prev, struct net_device *orig_dev) { if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) return -ENOMEM; refcount_inc(&skb->users); return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); } static inline void deliver_ptype_list_skb(struct sk_buff *skb, struct packet_type **pt, struct net_device *orig_dev, __be16 type, struct list_head *ptype_list) { struct packet_type *ptype, *pt_prev = *pt; list_for_each_entry_rcu(ptype, ptype_list, list) { if (ptype->type != type) continue; if (pt_prev) deliver_skb(skb, pt_prev, orig_dev); pt_prev = ptype; } *pt = pt_prev; } static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) { if (!ptype->af_packet_priv || !skb->sk) return false; if (ptype->id_match) return ptype->id_match(ptype, skb->sk); else if ((struct sock *)ptype->af_packet_priv == skb->sk) return true; return false; } /** * dev_nit_active - return true if any network interface taps are in use * * @dev: network device to check for the presence of taps */ bool dev_nit_active(struct net_device *dev) { return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); } EXPORT_SYMBOL_GPL(dev_nit_active); /* * Support routine. Sends outgoing frames to any network * taps currently in use. */ void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) { struct packet_type *ptype; struct sk_buff *skb2 = NULL; struct packet_type *pt_prev = NULL; struct list_head *ptype_list = &ptype_all; rcu_read_lock(); again: list_for_each_entry_rcu(ptype, ptype_list, list) { if (READ_ONCE(ptype->ignore_outgoing)) continue; /* Never send packets back to the socket * they originated from - MvS (miquels@drinkel.ow.org) */ if (skb_loop_sk(ptype, skb)) continue; if (pt_prev) { deliver_skb(skb2, pt_prev, skb->dev); pt_prev = ptype; continue; } /* need to clone skb, done only once */ skb2 = skb_clone(skb, GFP_ATOMIC); if (!skb2) goto out_unlock; net_timestamp_set(skb2); /* skb->nh should be correctly * set by sender, so that the second statement is * just protection against buggy protocols. */ skb_reset_mac_header(skb2); if (skb_network_header(skb2) < skb2->data || skb_network_header(skb2) > skb_tail_pointer(skb2)) { net_crit_ratelimited("protocol %04x is buggy, dev %s\n", ntohs(skb2->protocol), dev->name); skb_reset_network_header(skb2); } skb2->transport_header = skb2->network_header; skb2->pkt_type = PACKET_OUTGOING; pt_prev = ptype; } if (ptype_list == &ptype_all) { ptype_list = &dev->ptype_all; goto again; } out_unlock: if (pt_prev) { if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); else kfree_skb(skb2); } rcu_read_unlock(); } EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); /** * netif_setup_tc - Handle tc mappings on real_num_tx_queues change * @dev: Network device * @txq: number of queues available * * If real_num_tx_queues is changed the tc mappings may no longer be * valid. To resolve this verify the tc mapping remains valid and if * not NULL the mapping. With no priorities mapping to this * offset/count pair it will no longer be used. In the worst case TC0 * is invalid nothing can be done so disable priority mappings. If is * expected that drivers will fix this mapping if they can before * calling netif_set_real_num_tx_queues. */ static void netif_setup_tc(struct net_device *dev, unsigned int txq) { int i; struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; /* If TC0 is invalidated disable TC mapping */ if (tc->offset + tc->count > txq) { netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); dev->num_tc = 0; return; } /* Invalidated prio to tc mappings set to TC0 */ for (i = 1; i < TC_BITMASK + 1; i++) { int q = netdev_get_prio_tc_map(dev, i); tc = &dev->tc_to_txq[q]; if (tc->offset + tc->count > txq) { netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", i, q); netdev_set_prio_tc_map(dev, i, 0); } } } int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) { if (dev->num_tc) { struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; int i; /* walk through the TCs and see if it falls into any of them */ for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { if ((txq - tc->offset) < tc->count) return i; } /* didn't find it, just return -1 to indicate no match */ return -1; } return 0; } EXPORT_SYMBOL(netdev_txq_to_tc); #ifdef CONFIG_XPS static struct static_key xps_needed __read_mostly; static struct static_key xps_rxqs_needed __read_mostly; static DEFINE_MUTEX(xps_map_mutex); #define xmap_dereference(P) \ rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) static bool remove_xps_queue(struct xps_dev_maps *dev_maps, struct xps_dev_maps *old_maps, int tci, u16 index) { struct xps_map *map = NULL; int pos; if (dev_maps) map = xmap_dereference(dev_maps->attr_map[tci]); if (!map) return false; for (pos = map->len; pos--;) { if (map->queues[pos] != index) continue; if (map->len > 1) { map->queues[pos] = map->queues[--map->len]; break; } if (old_maps) RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); kfree_rcu(map, rcu); return false; } return true; } static bool remove_xps_queue_cpu(struct net_device *dev, struct xps_dev_maps *dev_maps, int cpu, u16 offset, u16 count) { int num_tc = dev_maps->num_tc; bool active = false; int tci; for (tci = cpu * num_tc; num_tc--; tci++) { int i, j; for (i = count, j = offset; i--; j++) { if (!remove_xps_queue(dev_maps, NULL, tci, j)) break; } active |= i < 0; } return active; } static void reset_xps_maps(struct net_device *dev, struct xps_dev_maps *dev_maps, enum xps_map_type type) { static_key_slow_dec_cpuslocked(&xps_needed); if (type == XPS_RXQS) static_key_slow_dec_cpuslocked(&xps_rxqs_needed); RCU_INIT_POINTER(dev->xps_maps[type], NULL); kfree_rcu(dev_maps, rcu); } static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, u16 offset, u16 count) { struct xps_dev_maps *dev_maps; bool active = false; int i, j; dev_maps = xmap_dereference(dev->xps_maps[type]); if (!dev_maps) return; for (j = 0; j < dev_maps->nr_ids; j++) active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); if (!active) reset_xps_maps(dev, dev_maps, type); if (type == XPS_CPUS) { for (i = offset + (count - 1); count--; i--) netdev_queue_numa_node_write( netdev_get_tx_queue(dev, i), NUMA_NO_NODE); } } static void netif_reset_xps_queues(struct net_device *dev, u16 offset, u16 count) { if (!static_key_false(&xps_needed)) return; cpus_read_lock(); mutex_lock(&xps_map_mutex); if (static_key_false(&xps_rxqs_needed)) clean_xps_maps(dev, XPS_RXQS, offset, count); clean_xps_maps(dev, XPS_CPUS, offset, count); mutex_unlock(&xps_map_mutex); cpus_read_unlock(); } static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) { netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); } static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, u16 index, bool is_rxqs_map) { struct xps_map *new_map; int alloc_len = XPS_MIN_MAP_ALLOC; int i, pos; for (pos = 0; map && pos < map->len; pos++) { if (map->queues[pos] != index) continue; return map; } /* Need to add tx-queue to this CPU's/rx-queue's existing map */ if (map) { if (pos < map->alloc_len) return map; alloc_len = map->alloc_len * 2; } /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's * map */ if (is_rxqs_map) new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); else new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, cpu_to_node(attr_index)); if (!new_map) return NULL; for (i = 0; i < pos; i++) new_map->queues[i] = map->queues[i]; new_map->alloc_len = alloc_len; new_map->len = pos; return new_map; } /* Copy xps maps at a given index */ static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, struct xps_dev_maps *new_dev_maps, int index, int tc, bool skip_tc) { int i, tci = index * dev_maps->num_tc; struct xps_map *map; /* copy maps belonging to foreign traffic classes */ for (i = 0; i < dev_maps->num_tc; i++, tci++) { if (i == tc && skip_tc) continue; /* fill in the new device map from the old device map */ map = xmap_dereference(dev_maps->attr_map[tci]); RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); } } /* Must be called under cpus_read_lock */ int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, u16 index, enum xps_map_type type) { struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; const unsigned long *online_mask = NULL; bool active = false, copy = false; int i, j, tci, numa_node_id = -2; int maps_sz, num_tc = 1, tc = 0; struct xps_map *map, *new_map; unsigned int nr_ids; WARN_ON_ONCE(index >= dev->num_tx_queues); if (dev->num_tc) { /* Do not allow XPS on subordinate device directly */ num_tc = dev->num_tc; if (num_tc < 0) return -EINVAL; /* If queue belongs to subordinate dev use its map */ dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; tc = netdev_txq_to_tc(dev, index); if (tc < 0) return -EINVAL; } mutex_lock(&xps_map_mutex); dev_maps = xmap_dereference(dev->xps_maps[type]); if (type == XPS_RXQS) { maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); nr_ids = dev->num_rx_queues; } else { maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); if (num_possible_cpus() > 1) online_mask = cpumask_bits(cpu_online_mask); nr_ids = nr_cpu_ids; } if (maps_sz < L1_CACHE_BYTES) maps_sz = L1_CACHE_BYTES; /* The old dev_maps could be larger or smaller than the one we're * setting up now, as dev->num_tc or nr_ids could have been updated in * between. We could try to be smart, but let's be safe instead and only * copy foreign traffic classes if the two map sizes match. */ if (dev_maps && dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) copy = true; /* allocate memory for queue storage */ for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), j < nr_ids;) { if (!new_dev_maps) { new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); if (!new_dev_maps) { mutex_unlock(&xps_map_mutex); return -ENOMEM; } new_dev_maps->nr_ids = nr_ids; new_dev_maps->num_tc = num_tc; } tci = j * num_tc + tc; map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; map = expand_xps_map(map, j, index, type == XPS_RXQS); if (!map) goto error; RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); } if (!new_dev_maps) goto out_no_new_maps; if (!dev_maps) { /* Increment static keys at most once per type */ static_key_slow_inc_cpuslocked(&xps_needed); if (type == XPS_RXQS) static_key_slow_inc_cpuslocked(&xps_rxqs_needed); } for (j = 0; j < nr_ids; j++) { bool skip_tc = false; tci = j * num_tc + tc; if (netif_attr_test_mask(j, mask, nr_ids) && netif_attr_test_online(j, online_mask, nr_ids)) { /* add tx-queue to CPU/rx-queue maps */ int pos = 0; skip_tc = true; map = xmap_dereference(new_dev_maps->attr_map[tci]); while ((pos < map->len) && (map->queues[pos] != index)) pos++; if (pos == map->len) map->queues[map->len++] = index; #ifdef CONFIG_NUMA if (type == XPS_CPUS) { if (numa_node_id == -2) numa_node_id = cpu_to_node(j); else if (numa_node_id != cpu_to_node(j)) numa_node_id = -1; } #endif } if (copy) xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, skip_tc); } rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); /* Cleanup old maps */ if (!dev_maps) goto out_no_old_maps; for (j = 0; j < dev_maps->nr_ids; j++) { for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { map = xmap_dereference(dev_maps->attr_map[tci]); if (!map) continue; if (copy) { new_map = xmap_dereference(new_dev_maps->attr_map[tci]); if (map == new_map) continue; } RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); kfree_rcu(map, rcu); } } old_dev_maps = dev_maps; out_no_old_maps: dev_maps = new_dev_maps; active = true; out_no_new_maps: if (type == XPS_CPUS) /* update Tx queue numa node */ netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), (numa_node_id >= 0) ? numa_node_id : NUMA_NO_NODE); if (!dev_maps) goto out_no_maps; /* removes tx-queue from unused CPUs/rx-queues */ for (j = 0; j < dev_maps->nr_ids; j++) { tci = j * dev_maps->num_tc; for (i = 0; i < dev_maps->num_tc; i++, tci++) { if (i == tc && netif_attr_test_mask(j, mask, dev_maps->nr_ids) && netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) continue; active |= remove_xps_queue(dev_maps, copy ? old_dev_maps : NULL, tci, index); } } if (old_dev_maps) kfree_rcu(old_dev_maps, rcu); /* free map if not active */ if (!active) reset_xps_maps(dev, dev_maps, type); out_no_maps: mutex_unlock(&xps_map_mutex); return 0; error: /* remove any maps that we added */ for (j = 0; j < nr_ids; j++) { for (i = num_tc, tci = j * num_tc; i--; tci++) { new_map = xmap_dereference(new_dev_maps->attr_map[tci]); map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; if (new_map && new_map != map) kfree(new_map); } } mutex_unlock(&xps_map_mutex); kfree(new_dev_maps); return -ENOMEM; } EXPORT_SYMBOL_GPL(__netif_set_xps_queue); int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, u16 index) { int ret; cpus_read_lock(); ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); cpus_read_unlock(); return ret; } EXPORT_SYMBOL(netif_set_xps_queue); #endif static void netdev_unbind_all_sb_channels(struct net_device *dev) { struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; /* Unbind any subordinate channels */ while (txq-- != &dev->_tx[0]) { if (txq->sb_dev) netdev_unbind_sb_channel(dev, txq->sb_dev); } } void netdev_reset_tc(struct net_device *dev) { #ifdef CONFIG_XPS netif_reset_xps_queues_gt(dev, 0); #endif netdev_unbind_all_sb_channels(dev); /* Reset TC configuration of device */ dev->num_tc = 0; memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); } EXPORT_SYMBOL(netdev_reset_tc); int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) { if (tc >= dev->num_tc) return -EINVAL; #ifdef CONFIG_XPS netif_reset_xps_queues(dev, offset, count); #endif dev->tc_to_txq[tc].count = count; dev->tc_to_txq[tc].offset = offset; return 0; } EXPORT_SYMBOL(netdev_set_tc_queue); int netdev_set_num_tc(struct net_device *dev, u8 num_tc) { if (num_tc > TC_MAX_QUEUE) return -EINVAL; #ifdef CONFIG_XPS netif_reset_xps_queues_gt(dev, 0); #endif netdev_unbind_all_sb_channels(dev); dev->num_tc = num_tc; return 0; } EXPORT_SYMBOL(netdev_set_num_tc); void netdev_unbind_sb_channel(struct net_device *dev, struct net_device *sb_dev) { struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; #ifdef CONFIG_XPS netif_reset_xps_queues_gt(sb_dev, 0); #endif memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); while (txq-- != &dev->_tx[0]) { if (txq->sb_dev == sb_dev) txq->sb_dev = NULL; } } EXPORT_SYMBOL(netdev_unbind_sb_channel); int netdev_bind_sb_channel_queue(struct net_device *dev, struct net_device *sb_dev, u8 tc, u16 count, u16 offset) { /* Make certain the sb_dev and dev are already configured */ if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) return -EINVAL; /* We cannot hand out queues we don't have */ if ((offset + count) > dev->real_num_tx_queues) return -EINVAL; /* Record the mapping */ sb_dev->tc_to_txq[tc].count = count; sb_dev->tc_to_txq[tc].offset = offset; /* Provide a way for Tx queue to find the tc_to_txq map or * XPS map for itself. */ while (count--) netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; return 0; } EXPORT_SYMBOL(netdev_bind_sb_channel_queue); int netdev_set_sb_channel(struct net_device *dev, u16 channel) { /* Do not use a multiqueue device to represent a subordinate channel */ if (netif_is_multiqueue(dev)) return -ENODEV; /* We allow channels 1 - 32767 to be used for subordinate channels. * Channel 0 is meant to be "native" mode and used only to represent * the main root device. We allow writing 0 to reset the device back * to normal mode after being used as a subordinate channel. */ if (channel > S16_MAX) return -EINVAL; dev->num_tc = -channel; return 0; } EXPORT_SYMBOL(netdev_set_sb_channel); /* * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. */ int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) { bool disabling; int rc; disabling = txq < dev->real_num_tx_queues; if (txq < 1 || txq > dev->num_tx_queues) return -EINVAL; if (dev->reg_state == NETREG_REGISTERED || dev->reg_state == NETREG_UNREGISTERING) { ASSERT_RTNL(); rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, txq); if (rc) return rc; if (dev->num_tc) netif_setup_tc(dev, txq); dev_qdisc_change_real_num_tx(dev, txq); dev->real_num_tx_queues = txq; if (disabling) { synchronize_net(); qdisc_reset_all_tx_gt(dev, txq); #ifdef CONFIG_XPS netif_reset_xps_queues_gt(dev, txq); #endif } } else { dev->real_num_tx_queues = txq; } return 0; } EXPORT_SYMBOL(netif_set_real_num_tx_queues); #ifdef CONFIG_SYSFS /** * netif_set_real_num_rx_queues - set actual number of RX queues used * @dev: Network device * @rxq: Actual number of RX queues * * This must be called either with the rtnl_lock held or before * registration of the net device. Returns 0 on success, or a * negative error code. If called before registration, it always * succeeds. */ int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) { int rc; if (rxq < 1 || rxq > dev->num_rx_queues) return -EINVAL; if (dev->reg_state == NETREG_REGISTERED) { ASSERT_RTNL(); rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, rxq); if (rc) return rc; } dev->real_num_rx_queues = rxq; return 0; } EXPORT_SYMBOL(netif_set_real_num_rx_queues); #endif /** * netif_set_real_num_queues - set actual number of RX and TX queues used * @dev: Network device * @txq: Actual number of TX queues * @rxq: Actual number of RX queues * * Set the real number of both TX and RX queues. * Does nothing if the number of queues is already correct. */ int netif_set_real_num_queues(struct net_device *dev, unsigned int txq, unsigned int rxq) { unsigned int old_rxq = dev->real_num_rx_queues; int err; if (txq < 1 || txq > dev->num_tx_queues || rxq < 1 || rxq > dev->num_rx_queues) return -EINVAL; /* Start from increases, so the error path only does decreases - * decreases can't fail. */ if (rxq > dev->real_num_rx_queues) { err = netif_set_real_num_rx_queues(dev, rxq); if (err) return err; } if (txq > dev->real_num_tx_queues) { err = netif_set_real_num_tx_queues(dev, txq); if (err) goto undo_rx; } if (rxq < dev->real_num_rx_queues) WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); if (txq < dev->real_num_tx_queues) WARN_ON(netif_set_real_num_tx_queues(dev, txq)); return 0; undo_rx: WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); return err; } EXPORT_SYMBOL(netif_set_real_num_queues); /** * netif_set_tso_max_size() - set the max size of TSO frames supported * @dev: netdev to update * @size: max skb->len of a TSO frame * * Set the limit on the size of TSO super-frames the device can handle. * Unless explicitly set the stack will assume the value of * %GSO_LEGACY_MAX_SIZE. */ void netif_set_tso_max_size(struct net_device *dev, unsigned int size) { dev->tso_max_size = min(GSO_MAX_SIZE, size); if (size < READ_ONCE(dev->gso_max_size)) netif_set_gso_max_size(dev, size); } EXPORT_SYMBOL(netif_set_tso_max_size); /** * netif_set_tso_max_segs() - set the max number of segs supported for TSO * @dev: netdev to update * @segs: max number of TCP segments * * Set the limit on the number of TCP segments the device can generate from * a single TSO super-frame. * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. */ void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) { dev->tso_max_segs = segs; if (segs < READ_ONCE(dev->gso_max_segs)) netif_set_gso_max_segs(dev, segs); } EXPORT_SYMBOL(netif_set_tso_max_segs); /** * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper * @to: netdev to update * @from: netdev from which to copy the limits */ void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) { netif_set_tso_max_size(to, from->tso_max_size); netif_set_tso_max_segs(to, from->tso_max_segs); } EXPORT_SYMBOL(netif_inherit_tso_max); /** * netif_get_num_default_rss_queues - default number of RSS queues * * Default value is the number of physical cores if there are only 1 or 2, or * divided by 2 if there are more. */ int netif_get_num_default_rss_queues(void) { cpumask_var_t cpus; int cpu, count = 0; if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) return 1; cpumask_copy(cpus, cpu_online_mask); for_each_cpu(cpu, cpus) { ++count; cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); } free_cpumask_var(cpus); return count > 2 ? DIV_ROUND_UP(count, 2) : count; } EXPORT_SYMBOL(netif_get_num_default_rss_queues); static void __netif_reschedule(struct Qdisc *q) { struct softnet_data *sd; unsigned long flags; local_irq_save(flags); sd = this_cpu_ptr(&softnet_data); q->next_sched = NULL; *sd->output_queue_tailp = q; sd->output_queue_tailp = &q->next_sched; raise_softirq_irqoff(NET_TX_SOFTIRQ); local_irq_restore(flags); } void __netif_schedule(struct Qdisc *q) { if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) __netif_reschedule(q); } EXPORT_SYMBOL(__netif_schedule); struct dev_kfree_skb_cb { enum skb_free_reason reason; }; static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) { return (struct dev_kfree_skb_cb *)skb->cb; } void netif_schedule_queue(struct netdev_queue *txq) { rcu_read_lock(); if (!netif_xmit_stopped(txq)) { struct Qdisc *q = rcu_dereference(txq->qdisc); __netif_schedule(q); } rcu_read_unlock(); } EXPORT_SYMBOL(netif_schedule_queue); void netif_tx_wake_queue(struct netdev_queue *dev_queue) { if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { struct Qdisc *q; rcu_read_lock(); q = rcu_dereference(dev_queue->qdisc); __netif_schedule(q); rcu_read_unlock(); } } EXPORT_SYMBOL(netif_tx_wake_queue); void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) { unsigned long flags; if (unlikely(!skb)) return; if (likely(refcount_read(&skb->users) == 1)) { smp_rmb(); refcount_set(&skb->users, 0); } else if (likely(!refcount_dec_and_test(&skb->users))) { return; } get_kfree_skb_cb(skb)->reason = reason; local_irq_save(flags); skb->next = __this_cpu_read(softnet_data.completion_queue); __this_cpu_write(softnet_data.completion_queue, skb); raise_softirq_irqoff(NET_TX_SOFTIRQ); local_irq_restore(flags); } EXPORT_SYMBOL(__dev_kfree_skb_irq); void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) { if (in_hardirq() || irqs_disabled()) __dev_kfree_skb_irq(skb, reason); else if (unlikely(reason == SKB_REASON_DROPPED)) kfree_skb(skb); else consume_skb(skb); } EXPORT_SYMBOL(__dev_kfree_skb_any); /** * netif_device_detach - mark device as removed * @dev: network device * * Mark device as removed from system and therefore no longer available. */ void netif_device_detach(struct net_device *dev) { if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && netif_running(dev)) { netif_tx_stop_all_queues(dev); } } EXPORT_SYMBOL(netif_device_detach); /** * netif_device_attach - mark device as attached * @dev: network device * * Mark device as attached from system and restart if needed. */ void netif_device_attach(struct net_device *dev) { if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && netif_running(dev)) { netif_tx_wake_all_queues(dev); __netdev_watchdog_up(dev); } } EXPORT_SYMBOL(netif_device_attach); /* * Returns a Tx hash based on the given packet descriptor a Tx queues' number * to be used as a distribution range. */ static u16 skb_tx_hash(const struct net_device *dev, const struct net_device *sb_dev, struct sk_buff *skb) { u32 hash; u16 qoffset = 0; u16 qcount = dev->real_num_tx_queues; if (dev->num_tc) { u8 tc = netdev_get_prio_tc_map(dev, skb->priority); qoffset = sb_dev->tc_to_txq[tc].offset; qcount = sb_dev->tc_to_txq[tc].count; if (unlikely(!qcount)) { net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", sb_dev->name, qoffset, tc); qoffset = 0; qcount = dev->real_num_tx_queues; } } if (skb_rx_queue_recorded(skb)) { DEBUG_NET_WARN_ON_ONCE(qcount == 0); hash = skb_get_rx_queue(skb); if (hash >= qoffset) hash -= qoffset; while (unlikely(hash >= qcount)) hash -= qcount; return hash + qoffset; } return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; } static void skb_warn_bad_offload(const struct sk_buff *skb) { static const netdev_features_t null_features; struct net_device *dev = skb->dev; const char *name = ""; if (!net_ratelimit()) return; if (dev) { if (dev->dev.parent) name = dev_driver_string(dev->dev.parent); else name = netdev_name(dev); } skb_dump(KERN_WARNING, skb, false); WARN(1, "%s: caps=(%pNF, %pNF)\n", name, dev ? &dev->features : &null_features, skb->sk ? &skb->sk->sk_route_caps : &null_features); } /* * Invalidate hardware checksum when packet is to be mangled, and * complete checksum manually on outgoing path. */ int skb_checksum_help(struct sk_buff *skb) { __wsum csum; int ret = 0, offset; if (skb->ip_summed == CHECKSUM_COMPLETE) goto out_set_summed; if (unlikely(skb_is_gso(skb))) { skb_warn_bad_offload(skb); return -EINVAL; } /* Before computing a checksum, we should make sure no frag could * be modified by an external entity : checksum could be wrong. */ if (skb_has_shared_frag(skb)) { ret = __skb_linearize(skb); if (ret) goto out; } offset = skb_checksum_start_offset(skb); ret = -EINVAL; if (unlikely(offset >= skb_headlen(skb))) { DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", offset, skb_headlen(skb)); goto out; } csum = skb_checksum(skb, offset, skb->len - offset, 0); offset += skb->csum_offset; if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", offset + sizeof(__sum16), skb_headlen(skb)); goto out; } ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); if (ret) goto out; *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; out_set_summed: skb->ip_summed = CHECKSUM_NONE; out: return ret; } EXPORT_SYMBOL(skb_checksum_help); int skb_crc32c_csum_help(struct sk_buff *skb) { __le32 crc32c_csum; int ret = 0, offset, start; if (skb->ip_summed != CHECKSUM_PARTIAL) goto out; if (unlikely(skb_is_gso(skb))) goto out; /* Before computing a checksum, we should make sure no frag could * be modified by an external entity : checksum could be wrong. */ if (unlikely(skb_has_shared_frag(skb))) { ret = __skb_linearize(skb); if (ret) goto out; } start = skb_checksum_start_offset(skb); offset = start + offsetof(struct sctphdr, checksum); if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { ret = -EINVAL; goto out; } ret = skb_ensure_writable(skb, offset + sizeof(__le32)); if (ret) goto out; crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, skb->len - start, ~(__u32)0, crc32c_csum_stub)); *(__le32 *)(skb->data + offset) = crc32c_csum; skb->ip_summed = CHECKSUM_NONE; skb->csum_not_inet = 0; out: return ret; } __be16 skb_network_protocol(struct sk_buff *skb, int *depth) { __be16 type = skb->protocol; /* Tunnel gso handlers can set protocol to ethernet. */ if (type == htons(ETH_P_TEB)) { struct ethhdr *eth; if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) return 0; eth = (struct ethhdr *)skb->data; type = eth->h_proto; } return vlan_get_protocol_and_depth(skb, type, depth); } /* openvswitch calls this on rx path, so we need a different check. */ static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) { if (tx_path) return skb->ip_summed != CHECKSUM_PARTIAL && skb->ip_summed != CHECKSUM_UNNECESSARY; return skb->ip_summed == CHECKSUM_NONE; } /** * __skb_gso_segment - Perform segmentation on skb. * @skb: buffer to segment * @features: features for the output path (see dev->features) * @tx_path: whether it is called in TX path * * This function segments the given skb and returns a list of segments. * * It may return NULL if the skb requires no segmentation. This is * only possible when GSO is used for verifying header integrity. * * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. */ struct sk_buff *__skb_gso_segment(struct sk_buff *skb, netdev_features_t features, bool tx_path) { struct sk_buff *segs; if (unlikely(skb_needs_check(skb, tx_path))) { int err; /* We're going to init ->check field in TCP or UDP header */ err = skb_cow_head(skb, 0); if (err < 0) return ERR_PTR(err); } /* Only report GSO partial support if it will enable us to * support segmentation on this frame without needing additional * work. */ if (features & NETIF_F_GSO_PARTIAL) { netdev_features_t partial_features = NETIF_F_GSO_ROBUST; struct net_device *dev = skb->dev; partial_features |= dev->features & dev->gso_partial_features; if (!skb_gso_ok(skb, features | partial_features)) features &= ~NETIF_F_GSO_PARTIAL; } BUILD_BUG_ON(SKB_GSO_CB_OFFSET + sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); SKB_GSO_CB(skb)->encap_level = 0; skb_reset_mac_header(skb); skb_reset_mac_len(skb); segs = skb_mac_gso_segment(skb, features); if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) skb_warn_bad_offload(skb); return segs; } EXPORT_SYMBOL(__skb_gso_segment); /* Take action when hardware reception checksum errors are detected. */ #ifdef CONFIG_BUG static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) { netdev_err(dev, "hw csum failure\n"); skb_dump(KERN_ERR, skb, true); dump_stack(); } void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) { DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); } EXPORT_SYMBOL(netdev_rx_csum_fault); #endif /* XXX: check that highmem exists at all on the given machine. */ static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) { #ifdef CONFIG_HIGHMEM int i; if (!(dev->features & NETIF_F_HIGHDMA)) { for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; if (PageHighMem(skb_frag_page(frag))) return 1; } } #endif return 0; } /* If MPLS offload request, verify we are testing hardware MPLS features * instead of standard features for the netdev. */ #if IS_ENABLED(CONFIG_NET_MPLS_GSO) static netdev_features_t net_mpls_features(struct sk_buff *skb, netdev_features_t features, __be16 type) { if (eth_p_mpls(type)) features &= skb->dev->mpls_features; return features; } #else static netdev_features_t net_mpls_features(struct sk_buff *skb, netdev_features_t features, __be16 type) { return features; } #endif static netdev_features_t harmonize_features(struct sk_buff *skb, netdev_features_t features) { __be16 type; type = skb_network_protocol(skb, NULL); features = net_mpls_features(skb, features, type); if (skb->ip_summed != CHECKSUM_NONE && !can_checksum_protocol(features, type)) { features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); } if (illegal_highdma(skb->dev, skb)) features &= ~NETIF_F_SG; return features; } netdev_features_t passthru_features_check(struct sk_buff *skb, struct net_device *dev, netdev_features_t features) { return features; } EXPORT_SYMBOL(passthru_features_check); static netdev_features_t dflt_features_check(struct sk_buff *skb, struct net_device *dev, netdev_features_t features) { return vlan_features_check(skb, features); } static netdev_features_t gso_features_check(const struct sk_buff *skb, struct net_device *dev, netdev_features_t features) { u16 gso_segs = skb_shinfo(skb)->gso_segs; if (gso_segs > READ_ONCE(dev->gso_max_segs)) return features & ~NETIF_F_GSO_MASK; if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size))) return features & ~NETIF_F_GSO_MASK; if (!skb_shinfo(skb)->gso_type) { skb_warn_bad_offload(skb); return features & ~NETIF_F_GSO_MASK; } /* Support for GSO partial features requires software * intervention before we can actually process the packets * so we need to strip support for any partial features now * and we can pull them back in after we have partially * segmented the frame. */ if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) features &= ~dev->gso_partial_features; /* Make sure to clear the IPv4 ID mangling feature if the * IPv4 header has the potential to be fragmented. */ if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { struct iphdr *iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); if (!(iph->frag_off & htons(IP_DF))) features &= ~NETIF_F_TSO_MANGLEID; } return features; } netdev_features_t netif_skb_features(struct sk_buff *skb) { struct net_device *dev = skb->dev; netdev_features_t features = dev->features; if (skb_is_gso(skb)) features = gso_features_check(skb, dev, features); /* If encapsulation offload request, verify we are testing * hardware encapsulation features instead of standard * features for the netdev */ if (skb->encapsulation) features &= dev->hw_enc_features; if (skb_vlan_tagged(skb)) features = netdev_intersect_features(features, dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_STAG_TX); if (dev->netdev_ops->ndo_features_check) features &= dev->netdev_ops->ndo_features_check(skb, dev, features); else features &= dflt_features_check(skb, dev, features); return harmonize_features(skb, features); } EXPORT_SYMBOL(netif_skb_features); static int xmit_one(struct sk_buff *skb, struct net_device *dev, struct netdev_queue *txq, bool more) { unsigned int len; int rc; if (dev_nit_active(dev)) dev_queue_xmit_nit(skb, dev); len = skb->len; trace_net_dev_start_xmit(skb, dev); rc = netdev_start_xmit(skb, dev, txq, more); trace_net_dev_xmit(skb, rc, dev, len); return rc; } struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, struct netdev_queue *txq, int *ret) { struct sk_buff *skb = first; int rc = NETDEV_TX_OK; while (skb) { struct sk_buff *next = skb->next; skb_mark_not_on_list(skb); rc = xmit_one(skb, dev, txq, next != NULL); if (unlikely(!dev_xmit_complete(rc))) { skb->next = next; goto out; } skb = next; if (netif_tx_queue_stopped(txq) && skb) { rc = NETDEV_TX_BUSY; break; } } out: *ret = rc; return skb; } static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, netdev_features_t features) { if (skb_vlan_tag_present(skb) && !vlan_hw_offload_capable(features, skb->vlan_proto)) skb = __vlan_hwaccel_push_inside(skb); return skb; } int skb_csum_hwoffload_help(struct sk_buff *skb, const netdev_features_t features) { if (unlikely(skb_csum_is_sctp(skb))) return !!(features & NETIF_F_SCTP_CRC) ? 0 : skb_crc32c_csum_help(skb); if (features & NETIF_F_HW_CSUM) return 0; if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && skb_network_header_len(skb) != sizeof(struct ipv6hdr) && !ipv6_has_hopopt_jumbo(skb)) goto sw_checksum; switch (skb->csum_offset) { case offsetof(struct tcphdr, check): case offsetof(struct udphdr, check): return 0; } } sw_checksum: return skb_checksum_help(skb); } EXPORT_SYMBOL(skb_csum_hwoffload_help); static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) { netdev_features_t features; features = netif_skb_features(skb); skb = validate_xmit_vlan(skb, features); if (unlikely(!skb)) goto out_null; skb = sk_validate_xmit_skb(skb, dev); if (unlikely(!skb)) goto out_null; if (netif_needs_gso(skb, features)) { struct sk_buff *segs; segs = skb_gso_segment(skb, features); if (IS_ERR(segs)) { goto out_kfree_skb; } else if (segs) { consume_skb(skb); skb = segs; } } else { if (skb_needs_linearize(skb, features) && __skb_linearize(skb)) goto out_kfree_skb; /* If packet is not checksummed and device does not * support checksumming for this protocol, complete * checksumming here. */ if (skb->ip_summed == CHECKSUM_PARTIAL) { if (skb->encapsulation) skb_set_inner_transport_header(skb, skb_checksum_start_offset(skb)); else skb_set_transport_header(skb, skb_checksum_start_offset(skb)); if (skb_csum_hwoffload_help(skb, features)) goto out_kfree_skb; } } skb = validate_xmit_xfrm(skb, features, again); return skb; out_kfree_skb: kfree_skb(skb); out_null: dev_core_stats_tx_dropped_inc(dev); return NULL; } struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) { struct sk_buff *next, *head = NULL, *tail; for (; skb != NULL; skb = next) { next = skb->next; skb_mark_not_on_list(skb); /* in case skb wont be segmented, point to itself */ skb->prev = skb; skb = validate_xmit_skb(skb, dev, again); if (!skb) continue; if (!head) head = skb; else tail->next = skb; /* If skb was segmented, skb->prev points to * the last segment. If not, it still contains skb. */ tail = skb->prev; } return head; } EXPORT_SYMBOL_GPL(validate_xmit_skb_list); static void qdisc_pkt_len_init(struct sk_buff *skb) { const struct skb_shared_info *shinfo = skb_shinfo(skb); qdisc_skb_cb(skb)->pkt_len = skb->len; /* To get more precise estimation of bytes sent on wire, * we add to pkt_len the headers size of all segments */ if (shinfo->gso_size && skb_transport_header_was_set(skb)) { unsigned int hdr_len; u16 gso_segs = shinfo->gso_segs; /* mac layer + network layer */ hdr_len = skb_transport_header(skb) - skb_mac_header(skb); /* + transport layer */ if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { const struct tcphdr *th; struct tcphdr _tcphdr; th = skb_header_pointer(skb, skb_transport_offset(skb), sizeof(_tcphdr), &_tcphdr); if (likely(th)) hdr_len += __tcp_hdrlen(th); } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { struct udphdr _udphdr; if (skb_header_pointer(skb, skb_transport_offset(skb), sizeof(_udphdr), &_udphdr)) hdr_len += sizeof(struct udphdr); } if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { int payload = skb->len - hdr_len; /* Malicious packet. */ if (payload <= 0) return; gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); } qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; } } static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, struct sk_buff **to_free, struct netdev_queue *txq) { int rc; rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; if (rc == NET_XMIT_SUCCESS) trace_qdisc_enqueue(q, txq, skb); return rc; } static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, struct net_device *dev, struct netdev_queue *txq) { spinlock_t *root_lock = qdisc_lock(q); struct sk_buff *to_free = NULL; bool contended; int rc; qdisc_calculate_pkt_len(skb, q); if (q->flags & TCQ_F_NOLOCK) { if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && qdisc_run_begin(q)) { /* Retest nolock_qdisc_is_empty() within the protection * of q->seqlock to protect from racing with requeuing. */ if (unlikely(!nolock_qdisc_is_empty(q))) { rc = dev_qdisc_enqueue(skb, q, &to_free, txq); __qdisc_run(q); qdisc_run_end(q); goto no_lock_out; } qdisc_bstats_cpu_update(q, skb); if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && !nolock_qdisc_is_empty(q)) __qdisc_run(q); qdisc_run_end(q); return NET_XMIT_SUCCESS; } rc = dev_qdisc_enqueue(skb, q, &to_free, txq); qdisc_run(q); no_lock_out: if (unlikely(to_free)) kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP); return rc; } /* * Heuristic to force contended enqueues to serialize on a * separate lock before trying to get qdisc main lock. * This permits qdisc->running owner to get the lock more * often and dequeue packets faster. * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit * and then other tasks will only enqueue packets. The packets will be * sent after the qdisc owner is scheduled again. To prevent this * scenario the task always serialize on the lock. */ contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); if (unlikely(contended)) spin_lock(&q->busylock); spin_lock(root_lock); if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { __qdisc_drop(skb, &to_free); rc = NET_XMIT_DROP; } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && qdisc_run_begin(q)) { /* * This is a work-conserving queue; there are no old skbs * waiting to be sent out; and the qdisc is not running - * xmit the skb directly. */ qdisc_bstats_update(q, skb); if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { if (unlikely(contended)) { spin_unlock(&q->busylock); contended = false; } __qdisc_run(q); } qdisc_run_end(q); rc = NET_XMIT_SUCCESS; } else { rc = dev_qdisc_enqueue(skb, q, &to_free, txq); if (qdisc_run_begin(q)) { if (unlikely(contended)) { spin_unlock(&q->busylock); contended = false; } __qdisc_run(q); qdisc_run_end(q); } } spin_unlock(root_lock); if (unlikely(to_free)) kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP); if (unlikely(contended)) spin_unlock(&q->busylock); return rc; } #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) static void skb_update_prio(struct sk_buff *skb) { const struct netprio_map *map; const struct sock *sk; unsigned int prioidx; if (skb->priority) return; map = rcu_dereference_bh(skb->dev->priomap); if (!map) return; sk = skb_to_full_sk(skb); if (!sk) return; prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); if (prioidx < map->priomap_len) skb->priority = map->priomap[prioidx]; } #else #define skb_update_prio(skb) #endif /** * dev_loopback_xmit - loop back @skb * @net: network namespace this loopback is happening in * @sk: sk needed to be a netfilter okfn * @skb: buffer to transmit */ int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) { skb_reset_mac_header(skb); __skb_pull(skb, skb_network_offset(skb)); skb->pkt_type = PACKET_LOOPBACK; if (skb->ip_summed == CHECKSUM_NONE) skb->ip_summed = CHECKSUM_UNNECESSARY; DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); skb_dst_force(skb); netif_rx(skb); return 0; } EXPORT_SYMBOL(dev_loopback_xmit); #ifdef CONFIG_NET_EGRESS static struct sk_buff * sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) { #ifdef CONFIG_NET_CLS_ACT struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); struct tcf_result cl_res; if (!miniq) return skb; /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ tc_skb_cb(skb)->mru = 0; tc_skb_cb(skb)->post_ct = false; mini_qdisc_bstats_cpu_update(miniq, skb); switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) { case TC_ACT_OK: case TC_ACT_RECLASSIFY: skb->tc_index = TC_H_MIN(cl_res.classid); break; case TC_ACT_SHOT: mini_qdisc_qstats_cpu_drop(miniq); *ret = NET_XMIT_DROP; kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS); return NULL; case TC_ACT_STOLEN: case TC_ACT_QUEUED: case TC_ACT_TRAP: *ret = NET_XMIT_SUCCESS; consume_skb(skb); return NULL; case TC_ACT_REDIRECT: /* No need to push/pop skb's mac_header here on egress! */ skb_do_redirect(skb); *ret = NET_XMIT_SUCCESS; return NULL; default: break; } #endif /* CONFIG_NET_CLS_ACT */ return skb; } static struct netdev_queue * netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) { int qm = skb_get_queue_mapping(skb); return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); } static bool netdev_xmit_txqueue_skipped(void) { return __this_cpu_read(softnet_data.xmit.skip_txqueue); } void netdev_xmit_skip_txqueue(bool skip) { __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); } EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); #endif /* CONFIG_NET_EGRESS */ #ifdef CONFIG_XPS static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, struct xps_dev_maps *dev_maps, unsigned int tci) { int tc = netdev_get_prio_tc_map(dev, skb->priority); struct xps_map *map; int queue_index = -1; if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) return queue_index; tci *= dev_maps->num_tc; tci += tc; map = rcu_dereference(dev_maps->attr_map[tci]); if (map) { if (map->len == 1) queue_index = map->queues[0]; else queue_index = map->queues[reciprocal_scale( skb_get_hash(skb), map->len)]; if (unlikely(queue_index >= dev->real_num_tx_queues)) queue_index = -1; } return queue_index; } #endif static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, struct sk_buff *skb) { #ifdef CONFIG_XPS struct xps_dev_maps *dev_maps; struct sock *sk = skb->sk; int queue_index = -1; if (!static_key_false(&xps_needed)) return -1; rcu_read_lock(); if (!static_key_false(&xps_rxqs_needed)) goto get_cpus_map; dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); if (dev_maps) { int tci = sk_rx_queue_get(sk); if (tci >= 0) queue_index = __get_xps_queue_idx(dev, skb, dev_maps, tci); } get_cpus_map: if (queue_index < 0) { dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); if (dev_maps) { unsigned int tci = skb->sender_cpu - 1; queue_index = __get_xps_queue_idx(dev, skb, dev_maps, tci); } } rcu_read_unlock(); return queue_index; #else return -1; #endif } u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev) { return 0; } EXPORT_SYMBOL(dev_pick_tx_zero); u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev) { return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; } EXPORT_SYMBOL(dev_pick_tx_cpu_id); u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev) { struct sock *sk = skb->sk; int queue_index = sk_tx_queue_get(sk); sb_dev = sb_dev ? : dev; if (queue_index < 0 || skb->ooo_okay || queue_index >= dev->real_num_tx_queues) { int new_index = get_xps_queue(dev, sb_dev, skb); if (new_index < 0) new_index = skb_tx_hash(dev, sb_dev, skb); if (queue_index != new_index && sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) sk_tx_queue_set(sk, new_index); queue_index = new_index; } return queue_index; } EXPORT_SYMBOL(netdev_pick_tx); struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev) { int queue_index = 0; #ifdef CONFIG_XPS u32 sender_cpu = skb->sender_cpu - 1; if (sender_cpu >= (u32)NR_CPUS) skb->sender_cpu = raw_smp_processor_id() + 1; #endif if (dev->real_num_tx_queues != 1) { const struct net_device_ops *ops = dev->netdev_ops; if (ops->ndo_select_queue) queue_index = ops->ndo_select_queue(dev, skb, sb_dev); else queue_index = netdev_pick_tx(dev, skb, sb_dev); queue_index = netdev_cap_txqueue(dev, queue_index); } skb_set_queue_mapping(skb, queue_index); return netdev_get_tx_queue(dev, queue_index); } /** * __dev_queue_xmit() - transmit a buffer * @skb: buffer to transmit * @sb_dev: suboordinate device used for L2 forwarding offload * * Queue a buffer for transmission to a network device. The caller must * have set the device and priority and built the buffer before calling * this function. The function can be called from an interrupt. * * When calling this method, interrupts MUST be enabled. This is because * the BH enable code must have IRQs enabled so that it will not deadlock. * * Regardless of the return value, the skb is consumed, so it is currently * difficult to retry a send to this method. (You can bump the ref count * before sending to hold a reference for retry if you are careful.) * * Return: * * 0 - buffer successfully transmitted * * positive qdisc return code - NET_XMIT_DROP etc. * * negative errno - other errors */ int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) { struct net_device *dev = skb->dev; struct netdev_queue *txq = NULL; struct Qdisc *q; int rc = -ENOMEM; bool again = false; skb_reset_mac_header(skb); skb_assert_len(skb); if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); /* Disable soft irqs for various locks below. Also * stops preemption for RCU. */ rcu_read_lock_bh(); skb_update_prio(skb); qdisc_pkt_len_init(skb); #ifdef CONFIG_NET_CLS_ACT skb->tc_at_ingress = 0; #endif #ifdef CONFIG_NET_EGRESS if (static_branch_unlikely(&egress_needed_key)) { if (nf_hook_egress_active()) { skb = nf_hook_egress(skb, &rc, dev); if (!skb) goto out; } netdev_xmit_skip_txqueue(false); nf_skip_egress(skb, true); skb = sch_handle_egress(skb, &rc, dev); if (!skb) goto out; nf_skip_egress(skb, false); if (netdev_xmit_txqueue_skipped()) txq = netdev_tx_queue_mapping(dev, skb); } #endif /* If device/qdisc don't need skb->dst, release it right now while * its hot in this cpu cache. */ if (dev->priv_flags & IFF_XMIT_DST_RELEASE) skb_dst_drop(skb); else skb_dst_force(skb); if (!txq) txq = netdev_core_pick_tx(dev, skb, sb_dev); q = rcu_dereference_bh(txq->qdisc); trace_net_dev_queue(skb); if (q->enqueue) { rc = __dev_xmit_skb(skb, q, dev, txq); goto out; } /* The device has no queue. Common case for software devices: * loopback, all the sorts of tunnels... * Really, it is unlikely that netif_tx_lock protection is necessary * here. (f.e. loopback and IP tunnels are clean ignoring statistics * counters.) * However, it is possible, that they rely on protection * made by us here. * Check this and shot the lock. It is not prone from deadlocks. *Either shot noqueue qdisc, it is even simpler 8) */ if (dev->flags & IFF_UP) { int cpu = smp_processor_id(); /* ok because BHs are off */ /* Other cpus might concurrently change txq->xmit_lock_owner * to -1 or to their cpu id, but not to our id. */ if (READ_ONCE(txq->xmit_lock_owner) != cpu) { if (dev_xmit_recursion()) goto recursion_alert; skb = validate_xmit_skb(skb, dev, &again); if (!skb) goto out; HARD_TX_LOCK(dev, txq, cpu); if (!netif_xmit_stopped(txq)) { dev_xmit_recursion_inc(); skb = dev_hard_start_xmit(skb, dev, txq, &rc); dev_xmit_recursion_dec(); if (dev_xmit_complete(rc)) { HARD_TX_UNLOCK(dev, txq); goto out; } } HARD_TX_UNLOCK(dev, txq); net_crit_ratelimited("Virtual device %s asks to queue packet!\n", dev->name); } else { /* Recursion is detected! It is possible, * unfortunately */ recursion_alert: net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", dev->name); } } rc = -ENETDOWN; rcu_read_unlock_bh(); dev_core_stats_tx_dropped_inc(dev); kfree_skb_list(skb); return rc; out: rcu_read_unlock_bh(); return rc; } EXPORT_SYMBOL(__dev_queue_xmit); int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) { struct net_device *dev = skb->dev; struct sk_buff *orig_skb = skb; struct netdev_queue *txq; int ret = NETDEV_TX_BUSY; bool again = false; if (unlikely(!netif_running(dev) || !netif_carrier_ok(dev))) goto drop; skb = validate_xmit_skb_list(skb, dev, &again); if (skb != orig_skb) goto drop; skb_set_queue_mapping(skb, queue_id); txq = skb_get_tx_queue(dev, skb); local_bh_disable(); dev_xmit_recursion_inc(); HARD_TX_LOCK(dev, txq, smp_processor_id()); if (!netif_xmit_frozen_or_drv_stopped(txq)) ret = netdev_start_xmit(skb, dev, txq, false); HARD_TX_UNLOCK(dev, txq); dev_xmit_recursion_dec(); local_bh_enable(); return ret; drop: dev_core_stats_tx_dropped_inc(dev); kfree_skb_list(skb); return NET_XMIT_DROP; } EXPORT_SYMBOL(__dev_direct_xmit); /************************************************************************* * Receiver routines *************************************************************************/ int netdev_max_backlog __read_mostly = 1000; EXPORT_SYMBOL(netdev_max_backlog); int netdev_tstamp_prequeue __read_mostly = 1; unsigned int sysctl_skb_defer_max __read_mostly = 64; int netdev_budget __read_mostly = 300; /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; int weight_p __read_mostly = 64; /* old backlog weight */ int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ int dev_rx_weight __read_mostly = 64; int dev_tx_weight __read_mostly = 64; /* Called with irq disabled */ static inline void ____napi_schedule(struct softnet_data *sd, struct napi_struct *napi) { struct task_struct *thread; lockdep_assert_irqs_disabled(); if (test_bit(NAPI_STATE_THREADED, &napi->state)) { /* Paired with smp_mb__before_atomic() in * napi_enable()/dev_set_threaded(). * Use READ_ONCE() to guarantee a complete * read on napi->thread. Only call * wake_up_process() when it's not NULL. */ thread = READ_ONCE(napi->thread); if (thread) { /* Avoid doing set_bit() if the thread is in * INTERRUPTIBLE state, cause napi_thread_wait() * makes sure to proceed with napi polling * if the thread is explicitly woken from here. */ if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE) set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); wake_up_process(thread); return; } } list_add_tail(&napi->poll_list, &sd->poll_list); __raise_softirq_irqoff(NET_RX_SOFTIRQ); } #ifdef CONFIG_RPS /* One global table that all flow-based protocols share. */ struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; EXPORT_SYMBOL(rps_sock_flow_table); u32 rps_cpu_mask __read_mostly; EXPORT_SYMBOL(rps_cpu_mask); struct static_key_false rps_needed __read_mostly; EXPORT_SYMBOL(rps_needed); struct static_key_false rfs_needed __read_mostly; EXPORT_SYMBOL(rfs_needed); static struct rps_dev_flow * set_rps_cpu(struct net_device *dev, struct sk_buff *skb, struct rps_dev_flow *rflow, u16 next_cpu) { if (next_cpu < nr_cpu_ids) { #ifdef CONFIG_RFS_ACCEL struct netdev_rx_queue *rxqueue; struct rps_dev_flow_table *flow_table; struct rps_dev_flow *old_rflow; u32 flow_id; u16 rxq_index; int rc; /* Should we steer this flow to a different hardware queue? */ if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || !(dev->features & NETIF_F_NTUPLE)) goto out; rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); if (rxq_index == skb_get_rx_queue(skb)) goto out; rxqueue = dev->_rx + rxq_index; flow_table = rcu_dereference(rxqueue->rps_flow_table); if (!flow_table) goto out; flow_id = skb_get_hash(skb) & flow_table->mask; rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, rxq_index, flow_id); if (rc < 0) goto out; old_rflow = rflow; rflow = &flow_table->flows[flow_id]; rflow->filter = rc; if (old_rflow->filter == rflow->filter) old_rflow->filter = RPS_NO_FILTER; out: #endif rflow->last_qtail = per_cpu(softnet_data, next_cpu).input_queue_head; } rflow->cpu = next_cpu; return rflow; } /* * get_rps_cpu is called from netif_receive_skb and returns the target * CPU from the RPS map of the receiving queue for a given skb. * rcu_read_lock must be held on entry. */ static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, struct rps_dev_flow **rflowp) { const struct rps_sock_flow_table *sock_flow_table; struct netdev_rx_queue *rxqueue = dev->_rx; struct rps_dev_flow_table *flow_table; struct rps_map *map; int cpu = -1; u32 tcpu; u32 hash; if (skb_rx_queue_recorded(skb)) { u16 index = skb_get_rx_queue(skb); if (unlikely(index >= dev->real_num_rx_queues)) { WARN_ONCE(dev->real_num_rx_queues > 1, "%s received packet on queue %u, but number " "of RX queues is %u\n", dev->name, index, dev->real_num_rx_queues); goto done; } rxqueue += index; } /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ flow_table = rcu_dereference(rxqueue->rps_flow_table); map = rcu_dereference(rxqueue->rps_map); if (!flow_table && !map) goto done; skb_reset_network_header(skb); hash = skb_get_hash(skb); if (!hash) goto done; sock_flow_table = rcu_dereference(rps_sock_flow_table); if (flow_table && sock_flow_table) { struct rps_dev_flow *rflow; u32 next_cpu; u32 ident; /* First check into global flow table if there is a match. * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). */ ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); if ((ident ^ hash) & ~rps_cpu_mask) goto try_rps; next_cpu = ident & rps_cpu_mask; /* OK, now we know there is a match, * we can look at the local (per receive queue) flow table */ rflow = &flow_table->flows[hash & flow_table->mask]; tcpu = rflow->cpu; /* * If the desired CPU (where last recvmsg was done) is * different from current CPU (one in the rx-queue flow * table entry), switch if one of the following holds: * - Current CPU is unset (>= nr_cpu_ids). * - Current CPU is offline. * - The current CPU's queue tail has advanced beyond the * last packet that was enqueued using this table entry. * This guarantees that all previous packets for the flow * have been dequeued, thus preserving in order delivery. */ if (unlikely(tcpu != next_cpu) && (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || ((int)(per_cpu(softnet_data, tcpu).input_queue_head - rflow->last_qtail)) >= 0)) { tcpu = next_cpu; rflow = set_rps_cpu(dev, skb, rflow, next_cpu); } if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { *rflowp = rflow; cpu = tcpu; goto done; } } try_rps: if (map) { tcpu = map->cpus[reciprocal_scale(hash, map->len)]; if (cpu_online(tcpu)) { cpu = tcpu; goto done; } } done: return cpu; } #ifdef CONFIG_RFS_ACCEL /** * rps_may_expire_flow - check whether an RFS hardware filter may be removed * @dev: Device on which the filter was set * @rxq_index: RX queue index * @flow_id: Flow ID passed to ndo_rx_flow_steer() * @filter_id: Filter ID returned by ndo_rx_flow_steer() * * Drivers that implement ndo_rx_flow_steer() should periodically call * this function for each installed filter and remove the filters for * which it returns %true. */ bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, u16 filter_id) { struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; struct rps_dev_flow_table *flow_table; struct rps_dev_flow *rflow; bool expire = true; unsigned int cpu; rcu_read_lock(); flow_table = rcu_dereference(rxqueue->rps_flow_table); if (flow_table && flow_id <= flow_table->mask) { rflow = &flow_table->flows[flow_id]; cpu = READ_ONCE(rflow->cpu); if (rflow->filter == filter_id && cpu < nr_cpu_ids && ((int)(per_cpu(softnet_data, cpu).input_queue_head - rflow->last_qtail) < (int)(10 * flow_table->mask))) expire = false; } rcu_read_unlock(); return expire; } EXPORT_SYMBOL(rps_may_expire_flow); #endif /* CONFIG_RFS_ACCEL */ /* Called from hardirq (IPI) context */ static void rps_trigger_softirq(void *data) { struct softnet_data *sd = data; ____napi_schedule(sd, &sd->backlog); sd->received_rps++; } #endif /* CONFIG_RPS */ /* Called from hardirq (IPI) context */ static void trigger_rx_softirq(void *data) { struct softnet_data *sd = data; __raise_softirq_irqoff(NET_RX_SOFTIRQ); smp_store_release(&sd->defer_ipi_scheduled, 0); } /* * Check if this softnet_data structure is another cpu one * If yes, queue it to our IPI list and return 1 * If no, return 0 */ static int napi_schedule_rps(struct softnet_data *sd) { struct softnet_data *mysd = this_cpu_ptr(&softnet_data); #ifdef CONFIG_RPS if (sd != mysd) { sd->rps_ipi_next = mysd->rps_ipi_list; mysd->rps_ipi_list = sd; __raise_softirq_irqoff(NET_RX_SOFTIRQ); return 1; } #endif /* CONFIG_RPS */ __napi_schedule_irqoff(&mysd->backlog); return 0; } #ifdef CONFIG_NET_FLOW_LIMIT int netdev_flow_limit_table_len __read_mostly = (1 << 12); #endif static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) { #ifdef CONFIG_NET_FLOW_LIMIT struct sd_flow_limit *fl; struct softnet_data *sd; unsigned int old_flow, new_flow; if (qlen < (READ_ONCE(netdev_max_backlog) >> 1)) return false; sd = this_cpu_ptr(&softnet_data); rcu_read_lock(); fl = rcu_dereference(sd->flow_limit); if (fl) { new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); old_flow = fl->history[fl->history_head]; fl->history[fl->history_head] = new_flow; fl->history_head++; fl->history_head &= FLOW_LIMIT_HISTORY - 1; if (likely(fl->buckets[old_flow])) fl->buckets[old_flow]--; if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { fl->count++; rcu_read_unlock(); return true; } } rcu_read_unlock(); #endif return false; } /* * enqueue_to_backlog is called to queue an skb to a per CPU backlog * queue (may be a remote CPU queue). */ static int enqueue_to_backlog(struct sk_buff *skb, int cpu, unsigned int *qtail) { enum skb_drop_reason reason; struct softnet_data *sd; unsigned long flags; unsigned int qlen; reason = SKB_DROP_REASON_NOT_SPECIFIED; sd = &per_cpu(softnet_data, cpu); rps_lock_irqsave(sd, &flags); if (!netif_running(skb->dev)) goto drop; qlen = skb_queue_len(&sd->input_pkt_queue); if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) { if (qlen) { enqueue: __skb_queue_tail(&sd->input_pkt_queue, skb); input_queue_tail_incr_save(sd, qtail); rps_unlock_irq_restore(sd, &flags); return NET_RX_SUCCESS; } /* Schedule NAPI for backlog device * We can use non atomic operation since we own the queue lock */ if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) napi_schedule_rps(sd); goto enqueue; } reason = SKB_DROP_REASON_CPU_BACKLOG; drop: sd->dropped++; rps_unlock_irq_restore(sd, &flags); dev_core_stats_rx_dropped_inc(skb->dev); kfree_skb_reason(skb, reason); return NET_RX_DROP; } static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) { struct net_device *dev = skb->dev; struct netdev_rx_queue *rxqueue; rxqueue = dev->_rx; if (skb_rx_queue_recorded(skb)) { u16 index = skb_get_rx_queue(skb); if (unlikely(index >= dev->real_num_rx_queues)) { WARN_ONCE(dev->real_num_rx_queues > 1, "%s received packet on queue %u, but number " "of RX queues is %u\n", dev->name, index, dev->real_num_rx_queues); return rxqueue; /* Return first rxqueue */ } rxqueue += index; } return rxqueue; } u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, struct bpf_prog *xdp_prog) { void *orig_data, *orig_data_end, *hard_start; struct netdev_rx_queue *rxqueue; bool orig_bcast, orig_host; u32 mac_len, frame_sz; __be16 orig_eth_type; struct ethhdr *eth; u32 metalen, act; int off; /* The XDP program wants to see the packet starting at the MAC * header. */ mac_len = skb->data - skb_mac_header(skb); hard_start = skb->data - skb_headroom(skb); /* SKB "head" area always have tailroom for skb_shared_info */ frame_sz = (void *)skb_end_pointer(skb) - hard_start; frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); rxqueue = netif_get_rxqueue(skb); xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, skb_headlen(skb) + mac_len, true); orig_data_end = xdp->data_end; orig_data = xdp->data; eth = (struct ethhdr *)xdp->data; orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); orig_eth_type = eth->h_proto; act = bpf_prog_run_xdp(xdp_prog, xdp); /* check if bpf_xdp_adjust_head was used */ off = xdp->data - orig_data; if (off) { if (off > 0) __skb_pull(skb, off); else if (off < 0) __skb_push(skb, -off); skb->mac_header += off; skb_reset_network_header(skb); } /* check if bpf_xdp_adjust_tail was used */ off = xdp->data_end - orig_data_end; if (off != 0) { skb_set_tail_pointer(skb, xdp->data_end - xdp->data); skb->len += off; /* positive on grow, negative on shrink */ } /* check if XDP changed eth hdr such SKB needs update */ eth = (struct ethhdr *)xdp->data; if ((orig_eth_type != eth->h_proto) || (orig_host != ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr)) || (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { __skb_push(skb, ETH_HLEN); skb->pkt_type = PACKET_HOST; skb->protocol = eth_type_trans(skb, skb->dev); } /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull * before calling us again on redirect path. We do not call do_redirect * as we leave that up to the caller. * * Caller is responsible for managing lifetime of skb (i.e. calling * kfree_skb in response to actions it cannot handle/XDP_DROP). */ switch (act) { case XDP_REDIRECT: case XDP_TX: __skb_push(skb, mac_len); break; case XDP_PASS: metalen = xdp->data - xdp->data_meta; if (metalen) skb_metadata_set(skb, metalen); break; } return act; } static u32 netif_receive_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, struct bpf_prog *xdp_prog) { u32 act = XDP_DROP; /* Reinjected packets coming from act_mirred or similar should * not get XDP generic processing. */ if (skb_is_redirected(skb)) return XDP_PASS; /* XDP packets must be linear and must have sufficient headroom * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also * native XDP provides, thus we need to do it here as well. */ if (skb_cloned(skb) || skb_is_nonlinear(skb) || skb_headroom(skb) < XDP_PACKET_HEADROOM) { int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); int troom = skb->tail + skb->data_len - skb->end; /* In case we have to go down the path and also linearize, * then lets do the pskb_expand_head() work just once here. */ if (pskb_expand_head(skb, hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) goto do_drop; if (skb_linearize(skb)) goto do_drop; } act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog); switch (act) { case XDP_REDIRECT: case XDP_TX: case XDP_PASS: break; default: bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act); fallthrough; case XDP_ABORTED: trace_xdp_exception(skb->dev, xdp_prog, act); fallthrough; case XDP_DROP: do_drop: kfree_skb(skb); break; } return act; } /* When doing generic XDP we have to bypass the qdisc layer and the * network taps in order to match in-driver-XDP behavior. This also means * that XDP packets are able to starve other packets going through a qdisc, * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX * queues, so they do not have this starvation issue. */ void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) { struct net_device *dev = skb->dev; struct netdev_queue *txq; bool free_skb = true; int cpu, rc; txq = netdev_core_pick_tx(dev, skb, NULL); cpu = smp_processor_id(); HARD_TX_LOCK(dev, txq, cpu); if (!netif_xmit_frozen_or_drv_stopped(txq)) { rc = netdev_start_xmit(skb, dev, txq, 0); if (dev_xmit_complete(rc)) free_skb = false; } HARD_TX_UNLOCK(dev, txq); if (free_skb) { trace_xdp_exception(dev, xdp_prog, XDP_TX); dev_core_stats_tx_dropped_inc(dev); kfree_skb(skb); } } static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) { if (xdp_prog) { struct xdp_buff xdp; u32 act; int err; act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); if (act != XDP_PASS) { switch (act) { case XDP_REDIRECT: err = xdp_do_generic_redirect(skb->dev, skb, &xdp, xdp_prog); if (err) goto out_redir; break; case XDP_TX: generic_xdp_tx(skb, xdp_prog); break; } return XDP_DROP; } } return XDP_PASS; out_redir: kfree_skb_reason(skb, SKB_DROP_REASON_XDP); return XDP_DROP; } EXPORT_SYMBOL_GPL(do_xdp_generic); static int netif_rx_internal(struct sk_buff *skb) { int ret; net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); trace_netif_rx(skb); #ifdef CONFIG_RPS if (static_branch_unlikely(&rps_needed)) { struct rps_dev_flow voidflow, *rflow = &voidflow; int cpu; rcu_read_lock(); cpu = get_rps_cpu(skb->dev, skb, &rflow); if (cpu < 0) cpu = smp_processor_id(); ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); rcu_read_unlock(); } else #endif { unsigned int qtail; ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); } return ret; } /** * __netif_rx - Slightly optimized version of netif_rx * @skb: buffer to post * * This behaves as netif_rx except that it does not disable bottom halves. * As a result this function may only be invoked from the interrupt context * (either hard or soft interrupt). */ int __netif_rx(struct sk_buff *skb) { int ret; lockdep_assert_once(hardirq_count() | softirq_count()); trace_netif_rx_entry(skb); ret = netif_rx_internal(skb); trace_netif_rx_exit(ret); return ret; } EXPORT_SYMBOL(__netif_rx); /** * netif_rx - post buffer to the network code * @skb: buffer to post * * This function receives a packet from a device driver and queues it for * the upper (protocol) levels to process via the backlog NAPI device. It * always succeeds. The buffer may be dropped during processing for * congestion control or by the protocol layers. * The network buffer is passed via the backlog NAPI device. Modern NIC * driver should use NAPI and GRO. * This function can used from interrupt and from process context. The * caller from process context must not disable interrupts before invoking * this function. * * return values: * NET_RX_SUCCESS (no congestion) * NET_RX_DROP (packet was dropped) * */ int netif_rx(struct sk_buff *skb) { bool need_bh_off = !(hardirq_count() | softirq_count()); int ret; if (need_bh_off) local_bh_disable(); trace_netif_rx_entry(skb); ret = netif_rx_internal(skb); trace_netif_rx_exit(ret); if (need_bh_off) local_bh_enable(); return ret; } EXPORT_SYMBOL(netif_rx); static __latent_entropy void net_tx_action(struct softirq_action *h) { struct softnet_data *sd = this_cpu_ptr(&softnet_data); if (sd->completion_queue) { struct sk_buff *clist; local_irq_disable(); clist = sd->completion_queue; sd->completion_queue = NULL; local_irq_enable(); while (clist) { struct sk_buff *skb = clist; clist = clist->next; WARN_ON(refcount_read(&skb->users)); if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) trace_consume_skb(skb); else trace_kfree_skb(skb, net_tx_action, SKB_DROP_REASON_NOT_SPECIFIED); if (skb->fclone != SKB_FCLONE_UNAVAILABLE) __kfree_skb(skb); else __kfree_skb_defer(skb); } } if (sd->output_queue) { struct Qdisc *head; local_irq_disable(); head = sd->output_queue; sd->output_queue = NULL; sd->output_queue_tailp = &sd->output_queue; local_irq_enable(); rcu_read_lock(); while (head) { struct Qdisc *q = head; spinlock_t *root_lock = NULL; head = head->next_sched; /* We need to make sure head->next_sched is read * before clearing __QDISC_STATE_SCHED */ smp_mb__before_atomic(); if (!(q->flags & TCQ_F_NOLOCK)) { root_lock = qdisc_lock(q); spin_lock(root_lock); } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { /* There is a synchronize_net() between * STATE_DEACTIVATED flag being set and * qdisc_reset()/some_qdisc_is_busy() in * dev_deactivate(), so we can safely bail out * early here to avoid data race between * qdisc_deactivate() and some_qdisc_is_busy() * for lockless qdisc. */ clear_bit(__QDISC_STATE_SCHED, &q->state); continue; } clear_bit(__QDISC_STATE_SCHED, &q->state); qdisc_run(q); if (root_lock) spin_unlock(root_lock); } rcu_read_unlock(); } xfrm_dev_backlog(sd); } #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) /* This hook is defined here for ATM LANE */ int (*br_fdb_test_addr_hook)(struct net_device *dev, unsigned char *addr) __read_mostly; EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); #endif static inline struct sk_buff * sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, struct net_device *orig_dev, bool *another) { #ifdef CONFIG_NET_CLS_ACT struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); struct tcf_result cl_res; /* If there's at least one ingress present somewhere (so * we get here via enabled static key), remaining devices * that are not configured with an ingress qdisc will bail * out here. */ if (!miniq) return skb; if (*pt_prev) { *ret = deliver_skb(skb, *pt_prev, orig_dev); *pt_prev = NULL; } qdisc_skb_cb(skb)->pkt_len = skb->len; tc_skb_cb(skb)->mru = 0; tc_skb_cb(skb)->post_ct = false; skb->tc_at_ingress = 1; mini_qdisc_bstats_cpu_update(miniq, skb); switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) { case TC_ACT_OK: case TC_ACT_RECLASSIFY: skb->tc_index = TC_H_MIN(cl_res.classid); break; case TC_ACT_SHOT: mini_qdisc_qstats_cpu_drop(miniq); kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS); *ret = NET_RX_DROP; return NULL; case TC_ACT_STOLEN: case TC_ACT_QUEUED: case TC_ACT_TRAP: consume_skb(skb); *ret = NET_RX_SUCCESS; return NULL; case TC_ACT_REDIRECT: /* skb_mac_header check was done by cls/act_bpf, so * we can safely push the L2 header back before * redirecting to another netdev */ __skb_push(skb, skb->mac_len); if (skb_do_redirect(skb) == -EAGAIN) { __skb_pull(skb, skb->mac_len); *another = true; break; } *ret = NET_RX_SUCCESS; return NULL; case TC_ACT_CONSUMED: *ret = NET_RX_SUCCESS; return NULL; default: break; } #endif /* CONFIG_NET_CLS_ACT */ return skb; } /** * netdev_is_rx_handler_busy - check if receive handler is registered * @dev: device to check * * Check if a receive handler is already registered for a given device. * Return true if there one. * * The caller must hold the rtnl_mutex. */ bool netdev_is_rx_handler_busy(struct net_device *dev) { ASSERT_RTNL(); return dev && rtnl_dereference(dev->rx_handler); } EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); /** * netdev_rx_handler_register - register receive handler * @dev: device to register a handler for * @rx_handler: receive handler to register * @rx_handler_data: data pointer that is used by rx handler * * Register a receive handler for a device. This handler will then be * called from __netif_receive_skb. A negative errno code is returned * on a failure. * * The caller must hold the rtnl_mutex. * * For a general description of rx_handler, see enum rx_handler_result. */ int netdev_rx_handler_register(struct net_device *dev, rx_handler_func_t *rx_handler, void *rx_handler_data) { if (netdev_is_rx_handler_busy(dev)) return -EBUSY; if (dev->priv_flags & IFF_NO_RX_HANDLER) return -EINVAL; /* Note: rx_handler_data must be set before rx_handler */ rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); rcu_assign_pointer(dev->rx_handler, rx_handler); return 0; } EXPORT_SYMBOL_GPL(netdev_rx_handler_register); /** * netdev_rx_handler_unregister - unregister receive handler * @dev: device to unregister a handler from * * Unregister a receive handler from a device. * * The caller must hold the rtnl_mutex. */ void netdev_rx_handler_unregister(struct net_device *dev) { ASSERT_RTNL(); RCU_INIT_POINTER(dev->rx_handler, NULL); /* a reader seeing a non NULL rx_handler in a rcu_read_lock() * section has a guarantee to see a non NULL rx_handler_data * as well. */ synchronize_net(); RCU_INIT_POINTER(dev->rx_handler_data, NULL); } EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); /* * Limit the use of PFMEMALLOC reserves to those protocols that implement * the special handling of PFMEMALLOC skbs. */ static bool skb_pfmemalloc_protocol(struct sk_buff *skb) { switch (skb->protocol) { case htons(ETH_P_ARP): case htons(ETH_P_IP): case htons(ETH_P_IPV6): case htons(ETH_P_8021Q): case htons(ETH_P_8021AD): return true; default: return false; } } static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, struct net_device *orig_dev) { if (nf_hook_ingress_active(skb)) { int ingress_retval; if (*pt_prev) { *ret = deliver_skb(skb, *pt_prev, orig_dev); *pt_prev = NULL; } rcu_read_lock(); ingress_retval = nf_hook_ingress(skb); rcu_read_unlock(); return ingress_retval; } return 0; } static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, struct packet_type **ppt_prev) { struct packet_type *ptype, *pt_prev; rx_handler_func_t *rx_handler; struct sk_buff *skb = *pskb; struct net_device *orig_dev; bool deliver_exact = false; int ret = NET_RX_DROP; __be16 type; net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb); trace_netif_receive_skb(skb); orig_dev = skb->dev; skb_reset_network_header(skb); if (!skb_transport_header_was_set(skb)) skb_reset_transport_header(skb); skb_reset_mac_len(skb); pt_prev = NULL; another_round: skb->skb_iif = skb->dev->ifindex; __this_cpu_inc(softnet_data.processed); if (static_branch_unlikely(&generic_xdp_needed_key)) { int ret2; migrate_disable(); ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); migrate_enable(); if (ret2 != XDP_PASS) { ret = NET_RX_DROP; goto out; } } if (eth_type_vlan(skb->protocol)) { skb = skb_vlan_untag(skb); if (unlikely(!skb)) goto out; } if (skb_skip_tc_classify(skb)) goto skip_classify; if (pfmemalloc) goto skip_taps; list_for_each_entry_rcu(ptype, &ptype_all, list) { if (pt_prev) ret = deliver_skb(skb, pt_prev, orig_dev); pt_prev = ptype; } list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { if (pt_prev) ret = deliver_skb(skb, pt_prev, orig_dev); pt_prev = ptype; } skip_taps: #ifdef CONFIG_NET_INGRESS if (static_branch_unlikely(&ingress_needed_key)) { bool another = false; nf_skip_egress(skb, true); skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, &another); if (another) goto another_round; if (!skb) goto out; nf_skip_egress(skb, false); if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) goto out; } #endif skb_reset_redirect(skb); skip_classify: if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) goto drop; if (skb_vlan_tag_present(skb)) { if (pt_prev) { ret = deliver_skb(skb, pt_prev, orig_dev); pt_prev = NULL; } if (vlan_do_receive(&skb)) goto another_round; else if (unlikely(!skb)) goto out; } rx_handler = rcu_dereference(skb->dev->rx_handler); if (rx_handler) { if (pt_prev) { ret = deliver_skb(skb, pt_prev, orig_dev); pt_prev = NULL; } switch (rx_handler(&skb)) { case RX_HANDLER_CONSUMED: ret = NET_RX_SUCCESS; goto out; case RX_HANDLER_ANOTHER: goto another_round; case RX_HANDLER_EXACT: deliver_exact = true; break; case RX_HANDLER_PASS: break; default: BUG(); } } if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { check_vlan_id: if (skb_vlan_tag_get_id(skb)) { /* Vlan id is non 0 and vlan_do_receive() above couldn't * find vlan device. */ skb->pkt_type = PACKET_OTHERHOST; } else if (eth_type_vlan(skb->protocol)) { /* Outer header is 802.1P with vlan 0, inner header is * 802.1Q or 802.1AD and vlan_do_receive() above could * not find vlan dev for vlan id 0. */ __vlan_hwaccel_clear_tag(skb); skb = skb_vlan_untag(skb); if (unlikely(!skb)) goto out; if (vlan_do_receive(&skb)) /* After stripping off 802.1P header with vlan 0 * vlan dev is found for inner header. */ goto another_round; else if (unlikely(!skb)) goto out; else /* We have stripped outer 802.1P vlan 0 header. * But could not find vlan dev. * check again for vlan id to set OTHERHOST. */ goto check_vlan_id; } /* Note: we might in the future use prio bits * and set skb->priority like in vlan_do_receive() * For the time being, just ignore Priority Code Point */ __vlan_hwaccel_clear_tag(skb); } type = skb->protocol; /* deliver only exact match when indicated */ if (likely(!deliver_exact)) { deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, &ptype_base[ntohs(type) & PTYPE_HASH_MASK]); } deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, &orig_dev->ptype_specific); if (unlikely(skb->dev != orig_dev)) { deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, &skb->dev->ptype_specific); } if (pt_prev) { if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) goto drop; *ppt_prev = pt_prev; } else { drop: if (!deliver_exact) dev_core_stats_rx_dropped_inc(skb->dev); else dev_core_stats_rx_nohandler_inc(skb->dev); kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); /* Jamal, now you will not able to escape explaining * me how you were going to use this. :-) */ ret = NET_RX_DROP; } out: /* The invariant here is that if *ppt_prev is not NULL * then skb should also be non-NULL. * * Apparently *ppt_prev assignment above holds this invariant due to * skb dereferencing near it. */ *pskb = skb; return ret; } static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) { struct net_device *orig_dev = skb->dev; struct packet_type *pt_prev = NULL; int ret; ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); if (pt_prev) ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, skb->dev, pt_prev, orig_dev); return ret; } /** * netif_receive_skb_core - special purpose version of netif_receive_skb * @skb: buffer to process * * More direct receive version of netif_receive_skb(). It should * only be used by callers that have a need to skip RPS and Generic XDP. * Caller must also take care of handling if ``(page_is_)pfmemalloc``. * * This function may only be called from softirq context and interrupts * should be enabled. * * Return values (usually ignored): * NET_RX_SUCCESS: no congestion * NET_RX_DROP: packet was dropped */ int netif_receive_skb_core(struct sk_buff *skb) { int ret; rcu_read_lock(); ret = __netif_receive_skb_one_core(skb, false); rcu_read_unlock(); return ret; } EXPORT_SYMBOL(netif_receive_skb_core); static inline void __netif_receive_skb_list_ptype(struct list_head *head, struct packet_type *pt_prev, struct net_device *orig_dev) { struct sk_buff *skb, *next; if (!pt_prev) return; if (list_empty(head)) return; if (pt_prev->list_func != NULL) INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, ip_list_rcv, head, pt_prev, orig_dev); else list_for_each_entry_safe(skb, next, head, list) { skb_list_del_init(skb); pt_prev->func(skb, skb->dev, pt_prev, orig_dev); } } static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) { /* Fast-path assumptions: * - There is no RX handler. * - Only one packet_type matches. * If either of these fails, we will end up doing some per-packet * processing in-line, then handling the 'last ptype' for the whole * sublist. This can't cause out-of-order delivery to any single ptype, * because the 'last ptype' must be constant across the sublist, and all * other ptypes are handled per-packet. */ /* Current (common) ptype of sublist */ struct packet_type *pt_curr = NULL; /* Current (common) orig_dev of sublist */ struct net_device *od_curr = NULL; struct list_head sublist; struct sk_buff *skb, *next; INIT_LIST_HEAD(&sublist); list_for_each_entry_safe(skb, next, head, list) { struct net_device *orig_dev = skb->dev; struct packet_type *pt_prev = NULL; skb_list_del_init(skb); __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); if (!pt_prev) continue; if (pt_curr != pt_prev || od_curr != orig_dev) { /* dispatch old sublist */ __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); /* start new sublist */ INIT_LIST_HEAD(&sublist); pt_curr = pt_prev; od_curr = orig_dev; } list_add_tail(&skb->list, &sublist); } /* dispatch final sublist */ __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); } static int __netif_receive_skb(struct sk_buff *skb) { int ret; if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { unsigned int noreclaim_flag; /* * PFMEMALLOC skbs are special, they should * - be delivered to SOCK_MEMALLOC sockets only * - stay away from userspace * - have bounded memory usage * * Use PF_MEMALLOC as this saves us from propagating the allocation * context down to all allocation sites. */ noreclaim_flag = memalloc_noreclaim_save(); ret = __netif_receive_skb_one_core(skb, true); memalloc_noreclaim_restore(noreclaim_flag); } else ret = __netif_receive_skb_one_core(skb, false); return ret; } static void __netif_receive_skb_list(struct list_head *head) { unsigned long noreclaim_flag = 0; struct sk_buff *skb, *next; bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ list_for_each_entry_safe(skb, next, head, list) { if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { struct list_head sublist; /* Handle the previous sublist */ list_cut_before(&sublist, head, &skb->list); if (!list_empty(&sublist)) __netif_receive_skb_list_core(&sublist, pfmemalloc); pfmemalloc = !pfmemalloc; /* See comments in __netif_receive_skb */ if (pfmemalloc) noreclaim_flag = memalloc_noreclaim_save(); else memalloc_noreclaim_restore(noreclaim_flag); } } /* Handle the remaining sublist */ if (!list_empty(head)) __netif_receive_skb_list_core(head, pfmemalloc); /* Restore pflags */ if (pfmemalloc) memalloc_noreclaim_restore(noreclaim_flag); } static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) { struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); struct bpf_prog *new = xdp->prog; int ret = 0; switch (xdp->command) { case XDP_SETUP_PROG: rcu_assign_pointer(dev->xdp_prog, new); if (old) bpf_prog_put(old); if (old && !new) { static_branch_dec(&generic_xdp_needed_key); } else if (new && !old) { static_branch_inc(&generic_xdp_needed_key); dev_disable_lro(dev); dev_disable_gro_hw(dev); } break; default: ret = -EINVAL; break; } return ret; } static int netif_receive_skb_internal(struct sk_buff *skb) { int ret; net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); if (skb_defer_rx_timestamp(skb)) return NET_RX_SUCCESS; rcu_read_lock(); #ifdef CONFIG_RPS if (static_branch_unlikely(&rps_needed)) { struct rps_dev_flow voidflow, *rflow = &voidflow; int cpu = get_rps_cpu(skb->dev, skb, &rflow); if (cpu >= 0) { ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); rcu_read_unlock(); return ret; } } #endif ret = __netif_receive_skb(skb); rcu_read_unlock(); return ret; } void netif_receive_skb_list_internal(struct list_head *head) { struct sk_buff *skb, *next; struct list_head sublist; INIT_LIST_HEAD(&sublist); list_for_each_entry_safe(skb, next, head, list) { net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); skb_list_del_init(skb); if (!skb_defer_rx_timestamp(skb)) list_add_tail(&skb->list, &sublist); } list_splice_init(&sublist, head); rcu_read_lock(); #ifdef CONFIG_RPS if (static_branch_unlikely(&rps_needed)) { list_for_each_entry_safe(skb, next, head, list) { struct rps_dev_flow voidflow, *rflow = &voidflow; int cpu = get_rps_cpu(skb->dev, skb, &rflow); if (cpu >= 0) { /* Will be handled, remove from list */ skb_list_del_init(skb); enqueue_to_backlog(skb, cpu, &rflow->last_qtail); } } } #endif __netif_receive_skb_list(head); rcu_read_unlock(); } /** * netif_receive_skb - process receive buffer from network * @skb: buffer to process * * netif_receive_skb() is the main receive data processing function. * It always succeeds. The buffer may be dropped during processing * for congestion control or by the protocol layers. * * This function may only be called from softirq context and interrupts * should be enabled. * * Return values (usually ignored): * NET_RX_SUCCESS: no congestion * NET_RX_DROP: packet was dropped */ int netif_receive_skb(struct sk_buff *skb) { int ret; trace_netif_receive_skb_entry(skb); ret = netif_receive_skb_internal(skb); trace_netif_receive_skb_exit(ret); return ret; } EXPORT_SYMBOL(netif_receive_skb); /** * netif_receive_skb_list - process many receive buffers from network * @head: list of skbs to process. * * Since return value of netif_receive_skb() is normally ignored, and * wouldn't be meaningful for a list, this function returns void. * * This function may only be called from softirq context and interrupts * should be enabled. */ void netif_receive_skb_list(struct list_head *head) { struct sk_buff *skb; if (list_empty(head)) return; if (trace_netif_receive_skb_list_entry_enabled()) { list_for_each_entry(skb, head, list) trace_netif_receive_skb_list_entry(skb); } netif_receive_skb_list_internal(head); trace_netif_receive_skb_list_exit(0); } EXPORT_SYMBOL(netif_receive_skb_list); static DEFINE_PER_CPU(struct work_struct, flush_works); /* Network device is going away, flush any packets still pending */ static void flush_backlog(struct work_struct *work) { struct sk_buff *skb, *tmp; struct softnet_data *sd; local_bh_disable(); sd = this_cpu_ptr(&softnet_data); rps_lock_irq_disable(sd); skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { if (skb->dev->reg_state == NETREG_UNREGISTERING) { __skb_unlink(skb, &sd->input_pkt_queue); dev_kfree_skb_irq(skb); input_queue_head_incr(sd); } } rps_unlock_irq_enable(sd); skb_queue_walk_safe(&sd->process_queue, skb, tmp) { if (skb->dev->reg_state == NETREG_UNREGISTERING) { __skb_unlink(skb, &sd->process_queue); kfree_skb(skb); input_queue_head_incr(sd); } } local_bh_enable(); } static bool flush_required(int cpu) { #if IS_ENABLED(CONFIG_RPS) struct softnet_data *sd = &per_cpu(softnet_data, cpu); bool do_flush; rps_lock_irq_disable(sd); /* as insertion into process_queue happens with the rps lock held, * process_queue access may race only with dequeue */ do_flush = !skb_queue_empty(&sd->input_pkt_queue) || !skb_queue_empty_lockless(&sd->process_queue); rps_unlock_irq_enable(sd); return do_flush; #endif /* without RPS we can't safely check input_pkt_queue: during a * concurrent remote skb_queue_splice() we can detect as empty both * input_pkt_queue and process_queue even if the latter could end-up * containing a lot of packets. */ return true; } static void flush_all_backlogs(void) { static cpumask_t flush_cpus; unsigned int cpu; /* since we are under rtnl lock protection we can use static data * for the cpumask and avoid allocating on stack the possibly * large mask */ ASSERT_RTNL(); cpus_read_lock(); cpumask_clear(&flush_cpus); for_each_online_cpu(cpu) { if (flush_required(cpu)) { queue_work_on(cpu, system_highpri_wq, per_cpu_ptr(&flush_works, cpu)); cpumask_set_cpu(cpu, &flush_cpus); } } /* we can have in flight packet[s] on the cpus we are not flushing, * synchronize_net() in unregister_netdevice_many() will take care of * them */ for_each_cpu(cpu, &flush_cpus) flush_work(per_cpu_ptr(&flush_works, cpu)); cpus_read_unlock(); } static void net_rps_send_ipi(struct softnet_data *remsd) { #ifdef CONFIG_RPS while (remsd) { struct softnet_data *next = remsd->rps_ipi_next; if (cpu_online(remsd->cpu)) smp_call_function_single_async(remsd->cpu, &remsd->csd); remsd = next; } #endif } /* * net_rps_action_and_irq_enable sends any pending IPI's for rps. * Note: called with local irq disabled, but exits with local irq enabled. */ static void net_rps_action_and_irq_enable(struct softnet_data *sd) { #ifdef CONFIG_RPS struct softnet_data *remsd = sd->rps_ipi_list; if (remsd) { sd->rps_ipi_list = NULL; local_irq_enable(); /* Send pending IPI's to kick RPS processing on remote cpus. */ net_rps_send_ipi(remsd); } else #endif local_irq_enable(); } static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) { #ifdef CONFIG_RPS return sd->rps_ipi_list != NULL; #else return false; #endif } static int process_backlog(struct napi_struct *napi, int quota) { struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); bool again = true; int work = 0; /* Check if we have pending ipi, its better to send them now, * not waiting net_rx_action() end. */ if (sd_has_rps_ipi_waiting(sd)) { local_irq_disable(); net_rps_action_and_irq_enable(sd); } napi->weight = READ_ONCE(dev_rx_weight); while (again) { struct sk_buff *skb; while ((skb = __skb_dequeue(&sd->process_queue))) { rcu_read_lock(); __netif_receive_skb(skb); rcu_read_unlock(); input_queue_head_incr(sd); if (++work >= quota) return work; } rps_lock_irq_disable(sd); if (skb_queue_empty(&sd->input_pkt_queue)) { /* * Inline a custom version of __napi_complete(). * only current cpu owns and manipulates this napi, * and NAPI_STATE_SCHED is the only possible flag set * on backlog. * We can use a plain write instead of clear_bit(), * and we dont need an smp_mb() memory barrier. */ napi->state = 0; again = false; } else { skb_queue_splice_tail_init(&sd->input_pkt_queue, &sd->process_queue); } rps_unlock_irq_enable(sd); } return work; } /** * __napi_schedule - schedule for receive * @n: entry to schedule * * The entry's receive function will be scheduled to run. * Consider using __napi_schedule_irqoff() if hard irqs are masked. */ void __napi_schedule(struct napi_struct *n) { unsigned long flags; local_irq_save(flags); ____napi_schedule(this_cpu_ptr(&softnet_data), n); local_irq_restore(flags); } EXPORT_SYMBOL(__napi_schedule); /** * napi_schedule_prep - check if napi can be scheduled * @n: napi context * * Test if NAPI routine is already running, and if not mark * it as running. This is used as a condition variable to * insure only one NAPI poll instance runs. We also make * sure there is no pending NAPI disable. */ bool napi_schedule_prep(struct napi_struct *n) { unsigned long val, new; do { val = READ_ONCE(n->state); if (unlikely(val & NAPIF_STATE_DISABLE)) return false; new = val | NAPIF_STATE_SCHED; /* Sets STATE_MISSED bit if STATE_SCHED was already set * This was suggested by Alexander Duyck, as compiler * emits better code than : * if (val & NAPIF_STATE_SCHED) * new |= NAPIF_STATE_MISSED; */ new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * NAPIF_STATE_MISSED; } while (cmpxchg(&n->state, val, new) != val); return !(val & NAPIF_STATE_SCHED); } EXPORT_SYMBOL(napi_schedule_prep); /** * __napi_schedule_irqoff - schedule for receive * @n: entry to schedule * * Variant of __napi_schedule() assuming hard irqs are masked. * * On PREEMPT_RT enabled kernels this maps to __napi_schedule() * because the interrupt disabled assumption might not be true * due to force-threaded interrupts and spinlock substitution. */ void __napi_schedule_irqoff(struct napi_struct *n) { if (!IS_ENABLED(CONFIG_PREEMPT_RT)) ____napi_schedule(this_cpu_ptr(&softnet_data), n); else __napi_schedule(n); } EXPORT_SYMBOL(__napi_schedule_irqoff); bool napi_complete_done(struct napi_struct *n, int work_done) { unsigned long flags, val, new, timeout = 0; bool ret = true; /* * 1) Don't let napi dequeue from the cpu poll list * just in case its running on a different cpu. * 2) If we are busy polling, do nothing here, we have * the guarantee we will be called later. */ if (unlikely(n->state & (NAPIF_STATE_NPSVC | NAPIF_STATE_IN_BUSY_POLL))) return false; if (work_done) { if (n->gro_bitmask) timeout = READ_ONCE(n->dev->gro_flush_timeout); n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); } if (n->defer_hard_irqs_count > 0) { n->defer_hard_irqs_count--; timeout = READ_ONCE(n->dev->gro_flush_timeout); if (timeout) ret = false; } if (n->gro_bitmask) { /* When the NAPI instance uses a timeout and keeps postponing * it, we need to bound somehow the time packets are kept in * the GRO layer */ napi_gro_flush(n, !!timeout); } gro_normal_list(n); if (unlikely(!list_empty(&n->poll_list))) { /* If n->poll_list is not empty, we need to mask irqs */ local_irq_save(flags); list_del_init(&n->poll_list); local_irq_restore(flags); } do { val = READ_ONCE(n->state); WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | NAPIF_STATE_SCHED_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); /* If STATE_MISSED was set, leave STATE_SCHED set, * because we will call napi->poll() one more time. * This C code was suggested by Alexander Duyck to help gcc. */ new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * NAPIF_STATE_SCHED; } while (cmpxchg(&n->state, val, new) != val); if (unlikely(val & NAPIF_STATE_MISSED)) { __napi_schedule(n); return false; } if (timeout) hrtimer_start(&n->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); return ret; } EXPORT_SYMBOL(napi_complete_done); /* must be called under rcu_read_lock(), as we dont take a reference */ static struct napi_struct *napi_by_id(unsigned int napi_id) { unsigned int hash = napi_id % HASH_SIZE(napi_hash); struct napi_struct *napi; hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) if (napi->napi_id == napi_id) return napi; return NULL; } #if defined(CONFIG_NET_RX_BUSY_POLL) static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) { if (!skip_schedule) { gro_normal_list(napi); __napi_schedule(napi); return; } if (napi->gro_bitmask) { /* flush too old packets * If HZ < 1000, flush all packets. */ napi_gro_flush(napi, HZ >= 1000); } gro_normal_list(napi); clear_bit(NAPI_STATE_SCHED, &napi->state); } static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll, u16 budget) { bool skip_schedule = false; unsigned long timeout; int rc; /* Busy polling means there is a high chance device driver hard irq * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was * set in napi_schedule_prep(). * Since we are about to call napi->poll() once more, we can safely * clear NAPI_STATE_MISSED. * * Note: x86 could use a single "lock and ..." instruction * to perform these two clear_bit() */ clear_bit(NAPI_STATE_MISSED, &napi->state); clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); local_bh_disable(); if (prefer_busy_poll) { napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); timeout = READ_ONCE(napi->dev->gro_flush_timeout); if (napi->defer_hard_irqs_count && timeout) { hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); skip_schedule = true; } } /* All we really want here is to re-enable device interrupts. * Ideally, a new ndo_busy_poll_stop() could avoid another round. */ rc = napi->poll(napi, budget); /* We can't gro_normal_list() here, because napi->poll() might have * rearmed the napi (napi_complete_done()) in which case it could * already be running on another CPU. */ trace_napi_poll(napi, rc, budget); netpoll_poll_unlock(have_poll_lock); if (rc == budget) __busy_poll_stop(napi, skip_schedule); local_bh_enable(); } void napi_busy_loop(unsigned int napi_id, bool (*loop_end)(void *, unsigned long), void *loop_end_arg, bool prefer_busy_poll, u16 budget) { unsigned long start_time = loop_end ? busy_loop_current_time() : 0; int (*napi_poll)(struct napi_struct *napi, int budget); void *have_poll_lock = NULL; struct napi_struct *napi; restart: napi_poll = NULL; rcu_read_lock(); napi = napi_by_id(napi_id); if (!napi) goto out; preempt_disable(); for (;;) { int work = 0; local_bh_disable(); if (!napi_poll) { unsigned long val = READ_ONCE(napi->state); /* If multiple threads are competing for this napi, * we avoid dirtying napi->state as much as we can. */ if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | NAPIF_STATE_IN_BUSY_POLL)) { if (prefer_busy_poll) set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); goto count; } if (cmpxchg(&napi->state, val, val | NAPIF_STATE_IN_BUSY_POLL | NAPIF_STATE_SCHED) != val) { if (prefer_busy_poll) set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); goto count; } have_poll_lock = netpoll_poll_lock(napi); napi_poll = napi->poll; } work = napi_poll(napi, budget); trace_napi_poll(napi, work, budget); gro_normal_list(napi); count: if (work > 0) __NET_ADD_STATS(dev_net(napi->dev), LINUX_MIB_BUSYPOLLRXPACKETS, work); local_bh_enable(); if (!loop_end || loop_end(loop_end_arg, start_time)) break; if (unlikely(need_resched())) { if (napi_poll) busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); preempt_enable(); rcu_read_unlock(); cond_resched(); if (loop_end(loop_end_arg, start_time)) return; goto restart; } cpu_relax(); } if (napi_poll) busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); preempt_enable(); out: rcu_read_unlock(); } EXPORT_SYMBOL(napi_busy_loop); #endif /* CONFIG_NET_RX_BUSY_POLL */ static void napi_hash_add(struct napi_struct *napi) { if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) return; spin_lock(&napi_hash_lock); /* 0..NR_CPUS range is reserved for sender_cpu use */ do { if (unlikely(++napi_gen_id < MIN_NAPI_ID)) napi_gen_id = MIN_NAPI_ID; } while (napi_by_id(napi_gen_id)); napi->napi_id = napi_gen_id; hlist_add_head_rcu(&napi->napi_hash_node, &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); spin_unlock(&napi_hash_lock); } /* Warning : caller is responsible to make sure rcu grace period * is respected before freeing memory containing @napi */ static void napi_hash_del(struct napi_struct *napi) { spin_lock(&napi_hash_lock); hlist_del_init_rcu(&napi->napi_hash_node); spin_unlock(&napi_hash_lock); } static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) { struct napi_struct *napi; napi = container_of(timer, struct napi_struct, timer); /* Note : we use a relaxed variant of napi_schedule_prep() not setting * NAPI_STATE_MISSED, since we do not react to a device IRQ. */ if (!napi_disable_pending(napi) && !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); __napi_schedule_irqoff(napi); } return HRTIMER_NORESTART; } static void init_gro_hash(struct napi_struct *napi) { int i; for (i = 0; i < GRO_HASH_BUCKETS; i++) { INIT_LIST_HEAD(&napi->gro_hash[i].list); napi->gro_hash[i].count = 0; } napi->gro_bitmask = 0; } int dev_set_threaded(struct net_device *dev, bool threaded) { struct napi_struct *napi; int err = 0; if (dev->threaded == threaded) return 0; if (threaded) { list_for_each_entry(napi, &dev->napi_list, dev_list) { if (!napi->thread) { err = napi_kthread_create(napi); if (err) { threaded = false; break; } } } } dev->threaded = threaded; /* Make sure kthread is created before THREADED bit * is set. */ smp_mb__before_atomic(); /* Setting/unsetting threaded mode on a napi might not immediately * take effect, if the current napi instance is actively being * polled. In this case, the switch between threaded mode and * softirq mode will happen in the next round of napi_schedule(). * This should not cause hiccups/stalls to the live traffic. */ list_for_each_entry(napi, &dev->napi_list, dev_list) { if (threaded) set_bit(NAPI_STATE_THREADED, &napi->state); else clear_bit(NAPI_STATE_THREADED, &napi->state); } return err; } EXPORT_SYMBOL(dev_set_threaded); void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, int (*poll)(struct napi_struct *, int), int weight) { if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) return; INIT_LIST_HEAD(&napi->poll_list); INIT_HLIST_NODE(&napi->napi_hash_node); hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); napi->timer.function = napi_watchdog; init_gro_hash(napi); napi->skb = NULL; INIT_LIST_HEAD(&napi->rx_list); napi->rx_count = 0; napi->poll = poll; if (weight > NAPI_POLL_WEIGHT) netdev_err_once(dev, "%s() called with weight %d\n", __func__, weight); napi->weight = weight; napi->dev = dev; #ifdef CONFIG_NETPOLL napi->poll_owner = -1; #endif set_bit(NAPI_STATE_SCHED, &napi->state); set_bit(NAPI_STATE_NPSVC, &napi->state); list_add_rcu(&napi->dev_list, &dev->napi_list); napi_hash_add(napi); napi_get_frags_check(napi); /* Create kthread for this napi if dev->threaded is set. * Clear dev->threaded if kthread creation failed so that * threaded mode will not be enabled in napi_enable(). */ if (dev->threaded && napi_kthread_create(napi)) dev->threaded = 0; } EXPORT_SYMBOL(netif_napi_add_weight); void napi_disable(struct napi_struct *n) { unsigned long val, new; might_sleep(); set_bit(NAPI_STATE_DISABLE, &n->state); for ( ; ; ) { val = READ_ONCE(n->state); if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { usleep_range(20, 200); continue; } new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); if (cmpxchg(&n->state, val, new) == val) break; } hrtimer_cancel(&n->timer); clear_bit(NAPI_STATE_DISABLE, &n->state); } EXPORT_SYMBOL(napi_disable); /** * napi_enable - enable NAPI scheduling * @n: NAPI context * * Resume NAPI from being scheduled on this context. * Must be paired with napi_disable. */ void napi_enable(struct napi_struct *n) { unsigned long val, new; do { val = READ_ONCE(n->state); BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); if (n->dev->threaded && n->thread) new |= NAPIF_STATE_THREADED; } while (cmpxchg(&n->state, val, new) != val); } EXPORT_SYMBOL(napi_enable); static void flush_gro_hash(struct napi_struct *napi) { int i; for (i = 0; i < GRO_HASH_BUCKETS; i++) { struct sk_buff *skb, *n; list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) kfree_skb(skb); napi->gro_hash[i].count = 0; } } /* Must be called in process context */ void __netif_napi_del(struct napi_struct *napi) { if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) return; napi_hash_del(napi); list_del_rcu(&napi->dev_list); napi_free_frags(napi); flush_gro_hash(napi); napi->gro_bitmask = 0; if (napi->thread) { kthread_stop(napi->thread); napi->thread = NULL; } } EXPORT_SYMBOL(__netif_napi_del); static int __napi_poll(struct napi_struct *n, bool *repoll) { int work, weight; weight = n->weight; /* This NAPI_STATE_SCHED test is for avoiding a race * with netpoll's poll_napi(). Only the entity which * obtains the lock and sees NAPI_STATE_SCHED set will * actually make the ->poll() call. Therefore we avoid * accidentally calling ->poll() when NAPI is not scheduled. */ work = 0; if (test_bit(NAPI_STATE_SCHED, &n->state)) { work = n->poll(n, weight); trace_napi_poll(n, work, weight); } if (unlikely(work > weight)) netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", n->poll, work, weight); if (likely(work < weight)) return work; /* Drivers must not modify the NAPI state if they * consume the entire weight. In such cases this code * still "owns" the NAPI instance and therefore can * move the instance around on the list at-will. */ if (unlikely(napi_disable_pending(n))) { napi_complete(n); return work; } /* The NAPI context has more processing work, but busy-polling * is preferred. Exit early. */ if (napi_prefer_busy_poll(n)) { if (napi_complete_done(n, work)) { /* If timeout is not set, we need to make sure * that the NAPI is re-scheduled. */ napi_schedule(n); } return work; } if (n->gro_bitmask) { /* flush too old packets * If HZ < 1000, flush all packets. */ napi_gro_flush(n, HZ >= 1000); } gro_normal_list(n); /* Some drivers may have called napi_schedule * prior to exhausting their budget. */ if (unlikely(!list_empty(&n->poll_list))) { pr_warn_once("%s: Budget exhausted after napi rescheduled\n", n->dev ? n->dev->name : "backlog"); return work; } *repoll = true; return work; } static int napi_poll(struct napi_struct *n, struct list_head *repoll) { bool do_repoll = false; void *have; int work; list_del_init(&n->poll_list); have = netpoll_poll_lock(n); work = __napi_poll(n, &do_repoll); if (do_repoll) list_add_tail(&n->poll_list, repoll); netpoll_poll_unlock(have); return work; } static int napi_thread_wait(struct napi_struct *napi) { bool woken = false; set_current_state(TASK_INTERRUPTIBLE); while (!kthread_should_stop()) { /* Testing SCHED_THREADED bit here to make sure the current * kthread owns this napi and could poll on this napi. * Testing SCHED bit is not enough because SCHED bit might be * set by some other busy poll thread or by napi_disable(). */ if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) { WARN_ON(!list_empty(&napi->poll_list)); __set_current_state(TASK_RUNNING); return 0; } schedule(); /* woken being true indicates this thread owns this napi. */ woken = true; set_current_state(TASK_INTERRUPTIBLE); } __set_current_state(TASK_RUNNING); return -1; } static int napi_threaded_poll(void *data) { struct napi_struct *napi = data; void *have; while (!napi_thread_wait(napi)) { unsigned long last_qs = jiffies; for (;;) { bool repoll = false; local_bh_disable(); have = netpoll_poll_lock(napi); __napi_poll(napi, &repoll); netpoll_poll_unlock(have); local_bh_enable(); if (!repoll) break; rcu_softirq_qs_periodic(last_qs); cond_resched(); } } return 0; } static void skb_defer_free_flush(struct softnet_data *sd) { struct sk_buff *skb, *next; unsigned long flags; /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ if (!READ_ONCE(sd->defer_list)) return; spin_lock_irqsave(&sd->defer_lock, flags); skb = sd->defer_list; sd->defer_list = NULL; sd->defer_count = 0; spin_unlock_irqrestore(&sd->defer_lock, flags); while (skb != NULL) { next = skb->next; napi_consume_skb(skb, 1); skb = next; } } static __latent_entropy void net_rx_action(struct softirq_action *h) { struct softnet_data *sd = this_cpu_ptr(&softnet_data); unsigned long time_limit = jiffies + usecs_to_jiffies(READ_ONCE(netdev_budget_usecs)); int budget = READ_ONCE(netdev_budget); LIST_HEAD(list); LIST_HEAD(repoll); local_irq_disable(); list_splice_init(&sd->poll_list, &list); local_irq_enable(); for (;;) { struct napi_struct *n; skb_defer_free_flush(sd); if (list_empty(&list)) { if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) goto end; break; } n = list_first_entry(&list, struct napi_struct, poll_list); budget -= napi_poll(n, &repoll); /* If softirq window is exhausted then punt. * Allow this to run for 2 jiffies since which will allow * an average latency of 1.5/HZ. */ if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) { sd->time_squeeze++; break; } } local_irq_disable(); list_splice_tail_init(&sd->poll_list, &list); list_splice_tail(&repoll, &list); list_splice(&list, &sd->poll_list); if (!list_empty(&sd->poll_list)) __raise_softirq_irqoff(NET_RX_SOFTIRQ); net_rps_action_and_irq_enable(sd); end:; } struct netdev_adjacent { struct net_device *dev; netdevice_tracker dev_tracker; /* upper master flag, there can only be one master device per list */ bool master; /* lookup ignore flag */ bool ignore; /* counter for the number of times this device was added to us */ u16 ref_nr; /* private field for the users */ void *private; struct list_head list; struct rcu_head rcu; }; static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, struct list_head *adj_list) { struct netdev_adjacent *adj; list_for_each_entry(adj, adj_list, list) { if (adj->dev == adj_dev) return adj; } return NULL; } static int ____netdev_has_upper_dev(struct net_device *upper_dev, struct netdev_nested_priv *priv) { struct net_device *dev = (struct net_device *)priv->data; return upper_dev == dev; } /** * netdev_has_upper_dev - Check if device is linked to an upper device * @dev: device * @upper_dev: upper device to check * * Find out if a device is linked to specified upper device and return true * in case it is. Note that this checks only immediate upper device, * not through a complete stack of devices. The caller must hold the RTNL lock. */ bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev) { struct netdev_nested_priv priv = { .data = (void *)upper_dev, }; ASSERT_RTNL(); return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, &priv); } EXPORT_SYMBOL(netdev_has_upper_dev); /** * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device * @dev: device * @upper_dev: upper device to check * * Find out if a device is linked to specified upper device and return true * in case it is. Note that this checks the entire upper device chain. * The caller must hold rcu lock. */ bool netdev_has_upper_dev_all_rcu(struct net_device *dev, struct net_device *upper_dev) { struct netdev_nested_priv priv = { .data = (void *)upper_dev, }; return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, &priv); } EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); /** * netdev_has_any_upper_dev - Check if device is linked to some device * @dev: device * * Find out if a device is linked to an upper device and return true in case * it is. The caller must hold the RTNL lock. */ bool netdev_has_any_upper_dev(struct net_device *dev) { ASSERT_RTNL(); return !list_empty(&dev->adj_list.upper); } EXPORT_SYMBOL(netdev_has_any_upper_dev); /** * netdev_master_upper_dev_get - Get master upper device * @dev: device * * Find a master upper device and return pointer to it or NULL in case * it's not there. The caller must hold the RTNL lock. */ struct net_device *netdev_master_upper_dev_get(struct net_device *dev) { struct netdev_adjacent *upper; ASSERT_RTNL(); if (list_empty(&dev->adj_list.upper)) return NULL; upper = list_first_entry(&dev->adj_list.upper, struct netdev_adjacent, list); if (likely(upper->master)) return upper->dev; return NULL; } EXPORT_SYMBOL(netdev_master_upper_dev_get); static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) { struct netdev_adjacent *upper; ASSERT_RTNL(); if (list_empty(&dev->adj_list.upper)) return NULL; upper = list_first_entry(&dev->adj_list.upper, struct netdev_adjacent, list); if (likely(upper->master) && !upper->ignore) return upper->dev; return NULL; } /** * netdev_has_any_lower_dev - Check if device is linked to some device * @dev: device * * Find out if a device is linked to a lower device and return true in case * it is. The caller must hold the RTNL lock. */ static bool netdev_has_any_lower_dev(struct net_device *dev) { ASSERT_RTNL(); return !list_empty(&dev->adj_list.lower); } void *netdev_adjacent_get_private(struct list_head *adj_list) { struct netdev_adjacent *adj; adj = list_entry(adj_list, struct netdev_adjacent, list); return adj->private; } EXPORT_SYMBOL(netdev_adjacent_get_private); /** * netdev_upper_get_next_dev_rcu - Get the next dev from upper list * @dev: device * @iter: list_head ** of the current position * * Gets the next device from the dev's upper list, starting from iter * position. The caller must hold RCU read lock. */ struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, struct list_head **iter) { struct netdev_adjacent *upper; WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); if (&upper->list == &dev->adj_list.upper) return NULL; *iter = &upper->list; return upper->dev; } EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); static struct net_device *__netdev_next_upper_dev(struct net_device *dev, struct list_head **iter, bool *ignore) { struct netdev_adjacent *upper; upper = list_entry((*iter)->next, struct netdev_adjacent, list); if (&upper->list == &dev->adj_list.upper) return NULL; *iter = &upper->list; *ignore = upper->ignore; return upper->dev; } static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, struct list_head **iter) { struct netdev_adjacent *upper; WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); if (&upper->list == &dev->adj_list.upper) return NULL; *iter = &upper->list; return upper->dev; } static int __netdev_walk_all_upper_dev(struct net_device *dev, int (*fn)(struct net_device *dev, struct netdev_nested_priv *priv), struct netdev_nested_priv *priv) { struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; int ret, cur = 0; bool ignore; now = dev; iter = &dev->adj_list.upper; while (1) { if (now != dev) { ret = fn(now, priv); if (ret) return ret; } next = NULL; while (1) { udev = __netdev_next_upper_dev(now, &iter, &ignore); if (!udev) break; if (ignore) continue; next = udev; niter = &udev->adj_list.upper; dev_stack[cur] = now; iter_stack[cur++] = iter; break; } if (!next) { if (!cur) return 0; next = dev_stack[--cur]; niter = iter_stack[cur]; } now = next; iter = niter; } return 0; } int netdev_walk_all_upper_dev_rcu(struct net_device *dev, int (*fn)(struct net_device *dev, struct netdev_nested_priv *priv), struct netdev_nested_priv *priv) { struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; int ret, cur = 0; now = dev; iter = &dev->adj_list.upper; while (1) { if (now != dev) { ret = fn(now, priv); if (ret) return ret; } next = NULL; while (1) { udev = netdev_next_upper_dev_rcu(now, &iter); if (!udev) break; next = udev; niter = &udev->adj_list.upper; dev_stack[cur] = now; iter_stack[cur++] = iter; break; } if (!next) { if (!cur) return 0; next = dev_stack[--cur]; niter = iter_stack[cur]; } now = next; iter = niter; } return 0; } EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); static bool __netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev) { struct netdev_nested_priv priv = { .flags = 0, .data = (void *)upper_dev, }; ASSERT_RTNL(); return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, &priv); } /** * netdev_lower_get_next_private - Get the next ->private from the * lower neighbour list * @dev: device * @iter: list_head ** of the current position * * Gets the next netdev_adjacent->private from the dev's lower neighbour * list, starting from iter position. The caller must hold either hold the * RTNL lock or its own locking that guarantees that the neighbour lower * list will remain unchanged. */ void *netdev_lower_get_next_private(struct net_device *dev, struct list_head **iter) { struct netdev_adjacent *lower; lower = list_entry(*iter, struct netdev_adjacent, list); if (&lower->list == &dev->adj_list.lower) return NULL; *iter = lower->list.next; return lower->private; } EXPORT_SYMBOL(netdev_lower_get_next_private); /** * netdev_lower_get_next_private_rcu - Get the next ->private from the * lower neighbour list, RCU * variant * @dev: device * @iter: list_head ** of the current position * * Gets the next netdev_adjacent->private from the dev's lower neighbour * list, starting from iter position. The caller must hold RCU read lock. */ void *netdev_lower_get_next_private_rcu(struct net_device *dev, struct list_head **iter) { struct netdev_adjacent *lower; WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); if (&lower->list == &dev->adj_list.lower) return NULL; *iter = &lower->list; return lower->private; } EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); /** * netdev_lower_get_next - Get the next device from the lower neighbour * list * @dev: device * @iter: list_head ** of the current position * * Gets the next netdev_adjacent from the dev's lower neighbour * list, starting from iter position. The caller must hold RTNL lock or * its own locking that guarantees that the neighbour lower * list will remain unchanged. */ void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) { struct netdev_adjacent *lower; lower = list_entry(*iter, struct netdev_adjacent, list); if (&lower->list == &dev->adj_list.lower) return NULL; *iter = lower->list.next; return lower->dev; } EXPORT_SYMBOL(netdev_lower_get_next); static struct net_device *netdev_next_lower_dev(struct net_device *dev, struct list_head **iter) { struct netdev_adjacent *lower; lower = list_entry((*iter)->next, struct netdev_adjacent, list); if (&lower->list == &dev->adj_list.lower) return NULL; *iter = &lower->list; return lower->dev; } static struct net_device *__netdev_next_lower_dev(struct net_device *dev, struct list_head **iter, bool *ignore) { struct netdev_adjacent *lower; lower = list_entry((*iter)->next, struct netdev_adjacent, list); if (&lower->list == &dev->adj_list.lower) return NULL; *iter = &lower->list; *ignore = lower->ignore; return lower->dev; } int netdev_walk_all_lower_dev(struct net_device *dev, int (*fn)(struct net_device *dev, struct netdev_nested_priv *priv), struct netdev_nested_priv *priv) { struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; int ret, cur = 0; now = dev; iter = &dev->adj_list.lower; while (1) { if (now != dev) { ret = fn(now, priv); if (ret) return ret; } next = NULL; while (1) { ldev = netdev_next_lower_dev(now, &iter); if (!ldev) break; next = ldev; niter = &ldev->adj_list.lower; dev_stack[cur] = now; iter_stack[cur++] = iter; break; } if (!next) { if (!cur) return 0; next = dev_stack[--cur]; niter = iter_stack[cur]; } now = next; iter = niter; } return 0; } EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); static int __netdev_walk_all_lower_dev(struct net_device *dev, int (*fn)(struct net_device *dev, struct netdev_nested_priv *priv), struct netdev_nested_priv *priv) { struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; int ret, cur = 0; bool ignore; now = dev; iter = &dev->adj_list.lower; while (1) { if (now != dev) { ret = fn(now, priv); if (ret) return ret; } next = NULL; while (1) { ldev = __netdev_next_lower_dev(now, &iter, &ignore); if (!ldev) break; if (ignore) continue; next = ldev; niter = &ldev->adj_list.lower; dev_stack[cur] = now; iter_stack[cur++] = iter; break; } if (!next) { if (!cur) return 0; next = dev_stack[--cur]; niter = iter_stack[cur]; } now = next; iter = niter; } return 0; } struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, struct list_head **iter) { struct netdev_adjacent *lower; lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); if (&lower->list == &dev->adj_list.lower) return NULL; *iter = &lower->list; return lower->dev; } EXPORT_SYMBOL(netdev_next_lower_dev_rcu); static u8 __netdev_upper_depth(struct net_device *dev) { struct net_device *udev; struct list_head *iter; u8 max_depth = 0; bool ignore; for (iter = &dev->adj_list.upper, udev = __netdev_next_upper_dev(dev, &iter, &ignore); udev; udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { if (ignore) continue; if (max_depth < udev->upper_level) max_depth = udev->upper_level; } return max_depth; } static u8 __netdev_lower_depth(struct net_device *dev) { struct net_device *ldev; struct list_head *iter; u8 max_depth = 0; bool ignore; for (iter = &dev->adj_list.lower, ldev = __netdev_next_lower_dev(dev, &iter, &ignore); ldev; ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { if (ignore) continue; if (max_depth < ldev->lower_level) max_depth = ldev->lower_level; } return max_depth; } static int __netdev_update_upper_level(struct net_device *dev, struct netdev_nested_priv *__unused) { dev->upper_level = __netdev_upper_depth(dev) + 1; return 0; } #ifdef CONFIG_LOCKDEP static LIST_HEAD(net_unlink_list); static void net_unlink_todo(struct net_device *dev) { if (list_empty(&dev->unlink_list)) list_add_tail(&dev->unlink_list, &net_unlink_list); } #endif static int __netdev_update_lower_level(struct net_device *dev, struct netdev_nested_priv *priv) { dev->lower_level = __netdev_lower_depth(dev) + 1; #ifdef CONFIG_LOCKDEP if (!priv) return 0; if (priv->flags & NESTED_SYNC_IMM) dev->nested_level = dev->lower_level - 1; if (priv->flags & NESTED_SYNC_TODO) net_unlink_todo(dev); #endif return 0; } int netdev_walk_all_lower_dev_rcu(struct net_device *dev, int (*fn)(struct net_device *dev, struct netdev_nested_priv *priv), struct netdev_nested_priv *priv) { struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; int ret, cur = 0; now = dev; iter = &dev->adj_list.lower; while (1) { if (now != dev) { ret = fn(now, priv); if (ret) return ret; } next = NULL; while (1) { ldev = netdev_next_lower_dev_rcu(now, &iter); if (!ldev) break; next = ldev; niter = &ldev->adj_list.lower; dev_stack[cur] = now; iter_stack[cur++] = iter; break; } if (!next) { if (!cur) return 0; next = dev_stack[--cur]; niter = iter_stack[cur]; } now = next; iter = niter; } return 0; } EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); /** * netdev_lower_get_first_private_rcu - Get the first ->private from the * lower neighbour list, RCU * variant * @dev: device * * Gets the first netdev_adjacent->private from the dev's lower neighbour * list. The caller must hold RCU read lock. */ void *netdev_lower_get_first_private_rcu(struct net_device *dev) { struct netdev_adjacent *lower; lower = list_first_or_null_rcu(&dev->adj_list.lower, struct netdev_adjacent, list); if (lower) return lower->private; return NULL; } EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); /** * netdev_master_upper_dev_get_rcu - Get master upper device * @dev: device * * Find a master upper device and return pointer to it or NULL in case * it's not there. The caller must hold the RCU read lock. */ struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) { struct netdev_adjacent *upper; upper = list_first_or_null_rcu(&dev->adj_list.upper, struct netdev_adjacent, list); if (upper && likely(upper->master)) return upper->dev; return NULL; } EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); static int netdev_adjacent_sysfs_add(struct net_device *dev, struct net_device *adj_dev, struct list_head *dev_list) { char linkname[IFNAMSIZ+7]; sprintf(linkname, dev_list == &dev->adj_list.upper ? "upper_%s" : "lower_%s", adj_dev->name); return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), linkname); } static void netdev_adjacent_sysfs_del(struct net_device *dev, char *name, struct list_head *dev_list) { char linkname[IFNAMSIZ+7]; sprintf(linkname, dev_list == &dev->adj_list.upper ? "upper_%s" : "lower_%s", name); sysfs_remove_link(&(dev->dev.kobj), linkname); } static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, struct net_device *adj_dev, struct list_head *dev_list) { return (dev_list == &dev->adj_list.upper || dev_list == &dev->adj_list.lower) && net_eq(dev_net(dev), dev_net(adj_dev)); } static int __netdev_adjacent_dev_insert(struct net_device *dev, struct net_device *adj_dev, struct list_head *dev_list, void *private, bool master) { struct netdev_adjacent *adj; int ret; adj = __netdev_find_adj(adj_dev, dev_list); if (adj) { adj->ref_nr += 1; pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", dev->name, adj_dev->name, adj->ref_nr); return 0; } adj = kmalloc(sizeof(*adj), GFP_KERNEL); if (!adj) return -ENOMEM; adj->dev = adj_dev; adj->master = master; adj->ref_nr = 1; adj->private = private; adj->ignore = false; netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); if (ret) goto free_adj; } /* Ensure that master link is always the first item in list. */ if (master) { ret = sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), "master"); if (ret) goto remove_symlinks; list_add_rcu(&adj->list, dev_list); } else { list_add_tail_rcu(&adj->list, dev_list); } return 0; remove_symlinks: if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); free_adj: netdev_put(adj_dev, &adj->dev_tracker); kfree(adj); return ret; } static void __netdev_adjacent_dev_remove(struct net_device *dev, struct net_device *adj_dev, u16 ref_nr, struct list_head *dev_list) { struct netdev_adjacent *adj; pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", dev->name, adj_dev->name, ref_nr); adj = __netdev_find_adj(adj_dev, dev_list); if (!adj) { pr_err("Adjacency does not exist for device %s from %s\n", dev->name, adj_dev->name); WARN_ON(1); return; } if (adj->ref_nr > ref_nr) { pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", dev->name, adj_dev->name, ref_nr, adj->ref_nr - ref_nr); adj->ref_nr -= ref_nr; return; } if (adj->master) sysfs_remove_link(&(dev->dev.kobj), "master"); if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); list_del_rcu(&adj->list); pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", adj_dev->name, dev->name, adj_dev->name); netdev_put(adj_dev, &adj->dev_tracker); kfree_rcu(adj, rcu); } static int __netdev_adjacent_dev_link_lists(struct net_device *dev, struct net_device *upper_dev, struct list_head *up_list, struct list_head *down_list, void *private, bool master) { int ret; ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, master); if (ret) return ret; ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, false); if (ret) { __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); return ret; } return 0; } static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, struct net_device *upper_dev, u16 ref_nr, struct list_head *up_list, struct list_head *down_list) { __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); } static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, struct net_device *upper_dev, void *private, bool master) { return __netdev_adjacent_dev_link_lists(dev, upper_dev, &dev->adj_list.upper, &upper_dev->adj_list.lower, private, master); } static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, struct net_device *upper_dev) { __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, &dev->adj_list.upper, &upper_dev->adj_list.lower); } static int __netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, bool master, void *upper_priv, void *upper_info, struct netdev_nested_priv *priv, struct netlink_ext_ack *extack) { struct netdev_notifier_changeupper_info changeupper_info = { .info = { .dev = dev, .extack = extack, }, .upper_dev = upper_dev, .master = master, .linking = true, .upper_info = upper_info, }; struct net_device *master_dev; int ret = 0; ASSERT_RTNL(); if (dev == upper_dev) return -EBUSY; /* To prevent loops, check if dev is not upper device to upper_dev. */ if (__netdev_has_upper_dev(upper_dev, dev)) return -EBUSY; if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) return -EMLINK; if (!master) { if (__netdev_has_upper_dev(dev, upper_dev)) return -EEXIST; } else { master_dev = __netdev_master_upper_dev_get(dev); if (master_dev) return master_dev == upper_dev ? -EEXIST : -EBUSY; } ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, &changeupper_info.info); ret = notifier_to_errno(ret); if (ret) return ret; ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, master); if (ret) return ret; ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, &changeupper_info.info); ret = notifier_to_errno(ret); if (ret) goto rollback; __netdev_update_upper_level(dev, NULL); __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); __netdev_update_lower_level(upper_dev, priv); __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, priv); return 0; rollback: __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); return ret; } /** * netdev_upper_dev_link - Add a link to the upper device * @dev: device * @upper_dev: new upper device * @extack: netlink extended ack * * Adds a link to device which is upper to this one. The caller must hold * the RTNL lock. On a failure a negative errno code is returned. * On success the reference counts are adjusted and the function * returns zero. */ int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, struct netlink_ext_ack *extack) { struct netdev_nested_priv priv = { .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, .data = NULL, }; return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL, &priv, extack); } EXPORT_SYMBOL(netdev_upper_dev_link); /** * netdev_master_upper_dev_link - Add a master link to the upper device * @dev: device * @upper_dev: new upper device * @upper_priv: upper device private * @upper_info: upper info to be passed down via notifier * @extack: netlink extended ack * * Adds a link to device which is upper to this one. In this case, only * one master upper device can be linked, although other non-master devices * might be linked as well. The caller must hold the RTNL lock. * On a failure a negative errno code is returned. On success the reference * counts are adjusted and the function returns zero. */ int netdev_master_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, void *upper_priv, void *upper_info, struct netlink_ext_ack *extack) { struct netdev_nested_priv priv = { .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, .data = NULL, }; return __netdev_upper_dev_link(dev, upper_dev, true, upper_priv, upper_info, &priv, extack); } EXPORT_SYMBOL(netdev_master_upper_dev_link); static void __netdev_upper_dev_unlink(struct net_device *dev, struct net_device *upper_dev, struct netdev_nested_priv *priv) { struct netdev_notifier_changeupper_info changeupper_info = { .info = { .dev = dev, }, .upper_dev = upper_dev, .linking = false, }; ASSERT_RTNL(); changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, &changeupper_info.info); __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, &changeupper_info.info); __netdev_update_upper_level(dev, NULL); __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); __netdev_update_lower_level(upper_dev, priv); __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, priv); } /** * netdev_upper_dev_unlink - Removes a link to upper device * @dev: device * @upper_dev: new upper device * * Removes a link to device which is upper to this one. The caller must hold * the RTNL lock. */ void netdev_upper_dev_unlink(struct net_device *dev, struct net_device *upper_dev) { struct netdev_nested_priv priv = { .flags = NESTED_SYNC_TODO, .data = NULL, }; __netdev_upper_dev_unlink(dev, upper_dev, &priv); } EXPORT_SYMBOL(netdev_upper_dev_unlink); static void __netdev_adjacent_dev_set(struct net_device *upper_dev, struct net_device *lower_dev, bool val) { struct netdev_adjacent *adj; adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); if (adj) adj->ignore = val; adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); if (adj) adj->ignore = val; } static void netdev_adjacent_dev_disable(struct net_device *upper_dev, struct net_device *lower_dev) { __netdev_adjacent_dev_set(upper_dev, lower_dev, true); } static void netdev_adjacent_dev_enable(struct net_device *upper_dev, struct net_device *lower_dev) { __netdev_adjacent_dev_set(upper_dev, lower_dev, false); } int netdev_adjacent_change_prepare(struct net_device *old_dev, struct net_device *new_dev, struct net_device *dev, struct netlink_ext_ack *extack) { struct netdev_nested_priv priv = { .flags = 0, .data = NULL, }; int err; if (!new_dev) return 0; if (old_dev && new_dev != old_dev) netdev_adjacent_dev_disable(dev, old_dev); err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, extack); if (err) { if (old_dev && new_dev != old_dev) netdev_adjacent_dev_enable(dev, old_dev); return err; } return 0; } EXPORT_SYMBOL(netdev_adjacent_change_prepare); void netdev_adjacent_change_commit(struct net_device *old_dev, struct net_device *new_dev, struct net_device *dev) { struct netdev_nested_priv priv = { .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, .data = NULL, }; if (!new_dev || !old_dev) return; if (new_dev == old_dev) return; netdev_adjacent_dev_enable(dev, old_dev); __netdev_upper_dev_unlink(old_dev, dev, &priv); } EXPORT_SYMBOL(netdev_adjacent_change_commit); void netdev_adjacent_change_abort(struct net_device *old_dev, struct net_device *new_dev, struct net_device *dev) { struct netdev_nested_priv priv = { .flags = 0, .data = NULL, }; if (!new_dev) return; if (old_dev && new_dev != old_dev) netdev_adjacent_dev_enable(dev, old_dev); __netdev_upper_dev_unlink(new_dev, dev, &priv); } EXPORT_SYMBOL(netdev_adjacent_change_abort); /** * netdev_bonding_info_change - Dispatch event about slave change * @dev: device * @bonding_info: info to dispatch * * Send NETDEV_BONDING_INFO to netdev notifiers with info. * The caller must hold the RTNL lock. */ void netdev_bonding_info_change(struct net_device *dev, struct netdev_bonding_info *bonding_info) { struct netdev_notifier_bonding_info info = { .info.dev = dev, }; memcpy(&info.bonding_info, bonding_info, sizeof(struct netdev_bonding_info)); call_netdevice_notifiers_info(NETDEV_BONDING_INFO, &info.info); } EXPORT_SYMBOL(netdev_bonding_info_change); static int netdev_offload_xstats_enable_l3(struct net_device *dev, struct netlink_ext_ack *extack) { struct netdev_notifier_offload_xstats_info info = { .info.dev = dev, .info.extack = extack, .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, }; int err; int rc; dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), GFP_KERNEL); if (!dev->offload_xstats_l3) return -ENOMEM; rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, NETDEV_OFFLOAD_XSTATS_DISABLE, &info.info); err = notifier_to_errno(rc); if (err) goto free_stats; return 0; free_stats: kfree(dev->offload_xstats_l3); dev->offload_xstats_l3 = NULL; return err; } int netdev_offload_xstats_enable(struct net_device *dev, enum netdev_offload_xstats_type type, struct netlink_ext_ack *extack) { ASSERT_RTNL(); if (netdev_offload_xstats_enabled(dev, type)) return -EALREADY; switch (type) { case NETDEV_OFFLOAD_XSTATS_TYPE_L3: return netdev_offload_xstats_enable_l3(dev, extack); } WARN_ON(1); return -EINVAL; } EXPORT_SYMBOL(netdev_offload_xstats_enable); static void netdev_offload_xstats_disable_l3(struct net_device *dev) { struct netdev_notifier_offload_xstats_info info = { .info.dev = dev, .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, }; call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, &info.info); kfree(dev->offload_xstats_l3); dev->offload_xstats_l3 = NULL; } int netdev_offload_xstats_disable(struct net_device *dev, enum netdev_offload_xstats_type type) { ASSERT_RTNL(); if (!netdev_offload_xstats_enabled(dev, type)) return -EALREADY; switch (type) { case NETDEV_OFFLOAD_XSTATS_TYPE_L3: netdev_offload_xstats_disable_l3(dev); return 0; } WARN_ON(1); return -EINVAL; } EXPORT_SYMBOL(netdev_offload_xstats_disable); static void netdev_offload_xstats_disable_all(struct net_device *dev) { netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); } static struct rtnl_hw_stats64 * netdev_offload_xstats_get_ptr(const struct net_device *dev, enum netdev_offload_xstats_type type) { switch (type) { case NETDEV_OFFLOAD_XSTATS_TYPE_L3: return dev->offload_xstats_l3; } WARN_ON(1); return NULL; } bool netdev_offload_xstats_enabled(const struct net_device *dev, enum netdev_offload_xstats_type type) { ASSERT_RTNL(); return netdev_offload_xstats_get_ptr(dev, type); } EXPORT_SYMBOL(netdev_offload_xstats_enabled); struct netdev_notifier_offload_xstats_ru { bool used; }; struct netdev_notifier_offload_xstats_rd { struct rtnl_hw_stats64 stats; bool used; }; static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, const struct rtnl_hw_stats64 *src) { dest->rx_packets += src->rx_packets; dest->tx_packets += src->tx_packets; dest->rx_bytes += src->rx_bytes; dest->tx_bytes += src->tx_bytes; dest->rx_errors += src->rx_errors; dest->tx_errors += src->tx_errors; dest->rx_dropped += src->rx_dropped; dest->tx_dropped += src->tx_dropped; dest->multicast += src->multicast; } static int netdev_offload_xstats_get_used(struct net_device *dev, enum netdev_offload_xstats_type type, bool *p_used, struct netlink_ext_ack *extack) { struct netdev_notifier_offload_xstats_ru report_used = {}; struct netdev_notifier_offload_xstats_info info = { .info.dev = dev, .info.extack = extack, .type = type, .report_used = &report_used, }; int rc; WARN_ON(!netdev_offload_xstats_enabled(dev, type)); rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, &info.info); *p_used = report_used.used; return notifier_to_errno(rc); } static int netdev_offload_xstats_get_stats(struct net_device *dev, enum netdev_offload_xstats_type type, struct rtnl_hw_stats64 *p_stats, bool *p_used, struct netlink_ext_ack *extack) { struct netdev_notifier_offload_xstats_rd report_delta = {}; struct netdev_notifier_offload_xstats_info info = { .info.dev = dev, .info.extack = extack, .type = type, .report_delta = &report_delta, }; struct rtnl_hw_stats64 *stats; int rc; stats = netdev_offload_xstats_get_ptr(dev, type); if (WARN_ON(!stats)) return -EINVAL; rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, &info.info); /* Cache whatever we got, even if there was an error, otherwise the * successful stats retrievals would get lost. */ netdev_hw_stats64_add(stats, &report_delta.stats); if (p_stats) *p_stats = *stats; *p_used = report_delta.used; return notifier_to_errno(rc); } int netdev_offload_xstats_get(struct net_device *dev, enum netdev_offload_xstats_type type, struct rtnl_hw_stats64 *p_stats, bool *p_used, struct netlink_ext_ack *extack) { ASSERT_RTNL(); if (p_stats) return netdev_offload_xstats_get_stats(dev, type, p_stats, p_used, extack); else return netdev_offload_xstats_get_used(dev, type, p_used, extack); } EXPORT_SYMBOL(netdev_offload_xstats_get); void netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, const struct rtnl_hw_stats64 *stats) { report_delta->used = true; netdev_hw_stats64_add(&report_delta->stats, stats); } EXPORT_SYMBOL(netdev_offload_xstats_report_delta); void netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) { report_used->used = true; } EXPORT_SYMBOL(netdev_offload_xstats_report_used); void netdev_offload_xstats_push_delta(struct net_device *dev, enum netdev_offload_xstats_type type, const struct rtnl_hw_stats64 *p_stats) { struct rtnl_hw_stats64 *stats; ASSERT_RTNL(); stats = netdev_offload_xstats_get_ptr(dev, type); if (WARN_ON(!stats)) return; netdev_hw_stats64_add(stats, p_stats); } EXPORT_SYMBOL(netdev_offload_xstats_push_delta); /** * netdev_get_xmit_slave - Get the xmit slave of master device * @dev: device * @skb: The packet * @all_slaves: assume all the slaves are active * * The reference counters are not incremented so the caller must be * careful with locks. The caller must hold RCU lock. * %NULL is returned if no slave is found. */ struct net_device *netdev_get_xmit_slave(struct net_device *dev, struct sk_buff *skb, bool all_slaves) { const struct net_device_ops *ops = dev->netdev_ops; if (!ops->ndo_get_xmit_slave) return NULL; return ops->ndo_get_xmit_slave(dev, skb, all_slaves); } EXPORT_SYMBOL(netdev_get_xmit_slave); static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, struct sock *sk) { const struct net_device_ops *ops = dev->netdev_ops; if (!ops->ndo_sk_get_lower_dev) return NULL; return ops->ndo_sk_get_lower_dev(dev, sk); } /** * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket * @dev: device * @sk: the socket * * %NULL is returned if no lower device is found. */ struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, struct sock *sk) { struct net_device *lower; lower = netdev_sk_get_lower_dev(dev, sk); while (lower) { dev = lower; lower = netdev_sk_get_lower_dev(dev, sk); } return dev; } EXPORT_SYMBOL(netdev_sk_get_lowest_dev); static void netdev_adjacent_add_links(struct net_device *dev) { struct netdev_adjacent *iter; struct net *net = dev_net(dev); list_for_each_entry(iter, &dev->adj_list.upper, list) { if (!net_eq(net, dev_net(iter->dev))) continue; netdev_adjacent_sysfs_add(iter->dev, dev, &iter->dev->adj_list.lower); netdev_adjacent_sysfs_add(dev, iter->dev, &dev->adj_list.upper); } list_for_each_entry(iter, &dev->adj_list.lower, list) { if (!net_eq(net, dev_net(iter->dev))) continue; netdev_adjacent_sysfs_add(iter->dev, dev, &iter->dev->adj_list.upper); netdev_adjacent_sysfs_add(dev, iter->dev, &dev->adj_list.lower); } } static void netdev_adjacent_del_links(struct net_device *dev) { struct netdev_adjacent *iter; struct net *net = dev_net(dev); list_for_each_entry(iter, &dev->adj_list.upper, list) { if (!net_eq(net, dev_net(iter->dev))) continue; netdev_adjacent_sysfs_del(iter->dev, dev->name, &iter->dev->adj_list.lower); netdev_adjacent_sysfs_del(dev, iter->dev->name, &dev->adj_list.upper); } list_for_each_entry(iter, &dev->adj_list.lower, list) { if (!net_eq(net, dev_net(iter->dev))) continue; netdev_adjacent_sysfs_del(iter->dev, dev->name, &iter->dev->adj_list.upper); netdev_adjacent_sysfs_del(dev, iter->dev->name, &dev->adj_list.lower); } } void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) { struct netdev_adjacent *iter; struct net *net = dev_net(dev); list_for_each_entry(iter, &dev->adj_list.upper, list) { if (!net_eq(net, dev_net(iter->dev))) continue; netdev_adjacent_sysfs_del(iter->dev, oldname, &iter->dev->adj_list.lower); netdev_adjacent_sysfs_add(iter->dev, dev, &iter->dev->adj_list.lower); } list_for_each_entry(iter, &dev->adj_list.lower, list) { if (!net_eq(net, dev_net(iter->dev))) continue; netdev_adjacent_sysfs_del(iter->dev, oldname, &iter->dev->adj_list.upper); netdev_adjacent_sysfs_add(iter->dev, dev, &iter->dev->adj_list.upper); } } void *netdev_lower_dev_get_private(struct net_device *dev, struct net_device *lower_dev) { struct netdev_adjacent *lower; if (!lower_dev) return NULL; lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); if (!lower) return NULL; return lower->private; } EXPORT_SYMBOL(netdev_lower_dev_get_private); /** * netdev_lower_state_changed - Dispatch event about lower device state change * @lower_dev: device * @lower_state_info: state to dispatch * * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. * The caller must hold the RTNL lock. */ void netdev_lower_state_changed(struct net_device *lower_dev, void *lower_state_info) { struct netdev_notifier_changelowerstate_info changelowerstate_info = { .info.dev = lower_dev, }; ASSERT_RTNL(); changelowerstate_info.lower_state_info = lower_state_info; call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, &changelowerstate_info.info); } EXPORT_SYMBOL(netdev_lower_state_changed); static void dev_change_rx_flags(struct net_device *dev, int flags) { const struct net_device_ops *ops = dev->netdev_ops; if (ops->ndo_change_rx_flags) ops->ndo_change_rx_flags(dev, flags); } static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) { unsigned int old_flags = dev->flags; kuid_t uid; kgid_t gid; ASSERT_RTNL(); dev->flags |= IFF_PROMISC; dev->promiscuity += inc; if (dev->promiscuity == 0) { /* * Avoid overflow. * If inc causes overflow, untouch promisc and return error. */ if (inc < 0) dev->flags &= ~IFF_PROMISC; else { dev->promiscuity -= inc; netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); return -EOVERFLOW; } } if (dev->flags != old_flags) { pr_info("device %s %s promiscuous mode\n", dev->name, dev->flags & IFF_PROMISC ? "entered" : "left"); if (audit_enabled) { current_uid_gid(&uid, &gid); audit_log(audit_context(), GFP_ATOMIC, AUDIT_ANOM_PROMISCUOUS, "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", dev->name, (dev->flags & IFF_PROMISC), (old_flags & IFF_PROMISC), from_kuid(&init_user_ns, audit_get_loginuid(current)), from_kuid(&init_user_ns, uid), from_kgid(&init_user_ns, gid), audit_get_sessionid(current)); } dev_change_rx_flags(dev, IFF_PROMISC); } if (notify) __dev_notify_flags(dev, old_flags, IFF_PROMISC); return 0; } /** * dev_set_promiscuity - update promiscuity count on a device * @dev: device * @inc: modifier * * Add or remove promiscuity from a device. While the count in the device * remains above zero the interface remains promiscuous. Once it hits zero * the device reverts back to normal filtering operation. A negative inc * value is used to drop promiscuity on the device. * Return 0 if successful or a negative errno code on error. */ int dev_set_promiscuity(struct net_device *dev, int inc) { unsigned int old_flags = dev->flags; int err; err = __dev_set_promiscuity(dev, inc, true); if (err < 0) return err; if (dev->flags != old_flags) dev_set_rx_mode(dev); return err; } EXPORT_SYMBOL(dev_set_promiscuity); static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) { unsigned int old_flags = dev->flags, old_gflags = dev->gflags; ASSERT_RTNL(); dev->flags |= IFF_ALLMULTI; dev->allmulti += inc; if (dev->allmulti == 0) { /* * Avoid overflow. * If inc causes overflow, untouch allmulti and return error. */ if (inc < 0) dev->flags &= ~IFF_ALLMULTI; else { dev->allmulti -= inc; netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); return -EOVERFLOW; } } if (dev->flags ^ old_flags) { dev_change_rx_flags(dev, IFF_ALLMULTI); dev_set_rx_mode(dev); if (notify) __dev_notify_flags(dev, old_flags, dev->gflags ^ old_gflags); } return 0; } /** * dev_set_allmulti - update allmulti count on a device * @dev: device * @inc: modifier * * Add or remove reception of all multicast frames to a device. While the * count in the device remains above zero the interface remains listening * to all interfaces. Once it hits zero the device reverts back to normal * filtering operation. A negative @inc value is used to drop the counter * when releasing a resource needing all multicasts. * Return 0 if successful or a negative errno code on error. */ int dev_set_allmulti(struct net_device *dev, int inc) { return __dev_set_allmulti(dev, inc, true); } EXPORT_SYMBOL(dev_set_allmulti); /* * Upload unicast and multicast address lists to device and * configure RX filtering. When the device doesn't support unicast * filtering it is put in promiscuous mode while unicast addresses * are present. */ void __dev_set_rx_mode(struct net_device *dev) { const struct net_device_ops *ops = dev->netdev_ops; /* dev_open will call this function so the list will stay sane. */ if (!(dev->flags&IFF_UP)) return; if (!netif_device_present(dev)) return; if (!(dev->priv_flags & IFF_UNICAST_FLT)) { /* Unicast addresses changes may only happen under the rtnl, * therefore calling __dev_set_promiscuity here is safe. */ if (!netdev_uc_empty(dev) && !dev->uc_promisc) { __dev_set_promiscuity(dev, 1, false); dev->uc_promisc = true; } else if (netdev_uc_empty(dev) && dev->uc_promisc) { __dev_set_promiscuity(dev, -1, false); dev->uc_promisc = false; } } if (ops->ndo_set_rx_mode) ops->ndo_set_rx_mode(dev); } void dev_set_rx_mode(struct net_device *dev) { netif_addr_lock_bh(dev); __dev_set_rx_mode(dev); netif_addr_unlock_bh(dev); } /** * dev_get_flags - get flags reported to userspace * @dev: device * * Get the combination of flag bits exported through APIs to userspace. */ unsigned int dev_get_flags(const struct net_device *dev) { unsigned int flags; flags = (dev->flags & ~(IFF_PROMISC | IFF_ALLMULTI | IFF_RUNNING | IFF_LOWER_UP | IFF_DORMANT)) | (dev->gflags & (IFF_PROMISC | IFF_ALLMULTI)); if (netif_running(dev)) { if (netif_oper_up(dev)) flags |= IFF_RUNNING; if (netif_carrier_ok(dev)) flags |= IFF_LOWER_UP; if (netif_dormant(dev)) flags |= IFF_DORMANT; } return flags; } EXPORT_SYMBOL(dev_get_flags); int __dev_change_flags(struct net_device *dev, unsigned int flags, struct netlink_ext_ack *extack) { unsigned int old_flags = dev->flags; int ret; ASSERT_RTNL(); /* * Set the flags on our device. */ dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | IFF_AUTOMEDIA)) | (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | IFF_ALLMULTI)); /* * Load in the correct multicast list now the flags have changed. */ if ((old_flags ^ flags) & IFF_MULTICAST) dev_change_rx_flags(dev, IFF_MULTICAST); dev_set_rx_mode(dev); /* * Have we downed the interface. We handle IFF_UP ourselves * according to user attempts to set it, rather than blindly * setting it. */ ret = 0; if ((old_flags ^ flags) & IFF_UP) { if (old_flags & IFF_UP) __dev_close(dev); else ret = __dev_open(dev, extack); } if ((flags ^ dev->gflags) & IFF_PROMISC) { int inc = (flags & IFF_PROMISC) ? 1 : -1; unsigned int old_flags = dev->flags; dev->gflags ^= IFF_PROMISC; if (__dev_set_promiscuity(dev, inc, false) >= 0) if (dev->flags != old_flags) dev_set_rx_mode(dev); } /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI * is important. Some (broken) drivers set IFF_PROMISC, when * IFF_ALLMULTI is requested not asking us and not reporting. */ if ((flags ^ dev->gflags) & IFF_ALLMULTI) { int inc = (flags & IFF_ALLMULTI) ? 1 : -1; dev->gflags ^= IFF_ALLMULTI; __dev_set_allmulti(dev, inc, false); } return ret; } void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, unsigned int gchanges) { unsigned int changes = dev->flags ^ old_flags; if (gchanges) rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); if (changes & IFF_UP) { if (dev->flags & IFF_UP) call_netdevice_notifiers(NETDEV_UP, dev); else call_netdevice_notifiers(NETDEV_DOWN, dev); } if (dev->flags & IFF_UP && (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { struct netdev_notifier_change_info change_info = { .info = { .dev = dev, }, .flags_changed = changes, }; call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); } } /** * dev_change_flags - change device settings * @dev: device * @flags: device state flags * @extack: netlink extended ack * * Change settings on device based state flags. The flags are * in the userspace exported format. */ int dev_change_flags(struct net_device *dev, unsigned int flags, struct netlink_ext_ack *extack) { int ret; unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; ret = __dev_change_flags(dev, flags, extack); if (ret < 0) return ret; changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); __dev_notify_flags(dev, old_flags, changes); return ret; } EXPORT_SYMBOL(dev_change_flags); int __dev_set_mtu(struct net_device *dev, int new_mtu) { const struct net_device_ops *ops = dev->netdev_ops; if (ops->ndo_change_mtu) return ops->ndo_change_mtu(dev, new_mtu); /* Pairs with all the lockless reads of dev->mtu in the stack */ WRITE_ONCE(dev->mtu, new_mtu); return 0; } EXPORT_SYMBOL(__dev_set_mtu); int dev_validate_mtu(struct net_device *dev, int new_mtu, struct netlink_ext_ack *extack) { /* MTU must be positive, and in range */ if (new_mtu < 0 || new_mtu < dev->min_mtu) { NL_SET_ERR_MSG(extack, "mtu less than device minimum"); return -EINVAL; } if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); return -EINVAL; } return 0; } /** * dev_set_mtu_ext - Change maximum transfer unit * @dev: device * @new_mtu: new transfer unit * @extack: netlink extended ack * * Change the maximum transfer size of the network device. */ int dev_set_mtu_ext(struct net_device *dev, int new_mtu, struct netlink_ext_ack *extack) { int err, orig_mtu; if (new_mtu == dev->mtu) return 0; err = dev_validate_mtu(dev, new_mtu, extack); if (err) return err; if (!netif_device_present(dev)) return -ENODEV; err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); err = notifier_to_errno(err); if (err) return err; orig_mtu = dev->mtu; err = __dev_set_mtu(dev, new_mtu); if (!err) { err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, orig_mtu); err = notifier_to_errno(err); if (err) { /* setting mtu back and notifying everyone again, * so that they have a chance to revert changes. */ __dev_set_mtu(dev, orig_mtu); call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, new_mtu); } } return err; } int dev_set_mtu(struct net_device *dev, int new_mtu) { struct netlink_ext_ack extack; int err; memset(&extack, 0, sizeof(extack)); err = dev_set_mtu_ext(dev, new_mtu, &extack); if (err && extack._msg) net_err_ratelimited("%s: %s\n", dev->name, extack._msg); return err; } EXPORT_SYMBOL(dev_set_mtu); /** * dev_change_tx_queue_len - Change TX queue length of a netdevice * @dev: device * @new_len: new tx queue length */ int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) { unsigned int orig_len = dev->tx_queue_len; int res; if (new_len != (unsigned int)new_len) return -ERANGE; if (new_len != orig_len) { dev->tx_queue_len = new_len; res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); res = notifier_to_errno(res); if (res) goto err_rollback; res = dev_qdisc_change_tx_queue_len(dev); if (res) goto err_rollback; } return 0; err_rollback: netdev_err(dev, "refused to change device tx_queue_len\n"); dev->tx_queue_len = orig_len; return res; } /** * dev_set_group - Change group this device belongs to * @dev: device * @new_group: group this device should belong to */ void dev_set_group(struct net_device *dev, int new_group) { dev->group = new_group; } /** * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. * @dev: device * @addr: new address * @extack: netlink extended ack */ int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, struct netlink_ext_ack *extack) { struct netdev_notifier_pre_changeaddr_info info = { .info.dev = dev, .info.extack = extack, .dev_addr = addr, }; int rc; rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); return notifier_to_errno(rc); } EXPORT_SYMBOL(dev_pre_changeaddr_notify); /** * dev_set_mac_address - Change Media Access Control Address * @dev: device * @sa: new address * @extack: netlink extended ack * * Change the hardware (MAC) address of the device */ int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, struct netlink_ext_ack *extack) { const struct net_device_ops *ops = dev->netdev_ops; int err; if (!ops->ndo_set_mac_address) return -EOPNOTSUPP; if (sa->sa_family != dev->type) return -EINVAL; if (!netif_device_present(dev)) return -ENODEV; err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); if (err) return err; err = ops->ndo_set_mac_address(dev, sa); if (err) return err; dev->addr_assign_type = NET_ADDR_SET; call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); add_device_randomness(dev->dev_addr, dev->addr_len); return 0; } EXPORT_SYMBOL(dev_set_mac_address); static DECLARE_RWSEM(dev_addr_sem); int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, struct netlink_ext_ack *extack) { int ret; down_write(&dev_addr_sem); ret = dev_set_mac_address(dev, sa, extack); up_write(&dev_addr_sem); return ret; } EXPORT_SYMBOL(dev_set_mac_address_user); int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) { size_t size = sizeof(sa->sa_data_min); struct net_device *dev; int ret = 0; down_read(&dev_addr_sem); rcu_read_lock(); dev = dev_get_by_name_rcu(net, dev_name); if (!dev) { ret = -ENODEV; goto unlock; } if (!dev->addr_len) memset(sa->sa_data, 0, size); else memcpy(sa->sa_data, dev->dev_addr, min_t(size_t, size, dev->addr_len)); sa->sa_family = dev->type; unlock: rcu_read_unlock(); up_read(&dev_addr_sem); return ret; } EXPORT_SYMBOL(dev_get_mac_address); /** * dev_change_carrier - Change device carrier * @dev: device * @new_carrier: new value * * Change device carrier */ int dev_change_carrier(struct net_device *dev, bool new_carrier) { const struct net_device_ops *ops = dev->netdev_ops; if (!ops->ndo_change_carrier) return -EOPNOTSUPP; if (!netif_device_present(dev)) return -ENODEV; return ops->ndo_change_carrier(dev, new_carrier); } /** * dev_get_phys_port_id - Get device physical port ID * @dev: device * @ppid: port ID * * Get device physical port ID */ int dev_get_phys_port_id(struct net_device *dev, struct netdev_phys_item_id *ppid) { const struct net_device_ops *ops = dev->netdev_ops; if (!ops->ndo_get_phys_port_id) return -EOPNOTSUPP; return ops->ndo_get_phys_port_id(dev, ppid); } /** * dev_get_phys_port_name - Get device physical port name * @dev: device * @name: port name * @len: limit of bytes to copy to name * * Get device physical port name */ int dev_get_phys_port_name(struct net_device *dev, char *name, size_t len) { const struct net_device_ops *ops = dev->netdev_ops; int err; if (ops->ndo_get_phys_port_name) { err = ops->ndo_get_phys_port_name(dev, name, len); if (err != -EOPNOTSUPP) return err; } return devlink_compat_phys_port_name_get(dev, name, len); } /** * dev_get_port_parent_id - Get the device's port parent identifier * @dev: network device * @ppid: pointer to a storage for the port's parent identifier * @recurse: allow/disallow recursion to lower devices * * Get the devices's port parent identifier */ int dev_get_port_parent_id(struct net_device *dev, struct netdev_phys_item_id *ppid, bool recurse) { const struct net_device_ops *ops = dev->netdev_ops; struct netdev_phys_item_id first = { }; struct net_device *lower_dev; struct list_head *iter; int err; if (ops->ndo_get_port_parent_id) { err = ops->ndo_get_port_parent_id(dev, ppid); if (err != -EOPNOTSUPP) return err; } err = devlink_compat_switch_id_get(dev, ppid); if (!recurse || err != -EOPNOTSUPP) return err; netdev_for_each_lower_dev(dev, lower_dev, iter) { err = dev_get_port_parent_id(lower_dev, ppid, true); if (err) break; if (!first.id_len) first = *ppid; else if (memcmp(&first, ppid, sizeof(*ppid))) return -EOPNOTSUPP; } return err; } EXPORT_SYMBOL(dev_get_port_parent_id); /** * netdev_port_same_parent_id - Indicate if two network devices have * the same port parent identifier * @a: first network device * @b: second network device */ bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) { struct netdev_phys_item_id a_id = { }; struct netdev_phys_item_id b_id = { }; if (dev_get_port_parent_id(a, &a_id, true) || dev_get_port_parent_id(b, &b_id, true)) return false; return netdev_phys_item_id_same(&a_id, &b_id); } EXPORT_SYMBOL(netdev_port_same_parent_id); /** * dev_change_proto_down - set carrier according to proto_down. * * @dev: device * @proto_down: new value */ int dev_change_proto_down(struct net_device *dev, bool proto_down) { if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN)) return -EOPNOTSUPP; if (!netif_device_present(dev)) return -ENODEV; if (proto_down) netif_carrier_off(dev); else netif_carrier_on(dev); dev->proto_down = proto_down; return 0; } /** * dev_change_proto_down_reason - proto down reason * * @dev: device * @mask: proto down mask * @value: proto down value */ void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, u32 value) { int b; if (!mask) { dev->proto_down_reason = value; } else { for_each_set_bit(b, &mask, 32) { if (value & (1 << b)) dev->proto_down_reason |= BIT(b); else dev->proto_down_reason &= ~BIT(b); } } } struct bpf_xdp_link { struct bpf_link link; struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ int flags; }; static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) { if (flags & XDP_FLAGS_HW_MODE) return XDP_MODE_HW; if (flags & XDP_FLAGS_DRV_MODE) return XDP_MODE_DRV; if (flags & XDP_FLAGS_SKB_MODE) return XDP_MODE_SKB; return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; } static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) { switch (mode) { case XDP_MODE_SKB: return generic_xdp_install; case XDP_MODE_DRV: case XDP_MODE_HW: return dev->netdev_ops->ndo_bpf; default: return NULL; } } static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, enum bpf_xdp_mode mode) { return dev->xdp_state[mode].link; } static struct bpf_prog *dev_xdp_prog(struct net_device *dev, enum bpf_xdp_mode mode) { struct bpf_xdp_link *link = dev_xdp_link(dev, mode); if (link) return link->link.prog; return dev->xdp_state[mode].prog; } u8 dev_xdp_prog_count(struct net_device *dev) { u8 count = 0; int i; for (i = 0; i < __MAX_XDP_MODE; i++) if (dev->xdp_state[i].prog || dev->xdp_state[i].link) count++; return count; } EXPORT_SYMBOL_GPL(dev_xdp_prog_count); u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) { struct bpf_prog *prog = dev_xdp_prog(dev, mode); return prog ? prog->aux->id : 0; } static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, struct bpf_xdp_link *link) { dev->xdp_state[mode].link = link; dev->xdp_state[mode].prog = NULL; } static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, struct bpf_prog *prog) { dev->xdp_state[mode].link = NULL; dev->xdp_state[mode].prog = prog; } static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, bpf_op_t bpf_op, struct netlink_ext_ack *extack, u32 flags, struct bpf_prog *prog) { struct netdev_bpf xdp; int err; memset(&xdp, 0, sizeof(xdp)); xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; xdp.extack = extack; xdp.flags = flags; xdp.prog = prog; /* Drivers assume refcnt is already incremented (i.e, prog pointer is * "moved" into driver), so they don't increment it on their own, but * they do decrement refcnt when program is detached or replaced. * Given net_device also owns link/prog, we need to bump refcnt here * to prevent drivers from underflowing it. */ if (prog) bpf_prog_inc(prog); err = bpf_op(dev, &xdp); if (err) { if (prog) bpf_prog_put(prog); return err; } if (mode != XDP_MODE_HW) bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); return 0; } static void dev_xdp_uninstall(struct net_device *dev) { struct bpf_xdp_link *link; struct bpf_prog *prog; enum bpf_xdp_mode mode; bpf_op_t bpf_op; ASSERT_RTNL(); for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { prog = dev_xdp_prog(dev, mode); if (!prog) continue; bpf_op = dev_xdp_bpf_op(dev, mode); if (!bpf_op) continue; WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); /* auto-detach link from net device */ link = dev_xdp_link(dev, mode); if (link) link->dev = NULL; else bpf_prog_put(prog); dev_xdp_set_link(dev, mode, NULL); } } static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, struct bpf_xdp_link *link, struct bpf_prog *new_prog, struct bpf_prog *old_prog, u32 flags) { unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); struct bpf_prog *cur_prog; struct net_device *upper; struct list_head *iter; enum bpf_xdp_mode mode; bpf_op_t bpf_op; int err; ASSERT_RTNL(); /* either link or prog attachment, never both */ if (link && (new_prog || old_prog)) return -EINVAL; /* link supports only XDP mode flags */ if (link && (flags & ~XDP_FLAGS_MODES)) { NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); return -EINVAL; } /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ if (num_modes > 1) { NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); return -EINVAL; } /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ if (!num_modes && dev_xdp_prog_count(dev) > 1) { NL_SET_ERR_MSG(extack, "More than one program loaded, unset mode is ambiguous"); return -EINVAL; } /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); return -EINVAL; } mode = dev_xdp_mode(dev, flags); /* can't replace attached link */ if (dev_xdp_link(dev, mode)) { NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); return -EBUSY; } /* don't allow if an upper device already has a program */ netdev_for_each_upper_dev_rcu(dev, upper, iter) { if (dev_xdp_prog_count(upper) > 0) { NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); return -EEXIST; } } cur_prog = dev_xdp_prog(dev, mode); /* can't replace attached prog with link */ if (link && cur_prog) { NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); return -EBUSY; } if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { NL_SET_ERR_MSG(extack, "Active program does not match expected"); return -EEXIST; } /* put effective new program into new_prog */ if (link) new_prog = link->link.prog; if (new_prog) { bool offload = mode == XDP_MODE_HW; enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB ? XDP_MODE_DRV : XDP_MODE_SKB; if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { NL_SET_ERR_MSG(extack, "XDP program already attached"); return -EBUSY; } if (!offload && dev_xdp_prog(dev, other_mode)) { NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); return -EEXIST; } if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) { NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported"); return -EINVAL; } if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); return -EINVAL; } if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); return -EINVAL; } } /* don't call drivers if the effective program didn't change */ if (new_prog != cur_prog) { bpf_op = dev_xdp_bpf_op(dev, mode); if (!bpf_op) { NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); return -EOPNOTSUPP; } err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); if (err) return err; } if (link) dev_xdp_set_link(dev, mode, link); else dev_xdp_set_prog(dev, mode, new_prog); if (cur_prog) bpf_prog_put(cur_prog); return 0; } static int dev_xdp_attach_link(struct net_device *dev, struct netlink_ext_ack *extack, struct bpf_xdp_link *link) { return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); } static int dev_xdp_detach_link(struct net_device *dev, struct netlink_ext_ack *extack, struct bpf_xdp_link *link) { enum bpf_xdp_mode mode; bpf_op_t bpf_op; ASSERT_RTNL(); mode = dev_xdp_mode(dev, link->flags); if (dev_xdp_link(dev, mode) != link) return -EINVAL; bpf_op = dev_xdp_bpf_op(dev, mode); WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); dev_xdp_set_link(dev, mode, NULL); return 0; } static void bpf_xdp_link_release(struct bpf_link *link) { struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); rtnl_lock(); /* if racing with net_device's tear down, xdp_link->dev might be * already NULL, in which case link was already auto-detached */ if (xdp_link->dev) { WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); xdp_link->dev = NULL; } rtnl_unlock(); } static int bpf_xdp_link_detach(struct bpf_link *link) { bpf_xdp_link_release(link); return 0; } static void bpf_xdp_link_dealloc(struct bpf_link *link) { struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); kfree(xdp_link); } static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, struct seq_file *seq) { struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); u32 ifindex = 0; rtnl_lock(); if (xdp_link->dev) ifindex = xdp_link->dev->ifindex; rtnl_unlock(); seq_printf(seq, "ifindex:\t%u\n", ifindex); } static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, struct bpf_link_info *info) { struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); u32 ifindex = 0; rtnl_lock(); if (xdp_link->dev) ifindex = xdp_link->dev->ifindex; rtnl_unlock(); info->xdp.ifindex = ifindex; return 0; } static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, struct bpf_prog *old_prog) { struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); enum bpf_xdp_mode mode; bpf_op_t bpf_op; int err = 0; rtnl_lock(); /* link might have been auto-released already, so fail */ if (!xdp_link->dev) { err = -ENOLINK; goto out_unlock; } if (old_prog && link->prog != old_prog) { err = -EPERM; goto out_unlock; } old_prog = link->prog; if (old_prog->type != new_prog->type || old_prog->expected_attach_type != new_prog->expected_attach_type) { err = -EINVAL; goto out_unlock; } if (old_prog == new_prog) { /* no-op, don't disturb drivers */ bpf_prog_put(new_prog); goto out_unlock; } mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, xdp_link->flags, new_prog); if (err) goto out_unlock; old_prog = xchg(&link->prog, new_prog); bpf_prog_put(old_prog); out_unlock: rtnl_unlock(); return err; } static const struct bpf_link_ops bpf_xdp_link_lops = { .release = bpf_xdp_link_release, .dealloc = bpf_xdp_link_dealloc, .detach = bpf_xdp_link_detach, .show_fdinfo = bpf_xdp_link_show_fdinfo, .fill_link_info = bpf_xdp_link_fill_link_info, .update_prog = bpf_xdp_link_update, }; int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) { struct net *net = current->nsproxy->net_ns; struct bpf_link_primer link_primer; struct bpf_xdp_link *link; struct net_device *dev; int err, fd; rtnl_lock(); dev = dev_get_by_index(net, attr->link_create.target_ifindex); if (!dev) { rtnl_unlock(); return -EINVAL; } link = kzalloc(sizeof(*link), GFP_USER); if (!link) { err = -ENOMEM; goto unlock; } bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); link->dev = dev; link->flags = attr->link_create.flags; err = bpf_link_prime(&link->link, &link_primer); if (err) { kfree(link); goto unlock; } err = dev_xdp_attach_link(dev, NULL, link); rtnl_unlock(); if (err) { link->dev = NULL; bpf_link_cleanup(&link_primer); goto out_put_dev; } fd = bpf_link_settle(&link_primer); /* link itself doesn't hold dev's refcnt to not complicate shutdown */ dev_put(dev); return fd; unlock: rtnl_unlock(); out_put_dev: dev_put(dev); return err; } /** * dev_change_xdp_fd - set or clear a bpf program for a device rx path * @dev: device * @extack: netlink extended ack * @fd: new program fd or negative value to clear * @expected_fd: old program fd that userspace expects to replace or clear * @flags: xdp-related flags * * Set or clear a bpf program for a device */ int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, int fd, int expected_fd, u32 flags) { enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); struct bpf_prog *new_prog = NULL, *old_prog = NULL; int err; ASSERT_RTNL(); if (fd >= 0) { new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, mode != XDP_MODE_SKB); if (IS_ERR(new_prog)) return PTR_ERR(new_prog); } if (expected_fd >= 0) { old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, mode != XDP_MODE_SKB); if (IS_ERR(old_prog)) { err = PTR_ERR(old_prog); old_prog = NULL; goto err_out; } } err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); err_out: if (err && new_prog) bpf_prog_put(new_prog); if (old_prog) bpf_prog_put(old_prog); return err; } /** * dev_new_index - allocate an ifindex * @net: the applicable net namespace * * Returns a suitable unique value for a new device interface * number. The caller must hold the rtnl semaphore or the * dev_base_lock to be sure it remains unique. */ static int dev_new_index(struct net *net) { int ifindex = net->ifindex; for (;;) { if (++ifindex <= 0) ifindex = 1; if (!__dev_get_by_index(net, ifindex)) return net->ifindex = ifindex; } } /* Delayed registration/unregisteration */ LIST_HEAD(net_todo_list); DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); static void net_set_todo(struct net_device *dev) { list_add_tail(&dev->todo_list, &net_todo_list); atomic_inc(&dev_net(dev)->dev_unreg_count); } static netdev_features_t netdev_sync_upper_features(struct net_device *lower, struct net_device *upper, netdev_features_t features) { netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; netdev_features_t feature; int feature_bit; for_each_netdev_feature(upper_disables, feature_bit) { feature = __NETIF_F_BIT(feature_bit); if (!(upper->wanted_features & feature) && (features & feature)) { netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", &feature, upper->name); features &= ~feature; } } return features; } static void netdev_sync_lower_features(struct net_device *upper, struct net_device *lower, netdev_features_t features) { netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; netdev_features_t feature; int feature_bit; for_each_netdev_feature(upper_disables, feature_bit) { feature = __NETIF_F_BIT(feature_bit); if (!(features & feature) && (lower->features & feature)) { netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", &feature, lower->name); lower->wanted_features &= ~feature; __netdev_update_features(lower); if (unlikely(lower->features & feature)) netdev_WARN(upper, "failed to disable %pNF on %s!\n", &feature, lower->name); else netdev_features_change(lower); } } } static netdev_features_t netdev_fix_features(struct net_device *dev, netdev_features_t features) { /* Fix illegal checksum combinations */ if ((features & NETIF_F_HW_CSUM) && (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { netdev_warn(dev, "mixed HW and IP checksum settings.\n"); features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); } /* TSO requires that SG is present as well. */ if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); features &= ~NETIF_F_ALL_TSO; } if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && !(features & NETIF_F_IP_CSUM)) { netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); features &= ~NETIF_F_TSO; features &= ~NETIF_F_TSO_ECN; } if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && !(features & NETIF_F_IPV6_CSUM)) { netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); features &= ~NETIF_F_TSO6; } /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) features &= ~NETIF_F_TSO_MANGLEID; /* TSO ECN requires that TSO is present as well. */ if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) features &= ~NETIF_F_TSO_ECN; /* Software GSO depends on SG. */ if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); features &= ~NETIF_F_GSO; } /* GSO partial features require GSO partial be set */ if ((features & dev->gso_partial_features) && !(features & NETIF_F_GSO_PARTIAL)) { netdev_dbg(dev, "Dropping partially supported GSO features since no GSO partial.\n"); features &= ~dev->gso_partial_features; } if (!(features & NETIF_F_RXCSUM)) { /* NETIF_F_GRO_HW implies doing RXCSUM since every packet * successfully merged by hardware must also have the * checksum verified by hardware. If the user does not * want to enable RXCSUM, logically, we should disable GRO_HW. */ if (features & NETIF_F_GRO_HW) { netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); features &= ~NETIF_F_GRO_HW; } } /* LRO/HW-GRO features cannot be combined with RX-FCS */ if (features & NETIF_F_RXFCS) { if (features & NETIF_F_LRO) { netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); features &= ~NETIF_F_LRO; } if (features & NETIF_F_GRO_HW) { netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); features &= ~NETIF_F_GRO_HW; } } if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); features &= ~NETIF_F_LRO; } if (features & NETIF_F_HW_TLS_TX) { bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) == (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); bool hw_csum = features & NETIF_F_HW_CSUM; if (!ip_csum && !hw_csum) { netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); features &= ~NETIF_F_HW_TLS_TX; } } if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); features &= ~NETIF_F_HW_TLS_RX; } return features; } int __netdev_update_features(struct net_device *dev) { struct net_device *upper, *lower; netdev_features_t features; struct list_head *iter; int err = -1; ASSERT_RTNL(); features = netdev_get_wanted_features(dev); if (dev->netdev_ops->ndo_fix_features) features = dev->netdev_ops->ndo_fix_features(dev, features); /* driver might be less strict about feature dependencies */ features = netdev_fix_features(dev, features); /* some features can't be enabled if they're off on an upper device */ netdev_for_each_upper_dev_rcu(dev, upper, iter) features = netdev_sync_upper_features(dev, upper, features); if (dev->features == features) goto sync_lower; netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", &dev->features, &features); if (dev->netdev_ops->ndo_set_features) err = dev->netdev_ops->ndo_set_features(dev, features); else err = 0; if (unlikely(err < 0)) { netdev_err(dev, "set_features() failed (%d); wanted %pNF, left %pNF\n", err, &features, &dev->features); /* return non-0 since some features might have changed and * it's better to fire a spurious notification than miss it */ return -1; } sync_lower: /* some features must be disabled on lower devices when disabled * on an upper device (think: bonding master or bridge) */ netdev_for_each_lower_dev(dev, lower, iter) netdev_sync_lower_features(dev, lower, features); if (!err) { netdev_features_t diff = features ^ dev->features; if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { /* udp_tunnel_{get,drop}_rx_info both need * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the * device, or they won't do anything. * Thus we need to update dev->features * *before* calling udp_tunnel_get_rx_info, * but *after* calling udp_tunnel_drop_rx_info. */ if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { dev->features = features; udp_tunnel_get_rx_info(dev); } else { udp_tunnel_drop_rx_info(dev); } } if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { dev->features = features; err |= vlan_get_rx_ctag_filter_info(dev); } else { vlan_drop_rx_ctag_filter_info(dev); } } if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { if (features & NETIF_F_HW_VLAN_STAG_FILTER) { dev->features = features; err |= vlan_get_rx_stag_filter_info(dev); } else { vlan_drop_rx_stag_filter_info(dev); } } dev->features = features; } return err < 0 ? 0 : 1; } /** * netdev_update_features - recalculate device features * @dev: the device to check * * Recalculate dev->features set and send notifications if it * has changed. Should be called after driver or hardware dependent * conditions might have changed that influence the features. */ void netdev_update_features(struct net_device *dev) { if (__netdev_update_features(dev)) netdev_features_change(dev); } EXPORT_SYMBOL(netdev_update_features); /** * netdev_change_features - recalculate device features * @dev: the device to check * * Recalculate dev->features set and send notifications even * if they have not changed. Should be called instead of * netdev_update_features() if also dev->vlan_features might * have changed to allow the changes to be propagated to stacked * VLAN devices. */ void netdev_change_features(struct net_device *dev) { __netdev_update_features(dev); netdev_features_change(dev); } EXPORT_SYMBOL(netdev_change_features); /** * netif_stacked_transfer_operstate - transfer operstate * @rootdev: the root or lower level device to transfer state from * @dev: the device to transfer operstate to * * Transfer operational state from root to device. This is normally * called when a stacking relationship exists between the root * device and the device(a leaf device). */ void netif_stacked_transfer_operstate(const struct net_device *rootdev, struct net_device *dev) { if (rootdev->operstate == IF_OPER_DORMANT) netif_dormant_on(dev); else netif_dormant_off(dev); if (rootdev->operstate == IF_OPER_TESTING) netif_testing_on(dev); else netif_testing_off(dev); if (netif_carrier_ok(rootdev)) netif_carrier_on(dev); else netif_carrier_off(dev); } EXPORT_SYMBOL(netif_stacked_transfer_operstate); static int netif_alloc_rx_queues(struct net_device *dev) { unsigned int i, count = dev->num_rx_queues; struct netdev_rx_queue *rx; size_t sz = count * sizeof(*rx); int err = 0; BUG_ON(count < 1); rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); if (!rx) return -ENOMEM; dev->_rx = rx; for (i = 0; i < count; i++) { rx[i].dev = dev; /* XDP RX-queue setup */ err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); if (err < 0) goto err_rxq_info; } return 0; err_rxq_info: /* Rollback successful reg's and free other resources */ while (i--) xdp_rxq_info_unreg(&rx[i].xdp_rxq); kvfree(dev->_rx); dev->_rx = NULL; return err; } static void netif_free_rx_queues(struct net_device *dev) { unsigned int i, count = dev->num_rx_queues; /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ if (!dev->_rx) return; for (i = 0; i < count; i++) xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); kvfree(dev->_rx); } static void netdev_init_one_queue(struct net_device *dev, struct netdev_queue *queue, void *_unused) { /* Initialize queue lock */ spin_lock_init(&queue->_xmit_lock); netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); queue->xmit_lock_owner = -1; netdev_queue_numa_node_write(queue, NUMA_NO_NODE); queue->dev = dev; #ifdef CONFIG_BQL dql_init(&queue->dql, HZ); #endif } static void netif_free_tx_queues(struct net_device *dev) { kvfree(dev->_tx); } static int netif_alloc_netdev_queues(struct net_device *dev) { unsigned int count = dev->num_tx_queues; struct netdev_queue *tx; size_t sz = count * sizeof(*tx); if (count < 1 || count > 0xffff) return -EINVAL; tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); if (!tx) return -ENOMEM; dev->_tx = tx; netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); spin_lock_init(&dev->tx_global_lock); return 0; } void netif_tx_stop_all_queues(struct net_device *dev) { unsigned int i; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *txq = netdev_get_tx_queue(dev, i); netif_tx_stop_queue(txq); } } EXPORT_SYMBOL(netif_tx_stop_all_queues); static int netdev_do_alloc_pcpu_stats(struct net_device *dev) { void __percpu *v; /* Drivers implementing ndo_get_peer_dev must support tstat * accounting, so that skb_do_redirect() can bump the dev's * RX stats upon network namespace switch. */ if (dev->netdev_ops->ndo_get_peer_dev && dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) return -EOPNOTSUPP; switch (dev->pcpu_stat_type) { case NETDEV_PCPU_STAT_NONE: return 0; case NETDEV_PCPU_STAT_LSTATS: v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); break; case NETDEV_PCPU_STAT_TSTATS: v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); break; case NETDEV_PCPU_STAT_DSTATS: v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); break; default: return -EINVAL; } return v ? 0 : -ENOMEM; } static void netdev_do_free_pcpu_stats(struct net_device *dev) { switch (dev->pcpu_stat_type) { case NETDEV_PCPU_STAT_NONE: return; case NETDEV_PCPU_STAT_LSTATS: free_percpu(dev->lstats); break; case NETDEV_PCPU_STAT_TSTATS: free_percpu(dev->tstats); break; case NETDEV_PCPU_STAT_DSTATS: free_percpu(dev->dstats); break; } } /** * register_netdevice() - register a network device * @dev: device to register * * Take a prepared network device structure and make it externally accessible. * A %NETDEV_REGISTER message is sent to the netdev notifier chain. * Callers must hold the rtnl lock - you may want register_netdev() * instead of this. */ int register_netdevice(struct net_device *dev) { int ret; struct net *net = dev_net(dev); BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < NETDEV_FEATURE_COUNT); BUG_ON(dev_boot_phase); ASSERT_RTNL(); might_sleep(); /* When net_device's are persistent, this will be fatal. */ BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); BUG_ON(!net); ret = ethtool_check_ops(dev->ethtool_ops); if (ret) return ret; spin_lock_init(&dev->addr_list_lock); netdev_set_addr_lockdep_class(dev); ret = dev_get_valid_name(net, dev, dev->name); if (ret < 0) goto out; ret = -ENOMEM; dev->name_node = netdev_name_node_head_alloc(dev); if (!dev->name_node) goto out; /* Init, if this function is available */ if (dev->netdev_ops->ndo_init) { ret = dev->netdev_ops->ndo_init(dev); if (ret) { if (ret > 0) ret = -EIO; goto err_free_name; } } if (((dev->hw_features | dev->features) & NETIF_F_HW_VLAN_CTAG_FILTER) && (!dev->netdev_ops->ndo_vlan_rx_add_vid || !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); ret = -EINVAL; goto err_uninit; } ret = netdev_do_alloc_pcpu_stats(dev); if (ret) goto err_uninit; ret = -EBUSY; if (!dev->ifindex) dev->ifindex = dev_new_index(net); else if (__dev_get_by_index(net, dev->ifindex)) goto err_free_pcpu; /* Transfer changeable features to wanted_features and enable * software offloads (GSO and GRO). */ dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); dev->features |= NETIF_F_SOFT_FEATURES; if (dev->udp_tunnel_nic_info) { dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; } dev->wanted_features = dev->features & dev->hw_features; if (!(dev->flags & IFF_LOOPBACK)) dev->hw_features |= NETIF_F_NOCACHE_COPY; /* If IPv4 TCP segmentation offload is supported we should also * allow the device to enable segmenting the frame with the option * of ignoring a static IP ID value. This doesn't enable the * feature itself but allows the user to enable it later. */ if (dev->hw_features & NETIF_F_TSO) dev->hw_features |= NETIF_F_TSO_MANGLEID; if (dev->vlan_features & NETIF_F_TSO) dev->vlan_features |= NETIF_F_TSO_MANGLEID; if (dev->mpls_features & NETIF_F_TSO) dev->mpls_features |= NETIF_F_TSO_MANGLEID; if (dev->hw_enc_features & NETIF_F_TSO) dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. */ dev->vlan_features |= NETIF_F_HIGHDMA; /* Make NETIF_F_SG inheritable to tunnel devices. */ dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; /* Make NETIF_F_SG inheritable to MPLS. */ dev->mpls_features |= NETIF_F_SG; ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); ret = notifier_to_errno(ret); if (ret) goto err_free_pcpu; ret = netdev_register_kobject(dev); write_lock(&dev_base_lock); dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED; write_unlock(&dev_base_lock); if (ret) goto err_free_pcpu; __netdev_update_features(dev); /* * Default initial state at registry is that the * device is present. */ set_bit(__LINK_STATE_PRESENT, &dev->state); linkwatch_init_dev(dev); dev_init_scheduler(dev); netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); list_netdevice(dev); add_device_randomness(dev->dev_addr, dev->addr_len); /* If the device has permanent device address, driver should * set dev_addr and also addr_assign_type should be set to * NET_ADDR_PERM (default value). */ if (dev->addr_assign_type == NET_ADDR_PERM) memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); /* Notify protocols, that a new device appeared. */ ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); ret = notifier_to_errno(ret); if (ret) { /* Expect explicit free_netdev() on failure */ dev->needs_free_netdev = false; unregister_netdevice_queue(dev, NULL); goto out; } /* * Prevent userspace races by waiting until the network * device is fully setup before sending notifications. */ if (!dev->rtnl_link_ops || dev->rtnl_link_state == RTNL_LINK_INITIALIZED) rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); out: return ret; err_free_pcpu: netdev_do_free_pcpu_stats(dev); err_uninit: if (dev->netdev_ops->ndo_uninit) dev->netdev_ops->ndo_uninit(dev); if (dev->priv_destructor) dev->priv_destructor(dev); err_free_name: netdev_name_node_free(dev->name_node); goto out; } EXPORT_SYMBOL(register_netdevice); /** * init_dummy_netdev - init a dummy network device for NAPI * @dev: device to init * * This takes a network device structure and initialize the minimum * amount of fields so it can be used to schedule NAPI polls without * registering a full blown interface. This is to be used by drivers * that need to tie several hardware interfaces to a single NAPI * poll scheduler due to HW limitations. */ int init_dummy_netdev(struct net_device *dev) { /* Clear everything. Note we don't initialize spinlocks * are they aren't supposed to be taken by any of the * NAPI code and this dummy netdev is supposed to be * only ever used for NAPI polls */ memset(dev, 0, sizeof(struct net_device)); /* make sure we BUG if trying to hit standard * register/unregister code path */ dev->reg_state = NETREG_DUMMY; /* NAPI wants this */ INIT_LIST_HEAD(&dev->napi_list); /* a dummy interface is started by default */ set_bit(__LINK_STATE_PRESENT, &dev->state); set_bit(__LINK_STATE_START, &dev->state); /* napi_busy_loop stats accounting wants this */ dev_net_set(dev, &init_net); /* Note : We dont allocate pcpu_refcnt for dummy devices, * because users of this 'device' dont need to change * its refcount. */ return 0; } EXPORT_SYMBOL_GPL(init_dummy_netdev); /** * register_netdev - register a network device * @dev: device to register * * Take a completed network device structure and add it to the kernel * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier * chain. 0 is returned on success. A negative errno code is returned * on a failure to set up the device, or if the name is a duplicate. * * This is a wrapper around register_netdevice that takes the rtnl semaphore * and expands the device name if you passed a format string to * alloc_netdev. */ int register_netdev(struct net_device *dev) { int err; if (rtnl_lock_killable()) return -EINTR; err = register_netdevice(dev); rtnl_unlock(); return err; } EXPORT_SYMBOL(register_netdev); int netdev_refcnt_read(const struct net_device *dev) { #ifdef CONFIG_PCPU_DEV_REFCNT int i, refcnt = 0; for_each_possible_cpu(i) refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); return refcnt; #else return refcount_read(&dev->dev_refcnt); #endif } EXPORT_SYMBOL(netdev_refcnt_read); int netdev_unregister_timeout_secs __read_mostly = 10; #define WAIT_REFS_MIN_MSECS 1 #define WAIT_REFS_MAX_MSECS 250 /** * netdev_wait_allrefs_any - wait until all references are gone. * @list: list of net_devices to wait on * * This is called when unregistering network devices. * * Any protocol or device that holds a reference should register * for netdevice notification, and cleanup and put back the * reference if they receive an UNREGISTER event. * We can get stuck here if buggy protocols don't correctly * call dev_put. */ static struct net_device *netdev_wait_allrefs_any(struct list_head *list) { unsigned long rebroadcast_time, warning_time; struct net_device *dev; int wait = 0; rebroadcast_time = warning_time = jiffies; list_for_each_entry(dev, list, todo_list) if (netdev_refcnt_read(dev) == 1) return dev; while (true) { if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { rtnl_lock(); /* Rebroadcast unregister notification */ list_for_each_entry(dev, list, todo_list) call_netdevice_notifiers(NETDEV_UNREGISTER, dev); __rtnl_unlock(); rcu_barrier(); rtnl_lock(); list_for_each_entry(dev, list, todo_list) if (test_bit(__LINK_STATE_LINKWATCH_PENDING, &dev->state)) { /* We must not have linkwatch events * pending on unregister. If this * happens, we simply run the queue * unscheduled, resulting in a noop * for this device. */ linkwatch_run_queue(); break; } __rtnl_unlock(); rebroadcast_time = jiffies; } rcu_barrier(); if (!wait) { wait = WAIT_REFS_MIN_MSECS; } else { msleep(wait); wait = min(wait << 1, WAIT_REFS_MAX_MSECS); } list_for_each_entry(dev, list, todo_list) if (netdev_refcnt_read(dev) == 1) return dev; if (time_after(jiffies, warning_time + READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { list_for_each_entry(dev, list, todo_list) { pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", dev->name, netdev_refcnt_read(dev)); ref_tracker_dir_print(&dev->refcnt_tracker, 10); } warning_time = jiffies; } } } /* The sequence is: * * rtnl_lock(); * ... * register_netdevice(x1); * register_netdevice(x2); * ... * unregister_netdevice(y1); * unregister_netdevice(y2); * ... * rtnl_unlock(); * free_netdev(y1); * free_netdev(y2); * * We are invoked by rtnl_unlock(). * This allows us to deal with problems: * 1) We can delete sysfs objects which invoke hotplug * without deadlocking with linkwatch via keventd. * 2) Since we run with the RTNL semaphore not held, we can sleep * safely in order to wait for the netdev refcnt to drop to zero. * * We must not return until all unregister events added during * the interval the lock was held have been completed. */ void netdev_run_todo(void) { struct net_device *dev, *tmp; struct list_head list; #ifdef CONFIG_LOCKDEP struct list_head unlink_list; list_replace_init(&net_unlink_list, &unlink_list); while (!list_empty(&unlink_list)) { struct net_device *dev = list_first_entry(&unlink_list, struct net_device, unlink_list); list_del_init(&dev->unlink_list); dev->nested_level = dev->lower_level - 1; } #endif /* Snapshot list, allow later requests */ list_replace_init(&net_todo_list, &list); __rtnl_unlock(); /* Wait for rcu callbacks to finish before next phase */ if (!list_empty(&list)) rcu_barrier(); list_for_each_entry_safe(dev, tmp, &list, todo_list) { if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { netdev_WARN(dev, "run_todo but not unregistering\n"); list_del(&dev->todo_list); continue; } write_lock(&dev_base_lock); dev->reg_state = NETREG_UNREGISTERED; write_unlock(&dev_base_lock); linkwatch_forget_dev(dev); } while (!list_empty(&list)) { dev = netdev_wait_allrefs_any(&list); list_del(&dev->todo_list); /* paranoia */ BUG_ON(netdev_refcnt_read(dev) != 1); BUG_ON(!list_empty(&dev->ptype_all)); BUG_ON(!list_empty(&dev->ptype_specific)); WARN_ON(rcu_access_pointer(dev->ip_ptr)); WARN_ON(rcu_access_pointer(dev->ip6_ptr)); netdev_do_free_pcpu_stats(dev); if (dev->priv_destructor) dev->priv_destructor(dev); if (dev->needs_free_netdev) free_netdev(dev); if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count)) wake_up(&netdev_unregistering_wq); /* Free network device */ kobject_put(&dev->dev.kobj); } } /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has * all the same fields in the same order as net_device_stats, with only * the type differing, but rtnl_link_stats64 may have additional fields * at the end for newer counters. */ void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, const struct net_device_stats *netdev_stats) { size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); const atomic_long_t *src = (atomic_long_t *)netdev_stats; u64 *dst = (u64 *)stats64; BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); for (i = 0; i < n; i++) dst[i] = (unsigned long)atomic_long_read(&src[i]); /* zero out counters that only exist in rtnl_link_stats64 */ memset((char *)stats64 + n * sizeof(u64), 0, sizeof(*stats64) - n * sizeof(u64)); } EXPORT_SYMBOL(netdev_stats_to_stats64); struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev) { struct net_device_core_stats __percpu *p; p = alloc_percpu_gfp(struct net_device_core_stats, GFP_ATOMIC | __GFP_NOWARN); if (p && cmpxchg(&dev->core_stats, NULL, p)) free_percpu(p); /* This READ_ONCE() pairs with the cmpxchg() above */ return READ_ONCE(dev->core_stats); } EXPORT_SYMBOL(netdev_core_stats_alloc); /** * dev_get_stats - get network device statistics * @dev: device to get statistics from * @storage: place to store stats * * Get network statistics from device. Return @storage. * The device driver may provide its own method by setting * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; * otherwise the internal statistics structure is used. */ struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, struct rtnl_link_stats64 *storage) { const struct net_device_ops *ops = dev->netdev_ops; const struct net_device_core_stats __percpu *p; if (ops->ndo_get_stats64) { memset(storage, 0, sizeof(*storage)); ops->ndo_get_stats64(dev, storage); } else if (ops->ndo_get_stats) { netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); } else { netdev_stats_to_stats64(storage, &dev->stats); } /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ p = READ_ONCE(dev->core_stats); if (p) { const struct net_device_core_stats *core_stats; int i; for_each_possible_cpu(i) { core_stats = per_cpu_ptr(p, i); storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); } } return storage; } EXPORT_SYMBOL(dev_get_stats); /** * dev_fetch_sw_netstats - get per-cpu network device statistics * @s: place to store stats * @netstats: per-cpu network stats to read from * * Read per-cpu network statistics and populate the related fields in @s. */ void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, const struct pcpu_sw_netstats __percpu *netstats) { int cpu; for_each_possible_cpu(cpu) { u64 rx_packets, rx_bytes, tx_packets, tx_bytes; const struct pcpu_sw_netstats *stats; unsigned int start; stats = per_cpu_ptr(netstats, cpu); do { start = u64_stats_fetch_begin_irq(&stats->syncp); rx_packets = u64_stats_read(&stats->rx_packets); rx_bytes = u64_stats_read(&stats->rx_bytes); tx_packets = u64_stats_read(&stats->tx_packets); tx_bytes = u64_stats_read(&stats->tx_bytes); } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); s->rx_packets += rx_packets; s->rx_bytes += rx_bytes; s->tx_packets += tx_packets; s->tx_bytes += tx_bytes; } } EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); /** * dev_get_tstats64 - ndo_get_stats64 implementation * @dev: device to get statistics from * @s: place to store stats * * Populate @s from dev->stats and dev->tstats. Can be used as * ndo_get_stats64() callback. */ void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) { netdev_stats_to_stats64(s, &dev->stats); dev_fetch_sw_netstats(s, dev->tstats); } EXPORT_SYMBOL_GPL(dev_get_tstats64); struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) { struct netdev_queue *queue = dev_ingress_queue(dev); #ifdef CONFIG_NET_CLS_ACT if (queue) return queue; queue = kzalloc(sizeof(*queue), GFP_KERNEL); if (!queue) return NULL; netdev_init_one_queue(dev, queue, NULL); RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); rcu_assign_pointer(dev->ingress_queue, queue); #endif return queue; } static const struct ethtool_ops default_ethtool_ops; void netdev_set_default_ethtool_ops(struct net_device *dev, const struct ethtool_ops *ops) { if (dev->ethtool_ops == &default_ethtool_ops) dev->ethtool_ops = ops; } EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); void netdev_freemem(struct net_device *dev) { char *addr = (char *)dev - dev->padded; kvfree(addr); } /** * alloc_netdev_mqs - allocate network device * @sizeof_priv: size of private data to allocate space for * @name: device name format string * @name_assign_type: origin of device name * @setup: callback to initialize device * @txqs: the number of TX subqueues to allocate * @rxqs: the number of RX subqueues to allocate * * Allocates a struct net_device with private data area for driver use * and performs basic initialization. Also allocates subqueue structs * for each queue on the device. */ struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, unsigned char name_assign_type, void (*setup)(struct net_device *), unsigned int txqs, unsigned int rxqs) { struct net_device *dev; unsigned int alloc_size; struct net_device *p; BUG_ON(strlen(name) >= sizeof(dev->name)); if (txqs < 1) { pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); return NULL; } if (rxqs < 1) { pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); return NULL; } alloc_size = sizeof(struct net_device); if (sizeof_priv) { /* ensure 32-byte alignment of private area */ alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); alloc_size += sizeof_priv; } /* ensure 32-byte alignment of whole construct */ alloc_size += NETDEV_ALIGN - 1; p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); if (!p) return NULL; dev = PTR_ALIGN(p, NETDEV_ALIGN); dev->padded = (char *)dev - (char *)p; ref_tracker_dir_init(&dev->refcnt_tracker, 128); #ifdef CONFIG_PCPU_DEV_REFCNT dev->pcpu_refcnt = alloc_percpu(int); if (!dev->pcpu_refcnt) goto free_dev; __dev_hold(dev); #else refcount_set(&dev->dev_refcnt, 1); #endif if (dev_addr_init(dev)) goto free_pcpu; dev_mc_init(dev); dev_uc_init(dev); dev_net_set(dev, &init_net); dev->gso_max_size = GSO_LEGACY_MAX_SIZE; dev->gso_max_segs = GSO_MAX_SEGS; dev->gro_max_size = GRO_LEGACY_MAX_SIZE; dev->tso_max_size = TSO_LEGACY_MAX_SIZE; dev->tso_max_segs = TSO_MAX_SEGS; dev->upper_level = 1; dev->lower_level = 1; #ifdef CONFIG_LOCKDEP dev->nested_level = 0; INIT_LIST_HEAD(&dev->unlink_list); #endif INIT_LIST_HEAD(&dev->napi_list); INIT_LIST_HEAD(&dev->unreg_list); INIT_LIST_HEAD(&dev->close_list); INIT_LIST_HEAD(&dev->link_watch_list); INIT_LIST_HEAD(&dev->adj_list.upper); INIT_LIST_HEAD(&dev->adj_list.lower); INIT_LIST_HEAD(&dev->ptype_all); INIT_LIST_HEAD(&dev->ptype_specific); INIT_LIST_HEAD(&dev->net_notifier_list); #ifdef CONFIG_NET_SCHED hash_init(dev->qdisc_hash); #endif dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; setup(dev); if (!dev->tx_queue_len) { dev->priv_flags |= IFF_NO_QUEUE; dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; } dev->num_tx_queues = txqs; dev->real_num_tx_queues = txqs; if (netif_alloc_netdev_queues(dev)) goto free_all; dev->num_rx_queues = rxqs; dev->real_num_rx_queues = rxqs; if (netif_alloc_rx_queues(dev)) goto free_all; strcpy(dev->name, name); dev->name_assign_type = name_assign_type; dev->group = INIT_NETDEV_GROUP; if (!dev->ethtool_ops) dev->ethtool_ops = &default_ethtool_ops; nf_hook_netdev_init(dev); return dev; free_all: free_netdev(dev); return NULL; free_pcpu: #ifdef CONFIG_PCPU_DEV_REFCNT free_percpu(dev->pcpu_refcnt); free_dev: #endif netdev_freemem(dev); return NULL; } EXPORT_SYMBOL(alloc_netdev_mqs); /** * free_netdev - free network device * @dev: device * * This function does the last stage of destroying an allocated device * interface. The reference to the device object is released. If this * is the last reference then it will be freed.Must be called in process * context. */ void free_netdev(struct net_device *dev) { struct napi_struct *p, *n; might_sleep(); /* When called immediately after register_netdevice() failed the unwind * handling may still be dismantling the device. Handle that case by * deferring the free. */ if (dev->reg_state == NETREG_UNREGISTERING) { ASSERT_RTNL(); dev->needs_free_netdev = true; return; } netif_free_tx_queues(dev); netif_free_rx_queues(dev); kfree(rcu_dereference_protected(dev->ingress_queue, 1)); /* Flush device addresses */ dev_addr_flush(dev); list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) netif_napi_del(p); ref_tracker_dir_exit(&dev->refcnt_tracker); #ifdef CONFIG_PCPU_DEV_REFCNT free_percpu(dev->pcpu_refcnt); dev->pcpu_refcnt = NULL; #endif free_percpu(dev->core_stats); dev->core_stats = NULL; free_percpu(dev->xdp_bulkq); dev->xdp_bulkq = NULL; /* Compatibility with error handling in drivers */ if (dev->reg_state == NETREG_UNINITIALIZED) { netdev_freemem(dev); return; } BUG_ON(dev->reg_state != NETREG_UNREGISTERED); dev->reg_state = NETREG_RELEASED; /* will free via device release */ put_device(&dev->dev); } EXPORT_SYMBOL(free_netdev); /** * synchronize_net - Synchronize with packet receive processing * * Wait for packets currently being received to be done. * Does not block later packets from starting. */ void synchronize_net(void) { might_sleep(); if (rtnl_is_locked()) synchronize_rcu_expedited(); else synchronize_rcu(); } EXPORT_SYMBOL(synchronize_net); /** * unregister_netdevice_queue - remove device from the kernel * @dev: device * @head: list * * This function shuts down a device interface and removes it * from the kernel tables. * If head not NULL, device is queued to be unregistered later. * * Callers must hold the rtnl semaphore. You may want * unregister_netdev() instead of this. */ void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) { ASSERT_RTNL(); if (head) { list_move_tail(&dev->unreg_list, head); } else { LIST_HEAD(single); list_add(&dev->unreg_list, &single); unregister_netdevice_many(&single); } } EXPORT_SYMBOL(unregister_netdevice_queue); /** * unregister_netdevice_many - unregister many devices * @head: list of devices * * Note: As most callers use a stack allocated list_head, * we force a list_del() to make sure stack wont be corrupted later. */ void unregister_netdevice_many(struct list_head *head) { struct net_device *dev, *tmp; LIST_HEAD(close_head); BUG_ON(dev_boot_phase); ASSERT_RTNL(); if (list_empty(head)) return; list_for_each_entry_safe(dev, tmp, head, unreg_list) { /* Some devices call without registering * for initialization unwind. Remove those * devices and proceed with the remaining. */ if (dev->reg_state == NETREG_UNINITIALIZED) { pr_debug("unregister_netdevice: device %s/%p never was registered\n", dev->name, dev); WARN_ON(1); list_del(&dev->unreg_list); continue; } dev->dismantle = true; BUG_ON(dev->reg_state != NETREG_REGISTERED); } /* If device is running, close it first. */ list_for_each_entry(dev, head, unreg_list) list_add_tail(&dev->close_list, &close_head); dev_close_many(&close_head, true); list_for_each_entry(dev, head, unreg_list) { /* And unlink it from device chain. */ write_lock(&dev_base_lock); unlist_netdevice(dev, false); dev->reg_state = NETREG_UNREGISTERING; write_unlock(&dev_base_lock); } flush_all_backlogs(); synchronize_net(); list_for_each_entry(dev, head, unreg_list) { struct sk_buff *skb = NULL; /* Shutdown queueing discipline. */ dev_shutdown(dev); dev_xdp_uninstall(dev); netdev_offload_xstats_disable_all(dev); /* Notify protocols, that we are about to destroy * this device. They should clean all the things. */ call_netdevice_notifiers(NETDEV_UNREGISTER, dev); if (!dev->rtnl_link_ops || dev->rtnl_link_state == RTNL_LINK_INITIALIZED) skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, GFP_KERNEL, NULL, 0); /* * Flush the unicast and multicast chains */ dev_uc_flush(dev); dev_mc_flush(dev); netdev_name_node_alt_flush(dev); netdev_name_node_free(dev->name_node); if (dev->netdev_ops->ndo_uninit) dev->netdev_ops->ndo_uninit(dev); if (skb) rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); /* Notifier chain MUST detach us all upper devices. */ WARN_ON(netdev_has_any_upper_dev(dev)); WARN_ON(netdev_has_any_lower_dev(dev)); /* Remove entries from kobject tree */ netdev_unregister_kobject(dev); #ifdef CONFIG_XPS /* Remove XPS queueing entries */ netif_reset_xps_queues_gt(dev, 0); #endif } synchronize_net(); list_for_each_entry(dev, head, unreg_list) { netdev_put(dev, &dev->dev_registered_tracker); net_set_todo(dev); } list_del(head); } EXPORT_SYMBOL(unregister_netdevice_many); /** * unregister_netdev - remove device from the kernel * @dev: device * * This function shuts down a device interface and removes it * from the kernel tables. * * This is just a wrapper for unregister_netdevice that takes * the rtnl semaphore. In general you want to use this and not * unregister_netdevice. */ void unregister_netdev(struct net_device *dev) { rtnl_lock(); unregister_netdevice(dev); rtnl_unlock(); } EXPORT_SYMBOL(unregister_netdev); /** * __dev_change_net_namespace - move device to different nethost namespace * @dev: device * @net: network namespace * @pat: If not NULL name pattern to try if the current device name * is already taken in the destination network namespace. * @new_ifindex: If not zero, specifies device index in the target * namespace. * * This function shuts down a device interface and moves it * to a new network namespace. On success 0 is returned, on * a failure a netagive errno code is returned. * * Callers must hold the rtnl semaphore. */ int __dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat, int new_ifindex) { struct netdev_name_node *name_node; struct net *net_old = dev_net(dev); char new_name[IFNAMSIZ] = {}; int err, new_nsid; ASSERT_RTNL(); /* Don't allow namespace local devices to be moved. */ err = -EINVAL; if (dev->features & NETIF_F_NETNS_LOCAL) goto out; /* Ensure the device has been registrered */ if (dev->reg_state != NETREG_REGISTERED) goto out; /* Get out if there is nothing todo */ err = 0; if (net_eq(net_old, net)) goto out; /* Pick the destination device name, and ensure * we can use it in the destination network namespace. */ err = -EEXIST; if (netdev_name_in_use(net, dev->name)) { /* We get here if we can't use the current device name */ if (!pat) goto out; err = dev_prep_valid_name(net, dev, pat, new_name); if (err < 0) goto out; } /* Check that none of the altnames conflicts. */ err = -EEXIST; netdev_for_each_altname(dev, name_node) if (netdev_name_in_use(net, name_node->name)) goto out; /* Check that new_ifindex isn't used yet. */ err = -EBUSY; if (new_ifindex && __dev_get_by_index(net, new_ifindex)) goto out; /* * And now a mini version of register_netdevice unregister_netdevice. */ /* If device is running close it first. */ dev_close(dev); /* And unlink it from device chain */ unlist_netdevice(dev, true); synchronize_net(); /* Shutdown queueing discipline. */ dev_shutdown(dev); /* Notify protocols, that we are about to destroy * this device. They should clean all the things. * * Note that dev->reg_state stays at NETREG_REGISTERED. * This is wanted because this way 8021q and macvlan know * the device is just moving and can keep their slaves up. */ call_netdevice_notifiers(NETDEV_UNREGISTER, dev); rcu_barrier(); new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); /* If there is an ifindex conflict assign a new one */ if (!new_ifindex) { if (__dev_get_by_index(net, dev->ifindex)) new_ifindex = dev_new_index(net); else new_ifindex = dev->ifindex; } rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, new_ifindex); /* * Flush the unicast and multicast chains */ dev_uc_flush(dev); dev_mc_flush(dev); /* Send a netdev-removed uevent to the old namespace */ kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); netdev_adjacent_del_links(dev); /* Move per-net netdevice notifiers that are following the netdevice */ move_netdevice_notifiers_dev_net(dev, net); /* Actually switch the network namespace */ dev_net_set(dev, net); dev->ifindex = new_ifindex; /* Send a netdev-add uevent to the new namespace */ kobject_uevent(&dev->dev.kobj, KOBJ_ADD); netdev_adjacent_add_links(dev); if (new_name[0]) /* Rename the netdev to prepared name */ strscpy(dev->name, new_name, IFNAMSIZ); /* Fixup kobjects */ err = device_rename(&dev->dev, dev->name); WARN_ON(err); /* Adapt owner in case owning user namespace of target network * namespace is different from the original one. */ err = netdev_change_owner(dev, net_old, net); WARN_ON(err); /* Add the device back in the hashes */ list_netdevice(dev); /* Notify protocols, that a new device appeared. */ call_netdevice_notifiers(NETDEV_REGISTER, dev); /* * Prevent userspace races by waiting until the network * device is fully setup before sending notifications. */ rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); synchronize_net(); err = 0; out: return err; } EXPORT_SYMBOL_GPL(__dev_change_net_namespace); static int dev_cpu_dead(unsigned int oldcpu) { struct sk_buff **list_skb; struct sk_buff *skb; unsigned int cpu; struct softnet_data *sd, *oldsd, *remsd = NULL; local_irq_disable(); cpu = smp_processor_id(); sd = &per_cpu(softnet_data, cpu); oldsd = &per_cpu(softnet_data, oldcpu); /* Find end of our completion_queue. */ list_skb = &sd->completion_queue; while (*list_skb) list_skb = &(*list_skb)->next; /* Append completion queue from offline CPU. */ *list_skb = oldsd->completion_queue; oldsd->completion_queue = NULL; /* Append output queue from offline CPU. */ if (oldsd->output_queue) { *sd->output_queue_tailp = oldsd->output_queue; sd->output_queue_tailp = oldsd->output_queue_tailp; oldsd->output_queue = NULL; oldsd->output_queue_tailp = &oldsd->output_queue; } /* Append NAPI poll list from offline CPU, with one exception : * process_backlog() must be called by cpu owning percpu backlog. * We properly handle process_queue & input_pkt_queue later. */ while (!list_empty(&oldsd->poll_list)) { struct napi_struct *napi = list_first_entry(&oldsd->poll_list, struct napi_struct, poll_list); list_del_init(&napi->poll_list); if (napi->poll == process_backlog) napi->state = 0; else ____napi_schedule(sd, napi); } raise_softirq_irqoff(NET_TX_SOFTIRQ); local_irq_enable(); #ifdef CONFIG_RPS remsd = oldsd->rps_ipi_list; oldsd->rps_ipi_list = NULL; #endif /* send out pending IPI's on offline CPU */ net_rps_send_ipi(remsd); /* Process offline CPU's input_pkt_queue */ while ((skb = __skb_dequeue(&oldsd->process_queue))) { netif_rx(skb); input_queue_head_incr(oldsd); } while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { netif_rx(skb); input_queue_head_incr(oldsd); } return 0; } /** * netdev_increment_features - increment feature set by one * @all: current feature set * @one: new feature set * @mask: mask feature set * * Computes a new feature set after adding a device with feature set * @one to the master device with current feature set @all. Will not * enable anything that is off in @mask. Returns the new feature set. */ netdev_features_t netdev_increment_features(netdev_features_t all, netdev_features_t one, netdev_features_t mask) { if (mask & NETIF_F_HW_CSUM) mask |= NETIF_F_CSUM_MASK; mask |= NETIF_F_VLAN_CHALLENGED; all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; all &= one | ~NETIF_F_ALL_FOR_ALL; /* If one device supports hw checksumming, set for all. */ if (all & NETIF_F_HW_CSUM) all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); return all; } EXPORT_SYMBOL(netdev_increment_features); static struct hlist_head * __net_init netdev_create_hash(void) { int i; struct hlist_head *hash; hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); if (hash != NULL) for (i = 0; i < NETDEV_HASHENTRIES; i++) INIT_HLIST_HEAD(&hash[i]); return hash; } /* Initialize per network namespace state */ static int __net_init netdev_init(struct net *net) { BUILD_BUG_ON(GRO_HASH_BUCKETS > 8 * sizeof_field(struct napi_struct, gro_bitmask)); INIT_LIST_HEAD(&net->dev_base_head); net->dev_name_head = netdev_create_hash(); if (net->dev_name_head == NULL) goto err_name; net->dev_index_head = netdev_create_hash(); if (net->dev_index_head == NULL) goto err_idx; RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); return 0; err_idx: kfree(net->dev_name_head); err_name: return -ENOMEM; } /** * netdev_drivername - network driver for the device * @dev: network device * * Determine network driver for device. */ const char *netdev_drivername(const struct net_device *dev) { const struct device_driver *driver; const struct device *parent; const char *empty = ""; parent = dev->dev.parent; if (!parent) return empty; driver = parent->driver; if (driver && driver->name) return driver->name; return empty; } static void __netdev_printk(const char *level, const struct net_device *dev, struct va_format *vaf) { if (dev && dev->dev.parent) { dev_printk_emit(level[1] - '0', dev->dev.parent, "%s %s %s%s: %pV", dev_driver_string(dev->dev.parent), dev_name(dev->dev.parent), netdev_name(dev), netdev_reg_state(dev), vaf); } else if (dev) { printk("%s%s%s: %pV", level, netdev_name(dev), netdev_reg_state(dev), vaf); } else { printk("%s(NULL net_device): %pV", level, vaf); } } void netdev_printk(const char *level, const struct net_device *dev, const char *format, ...) { struct va_format vaf; va_list args; va_start(args, format); vaf.fmt = format; vaf.va = &args; __netdev_printk(level, dev, &vaf); va_end(args); } EXPORT_SYMBOL(netdev_printk); #define define_netdev_printk_level(func, level) \ void func(const struct net_device *dev, const char *fmt, ...) \ { \ struct va_format vaf; \ va_list args; \ \ va_start(args, fmt); \ \ vaf.fmt = fmt; \ vaf.va = &args; \ \ __netdev_printk(level, dev, &vaf); \ \ va_end(args); \ } \ EXPORT_SYMBOL(func); define_netdev_printk_level(netdev_emerg, KERN_EMERG); define_netdev_printk_level(netdev_alert, KERN_ALERT); define_netdev_printk_level(netdev_crit, KERN_CRIT); define_netdev_printk_level(netdev_err, KERN_ERR); define_netdev_printk_level(netdev_warn, KERN_WARNING); define_netdev_printk_level(netdev_notice, KERN_NOTICE); define_netdev_printk_level(netdev_info, KERN_INFO); static void __net_exit netdev_exit(struct net *net) { kfree(net->dev_name_head); kfree(net->dev_index_head); if (net != &init_net) WARN_ON_ONCE(!list_empty(&net->dev_base_head)); } static struct pernet_operations __net_initdata netdev_net_ops = { .init = netdev_init, .exit = netdev_exit, }; static void __net_exit default_device_exit_net(struct net *net) { struct netdev_name_node *name_node, *tmp; struct net_device *dev, *aux; /* * Push all migratable network devices back to the * initial network namespace */ ASSERT_RTNL(); for_each_netdev_safe(net, dev, aux) { int err; char fb_name[IFNAMSIZ]; /* Ignore unmoveable devices (i.e. loopback) */ if (dev->features & NETIF_F_NETNS_LOCAL) continue; /* Leave virtual devices for the generic cleanup */ if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) continue; /* Push remaining network devices to init_net */ snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); if (netdev_name_in_use(&init_net, fb_name)) snprintf(fb_name, IFNAMSIZ, "dev%%d"); netdev_for_each_altname_safe(dev, name_node, tmp) if (netdev_name_in_use(&init_net, name_node->name)) { netdev_name_node_del(name_node); synchronize_rcu(); __netdev_name_node_alt_destroy(name_node); } err = dev_change_net_namespace(dev, &init_net, fb_name); if (err) { pr_emerg("%s: failed to move %s to init_net: %d\n", __func__, dev->name, err); BUG(); } } } static void __net_exit default_device_exit_batch(struct list_head *net_list) { /* At exit all network devices most be removed from a network * namespace. Do this in the reverse order of registration. * Do this across as many network namespaces as possible to * improve batching efficiency. */ struct net_device *dev; struct net *net; LIST_HEAD(dev_kill_list); rtnl_lock(); list_for_each_entry(net, net_list, exit_list) { default_device_exit_net(net); cond_resched(); } list_for_each_entry(net, net_list, exit_list) { for_each_netdev_reverse(net, dev) { if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) dev->rtnl_link_ops->dellink(dev, &dev_kill_list); else unregister_netdevice_queue(dev, &dev_kill_list); } } unregister_netdevice_many(&dev_kill_list); rtnl_unlock(); } static struct pernet_operations __net_initdata default_device_ops = { .exit_batch = default_device_exit_batch, }; /* * Initialize the DEV module. At boot time this walks the device list and * unhooks any devices that fail to initialise (normally hardware not * present) and leaves us with a valid list of present and active devices. * */ /* * This is called single threaded during boot, so no need * to take the rtnl semaphore. */ static int __init net_dev_init(void) { int i, rc = -ENOMEM; BUG_ON(!dev_boot_phase); if (dev_proc_init()) goto out; if (netdev_kobject_init()) goto out; INIT_LIST_HEAD(&ptype_all); for (i = 0; i < PTYPE_HASH_SIZE; i++) INIT_LIST_HEAD(&ptype_base[i]); if (register_pernet_subsys(&netdev_net_ops)) goto out; /* * Initialise the packet receive queues. */ for_each_possible_cpu(i) { struct work_struct *flush = per_cpu_ptr(&flush_works, i); struct softnet_data *sd = &per_cpu(softnet_data, i); INIT_WORK(flush, flush_backlog); skb_queue_head_init(&sd->input_pkt_queue); skb_queue_head_init(&sd->process_queue); #ifdef CONFIG_XFRM_OFFLOAD skb_queue_head_init(&sd->xfrm_backlog); #endif INIT_LIST_HEAD(&sd->poll_list); sd->output_queue_tailp = &sd->output_queue; #ifdef CONFIG_RPS INIT_CSD(&sd->csd, rps_trigger_softirq, sd); sd->cpu = i; #endif INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); spin_lock_init(&sd->defer_lock); init_gro_hash(&sd->backlog); sd->backlog.poll = process_backlog; sd->backlog.weight = weight_p; } dev_boot_phase = 0; /* The loopback device is special if any other network devices * is present in a network namespace the loopback device must * be present. Since we now dynamically allocate and free the * loopback device ensure this invariant is maintained by * keeping the loopback device as the first device on the * list of network devices. Ensuring the loopback devices * is the first device that appears and the last network device * that disappears. */ if (register_pernet_device(&loopback_net_ops)) goto out; if (register_pernet_device(&default_device_ops)) goto out; open_softirq(NET_TX_SOFTIRQ, net_tx_action); open_softirq(NET_RX_SOFTIRQ, net_rx_action); rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", NULL, dev_cpu_dead); WARN_ON(rc < 0); rc = 0; out: return rc; } subsys_initcall(net_dev_init);
29 29 34 4 4 65 1 1 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 /* * Copyright (C) 2017 Netronome Systems, Inc. * * This software is licensed under the GNU General License Version 2, * June 1991 as shown in the file COPYING in the top-level directory of this * source tree. * * THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" * WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE * OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME * THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. */ #include <linux/debugfs.h> #include <linux/etherdevice.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/slab.h> #include <net/netlink.h> #include <net/pkt_cls.h> #include <net/rtnetlink.h> #include <net/udp_tunnel.h> #include "netdevsim.h" static netdev_tx_t nsim_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct netdevsim *ns = netdev_priv(dev); if (!nsim_ipsec_tx(ns, skb)) goto out; u64_stats_update_begin(&ns->syncp); ns->tx_packets++; ns->tx_bytes += skb->len; u64_stats_update_end(&ns->syncp); out: dev_kfree_skb(skb); return NETDEV_TX_OK; } static void nsim_set_rx_mode(struct net_device *dev) { } static int nsim_change_mtu(struct net_device *dev, int new_mtu) { struct netdevsim *ns = netdev_priv(dev); if (ns->xdp.prog && new_mtu > NSIM_XDP_MAX_MTU) return -EBUSY; dev->mtu = new_mtu; return 0; } static void nsim_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { struct netdevsim *ns = netdev_priv(dev); unsigned int start; do { start = u64_stats_fetch_begin_irq(&ns->syncp); stats->tx_bytes = ns->tx_bytes; stats->tx_packets = ns->tx_packets; } while (u64_stats_fetch_retry_irq(&ns->syncp, start)); } static int nsim_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) { return nsim_bpf_setup_tc_block_cb(type, type_data, cb_priv); } static int nsim_set_vf_mac(struct net_device *dev, int vf, u8 *mac) { struct netdevsim *ns = netdev_priv(dev); struct nsim_dev *nsim_dev = ns->nsim_dev; /* Only refuse multicast addresses, zero address can mean unset/any. */ if (vf >= nsim_dev_get_vfs(nsim_dev) || is_multicast_ether_addr(mac)) return -EINVAL; memcpy(nsim_dev->vfconfigs[vf].vf_mac, mac, ETH_ALEN); return 0; } static int nsim_set_vf_vlan(struct net_device *dev, int vf, u16 vlan, u8 qos, __be16 vlan_proto) { struct netdevsim *ns = netdev_priv(dev); struct nsim_dev *nsim_dev = ns->nsim_dev; if (vf >= nsim_dev_get_vfs(nsim_dev) || vlan > 4095 || qos > 7) return -EINVAL; nsim_dev->vfconfigs[vf].vlan = vlan; nsim_dev->vfconfigs[vf].qos = qos; nsim_dev->vfconfigs[vf].vlan_proto = vlan_proto; return 0; } static int nsim_set_vf_rate(struct net_device *dev, int vf, int min, int max) { struct netdevsim *ns = netdev_priv(dev); struct nsim_dev *nsim_dev = ns->nsim_dev; if (nsim_esw_mode_is_switchdev(ns->nsim_dev)) { pr_err("Not supported in switchdev mode. Please use devlink API.\n"); return -EOPNOTSUPP; } if (vf >= nsim_dev_get_vfs(nsim_dev)) return -EINVAL; nsim_dev->vfconfigs[vf].min_tx_rate = min; nsim_dev->vfconfigs[vf].max_tx_rate = max; return 0; } static int nsim_set_vf_spoofchk(struct net_device *dev, int vf, bool val) { struct netdevsim *ns = netdev_priv(dev); struct nsim_dev *nsim_dev = ns->nsim_dev; if (vf >= nsim_dev_get_vfs(nsim_dev)) return -EINVAL; nsim_dev->vfconfigs[vf].spoofchk_enabled = val; return 0; } static int nsim_set_vf_rss_query_en(struct net_device *dev, int vf, bool val) { struct netdevsim *ns = netdev_priv(dev); struct nsim_dev *nsim_dev = ns->nsim_dev; if (vf >= nsim_dev_get_vfs(nsim_dev)) return -EINVAL; nsim_dev->vfconfigs[vf].rss_query_enabled = val; return 0; } static int nsim_set_vf_trust(struct net_device *dev, int vf, bool val) { struct netdevsim *ns = netdev_priv(dev); struct nsim_dev *nsim_dev = ns->nsim_dev; if (vf >= nsim_dev_get_vfs(nsim_dev)) return -EINVAL; nsim_dev->vfconfigs[vf].trusted = val; return 0; } static int nsim_get_vf_config(struct net_device *dev, int vf, struct ifla_vf_info *ivi) { struct netdevsim *ns = netdev_priv(dev); struct nsim_dev *nsim_dev = ns->nsim_dev; if (vf >= nsim_dev_get_vfs(nsim_dev)) return -EINVAL; ivi->vf = vf; ivi->linkstate = nsim_dev->vfconfigs[vf].link_state; ivi->min_tx_rate = nsim_dev->vfconfigs[vf].min_tx_rate; ivi->max_tx_rate = nsim_dev->vfconfigs[vf].max_tx_rate; ivi->vlan = nsim_dev->vfconfigs[vf].vlan; ivi->vlan_proto = nsim_dev->vfconfigs[vf].vlan_proto; ivi->qos = nsim_dev->vfconfigs[vf].qos; memcpy(&ivi->mac, nsim_dev->vfconfigs[vf].vf_mac, ETH_ALEN); ivi->spoofchk = nsim_dev->vfconfigs[vf].spoofchk_enabled; ivi->trusted = nsim_dev->vfconfigs[vf].trusted; ivi->rss_query_en = nsim_dev->vfconfigs[vf].rss_query_enabled; return 0; } static int nsim_set_vf_link_state(struct net_device *dev, int vf, int state) { struct netdevsim *ns = netdev_priv(dev); struct nsim_dev *nsim_dev = ns->nsim_dev; if (vf >= nsim_dev_get_vfs(nsim_dev)) return -EINVAL; switch (state) { case IFLA_VF_LINK_STATE_AUTO: case IFLA_VF_LINK_STATE_ENABLE: case IFLA_VF_LINK_STATE_DISABLE: break; default: return -EINVAL; } nsim_dev->vfconfigs[vf].link_state = state; return 0; } static LIST_HEAD(nsim_block_cb_list); static int nsim_setup_tc(struct net_device *dev, enum tc_setup_type type, void *type_data) { struct netdevsim *ns = netdev_priv(dev); switch (type) { case TC_SETUP_BLOCK: return flow_block_cb_setup_simple(type_data, &nsim_block_cb_list, nsim_setup_tc_block_cb, ns, ns, true); default: return -EOPNOTSUPP; } } static int nsim_set_features(struct net_device *dev, netdev_features_t features) { struct netdevsim *ns = netdev_priv(dev); if ((dev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC)) return nsim_bpf_disable_tc(ns); return 0; } static struct devlink_port *nsim_get_devlink_port(struct net_device *dev) { struct netdevsim *ns = netdev_priv(dev); return &ns->nsim_dev_port->devlink_port; } static const struct net_device_ops nsim_netdev_ops = { .ndo_start_xmit = nsim_start_xmit, .ndo_set_rx_mode = nsim_set_rx_mode, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, .ndo_change_mtu = nsim_change_mtu, .ndo_get_stats64 = nsim_get_stats64, .ndo_set_vf_mac = nsim_set_vf_mac, .ndo_set_vf_vlan = nsim_set_vf_vlan, .ndo_set_vf_rate = nsim_set_vf_rate, .ndo_set_vf_spoofchk = nsim_set_vf_spoofchk, .ndo_set_vf_trust = nsim_set_vf_trust, .ndo_get_vf_config = nsim_get_vf_config, .ndo_set_vf_link_state = nsim_set_vf_link_state, .ndo_set_vf_rss_query_en = nsim_set_vf_rss_query_en, .ndo_setup_tc = nsim_setup_tc, .ndo_set_features = nsim_set_features, .ndo_bpf = nsim_bpf, .ndo_get_devlink_port = nsim_get_devlink_port, }; static const struct net_device_ops nsim_vf_netdev_ops = { .ndo_start_xmit = nsim_start_xmit, .ndo_set_rx_mode = nsim_set_rx_mode, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, .ndo_change_mtu = nsim_change_mtu, .ndo_get_stats64 = nsim_get_stats64, .ndo_setup_tc = nsim_setup_tc, .ndo_set_features = nsim_set_features, .ndo_get_devlink_port = nsim_get_devlink_port, }; static void nsim_setup(struct net_device *dev) { ether_setup(dev); eth_hw_addr_random(dev); dev->tx_queue_len = 0; dev->flags |= IFF_NOARP; dev->flags &= ~IFF_MULTICAST; dev->priv_flags |= IFF_LIVE_ADDR_CHANGE | IFF_NO_QUEUE; dev->features |= NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | NETIF_F_TSO; dev->hw_features |= NETIF_F_HW_TC; dev->max_mtu = ETH_MAX_MTU; } static int nsim_init_netdevsim(struct netdevsim *ns) { int err; ns->netdev->netdev_ops = &nsim_netdev_ops; err = nsim_udp_tunnels_info_create(ns->nsim_dev, ns->netdev); if (err) return err; rtnl_lock(); err = nsim_bpf_init(ns); if (err) goto err_utn_destroy; nsim_ipsec_init(ns); err = register_netdevice(ns->netdev); if (err) goto err_ipsec_teardown; rtnl_unlock(); return 0; err_ipsec_teardown: nsim_ipsec_teardown(ns); nsim_bpf_uninit(ns); err_utn_destroy: rtnl_unlock(); nsim_udp_tunnels_info_destroy(ns->netdev); return err; } static int nsim_init_netdevsim_vf(struct netdevsim *ns) { int err; ns->netdev->netdev_ops = &nsim_vf_netdev_ops; rtnl_lock(); err = register_netdevice(ns->netdev); rtnl_unlock(); return err; } struct netdevsim * nsim_create(struct nsim_dev *nsim_dev, struct nsim_dev_port *nsim_dev_port) { struct net_device *dev; struct netdevsim *ns; int err; dev = alloc_netdev_mq(sizeof(*ns), "eth%d", NET_NAME_UNKNOWN, nsim_setup, nsim_dev->nsim_bus_dev->num_queues); if (!dev) return ERR_PTR(-ENOMEM); dev_net_set(dev, nsim_dev_net(nsim_dev)); ns = netdev_priv(dev); ns->netdev = dev; u64_stats_init(&ns->syncp); ns->nsim_dev = nsim_dev; ns->nsim_dev_port = nsim_dev_port; ns->nsim_bus_dev = nsim_dev->nsim_bus_dev; SET_NETDEV_DEV(dev, &ns->nsim_bus_dev->dev); nsim_ethtool_init(ns); if (nsim_dev_port_is_pf(nsim_dev_port)) err = nsim_init_netdevsim(ns); else err = nsim_init_netdevsim_vf(ns); if (err) goto err_free_netdev; return ns; err_free_netdev: free_netdev(dev); return ERR_PTR(err); } void nsim_destroy(struct netdevsim *ns) { struct net_device *dev = ns->netdev; rtnl_lock(); unregister_netdevice(dev); if (nsim_dev_port_is_pf(ns->nsim_dev_port)) { nsim_ipsec_teardown(ns); nsim_bpf_uninit(ns); } rtnl_unlock(); if (nsim_dev_port_is_pf(ns->nsim_dev_port)) nsim_udp_tunnels_info_destroy(dev); free_netdev(dev); } static int nsim_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { NL_SET_ERR_MSG_MOD(extack, "Please use: echo \"[ID] [PORT_COUNT] [NUM_QUEUES]\" > /sys/bus/netdevsim/new_device"); return -EOPNOTSUPP; } static struct rtnl_link_ops nsim_link_ops __read_mostly = { .kind = DRV_NAME, .validate = nsim_validate, }; static int __init nsim_module_init(void) { int err; err = nsim_dev_init(); if (err) return err; err = nsim_bus_init(); if (err) goto err_dev_exit; err = rtnl_link_register(&nsim_link_ops); if (err) goto err_bus_exit; return 0; err_bus_exit: nsim_bus_exit(); err_dev_exit: nsim_dev_exit(); return err; } static void __exit nsim_module_exit(void) { rtnl_link_unregister(&nsim_link_ops); nsim_bus_exit(); nsim_dev_exit(); } module_init(nsim_module_init); module_exit(nsim_module_exit); MODULE_LICENSE("GPL"); MODULE_ALIAS_RTNL_LINK(DRV_NAME);
3 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __PACKET_INTERNAL_H__ #define __PACKET_INTERNAL_H__ #include <linux/refcount.h> struct packet_mclist { struct packet_mclist *next; int ifindex; int count; unsigned short type; unsigned short alen; unsigned char addr[MAX_ADDR_LEN]; }; /* kbdq - kernel block descriptor queue */ struct tpacket_kbdq_core { struct pgv *pkbdq; unsigned int feature_req_word; unsigned int hdrlen; unsigned char reset_pending_on_curr_blk; unsigned char delete_blk_timer; unsigned short kactive_blk_num; unsigned short blk_sizeof_priv; /* last_kactive_blk_num: * trick to see if user-space has caught up * in order to avoid refreshing timer when every single pkt arrives. */ unsigned short last_kactive_blk_num; char *pkblk_start; char *pkblk_end; int kblk_size; unsigned int max_frame_len; unsigned int knum_blocks; uint64_t knxt_seq_num; char *prev; char *nxt_offset; struct sk_buff *skb; rwlock_t blk_fill_in_prog_lock; /* Default is set to 8ms */ #define DEFAULT_PRB_RETIRE_TOV (8) unsigned short retire_blk_tov; unsigned short version; unsigned long tov_in_jiffies; /* timer to retire an outstanding block */ struct timer_list retire_blk_timer; }; struct pgv { char *buffer; }; struct packet_ring_buffer { struct pgv *pg_vec; unsigned int head; unsigned int frames_per_block; unsigned int frame_size; unsigned int frame_max; unsigned int pg_vec_order; unsigned int pg_vec_pages; unsigned int pg_vec_len; unsigned int __percpu *pending_refcnt; union { unsigned long *rx_owner_map; struct tpacket_kbdq_core prb_bdqc; }; }; extern struct mutex fanout_mutex; #define PACKET_FANOUT_MAX (1 << 16) struct packet_fanout { possible_net_t net; unsigned int num_members; u32 max_num_members; u16 id; u8 type; u8 flags; union { atomic_t rr_cur; struct bpf_prog __rcu *bpf_prog; }; struct list_head list; spinlock_t lock; refcount_t sk_ref; struct packet_type prot_hook ____cacheline_aligned_in_smp; struct sock __rcu *arr[]; }; struct packet_rollover { int sock; atomic_long_t num; atomic_long_t num_huge; atomic_long_t num_failed; #define ROLLOVER_HLEN (L1_CACHE_BYTES / sizeof(u32)) u32 history[ROLLOVER_HLEN] ____cacheline_aligned; } ____cacheline_aligned_in_smp; struct packet_sock { /* struct sock has to be the first member of packet_sock */ struct sock sk; struct packet_fanout *fanout; union tpacket_stats_u stats; struct packet_ring_buffer rx_ring; struct packet_ring_buffer tx_ring; int copy_thresh; spinlock_t bind_lock; struct mutex pg_vec_lock; unsigned long flags; unsigned int running; /* bind_lock must be held */ unsigned int has_vnet_hdr:1, /* writer must hold sock lock */ tp_loss:1, tp_tx_has_off:1; int pressure; int ifindex; /* bound device */ __be16 num; struct packet_rollover *rollover; struct packet_mclist *mclist; atomic_long_t mapped; enum tpacket_versions tp_version; unsigned int tp_hdrlen; unsigned int tp_reserve; unsigned int tp_tstamp; struct completion skb_completion; struct net_device __rcu *cached_dev; int (*xmit)(struct sk_buff *skb); struct packet_type prot_hook ____cacheline_aligned_in_smp; atomic_t tp_drops ____cacheline_aligned_in_smp; }; static inline struct packet_sock *pkt_sk(struct sock *sk) { return (struct packet_sock *)sk; } enum packet_sock_flags { PACKET_SOCK_ORIGDEV, PACKET_SOCK_AUXDATA, }; static inline void packet_sock_flag_set(struct packet_sock *po, enum packet_sock_flags flag, bool val) { if (val) set_bit(flag, &po->flags); else clear_bit(flag, &po->flags); } static inline bool packet_sock_flag(const struct packet_sock *po, enum packet_sock_flags flag) { return test_bit(flag, &po->flags); } #endif
49 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 // SPDX-License-Identifier: GPL-2.0-only /* * Syscall interface to knfsd. * * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> */ #include <linux/slab.h> #include <linux/namei.h> #include <linux/ctype.h> #include <linux/fs_context.h> #include <linux/sunrpc/svcsock.h> #include <linux/lockd/lockd.h> #include <linux/sunrpc/addr.h> #include <linux/sunrpc/gss_api.h> #include <linux/sunrpc/gss_krb5_enctypes.h> #include <linux/sunrpc/rpc_pipe_fs.h> #include <linux/module.h> #include <linux/fsnotify.h> #include "idmap.h" #include "nfsd.h" #include "cache.h" #include "state.h" #include "netns.h" #include "pnfs.h" #include "filecache.h" /* * We have a single directory with several nodes in it. */ enum { NFSD_Root = 1, NFSD_List, NFSD_Export_Stats, NFSD_Export_features, NFSD_Fh, NFSD_FO_UnlockIP, NFSD_FO_UnlockFS, NFSD_Threads, NFSD_Pool_Threads, NFSD_Pool_Stats, NFSD_Reply_Cache_Stats, NFSD_Versions, NFSD_Ports, NFSD_MaxBlkSize, NFSD_MaxConnections, NFSD_Filecache, NFSD_SupportedEnctypes, /* * The below MUST come last. Otherwise we leave a hole in nfsd_files[] * with !CONFIG_NFSD_V4 and simple_fill_super() goes oops */ #ifdef CONFIG_NFSD_V4 NFSD_Leasetime, NFSD_Gracetime, NFSD_RecoveryDir, NFSD_V4EndGrace, #endif NFSD_MaxReserved }; /* * write() for these nodes. */ static ssize_t write_filehandle(struct file *file, char *buf, size_t size); static ssize_t write_unlock_ip(struct file *file, char *buf, size_t size); static ssize_t write_unlock_fs(struct file *file, char *buf, size_t size); static ssize_t write_threads(struct file *file, char *buf, size_t size); static ssize_t write_pool_threads(struct file *file, char *buf, size_t size); static ssize_t write_versions(struct file *file, char *buf, size_t size); static ssize_t write_ports(struct file *file, char *buf, size_t size); static ssize_t write_maxblksize(struct file *file, char *buf, size_t size); static ssize_t write_maxconn(struct file *file, char *buf, size_t size); #ifdef CONFIG_NFSD_V4 static ssize_t write_leasetime(struct file *file, char *buf, size_t size); static ssize_t write_gracetime(struct file *file, char *buf, size_t size); static ssize_t write_recoverydir(struct file *file, char *buf, size_t size); static ssize_t write_v4_end_grace(struct file *file, char *buf, size_t size); #endif static ssize_t (*const write_op[])(struct file *, char *, size_t) = { [NFSD_Fh] = write_filehandle, [NFSD_FO_UnlockIP] = write_unlock_ip, [NFSD_FO_UnlockFS] = write_unlock_fs, [NFSD_Threads] = write_threads, [NFSD_Pool_Threads] = write_pool_threads, [NFSD_Versions] = write_versions, [NFSD_Ports] = write_ports, [NFSD_MaxBlkSize] = write_maxblksize, [NFSD_MaxConnections] = write_maxconn, #ifdef CONFIG_NFSD_V4 [NFSD_Leasetime] = write_leasetime, [NFSD_Gracetime] = write_gracetime, [NFSD_RecoveryDir] = write_recoverydir, [NFSD_V4EndGrace] = write_v4_end_grace, #endif }; static ssize_t nfsctl_transaction_write(struct file *file, const char __user *buf, size_t size, loff_t *pos) { ino_t ino = file_inode(file)->i_ino; char *data; ssize_t rv; if (ino >= ARRAY_SIZE(write_op) || !write_op[ino]) return -EINVAL; data = simple_transaction_get(file, buf, size); if (IS_ERR(data)) return PTR_ERR(data); rv = write_op[ino](file, data, size); if (rv >= 0) { simple_transaction_set(file, rv); rv = size; } return rv; } static ssize_t nfsctl_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) { if (! file->private_data) { /* An attempt to read a transaction file without writing * causes a 0-byte write so that the file can return * state information */ ssize_t rv = nfsctl_transaction_write(file, buf, 0, pos); if (rv < 0) return rv; } return simple_transaction_read(file, buf, size, pos); } static const struct file_operations transaction_ops = { .write = nfsctl_transaction_write, .read = nfsctl_transaction_read, .release = simple_transaction_release, .llseek = default_llseek, }; static int exports_net_open(struct net *net, struct file *file) { int err; struct seq_file *seq; struct nfsd_net *nn = net_generic(net, nfsd_net_id); err = seq_open(file, &nfs_exports_op); if (err) return err; seq = file->private_data; seq->private = nn->svc_export_cache; return 0; } static int exports_proc_open(struct inode *inode, struct file *file) { return exports_net_open(current->nsproxy->net_ns, file); } static const struct proc_ops exports_proc_ops = { .proc_open = exports_proc_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = seq_release, }; static int exports_nfsd_open(struct inode *inode, struct file *file) { return exports_net_open(inode->i_sb->s_fs_info, file); } static const struct file_operations exports_nfsd_operations = { .open = exports_nfsd_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static int export_features_show(struct seq_file *m, void *v) { seq_printf(m, "0x%x 0x%x\n", NFSEXP_ALLFLAGS, NFSEXP_SECINFO_FLAGS); return 0; } DEFINE_SHOW_ATTRIBUTE(export_features); #if defined(CONFIG_SUNRPC_GSS) || defined(CONFIG_SUNRPC_GSS_MODULE) static int supported_enctypes_show(struct seq_file *m, void *v) { seq_printf(m, KRB5_SUPPORTED_ENCTYPES); return 0; } DEFINE_SHOW_ATTRIBUTE(supported_enctypes); #endif /* CONFIG_SUNRPC_GSS or CONFIG_SUNRPC_GSS_MODULE */ static const struct file_operations pool_stats_operations = { .open = nfsd_pool_stats_open, .read = seq_read, .llseek = seq_lseek, .release = nfsd_pool_stats_release, }; DEFINE_SHOW_ATTRIBUTE(nfsd_reply_cache_stats); DEFINE_SHOW_ATTRIBUTE(nfsd_file_cache_stats); /*----------------------------------------------------------------------------*/ /* * payload - write methods */ static inline struct net *netns(struct file *file) { return file_inode(file)->i_sb->s_fs_info; } /* * write_unlock_ip - Release all locks used by a client * * Experimental. * * Input: * buf: '\n'-terminated C string containing a * presentation format IP address * size: length of C string in @buf * Output: * On success: returns zero if all specified locks were released; * returns one if one or more locks were not released * On error: return code is negative errno value */ static ssize_t write_unlock_ip(struct file *file, char *buf, size_t size) { struct sockaddr_storage address; struct sockaddr *sap = (struct sockaddr *)&address; size_t salen = sizeof(address); char *fo_path; struct net *net = netns(file); /* sanity check */ if (size == 0) return -EINVAL; if (buf[size-1] != '\n') return -EINVAL; fo_path = buf; if (qword_get(&buf, fo_path, size) < 0) return -EINVAL; if (rpc_pton(net, fo_path, size, sap, salen) == 0) return -EINVAL; return nlmsvc_unlock_all_by_ip(sap); } /* * write_unlock_fs - Release all locks on a local file system * * Experimental. * * Input: * buf: '\n'-terminated C string containing the * absolute pathname of a local file system * size: length of C string in @buf * Output: * On success: returns zero if all specified locks were released; * returns one if one or more locks were not released * On error: return code is negative errno value */ static ssize_t write_unlock_fs(struct file *file, char *buf, size_t size) { struct path path; char *fo_path; int error; /* sanity check */ if (size == 0) return -EINVAL; if (buf[size-1] != '\n') return -EINVAL; fo_path = buf; if (qword_get(&buf, fo_path, size) < 0) return -EINVAL; error = kern_path(fo_path, 0, &path); if (error) return error; /* * XXX: Needs better sanity checking. Otherwise we could end up * releasing locks on the wrong file system. * * For example: * 1. Does the path refer to a directory? * 2. Is that directory a mount point, or * 3. Is that directory the root of an exported file system? */ error = nlmsvc_unlock_all_by_sb(path.dentry->d_sb); path_put(&path); return error; } /* * write_filehandle - Get a variable-length NFS file handle by path * * On input, the buffer contains a '\n'-terminated C string comprised of * three alphanumeric words separated by whitespace. The string may * contain escape sequences. * * Input: * buf: * domain: client domain name * path: export pathname * maxsize: numeric maximum size of * @buf * size: length of C string in @buf * Output: * On success: passed-in buffer filled with '\n'-terminated C * string containing a ASCII hex text version * of the NFS file handle; * return code is the size in bytes of the string * On error: return code is negative errno value */ static ssize_t write_filehandle(struct file *file, char *buf, size_t size) { char *dname, *path; int maxsize; char *mesg = buf; int len; struct auth_domain *dom; struct knfsd_fh fh; if (size == 0) return -EINVAL; if (buf[size-1] != '\n') return -EINVAL; buf[size-1] = 0; dname = mesg; len = qword_get(&mesg, dname, size); if (len <= 0) return -EINVAL; path = dname+len+1; len = qword_get(&mesg, path, size); if (len <= 0) return -EINVAL; len = get_int(&mesg, &maxsize); if (len) return len; if (maxsize < NFS_FHSIZE) return -EINVAL; maxsize = min(maxsize, NFS3_FHSIZE); if (qword_get(&mesg, mesg, size)>0) return -EINVAL; /* we have all the words, they are in buf.. */ dom = unix_domain_find(dname); if (!dom) return -ENOMEM; len = exp_rootfh(netns(file), dom, path, &fh, maxsize); auth_domain_put(dom); if (len) return len; mesg = buf; len = SIMPLE_TRANSACTION_LIMIT; qword_addhex(&mesg, &len, fh.fh_raw, fh.fh_size); mesg[-1] = '\n'; return mesg - buf; } /* * write_threads - Start NFSD, or report the current number of running threads * * Input: * buf: ignored * size: zero * Output: * On success: passed-in buffer filled with '\n'-terminated C * string numeric value representing the number of * running NFSD threads; * return code is the size in bytes of the string * On error: return code is zero * * OR * * Input: * buf: C string containing an unsigned * integer value representing the * number of NFSD threads to start * size: non-zero length of C string in @buf * Output: * On success: NFS service is started; * passed-in buffer filled with '\n'-terminated C * string numeric value representing the number of * running NFSD threads; * return code is the size in bytes of the string * On error: return code is zero or a negative errno value */ static ssize_t write_threads(struct file *file, char *buf, size_t size) { char *mesg = buf; int rv; struct net *net = netns(file); if (size > 0) { int newthreads; rv = get_int(&mesg, &newthreads); if (rv) return rv; if (newthreads < 0) return -EINVAL; rv = nfsd_svc(newthreads, net, file->f_cred); if (rv < 0) return rv; } else rv = nfsd_nrthreads(net); return scnprintf(buf, SIMPLE_TRANSACTION_LIMIT, "%d\n", rv); } /* * write_pool_threads - Set or report the current number of threads per pool * * Input: * buf: ignored * size: zero * * OR * * Input: * buf: C string containing whitespace- * separated unsigned integer values * representing the number of NFSD * threads to start in each pool * size: non-zero length of C string in @buf * Output: * On success: passed-in buffer filled with '\n'-terminated C * string containing integer values representing the * number of NFSD threads in each pool; * return code is the size in bytes of the string * On error: return code is zero or a negative errno value */ static ssize_t write_pool_threads(struct file *file, char *buf, size_t size) { /* if size > 0, look for an array of number of threads per node * and apply them then write out number of threads per node as reply */ char *mesg = buf; int i; int rv; int len; int npools; int *nthreads; struct net *net = netns(file); mutex_lock(&nfsd_mutex); npools = nfsd_nrpools(net); if (npools == 0) { /* * NFS is shut down. The admin can start it by * writing to the threads file but NOT the pool_threads * file, sorry. Report zero threads. */ mutex_unlock(&nfsd_mutex); strcpy(buf, "0\n"); return strlen(buf); } nthreads = kcalloc(npools, sizeof(int), GFP_KERNEL); rv = -ENOMEM; if (nthreads == NULL) goto out_free; if (size > 0) { for (i = 0; i < npools; i++) { rv = get_int(&mesg, &nthreads[i]); if (rv == -ENOENT) break; /* fewer numbers than pools */ if (rv) goto out_free; /* syntax error */ rv = -EINVAL; if (nthreads[i] < 0) goto out_free; } rv = nfsd_set_nrthreads(i, nthreads, net); if (rv) goto out_free; } rv = nfsd_get_nrthreads(npools, nthreads, net); if (rv) goto out_free; mesg = buf; size = SIMPLE_TRANSACTION_LIMIT; for (i = 0; i < npools && size > 0; i++) { snprintf(mesg, size, "%d%c", nthreads[i], (i == npools-1 ? '\n' : ' ')); len = strlen(mesg); size -= len; mesg += len; } rv = mesg - buf; out_free: kfree(nthreads); mutex_unlock(&nfsd_mutex); return rv; } static ssize_t nfsd_print_version_support(struct nfsd_net *nn, char *buf, int remaining, const char *sep, unsigned vers, int minor) { const char *format = minor < 0 ? "%s%c%u" : "%s%c%u.%u"; bool supported = !!nfsd_vers(nn, vers, NFSD_TEST); if (vers == 4 && minor >= 0 && !nfsd_minorversion(nn, minor, NFSD_TEST)) supported = false; if (minor == 0 && supported) /* * special case for backward compatability. * +4.0 is never reported, it is implied by * +4, unless -4.0 is present. */ return 0; return snprintf(buf, remaining, format, sep, supported ? '+' : '-', vers, minor); } static ssize_t __write_versions(struct file *file, char *buf, size_t size) { char *mesg = buf; char *vers, *minorp, sign; int len, num, remaining; ssize_t tlen = 0; char *sep; struct nfsd_net *nn = net_generic(netns(file), nfsd_net_id); if (size>0) { if (nn->nfsd_serv) /* Cannot change versions without updating * nn->nfsd_serv->sv_xdrsize, and reallocing * rq_argp and rq_resp */ return -EBUSY; if (buf[size-1] != '\n') return -EINVAL; buf[size-1] = 0; vers = mesg; len = qword_get(&mesg, vers, size); if (len <= 0) return -EINVAL; do { enum vers_op cmd; unsigned minor; sign = *vers; if (sign == '+' || sign == '-') num = simple_strtol((vers+1), &minorp, 0); else num = simple_strtol(vers, &minorp, 0); if (*minorp == '.') { if (num != 4) return -EINVAL; if (kstrtouint(minorp+1, 0, &minor) < 0) return -EINVAL; } cmd = sign == '-' ? NFSD_CLEAR : NFSD_SET; switch(num) { #ifdef CONFIG_NFSD_V2 case 2: #endif case 3: nfsd_vers(nn, num, cmd); break; case 4: if (*minorp == '.') { if (nfsd_minorversion(nn, minor, cmd) < 0) return -EINVAL; } else if ((cmd == NFSD_SET) != nfsd_vers(nn, num, NFSD_TEST)) { /* * Either we have +4 and no minors are enabled, * or we have -4 and at least one minor is enabled. * In either case, propagate 'cmd' to all minors. */ minor = 0; while (nfsd_minorversion(nn, minor, cmd) >= 0) minor++; } break; default: /* Ignore requests to disable non-existent versions */ if (cmd == NFSD_SET) return -EINVAL; } vers += len + 1; } while ((len = qword_get(&mesg, vers, size)) > 0); /* If all get turned off, turn them back on, as * having no versions is BAD */ nfsd_reset_versions(nn); } /* Now write current state into reply buffer */ sep = ""; remaining = SIMPLE_TRANSACTION_LIMIT; for (num=2 ; num <= 4 ; num++) { int minor; if (!nfsd_vers(nn, num, NFSD_AVAIL)) continue; minor = -1; do { len = nfsd_print_version_support(nn, buf, remaining, sep, num, minor); if (len >= remaining) goto out; remaining -= len; buf += len; tlen += len; minor++; if (len) sep = " "; } while (num == 4 && minor <= NFSD_SUPPORTED_MINOR_VERSION); } out: len = snprintf(buf, remaining, "\n"); if (len >= remaining) return -EINVAL; return tlen + len; } /* * write_versions - Set or report the available NFS protocol versions * * Input: * buf: ignored * size: zero * Output: * On success: passed-in buffer filled with '\n'-terminated C * string containing positive or negative integer * values representing the current status of each * protocol version; * return code is the size in bytes of the string * On error: return code is zero or a negative errno value * * OR * * Input: * buf: C string containing whitespace- * separated positive or negative * integer values representing NFS * protocol versions to enable ("+n") * or disable ("-n") * size: non-zero length of C string in @buf * Output: * On success: status of zero or more protocol versions has * been updated; passed-in buffer filled with * '\n'-terminated C string containing positive * or negative integer values representing the * current status of each protocol version; * return code is the size in bytes of the string * On error: return code is zero or a negative errno value */ static ssize_t write_versions(struct file *file, char *buf, size_t size) { ssize_t rv; mutex_lock(&nfsd_mutex); rv = __write_versions(file, buf, size); mutex_unlock(&nfsd_mutex); return rv; } /* * Zero-length write. Return a list of NFSD's current listener * transports. */ static ssize_t __write_ports_names(char *buf, struct net *net) { struct nfsd_net *nn = net_generic(net, nfsd_net_id); if (nn->nfsd_serv == NULL) return 0; return svc_xprt_names(nn->nfsd_serv, buf, SIMPLE_TRANSACTION_LIMIT); } /* * A single 'fd' number was written, in which case it must be for * a socket of a supported family/protocol, and we use it as an * nfsd listener. */ static ssize_t __write_ports_addfd(char *buf, struct net *net, const struct cred *cred) { char *mesg = buf; int fd, err; struct nfsd_net *nn = net_generic(net, nfsd_net_id); struct svc_serv *serv; err = get_int(&mesg, &fd); if (err != 0 || fd < 0) return -EINVAL; err = nfsd_create_serv(net); if (err != 0) return err; serv = nn->nfsd_serv; err = svc_addsock(serv, net, fd, buf, SIMPLE_TRANSACTION_LIMIT, cred); if (err < 0 && !serv->sv_nrthreads && !nn->keep_active) nfsd_last_thread(net); else if (err >= 0 && !serv->sv_nrthreads && !xchg(&nn->keep_active, 1)) svc_get(serv); svc_put(serv); return err; } /* * A transport listener is added by writing it's transport name and * a port number. */ static ssize_t __write_ports_addxprt(char *buf, struct net *net, const struct cred *cred) { char transport[16]; struct svc_xprt *xprt; int port, err; struct nfsd_net *nn = net_generic(net, nfsd_net_id); struct svc_serv *serv; if (sscanf(buf, "%15s %5u", transport, &port) != 2) return -EINVAL; if (port < 1 || port > USHRT_MAX) return -EINVAL; err = nfsd_create_serv(net); if (err != 0) return err; serv = nn->nfsd_serv; err = svc_xprt_create(serv, transport, net, PF_INET, port, SVC_SOCK_ANONYMOUS, cred); if (err < 0) goto out_err; err = svc_xprt_create(serv, transport, net, PF_INET6, port, SVC_SOCK_ANONYMOUS, cred); if (err < 0 && err != -EAFNOSUPPORT) goto out_close; if (!serv->sv_nrthreads && !xchg(&nn->keep_active, 1)) svc_get(serv); svc_put(serv); return 0; out_close: xprt = svc_find_xprt(serv, transport, net, PF_INET, port); if (xprt != NULL) { svc_xprt_close(xprt); svc_xprt_put(xprt); } out_err: if (!serv->sv_nrthreads && !nn->keep_active) nfsd_last_thread(net); svc_put(serv); return err; } static ssize_t __write_ports(struct file *file, char *buf, size_t size, struct net *net) { if (size == 0) return __write_ports_names(buf, net); if (isdigit(buf[0])) return __write_ports_addfd(buf, net, file->f_cred); if (isalpha(buf[0])) return __write_ports_addxprt(buf, net, file->f_cred); return -EINVAL; } /* * write_ports - Pass a socket file descriptor or transport name to listen on * * Input: * buf: ignored * size: zero * Output: * On success: passed-in buffer filled with a '\n'-terminated C * string containing a whitespace-separated list of * named NFSD listeners; * return code is the size in bytes of the string * On error: return code is zero or a negative errno value * * OR * * Input: * buf: C string containing an unsigned * integer value representing a bound * but unconnected socket that is to be * used as an NFSD listener; listen(3) * must be called for a SOCK_STREAM * socket, otherwise it is ignored * size: non-zero length of C string in @buf * Output: * On success: NFS service is started; * passed-in buffer filled with a '\n'-terminated C * string containing a unique alphanumeric name of * the listener; * return code is the size in bytes of the string * On error: return code is a negative errno value * * OR * * Input: * buf: C string containing a transport * name and an unsigned integer value * representing the port to listen on, * separated by whitespace * size: non-zero length of C string in @buf * Output: * On success: returns zero; NFS service is started * On error: return code is a negative errno value */ static ssize_t write_ports(struct file *file, char *buf, size_t size) { ssize_t rv; mutex_lock(&nfsd_mutex); rv = __write_ports(file, buf, size, netns(file)); mutex_unlock(&nfsd_mutex); return rv; } int nfsd_max_blksize; /* * write_maxblksize - Set or report the current NFS blksize * * Input: * buf: ignored * size: zero * * OR * * Input: * buf: C string containing an unsigned * integer value representing the new * NFS blksize * size: non-zero length of C string in @buf * Output: * On success: passed-in buffer filled with '\n'-terminated C string * containing numeric value of the current NFS blksize * setting; * return code is the size in bytes of the string * On error: return code is zero or a negative errno value */ static ssize_t write_maxblksize(struct file *file, char *buf, size_t size) { char *mesg = buf; struct nfsd_net *nn = net_generic(netns(file), nfsd_net_id); if (size > 0) { int bsize; int rv = get_int(&mesg, &bsize); if (rv) return rv; /* force bsize into allowed range and * required alignment. */ bsize = max_t(int, bsize, 1024); bsize = min_t(int, bsize, NFSSVC_MAXBLKSIZE); bsize &= ~(1024-1); mutex_lock(&nfsd_mutex); if (nn->nfsd_serv) { mutex_unlock(&nfsd_mutex); return -EBUSY; } nfsd_max_blksize = bsize; mutex_unlock(&nfsd_mutex); } return scnprintf(buf, SIMPLE_TRANSACTION_LIMIT, "%d\n", nfsd_max_blksize); } /* * write_maxconn - Set or report the current max number of connections * * Input: * buf: ignored * size: zero * OR * * Input: * buf: C string containing an unsigned * integer value representing the new * number of max connections * size: non-zero length of C string in @buf * Output: * On success: passed-in buffer filled with '\n'-terminated C string * containing numeric value of max_connections setting * for this net namespace; * return code is the size in bytes of the string * On error: return code is zero or a negative errno value */ static ssize_t write_maxconn(struct file *file, char *buf, size_t size) { char *mesg = buf; struct nfsd_net *nn = net_generic(netns(file), nfsd_net_id); unsigned int maxconn = nn->max_connections; if (size > 0) { int rv = get_uint(&mesg, &maxconn); if (rv) return rv; nn->max_connections = maxconn; } return scnprintf(buf, SIMPLE_TRANSACTION_LIMIT, "%u\n", maxconn); } #ifdef CONFIG_NFSD_V4 static ssize_t __nfsd4_write_time(struct file *file, char *buf, size_t size, time64_t *time, struct nfsd_net *nn) { char *mesg = buf; int rv, i; if (size > 0) { if (nn->nfsd_serv) return -EBUSY; rv = get_int(&mesg, &i); if (rv) return rv; /* * Some sanity checking. We don't have a reason for * these particular numbers, but problems with the * extremes are: * - Too short: the briefest network outage may * cause clients to lose all their locks. Also, * the frequent polling may be wasteful. * - Too long: do you really want reboot recovery * to take more than an hour? Or to make other * clients wait an hour before being able to * revoke a dead client's locks? */ if (i < 10 || i > 3600) return -EINVAL; *time = i; } return scnprintf(buf, SIMPLE_TRANSACTION_LIMIT, "%lld\n", *time); } static ssize_t nfsd4_write_time(struct file *file, char *buf, size_t size, time64_t *time, struct nfsd_net *nn) { ssize_t rv; mutex_lock(&nfsd_mutex); rv = __nfsd4_write_time(file, buf, size, time, nn); mutex_unlock(&nfsd_mutex); return rv; } /* * write_leasetime - Set or report the current NFSv4 lease time * * Input: * buf: ignored * size: zero * * OR * * Input: * buf: C string containing an unsigned * integer value representing the new * NFSv4 lease expiry time * size: non-zero length of C string in @buf * Output: * On success: passed-in buffer filled with '\n'-terminated C * string containing unsigned integer value of the * current lease expiry time; * return code is the size in bytes of the string * On error: return code is zero or a negative errno value */ static ssize_t write_leasetime(struct file *file, char *buf, size_t size) { struct nfsd_net *nn = net_generic(netns(file), nfsd_net_id); return nfsd4_write_time(file, buf, size, &nn->nfsd4_lease, nn); } /* * write_gracetime - Set or report current NFSv4 grace period time * * As above, but sets the time of the NFSv4 grace period. * * Note this should never be set to less than the *previous* * lease-period time, but we don't try to enforce this. (In the common * case (a new boot), we don't know what the previous lease time was * anyway.) */ static ssize_t write_gracetime(struct file *file, char *buf, size_t size) { struct nfsd_net *nn = net_generic(netns(file), nfsd_net_id); return nfsd4_write_time(file, buf, size, &nn->nfsd4_grace, nn); } static ssize_t __write_recoverydir(struct file *file, char *buf, size_t size, struct nfsd_net *nn) { char *mesg = buf; char *recdir; int len, status; if (size > 0) { if (nn->nfsd_serv) return -EBUSY; if (size > PATH_MAX || buf[size-1] != '\n') return -EINVAL; buf[size-1] = 0; recdir = mesg; len = qword_get(&mesg, recdir, size); if (len <= 0) return -EINVAL; status = nfs4_reset_recoverydir(recdir); if (status) return status; } return scnprintf(buf, SIMPLE_TRANSACTION_LIMIT, "%s\n", nfs4_recoverydir()); } /* * write_recoverydir - Set or report the pathname of the recovery directory * * Input: * buf: ignored * size: zero * * OR * * Input: * buf: C string containing the pathname * of the directory on a local file * system containing permanent NFSv4 * recovery data * size: non-zero length of C string in @buf * Output: * On success: passed-in buffer filled with '\n'-terminated C string * containing the current recovery pathname setting; * return code is the size in bytes of the string * On error: return code is zero or a negative errno value */ static ssize_t write_recoverydir(struct file *file, char *buf, size_t size) { ssize_t rv; struct nfsd_net *nn = net_generic(netns(file), nfsd_net_id); mutex_lock(&nfsd_mutex); rv = __write_recoverydir(file, buf, size, nn); mutex_unlock(&nfsd_mutex); return rv; } /* * write_v4_end_grace - release grace period for nfsd's v4.x lock manager * * Input: * buf: ignored * size: zero * OR * * Input: * buf: any value * size: non-zero length of C string in @buf * Output: * passed-in buffer filled with "Y" or "N" with a newline * and NULL-terminated C string. This indicates whether * the grace period has ended in the current net * namespace. Return code is the size in bytes of the * string. Writing a string that starts with 'Y', 'y', or * '1' to the file will end the grace period for nfsd's v4 * lock manager. */ static ssize_t write_v4_end_grace(struct file *file, char *buf, size_t size) { struct nfsd_net *nn = net_generic(netns(file), nfsd_net_id); if (size > 0) { switch(buf[0]) { case 'Y': case 'y': case '1': if (!nn->nfsd_serv) return -EBUSY; nfsd4_end_grace(nn); break; default: return -EINVAL; } } return scnprintf(buf, SIMPLE_TRANSACTION_LIMIT, "%c\n", nn->grace_ended ? 'Y' : 'N'); } #endif /*----------------------------------------------------------------------------*/ /* * populating the filesystem. */ /* Basically copying rpc_get_inode. */ static struct inode *nfsd_get_inode(struct super_block *sb, umode_t mode) { struct inode *inode = new_inode(sb); if (!inode) return NULL; /* Following advice from simple_fill_super documentation: */ inode->i_ino = iunique(sb, NFSD_MaxReserved); inode->i_mode = mode; inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); switch (mode & S_IFMT) { case S_IFDIR: inode->i_fop = &simple_dir_operations; inode->i_op = &simple_dir_inode_operations; inc_nlink(inode); break; default: break; } return inode; } static int __nfsd_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode, struct nfsdfs_client *ncl) { struct inode *inode; inode = nfsd_get_inode(dir->i_sb, mode); if (!inode) return -ENOMEM; if (ncl) { inode->i_private = ncl; kref_get(&ncl->cl_ref); } d_add(dentry, inode); inc_nlink(dir); fsnotify_mkdir(dir, dentry); return 0; } static struct dentry *nfsd_mkdir(struct dentry *parent, struct nfsdfs_client *ncl, char *name) { struct inode *dir = parent->d_inode; struct dentry *dentry; int ret = -ENOMEM; inode_lock(dir); dentry = d_alloc_name(parent, name); if (!dentry) goto out_err; ret = __nfsd_mkdir(d_inode(parent), dentry, S_IFDIR | 0600, ncl); if (ret) goto out_err; out: inode_unlock(dir); return dentry; out_err: dput(dentry); dentry = ERR_PTR(ret); goto out; } static void clear_ncl(struct inode *inode) { struct nfsdfs_client *ncl = inode->i_private; inode->i_private = NULL; kref_put(&ncl->cl_ref, ncl->cl_release); } static struct nfsdfs_client *__get_nfsdfs_client(struct inode *inode) { struct nfsdfs_client *nc = inode->i_private; if (nc) kref_get(&nc->cl_ref); return nc; } struct nfsdfs_client *get_nfsdfs_client(struct inode *inode) { struct nfsdfs_client *nc; inode_lock_shared(inode); nc = __get_nfsdfs_client(inode); inode_unlock_shared(inode); return nc; } /* from __rpc_unlink */ static void nfsdfs_remove_file(struct inode *dir, struct dentry *dentry) { int ret; clear_ncl(d_inode(dentry)); dget(dentry); ret = simple_unlink(dir, dentry); d_drop(dentry); fsnotify_unlink(dir, dentry); dput(dentry); WARN_ON_ONCE(ret); } static void nfsdfs_remove_files(struct dentry *root) { struct dentry *dentry, *tmp; list_for_each_entry_safe(dentry, tmp, &root->d_subdirs, d_child) { if (!simple_positive(dentry)) { WARN_ON_ONCE(1); /* I think this can't happen? */ continue; } nfsdfs_remove_file(d_inode(root), dentry); } } /* XXX: cut'n'paste from simple_fill_super; figure out if we could share * code instead. */ static int nfsdfs_create_files(struct dentry *root, const struct tree_descr *files, struct dentry **fdentries) { struct inode *dir = d_inode(root); struct inode *inode; struct dentry *dentry; int i; inode_lock(dir); for (i = 0; files->name && files->name[0]; i++, files++) { dentry = d_alloc_name(root, files->name); if (!dentry) goto out; inode = nfsd_get_inode(d_inode(root)->i_sb, S_IFREG | files->mode); if (!inode) { dput(dentry); goto out; } inode->i_fop = files->ops; inode->i_private = __get_nfsdfs_client(dir); d_add(dentry, inode); fsnotify_create(dir, dentry); if (fdentries) fdentries[i] = dentry; } inode_unlock(dir); return 0; out: nfsdfs_remove_files(root); inode_unlock(dir); return -ENOMEM; } /* on success, returns positive number unique to that client. */ struct dentry *nfsd_client_mkdir(struct nfsd_net *nn, struct nfsdfs_client *ncl, u32 id, const struct tree_descr *files, struct dentry **fdentries) { struct dentry *dentry; char name[11]; int ret; sprintf(name, "%u", id); dentry = nfsd_mkdir(nn->nfsd_client_dir, ncl, name); if (IS_ERR(dentry)) /* XXX: tossing errors? */ return NULL; ret = nfsdfs_create_files(dentry, files, fdentries); if (ret) { nfsd_client_rmdir(dentry); return NULL; } return dentry; } /* Taken from __rpc_rmdir: */ void nfsd_client_rmdir(struct dentry *dentry) { struct inode *dir = d_inode(dentry->d_parent); struct inode *inode = d_inode(dentry); int ret; inode_lock(dir); nfsdfs_remove_files(dentry); clear_ncl(inode); dget(dentry); ret = simple_rmdir(dir, dentry); WARN_ON_ONCE(ret); d_drop(dentry); fsnotify_rmdir(dir, dentry); dput(dentry); inode_unlock(dir); } static int nfsd_fill_super(struct super_block *sb, struct fs_context *fc) { struct nfsd_net *nn = net_generic(current->nsproxy->net_ns, nfsd_net_id); struct dentry *dentry; int ret; static const struct tree_descr nfsd_files[] = { [NFSD_List] = {"exports", &exports_nfsd_operations, S_IRUGO}, /* Per-export io stats use same ops as exports file */ [NFSD_Export_Stats] = {"export_stats", &exports_nfsd_operations, S_IRUGO}, [NFSD_Export_features] = {"export_features", &export_features_fops, S_IRUGO}, [NFSD_FO_UnlockIP] = {"unlock_ip", &transaction_ops, S_IWUSR|S_IRUSR}, [NFSD_FO_UnlockFS] = {"unlock_filesystem", &transaction_ops, S_IWUSR|S_IRUSR}, [NFSD_Fh] = {"filehandle", &transaction_ops, S_IWUSR|S_IRUSR}, [NFSD_Threads] = {"threads", &transaction_ops, S_IWUSR|S_IRUSR}, [NFSD_Pool_Threads] = {"pool_threads", &transaction_ops, S_IWUSR|S_IRUSR}, [NFSD_Pool_Stats] = {"pool_stats", &pool_stats_operations, S_IRUGO}, [NFSD_Reply_Cache_Stats] = {"reply_cache_stats", &nfsd_reply_cache_stats_fops, S_IRUGO}, [NFSD_Versions] = {"versions", &transaction_ops, S_IWUSR|S_IRUSR}, [NFSD_Ports] = {"portlist", &transaction_ops, S_IWUSR|S_IRUGO}, [NFSD_MaxBlkSize] = {"max_block_size", &transaction_ops, S_IWUSR|S_IRUGO}, [NFSD_MaxConnections] = {"max_connections", &transaction_ops, S_IWUSR|S_IRUGO}, [NFSD_Filecache] = {"filecache", &nfsd_file_cache_stats_fops, S_IRUGO}, #if defined(CONFIG_SUNRPC_GSS) || defined(CONFIG_SUNRPC_GSS_MODULE) [NFSD_SupportedEnctypes] = {"supported_krb5_enctypes", &supported_enctypes_fops, S_IRUGO}, #endif /* CONFIG_SUNRPC_GSS or CONFIG_SUNRPC_GSS_MODULE */ #ifdef CONFIG_NFSD_V4 [NFSD_Leasetime] = {"nfsv4leasetime", &transaction_ops, S_IWUSR|S_IRUSR}, [NFSD_Gracetime] = {"nfsv4gracetime", &transaction_ops, S_IWUSR|S_IRUSR}, [NFSD_RecoveryDir] = {"nfsv4recoverydir", &transaction_ops, S_IWUSR|S_IRUSR}, [NFSD_V4EndGrace] = {"v4_end_grace", &transaction_ops, S_IWUSR|S_IRUGO}, #endif /* last one */ {""} }; ret = simple_fill_super(sb, 0x6e667364, nfsd_files); if (ret) return ret; dentry = nfsd_mkdir(sb->s_root, NULL, "clients"); if (IS_ERR(dentry)) return PTR_ERR(dentry); nn->nfsd_client_dir = dentry; return 0; } static int nfsd_fs_get_tree(struct fs_context *fc) { return get_tree_keyed(fc, nfsd_fill_super, get_net(fc->net_ns)); } static void nfsd_fs_free_fc(struct fs_context *fc) { if (fc->s_fs_info) put_net(fc->s_fs_info); } static const struct fs_context_operations nfsd_fs_context_ops = { .free = nfsd_fs_free_fc, .get_tree = nfsd_fs_get_tree, }; static int nfsd_init_fs_context(struct fs_context *fc) { put_user_ns(fc->user_ns); fc->user_ns = get_user_ns(fc->net_ns->user_ns); fc->ops = &nfsd_fs_context_ops; return 0; } static void nfsd_umount(struct super_block *sb) { struct net *net = sb->s_fs_info; nfsd_shutdown_threads(net); kill_litter_super(sb); put_net(net); } static struct file_system_type nfsd_fs_type = { .owner = THIS_MODULE, .name = "nfsd", .init_fs_context = nfsd_init_fs_context, .kill_sb = nfsd_umount, }; MODULE_ALIAS_FS("nfsd"); #ifdef CONFIG_PROC_FS static int create_proc_exports_entry(void) { struct proc_dir_entry *entry; entry = proc_mkdir("fs/nfs", NULL); if (!entry) return -ENOMEM; entry = proc_create("exports", 0, entry, &exports_proc_ops); if (!entry) { remove_proc_entry("fs/nfs", NULL); return -ENOMEM; } return 0; } #else /* CONFIG_PROC_FS */ static int create_proc_exports_entry(void) { return 0; } #endif unsigned int nfsd_net_id; static __net_init int nfsd_init_net(struct net *net) { int retval; struct nfsd_net *nn = net_generic(net, nfsd_net_id); retval = nfsd_export_init(net); if (retval) goto out_export_error; retval = nfsd_idmap_init(net); if (retval) goto out_idmap_error; retval = nfsd_stat_counters_init(nn); if (retval) goto out_repcache_error; memset(&nn->nfsd_svcstats, 0, sizeof(nn->nfsd_svcstats)); nn->nfsd_svcstats.program = &nfsd_program; nn->nfsd_versions = NULL; nn->nfsd4_minorversions = NULL; nfsd4_init_leases_net(nn); get_random_bytes(&nn->siphash_key, sizeof(nn->siphash_key)); seqlock_init(&nn->writeverf_lock); nfsd_proc_stat_init(net); return 0; out_repcache_error: nfsd_idmap_shutdown(net); out_idmap_error: nfsd_export_shutdown(net); out_export_error: return retval; } static __net_exit void nfsd_exit_net(struct net *net) { struct nfsd_net *nn = net_generic(net, nfsd_net_id); nfsd_proc_stat_shutdown(net); nfsd_stat_counters_destroy(nn); nfsd_idmap_shutdown(net); nfsd_export_shutdown(net); nfsd_netns_free_versions(nn); } static struct pernet_operations nfsd_net_ops = { .init = nfsd_init_net, .exit = nfsd_exit_net, .id = &nfsd_net_id, .size = sizeof(struct nfsd_net), }; static int __init init_nfsd(void) { int retval; retval = nfsd4_init_slabs(); if (retval) return retval; retval = nfsd4_init_pnfs(); if (retval) goto out_free_slabs; retval = nfsd_drc_slab_create(); if (retval) goto out_free_pnfs; nfsd_lockd_init(); /* lockd->nfsd callbacks */ retval = create_proc_exports_entry(); if (retval) goto out_free_lockd; retval = register_pernet_subsys(&nfsd_net_ops); if (retval < 0) goto out_free_exports; retval = register_cld_notifier(); if (retval) goto out_free_subsys; retval = nfsd4_create_laundry_wq(); if (retval) goto out_free_cld; retval = register_filesystem(&nfsd_fs_type); if (retval) goto out_free_all; return 0; out_free_all: nfsd4_destroy_laundry_wq(); out_free_cld: unregister_cld_notifier(); out_free_subsys: unregister_pernet_subsys(&nfsd_net_ops); out_free_exports: remove_proc_entry("fs/nfs/exports", NULL); remove_proc_entry("fs/nfs", NULL); out_free_lockd: nfsd_lockd_shutdown(); nfsd_drc_slab_free(); out_free_pnfs: nfsd4_exit_pnfs(); out_free_slabs: nfsd4_free_slabs(); return retval; } static void __exit exit_nfsd(void) { unregister_filesystem(&nfsd_fs_type); nfsd4_destroy_laundry_wq(); unregister_cld_notifier(); unregister_pernet_subsys(&nfsd_net_ops); nfsd_drc_slab_free(); remove_proc_entry("fs/nfs/exports", NULL); remove_proc_entry("fs/nfs", NULL); nfsd_lockd_shutdown(); nfsd4_free_slabs(); nfsd4_exit_pnfs(); } MODULE_AUTHOR("Olaf Kirch <okir@monad.swb.de>"); MODULE_LICENSE("GPL"); module_init(init_nfsd) module_exit(exit_nfsd)
18 18 18 2 2 2 2 2 2 2 18 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> * Copyright 2008-2010 Johannes Berg <johannes@sipsolutions.net> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright 2021-2022 Intel Corporation */ #include <linux/export.h> #include <linux/etherdevice.h> #include <net/mac80211.h> #include <asm/unaligned.h> #include "ieee80211_i.h" #include "rate.h" #include "mesh.h" #include "led.h" #include "wme.h" void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); int tmp; skb->pkt_type = IEEE80211_TX_STATUS_MSG; skb_queue_tail(info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS ? &local->skb_queue : &local->skb_queue_unreliable, skb); tmp = skb_queue_len(&local->skb_queue) + skb_queue_len(&local->skb_queue_unreliable); while (tmp > IEEE80211_IRQSAFE_QUEUE_LIMIT && (skb = skb_dequeue(&local->skb_queue_unreliable))) { ieee80211_free_txskb(hw, skb); tmp--; I802_DEBUG_INC(local->tx_status_drop); } tasklet_schedule(&local->tasklet); } EXPORT_SYMBOL(ieee80211_tx_status_irqsafe); static void ieee80211_handle_filtered_frame(struct ieee80211_local *local, struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (void *)skb->data; int ac; if (info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER | IEEE80211_TX_CTL_AMPDU | IEEE80211_TX_CTL_HW_80211_ENCAP)) { ieee80211_free_txskb(&local->hw, skb); return; } /* * This skb 'survived' a round-trip through the driver, and * hopefully the driver didn't mangle it too badly. However, * we can definitely not rely on the control information * being correct. Clear it so we don't get junk there, and * indicate that it needs new processing, but must not be * modified/encrypted again. */ memset(&info->control, 0, sizeof(info->control)); info->control.jiffies = jiffies; info->control.vif = &sta->sdata->vif; info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; info->flags |= IEEE80211_TX_INTFL_RETRANSMISSION; info->flags &= ~IEEE80211_TX_TEMPORARY_FLAGS; sta->deflink.status_stats.filtered++; /* * Clear more-data bit on filtered frames, it might be set * but later frames might time out so it might have to be * clear again ... It's all rather unlikely (this frame * should time out first, right?) but let's not confuse * peers unnecessarily. */ if (hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_MOREDATA); if (ieee80211_is_data_qos(hdr->frame_control)) { u8 *p = ieee80211_get_qos_ctl(hdr); int tid = *p & IEEE80211_QOS_CTL_TID_MASK; /* * Clear EOSP if set, this could happen e.g. * if an absence period (us being a P2P GO) * shortens the SP. */ if (*p & IEEE80211_QOS_CTL_EOSP) *p &= ~IEEE80211_QOS_CTL_EOSP; ac = ieee80211_ac_from_tid(tid); } else { ac = IEEE80211_AC_BE; } /* * Clear the TX filter mask for this STA when sending the next * packet. If the STA went to power save mode, this will happen * when it wakes up for the next time. */ set_sta_flag(sta, WLAN_STA_CLEAR_PS_FILT); ieee80211_clear_fast_xmit(sta); /* * This code races in the following way: * * (1) STA sends frame indicating it will go to sleep and does so * (2) hardware/firmware adds STA to filter list, passes frame up * (3) hardware/firmware processes TX fifo and suppresses a frame * (4) we get TX status before having processed the frame and * knowing that the STA has gone to sleep. * * This is actually quite unlikely even when both those events are * processed from interrupts coming in quickly after one another or * even at the same time because we queue both TX status events and * RX frames to be processed by a tasklet and process them in the * same order that they were received or TX status last. Hence, there * is no race as long as the frame RX is processed before the next TX * status, which drivers can ensure, see below. * * Note that this can only happen if the hardware or firmware can * actually add STAs to the filter list, if this is done by the * driver in response to set_tim() (which will only reduce the race * this whole filtering tries to solve, not completely solve it) * this situation cannot happen. * * To completely solve this race drivers need to make sure that they * (a) don't mix the irq-safe/not irq-safe TX status/RX processing * functions and * (b) always process RX events before TX status events if ordering * can be unknown, for example with different interrupt status * bits. * (c) if PS mode transitions are manual (i.e. the flag * %IEEE80211_HW_AP_LINK_PS is set), always process PS state * changes before calling TX status events if ordering can be * unknown. */ if (test_sta_flag(sta, WLAN_STA_PS_STA) && skb_queue_len(&sta->tx_filtered[ac]) < STA_MAX_TX_BUFFER) { skb_queue_tail(&sta->tx_filtered[ac], skb); sta_info_recalc_tim(sta); if (!timer_pending(&local->sta_cleanup)) mod_timer(&local->sta_cleanup, round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); return; } if (!test_sta_flag(sta, WLAN_STA_PS_STA) && !(info->flags & IEEE80211_TX_INTFL_RETRIED)) { /* Software retry the packet once */ info->flags |= IEEE80211_TX_INTFL_RETRIED; ieee80211_add_pending_skb(local, skb); return; } ps_dbg_ratelimited(sta->sdata, "dropped TX filtered frame, queue_len=%d PS=%d @%lu\n", skb_queue_len(&sta->tx_filtered[ac]), !!test_sta_flag(sta, WLAN_STA_PS_STA), jiffies); ieee80211_free_txskb(&local->hw, skb); } static void ieee80211_check_pending_bar(struct sta_info *sta, u8 *addr, u8 tid) { struct tid_ampdu_tx *tid_tx; tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); if (!tid_tx || !tid_tx->bar_pending) return; tid_tx->bar_pending = false; ieee80211_send_bar(&sta->sdata->vif, addr, tid, tid_tx->failed_bar_ssn); } static void ieee80211_frame_acked(struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_mgmt *mgmt = (void *) skb->data; struct ieee80211_local *local = sta->local; struct ieee80211_sub_if_data *sdata = sta->sdata; if (ieee80211_is_data_qos(mgmt->frame_control)) { struct ieee80211_hdr *hdr = (void *) skb->data; u8 *qc = ieee80211_get_qos_ctl(hdr); u16 tid = qc[0] & 0xf; ieee80211_check_pending_bar(sta, hdr->addr1, tid); } if (ieee80211_is_action(mgmt->frame_control) && !ieee80211_has_protected(mgmt->frame_control) && mgmt->u.action.category == WLAN_CATEGORY_HT && mgmt->u.action.u.ht_smps.action == WLAN_HT_ACTION_SMPS && ieee80211_sdata_running(sdata)) { enum ieee80211_smps_mode smps_mode; switch (mgmt->u.action.u.ht_smps.smps_control) { case WLAN_HT_SMPS_CONTROL_DYNAMIC: smps_mode = IEEE80211_SMPS_DYNAMIC; break; case WLAN_HT_SMPS_CONTROL_STATIC: smps_mode = IEEE80211_SMPS_STATIC; break; case WLAN_HT_SMPS_CONTROL_DISABLED: default: /* shouldn't happen since we don't send that */ smps_mode = IEEE80211_SMPS_OFF; break; } if (sdata->vif.type == NL80211_IFTYPE_STATION) { /* * This update looks racy, but isn't -- if we come * here we've definitely got a station that we're * talking to, and on a managed interface that can * only be the AP. And the only other place updating * this variable in managed mode is before association. */ sdata->deflink.smps_mode = smps_mode; ieee80211_queue_work(&local->hw, &sdata->recalc_smps); } } } static void ieee80211_set_bar_pending(struct sta_info *sta, u8 tid, u16 ssn) { struct tid_ampdu_tx *tid_tx; tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); if (!tid_tx) return; tid_tx->failed_bar_ssn = ssn; tid_tx->bar_pending = true; } static int ieee80211_tx_radiotap_len(struct ieee80211_tx_info *info, struct ieee80211_tx_status *status) { struct ieee80211_rate_status *status_rate = NULL; int len = sizeof(struct ieee80211_radiotap_header); if (status && status->n_rates) status_rate = &status->rates[status->n_rates - 1]; /* IEEE80211_RADIOTAP_RATE rate */ if (status_rate && !(status_rate->rate_idx.flags & (RATE_INFO_FLAGS_MCS | RATE_INFO_FLAGS_DMG | RATE_INFO_FLAGS_EDMG | RATE_INFO_FLAGS_VHT_MCS | RATE_INFO_FLAGS_HE_MCS))) len += 2; else if (info->status.rates[0].idx >= 0 && !(info->status.rates[0].flags & (IEEE80211_TX_RC_MCS | IEEE80211_TX_RC_VHT_MCS))) len += 2; /* IEEE80211_RADIOTAP_TX_FLAGS */ len += 2; /* IEEE80211_RADIOTAP_DATA_RETRIES */ len += 1; /* IEEE80211_RADIOTAP_MCS * IEEE80211_RADIOTAP_VHT */ if (status_rate) { if (status_rate->rate_idx.flags & RATE_INFO_FLAGS_MCS) len += 3; else if (status_rate->rate_idx.flags & RATE_INFO_FLAGS_VHT_MCS) len = ALIGN(len, 2) + 12; else if (status_rate->rate_idx.flags & RATE_INFO_FLAGS_HE_MCS) len = ALIGN(len, 2) + 12; } else if (info->status.rates[0].idx >= 0) { if (info->status.rates[0].flags & IEEE80211_TX_RC_MCS) len += 3; else if (info->status.rates[0].flags & IEEE80211_TX_RC_VHT_MCS) len = ALIGN(len, 2) + 12; } return len; } static void ieee80211_add_tx_radiotap_header(struct ieee80211_local *local, struct sk_buff *skb, int retry_count, int rtap_len, int shift, struct ieee80211_tx_status *status) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_radiotap_header *rthdr; struct ieee80211_rate_status *status_rate = NULL; unsigned char *pos; u16 legacy_rate = 0; u16 txflags; if (status && status->n_rates) status_rate = &status->rates[status->n_rates - 1]; rthdr = skb_push(skb, rtap_len); memset(rthdr, 0, rtap_len); rthdr->it_len = cpu_to_le16(rtap_len); rthdr->it_present = cpu_to_le32(BIT(IEEE80211_RADIOTAP_TX_FLAGS) | BIT(IEEE80211_RADIOTAP_DATA_RETRIES)); pos = (unsigned char *)(rthdr + 1); /* * XXX: Once radiotap gets the bitmap reset thing the vendor * extensions proposal contains, we can actually report * the whole set of tries we did. */ /* IEEE80211_RADIOTAP_RATE */ if (status_rate) { if (!(status_rate->rate_idx.flags & (RATE_INFO_FLAGS_MCS | RATE_INFO_FLAGS_DMG | RATE_INFO_FLAGS_EDMG | RATE_INFO_FLAGS_VHT_MCS | RATE_INFO_FLAGS_HE_MCS))) legacy_rate = status_rate->rate_idx.legacy; } else if (info->status.rates[0].idx >= 0 && !(info->status.rates[0].flags & (IEEE80211_TX_RC_MCS | IEEE80211_TX_RC_VHT_MCS))) { struct ieee80211_supported_band *sband; sband = local->hw.wiphy->bands[info->band]; legacy_rate = sband->bitrates[info->status.rates[0].idx].bitrate; } if (legacy_rate) { rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); *pos = DIV_ROUND_UP(legacy_rate, 5 * (1 << shift)); /* padding for tx flags */ pos += 2; } /* IEEE80211_RADIOTAP_TX_FLAGS */ txflags = 0; if (!(info->flags & IEEE80211_TX_STAT_ACK) && !is_multicast_ether_addr(hdr->addr1)) txflags |= IEEE80211_RADIOTAP_F_TX_FAIL; if (info->status.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) txflags |= IEEE80211_RADIOTAP_F_TX_CTS; if (info->status.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) txflags |= IEEE80211_RADIOTAP_F_TX_RTS; put_unaligned_le16(txflags, pos); pos += 2; /* IEEE80211_RADIOTAP_DATA_RETRIES */ /* for now report the total retry_count */ *pos = retry_count; pos++; if (status_rate && (status_rate->rate_idx.flags & RATE_INFO_FLAGS_MCS)) { rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); pos[0] = IEEE80211_RADIOTAP_MCS_HAVE_MCS | IEEE80211_RADIOTAP_MCS_HAVE_GI | IEEE80211_RADIOTAP_MCS_HAVE_BW; if (status_rate->rate_idx.flags & RATE_INFO_FLAGS_SHORT_GI) pos[1] |= IEEE80211_RADIOTAP_MCS_SGI; if (status_rate->rate_idx.bw == RATE_INFO_BW_40) pos[1] |= IEEE80211_RADIOTAP_MCS_BW_40; pos[2] = status_rate->rate_idx.mcs; pos += 3; } else if (status_rate && (status_rate->rate_idx.flags & RATE_INFO_FLAGS_VHT_MCS)) { u16 known = local->hw.radiotap_vht_details & (IEEE80211_RADIOTAP_VHT_KNOWN_GI | IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH); rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); /* required alignment from rthdr */ pos = (u8 *)rthdr + ALIGN(pos - (u8 *)rthdr, 2); /* u16 known - IEEE80211_RADIOTAP_VHT_KNOWN_* */ put_unaligned_le16(known, pos); pos += 2; /* u8 flags - IEEE80211_RADIOTAP_VHT_FLAG_* */ if (status_rate->rate_idx.flags & RATE_INFO_FLAGS_SHORT_GI) *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; pos++; /* u8 bandwidth */ switch (status_rate->rate_idx.bw) { case RATE_INFO_BW_160: *pos = 11; break; case RATE_INFO_BW_80: *pos = 4; break; case RATE_INFO_BW_40: *pos = 1; break; default: *pos = 0; break; } pos++; /* u8 mcs_nss[4] */ *pos = (status_rate->rate_idx.mcs << 4) | status_rate->rate_idx.nss; pos += 4; /* u8 coding */ pos++; /* u8 group_id */ pos++; /* u16 partial_aid */ pos += 2; } else if (status_rate && (status_rate->rate_idx.flags & RATE_INFO_FLAGS_HE_MCS)) { struct ieee80211_radiotap_he *he; rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); /* required alignment from rthdr */ pos = (u8 *)rthdr + ALIGN(pos - (u8 *)rthdr, 2); he = (struct ieee80211_radiotap_he *)pos; he->data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_SU | IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); he->data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN); #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) he->data6 |= HE_PREP(DATA6_NSTS, status_rate->rate_idx.nss); #define CHECK_GI(s) \ BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ (int)NL80211_RATE_INFO_HE_GI_##s) CHECK_GI(0_8); CHECK_GI(1_6); CHECK_GI(3_2); he->data3 |= HE_PREP(DATA3_DATA_MCS, status_rate->rate_idx.mcs); he->data3 |= HE_PREP(DATA3_DATA_DCM, status_rate->rate_idx.he_dcm); he->data5 |= HE_PREP(DATA5_GI, status_rate->rate_idx.he_gi); switch (status_rate->rate_idx.bw) { case RATE_INFO_BW_20: he->data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); break; case RATE_INFO_BW_40: he->data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); break; case RATE_INFO_BW_80: he->data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); break; case RATE_INFO_BW_160: he->data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); break; case RATE_INFO_BW_HE_RU: #define CHECK_RU_ALLOC(s) \ BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) CHECK_RU_ALLOC(26); CHECK_RU_ALLOC(52); CHECK_RU_ALLOC(106); CHECK_RU_ALLOC(242); CHECK_RU_ALLOC(484); CHECK_RU_ALLOC(996); CHECK_RU_ALLOC(2x996); he->data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, status_rate->rate_idx.he_ru_alloc + 4); break; default: WARN_ONCE(1, "Invalid SU BW %d\n", status_rate->rate_idx.bw); } pos += sizeof(struct ieee80211_radiotap_he); } if (status_rate || info->status.rates[0].idx < 0) return; /* IEEE80211_RADIOTAP_MCS * IEEE80211_RADIOTAP_VHT */ if (info->status.rates[0].flags & IEEE80211_TX_RC_MCS) { rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); pos[0] = IEEE80211_RADIOTAP_MCS_HAVE_MCS | IEEE80211_RADIOTAP_MCS_HAVE_GI | IEEE80211_RADIOTAP_MCS_HAVE_BW; if (info->status.rates[0].flags & IEEE80211_TX_RC_SHORT_GI) pos[1] |= IEEE80211_RADIOTAP_MCS_SGI; if (info->status.rates[0].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) pos[1] |= IEEE80211_RADIOTAP_MCS_BW_40; if (info->status.rates[0].flags & IEEE80211_TX_RC_GREEN_FIELD) pos[1] |= IEEE80211_RADIOTAP_MCS_FMT_GF; pos[2] = info->status.rates[0].idx; pos += 3; } else if (info->status.rates[0].flags & IEEE80211_TX_RC_VHT_MCS) { u16 known = local->hw.radiotap_vht_details & (IEEE80211_RADIOTAP_VHT_KNOWN_GI | IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH); rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); /* required alignment from rthdr */ pos = (u8 *)rthdr + ALIGN(pos - (u8 *)rthdr, 2); /* u16 known - IEEE80211_RADIOTAP_VHT_KNOWN_* */ put_unaligned_le16(known, pos); pos += 2; /* u8 flags - IEEE80211_RADIOTAP_VHT_FLAG_* */ if (info->status.rates[0].flags & IEEE80211_TX_RC_SHORT_GI) *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; pos++; /* u8 bandwidth */ if (info->status.rates[0].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) *pos = 1; else if (info->status.rates[0].flags & IEEE80211_TX_RC_80_MHZ_WIDTH) *pos = 4; else if (info->status.rates[0].flags & IEEE80211_TX_RC_160_MHZ_WIDTH) *pos = 11; else /* IEEE80211_TX_RC_{20_MHZ_WIDTH,FIXME:DUP_DATA} */ *pos = 0; pos++; /* u8 mcs_nss[4] */ *pos = (ieee80211_rate_get_vht_mcs(&info->status.rates[0]) << 4) | ieee80211_rate_get_vht_nss(&info->status.rates[0]); pos += 4; /* u8 coding */ pos++; /* u8 group_id */ pos++; /* u16 partial_aid */ pos += 2; } } /* * Handles the tx for TDLS teardown frames. * If the frame wasn't ACKed by the peer - it will be re-sent through the AP */ static void ieee80211_tdls_td_tx_handle(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u32 flags) { struct sk_buff *teardown_skb; struct sk_buff *orig_teardown_skb; bool is_teardown = false; /* Get the teardown data we need and free the lock */ spin_lock(&sdata->u.mgd.teardown_lock); teardown_skb = sdata->u.mgd.teardown_skb; orig_teardown_skb = sdata->u.mgd.orig_teardown_skb; if ((skb == orig_teardown_skb) && teardown_skb) { sdata->u.mgd.teardown_skb = NULL; sdata->u.mgd.orig_teardown_skb = NULL; is_teardown = true; } spin_unlock(&sdata->u.mgd.teardown_lock); if (is_teardown) { /* This mechanism relies on being able to get ACKs */ WARN_ON(!ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)); /* Check if peer has ACKed */ if (flags & IEEE80211_TX_STAT_ACK) { dev_kfree_skb_any(teardown_skb); } else { tdls_dbg(sdata, "TDLS Resending teardown through AP\n"); ieee80211_subif_start_xmit(teardown_skb, skb->dev); } } } static struct ieee80211_sub_if_data * ieee80211_sdata_from_skb(struct ieee80211_local *local, struct sk_buff *skb) { struct ieee80211_sub_if_data *sdata; if (skb->dev) { list_for_each_entry_rcu(sdata, &local->interfaces, list) { if (!sdata->dev) continue; if (skb->dev == sdata->dev) return sdata; } return NULL; } return rcu_dereference(local->p2p_sdata); } static void ieee80211_report_ack_skb(struct ieee80211_local *local, struct sk_buff *orig_skb, bool acked, bool dropped, ktime_t ack_hwtstamp) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(orig_skb); struct sk_buff *skb; unsigned long flags; spin_lock_irqsave(&local->ack_status_lock, flags); skb = idr_remove(&local->ack_status_frames, info->ack_frame_id); spin_unlock_irqrestore(&local->ack_status_lock, flags); if (!skb) return; if (info->flags & IEEE80211_TX_INTFL_NL80211_FRAME_TX) { u64 cookie = IEEE80211_SKB_CB(skb)->ack.cookie; struct ieee80211_sub_if_data *sdata; struct ieee80211_hdr *hdr = (void *)skb->data; bool is_valid_ack_signal = !!(info->status.flags & IEEE80211_TX_STATUS_ACK_SIGNAL_VALID); struct cfg80211_tx_status status = { .cookie = cookie, .buf = skb->data, .len = skb->len, .ack = acked, }; if (ieee80211_is_timing_measurement(orig_skb) || ieee80211_is_ftm(orig_skb)) { status.tx_tstamp = ktime_to_ns(skb_hwtstamps(orig_skb)->hwtstamp); status.ack_tstamp = ktime_to_ns(ack_hwtstamp); } rcu_read_lock(); sdata = ieee80211_sdata_from_skb(local, skb); if (sdata) { if (skb->protocol == sdata->control_port_protocol || skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) cfg80211_control_port_tx_status(&sdata->wdev, cookie, skb->data, skb->len, acked, GFP_ATOMIC); else if (ieee80211_is_any_nullfunc(hdr->frame_control)) cfg80211_probe_status(sdata->dev, hdr->addr1, cookie, acked, info->status.ack_signal, is_valid_ack_signal, GFP_ATOMIC); else if (ieee80211_is_mgmt(hdr->frame_control)) cfg80211_mgmt_tx_status_ext(&sdata->wdev, &status, GFP_ATOMIC); else pr_warn("Unknown status report in ack skb\n"); } rcu_read_unlock(); dev_kfree_skb_any(skb); } else if (dropped) { dev_kfree_skb_any(skb); } else { /* consumes skb */ skb_complete_wifi_ack(skb, acked); } } static void ieee80211_report_used_skb(struct ieee80211_local *local, struct sk_buff *skb, bool dropped, ktime_t ack_hwtstamp) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); u16 tx_time_est = ieee80211_info_get_tx_time_est(info); struct ieee80211_hdr *hdr = (void *)skb->data; bool acked = info->flags & IEEE80211_TX_STAT_ACK; if (dropped) acked = false; if (tx_time_est) { struct sta_info *sta; rcu_read_lock(); sta = sta_info_get_by_addrs(local, hdr->addr1, hdr->addr2); ieee80211_sta_update_pending_airtime(local, sta, skb_get_queue_mapping(skb), tx_time_est, true); rcu_read_unlock(); } if (info->flags & IEEE80211_TX_INTFL_MLME_CONN_TX) { struct ieee80211_sub_if_data *sdata; rcu_read_lock(); sdata = ieee80211_sdata_from_skb(local, skb); if (!sdata) { skb->dev = NULL; } else if (!dropped) { unsigned int hdr_size = ieee80211_hdrlen(hdr->frame_control); /* Check to see if packet is a TDLS teardown packet */ if (ieee80211_is_data(hdr->frame_control) && (ieee80211_get_tdls_action(skb, hdr_size) == WLAN_TDLS_TEARDOWN)) { ieee80211_tdls_td_tx_handle(local, sdata, skb, info->flags); } else if (ieee80211_s1g_is_twt_setup(skb)) { if (!acked) { struct sk_buff *qskb; qskb = skb_clone(skb, GFP_ATOMIC); if (qskb) { skb_queue_tail(&sdata->status_queue, qskb); ieee80211_queue_work(&local->hw, &sdata->work); } } } else { ieee80211_mgd_conn_tx_status(sdata, hdr->frame_control, acked); } } rcu_read_unlock(); } else if (info->ack_frame_id) { ieee80211_report_ack_skb(local, skb, acked, dropped, ack_hwtstamp); } if (!dropped && skb->destructor) { skb->wifi_acked_valid = 1; skb->wifi_acked = acked; } ieee80211_led_tx(local); if (skb_has_frag_list(skb)) { kfree_skb_list(skb_shinfo(skb)->frag_list); skb_shinfo(skb)->frag_list = NULL; } } /* * Use a static threshold for now, best value to be determined * by testing ... * Should it depend on: * - on # of retransmissions * - current throughput (higher value for higher tpt)? */ #define STA_LOST_PKT_THRESHOLD 50 #define STA_LOST_PKT_TIME HZ /* 1 sec since last ACK */ #define STA_LOST_TDLS_PKT_TIME (10*HZ) /* 10secs since last ACK */ static void ieee80211_lost_packet(struct sta_info *sta, struct ieee80211_tx_info *info) { unsigned long pkt_time = STA_LOST_PKT_TIME; unsigned int pkt_thr = STA_LOST_PKT_THRESHOLD; /* If driver relies on its own algorithm for station kickout, skip * mac80211 packet loss mechanism. */ if (ieee80211_hw_check(&sta->local->hw, REPORTS_LOW_ACK)) return; /* This packet was aggregated but doesn't carry status info */ if ((info->flags & IEEE80211_TX_CTL_AMPDU) && !(info->flags & IEEE80211_TX_STAT_AMPDU)) return; sta->deflink.status_stats.lost_packets++; if (sta->sta.tdls) { pkt_time = STA_LOST_TDLS_PKT_TIME; pkt_thr = STA_LOST_PKT_THRESHOLD; } /* * If we're in TDLS mode, make sure that all STA_LOST_PKT_THRESHOLD * of the last packets were lost, and that no ACK was received in the * last STA_LOST_TDLS_PKT_TIME ms, before triggering the CQM packet-loss * mechanism. * For non-TDLS, use STA_LOST_PKT_THRESHOLD and STA_LOST_PKT_TIME */ if (sta->deflink.status_stats.lost_packets < pkt_thr || !time_after(jiffies, sta->deflink.status_stats.last_pkt_time + pkt_time)) return; cfg80211_cqm_pktloss_notify(sta->sdata->dev, sta->sta.addr, sta->deflink.status_stats.lost_packets, GFP_ATOMIC); sta->deflink.status_stats.lost_packets = 0; } static int ieee80211_tx_get_rates(struct ieee80211_hw *hw, struct ieee80211_tx_info *info, int *retry_count) { int count = -1; int i; for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { if ((info->flags & IEEE80211_TX_CTL_AMPDU) && !(info->flags & IEEE80211_TX_STAT_AMPDU)) { /* just the first aggr frame carry status info */ info->status.rates[i].idx = -1; info->status.rates[i].count = 0; break; } else if (info->status.rates[i].idx < 0) { break; } else if (i >= hw->max_report_rates) { /* the HW cannot have attempted that rate */ info->status.rates[i].idx = -1; info->status.rates[i].count = 0; break; } count += info->status.rates[i].count; } if (count < 0) count = 0; *retry_count = count; return i - 1; } void ieee80211_tx_monitor(struct ieee80211_local *local, struct sk_buff *skb, int retry_count, int shift, bool send_to_cooked, struct ieee80211_tx_status *status) { struct sk_buff *skb2; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_sub_if_data *sdata; struct net_device *prev_dev = NULL; int rtap_len; /* send frame to monitor interfaces now */ rtap_len = ieee80211_tx_radiotap_len(info, status); if (WARN_ON_ONCE(skb_headroom(skb) < rtap_len)) { pr_err("ieee80211_tx_status: headroom too small\n"); dev_kfree_skb(skb); return; } ieee80211_add_tx_radiotap_header(local, skb, retry_count, rtap_len, shift, status); /* XXX: is this sufficient for BPF? */ skb_reset_mac_header(skb); skb->ip_summed = CHECKSUM_UNNECESSARY; skb->pkt_type = PACKET_OTHERHOST; skb->protocol = htons(ETH_P_802_2); memset(skb->cb, 0, sizeof(skb->cb)); rcu_read_lock(); list_for_each_entry_rcu(sdata, &local->interfaces, list) { if (sdata->vif.type == NL80211_IFTYPE_MONITOR) { if (!ieee80211_sdata_running(sdata)) continue; if ((sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES) && !send_to_cooked) continue; if (prev_dev) { skb2 = skb_clone(skb, GFP_ATOMIC); if (skb2) { skb2->dev = prev_dev; netif_rx(skb2); } } prev_dev = sdata->dev; } } if (prev_dev) { skb->dev = prev_dev; netif_rx(skb); skb = NULL; } rcu_read_unlock(); dev_kfree_skb(skb); } static void __ieee80211_tx_status(struct ieee80211_hw *hw, struct ieee80211_tx_status *status, int rates_idx, int retry_count) { struct sk_buff *skb = status->skb; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_tx_info *info = status->info; struct sta_info *sta; __le16 fc; bool send_to_cooked; bool acked; bool noack_success; struct ieee80211_bar *bar; int shift = 0; int tid = IEEE80211_NUM_TIDS; fc = hdr->frame_control; if (status->sta) { sta = container_of(status->sta, struct sta_info, sta); shift = ieee80211_vif_get_shift(&sta->sdata->vif); if (info->flags & IEEE80211_TX_STATUS_EOSP) clear_sta_flag(sta, WLAN_STA_SP); acked = !!(info->flags & IEEE80211_TX_STAT_ACK); noack_success = !!(info->flags & IEEE80211_TX_STAT_NOACK_TRANSMITTED); /* mesh Peer Service Period support */ if (ieee80211_vif_is_mesh(&sta->sdata->vif) && ieee80211_is_data_qos(fc)) ieee80211_mpsp_trigger_process( ieee80211_get_qos_ctl(hdr), sta, true, acked); if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL) && (ieee80211_is_data(hdr->frame_control)) && (rates_idx != -1)) sta->deflink.tx_stats.last_rate = info->status.rates[rates_idx]; if ((info->flags & IEEE80211_TX_STAT_AMPDU_NO_BACK) && (ieee80211_is_data_qos(fc))) { u16 ssn; u8 *qc; qc = ieee80211_get_qos_ctl(hdr); tid = qc[0] & 0xf; ssn = ((le16_to_cpu(hdr->seq_ctrl) + 0x10) & IEEE80211_SCTL_SEQ); ieee80211_send_bar(&sta->sdata->vif, hdr->addr1, tid, ssn); } else if (ieee80211_is_data_qos(fc)) { u8 *qc = ieee80211_get_qos_ctl(hdr); tid = qc[0] & 0xf; } if (!acked && ieee80211_is_back_req(fc)) { u16 control; /* * BAR failed, store the last SSN and retry sending * the BAR when the next unicast transmission on the * same TID succeeds. */ bar = (struct ieee80211_bar *) skb->data; control = le16_to_cpu(bar->control); if (!(control & IEEE80211_BAR_CTRL_MULTI_TID)) { u16 ssn = le16_to_cpu(bar->start_seq_num); tid = (control & IEEE80211_BAR_CTRL_TID_INFO_MASK) >> IEEE80211_BAR_CTRL_TID_INFO_SHIFT; ieee80211_set_bar_pending(sta, tid, ssn); } } if (info->flags & IEEE80211_TX_STAT_TX_FILTERED) { ieee80211_handle_filtered_frame(local, sta, skb); return; } else if (ieee80211_is_data_present(fc)) { if (!acked && !noack_success) sta->deflink.status_stats.msdu_failed[tid]++; sta->deflink.status_stats.msdu_retries[tid] += retry_count; } if (!(info->flags & IEEE80211_TX_CTL_INJECTED) && acked) ieee80211_frame_acked(sta, skb); } /* SNMP counters * Fragments are passed to low-level drivers as separate skbs, so these * are actually fragments, not frames. Update frame counters only for * the first fragment of the frame. */ if ((info->flags & IEEE80211_TX_STAT_ACK) || (info->flags & IEEE80211_TX_STAT_NOACK_TRANSMITTED)) { if (ieee80211_is_first_frag(hdr->seq_ctrl)) { I802_DEBUG_INC(local->dot11TransmittedFrameCount); if (is_multicast_ether_addr(ieee80211_get_DA(hdr))) I802_DEBUG_INC(local->dot11MulticastTransmittedFrameCount); if (retry_count > 0) I802_DEBUG_INC(local->dot11RetryCount); if (retry_count > 1) I802_DEBUG_INC(local->dot11MultipleRetryCount); } /* This counter shall be incremented for an acknowledged MPDU * with an individual address in the address 1 field or an MPDU * with a multicast address in the address 1 field of type Data * or Management. */ if (!is_multicast_ether_addr(hdr->addr1) || ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) I802_DEBUG_INC(local->dot11TransmittedFragmentCount); } else { if (ieee80211_is_first_frag(hdr->seq_ctrl)) I802_DEBUG_INC(local->dot11FailedCount); } if (ieee80211_is_any_nullfunc(fc) && ieee80211_has_pm(fc) && ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS) && !(info->flags & IEEE80211_TX_CTL_INJECTED) && local->ps_sdata && !(local->scanning)) { if (info->flags & IEEE80211_TX_STAT_ACK) local->ps_sdata->u.mgd.flags |= IEEE80211_STA_NULLFUNC_ACKED; mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies(10)); } ieee80211_report_used_skb(local, skb, false, status->ack_hwtstamp); /* this was a transmitted frame, but now we want to reuse it */ skb_orphan(skb); /* Need to make a copy before skb->cb gets cleared */ send_to_cooked = !!(info->flags & IEEE80211_TX_CTL_INJECTED) || !(ieee80211_is_data(fc)); /* * This is a bit racy but we can avoid a lot of work * with this test... */ if (!local->monitors && (!send_to_cooked || !local->cooked_mntrs)) { if (status->free_list) list_add_tail(&skb->list, status->free_list); else dev_kfree_skb(skb); return; } /* send to monitor interfaces */ ieee80211_tx_monitor(local, skb, retry_count, shift, send_to_cooked, status); } void ieee80211_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_tx_status status = { .skb = skb, .info = IEEE80211_SKB_CB(skb), }; struct sta_info *sta; rcu_read_lock(); sta = sta_info_get_by_addrs(local, hdr->addr1, hdr->addr2); if (sta) status.sta = &sta->sta; ieee80211_tx_status_ext(hw, &status); rcu_read_unlock(); } EXPORT_SYMBOL(ieee80211_tx_status); void ieee80211_tx_status_ext(struct ieee80211_hw *hw, struct ieee80211_tx_status *status) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_tx_info *info = status->info; struct ieee80211_sta *pubsta = status->sta; struct sk_buff *skb = status->skb; struct sta_info *sta = NULL; int rates_idx, retry_count; bool acked, noack_success, ack_signal_valid; u16 tx_time_est; if (pubsta) { sta = container_of(pubsta, struct sta_info, sta); if (status->n_rates) sta->deflink.tx_stats.last_rate_info = status->rates[status->n_rates - 1].rate_idx; } if (skb && (tx_time_est = ieee80211_info_get_tx_time_est(IEEE80211_SKB_CB(skb))) > 0) { /* Do this here to avoid the expensive lookup of the sta * in ieee80211_report_used_skb(). */ ieee80211_sta_update_pending_airtime(local, sta, skb_get_queue_mapping(skb), tx_time_est, true); ieee80211_info_set_tx_time_est(IEEE80211_SKB_CB(skb), 0); } if (!status->info) goto free; rates_idx = ieee80211_tx_get_rates(hw, info, &retry_count); acked = !!(info->flags & IEEE80211_TX_STAT_ACK); noack_success = !!(info->flags & IEEE80211_TX_STAT_NOACK_TRANSMITTED); ack_signal_valid = !!(info->status.flags & IEEE80211_TX_STATUS_ACK_SIGNAL_VALID); if (pubsta) { struct ieee80211_sub_if_data *sdata = sta->sdata; if (!acked && !noack_success) sta->deflink.status_stats.retry_failed++; sta->deflink.status_stats.retry_count += retry_count; if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { if (sdata->vif.type == NL80211_IFTYPE_STATION && skb && !(info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP)) ieee80211_sta_tx_notify(sdata, (void *) skb->data, acked, info->status.tx_time); if (acked) { sta->deflink.status_stats.last_ack = jiffies; if (sta->deflink.status_stats.lost_packets) sta->deflink.status_stats.lost_packets = 0; /* Track when last packet was ACKed */ sta->deflink.status_stats.last_pkt_time = jiffies; /* Reset connection monitor */ if (sdata->vif.type == NL80211_IFTYPE_STATION && unlikely(sdata->u.mgd.probe_send_count > 0)) sdata->u.mgd.probe_send_count = 0; if (ack_signal_valid) { sta->deflink.status_stats.last_ack_signal = (s8)info->status.ack_signal; sta->deflink.status_stats.ack_signal_filled = true; ewma_avg_signal_add(&sta->deflink.status_stats.avg_ack_signal, -info->status.ack_signal); } } else if (test_sta_flag(sta, WLAN_STA_PS_STA)) { /* * The STA is in power save mode, so assume * that this TX packet failed because of that. */ if (skb) ieee80211_handle_filtered_frame(local, sta, skb); return; } else if (noack_success) { /* nothing to do here, do not account as lost */ } else { ieee80211_lost_packet(sta, info); } } rate_control_tx_status(local, status); if (ieee80211_vif_is_mesh(&sta->sdata->vif)) ieee80211s_update_metric(local, sta, status); } if (skb && !(info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP)) return __ieee80211_tx_status(hw, status, rates_idx, retry_count); if (acked || noack_success) { I802_DEBUG_INC(local->dot11TransmittedFrameCount); if (!pubsta) I802_DEBUG_INC(local->dot11MulticastTransmittedFrameCount); if (retry_count > 0) I802_DEBUG_INC(local->dot11RetryCount); if (retry_count > 1) I802_DEBUG_INC(local->dot11MultipleRetryCount); } else { I802_DEBUG_INC(local->dot11FailedCount); } free: if (!skb) return; ieee80211_report_used_skb(local, skb, false, status->ack_hwtstamp); if (status->free_list) list_add_tail(&skb->list, status->free_list); else dev_kfree_skb(skb); } EXPORT_SYMBOL(ieee80211_tx_status_ext); void ieee80211_tx_rate_update(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, struct ieee80211_tx_info *info) { struct ieee80211_local *local = hw_to_local(hw); struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct ieee80211_tx_status status = { .info = info, .sta = pubsta, }; rate_control_tx_status(local, &status); if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) sta->deflink.tx_stats.last_rate = info->status.rates[0]; } EXPORT_SYMBOL(ieee80211_tx_rate_update); void ieee80211_tx_status_8023(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct sk_buff *skb) { struct ieee80211_sub_if_data *sdata; struct ieee80211_tx_status status = { .skb = skb, .info = IEEE80211_SKB_CB(skb), }; struct sta_info *sta; sdata = vif_to_sdata(vif); rcu_read_lock(); if (!ieee80211_lookup_ra_sta(sdata, skb, &sta) && !IS_ERR(sta)) status.sta = &sta->sta; ieee80211_tx_status_ext(hw, &status); rcu_read_unlock(); } EXPORT_SYMBOL(ieee80211_tx_status_8023); void ieee80211_report_low_ack(struct ieee80211_sta *pubsta, u32 num_packets) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); cfg80211_cqm_pktloss_notify(sta->sdata->dev, sta->sta.addr, num_packets, GFP_ATOMIC); } EXPORT_SYMBOL(ieee80211_report_low_ack); void ieee80211_free_txskb(struct ieee80211_hw *hw, struct sk_buff *skb) { struct ieee80211_local *local = hw_to_local(hw); ktime_t kt = ktime_set(0, 0); ieee80211_report_used_skb(local, skb, true, kt); dev_kfree_skb_any(skb); } EXPORT_SYMBOL(ieee80211_free_txskb); void ieee80211_purge_tx_queue(struct ieee80211_hw *hw, struct sk_buff_head *skbs) { struct sk_buff *skb; while ((skb = __skb_dequeue(skbs))) ieee80211_free_txskb(hw, skb); }
9145 9142 9179 9138 9135 9145 9148 9147 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 // SPDX-License-Identifier: GPL-2.0 #include <linux/mm.h> #include <linux/mmzone.h> #include <linux/memblock.h> #include <linux/page_ext.h> #include <linux/memory.h> #include <linux/vmalloc.h> #include <linux/kmemleak.h> #include <linux/page_owner.h> #include <linux/page_idle.h> #include <linux/page_table_check.h> #include <linux/rcupdate.h> /* * struct page extension * * This is the feature to manage memory for extended data per page. * * Until now, we must modify struct page itself to store extra data per page. * This requires rebuilding the kernel and it is really time consuming process. * And, sometimes, rebuild is impossible due to third party module dependency. * At last, enlarging struct page could cause un-wanted system behaviour change. * * This feature is intended to overcome above mentioned problems. This feature * allocates memory for extended data per page in certain place rather than * the struct page itself. This memory can be accessed by the accessor * functions provided by this code. During the boot process, it checks whether * allocation of huge chunk of memory is needed or not. If not, it avoids * allocating memory at all. With this advantage, we can include this feature * into the kernel in default and can avoid rebuild and solve related problems. * * To help these things to work well, there are two callbacks for clients. One * is the need callback which is mandatory if user wants to avoid useless * memory allocation at boot-time. The other is optional, init callback, which * is used to do proper initialization after memory is allocated. * * The need callback is used to decide whether extended memory allocation is * needed or not. Sometimes users want to deactivate some features in this * boot and extra memory would be unnecessary. In this case, to avoid * allocating huge chunk of memory, each clients represent their need of * extra memory through the need callback. If one of the need callbacks * returns true, it means that someone needs extra memory so that * page extension core should allocates memory for page extension. If * none of need callbacks return true, memory isn't needed at all in this boot * and page extension core can skip to allocate memory. As result, * none of memory is wasted. * * When need callback returns true, page_ext checks if there is a request for * extra memory through size in struct page_ext_operations. If it is non-zero, * extra space is allocated for each page_ext entry and offset is returned to * user through offset in struct page_ext_operations. * * The init callback is used to do proper initialization after page extension * is completely initialized. In sparse memory system, extra memory is * allocated some time later than memmap is allocated. In other words, lifetime * of memory for page extension isn't same with memmap for struct page. * Therefore, clients can't store extra data until page extension is * initialized, even if pages are allocated and used freely. This could * cause inadequate state of extra data per page, so, to prevent it, client * can utilize this callback to initialize the state of it correctly. */ #ifdef CONFIG_SPARSEMEM #define PAGE_EXT_INVALID (0x1) #endif #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT) static bool need_page_idle(void) { return true; } static struct page_ext_operations page_idle_ops __initdata = { .need = need_page_idle, }; #endif static struct page_ext_operations *page_ext_ops[] __initdata = { #ifdef CONFIG_PAGE_OWNER &page_owner_ops, #endif #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT) &page_idle_ops, #endif #ifdef CONFIG_PAGE_TABLE_CHECK &page_table_check_ops, #endif }; unsigned long page_ext_size = sizeof(struct page_ext); static unsigned long total_usage; static struct page_ext *lookup_page_ext(const struct page *page); bool early_page_ext; static int __init setup_early_page_ext(char *str) { early_page_ext = true; return 0; } early_param("early_page_ext", setup_early_page_ext); static bool __init invoke_need_callbacks(void) { int i; int entries = ARRAY_SIZE(page_ext_ops); bool need = false; for (i = 0; i < entries; i++) { if (page_ext_ops[i]->need && page_ext_ops[i]->need()) { page_ext_ops[i]->offset = page_ext_size; page_ext_size += page_ext_ops[i]->size; need = true; } } return need; } static void __init invoke_init_callbacks(void) { int i; int entries = ARRAY_SIZE(page_ext_ops); for (i = 0; i < entries; i++) { if (page_ext_ops[i]->init) page_ext_ops[i]->init(); } } #ifndef CONFIG_SPARSEMEM void __init page_ext_init_flatmem_late(void) { invoke_init_callbacks(); } #endif static inline struct page_ext *get_entry(void *base, unsigned long index) { return base + page_ext_size * index; } /** * page_ext_get() - Get the extended information for a page. * @page: The page we're interested in. * * Ensures that the page_ext will remain valid until page_ext_put() * is called. * * Return: NULL if no page_ext exists for this page. * Context: Any context. Caller may not sleep until they have called * page_ext_put(). */ struct page_ext *page_ext_get(struct page *page) { struct page_ext *page_ext; rcu_read_lock(); page_ext = lookup_page_ext(page); if (!page_ext) { rcu_read_unlock(); return NULL; } return page_ext; } /** * page_ext_put() - Working with page extended information is done. * @page_ext: Page extended information received from page_ext_get(). * * The page extended information of the page may not be valid after this * function is called. * * Return: None. * Context: Any context with corresponding page_ext_get() is called. */ void page_ext_put(struct page_ext *page_ext) { if (unlikely(!page_ext)) return; rcu_read_unlock(); } #ifndef CONFIG_SPARSEMEM void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) { pgdat->node_page_ext = NULL; } static struct page_ext *lookup_page_ext(const struct page *page) { unsigned long pfn = page_to_pfn(page); unsigned long index; struct page_ext *base; WARN_ON_ONCE(!rcu_read_lock_held()); base = NODE_DATA(page_to_nid(page))->node_page_ext; /* * The sanity checks the page allocator does upon freeing a * page can reach here before the page_ext arrays are * allocated when feeding a range of pages to the allocator * for the first time during bootup or memory hotplug. */ if (unlikely(!base)) return NULL; index = pfn - round_down(node_start_pfn(page_to_nid(page)), MAX_ORDER_NR_PAGES); return get_entry(base, index); } static int __init alloc_node_page_ext(int nid) { struct page_ext *base; unsigned long table_size; unsigned long nr_pages; nr_pages = NODE_DATA(nid)->node_spanned_pages; if (!nr_pages) return 0; /* * Need extra space if node range is not aligned with * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm * checks buddy's status, range could be out of exact node range. */ if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) || !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES)) nr_pages += MAX_ORDER_NR_PAGES; table_size = page_ext_size * nr_pages; base = memblock_alloc_try_nid( table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid); if (!base) return -ENOMEM; NODE_DATA(nid)->node_page_ext = base; total_usage += table_size; return 0; } void __init page_ext_init_flatmem(void) { int nid, fail; if (!invoke_need_callbacks()) return; for_each_online_node(nid) { fail = alloc_node_page_ext(nid); if (fail) goto fail; } pr_info("allocated %ld bytes of page_ext\n", total_usage); return; fail: pr_crit("allocation of page_ext failed.\n"); panic("Out of memory"); } #else /* CONFIG_SPARSEMEM */ static bool page_ext_invalid(struct page_ext *page_ext) { return !page_ext || (((unsigned long)page_ext & PAGE_EXT_INVALID) == PAGE_EXT_INVALID); } static struct page_ext *lookup_page_ext(const struct page *page) { unsigned long pfn = page_to_pfn(page); struct mem_section *section = __pfn_to_section(pfn); struct page_ext *page_ext = READ_ONCE(section->page_ext); WARN_ON_ONCE(!rcu_read_lock_held()); /* * The sanity checks the page allocator does upon freeing a * page can reach here before the page_ext arrays are * allocated when feeding a range of pages to the allocator * for the first time during bootup or memory hotplug. */ if (page_ext_invalid(page_ext)) return NULL; return get_entry(page_ext, pfn); } static void *__meminit alloc_page_ext(size_t size, int nid) { gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN; void *addr = NULL; addr = alloc_pages_exact_nid(nid, size, flags); if (addr) { kmemleak_alloc(addr, size, 1, flags); return addr; } addr = vzalloc_node(size, nid); return addr; } static int __meminit init_section_page_ext(unsigned long pfn, int nid) { struct mem_section *section; struct page_ext *base; unsigned long table_size; section = __pfn_to_section(pfn); if (section->page_ext) return 0; table_size = page_ext_size * PAGES_PER_SECTION; base = alloc_page_ext(table_size, nid); /* * The value stored in section->page_ext is (base - pfn) * and it does not point to the memory block allocated above, * causing kmemleak false positives. */ kmemleak_not_leak(base); if (!base) { pr_err("page ext allocation failure\n"); return -ENOMEM; } /* * The passed "pfn" may not be aligned to SECTION. For the calculation * we need to apply a mask. */ pfn &= PAGE_SECTION_MASK; section->page_ext = (void *)base - page_ext_size * pfn; total_usage += table_size; return 0; } static void free_page_ext(void *addr) { if (is_vmalloc_addr(addr)) { vfree(addr); } else { struct page *page = virt_to_page(addr); size_t table_size; table_size = page_ext_size * PAGES_PER_SECTION; BUG_ON(PageReserved(page)); kmemleak_free(addr); free_pages_exact(addr, table_size); } } static void __free_page_ext(unsigned long pfn) { struct mem_section *ms; struct page_ext *base; ms = __pfn_to_section(pfn); if (!ms || !ms->page_ext) return; base = READ_ONCE(ms->page_ext); /* * page_ext here can be valid while doing the roll back * operation in online_page_ext(). */ if (page_ext_invalid(base)) base = (void *)base - PAGE_EXT_INVALID; WRITE_ONCE(ms->page_ext, NULL); base = get_entry(base, pfn); free_page_ext(base); } static void __invalidate_page_ext(unsigned long pfn) { struct mem_section *ms; void *val; ms = __pfn_to_section(pfn); if (!ms || !ms->page_ext) return; val = (void *)ms->page_ext + PAGE_EXT_INVALID; WRITE_ONCE(ms->page_ext, val); } static int __meminit online_page_ext(unsigned long start_pfn, unsigned long nr_pages, int nid) { unsigned long start, end, pfn; int fail = 0; start = SECTION_ALIGN_DOWN(start_pfn); end = SECTION_ALIGN_UP(start_pfn + nr_pages); if (nid == NUMA_NO_NODE) { /* * In this case, "nid" already exists and contains valid memory. * "start_pfn" passed to us is a pfn which is an arg for * online__pages(), and start_pfn should exist. */ nid = pfn_to_nid(start_pfn); VM_BUG_ON(!node_online(nid)); } for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) fail = init_section_page_ext(pfn, nid); if (!fail) return 0; /* rollback */ for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) __free_page_ext(pfn); return -ENOMEM; } static int __meminit offline_page_ext(unsigned long start_pfn, unsigned long nr_pages) { unsigned long start, end, pfn; start = SECTION_ALIGN_DOWN(start_pfn); end = SECTION_ALIGN_UP(start_pfn + nr_pages); /* * Freeing of page_ext is done in 3 steps to avoid * use-after-free of it: * 1) Traverse all the sections and mark their page_ext * as invalid. * 2) Wait for all the existing users of page_ext who * started before invalidation to finish. * 3) Free the page_ext. */ for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) __invalidate_page_ext(pfn); synchronize_rcu(); for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) __free_page_ext(pfn); return 0; } static int __meminit page_ext_callback(struct notifier_block *self, unsigned long action, void *arg) { struct memory_notify *mn = arg; int ret = 0; switch (action) { case MEM_GOING_ONLINE: ret = online_page_ext(mn->start_pfn, mn->nr_pages, mn->status_change_nid); break; case MEM_OFFLINE: offline_page_ext(mn->start_pfn, mn->nr_pages); break; case MEM_CANCEL_ONLINE: offline_page_ext(mn->start_pfn, mn->nr_pages); break; case MEM_GOING_OFFLINE: break; case MEM_ONLINE: case MEM_CANCEL_OFFLINE: break; } return notifier_from_errno(ret); } void __init page_ext_init(void) { unsigned long pfn; int nid; if (!invoke_need_callbacks()) return; for_each_node_state(nid, N_MEMORY) { unsigned long start_pfn, end_pfn; start_pfn = node_start_pfn(nid); end_pfn = node_end_pfn(nid); /* * start_pfn and end_pfn may not be aligned to SECTION and the * page->flags of out of node pages are not initialized. So we * scan [start_pfn, the biggest section's pfn < end_pfn) here. */ for (pfn = start_pfn; pfn < end_pfn; pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) { if (!pfn_valid(pfn)) continue; /* * Nodes's pfns can be overlapping. * We know some arch can have a nodes layout such as * -------------pfn--------------> * N0 | N1 | N2 | N0 | N1 | N2|.... */ if (pfn_to_nid(pfn) != nid) continue; if (init_section_page_ext(pfn, nid)) goto oom; cond_resched(); } } hotplug_memory_notifier(page_ext_callback, 0); pr_info("allocated %ld bytes of page_ext\n", total_usage); invoke_init_callbacks(); return; oom: panic("Out of memory"); } void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) { } #endif
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Linux ethernet bridge * * Authors: * Lennert Buytenhek <buytenh@gnu.org> */ #ifndef _BR_PRIVATE_STP_H #define _BR_PRIVATE_STP_H #define BPDU_TYPE_CONFIG 0 #define BPDU_TYPE_TCN 0x80 /* IEEE 802.1D-1998 timer values */ #define BR_MIN_HELLO_TIME (1*HZ) #define BR_MAX_HELLO_TIME (10*HZ) #define BR_MIN_FORWARD_DELAY (2*HZ) #define BR_MAX_FORWARD_DELAY (30*HZ) #define BR_MIN_MAX_AGE (6*HZ) #define BR_MAX_MAX_AGE (40*HZ) #define BR_MIN_PATH_COST 1 #define BR_MAX_PATH_COST 65535 struct br_config_bpdu { unsigned int topology_change:1; unsigned int topology_change_ack:1; bridge_id root; int root_path_cost; bridge_id bridge_id; port_id port_id; int message_age; int max_age; int hello_time; int forward_delay; }; /* called under bridge lock */ static inline int br_is_designated_port(const struct net_bridge_port *p) { return !memcmp(&p->designated_bridge, &p->br->bridge_id, 8) && (p->designated_port == p->port_id); } /* br_stp.c */ void br_become_root_bridge(struct net_bridge *br); void br_config_bpdu_generation(struct net_bridge *); void br_configuration_update(struct net_bridge *); void br_port_state_selection(struct net_bridge *); void br_received_config_bpdu(struct net_bridge_port *p, const struct br_config_bpdu *bpdu); void br_received_tcn_bpdu(struct net_bridge_port *p); void br_transmit_config(struct net_bridge_port *p); void br_transmit_tcn(struct net_bridge *br); void br_topology_change_detection(struct net_bridge *br); void __br_set_topology_change(struct net_bridge *br, unsigned char val); /* br_stp_bpdu.c */ void br_send_config_bpdu(struct net_bridge_port *, struct br_config_bpdu *); void br_send_tcn_bpdu(struct net_bridge_port *); #endif
234 956 291 291 277 277 261 1151 643 280 281 290 290 290 290 11 11 1482 1476 1482 4 4 4 4 280 280 280 280 281 280 279 280 280 280 281 280 280 279 281 280 281 280 278 278 279 106 105 106 106 106 106 106 106 106 1 1 1 4 4 4 4 4 4 4 4 291 290 291 290 61 278 281 281 280 61 61 61 97 37 61 279 279 280 281 279 20 20 9 9 20 20 281 278 279 281 281 8 274 281 46 236 281 281 280 280 211 211 211 1 210 211 299 1 2 4 291 291 291 1 289 290 290 289 291 290 288 11 281 279 280 280 8 262 8 253 200 2 53 213 212 211 2 16 196 210 211 183 28 211 211 210 199 13 2 45 53 61 11 300 299 29 32 240 19 211 181 31 190 22 210 211 190 20 20 301 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 // SPDX-License-Identifier: GPL-2.0-only /* * linux/kernel/fork.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* * 'fork.c' contains the help-routines for the 'fork' system call * (see also entry.S and others). * Fork is rather simple, once you get the hang of it, but the memory * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' */ #include <linux/anon_inodes.h> #include <linux/slab.h> #include <linux/sched/autogroup.h> #include <linux/sched/mm.h> #include <linux/sched/coredump.h> #include <linux/sched/user.h> #include <linux/sched/numa_balancing.h> #include <linux/sched/stat.h> #include <linux/sched/task.h> #include <linux/sched/task_stack.h> #include <linux/sched/cputime.h> #include <linux/seq_file.h> #include <linux/rtmutex.h> #include <linux/init.h> #include <linux/unistd.h> #include <linux/module.h> #include <linux/vmalloc.h> #include <linux/completion.h> #include <linux/personality.h> #include <linux/mempolicy.h> #include <linux/sem.h> #include <linux/file.h> #include <linux/fdtable.h> #include <linux/iocontext.h> #include <linux/key.h> #include <linux/kmsan.h> #include <linux/binfmts.h> #include <linux/mman.h> #include <linux/mmu_notifier.h> #include <linux/fs.h> #include <linux/mm.h> #include <linux/mm_inline.h> #include <linux/nsproxy.h> #include <linux/capability.h> #include <linux/cpu.h> #include <linux/cgroup.h> #include <linux/security.h> #include <linux/hugetlb.h> #include <linux/seccomp.h> #include <linux/swap.h> #include <linux/syscalls.h> #include <linux/jiffies.h> #include <linux/futex.h> #include <linux/compat.h> #include <linux/kthread.h> #include <linux/task_io_accounting_ops.h> #include <linux/rcupdate.h> #include <linux/ptrace.h> #include <linux/mount.h> #include <linux/audit.h> #include <linux/memcontrol.h> #include <linux/ftrace.h> #include <linux/proc_fs.h> #include <linux/profile.h> #include <linux/rmap.h> #include <linux/ksm.h> #include <linux/acct.h> #include <linux/userfaultfd_k.h> #include <linux/tsacct_kern.h> #include <linux/cn_proc.h> #include <linux/freezer.h> #include <linux/delayacct.h> #include <linux/taskstats_kern.h> #include <linux/random.h> #include <linux/tty.h> #include <linux/fs_struct.h> #include <linux/magic.h> #include <linux/perf_event.h> #include <linux/posix-timers.h> #include <linux/user-return-notifier.h> #include <linux/oom.h> #include <linux/khugepaged.h> #include <linux/signalfd.h> #include <linux/uprobes.h> #include <linux/aio.h> #include <linux/compiler.h> #include <linux/sysctl.h> #include <linux/kcov.h> #include <linux/livepatch.h> #include <linux/thread_info.h> #include <linux/stackleak.h> #include <linux/kasan.h> #include <linux/scs.h> #include <linux/io_uring.h> #include <linux/bpf.h> #include <linux/tick.h> #include <asm/pgalloc.h> #include <linux/uaccess.h> #include <asm/mmu_context.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <trace/events/sched.h> #define CREATE_TRACE_POINTS #include <trace/events/task.h> /* * Minimum number of threads to boot the kernel */ #define MIN_THREADS 20 /* * Maximum number of threads */ #define MAX_THREADS FUTEX_TID_MASK /* * Protected counters by write_lock_irq(&tasklist_lock) */ unsigned long total_forks; /* Handle normal Linux uptimes. */ int nr_threads; /* The idle threads do not count.. */ static int max_threads; /* tunable limit on nr_threads */ #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) static const char * const resident_page_types[] = { NAMED_ARRAY_INDEX(MM_FILEPAGES), NAMED_ARRAY_INDEX(MM_ANONPAGES), NAMED_ARRAY_INDEX(MM_SWAPENTS), NAMED_ARRAY_INDEX(MM_SHMEMPAGES), }; DEFINE_PER_CPU(unsigned long, process_counts) = 0; __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ #ifdef CONFIG_PROVE_RCU int lockdep_tasklist_lock_is_held(void) { return lockdep_is_held(&tasklist_lock); } EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); #endif /* #ifdef CONFIG_PROVE_RCU */ int nr_processes(void) { int cpu; int total = 0; for_each_possible_cpu(cpu) total += per_cpu(process_counts, cpu); return total; } void __weak arch_release_task_struct(struct task_struct *tsk) { } #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR static struct kmem_cache *task_struct_cachep; static inline struct task_struct *alloc_task_struct_node(int node) { return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); } static inline void free_task_struct(struct task_struct *tsk) { kmem_cache_free(task_struct_cachep, tsk); } #endif #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR /* * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a * kmemcache based allocator. */ # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) # ifdef CONFIG_VMAP_STACK /* * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB * flush. Try to minimize the number of calls by caching stacks. */ #define NR_CACHED_STACKS 2 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); struct vm_stack { struct rcu_head rcu; struct vm_struct *stack_vm_area; }; static bool try_release_thread_stack_to_cache(struct vm_struct *vm) { unsigned int i; for (i = 0; i < NR_CACHED_STACKS; i++) { if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) continue; return true; } return false; } static void thread_stack_free_rcu(struct rcu_head *rh) { struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) return; vfree(vm_stack); } static void thread_stack_delayed_free(struct task_struct *tsk) { struct vm_stack *vm_stack = tsk->stack; vm_stack->stack_vm_area = tsk->stack_vm_area; call_rcu(&vm_stack->rcu, thread_stack_free_rcu); } static int free_vm_stack_cache(unsigned int cpu) { struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); int i; for (i = 0; i < NR_CACHED_STACKS; i++) { struct vm_struct *vm_stack = cached_vm_stacks[i]; if (!vm_stack) continue; vfree(vm_stack->addr); cached_vm_stacks[i] = NULL; } return 0; } static int memcg_charge_kernel_stack(struct vm_struct *vm) { int i; int ret; BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); if (ret) goto err; } return 0; err: /* * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will * ignore this page. */ for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) memcg_kmem_uncharge_page(vm->pages[i], 0); return ret; } static int alloc_thread_stack_node(struct task_struct *tsk, int node) { struct vm_struct *vm; void *stack; int i; for (i = 0; i < NR_CACHED_STACKS; i++) { struct vm_struct *s; s = this_cpu_xchg(cached_stacks[i], NULL); if (!s) continue; /* Reset stack metadata. */ kasan_unpoison_range(s->addr, THREAD_SIZE); stack = kasan_reset_tag(s->addr); /* Clear stale pointers from reused stack. */ memset(stack, 0, THREAD_SIZE); if (memcg_charge_kernel_stack(s)) { vfree(s->addr); return -ENOMEM; } tsk->stack_vm_area = s; tsk->stack = stack; return 0; } /* * Allocated stacks are cached and later reused by new threads, * so memcg accounting is performed manually on assigning/releasing * stacks to tasks. Drop __GFP_ACCOUNT. */ stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, VMALLOC_START, VMALLOC_END, THREADINFO_GFP & ~__GFP_ACCOUNT, PAGE_KERNEL, 0, node, __builtin_return_address(0)); if (!stack) return -ENOMEM; vm = find_vm_area(stack); if (memcg_charge_kernel_stack(vm)) { vfree(stack); return -ENOMEM; } /* * We can't call find_vm_area() in interrupt context, and * free_thread_stack() can be called in interrupt context, * so cache the vm_struct. */ tsk->stack_vm_area = vm; stack = kasan_reset_tag(stack); tsk->stack = stack; return 0; } static void free_thread_stack(struct task_struct *tsk) { if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) thread_stack_delayed_free(tsk); tsk->stack = NULL; tsk->stack_vm_area = NULL; } # else /* !CONFIG_VMAP_STACK */ static void thread_stack_free_rcu(struct rcu_head *rh) { __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); } static void thread_stack_delayed_free(struct task_struct *tsk) { struct rcu_head *rh = tsk->stack; call_rcu(rh, thread_stack_free_rcu); } static int alloc_thread_stack_node(struct task_struct *tsk, int node) { struct page *page = alloc_pages_node(node, THREADINFO_GFP, THREAD_SIZE_ORDER); if (likely(page)) { tsk->stack = kasan_reset_tag(page_address(page)); return 0; } return -ENOMEM; } static void free_thread_stack(struct task_struct *tsk) { thread_stack_delayed_free(tsk); tsk->stack = NULL; } # endif /* CONFIG_VMAP_STACK */ # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ static struct kmem_cache *thread_stack_cache; static void thread_stack_free_rcu(struct rcu_head *rh) { kmem_cache_free(thread_stack_cache, rh); } static void thread_stack_delayed_free(struct task_struct *tsk) { struct rcu_head *rh = tsk->stack; call_rcu(rh, thread_stack_free_rcu); } static int alloc_thread_stack_node(struct task_struct *tsk, int node) { unsigned long *stack; stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); stack = kasan_reset_tag(stack); tsk->stack = stack; return stack ? 0 : -ENOMEM; } static void free_thread_stack(struct task_struct *tsk) { thread_stack_delayed_free(tsk); tsk->stack = NULL; } void thread_stack_cache_init(void) { thread_stack_cache = kmem_cache_create_usercopy("thread_stack", THREAD_SIZE, THREAD_SIZE, 0, 0, THREAD_SIZE, NULL); BUG_ON(thread_stack_cache == NULL); } # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ static int alloc_thread_stack_node(struct task_struct *tsk, int node) { unsigned long *stack; stack = arch_alloc_thread_stack_node(tsk, node); tsk->stack = stack; return stack ? 0 : -ENOMEM; } static void free_thread_stack(struct task_struct *tsk) { arch_free_thread_stack(tsk); tsk->stack = NULL; } #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ /* SLAB cache for signal_struct structures (tsk->signal) */ static struct kmem_cache *signal_cachep; /* SLAB cache for sighand_struct structures (tsk->sighand) */ struct kmem_cache *sighand_cachep; /* SLAB cache for files_struct structures (tsk->files) */ struct kmem_cache *files_cachep; /* SLAB cache for fs_struct structures (tsk->fs) */ struct kmem_cache *fs_cachep; /* SLAB cache for vm_area_struct structures */ static struct kmem_cache *vm_area_cachep; /* SLAB cache for mm_struct structures (tsk->mm) */ static struct kmem_cache *mm_cachep; struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) { struct vm_area_struct *vma; vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); if (vma) vma_init(vma, mm); return vma; } struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) { struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); if (new) { ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); ASSERT_EXCLUSIVE_WRITER(orig->vm_file); /* * orig->shared.rb may be modified concurrently, but the clone * will be reinitialized. */ *new = data_race(*orig); INIT_LIST_HEAD(&new->anon_vma_chain); dup_anon_vma_name(orig, new); } return new; } void vm_area_free(struct vm_area_struct *vma) { free_anon_vma_name(vma); kmem_cache_free(vm_area_cachep, vma); } static void account_kernel_stack(struct task_struct *tsk, int account) { if (IS_ENABLED(CONFIG_VMAP_STACK)) { struct vm_struct *vm = task_stack_vm_area(tsk); int i; for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, account * (PAGE_SIZE / 1024)); } else { void *stack = task_stack_page(tsk); /* All stack pages are in the same node. */ mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, account * (THREAD_SIZE / 1024)); } } void exit_task_stack_account(struct task_struct *tsk) { account_kernel_stack(tsk, -1); if (IS_ENABLED(CONFIG_VMAP_STACK)) { struct vm_struct *vm; int i; vm = task_stack_vm_area(tsk); for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) memcg_kmem_uncharge_page(vm->pages[i], 0); } } static void release_task_stack(struct task_struct *tsk) { if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) return; /* Better to leak the stack than to free prematurely */ free_thread_stack(tsk); } #ifdef CONFIG_THREAD_INFO_IN_TASK void put_task_stack(struct task_struct *tsk) { if (refcount_dec_and_test(&tsk->stack_refcount)) release_task_stack(tsk); } #endif void free_task(struct task_struct *tsk) { #ifdef CONFIG_SECCOMP WARN_ON_ONCE(tsk->seccomp.filter); #endif release_user_cpus_ptr(tsk); scs_release(tsk); #ifndef CONFIG_THREAD_INFO_IN_TASK /* * The task is finally done with both the stack and thread_info, * so free both. */ release_task_stack(tsk); #else /* * If the task had a separate stack allocation, it should be gone * by now. */ WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); #endif rt_mutex_debug_task_free(tsk); ftrace_graph_exit_task(tsk); arch_release_task_struct(tsk); if (tsk->flags & PF_KTHREAD) free_kthread_struct(tsk); bpf_task_storage_free(tsk); free_task_struct(tsk); } EXPORT_SYMBOL(free_task); static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) { struct file *exe_file; exe_file = get_mm_exe_file(oldmm); RCU_INIT_POINTER(mm->exe_file, exe_file); /* * We depend on the oldmm having properly denied write access to the * exe_file already. */ if (exe_file && deny_write_access(exe_file)) pr_warn_once("deny_write_access() failed in %s\n", __func__); } #ifdef CONFIG_MMU static __latent_entropy int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) { struct vm_area_struct *mpnt, *tmp; int retval; unsigned long charge = 0; LIST_HEAD(uf); MA_STATE(old_mas, &oldmm->mm_mt, 0, 0); MA_STATE(mas, &mm->mm_mt, 0, 0); uprobe_start_dup_mmap(); if (mmap_write_lock_killable(oldmm)) { retval = -EINTR; goto fail_uprobe_end; } flush_cache_dup_mm(oldmm); uprobe_dup_mmap(oldmm, mm); /* * Not linked in yet - no deadlock potential: */ mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); /* No ordering required: file already has been exposed. */ dup_mm_exe_file(mm, oldmm); mm->total_vm = oldmm->total_vm; mm->data_vm = oldmm->data_vm; mm->exec_vm = oldmm->exec_vm; mm->stack_vm = oldmm->stack_vm; retval = ksm_fork(mm, oldmm); if (retval) goto out; khugepaged_fork(mm, oldmm); retval = mas_expected_entries(&mas, oldmm->map_count); if (retval) goto out; mt_clear_in_rcu(mas.tree); mas_for_each(&old_mas, mpnt, ULONG_MAX) { struct file *file; if (mpnt->vm_flags & VM_DONTCOPY) { vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); continue; } charge = 0; /* * Don't duplicate many vmas if we've been oom-killed (for * example) */ if (fatal_signal_pending(current)) { retval = -EINTR; goto loop_out; } if (mpnt->vm_flags & VM_ACCOUNT) { unsigned long len = vma_pages(mpnt); if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ goto fail_nomem; charge = len; } tmp = vm_area_dup(mpnt); if (!tmp) goto fail_nomem; retval = vma_dup_policy(mpnt, tmp); if (retval) goto fail_nomem_policy; tmp->vm_mm = mm; retval = dup_userfaultfd(tmp, &uf); if (retval) goto fail_nomem_anon_vma_fork; if (tmp->vm_flags & VM_WIPEONFORK) { /* * VM_WIPEONFORK gets a clean slate in the child. * Don't prepare anon_vma until fault since we don't * copy page for current vma. */ tmp->anon_vma = NULL; } else if (anon_vma_fork(tmp, mpnt)) goto fail_nomem_anon_vma_fork; tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); file = tmp->vm_file; if (file) { struct address_space *mapping = file->f_mapping; get_file(file); i_mmap_lock_write(mapping); if (tmp->vm_flags & VM_SHARED) mapping_allow_writable(mapping); flush_dcache_mmap_lock(mapping); /* insert tmp into the share list, just after mpnt */ vma_interval_tree_insert_after(tmp, mpnt, &mapping->i_mmap); flush_dcache_mmap_unlock(mapping); i_mmap_unlock_write(mapping); } /* * Copy/update hugetlb private vma information. */ if (is_vm_hugetlb_page(tmp)) hugetlb_dup_vma_private(tmp); /* Link the vma into the MT */ mas.index = tmp->vm_start; mas.last = tmp->vm_end - 1; mas_store(&mas, tmp); if (mas_is_err(&mas)) goto fail_nomem_mas_store; mm->map_count++; if (!(tmp->vm_flags & VM_WIPEONFORK)) retval = copy_page_range(tmp, mpnt); if (tmp->vm_ops && tmp->vm_ops->open) tmp->vm_ops->open(tmp); if (retval) goto loop_out; } /* a new mm has just been created */ retval = arch_dup_mmap(oldmm, mm); loop_out: mas_destroy(&mas); if (!retval) mt_set_in_rcu(mas.tree); out: mmap_write_unlock(mm); flush_tlb_mm(oldmm); mmap_write_unlock(oldmm); dup_userfaultfd_complete(&uf); fail_uprobe_end: uprobe_end_dup_mmap(); return retval; fail_nomem_mas_store: unlink_anon_vmas(tmp); fail_nomem_anon_vma_fork: mpol_put(vma_policy(tmp)); fail_nomem_policy: vm_area_free(tmp); fail_nomem: retval = -ENOMEM; vm_unacct_memory(charge); goto loop_out; } static inline int mm_alloc_pgd(struct mm_struct *mm) { mm->pgd = pgd_alloc(mm); if (unlikely(!mm->pgd)) return -ENOMEM; return 0; } static inline void mm_free_pgd(struct mm_struct *mm) { pgd_free(mm, mm->pgd); } #else static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) { mmap_write_lock(oldmm); dup_mm_exe_file(mm, oldmm); mmap_write_unlock(oldmm); return 0; } #define mm_alloc_pgd(mm) (0) #define mm_free_pgd(mm) #endif /* CONFIG_MMU */ static void check_mm(struct mm_struct *mm) { int i; BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, "Please make sure 'struct resident_page_types[]' is updated as well"); for (i = 0; i < NR_MM_COUNTERS; i++) { long x = atomic_long_read(&mm->rss_stat.count[i]); if (unlikely(x)) pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", mm, resident_page_types[i], x); } if (mm_pgtables_bytes(mm)) pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", mm_pgtables_bytes(mm)); #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS VM_BUG_ON_MM(mm->pmd_huge_pte, mm); #endif } #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) /* * Called when the last reference to the mm * is dropped: either by a lazy thread or by * mmput. Free the page directory and the mm. */ void __mmdrop(struct mm_struct *mm) { BUG_ON(mm == &init_mm); WARN_ON_ONCE(mm == current->mm); WARN_ON_ONCE(mm == current->active_mm); mm_free_pgd(mm); destroy_context(mm); mmu_notifier_subscriptions_destroy(mm); check_mm(mm); put_user_ns(mm->user_ns); mm_pasid_drop(mm); free_mm(mm); } EXPORT_SYMBOL_GPL(__mmdrop); static void mmdrop_async_fn(struct work_struct *work) { struct mm_struct *mm; mm = container_of(work, struct mm_struct, async_put_work); __mmdrop(mm); } static void mmdrop_async(struct mm_struct *mm) { if (unlikely(atomic_dec_and_test(&mm->mm_count))) { INIT_WORK(&mm->async_put_work, mmdrop_async_fn); schedule_work(&mm->async_put_work); } } static inline void free_signal_struct(struct signal_struct *sig) { taskstats_tgid_free(sig); sched_autogroup_exit(sig); /* * __mmdrop is not safe to call from softirq context on x86 due to * pgd_dtor so postpone it to the async context */ if (sig->oom_mm) mmdrop_async(sig->oom_mm); kmem_cache_free(signal_cachep, sig); } static inline void put_signal_struct(struct signal_struct *sig) { if (refcount_dec_and_test(&sig->sigcnt)) free_signal_struct(sig); } void __put_task_struct(struct task_struct *tsk) { WARN_ON(!tsk->exit_state); WARN_ON(refcount_read(&tsk->usage)); WARN_ON(tsk == current); io_uring_free(tsk); cgroup_free(tsk); task_numa_free(tsk, true); security_task_free(tsk); exit_creds(tsk); delayacct_tsk_free(tsk); put_signal_struct(tsk->signal); sched_core_free(tsk); free_task(tsk); } EXPORT_SYMBOL_GPL(__put_task_struct); void __put_task_struct_rcu_cb(struct rcu_head *rhp) { struct task_struct *task = container_of(rhp, struct task_struct, rcu); __put_task_struct(task); } EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); void __init __weak arch_task_cache_init(void) { } /* * set_max_threads */ static void set_max_threads(unsigned int max_threads_suggested) { u64 threads; unsigned long nr_pages = totalram_pages(); /* * The number of threads shall be limited such that the thread * structures may only consume a small part of the available memory. */ if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) threads = MAX_THREADS; else threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, (u64) THREAD_SIZE * 8UL); if (threads > max_threads_suggested) threads = max_threads_suggested; max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); } #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT /* Initialized by the architecture: */ int arch_task_struct_size __read_mostly; #endif #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR static void task_struct_whitelist(unsigned long *offset, unsigned long *size) { /* Fetch thread_struct whitelist for the architecture. */ arch_thread_struct_whitelist(offset, size); /* * Handle zero-sized whitelist or empty thread_struct, otherwise * adjust offset to position of thread_struct in task_struct. */ if (unlikely(*size == 0)) *offset = 0; else *offset += offsetof(struct task_struct, thread); } #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ void __init fork_init(void) { int i; #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR #ifndef ARCH_MIN_TASKALIGN #define ARCH_MIN_TASKALIGN 0 #endif int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); unsigned long useroffset, usersize; /* create a slab on which task_structs can be allocated */ task_struct_whitelist(&useroffset, &usersize); task_struct_cachep = kmem_cache_create_usercopy("task_struct", arch_task_struct_size, align, SLAB_PANIC|SLAB_ACCOUNT, useroffset, usersize, NULL); #endif /* do the arch specific task caches init */ arch_task_cache_init(); set_max_threads(MAX_THREADS); init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; init_task.signal->rlim[RLIMIT_SIGPENDING] = init_task.signal->rlim[RLIMIT_NPROC]; for (i = 0; i < UCOUNT_COUNTS; i++) init_user_ns.ucount_max[i] = max_threads/2; set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); #ifdef CONFIG_VMAP_STACK cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", NULL, free_vm_stack_cache); #endif scs_init(); lockdep_init_task(&init_task); uprobes_init(); } int __weak arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) { *dst = *src; return 0; } void set_task_stack_end_magic(struct task_struct *tsk) { unsigned long *stackend; stackend = end_of_stack(tsk); *stackend = STACK_END_MAGIC; /* for overflow detection */ } static struct task_struct *dup_task_struct(struct task_struct *orig, int node) { struct task_struct *tsk; int err; if (node == NUMA_NO_NODE) node = tsk_fork_get_node(orig); tsk = alloc_task_struct_node(node); if (!tsk) return NULL; err = arch_dup_task_struct(tsk, orig); if (err) goto free_tsk; err = alloc_thread_stack_node(tsk, node); if (err) goto free_tsk; #ifdef CONFIG_THREAD_INFO_IN_TASK refcount_set(&tsk->stack_refcount, 1); #endif account_kernel_stack(tsk, 1); err = scs_prepare(tsk, node); if (err) goto free_stack; #ifdef CONFIG_SECCOMP /* * We must handle setting up seccomp filters once we're under * the sighand lock in case orig has changed between now and * then. Until then, filter must be NULL to avoid messing up * the usage counts on the error path calling free_task. */ tsk->seccomp.filter = NULL; #endif setup_thread_stack(tsk, orig); clear_user_return_notifier(tsk); clear_tsk_need_resched(tsk); set_task_stack_end_magic(tsk); clear_syscall_work_syscall_user_dispatch(tsk); #ifdef CONFIG_STACKPROTECTOR tsk->stack_canary = get_random_canary(); #endif if (orig->cpus_ptr == &orig->cpus_mask) tsk->cpus_ptr = &tsk->cpus_mask; dup_user_cpus_ptr(tsk, orig, node); /* * One for the user space visible state that goes away when reaped. * One for the scheduler. */ refcount_set(&tsk->rcu_users, 2); /* One for the rcu users */ refcount_set(&tsk->usage, 1); #ifdef CONFIG_BLK_DEV_IO_TRACE tsk->btrace_seq = 0; #endif tsk->splice_pipe = NULL; tsk->task_frag.page = NULL; tsk->wake_q.next = NULL; tsk->worker_private = NULL; kcov_task_init(tsk); kmsan_task_create(tsk); kmap_local_fork(tsk); #ifdef CONFIG_FAULT_INJECTION tsk->fail_nth = 0; #endif #ifdef CONFIG_BLK_CGROUP tsk->throttle_queue = NULL; tsk->use_memdelay = 0; #endif #ifdef CONFIG_IOMMU_SVA tsk->pasid_activated = 0; #endif #ifdef CONFIG_MEMCG tsk->active_memcg = NULL; #endif #ifdef CONFIG_CPU_SUP_INTEL tsk->reported_split_lock = 0; #endif return tsk; free_stack: exit_task_stack_account(tsk); free_thread_stack(tsk); free_tsk: free_task_struct(tsk); return NULL; } __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; static int __init coredump_filter_setup(char *s) { default_dump_filter = (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & MMF_DUMP_FILTER_MASK; return 1; } __setup("coredump_filter=", coredump_filter_setup); #include <linux/init_task.h> static void mm_init_aio(struct mm_struct *mm) { #ifdef CONFIG_AIO spin_lock_init(&mm->ioctx_lock); mm->ioctx_table = NULL; #endif } static __always_inline void mm_clear_owner(struct mm_struct *mm, struct task_struct *p) { #ifdef CONFIG_MEMCG if (mm->owner == p) WRITE_ONCE(mm->owner, NULL); #endif } static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) { #ifdef CONFIG_MEMCG mm->owner = p; #endif } static void mm_init_uprobes_state(struct mm_struct *mm) { #ifdef CONFIG_UPROBES mm->uprobes_state.xol_area = NULL; #endif } static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, struct user_namespace *user_ns) { mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); atomic_set(&mm->mm_users, 1); atomic_set(&mm->mm_count, 1); seqcount_init(&mm->write_protect_seq); mmap_init_lock(mm); INIT_LIST_HEAD(&mm->mmlist); mm_pgtables_bytes_init(mm); mm->map_count = 0; mm->locked_vm = 0; atomic64_set(&mm->pinned_vm, 0); memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); spin_lock_init(&mm->page_table_lock); spin_lock_init(&mm->arg_lock); mm_init_cpumask(mm); mm_init_aio(mm); mm_init_owner(mm, p); mm_pasid_init(mm); RCU_INIT_POINTER(mm->exe_file, NULL); mmu_notifier_subscriptions_init(mm); init_tlb_flush_pending(mm); #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS mm->pmd_huge_pte = NULL; #endif mm_init_uprobes_state(mm); hugetlb_count_init(mm); if (current->mm) { mm->flags = current->mm->flags & MMF_INIT_MASK; mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; } else { mm->flags = default_dump_filter; mm->def_flags = 0; } if (mm_alloc_pgd(mm)) goto fail_nopgd; if (init_new_context(p, mm)) goto fail_nocontext; mm->user_ns = get_user_ns(user_ns); lru_gen_init_mm(mm); return mm; fail_nocontext: mm_free_pgd(mm); fail_nopgd: free_mm(mm); return NULL; } /* * Allocate and initialize an mm_struct. */ struct mm_struct *mm_alloc(void) { struct mm_struct *mm; mm = allocate_mm(); if (!mm) return NULL; memset(mm, 0, sizeof(*mm)); return mm_init(mm, current, current_user_ns()); } static inline void __mmput(struct mm_struct *mm) { VM_BUG_ON(atomic_read(&mm->mm_users)); uprobe_clear_state(mm); exit_aio(mm); ksm_exit(mm); khugepaged_exit(mm); /* must run before exit_mmap */ exit_mmap(mm); mm_put_huge_zero_page(mm); set_mm_exe_file(mm, NULL); if (!list_empty(&mm->mmlist)) { spin_lock(&mmlist_lock); list_del(&mm->mmlist); spin_unlock(&mmlist_lock); } if (mm->binfmt) module_put(mm->binfmt->module); lru_gen_del_mm(mm); mmdrop(mm); } /* * Decrement the use count and release all resources for an mm. */ void mmput(struct mm_struct *mm) { might_sleep(); if (atomic_dec_and_test(&mm->mm_users)) __mmput(mm); } EXPORT_SYMBOL_GPL(mmput); #ifdef CONFIG_MMU static void mmput_async_fn(struct work_struct *work) { struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work); __mmput(mm); } void mmput_async(struct mm_struct *mm) { if (atomic_dec_and_test(&mm->mm_users)) { INIT_WORK(&mm->async_put_work, mmput_async_fn); schedule_work(&mm->async_put_work); } } EXPORT_SYMBOL_GPL(mmput_async); #endif /** * set_mm_exe_file - change a reference to the mm's executable file * * This changes mm's executable file (shown as symlink /proc/[pid]/exe). * * Main users are mmput() and sys_execve(). Callers prevent concurrent * invocations: in mmput() nobody alive left, in execve task is single * threaded. * * Can only fail if new_exe_file != NULL. */ int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) { struct file *old_exe_file; /* * It is safe to dereference the exe_file without RCU as * this function is only called if nobody else can access * this mm -- see comment above for justification. */ old_exe_file = rcu_dereference_raw(mm->exe_file); if (new_exe_file) { /* * We expect the caller (i.e., sys_execve) to already denied * write access, so this is unlikely to fail. */ if (unlikely(deny_write_access(new_exe_file))) return -EACCES; get_file(new_exe_file); } rcu_assign_pointer(mm->exe_file, new_exe_file); if (old_exe_file) { allow_write_access(old_exe_file); fput(old_exe_file); } return 0; } /** * replace_mm_exe_file - replace a reference to the mm's executable file * * This changes mm's executable file (shown as symlink /proc/[pid]/exe), * dealing with concurrent invocation and without grabbing the mmap lock in * write mode. * * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). */ int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) { struct vm_area_struct *vma; struct file *old_exe_file; int ret = 0; /* Forbid mm->exe_file change if old file still mapped. */ old_exe_file = get_mm_exe_file(mm); if (old_exe_file) { VMA_ITERATOR(vmi, mm, 0); mmap_read_lock(mm); for_each_vma(vmi, vma) { if (!vma->vm_file) continue; if (path_equal(&vma->vm_file->f_path, &old_exe_file->f_path)) { ret = -EBUSY; break; } } mmap_read_unlock(mm); fput(old_exe_file); if (ret) return ret; } /* set the new file, lockless */ ret = deny_write_access(new_exe_file); if (ret) return -EACCES; get_file(new_exe_file); old_exe_file = xchg(&mm->exe_file, new_exe_file); if (old_exe_file) { /* * Don't race with dup_mmap() getting the file and disallowing * write access while someone might open the file writable. */ mmap_read_lock(mm); allow_write_access(old_exe_file); fput(old_exe_file); mmap_read_unlock(mm); } return 0; } /** * get_mm_exe_file - acquire a reference to the mm's executable file * * Returns %NULL if mm has no associated executable file. * User must release file via fput(). */ struct file *get_mm_exe_file(struct mm_struct *mm) { struct file *exe_file; rcu_read_lock(); exe_file = rcu_dereference(mm->exe_file); if (exe_file && !get_file_rcu(exe_file)) exe_file = NULL; rcu_read_unlock(); return exe_file; } /** * get_task_exe_file - acquire a reference to the task's executable file * * Returns %NULL if task's mm (if any) has no associated executable file or * this is a kernel thread with borrowed mm (see the comment above get_task_mm). * User must release file via fput(). */ struct file *get_task_exe_file(struct task_struct *task) { struct file *exe_file = NULL; struct mm_struct *mm; task_lock(task); mm = task->mm; if (mm) { if (!(task->flags & PF_KTHREAD)) exe_file = get_mm_exe_file(mm); } task_unlock(task); return exe_file; } /** * get_task_mm - acquire a reference to the task's mm * * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning * this kernel workthread has transiently adopted a user mm with use_mm, * to do its AIO) is not set and if so returns a reference to it, after * bumping up the use count. User must release the mm via mmput() * after use. Typically used by /proc and ptrace. */ struct mm_struct *get_task_mm(struct task_struct *task) { struct mm_struct *mm; task_lock(task); mm = task->mm; if (mm) { if (task->flags & PF_KTHREAD) mm = NULL; else mmget(mm); } task_unlock(task); return mm; } EXPORT_SYMBOL_GPL(get_task_mm); struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) { struct mm_struct *mm; int err; err = down_read_killable(&task->signal->exec_update_lock); if (err) return ERR_PTR(err); mm = get_task_mm(task); if (mm && mm != current->mm && !ptrace_may_access(task, mode)) { mmput(mm); mm = ERR_PTR(-EACCES); } up_read(&task->signal->exec_update_lock); return mm; } static void complete_vfork_done(struct task_struct *tsk) { struct completion *vfork; task_lock(tsk); vfork = tsk->vfork_done; if (likely(vfork)) { tsk->vfork_done = NULL; complete(vfork); } task_unlock(tsk); } static int wait_for_vfork_done(struct task_struct *child, struct completion *vfork) { unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; int killed; cgroup_enter_frozen(); killed = wait_for_completion_state(vfork, state); cgroup_leave_frozen(false); if (killed) { task_lock(child); child->vfork_done = NULL; task_unlock(child); } put_task_struct(child); return killed; } /* Please note the differences between mmput and mm_release. * mmput is called whenever we stop holding onto a mm_struct, * error success whatever. * * mm_release is called after a mm_struct has been removed * from the current process. * * This difference is important for error handling, when we * only half set up a mm_struct for a new process and need to restore * the old one. Because we mmput the new mm_struct before * restoring the old one. . . * Eric Biederman 10 January 1998 */ static void mm_release(struct task_struct *tsk, struct mm_struct *mm) { uprobe_free_utask(tsk); /* Get rid of any cached register state */ deactivate_mm(tsk, mm); /* * Signal userspace if we're not exiting with a core dump * because we want to leave the value intact for debugging * purposes. */ if (tsk->clear_child_tid) { if (atomic_read(&mm->mm_users) > 1) { /* * We don't check the error code - if userspace has * not set up a proper pointer then tough luck. */ put_user(0, tsk->clear_child_tid); do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1, NULL, NULL, 0, 0); } tsk->clear_child_tid = NULL; } /* * All done, finally we can wake up parent and return this mm to him. * Also kthread_stop() uses this completion for synchronization. */ if (tsk->vfork_done) complete_vfork_done(tsk); } void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) { futex_exit_release(tsk); mm_release(tsk, mm); } void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) { futex_exec_release(tsk); mm_release(tsk, mm); } /** * dup_mm() - duplicates an existing mm structure * @tsk: the task_struct with which the new mm will be associated. * @oldmm: the mm to duplicate. * * Allocates a new mm structure and duplicates the provided @oldmm structure * content into it. * * Return: the duplicated mm or NULL on failure. */ static struct mm_struct *dup_mm(struct task_struct *tsk, struct mm_struct *oldmm) { struct mm_struct *mm; int err; mm = allocate_mm(); if (!mm) goto fail_nomem; memcpy(mm, oldmm, sizeof(*mm)); if (!mm_init(mm, tsk, mm->user_ns)) goto fail_nomem; err = dup_mmap(mm, oldmm); if (err) goto free_pt; mm->hiwater_rss = get_mm_rss(mm); mm->hiwater_vm = mm->total_vm; if (mm->binfmt && !try_module_get(mm->binfmt->module)) goto free_pt; return mm; free_pt: /* don't put binfmt in mmput, we haven't got module yet */ mm->binfmt = NULL; mm_init_owner(mm, NULL); mmput(mm); fail_nomem: return NULL; } static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) { struct mm_struct *mm, *oldmm; tsk->min_flt = tsk->maj_flt = 0; tsk->nvcsw = tsk->nivcsw = 0; #ifdef CONFIG_DETECT_HUNG_TASK tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; tsk->last_switch_time = 0; #endif tsk->mm = NULL; tsk->active_mm = NULL; /* * Are we cloning a kernel thread? * * We need to steal a active VM for that.. */ oldmm = current->mm; if (!oldmm) return 0; if (clone_flags & CLONE_VM) { mmget(oldmm); mm = oldmm; } else { mm = dup_mm(tsk, current->mm); if (!mm) return -ENOMEM; } tsk->mm = mm; tsk->active_mm = mm; return 0; } static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) { struct fs_struct *fs = current->fs; if (clone_flags & CLONE_FS) { /* tsk->fs is already what we want */ spin_lock(&fs->lock); if (fs->in_exec) { spin_unlock(&fs->lock); return -EAGAIN; } fs->users++; spin_unlock(&fs->lock); return 0; } tsk->fs = copy_fs_struct(fs); if (!tsk->fs) return -ENOMEM; return 0; } static int copy_files(unsigned long clone_flags, struct task_struct *tsk) { struct files_struct *oldf, *newf; /* * A background process may not have any files ... */ oldf = current->files; if (!oldf) return 0; if (clone_flags & CLONE_FILES) { atomic_inc(&oldf->count); return 0; } newf = dup_fd(oldf, NULL); if (IS_ERR(newf)) return PTR_ERR(newf); tsk->files = newf; return 0; } static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) { struct sighand_struct *sig; if (clone_flags & CLONE_SIGHAND) { refcount_inc(&current->sighand->count); return 0; } sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); RCU_INIT_POINTER(tsk->sighand, sig); if (!sig) return -ENOMEM; refcount_set(&sig->count, 1); spin_lock_irq(&current->sighand->siglock); memcpy(sig->action, current->sighand->action, sizeof(sig->action)); spin_unlock_irq(&current->sighand->siglock); /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ if (clone_flags & CLONE_CLEAR_SIGHAND) flush_signal_handlers(tsk, 0); return 0; } void __cleanup_sighand(struct sighand_struct *sighand) { if (refcount_dec_and_test(&sighand->count)) { signalfd_cleanup(sighand); /* * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it * without an RCU grace period, see __lock_task_sighand(). */ kmem_cache_free(sighand_cachep, sighand); } } /* * Initialize POSIX timer handling for a thread group. */ static void posix_cpu_timers_init_group(struct signal_struct *sig) { struct posix_cputimers *pct = &sig->posix_cputimers; unsigned long cpu_limit; cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); posix_cputimers_group_init(pct, cpu_limit); } static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) { struct signal_struct *sig; if (clone_flags & CLONE_THREAD) return 0; sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); tsk->signal = sig; if (!sig) return -ENOMEM; sig->nr_threads = 1; sig->quick_threads = 1; atomic_set(&sig->live, 1); refcount_set(&sig->sigcnt, 1); /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); init_waitqueue_head(&sig->wait_chldexit); sig->curr_target = tsk; init_sigpending(&sig->shared_pending); INIT_HLIST_HEAD(&sig->multiprocess); seqlock_init(&sig->stats_lock); prev_cputime_init(&sig->prev_cputime); #ifdef CONFIG_POSIX_TIMERS INIT_LIST_HEAD(&sig->posix_timers); hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); sig->real_timer.function = it_real_fn; #endif task_lock(current->group_leader); memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); task_unlock(current->group_leader); posix_cpu_timers_init_group(sig); tty_audit_fork(sig); sched_autogroup_fork(sig); sig->oom_score_adj = current->signal->oom_score_adj; sig->oom_score_adj_min = current->signal->oom_score_adj_min; mutex_init(&sig->cred_guard_mutex); init_rwsem(&sig->exec_update_lock); return 0; } static void copy_seccomp(struct task_struct *p) { #ifdef CONFIG_SECCOMP /* * Must be called with sighand->lock held, which is common to * all threads in the group. Holding cred_guard_mutex is not * needed because this new task is not yet running and cannot * be racing exec. */ assert_spin_locked(&current->sighand->siglock); /* Ref-count the new filter user, and assign it. */ get_seccomp_filter(current); p->seccomp = current->seccomp; /* * Explicitly enable no_new_privs here in case it got set * between the task_struct being duplicated and holding the * sighand lock. The seccomp state and nnp must be in sync. */ if (task_no_new_privs(current)) task_set_no_new_privs(p); /* * If the parent gained a seccomp mode after copying thread * flags and between before we held the sighand lock, we have * to manually enable the seccomp thread flag here. */ if (p->seccomp.mode != SECCOMP_MODE_DISABLED) set_task_syscall_work(p, SECCOMP); #endif } SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) { current->clear_child_tid = tidptr; return task_pid_vnr(current); } static void rt_mutex_init_task(struct task_struct *p) { raw_spin_lock_init(&p->pi_lock); #ifdef CONFIG_RT_MUTEXES p->pi_waiters = RB_ROOT_CACHED; p->pi_top_task = NULL; p->pi_blocked_on = NULL; #endif } static inline void init_task_pid_links(struct task_struct *task) { enum pid_type type; for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) INIT_HLIST_NODE(&task->pid_links[type]); } static inline void init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) { if (type == PIDTYPE_PID) task->thread_pid = pid; else task->signal->pids[type] = pid; } static inline void rcu_copy_process(struct task_struct *p) { #ifdef CONFIG_PREEMPT_RCU p->rcu_read_lock_nesting = 0; p->rcu_read_unlock_special.s = 0; p->rcu_blocked_node = NULL; INIT_LIST_HEAD(&p->rcu_node_entry); #endif /* #ifdef CONFIG_PREEMPT_RCU */ #ifdef CONFIG_TASKS_RCU p->rcu_tasks_holdout = false; INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); p->rcu_tasks_idle_cpu = -1; #endif /* #ifdef CONFIG_TASKS_RCU */ #ifdef CONFIG_TASKS_TRACE_RCU p->trc_reader_nesting = 0; p->trc_reader_special.s = 0; INIT_LIST_HEAD(&p->trc_holdout_list); INIT_LIST_HEAD(&p->trc_blkd_node); #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ } struct pid *pidfd_pid(const struct file *file) { if (file->f_op == &pidfd_fops) return file->private_data; return ERR_PTR(-EBADF); } static int pidfd_release(struct inode *inode, struct file *file) { struct pid *pid = file->private_data; file->private_data = NULL; put_pid(pid); return 0; } #ifdef CONFIG_PROC_FS /** * pidfd_show_fdinfo - print information about a pidfd * @m: proc fdinfo file * @f: file referencing a pidfd * * Pid: * This function will print the pid that a given pidfd refers to in the * pid namespace of the procfs instance. * If the pid namespace of the process is not a descendant of the pid * namespace of the procfs instance 0 will be shown as its pid. This is * similar to calling getppid() on a process whose parent is outside of * its pid namespace. * * NSpid: * If pid namespaces are supported then this function will also print * the pid of a given pidfd refers to for all descendant pid namespaces * starting from the current pid namespace of the instance, i.e. the * Pid field and the first entry in the NSpid field will be identical. * If the pid namespace of the process is not a descendant of the pid * namespace of the procfs instance 0 will be shown as its first NSpid * entry and no others will be shown. * Note that this differs from the Pid and NSpid fields in * /proc/<pid>/status where Pid and NSpid are always shown relative to * the pid namespace of the procfs instance. The difference becomes * obvious when sending around a pidfd between pid namespaces from a * different branch of the tree, i.e. where no ancestral relation is * present between the pid namespaces: * - create two new pid namespaces ns1 and ns2 in the initial pid * namespace (also take care to create new mount namespaces in the * new pid namespace and mount procfs) * - create a process with a pidfd in ns1 * - send pidfd from ns1 to ns2 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid * have exactly one entry, which is 0 */ static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) { struct pid *pid = f->private_data; struct pid_namespace *ns; pid_t nr = -1; if (likely(pid_has_task(pid, PIDTYPE_PID))) { ns = proc_pid_ns(file_inode(m->file)->i_sb); nr = pid_nr_ns(pid, ns); } seq_put_decimal_ll(m, "Pid:\t", nr); #ifdef CONFIG_PID_NS seq_put_decimal_ll(m, "\nNSpid:\t", nr); if (nr > 0) { int i; /* If nr is non-zero it means that 'pid' is valid and that * ns, i.e. the pid namespace associated with the procfs * instance, is in the pid namespace hierarchy of pid. * Start at one below the already printed level. */ for (i = ns->level + 1; i <= pid->level; i++) seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); } #endif seq_putc(m, '\n'); } #endif /* * Poll support for process exit notification. */ static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) { struct pid *pid = file->private_data; __poll_t poll_flags = 0; poll_wait(file, &pid->wait_pidfd, pts); /* * Inform pollers only when the whole thread group exits. * If the thread group leader exits before all other threads in the * group, then poll(2) should block, similar to the wait(2) family. */ if (thread_group_exited(pid)) poll_flags = EPOLLIN | EPOLLRDNORM; return poll_flags; } const struct file_operations pidfd_fops = { .release = pidfd_release, .poll = pidfd_poll, #ifdef CONFIG_PROC_FS .show_fdinfo = pidfd_show_fdinfo, #endif }; static void __delayed_free_task(struct rcu_head *rhp) { struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); free_task(tsk); } static __always_inline void delayed_free_task(struct task_struct *tsk) { if (IS_ENABLED(CONFIG_MEMCG)) call_rcu(&tsk->rcu, __delayed_free_task); else free_task(tsk); } static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) { /* Skip if kernel thread */ if (!tsk->mm) return; /* Skip if spawning a thread or using vfork */ if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) return; /* We need to synchronize with __set_oom_adj */ mutex_lock(&oom_adj_mutex); set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); /* Update the values in case they were changed after copy_signal */ tsk->signal->oom_score_adj = current->signal->oom_score_adj; tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; mutex_unlock(&oom_adj_mutex); } #ifdef CONFIG_RV static void rv_task_fork(struct task_struct *p) { int i; for (i = 0; i < RV_PER_TASK_MONITORS; i++) p->rv[i].da_mon.monitoring = false; } #else #define rv_task_fork(p) do {} while (0) #endif /* * This creates a new process as a copy of the old one, * but does not actually start it yet. * * It copies the registers, and all the appropriate * parts of the process environment (as per the clone * flags). The actual kick-off is left to the caller. */ static __latent_entropy struct task_struct *copy_process( struct pid *pid, int trace, int node, struct kernel_clone_args *args) { int pidfd = -1, retval; struct task_struct *p; struct multiprocess_signals delayed; struct file *pidfile = NULL; const u64 clone_flags = args->flags; struct nsproxy *nsp = current->nsproxy; /* * Don't allow sharing the root directory with processes in a different * namespace */ if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) return ERR_PTR(-EINVAL); if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) return ERR_PTR(-EINVAL); /* * Thread groups must share signals as well, and detached threads * can only be started up within the thread group. */ if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) return ERR_PTR(-EINVAL); /* * Shared signal handlers imply shared VM. By way of the above, * thread groups also imply shared VM. Blocking this case allows * for various simplifications in other code. */ if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) return ERR_PTR(-EINVAL); /* * Siblings of global init remain as zombies on exit since they are * not reaped by their parent (swapper). To solve this and to avoid * multi-rooted process trees, prevent global and container-inits * from creating siblings. */ if ((clone_flags & CLONE_PARENT) && current->signal->flags & SIGNAL_UNKILLABLE) return ERR_PTR(-EINVAL); /* * If the new process will be in a different pid or user namespace * do not allow it to share a thread group with the forking task. */ if (clone_flags & CLONE_THREAD) { if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || (task_active_pid_ns(current) != nsp->pid_ns_for_children)) return ERR_PTR(-EINVAL); } /* * If the new process will be in a different time namespace * do not allow it to share VM or a thread group with the forking task. */ if (clone_flags & (CLONE_THREAD | CLONE_VM)) { if (nsp->time_ns != nsp->time_ns_for_children) return ERR_PTR(-EINVAL); } if (clone_flags & CLONE_PIDFD) { /* * - CLONE_DETACHED is blocked so that we can potentially * reuse it later for CLONE_PIDFD. * - CLONE_THREAD is blocked until someone really needs it. */ if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) return ERR_PTR(-EINVAL); } /* * Force any signals received before this point to be delivered * before the fork happens. Collect up signals sent to multiple * processes that happen during the fork and delay them so that * they appear to happen after the fork. */ sigemptyset(&delayed.signal); INIT_HLIST_NODE(&delayed.node); spin_lock_irq(&current->sighand->siglock); if (!(clone_flags & CLONE_THREAD)) hlist_add_head(&delayed.node, &current->signal->multiprocess); recalc_sigpending(); spin_unlock_irq(&current->sighand->siglock); retval = -ERESTARTNOINTR; if (task_sigpending(current)) goto fork_out; retval = -ENOMEM; p = dup_task_struct(current, node); if (!p) goto fork_out; p->flags &= ~PF_KTHREAD; if (args->kthread) p->flags |= PF_KTHREAD; if (args->io_thread) { /* * Mark us an IO worker, and block any signal that isn't * fatal or STOP */ p->flags |= PF_IO_WORKER; siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); } p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; /* * Clear TID on mm_release()? */ p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; ftrace_graph_init_task(p); rt_mutex_init_task(p); lockdep_assert_irqs_enabled(); #ifdef CONFIG_PROVE_LOCKING DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); #endif retval = copy_creds(p, clone_flags); if (retval < 0) goto bad_fork_free; retval = -EAGAIN; if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { if (p->real_cred->user != INIT_USER && !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) goto bad_fork_cleanup_count; } current->flags &= ~PF_NPROC_EXCEEDED; /* * If multiple threads are within copy_process(), then this check * triggers too late. This doesn't hurt, the check is only there * to stop root fork bombs. */ retval = -EAGAIN; if (data_race(nr_threads >= max_threads)) goto bad_fork_cleanup_count; delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); p->flags |= PF_FORKNOEXEC; INIT_LIST_HEAD(&p->children); INIT_LIST_HEAD(&p->sibling); rcu_copy_process(p); p->vfork_done = NULL; spin_lock_init(&p->alloc_lock); init_sigpending(&p->pending); p->utime = p->stime = p->gtime = 0; #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME p->utimescaled = p->stimescaled = 0; #endif prev_cputime_init(&p->prev_cputime); #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN seqcount_init(&p->vtime.seqcount); p->vtime.starttime = 0; p->vtime.state = VTIME_INACTIVE; #endif #ifdef CONFIG_IO_URING p->io_uring = NULL; #endif #if defined(SPLIT_RSS_COUNTING) memset(&p->rss_stat, 0, sizeof(p->rss_stat)); #endif p->default_timer_slack_ns = current->timer_slack_ns; #ifdef CONFIG_PSI p->psi_flags = 0; #endif task_io_accounting_init(&p->ioac); acct_clear_integrals(p); posix_cputimers_init(&p->posix_cputimers); tick_dep_init_task(p); p->io_context = NULL; audit_set_context(p, NULL); cgroup_fork(p); if (args->kthread) { if (!set_kthread_struct(p)) goto bad_fork_cleanup_delayacct; } #ifdef CONFIG_NUMA p->mempolicy = mpol_dup(p->mempolicy); if (IS_ERR(p->mempolicy)) { retval = PTR_ERR(p->mempolicy); p->mempolicy = NULL; goto bad_fork_cleanup_delayacct; } #endif #ifdef CONFIG_CPUSETS p->cpuset_mem_spread_rotor = NUMA_NO_NODE; p->cpuset_slab_spread_rotor = NUMA_NO_NODE; seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); #endif #ifdef CONFIG_TRACE_IRQFLAGS memset(&p->irqtrace, 0, sizeof(p->irqtrace)); p->irqtrace.hardirq_disable_ip = _THIS_IP_; p->irqtrace.softirq_enable_ip = _THIS_IP_; p->softirqs_enabled = 1; p->softirq_context = 0; #endif p->pagefault_disabled = 0; #ifdef CONFIG_LOCKDEP lockdep_init_task(p); #endif #ifdef CONFIG_DEBUG_MUTEXES p->blocked_on = NULL; /* not blocked yet */ #endif #ifdef CONFIG_BCACHE p->sequential_io = 0; p->sequential_io_avg = 0; #endif #ifdef CONFIG_BPF_SYSCALL RCU_INIT_POINTER(p->bpf_storage, NULL); p->bpf_ctx = NULL; #endif /* Perform scheduler related setup. Assign this task to a CPU. */ retval = sched_fork(clone_flags, p); if (retval) goto bad_fork_cleanup_policy; retval = perf_event_init_task(p, clone_flags); if (retval) goto bad_fork_cleanup_policy; retval = audit_alloc(p); if (retval) goto bad_fork_cleanup_perf; /* copy all the process information */ shm_init_task(p); retval = security_task_alloc(p, clone_flags); if (retval) goto bad_fork_cleanup_audit; retval = copy_semundo(clone_flags, p); if (retval) goto bad_fork_cleanup_security; retval = copy_files(clone_flags, p); if (retval) goto bad_fork_cleanup_semundo; retval = copy_fs(clone_flags, p); if (retval) goto bad_fork_cleanup_files; retval = copy_sighand(clone_flags, p); if (retval) goto bad_fork_cleanup_fs; retval = copy_signal(clone_flags, p); if (retval) goto bad_fork_cleanup_sighand; retval = copy_mm(clone_flags, p); if (retval) goto bad_fork_cleanup_signal; retval = copy_namespaces(clone_flags, p); if (retval) goto bad_fork_cleanup_mm; retval = copy_io(clone_flags, p); if (retval) goto bad_fork_cleanup_namespaces; retval = copy_thread(p, args); if (retval) goto bad_fork_cleanup_io; stackleak_task_init(p); if (pid != &init_struct_pid) { pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, args->set_tid_size); if (IS_ERR(pid)) { retval = PTR_ERR(pid); goto bad_fork_cleanup_thread; } } /* * This has to happen after we've potentially unshared the file * descriptor table (so that the pidfd doesn't leak into the child * if the fd table isn't shared). */ if (clone_flags & CLONE_PIDFD) { retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); if (retval < 0) goto bad_fork_free_pid; pidfd = retval; pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, O_RDWR | O_CLOEXEC); if (IS_ERR(pidfile)) { put_unused_fd(pidfd); retval = PTR_ERR(pidfile); goto bad_fork_free_pid; } get_pid(pid); /* held by pidfile now */ retval = put_user(pidfd, args->pidfd); if (retval) goto bad_fork_put_pidfd; } #ifdef CONFIG_BLOCK p->plug = NULL; #endif futex_init_task(p); /* * sigaltstack should be cleared when sharing the same VM */ if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) sas_ss_reset(p); /* * Syscall tracing and stepping should be turned off in the * child regardless of CLONE_PTRACE. */ user_disable_single_step(p); clear_task_syscall_work(p, SYSCALL_TRACE); #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) clear_task_syscall_work(p, SYSCALL_EMU); #endif clear_tsk_latency_tracing(p); /* ok, now we should be set up.. */ p->pid = pid_nr(pid); if (clone_flags & CLONE_THREAD) { p->group_leader = current->group_leader; p->tgid = current->tgid; } else { p->group_leader = p; p->tgid = p->pid; } p->nr_dirtied = 0; p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); p->dirty_paused_when = 0; p->pdeath_signal = 0; INIT_LIST_HEAD(&p->thread_group); p->task_works = NULL; clear_posix_cputimers_work(p); #ifdef CONFIG_KRETPROBES p->kretprobe_instances.first = NULL; #endif #ifdef CONFIG_RETHOOK p->rethooks.first = NULL; #endif /* * Ensure that the cgroup subsystem policies allow the new process to be * forked. It should be noted that the new process's css_set can be changed * between here and cgroup_post_fork() if an organisation operation is in * progress. */ retval = cgroup_can_fork(p, args); if (retval) goto bad_fork_put_pidfd; /* * Now that the cgroups are pinned, re-clone the parent cgroup and put * the new task on the correct runqueue. All this *before* the task * becomes visible. * * This isn't part of ->can_fork() because while the re-cloning is * cgroup specific, it unconditionally needs to place the task on a * runqueue. */ sched_cgroup_fork(p, args); /* * From this point on we must avoid any synchronous user-space * communication until we take the tasklist-lock. In particular, we do * not want user-space to be able to predict the process start-time by * stalling fork(2) after we recorded the start_time but before it is * visible to the system. */ p->start_time = ktime_get_ns(); p->start_boottime = ktime_get_boottime_ns(); /* * Make it visible to the rest of the system, but dont wake it up yet. * Need tasklist lock for parent etc handling! */ write_lock_irq(&tasklist_lock); /* CLONE_PARENT re-uses the old parent */ if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { p->real_parent = current->real_parent; p->parent_exec_id = current->parent_exec_id; if (clone_flags & CLONE_THREAD) p->exit_signal = -1; else p->exit_signal = current->group_leader->exit_signal; } else { p->real_parent = current; p->parent_exec_id = current->self_exec_id; p->exit_signal = args->exit_signal; } klp_copy_process(p); sched_core_fork(p); spin_lock(&current->sighand->siglock); rv_task_fork(p); rseq_fork(p, clone_flags); /* Don't start children in a dying pid namespace */ if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { retval = -ENOMEM; goto bad_fork_cancel_cgroup; } /* Let kill terminate clone/fork in the middle */ if (fatal_signal_pending(current)) { retval = -EINTR; goto bad_fork_cancel_cgroup; } /* No more failure paths after this point. */ /* * Copy seccomp details explicitly here, in case they were changed * before holding sighand lock. */ copy_seccomp(p); init_task_pid_links(p); if (likely(p->pid)) { ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); init_task_pid(p, PIDTYPE_PID, pid); if (thread_group_leader(p)) { init_task_pid(p, PIDTYPE_TGID, pid); init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); init_task_pid(p, PIDTYPE_SID, task_session(current)); if (is_child_reaper(pid)) { ns_of_pid(pid)->child_reaper = p; p->signal->flags |= SIGNAL_UNKILLABLE; } p->signal->shared_pending.signal = delayed.signal; p->signal->tty = tty_kref_get(current->signal->tty); /* * Inherit has_child_subreaper flag under the same * tasklist_lock with adding child to the process tree * for propagate_has_child_subreaper optimization. */ p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || p->real_parent->signal->is_child_subreaper; list_add_tail(&p->sibling, &p->real_parent->children); list_add_tail_rcu(&p->tasks, &init_task.tasks); attach_pid(p, PIDTYPE_TGID); attach_pid(p, PIDTYPE_PGID); attach_pid(p, PIDTYPE_SID); __this_cpu_inc(process_counts); } else { current->signal->nr_threads++; current->signal->quick_threads++; atomic_inc(&current->signal->live); refcount_inc(&current->signal->sigcnt); task_join_group_stop(p); list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); list_add_tail_rcu(&p->thread_node, &p->signal->thread_head); } attach_pid(p, PIDTYPE_PID); nr_threads++; } total_forks++; hlist_del_init(&delayed.node); spin_unlock(&current->sighand->siglock); syscall_tracepoint_update(p); write_unlock_irq(&tasklist_lock); if (pidfile) fd_install(pidfd, pidfile); proc_fork_connector(p); sched_post_fork(p); cgroup_post_fork(p, args); perf_event_fork(p); trace_task_newtask(p, clone_flags); uprobe_copy_process(p, clone_flags); copy_oom_score_adj(clone_flags, p); return p; bad_fork_cancel_cgroup: sched_core_free(p); spin_unlock(&current->sighand->siglock); write_unlock_irq(&tasklist_lock); cgroup_cancel_fork(p, args); bad_fork_put_pidfd: if (clone_flags & CLONE_PIDFD) { fput(pidfile); put_unused_fd(pidfd); } bad_fork_free_pid: if (pid != &init_struct_pid) free_pid(pid); bad_fork_cleanup_thread: exit_thread(p); bad_fork_cleanup_io: if (p->io_context) exit_io_context(p); bad_fork_cleanup_namespaces: exit_task_namespaces(p); bad_fork_cleanup_mm: if (p->mm) { mm_clear_owner(p->mm, p); mmput(p->mm); } bad_fork_cleanup_signal: if (!(clone_flags & CLONE_THREAD)) free_signal_struct(p->signal); bad_fork_cleanup_sighand: __cleanup_sighand(p->sighand); bad_fork_cleanup_fs: exit_fs(p); /* blocking */ bad_fork_cleanup_files: exit_files(p); /* blocking */ bad_fork_cleanup_semundo: exit_sem(p); bad_fork_cleanup_security: security_task_free(p); bad_fork_cleanup_audit: audit_free(p); bad_fork_cleanup_perf: perf_event_free_task(p); bad_fork_cleanup_policy: lockdep_free_task(p); #ifdef CONFIG_NUMA mpol_put(p->mempolicy); #endif bad_fork_cleanup_delayacct: delayacct_tsk_free(p); bad_fork_cleanup_count: dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); exit_creds(p); bad_fork_free: WRITE_ONCE(p->__state, TASK_DEAD); exit_task_stack_account(p); put_task_stack(p); delayed_free_task(p); fork_out: spin_lock_irq(&current->sighand->siglock); hlist_del_init(&delayed.node); spin_unlock_irq(&current->sighand->siglock); return ERR_PTR(retval); } static inline void init_idle_pids(struct task_struct *idle) { enum pid_type type; for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ init_task_pid(idle, type, &init_struct_pid); } } static int idle_dummy(void *dummy) { /* This function is never called */ return 0; } struct task_struct * __init fork_idle(int cpu) { struct task_struct *task; struct kernel_clone_args args = { .flags = CLONE_VM, .fn = &idle_dummy, .fn_arg = NULL, .kthread = 1, .idle = 1, }; task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); if (!IS_ERR(task)) { init_idle_pids(task); init_idle(task, cpu); } return task; } /* * This is like kernel_clone(), but shaved down and tailored to just * creating io_uring workers. It returns a created task, or an error pointer. * The returned task is inactive, and the caller must fire it up through * wake_up_new_task(p). All signals are blocked in the created task. */ struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) { unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| CLONE_IO; struct kernel_clone_args args = { .flags = ((lower_32_bits(flags) | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL), .exit_signal = (lower_32_bits(flags) & CSIGNAL), .fn = fn, .fn_arg = arg, .io_thread = 1, }; return copy_process(NULL, 0, node, &args); } /* * Ok, this is the main fork-routine. * * It copies the process, and if successful kick-starts * it and waits for it to finish using the VM if required. * * args->exit_signal is expected to be checked for sanity by the caller. */ pid_t kernel_clone(struct kernel_clone_args *args) { u64 clone_flags = args->flags; struct completion vfork; struct pid *pid; struct task_struct *p; int trace = 0; pid_t nr; /* * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate * field in struct clone_args and it still doesn't make sense to have * them both point at the same memory location. Performing this check * here has the advantage that we don't need to have a separate helper * to check for legacy clone(). */ if ((args->flags & CLONE_PIDFD) && (args->flags & CLONE_PARENT_SETTID) && (args->pidfd == args->parent_tid)) return -EINVAL; /* * Determine whether and which event to report to ptracer. When * called from kernel_thread or CLONE_UNTRACED is explicitly * requested, no event is reported; otherwise, report if the event * for the type of forking is enabled. */ if (!(clone_flags & CLONE_UNTRACED)) { if (clone_flags & CLONE_VFORK) trace = PTRACE_EVENT_VFORK; else if (args->exit_signal != SIGCHLD) trace = PTRACE_EVENT_CLONE; else trace = PTRACE_EVENT_FORK; if (likely(!ptrace_event_enabled(current, trace))) trace = 0; } p = copy_process(NULL, trace, NUMA_NO_NODE, args); add_latent_entropy(); if (IS_ERR(p)) return PTR_ERR(p); /* * Do this prior waking up the new thread - the thread pointer * might get invalid after that point, if the thread exits quickly. */ trace_sched_process_fork(current, p); pid = get_task_pid(p, PIDTYPE_PID); nr = pid_vnr(pid); if (clone_flags & CLONE_PARENT_SETTID) put_user(nr, args->parent_tid); if (clone_flags & CLONE_VFORK) { p->vfork_done = &vfork; init_completion(&vfork); get_task_struct(p); } if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { /* lock the task to synchronize with memcg migration */ task_lock(p); lru_gen_add_mm(p->mm); task_unlock(p); } wake_up_new_task(p); /* forking complete and child started to run, tell ptracer */ if (unlikely(trace)) ptrace_event_pid(trace, pid); if (clone_flags & CLONE_VFORK) { if (!wait_for_vfork_done(p, &vfork)) ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); } put_pid(pid); return nr; } /* * Create a kernel thread. */ pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) { struct kernel_clone_args args = { .flags = ((lower_32_bits(flags) | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL), .exit_signal = (lower_32_bits(flags) & CSIGNAL), .fn = fn, .fn_arg = arg, .kthread = 1, }; return kernel_clone(&args); } /* * Create a user mode thread. */ pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) { struct kernel_clone_args args = { .flags = ((lower_32_bits(flags) | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL), .exit_signal = (lower_32_bits(flags) & CSIGNAL), .fn = fn, .fn_arg = arg, }; return kernel_clone(&args); } #ifdef __ARCH_WANT_SYS_FORK SYSCALL_DEFINE0(fork) { #ifdef CONFIG_MMU struct kernel_clone_args args = { .exit_signal = SIGCHLD, }; return kernel_clone(&args); #else /* can not support in nommu mode */ return -EINVAL; #endif } #endif #ifdef __ARCH_WANT_SYS_VFORK SYSCALL_DEFINE0(vfork) { struct kernel_clone_args args = { .flags = CLONE_VFORK | CLONE_VM, .exit_signal = SIGCHLD, }; return kernel_clone(&args); } #endif #ifdef __ARCH_WANT_SYS_CLONE #ifdef CONFIG_CLONE_BACKWARDS SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, int __user *, parent_tidptr, unsigned long, tls, int __user *, child_tidptr) #elif defined(CONFIG_CLONE_BACKWARDS2) SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, int __user *, parent_tidptr, int __user *, child_tidptr, unsigned long, tls) #elif defined(CONFIG_CLONE_BACKWARDS3) SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, int, stack_size, int __user *, parent_tidptr, int __user *, child_tidptr, unsigned long, tls) #else SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, int __user *, parent_tidptr, int __user *, child_tidptr, unsigned long, tls) #endif { struct kernel_clone_args args = { .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), .pidfd = parent_tidptr, .child_tid = child_tidptr, .parent_tid = parent_tidptr, .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), .stack = newsp, .tls = tls, }; return kernel_clone(&args); } #endif #ifdef __ARCH_WANT_SYS_CLONE3 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, struct clone_args __user *uargs, size_t usize) { int err; struct clone_args args; pid_t *kset_tid = kargs->set_tid; BUILD_BUG_ON(offsetofend(struct clone_args, tls) != CLONE_ARGS_SIZE_VER0); BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != CLONE_ARGS_SIZE_VER1); BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != CLONE_ARGS_SIZE_VER2); BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); if (unlikely(usize > PAGE_SIZE)) return -E2BIG; if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) return -EINVAL; err = copy_struct_from_user(&args, sizeof(args), uargs, usize); if (err) return err; if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) return -EINVAL; if (unlikely(!args.set_tid && args.set_tid_size > 0)) return -EINVAL; if (unlikely(args.set_tid && args.set_tid_size == 0)) return -EINVAL; /* * Verify that higher 32bits of exit_signal are unset and that * it is a valid signal */ if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || !valid_signal(args.exit_signal))) return -EINVAL; if ((args.flags & CLONE_INTO_CGROUP) && (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) return -EINVAL; *kargs = (struct kernel_clone_args){ .flags = args.flags, .pidfd = u64_to_user_ptr(args.pidfd), .child_tid = u64_to_user_ptr(args.child_tid), .parent_tid = u64_to_user_ptr(args.parent_tid), .exit_signal = args.exit_signal, .stack = args.stack, .stack_size = args.stack_size, .tls = args.tls, .set_tid_size = args.set_tid_size, .cgroup = args.cgroup, }; if (args.set_tid && copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), (kargs->set_tid_size * sizeof(pid_t)))) return -EFAULT; kargs->set_tid = kset_tid; return 0; } /** * clone3_stack_valid - check and prepare stack * @kargs: kernel clone args * * Verify that the stack arguments userspace gave us are sane. * In addition, set the stack direction for userspace since it's easy for us to * determine. */ static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) { if (kargs->stack == 0) { if (kargs->stack_size > 0) return false; } else { if (kargs->stack_size == 0) return false; if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) return false; #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) kargs->stack += kargs->stack_size; #endif } return true; } static bool clone3_args_valid(struct kernel_clone_args *kargs) { /* Verify that no unknown flags are passed along. */ if (kargs->flags & ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) return false; /* * - make the CLONE_DETACHED bit reusable for clone3 * - make the CSIGNAL bits reusable for clone3 */ if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) return false; if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) return false; if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && kargs->exit_signal) return false; if (!clone3_stack_valid(kargs)) return false; return true; } /** * clone3 - create a new process with specific properties * @uargs: argument structure * @size: size of @uargs * * clone3() is the extensible successor to clone()/clone2(). * It takes a struct as argument that is versioned by its size. * * Return: On success, a positive PID for the child process. * On error, a negative errno number. */ SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) { int err; struct kernel_clone_args kargs; pid_t set_tid[MAX_PID_NS_LEVEL]; kargs.set_tid = set_tid; err = copy_clone_args_from_user(&kargs, uargs, size); if (err) return err; if (!clone3_args_valid(&kargs)) return -EINVAL; return kernel_clone(&kargs); } #endif void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) { struct task_struct *leader, *parent, *child; int res; read_lock(&tasklist_lock); leader = top = top->group_leader; down: for_each_thread(leader, parent) { list_for_each_entry(child, &parent->children, sibling) { res = visitor(child, data); if (res) { if (res < 0) goto out; leader = child; goto down; } up: ; } } if (leader != top) { child = leader; parent = child->real_parent; leader = parent->group_leader; goto up; } out: read_unlock(&tasklist_lock); } #ifndef ARCH_MIN_MMSTRUCT_ALIGN #define ARCH_MIN_MMSTRUCT_ALIGN 0 #endif static void sighand_ctor(void *data) { struct sighand_struct *sighand = data; spin_lock_init(&sighand->siglock); init_waitqueue_head(&sighand->signalfd_wqh); } void __init mm_cache_init(void) { unsigned int mm_size; /* * The mm_cpumask is located at the end of mm_struct, and is * dynamically sized based on the maximum CPU number this system * can have, taking hotplug into account (nr_cpu_ids). */ mm_size = sizeof(struct mm_struct) + cpumask_size(); mm_cachep = kmem_cache_create_usercopy("mm_struct", mm_size, ARCH_MIN_MMSTRUCT_ALIGN, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, offsetof(struct mm_struct, saved_auxv), sizeof_field(struct mm_struct, saved_auxv), NULL); } void __init proc_caches_init(void) { sighand_cachep = kmem_cache_create("sighand_cache", sizeof(struct sighand_struct), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| SLAB_ACCOUNT, sighand_ctor); signal_cachep = kmem_cache_create("signal_cache", sizeof(struct signal_struct), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); files_cachep = kmem_cache_create("files_cache", sizeof(struct files_struct), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); fs_cachep = kmem_cache_create("fs_cache", sizeof(struct fs_struct), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); mmap_init(); nsproxy_cache_init(); } /* * Check constraints on flags passed to the unshare system call. */ static int check_unshare_flags(unsigned long unshare_flags) { if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| CLONE_NEWTIME)) return -EINVAL; /* * Not implemented, but pretend it works if there is nothing * to unshare. Note that unsharing the address space or the * signal handlers also need to unshare the signal queues (aka * CLONE_THREAD). */ if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { if (!thread_group_empty(current)) return -EINVAL; } if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { if (refcount_read(&current->sighand->count) > 1) return -EINVAL; } if (unshare_flags & CLONE_VM) { if (!current_is_single_threaded()) return -EINVAL; } return 0; } /* * Unshare the filesystem structure if it is being shared */ static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) { struct fs_struct *fs = current->fs; if (!(unshare_flags & CLONE_FS) || !fs) return 0; /* don't need lock here; in the worst case we'll do useless copy */ if (fs->users == 1) return 0; *new_fsp = copy_fs_struct(fs); if (!*new_fsp) return -ENOMEM; return 0; } /* * Unshare file descriptor table if it is being shared */ static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) { struct files_struct *fd = current->files; if ((unshare_flags & CLONE_FILES) && (fd && atomic_read(&fd->count) > 1)) { fd = dup_fd(fd, NULL); if (IS_ERR(fd)) return PTR_ERR(fd); *new_fdp = fd; } return 0; } /* * unshare allows a process to 'unshare' part of the process * context which was originally shared using clone. copy_* * functions used by kernel_clone() cannot be used here directly * because they modify an inactive task_struct that is being * constructed. Here we are modifying the current, active, * task_struct. */ int ksys_unshare(unsigned long unshare_flags) { struct fs_struct *fs, *new_fs = NULL; struct files_struct *new_fd = NULL; struct cred *new_cred = NULL; struct nsproxy *new_nsproxy = NULL; int do_sysvsem = 0; int err; /* * If unsharing a user namespace must also unshare the thread group * and unshare the filesystem root and working directories. */ if (unshare_flags & CLONE_NEWUSER) unshare_flags |= CLONE_THREAD | CLONE_FS; /* * If unsharing vm, must also unshare signal handlers. */ if (unshare_flags & CLONE_VM) unshare_flags |= CLONE_SIGHAND; /* * If unsharing a signal handlers, must also unshare the signal queues. */ if (unshare_flags & CLONE_SIGHAND) unshare_flags |= CLONE_THREAD; /* * If unsharing namespace, must also unshare filesystem information. */ if (unshare_flags & CLONE_NEWNS) unshare_flags |= CLONE_FS; err = check_unshare_flags(unshare_flags); if (err) goto bad_unshare_out; /* * CLONE_NEWIPC must also detach from the undolist: after switching * to a new ipc namespace, the semaphore arrays from the old * namespace are unreachable. */ if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) do_sysvsem = 1; err = unshare_fs(unshare_flags, &new_fs); if (err) goto bad_unshare_out; err = unshare_fd(unshare_flags, &new_fd); if (err) goto bad_unshare_cleanup_fs; err = unshare_userns(unshare_flags, &new_cred); if (err) goto bad_unshare_cleanup_fd; err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_cred, new_fs); if (err) goto bad_unshare_cleanup_cred; if (new_cred) { err = set_cred_ucounts(new_cred); if (err) goto bad_unshare_cleanup_cred; } if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { if (do_sysvsem) { /* * CLONE_SYSVSEM is equivalent to sys_exit(). */ exit_sem(current); } if (unshare_flags & CLONE_NEWIPC) { /* Orphan segments in old ns (see sem above). */ exit_shm(current); shm_init_task(current); } if (new_nsproxy) switch_task_namespaces(current, new_nsproxy); task_lock(current); if (new_fs) { fs = current->fs; spin_lock(&fs->lock); current->fs = new_fs; if (--fs->users) new_fs = NULL; else new_fs = fs; spin_unlock(&fs->lock); } if (new_fd) swap(current->files, new_fd); task_unlock(current); if (new_cred) { /* Install the new user namespace */ commit_creds(new_cred); new_cred = NULL; } } perf_event_namespaces(current); bad_unshare_cleanup_cred: if (new_cred) put_cred(new_cred); bad_unshare_cleanup_fd: if (new_fd) put_files_struct(new_fd); bad_unshare_cleanup_fs: if (new_fs) free_fs_struct(new_fs); bad_unshare_out: return err; } SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) { return ksys_unshare(unshare_flags); } /* * Helper to unshare the files of the current task. * We don't want to expose copy_files internals to * the exec layer of the kernel. */ int unshare_files(void) { struct task_struct *task = current; struct files_struct *old, *copy = NULL; int error; error = unshare_fd(CLONE_FILES, &copy); if (error || !copy) return error; old = task->files; task_lock(task); task->files = copy; task_unlock(task); put_files_struct(old); return 0; } int sysctl_max_threads(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct ctl_table t; int ret; int threads = max_threads; int min = 1; int max = MAX_THREADS; t = *table; t.data = &threads; t.extra1 = &min; t.extra2 = &max; ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); if (ret || !write) return ret; max_threads = threads; return 0; }
215 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2013 Intel Corporation * * Author: * Dmitry Kasatkin <dmitry.kasatkin@intel.com> */ #include <linux/err.h> #include <linux/ratelimit.h> #include <linux/key-type.h> #include <crypto/public_key.h> #include <crypto/hash_info.h> #include <keys/asymmetric-type.h> #include <keys/system_keyring.h> #include "integrity.h" /* * Request an asymmetric key. */ static struct key *request_asymmetric_key(struct key *keyring, uint32_t keyid) { struct key *key; char name[12]; sprintf(name, "id:%08x", keyid); pr_debug("key search: \"%s\"\n", name); key = get_ima_blacklist_keyring(); if (key) { key_ref_t kref; kref = keyring_search(make_key_ref(key, 1), &key_type_asymmetric, name, true); if (!IS_ERR(kref)) { pr_err("Key '%s' is in ima_blacklist_keyring\n", name); return ERR_PTR(-EKEYREJECTED); } } if (keyring) { /* search in specific keyring */ key_ref_t kref; kref = keyring_search(make_key_ref(keyring, 1), &key_type_asymmetric, name, true); if (IS_ERR(kref)) key = ERR_CAST(kref); else key = key_ref_to_ptr(kref); } else { key = request_key(&key_type_asymmetric, name, NULL); } if (IS_ERR(key)) { if (keyring) pr_err_ratelimited("Request for unknown key '%s' in '%s' keyring. err %ld\n", name, keyring->description, PTR_ERR(key)); else pr_err_ratelimited("Request for unknown key '%s' err %ld\n", name, PTR_ERR(key)); switch (PTR_ERR(key)) { /* Hide some search errors */ case -EACCES: case -ENOTDIR: case -EAGAIN: return ERR_PTR(-ENOKEY); default: return key; } } pr_debug("%s() = 0 [%x]\n", __func__, key_serial(key)); return key; } int asymmetric_verify(struct key *keyring, const char *sig, int siglen, const char *data, int datalen) { struct public_key_signature pks; struct signature_v2_hdr *hdr = (struct signature_v2_hdr *)sig; const struct public_key *pk; struct key *key; int ret; if (siglen <= sizeof(*hdr)) return -EBADMSG; siglen -= sizeof(*hdr); if (siglen != be16_to_cpu(hdr->sig_size)) return -EBADMSG; if (hdr->hash_algo >= HASH_ALGO__LAST) return -ENOPKG; key = request_asymmetric_key(keyring, be32_to_cpu(hdr->keyid)); if (IS_ERR(key)) return PTR_ERR(key); memset(&pks, 0, sizeof(pks)); pks.hash_algo = hash_algo_name[hdr->hash_algo]; pk = asymmetric_key_public_key(key); pks.pkey_algo = pk->pkey_algo; if (!strcmp(pk->pkey_algo, "rsa")) { pks.encoding = "pkcs1"; } else if (!strncmp(pk->pkey_algo, "ecdsa-", 6)) { /* edcsa-nist-p192 etc. */ pks.encoding = "x962"; } else if (!strcmp(pk->pkey_algo, "ecrdsa") || !strcmp(pk->pkey_algo, "sm2")) { pks.encoding = "raw"; } else { ret = -ENOPKG; goto out; } pks.digest = (u8 *)data; pks.digest_size = datalen; pks.s = hdr->sig; pks.s_size = siglen; ret = verify_signature(key, &pks); out: key_put(key); pr_debug("%s() = %d\n", __func__, ret); return ret; } /** * integrity_kernel_module_request - prevent crypto-pkcs1pad(rsa,*) requests * @kmod_name: kernel module name * * We have situation, when public_key_verify_signature() in case of RSA * algorithm use alg_name to store internal information in order to * construct an algorithm on the fly, but crypto_larval_lookup() will try * to use alg_name in order to load kernel module with same name. * Since we don't have any real "crypto-pkcs1pad(rsa,*)" kernel modules, * we are safe to fail such module request from crypto_larval_lookup(). * * In this way we prevent modprobe execution during digsig verification * and avoid possible deadlock if modprobe and/or it's dependencies * also signed with digsig. */ int integrity_kernel_module_request(char *kmod_name) { if (strncmp(kmod_name, "crypto-pkcs1pad(rsa,", 20) == 0) return -EINVAL; return 0; }
71 53 16 14 1 7 4 20 18 7 24 38 19 44 16 16 8 4 18 22 18 18 21 3 28 1 8 19 2 19 31 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 /* SPDX-License-Identifier: GPL-2.0 */ /* * Portions of this file * Copyright(c) 2016-2017 Intel Deutschland GmbH * Copyright (C) 2018 - 2022 Intel Corporation */ #if !defined(__MAC80211_DRIVER_TRACE) || defined(TRACE_HEADER_MULTI_READ) #define __MAC80211_DRIVER_TRACE #include <linux/tracepoint.h> #include <net/mac80211.h> #include "ieee80211_i.h" #undef TRACE_SYSTEM #define TRACE_SYSTEM mac80211 #define MAXNAME 32 #define LOCAL_ENTRY __array(char, wiphy_name, 32) #define LOCAL_ASSIGN strlcpy(__entry->wiphy_name, wiphy_name(local->hw.wiphy), MAXNAME) #define LOCAL_PR_FMT "%s" #define LOCAL_PR_ARG __entry->wiphy_name #define STA_ENTRY __array(char, sta_addr, ETH_ALEN) #define STA_ASSIGN (sta ? memcpy(__entry->sta_addr, sta->addr, ETH_ALEN) : \ eth_zero_addr(__entry->sta_addr)) #define STA_NAMED_ASSIGN(s) memcpy(__entry->sta_addr, (s)->addr, ETH_ALEN) #define STA_PR_FMT " sta:%pM" #define STA_PR_ARG __entry->sta_addr #define VIF_ENTRY __field(enum nl80211_iftype, vif_type) __field(void *, sdata) \ __field(bool, p2p) \ __string(vif_name, sdata->name) #define VIF_ASSIGN __entry->vif_type = sdata->vif.type; __entry->sdata = sdata; \ __entry->p2p = sdata->vif.p2p; \ __assign_str(vif_name, sdata->name) #define VIF_PR_FMT " vif:%s(%d%s)" #define VIF_PR_ARG __get_str(vif_name), __entry->vif_type, __entry->p2p ? "/p2p" : "" #define CHANDEF_ENTRY __field(u32, control_freq) \ __field(u32, freq_offset) \ __field(u32, chan_width) \ __field(u32, center_freq1) \ __field(u32, freq1_offset) \ __field(u32, center_freq2) #define CHANDEF_ASSIGN(c) \ __entry->control_freq = (c) ? ((c)->chan ? (c)->chan->center_freq : 0) : 0; \ __entry->freq_offset = (c) ? ((c)->chan ? (c)->chan->freq_offset : 0) : 0; \ __entry->chan_width = (c) ? (c)->width : 0; \ __entry->center_freq1 = (c) ? (c)->center_freq1 : 0; \ __entry->freq1_offset = (c) ? (c)->freq1_offset : 0; \ __entry->center_freq2 = (c) ? (c)->center_freq2 : 0; #define CHANDEF_PR_FMT " control:%d.%03d MHz width:%d center: %d.%03d/%d MHz" #define CHANDEF_PR_ARG __entry->control_freq, __entry->freq_offset, __entry->chan_width, \ __entry->center_freq1, __entry->freq1_offset, __entry->center_freq2 #define MIN_CHANDEF_ENTRY \ __field(u32, min_control_freq) \ __field(u32, min_freq_offset) \ __field(u32, min_chan_width) \ __field(u32, min_center_freq1) \ __field(u32, min_freq1_offset) \ __field(u32, min_center_freq2) #define MIN_CHANDEF_ASSIGN(c) \ __entry->min_control_freq = (c)->chan ? (c)->chan->center_freq : 0; \ __entry->min_freq_offset = (c)->chan ? (c)->chan->freq_offset : 0; \ __entry->min_chan_width = (c)->width; \ __entry->min_center_freq1 = (c)->center_freq1; \ __entry->min_freq1_offset = (c)->freq1_offset; \ __entry->min_center_freq2 = (c)->center_freq2; #define MIN_CHANDEF_PR_FMT " min_control:%d.%03d MHz min_width:%d min_center: %d.%03d/%d MHz" #define MIN_CHANDEF_PR_ARG __entry->min_control_freq, __entry->min_freq_offset, \ __entry->min_chan_width, \ __entry->min_center_freq1, __entry->min_freq1_offset, \ __entry->min_center_freq2 #define CHANCTX_ENTRY CHANDEF_ENTRY \ MIN_CHANDEF_ENTRY \ __field(u8, rx_chains_static) \ __field(u8, rx_chains_dynamic) #define CHANCTX_ASSIGN CHANDEF_ASSIGN(&ctx->conf.def) \ MIN_CHANDEF_ASSIGN(&ctx->conf.min_def) \ __entry->rx_chains_static = ctx->conf.rx_chains_static; \ __entry->rx_chains_dynamic = ctx->conf.rx_chains_dynamic #define CHANCTX_PR_FMT CHANDEF_PR_FMT MIN_CHANDEF_PR_FMT " chains:%d/%d" #define CHANCTX_PR_ARG CHANDEF_PR_ARG, MIN_CHANDEF_PR_ARG, \ __entry->rx_chains_static, __entry->rx_chains_dynamic #define KEY_ENTRY __field(u32, cipher) \ __field(u8, hw_key_idx) \ __field(u8, flags) \ __field(s8, keyidx) #define KEY_ASSIGN(k) __entry->cipher = (k)->cipher; \ __entry->flags = (k)->flags; \ __entry->keyidx = (k)->keyidx; \ __entry->hw_key_idx = (k)->hw_key_idx; #define KEY_PR_FMT " cipher:0x%x, flags=%#x, keyidx=%d, hw_key_idx=%d" #define KEY_PR_ARG __entry->cipher, __entry->flags, __entry->keyidx, __entry->hw_key_idx #define AMPDU_ACTION_ENTRY __field(enum ieee80211_ampdu_mlme_action, \ ieee80211_ampdu_mlme_action) \ STA_ENTRY \ __field(u16, tid) \ __field(u16, ssn) \ __field(u16, buf_size) \ __field(bool, amsdu) \ __field(u16, timeout) \ __field(u16, action) #define AMPDU_ACTION_ASSIGN STA_NAMED_ASSIGN(params->sta); \ __entry->tid = params->tid; \ __entry->ssn = params->ssn; \ __entry->buf_size = params->buf_size; \ __entry->amsdu = params->amsdu; \ __entry->timeout = params->timeout; \ __entry->action = params->action; #define AMPDU_ACTION_PR_FMT STA_PR_FMT " tid %d, ssn %d, buf_size %u, amsdu %d, timeout %d action %d" #define AMPDU_ACTION_PR_ARG STA_PR_ARG, __entry->tid, __entry->ssn, \ __entry->buf_size, __entry->amsdu, __entry->timeout, \ __entry->action /* * Tracing for driver callbacks. */ DECLARE_EVENT_CLASS(local_only_evt, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local), TP_STRUCT__entry( LOCAL_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; ), TP_printk(LOCAL_PR_FMT, LOCAL_PR_ARG) ); DECLARE_EVENT_CLASS(local_sdata_addr_evt, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __array(char, addr, ETH_ALEN) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; memcpy(__entry->addr, sdata->vif.addr, ETH_ALEN); ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " addr:%pM", LOCAL_PR_ARG, VIF_PR_ARG, __entry->addr ) ); DECLARE_EVENT_CLASS(local_u32_evt, TP_PROTO(struct ieee80211_local *local, u32 value), TP_ARGS(local, value), TP_STRUCT__entry( LOCAL_ENTRY __field(u32, value) ), TP_fast_assign( LOCAL_ASSIGN; __entry->value = value; ), TP_printk( LOCAL_PR_FMT " value:%d", LOCAL_PR_ARG, __entry->value ) ); DECLARE_EVENT_CLASS(local_sdata_evt, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG ) ); DEFINE_EVENT(local_only_evt, drv_return_void, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); TRACE_EVENT(drv_return_int, TP_PROTO(struct ieee80211_local *local, int ret), TP_ARGS(local, ret), TP_STRUCT__entry( LOCAL_ENTRY __field(int, ret) ), TP_fast_assign( LOCAL_ASSIGN; __entry->ret = ret; ), TP_printk(LOCAL_PR_FMT " - %d", LOCAL_PR_ARG, __entry->ret) ); TRACE_EVENT(drv_return_bool, TP_PROTO(struct ieee80211_local *local, bool ret), TP_ARGS(local, ret), TP_STRUCT__entry( LOCAL_ENTRY __field(bool, ret) ), TP_fast_assign( LOCAL_ASSIGN; __entry->ret = ret; ), TP_printk(LOCAL_PR_FMT " - %s", LOCAL_PR_ARG, (__entry->ret) ? "true" : "false") ); TRACE_EVENT(drv_return_u32, TP_PROTO(struct ieee80211_local *local, u32 ret), TP_ARGS(local, ret), TP_STRUCT__entry( LOCAL_ENTRY __field(u32, ret) ), TP_fast_assign( LOCAL_ASSIGN; __entry->ret = ret; ), TP_printk(LOCAL_PR_FMT " - %u", LOCAL_PR_ARG, __entry->ret) ); TRACE_EVENT(drv_return_u64, TP_PROTO(struct ieee80211_local *local, u64 ret), TP_ARGS(local, ret), TP_STRUCT__entry( LOCAL_ENTRY __field(u64, ret) ), TP_fast_assign( LOCAL_ASSIGN; __entry->ret = ret; ), TP_printk(LOCAL_PR_FMT " - %llu", LOCAL_PR_ARG, __entry->ret) ); DEFINE_EVENT(local_only_evt, drv_start, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); DEFINE_EVENT(local_u32_evt, drv_get_et_strings, TP_PROTO(struct ieee80211_local *local, u32 sset), TP_ARGS(local, sset) ); DEFINE_EVENT(local_u32_evt, drv_get_et_sset_count, TP_PROTO(struct ieee80211_local *local, u32 sset), TP_ARGS(local, sset) ); DEFINE_EVENT(local_only_evt, drv_get_et_stats, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); DEFINE_EVENT(local_only_evt, drv_suspend, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); DEFINE_EVENT(local_only_evt, drv_resume, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); TRACE_EVENT(drv_set_wakeup, TP_PROTO(struct ieee80211_local *local, bool enabled), TP_ARGS(local, enabled), TP_STRUCT__entry( LOCAL_ENTRY __field(bool, enabled) ), TP_fast_assign( LOCAL_ASSIGN; __entry->enabled = enabled; ), TP_printk(LOCAL_PR_FMT " enabled:%d", LOCAL_PR_ARG, __entry->enabled) ); DEFINE_EVENT(local_only_evt, drv_stop, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); DEFINE_EVENT(local_sdata_addr_evt, drv_add_interface, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); TRACE_EVENT(drv_change_interface, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum nl80211_iftype type, bool p2p), TP_ARGS(local, sdata, type, p2p), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u32, new_type) __field(bool, new_p2p) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->new_type = type; __entry->new_p2p = p2p; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " new type:%d%s", LOCAL_PR_ARG, VIF_PR_ARG, __entry->new_type, __entry->new_p2p ? "/p2p" : "" ) ); DEFINE_EVENT(local_sdata_addr_evt, drv_remove_interface, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); TRACE_EVENT(drv_config, TP_PROTO(struct ieee80211_local *local, u32 changed), TP_ARGS(local, changed), TP_STRUCT__entry( LOCAL_ENTRY __field(u32, changed) __field(u32, flags) __field(int, power_level) __field(int, dynamic_ps_timeout) __field(u16, listen_interval) __field(u8, long_frame_max_tx_count) __field(u8, short_frame_max_tx_count) CHANDEF_ENTRY __field(int, smps) ), TP_fast_assign( LOCAL_ASSIGN; __entry->changed = changed; __entry->flags = local->hw.conf.flags; __entry->power_level = local->hw.conf.power_level; __entry->dynamic_ps_timeout = local->hw.conf.dynamic_ps_timeout; __entry->listen_interval = local->hw.conf.listen_interval; __entry->long_frame_max_tx_count = local->hw.conf.long_frame_max_tx_count; __entry->short_frame_max_tx_count = local->hw.conf.short_frame_max_tx_count; CHANDEF_ASSIGN(&local->hw.conf.chandef) __entry->smps = local->hw.conf.smps_mode; ), TP_printk( LOCAL_PR_FMT " ch:%#x" CHANDEF_PR_FMT, LOCAL_PR_ARG, __entry->changed, CHANDEF_PR_ARG ) ); TRACE_EVENT(drv_vif_cfg_changed, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u64 changed), TP_ARGS(local, sdata, changed), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u64, changed) __field(bool, assoc) __field(bool, ibss_joined) __field(bool, ibss_creator) __field(u16, aid) __dynamic_array(u32, arp_addr_list, sdata->vif.cfg.arp_addr_cnt > IEEE80211_BSS_ARP_ADDR_LIST_LEN ? IEEE80211_BSS_ARP_ADDR_LIST_LEN : sdata->vif.cfg.arp_addr_cnt) __field(int, arp_addr_cnt) __dynamic_array(u8, ssid, sdata->vif.cfg.ssid_len) __field(int, s1g) __field(bool, idle) __field(bool, ps) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->changed = changed; __entry->aid = sdata->vif.cfg.aid; __entry->assoc = sdata->vif.cfg.assoc; __entry->ibss_joined = sdata->vif.cfg.ibss_joined; __entry->ibss_creator = sdata->vif.cfg.ibss_creator; __entry->ps = sdata->vif.cfg.ps; __entry->arp_addr_cnt = sdata->vif.cfg.arp_addr_cnt; memcpy(__get_dynamic_array(arp_addr_list), sdata->vif.cfg.arp_addr_list, sizeof(u32) * (sdata->vif.cfg.arp_addr_cnt > IEEE80211_BSS_ARP_ADDR_LIST_LEN ? IEEE80211_BSS_ARP_ADDR_LIST_LEN : sdata->vif.cfg.arp_addr_cnt)); memcpy(__get_dynamic_array(ssid), sdata->vif.cfg.ssid, sdata->vif.cfg.ssid_len); __entry->s1g = sdata->vif.cfg.s1g; __entry->idle = sdata->vif.cfg.idle; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " changed:%#llx", LOCAL_PR_ARG, VIF_PR_ARG, __entry->changed ) ); TRACE_EVENT(drv_link_info_changed, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *link_conf, u64 changed), TP_ARGS(local, sdata, link_conf, changed), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u64, changed) __field(int, link_id) __field(bool, cts) __field(bool, shortpre) __field(bool, shortslot) __field(bool, enable_beacon) __field(u8, dtimper) __field(u16, bcnint) __field(u16, assoc_cap) __field(u64, sync_tsf) __field(u32, sync_device_ts) __field(u8, sync_dtim_count) __field(u32, basic_rates) __array(int, mcast_rate, NUM_NL80211_BANDS) __field(u16, ht_operation_mode) __field(s32, cqm_rssi_thold) __field(s32, cqm_rssi_hyst) __field(u32, channel_width) __field(u32, channel_cfreq1) __field(u32, channel_cfreq1_offset) __field(bool, qos) __field(bool, hidden_ssid) __field(int, txpower) __field(u8, p2p_oppps_ctwindow) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->changed = changed; __entry->link_id = link_conf->link_id; __entry->shortpre = link_conf->use_short_preamble; __entry->cts = link_conf->use_cts_prot; __entry->shortslot = link_conf->use_short_slot; __entry->enable_beacon = link_conf->enable_beacon; __entry->dtimper = link_conf->dtim_period; __entry->bcnint = link_conf->beacon_int; __entry->assoc_cap = link_conf->assoc_capability; __entry->sync_tsf = link_conf->sync_tsf; __entry->sync_device_ts = link_conf->sync_device_ts; __entry->sync_dtim_count = link_conf->sync_dtim_count; __entry->basic_rates = link_conf->basic_rates; memcpy(__entry->mcast_rate, link_conf->mcast_rate, sizeof(__entry->mcast_rate)); __entry->ht_operation_mode = link_conf->ht_operation_mode; __entry->cqm_rssi_thold = link_conf->cqm_rssi_thold; __entry->cqm_rssi_hyst = link_conf->cqm_rssi_hyst; __entry->channel_width = link_conf->chandef.width; __entry->channel_cfreq1 = link_conf->chandef.center_freq1; __entry->channel_cfreq1_offset = link_conf->chandef.freq1_offset; __entry->qos = link_conf->qos; __entry->hidden_ssid = link_conf->hidden_ssid; __entry->txpower = link_conf->txpower; __entry->p2p_oppps_ctwindow = link_conf->p2p_noa_attr.oppps_ctwindow; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " link_id:%d, changed:%#llx", LOCAL_PR_ARG, VIF_PR_ARG, __entry->link_id, __entry->changed ) ); TRACE_EVENT(drv_prepare_multicast, TP_PROTO(struct ieee80211_local *local, int mc_count), TP_ARGS(local, mc_count), TP_STRUCT__entry( LOCAL_ENTRY __field(int, mc_count) ), TP_fast_assign( LOCAL_ASSIGN; __entry->mc_count = mc_count; ), TP_printk( LOCAL_PR_FMT " prepare mc (%d)", LOCAL_PR_ARG, __entry->mc_count ) ); TRACE_EVENT(drv_configure_filter, TP_PROTO(struct ieee80211_local *local, unsigned int changed_flags, unsigned int *total_flags, u64 multicast), TP_ARGS(local, changed_flags, total_flags, multicast), TP_STRUCT__entry( LOCAL_ENTRY __field(unsigned int, changed) __field(unsigned int, total) __field(u64, multicast) ), TP_fast_assign( LOCAL_ASSIGN; __entry->changed = changed_flags; __entry->total = *total_flags; __entry->multicast = multicast; ), TP_printk( LOCAL_PR_FMT " changed:%#x total:%#x", LOCAL_PR_ARG, __entry->changed, __entry->total ) ); TRACE_EVENT(drv_config_iface_filter, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, unsigned int filter_flags, unsigned int changed_flags), TP_ARGS(local, sdata, filter_flags, changed_flags), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(unsigned int, filter_flags) __field(unsigned int, changed_flags) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->filter_flags = filter_flags; __entry->changed_flags = changed_flags; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " filter_flags: %#x changed_flags: %#x", LOCAL_PR_ARG, VIF_PR_ARG, __entry->filter_flags, __entry->changed_flags ) ); TRACE_EVENT(drv_set_tim, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sta *sta, bool set), TP_ARGS(local, sta, set), TP_STRUCT__entry( LOCAL_ENTRY STA_ENTRY __field(bool, set) ), TP_fast_assign( LOCAL_ASSIGN; STA_ASSIGN; __entry->set = set; ), TP_printk( LOCAL_PR_FMT STA_PR_FMT " set:%d", LOCAL_PR_ARG, STA_PR_ARG, __entry->set ) ); TRACE_EVENT(drv_set_key, TP_PROTO(struct ieee80211_local *local, enum set_key_cmd cmd, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, struct ieee80211_key_conf *key), TP_ARGS(local, cmd, sdata, sta, key), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY KEY_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; KEY_ASSIGN(key); ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT STA_PR_FMT KEY_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG, STA_PR_ARG, KEY_PR_ARG ) ); TRACE_EVENT(drv_update_tkip_key, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_key_conf *conf, struct ieee80211_sta *sta, u32 iv32), TP_ARGS(local, sdata, conf, sta, iv32), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY __field(u32, iv32) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; __entry->iv32 = iv32; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT STA_PR_FMT " iv32:%#x", LOCAL_PR_ARG, VIF_PR_ARG, STA_PR_ARG, __entry->iv32 ) ); DEFINE_EVENT(local_sdata_evt, drv_hw_scan, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); DEFINE_EVENT(local_sdata_evt, drv_cancel_hw_scan, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); DEFINE_EVENT(local_sdata_evt, drv_sched_scan_start, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); DEFINE_EVENT(local_sdata_evt, drv_sched_scan_stop, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); TRACE_EVENT(drv_sw_scan_start, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, const u8 *mac_addr), TP_ARGS(local, sdata, mac_addr), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __array(char, mac_addr, ETH_ALEN) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; memcpy(__entry->mac_addr, mac_addr, ETH_ALEN); ), TP_printk(LOCAL_PR_FMT ", " VIF_PR_FMT ", addr:%pM", LOCAL_PR_ARG, VIF_PR_ARG, __entry->mac_addr) ); DEFINE_EVENT(local_sdata_evt, drv_sw_scan_complete, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); TRACE_EVENT(drv_get_stats, TP_PROTO(struct ieee80211_local *local, struct ieee80211_low_level_stats *stats, int ret), TP_ARGS(local, stats, ret), TP_STRUCT__entry( LOCAL_ENTRY __field(int, ret) __field(unsigned int, ackfail) __field(unsigned int, rtsfail) __field(unsigned int, fcserr) __field(unsigned int, rtssucc) ), TP_fast_assign( LOCAL_ASSIGN; __entry->ret = ret; __entry->ackfail = stats->dot11ACKFailureCount; __entry->rtsfail = stats->dot11RTSFailureCount; __entry->fcserr = stats->dot11FCSErrorCount; __entry->rtssucc = stats->dot11RTSSuccessCount; ), TP_printk( LOCAL_PR_FMT " ret:%d", LOCAL_PR_ARG, __entry->ret ) ); TRACE_EVENT(drv_get_key_seq, TP_PROTO(struct ieee80211_local *local, struct ieee80211_key_conf *key), TP_ARGS(local, key), TP_STRUCT__entry( LOCAL_ENTRY KEY_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; KEY_ASSIGN(key); ), TP_printk( LOCAL_PR_FMT KEY_PR_FMT, LOCAL_PR_ARG, KEY_PR_ARG ) ); DEFINE_EVENT(local_u32_evt, drv_set_frag_threshold, TP_PROTO(struct ieee80211_local *local, u32 value), TP_ARGS(local, value) ); DEFINE_EVENT(local_u32_evt, drv_set_rts_threshold, TP_PROTO(struct ieee80211_local *local, u32 value), TP_ARGS(local, value) ); TRACE_EVENT(drv_set_coverage_class, TP_PROTO(struct ieee80211_local *local, s16 value), TP_ARGS(local, value), TP_STRUCT__entry( LOCAL_ENTRY __field(s16, value) ), TP_fast_assign( LOCAL_ASSIGN; __entry->value = value; ), TP_printk( LOCAL_PR_FMT " value:%d", LOCAL_PR_ARG, __entry->value ) ); TRACE_EVENT(drv_sta_notify, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum sta_notify_cmd cmd, struct ieee80211_sta *sta), TP_ARGS(local, sdata, cmd, sta), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY __field(u32, cmd) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; __entry->cmd = cmd; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT STA_PR_FMT " cmd:%d", LOCAL_PR_ARG, VIF_PR_ARG, STA_PR_ARG, __entry->cmd ) ); TRACE_EVENT(drv_sta_state, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, enum ieee80211_sta_state old_state, enum ieee80211_sta_state new_state), TP_ARGS(local, sdata, sta, old_state, new_state), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY __field(u32, old_state) __field(u32, new_state) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; __entry->old_state = old_state; __entry->new_state = new_state; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT STA_PR_FMT " state: %d->%d", LOCAL_PR_ARG, VIF_PR_ARG, STA_PR_ARG, __entry->old_state, __entry->new_state ) ); TRACE_EVENT(drv_sta_set_txpwr, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta), TP_ARGS(local, sdata, sta), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY __field(s16, txpwr) __field(u8, type) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; __entry->txpwr = sta->deflink.txpwr.power; __entry->type = sta->deflink.txpwr.type; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT STA_PR_FMT " txpwr: %d type %d", LOCAL_PR_ARG, VIF_PR_ARG, STA_PR_ARG, __entry->txpwr, __entry->type ) ); TRACE_EVENT(drv_sta_rc_update, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, u32 changed), TP_ARGS(local, sdata, sta, changed), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY __field(u32, changed) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; __entry->changed = changed; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT STA_PR_FMT " changed: 0x%x", LOCAL_PR_ARG, VIF_PR_ARG, STA_PR_ARG, __entry->changed ) ); DECLARE_EVENT_CLASS(sta_event, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta), TP_ARGS(local, sdata, sta), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT STA_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG, STA_PR_ARG ) ); DEFINE_EVENT(sta_event, drv_sta_statistics, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta), TP_ARGS(local, sdata, sta) ); DEFINE_EVENT(sta_event, drv_sta_add, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta), TP_ARGS(local, sdata, sta) ); DEFINE_EVENT(sta_event, drv_sta_remove, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta), TP_ARGS(local, sdata, sta) ); DEFINE_EVENT(sta_event, drv_sta_pre_rcu_remove, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta), TP_ARGS(local, sdata, sta) ); DEFINE_EVENT(sta_event, drv_sync_rx_queues, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta), TP_ARGS(local, sdata, sta) ); DEFINE_EVENT(sta_event, drv_sta_rate_tbl_update, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta), TP_ARGS(local, sdata, sta) ); TRACE_EVENT(drv_conf_tx, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, unsigned int link_id, u16 ac, const struct ieee80211_tx_queue_params *params), TP_ARGS(local, sdata, link_id, ac, params), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(unsigned int, link_id) __field(u16, ac) __field(u16, txop) __field(u16, cw_min) __field(u16, cw_max) __field(u8, aifs) __field(bool, uapsd) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->link_id = link_id; __entry->ac = ac; __entry->txop = params->txop; __entry->cw_max = params->cw_max; __entry->cw_min = params->cw_min; __entry->aifs = params->aifs; __entry->uapsd = params->uapsd; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " link_id: %d, AC:%d", LOCAL_PR_ARG, VIF_PR_ARG, __entry->link_id, __entry->ac ) ); DEFINE_EVENT(local_sdata_evt, drv_get_tsf, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); TRACE_EVENT(drv_set_tsf, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u64 tsf), TP_ARGS(local, sdata, tsf), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u64, tsf) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->tsf = tsf; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " tsf:%llu", LOCAL_PR_ARG, VIF_PR_ARG, (unsigned long long)__entry->tsf ) ); TRACE_EVENT(drv_offset_tsf, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, s64 offset), TP_ARGS(local, sdata, offset), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(s64, tsf_offset) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->tsf_offset = offset; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " tsf offset:%lld", LOCAL_PR_ARG, VIF_PR_ARG, (unsigned long long)__entry->tsf_offset ) ); DEFINE_EVENT(local_sdata_evt, drv_reset_tsf, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); DEFINE_EVENT(local_only_evt, drv_tx_last_beacon, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); TRACE_EVENT(drv_ampdu_action, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_ampdu_params *params), TP_ARGS(local, sdata, params), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY AMPDU_ACTION_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; AMPDU_ACTION_ASSIGN; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT AMPDU_ACTION_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG, AMPDU_ACTION_PR_ARG ) ); TRACE_EVENT(drv_get_survey, TP_PROTO(struct ieee80211_local *local, int _idx, struct survey_info *survey), TP_ARGS(local, _idx, survey), TP_STRUCT__entry( LOCAL_ENTRY __field(int, idx) ), TP_fast_assign( LOCAL_ASSIGN; __entry->idx = _idx; ), TP_printk( LOCAL_PR_FMT " idx:%d", LOCAL_PR_ARG, __entry->idx ) ); TRACE_EVENT(drv_flush, TP_PROTO(struct ieee80211_local *local, u32 queues, bool drop), TP_ARGS(local, queues, drop), TP_STRUCT__entry( LOCAL_ENTRY __field(bool, drop) __field(u32, queues) ), TP_fast_assign( LOCAL_ASSIGN; __entry->drop = drop; __entry->queues = queues; ), TP_printk( LOCAL_PR_FMT " queues:0x%x drop:%d", LOCAL_PR_ARG, __entry->queues, __entry->drop ) ); TRACE_EVENT(drv_channel_switch, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_channel_switch *ch_switch), TP_ARGS(local, sdata, ch_switch), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY CHANDEF_ENTRY __field(u64, timestamp) __field(u32, device_timestamp) __field(bool, block_tx) __field(u8, count) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; CHANDEF_ASSIGN(&ch_switch->chandef) __entry->timestamp = ch_switch->timestamp; __entry->device_timestamp = ch_switch->device_timestamp; __entry->block_tx = ch_switch->block_tx; __entry->count = ch_switch->count; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " new " CHANDEF_PR_FMT " count:%d", LOCAL_PR_ARG, VIF_PR_ARG, CHANDEF_PR_ARG, __entry->count ) ); TRACE_EVENT(drv_set_antenna, TP_PROTO(struct ieee80211_local *local, u32 tx_ant, u32 rx_ant, int ret), TP_ARGS(local, tx_ant, rx_ant, ret), TP_STRUCT__entry( LOCAL_ENTRY __field(u32, tx_ant) __field(u32, rx_ant) __field(int, ret) ), TP_fast_assign( LOCAL_ASSIGN; __entry->tx_ant = tx_ant; __entry->rx_ant = rx_ant; __entry->ret = ret; ), TP_printk( LOCAL_PR_FMT " tx_ant:%d rx_ant:%d ret:%d", LOCAL_PR_ARG, __entry->tx_ant, __entry->rx_ant, __entry->ret ) ); TRACE_EVENT(drv_get_antenna, TP_PROTO(struct ieee80211_local *local, u32 tx_ant, u32 rx_ant, int ret), TP_ARGS(local, tx_ant, rx_ant, ret), TP_STRUCT__entry( LOCAL_ENTRY __field(u32, tx_ant) __field(u32, rx_ant) __field(int, ret) ), TP_fast_assign( LOCAL_ASSIGN; __entry->tx_ant = tx_ant; __entry->rx_ant = rx_ant; __entry->ret = ret; ), TP_printk( LOCAL_PR_FMT " tx_ant:%d rx_ant:%d ret:%d", LOCAL_PR_ARG, __entry->tx_ant, __entry->rx_ant, __entry->ret ) ); TRACE_EVENT(drv_remain_on_channel, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_channel *chan, unsigned int duration, enum ieee80211_roc_type type), TP_ARGS(local, sdata, chan, duration, type), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(int, center_freq) __field(int, freq_offset) __field(unsigned int, duration) __field(u32, type) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->center_freq = chan->center_freq; __entry->freq_offset = chan->freq_offset; __entry->duration = duration; __entry->type = type; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " freq:%d.%03dMHz duration:%dms type=%d", LOCAL_PR_ARG, VIF_PR_ARG, __entry->center_freq, __entry->freq_offset, __entry->duration, __entry->type ) ); DEFINE_EVENT(local_sdata_evt, drv_cancel_remain_on_channel, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); TRACE_EVENT(drv_set_ringparam, TP_PROTO(struct ieee80211_local *local, u32 tx, u32 rx), TP_ARGS(local, tx, rx), TP_STRUCT__entry( LOCAL_ENTRY __field(u32, tx) __field(u32, rx) ), TP_fast_assign( LOCAL_ASSIGN; __entry->tx = tx; __entry->rx = rx; ), TP_printk( LOCAL_PR_FMT " tx:%d rx %d", LOCAL_PR_ARG, __entry->tx, __entry->rx ) ); TRACE_EVENT(drv_get_ringparam, TP_PROTO(struct ieee80211_local *local, u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max), TP_ARGS(local, tx, tx_max, rx, rx_max), TP_STRUCT__entry( LOCAL_ENTRY __field(u32, tx) __field(u32, tx_max) __field(u32, rx) __field(u32, rx_max) ), TP_fast_assign( LOCAL_ASSIGN; __entry->tx = *tx; __entry->tx_max = *tx_max; __entry->rx = *rx; __entry->rx_max = *rx_max; ), TP_printk( LOCAL_PR_FMT " tx:%d tx_max %d rx %d rx_max %d", LOCAL_PR_ARG, __entry->tx, __entry->tx_max, __entry->rx, __entry->rx_max ) ); DEFINE_EVENT(local_only_evt, drv_tx_frames_pending, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); DEFINE_EVENT(local_only_evt, drv_offchannel_tx_cancel_wait, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); TRACE_EVENT(drv_set_bitrate_mask, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, const struct cfg80211_bitrate_mask *mask), TP_ARGS(local, sdata, mask), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u32, legacy_2g) __field(u32, legacy_5g) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->legacy_2g = mask->control[NL80211_BAND_2GHZ].legacy; __entry->legacy_5g = mask->control[NL80211_BAND_5GHZ].legacy; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " 2G Mask:0x%x 5G Mask:0x%x", LOCAL_PR_ARG, VIF_PR_ARG, __entry->legacy_2g, __entry->legacy_5g ) ); TRACE_EVENT(drv_set_rekey_data, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_gtk_rekey_data *data), TP_ARGS(local, sdata, data), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __array(u8, kek, NL80211_KEK_LEN) __array(u8, kck, NL80211_KCK_LEN) __array(u8, replay_ctr, NL80211_REPLAY_CTR_LEN) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; memcpy(__entry->kek, data->kek, NL80211_KEK_LEN); memcpy(__entry->kck, data->kck, NL80211_KCK_LEN); memcpy(__entry->replay_ctr, data->replay_ctr, NL80211_REPLAY_CTR_LEN); ), TP_printk(LOCAL_PR_FMT VIF_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG) ); TRACE_EVENT(drv_event_callback, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, const struct ieee80211_event *_event), TP_ARGS(local, sdata, _event), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u32, type) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->type = _event->type; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " event:%d", LOCAL_PR_ARG, VIF_PR_ARG, __entry->type ) ); DECLARE_EVENT_CLASS(release_evt, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sta *sta, u16 tids, int num_frames, enum ieee80211_frame_release_type reason, bool more_data), TP_ARGS(local, sta, tids, num_frames, reason, more_data), TP_STRUCT__entry( LOCAL_ENTRY STA_ENTRY __field(u16, tids) __field(int, num_frames) __field(int, reason) __field(bool, more_data) ), TP_fast_assign( LOCAL_ASSIGN; STA_ASSIGN; __entry->tids = tids; __entry->num_frames = num_frames; __entry->reason = reason; __entry->more_data = more_data; ), TP_printk( LOCAL_PR_FMT STA_PR_FMT " TIDs:0x%.4x frames:%d reason:%d more:%d", LOCAL_PR_ARG, STA_PR_ARG, __entry->tids, __entry->num_frames, __entry->reason, __entry->more_data ) ); DEFINE_EVENT(release_evt, drv_release_buffered_frames, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sta *sta, u16 tids, int num_frames, enum ieee80211_frame_release_type reason, bool more_data), TP_ARGS(local, sta, tids, num_frames, reason, more_data) ); DEFINE_EVENT(release_evt, drv_allow_buffered_frames, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sta *sta, u16 tids, int num_frames, enum ieee80211_frame_release_type reason, bool more_data), TP_ARGS(local, sta, tids, num_frames, reason, more_data) ); DECLARE_EVENT_CLASS(mgd_prepare_complete_tx_evt, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u16 duration, u16 subtype, bool success), TP_ARGS(local, sdata, duration, subtype, success), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u32, duration) __field(u16, subtype) __field(u8, success) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->duration = duration; __entry->subtype = subtype; __entry->success = success; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " duration: %u, subtype:0x%x, success:%d", LOCAL_PR_ARG, VIF_PR_ARG, __entry->duration, __entry->subtype, __entry->success ) ); DEFINE_EVENT(mgd_prepare_complete_tx_evt, drv_mgd_prepare_tx, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u16 duration, u16 subtype, bool success), TP_ARGS(local, sdata, duration, subtype, success) ); DEFINE_EVENT(mgd_prepare_complete_tx_evt, drv_mgd_complete_tx, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u16 duration, u16 subtype, bool success), TP_ARGS(local, sdata, duration, subtype, success) ); DEFINE_EVENT(local_sdata_evt, drv_mgd_protect_tdls_discover, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); DECLARE_EVENT_CLASS(local_chanctx, TP_PROTO(struct ieee80211_local *local, struct ieee80211_chanctx *ctx), TP_ARGS(local, ctx), TP_STRUCT__entry( LOCAL_ENTRY CHANCTX_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; CHANCTX_ASSIGN; ), TP_printk( LOCAL_PR_FMT CHANCTX_PR_FMT, LOCAL_PR_ARG, CHANCTX_PR_ARG ) ); DEFINE_EVENT(local_chanctx, drv_add_chanctx, TP_PROTO(struct ieee80211_local *local, struct ieee80211_chanctx *ctx), TP_ARGS(local, ctx) ); DEFINE_EVENT(local_chanctx, drv_remove_chanctx, TP_PROTO(struct ieee80211_local *local, struct ieee80211_chanctx *ctx), TP_ARGS(local, ctx) ); TRACE_EVENT(drv_change_chanctx, TP_PROTO(struct ieee80211_local *local, struct ieee80211_chanctx *ctx, u32 changed), TP_ARGS(local, ctx, changed), TP_STRUCT__entry( LOCAL_ENTRY CHANCTX_ENTRY __field(u32, changed) ), TP_fast_assign( LOCAL_ASSIGN; CHANCTX_ASSIGN; __entry->changed = changed; ), TP_printk( LOCAL_PR_FMT CHANCTX_PR_FMT " changed:%#x", LOCAL_PR_ARG, CHANCTX_PR_ARG, __entry->changed ) ); #if !defined(__TRACE_VIF_ENTRY) #define __TRACE_VIF_ENTRY struct trace_vif_entry { enum nl80211_iftype vif_type; bool p2p; char vif_name[IFNAMSIZ]; } __packed; struct trace_chandef_entry { u32 control_freq; u32 freq_offset; u32 chan_width; u32 center_freq1; u32 freq1_offset; u32 center_freq2; } __packed; struct trace_switch_entry { struct trace_vif_entry vif; unsigned int link_id; struct trace_chandef_entry old_chandef; struct trace_chandef_entry new_chandef; } __packed; #define SWITCH_ENTRY_ASSIGN(to, from) local_vifs[i].to = vifs[i].from #endif TRACE_EVENT(drv_switch_vif_chanctx, TP_PROTO(struct ieee80211_local *local, struct ieee80211_vif_chanctx_switch *vifs, int n_vifs, enum ieee80211_chanctx_switch_mode mode), TP_ARGS(local, vifs, n_vifs, mode), TP_STRUCT__entry( LOCAL_ENTRY __field(int, n_vifs) __field(u32, mode) __dynamic_array(u8, vifs, sizeof(struct trace_switch_entry) * n_vifs) ), TP_fast_assign( LOCAL_ASSIGN; __entry->n_vifs = n_vifs; __entry->mode = mode; { struct trace_switch_entry *local_vifs = __get_dynamic_array(vifs); int i; for (i = 0; i < n_vifs; i++) { struct ieee80211_sub_if_data *sdata; sdata = container_of(vifs[i].vif, struct ieee80211_sub_if_data, vif); SWITCH_ENTRY_ASSIGN(vif.vif_type, vif->type); SWITCH_ENTRY_ASSIGN(vif.p2p, vif->p2p); SWITCH_ENTRY_ASSIGN(link_id, link_conf->link_id); strncpy(local_vifs[i].vif.vif_name, sdata->name, sizeof(local_vifs[i].vif.vif_name)); SWITCH_ENTRY_ASSIGN(old_chandef.control_freq, old_ctx->def.chan->center_freq); SWITCH_ENTRY_ASSIGN(old_chandef.freq_offset, old_ctx->def.chan->freq_offset); SWITCH_ENTRY_ASSIGN(old_chandef.chan_width, old_ctx->def.width); SWITCH_ENTRY_ASSIGN(old_chandef.center_freq1, old_ctx->def.center_freq1); SWITCH_ENTRY_ASSIGN(old_chandef.freq1_offset, old_ctx->def.freq1_offset); SWITCH_ENTRY_ASSIGN(old_chandef.center_freq2, old_ctx->def.center_freq2); SWITCH_ENTRY_ASSIGN(new_chandef.control_freq, new_ctx->def.chan->center_freq); SWITCH_ENTRY_ASSIGN(new_chandef.freq_offset, new_ctx->def.chan->freq_offset); SWITCH_ENTRY_ASSIGN(new_chandef.chan_width, new_ctx->def.width); SWITCH_ENTRY_ASSIGN(new_chandef.center_freq1, new_ctx->def.center_freq1); SWITCH_ENTRY_ASSIGN(new_chandef.freq1_offset, new_ctx->def.freq1_offset); SWITCH_ENTRY_ASSIGN(new_chandef.center_freq2, new_ctx->def.center_freq2); } } ), TP_printk( LOCAL_PR_FMT " n_vifs:%d mode:%d", LOCAL_PR_ARG, __entry->n_vifs, __entry->mode ) ); DECLARE_EVENT_CLASS(local_sdata_chanctx, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *link_conf, struct ieee80211_chanctx *ctx), TP_ARGS(local, sdata, link_conf, ctx), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY CHANCTX_ENTRY __field(unsigned int, link_id) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; CHANCTX_ASSIGN; __entry->link_id = link_conf->link_id; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " link_id:%d" CHANCTX_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG, __entry->link_id, CHANCTX_PR_ARG ) ); DEFINE_EVENT(local_sdata_chanctx, drv_assign_vif_chanctx, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *link_conf, struct ieee80211_chanctx *ctx), TP_ARGS(local, sdata, link_conf, ctx) ); DEFINE_EVENT(local_sdata_chanctx, drv_unassign_vif_chanctx, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *link_conf, struct ieee80211_chanctx *ctx), TP_ARGS(local, sdata, link_conf, ctx) ); TRACE_EVENT(drv_start_ap, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *link_conf), TP_ARGS(local, sdata, link_conf), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u32, link_id) __field(u8, dtimper) __field(u16, bcnint) __dynamic_array(u8, ssid, sdata->vif.cfg.ssid_len) __field(bool, hidden_ssid) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->link_id = link_conf->link_id; __entry->dtimper = link_conf->dtim_period; __entry->bcnint = link_conf->beacon_int; __entry->hidden_ssid = link_conf->hidden_ssid; memcpy(__get_dynamic_array(ssid), sdata->vif.cfg.ssid, sdata->vif.cfg.ssid_len); ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " link id %u", LOCAL_PR_ARG, VIF_PR_ARG, __entry->link_id ) ); TRACE_EVENT(drv_stop_ap, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *link_conf), TP_ARGS(local, sdata, link_conf), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u32, link_id) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->link_id = link_conf->link_id; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " link id %u", LOCAL_PR_ARG, VIF_PR_ARG, __entry->link_id ) ); TRACE_EVENT(drv_reconfig_complete, TP_PROTO(struct ieee80211_local *local, enum ieee80211_reconfig_type reconfig_type), TP_ARGS(local, reconfig_type), TP_STRUCT__entry( LOCAL_ENTRY __field(u8, reconfig_type) ), TP_fast_assign( LOCAL_ASSIGN; __entry->reconfig_type = reconfig_type; ), TP_printk( LOCAL_PR_FMT " reconfig_type:%d", LOCAL_PR_ARG, __entry->reconfig_type ) ); #if IS_ENABLED(CONFIG_IPV6) DEFINE_EVENT(local_sdata_evt, drv_ipv6_addr_change, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); #endif TRACE_EVENT(drv_join_ibss, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *info), TP_ARGS(local, sdata, info), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u8, dtimper) __field(u16, bcnint) __dynamic_array(u8, ssid, sdata->vif.cfg.ssid_len) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->dtimper = info->dtim_period; __entry->bcnint = info->beacon_int; memcpy(__get_dynamic_array(ssid), sdata->vif.cfg.ssid, sdata->vif.cfg.ssid_len); ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG ) ); DEFINE_EVENT(local_sdata_evt, drv_leave_ibss, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); TRACE_EVENT(drv_get_expected_throughput, TP_PROTO(struct ieee80211_sta *sta), TP_ARGS(sta), TP_STRUCT__entry( STA_ENTRY ), TP_fast_assign( STA_ASSIGN; ), TP_printk( STA_PR_FMT, STA_PR_ARG ) ); TRACE_EVENT(drv_start_nan, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_nan_conf *conf), TP_ARGS(local, sdata, conf), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u8, master_pref) __field(u8, bands) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->master_pref = conf->master_pref; __entry->bands = conf->bands; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT ", master preference: %u, bands: 0x%0x", LOCAL_PR_ARG, VIF_PR_ARG, __entry->master_pref, __entry->bands ) ); TRACE_EVENT(drv_stop_nan, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG ) ); TRACE_EVENT(drv_nan_change_conf, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_nan_conf *conf, u32 changes), TP_ARGS(local, sdata, conf, changes), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u8, master_pref) __field(u8, bands) __field(u32, changes) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->master_pref = conf->master_pref; __entry->bands = conf->bands; __entry->changes = changes; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT ", master preference: %u, bands: 0x%0x, changes: 0x%x", LOCAL_PR_ARG, VIF_PR_ARG, __entry->master_pref, __entry->bands, __entry->changes ) ); TRACE_EVENT(drv_add_nan_func, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, const struct cfg80211_nan_func *func), TP_ARGS(local, sdata, func), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u8, type) __field(u8, inst_id) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->type = func->type; __entry->inst_id = func->instance_id; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT ", type: %u, inst_id: %u", LOCAL_PR_ARG, VIF_PR_ARG, __entry->type, __entry->inst_id ) ); TRACE_EVENT(drv_del_nan_func, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u8 instance_id), TP_ARGS(local, sdata, instance_id), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u8, instance_id) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->instance_id = instance_id; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT ", instance_id: %u", LOCAL_PR_ARG, VIF_PR_ARG, __entry->instance_id ) ); DEFINE_EVENT(local_sdata_evt, drv_start_pmsr, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); DEFINE_EVENT(local_sdata_evt, drv_abort_pmsr, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); TRACE_EVENT(drv_set_default_unicast_key, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, int key_idx), TP_ARGS(local, sdata, key_idx), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(int, key_idx) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->key_idx = key_idx; ), TP_printk(LOCAL_PR_FMT VIF_PR_FMT " key_idx:%d", LOCAL_PR_ARG, VIF_PR_ARG, __entry->key_idx) ); TRACE_EVENT(drv_channel_switch_beacon, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_chan_def *chandef), TP_ARGS(local, sdata, chandef), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY CHANDEF_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; CHANDEF_ASSIGN(chandef); ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " channel switch to " CHANDEF_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG, CHANDEF_PR_ARG ) ); TRACE_EVENT(drv_pre_channel_switch, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_channel_switch *ch_switch), TP_ARGS(local, sdata, ch_switch), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY CHANDEF_ENTRY __field(u64, timestamp) __field(u32, device_timestamp) __field(bool, block_tx) __field(u8, count) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; CHANDEF_ASSIGN(&ch_switch->chandef) __entry->timestamp = ch_switch->timestamp; __entry->device_timestamp = ch_switch->device_timestamp; __entry->block_tx = ch_switch->block_tx; __entry->count = ch_switch->count; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " prepare channel switch to " CHANDEF_PR_FMT " count:%d block_tx:%d timestamp:%llu", LOCAL_PR_ARG, VIF_PR_ARG, CHANDEF_PR_ARG, __entry->count, __entry->block_tx, __entry->timestamp ) ); DEFINE_EVENT(local_sdata_evt, drv_post_channel_switch, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); DEFINE_EVENT(local_sdata_evt, drv_abort_channel_switch, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); TRACE_EVENT(drv_channel_switch_rx_beacon, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_channel_switch *ch_switch), TP_ARGS(local, sdata, ch_switch), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY CHANDEF_ENTRY __field(u64, timestamp) __field(u32, device_timestamp) __field(bool, block_tx) __field(u8, count) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; CHANDEF_ASSIGN(&ch_switch->chandef) __entry->timestamp = ch_switch->timestamp; __entry->device_timestamp = ch_switch->device_timestamp; __entry->block_tx = ch_switch->block_tx; __entry->count = ch_switch->count; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " received a channel switch beacon to " CHANDEF_PR_FMT " count:%d block_tx:%d timestamp:%llu", LOCAL_PR_ARG, VIF_PR_ARG, CHANDEF_PR_ARG, __entry->count, __entry->block_tx, __entry->timestamp ) ); TRACE_EVENT(drv_get_txpower, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, int dbm, int ret), TP_ARGS(local, sdata, dbm, ret), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(int, dbm) __field(int, ret) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->dbm = dbm; __entry->ret = ret; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " dbm:%d ret:%d", LOCAL_PR_ARG, VIF_PR_ARG, __entry->dbm, __entry->ret ) ); TRACE_EVENT(drv_tdls_channel_switch, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, u8 oper_class, struct cfg80211_chan_def *chandef), TP_ARGS(local, sdata, sta, oper_class, chandef), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY __field(u8, oper_class) CHANDEF_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; __entry->oper_class = oper_class; CHANDEF_ASSIGN(chandef) ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " tdls channel switch to" CHANDEF_PR_FMT " oper_class:%d " STA_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG, CHANDEF_PR_ARG, __entry->oper_class, STA_PR_ARG ) ); TRACE_EVENT(drv_tdls_cancel_channel_switch, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta), TP_ARGS(local, sdata, sta), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " tdls cancel channel switch with " STA_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG, STA_PR_ARG ) ); TRACE_EVENT(drv_tdls_recv_channel_switch, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_tdls_ch_sw_params *params), TP_ARGS(local, sdata, params), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u8, action_code) STA_ENTRY CHANDEF_ENTRY __field(u32, status) __field(bool, peer_initiator) __field(u32, timestamp) __field(u16, switch_time) __field(u16, switch_timeout) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_NAMED_ASSIGN(params->sta); CHANDEF_ASSIGN(params->chandef) __entry->peer_initiator = params->sta->tdls_initiator; __entry->action_code = params->action_code; __entry->status = params->status; __entry->timestamp = params->timestamp; __entry->switch_time = params->switch_time; __entry->switch_timeout = params->switch_timeout; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " received tdls channel switch packet" " action:%d status:%d time:%d switch time:%d switch" " timeout:%d initiator: %d chan:" CHANDEF_PR_FMT STA_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG, __entry->action_code, __entry->status, __entry->timestamp, __entry->switch_time, __entry->switch_timeout, __entry->peer_initiator, CHANDEF_PR_ARG, STA_PR_ARG ) ); TRACE_EVENT(drv_wake_tx_queue, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct txq_info *txq), TP_ARGS(local, sdata, txq), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY __field(u8, ac) __field(u8, tid) ), TP_fast_assign( struct ieee80211_sta *sta = txq->txq.sta; LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; __entry->ac = txq->txq.ac; __entry->tid = txq->txq.tid; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT STA_PR_FMT " ac:%d tid:%d", LOCAL_PR_ARG, VIF_PR_ARG, STA_PR_ARG, __entry->ac, __entry->tid ) ); TRACE_EVENT(drv_get_ftm_responder_stats, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_ftm_responder_stats *ftm_stats), TP_ARGS(local, sdata, ftm_stats), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT, LOCAL_PR_ARG, VIF_PR_ARG ) ); DEFINE_EVENT(local_sdata_addr_evt, drv_update_vif_offload, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); DECLARE_EVENT_CLASS(sta_flag_evt, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, bool enabled), TP_ARGS(local, sdata, sta, enabled), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY __field(bool, enabled) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; __entry->enabled = enabled; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT STA_PR_FMT " enabled:%d", LOCAL_PR_ARG, VIF_PR_ARG, STA_PR_ARG, __entry->enabled ) ); DEFINE_EVENT(sta_flag_evt, drv_sta_set_4addr, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, bool enabled), TP_ARGS(local, sdata, sta, enabled) ); DEFINE_EVENT(sta_flag_evt, drv_sta_set_decap_offload, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, bool enabled), TP_ARGS(local, sdata, sta, enabled) ); TRACE_EVENT(drv_add_twt_setup, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sta *sta, struct ieee80211_twt_setup *twt, struct ieee80211_twt_params *twt_agrt), TP_ARGS(local, sta, twt, twt_agrt), TP_STRUCT__entry( LOCAL_ENTRY STA_ENTRY __field(u8, dialog_token) __field(u8, control) __field(__le16, req_type) __field(__le64, twt) __field(u8, duration) __field(__le16, mantissa) __field(u8, channel) ), TP_fast_assign( LOCAL_ASSIGN; STA_ASSIGN; __entry->dialog_token = twt->dialog_token; __entry->control = twt->control; __entry->req_type = twt_agrt->req_type; __entry->twt = twt_agrt->twt; __entry->duration = twt_agrt->min_twt_dur; __entry->mantissa = twt_agrt->mantissa; __entry->channel = twt_agrt->channel; ), TP_printk( LOCAL_PR_FMT STA_PR_FMT " token:%d control:0x%02x req_type:0x%04x" " twt:%llu duration:%d mantissa:%d channel:%d", LOCAL_PR_ARG, STA_PR_ARG, __entry->dialog_token, __entry->control, le16_to_cpu(__entry->req_type), le64_to_cpu(__entry->twt), __entry->duration, le16_to_cpu(__entry->mantissa), __entry->channel ) ); TRACE_EVENT(drv_twt_teardown_request, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sta *sta, u8 flowid), TP_ARGS(local, sta, flowid), TP_STRUCT__entry( LOCAL_ENTRY STA_ENTRY __field(u8, flowid) ), TP_fast_assign( LOCAL_ASSIGN; STA_ASSIGN; __entry->flowid = flowid; ), TP_printk( LOCAL_PR_FMT STA_PR_FMT " flowid:%d", LOCAL_PR_ARG, STA_PR_ARG, __entry->flowid ) ); DEFINE_EVENT(sta_event, drv_net_fill_forward_path, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta), TP_ARGS(local, sdata, sta) ); TRACE_EVENT(drv_change_vif_links, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u16 old_links, u16 new_links), TP_ARGS(local, sdata, old_links, new_links), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY __field(u16, old_links) __field(u16, new_links) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; __entry->old_links = old_links; __entry->new_links = new_links; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT " old_links:0x%04x, new_links:0x%04x\n", LOCAL_PR_ARG, VIF_PR_ARG, __entry->old_links, __entry->new_links ) ); TRACE_EVENT(drv_change_sta_links, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, u16 old_links, u16 new_links), TP_ARGS(local, sdata, sta, old_links, new_links), TP_STRUCT__entry( LOCAL_ENTRY VIF_ENTRY STA_ENTRY __field(u16, old_links) __field(u16, new_links) ), TP_fast_assign( LOCAL_ASSIGN; VIF_ASSIGN; STA_ASSIGN; __entry->old_links = old_links; __entry->new_links = new_links; ), TP_printk( LOCAL_PR_FMT VIF_PR_FMT STA_PR_FMT " old_links:0x%04x, new_links:0x%04x\n", LOCAL_PR_ARG, VIF_PR_ARG, STA_PR_ARG, __entry->old_links, __entry->new_links ) ); /* * Tracing for API calls that drivers call. */ TRACE_EVENT(api_start_tx_ba_session, TP_PROTO(struct ieee80211_sta *sta, u16 tid), TP_ARGS(sta, tid), TP_STRUCT__entry( STA_ENTRY __field(u16, tid) ), TP_fast_assign( STA_ASSIGN; __entry->tid = tid; ), TP_printk( STA_PR_FMT " tid:%d", STA_PR_ARG, __entry->tid ) ); TRACE_EVENT(api_start_tx_ba_cb, TP_PROTO(struct ieee80211_sub_if_data *sdata, const u8 *ra, u16 tid), TP_ARGS(sdata, ra, tid), TP_STRUCT__entry( VIF_ENTRY __array(u8, ra, ETH_ALEN) __field(u16, tid) ), TP_fast_assign( VIF_ASSIGN; memcpy(__entry->ra, ra, ETH_ALEN); __entry->tid = tid; ), TP_printk( VIF_PR_FMT " ra:%pM tid:%d", VIF_PR_ARG, __entry->ra, __entry->tid ) ); TRACE_EVENT(api_stop_tx_ba_session, TP_PROTO(struct ieee80211_sta *sta, u16 tid), TP_ARGS(sta, tid), TP_STRUCT__entry( STA_ENTRY __field(u16, tid) ), TP_fast_assign( STA_ASSIGN; __entry->tid = tid; ), TP_printk( STA_PR_FMT " tid:%d", STA_PR_ARG, __entry->tid ) ); TRACE_EVENT(api_stop_tx_ba_cb, TP_PROTO(struct ieee80211_sub_if_data *sdata, const u8 *ra, u16 tid), TP_ARGS(sdata, ra, tid), TP_STRUCT__entry( VIF_ENTRY __array(u8, ra, ETH_ALEN) __field(u16, tid) ), TP_fast_assign( VIF_ASSIGN; memcpy(__entry->ra, ra, ETH_ALEN); __entry->tid = tid; ), TP_printk( VIF_PR_FMT " ra:%pM tid:%d", VIF_PR_ARG, __entry->ra, __entry->tid ) ); DEFINE_EVENT(local_only_evt, api_restart_hw, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); TRACE_EVENT(api_beacon_loss, TP_PROTO(struct ieee80211_sub_if_data *sdata), TP_ARGS(sdata), TP_STRUCT__entry( VIF_ENTRY ), TP_fast_assign( VIF_ASSIGN; ), TP_printk( VIF_PR_FMT, VIF_PR_ARG ) ); TRACE_EVENT(api_connection_loss, TP_PROTO(struct ieee80211_sub_if_data *sdata), TP_ARGS(sdata), TP_STRUCT__entry( VIF_ENTRY ), TP_fast_assign( VIF_ASSIGN; ), TP_printk( VIF_PR_FMT, VIF_PR_ARG ) ); TRACE_EVENT(api_disconnect, TP_PROTO(struct ieee80211_sub_if_data *sdata, bool reconnect), TP_ARGS(sdata, reconnect), TP_STRUCT__entry( VIF_ENTRY __field(int, reconnect) ), TP_fast_assign( VIF_ASSIGN; __entry->reconnect = reconnect; ), TP_printk( VIF_PR_FMT " reconnect:%d", VIF_PR_ARG, __entry->reconnect ) ); TRACE_EVENT(api_cqm_rssi_notify, TP_PROTO(struct ieee80211_sub_if_data *sdata, enum nl80211_cqm_rssi_threshold_event rssi_event, s32 rssi_level), TP_ARGS(sdata, rssi_event, rssi_level), TP_STRUCT__entry( VIF_ENTRY __field(u32, rssi_event) __field(s32, rssi_level) ), TP_fast_assign( VIF_ASSIGN; __entry->rssi_event = rssi_event; __entry->rssi_level = rssi_level; ), TP_printk( VIF_PR_FMT " event:%d rssi:%d", VIF_PR_ARG, __entry->rssi_event, __entry->rssi_level ) ); DEFINE_EVENT(local_sdata_evt, api_cqm_beacon_loss_notify, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata), TP_ARGS(local, sdata) ); TRACE_EVENT(api_scan_completed, TP_PROTO(struct ieee80211_local *local, bool aborted), TP_ARGS(local, aborted), TP_STRUCT__entry( LOCAL_ENTRY __field(bool, aborted) ), TP_fast_assign( LOCAL_ASSIGN; __entry->aborted = aborted; ), TP_printk( LOCAL_PR_FMT " aborted:%d", LOCAL_PR_ARG, __entry->aborted ) ); TRACE_EVENT(api_sched_scan_results, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local), TP_STRUCT__entry( LOCAL_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; ), TP_printk( LOCAL_PR_FMT, LOCAL_PR_ARG ) ); TRACE_EVENT(api_sched_scan_stopped, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local), TP_STRUCT__entry( LOCAL_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; ), TP_printk( LOCAL_PR_FMT, LOCAL_PR_ARG ) ); TRACE_EVENT(api_sta_block_awake, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sta *sta, bool block), TP_ARGS(local, sta, block), TP_STRUCT__entry( LOCAL_ENTRY STA_ENTRY __field(bool, block) ), TP_fast_assign( LOCAL_ASSIGN; STA_ASSIGN; __entry->block = block; ), TP_printk( LOCAL_PR_FMT STA_PR_FMT " block:%d", LOCAL_PR_ARG, STA_PR_ARG, __entry->block ) ); TRACE_EVENT(api_chswitch_done, TP_PROTO(struct ieee80211_sub_if_data *sdata, bool success), TP_ARGS(sdata, success), TP_STRUCT__entry( VIF_ENTRY __field(bool, success) ), TP_fast_assign( VIF_ASSIGN; __entry->success = success; ), TP_printk( VIF_PR_FMT " success=%d", VIF_PR_ARG, __entry->success ) ); DEFINE_EVENT(local_only_evt, api_ready_on_channel, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); DEFINE_EVENT(local_only_evt, api_remain_on_channel_expired, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local) ); TRACE_EVENT(api_gtk_rekey_notify, TP_PROTO(struct ieee80211_sub_if_data *sdata, const u8 *bssid, const u8 *replay_ctr), TP_ARGS(sdata, bssid, replay_ctr), TP_STRUCT__entry( VIF_ENTRY __array(u8, bssid, ETH_ALEN) __array(u8, replay_ctr, NL80211_REPLAY_CTR_LEN) ), TP_fast_assign( VIF_ASSIGN; memcpy(__entry->bssid, bssid, ETH_ALEN); memcpy(__entry->replay_ctr, replay_ctr, NL80211_REPLAY_CTR_LEN); ), TP_printk(VIF_PR_FMT, VIF_PR_ARG) ); TRACE_EVENT(api_enable_rssi_reports, TP_PROTO(struct ieee80211_sub_if_data *sdata, int rssi_min_thold, int rssi_max_thold), TP_ARGS(sdata, rssi_min_thold, rssi_max_thold), TP_STRUCT__entry( VIF_ENTRY __field(int, rssi_min_thold) __field(int, rssi_max_thold) ), TP_fast_assign( VIF_ASSIGN; __entry->rssi_min_thold = rssi_min_thold; __entry->rssi_max_thold = rssi_max_thold; ), TP_printk( VIF_PR_FMT " rssi_min_thold =%d, rssi_max_thold = %d", VIF_PR_ARG, __entry->rssi_min_thold, __entry->rssi_max_thold ) ); TRACE_EVENT(api_eosp, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sta *sta), TP_ARGS(local, sta), TP_STRUCT__entry( LOCAL_ENTRY STA_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; STA_ASSIGN; ), TP_printk( LOCAL_PR_FMT STA_PR_FMT, LOCAL_PR_ARG, STA_PR_ARG ) ); TRACE_EVENT(api_send_eosp_nullfunc, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sta *sta, u8 tid), TP_ARGS(local, sta, tid), TP_STRUCT__entry( LOCAL_ENTRY STA_ENTRY __field(u8, tid) ), TP_fast_assign( LOCAL_ASSIGN; STA_ASSIGN; __entry->tid = tid; ), TP_printk( LOCAL_PR_FMT STA_PR_FMT " tid:%d", LOCAL_PR_ARG, STA_PR_ARG, __entry->tid ) ); TRACE_EVENT(api_sta_set_buffered, TP_PROTO(struct ieee80211_local *local, struct ieee80211_sta *sta, u8 tid, bool buffered), TP_ARGS(local, sta, tid, buffered), TP_STRUCT__entry( LOCAL_ENTRY STA_ENTRY __field(u8, tid) __field(bool, buffered) ), TP_fast_assign( LOCAL_ASSIGN; STA_ASSIGN; __entry->tid = tid; __entry->buffered = buffered; ), TP_printk( LOCAL_PR_FMT STA_PR_FMT " tid:%d buffered:%d", LOCAL_PR_ARG, STA_PR_ARG, __entry->tid, __entry->buffered ) ); TRACE_EVENT(api_radar_detected, TP_PROTO(struct ieee80211_local *local), TP_ARGS(local), TP_STRUCT__entry( LOCAL_ENTRY ), TP_fast_assign( LOCAL_ASSIGN; ), TP_printk( LOCAL_PR_FMT " radar detected", LOCAL_PR_ARG ) ); /* * Tracing for internal functions * (which may also be called in response to driver calls) */ TRACE_EVENT(wake_queue, TP_PROTO(struct ieee80211_local *local, u16 queue, enum queue_stop_reason reason), TP_ARGS(local, queue, reason), TP_STRUCT__entry( LOCAL_ENTRY __field(u16, queue) __field(u32, reason) ), TP_fast_assign( LOCAL_ASSIGN; __entry->queue = queue; __entry->reason = reason; ), TP_printk( LOCAL_PR_FMT " queue:%d, reason:%d", LOCAL_PR_ARG, __entry->queue, __entry->reason ) ); TRACE_EVENT(stop_queue, TP_PROTO(struct ieee80211_local *local, u16 queue, enum queue_stop_reason reason), TP_ARGS(local, queue, reason), TP_STRUCT__entry( LOCAL_ENTRY __field(u16, queue) __field(u32, reason) ), TP_fast_assign( LOCAL_ASSIGN; __entry->queue = queue; __entry->reason = reason; ), TP_printk( LOCAL_PR_FMT " queue:%d, reason:%d", LOCAL_PR_ARG, __entry->queue, __entry->reason ) ); #endif /* !__MAC80211_DRIVER_TRACE || TRACE_HEADER_MULTI_READ */ #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH . #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE trace #include <trace/define_trace.h>
902 893 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2007-2012 Siemens AG * * Written by: * Dmitry Eremin-Solenikov <dbaryshkov@gmail.com> * Sergey Lapin <slapin@ossfans.org> * Maxim Gorbachyov <maxim.gorbachev@siemens.com> * Alexander Smirnov <alex.bluesman.smirnov@gmail.com> */ #include <linux/netdevice.h> #include <linux/module.h> #include <linux/if_arp.h> #include <linux/ieee802154.h> #include <net/nl802154.h> #include <net/mac802154.h> #include <net/ieee802154_netdev.h> #include <net/cfg802154.h> #include "ieee802154_i.h" #include "driver-ops.h" int mac802154_wpan_update_llsec(struct net_device *dev) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); struct ieee802154_mlme_ops *ops = ieee802154_mlme_ops(dev); struct wpan_dev *wpan_dev = &sdata->wpan_dev; int rc = 0; if (ops->llsec) { struct ieee802154_llsec_params params; int changed = 0; params.pan_id = wpan_dev->pan_id; changed |= IEEE802154_LLSEC_PARAM_PAN_ID; params.hwaddr = wpan_dev->extended_addr; changed |= IEEE802154_LLSEC_PARAM_HWADDR; rc = ops->llsec->set_params(dev, &params, changed); } return rc; } static int mac802154_wpan_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); struct wpan_dev *wpan_dev = &sdata->wpan_dev; struct sockaddr_ieee802154 *sa = (struct sockaddr_ieee802154 *)&ifr->ifr_addr; int err = -ENOIOCTLCMD; if (cmd != SIOCGIFADDR && cmd != SIOCSIFADDR) return err; rtnl_lock(); switch (cmd) { case SIOCGIFADDR: { u16 pan_id, short_addr; pan_id = le16_to_cpu(wpan_dev->pan_id); short_addr = le16_to_cpu(wpan_dev->short_addr); if (pan_id == IEEE802154_PANID_BROADCAST || short_addr == IEEE802154_ADDR_BROADCAST) { err = -EADDRNOTAVAIL; break; } sa->family = AF_IEEE802154; sa->addr.addr_type = IEEE802154_ADDR_SHORT; sa->addr.pan_id = pan_id; sa->addr.short_addr = short_addr; err = 0; break; } case SIOCSIFADDR: if (netif_running(dev)) { rtnl_unlock(); return -EBUSY; } dev_warn(&dev->dev, "Using DEBUGing ioctl SIOCSIFADDR isn't recommended!\n"); if (sa->family != AF_IEEE802154 || sa->addr.addr_type != IEEE802154_ADDR_SHORT || sa->addr.pan_id == IEEE802154_PANID_BROADCAST || sa->addr.short_addr == IEEE802154_ADDR_BROADCAST || sa->addr.short_addr == IEEE802154_ADDR_UNDEF) { err = -EINVAL; break; } wpan_dev->pan_id = cpu_to_le16(sa->addr.pan_id); wpan_dev->short_addr = cpu_to_le16(sa->addr.short_addr); err = mac802154_wpan_update_llsec(dev); break; } rtnl_unlock(); return err; } static int mac802154_wpan_mac_addr(struct net_device *dev, void *p) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); struct sockaddr *addr = p; __le64 extended_addr; if (netif_running(dev)) return -EBUSY; /* lowpan need to be down for update * SLAAC address after ifup */ if (sdata->wpan_dev.lowpan_dev) { if (netif_running(sdata->wpan_dev.lowpan_dev)) return -EBUSY; } ieee802154_be64_to_le64(&extended_addr, addr->sa_data); if (!ieee802154_is_valid_extended_unicast_addr(extended_addr)) return -EINVAL; dev_addr_set(dev, addr->sa_data); sdata->wpan_dev.extended_addr = extended_addr; /* update lowpan interface mac address when * wpan mac has been changed */ if (sdata->wpan_dev.lowpan_dev) dev_addr_set(sdata->wpan_dev.lowpan_dev, dev->dev_addr); return mac802154_wpan_update_llsec(dev); } static int ieee802154_setup_hw(struct ieee802154_sub_if_data *sdata) { struct ieee802154_local *local = sdata->local; struct wpan_dev *wpan_dev = &sdata->wpan_dev; int ret; if (local->hw.flags & IEEE802154_HW_PROMISCUOUS) { ret = drv_set_promiscuous_mode(local, wpan_dev->promiscuous_mode); if (ret < 0) return ret; } if (local->hw.flags & IEEE802154_HW_AFILT) { ret = drv_set_pan_id(local, wpan_dev->pan_id); if (ret < 0) return ret; ret = drv_set_extended_addr(local, wpan_dev->extended_addr); if (ret < 0) return ret; ret = drv_set_short_addr(local, wpan_dev->short_addr); if (ret < 0) return ret; } if (local->hw.flags & IEEE802154_HW_LBT) { ret = drv_set_lbt_mode(local, wpan_dev->lbt); if (ret < 0) return ret; } if (local->hw.flags & IEEE802154_HW_CSMA_PARAMS) { ret = drv_set_csma_params(local, wpan_dev->min_be, wpan_dev->max_be, wpan_dev->csma_retries); if (ret < 0) return ret; } if (local->hw.flags & IEEE802154_HW_FRAME_RETRIES) { ret = drv_set_max_frame_retries(local, wpan_dev->frame_retries); if (ret < 0) return ret; } return 0; } static int mac802154_slave_open(struct net_device *dev) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); struct ieee802154_local *local = sdata->local; int res; ASSERT_RTNL(); set_bit(SDATA_STATE_RUNNING, &sdata->state); if (!local->open_count) { res = ieee802154_setup_hw(sdata); if (res) goto err; res = drv_start(local); if (res) goto err; } local->open_count++; netif_start_queue(dev); return 0; err: /* might already be clear but that doesn't matter */ clear_bit(SDATA_STATE_RUNNING, &sdata->state); return res; } static int ieee802154_check_mac_settings(struct ieee802154_local *local, struct wpan_dev *wpan_dev, struct wpan_dev *nwpan_dev) { ASSERT_RTNL(); if (local->hw.flags & IEEE802154_HW_PROMISCUOUS) { if (wpan_dev->promiscuous_mode != nwpan_dev->promiscuous_mode) return -EBUSY; } if (local->hw.flags & IEEE802154_HW_AFILT) { if (wpan_dev->pan_id != nwpan_dev->pan_id || wpan_dev->short_addr != nwpan_dev->short_addr || wpan_dev->extended_addr != nwpan_dev->extended_addr) return -EBUSY; } if (local->hw.flags & IEEE802154_HW_CSMA_PARAMS) { if (wpan_dev->min_be != nwpan_dev->min_be || wpan_dev->max_be != nwpan_dev->max_be || wpan_dev->csma_retries != nwpan_dev->csma_retries) return -EBUSY; } if (local->hw.flags & IEEE802154_HW_FRAME_RETRIES) { if (wpan_dev->frame_retries != nwpan_dev->frame_retries) return -EBUSY; } if (local->hw.flags & IEEE802154_HW_LBT) { if (wpan_dev->lbt != nwpan_dev->lbt) return -EBUSY; } return 0; } static int ieee802154_check_concurrent_iface(struct ieee802154_sub_if_data *sdata, enum nl802154_iftype iftype) { struct ieee802154_local *local = sdata->local; struct wpan_dev *wpan_dev = &sdata->wpan_dev; struct ieee802154_sub_if_data *nsdata; /* we hold the RTNL here so can safely walk the list */ list_for_each_entry(nsdata, &local->interfaces, list) { if (nsdata != sdata && ieee802154_sdata_running(nsdata)) { int ret; /* TODO currently we don't support multiple node types * we need to run skb_clone at rx path. Check if there * exist really an use case if we need to support * multiple node types at the same time. */ if (wpan_dev->iftype == NL802154_IFTYPE_NODE && nsdata->wpan_dev.iftype == NL802154_IFTYPE_NODE) return -EBUSY; /* check all phy mac sublayer settings are the same. * We have only one phy, different values makes trouble. */ ret = ieee802154_check_mac_settings(local, wpan_dev, &nsdata->wpan_dev); if (ret < 0) return ret; } } return 0; } static int mac802154_wpan_open(struct net_device *dev) { int rc; struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); struct wpan_dev *wpan_dev = &sdata->wpan_dev; rc = ieee802154_check_concurrent_iface(sdata, wpan_dev->iftype); if (rc < 0) return rc; return mac802154_slave_open(dev); } static int mac802154_slave_close(struct net_device *dev) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); struct ieee802154_local *local = sdata->local; ASSERT_RTNL(); netif_stop_queue(dev); local->open_count--; clear_bit(SDATA_STATE_RUNNING, &sdata->state); if (!local->open_count) ieee802154_stop_device(local); return 0; } static int mac802154_set_header_security(struct ieee802154_sub_if_data *sdata, struct ieee802154_hdr *hdr, const struct ieee802154_mac_cb *cb) { struct ieee802154_llsec_params params; u8 level; mac802154_llsec_get_params(&sdata->sec, &params); if (!params.enabled && cb->secen_override && cb->secen) return -EINVAL; if (!params.enabled || (cb->secen_override && !cb->secen) || !params.out_level) return 0; if (cb->seclevel_override && !cb->seclevel) return -EINVAL; level = cb->seclevel_override ? cb->seclevel : params.out_level; hdr->fc.security_enabled = 1; hdr->sec.level = level; hdr->sec.key_id_mode = params.out_key.mode; if (params.out_key.mode == IEEE802154_SCF_KEY_SHORT_INDEX) hdr->sec.short_src = params.out_key.short_source; else if (params.out_key.mode == IEEE802154_SCF_KEY_HW_INDEX) hdr->sec.extended_src = params.out_key.extended_source; hdr->sec.key_id = params.out_key.id; return 0; } static int ieee802154_header_create(struct sk_buff *skb, struct net_device *dev, const struct ieee802154_addr *daddr, const struct ieee802154_addr *saddr, unsigned len) { struct ieee802154_hdr hdr; struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); struct wpan_dev *wpan_dev = &sdata->wpan_dev; struct ieee802154_mac_cb *cb = mac_cb(skb); int hlen; if (!daddr) return -EINVAL; memset(&hdr.fc, 0, sizeof(hdr.fc)); hdr.fc.type = cb->type; hdr.fc.security_enabled = cb->secen; hdr.fc.ack_request = cb->ackreq; hdr.seq = atomic_inc_return(&dev->ieee802154_ptr->dsn) & 0xFF; if (mac802154_set_header_security(sdata, &hdr, cb) < 0) return -EINVAL; if (!saddr) { if (wpan_dev->short_addr == cpu_to_le16(IEEE802154_ADDR_BROADCAST) || wpan_dev->short_addr == cpu_to_le16(IEEE802154_ADDR_UNDEF) || wpan_dev->pan_id == cpu_to_le16(IEEE802154_PANID_BROADCAST)) { hdr.source.mode = IEEE802154_ADDR_LONG; hdr.source.extended_addr = wpan_dev->extended_addr; } else { hdr.source.mode = IEEE802154_ADDR_SHORT; hdr.source.short_addr = wpan_dev->short_addr; } hdr.source.pan_id = wpan_dev->pan_id; } else { hdr.source = *(const struct ieee802154_addr *)saddr; } hdr.dest = *(const struct ieee802154_addr *)daddr; hlen = ieee802154_hdr_push(skb, &hdr); if (hlen < 0) return -EINVAL; skb_reset_mac_header(skb); skb->mac_len = hlen; if (len > ieee802154_max_payload(&hdr)) return -EMSGSIZE; return hlen; } static const struct wpan_dev_header_ops ieee802154_header_ops = { .create = ieee802154_header_create, }; /* This header create functionality assumes a 8 byte array for * source and destination pointer at maximum. To adapt this for * the 802.15.4 dataframe header we use extended address handling * here only and intra pan connection. fc fields are mostly fallback * handling. For provide dev_hard_header for dgram sockets. */ static int mac802154_header_create(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned len) { struct ieee802154_hdr hdr; struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); struct wpan_dev *wpan_dev = &sdata->wpan_dev; struct ieee802154_mac_cb cb = { }; int hlen; if (!daddr) return -EINVAL; memset(&hdr.fc, 0, sizeof(hdr.fc)); hdr.fc.type = IEEE802154_FC_TYPE_DATA; hdr.fc.ack_request = wpan_dev->ackreq; hdr.seq = atomic_inc_return(&dev->ieee802154_ptr->dsn) & 0xFF; /* TODO currently a workaround to give zero cb block to set * security parameters defaults according MIB. */ if (mac802154_set_header_security(sdata, &hdr, &cb) < 0) return -EINVAL; hdr.dest.pan_id = wpan_dev->pan_id; hdr.dest.mode = IEEE802154_ADDR_LONG; ieee802154_be64_to_le64(&hdr.dest.extended_addr, daddr); hdr.source.pan_id = hdr.dest.pan_id; hdr.source.mode = IEEE802154_ADDR_LONG; if (!saddr) hdr.source.extended_addr = wpan_dev->extended_addr; else ieee802154_be64_to_le64(&hdr.source.extended_addr, saddr); hlen = ieee802154_hdr_push(skb, &hdr); if (hlen < 0) return -EINVAL; skb_reset_mac_header(skb); skb->mac_len = hlen; if (len > ieee802154_max_payload(&hdr)) return -EMSGSIZE; return hlen; } static int mac802154_header_parse(const struct sk_buff *skb, unsigned char *haddr) { struct ieee802154_hdr hdr; if (ieee802154_hdr_peek_addrs(skb, &hdr) < 0) { pr_debug("malformed packet\n"); return 0; } if (hdr.source.mode == IEEE802154_ADDR_LONG) { ieee802154_le64_to_be64(haddr, &hdr.source.extended_addr); return IEEE802154_EXTENDED_ADDR_LEN; } return 0; } static const struct header_ops mac802154_header_ops = { .create = mac802154_header_create, .parse = mac802154_header_parse, }; static const struct net_device_ops mac802154_wpan_ops = { .ndo_open = mac802154_wpan_open, .ndo_stop = mac802154_slave_close, .ndo_start_xmit = ieee802154_subif_start_xmit, .ndo_do_ioctl = mac802154_wpan_ioctl, .ndo_set_mac_address = mac802154_wpan_mac_addr, }; static const struct net_device_ops mac802154_monitor_ops = { .ndo_open = mac802154_wpan_open, .ndo_stop = mac802154_slave_close, .ndo_start_xmit = ieee802154_monitor_start_xmit, }; static void mac802154_wpan_free(struct net_device *dev) { struct ieee802154_sub_if_data *sdata = IEEE802154_DEV_TO_SUB_IF(dev); mac802154_llsec_destroy(&sdata->sec); } static void ieee802154_if_setup(struct net_device *dev) { dev->addr_len = IEEE802154_EXTENDED_ADDR_LEN; memset(dev->broadcast, 0xff, IEEE802154_EXTENDED_ADDR_LEN); /* Let hard_header_len set to IEEE802154_MIN_HEADER_LEN. AF_PACKET * will not send frames without any payload, but ack frames * has no payload, so substract one that we can send a 3 bytes * frame. The xmit callback assumes at least a hard header where two * bytes fc and sequence field are set. */ dev->hard_header_len = IEEE802154_MIN_HEADER_LEN - 1; /* The auth_tag header is for security and places in private payload * room of mac frame which stucks between payload and FCS field. */ dev->needed_tailroom = IEEE802154_MAX_AUTH_TAG_LEN + IEEE802154_FCS_LEN; /* The mtu size is the payload without mac header in this case. * We have a dynamic length header with a minimum header length * which is hard_header_len. In this case we let mtu to the size * of maximum payload which is IEEE802154_MTU - IEEE802154_FCS_LEN - * hard_header_len. The FCS which is set by hardware or ndo_start_xmit * and the minimum mac header which can be evaluated inside driver * layer. The rest of mac header will be part of payload if greater * than hard_header_len. */ dev->mtu = IEEE802154_MTU - IEEE802154_FCS_LEN - dev->hard_header_len; dev->tx_queue_len = 300; dev->flags = IFF_NOARP | IFF_BROADCAST; } static int ieee802154_setup_sdata(struct ieee802154_sub_if_data *sdata, enum nl802154_iftype type) { struct wpan_dev *wpan_dev = &sdata->wpan_dev; int ret; u8 tmp; /* set some type-dependent values */ sdata->wpan_dev.iftype = type; get_random_bytes(&tmp, sizeof(tmp)); atomic_set(&wpan_dev->bsn, tmp); get_random_bytes(&tmp, sizeof(tmp)); atomic_set(&wpan_dev->dsn, tmp); /* defaults per 802.15.4-2011 */ wpan_dev->min_be = 3; wpan_dev->max_be = 5; wpan_dev->csma_retries = 4; wpan_dev->frame_retries = 3; wpan_dev->pan_id = cpu_to_le16(IEEE802154_PANID_BROADCAST); wpan_dev->short_addr = cpu_to_le16(IEEE802154_ADDR_BROADCAST); switch (type) { case NL802154_IFTYPE_NODE: ieee802154_be64_to_le64(&wpan_dev->extended_addr, sdata->dev->dev_addr); sdata->dev->header_ops = &mac802154_header_ops; sdata->dev->needs_free_netdev = true; sdata->dev->priv_destructor = mac802154_wpan_free; sdata->dev->netdev_ops = &mac802154_wpan_ops; sdata->dev->ml_priv = &mac802154_mlme_wpan; wpan_dev->promiscuous_mode = false; wpan_dev->header_ops = &ieee802154_header_ops; mutex_init(&sdata->sec_mtx); mac802154_llsec_init(&sdata->sec); ret = mac802154_wpan_update_llsec(sdata->dev); if (ret < 0) return ret; break; case NL802154_IFTYPE_MONITOR: sdata->dev->needs_free_netdev = true; sdata->dev->netdev_ops = &mac802154_monitor_ops; wpan_dev->promiscuous_mode = true; break; default: BUG(); } return 0; } struct net_device * ieee802154_if_add(struct ieee802154_local *local, const char *name, unsigned char name_assign_type, enum nl802154_iftype type, __le64 extended_addr) { u8 addr[IEEE802154_EXTENDED_ADDR_LEN]; struct net_device *ndev = NULL; struct ieee802154_sub_if_data *sdata = NULL; int ret; ASSERT_RTNL(); ndev = alloc_netdev(sizeof(*sdata), name, name_assign_type, ieee802154_if_setup); if (!ndev) return ERR_PTR(-ENOMEM); ndev->needed_headroom = local->hw.extra_tx_headroom + IEEE802154_MAX_HEADER_LEN; ret = dev_alloc_name(ndev, ndev->name); if (ret < 0) goto err; ieee802154_le64_to_be64(ndev->perm_addr, &local->hw.phy->perm_extended_addr); switch (type) { case NL802154_IFTYPE_NODE: ndev->type = ARPHRD_IEEE802154; if (ieee802154_is_valid_extended_unicast_addr(extended_addr)) { ieee802154_le64_to_be64(addr, &extended_addr); dev_addr_set(ndev, addr); } else { dev_addr_set(ndev, ndev->perm_addr); } break; case NL802154_IFTYPE_MONITOR: ndev->type = ARPHRD_IEEE802154_MONITOR; break; default: ret = -EINVAL; goto err; } /* TODO check this */ SET_NETDEV_DEV(ndev, &local->phy->dev); dev_net_set(ndev, wpan_phy_net(local->hw.phy)); sdata = netdev_priv(ndev); ndev->ieee802154_ptr = &sdata->wpan_dev; memcpy(sdata->name, ndev->name, IFNAMSIZ); sdata->dev = ndev; sdata->wpan_dev.wpan_phy = local->hw.phy; sdata->local = local; INIT_LIST_HEAD(&sdata->wpan_dev.list); /* setup type-dependent data */ ret = ieee802154_setup_sdata(sdata, type); if (ret) goto err; ret = register_netdevice(ndev); if (ret < 0) goto err; mutex_lock(&local->iflist_mtx); list_add_tail_rcu(&sdata->list, &local->interfaces); mutex_unlock(&local->iflist_mtx); return ndev; err: free_netdev(ndev); return ERR_PTR(ret); } void ieee802154_if_remove(struct ieee802154_sub_if_data *sdata) { ASSERT_RTNL(); mutex_lock(&sdata->local->iflist_mtx); if (list_empty(&sdata->local->interfaces)) { mutex_unlock(&sdata->local->iflist_mtx); return; } list_del_rcu(&sdata->list); mutex_unlock(&sdata->local->iflist_mtx); synchronize_rcu(); unregister_netdevice(sdata->dev); } void ieee802154_remove_interfaces(struct ieee802154_local *local) { struct ieee802154_sub_if_data *sdata, *tmp; mutex_lock(&local->iflist_mtx); list_for_each_entry_safe(sdata, tmp, &local->interfaces, list) { list_del(&sdata->list); unregister_netdevice(sdata->dev); } mutex_unlock(&local->iflist_mtx); } static int netdev_notify(struct notifier_block *nb, unsigned long state, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct ieee802154_sub_if_data *sdata; if (state != NETDEV_CHANGENAME) return NOTIFY_DONE; if (!dev->ieee802154_ptr || !dev->ieee802154_ptr->wpan_phy) return NOTIFY_DONE; if (dev->ieee802154_ptr->wpan_phy->privid != mac802154_wpan_phy_privid) return NOTIFY_DONE; sdata = IEEE802154_DEV_TO_SUB_IF(dev); memcpy(sdata->name, dev->name, IFNAMSIZ); return NOTIFY_OK; } static struct notifier_block mac802154_netdev_notifier = { .notifier_call = netdev_notify, }; int ieee802154_iface_init(void) { return register_netdevice_notifier(&mac802154_netdev_notifier); } void ieee802154_iface_exit(void) { unregister_netdevice_notifier(&mac802154_netdev_notifier); }
4 4 4 12 12 10 3 12 12 12 3 10 4 3 3 3 1 4 4 4 4 4 1 4 4 4 4 9 9 9 9 9 8 2 2 2 2 4 4 4 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 // SPDX-License-Identifier: GPL-2.0 #include <linux/err.h> #include <linux/igmp.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/rculist.h> #include <linux/skbuff.h> #include <linux/if_ether.h> #include <net/ip.h> #include <net/netlink.h> #include <net/switchdev.h> #if IS_ENABLED(CONFIG_IPV6) #include <net/ipv6.h> #include <net/addrconf.h> #endif #include "br_private.h" static bool br_ip4_rports_get_timer(struct net_bridge_mcast_port *pmctx, unsigned long *timer) { *timer = br_timer_value(&pmctx->ip4_mc_router_timer); return !hlist_unhashed(&pmctx->ip4_rlist); } static bool br_ip6_rports_get_timer(struct net_bridge_mcast_port *pmctx, unsigned long *timer) { #if IS_ENABLED(CONFIG_IPV6) *timer = br_timer_value(&pmctx->ip6_mc_router_timer); return !hlist_unhashed(&pmctx->ip6_rlist); #else *timer = 0; return false; #endif } static size_t __br_rports_one_size(void) { return nla_total_size(sizeof(u32)) + /* MDBA_ROUTER_PORT */ nla_total_size(sizeof(u32)) + /* MDBA_ROUTER_PATTR_TIMER */ nla_total_size(sizeof(u8)) + /* MDBA_ROUTER_PATTR_TYPE */ nla_total_size(sizeof(u32)) + /* MDBA_ROUTER_PATTR_INET_TIMER */ nla_total_size(sizeof(u32)) + /* MDBA_ROUTER_PATTR_INET6_TIMER */ nla_total_size(sizeof(u32)); /* MDBA_ROUTER_PATTR_VID */ } size_t br_rports_size(const struct net_bridge_mcast *brmctx) { struct net_bridge_mcast_port *pmctx; size_t size = nla_total_size(0); /* MDBA_ROUTER */ rcu_read_lock(); hlist_for_each_entry_rcu(pmctx, &brmctx->ip4_mc_router_list, ip4_rlist) size += __br_rports_one_size(); #if IS_ENABLED(CONFIG_IPV6) hlist_for_each_entry_rcu(pmctx, &brmctx->ip6_mc_router_list, ip6_rlist) size += __br_rports_one_size(); #endif rcu_read_unlock(); return size; } int br_rports_fill_info(struct sk_buff *skb, const struct net_bridge_mcast *brmctx) { u16 vid = brmctx->vlan ? brmctx->vlan->vid : 0; bool have_ip4_mc_rtr, have_ip6_mc_rtr; unsigned long ip4_timer, ip6_timer; struct nlattr *nest, *port_nest; struct net_bridge_port *p; if (!brmctx->multicast_router || !br_rports_have_mc_router(brmctx)) return 0; nest = nla_nest_start_noflag(skb, MDBA_ROUTER); if (nest == NULL) return -EMSGSIZE; list_for_each_entry_rcu(p, &brmctx->br->port_list, list) { struct net_bridge_mcast_port *pmctx; if (vid) { struct net_bridge_vlan *v; v = br_vlan_find(nbp_vlan_group(p), vid); if (!v) continue; pmctx = &v->port_mcast_ctx; } else { pmctx = &p->multicast_ctx; } have_ip4_mc_rtr = br_ip4_rports_get_timer(pmctx, &ip4_timer); have_ip6_mc_rtr = br_ip6_rports_get_timer(pmctx, &ip6_timer); if (!have_ip4_mc_rtr && !have_ip6_mc_rtr) continue; port_nest = nla_nest_start_noflag(skb, MDBA_ROUTER_PORT); if (!port_nest) goto fail; if (nla_put_nohdr(skb, sizeof(u32), &p->dev->ifindex) || nla_put_u32(skb, MDBA_ROUTER_PATTR_TIMER, max(ip4_timer, ip6_timer)) || nla_put_u8(skb, MDBA_ROUTER_PATTR_TYPE, p->multicast_ctx.multicast_router) || (have_ip4_mc_rtr && nla_put_u32(skb, MDBA_ROUTER_PATTR_INET_TIMER, ip4_timer)) || (have_ip6_mc_rtr && nla_put_u32(skb, MDBA_ROUTER_PATTR_INET6_TIMER, ip6_timer)) || (vid && nla_put_u16(skb, MDBA_ROUTER_PATTR_VID, vid))) { nla_nest_cancel(skb, port_nest); goto fail; } nla_nest_end(skb, port_nest); } nla_nest_end(skb, nest); return 0; fail: nla_nest_cancel(skb, nest); return -EMSGSIZE; } static void __mdb_entry_fill_flags(struct br_mdb_entry *e, unsigned char flags) { e->state = flags & MDB_PG_FLAGS_PERMANENT; e->flags = 0; if (flags & MDB_PG_FLAGS_OFFLOAD) e->flags |= MDB_FLAGS_OFFLOAD; if (flags & MDB_PG_FLAGS_FAST_LEAVE) e->flags |= MDB_FLAGS_FAST_LEAVE; if (flags & MDB_PG_FLAGS_STAR_EXCL) e->flags |= MDB_FLAGS_STAR_EXCL; if (flags & MDB_PG_FLAGS_BLOCKED) e->flags |= MDB_FLAGS_BLOCKED; } static void __mdb_entry_to_br_ip(struct br_mdb_entry *entry, struct br_ip *ip, struct nlattr **mdb_attrs) { memset(ip, 0, sizeof(struct br_ip)); ip->vid = entry->vid; ip->proto = entry->addr.proto; switch (ip->proto) { case htons(ETH_P_IP): ip->dst.ip4 = entry->addr.u.ip4; if (mdb_attrs && mdb_attrs[MDBE_ATTR_SOURCE]) ip->src.ip4 = nla_get_in_addr(mdb_attrs[MDBE_ATTR_SOURCE]); break; #if IS_ENABLED(CONFIG_IPV6) case htons(ETH_P_IPV6): ip->dst.ip6 = entry->addr.u.ip6; if (mdb_attrs && mdb_attrs[MDBE_ATTR_SOURCE]) ip->src.ip6 = nla_get_in6_addr(mdb_attrs[MDBE_ATTR_SOURCE]); break; #endif default: ether_addr_copy(ip->dst.mac_addr, entry->addr.u.mac_addr); } } static int __mdb_fill_srcs(struct sk_buff *skb, struct net_bridge_port_group *p) { struct net_bridge_group_src *ent; struct nlattr *nest, *nest_ent; if (hlist_empty(&p->src_list)) return 0; nest = nla_nest_start(skb, MDBA_MDB_EATTR_SRC_LIST); if (!nest) return -EMSGSIZE; hlist_for_each_entry_rcu(ent, &p->src_list, node, lockdep_is_held(&p->key.port->br->multicast_lock)) { nest_ent = nla_nest_start(skb, MDBA_MDB_SRCLIST_ENTRY); if (!nest_ent) goto out_cancel_err; switch (ent->addr.proto) { case htons(ETH_P_IP): if (nla_put_in_addr(skb, MDBA_MDB_SRCATTR_ADDRESS, ent->addr.src.ip4)) { nla_nest_cancel(skb, nest_ent); goto out_cancel_err; } break; #if IS_ENABLED(CONFIG_IPV6) case htons(ETH_P_IPV6): if (nla_put_in6_addr(skb, MDBA_MDB_SRCATTR_ADDRESS, &ent->addr.src.ip6)) { nla_nest_cancel(skb, nest_ent); goto out_cancel_err; } break; #endif default: nla_nest_cancel(skb, nest_ent); continue; } if (nla_put_u32(skb, MDBA_MDB_SRCATTR_TIMER, br_timer_value(&ent->timer))) { nla_nest_cancel(skb, nest_ent); goto out_cancel_err; } nla_nest_end(skb, nest_ent); } nla_nest_end(skb, nest); return 0; out_cancel_err: nla_nest_cancel(skb, nest); return -EMSGSIZE; } static int __mdb_fill_info(struct sk_buff *skb, struct net_bridge_mdb_entry *mp, struct net_bridge_port_group *p) { bool dump_srcs_mode = false; struct timer_list *mtimer; struct nlattr *nest_ent; struct br_mdb_entry e; u8 flags = 0; int ifindex; memset(&e, 0, sizeof(e)); if (p) { ifindex = p->key.port->dev->ifindex; mtimer = &p->timer; flags = p->flags; } else { ifindex = mp->br->dev->ifindex; mtimer = &mp->timer; } __mdb_entry_fill_flags(&e, flags); e.ifindex = ifindex; e.vid = mp->addr.vid; if (mp->addr.proto == htons(ETH_P_IP)) { e.addr.u.ip4 = mp->addr.dst.ip4; #if IS_ENABLED(CONFIG_IPV6) } else if (mp->addr.proto == htons(ETH_P_IPV6)) { e.addr.u.ip6 = mp->addr.dst.ip6; #endif } else { ether_addr_copy(e.addr.u.mac_addr, mp->addr.dst.mac_addr); e.state = MDB_PG_FLAGS_PERMANENT; } e.addr.proto = mp->addr.proto; nest_ent = nla_nest_start_noflag(skb, MDBA_MDB_ENTRY_INFO); if (!nest_ent) return -EMSGSIZE; if (nla_put_nohdr(skb, sizeof(e), &e) || nla_put_u32(skb, MDBA_MDB_EATTR_TIMER, br_timer_value(mtimer))) goto nest_err; switch (mp->addr.proto) { case htons(ETH_P_IP): dump_srcs_mode = !!(mp->br->multicast_ctx.multicast_igmp_version == 3); if (mp->addr.src.ip4) { if (nla_put_in_addr(skb, MDBA_MDB_EATTR_SOURCE, mp->addr.src.ip4)) goto nest_err; break; } break; #if IS_ENABLED(CONFIG_IPV6) case htons(ETH_P_IPV6): dump_srcs_mode = !!(mp->br->multicast_ctx.multicast_mld_version == 2); if (!ipv6_addr_any(&mp->addr.src.ip6)) { if (nla_put_in6_addr(skb, MDBA_MDB_EATTR_SOURCE, &mp->addr.src.ip6)) goto nest_err; break; } break; #endif default: ether_addr_copy(e.addr.u.mac_addr, mp->addr.dst.mac_addr); } if (p) { if (nla_put_u8(skb, MDBA_MDB_EATTR_RTPROT, p->rt_protocol)) goto nest_err; if (dump_srcs_mode && (__mdb_fill_srcs(skb, p) || nla_put_u8(skb, MDBA_MDB_EATTR_GROUP_MODE, p->filter_mode))) goto nest_err; } nla_nest_end(skb, nest_ent); return 0; nest_err: nla_nest_cancel(skb, nest_ent); return -EMSGSIZE; } static int br_mdb_fill_info(struct sk_buff *skb, struct netlink_callback *cb, struct net_device *dev) { int idx = 0, s_idx = cb->args[1], err = 0, pidx = 0, s_pidx = cb->args[2]; struct net_bridge *br = netdev_priv(dev); struct net_bridge_mdb_entry *mp; struct nlattr *nest, *nest2; if (!br_opt_get(br, BROPT_MULTICAST_ENABLED)) return 0; nest = nla_nest_start_noflag(skb, MDBA_MDB); if (nest == NULL) return -EMSGSIZE; hlist_for_each_entry_rcu(mp, &br->mdb_list, mdb_node) { struct net_bridge_port_group *p; struct net_bridge_port_group __rcu **pp; if (idx < s_idx) goto skip; nest2 = nla_nest_start_noflag(skb, MDBA_MDB_ENTRY); if (!nest2) { err = -EMSGSIZE; break; } if (!s_pidx && mp->host_joined) { err = __mdb_fill_info(skb, mp, NULL); if (err) { nla_nest_cancel(skb, nest2); break; } } for (pp = &mp->ports; (p = rcu_dereference(*pp)) != NULL; pp = &p->next) { if (!p->key.port) continue; if (pidx < s_pidx) goto skip_pg; err = __mdb_fill_info(skb, mp, p); if (err) { nla_nest_end(skb, nest2); goto out; } skip_pg: pidx++; } pidx = 0; s_pidx = 0; nla_nest_end(skb, nest2); skip: idx++; } out: cb->args[1] = idx; cb->args[2] = pidx; nla_nest_end(skb, nest); return err; } static int br_mdb_valid_dump_req(const struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct br_port_msg *bpm; if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*bpm))) { NL_SET_ERR_MSG_MOD(extack, "Invalid header for mdb dump request"); return -EINVAL; } bpm = nlmsg_data(nlh); if (bpm->ifindex) { NL_SET_ERR_MSG_MOD(extack, "Filtering by device index is not supported for mdb dump request"); return -EINVAL; } if (nlmsg_attrlen(nlh, sizeof(*bpm))) { NL_SET_ERR_MSG(extack, "Invalid data after header in mdb dump request"); return -EINVAL; } return 0; } static int br_mdb_dump(struct sk_buff *skb, struct netlink_callback *cb) { struct net_device *dev; struct net *net = sock_net(skb->sk); struct nlmsghdr *nlh = NULL; int idx = 0, s_idx; if (cb->strict_check) { int err = br_mdb_valid_dump_req(cb->nlh, cb->extack); if (err < 0) return err; } s_idx = cb->args[0]; rcu_read_lock(); cb->seq = net->dev_base_seq; for_each_netdev_rcu(net, dev) { if (netif_is_bridge_master(dev)) { struct net_bridge *br = netdev_priv(dev); struct br_port_msg *bpm; if (idx < s_idx) goto skip; nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, RTM_GETMDB, sizeof(*bpm), NLM_F_MULTI); if (nlh == NULL) break; bpm = nlmsg_data(nlh); memset(bpm, 0, sizeof(*bpm)); bpm->ifindex = dev->ifindex; if (br_mdb_fill_info(skb, cb, dev) < 0) goto out; if (br_rports_fill_info(skb, &br->multicast_ctx) < 0) goto out; cb->args[1] = 0; nlmsg_end(skb, nlh); skip: idx++; } } out: if (nlh) nlmsg_end(skb, nlh); rcu_read_unlock(); cb->args[0] = idx; return skb->len; } static int nlmsg_populate_mdb_fill(struct sk_buff *skb, struct net_device *dev, struct net_bridge_mdb_entry *mp, struct net_bridge_port_group *pg, int type) { struct nlmsghdr *nlh; struct br_port_msg *bpm; struct nlattr *nest, *nest2; nlh = nlmsg_put(skb, 0, 0, type, sizeof(*bpm), 0); if (!nlh) return -EMSGSIZE; bpm = nlmsg_data(nlh); memset(bpm, 0, sizeof(*bpm)); bpm->family = AF_BRIDGE; bpm->ifindex = dev->ifindex; nest = nla_nest_start_noflag(skb, MDBA_MDB); if (nest == NULL) goto cancel; nest2 = nla_nest_start_noflag(skb, MDBA_MDB_ENTRY); if (nest2 == NULL) goto end; if (__mdb_fill_info(skb, mp, pg)) goto end; nla_nest_end(skb, nest2); nla_nest_end(skb, nest); nlmsg_end(skb, nlh); return 0; end: nla_nest_end(skb, nest); cancel: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static size_t rtnl_mdb_nlmsg_size(struct net_bridge_port_group *pg) { size_t nlmsg_size = NLMSG_ALIGN(sizeof(struct br_port_msg)) + nla_total_size(sizeof(struct br_mdb_entry)) + nla_total_size(sizeof(u32)); struct net_bridge_group_src *ent; size_t addr_size = 0; if (!pg) goto out; /* MDBA_MDB_EATTR_RTPROT */ nlmsg_size += nla_total_size(sizeof(u8)); switch (pg->key.addr.proto) { case htons(ETH_P_IP): /* MDBA_MDB_EATTR_SOURCE */ if (pg->key.addr.src.ip4) nlmsg_size += nla_total_size(sizeof(__be32)); if (pg->key.port->br->multicast_ctx.multicast_igmp_version == 2) goto out; addr_size = sizeof(__be32); break; #if IS_ENABLED(CONFIG_IPV6) case htons(ETH_P_IPV6): /* MDBA_MDB_EATTR_SOURCE */ if (!ipv6_addr_any(&pg->key.addr.src.ip6)) nlmsg_size += nla_total_size(sizeof(struct in6_addr)); if (pg->key.port->br->multicast_ctx.multicast_mld_version == 1) goto out; addr_size = sizeof(struct in6_addr); break; #endif } /* MDBA_MDB_EATTR_GROUP_MODE */ nlmsg_size += nla_total_size(sizeof(u8)); /* MDBA_MDB_EATTR_SRC_LIST nested attr */ if (!hlist_empty(&pg->src_list)) nlmsg_size += nla_total_size(0); hlist_for_each_entry(ent, &pg->src_list, node) { /* MDBA_MDB_SRCLIST_ENTRY nested attr + * MDBA_MDB_SRCATTR_ADDRESS + MDBA_MDB_SRCATTR_TIMER */ nlmsg_size += nla_total_size(0) + nla_total_size(addr_size) + nla_total_size(sizeof(u32)); } out: return nlmsg_size; } void br_mdb_notify(struct net_device *dev, struct net_bridge_mdb_entry *mp, struct net_bridge_port_group *pg, int type) { struct net *net = dev_net(dev); struct sk_buff *skb; int err = -ENOBUFS; br_switchdev_mdb_notify(dev, mp, pg, type); skb = nlmsg_new(rtnl_mdb_nlmsg_size(pg), GFP_ATOMIC); if (!skb) goto errout; err = nlmsg_populate_mdb_fill(skb, dev, mp, pg, type); if (err < 0) { kfree_skb(skb); goto errout; } rtnl_notify(skb, net, 0, RTNLGRP_MDB, NULL, GFP_ATOMIC); return; errout: rtnl_set_sk_err(net, RTNLGRP_MDB, err); } static int nlmsg_populate_rtr_fill(struct sk_buff *skb, struct net_device *dev, int ifindex, u16 vid, u32 pid, u32 seq, int type, unsigned int flags) { struct nlattr *nest, *port_nest; struct br_port_msg *bpm; struct nlmsghdr *nlh; nlh = nlmsg_put(skb, pid, seq, type, sizeof(*bpm), 0); if (!nlh) return -EMSGSIZE; bpm = nlmsg_data(nlh); memset(bpm, 0, sizeof(*bpm)); bpm->family = AF_BRIDGE; bpm->ifindex = dev->ifindex; nest = nla_nest_start_noflag(skb, MDBA_ROUTER); if (!nest) goto cancel; port_nest = nla_nest_start_noflag(skb, MDBA_ROUTER_PORT); if (!port_nest) goto end; if (nla_put_nohdr(skb, sizeof(u32), &ifindex)) { nla_nest_cancel(skb, port_nest); goto end; } if (vid && nla_put_u16(skb, MDBA_ROUTER_PATTR_VID, vid)) { nla_nest_cancel(skb, port_nest); goto end; } nla_nest_end(skb, port_nest); nla_nest_end(skb, nest); nlmsg_end(skb, nlh); return 0; end: nla_nest_end(skb, nest); cancel: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static inline size_t rtnl_rtr_nlmsg_size(void) { return NLMSG_ALIGN(sizeof(struct br_port_msg)) + nla_total_size(sizeof(__u32)) + nla_total_size(sizeof(u16)); } void br_rtr_notify(struct net_device *dev, struct net_bridge_mcast_port *pmctx, int type) { struct net *net = dev_net(dev); struct sk_buff *skb; int err = -ENOBUFS; int ifindex; u16 vid; ifindex = pmctx ? pmctx->port->dev->ifindex : 0; vid = pmctx && br_multicast_port_ctx_is_vlan(pmctx) ? pmctx->vlan->vid : 0; skb = nlmsg_new(rtnl_rtr_nlmsg_size(), GFP_ATOMIC); if (!skb) goto errout; err = nlmsg_populate_rtr_fill(skb, dev, ifindex, vid, 0, 0, type, NTF_SELF); if (err < 0) { kfree_skb(skb); goto errout; } rtnl_notify(skb, net, 0, RTNLGRP_MDB, NULL, GFP_ATOMIC); return; errout: rtnl_set_sk_err(net, RTNLGRP_MDB, err); } static bool is_valid_mdb_entry(struct br_mdb_entry *entry, struct netlink_ext_ack *extack) { if (entry->ifindex == 0) { NL_SET_ERR_MSG_MOD(extack, "Zero entry ifindex is not allowed"); return false; } if (entry->addr.proto == htons(ETH_P_IP)) { if (!ipv4_is_multicast(entry->addr.u.ip4)) { NL_SET_ERR_MSG_MOD(extack, "IPv4 entry group address is not multicast"); return false; } if (ipv4_is_local_multicast(entry->addr.u.ip4)) { NL_SET_ERR_MSG_MOD(extack, "IPv4 entry group address is local multicast"); return false; } #if IS_ENABLED(CONFIG_IPV6) } else if (entry->addr.proto == htons(ETH_P_IPV6)) { if (ipv6_addr_is_ll_all_nodes(&entry->addr.u.ip6)) { NL_SET_ERR_MSG_MOD(extack, "IPv6 entry group address is link-local all nodes"); return false; } #endif } else if (entry->addr.proto == 0) { /* L2 mdb */ if (!is_multicast_ether_addr(entry->addr.u.mac_addr)) { NL_SET_ERR_MSG_MOD(extack, "L2 entry group is not multicast"); return false; } } else { NL_SET_ERR_MSG_MOD(extack, "Unknown entry protocol"); return false; } if (entry->state != MDB_PERMANENT && entry->state != MDB_TEMPORARY) { NL_SET_ERR_MSG_MOD(extack, "Unknown entry state"); return false; } if (entry->vid >= VLAN_VID_MASK) { NL_SET_ERR_MSG_MOD(extack, "Invalid entry VLAN id"); return false; } return true; } static bool is_valid_mdb_source(struct nlattr *attr, __be16 proto, struct netlink_ext_ack *extack) { switch (proto) { case htons(ETH_P_IP): if (nla_len(attr) != sizeof(struct in_addr)) { NL_SET_ERR_MSG_MOD(extack, "IPv4 invalid source address length"); return false; } if (ipv4_is_multicast(nla_get_in_addr(attr))) { NL_SET_ERR_MSG_MOD(extack, "IPv4 multicast source address is not allowed"); return false; } break; #if IS_ENABLED(CONFIG_IPV6) case htons(ETH_P_IPV6): { struct in6_addr src; if (nla_len(attr) != sizeof(struct in6_addr)) { NL_SET_ERR_MSG_MOD(extack, "IPv6 invalid source address length"); return false; } src = nla_get_in6_addr(attr); if (ipv6_addr_is_multicast(&src)) { NL_SET_ERR_MSG_MOD(extack, "IPv6 multicast source address is not allowed"); return false; } break; } #endif default: NL_SET_ERR_MSG_MOD(extack, "Invalid protocol used with source address"); return false; } return true; } static const struct nla_policy br_mdbe_attrs_pol[MDBE_ATTR_MAX + 1] = { [MDBE_ATTR_SOURCE] = NLA_POLICY_RANGE(NLA_BINARY, sizeof(struct in_addr), sizeof(struct in6_addr)), }; static int br_mdb_parse(struct sk_buff *skb, struct nlmsghdr *nlh, struct net_device **pdev, struct br_mdb_entry **pentry, struct nlattr **mdb_attrs, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); struct br_mdb_entry *entry; struct br_port_msg *bpm; struct nlattr *tb[MDBA_SET_ENTRY_MAX+1]; struct net_device *dev; int err; err = nlmsg_parse_deprecated(nlh, sizeof(*bpm), tb, MDBA_SET_ENTRY_MAX, NULL, NULL); if (err < 0) return err; bpm = nlmsg_data(nlh); if (bpm->ifindex == 0) { NL_SET_ERR_MSG_MOD(extack, "Invalid bridge ifindex"); return -EINVAL; } dev = __dev_get_by_index(net, bpm->ifindex); if (dev == NULL) { NL_SET_ERR_MSG_MOD(extack, "Bridge device doesn't exist"); return -ENODEV; } if (!netif_is_bridge_master(dev)) { NL_SET_ERR_MSG_MOD(extack, "Device is not a bridge"); return -EOPNOTSUPP; } *pdev = dev; if (!tb[MDBA_SET_ENTRY]) { NL_SET_ERR_MSG_MOD(extack, "Missing MDBA_SET_ENTRY attribute"); return -EINVAL; } if (nla_len(tb[MDBA_SET_ENTRY]) != sizeof(struct br_mdb_entry)) { NL_SET_ERR_MSG_MOD(extack, "Invalid MDBA_SET_ENTRY attribute length"); return -EINVAL; } entry = nla_data(tb[MDBA_SET_ENTRY]); if (!is_valid_mdb_entry(entry, extack)) return -EINVAL; *pentry = entry; if (tb[MDBA_SET_ENTRY_ATTRS]) { err = nla_parse_nested(mdb_attrs, MDBE_ATTR_MAX, tb[MDBA_SET_ENTRY_ATTRS], br_mdbe_attrs_pol, extack); if (err) return err; if (mdb_attrs[MDBE_ATTR_SOURCE] && !is_valid_mdb_source(mdb_attrs[MDBE_ATTR_SOURCE], entry->addr.proto, extack)) return -EINVAL; } else { memset(mdb_attrs, 0, sizeof(struct nlattr *) * (MDBE_ATTR_MAX + 1)); } return 0; } static struct net_bridge_mcast * __br_mdb_choose_context(struct net_bridge *br, const struct br_mdb_entry *entry, struct netlink_ext_ack *extack) { struct net_bridge_mcast *brmctx = NULL; struct net_bridge_vlan *v; if (!br_opt_get(br, BROPT_MCAST_VLAN_SNOOPING_ENABLED)) { brmctx = &br->multicast_ctx; goto out; } if (!entry->vid) { NL_SET_ERR_MSG_MOD(extack, "Cannot add an entry without a vlan when vlan snooping is enabled"); goto out; } v = br_vlan_find(br_vlan_group(br), entry->vid); if (!v) { NL_SET_ERR_MSG_MOD(extack, "Vlan is not configured"); goto out; } if (br_multicast_ctx_vlan_global_disabled(&v->br_mcast_ctx)) { NL_SET_ERR_MSG_MOD(extack, "Vlan's multicast processing is disabled"); goto out; } brmctx = &v->br_mcast_ctx; out: return brmctx; } static int br_mdb_add_group(struct net_bridge *br, struct net_bridge_port *port, struct br_mdb_entry *entry, struct nlattr **mdb_attrs, struct netlink_ext_ack *extack) { struct net_bridge_mdb_entry *mp, *star_mp; struct net_bridge_port_group __rcu **pp; struct net_bridge_port_group *p; struct net_bridge_mcast *brmctx; struct br_ip group, star_group; unsigned long now = jiffies; unsigned char flags = 0; u8 filter_mode; int err; __mdb_entry_to_br_ip(entry, &group, mdb_attrs); brmctx = __br_mdb_choose_context(br, entry, extack); if (!brmctx) return -EINVAL; /* host join errors which can happen before creating the group */ if (!port && !br_group_is_l2(&group)) { /* don't allow any flags for host-joined IP groups */ if (entry->state) { NL_SET_ERR_MSG_MOD(extack, "Flags are not allowed for host groups"); return -EINVAL; } if (!br_multicast_is_star_g(&group)) { NL_SET_ERR_MSG_MOD(extack, "Groups with sources cannot be manually host joined"); return -EINVAL; } } if (br_group_is_l2(&group) && entry->state != MDB_PERMANENT) { NL_SET_ERR_MSG_MOD(extack, "Only permanent L2 entries allowed"); return -EINVAL; } mp = br_mdb_ip_get(br, &group); if (!mp) { mp = br_multicast_new_group(br, &group); err = PTR_ERR_OR_ZERO(mp); if (err) return err; } /* host join */ if (!port) { if (mp->host_joined) { NL_SET_ERR_MSG_MOD(extack, "Group is already joined by host"); return -EEXIST; } br_multicast_host_join(brmctx, mp, false); br_mdb_notify(br->dev, mp, NULL, RTM_NEWMDB); return 0; } for (pp = &mp->ports; (p = mlock_dereference(*pp, br)) != NULL; pp = &p->next) { if (p->key.port == port) { NL_SET_ERR_MSG_MOD(extack, "Group is already joined by port"); return -EEXIST; } if ((unsigned long)p->key.port < (unsigned long)port) break; } filter_mode = br_multicast_is_star_g(&group) ? MCAST_EXCLUDE : MCAST_INCLUDE; if (entry->state == MDB_PERMANENT) flags |= MDB_PG_FLAGS_PERMANENT; p = br_multicast_new_port_group(port, &group, *pp, flags, NULL, filter_mode, RTPROT_STATIC); if (unlikely(!p)) { NL_SET_ERR_MSG_MOD(extack, "Couldn't allocate new port group"); return -ENOMEM; } rcu_assign_pointer(*pp, p); if (entry->state == MDB_TEMPORARY) mod_timer(&p->timer, now + brmctx->multicast_membership_interval); br_mdb_notify(br->dev, mp, p, RTM_NEWMDB); /* if we are adding a new EXCLUDE port group (*,G) it needs to be also * added to all S,G entries for proper replication, if we are adding * a new INCLUDE port (S,G) then all of *,G EXCLUDE ports need to be * added to it for proper replication */ if (br_multicast_should_handle_mode(brmctx, group.proto)) { switch (filter_mode) { case MCAST_EXCLUDE: br_multicast_star_g_handle_mode(p, MCAST_EXCLUDE); break; case MCAST_INCLUDE: star_group = p->key.addr; memset(&star_group.src, 0, sizeof(star_group.src)); star_mp = br_mdb_ip_get(br, &star_group); if (star_mp) br_multicast_sg_add_exclude_ports(star_mp, p); break; } } return 0; } static int __br_mdb_add(struct net *net, struct net_bridge *br, struct net_bridge_port *p, struct br_mdb_entry *entry, struct nlattr **mdb_attrs, struct netlink_ext_ack *extack) { int ret; spin_lock_bh(&br->multicast_lock); ret = br_mdb_add_group(br, p, entry, mdb_attrs, extack); spin_unlock_bh(&br->multicast_lock); return ret; } static int br_mdb_add(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *mdb_attrs[MDBE_ATTR_MAX + 1]; struct net *net = sock_net(skb->sk); struct net_bridge_vlan_group *vg; struct net_bridge_port *p = NULL; struct net_device *dev, *pdev; struct br_mdb_entry *entry; struct net_bridge_vlan *v; struct net_bridge *br; int err; err = br_mdb_parse(skb, nlh, &dev, &entry, mdb_attrs, extack); if (err < 0) return err; br = netdev_priv(dev); if (!netif_running(br->dev)) { NL_SET_ERR_MSG_MOD(extack, "Bridge device is not running"); return -EINVAL; } if (!br_opt_get(br, BROPT_MULTICAST_ENABLED)) { NL_SET_ERR_MSG_MOD(extack, "Bridge's multicast processing is disabled"); return -EINVAL; } if (entry->ifindex != br->dev->ifindex) { pdev = __dev_get_by_index(net, entry->ifindex); if (!pdev) { NL_SET_ERR_MSG_MOD(extack, "Port net device doesn't exist"); return -ENODEV; } p = br_port_get_rtnl(pdev); if (!p) { NL_SET_ERR_MSG_MOD(extack, "Net device is not a bridge port"); return -EINVAL; } if (p->br != br) { NL_SET_ERR_MSG_MOD(extack, "Port belongs to a different bridge device"); return -EINVAL; } if (p->state == BR_STATE_DISABLED && entry->state != MDB_PERMANENT) { NL_SET_ERR_MSG_MOD(extack, "Port is in disabled state and entry is not permanent"); return -EINVAL; } vg = nbp_vlan_group(p); } else { vg = br_vlan_group(br); } /* If vlan filtering is enabled and VLAN is not specified * install mdb entry on all vlans configured on the port. */ if (br_vlan_enabled(br->dev) && vg && entry->vid == 0) { list_for_each_entry(v, &vg->vlan_list, vlist) { entry->vid = v->vid; err = __br_mdb_add(net, br, p, entry, mdb_attrs, extack); if (err) break; } } else { err = __br_mdb_add(net, br, p, entry, mdb_attrs, extack); } return err; } static int __br_mdb_del(struct net_bridge *br, struct br_mdb_entry *entry, struct nlattr **mdb_attrs) { struct net_bridge_mdb_entry *mp; struct net_bridge_port_group *p; struct net_bridge_port_group __rcu **pp; struct br_ip ip; int err = -EINVAL; if (!netif_running(br->dev) || !br_opt_get(br, BROPT_MULTICAST_ENABLED)) return -EINVAL; __mdb_entry_to_br_ip(entry, &ip, mdb_attrs); spin_lock_bh(&br->multicast_lock); mp = br_mdb_ip_get(br, &ip); if (!mp) goto unlock; /* host leave */ if (entry->ifindex == mp->br->dev->ifindex && mp->host_joined) { br_multicast_host_leave(mp, false); err = 0; br_mdb_notify(br->dev, mp, NULL, RTM_DELMDB); if (!mp->ports && netif_running(br->dev)) mod_timer(&mp->timer, jiffies); goto unlock; } for (pp = &mp->ports; (p = mlock_dereference(*pp, br)) != NULL; pp = &p->next) { if (!p->key.port || p->key.port->dev->ifindex != entry->ifindex) continue; br_multicast_del_pg(mp, p, pp); err = 0; break; } unlock: spin_unlock_bh(&br->multicast_lock); return err; } static int br_mdb_del(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct nlattr *mdb_attrs[MDBE_ATTR_MAX + 1]; struct net *net = sock_net(skb->sk); struct net_bridge_vlan_group *vg; struct net_bridge_port *p = NULL; struct net_device *dev, *pdev; struct br_mdb_entry *entry; struct net_bridge_vlan *v; struct net_bridge *br; int err; err = br_mdb_parse(skb, nlh, &dev, &entry, mdb_attrs, extack); if (err < 0) return err; br = netdev_priv(dev); if (entry->ifindex != br->dev->ifindex) { pdev = __dev_get_by_index(net, entry->ifindex); if (!pdev) return -ENODEV; p = br_port_get_rtnl(pdev); if (!p) { NL_SET_ERR_MSG_MOD(extack, "Net device is not a bridge port"); return -EINVAL; } if (p->br != br) { NL_SET_ERR_MSG_MOD(extack, "Port belongs to a different bridge device"); return -EINVAL; } vg = nbp_vlan_group(p); } else { vg = br_vlan_group(br); } /* If vlan filtering is enabled and VLAN is not specified * delete mdb entry on all vlans configured on the port. */ if (br_vlan_enabled(br->dev) && vg && entry->vid == 0) { list_for_each_entry(v, &vg->vlan_list, vlist) { entry->vid = v->vid; err = __br_mdb_del(br, entry, mdb_attrs); } } else { err = __br_mdb_del(br, entry, mdb_attrs); } return err; } void br_mdb_init(void) { rtnl_register_module(THIS_MODULE, PF_BRIDGE, RTM_GETMDB, NULL, br_mdb_dump, 0); rtnl_register_module(THIS_MODULE, PF_BRIDGE, RTM_NEWMDB, br_mdb_add, NULL, 0); rtnl_register_module(THIS_MODULE, PF_BRIDGE, RTM_DELMDB, br_mdb_del, NULL, 0); } void br_mdb_uninit(void) { rtnl_unregister(PF_BRIDGE, RTM_GETMDB); rtnl_unregister(PF_BRIDGE, RTM_NEWMDB); rtnl_unregister(PF_BRIDGE, RTM_DELMDB); }
187 23 24 5 1 1 17 16 16 1 15 2 81 82 10 21 15 111 113 50 16 19 32 42 48 40 67 280 13 267 266 132 84 61 177 86 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 // SPDX-License-Identifier: GPL-2.0 /* * queue_stack_maps.c: BPF queue and stack maps * * Copyright (c) 2018 Politecnico di Torino */ #include <linux/bpf.h> #include <linux/list.h> #include <linux/slab.h> #include <linux/capability.h> #include <linux/btf_ids.h> #include "percpu_freelist.h" #define QUEUE_STACK_CREATE_FLAG_MASK \ (BPF_F_NUMA_NODE | BPF_F_ACCESS_MASK) struct bpf_queue_stack { struct bpf_map map; raw_spinlock_t lock; u32 head, tail; u32 size; /* max_entries + 1 */ char elements[] __aligned(8); }; static struct bpf_queue_stack *bpf_queue_stack(struct bpf_map *map) { return container_of(map, struct bpf_queue_stack, map); } static bool queue_stack_map_is_empty(struct bpf_queue_stack *qs) { return qs->head == qs->tail; } static bool queue_stack_map_is_full(struct bpf_queue_stack *qs) { u32 head = qs->head + 1; if (unlikely(head >= qs->size)) head = 0; return head == qs->tail; } /* Called from syscall */ static int queue_stack_map_alloc_check(union bpf_attr *attr) { if (!bpf_capable()) return -EPERM; /* check sanity of attributes */ if (attr->max_entries == 0 || attr->key_size != 0 || attr->value_size == 0 || attr->map_flags & ~QUEUE_STACK_CREATE_FLAG_MASK || !bpf_map_flags_access_ok(attr->map_flags)) return -EINVAL; if (attr->value_size > KMALLOC_MAX_SIZE) /* if value_size is bigger, the user space won't be able to * access the elements. */ return -E2BIG; return 0; } static struct bpf_map *queue_stack_map_alloc(union bpf_attr *attr) { int numa_node = bpf_map_attr_numa_node(attr); struct bpf_queue_stack *qs; u64 size, queue_size; size = (u64) attr->max_entries + 1; queue_size = sizeof(*qs) + size * attr->value_size; qs = bpf_map_area_alloc(queue_size, numa_node); if (!qs) return ERR_PTR(-ENOMEM); bpf_map_init_from_attr(&qs->map, attr); qs->size = size; raw_spin_lock_init(&qs->lock); return &qs->map; } /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ static void queue_stack_map_free(struct bpf_map *map) { struct bpf_queue_stack *qs = bpf_queue_stack(map); bpf_map_area_free(qs); } static int __queue_map_get(struct bpf_map *map, void *value, bool delete) { struct bpf_queue_stack *qs = bpf_queue_stack(map); unsigned long flags; int err = 0; void *ptr; if (in_nmi()) { if (!raw_spin_trylock_irqsave(&qs->lock, flags)) return -EBUSY; } else { raw_spin_lock_irqsave(&qs->lock, flags); } if (queue_stack_map_is_empty(qs)) { memset(value, 0, qs->map.value_size); err = -ENOENT; goto out; } ptr = &qs->elements[qs->tail * qs->map.value_size]; memcpy(value, ptr, qs->map.value_size); if (delete) { if (unlikely(++qs->tail >= qs->size)) qs->tail = 0; } out: raw_spin_unlock_irqrestore(&qs->lock, flags); return err; } static int __stack_map_get(struct bpf_map *map, void *value, bool delete) { struct bpf_queue_stack *qs = bpf_queue_stack(map); unsigned long flags; int err = 0; void *ptr; u32 index; if (in_nmi()) { if (!raw_spin_trylock_irqsave(&qs->lock, flags)) return -EBUSY; } else { raw_spin_lock_irqsave(&qs->lock, flags); } if (queue_stack_map_is_empty(qs)) { memset(value, 0, qs->map.value_size); err = -ENOENT; goto out; } index = qs->head - 1; if (unlikely(index >= qs->size)) index = qs->size - 1; ptr = &qs->elements[index * qs->map.value_size]; memcpy(value, ptr, qs->map.value_size); if (delete) qs->head = index; out: raw_spin_unlock_irqrestore(&qs->lock, flags); return err; } /* Called from syscall or from eBPF program */ static int queue_map_peek_elem(struct bpf_map *map, void *value) { return __queue_map_get(map, value, false); } /* Called from syscall or from eBPF program */ static int stack_map_peek_elem(struct bpf_map *map, void *value) { return __stack_map_get(map, value, false); } /* Called from syscall or from eBPF program */ static int queue_map_pop_elem(struct bpf_map *map, void *value) { return __queue_map_get(map, value, true); } /* Called from syscall or from eBPF program */ static int stack_map_pop_elem(struct bpf_map *map, void *value) { return __stack_map_get(map, value, true); } /* Called from syscall or from eBPF program */ static int queue_stack_map_push_elem(struct bpf_map *map, void *value, u64 flags) { struct bpf_queue_stack *qs = bpf_queue_stack(map); unsigned long irq_flags; int err = 0; void *dst; /* BPF_EXIST is used to force making room for a new element in case the * map is full */ bool replace = (flags & BPF_EXIST); /* Check supported flags for queue and stack maps */ if (flags & BPF_NOEXIST || flags > BPF_EXIST) return -EINVAL; if (in_nmi()) { if (!raw_spin_trylock_irqsave(&qs->lock, irq_flags)) return -EBUSY; } else { raw_spin_lock_irqsave(&qs->lock, irq_flags); } if (queue_stack_map_is_full(qs)) { if (!replace) { err = -E2BIG; goto out; } /* advance tail pointer to overwrite oldest element */ if (unlikely(++qs->tail >= qs->size)) qs->tail = 0; } dst = &qs->elements[qs->head * qs->map.value_size]; memcpy(dst, value, qs->map.value_size); if (unlikely(++qs->head >= qs->size)) qs->head = 0; out: raw_spin_unlock_irqrestore(&qs->lock, irq_flags); return err; } /* Called from syscall or from eBPF program */ static void *queue_stack_map_lookup_elem(struct bpf_map *map, void *key) { return NULL; } /* Called from syscall or from eBPF program */ static int queue_stack_map_update_elem(struct bpf_map *map, void *key, void *value, u64 flags) { return -EINVAL; } /* Called from syscall or from eBPF program */ static int queue_stack_map_delete_elem(struct bpf_map *map, void *key) { return -EINVAL; } /* Called from syscall */ static int queue_stack_map_get_next_key(struct bpf_map *map, void *key, void *next_key) { return -EINVAL; } BTF_ID_LIST_SINGLE(queue_map_btf_ids, struct, bpf_queue_stack) const struct bpf_map_ops queue_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc_check = queue_stack_map_alloc_check, .map_alloc = queue_stack_map_alloc, .map_free = queue_stack_map_free, .map_lookup_elem = queue_stack_map_lookup_elem, .map_update_elem = queue_stack_map_update_elem, .map_delete_elem = queue_stack_map_delete_elem, .map_push_elem = queue_stack_map_push_elem, .map_pop_elem = queue_map_pop_elem, .map_peek_elem = queue_map_peek_elem, .map_get_next_key = queue_stack_map_get_next_key, .map_btf_id = &queue_map_btf_ids[0], }; const struct bpf_map_ops stack_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc_check = queue_stack_map_alloc_check, .map_alloc = queue_stack_map_alloc, .map_free = queue_stack_map_free, .map_lookup_elem = queue_stack_map_lookup_elem, .map_update_elem = queue_stack_map_update_elem, .map_delete_elem = queue_stack_map_delete_elem, .map_push_elem = queue_stack_map_push_elem, .map_pop_elem = stack_map_pop_elem, .map_peek_elem = stack_map_peek_elem, .map_get_next_key = queue_stack_map_get_next_key, .map_btf_id = &queue_map_btf_ids[0], };
2 17 16 73 72 34 34 34 64 63 3 3 17 6 11 11 2 2 5 1 4 4 4 3 63 63 5 5 14 2 1 14 14 14 1 14 14 14 1 14 14 10 7 9 14 14 3 3 3 8 1 1 2 1 1 1 1 1 1 13 1 1 2 2 3 3 6 6 1 3 1 3 2 2 2 1 3 14 1 14 12 14 1 5 16 16 1 1 14 11 14 14 14 3 11 1 1 2 2 1 1 2 1 6 4 4 4 3 1 5 1 4 4 4 4 49 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 // SPDX-License-Identifier: GPL-2.0-or-later /* * net/sched/sch_api.c Packet scheduler API. * * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> * * Fixes: * * Rani Assaf <rani@magic.metawire.com> :980802: JIFFIES and CPU clock sources are repaired. * Eduardo J. Blanco <ejbs@netlabs.com.uy> :990222: kmod support * Jamal Hadi Salim <hadi@nortelnetworks.com>: 990601: ingress support */ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/skbuff.h> #include <linux/init.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/kmod.h> #include <linux/list.h> #include <linux/hrtimer.h> #include <linux/slab.h> #include <linux/hashtable.h> #include <net/net_namespace.h> #include <net/sock.h> #include <net/netlink.h> #include <net/pkt_sched.h> #include <net/pkt_cls.h> #include <trace/events/qdisc.h> /* Short review. ------------- This file consists of two interrelated parts: 1. queueing disciplines manager frontend. 2. traffic classes manager frontend. Generally, queueing discipline ("qdisc") is a black box, which is able to enqueue packets and to dequeue them (when device is ready to send something) in order and at times determined by algorithm hidden in it. qdisc's are divided to two categories: - "queues", which have no internal structure visible from outside. - "schedulers", which split all the packets to "traffic classes", using "packet classifiers" (look at cls_api.c) In turn, classes may have child qdiscs (as rule, queues) attached to them etc. etc. etc. The goal of the routines in this file is to translate information supplied by user in the form of handles to more intelligible for kernel form, to make some sanity checks and part of work, which is common to all qdiscs and to provide rtnetlink notifications. All real intelligent work is done inside qdisc modules. Every discipline has two major routines: enqueue and dequeue. ---dequeue dequeue usually returns a skb to send. It is allowed to return NULL, but it does not mean that queue is empty, it just means that discipline does not want to send anything this time. Queue is really empty if q->q.qlen == 0. For complicated disciplines with multiple queues q->q is not real packet queue, but however q->q.qlen must be valid. ---enqueue enqueue returns 0, if packet was enqueued successfully. If packet (this one or another one) was dropped, it returns not zero error code. NET_XMIT_DROP - this packet dropped Expected action: do not backoff, but wait until queue will clear. NET_XMIT_CN - probably this packet enqueued, but another one dropped. Expected action: backoff or ignore Auxiliary routines: ---peek like dequeue but without removing a packet from the queue ---reset returns qdisc to initial state: purge all buffers, clear all timers, counters (except for statistics) etc. ---init initializes newly created qdisc. ---destroy destroys resources allocated by init and during lifetime of qdisc. ---change changes qdisc parameters. */ /* Protects list of registered TC modules. It is pure SMP lock. */ static DEFINE_RWLOCK(qdisc_mod_lock); /************************************************ * Queueing disciplines manipulation. * ************************************************/ /* The list of all installed queueing disciplines. */ static struct Qdisc_ops *qdisc_base; /* Register/unregister queueing discipline */ int register_qdisc(struct Qdisc_ops *qops) { struct Qdisc_ops *q, **qp; int rc = -EEXIST; write_lock(&qdisc_mod_lock); for (qp = &qdisc_base; (q = *qp) != NULL; qp = &q->next) if (!strcmp(qops->id, q->id)) goto out; if (qops->enqueue == NULL) qops->enqueue = noop_qdisc_ops.enqueue; if (qops->peek == NULL) { if (qops->dequeue == NULL) qops->peek = noop_qdisc_ops.peek; else goto out_einval; } if (qops->dequeue == NULL) qops->dequeue = noop_qdisc_ops.dequeue; if (qops->cl_ops) { const struct Qdisc_class_ops *cops = qops->cl_ops; if (!(cops->find && cops->walk && cops->leaf)) goto out_einval; if (cops->tcf_block && !(cops->bind_tcf && cops->unbind_tcf)) goto out_einval; } qops->next = NULL; *qp = qops; rc = 0; out: write_unlock(&qdisc_mod_lock); return rc; out_einval: rc = -EINVAL; goto out; } EXPORT_SYMBOL(register_qdisc); void unregister_qdisc(struct Qdisc_ops *qops) { struct Qdisc_ops *q, **qp; int err = -ENOENT; write_lock(&qdisc_mod_lock); for (qp = &qdisc_base; (q = *qp) != NULL; qp = &q->next) if (q == qops) break; if (q) { *qp = q->next; q->next = NULL; err = 0; } write_unlock(&qdisc_mod_lock); WARN(err, "unregister qdisc(%s) failed\n", qops->id); } EXPORT_SYMBOL(unregister_qdisc); /* Get default qdisc if not otherwise specified */ void qdisc_get_default(char *name, size_t len) { read_lock(&qdisc_mod_lock); strscpy(name, default_qdisc_ops->id, len); read_unlock(&qdisc_mod_lock); } static struct Qdisc_ops *qdisc_lookup_default(const char *name) { struct Qdisc_ops *q = NULL; for (q = qdisc_base; q; q = q->next) { if (!strcmp(name, q->id)) { if (!try_module_get(q->owner)) q = NULL; break; } } return q; } /* Set new default qdisc to use */ int qdisc_set_default(const char *name) { const struct Qdisc_ops *ops; if (!capable(CAP_NET_ADMIN)) return -EPERM; write_lock(&qdisc_mod_lock); ops = qdisc_lookup_default(name); if (!ops) { /* Not found, drop lock and try to load module */ write_unlock(&qdisc_mod_lock); request_module("sch_%s", name); write_lock(&qdisc_mod_lock); ops = qdisc_lookup_default(name); } if (ops) { /* Set new default */ module_put(default_qdisc_ops->owner); default_qdisc_ops = ops; } write_unlock(&qdisc_mod_lock); return ops ? 0 : -ENOENT; } #ifdef CONFIG_NET_SCH_DEFAULT /* Set default value from kernel config */ static int __init sch_default_qdisc(void) { return qdisc_set_default(CONFIG_DEFAULT_NET_SCH); } late_initcall(sch_default_qdisc); #endif /* We know handle. Find qdisc among all qdisc's attached to device * (root qdisc, all its children, children of children etc.) * Note: caller either uses rtnl or rcu_read_lock() */ static struct Qdisc *qdisc_match_from_root(struct Qdisc *root, u32 handle) { struct Qdisc *q; if (!qdisc_dev(root)) return (root->handle == handle ? root : NULL); if (!(root->flags & TCQ_F_BUILTIN) && root->handle == handle) return root; hash_for_each_possible_rcu(qdisc_dev(root)->qdisc_hash, q, hash, handle, lockdep_rtnl_is_held()) { if (q->handle == handle) return q; } return NULL; } void qdisc_hash_add(struct Qdisc *q, bool invisible) { if ((q->parent != TC_H_ROOT) && !(q->flags & TCQ_F_INGRESS)) { ASSERT_RTNL(); hash_add_rcu(qdisc_dev(q)->qdisc_hash, &q->hash, q->handle); if (invisible) q->flags |= TCQ_F_INVISIBLE; } } EXPORT_SYMBOL(qdisc_hash_add); void qdisc_hash_del(struct Qdisc *q) { if ((q->parent != TC_H_ROOT) && !(q->flags & TCQ_F_INGRESS)) { ASSERT_RTNL(); hash_del_rcu(&q->hash); } } EXPORT_SYMBOL(qdisc_hash_del); struct Qdisc *qdisc_lookup(struct net_device *dev, u32 handle) { struct Qdisc *q; if (!handle) return NULL; q = qdisc_match_from_root(rtnl_dereference(dev->qdisc), handle); if (q) goto out; if (dev_ingress_queue(dev)) q = qdisc_match_from_root( rtnl_dereference(dev_ingress_queue(dev)->qdisc_sleeping), handle); out: return q; } struct Qdisc *qdisc_lookup_rcu(struct net_device *dev, u32 handle) { struct netdev_queue *nq; struct Qdisc *q; if (!handle) return NULL; q = qdisc_match_from_root(rcu_dereference(dev->qdisc), handle); if (q) goto out; nq = dev_ingress_queue_rcu(dev); if (nq) q = qdisc_match_from_root(rcu_dereference(nq->qdisc_sleeping), handle); out: return q; } static struct Qdisc *qdisc_leaf(struct Qdisc *p, u32 classid) { unsigned long cl; const struct Qdisc_class_ops *cops = p->ops->cl_ops; if (cops == NULL) return NULL; cl = cops->find(p, classid); if (cl == 0) return NULL; return cops->leaf(p, cl); } /* Find queueing discipline by name */ static struct Qdisc_ops *qdisc_lookup_ops(struct nlattr *kind) { struct Qdisc_ops *q = NULL; if (kind) { read_lock(&qdisc_mod_lock); for (q = qdisc_base; q; q = q->next) { if (nla_strcmp(kind, q->id) == 0) { if (!try_module_get(q->owner)) q = NULL; break; } } read_unlock(&qdisc_mod_lock); } return q; } /* The linklayer setting were not transferred from iproute2, in older * versions, and the rate tables lookup systems have been dropped in * the kernel. To keep backward compatible with older iproute2 tc * utils, we detect the linklayer setting by detecting if the rate * table were modified. * * For linklayer ATM table entries, the rate table will be aligned to * 48 bytes, thus some table entries will contain the same value. The * mpu (min packet unit) is also encoded into the old rate table, thus * starting from the mpu, we find low and high table entries for * mapping this cell. If these entries contain the same value, when * the rate tables have been modified for linklayer ATM. * * This is done by rounding mpu to the nearest 48 bytes cell/entry, * and then roundup to the next cell, calc the table entry one below, * and compare. */ static __u8 __detect_linklayer(struct tc_ratespec *r, __u32 *rtab) { int low = roundup(r->mpu, 48); int high = roundup(low+1, 48); int cell_low = low >> r->cell_log; int cell_high = (high >> r->cell_log) - 1; /* rtab is too inaccurate at rates > 100Mbit/s */ if ((r->rate > (100000000/8)) || (rtab[0] == 0)) { pr_debug("TC linklayer: Giving up ATM detection\n"); return TC_LINKLAYER_ETHERNET; } if ((cell_high > cell_low) && (cell_high < 256) && (rtab[cell_low] == rtab[cell_high])) { pr_debug("TC linklayer: Detected ATM, low(%d)=high(%d)=%u\n", cell_low, cell_high, rtab[cell_high]); return TC_LINKLAYER_ATM; } return TC_LINKLAYER_ETHERNET; } static struct qdisc_rate_table *qdisc_rtab_list; struct qdisc_rate_table *qdisc_get_rtab(struct tc_ratespec *r, struct nlattr *tab, struct netlink_ext_ack *extack) { struct qdisc_rate_table *rtab; if (tab == NULL || r->rate == 0 || r->cell_log == 0 || r->cell_log >= 32 || nla_len(tab) != TC_RTAB_SIZE) { NL_SET_ERR_MSG(extack, "Invalid rate table parameters for searching"); return NULL; } for (rtab = qdisc_rtab_list; rtab; rtab = rtab->next) { if (!memcmp(&rtab->rate, r, sizeof(struct tc_ratespec)) && !memcmp(&rtab->data, nla_data(tab), 1024)) { rtab->refcnt++; return rtab; } } rtab = kmalloc(sizeof(*rtab), GFP_KERNEL); if (rtab) { rtab->rate = *r; rtab->refcnt = 1; memcpy(rtab->data, nla_data(tab), 1024); if (r->linklayer == TC_LINKLAYER_UNAWARE) r->linklayer = __detect_linklayer(r, rtab->data); rtab->next = qdisc_rtab_list; qdisc_rtab_list = rtab; } else { NL_SET_ERR_MSG(extack, "Failed to allocate new qdisc rate table"); } return rtab; } EXPORT_SYMBOL(qdisc_get_rtab); void qdisc_put_rtab(struct qdisc_rate_table *tab) { struct qdisc_rate_table *rtab, **rtabp; if (!tab || --tab->refcnt) return; for (rtabp = &qdisc_rtab_list; (rtab = *rtabp) != NULL; rtabp = &rtab->next) { if (rtab == tab) { *rtabp = rtab->next; kfree(rtab); return; } } } EXPORT_SYMBOL(qdisc_put_rtab); static LIST_HEAD(qdisc_stab_list); static const struct nla_policy stab_policy[TCA_STAB_MAX + 1] = { [TCA_STAB_BASE] = { .len = sizeof(struct tc_sizespec) }, [TCA_STAB_DATA] = { .type = NLA_BINARY }, }; static struct qdisc_size_table *qdisc_get_stab(struct nlattr *opt, struct netlink_ext_ack *extack) { struct nlattr *tb[TCA_STAB_MAX + 1]; struct qdisc_size_table *stab; struct tc_sizespec *s; unsigned int tsize = 0; u16 *tab = NULL; int err; err = nla_parse_nested_deprecated(tb, TCA_STAB_MAX, opt, stab_policy, extack); if (err < 0) return ERR_PTR(err); if (!tb[TCA_STAB_BASE]) { NL_SET_ERR_MSG(extack, "Size table base attribute is missing"); return ERR_PTR(-EINVAL); } s = nla_data(tb[TCA_STAB_BASE]); if (s->tsize > 0) { if (!tb[TCA_STAB_DATA]) { NL_SET_ERR_MSG(extack, "Size table data attribute is missing"); return ERR_PTR(-EINVAL); } tab = nla_data(tb[TCA_STAB_DATA]); tsize = nla_len(tb[TCA_STAB_DATA]) / sizeof(u16); } if (tsize != s->tsize || (!tab && tsize > 0)) { NL_SET_ERR_MSG(extack, "Invalid size of size table"); return ERR_PTR(-EINVAL); } list_for_each_entry(stab, &qdisc_stab_list, list) { if (memcmp(&stab->szopts, s, sizeof(*s))) continue; if (tsize > 0 && memcmp(stab->data, tab, flex_array_size(stab, data, tsize))) continue; stab->refcnt++; return stab; } if (s->size_log > STAB_SIZE_LOG_MAX || s->cell_log > STAB_SIZE_LOG_MAX) { NL_SET_ERR_MSG(extack, "Invalid logarithmic size of size table"); return ERR_PTR(-EINVAL); } stab = kmalloc(struct_size(stab, data, tsize), GFP_KERNEL); if (!stab) return ERR_PTR(-ENOMEM); stab->refcnt = 1; stab->szopts = *s; if (tsize > 0) memcpy(stab->data, tab, flex_array_size(stab, data, tsize)); list_add_tail(&stab->list, &qdisc_stab_list); return stab; } void qdisc_put_stab(struct qdisc_size_table *tab) { if (!tab) return; if (--tab->refcnt == 0) { list_del(&tab->list); kfree_rcu(tab, rcu); } } EXPORT_SYMBOL(qdisc_put_stab); static int qdisc_dump_stab(struct sk_buff *skb, struct qdisc_size_table *stab) { struct nlattr *nest; nest = nla_nest_start_noflag(skb, TCA_STAB); if (nest == NULL) goto nla_put_failure; if (nla_put(skb, TCA_STAB_BASE, sizeof(stab->szopts), &stab->szopts)) goto nla_put_failure; nla_nest_end(skb, nest); return skb->len; nla_put_failure: return -1; } void __qdisc_calculate_pkt_len(struct sk_buff *skb, const struct qdisc_size_table *stab) { int pkt_len, slot; pkt_len = skb->len + stab->szopts.overhead; if (unlikely(!stab->szopts.tsize)) goto out; slot = pkt_len + stab->szopts.cell_align; if (unlikely(slot < 0)) slot = 0; slot >>= stab->szopts.cell_log; if (likely(slot < stab->szopts.tsize)) pkt_len = stab->data[slot]; else pkt_len = stab->data[stab->szopts.tsize - 1] * (slot / stab->szopts.tsize) + stab->data[slot % stab->szopts.tsize]; pkt_len <<= stab->szopts.size_log; out: if (unlikely(pkt_len < 1)) pkt_len = 1; qdisc_skb_cb(skb)->pkt_len = pkt_len; } void qdisc_warn_nonwc(const char *txt, struct Qdisc *qdisc) { if (!(qdisc->flags & TCQ_F_WARN_NONWC)) { pr_warn("%s: %s qdisc %X: is non-work-conserving?\n", txt, qdisc->ops->id, qdisc->handle >> 16); qdisc->flags |= TCQ_F_WARN_NONWC; } } EXPORT_SYMBOL(qdisc_warn_nonwc); static enum hrtimer_restart qdisc_watchdog(struct hrtimer *timer) { struct qdisc_watchdog *wd = container_of(timer, struct qdisc_watchdog, timer); rcu_read_lock(); __netif_schedule(qdisc_root(wd->qdisc)); rcu_read_unlock(); return HRTIMER_NORESTART; } void qdisc_watchdog_init_clockid(struct qdisc_watchdog *wd, struct Qdisc *qdisc, clockid_t clockid) { hrtimer_init(&wd->timer, clockid, HRTIMER_MODE_ABS_PINNED); wd->timer.function = qdisc_watchdog; wd->qdisc = qdisc; } EXPORT_SYMBOL(qdisc_watchdog_init_clockid); void qdisc_watchdog_init(struct qdisc_watchdog *wd, struct Qdisc *qdisc) { qdisc_watchdog_init_clockid(wd, qdisc, CLOCK_MONOTONIC); } EXPORT_SYMBOL(qdisc_watchdog_init); void qdisc_watchdog_schedule_range_ns(struct qdisc_watchdog *wd, u64 expires, u64 delta_ns) { bool deactivated; rcu_read_lock(); deactivated = test_bit(__QDISC_STATE_DEACTIVATED, &qdisc_root_sleeping(wd->qdisc)->state); rcu_read_unlock(); if (deactivated) return; if (hrtimer_is_queued(&wd->timer)) { /* If timer is already set in [expires, expires + delta_ns], * do not reprogram it. */ if (wd->last_expires - expires <= delta_ns) return; } wd->last_expires = expires; hrtimer_start_range_ns(&wd->timer, ns_to_ktime(expires), delta_ns, HRTIMER_MODE_ABS_PINNED); } EXPORT_SYMBOL(qdisc_watchdog_schedule_range_ns); void qdisc_watchdog_cancel(struct qdisc_watchdog *wd) { hrtimer_cancel(&wd->timer); } EXPORT_SYMBOL(qdisc_watchdog_cancel); static struct hlist_head *qdisc_class_hash_alloc(unsigned int n) { struct hlist_head *h; unsigned int i; h = kvmalloc_array(n, sizeof(struct hlist_head), GFP_KERNEL); if (h != NULL) { for (i = 0; i < n; i++) INIT_HLIST_HEAD(&h[i]); } return h; } void qdisc_class_hash_grow(struct Qdisc *sch, struct Qdisc_class_hash *clhash) { struct Qdisc_class_common *cl; struct hlist_node *next; struct hlist_head *nhash, *ohash; unsigned int nsize, nmask, osize; unsigned int i, h; /* Rehash when load factor exceeds 0.75 */ if (clhash->hashelems * 4 <= clhash->hashsize * 3) return; nsize = clhash->hashsize * 2; nmask = nsize - 1; nhash = qdisc_class_hash_alloc(nsize); if (nhash == NULL) return; ohash = clhash->hash; osize = clhash->hashsize; sch_tree_lock(sch); for (i = 0; i < osize; i++) { hlist_for_each_entry_safe(cl, next, &ohash[i], hnode) { h = qdisc_class_hash(cl->classid, nmask); hlist_add_head(&cl->hnode, &nhash[h]); } } clhash->hash = nhash; clhash->hashsize = nsize; clhash->hashmask = nmask; sch_tree_unlock(sch); kvfree(ohash); } EXPORT_SYMBOL(qdisc_class_hash_grow); int qdisc_class_hash_init(struct Qdisc_class_hash *clhash) { unsigned int size = 4; clhash->hash = qdisc_class_hash_alloc(size); if (!clhash->hash) return -ENOMEM; clhash->hashsize = size; clhash->hashmask = size - 1; clhash->hashelems = 0; return 0; } EXPORT_SYMBOL(qdisc_class_hash_init); void qdisc_class_hash_destroy(struct Qdisc_class_hash *clhash) { kvfree(clhash->hash); } EXPORT_SYMBOL(qdisc_class_hash_destroy); void qdisc_class_hash_insert(struct Qdisc_class_hash *clhash, struct Qdisc_class_common *cl) { unsigned int h; INIT_HLIST_NODE(&cl->hnode); h = qdisc_class_hash(cl->classid, clhash->hashmask); hlist_add_head(&cl->hnode, &clhash->hash[h]); clhash->hashelems++; } EXPORT_SYMBOL(qdisc_class_hash_insert); void qdisc_class_hash_remove(struct Qdisc_class_hash *clhash, struct Qdisc_class_common *cl) { hlist_del(&cl->hnode); clhash->hashelems--; } EXPORT_SYMBOL(qdisc_class_hash_remove); /* Allocate an unique handle from space managed by kernel * Possible range is [8000-FFFF]:0000 (0x8000 values) */ static u32 qdisc_alloc_handle(struct net_device *dev) { int i = 0x8000; static u32 autohandle = TC_H_MAKE(0x80000000U, 0); do { autohandle += TC_H_MAKE(0x10000U, 0); if (autohandle == TC_H_MAKE(TC_H_ROOT, 0)) autohandle = TC_H_MAKE(0x80000000U, 0); if (!qdisc_lookup(dev, autohandle)) return autohandle; cond_resched(); } while (--i > 0); return 0; } void qdisc_tree_reduce_backlog(struct Qdisc *sch, int n, int len) { bool qdisc_is_offloaded = sch->flags & TCQ_F_OFFLOADED; const struct Qdisc_class_ops *cops; unsigned long cl; u32 parentid; bool notify; int drops; if (n == 0 && len == 0) return; drops = max_t(int, n, 0); rcu_read_lock(); while ((parentid = sch->parent)) { if (parentid == TC_H_ROOT) break; if (sch->flags & TCQ_F_NOPARENT) break; /* Notify parent qdisc only if child qdisc becomes empty. * * If child was empty even before update then backlog * counter is screwed and we skip notification because * parent class is already passive. * * If the original child was offloaded then it is allowed * to be seem as empty, so the parent is notified anyway. */ notify = !sch->q.qlen && !WARN_ON_ONCE(!n && !qdisc_is_offloaded); /* TODO: perform the search on a per txq basis */ sch = qdisc_lookup_rcu(qdisc_dev(sch), TC_H_MAJ(parentid)); if (sch == NULL) { WARN_ON_ONCE(parentid != TC_H_ROOT); break; } cops = sch->ops->cl_ops; if (notify && cops->qlen_notify) { cl = cops->find(sch, parentid); cops->qlen_notify(sch, cl); } sch->q.qlen -= n; sch->qstats.backlog -= len; __qdisc_qstats_drop(sch, drops); } rcu_read_unlock(); } EXPORT_SYMBOL(qdisc_tree_reduce_backlog); int qdisc_offload_dump_helper(struct Qdisc *sch, enum tc_setup_type type, void *type_data) { struct net_device *dev = qdisc_dev(sch); int err; sch->flags &= ~TCQ_F_OFFLOADED; if (!tc_can_offload(dev) || !dev->netdev_ops->ndo_setup_tc) return 0; err = dev->netdev_ops->ndo_setup_tc(dev, type, type_data); if (err == -EOPNOTSUPP) return 0; if (!err) sch->flags |= TCQ_F_OFFLOADED; return err; } EXPORT_SYMBOL(qdisc_offload_dump_helper); void qdisc_offload_graft_helper(struct net_device *dev, struct Qdisc *sch, struct Qdisc *new, struct Qdisc *old, enum tc_setup_type type, void *type_data, struct netlink_ext_ack *extack) { bool any_qdisc_is_offloaded; int err; if (!tc_can_offload(dev) || !dev->netdev_ops->ndo_setup_tc) return; err = dev->netdev_ops->ndo_setup_tc(dev, type, type_data); /* Don't report error if the graft is part of destroy operation. */ if (!err || !new || new == &noop_qdisc) return; /* Don't report error if the parent, the old child and the new * one are not offloaded. */ any_qdisc_is_offloaded = new->flags & TCQ_F_OFFLOADED; any_qdisc_is_offloaded |= sch && sch->flags & TCQ_F_OFFLOADED; any_qdisc_is_offloaded |= old && old->flags & TCQ_F_OFFLOADED; if (any_qdisc_is_offloaded) NL_SET_ERR_MSG(extack, "Offloading graft operation failed."); } EXPORT_SYMBOL(qdisc_offload_graft_helper); void qdisc_offload_query_caps(struct net_device *dev, enum tc_setup_type type, void *caps, size_t caps_len) { const struct net_device_ops *ops = dev->netdev_ops; struct tc_query_caps_base base = { .type = type, .caps = caps, }; memset(caps, 0, caps_len); if (ops->ndo_setup_tc) ops->ndo_setup_tc(dev, TC_QUERY_CAPS, &base); } EXPORT_SYMBOL(qdisc_offload_query_caps); static void qdisc_offload_graft_root(struct net_device *dev, struct Qdisc *new, struct Qdisc *old, struct netlink_ext_ack *extack) { struct tc_root_qopt_offload graft_offload = { .command = TC_ROOT_GRAFT, .handle = new ? new->handle : 0, .ingress = (new && new->flags & TCQ_F_INGRESS) || (old && old->flags & TCQ_F_INGRESS), }; qdisc_offload_graft_helper(dev, NULL, new, old, TC_SETUP_ROOT_QDISC, &graft_offload, extack); } static int tc_fill_qdisc(struct sk_buff *skb, struct Qdisc *q, u32 clid, u32 portid, u32 seq, u16 flags, int event, struct netlink_ext_ack *extack) { struct gnet_stats_basic_sync __percpu *cpu_bstats = NULL; struct gnet_stats_queue __percpu *cpu_qstats = NULL; struct tcmsg *tcm; struct nlmsghdr *nlh; unsigned char *b = skb_tail_pointer(skb); struct gnet_dump d; struct qdisc_size_table *stab; u32 block_index; __u32 qlen; cond_resched(); nlh = nlmsg_put(skb, portid, seq, event, sizeof(*tcm), flags); if (!nlh) goto out_nlmsg_trim; tcm = nlmsg_data(nlh); tcm->tcm_family = AF_UNSPEC; tcm->tcm__pad1 = 0; tcm->tcm__pad2 = 0; tcm->tcm_ifindex = qdisc_dev(q)->ifindex; tcm->tcm_parent = clid; tcm->tcm_handle = q->handle; tcm->tcm_info = refcount_read(&q->refcnt); if (nla_put_string(skb, TCA_KIND, q->ops->id)) goto nla_put_failure; if (q->ops->ingress_block_get) { block_index = q->ops->ingress_block_get(q); if (block_index && nla_put_u32(skb, TCA_INGRESS_BLOCK, block_index)) goto nla_put_failure; } if (q->ops->egress_block_get) { block_index = q->ops->egress_block_get(q); if (block_index && nla_put_u32(skb, TCA_EGRESS_BLOCK, block_index)) goto nla_put_failure; } if (q->ops->dump && q->ops->dump(q, skb) < 0) goto nla_put_failure; if (nla_put_u8(skb, TCA_HW_OFFLOAD, !!(q->flags & TCQ_F_OFFLOADED))) goto nla_put_failure; qlen = qdisc_qlen_sum(q); stab = rtnl_dereference(q->stab); if (stab && qdisc_dump_stab(skb, stab) < 0) goto nla_put_failure; if (gnet_stats_start_copy_compat(skb, TCA_STATS2, TCA_STATS, TCA_XSTATS, NULL, &d, TCA_PAD) < 0) goto nla_put_failure; if (q->ops->dump_stats && q->ops->dump_stats(q, &d) < 0) goto nla_put_failure; if (qdisc_is_percpu_stats(q)) { cpu_bstats = q->cpu_bstats; cpu_qstats = q->cpu_qstats; } if (gnet_stats_copy_basic(&d, cpu_bstats, &q->bstats, true) < 0 || gnet_stats_copy_rate_est(&d, &q->rate_est) < 0 || gnet_stats_copy_queue(&d, cpu_qstats, &q->qstats, qlen) < 0) goto nla_put_failure; if (gnet_stats_finish_copy(&d) < 0) goto nla_put_failure; if (extack && extack->_msg && nla_put_string(skb, TCA_EXT_WARN_MSG, extack->_msg)) goto out_nlmsg_trim; nlh->nlmsg_len = skb_tail_pointer(skb) - b; return skb->len; out_nlmsg_trim: nla_put_failure: nlmsg_trim(skb, b); return -1; } static bool tc_qdisc_dump_ignore(struct Qdisc *q, bool dump_invisible) { if (q->flags & TCQ_F_BUILTIN) return true; if ((q->flags & TCQ_F_INVISIBLE) && !dump_invisible) return true; return false; } static int qdisc_notify(struct net *net, struct sk_buff *oskb, struct nlmsghdr *n, u32 clid, struct Qdisc *old, struct Qdisc *new, struct netlink_ext_ack *extack) { struct sk_buff *skb; u32 portid = oskb ? NETLINK_CB(oskb).portid : 0; skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); if (!skb) return -ENOBUFS; if (old && !tc_qdisc_dump_ignore(old, false)) { if (tc_fill_qdisc(skb, old, clid, portid, n->nlmsg_seq, 0, RTM_DELQDISC, extack) < 0) goto err_out; } if (new && !tc_qdisc_dump_ignore(new, false)) { if (tc_fill_qdisc(skb, new, clid, portid, n->nlmsg_seq, old ? NLM_F_REPLACE : 0, RTM_NEWQDISC, extack) < 0) goto err_out; } if (skb->len) return rtnetlink_send(skb, net, portid, RTNLGRP_TC, n->nlmsg_flags & NLM_F_ECHO); err_out: kfree_skb(skb); return -EINVAL; } static void notify_and_destroy(struct net *net, struct sk_buff *skb, struct nlmsghdr *n, u32 clid, struct Qdisc *old, struct Qdisc *new, struct netlink_ext_ack *extack) { if (new || old) qdisc_notify(net, skb, n, clid, old, new, extack); if (old) qdisc_put(old); } static void qdisc_clear_nolock(struct Qdisc *sch) { sch->flags &= ~TCQ_F_NOLOCK; if (!(sch->flags & TCQ_F_CPUSTATS)) return; free_percpu(sch->cpu_bstats); free_percpu(sch->cpu_qstats); sch->cpu_bstats = NULL; sch->cpu_qstats = NULL; sch->flags &= ~TCQ_F_CPUSTATS; } /* Graft qdisc "new" to class "classid" of qdisc "parent" or * to device "dev". * * When appropriate send a netlink notification using 'skb' * and "n". * * On success, destroy old qdisc. */ static int qdisc_graft(struct net_device *dev, struct Qdisc *parent, struct sk_buff *skb, struct nlmsghdr *n, u32 classid, struct Qdisc *new, struct Qdisc *old, struct netlink_ext_ack *extack) { struct Qdisc *q = old; struct net *net = dev_net(dev); if (parent == NULL) { unsigned int i, num_q, ingress; struct netdev_queue *dev_queue; ingress = 0; num_q = dev->num_tx_queues; if ((q && q->flags & TCQ_F_INGRESS) || (new && new->flags & TCQ_F_INGRESS)) { ingress = 1; dev_queue = dev_ingress_queue(dev); if (!dev_queue) { NL_SET_ERR_MSG(extack, "Device does not have an ingress queue"); return -ENOENT; } q = rtnl_dereference(dev_queue->qdisc_sleeping); /* This is the counterpart of that qdisc_refcount_inc_nz() call in * __tcf_qdisc_find() for filter requests. */ if (!qdisc_refcount_dec_if_one(q)) { NL_SET_ERR_MSG(extack, "Current ingress or clsact Qdisc has ongoing filter requests"); return -EBUSY; } } if (dev->flags & IFF_UP) dev_deactivate(dev); qdisc_offload_graft_root(dev, new, old, extack); if (new && new->ops->attach && !ingress) goto skip; if (!ingress) { for (i = 0; i < num_q; i++) { dev_queue = netdev_get_tx_queue(dev, i); old = dev_graft_qdisc(dev_queue, new); if (new && i > 0) qdisc_refcount_inc(new); qdisc_put(old); } } else { old = dev_graft_qdisc(dev_queue, NULL); /* {ingress,clsact}_destroy() @old before grafting @new to avoid * unprotected concurrent accesses to net_device::miniq_{in,e}gress * pointer(s) in mini_qdisc_pair_swap(). */ qdisc_notify(net, skb, n, classid, old, new, extack); qdisc_destroy(old); dev_graft_qdisc(dev_queue, new); } skip: if (!ingress) { old = rtnl_dereference(dev->qdisc); if (new && !new->ops->attach) qdisc_refcount_inc(new); rcu_assign_pointer(dev->qdisc, new ? : &noop_qdisc); notify_and_destroy(net, skb, n, classid, old, new, extack); if (new && new->ops->attach) new->ops->attach(new); } if (dev->flags & IFF_UP) dev_activate(dev); } else { const struct Qdisc_class_ops *cops = parent->ops->cl_ops; unsigned long cl; int err; /* Only support running class lockless if parent is lockless */ if (new && (new->flags & TCQ_F_NOLOCK) && !(parent->flags & TCQ_F_NOLOCK)) qdisc_clear_nolock(new); if (!cops || !cops->graft) return -EOPNOTSUPP; cl = cops->find(parent, classid); if (!cl) { NL_SET_ERR_MSG(extack, "Specified class not found"); return -ENOENT; } if (new && new->ops == &noqueue_qdisc_ops) { NL_SET_ERR_MSG(extack, "Cannot assign noqueue to a class"); return -EINVAL; } if (new && !(parent->flags & TCQ_F_MQROOT) && rcu_access_pointer(new->stab)) { NL_SET_ERR_MSG(extack, "STAB not supported on a non root"); return -EINVAL; } err = cops->graft(parent, cl, new, &old, extack); if (err) return err; notify_and_destroy(net, skb, n, classid, old, new, extack); } return 0; } static int qdisc_block_indexes_set(struct Qdisc *sch, struct nlattr **tca, struct netlink_ext_ack *extack) { u32 block_index; if (tca[TCA_INGRESS_BLOCK]) { block_index = nla_get_u32(tca[TCA_INGRESS_BLOCK]); if (!block_index) { NL_SET_ERR_MSG(extack, "Ingress block index cannot be 0"); return -EINVAL; } if (!sch->ops->ingress_block_set) { NL_SET_ERR_MSG(extack, "Ingress block sharing is not supported"); return -EOPNOTSUPP; } sch->ops->ingress_block_set(sch, block_index); } if (tca[TCA_EGRESS_BLOCK]) { block_index = nla_get_u32(tca[TCA_EGRESS_BLOCK]); if (!block_index) { NL_SET_ERR_MSG(extack, "Egress block index cannot be 0"); return -EINVAL; } if (!sch->ops->egress_block_set) { NL_SET_ERR_MSG(extack, "Egress block sharing is not supported"); return -EOPNOTSUPP; } sch->ops->egress_block_set(sch, block_index); } return 0; } /* Allocate and initialize new qdisc. Parameters are passed via opt. */ static struct Qdisc *qdisc_create(struct net_device *dev, struct netdev_queue *dev_queue, u32 parent, u32 handle, struct nlattr **tca, int *errp, struct netlink_ext_ack *extack) { int err; struct nlattr *kind = tca[TCA_KIND]; struct Qdisc *sch; struct Qdisc_ops *ops; struct qdisc_size_table *stab; ops = qdisc_lookup_ops(kind); #ifdef CONFIG_MODULES if (ops == NULL && kind != NULL) { char name[IFNAMSIZ]; if (nla_strscpy(name, kind, IFNAMSIZ) >= 0) { /* We dropped the RTNL semaphore in order to * perform the module load. So, even if we * succeeded in loading the module we have to * tell the caller to replay the request. We * indicate this using -EAGAIN. * We replay the request because the device may * go away in the mean time. */ rtnl_unlock(); request_module("sch_%s", name); rtnl_lock(); ops = qdisc_lookup_ops(kind); if (ops != NULL) { /* We will try again qdisc_lookup_ops, * so don't keep a reference. */ module_put(ops->owner); err = -EAGAIN; goto err_out; } } } #endif err = -ENOENT; if (!ops) { NL_SET_ERR_MSG(extack, "Specified qdisc kind is unknown"); goto err_out; } sch = qdisc_alloc(dev_queue, ops, extack); if (IS_ERR(sch)) { err = PTR_ERR(sch); goto err_out2; } sch->parent = parent; if (handle == TC_H_INGRESS) { if (!(sch->flags & TCQ_F_INGRESS)) { NL_SET_ERR_MSG(extack, "Specified parent ID is reserved for ingress and clsact Qdiscs"); err = -EINVAL; goto err_out3; } handle = TC_H_MAKE(TC_H_INGRESS, 0); } else { if (handle == 0) { handle = qdisc_alloc_handle(dev); if (handle == 0) { NL_SET_ERR_MSG(extack, "Maximum number of qdisc handles was exceeded"); err = -ENOSPC; goto err_out3; } } if (!netif_is_multiqueue(dev)) sch->flags |= TCQ_F_ONETXQUEUE; } sch->handle = handle; /* This exist to keep backward compatible with a userspace * loophole, what allowed userspace to get IFF_NO_QUEUE * facility on older kernels by setting tx_queue_len=0 (prior * to qdisc init), and then forgot to reinit tx_queue_len * before again attaching a qdisc. */ if ((dev->priv_flags & IFF_NO_QUEUE) && (dev->tx_queue_len == 0)) { dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; netdev_info(dev, "Caught tx_queue_len zero misconfig\n"); } err = qdisc_block_indexes_set(sch, tca, extack); if (err) goto err_out3; if (ops->init) { err = ops->init(sch, tca[TCA_OPTIONS], extack); if (err != 0) goto err_out5; } if (tca[TCA_STAB]) { stab = qdisc_get_stab(tca[TCA_STAB], extack); if (IS_ERR(stab)) { err = PTR_ERR(stab); goto err_out4; } rcu_assign_pointer(sch->stab, stab); } if (tca[TCA_RATE]) { err = -EOPNOTSUPP; if (sch->flags & TCQ_F_MQROOT) { NL_SET_ERR_MSG(extack, "Cannot attach rate estimator to a multi-queue root qdisc"); goto err_out4; } err = gen_new_estimator(&sch->bstats, sch->cpu_bstats, &sch->rate_est, NULL, true, tca[TCA_RATE]); if (err) { NL_SET_ERR_MSG(extack, "Failed to generate new estimator"); goto err_out4; } } qdisc_hash_add(sch, false); trace_qdisc_create(ops, dev, parent); return sch; err_out5: /* ops->init() failed, we call ->destroy() like qdisc_create_dflt() */ if (ops->destroy) ops->destroy(sch); err_out3: lockdep_unregister_key(&sch->root_lock_key); netdev_put(dev, &sch->dev_tracker); qdisc_free(sch); err_out2: module_put(ops->owner); err_out: *errp = err; return NULL; err_out4: /* * Any broken qdiscs that would require a ops->reset() here? * The qdisc was never in action so it shouldn't be necessary. */ qdisc_put_stab(rtnl_dereference(sch->stab)); if (ops->destroy) ops->destroy(sch); goto err_out3; } static int qdisc_change(struct Qdisc *sch, struct nlattr **tca, struct netlink_ext_ack *extack) { struct qdisc_size_table *ostab, *stab = NULL; int err = 0; if (tca[TCA_OPTIONS]) { if (!sch->ops->change) { NL_SET_ERR_MSG(extack, "Change operation not supported by specified qdisc"); return -EINVAL; } if (tca[TCA_INGRESS_BLOCK] || tca[TCA_EGRESS_BLOCK]) { NL_SET_ERR_MSG(extack, "Change of blocks is not supported"); return -EOPNOTSUPP; } err = sch->ops->change(sch, tca[TCA_OPTIONS], extack); if (err) return err; } if (tca[TCA_STAB]) { stab = qdisc_get_stab(tca[TCA_STAB], extack); if (IS_ERR(stab)) return PTR_ERR(stab); } ostab = rtnl_dereference(sch->stab); rcu_assign_pointer(sch->stab, stab); qdisc_put_stab(ostab); if (tca[TCA_RATE]) { /* NB: ignores errors from replace_estimator because change can't be undone. */ if (sch->flags & TCQ_F_MQROOT) goto out; gen_replace_estimator(&sch->bstats, sch->cpu_bstats, &sch->rate_est, NULL, true, tca[TCA_RATE]); } out: return 0; } struct check_loop_arg { struct qdisc_walker w; struct Qdisc *p; int depth; }; static int check_loop_fn(struct Qdisc *q, unsigned long cl, struct qdisc_walker *w); static int check_loop(struct Qdisc *q, struct Qdisc *p, int depth) { struct check_loop_arg arg; if (q->ops->cl_ops == NULL) return 0; arg.w.stop = arg.w.skip = arg.w.count = 0; arg.w.fn = check_loop_fn; arg.depth = depth; arg.p = p; q->ops->cl_ops->walk(q, &arg.w); return arg.w.stop ? -ELOOP : 0; } static int check_loop_fn(struct Qdisc *q, unsigned long cl, struct qdisc_walker *w) { struct Qdisc *leaf; const struct Qdisc_class_ops *cops = q->ops->cl_ops; struct check_loop_arg *arg = (struct check_loop_arg *)w; leaf = cops->leaf(q, cl); if (leaf) { if (leaf == arg->p || arg->depth > 7) return -ELOOP; return check_loop(leaf, arg->p, arg->depth + 1); } return 0; } const struct nla_policy rtm_tca_policy[TCA_MAX + 1] = { [TCA_KIND] = { .type = NLA_STRING }, [TCA_RATE] = { .type = NLA_BINARY, .len = sizeof(struct tc_estimator) }, [TCA_STAB] = { .type = NLA_NESTED }, [TCA_DUMP_INVISIBLE] = { .type = NLA_FLAG }, [TCA_CHAIN] = { .type = NLA_U32 }, [TCA_INGRESS_BLOCK] = { .type = NLA_U32 }, [TCA_EGRESS_BLOCK] = { .type = NLA_U32 }, }; /* * Delete/get qdisc. */ static int tc_get_qdisc(struct sk_buff *skb, struct nlmsghdr *n, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); struct tcmsg *tcm = nlmsg_data(n); struct nlattr *tca[TCA_MAX + 1]; struct net_device *dev; u32 clid; struct Qdisc *q = NULL; struct Qdisc *p = NULL; int err; err = nlmsg_parse_deprecated(n, sizeof(*tcm), tca, TCA_MAX, rtm_tca_policy, extack); if (err < 0) return err; dev = __dev_get_by_index(net, tcm->tcm_ifindex); if (!dev) return -ENODEV; clid = tcm->tcm_parent; if (clid) { if (clid != TC_H_ROOT) { if (TC_H_MAJ(clid) != TC_H_MAJ(TC_H_INGRESS)) { p = qdisc_lookup(dev, TC_H_MAJ(clid)); if (!p) { NL_SET_ERR_MSG(extack, "Failed to find qdisc with specified classid"); return -ENOENT; } q = qdisc_leaf(p, clid); } else if (dev_ingress_queue(dev)) { q = rtnl_dereference(dev_ingress_queue(dev)->qdisc_sleeping); } } else { q = rtnl_dereference(dev->qdisc); } if (!q) { NL_SET_ERR_MSG(extack, "Cannot find specified qdisc on specified device"); return -ENOENT; } if (tcm->tcm_handle && q->handle != tcm->tcm_handle) { NL_SET_ERR_MSG(extack, "Invalid handle"); return -EINVAL; } } else { q = qdisc_lookup(dev, tcm->tcm_handle); if (!q) { NL_SET_ERR_MSG(extack, "Failed to find qdisc with specified handle"); return -ENOENT; } } if (tca[TCA_KIND] && nla_strcmp(tca[TCA_KIND], q->ops->id)) { NL_SET_ERR_MSG(extack, "Invalid qdisc name"); return -EINVAL; } if (n->nlmsg_type == RTM_DELQDISC) { if (!clid) { NL_SET_ERR_MSG(extack, "Classid cannot be zero"); return -EINVAL; } if (q->handle == 0) { NL_SET_ERR_MSG(extack, "Cannot delete qdisc with handle of zero"); return -ENOENT; } err = qdisc_graft(dev, p, skb, n, clid, NULL, q, extack); if (err != 0) return err; } else { qdisc_notify(net, skb, n, clid, NULL, q, NULL); } return 0; } static bool req_create_or_replace(struct nlmsghdr *n) { return (n->nlmsg_flags & NLM_F_CREATE && n->nlmsg_flags & NLM_F_REPLACE); } static bool req_create_exclusive(struct nlmsghdr *n) { return (n->nlmsg_flags & NLM_F_CREATE && n->nlmsg_flags & NLM_F_EXCL); } static bool req_change(struct nlmsghdr *n) { return (!(n->nlmsg_flags & NLM_F_CREATE) && !(n->nlmsg_flags & NLM_F_REPLACE) && !(n->nlmsg_flags & NLM_F_EXCL)); } /* * Create/change qdisc. */ static int tc_modify_qdisc(struct sk_buff *skb, struct nlmsghdr *n, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); struct tcmsg *tcm; struct nlattr *tca[TCA_MAX + 1]; struct net_device *dev; u32 clid; struct Qdisc *q, *p; int err; replay: /* Reinit, just in case something touches this. */ err = nlmsg_parse_deprecated(n, sizeof(*tcm), tca, TCA_MAX, rtm_tca_policy, extack); if (err < 0) return err; tcm = nlmsg_data(n); clid = tcm->tcm_parent; q = p = NULL; dev = __dev_get_by_index(net, tcm->tcm_ifindex); if (!dev) return -ENODEV; if (clid) { if (clid != TC_H_ROOT) { if (clid != TC_H_INGRESS) { p = qdisc_lookup(dev, TC_H_MAJ(clid)); if (!p) { NL_SET_ERR_MSG(extack, "Failed to find specified qdisc"); return -ENOENT; } q = qdisc_leaf(p, clid); } else if (dev_ingress_queue_create(dev)) { q = rtnl_dereference(dev_ingress_queue(dev)->qdisc_sleeping); } } else { q = rtnl_dereference(dev->qdisc); } /* It may be default qdisc, ignore it */ if (q && q->handle == 0) q = NULL; if (!q || !tcm->tcm_handle || q->handle != tcm->tcm_handle) { if (tcm->tcm_handle) { if (q && !(n->nlmsg_flags & NLM_F_REPLACE)) { NL_SET_ERR_MSG(extack, "NLM_F_REPLACE needed to override"); return -EEXIST; } if (TC_H_MIN(tcm->tcm_handle)) { NL_SET_ERR_MSG(extack, "Invalid minor handle"); return -EINVAL; } q = qdisc_lookup(dev, tcm->tcm_handle); if (!q) goto create_n_graft; if (q->parent != tcm->tcm_parent) { NL_SET_ERR_MSG(extack, "Cannot move an existing qdisc to a different parent"); return -EINVAL; } if (n->nlmsg_flags & NLM_F_EXCL) { NL_SET_ERR_MSG(extack, "Exclusivity flag on, cannot override"); return -EEXIST; } if (tca[TCA_KIND] && nla_strcmp(tca[TCA_KIND], q->ops->id)) { NL_SET_ERR_MSG(extack, "Invalid qdisc name"); return -EINVAL; } if (q->flags & TCQ_F_INGRESS) { NL_SET_ERR_MSG(extack, "Cannot regraft ingress or clsact Qdiscs"); return -EINVAL; } if (q == p || (p && check_loop(q, p, 0))) { NL_SET_ERR_MSG(extack, "Qdisc parent/child loop detected"); return -ELOOP; } if (clid == TC_H_INGRESS) { NL_SET_ERR_MSG(extack, "Ingress cannot graft directly"); return -EINVAL; } qdisc_refcount_inc(q); goto graft; } else { if (!q) goto create_n_graft; /* This magic test requires explanation. * * We know, that some child q is already * attached to this parent and have choice: * 1) change it or 2) create/graft new one. * If the requested qdisc kind is different * than the existing one, then we choose graft. * If they are the same then this is "change" * operation - just let it fallthrough.. * * 1. We are allowed to create/graft only * if the request is explicitly stating * "please create if it doesn't exist". * * 2. If the request is to exclusive create * then the qdisc tcm_handle is not expected * to exist, so that we choose create/graft too. * * 3. The last case is when no flags are set. * This will happen when for example tc * utility issues a "change" command. * Alas, it is sort of hole in API, we * cannot decide what to do unambiguously. * For now we select create/graft. */ if (tca[TCA_KIND] && nla_strcmp(tca[TCA_KIND], q->ops->id)) { if (req_create_or_replace(n) || req_create_exclusive(n)) goto create_n_graft; else if (req_change(n)) goto create_n_graft2; } } } } else { if (!tcm->tcm_handle) { NL_SET_ERR_MSG(extack, "Handle cannot be zero"); return -EINVAL; } q = qdisc_lookup(dev, tcm->tcm_handle); } /* Change qdisc parameters */ if (!q) { NL_SET_ERR_MSG(extack, "Specified qdisc not found"); return -ENOENT; } if (n->nlmsg_flags & NLM_F_EXCL) { NL_SET_ERR_MSG(extack, "Exclusivity flag on, cannot modify"); return -EEXIST; } if (tca[TCA_KIND] && nla_strcmp(tca[TCA_KIND], q->ops->id)) { NL_SET_ERR_MSG(extack, "Invalid qdisc name"); return -EINVAL; } err = qdisc_change(q, tca, extack); if (err == 0) qdisc_notify(net, skb, n, clid, NULL, q, extack); return err; create_n_graft: if (!(n->nlmsg_flags & NLM_F_CREATE)) { NL_SET_ERR_MSG(extack, "Qdisc not found. To create specify NLM_F_CREATE flag"); return -ENOENT; } create_n_graft2: if (clid == TC_H_INGRESS) { if (dev_ingress_queue(dev)) { q = qdisc_create(dev, dev_ingress_queue(dev), tcm->tcm_parent, tcm->tcm_parent, tca, &err, extack); } else { NL_SET_ERR_MSG(extack, "Cannot find ingress queue for specified device"); err = -ENOENT; } } else { struct netdev_queue *dev_queue; if (p && p->ops->cl_ops && p->ops->cl_ops->select_queue) dev_queue = p->ops->cl_ops->select_queue(p, tcm); else if (p) dev_queue = p->dev_queue; else dev_queue = netdev_get_tx_queue(dev, 0); q = qdisc_create(dev, dev_queue, tcm->tcm_parent, tcm->tcm_handle, tca, &err, extack); } if (q == NULL) { if (err == -EAGAIN) goto replay; return err; } graft: err = qdisc_graft(dev, p, skb, n, clid, q, NULL, extack); if (err) { if (q) qdisc_put(q); return err; } return 0; } static int tc_dump_qdisc_root(struct Qdisc *root, struct sk_buff *skb, struct netlink_callback *cb, int *q_idx_p, int s_q_idx, bool recur, bool dump_invisible) { int ret = 0, q_idx = *q_idx_p; struct Qdisc *q; int b; if (!root) return 0; q = root; if (q_idx < s_q_idx) { q_idx++; } else { if (!tc_qdisc_dump_ignore(q, dump_invisible) && tc_fill_qdisc(skb, q, q->parent, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, RTM_NEWQDISC, NULL) <= 0) goto done; q_idx++; } /* If dumping singletons, there is no qdisc_dev(root) and the singleton * itself has already been dumped. * * If we've already dumped the top-level (ingress) qdisc above and the global * qdisc hashtable, we don't want to hit it again */ if (!qdisc_dev(root) || !recur) goto out; hash_for_each(qdisc_dev(root)->qdisc_hash, b, q, hash) { if (q_idx < s_q_idx) { q_idx++; continue; } if (!tc_qdisc_dump_ignore(q, dump_invisible) && tc_fill_qdisc(skb, q, q->parent, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, RTM_NEWQDISC, NULL) <= 0) goto done; q_idx++; } out: *q_idx_p = q_idx; return ret; done: ret = -1; goto out; } static int tc_dump_qdisc(struct sk_buff *skb, struct netlink_callback *cb) { struct net *net = sock_net(skb->sk); int idx, q_idx; int s_idx, s_q_idx; struct net_device *dev; const struct nlmsghdr *nlh = cb->nlh; struct nlattr *tca[TCA_MAX + 1]; int err; s_idx = cb->args[0]; s_q_idx = q_idx = cb->args[1]; idx = 0; ASSERT_RTNL(); err = nlmsg_parse_deprecated(nlh, sizeof(struct tcmsg), tca, TCA_MAX, rtm_tca_policy, cb->extack); if (err < 0) return err; for_each_netdev(net, dev) { struct netdev_queue *dev_queue; if (idx < s_idx) goto cont; if (idx > s_idx) s_q_idx = 0; q_idx = 0; if (tc_dump_qdisc_root(rtnl_dereference(dev->qdisc), skb, cb, &q_idx, s_q_idx, true, tca[TCA_DUMP_INVISIBLE]) < 0) goto done; dev_queue = dev_ingress_queue(dev); if (dev_queue && tc_dump_qdisc_root(rtnl_dereference(dev_queue->qdisc_sleeping), skb, cb, &q_idx, s_q_idx, false, tca[TCA_DUMP_INVISIBLE]) < 0) goto done; cont: idx++; } done: cb->args[0] = idx; cb->args[1] = q_idx; return skb->len; } /************************************************ * Traffic classes manipulation. * ************************************************/ static int tc_fill_tclass(struct sk_buff *skb, struct Qdisc *q, unsigned long cl, u32 portid, u32 seq, u16 flags, int event, struct netlink_ext_ack *extack) { struct tcmsg *tcm; struct nlmsghdr *nlh; unsigned char *b = skb_tail_pointer(skb); struct gnet_dump d; const struct Qdisc_class_ops *cl_ops = q->ops->cl_ops; cond_resched(); nlh = nlmsg_put(skb, portid, seq, event, sizeof(*tcm), flags); if (!nlh) goto out_nlmsg_trim; tcm = nlmsg_data(nlh); tcm->tcm_family = AF_UNSPEC; tcm->tcm__pad1 = 0; tcm->tcm__pad2 = 0; tcm->tcm_ifindex = qdisc_dev(q)->ifindex; tcm->tcm_parent = q->handle; tcm->tcm_handle = q->handle; tcm->tcm_info = 0; if (nla_put_string(skb, TCA_KIND, q->ops->id)) goto nla_put_failure; if (cl_ops->dump && cl_ops->dump(q, cl, skb, tcm) < 0) goto nla_put_failure; if (gnet_stats_start_copy_compat(skb, TCA_STATS2, TCA_STATS, TCA_XSTATS, NULL, &d, TCA_PAD) < 0) goto nla_put_failure; if (cl_ops->dump_stats && cl_ops->dump_stats(q, cl, &d) < 0) goto nla_put_failure; if (gnet_stats_finish_copy(&d) < 0) goto nla_put_failure; if (extack && extack->_msg && nla_put_string(skb, TCA_EXT_WARN_MSG, extack->_msg)) goto out_nlmsg_trim; nlh->nlmsg_len = skb_tail_pointer(skb) - b; return skb->len; out_nlmsg_trim: nla_put_failure: nlmsg_trim(skb, b); return -1; } static int tclass_notify(struct net *net, struct sk_buff *oskb, struct nlmsghdr *n, struct Qdisc *q, unsigned long cl, int event, struct netlink_ext_ack *extack) { struct sk_buff *skb; u32 portid = oskb ? NETLINK_CB(oskb).portid : 0; skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); if (!skb) return -ENOBUFS; if (tc_fill_tclass(skb, q, cl, portid, n->nlmsg_seq, 0, event, extack) < 0) { kfree_skb(skb); return -EINVAL; } return rtnetlink_send(skb, net, portid, RTNLGRP_TC, n->nlmsg_flags & NLM_F_ECHO); } static int tclass_del_notify(struct net *net, const struct Qdisc_class_ops *cops, struct sk_buff *oskb, struct nlmsghdr *n, struct Qdisc *q, unsigned long cl, struct netlink_ext_ack *extack) { u32 portid = oskb ? NETLINK_CB(oskb).portid : 0; struct sk_buff *skb; int err = 0; if (!cops->delete) return -EOPNOTSUPP; skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); if (!skb) return -ENOBUFS; if (tc_fill_tclass(skb, q, cl, portid, n->nlmsg_seq, 0, RTM_DELTCLASS, extack) < 0) { kfree_skb(skb); return -EINVAL; } err = cops->delete(q, cl, extack); if (err) { kfree_skb(skb); return err; } err = rtnetlink_send(skb, net, portid, RTNLGRP_TC, n->nlmsg_flags & NLM_F_ECHO); return err; } #ifdef CONFIG_NET_CLS struct tcf_bind_args { struct tcf_walker w; unsigned long base; unsigned long cl; u32 classid; }; static int tcf_node_bind(struct tcf_proto *tp, void *n, struct tcf_walker *arg) { struct tcf_bind_args *a = (void *)arg; if (n && tp->ops->bind_class) { struct Qdisc *q = tcf_block_q(tp->chain->block); sch_tree_lock(q); tp->ops->bind_class(n, a->classid, a->cl, q, a->base); sch_tree_unlock(q); } return 0; } struct tc_bind_class_args { struct qdisc_walker w; unsigned long new_cl; u32 portid; u32 clid; }; static int tc_bind_class_walker(struct Qdisc *q, unsigned long cl, struct qdisc_walker *w) { struct tc_bind_class_args *a = (struct tc_bind_class_args *)w; const struct Qdisc_class_ops *cops = q->ops->cl_ops; struct tcf_block *block; struct tcf_chain *chain; block = cops->tcf_block(q, cl, NULL); if (!block) return 0; for (chain = tcf_get_next_chain(block, NULL); chain; chain = tcf_get_next_chain(block, chain)) { struct tcf_proto *tp; for (tp = tcf_get_next_proto(chain, NULL); tp; tp = tcf_get_next_proto(chain, tp)) { struct tcf_bind_args arg = {}; arg.w.fn = tcf_node_bind; arg.classid = a->clid; arg.base = cl; arg.cl = a->new_cl; tp->ops->walk(tp, &arg.w, true); } } return 0; } static void tc_bind_tclass(struct Qdisc *q, u32 portid, u32 clid, unsigned long new_cl) { const struct Qdisc_class_ops *cops = q->ops->cl_ops; struct tc_bind_class_args args = {}; if (!cops->tcf_block) return; args.portid = portid; args.clid = clid; args.new_cl = new_cl; args.w.fn = tc_bind_class_walker; q->ops->cl_ops->walk(q, &args.w); } #else static void tc_bind_tclass(struct Qdisc *q, u32 portid, u32 clid, unsigned long new_cl) { } #endif static int tc_ctl_tclass(struct sk_buff *skb, struct nlmsghdr *n, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); struct tcmsg *tcm = nlmsg_data(n); struct nlattr *tca[TCA_MAX + 1]; struct net_device *dev; struct Qdisc *q = NULL; const struct Qdisc_class_ops *cops; unsigned long cl = 0; unsigned long new_cl; u32 portid; u32 clid; u32 qid; int err; err = nlmsg_parse_deprecated(n, sizeof(*tcm), tca, TCA_MAX, rtm_tca_policy, extack); if (err < 0) return err; dev = __dev_get_by_index(net, tcm->tcm_ifindex); if (!dev) return -ENODEV; /* parent == TC_H_UNSPEC - unspecified parent. parent == TC_H_ROOT - class is root, which has no parent. parent == X:0 - parent is root class. parent == X:Y - parent is a node in hierarchy. parent == 0:Y - parent is X:Y, where X:0 is qdisc. handle == 0:0 - generate handle from kernel pool. handle == 0:Y - class is X:Y, where X:0 is qdisc. handle == X:Y - clear. handle == X:0 - root class. */ /* Step 1. Determine qdisc handle X:0 */ portid = tcm->tcm_parent; clid = tcm->tcm_handle; qid = TC_H_MAJ(clid); if (portid != TC_H_ROOT) { u32 qid1 = TC_H_MAJ(portid); if (qid && qid1) { /* If both majors are known, they must be identical. */ if (qid != qid1) return -EINVAL; } else if (qid1) { qid = qid1; } else if (qid == 0) qid = rtnl_dereference(dev->qdisc)->handle; /* Now qid is genuine qdisc handle consistent * both with parent and child. * * TC_H_MAJ(portid) still may be unspecified, complete it now. */ if (portid) portid = TC_H_MAKE(qid, portid); } else { if (qid == 0) qid = rtnl_dereference(dev->qdisc)->handle; } /* OK. Locate qdisc */ q = qdisc_lookup(dev, qid); if (!q) return -ENOENT; /* An check that it supports classes */ cops = q->ops->cl_ops; if (cops == NULL) return -EINVAL; /* Now try to get class */ if (clid == 0) { if (portid == TC_H_ROOT) clid = qid; } else clid = TC_H_MAKE(qid, clid); if (clid) cl = cops->find(q, clid); if (cl == 0) { err = -ENOENT; if (n->nlmsg_type != RTM_NEWTCLASS || !(n->nlmsg_flags & NLM_F_CREATE)) goto out; } else { switch (n->nlmsg_type) { case RTM_NEWTCLASS: err = -EEXIST; if (n->nlmsg_flags & NLM_F_EXCL) goto out; break; case RTM_DELTCLASS: err = tclass_del_notify(net, cops, skb, n, q, cl, extack); /* Unbind the class with flilters with 0 */ tc_bind_tclass(q, portid, clid, 0); goto out; case RTM_GETTCLASS: err = tclass_notify(net, skb, n, q, cl, RTM_NEWTCLASS, extack); goto out; default: err = -EINVAL; goto out; } } if (tca[TCA_INGRESS_BLOCK] || tca[TCA_EGRESS_BLOCK]) { NL_SET_ERR_MSG(extack, "Shared blocks are not supported for classes"); return -EOPNOTSUPP; } new_cl = cl; err = -EOPNOTSUPP; if (cops->change) err = cops->change(q, clid, portid, tca, &new_cl, extack); if (err == 0) { tclass_notify(net, skb, n, q, new_cl, RTM_NEWTCLASS, extack); /* We just create a new class, need to do reverse binding. */ if (cl != new_cl) tc_bind_tclass(q, portid, clid, new_cl); } out: return err; } struct qdisc_dump_args { struct qdisc_walker w; struct sk_buff *skb; struct netlink_callback *cb; }; static int qdisc_class_dump(struct Qdisc *q, unsigned long cl, struct qdisc_walker *arg) { struct qdisc_dump_args *a = (struct qdisc_dump_args *)arg; return tc_fill_tclass(a->skb, q, cl, NETLINK_CB(a->cb->skb).portid, a->cb->nlh->nlmsg_seq, NLM_F_MULTI, RTM_NEWTCLASS, NULL); } static int tc_dump_tclass_qdisc(struct Qdisc *q, struct sk_buff *skb, struct tcmsg *tcm, struct netlink_callback *cb, int *t_p, int s_t) { struct qdisc_dump_args arg; if (tc_qdisc_dump_ignore(q, false) || *t_p < s_t || !q->ops->cl_ops || (tcm->tcm_parent && TC_H_MAJ(tcm->tcm_parent) != q->handle)) { (*t_p)++; return 0; } if (*t_p > s_t) memset(&cb->args[1], 0, sizeof(cb->args)-sizeof(cb->args[0])); arg.w.fn = qdisc_class_dump; arg.skb = skb; arg.cb = cb; arg.w.stop = 0; arg.w.skip = cb->args[1]; arg.w.count = 0; q->ops->cl_ops->walk(q, &arg.w); cb->args[1] = arg.w.count; if (arg.w.stop) return -1; (*t_p)++; return 0; } static int tc_dump_tclass_root(struct Qdisc *root, struct sk_buff *skb, struct tcmsg *tcm, struct netlink_callback *cb, int *t_p, int s_t, bool recur) { struct Qdisc *q; int b; if (!root) return 0; if (tc_dump_tclass_qdisc(root, skb, tcm, cb, t_p, s_t) < 0) return -1; if (!qdisc_dev(root) || !recur) return 0; if (tcm->tcm_parent) { q = qdisc_match_from_root(root, TC_H_MAJ(tcm->tcm_parent)); if (q && q != root && tc_dump_tclass_qdisc(q, skb, tcm, cb, t_p, s_t) < 0) return -1; return 0; } hash_for_each(qdisc_dev(root)->qdisc_hash, b, q, hash) { if (tc_dump_tclass_qdisc(q, skb, tcm, cb, t_p, s_t) < 0) return -1; } return 0; } static int tc_dump_tclass(struct sk_buff *skb, struct netlink_callback *cb) { struct tcmsg *tcm = nlmsg_data(cb->nlh); struct net *net = sock_net(skb->sk); struct netdev_queue *dev_queue; struct net_device *dev; int t, s_t; if (nlmsg_len(cb->nlh) < sizeof(*tcm)) return 0; dev = dev_get_by_index(net, tcm->tcm_ifindex); if (!dev) return 0; s_t = cb->args[0]; t = 0; if (tc_dump_tclass_root(rtnl_dereference(dev->qdisc), skb, tcm, cb, &t, s_t, true) < 0) goto done; dev_queue = dev_ingress_queue(dev); if (dev_queue && tc_dump_tclass_root(rtnl_dereference(dev_queue->qdisc_sleeping), skb, tcm, cb, &t, s_t, false) < 0) goto done; done: cb->args[0] = t; dev_put(dev); return skb->len; } #ifdef CONFIG_PROC_FS static int psched_show(struct seq_file *seq, void *v) { seq_printf(seq, "%08x %08x %08x %08x\n", (u32)NSEC_PER_USEC, (u32)PSCHED_TICKS2NS(1), 1000000, (u32)NSEC_PER_SEC / hrtimer_resolution); return 0; } static int __net_init psched_net_init(struct net *net) { struct proc_dir_entry *e; e = proc_create_single("psched", 0, net->proc_net, psched_show); if (e == NULL) return -ENOMEM; return 0; } static void __net_exit psched_net_exit(struct net *net) { remove_proc_entry("psched", net->proc_net); } #else static int __net_init psched_net_init(struct net *net) { return 0; } static void __net_exit psched_net_exit(struct net *net) { } #endif static struct pernet_operations psched_net_ops = { .init = psched_net_init, .exit = psched_net_exit, }; static int __init pktsched_init(void) { int err; err = register_pernet_subsys(&psched_net_ops); if (err) { pr_err("pktsched_init: " "cannot initialize per netns operations\n"); return err; } register_qdisc(&pfifo_fast_ops); register_qdisc(&pfifo_qdisc_ops); register_qdisc(&bfifo_qdisc_ops); register_qdisc(&pfifo_head_drop_qdisc_ops); register_qdisc(&mq_qdisc_ops); register_qdisc(&noqueue_qdisc_ops); rtnl_register(PF_UNSPEC, RTM_NEWQDISC, tc_modify_qdisc, NULL, 0); rtnl_register(PF_UNSPEC, RTM_DELQDISC, tc_get_qdisc, NULL, 0); rtnl_register(PF_UNSPEC, RTM_GETQDISC, tc_get_qdisc, tc_dump_qdisc, 0); rtnl_register(PF_UNSPEC, RTM_NEWTCLASS, tc_ctl_tclass, NULL, 0); rtnl_register(PF_UNSPEC, RTM_DELTCLASS, tc_ctl_tclass, NULL, 0); rtnl_register(PF_UNSPEC, RTM_GETTCLASS, tc_ctl_tclass, tc_dump_tclass, 0); return 0; } subsys_initcall(pktsched_init);
195 501 5044 484 4819 289 62 62 72 117 103 18 93 94 93 55 55 55 55 570 42 566 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 /* SPDX-License-Identifier: GPL-2.0+ */ #ifndef _LINUX_XARRAY_H #define _LINUX_XARRAY_H /* * eXtensible Arrays * Copyright (c) 2017 Microsoft Corporation * Author: Matthew Wilcox <willy@infradead.org> * * See Documentation/core-api/xarray.rst for how to use the XArray. */ #include <linux/bitmap.h> #include <linux/bug.h> #include <linux/compiler.h> #include <linux/gfp.h> #include <linux/kconfig.h> #include <linux/kernel.h> #include <linux/rcupdate.h> #include <linux/sched/mm.h> #include <linux/spinlock.h> #include <linux/types.h> /* * The bottom two bits of the entry determine how the XArray interprets * the contents: * * 00: Pointer entry * 10: Internal entry * x1: Value entry or tagged pointer * * Attempting to store internal entries in the XArray is a bug. * * Most internal entries are pointers to the next node in the tree. * The following internal entries have a special meaning: * * 0-62: Sibling entries * 256: Retry entry * 257: Zero entry * * Errors are also represented as internal entries, but use the negative * space (-4094 to -2). They're never stored in the slots array; only * returned by the normal API. */ #define BITS_PER_XA_VALUE (BITS_PER_LONG - 1) /** * xa_mk_value() - Create an XArray entry from an integer. * @v: Value to store in XArray. * * Context: Any context. * Return: An entry suitable for storing in the XArray. */ static inline void *xa_mk_value(unsigned long v) { WARN_ON((long)v < 0); return (void *)((v << 1) | 1); } /** * xa_to_value() - Get value stored in an XArray entry. * @entry: XArray entry. * * Context: Any context. * Return: The value stored in the XArray entry. */ static inline unsigned long xa_to_value(const void *entry) { return (unsigned long)entry >> 1; } /** * xa_is_value() - Determine if an entry is a value. * @entry: XArray entry. * * Context: Any context. * Return: True if the entry is a value, false if it is a pointer. */ static inline bool xa_is_value(const void *entry) { return (unsigned long)entry & 1; } /** * xa_tag_pointer() - Create an XArray entry for a tagged pointer. * @p: Plain pointer. * @tag: Tag value (0, 1 or 3). * * If the user of the XArray prefers, they can tag their pointers instead * of storing value entries. Three tags are available (0, 1 and 3). * These are distinct from the xa_mark_t as they are not replicated up * through the array and cannot be searched for. * * Context: Any context. * Return: An XArray entry. */ static inline void *xa_tag_pointer(void *p, unsigned long tag) { return (void *)((unsigned long)p | tag); } /** * xa_untag_pointer() - Turn an XArray entry into a plain pointer. * @entry: XArray entry. * * If you have stored a tagged pointer in the XArray, call this function * to get the untagged version of the pointer. * * Context: Any context. * Return: A pointer. */ static inline void *xa_untag_pointer(void *entry) { return (void *)((unsigned long)entry & ~3UL); } /** * xa_pointer_tag() - Get the tag stored in an XArray entry. * @entry: XArray entry. * * If you have stored a tagged pointer in the XArray, call this function * to get the tag of that pointer. * * Context: Any context. * Return: A tag. */ static inline unsigned int xa_pointer_tag(void *entry) { return (unsigned long)entry & 3UL; } /* * xa_mk_internal() - Create an internal entry. * @v: Value to turn into an internal entry. * * Internal entries are used for a number of purposes. Entries 0-255 are * used for sibling entries (only 0-62 are used by the current code). 256 * is used for the retry entry. 257 is used for the reserved / zero entry. * Negative internal entries are used to represent errnos. Node pointers * are also tagged as internal entries in some situations. * * Context: Any context. * Return: An XArray internal entry corresponding to this value. */ static inline void *xa_mk_internal(unsigned long v) { return (void *)((v << 2) | 2); } /* * xa_to_internal() - Extract the value from an internal entry. * @entry: XArray entry. * * Context: Any context. * Return: The value which was stored in the internal entry. */ static inline unsigned long xa_to_internal(const void *entry) { return (unsigned long)entry >> 2; } /* * xa_is_internal() - Is the entry an internal entry? * @entry: XArray entry. * * Context: Any context. * Return: %true if the entry is an internal entry. */ static inline bool xa_is_internal(const void *entry) { return ((unsigned long)entry & 3) == 2; } #define XA_ZERO_ENTRY xa_mk_internal(257) /** * xa_is_zero() - Is the entry a zero entry? * @entry: Entry retrieved from the XArray * * The normal API will return NULL as the contents of a slot containing * a zero entry. You can only see zero entries by using the advanced API. * * Return: %true if the entry is a zero entry. */ static inline bool xa_is_zero(const void *entry) { return unlikely(entry == XA_ZERO_ENTRY); } /** * xa_is_err() - Report whether an XArray operation returned an error * @entry: Result from calling an XArray function * * If an XArray operation cannot complete an operation, it will return * a special value indicating an error. This function tells you * whether an error occurred; xa_err() tells you which error occurred. * * Context: Any context. * Return: %true if the entry indicates an error. */ static inline bool xa_is_err(const void *entry) { return unlikely(xa_is_internal(entry) && entry >= xa_mk_internal(-MAX_ERRNO)); } /** * xa_err() - Turn an XArray result into an errno. * @entry: Result from calling an XArray function. * * If an XArray operation cannot complete an operation, it will return * a special pointer value which encodes an errno. This function extracts * the errno from the pointer value, or returns 0 if the pointer does not * represent an errno. * * Context: Any context. * Return: A negative errno or 0. */ static inline int xa_err(void *entry) { /* xa_to_internal() would not do sign extension. */ if (xa_is_err(entry)) return (long)entry >> 2; return 0; } /** * struct xa_limit - Represents a range of IDs. * @min: The lowest ID to allocate (inclusive). * @max: The maximum ID to allocate (inclusive). * * This structure is used either directly or via the XA_LIMIT() macro * to communicate the range of IDs that are valid for allocation. * Three common ranges are predefined for you: * * xa_limit_32b - [0 - UINT_MAX] * * xa_limit_31b - [0 - INT_MAX] * * xa_limit_16b - [0 - USHRT_MAX] */ struct xa_limit { u32 max; u32 min; }; #define XA_LIMIT(_min, _max) (struct xa_limit) { .min = _min, .max = _max } #define xa_limit_32b XA_LIMIT(0, UINT_MAX) #define xa_limit_31b XA_LIMIT(0, INT_MAX) #define xa_limit_16b XA_LIMIT(0, USHRT_MAX) typedef unsigned __bitwise xa_mark_t; #define XA_MARK_0 ((__force xa_mark_t)0U) #define XA_MARK_1 ((__force xa_mark_t)1U) #define XA_MARK_2 ((__force xa_mark_t)2U) #define XA_PRESENT ((__force xa_mark_t)8U) #define XA_MARK_MAX XA_MARK_2 #define XA_FREE_MARK XA_MARK_0 enum xa_lock_type { XA_LOCK_IRQ = 1, XA_LOCK_BH = 2, }; /* * Values for xa_flags. The radix tree stores its GFP flags in the xa_flags, * and we remain compatible with that. */ #define XA_FLAGS_LOCK_IRQ ((__force gfp_t)XA_LOCK_IRQ) #define XA_FLAGS_LOCK_BH ((__force gfp_t)XA_LOCK_BH) #define XA_FLAGS_TRACK_FREE ((__force gfp_t)4U) #define XA_FLAGS_ZERO_BUSY ((__force gfp_t)8U) #define XA_FLAGS_ALLOC_WRAPPED ((__force gfp_t)16U) #define XA_FLAGS_ACCOUNT ((__force gfp_t)32U) #define XA_FLAGS_MARK(mark) ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \ (__force unsigned)(mark))) /* ALLOC is for a normal 0-based alloc. ALLOC1 is for an 1-based alloc */ #define XA_FLAGS_ALLOC (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK)) #define XA_FLAGS_ALLOC1 (XA_FLAGS_TRACK_FREE | XA_FLAGS_ZERO_BUSY) /** * struct xarray - The anchor of the XArray. * @xa_lock: Lock that protects the contents of the XArray. * * To use the xarray, define it statically or embed it in your data structure. * It is a very small data structure, so it does not usually make sense to * allocate it separately and keep a pointer to it in your data structure. * * You may use the xa_lock to protect your own data structures as well. */ /* * If all of the entries in the array are NULL, @xa_head is a NULL pointer. * If the only non-NULL entry in the array is at index 0, @xa_head is that * entry. If any other entry in the array is non-NULL, @xa_head points * to an @xa_node. */ struct xarray { spinlock_t xa_lock; /* private: The rest of the data structure is not to be used directly. */ gfp_t xa_flags; void __rcu * xa_head; }; #define XARRAY_INIT(name, flags) { \ .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock), \ .xa_flags = flags, \ .xa_head = NULL, \ } /** * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags. * @name: A string that names your XArray. * @flags: XA_FLAG values. * * This is intended for file scope definitions of XArrays. It declares * and initialises an empty XArray with the chosen name and flags. It is * equivalent to calling xa_init_flags() on the array, but it does the * initialisation at compiletime instead of runtime. */ #define DEFINE_XARRAY_FLAGS(name, flags) \ struct xarray name = XARRAY_INIT(name, flags) /** * DEFINE_XARRAY() - Define an XArray. * @name: A string that names your XArray. * * This is intended for file scope definitions of XArrays. It declares * and initialises an empty XArray with the chosen name. It is equivalent * to calling xa_init() on the array, but it does the initialisation at * compiletime instead of runtime. */ #define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0) /** * DEFINE_XARRAY_ALLOC() - Define an XArray which allocates IDs starting at 0. * @name: A string that names your XArray. * * This is intended for file scope definitions of allocating XArrays. * See also DEFINE_XARRAY(). */ #define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC) /** * DEFINE_XARRAY_ALLOC1() - Define an XArray which allocates IDs starting at 1. * @name: A string that names your XArray. * * This is intended for file scope definitions of allocating XArrays. * See also DEFINE_XARRAY(). */ #define DEFINE_XARRAY_ALLOC1(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC1) void *xa_load(struct xarray *, unsigned long index); void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); void *xa_erase(struct xarray *, unsigned long index); void *xa_store_range(struct xarray *, unsigned long first, unsigned long last, void *entry, gfp_t); bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t); void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); void *xa_find(struct xarray *xa, unsigned long *index, unsigned long max, xa_mark_t) __attribute__((nonnull(2))); void *xa_find_after(struct xarray *xa, unsigned long *index, unsigned long max, xa_mark_t) __attribute__((nonnull(2))); unsigned int xa_extract(struct xarray *, void **dst, unsigned long start, unsigned long max, unsigned int n, xa_mark_t); void xa_destroy(struct xarray *); /** * xa_init_flags() - Initialise an empty XArray with flags. * @xa: XArray. * @flags: XA_FLAG values. * * If you need to initialise an XArray with special flags (eg you need * to take the lock from interrupt context), use this function instead * of xa_init(). * * Context: Any context. */ static inline void xa_init_flags(struct xarray *xa, gfp_t flags) { spin_lock_init(&xa->xa_lock); xa->xa_flags = flags; xa->xa_head = NULL; } /** * xa_init() - Initialise an empty XArray. * @xa: XArray. * * An empty XArray is full of NULL entries. * * Context: Any context. */ static inline void xa_init(struct xarray *xa) { xa_init_flags(xa, 0); } /** * xa_empty() - Determine if an array has any present entries. * @xa: XArray. * * Context: Any context. * Return: %true if the array contains only NULL pointers. */ static inline bool xa_empty(const struct xarray *xa) { return xa->xa_head == NULL; } /** * xa_marked() - Inquire whether any entry in this array has a mark set * @xa: Array * @mark: Mark value * * Context: Any context. * Return: %true if any entry has this mark set. */ static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark) { return xa->xa_flags & XA_FLAGS_MARK(mark); } /** * xa_for_each_range() - Iterate over a portion of an XArray. * @xa: XArray. * @index: Index of @entry. * @entry: Entry retrieved from array. * @start: First index to retrieve from array. * @last: Last index to retrieve from array. * * During the iteration, @entry will have the value of the entry stored * in @xa at @index. You may modify @index during the iteration if you * want to skip or reprocess indices. It is safe to modify the array * during the iteration. At the end of the iteration, @entry will be set * to NULL and @index will have a value less than or equal to max. * * xa_for_each_range() is O(n.log(n)) while xas_for_each() is O(n). You have * to handle your own locking with xas_for_each(), and if you have to unlock * after each iteration, it will also end up being O(n.log(n)). * xa_for_each_range() will spin if it hits a retry entry; if you intend to * see retry entries, you should use the xas_for_each() iterator instead. * The xas_for_each() iterator will expand into more inline code than * xa_for_each_range(). * * Context: Any context. Takes and releases the RCU lock. */ #define xa_for_each_range(xa, index, entry, start, last) \ for (index = start, \ entry = xa_find(xa, &index, last, XA_PRESENT); \ entry; \ entry = xa_find_after(xa, &index, last, XA_PRESENT)) /** * xa_for_each_start() - Iterate over a portion of an XArray. * @xa: XArray. * @index: Index of @entry. * @entry: Entry retrieved from array. * @start: First index to retrieve from array. * * During the iteration, @entry will have the value of the entry stored * in @xa at @index. You may modify @index during the iteration if you * want to skip or reprocess indices. It is safe to modify the array * during the iteration. At the end of the iteration, @entry will be set * to NULL and @index will have a value less than or equal to max. * * xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n). You have * to handle your own locking with xas_for_each(), and if you have to unlock * after each iteration, it will also end up being O(n.log(n)). * xa_for_each_start() will spin if it hits a retry entry; if you intend to * see retry entries, you should use the xas_for_each() iterator instead. * The xas_for_each() iterator will expand into more inline code than * xa_for_each_start(). * * Context: Any context. Takes and releases the RCU lock. */ #define xa_for_each_start(xa, index, entry, start) \ xa_for_each_range(xa, index, entry, start, ULONG_MAX) /** * xa_for_each() - Iterate over present entries in an XArray. * @xa: XArray. * @index: Index of @entry. * @entry: Entry retrieved from array. * * During the iteration, @entry will have the value of the entry stored * in @xa at @index. You may modify @index during the iteration if you want * to skip or reprocess indices. It is safe to modify the array during the * iteration. At the end of the iteration, @entry will be set to NULL and * @index will have a value less than or equal to max. * * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n). You have * to handle your own locking with xas_for_each(), and if you have to unlock * after each iteration, it will also end up being O(n.log(n)). xa_for_each() * will spin if it hits a retry entry; if you intend to see retry entries, * you should use the xas_for_each() iterator instead. The xas_for_each() * iterator will expand into more inline code than xa_for_each(). * * Context: Any context. Takes and releases the RCU lock. */ #define xa_for_each(xa, index, entry) \ xa_for_each_start(xa, index, entry, 0) /** * xa_for_each_marked() - Iterate over marked entries in an XArray. * @xa: XArray. * @index: Index of @entry. * @entry: Entry retrieved from array. * @filter: Selection criterion. * * During the iteration, @entry will have the value of the entry stored * in @xa at @index. The iteration will skip all entries in the array * which do not match @filter. You may modify @index during the iteration * if you want to skip or reprocess indices. It is safe to modify the array * during the iteration. At the end of the iteration, @entry will be set to * NULL and @index will have a value less than or equal to max. * * xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n). * You have to handle your own locking with xas_for_each(), and if you have * to unlock after each iteration, it will also end up being O(n.log(n)). * xa_for_each_marked() will spin if it hits a retry entry; if you intend to * see retry entries, you should use the xas_for_each_marked() iterator * instead. The xas_for_each_marked() iterator will expand into more inline * code than xa_for_each_marked(). * * Context: Any context. Takes and releases the RCU lock. */ #define xa_for_each_marked(xa, index, entry, filter) \ for (index = 0, entry = xa_find(xa, &index, ULONG_MAX, filter); \ entry; entry = xa_find_after(xa, &index, ULONG_MAX, filter)) #define xa_trylock(xa) spin_trylock(&(xa)->xa_lock) #define xa_lock(xa) spin_lock(&(xa)->xa_lock) #define xa_unlock(xa) spin_unlock(&(xa)->xa_lock) #define xa_lock_bh(xa) spin_lock_bh(&(xa)->xa_lock) #define xa_unlock_bh(xa) spin_unlock_bh(&(xa)->xa_lock) #define xa_lock_irq(xa) spin_lock_irq(&(xa)->xa_lock) #define xa_unlock_irq(xa) spin_unlock_irq(&(xa)->xa_lock) #define xa_lock_irqsave(xa, flags) \ spin_lock_irqsave(&(xa)->xa_lock, flags) #define xa_unlock_irqrestore(xa, flags) \ spin_unlock_irqrestore(&(xa)->xa_lock, flags) #define xa_lock_nested(xa, subclass) \ spin_lock_nested(&(xa)->xa_lock, subclass) #define xa_lock_bh_nested(xa, subclass) \ spin_lock_bh_nested(&(xa)->xa_lock, subclass) #define xa_lock_irq_nested(xa, subclass) \ spin_lock_irq_nested(&(xa)->xa_lock, subclass) #define xa_lock_irqsave_nested(xa, flags, subclass) \ spin_lock_irqsave_nested(&(xa)->xa_lock, flags, subclass) /* * Versions of the normal API which require the caller to hold the * xa_lock. If the GFP flags allow it, they will drop the lock to * allocate memory, then reacquire it afterwards. These functions * may also re-enable interrupts if the XArray flags indicate the * locking should be interrupt safe. */ void *__xa_erase(struct xarray *, unsigned long index); void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t); void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old, void *entry, gfp_t); int __must_check __xa_insert(struct xarray *, unsigned long index, void *entry, gfp_t); int __must_check __xa_alloc(struct xarray *, u32 *id, void *entry, struct xa_limit, gfp_t); int __must_check __xa_alloc_cyclic(struct xarray *, u32 *id, void *entry, struct xa_limit, u32 *next, gfp_t); void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t); void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t); /** * xa_store_bh() - Store this entry in the XArray. * @xa: XArray. * @index: Index into array. * @entry: New entry. * @gfp: Memory allocation flags. * * This function is like calling xa_store() except it disables softirqs * while holding the array lock. * * Context: Any context. Takes and releases the xa_lock while * disabling softirqs. * Return: The old entry at this index or xa_err() if an error happened. */ static inline void *xa_store_bh(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) { void *curr; might_alloc(gfp); xa_lock_bh(xa); curr = __xa_store(xa, index, entry, gfp); xa_unlock_bh(xa); return curr; } /** * xa_store_irq() - Store this entry in the XArray. * @xa: XArray. * @index: Index into array. * @entry: New entry. * @gfp: Memory allocation flags. * * This function is like calling xa_store() except it disables interrupts * while holding the array lock. * * Context: Process context. Takes and releases the xa_lock while * disabling interrupts. * Return: The old entry at this index or xa_err() if an error happened. */ static inline void *xa_store_irq(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) { void *curr; might_alloc(gfp); xa_lock_irq(xa); curr = __xa_store(xa, index, entry, gfp); xa_unlock_irq(xa); return curr; } /** * xa_erase_bh() - Erase this entry from the XArray. * @xa: XArray. * @index: Index of entry. * * After this function returns, loading from @index will return %NULL. * If the index is part of a multi-index entry, all indices will be erased * and none of the entries will be part of a multi-index entry. * * Context: Any context. Takes and releases the xa_lock while * disabling softirqs. * Return: The entry which used to be at this index. */ static inline void *xa_erase_bh(struct xarray *xa, unsigned long index) { void *entry; xa_lock_bh(xa); entry = __xa_erase(xa, index); xa_unlock_bh(xa); return entry; } /** * xa_erase_irq() - Erase this entry from the XArray. * @xa: XArray. * @index: Index of entry. * * After this function returns, loading from @index will return %NULL. * If the index is part of a multi-index entry, all indices will be erased * and none of the entries will be part of a multi-index entry. * * Context: Process context. Takes and releases the xa_lock while * disabling interrupts. * Return: The entry which used to be at this index. */ static inline void *xa_erase_irq(struct xarray *xa, unsigned long index) { void *entry; xa_lock_irq(xa); entry = __xa_erase(xa, index); xa_unlock_irq(xa); return entry; } /** * xa_cmpxchg() - Conditionally replace an entry in the XArray. * @xa: XArray. * @index: Index into array. * @old: Old value to test against. * @entry: New value to place in array. * @gfp: Memory allocation flags. * * If the entry at @index is the same as @old, replace it with @entry. * If the return value is equal to @old, then the exchange was successful. * * Context: Any context. Takes and releases the xa_lock. May sleep * if the @gfp flags permit. * Return: The old value at this index or xa_err() if an error happened. */ static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index, void *old, void *entry, gfp_t gfp) { void *curr; might_alloc(gfp); xa_lock(xa); curr = __xa_cmpxchg(xa, index, old, entry, gfp); xa_unlock(xa); return curr; } /** * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray. * @xa: XArray. * @index: Index into array. * @old: Old value to test against. * @entry: New value to place in array. * @gfp: Memory allocation flags. * * This function is like calling xa_cmpxchg() except it disables softirqs * while holding the array lock. * * Context: Any context. Takes and releases the xa_lock while * disabling softirqs. May sleep if the @gfp flags permit. * Return: The old value at this index or xa_err() if an error happened. */ static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index, void *old, void *entry, gfp_t gfp) { void *curr; might_alloc(gfp); xa_lock_bh(xa); curr = __xa_cmpxchg(xa, index, old, entry, gfp); xa_unlock_bh(xa); return curr; } /** * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray. * @xa: XArray. * @index: Index into array. * @old: Old value to test against. * @entry: New value to place in array. * @gfp: Memory allocation flags. * * This function is like calling xa_cmpxchg() except it disables interrupts * while holding the array lock. * * Context: Process context. Takes and releases the xa_lock while * disabling interrupts. May sleep if the @gfp flags permit. * Return: The old value at this index or xa_err() if an error happened. */ static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index, void *old, void *entry, gfp_t gfp) { void *curr; might_alloc(gfp); xa_lock_irq(xa); curr = __xa_cmpxchg(xa, index, old, entry, gfp); xa_unlock_irq(xa); return curr; } /** * xa_insert() - Store this entry in the XArray unless another entry is * already present. * @xa: XArray. * @index: Index into array. * @entry: New entry. * @gfp: Memory allocation flags. * * Inserting a NULL entry will store a reserved entry (like xa_reserve()) * if no entry is present. Inserting will fail if a reserved entry is * present, even though loading from this index will return NULL. * * Context: Any context. Takes and releases the xa_lock. May sleep if * the @gfp flags permit. * Return: 0 if the store succeeded. -EBUSY if another entry was present. * -ENOMEM if memory could not be allocated. */ static inline int __must_check xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) { int err; might_alloc(gfp); xa_lock(xa); err = __xa_insert(xa, index, entry, gfp); xa_unlock(xa); return err; } /** * xa_insert_bh() - Store this entry in the XArray unless another entry is * already present. * @xa: XArray. * @index: Index into array. * @entry: New entry. * @gfp: Memory allocation flags. * * Inserting a NULL entry will store a reserved entry (like xa_reserve()) * if no entry is present. Inserting will fail if a reserved entry is * present, even though loading from this index will return NULL. * * Context: Any context. Takes and releases the xa_lock while * disabling softirqs. May sleep if the @gfp flags permit. * Return: 0 if the store succeeded. -EBUSY if another entry was present. * -ENOMEM if memory could not be allocated. */ static inline int __must_check xa_insert_bh(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) { int err; might_alloc(gfp); xa_lock_bh(xa); err = __xa_insert(xa, index, entry, gfp); xa_unlock_bh(xa); return err; } /** * xa_insert_irq() - Store this entry in the XArray unless another entry is * already present. * @xa: XArray. * @index: Index into array. * @entry: New entry. * @gfp: Memory allocation flags. * * Inserting a NULL entry will store a reserved entry (like xa_reserve()) * if no entry is present. Inserting will fail if a reserved entry is * present, even though loading from this index will return NULL. * * Context: Process context. Takes and releases the xa_lock while * disabling interrupts. May sleep if the @gfp flags permit. * Return: 0 if the store succeeded. -EBUSY if another entry was present. * -ENOMEM if memory could not be allocated. */ static inline int __must_check xa_insert_irq(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) { int err; might_alloc(gfp); xa_lock_irq(xa); err = __xa_insert(xa, index, entry, gfp); xa_unlock_irq(xa); return err; } /** * xa_alloc() - Find somewhere to store this entry in the XArray. * @xa: XArray. * @id: Pointer to ID. * @entry: New entry. * @limit: Range of ID to allocate. * @gfp: Memory allocation flags. * * Finds an empty entry in @xa between @limit.min and @limit.max, * stores the index into the @id pointer, then stores the entry at * that index. A concurrent lookup will not see an uninitialised @id. * * Context: Any context. Takes and releases the xa_lock. May sleep if * the @gfp flags permit. * Return: 0 on success, -ENOMEM if memory could not be allocated or * -EBUSY if there are no free entries in @limit. */ static inline __must_check int xa_alloc(struct xarray *xa, u32 *id, void *entry, struct xa_limit limit, gfp_t gfp) { int err; might_alloc(gfp); xa_lock(xa); err = __xa_alloc(xa, id, entry, limit, gfp); xa_unlock(xa); return err; } /** * xa_alloc_bh() - Find somewhere to store this entry in the XArray. * @xa: XArray. * @id: Pointer to ID. * @entry: New entry. * @limit: Range of ID to allocate. * @gfp: Memory allocation flags. * * Finds an empty entry in @xa between @limit.min and @limit.max, * stores the index into the @id pointer, then stores the entry at * that index. A concurrent lookup will not see an uninitialised @id. * * Context: Any context. Takes and releases the xa_lock while * disabling softirqs. May sleep if the @gfp flags permit. * Return: 0 on success, -ENOMEM if memory could not be allocated or * -EBUSY if there are no free entries in @limit. */ static inline int __must_check xa_alloc_bh(struct xarray *xa, u32 *id, void *entry, struct xa_limit limit, gfp_t gfp) { int err; might_alloc(gfp); xa_lock_bh(xa); err = __xa_alloc(xa, id, entry, limit, gfp); xa_unlock_bh(xa); return err; } /** * xa_alloc_irq() - Find somewhere to store this entry in the XArray. * @xa: XArray. * @id: Pointer to ID. * @entry: New entry. * @limit: Range of ID to allocate. * @gfp: Memory allocation flags. * * Finds an empty entry in @xa between @limit.min and @limit.max, * stores the index into the @id pointer, then stores the entry at * that index. A concurrent lookup will not see an uninitialised @id. * * Context: Process context. Takes and releases the xa_lock while * disabling interrupts. May sleep if the @gfp flags permit. * Return: 0 on success, -ENOMEM if memory could not be allocated or * -EBUSY if there are no free entries in @limit. */ static inline int __must_check xa_alloc_irq(struct xarray *xa, u32 *id, void *entry, struct xa_limit limit, gfp_t gfp) { int err; might_alloc(gfp); xa_lock_irq(xa); err = __xa_alloc(xa, id, entry, limit, gfp); xa_unlock_irq(xa); return err; } /** * xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. * @xa: XArray. * @id: Pointer to ID. * @entry: New entry. * @limit: Range of allocated ID. * @next: Pointer to next ID to allocate. * @gfp: Memory allocation flags. * * Finds an empty entry in @xa between @limit.min and @limit.max, * stores the index into the @id pointer, then stores the entry at * that index. A concurrent lookup will not see an uninitialised @id. * The search for an empty entry will start at @next and will wrap * around if necessary. * * Context: Any context. Takes and releases the xa_lock. May sleep if * the @gfp flags permit. * Return: 0 if the allocation succeeded without wrapping. 1 if the * allocation succeeded after wrapping, -ENOMEM if memory could not be * allocated or -EBUSY if there are no free entries in @limit. */ static inline int xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, struct xa_limit limit, u32 *next, gfp_t gfp) { int err; might_alloc(gfp); xa_lock(xa); err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); xa_unlock(xa); return err; } /** * xa_alloc_cyclic_bh() - Find somewhere to store this entry in the XArray. * @xa: XArray. * @id: Pointer to ID. * @entry: New entry. * @limit: Range of allocated ID. * @next: Pointer to next ID to allocate. * @gfp: Memory allocation flags. * * Finds an empty entry in @xa between @limit.min and @limit.max, * stores the index into the @id pointer, then stores the entry at * that index. A concurrent lookup will not see an uninitialised @id. * The search for an empty entry will start at @next and will wrap * around if necessary. * * Context: Any context. Takes and releases the xa_lock while * disabling softirqs. May sleep if the @gfp flags permit. * Return: 0 if the allocation succeeded without wrapping. 1 if the * allocation succeeded after wrapping, -ENOMEM if memory could not be * allocated or -EBUSY if there are no free entries in @limit. */ static inline int xa_alloc_cyclic_bh(struct xarray *xa, u32 *id, void *entry, struct xa_limit limit, u32 *next, gfp_t gfp) { int err; might_alloc(gfp); xa_lock_bh(xa); err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); xa_unlock_bh(xa); return err; } /** * xa_alloc_cyclic_irq() - Find somewhere to store this entry in the XArray. * @xa: XArray. * @id: Pointer to ID. * @entry: New entry. * @limit: Range of allocated ID. * @next: Pointer to next ID to allocate. * @gfp: Memory allocation flags. * * Finds an empty entry in @xa between @limit.min and @limit.max, * stores the index into the @id pointer, then stores the entry at * that index. A concurrent lookup will not see an uninitialised @id. * The search for an empty entry will start at @next and will wrap * around if necessary. * * Context: Process context. Takes and releases the xa_lock while * disabling interrupts. May sleep if the @gfp flags permit. * Return: 0 if the allocation succeeded without wrapping. 1 if the * allocation succeeded after wrapping, -ENOMEM if memory could not be * allocated or -EBUSY if there are no free entries in @limit. */ static inline int xa_alloc_cyclic_irq(struct xarray *xa, u32 *id, void *entry, struct xa_limit limit, u32 *next, gfp_t gfp) { int err; might_alloc(gfp); xa_lock_irq(xa); err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp); xa_unlock_irq(xa); return err; } /** * xa_reserve() - Reserve this index in the XArray. * @xa: XArray. * @index: Index into array. * @gfp: Memory allocation flags. * * Ensures there is somewhere to store an entry at @index in the array. * If there is already something stored at @index, this function does * nothing. If there was nothing there, the entry is marked as reserved. * Loading from a reserved entry returns a %NULL pointer. * * If you do not use the entry that you have reserved, call xa_release() * or xa_erase() to free any unnecessary memory. * * Context: Any context. Takes and releases the xa_lock. * May sleep if the @gfp flags permit. * Return: 0 if the reservation succeeded or -ENOMEM if it failed. */ static inline __must_check int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp) { return xa_err(xa_cmpxchg(xa, index, NULL, XA_ZERO_ENTRY, gfp)); } /** * xa_reserve_bh() - Reserve this index in the XArray. * @xa: XArray. * @index: Index into array. * @gfp: Memory allocation flags. * * A softirq-disabling version of xa_reserve(). * * Context: Any context. Takes and releases the xa_lock while * disabling softirqs. * Return: 0 if the reservation succeeded or -ENOMEM if it failed. */ static inline __must_check int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp) { return xa_err(xa_cmpxchg_bh(xa, index, NULL, XA_ZERO_ENTRY, gfp)); } /** * xa_reserve_irq() - Reserve this index in the XArray. * @xa: XArray. * @index: Index into array. * @gfp: Memory allocation flags. * * An interrupt-disabling version of xa_reserve(). * * Context: Process context. Takes and releases the xa_lock while * disabling interrupts. * Return: 0 if the reservation succeeded or -ENOMEM if it failed. */ static inline __must_check int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp) { return xa_err(xa_cmpxchg_irq(xa, index, NULL, XA_ZERO_ENTRY, gfp)); } /** * xa_release() - Release a reserved entry. * @xa: XArray. * @index: Index of entry. * * After calling xa_reserve(), you can call this function to release the * reservation. If the entry at @index has been stored to, this function * will do nothing. */ static inline void xa_release(struct xarray *xa, unsigned long index) { xa_cmpxchg(xa, index, XA_ZERO_ENTRY, NULL, 0); } /* Everything below here is the Advanced API. Proceed with caution. */ /* * The xarray is constructed out of a set of 'chunks' of pointers. Choosing * the best chunk size requires some tradeoffs. A power of two recommends * itself so that we can walk the tree based purely on shifts and masks. * Generally, the larger the better; as the number of slots per level of the * tree increases, the less tall the tree needs to be. But that needs to be * balanced against the memory consumption of each node. On a 64-bit system, * xa_node is currently 576 bytes, and we get 7 of them per 4kB page. If we * doubled the number of slots per node, we'd get only 3 nodes per 4kB page. */ #ifndef XA_CHUNK_SHIFT #define XA_CHUNK_SHIFT (CONFIG_BASE_SMALL ? 4 : 6) #endif #define XA_CHUNK_SIZE (1UL << XA_CHUNK_SHIFT) #define XA_CHUNK_MASK (XA_CHUNK_SIZE - 1) #define XA_MAX_MARKS 3 #define XA_MARK_LONGS DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG) /* * @count is the count of every non-NULL element in the ->slots array * whether that is a value entry, a retry entry, a user pointer, * a sibling entry or a pointer to the next level of the tree. * @nr_values is the count of every element in ->slots which is * either a value entry or a sibling of a value entry. */ struct xa_node { unsigned char shift; /* Bits remaining in each slot */ unsigned char offset; /* Slot offset in parent */ unsigned char count; /* Total entry count */ unsigned char nr_values; /* Value entry count */ struct xa_node __rcu *parent; /* NULL at top of tree */ struct xarray *array; /* The array we belong to */ union { struct list_head private_list; /* For tree user */ struct rcu_head rcu_head; /* Used when freeing node */ }; void __rcu *slots[XA_CHUNK_SIZE]; union { unsigned long tags[XA_MAX_MARKS][XA_MARK_LONGS]; unsigned long marks[XA_MAX_MARKS][XA_MARK_LONGS]; }; }; void xa_dump(const struct xarray *); void xa_dump_node(const struct xa_node *); #ifdef XA_DEBUG #define XA_BUG_ON(xa, x) do { \ if (x) { \ xa_dump(xa); \ BUG(); \ } \ } while (0) #define XA_NODE_BUG_ON(node, x) do { \ if (x) { \ if (node) xa_dump_node(node); \ BUG(); \ } \ } while (0) #else #define XA_BUG_ON(xa, x) do { } while (0) #define XA_NODE_BUG_ON(node, x) do { } while (0) #endif /* Private */ static inline void *xa_head(const struct xarray *xa) { return rcu_dereference_check(xa->xa_head, lockdep_is_held(&xa->xa_lock)); } /* Private */ static inline void *xa_head_locked(const struct xarray *xa) { return rcu_dereference_protected(xa->xa_head, lockdep_is_held(&xa->xa_lock)); } /* Private */ static inline void *xa_entry(const struct xarray *xa, const struct xa_node *node, unsigned int offset) { XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); return rcu_dereference_check(node->slots[offset], lockdep_is_held(&xa->xa_lock)); } /* Private */ static inline void *xa_entry_locked(const struct xarray *xa, const struct xa_node *node, unsigned int offset) { XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE); return rcu_dereference_protected(node->slots[offset], lockdep_is_held(&xa->xa_lock)); } /* Private */ static inline struct xa_node *xa_parent(const struct xarray *xa, const struct xa_node *node) { return rcu_dereference_check(node->parent, lockdep_is_held(&xa->xa_lock)); } /* Private */ static inline struct xa_node *xa_parent_locked(const struct xarray *xa, const struct xa_node *node) { return rcu_dereference_protected(node->parent, lockdep_is_held(&xa->xa_lock)); } /* Private */ static inline void *xa_mk_node(const struct xa_node *node) { return (void *)((unsigned long)node | 2); } /* Private */ static inline struct xa_node *xa_to_node(const void *entry) { return (struct xa_node *)((unsigned long)entry - 2); } /* Private */ static inline bool xa_is_node(const void *entry) { return xa_is_internal(entry) && (unsigned long)entry > 4096; } /* Private */ static inline void *xa_mk_sibling(unsigned int offset) { return xa_mk_internal(offset); } /* Private */ static inline unsigned long xa_to_sibling(const void *entry) { return xa_to_internal(entry); } /** * xa_is_sibling() - Is the entry a sibling entry? * @entry: Entry retrieved from the XArray * * Return: %true if the entry is a sibling entry. */ static inline bool xa_is_sibling(const void *entry) { return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) && (entry < xa_mk_sibling(XA_CHUNK_SIZE - 1)); } #define XA_RETRY_ENTRY xa_mk_internal(256) /** * xa_is_retry() - Is the entry a retry entry? * @entry: Entry retrieved from the XArray * * Return: %true if the entry is a retry entry. */ static inline bool xa_is_retry(const void *entry) { return unlikely(entry == XA_RETRY_ENTRY); } /** * xa_is_advanced() - Is the entry only permitted for the advanced API? * @entry: Entry to be stored in the XArray. * * Return: %true if the entry cannot be stored by the normal API. */ static inline bool xa_is_advanced(const void *entry) { return xa_is_internal(entry) && (entry <= XA_RETRY_ENTRY); } /** * typedef xa_update_node_t - A callback function from the XArray. * @node: The node which is being processed * * This function is called every time the XArray updates the count of * present and value entries in a node. It allows advanced users to * maintain the private_list in the node. * * Context: The xa_lock is held and interrupts may be disabled. * Implementations should not drop the xa_lock, nor re-enable * interrupts. */ typedef void (*xa_update_node_t)(struct xa_node *node); void xa_delete_node(struct xa_node *, xa_update_node_t); /* * The xa_state is opaque to its users. It contains various different pieces * of state involved in the current operation on the XArray. It should be * declared on the stack and passed between the various internal routines. * The various elements in it should not be accessed directly, but only * through the provided accessor functions. The below documentation is for * the benefit of those working on the code, not for users of the XArray. * * @xa_node usually points to the xa_node containing the slot we're operating * on (and @xa_offset is the offset in the slots array). If there is a * single entry in the array at index 0, there are no allocated xa_nodes to * point to, and so we store %NULL in @xa_node. @xa_node is set to * the value %XAS_RESTART if the xa_state is not walked to the correct * position in the tree of nodes for this operation. If an error occurs * during an operation, it is set to an %XAS_ERROR value. If we run off the * end of the allocated nodes, it is set to %XAS_BOUNDS. */ struct xa_state { struct xarray *xa; unsigned long xa_index; unsigned char xa_shift; unsigned char xa_sibs; unsigned char xa_offset; unsigned char xa_pad; /* Helps gcc generate better code */ struct xa_node *xa_node; struct xa_node *xa_alloc; xa_update_node_t xa_update; struct list_lru *xa_lru; }; /* * We encode errnos in the xas->xa_node. If an error has happened, we need to * drop the lock to fix it, and once we've done so the xa_state is invalid. */ #define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL)) #define XAS_BOUNDS ((struct xa_node *)1UL) #define XAS_RESTART ((struct xa_node *)3UL) #define __XA_STATE(array, index, shift, sibs) { \ .xa = array, \ .xa_index = index, \ .xa_shift = shift, \ .xa_sibs = sibs, \ .xa_offset = 0, \ .xa_pad = 0, \ .xa_node = XAS_RESTART, \ .xa_alloc = NULL, \ .xa_update = NULL, \ .xa_lru = NULL, \ } /** * XA_STATE() - Declare an XArray operation state. * @name: Name of this operation state (usually xas). * @array: Array to operate on. * @index: Initial index of interest. * * Declare and initialise an xa_state on the stack. */ #define XA_STATE(name, array, index) \ struct xa_state name = __XA_STATE(array, index, 0, 0) /** * XA_STATE_ORDER() - Declare an XArray operation state. * @name: Name of this operation state (usually xas). * @array: Array to operate on. * @index: Initial index of interest. * @order: Order of entry. * * Declare and initialise an xa_state on the stack. This variant of * XA_STATE() allows you to specify the 'order' of the element you * want to operate on.` */ #define XA_STATE_ORDER(name, array, index, order) \ struct xa_state name = __XA_STATE(array, \ (index >> order) << order, \ order - (order % XA_CHUNK_SHIFT), \ (1U << (order % XA_CHUNK_SHIFT)) - 1) #define xas_marked(xas, mark) xa_marked((xas)->xa, (mark)) #define xas_trylock(xas) xa_trylock((xas)->xa) #define xas_lock(xas) xa_lock((xas)->xa) #define xas_unlock(xas) xa_unlock((xas)->xa) #define xas_lock_bh(xas) xa_lock_bh((xas)->xa) #define xas_unlock_bh(xas) xa_unlock_bh((xas)->xa) #define xas_lock_irq(xas) xa_lock_irq((xas)->xa) #define xas_unlock_irq(xas) xa_unlock_irq((xas)->xa) #define xas_lock_irqsave(xas, flags) \ xa_lock_irqsave((xas)->xa, flags) #define xas_unlock_irqrestore(xas, flags) \ xa_unlock_irqrestore((xas)->xa, flags) /** * xas_error() - Return an errno stored in the xa_state. * @xas: XArray operation state. * * Return: 0 if no error has been noted. A negative errno if one has. */ static inline int xas_error(const struct xa_state *xas) { return xa_err(xas->xa_node); } /** * xas_set_err() - Note an error in the xa_state. * @xas: XArray operation state. * @err: Negative error number. * * Only call this function with a negative @err; zero or positive errors * will probably not behave the way you think they should. If you want * to clear the error from an xa_state, use xas_reset(). */ static inline void xas_set_err(struct xa_state *xas, long err) { xas->xa_node = XA_ERROR(err); } /** * xas_invalid() - Is the xas in a retry or error state? * @xas: XArray operation state. * * Return: %true if the xas cannot be used for operations. */ static inline bool xas_invalid(const struct xa_state *xas) { return (unsigned long)xas->xa_node & 3; } /** * xas_valid() - Is the xas a valid cursor into the array? * @xas: XArray operation state. * * Return: %true if the xas can be used for operations. */ static inline bool xas_valid(const struct xa_state *xas) { return !xas_invalid(xas); } /** * xas_is_node() - Does the xas point to a node? * @xas: XArray operation state. * * Return: %true if the xas currently references a node. */ static inline bool xas_is_node(const struct xa_state *xas) { return xas_valid(xas) && xas->xa_node; } /* True if the pointer is something other than a node */ static inline bool xas_not_node(struct xa_node *node) { return ((unsigned long)node & 3) || !node; } /* True if the node represents RESTART or an error */ static inline bool xas_frozen(struct xa_node *node) { return (unsigned long)node & 2; } /* True if the node represents head-of-tree, RESTART or BOUNDS */ static inline bool xas_top(struct xa_node *node) { return node <= XAS_RESTART; } /** * xas_reset() - Reset an XArray operation state. * @xas: XArray operation state. * * Resets the error or walk state of the @xas so future walks of the * array will start from the root. Use this if you have dropped the * xarray lock and want to reuse the xa_state. * * Context: Any context. */ static inline void xas_reset(struct xa_state *xas) { xas->xa_node = XAS_RESTART; } /** * xas_retry() - Retry the operation if appropriate. * @xas: XArray operation state. * @entry: Entry from xarray. * * The advanced functions may sometimes return an internal entry, such as * a retry entry or a zero entry. This function sets up the @xas to restart * the walk from the head of the array if needed. * * Context: Any context. * Return: true if the operation needs to be retried. */ static inline bool xas_retry(struct xa_state *xas, const void *entry) { if (xa_is_zero(entry)) return true; if (!xa_is_retry(entry)) return false; xas_reset(xas); return true; } void *xas_load(struct xa_state *); void *xas_store(struct xa_state *, void *entry); void *xas_find(struct xa_state *, unsigned long max); void *xas_find_conflict(struct xa_state *); bool xas_get_mark(const struct xa_state *, xa_mark_t); void xas_set_mark(const struct xa_state *, xa_mark_t); void xas_clear_mark(const struct xa_state *, xa_mark_t); void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t); void xas_init_marks(const struct xa_state *); bool xas_nomem(struct xa_state *, gfp_t); void xas_destroy(struct xa_state *); void xas_pause(struct xa_state *); void xas_create_range(struct xa_state *); #ifdef CONFIG_XARRAY_MULTI int xa_get_order(struct xarray *, unsigned long index); int xas_get_order(struct xa_state *xas); void xas_split(struct xa_state *, void *entry, unsigned int order); void xas_split_alloc(struct xa_state *, void *entry, unsigned int order, gfp_t); #else static inline int xa_get_order(struct xarray *xa, unsigned long index) { return 0; } static inline int xas_get_order(struct xa_state *xas) { return 0; } static inline void xas_split(struct xa_state *xas, void *entry, unsigned int order) { xas_store(xas, entry); } static inline void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order, gfp_t gfp) { } #endif /** * xas_reload() - Refetch an entry from the xarray. * @xas: XArray operation state. * * Use this function to check that a previously loaded entry still has * the same value. This is useful for the lockless pagecache lookup where * we walk the array with only the RCU lock to protect us, lock the page, * then check that the page hasn't moved since we looked it up. * * The caller guarantees that @xas is still valid. If it may be in an * error or restart state, call xas_load() instead. * * Return: The entry at this location in the xarray. */ static inline void *xas_reload(struct xa_state *xas) { struct xa_node *node = xas->xa_node; void *entry; char offset; if (!node) return xa_head(xas->xa); if (IS_ENABLED(CONFIG_XARRAY_MULTI)) { offset = (xas->xa_index >> node->shift) & XA_CHUNK_MASK; entry = xa_entry(xas->xa, node, offset); if (!xa_is_sibling(entry)) return entry; offset = xa_to_sibling(entry); } else { offset = xas->xa_offset; } return xa_entry(xas->xa, node, offset); } /** * xas_set() - Set up XArray operation state for a different index. * @xas: XArray operation state. * @index: New index into the XArray. * * Move the operation state to refer to a different index. This will * have the effect of starting a walk from the top; see xas_next() * to move to an adjacent index. */ static inline void xas_set(struct xa_state *xas, unsigned long index) { xas->xa_index = index; xas->xa_node = XAS_RESTART; } /** * xas_advance() - Skip over sibling entries. * @xas: XArray operation state. * @index: Index of last sibling entry. * * Move the operation state to refer to the last sibling entry. * This is useful for loops that normally want to see sibling * entries but sometimes want to skip them. Use xas_set() if you * want to move to an index which is not part of this entry. */ static inline void xas_advance(struct xa_state *xas, unsigned long index) { unsigned char shift = xas_is_node(xas) ? xas->xa_node->shift : 0; xas->xa_index = index; xas->xa_offset = (index >> shift) & XA_CHUNK_MASK; } /** * xas_set_order() - Set up XArray operation state for a multislot entry. * @xas: XArray operation state. * @index: Target of the operation. * @order: Entry occupies 2^@order indices. */ static inline void xas_set_order(struct xa_state *xas, unsigned long index, unsigned int order) { #ifdef CONFIG_XARRAY_MULTI xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0; xas->xa_shift = order - (order % XA_CHUNK_SHIFT); xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; xas->xa_node = XAS_RESTART; #else BUG_ON(order > 0); xas_set(xas, index); #endif } /** * xas_set_update() - Set up XArray operation state for a callback. * @xas: XArray operation state. * @update: Function to call when updating a node. * * The XArray can notify a caller after it has updated an xa_node. * This is advanced functionality and is only needed by the page cache. */ static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update) { xas->xa_update = update; } static inline void xas_set_lru(struct xa_state *xas, struct list_lru *lru) { xas->xa_lru = lru; } /** * xas_next_entry() - Advance iterator to next present entry. * @xas: XArray operation state. * @max: Highest index to return. * * xas_next_entry() is an inline function to optimise xarray traversal for * speed. It is equivalent to calling xas_find(), and will call xas_find() * for all the hard cases. * * Return: The next present entry after the one currently referred to by @xas. */ static inline void *xas_next_entry(struct xa_state *xas, unsigned long max) { struct xa_node *node = xas->xa_node; void *entry; if (unlikely(xas_not_node(node) || node->shift || xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK))) return xas_find(xas, max); do { if (unlikely(xas->xa_index >= max)) return xas_find(xas, max); if (unlikely(xas->xa_offset == XA_CHUNK_MASK)) return xas_find(xas, max); entry = xa_entry(xas->xa, node, xas->xa_offset + 1); if (unlikely(xa_is_internal(entry))) return xas_find(xas, max); xas->xa_offset++; xas->xa_index++; } while (!entry); return entry; } /* Private */ static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance, xa_mark_t mark) { unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark]; unsigned int offset = xas->xa_offset; if (advance) offset++; if (XA_CHUNK_SIZE == BITS_PER_LONG) { if (offset < XA_CHUNK_SIZE) { unsigned long data = *addr & (~0UL << offset); if (data) return __ffs(data); } return XA_CHUNK_SIZE; } return find_next_bit(addr, XA_CHUNK_SIZE, offset); } /** * xas_next_marked() - Advance iterator to next marked entry. * @xas: XArray operation state. * @max: Highest index to return. * @mark: Mark to search for. * * xas_next_marked() is an inline function to optimise xarray traversal for * speed. It is equivalent to calling xas_find_marked(), and will call * xas_find_marked() for all the hard cases. * * Return: The next marked entry after the one currently referred to by @xas. */ static inline void *xas_next_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) { struct xa_node *node = xas->xa_node; void *entry; unsigned int offset; if (unlikely(xas_not_node(node) || node->shift)) return xas_find_marked(xas, max, mark); offset = xas_find_chunk(xas, true, mark); xas->xa_offset = offset; xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset; if (xas->xa_index > max) return NULL; if (offset == XA_CHUNK_SIZE) return xas_find_marked(xas, max, mark); entry = xa_entry(xas->xa, node, offset); if (!entry) return xas_find_marked(xas, max, mark); return entry; } /* * If iterating while holding a lock, drop the lock and reschedule * every %XA_CHECK_SCHED loops. */ enum { XA_CHECK_SCHED = 4096, }; /** * xas_for_each() - Iterate over a range of an XArray. * @xas: XArray operation state. * @entry: Entry retrieved from the array. * @max: Maximum index to retrieve from array. * * The loop body will be executed for each entry present in the xarray * between the current xas position and @max. @entry will be set to * the entry retrieved from the xarray. It is safe to delete entries * from the array in the loop body. You should hold either the RCU lock * or the xa_lock while iterating. If you need to drop the lock, call * xas_pause() first. */ #define xas_for_each(xas, entry, max) \ for (entry = xas_find(xas, max); entry; \ entry = xas_next_entry(xas, max)) /** * xas_for_each_marked() - Iterate over a range of an XArray. * @xas: XArray operation state. * @entry: Entry retrieved from the array. * @max: Maximum index to retrieve from array. * @mark: Mark to search for. * * The loop body will be executed for each marked entry in the xarray * between the current xas position and @max. @entry will be set to * the entry retrieved from the xarray. It is safe to delete entries * from the array in the loop body. You should hold either the RCU lock * or the xa_lock while iterating. If you need to drop the lock, call * xas_pause() first. */ #define xas_for_each_marked(xas, entry, max, mark) \ for (entry = xas_find_marked(xas, max, mark); entry; \ entry = xas_next_marked(xas, max, mark)) /** * xas_for_each_conflict() - Iterate over a range of an XArray. * @xas: XArray operation state. * @entry: Entry retrieved from the array. * * The loop body will be executed for each entry in the XArray that * lies within the range specified by @xas. If the loop terminates * normally, @entry will be %NULL. The user may break out of the loop, * which will leave @entry set to the conflicting entry. The caller * may also call xa_set_err() to exit the loop while setting an error * to record the reason. */ #define xas_for_each_conflict(xas, entry) \ while ((entry = xas_find_conflict(xas))) void *__xas_next(struct xa_state *); void *__xas_prev(struct xa_state *); /** * xas_prev() - Move iterator to previous index. * @xas: XArray operation state. * * If the @xas was in an error state, it will remain in an error state * and this function will return %NULL. If the @xas has never been walked, * it will have the effect of calling xas_load(). Otherwise one will be * subtracted from the index and the state will be walked to the correct * location in the array for the next operation. * * If the iterator was referencing index 0, this function wraps * around to %ULONG_MAX. * * Return: The entry at the new index. This may be %NULL or an internal * entry. */ static inline void *xas_prev(struct xa_state *xas) { struct xa_node *node = xas->xa_node; if (unlikely(xas_not_node(node) || node->shift || xas->xa_offset == 0)) return __xas_prev(xas); xas->xa_index--; xas->xa_offset--; return xa_entry(xas->xa, node, xas->xa_offset); } /** * xas_next() - Move state to next index. * @xas: XArray operation state. * * If the @xas was in an error state, it will remain in an error state * and this function will return %NULL. If the @xas has never been walked, * it will have the effect of calling xas_load(). Otherwise one will be * added to the index and the state will be walked to the correct * location in the array for the next operation. * * If the iterator was referencing index %ULONG_MAX, this function wraps * around to 0. * * Return: The entry at the new index. This may be %NULL or an internal * entry. */ static inline void *xas_next(struct xa_state *xas) { struct xa_node *node = xas->xa_node; if (unlikely(xas_not_node(node) || node->shift || xas->xa_offset == XA_CHUNK_MASK)) return __xas_next(xas); xas->xa_index++; xas->xa_offset++; return xa_entry(xas->xa, node, xas->xa_offset); } #endif /* _LINUX_XARRAY_H */
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 // SPDX-License-Identifier: GPL-2.0-only /* * VMware vSockets Driver * * Copyright (C) 2007-2012 VMware, Inc. All rights reserved. */ #include <linux/types.h> #include <linux/socket.h> #include <linux/stddef.h> #include <net/sock.h> #include <net/vsock_addr.h> void vsock_addr_init(struct sockaddr_vm *addr, u32 cid, u32 port) { memset(addr, 0, sizeof(*addr)); addr->svm_family = AF_VSOCK; addr->svm_cid = cid; addr->svm_port = port; } EXPORT_SYMBOL_GPL(vsock_addr_init); int vsock_addr_validate(const struct sockaddr_vm *addr) { __u8 svm_valid_flags = VMADDR_FLAG_TO_HOST; if (!addr) return -EFAULT; if (addr->svm_family != AF_VSOCK) return -EAFNOSUPPORT; if (addr->svm_flags & ~svm_valid_flags) return -EINVAL; return 0; } EXPORT_SYMBOL_GPL(vsock_addr_validate); bool vsock_addr_bound(const struct sockaddr_vm *addr) { return addr->svm_port != VMADDR_PORT_ANY; } EXPORT_SYMBOL_GPL(vsock_addr_bound); void vsock_addr_unbind(struct sockaddr_vm *addr) { vsock_addr_init(addr, VMADDR_CID_ANY, VMADDR_PORT_ANY); } EXPORT_SYMBOL_GPL(vsock_addr_unbind); bool vsock_addr_equals_addr(const struct sockaddr_vm *addr, const struct sockaddr_vm *other) { return addr->svm_cid == other->svm_cid && addr->svm_port == other->svm_port; } EXPORT_SYMBOL_GPL(vsock_addr_equals_addr); int vsock_addr_cast(const struct sockaddr *addr, size_t len, struct sockaddr_vm **out_addr) { if (len < sizeof(**out_addr)) return -EFAULT; *out_addr = (struct sockaddr_vm *)addr; return vsock_addr_validate(*out_addr); } EXPORT_SYMBOL_GPL(vsock_addr_cast);
48 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2014 Jiri Pirko <jiri@resnulli.us> */ #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <linux/if_vlan.h> #include <net/netlink.h> #include <net/pkt_sched.h> #include <net/pkt_cls.h> #include <linux/tc_act/tc_vlan.h> #include <net/tc_act/tc_vlan.h> static struct tc_action_ops act_vlan_ops; static int tcf_vlan_act(struct sk_buff *skb, const struct tc_action *a, struct tcf_result *res) { struct tcf_vlan *v = to_vlan(a); struct tcf_vlan_params *p; int action; int err; u16 tci; tcf_lastuse_update(&v->tcf_tm); tcf_action_update_bstats(&v->common, skb); /* Ensure 'data' points at mac_header prior calling vlan manipulating * functions. */ if (skb_at_tc_ingress(skb)) skb_push_rcsum(skb, skb->mac_len); action = READ_ONCE(v->tcf_action); p = rcu_dereference_bh(v->vlan_p); switch (p->tcfv_action) { case TCA_VLAN_ACT_POP: err = skb_vlan_pop(skb); if (err) goto drop; break; case TCA_VLAN_ACT_PUSH: err = skb_vlan_push(skb, p->tcfv_push_proto, p->tcfv_push_vid | (p->tcfv_push_prio << VLAN_PRIO_SHIFT)); if (err) goto drop; break; case TCA_VLAN_ACT_MODIFY: /* No-op if no vlan tag (either hw-accel or in-payload) */ if (!skb_vlan_tagged(skb)) goto out; /* extract existing tag (and guarantee no hw-accel tag) */ if (skb_vlan_tag_present(skb)) { tci = skb_vlan_tag_get(skb); __vlan_hwaccel_clear_tag(skb); } else { /* in-payload vlan tag, pop it */ err = __skb_vlan_pop(skb, &tci); if (err) goto drop; } /* replace the vid */ tci = (tci & ~VLAN_VID_MASK) | p->tcfv_push_vid; /* replace prio bits, if tcfv_push_prio specified */ if (p->tcfv_push_prio_exists) { tci &= ~VLAN_PRIO_MASK; tci |= p->tcfv_push_prio << VLAN_PRIO_SHIFT; } /* put updated tci as hwaccel tag */ __vlan_hwaccel_put_tag(skb, p->tcfv_push_proto, tci); break; case TCA_VLAN_ACT_POP_ETH: err = skb_eth_pop(skb); if (err) goto drop; break; case TCA_VLAN_ACT_PUSH_ETH: err = skb_eth_push(skb, p->tcfv_push_dst, p->tcfv_push_src); if (err) goto drop; break; default: BUG(); } out: if (skb_at_tc_ingress(skb)) skb_pull_rcsum(skb, skb->mac_len); return action; drop: tcf_action_inc_drop_qstats(&v->common); return TC_ACT_SHOT; } static const struct nla_policy vlan_policy[TCA_VLAN_MAX + 1] = { [TCA_VLAN_UNSPEC] = { .strict_start_type = TCA_VLAN_PUSH_ETH_DST }, [TCA_VLAN_PARMS] = { .len = sizeof(struct tc_vlan) }, [TCA_VLAN_PUSH_VLAN_ID] = { .type = NLA_U16 }, [TCA_VLAN_PUSH_VLAN_PROTOCOL] = { .type = NLA_U16 }, [TCA_VLAN_PUSH_VLAN_PRIORITY] = { .type = NLA_U8 }, [TCA_VLAN_PUSH_ETH_DST] = NLA_POLICY_ETH_ADDR, [TCA_VLAN_PUSH_ETH_SRC] = NLA_POLICY_ETH_ADDR, }; static int tcf_vlan_init(struct net *net, struct nlattr *nla, struct nlattr *est, struct tc_action **a, struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack) { struct tc_action_net *tn = net_generic(net, act_vlan_ops.net_id); bool bind = flags & TCA_ACT_FLAGS_BIND; struct nlattr *tb[TCA_VLAN_MAX + 1]; struct tcf_chain *goto_ch = NULL; bool push_prio_exists = false; struct tcf_vlan_params *p; struct tc_vlan *parm; struct tcf_vlan *v; int action; u16 push_vid = 0; __be16 push_proto = 0; u8 push_prio = 0; bool exists = false; int ret = 0, err; u32 index; if (!nla) return -EINVAL; err = nla_parse_nested_deprecated(tb, TCA_VLAN_MAX, nla, vlan_policy, NULL); if (err < 0) return err; if (!tb[TCA_VLAN_PARMS]) return -EINVAL; parm = nla_data(tb[TCA_VLAN_PARMS]); index = parm->index; err = tcf_idr_check_alloc(tn, &index, a, bind); if (err < 0) return err; exists = err; if (exists && bind) return 0; switch (parm->v_action) { case TCA_VLAN_ACT_POP: break; case TCA_VLAN_ACT_PUSH: case TCA_VLAN_ACT_MODIFY: if (!tb[TCA_VLAN_PUSH_VLAN_ID]) { if (exists) tcf_idr_release(*a, bind); else tcf_idr_cleanup(tn, index); return -EINVAL; } push_vid = nla_get_u16(tb[TCA_VLAN_PUSH_VLAN_ID]); if (push_vid >= VLAN_VID_MASK) { if (exists) tcf_idr_release(*a, bind); else tcf_idr_cleanup(tn, index); return -ERANGE; } if (tb[TCA_VLAN_PUSH_VLAN_PROTOCOL]) { push_proto = nla_get_be16(tb[TCA_VLAN_PUSH_VLAN_PROTOCOL]); switch (push_proto) { case htons(ETH_P_8021Q): case htons(ETH_P_8021AD): break; default: if (exists) tcf_idr_release(*a, bind); else tcf_idr_cleanup(tn, index); return -EPROTONOSUPPORT; } } else { push_proto = htons(ETH_P_8021Q); } push_prio_exists = !!tb[TCA_VLAN_PUSH_VLAN_PRIORITY]; if (push_prio_exists) push_prio = nla_get_u8(tb[TCA_VLAN_PUSH_VLAN_PRIORITY]); break; case TCA_VLAN_ACT_POP_ETH: break; case TCA_VLAN_ACT_PUSH_ETH: if (!tb[TCA_VLAN_PUSH_ETH_DST] || !tb[TCA_VLAN_PUSH_ETH_SRC]) { if (exists) tcf_idr_release(*a, bind); else tcf_idr_cleanup(tn, index); return -EINVAL; } break; default: if (exists) tcf_idr_release(*a, bind); else tcf_idr_cleanup(tn, index); return -EINVAL; } action = parm->v_action; if (!exists) { ret = tcf_idr_create_from_flags(tn, index, est, a, &act_vlan_ops, bind, flags); if (ret) { tcf_idr_cleanup(tn, index); return ret; } ret = ACT_P_CREATED; } else if (!(flags & TCA_ACT_FLAGS_REPLACE)) { tcf_idr_release(*a, bind); return -EEXIST; } err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); if (err < 0) goto release_idr; v = to_vlan(*a); p = kzalloc(sizeof(*p), GFP_KERNEL); if (!p) { err = -ENOMEM; goto put_chain; } p->tcfv_action = action; p->tcfv_push_vid = push_vid; p->tcfv_push_prio = push_prio; p->tcfv_push_prio_exists = push_prio_exists || action == TCA_VLAN_ACT_PUSH; p->tcfv_push_proto = push_proto; if (action == TCA_VLAN_ACT_PUSH_ETH) { nla_memcpy(&p->tcfv_push_dst, tb[TCA_VLAN_PUSH_ETH_DST], ETH_ALEN); nla_memcpy(&p->tcfv_push_src, tb[TCA_VLAN_PUSH_ETH_SRC], ETH_ALEN); } spin_lock_bh(&v->tcf_lock); goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); p = rcu_replace_pointer(v->vlan_p, p, lockdep_is_held(&v->tcf_lock)); spin_unlock_bh(&v->tcf_lock); if (goto_ch) tcf_chain_put_by_act(goto_ch); if (p) kfree_rcu(p, rcu); return ret; put_chain: if (goto_ch) tcf_chain_put_by_act(goto_ch); release_idr: tcf_idr_release(*a, bind); return err; } static void tcf_vlan_cleanup(struct tc_action *a) { struct tcf_vlan *v = to_vlan(a); struct tcf_vlan_params *p; p = rcu_dereference_protected(v->vlan_p, 1); if (p) kfree_rcu(p, rcu); } static int tcf_vlan_dump(struct sk_buff *skb, struct tc_action *a, int bind, int ref) { unsigned char *b = skb_tail_pointer(skb); struct tcf_vlan *v = to_vlan(a); struct tcf_vlan_params *p; struct tc_vlan opt = { .index = v->tcf_index, .refcnt = refcount_read(&v->tcf_refcnt) - ref, .bindcnt = atomic_read(&v->tcf_bindcnt) - bind, }; struct tcf_t t; spin_lock_bh(&v->tcf_lock); opt.action = v->tcf_action; p = rcu_dereference_protected(v->vlan_p, lockdep_is_held(&v->tcf_lock)); opt.v_action = p->tcfv_action; if (nla_put(skb, TCA_VLAN_PARMS, sizeof(opt), &opt)) goto nla_put_failure; if ((p->tcfv_action == TCA_VLAN_ACT_PUSH || p->tcfv_action == TCA_VLAN_ACT_MODIFY) && (nla_put_u16(skb, TCA_VLAN_PUSH_VLAN_ID, p->tcfv_push_vid) || nla_put_be16(skb, TCA_VLAN_PUSH_VLAN_PROTOCOL, p->tcfv_push_proto) || (p->tcfv_push_prio_exists && nla_put_u8(skb, TCA_VLAN_PUSH_VLAN_PRIORITY, p->tcfv_push_prio)))) goto nla_put_failure; if (p->tcfv_action == TCA_VLAN_ACT_PUSH_ETH) { if (nla_put(skb, TCA_VLAN_PUSH_ETH_DST, ETH_ALEN, p->tcfv_push_dst)) goto nla_put_failure; if (nla_put(skb, TCA_VLAN_PUSH_ETH_SRC, ETH_ALEN, p->tcfv_push_src)) goto nla_put_failure; } tcf_tm_dump(&t, &v->tcf_tm); if (nla_put_64bit(skb, TCA_VLAN_TM, sizeof(t), &t, TCA_VLAN_PAD)) goto nla_put_failure; spin_unlock_bh(&v->tcf_lock); return skb->len; nla_put_failure: spin_unlock_bh(&v->tcf_lock); nlmsg_trim(skb, b); return -1; } static void tcf_vlan_stats_update(struct tc_action *a, u64 bytes, u64 packets, u64 drops, u64 lastuse, bool hw) { struct tcf_vlan *v = to_vlan(a); struct tcf_t *tm = &v->tcf_tm; tcf_action_update_stats(a, bytes, packets, drops, hw); tm->lastuse = max_t(u64, tm->lastuse, lastuse); } static size_t tcf_vlan_get_fill_size(const struct tc_action *act) { return nla_total_size(sizeof(struct tc_vlan)) + nla_total_size(sizeof(u16)) /* TCA_VLAN_PUSH_VLAN_ID */ + nla_total_size(sizeof(u16)) /* TCA_VLAN_PUSH_VLAN_PROTOCOL */ + nla_total_size(sizeof(u8)); /* TCA_VLAN_PUSH_VLAN_PRIORITY */ } static int tcf_vlan_offload_act_setup(struct tc_action *act, void *entry_data, u32 *index_inc, bool bind, struct netlink_ext_ack *extack) { if (bind) { struct flow_action_entry *entry = entry_data; switch (tcf_vlan_action(act)) { case TCA_VLAN_ACT_PUSH: entry->id = FLOW_ACTION_VLAN_PUSH; entry->vlan.vid = tcf_vlan_push_vid(act); entry->vlan.proto = tcf_vlan_push_proto(act); entry->vlan.prio = tcf_vlan_push_prio(act); break; case TCA_VLAN_ACT_POP: entry->id = FLOW_ACTION_VLAN_POP; break; case TCA_VLAN_ACT_MODIFY: entry->id = FLOW_ACTION_VLAN_MANGLE; entry->vlan.vid = tcf_vlan_push_vid(act); entry->vlan.proto = tcf_vlan_push_proto(act); entry->vlan.prio = tcf_vlan_push_prio(act); break; case TCA_VLAN_ACT_POP_ETH: entry->id = FLOW_ACTION_VLAN_POP_ETH; break; case TCA_VLAN_ACT_PUSH_ETH: entry->id = FLOW_ACTION_VLAN_PUSH_ETH; tcf_vlan_push_eth(entry->vlan_push_eth.src, entry->vlan_push_eth.dst, act); break; default: NL_SET_ERR_MSG_MOD(extack, "Unsupported vlan action mode offload"); return -EOPNOTSUPP; } *index_inc = 1; } else { struct flow_offload_action *fl_action = entry_data; switch (tcf_vlan_action(act)) { case TCA_VLAN_ACT_PUSH: fl_action->id = FLOW_ACTION_VLAN_PUSH; break; case TCA_VLAN_ACT_POP: fl_action->id = FLOW_ACTION_VLAN_POP; break; case TCA_VLAN_ACT_MODIFY: fl_action->id = FLOW_ACTION_VLAN_MANGLE; break; case TCA_VLAN_ACT_POP_ETH: fl_action->id = FLOW_ACTION_VLAN_POP_ETH; break; case TCA_VLAN_ACT_PUSH_ETH: fl_action->id = FLOW_ACTION_VLAN_PUSH_ETH; break; default: return -EOPNOTSUPP; } } return 0; } static struct tc_action_ops act_vlan_ops = { .kind = "vlan", .id = TCA_ID_VLAN, .owner = THIS_MODULE, .act = tcf_vlan_act, .dump = tcf_vlan_dump, .init = tcf_vlan_init, .cleanup = tcf_vlan_cleanup, .stats_update = tcf_vlan_stats_update, .get_fill_size = tcf_vlan_get_fill_size, .offload_act_setup = tcf_vlan_offload_act_setup, .size = sizeof(struct tcf_vlan), }; static __net_init int vlan_init_net(struct net *net) { struct tc_action_net *tn = net_generic(net, act_vlan_ops.net_id); return tc_action_net_init(net, tn, &act_vlan_ops); } static void __net_exit vlan_exit_net(struct list_head *net_list) { tc_action_net_exit(net_list, act_vlan_ops.net_id); } static struct pernet_operations vlan_net_ops = { .init = vlan_init_net, .exit_batch = vlan_exit_net, .id = &act_vlan_ops.net_id, .size = sizeof(struct tc_action_net), }; static int __init vlan_init_module(void) { return tcf_register_action(&act_vlan_ops, &vlan_net_ops); } static void __exit vlan_cleanup_module(void) { tcf_unregister_action(&act_vlan_ops, &vlan_net_ops); } module_init(vlan_init_module); module_exit(vlan_cleanup_module); MODULE_AUTHOR("Jiri Pirko <jiri@resnulli.us>"); MODULE_DESCRIPTION("vlan manipulation actions"); MODULE_LICENSE("GPL v2");
3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 // SPDX-License-Identifier: GPL-2.0-only /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Generic TIME_WAIT sockets functions * * From code orinally in TCP */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/module.h> #include <net/inet_hashtables.h> #include <net/inet_timewait_sock.h> #include <net/ip.h> /** * inet_twsk_bind_unhash - unhash a timewait socket from bind hash * @tw: timewait socket * @hashinfo: hashinfo pointer * * unhash a timewait socket from bind hash, if hashed. * bind hash lock must be held by caller. * Returns 1 if caller should call inet_twsk_put() after lock release. */ void inet_twsk_bind_unhash(struct inet_timewait_sock *tw, struct inet_hashinfo *hashinfo) { struct inet_bind2_bucket *tb2 = tw->tw_tb2; struct inet_bind_bucket *tb = tw->tw_tb; if (!tb) return; __hlist_del(&tw->tw_bind_node); tw->tw_tb = NULL; inet_bind_bucket_destroy(hashinfo->bind_bucket_cachep, tb); __hlist_del(&tw->tw_bind2_node); tw->tw_tb2 = NULL; inet_bind2_bucket_destroy(hashinfo->bind2_bucket_cachep, tb2); __sock_put((struct sock *)tw); } /* Must be called with locally disabled BHs. */ static void inet_twsk_kill(struct inet_timewait_sock *tw) { struct inet_hashinfo *hashinfo = tw->tw_dr->hashinfo; spinlock_t *lock = inet_ehash_lockp(hashinfo, tw->tw_hash); struct inet_bind_hashbucket *bhead, *bhead2; spin_lock(lock); sk_nulls_del_node_init_rcu((struct sock *)tw); spin_unlock(lock); /* Disassociate with bind bucket. */ bhead = &hashinfo->bhash[inet_bhashfn(twsk_net(tw), tw->tw_num, hashinfo->bhash_size)]; bhead2 = inet_bhashfn_portaddr(hashinfo, (struct sock *)tw, twsk_net(tw), tw->tw_num); spin_lock(&bhead->lock); spin_lock(&bhead2->lock); inet_twsk_bind_unhash(tw, hashinfo); spin_unlock(&bhead2->lock); spin_unlock(&bhead->lock); refcount_dec(&tw->tw_dr->tw_refcount); inet_twsk_put(tw); } void inet_twsk_free(struct inet_timewait_sock *tw) { struct module *owner = tw->tw_prot->owner; twsk_destructor((struct sock *)tw); #ifdef SOCK_REFCNT_DEBUG pr_debug("%s timewait_sock %p released\n", tw->tw_prot->name, tw); #endif kmem_cache_free(tw->tw_prot->twsk_prot->twsk_slab, tw); module_put(owner); } void inet_twsk_put(struct inet_timewait_sock *tw) { if (refcount_dec_and_test(&tw->tw_refcnt)) inet_twsk_free(tw); } EXPORT_SYMBOL_GPL(inet_twsk_put); static void inet_twsk_add_node_rcu(struct inet_timewait_sock *tw, struct hlist_nulls_head *list) { hlist_nulls_add_head_rcu(&tw->tw_node, list); } static void inet_twsk_add_bind_node(struct inet_timewait_sock *tw, struct hlist_head *list) { hlist_add_head(&tw->tw_bind_node, list); } static void inet_twsk_add_bind2_node(struct inet_timewait_sock *tw, struct hlist_head *list) { hlist_add_head(&tw->tw_bind2_node, list); } /* * Enter the time wait state. This is called with locally disabled BH. * Essentially we whip up a timewait bucket, copy the relevant info into it * from the SK, and mess with hash chains and list linkage. */ void inet_twsk_hashdance(struct inet_timewait_sock *tw, struct sock *sk, struct inet_hashinfo *hashinfo) { const struct inet_sock *inet = inet_sk(sk); const struct inet_connection_sock *icsk = inet_csk(sk); struct inet_ehash_bucket *ehead = inet_ehash_bucket(hashinfo, sk->sk_hash); spinlock_t *lock = inet_ehash_lockp(hashinfo, sk->sk_hash); struct inet_bind_hashbucket *bhead, *bhead2; /* Step 1: Put TW into bind hash. Original socket stays there too. Note, that any socket with inet->num != 0 MUST be bound in binding cache, even if it is closed. */ bhead = &hashinfo->bhash[inet_bhashfn(twsk_net(tw), inet->inet_num, hashinfo->bhash_size)]; bhead2 = inet_bhashfn_portaddr(hashinfo, sk, twsk_net(tw), inet->inet_num); spin_lock(&bhead->lock); spin_lock(&bhead2->lock); tw->tw_tb = icsk->icsk_bind_hash; WARN_ON(!icsk->icsk_bind_hash); inet_twsk_add_bind_node(tw, &tw->tw_tb->owners); tw->tw_tb2 = icsk->icsk_bind2_hash; WARN_ON(!icsk->icsk_bind2_hash); inet_twsk_add_bind2_node(tw, &tw->tw_tb2->deathrow); spin_unlock(&bhead2->lock); spin_unlock(&bhead->lock); spin_lock(lock); inet_twsk_add_node_rcu(tw, &ehead->chain); /* Step 3: Remove SK from hash chain */ if (__sk_nulls_del_node_init_rcu(sk)) sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); spin_unlock(lock); /* tw_refcnt is set to 3 because we have : * - one reference for bhash chain. * - one reference for ehash chain. * - one reference for timer. * We can use atomic_set() because prior spin_lock()/spin_unlock() * committed into memory all tw fields. * Also note that after this point, we lost our implicit reference * so we are not allowed to use tw anymore. */ refcount_set(&tw->tw_refcnt, 3); } EXPORT_SYMBOL_GPL(inet_twsk_hashdance); static void tw_timer_handler(struct timer_list *t) { struct inet_timewait_sock *tw = from_timer(tw, t, tw_timer); inet_twsk_kill(tw); } struct inet_timewait_sock *inet_twsk_alloc(const struct sock *sk, struct inet_timewait_death_row *dr, const int state) { struct inet_timewait_sock *tw; if (refcount_read(&dr->tw_refcount) - 1 >= READ_ONCE(dr->sysctl_max_tw_buckets)) return NULL; tw = kmem_cache_alloc(sk->sk_prot_creator->twsk_prot->twsk_slab, GFP_ATOMIC); if (tw) { const struct inet_sock *inet = inet_sk(sk); tw->tw_dr = dr; /* Give us an identity. */ tw->tw_daddr = inet->inet_daddr; tw->tw_rcv_saddr = inet->inet_rcv_saddr; tw->tw_bound_dev_if = sk->sk_bound_dev_if; tw->tw_tos = inet->tos; tw->tw_num = inet->inet_num; tw->tw_state = TCP_TIME_WAIT; tw->tw_substate = state; tw->tw_sport = inet->inet_sport; tw->tw_dport = inet->inet_dport; tw->tw_family = sk->sk_family; tw->tw_reuse = sk->sk_reuse; tw->tw_reuseport = sk->sk_reuseport; tw->tw_hash = sk->sk_hash; tw->tw_ipv6only = 0; tw->tw_transparent = inet->transparent; tw->tw_prot = sk->sk_prot_creator; atomic64_set(&tw->tw_cookie, atomic64_read(&sk->sk_cookie)); twsk_net_set(tw, sock_net(sk)); timer_setup(&tw->tw_timer, tw_timer_handler, TIMER_PINNED); /* * Because we use RCU lookups, we should not set tw_refcnt * to a non null value before everything is setup for this * timewait socket. */ refcount_set(&tw->tw_refcnt, 0); __module_get(tw->tw_prot->owner); } return tw; } EXPORT_SYMBOL_GPL(inet_twsk_alloc); /* These are always called from BH context. See callers in * tcp_input.c to verify this. */ /* This is for handling early-kills of TIME_WAIT sockets. * Warning : consume reference. * Caller should not access tw anymore. */ void inet_twsk_deschedule_put(struct inet_timewait_sock *tw) { if (del_timer_sync(&tw->tw_timer)) inet_twsk_kill(tw); inet_twsk_put(tw); } EXPORT_SYMBOL(inet_twsk_deschedule_put); void __inet_twsk_schedule(struct inet_timewait_sock *tw, int timeo, bool rearm) { /* timeout := RTO * 3.5 * * 3.5 = 1+2+0.5 to wait for two retransmits. * * RATIONALE: if FIN arrived and we entered TIME-WAIT state, * our ACK acking that FIN can be lost. If N subsequent retransmitted * FINs (or previous seqments) are lost (probability of such event * is p^(N+1), where p is probability to lose single packet and * time to detect the loss is about RTO*(2^N - 1) with exponential * backoff). Normal timewait length is calculated so, that we * waited at least for one retransmitted FIN (maximal RTO is 120sec). * [ BTW Linux. following BSD, violates this requirement waiting * only for 60sec, we should wait at least for 240 secs. * Well, 240 consumes too much of resources 8) * ] * This interval is not reduced to catch old duplicate and * responces to our wandering segments living for two MSLs. * However, if we use PAWS to detect * old duplicates, we can reduce the interval to bounds required * by RTO, rather than MSL. So, if peer understands PAWS, we * kill tw bucket after 3.5*RTO (it is important that this number * is greater than TS tick!) and detect old duplicates with help * of PAWS. */ if (!rearm) { bool kill = timeo <= 4*HZ; __NET_INC_STATS(twsk_net(tw), kill ? LINUX_MIB_TIMEWAITKILLED : LINUX_MIB_TIMEWAITED); BUG_ON(mod_timer(&tw->tw_timer, jiffies + timeo)); refcount_inc(&tw->tw_dr->tw_refcount); } else { mod_timer_pending(&tw->tw_timer, jiffies + timeo); } } EXPORT_SYMBOL_GPL(__inet_twsk_schedule); /* Remove all non full sockets (TIME_WAIT and NEW_SYN_RECV) for dead netns */ void inet_twsk_purge(struct inet_hashinfo *hashinfo) { struct inet_ehash_bucket *head = &hashinfo->ehash[0]; unsigned int ehash_mask = hashinfo->ehash_mask; struct hlist_nulls_node *node; unsigned int slot; struct sock *sk; for (slot = 0; slot <= ehash_mask; slot++, head++) { if (hlist_nulls_empty(&head->chain)) continue; restart_rcu: cond_resched(); rcu_read_lock(); restart: sk_nulls_for_each_rcu(sk, node, &head->chain) { int state = inet_sk_state_load(sk); if ((1 << state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV)) continue; if (refcount_read(&sock_net(sk)->ns.count)) continue; if (unlikely(!refcount_inc_not_zero(&sk->sk_refcnt))) continue; if (refcount_read(&sock_net(sk)->ns.count)) { sock_gen_put(sk); goto restart; } rcu_read_unlock(); local_bh_disable(); if (state == TCP_TIME_WAIT) { inet_twsk_deschedule_put(inet_twsk(sk)); } else { struct request_sock *req = inet_reqsk(sk); inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req); } local_bh_enable(); goto restart_rcu; } /* If the nulls value we got at the end of this lookup is * not the expected one, we must restart lookup. * We probably met an item that was moved to another chain. */ if (get_nulls_value(node) != slot) goto restart; rcu_read_unlock(); } } EXPORT_SYMBOL_GPL(inet_twsk_purge);
137 190 1443 713 840 187 109 1 59 1 47 9 60 1448 1450 1454 1445 60 1 1 3404 662 3385 3393 3404 3385 659 662 662 175 587 409 661 519 1591 3 3 1593 3 1450 3 1437 267 261 1580 1593 1449 1397 94 24 180 180 174 18 1395 176 1395 1450 1333 726 1413 162 938 295 650 653 851 730 523 440 437 422 419 4 425 423 424 1034 1016 23 3 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 // SPDX-License-Identifier: GPL-2.0 /* * Kernel internal timers * * Copyright (C) 1991, 1992 Linus Torvalds * * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. * * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 * "A Kernel Model for Precision Timekeeping" by Dave Mills * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to * serialize accesses to xtime/lost_ticks). * Copyright (C) 1998 Andrea Arcangeli * 1999-03-10 Improved NTP compatibility by Ulrich Windl * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love * 2000-10-05 Implemented scalable SMP per-CPU timer handling. * Copyright (C) 2000, 2001, 2002 Ingo Molnar * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar */ #include <linux/kernel_stat.h> #include <linux/export.h> #include <linux/interrupt.h> #include <linux/percpu.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/swap.h> #include <linux/pid_namespace.h> #include <linux/notifier.h> #include <linux/thread_info.h> #include <linux/time.h> #include <linux/jiffies.h> #include <linux/posix-timers.h> #include <linux/cpu.h> #include <linux/syscalls.h> #include <linux/delay.h> #include <linux/tick.h> #include <linux/kallsyms.h> #include <linux/irq_work.h> #include <linux/sched/signal.h> #include <linux/sched/sysctl.h> #include <linux/sched/nohz.h> #include <linux/sched/debug.h> #include <linux/slab.h> #include <linux/compat.h> #include <linux/random.h> #include <linux/sysctl.h> #include <linux/uaccess.h> #include <asm/unistd.h> #include <asm/div64.h> #include <asm/timex.h> #include <asm/io.h> #include "tick-internal.h" #define CREATE_TRACE_POINTS #include <trace/events/timer.h> __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; EXPORT_SYMBOL(jiffies_64); /* * The timer wheel has LVL_DEPTH array levels. Each level provides an array of * LVL_SIZE buckets. Each level is driven by its own clock and therefor each * level has a different granularity. * * The level granularity is: LVL_CLK_DIV ^ lvl * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level) * * The array level of a newly armed timer depends on the relative expiry * time. The farther the expiry time is away the higher the array level and * therefor the granularity becomes. * * Contrary to the original timer wheel implementation, which aims for 'exact' * expiry of the timers, this implementation removes the need for recascading * the timers into the lower array levels. The previous 'classic' timer wheel * implementation of the kernel already violated the 'exact' expiry by adding * slack to the expiry time to provide batched expiration. The granularity * levels provide implicit batching. * * This is an optimization of the original timer wheel implementation for the * majority of the timer wheel use cases: timeouts. The vast majority of * timeout timers (networking, disk I/O ...) are canceled before expiry. If * the timeout expires it indicates that normal operation is disturbed, so it * does not matter much whether the timeout comes with a slight delay. * * The only exception to this are networking timers with a small expiry * time. They rely on the granularity. Those fit into the first wheel level, * which has HZ granularity. * * We don't have cascading anymore. timers with a expiry time above the * capacity of the last wheel level are force expired at the maximum timeout * value of the last wheel level. From data sampling we know that the maximum * value observed is 5 days (network connection tracking), so this should not * be an issue. * * The currently chosen array constants values are a good compromise between * array size and granularity. * * This results in the following granularity and range levels: * * HZ 1000 steps * Level Offset Granularity Range * 0 0 1 ms 0 ms - 63 ms * 1 64 8 ms 64 ms - 511 ms * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s) * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s) * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m) * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m) * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h) * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d) * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d) * * HZ 300 * Level Offset Granularity Range * 0 0 3 ms 0 ms - 210 ms * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s) * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s) * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m) * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m) * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h) * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h) * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d) * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d) * * HZ 250 * Level Offset Granularity Range * 0 0 4 ms 0 ms - 255 ms * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s) * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s) * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m) * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m) * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h) * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h) * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d) * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d) * * HZ 100 * Level Offset Granularity Range * 0 0 10 ms 0 ms - 630 ms * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s) * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s) * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m) * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m) * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h) * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d) * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d) */ /* Clock divisor for the next level */ #define LVL_CLK_SHIFT 3 #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT) #define LVL_CLK_MASK (LVL_CLK_DIV - 1) #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT) #define LVL_GRAN(n) (1UL << LVL_SHIFT(n)) /* * The time start value for each level to select the bucket at enqueue * time. We start from the last possible delta of the previous level * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()). */ #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT)) /* Size of each clock level */ #define LVL_BITS 6 #define LVL_SIZE (1UL << LVL_BITS) #define LVL_MASK (LVL_SIZE - 1) #define LVL_OFFS(n) ((n) * LVL_SIZE) /* Level depth */ #if HZ > 100 # define LVL_DEPTH 9 # else # define LVL_DEPTH 8 #endif /* The cutoff (max. capacity of the wheel) */ #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH)) #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1)) /* * The resulting wheel size. If NOHZ is configured we allocate two * wheels so we have a separate storage for the deferrable timers. */ #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH) #ifdef CONFIG_NO_HZ_COMMON # define NR_BASES 2 # define BASE_STD 0 # define BASE_DEF 1 #else # define NR_BASES 1 # define BASE_STD 0 # define BASE_DEF 0 #endif struct timer_base { raw_spinlock_t lock; struct timer_list *running_timer; #ifdef CONFIG_PREEMPT_RT spinlock_t expiry_lock; atomic_t timer_waiters; #endif unsigned long clk; unsigned long next_expiry; unsigned int cpu; bool next_expiry_recalc; bool is_idle; bool timers_pending; DECLARE_BITMAP(pending_map, WHEEL_SIZE); struct hlist_head vectors[WHEEL_SIZE]; } ____cacheline_aligned; static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]); #ifdef CONFIG_NO_HZ_COMMON static DEFINE_STATIC_KEY_FALSE(timers_nohz_active); static DEFINE_MUTEX(timer_keys_mutex); static void timer_update_keys(struct work_struct *work); static DECLARE_WORK(timer_update_work, timer_update_keys); #ifdef CONFIG_SMP static unsigned int sysctl_timer_migration = 1; DEFINE_STATIC_KEY_FALSE(timers_migration_enabled); static void timers_update_migration(void) { if (sysctl_timer_migration && tick_nohz_active) static_branch_enable(&timers_migration_enabled); else static_branch_disable(&timers_migration_enabled); } #ifdef CONFIG_SYSCTL static int timer_migration_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret; mutex_lock(&timer_keys_mutex); ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); if (!ret && write) timers_update_migration(); mutex_unlock(&timer_keys_mutex); return ret; } static struct ctl_table timer_sysctl[] = { { .procname = "timer_migration", .data = &sysctl_timer_migration, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = timer_migration_handler, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, {} }; static int __init timer_sysctl_init(void) { register_sysctl("kernel", timer_sysctl); return 0; } device_initcall(timer_sysctl_init); #endif /* CONFIG_SYSCTL */ #else /* CONFIG_SMP */ static inline void timers_update_migration(void) { } #endif /* !CONFIG_SMP */ static void timer_update_keys(struct work_struct *work) { mutex_lock(&timer_keys_mutex); timers_update_migration(); static_branch_enable(&timers_nohz_active); mutex_unlock(&timer_keys_mutex); } void timers_update_nohz(void) { schedule_work(&timer_update_work); } static inline bool is_timers_nohz_active(void) { return static_branch_unlikely(&timers_nohz_active); } #else static inline bool is_timers_nohz_active(void) { return false; } #endif /* NO_HZ_COMMON */ static unsigned long round_jiffies_common(unsigned long j, int cpu, bool force_up) { int rem; unsigned long original = j; /* * We don't want all cpus firing their timers at once hitting the * same lock or cachelines, so we skew each extra cpu with an extra * 3 jiffies. This 3 jiffies came originally from the mm/ code which * already did this. * The skew is done by adding 3*cpunr, then round, then subtract this * extra offset again. */ j += cpu * 3; rem = j % HZ; /* * If the target jiffie is just after a whole second (which can happen * due to delays of the timer irq, long irq off times etc etc) then * we should round down to the whole second, not up. Use 1/4th second * as cutoff for this rounding as an extreme upper bound for this. * But never round down if @force_up is set. */ if (rem < HZ/4 && !force_up) /* round down */ j = j - rem; else /* round up */ j = j - rem + HZ; /* now that we have rounded, subtract the extra skew again */ j -= cpu * 3; /* * Make sure j is still in the future. Otherwise return the * unmodified value. */ return time_is_after_jiffies(j) ? j : original; } /** * __round_jiffies - function to round jiffies to a full second * @j: the time in (absolute) jiffies that should be rounded * @cpu: the processor number on which the timeout will happen * * __round_jiffies() rounds an absolute time in the future (in jiffies) * up or down to (approximately) full seconds. This is useful for timers * for which the exact time they fire does not matter too much, as long as * they fire approximately every X seconds. * * By rounding these timers to whole seconds, all such timers will fire * at the same time, rather than at various times spread out. The goal * of this is to have the CPU wake up less, which saves power. * * The exact rounding is skewed for each processor to avoid all * processors firing at the exact same time, which could lead * to lock contention or spurious cache line bouncing. * * The return value is the rounded version of the @j parameter. */ unsigned long __round_jiffies(unsigned long j, int cpu) { return round_jiffies_common(j, cpu, false); } EXPORT_SYMBOL_GPL(__round_jiffies); /** * __round_jiffies_relative - function to round jiffies to a full second * @j: the time in (relative) jiffies that should be rounded * @cpu: the processor number on which the timeout will happen * * __round_jiffies_relative() rounds a time delta in the future (in jiffies) * up or down to (approximately) full seconds. This is useful for timers * for which the exact time they fire does not matter too much, as long as * they fire approximately every X seconds. * * By rounding these timers to whole seconds, all such timers will fire * at the same time, rather than at various times spread out. The goal * of this is to have the CPU wake up less, which saves power. * * The exact rounding is skewed for each processor to avoid all * processors firing at the exact same time, which could lead * to lock contention or spurious cache line bouncing. * * The return value is the rounded version of the @j parameter. */ unsigned long __round_jiffies_relative(unsigned long j, int cpu) { unsigned long j0 = jiffies; /* Use j0 because jiffies might change while we run */ return round_jiffies_common(j + j0, cpu, false) - j0; } EXPORT_SYMBOL_GPL(__round_jiffies_relative); /** * round_jiffies - function to round jiffies to a full second * @j: the time in (absolute) jiffies that should be rounded * * round_jiffies() rounds an absolute time in the future (in jiffies) * up or down to (approximately) full seconds. This is useful for timers * for which the exact time they fire does not matter too much, as long as * they fire approximately every X seconds. * * By rounding these timers to whole seconds, all such timers will fire * at the same time, rather than at various times spread out. The goal * of this is to have the CPU wake up less, which saves power. * * The return value is the rounded version of the @j parameter. */ unsigned long round_jiffies(unsigned long j) { return round_jiffies_common(j, raw_smp_processor_id(), false); } EXPORT_SYMBOL_GPL(round_jiffies); /** * round_jiffies_relative - function to round jiffies to a full second * @j: the time in (relative) jiffies that should be rounded * * round_jiffies_relative() rounds a time delta in the future (in jiffies) * up or down to (approximately) full seconds. This is useful for timers * for which the exact time they fire does not matter too much, as long as * they fire approximately every X seconds. * * By rounding these timers to whole seconds, all such timers will fire * at the same time, rather than at various times spread out. The goal * of this is to have the CPU wake up less, which saves power. * * The return value is the rounded version of the @j parameter. */ unsigned long round_jiffies_relative(unsigned long j) { return __round_jiffies_relative(j, raw_smp_processor_id()); } EXPORT_SYMBOL_GPL(round_jiffies_relative); /** * __round_jiffies_up - function to round jiffies up to a full second * @j: the time in (absolute) jiffies that should be rounded * @cpu: the processor number on which the timeout will happen * * This is the same as __round_jiffies() except that it will never * round down. This is useful for timeouts for which the exact time * of firing does not matter too much, as long as they don't fire too * early. */ unsigned long __round_jiffies_up(unsigned long j, int cpu) { return round_jiffies_common(j, cpu, true); } EXPORT_SYMBOL_GPL(__round_jiffies_up); /** * __round_jiffies_up_relative - function to round jiffies up to a full second * @j: the time in (relative) jiffies that should be rounded * @cpu: the processor number on which the timeout will happen * * This is the same as __round_jiffies_relative() except that it will never * round down. This is useful for timeouts for which the exact time * of firing does not matter too much, as long as they don't fire too * early. */ unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) { unsigned long j0 = jiffies; /* Use j0 because jiffies might change while we run */ return round_jiffies_common(j + j0, cpu, true) - j0; } EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); /** * round_jiffies_up - function to round jiffies up to a full second * @j: the time in (absolute) jiffies that should be rounded * * This is the same as round_jiffies() except that it will never * round down. This is useful for timeouts for which the exact time * of firing does not matter too much, as long as they don't fire too * early. */ unsigned long round_jiffies_up(unsigned long j) { return round_jiffies_common(j, raw_smp_processor_id(), true); } EXPORT_SYMBOL_GPL(round_jiffies_up); /** * round_jiffies_up_relative - function to round jiffies up to a full second * @j: the time in (relative) jiffies that should be rounded * * This is the same as round_jiffies_relative() except that it will never * round down. This is useful for timeouts for which the exact time * of firing does not matter too much, as long as they don't fire too * early. */ unsigned long round_jiffies_up_relative(unsigned long j) { return __round_jiffies_up_relative(j, raw_smp_processor_id()); } EXPORT_SYMBOL_GPL(round_jiffies_up_relative); static inline unsigned int timer_get_idx(struct timer_list *timer) { return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT; } static inline void timer_set_idx(struct timer_list *timer, unsigned int idx) { timer->flags = (timer->flags & ~TIMER_ARRAYMASK) | idx << TIMER_ARRAYSHIFT; } /* * Helper function to calculate the array index for a given expiry * time. */ static inline unsigned calc_index(unsigned long expires, unsigned lvl, unsigned long *bucket_expiry) { /* * The timer wheel has to guarantee that a timer does not fire * early. Early expiry can happen due to: * - Timer is armed at the edge of a tick * - Truncation of the expiry time in the outer wheel levels * * Round up with level granularity to prevent this. */ expires = (expires >> LVL_SHIFT(lvl)) + 1; *bucket_expiry = expires << LVL_SHIFT(lvl); return LVL_OFFS(lvl) + (expires & LVL_MASK); } static int calc_wheel_index(unsigned long expires, unsigned long clk, unsigned long *bucket_expiry) { unsigned long delta = expires - clk; unsigned int idx; if (delta < LVL_START(1)) { idx = calc_index(expires, 0, bucket_expiry); } else if (delta < LVL_START(2)) { idx = calc_index(expires, 1, bucket_expiry); } else if (delta < LVL_START(3)) { idx = calc_index(expires, 2, bucket_expiry); } else if (delta < LVL_START(4)) { idx = calc_index(expires, 3, bucket_expiry); } else if (delta < LVL_START(5)) { idx = calc_index(expires, 4, bucket_expiry); } else if (delta < LVL_START(6)) { idx = calc_index(expires, 5, bucket_expiry); } else if (delta < LVL_START(7)) { idx = calc_index(expires, 6, bucket_expiry); } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) { idx = calc_index(expires, 7, bucket_expiry); } else if ((long) delta < 0) { idx = clk & LVL_MASK; *bucket_expiry = clk; } else { /* * Force expire obscene large timeouts to expire at the * capacity limit of the wheel. */ if (delta >= WHEEL_TIMEOUT_CUTOFF) expires = clk + WHEEL_TIMEOUT_MAX; idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry); } return idx; } static void trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer) { if (!is_timers_nohz_active()) return; /* * TODO: This wants some optimizing similar to the code below, but we * will do that when we switch from push to pull for deferrable timers. */ if (timer->flags & TIMER_DEFERRABLE) { if (tick_nohz_full_cpu(base->cpu)) wake_up_nohz_cpu(base->cpu); return; } /* * We might have to IPI the remote CPU if the base is idle and the * timer is not deferrable. If the other CPU is on the way to idle * then it can't set base->is_idle as we hold the base lock: */ if (base->is_idle) wake_up_nohz_cpu(base->cpu); } /* * Enqueue the timer into the hash bucket, mark it pending in * the bitmap, store the index in the timer flags then wake up * the target CPU if needed. */ static void enqueue_timer(struct timer_base *base, struct timer_list *timer, unsigned int idx, unsigned long bucket_expiry) { hlist_add_head(&timer->entry, base->vectors + idx); __set_bit(idx, base->pending_map); timer_set_idx(timer, idx); trace_timer_start(timer, timer->expires, timer->flags); /* * Check whether this is the new first expiring timer. The * effective expiry time of the timer is required here * (bucket_expiry) instead of timer->expires. */ if (time_before(bucket_expiry, base->next_expiry)) { /* * Set the next expiry time and kick the CPU so it * can reevaluate the wheel: */ base->next_expiry = bucket_expiry; base->timers_pending = true; base->next_expiry_recalc = false; trigger_dyntick_cpu(base, timer); } } static void internal_add_timer(struct timer_base *base, struct timer_list *timer) { unsigned long bucket_expiry; unsigned int idx; idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry); enqueue_timer(base, timer, idx, bucket_expiry); } #ifdef CONFIG_DEBUG_OBJECTS_TIMERS static const struct debug_obj_descr timer_debug_descr; struct timer_hint { void (*function)(struct timer_list *t); long offset; }; #define TIMER_HINT(fn, container, timr, hintfn) \ { \ .function = fn, \ .offset = offsetof(container, hintfn) - \ offsetof(container, timr) \ } static const struct timer_hint timer_hints[] = { TIMER_HINT(delayed_work_timer_fn, struct delayed_work, timer, work.func), TIMER_HINT(kthread_delayed_work_timer_fn, struct kthread_delayed_work, timer, work.func), }; static void *timer_debug_hint(void *addr) { struct timer_list *timer = addr; int i; for (i = 0; i < ARRAY_SIZE(timer_hints); i++) { if (timer_hints[i].function == timer->function) { void (**fn)(void) = addr + timer_hints[i].offset; return *fn; } } return timer->function; } static bool timer_is_static_object(void *addr) { struct timer_list *timer = addr; return (timer->entry.pprev == NULL && timer->entry.next == TIMER_ENTRY_STATIC); } /* * fixup_init is called when: * - an active object is initialized */ static bool timer_fixup_init(void *addr, enum debug_obj_state state) { struct timer_list *timer = addr; switch (state) { case ODEBUG_STATE_ACTIVE: del_timer_sync(timer); debug_object_init(timer, &timer_debug_descr); return true; default: return false; } } /* Stub timer callback for improperly used timers. */ static void stub_timer(struct timer_list *unused) { WARN_ON(1); } /* * fixup_activate is called when: * - an active object is activated * - an unknown non-static object is activated */ static bool timer_fixup_activate(void *addr, enum debug_obj_state state) { struct timer_list *timer = addr; switch (state) { case ODEBUG_STATE_NOTAVAILABLE: timer_setup(timer, stub_timer, 0); return true; case ODEBUG_STATE_ACTIVE: WARN_ON(1); fallthrough; default: return false; } } /* * fixup_free is called when: * - an active object is freed */ static bool timer_fixup_free(void *addr, enum debug_obj_state state) { struct timer_list *timer = addr; switch (state) { case ODEBUG_STATE_ACTIVE: del_timer_sync(timer); debug_object_free(timer, &timer_debug_descr); return true; default: return false; } } /* * fixup_assert_init is called when: * - an untracked/uninit-ed object is found */ static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state) { struct timer_list *timer = addr; switch (state) { case ODEBUG_STATE_NOTAVAILABLE: timer_setup(timer, stub_timer, 0); return true; default: return false; } } static const struct debug_obj_descr timer_debug_descr = { .name = "timer_list", .debug_hint = timer_debug_hint, .is_static_object = timer_is_static_object, .fixup_init = timer_fixup_init, .fixup_activate = timer_fixup_activate, .fixup_free = timer_fixup_free, .fixup_assert_init = timer_fixup_assert_init, }; static inline void debug_timer_init(struct timer_list *timer) { debug_object_init(timer, &timer_debug_descr); } static inline void debug_timer_activate(struct timer_list *timer) { debug_object_activate(timer, &timer_debug_descr); } static inline void debug_timer_deactivate(struct timer_list *timer) { debug_object_deactivate(timer, &timer_debug_descr); } static inline void debug_timer_assert_init(struct timer_list *timer) { debug_object_assert_init(timer, &timer_debug_descr); } static void do_init_timer(struct timer_list *timer, void (*func)(struct timer_list *), unsigned int flags, const char *name, struct lock_class_key *key); void init_timer_on_stack_key(struct timer_list *timer, void (*func)(struct timer_list *), unsigned int flags, const char *name, struct lock_class_key *key) { debug_object_init_on_stack(timer, &timer_debug_descr); do_init_timer(timer, func, flags, name, key); } EXPORT_SYMBOL_GPL(init_timer_on_stack_key); void destroy_timer_on_stack(struct timer_list *timer) { debug_object_free(timer, &timer_debug_descr); } EXPORT_SYMBOL_GPL(destroy_timer_on_stack); #else static inline void debug_timer_init(struct timer_list *timer) { } static inline void debug_timer_activate(struct timer_list *timer) { } static inline void debug_timer_deactivate(struct timer_list *timer) { } static inline void debug_timer_assert_init(struct timer_list *timer) { } #endif static inline void debug_init(struct timer_list *timer) { debug_timer_init(timer); trace_timer_init(timer); } static inline void debug_deactivate(struct timer_list *timer) { debug_timer_deactivate(timer); trace_timer_cancel(timer); } static inline void debug_assert_init(struct timer_list *timer) { debug_timer_assert_init(timer); } static void do_init_timer(struct timer_list *timer, void (*func)(struct timer_list *), unsigned int flags, const char *name, struct lock_class_key *key) { timer->entry.pprev = NULL; timer->function = func; if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS)) flags &= TIMER_INIT_FLAGS; timer->flags = flags | raw_smp_processor_id(); lockdep_init_map(&timer->lockdep_map, name, key, 0); } /** * init_timer_key - initialize a timer * @timer: the timer to be initialized * @func: timer callback function * @flags: timer flags * @name: name of the timer * @key: lockdep class key of the fake lock used for tracking timer * sync lock dependencies * * init_timer_key() must be done to a timer prior calling *any* of the * other timer functions. */ void init_timer_key(struct timer_list *timer, void (*func)(struct timer_list *), unsigned int flags, const char *name, struct lock_class_key *key) { debug_init(timer); do_init_timer(timer, func, flags, name, key); } EXPORT_SYMBOL(init_timer_key); static inline void detach_timer(struct timer_list *timer, bool clear_pending) { struct hlist_node *entry = &timer->entry; debug_deactivate(timer); __hlist_del(entry); if (clear_pending) entry->pprev = NULL; entry->next = LIST_POISON2; } static int detach_if_pending(struct timer_list *timer, struct timer_base *base, bool clear_pending) { unsigned idx = timer_get_idx(timer); if (!timer_pending(timer)) return 0; if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) { __clear_bit(idx, base->pending_map); base->next_expiry_recalc = true; } detach_timer(timer, clear_pending); return 1; } static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu) { struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu); /* * If the timer is deferrable and NO_HZ_COMMON is set then we need * to use the deferrable base. */ if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu); return base; } static inline struct timer_base *get_timer_this_cpu_base(u32 tflags) { struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); /* * If the timer is deferrable and NO_HZ_COMMON is set then we need * to use the deferrable base. */ if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) base = this_cpu_ptr(&timer_bases[BASE_DEF]); return base; } static inline struct timer_base *get_timer_base(u32 tflags) { return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK); } static inline struct timer_base * get_target_base(struct timer_base *base, unsigned tflags) { #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) if (static_branch_likely(&timers_migration_enabled) && !(tflags & TIMER_PINNED)) return get_timer_cpu_base(tflags, get_nohz_timer_target()); #endif return get_timer_this_cpu_base(tflags); } static inline void forward_timer_base(struct timer_base *base) { unsigned long jnow = READ_ONCE(jiffies); /* * No need to forward if we are close enough below jiffies. * Also while executing timers, base->clk is 1 offset ahead * of jiffies to avoid endless requeuing to current jiffies. */ if ((long)(jnow - base->clk) < 1) return; /* * If the next expiry value is > jiffies, then we fast forward to * jiffies otherwise we forward to the next expiry value. */ if (time_after(base->next_expiry, jnow)) { base->clk = jnow; } else { if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk))) return; base->clk = base->next_expiry; } } /* * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means * that all timers which are tied to this base are locked, and the base itself * is locked too. * * So __run_timers/migrate_timers can safely modify all timers which could * be found in the base->vectors array. * * When a timer is migrating then the TIMER_MIGRATING flag is set and we need * to wait until the migration is done. */ static struct timer_base *lock_timer_base(struct timer_list *timer, unsigned long *flags) __acquires(timer->base->lock) { for (;;) { struct timer_base *base; u32 tf; /* * We need to use READ_ONCE() here, otherwise the compiler * might re-read @tf between the check for TIMER_MIGRATING * and spin_lock(). */ tf = READ_ONCE(timer->flags); if (!(tf & TIMER_MIGRATING)) { base = get_timer_base(tf); raw_spin_lock_irqsave(&base->lock, *flags); if (timer->flags == tf) return base; raw_spin_unlock_irqrestore(&base->lock, *flags); } cpu_relax(); } } #define MOD_TIMER_PENDING_ONLY 0x01 #define MOD_TIMER_REDUCE 0x02 #define MOD_TIMER_NOTPENDING 0x04 static inline int __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options) { unsigned long clk = 0, flags, bucket_expiry; struct timer_base *base, *new_base; unsigned int idx = UINT_MAX; int ret = 0; BUG_ON(!timer->function); /* * This is a common optimization triggered by the networking code - if * the timer is re-modified to have the same timeout or ends up in the * same array bucket then just return: */ if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) { /* * The downside of this optimization is that it can result in * larger granularity than you would get from adding a new * timer with this expiry. */ long diff = timer->expires - expires; if (!diff) return 1; if (options & MOD_TIMER_REDUCE && diff <= 0) return 1; /* * We lock timer base and calculate the bucket index right * here. If the timer ends up in the same bucket, then we * just update the expiry time and avoid the whole * dequeue/enqueue dance. */ base = lock_timer_base(timer, &flags); forward_timer_base(base); if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) && time_before_eq(timer->expires, expires)) { ret = 1; goto out_unlock; } clk = base->clk; idx = calc_wheel_index(expires, clk, &bucket_expiry); /* * Retrieve and compare the array index of the pending * timer. If it matches set the expiry to the new value so a * subsequent call will exit in the expires check above. */ if (idx == timer_get_idx(timer)) { if (!(options & MOD_TIMER_REDUCE)) timer->expires = expires; else if (time_after(timer->expires, expires)) timer->expires = expires; ret = 1; goto out_unlock; } } else { base = lock_timer_base(timer, &flags); forward_timer_base(base); } ret = detach_if_pending(timer, base, false); if (!ret && (options & MOD_TIMER_PENDING_ONLY)) goto out_unlock; new_base = get_target_base(base, timer->flags); if (base != new_base) { /* * We are trying to schedule the timer on the new base. * However we can't change timer's base while it is running, * otherwise timer_delete_sync() can't detect that the timer's * handler yet has not finished. This also guarantees that the * timer is serialized wrt itself. */ if (likely(base->running_timer != timer)) { /* See the comment in lock_timer_base() */ timer->flags |= TIMER_MIGRATING; raw_spin_unlock(&base->lock); base = new_base; raw_spin_lock(&base->lock); WRITE_ONCE(timer->flags, (timer->flags & ~TIMER_BASEMASK) | base->cpu); forward_timer_base(base); } } debug_timer_activate(timer); timer->expires = expires; /* * If 'idx' was calculated above and the base time did not advance * between calculating 'idx' and possibly switching the base, only * enqueue_timer() is required. Otherwise we need to (re)calculate * the wheel index via internal_add_timer(). */ if (idx != UINT_MAX && clk == base->clk) enqueue_timer(base, timer, idx, bucket_expiry); else internal_add_timer(base, timer); out_unlock: raw_spin_unlock_irqrestore(&base->lock, flags); return ret; } /** * mod_timer_pending - Modify a pending timer's timeout * @timer: The pending timer to be modified * @expires: New absolute timeout in jiffies * * mod_timer_pending() is the same for pending timers as mod_timer(), but * will not activate inactive timers. * * Return: * * %0 - The timer was inactive and not modified * * %1 - The timer was active and requeued to expire at @expires */ int mod_timer_pending(struct timer_list *timer, unsigned long expires) { return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY); } EXPORT_SYMBOL(mod_timer_pending); /** * mod_timer - Modify a timer's timeout * @timer: The timer to be modified * @expires: New absolute timeout in jiffies * * mod_timer(timer, expires) is equivalent to: * * del_timer(timer); timer->expires = expires; add_timer(timer); * * mod_timer() is more efficient than the above open coded sequence. In * case that the timer is inactive, the del_timer() part is a NOP. The * timer is in any case activated with the new expiry time @expires. * * Note that if there are multiple unserialized concurrent users of the * same timer, then mod_timer() is the only safe way to modify the timeout, * since add_timer() cannot modify an already running timer. * * Return: * * %0 - The timer was inactive and started * * %1 - The timer was active and requeued to expire at @expires or * the timer was active and not modified because @expires did * not change the effective expiry time */ int mod_timer(struct timer_list *timer, unsigned long expires) { return __mod_timer(timer, expires, 0); } EXPORT_SYMBOL(mod_timer); /** * timer_reduce - Modify a timer's timeout if it would reduce the timeout * @timer: The timer to be modified * @expires: New absolute timeout in jiffies * * timer_reduce() is very similar to mod_timer(), except that it will only * modify an enqueued timer if that would reduce the expiration time. If * @timer is not enqueued it starts the timer. * * Return: * * %0 - The timer was inactive and started * * %1 - The timer was active and requeued to expire at @expires or * the timer was active and not modified because @expires * did not change the effective expiry time such that the * timer would expire earlier than already scheduled */ int timer_reduce(struct timer_list *timer, unsigned long expires) { return __mod_timer(timer, expires, MOD_TIMER_REDUCE); } EXPORT_SYMBOL(timer_reduce); /** * add_timer - Start a timer * @timer: The timer to be started * * Start @timer to expire at @timer->expires in the future. @timer->expires * is the absolute expiry time measured in 'jiffies'. When the timer expires * timer->function(timer) will be invoked from soft interrupt context. * * The @timer->expires and @timer->function fields must be set prior * to calling this function. * * If @timer->expires is already in the past @timer will be queued to * expire at the next timer tick. * * This can only operate on an inactive timer. Attempts to invoke this on * an active timer are rejected with a warning. */ void add_timer(struct timer_list *timer) { BUG_ON(timer_pending(timer)); __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING); } EXPORT_SYMBOL(add_timer); /** * add_timer_on - Start a timer on a particular CPU * @timer: The timer to be started * @cpu: The CPU to start it on * * Same as add_timer() except that it starts the timer on the given CPU. * * See add_timer() for further details. */ void add_timer_on(struct timer_list *timer, int cpu) { struct timer_base *new_base, *base; unsigned long flags; BUG_ON(timer_pending(timer) || !timer->function); new_base = get_timer_cpu_base(timer->flags, cpu); /* * If @timer was on a different CPU, it should be migrated with the * old base locked to prevent other operations proceeding with the * wrong base locked. See lock_timer_base(). */ base = lock_timer_base(timer, &flags); if (base != new_base) { timer->flags |= TIMER_MIGRATING; raw_spin_unlock(&base->lock); base = new_base; raw_spin_lock(&base->lock); WRITE_ONCE(timer->flags, (timer->flags & ~TIMER_BASEMASK) | cpu); } forward_timer_base(base); debug_timer_activate(timer); internal_add_timer(base, timer); raw_spin_unlock_irqrestore(&base->lock, flags); } EXPORT_SYMBOL_GPL(add_timer_on); /** * timer_delete - Deactivate a timer * @timer: The timer to be deactivated * * The function only deactivates a pending timer, but contrary to * timer_delete_sync() it does not take into account whether the timer's * callback function is concurrently executed on a different CPU or not. * It neither prevents rearming of the timer. If @timer can be rearmed * concurrently then the return value of this function is meaningless. * * Return: * * %0 - The timer was not pending * * %1 - The timer was pending and deactivated */ int timer_delete(struct timer_list *timer) { struct timer_base *base; unsigned long flags; int ret = 0; debug_assert_init(timer); if (timer_pending(timer)) { base = lock_timer_base(timer, &flags); ret = detach_if_pending(timer, base, true); raw_spin_unlock_irqrestore(&base->lock, flags); } return ret; } EXPORT_SYMBOL(timer_delete); /** * try_to_del_timer_sync - Try to deactivate a timer * @timer: Timer to deactivate * * This function tries to deactivate a timer. On success the timer is not * queued and the timer callback function is not running on any CPU. * * This function does not guarantee that the timer cannot be rearmed right * after dropping the base lock. That needs to be prevented by the calling * code if necessary. * * Return: * * %0 - The timer was not pending * * %1 - The timer was pending and deactivated * * %-1 - The timer callback function is running on a different CPU */ int try_to_del_timer_sync(struct timer_list *timer) { struct timer_base *base; unsigned long flags; int ret = -1; debug_assert_init(timer); base = lock_timer_base(timer, &flags); if (base->running_timer != timer) ret = detach_if_pending(timer, base, true); raw_spin_unlock_irqrestore(&base->lock, flags); return ret; } EXPORT_SYMBOL(try_to_del_timer_sync); #ifdef CONFIG_PREEMPT_RT static __init void timer_base_init_expiry_lock(struct timer_base *base) { spin_lock_init(&base->expiry_lock); } static inline void timer_base_lock_expiry(struct timer_base *base) { spin_lock(&base->expiry_lock); } static inline void timer_base_unlock_expiry(struct timer_base *base) { spin_unlock(&base->expiry_lock); } /* * The counterpart to del_timer_wait_running(). * * If there is a waiter for base->expiry_lock, then it was waiting for the * timer callback to finish. Drop expiry_lock and reacquire it. That allows * the waiter to acquire the lock and make progress. */ static void timer_sync_wait_running(struct timer_base *base) { if (atomic_read(&base->timer_waiters)) { raw_spin_unlock_irq(&base->lock); spin_unlock(&base->expiry_lock); spin_lock(&base->expiry_lock); raw_spin_lock_irq(&base->lock); } } /* * This function is called on PREEMPT_RT kernels when the fast path * deletion of a timer failed because the timer callback function was * running. * * This prevents priority inversion, if the softirq thread on a remote CPU * got preempted, and it prevents a life lock when the task which tries to * delete a timer preempted the softirq thread running the timer callback * function. */ static void del_timer_wait_running(struct timer_list *timer) { u32 tf; tf = READ_ONCE(timer->flags); if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) { struct timer_base *base = get_timer_base(tf); /* * Mark the base as contended and grab the expiry lock, * which is held by the softirq across the timer * callback. Drop the lock immediately so the softirq can * expire the next timer. In theory the timer could already * be running again, but that's more than unlikely and just * causes another wait loop. */ atomic_inc(&base->timer_waiters); spin_lock_bh(&base->expiry_lock); atomic_dec(&base->timer_waiters); spin_unlock_bh(&base->expiry_lock); } } #else static inline void timer_base_init_expiry_lock(struct timer_base *base) { } static inline void timer_base_lock_expiry(struct timer_base *base) { } static inline void timer_base_unlock_expiry(struct timer_base *base) { } static inline void timer_sync_wait_running(struct timer_base *base) { } static inline void del_timer_wait_running(struct timer_list *timer) { } #endif /** * timer_delete_sync - Deactivate a timer and wait for the handler to finish. * @timer: The timer to be deactivated * * Synchronization rules: Callers must prevent restarting of the timer, * otherwise this function is meaningless. It must not be called from * interrupt contexts unless the timer is an irqsafe one. The caller must * not hold locks which would prevent completion of the timer's callback * function. The timer's handler must not call add_timer_on(). Upon exit * the timer is not queued and the handler is not running on any CPU. * * For !irqsafe timers, the caller must not hold locks that are held in * interrupt context. Even if the lock has nothing to do with the timer in * question. Here's why:: * * CPU0 CPU1 * ---- ---- * <SOFTIRQ> * call_timer_fn(); * base->running_timer = mytimer; * spin_lock_irq(somelock); * <IRQ> * spin_lock(somelock); * timer_delete_sync(mytimer); * while (base->running_timer == mytimer); * * Now timer_delete_sync() will never return and never release somelock. * The interrupt on the other CPU is waiting to grab somelock but it has * interrupted the softirq that CPU0 is waiting to finish. * * This function cannot guarantee that the timer is not rearmed again by * some concurrent or preempting code, right after it dropped the base * lock. If there is the possibility of a concurrent rearm then the return * value of the function is meaningless. * * Return: * * %0 - The timer was not pending * * %1 - The timer was pending and deactivated */ int timer_delete_sync(struct timer_list *timer) { int ret; #ifdef CONFIG_LOCKDEP unsigned long flags; /* * If lockdep gives a backtrace here, please reference * the synchronization rules above. */ local_irq_save(flags); lock_map_acquire(&timer->lockdep_map); lock_map_release(&timer->lockdep_map); local_irq_restore(flags); #endif /* * don't use it in hardirq context, because it * could lead to deadlock. */ WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE)); /* * Must be able to sleep on PREEMPT_RT because of the slowpath in * del_timer_wait_running(). */ if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE)) lockdep_assert_preemption_enabled(); do { ret = try_to_del_timer_sync(timer); if (unlikely(ret < 0)) { del_timer_wait_running(timer); cpu_relax(); } } while (ret < 0); return ret; } EXPORT_SYMBOL(timer_delete_sync); static void call_timer_fn(struct timer_list *timer, void (*fn)(struct timer_list *), unsigned long baseclk) { int count = preempt_count(); #ifdef CONFIG_LOCKDEP /* * It is permissible to free the timer from inside the * function that is called from it, this we need to take into * account for lockdep too. To avoid bogus "held lock freed" * warnings as well as problems when looking into * timer->lockdep_map, make a copy and use that here. */ struct lockdep_map lockdep_map; lockdep_copy_map(&lockdep_map, &timer->lockdep_map); #endif /* * Couple the lock chain with the lock chain at * timer_delete_sync() by acquiring the lock_map around the fn() * call here and in timer_delete_sync(). */ lock_map_acquire(&lockdep_map); trace_timer_expire_entry(timer, baseclk); fn(timer); trace_timer_expire_exit(timer); lock_map_release(&lockdep_map); if (count != preempt_count()) { WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n", fn, count, preempt_count()); /* * Restore the preempt count. That gives us a decent * chance to survive and extract information. If the * callback kept a lock held, bad luck, but not worse * than the BUG() we had. */ preempt_count_set(count); } } static void expire_timers(struct timer_base *base, struct hlist_head *head) { /* * This value is required only for tracing. base->clk was * incremented directly before expire_timers was called. But expiry * is related to the old base->clk value. */ unsigned long baseclk = base->clk - 1; while (!hlist_empty(head)) { struct timer_list *timer; void (*fn)(struct timer_list *); timer = hlist_entry(head->first, struct timer_list, entry); base->running_timer = timer; detach_timer(timer, true); fn = timer->function; if (timer->flags & TIMER_IRQSAFE) { raw_spin_unlock(&base->lock); call_timer_fn(timer, fn, baseclk); raw_spin_lock(&base->lock); base->running_timer = NULL; } else { raw_spin_unlock_irq(&base->lock); call_timer_fn(timer, fn, baseclk); raw_spin_lock_irq(&base->lock); base->running_timer = NULL; timer_sync_wait_running(base); } } } static int collect_expired_timers(struct timer_base *base, struct hlist_head *heads) { unsigned long clk = base->clk = base->next_expiry; struct hlist_head *vec; int i, levels = 0; unsigned int idx; for (i = 0; i < LVL_DEPTH; i++) { idx = (clk & LVL_MASK) + i * LVL_SIZE; if (__test_and_clear_bit(idx, base->pending_map)) { vec = base->vectors + idx; hlist_move_list(vec, heads++); levels++; } /* Is it time to look at the next level? */ if (clk & LVL_CLK_MASK) break; /* Shift clock for the next level granularity */ clk >>= LVL_CLK_SHIFT; } return levels; } /* * Find the next pending bucket of a level. Search from level start (@offset) * + @clk upwards and if nothing there, search from start of the level * (@offset) up to @offset + clk. */ static int next_pending_bucket(struct timer_base *base, unsigned offset, unsigned clk) { unsigned pos, start = offset + clk; unsigned end = offset + LVL_SIZE; pos = find_next_bit(base->pending_map, end, start); if (pos < end) return pos - start; pos = find_next_bit(base->pending_map, start, offset); return pos < start ? pos + LVL_SIZE - start : -1; } /* * Search the first expiring timer in the various clock levels. Caller must * hold base->lock. */ static unsigned long __next_timer_interrupt(struct timer_base *base) { unsigned long clk, next, adj; unsigned lvl, offset = 0; next = base->clk + NEXT_TIMER_MAX_DELTA; clk = base->clk; for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) { int pos = next_pending_bucket(base, offset, clk & LVL_MASK); unsigned long lvl_clk = clk & LVL_CLK_MASK; if (pos >= 0) { unsigned long tmp = clk + (unsigned long) pos; tmp <<= LVL_SHIFT(lvl); if (time_before(tmp, next)) next = tmp; /* * If the next expiration happens before we reach * the next level, no need to check further. */ if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK)) break; } /* * Clock for the next level. If the current level clock lower * bits are zero, we look at the next level as is. If not we * need to advance it by one because that's going to be the * next expiring bucket in that level. base->clk is the next * expiring jiffie. So in case of: * * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 * 0 0 0 0 0 0 * * we have to look at all levels @index 0. With * * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 * 0 0 0 0 0 2 * * LVL0 has the next expiring bucket @index 2. The upper * levels have the next expiring bucket @index 1. * * In case that the propagation wraps the next level the same * rules apply: * * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 * 0 0 0 0 F 2 * * So after looking at LVL0 we get: * * LVL5 LVL4 LVL3 LVL2 LVL1 * 0 0 0 1 0 * * So no propagation from LVL1 to LVL2 because that happened * with the add already, but then we need to propagate further * from LVL2 to LVL3. * * So the simple check whether the lower bits of the current * level are 0 or not is sufficient for all cases. */ adj = lvl_clk ? 1 : 0; clk >>= LVL_CLK_SHIFT; clk += adj; } base->next_expiry_recalc = false; base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA); return next; } #ifdef CONFIG_NO_HZ_COMMON /* * Check, if the next hrtimer event is before the next timer wheel * event: */ static u64 cmp_next_hrtimer_event(u64 basem, u64 expires) { u64 nextevt = hrtimer_get_next_event(); /* * If high resolution timers are enabled * hrtimer_get_next_event() returns KTIME_MAX. */ if (expires <= nextevt) return expires; /* * If the next timer is already expired, return the tick base * time so the tick is fired immediately. */ if (nextevt <= basem) return basem; /* * Round up to the next jiffie. High resolution timers are * off, so the hrtimers are expired in the tick and we need to * make sure that this tick really expires the timer to avoid * a ping pong of the nohz stop code. * * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3 */ return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC; } /** * get_next_timer_interrupt - return the time (clock mono) of the next timer * @basej: base time jiffies * @basem: base time clock monotonic * * Returns the tick aligned clock monotonic time of the next pending * timer or KTIME_MAX if no timer is pending. */ u64 get_next_timer_interrupt(unsigned long basej, u64 basem) { struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); u64 expires = KTIME_MAX; unsigned long nextevt; /* * Pretend that there is no timer pending if the cpu is offline. * Possible pending timers will be migrated later to an active cpu. */ if (cpu_is_offline(smp_processor_id())) return expires; raw_spin_lock(&base->lock); if (base->next_expiry_recalc) base->next_expiry = __next_timer_interrupt(base); nextevt = base->next_expiry; /* * We have a fresh next event. Check whether we can forward the * base. We can only do that when @basej is past base->clk * otherwise we might rewind base->clk. */ if (time_after(basej, base->clk)) { if (time_after(nextevt, basej)) base->clk = basej; else if (time_after(nextevt, base->clk)) base->clk = nextevt; } if (time_before_eq(nextevt, basej)) { expires = basem; base->is_idle = false; } else { if (base->timers_pending) expires = basem + (u64)(nextevt - basej) * TICK_NSEC; /* * If we expect to sleep more than a tick, mark the base idle. * Also the tick is stopped so any added timer must forward * the base clk itself to keep granularity small. This idle * logic is only maintained for the BASE_STD base, deferrable * timers may still see large granularity skew (by design). */ if ((expires - basem) > TICK_NSEC) base->is_idle = true; } raw_spin_unlock(&base->lock); return cmp_next_hrtimer_event(basem, expires); } /** * timer_clear_idle - Clear the idle state of the timer base * * Called with interrupts disabled */ void timer_clear_idle(void) { struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); /* * We do this unlocked. The worst outcome is a remote enqueue sending * a pointless IPI, but taking the lock would just make the window for * sending the IPI a few instructions smaller for the cost of taking * the lock in the exit from idle path. */ base->is_idle = false; } #endif /** * __run_timers - run all expired timers (if any) on this CPU. * @base: the timer vector to be processed. */ static inline void __run_timers(struct timer_base *base) { struct hlist_head heads[LVL_DEPTH]; int levels; if (time_before(jiffies, base->next_expiry)) return; timer_base_lock_expiry(base); raw_spin_lock_irq(&base->lock); while (time_after_eq(jiffies, base->clk) && time_after_eq(jiffies, base->next_expiry)) { levels = collect_expired_timers(base, heads); /* * The two possible reasons for not finding any expired * timer at this clk are that all matching timers have been * dequeued or no timer has been queued since * base::next_expiry was set to base::clk + * NEXT_TIMER_MAX_DELTA. */ WARN_ON_ONCE(!levels && !base->next_expiry_recalc && base->timers_pending); base->clk++; base->next_expiry = __next_timer_interrupt(base); while (levels--) expire_timers(base, heads + levels); } raw_spin_unlock_irq(&base->lock); timer_base_unlock_expiry(base); } /* * This function runs timers and the timer-tq in bottom half context. */ static __latent_entropy void run_timer_softirq(struct softirq_action *h) { struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); __run_timers(base); if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF])); } /* * Called by the local, per-CPU timer interrupt on SMP. */ static void run_local_timers(void) { struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]); hrtimer_run_queues(); /* Raise the softirq only if required. */ if (time_before(jiffies, base->next_expiry)) { if (!IS_ENABLED(CONFIG_NO_HZ_COMMON)) return; /* CPU is awake, so check the deferrable base. */ base++; if (time_before(jiffies, base->next_expiry)) return; } raise_softirq(TIMER_SOFTIRQ); } /* * Called from the timer interrupt handler to charge one tick to the current * process. user_tick is 1 if the tick is user time, 0 for system. */ void update_process_times(int user_tick) { struct task_struct *p = current; /* Note: this timer irq context must be accounted for as well. */ account_process_tick(p, user_tick); run_local_timers(); rcu_sched_clock_irq(user_tick); #ifdef CONFIG_IRQ_WORK if (in_irq()) irq_work_tick(); #endif scheduler_tick(); if (IS_ENABLED(CONFIG_POSIX_TIMERS)) run_posix_cpu_timers(); } /* * Since schedule_timeout()'s timer is defined on the stack, it must store * the target task on the stack as well. */ struct process_timer { struct timer_list timer; struct task_struct *task; }; static void process_timeout(struct timer_list *t) { struct process_timer *timeout = from_timer(timeout, t, timer); wake_up_process(timeout->task); } /** * schedule_timeout - sleep until timeout * @timeout: timeout value in jiffies * * Make the current task sleep until @timeout jiffies have elapsed. * The function behavior depends on the current task state * (see also set_current_state() description): * * %TASK_RUNNING - the scheduler is called, but the task does not sleep * at all. That happens because sched_submit_work() does nothing for * tasks in %TASK_RUNNING state. * * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to * pass before the routine returns unless the current task is explicitly * woken up, (e.g. by wake_up_process()). * * %TASK_INTERRUPTIBLE - the routine may return early if a signal is * delivered to the current task or the current task is explicitly woken * up. * * The current task state is guaranteed to be %TASK_RUNNING when this * routine returns. * * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule * the CPU away without a bound on the timeout. In this case the return * value will be %MAX_SCHEDULE_TIMEOUT. * * Returns 0 when the timer has expired otherwise the remaining time in * jiffies will be returned. In all cases the return value is guaranteed * to be non-negative. */ signed long __sched schedule_timeout(signed long timeout) { struct process_timer timer; unsigned long expire; switch (timeout) { case MAX_SCHEDULE_TIMEOUT: /* * These two special cases are useful to be comfortable * in the caller. Nothing more. We could take * MAX_SCHEDULE_TIMEOUT from one of the negative value * but I' d like to return a valid offset (>=0) to allow * the caller to do everything it want with the retval. */ schedule(); goto out; default: /* * Another bit of PARANOID. Note that the retval will be * 0 since no piece of kernel is supposed to do a check * for a negative retval of schedule_timeout() (since it * should never happens anyway). You just have the printk() * that will tell you if something is gone wrong and where. */ if (timeout < 0) { printk(KERN_ERR "schedule_timeout: wrong timeout " "value %lx\n", timeout); dump_stack(); __set_current_state(TASK_RUNNING); goto out; } } expire = timeout + jiffies; timer.task = current; timer_setup_on_stack(&timer.timer, process_timeout, 0); __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING); schedule(); del_timer_sync(&timer.timer); /* Remove the timer from the object tracker */ destroy_timer_on_stack(&timer.timer); timeout = expire - jiffies; out: return timeout < 0 ? 0 : timeout; } EXPORT_SYMBOL(schedule_timeout); /* * We can use __set_current_state() here because schedule_timeout() calls * schedule() unconditionally. */ signed long __sched schedule_timeout_interruptible(signed long timeout) { __set_current_state(TASK_INTERRUPTIBLE); return schedule_timeout(timeout); } EXPORT_SYMBOL(schedule_timeout_interruptible); signed long __sched schedule_timeout_killable(signed long timeout) { __set_current_state(TASK_KILLABLE); return schedule_timeout(timeout); } EXPORT_SYMBOL(schedule_timeout_killable); signed long __sched schedule_timeout_uninterruptible(signed long timeout) { __set_current_state(TASK_UNINTERRUPTIBLE); return schedule_timeout(timeout); } EXPORT_SYMBOL(schedule_timeout_uninterruptible); /* * Like schedule_timeout_uninterruptible(), except this task will not contribute * to load average. */ signed long __sched schedule_timeout_idle(signed long timeout) { __set_current_state(TASK_IDLE); return schedule_timeout(timeout); } EXPORT_SYMBOL(schedule_timeout_idle); #ifdef CONFIG_HOTPLUG_CPU static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head) { struct timer_list *timer; int cpu = new_base->cpu; while (!hlist_empty(head)) { timer = hlist_entry(head->first, struct timer_list, entry); detach_timer(timer, false); timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; internal_add_timer(new_base, timer); } } int timers_prepare_cpu(unsigned int cpu) { struct timer_base *base; int b; for (b = 0; b < NR_BASES; b++) { base = per_cpu_ptr(&timer_bases[b], cpu); base->clk = jiffies; base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; base->next_expiry_recalc = false; base->timers_pending = false; base->is_idle = false; } return 0; } int timers_dead_cpu(unsigned int cpu) { struct timer_base *old_base; struct timer_base *new_base; int b, i; BUG_ON(cpu_online(cpu)); for (b = 0; b < NR_BASES; b++) { old_base = per_cpu_ptr(&timer_bases[b], cpu); new_base = get_cpu_ptr(&timer_bases[b]); /* * The caller is globally serialized and nobody else * takes two locks at once, deadlock is not possible. */ raw_spin_lock_irq(&new_base->lock); raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); /* * The current CPUs base clock might be stale. Update it * before moving the timers over. */ forward_timer_base(new_base); BUG_ON(old_base->running_timer); for (i = 0; i < WHEEL_SIZE; i++) migrate_timer_list(new_base, old_base->vectors + i); raw_spin_unlock(&old_base->lock); raw_spin_unlock_irq(&new_base->lock); put_cpu_ptr(&timer_bases); } return 0; } #endif /* CONFIG_HOTPLUG_CPU */ static void __init init_timer_cpu(int cpu) { struct timer_base *base; int i; for (i = 0; i < NR_BASES; i++) { base = per_cpu_ptr(&timer_bases[i], cpu); base->cpu = cpu; raw_spin_lock_init(&base->lock); base->clk = jiffies; base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA; timer_base_init_expiry_lock(base); } } static void __init init_timer_cpus(void) { int cpu; for_each_possible_cpu(cpu) init_timer_cpu(cpu); } void __init init_timers(void) { init_timer_cpus(); posix_cputimers_init_work(); open_softirq(TIMER_SOFTIRQ, run_timer_softirq); } /** * msleep - sleep safely even with waitqueue interruptions * @msecs: Time in milliseconds to sleep for */ void msleep(unsigned int msecs) { unsigned long timeout = msecs_to_jiffies(msecs) + 1; while (timeout) timeout = schedule_timeout_uninterruptible(timeout); } EXPORT_SYMBOL(msleep); /** * msleep_interruptible - sleep waiting for signals * @msecs: Time in milliseconds to sleep for */ unsigned long msleep_interruptible(unsigned int msecs) { unsigned long timeout = msecs_to_jiffies(msecs) + 1; while (timeout && !signal_pending(current)) timeout = schedule_timeout_interruptible(timeout); return jiffies_to_msecs(timeout); } EXPORT_SYMBOL(msleep_interruptible); /** * usleep_range_state - Sleep for an approximate time in a given state * @min: Minimum time in usecs to sleep * @max: Maximum time in usecs to sleep * @state: State of the current task that will be while sleeping * * In non-atomic context where the exact wakeup time is flexible, use * usleep_range_state() instead of udelay(). The sleep improves responsiveness * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces * power usage by allowing hrtimers to take advantage of an already- * scheduled interrupt instead of scheduling a new one just for this sleep. */ void __sched usleep_range_state(unsigned long min, unsigned long max, unsigned int state) { ktime_t exp = ktime_add_us(ktime_get(), min); u64 delta = (u64)(max - min) * NSEC_PER_USEC; for (;;) { __set_current_state(state); /* Do not return before the requested sleep time has elapsed */ if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS)) break; } } EXPORT_SYMBOL(usleep_range_state);
22 22 22 22 22 22 22 22 22 2 2 1 14 14 8 14 14 904 886 120 120 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 // SPDX-License-Identifier: GPL-2.0-or-later /* * net/core/netprio_cgroup.c Priority Control Group * * Authors: Neil Horman <nhorman@tuxdriver.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/skbuff.h> #include <linux/cgroup.h> #include <linux/rcupdate.h> #include <linux/atomic.h> #include <linux/sched/task.h> #include <net/rtnetlink.h> #include <net/pkt_cls.h> #include <net/sock.h> #include <net/netprio_cgroup.h> #include <linux/fdtable.h> /* * netprio allocates per-net_device priomap array which is indexed by * css->id. Limiting css ID to 16bits doesn't lose anything. */ #define NETPRIO_ID_MAX USHRT_MAX #define PRIOMAP_MIN_SZ 128 /* * Extend @dev->priomap so that it's large enough to accommodate * @target_idx. @dev->priomap.priomap_len > @target_idx after successful * return. Must be called under rtnl lock. */ static int extend_netdev_table(struct net_device *dev, u32 target_idx) { struct netprio_map *old, *new; size_t new_sz, new_len; /* is the existing priomap large enough? */ old = rtnl_dereference(dev->priomap); if (old && old->priomap_len > target_idx) return 0; /* * Determine the new size. Let's keep it power-of-two. We start * from PRIOMAP_MIN_SZ and double it until it's large enough to * accommodate @target_idx. */ new_sz = PRIOMAP_MIN_SZ; while (true) { new_len = (new_sz - offsetof(struct netprio_map, priomap)) / sizeof(new->priomap[0]); if (new_len > target_idx) break; new_sz *= 2; /* overflowed? */ if (WARN_ON(new_sz < PRIOMAP_MIN_SZ)) return -ENOSPC; } /* allocate & copy */ new = kzalloc(new_sz, GFP_KERNEL); if (!new) return -ENOMEM; if (old) memcpy(new->priomap, old->priomap, old->priomap_len * sizeof(old->priomap[0])); new->priomap_len = new_len; /* install the new priomap */ rcu_assign_pointer(dev->priomap, new); if (old) kfree_rcu(old, rcu); return 0; } /** * netprio_prio - return the effective netprio of a cgroup-net_device pair * @css: css part of the target pair * @dev: net_device part of the target pair * * Should be called under RCU read or rtnl lock. */ static u32 netprio_prio(struct cgroup_subsys_state *css, struct net_device *dev) { struct netprio_map *map = rcu_dereference_rtnl(dev->priomap); int id = css->id; if (map && id < map->priomap_len) return map->priomap[id]; return 0; } /** * netprio_set_prio - set netprio on a cgroup-net_device pair * @css: css part of the target pair * @dev: net_device part of the target pair * @prio: prio to set * * Set netprio to @prio on @css-@dev pair. Should be called under rtnl * lock and may fail under memory pressure for non-zero @prio. */ static int netprio_set_prio(struct cgroup_subsys_state *css, struct net_device *dev, u32 prio) { struct netprio_map *map; int id = css->id; int ret; /* avoid extending priomap for zero writes */ map = rtnl_dereference(dev->priomap); if (!prio && (!map || map->priomap_len <= id)) return 0; ret = extend_netdev_table(dev, id); if (ret) return ret; map = rtnl_dereference(dev->priomap); map->priomap[id] = prio; return 0; } static struct cgroup_subsys_state * cgrp_css_alloc(struct cgroup_subsys_state *parent_css) { struct cgroup_subsys_state *css; css = kzalloc(sizeof(*css), GFP_KERNEL); if (!css) return ERR_PTR(-ENOMEM); return css; } static int cgrp_css_online(struct cgroup_subsys_state *css) { struct cgroup_subsys_state *parent_css = css->parent; struct net_device *dev; int ret = 0; if (css->id > NETPRIO_ID_MAX) return -ENOSPC; if (!parent_css) return 0; rtnl_lock(); /* * Inherit prios from the parent. As all prios are set during * onlining, there is no need to clear them on offline. */ for_each_netdev(&init_net, dev) { u32 prio = netprio_prio(parent_css, dev); ret = netprio_set_prio(css, dev, prio); if (ret) break; } rtnl_unlock(); return ret; } static void cgrp_css_free(struct cgroup_subsys_state *css) { kfree(css); } static u64 read_prioidx(struct cgroup_subsys_state *css, struct cftype *cft) { return css->id; } static int read_priomap(struct seq_file *sf, void *v) { struct net_device *dev; rcu_read_lock(); for_each_netdev_rcu(&init_net, dev) seq_printf(sf, "%s %u\n", dev->name, netprio_prio(seq_css(sf), dev)); rcu_read_unlock(); return 0; } static ssize_t write_priomap(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { char devname[IFNAMSIZ + 1]; struct net_device *dev; u32 prio; int ret; if (sscanf(buf, "%"__stringify(IFNAMSIZ)"s %u", devname, &prio) != 2) return -EINVAL; dev = dev_get_by_name(&init_net, devname); if (!dev) return -ENODEV; rtnl_lock(); ret = netprio_set_prio(of_css(of), dev, prio); rtnl_unlock(); dev_put(dev); return ret ?: nbytes; } static int update_netprio(const void *v, struct file *file, unsigned n) { struct socket *sock = sock_from_file(file); if (sock) sock_cgroup_set_prioidx(&sock->sk->sk_cgrp_data, (unsigned long)v); return 0; } static void net_prio_attach(struct cgroup_taskset *tset) { struct task_struct *p; struct cgroup_subsys_state *css; cgroup_taskset_for_each(p, css, tset) { void *v = (void *)(unsigned long)css->id; task_lock(p); iterate_fd(p->files, 0, update_netprio, v); task_unlock(p); } } static struct cftype ss_files[] = { { .name = "prioidx", .read_u64 = read_prioidx, }, { .name = "ifpriomap", .seq_show = read_priomap, .write = write_priomap, }, { } /* terminate */ }; struct cgroup_subsys net_prio_cgrp_subsys = { .css_alloc = cgrp_css_alloc, .css_online = cgrp_css_online, .css_free = cgrp_css_free, .attach = net_prio_attach, .legacy_cftypes = ss_files, }; static int netprio_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct netprio_map *old; /* * Note this is called with rtnl_lock held so we have update side * protection on our rcu assignments */ switch (event) { case NETDEV_UNREGISTER: old = rtnl_dereference(dev->priomap); RCU_INIT_POINTER(dev->priomap, NULL); if (old) kfree_rcu(old, rcu); break; } return NOTIFY_DONE; } static struct notifier_block netprio_device_notifier = { .notifier_call = netprio_device_event }; static int __init init_cgroup_netprio(void) { register_netdevice_notifier(&netprio_device_notifier); return 0; } subsys_initcall(init_cgroup_netprio);
1411 944 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_TASK_H #define _LINUX_SCHED_TASK_H /* * Interface between the scheduler and various task lifetime (fork()/exit()) * functionality: */ #include <linux/sched.h> #include <linux/uaccess.h> struct task_struct; struct rusage; union thread_union; struct css_set; /* All the bits taken by the old clone syscall. */ #define CLONE_LEGACY_FLAGS 0xffffffffULL struct kernel_clone_args { u64 flags; int __user *pidfd; int __user *child_tid; int __user *parent_tid; int exit_signal; unsigned long stack; unsigned long stack_size; unsigned long tls; pid_t *set_tid; /* Number of elements in *set_tid */ size_t set_tid_size; int cgroup; int io_thread; int kthread; int idle; int (*fn)(void *); void *fn_arg; struct cgroup *cgrp; struct css_set *cset; unsigned int kill_seq; }; /* * This serializes "schedule()" and also protects * the run-queue from deletions/modifications (but * _adding_ to the beginning of the run-queue has * a separate lock). */ extern rwlock_t tasklist_lock; extern spinlock_t mmlist_lock; extern union thread_union init_thread_union; extern struct task_struct init_task; extern int lockdep_tasklist_lock_is_held(void); extern asmlinkage void schedule_tail(struct task_struct *prev); extern void init_idle(struct task_struct *idle, int cpu); extern int sched_fork(unsigned long clone_flags, struct task_struct *p); extern void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs); extern void sched_post_fork(struct task_struct *p); extern void sched_dead(struct task_struct *p); void __noreturn do_task_dead(void); void __noreturn make_task_dead(int signr); extern void mm_cache_init(void); extern void proc_caches_init(void); extern void fork_init(void); extern void release_task(struct task_struct * p); extern int copy_thread(struct task_struct *, const struct kernel_clone_args *); extern void flush_thread(void); #ifdef CONFIG_HAVE_EXIT_THREAD extern void exit_thread(struct task_struct *tsk); #else static inline void exit_thread(struct task_struct *tsk) { } #endif extern __noreturn void do_group_exit(int); extern void exit_files(struct task_struct *); extern void exit_itimers(struct task_struct *); extern pid_t kernel_clone(struct kernel_clone_args *kargs); struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node); struct task_struct *fork_idle(int); extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); extern pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags); extern long kernel_wait4(pid_t, int __user *, int, struct rusage *); int kernel_wait(pid_t pid, int *stat); extern void free_task(struct task_struct *tsk); /* sched_exec is called by processes performing an exec */ #ifdef CONFIG_SMP extern void sched_exec(void); #else #define sched_exec() {} #endif static inline struct task_struct *get_task_struct(struct task_struct *t) { refcount_inc(&t->usage); return t; } extern void __put_task_struct(struct task_struct *t); extern void __put_task_struct_rcu_cb(struct rcu_head *rhp); static inline void put_task_struct(struct task_struct *t) { if (!refcount_dec_and_test(&t->usage)) return; /* * under PREEMPT_RT, we can't call put_task_struct * in atomic context because it will indirectly * acquire sleeping locks. * * call_rcu() will schedule delayed_put_task_struct_rcu() * to be called in process context. * * __put_task_struct() is called when * refcount_dec_and_test(&t->usage) succeeds. * * This means that it can't "conflict" with * put_task_struct_rcu_user() which abuses ->rcu the same * way; rcu_users has a reference so task->usage can't be * zero after rcu_users 1 -> 0 transition. * * delayed_free_task() also uses ->rcu, but it is only called * when it fails to fork a process. Therefore, there is no * way it can conflict with put_task_struct(). */ if (IS_ENABLED(CONFIG_PREEMPT_RT) && !preemptible()) call_rcu(&t->rcu, __put_task_struct_rcu_cb); else __put_task_struct(t); } DEFINE_FREE(put_task, struct task_struct *, if (_T) put_task_struct(_T)) static inline void put_task_struct_many(struct task_struct *t, int nr) { if (refcount_sub_and_test(nr, &t->usage)) __put_task_struct(t); } void put_task_struct_rcu_user(struct task_struct *task); /* Free all architecture-specific resources held by a thread. */ void release_thread(struct task_struct *dead_task); #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT extern int arch_task_struct_size __read_mostly; #else # define arch_task_struct_size (sizeof(struct task_struct)) #endif #ifndef CONFIG_HAVE_ARCH_THREAD_STRUCT_WHITELIST /* * If an architecture has not declared a thread_struct whitelist we * must assume something there may need to be copied to userspace. */ static inline void arch_thread_struct_whitelist(unsigned long *offset, unsigned long *size) { *offset = 0; /* Handle dynamically sized thread_struct. */ *size = arch_task_struct_size - offsetof(struct task_struct, thread); } #endif #ifdef CONFIG_VMAP_STACK static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) { return t->stack_vm_area; } #else static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) { return NULL; } #endif /* * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring * subscriptions and synchronises with wait4(). Also used in procfs. Also * pins the final release of task.io_context. Also protects ->cpuset and * ->cgroup.subsys[]. And ->vfork_done. And ->sysvshm.shm_clist. * * Nests both inside and outside of read_lock(&tasklist_lock). * It must not be nested with write_lock_irq(&tasklist_lock), * neither inside nor outside. */ static inline void task_lock(struct task_struct *p) { spin_lock(&p->alloc_lock); } static inline void task_unlock(struct task_struct *p) { spin_unlock(&p->alloc_lock); } #endif /* _LINUX_SCHED_TASK_H */
7 7 7 7 1 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 // SPDX-License-Identifier: GPL-2.0 /* * Provide a default dump_stack() function for architectures * which don't implement their own. */ #include <linux/kernel.h> #include <linux/buildid.h> #include <linux/export.h> #include <linux/sched.h> #include <linux/sched/debug.h> #include <linux/smp.h> #include <linux/atomic.h> #include <linux/kexec.h> #include <linux/utsname.h> #include <linux/stop_machine.h> static char dump_stack_arch_desc_str[128]; /** * dump_stack_set_arch_desc - set arch-specific str to show with task dumps * @fmt: printf-style format string * @...: arguments for the format string * * The configured string will be printed right after utsname during task * dumps. Usually used to add arch-specific system identifiers. If an * arch wants to make use of such an ID string, it should initialize this * as soon as possible during boot. */ void __init dump_stack_set_arch_desc(const char *fmt, ...) { va_list args; va_start(args, fmt); vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), fmt, args); va_end(args); } #if IS_ENABLED(CONFIG_STACKTRACE_BUILD_ID) #define BUILD_ID_FMT " %20phN" #define BUILD_ID_VAL vmlinux_build_id #else #define BUILD_ID_FMT "%s" #define BUILD_ID_VAL "" #endif /** * dump_stack_print_info - print generic debug info for dump_stack() * @log_lvl: log level * * Arch-specific dump_stack() implementations can use this function to * print out the same debug information as the generic dump_stack(). */ void dump_stack_print_info(const char *log_lvl) { printk("%sCPU: %d PID: %d Comm: %.20s %s%s %s %.*s" BUILD_ID_FMT "\n", log_lvl, raw_smp_processor_id(), current->pid, current->comm, kexec_crash_loaded() ? "Kdump: loaded " : "", print_tainted(), init_utsname()->release, (int)strcspn(init_utsname()->version, " "), init_utsname()->version, BUILD_ID_VAL); if (dump_stack_arch_desc_str[0] != '\0') printk("%sHardware name: %s\n", log_lvl, dump_stack_arch_desc_str); print_worker_info(log_lvl, current); print_stop_info(log_lvl, current); } /** * show_regs_print_info - print generic debug info for show_regs() * @log_lvl: log level * * show_regs() implementations can use this function to print out generic * debug information. */ void show_regs_print_info(const char *log_lvl) { dump_stack_print_info(log_lvl); } static void __dump_stack(const char *log_lvl) { dump_stack_print_info(log_lvl); show_stack(NULL, NULL, log_lvl); } /** * dump_stack_lvl - dump the current task information and its stack trace * @log_lvl: log level * * Architectures can override this implementation by implementing its own. */ asmlinkage __visible void dump_stack_lvl(const char *log_lvl) { unsigned long flags; /* * Permit this cpu to perform nested stack dumps while serialising * against other CPUs */ printk_cpu_sync_get_irqsave(flags); __dump_stack(log_lvl); printk_cpu_sync_put_irqrestore(flags); } EXPORT_SYMBOL(dump_stack_lvl); asmlinkage __visible void dump_stack(void) { dump_stack_lvl(KERN_DEFAULT); } EXPORT_SYMBOL(dump_stack);
7 7 168 169 215 88 88 86 88 88 88 88 88 88 189 191 167 169 169 169 188 190 8 8 190 16 191 186 186 189 7 4 4 186 15 189 190 189 189 187 184 4 18 18 18 190 16 16 16 16 15 15 7 7 15 15 190 186 18 18 18 18 190 191 190 190 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 1 5 12 15 15 15 2 15 15 15 15 4 4 15 15 15 4 12 13 13 12 4 13 15 15 15 4 15 15 15 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 // SPDX-License-Identifier: GPL-2.0-or-later /* SCTP kernel implementation * (C) Copyright IBM Corp. 2001, 2004 * Copyright (c) 1999-2000 Cisco, Inc. * Copyright (c) 1999-2001 Motorola, Inc. * Copyright (c) 2001-2003 Intel Corp. * * This file is part of the SCTP kernel implementation * * These functions implement the sctp_outq class. The outqueue handles * bundling and queueing of outgoing SCTP chunks. * * Please send any bug reports or fixes you make to the * email address(es): * lksctp developers <linux-sctp@vger.kernel.org> * * Written or modified by: * La Monte H.P. Yarroll <piggy@acm.org> * Karl Knutson <karl@athena.chicago.il.us> * Perry Melange <pmelange@null.cc.uic.edu> * Xingang Guo <xingang.guo@intel.com> * Hui Huang <hui.huang@nokia.com> * Sridhar Samudrala <sri@us.ibm.com> * Jon Grimm <jgrimm@us.ibm.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/types.h> #include <linux/list.h> /* For struct list_head */ #include <linux/socket.h> #include <linux/ip.h> #include <linux/slab.h> #include <net/sock.h> /* For skb_set_owner_w */ #include <net/sctp/sctp.h> #include <net/sctp/sm.h> #include <net/sctp/stream_sched.h> #include <trace/events/sctp.h> /* Declare internal functions here. */ static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn); static void sctp_check_transmitted(struct sctp_outq *q, struct list_head *transmitted_queue, struct sctp_transport *transport, union sctp_addr *saddr, struct sctp_sackhdr *sack, __u32 *highest_new_tsn); static void sctp_mark_missing(struct sctp_outq *q, struct list_head *transmitted_queue, struct sctp_transport *transport, __u32 highest_new_tsn, int count_of_newacks); static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp); /* Add data to the front of the queue. */ static inline void sctp_outq_head_data(struct sctp_outq *q, struct sctp_chunk *ch) { struct sctp_stream_out_ext *oute; __u16 stream; list_add(&ch->list, &q->out_chunk_list); q->out_qlen += ch->skb->len; stream = sctp_chunk_stream_no(ch); oute = SCTP_SO(&q->asoc->stream, stream)->ext; list_add(&ch->stream_list, &oute->outq); } /* Take data from the front of the queue. */ static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q) { return q->sched->dequeue(q); } /* Add data chunk to the end of the queue. */ static inline void sctp_outq_tail_data(struct sctp_outq *q, struct sctp_chunk *ch) { struct sctp_stream_out_ext *oute; __u16 stream; list_add_tail(&ch->list, &q->out_chunk_list); q->out_qlen += ch->skb->len; stream = sctp_chunk_stream_no(ch); oute = SCTP_SO(&q->asoc->stream, stream)->ext; list_add_tail(&ch->stream_list, &oute->outq); } /* * SFR-CACC algorithm: * D) If count_of_newacks is greater than or equal to 2 * and t was not sent to the current primary then the * sender MUST NOT increment missing report count for t. */ static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary, struct sctp_transport *transport, int count_of_newacks) { if (count_of_newacks >= 2 && transport != primary) return 1; return 0; } /* * SFR-CACC algorithm: * F) If count_of_newacks is less than 2, let d be the * destination to which t was sent. If cacc_saw_newack * is 0 for destination d, then the sender MUST NOT * increment missing report count for t. */ static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport, int count_of_newacks) { if (count_of_newacks < 2 && (transport && !transport->cacc.cacc_saw_newack)) return 1; return 0; } /* * SFR-CACC algorithm: * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD * execute steps C, D, F. * * C has been implemented in sctp_outq_sack */ static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary, struct sctp_transport *transport, int count_of_newacks) { if (!primary->cacc.cycling_changeover) { if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks)) return 1; if (sctp_cacc_skip_3_1_f(transport, count_of_newacks)) return 1; return 0; } return 0; } /* * SFR-CACC algorithm: * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less * than next_tsn_at_change of the current primary, then * the sender MUST NOT increment missing report count * for t. */ static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn) { if (primary->cacc.cycling_changeover && TSN_lt(tsn, primary->cacc.next_tsn_at_change)) return 1; return 0; } /* * SFR-CACC algorithm: * 3) If the missing report count for TSN t is to be * incremented according to [RFC2960] and * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set, * then the sender MUST further execute steps 3.1 and * 3.2 to determine if the missing report count for * TSN t SHOULD NOT be incremented. * * 3.3) If 3.1 and 3.2 do not dictate that the missing * report count for t should not be incremented, then * the sender SHOULD increment missing report count for * t (according to [RFC2960] and [SCTP_STEWART_2002]). */ static inline int sctp_cacc_skip(struct sctp_transport *primary, struct sctp_transport *transport, int count_of_newacks, __u32 tsn) { if (primary->cacc.changeover_active && (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) || sctp_cacc_skip_3_2(primary, tsn))) return 1; return 0; } /* Initialize an existing sctp_outq. This does the boring stuff. * You still need to define handlers if you really want to DO * something with this structure... */ void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q) { memset(q, 0, sizeof(struct sctp_outq)); q->asoc = asoc; INIT_LIST_HEAD(&q->out_chunk_list); INIT_LIST_HEAD(&q->control_chunk_list); INIT_LIST_HEAD(&q->retransmit); INIT_LIST_HEAD(&q->sacked); INIT_LIST_HEAD(&q->abandoned); sctp_sched_set_sched(asoc, sctp_sk(asoc->base.sk)->default_ss); } /* Free the outqueue structure and any related pending chunks. */ static void __sctp_outq_teardown(struct sctp_outq *q) { struct sctp_transport *transport; struct list_head *lchunk, *temp; struct sctp_chunk *chunk, *tmp; /* Throw away unacknowledged chunks. */ list_for_each_entry(transport, &q->asoc->peer.transport_addr_list, transports) { while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) { chunk = list_entry(lchunk, struct sctp_chunk, transmitted_list); /* Mark as part of a failed message. */ sctp_chunk_fail(chunk, q->error); sctp_chunk_free(chunk); } } /* Throw away chunks that have been gap ACKed. */ list_for_each_safe(lchunk, temp, &q->sacked) { list_del_init(lchunk); chunk = list_entry(lchunk, struct sctp_chunk, transmitted_list); sctp_chunk_fail(chunk, q->error); sctp_chunk_free(chunk); } /* Throw away any chunks in the retransmit queue. */ list_for_each_safe(lchunk, temp, &q->retransmit) { list_del_init(lchunk); chunk = list_entry(lchunk, struct sctp_chunk, transmitted_list); sctp_chunk_fail(chunk, q->error); sctp_chunk_free(chunk); } /* Throw away any chunks that are in the abandoned queue. */ list_for_each_safe(lchunk, temp, &q->abandoned) { list_del_init(lchunk); chunk = list_entry(lchunk, struct sctp_chunk, transmitted_list); sctp_chunk_fail(chunk, q->error); sctp_chunk_free(chunk); } /* Throw away any leftover data chunks. */ while ((chunk = sctp_outq_dequeue_data(q)) != NULL) { sctp_sched_dequeue_done(q, chunk); /* Mark as send failure. */ sctp_chunk_fail(chunk, q->error); sctp_chunk_free(chunk); } /* Throw away any leftover control chunks. */ list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) { list_del_init(&chunk->list); sctp_chunk_free(chunk); } } void sctp_outq_teardown(struct sctp_outq *q) { __sctp_outq_teardown(q); sctp_outq_init(q->asoc, q); } /* Free the outqueue structure and any related pending chunks. */ void sctp_outq_free(struct sctp_outq *q) { /* Throw away leftover chunks. */ __sctp_outq_teardown(q); } /* Put a new chunk in an sctp_outq. */ void sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk, gfp_t gfp) { struct net *net = q->asoc->base.net; pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk, chunk && chunk->chunk_hdr ? sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) : "illegal chunk"); /* If it is data, queue it up, otherwise, send it * immediately. */ if (sctp_chunk_is_data(chunk)) { pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n", __func__, q, chunk, chunk && chunk->chunk_hdr ? sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) : "illegal chunk"); sctp_outq_tail_data(q, chunk); if (chunk->asoc->peer.prsctp_capable && SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags)) chunk->asoc->sent_cnt_removable++; if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED) SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS); else SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS); } else { list_add_tail(&chunk->list, &q->control_chunk_list); SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS); } if (!q->cork) sctp_outq_flush(q, 0, gfp); } /* Insert a chunk into the sorted list based on the TSNs. The retransmit list * and the abandoned list are in ascending order. */ static void sctp_insert_list(struct list_head *head, struct list_head *new) { struct list_head *pos; struct sctp_chunk *nchunk, *lchunk; __u32 ntsn, ltsn; int done = 0; nchunk = list_entry(new, struct sctp_chunk, transmitted_list); ntsn = ntohl(nchunk->subh.data_hdr->tsn); list_for_each(pos, head) { lchunk = list_entry(pos, struct sctp_chunk, transmitted_list); ltsn = ntohl(lchunk->subh.data_hdr->tsn); if (TSN_lt(ntsn, ltsn)) { list_add(new, pos->prev); done = 1; break; } } if (!done) list_add_tail(new, head); } static int sctp_prsctp_prune_sent(struct sctp_association *asoc, struct sctp_sndrcvinfo *sinfo, struct list_head *queue, int msg_len) { struct sctp_chunk *chk, *temp; list_for_each_entry_safe(chk, temp, queue, transmitted_list) { struct sctp_stream_out *streamout; if (!chk->msg->abandoned && (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) || chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive)) continue; chk->msg->abandoned = 1; list_del_init(&chk->transmitted_list); sctp_insert_list(&asoc->outqueue.abandoned, &chk->transmitted_list); streamout = SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream); asoc->sent_cnt_removable--; asoc->abandoned_sent[SCTP_PR_INDEX(PRIO)]++; streamout->ext->abandoned_sent[SCTP_PR_INDEX(PRIO)]++; if (queue != &asoc->outqueue.retransmit && !chk->tsn_gap_acked) { if (chk->transport) chk->transport->flight_size -= sctp_data_size(chk); asoc->outqueue.outstanding_bytes -= sctp_data_size(chk); } msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk); if (msg_len <= 0) break; } return msg_len; } static int sctp_prsctp_prune_unsent(struct sctp_association *asoc, struct sctp_sndrcvinfo *sinfo, int msg_len) { struct sctp_outq *q = &asoc->outqueue; struct sctp_chunk *chk, *temp; struct sctp_stream_out *sout; q->sched->unsched_all(&asoc->stream); list_for_each_entry_safe(chk, temp, &q->out_chunk_list, list) { if (!chk->msg->abandoned && (!(chk->chunk_hdr->flags & SCTP_DATA_FIRST_FRAG) || !SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) || chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive)) continue; chk->msg->abandoned = 1; sctp_sched_dequeue_common(q, chk); asoc->sent_cnt_removable--; asoc->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++; sout = SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream); sout->ext->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++; /* clear out_curr if all frag chunks are pruned */ if (asoc->stream.out_curr == sout && list_is_last(&chk->frag_list, &chk->msg->chunks)) asoc->stream.out_curr = NULL; msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk); sctp_chunk_free(chk); if (msg_len <= 0) break; } q->sched->sched_all(&asoc->stream); return msg_len; } /* Abandon the chunks according their priorities */ void sctp_prsctp_prune(struct sctp_association *asoc, struct sctp_sndrcvinfo *sinfo, int msg_len) { struct sctp_transport *transport; if (!asoc->peer.prsctp_capable || !asoc->sent_cnt_removable) return; msg_len = sctp_prsctp_prune_sent(asoc, sinfo, &asoc->outqueue.retransmit, msg_len); if (msg_len <= 0) return; list_for_each_entry(transport, &asoc->peer.transport_addr_list, transports) { msg_len = sctp_prsctp_prune_sent(asoc, sinfo, &transport->transmitted, msg_len); if (msg_len <= 0) return; } sctp_prsctp_prune_unsent(asoc, sinfo, msg_len); } /* Mark all the eligible packets on a transport for retransmission. */ void sctp_retransmit_mark(struct sctp_outq *q, struct sctp_transport *transport, __u8 reason) { struct list_head *lchunk, *ltemp; struct sctp_chunk *chunk; /* Walk through the specified transmitted queue. */ list_for_each_safe(lchunk, ltemp, &transport->transmitted) { chunk = list_entry(lchunk, struct sctp_chunk, transmitted_list); /* If the chunk is abandoned, move it to abandoned list. */ if (sctp_chunk_abandoned(chunk)) { list_del_init(lchunk); sctp_insert_list(&q->abandoned, lchunk); /* If this chunk has not been previousely acked, * stop considering it 'outstanding'. Our peer * will most likely never see it since it will * not be retransmitted */ if (!chunk->tsn_gap_acked) { if (chunk->transport) chunk->transport->flight_size -= sctp_data_size(chunk); q->outstanding_bytes -= sctp_data_size(chunk); q->asoc->peer.rwnd += sctp_data_size(chunk); } continue; } /* If we are doing retransmission due to a timeout or pmtu * discovery, only the chunks that are not yet acked should * be added to the retransmit queue. */ if ((reason == SCTP_RTXR_FAST_RTX && (chunk->fast_retransmit == SCTP_NEED_FRTX)) || (reason != SCTP_RTXR_FAST_RTX && !chunk->tsn_gap_acked)) { /* RFC 2960 6.2.1 Processing a Received SACK * * C) Any time a DATA chunk is marked for * retransmission (via either T3-rtx timer expiration * (Section 6.3.3) or via fast retransmit * (Section 7.2.4)), add the data size of those * chunks to the rwnd. */ q->asoc->peer.rwnd += sctp_data_size(chunk); q->outstanding_bytes -= sctp_data_size(chunk); if (chunk->transport) transport->flight_size -= sctp_data_size(chunk); /* sctpimpguide-05 Section 2.8.2 * M5) If a T3-rtx timer expires, the * 'TSN.Missing.Report' of all affected TSNs is set * to 0. */ chunk->tsn_missing_report = 0; /* If a chunk that is being used for RTT measurement * has to be retransmitted, we cannot use this chunk * anymore for RTT measurements. Reset rto_pending so * that a new RTT measurement is started when a new * data chunk is sent. */ if (chunk->rtt_in_progress) { chunk->rtt_in_progress = 0; transport->rto_pending = 0; } /* Move the chunk to the retransmit queue. The chunks * on the retransmit queue are always kept in order. */ list_del_init(lchunk); sctp_insert_list(&q->retransmit, lchunk); } } pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, " "flight_size:%d, pba:%d\n", __func__, transport, reason, transport->cwnd, transport->ssthresh, transport->flight_size, transport->partial_bytes_acked); } /* Mark all the eligible packets on a transport for retransmission and force * one packet out. */ void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport, enum sctp_retransmit_reason reason) { struct net *net = q->asoc->base.net; switch (reason) { case SCTP_RTXR_T3_RTX: SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS); sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX); /* Update the retran path if the T3-rtx timer has expired for * the current retran path. */ if (transport == transport->asoc->peer.retran_path) sctp_assoc_update_retran_path(transport->asoc); transport->asoc->rtx_data_chunks += transport->asoc->unack_data; if (transport->pl.state == SCTP_PL_COMPLETE && transport->asoc->unack_data) sctp_transport_reset_probe_timer(transport); break; case SCTP_RTXR_FAST_RTX: SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS); sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX); q->fast_rtx = 1; break; case SCTP_RTXR_PMTUD: SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS); break; case SCTP_RTXR_T1_RTX: SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS); transport->asoc->init_retries++; break; default: BUG(); } sctp_retransmit_mark(q, transport, reason); /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination, * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by * following the procedures outlined in C1 - C5. */ if (reason == SCTP_RTXR_T3_RTX) q->asoc->stream.si->generate_ftsn(q, q->asoc->ctsn_ack_point); /* Flush the queues only on timeout, since fast_rtx is only * triggered during sack processing and the queue * will be flushed at the end. */ if (reason != SCTP_RTXR_FAST_RTX) sctp_outq_flush(q, /* rtx_timeout */ 1, GFP_ATOMIC); } /* * Transmit DATA chunks on the retransmit queue. Upon return from * __sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which * need to be transmitted by the caller. * We assume that pkt->transport has already been set. * * The return value is a normal kernel error return value. */ static int __sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt, int rtx_timeout, int *start_timer, gfp_t gfp) { struct sctp_transport *transport = pkt->transport; struct sctp_chunk *chunk, *chunk1; struct list_head *lqueue; enum sctp_xmit status; int error = 0; int timer = 0; int done = 0; int fast_rtx; lqueue = &q->retransmit; fast_rtx = q->fast_rtx; /* This loop handles time-out retransmissions, fast retransmissions, * and retransmissions due to opening of whindow. * * RFC 2960 6.3.3 Handle T3-rtx Expiration * * E3) Determine how many of the earliest (i.e., lowest TSN) * outstanding DATA chunks for the address for which the * T3-rtx has expired will fit into a single packet, subject * to the MTU constraint for the path corresponding to the * destination transport address to which the retransmission * is being sent (this may be different from the address for * which the timer expires [see Section 6.4]). Call this value * K. Bundle and retransmit those K DATA chunks in a single * packet to the destination endpoint. * * [Just to be painfully clear, if we are retransmitting * because a timeout just happened, we should send only ONE * packet of retransmitted data.] * * For fast retransmissions we also send only ONE packet. However, * if we are just flushing the queue due to open window, we'll * try to send as much as possible. */ list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) { /* If the chunk is abandoned, move it to abandoned list. */ if (sctp_chunk_abandoned(chunk)) { list_del_init(&chunk->transmitted_list); sctp_insert_list(&q->abandoned, &chunk->transmitted_list); continue; } /* Make sure that Gap Acked TSNs are not retransmitted. A * simple approach is just to move such TSNs out of the * way and into a 'transmitted' queue and skip to the * next chunk. */ if (chunk->tsn_gap_acked) { list_move_tail(&chunk->transmitted_list, &transport->transmitted); continue; } /* If we are doing fast retransmit, ignore non-fast_rtransmit * chunks */ if (fast_rtx && !chunk->fast_retransmit) continue; redo: /* Attempt to append this chunk to the packet. */ status = sctp_packet_append_chunk(pkt, chunk); switch (status) { case SCTP_XMIT_PMTU_FULL: if (!pkt->has_data && !pkt->has_cookie_echo) { /* If this packet did not contain DATA then * retransmission did not happen, so do it * again. We'll ignore the error here since * control chunks are already freed so there * is nothing we can do. */ sctp_packet_transmit(pkt, gfp); goto redo; } /* Send this packet. */ error = sctp_packet_transmit(pkt, gfp); /* If we are retransmitting, we should only * send a single packet. * Otherwise, try appending this chunk again. */ if (rtx_timeout || fast_rtx) done = 1; else goto redo; /* Bundle next chunk in the next round. */ break; case SCTP_XMIT_RWND_FULL: /* Send this packet. */ error = sctp_packet_transmit(pkt, gfp); /* Stop sending DATA as there is no more room * at the receiver. */ done = 1; break; case SCTP_XMIT_DELAY: /* Send this packet. */ error = sctp_packet_transmit(pkt, gfp); /* Stop sending DATA because of nagle delay. */ done = 1; break; default: /* The append was successful, so add this chunk to * the transmitted list. */ list_move_tail(&chunk->transmitted_list, &transport->transmitted); /* Mark the chunk as ineligible for fast retransmit * after it is retransmitted. */ if (chunk->fast_retransmit == SCTP_NEED_FRTX) chunk->fast_retransmit = SCTP_DONT_FRTX; q->asoc->stats.rtxchunks++; break; } /* Set the timer if there were no errors */ if (!error && !timer) timer = 1; if (done) break; } /* If we are here due to a retransmit timeout or a fast * retransmit and if there are any chunks left in the retransmit * queue that could not fit in the PMTU sized packet, they need * to be marked as ineligible for a subsequent fast retransmit. */ if (rtx_timeout || fast_rtx) { list_for_each_entry(chunk1, lqueue, transmitted_list) { if (chunk1->fast_retransmit == SCTP_NEED_FRTX) chunk1->fast_retransmit = SCTP_DONT_FRTX; } } *start_timer = timer; /* Clear fast retransmit hint */ if (fast_rtx) q->fast_rtx = 0; return error; } /* Cork the outqueue so queued chunks are really queued. */ void sctp_outq_uncork(struct sctp_outq *q, gfp_t gfp) { if (q->cork) q->cork = 0; sctp_outq_flush(q, 0, gfp); } static int sctp_packet_singleton(struct sctp_transport *transport, struct sctp_chunk *chunk, gfp_t gfp) { const struct sctp_association *asoc = transport->asoc; const __u16 sport = asoc->base.bind_addr.port; const __u16 dport = asoc->peer.port; const __u32 vtag = asoc->peer.i.init_tag; struct sctp_packet singleton; sctp_packet_init(&singleton, transport, sport, dport); sctp_packet_config(&singleton, vtag, 0); if (sctp_packet_append_chunk(&singleton, chunk) != SCTP_XMIT_OK) { list_del_init(&chunk->list); sctp_chunk_free(chunk); return -ENOMEM; } return sctp_packet_transmit(&singleton, gfp); } /* Struct to hold the context during sctp outq flush */ struct sctp_flush_ctx { struct sctp_outq *q; /* Current transport being used. It's NOT the same as curr active one */ struct sctp_transport *transport; /* These transports have chunks to send. */ struct list_head transport_list; struct sctp_association *asoc; /* Packet on the current transport above */ struct sctp_packet *packet; gfp_t gfp; }; /* transport: current transport */ static void sctp_outq_select_transport(struct sctp_flush_ctx *ctx, struct sctp_chunk *chunk) { struct sctp_transport *new_transport = chunk->transport; if (!new_transport) { if (!sctp_chunk_is_data(chunk)) { /* If we have a prior transport pointer, see if * the destination address of the chunk * matches the destination address of the * current transport. If not a match, then * try to look up the transport with a given * destination address. We do this because * after processing ASCONFs, we may have new * transports created. */ if (ctx->transport && sctp_cmp_addr_exact(&chunk->dest, &ctx->transport->ipaddr)) new_transport = ctx->transport; else new_transport = sctp_assoc_lookup_paddr(ctx->asoc, &chunk->dest); } /* if we still don't have a new transport, then * use the current active path. */ if (!new_transport) new_transport = ctx->asoc->peer.active_path; } else { __u8 type; switch (new_transport->state) { case SCTP_INACTIVE: case SCTP_UNCONFIRMED: case SCTP_PF: /* If the chunk is Heartbeat or Heartbeat Ack, * send it to chunk->transport, even if it's * inactive. * * 3.3.6 Heartbeat Acknowledgement: * ... * A HEARTBEAT ACK is always sent to the source IP * address of the IP datagram containing the * HEARTBEAT chunk to which this ack is responding. * ... * * ASCONF_ACKs also must be sent to the source. */ type = chunk->chunk_hdr->type; if (type != SCTP_CID_HEARTBEAT && type != SCTP_CID_HEARTBEAT_ACK && type != SCTP_CID_ASCONF_ACK) new_transport = ctx->asoc->peer.active_path; break; default: break; } } /* Are we switching transports? Take care of transport locks. */ if (new_transport != ctx->transport) { ctx->transport = new_transport; ctx->packet = &ctx->transport->packet; if (list_empty(&ctx->transport->send_ready)) list_add_tail(&ctx->transport->send_ready, &ctx->transport_list); sctp_packet_config(ctx->packet, ctx->asoc->peer.i.init_tag, ctx->asoc->peer.ecn_capable); /* We've switched transports, so apply the * Burst limit to the new transport. */ sctp_transport_burst_limited(ctx->transport); } } static void sctp_outq_flush_ctrl(struct sctp_flush_ctx *ctx) { struct sctp_chunk *chunk, *tmp; enum sctp_xmit status; int one_packet, error; list_for_each_entry_safe(chunk, tmp, &ctx->q->control_chunk_list, list) { one_packet = 0; /* RFC 5061, 5.3 * F1) This means that until such time as the ASCONF * containing the add is acknowledged, the sender MUST * NOT use the new IP address as a source for ANY SCTP * packet except on carrying an ASCONF Chunk. */ if (ctx->asoc->src_out_of_asoc_ok && chunk->chunk_hdr->type != SCTP_CID_ASCONF) continue; list_del_init(&chunk->list); /* Pick the right transport to use. Should always be true for * the first chunk as we don't have a transport by then. */ sctp_outq_select_transport(ctx, chunk); switch (chunk->chunk_hdr->type) { /* 6.10 Bundling * ... * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN * COMPLETE with any other chunks. [Send them immediately.] */ case SCTP_CID_INIT: case SCTP_CID_INIT_ACK: case SCTP_CID_SHUTDOWN_COMPLETE: error = sctp_packet_singleton(ctx->transport, chunk, ctx->gfp); if (error < 0) { ctx->asoc->base.sk->sk_err = -error; return; } ctx->asoc->stats.octrlchunks++; break; case SCTP_CID_ABORT: if (sctp_test_T_bit(chunk)) ctx->packet->vtag = ctx->asoc->c.my_vtag; fallthrough; /* The following chunks are "response" chunks, i.e. * they are generated in response to something we * received. If we are sending these, then we can * send only 1 packet containing these chunks. */ case SCTP_CID_HEARTBEAT_ACK: case SCTP_CID_SHUTDOWN_ACK: case SCTP_CID_COOKIE_ACK: case SCTP_CID_COOKIE_ECHO: case SCTP_CID_ERROR: case SCTP_CID_ECN_CWR: case SCTP_CID_ASCONF_ACK: one_packet = 1; fallthrough; case SCTP_CID_HEARTBEAT: if (chunk->pmtu_probe) { error = sctp_packet_singleton(ctx->transport, chunk, ctx->gfp); if (!error) ctx->asoc->stats.octrlchunks++; break; } fallthrough; case SCTP_CID_SACK: case SCTP_CID_SHUTDOWN: case SCTP_CID_ECN_ECNE: case SCTP_CID_ASCONF: case SCTP_CID_FWD_TSN: case SCTP_CID_I_FWD_TSN: case SCTP_CID_RECONF: status = sctp_packet_transmit_chunk(ctx->packet, chunk, one_packet, ctx->gfp); if (status != SCTP_XMIT_OK) { /* put the chunk back */ list_add(&chunk->list, &ctx->q->control_chunk_list); break; } ctx->asoc->stats.octrlchunks++; /* PR-SCTP C5) If a FORWARD TSN is sent, the * sender MUST assure that at least one T3-rtx * timer is running. */ if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN || chunk->chunk_hdr->type == SCTP_CID_I_FWD_TSN) { sctp_transport_reset_t3_rtx(ctx->transport); ctx->transport->last_time_sent = jiffies; } if (chunk == ctx->asoc->strreset_chunk) sctp_transport_reset_reconf_timer(ctx->transport); break; default: /* We built a chunk with an illegal type! */ BUG(); } } } /* Returns false if new data shouldn't be sent */ static bool sctp_outq_flush_rtx(struct sctp_flush_ctx *ctx, int rtx_timeout) { int error, start_timer = 0; if (ctx->asoc->peer.retran_path->state == SCTP_UNCONFIRMED) return false; if (ctx->transport != ctx->asoc->peer.retran_path) { /* Switch transports & prepare the packet. */ ctx->transport = ctx->asoc->peer.retran_path; ctx->packet = &ctx->transport->packet; if (list_empty(&ctx->transport->send_ready)) list_add_tail(&ctx->transport->send_ready, &ctx->transport_list); sctp_packet_config(ctx->packet, ctx->asoc->peer.i.init_tag, ctx->asoc->peer.ecn_capable); } error = __sctp_outq_flush_rtx(ctx->q, ctx->packet, rtx_timeout, &start_timer, ctx->gfp); if (error < 0) ctx->asoc->base.sk->sk_err = -error; if (start_timer) { sctp_transport_reset_t3_rtx(ctx->transport); ctx->transport->last_time_sent = jiffies; } /* This can happen on COOKIE-ECHO resend. Only * one chunk can get bundled with a COOKIE-ECHO. */ if (ctx->packet->has_cookie_echo) return false; /* Don't send new data if there is still data * waiting to retransmit. */ if (!list_empty(&ctx->q->retransmit)) return false; return true; } static void sctp_outq_flush_data(struct sctp_flush_ctx *ctx, int rtx_timeout) { struct sctp_chunk *chunk; enum sctp_xmit status; /* Is it OK to send data chunks? */ switch (ctx->asoc->state) { case SCTP_STATE_COOKIE_ECHOED: /* Only allow bundling when this packet has a COOKIE-ECHO * chunk. */ if (!ctx->packet || !ctx->packet->has_cookie_echo) return; fallthrough; case SCTP_STATE_ESTABLISHED: case SCTP_STATE_SHUTDOWN_PENDING: case SCTP_STATE_SHUTDOWN_RECEIVED: break; default: /* Do nothing. */ return; } /* RFC 2960 6.1 Transmission of DATA Chunks * * C) When the time comes for the sender to transmit, * before sending new DATA chunks, the sender MUST * first transmit any outstanding DATA chunks which * are marked for retransmission (limited by the * current cwnd). */ if (!list_empty(&ctx->q->retransmit) && !sctp_outq_flush_rtx(ctx, rtx_timeout)) return; /* Apply Max.Burst limitation to the current transport in * case it will be used for new data. We are going to * rest it before we return, but we want to apply the limit * to the currently queued data. */ if (ctx->transport) sctp_transport_burst_limited(ctx->transport); /* Finally, transmit new packets. */ while ((chunk = sctp_outq_dequeue_data(ctx->q)) != NULL) { __u32 sid = ntohs(chunk->subh.data_hdr->stream); __u8 stream_state = SCTP_SO(&ctx->asoc->stream, sid)->state; /* Has this chunk expired? */ if (sctp_chunk_abandoned(chunk)) { sctp_sched_dequeue_done(ctx->q, chunk); sctp_chunk_fail(chunk, 0); sctp_chunk_free(chunk); continue; } if (stream_state == SCTP_STREAM_CLOSED) { sctp_outq_head_data(ctx->q, chunk); break; } sctp_outq_select_transport(ctx, chunk); pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p skb->users:%d\n", __func__, ctx->q, chunk, chunk && chunk->chunk_hdr ? sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) : "illegal chunk", ntohl(chunk->subh.data_hdr->tsn), chunk->skb ? chunk->skb->head : NULL, chunk->skb ? refcount_read(&chunk->skb->users) : -1); /* Add the chunk to the packet. */ status = sctp_packet_transmit_chunk(ctx->packet, chunk, 0, ctx->gfp); if (status != SCTP_XMIT_OK) { /* We could not append this chunk, so put * the chunk back on the output queue. */ pr_debug("%s: could not transmit tsn:0x%x, status:%d\n", __func__, ntohl(chunk->subh.data_hdr->tsn), status); sctp_outq_head_data(ctx->q, chunk); break; } /* The sender is in the SHUTDOWN-PENDING state, * The sender MAY set the I-bit in the DATA * chunk header. */ if (ctx->asoc->state == SCTP_STATE_SHUTDOWN_PENDING) chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM; if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED) ctx->asoc->stats.ouodchunks++; else ctx->asoc->stats.oodchunks++; /* Only now it's safe to consider this * chunk as sent, sched-wise. */ sctp_sched_dequeue_done(ctx->q, chunk); list_add_tail(&chunk->transmitted_list, &ctx->transport->transmitted); sctp_transport_reset_t3_rtx(ctx->transport); ctx->transport->last_time_sent = jiffies; /* Only let one DATA chunk get bundled with a * COOKIE-ECHO chunk. */ if (ctx->packet->has_cookie_echo) break; } } static void sctp_outq_flush_transports(struct sctp_flush_ctx *ctx) { struct sock *sk = ctx->asoc->base.sk; struct list_head *ltransport; struct sctp_packet *packet; struct sctp_transport *t; int error = 0; while ((ltransport = sctp_list_dequeue(&ctx->transport_list)) != NULL) { t = list_entry(ltransport, struct sctp_transport, send_ready); packet = &t->packet; if (!sctp_packet_empty(packet)) { rcu_read_lock(); if (t->dst && __sk_dst_get(sk) != t->dst) { dst_hold(t->dst); sk_setup_caps(sk, t->dst); } rcu_read_unlock(); error = sctp_packet_transmit(packet, ctx->gfp); if (error < 0) ctx->q->asoc->base.sk->sk_err = -error; } /* Clear the burst limited state, if any */ sctp_transport_burst_reset(t); } } /* Try to flush an outqueue. * * Description: Send everything in q which we legally can, subject to * congestion limitations. * * Note: This function can be called from multiple contexts so appropriate * locking concerns must be made. Today we use the sock lock to protect * this function. */ static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp) { struct sctp_flush_ctx ctx = { .q = q, .transport = NULL, .transport_list = LIST_HEAD_INIT(ctx.transport_list), .asoc = q->asoc, .packet = NULL, .gfp = gfp, }; /* 6.10 Bundling * ... * When bundling control chunks with DATA chunks, an * endpoint MUST place control chunks first in the outbound * SCTP packet. The transmitter MUST transmit DATA chunks * within a SCTP packet in increasing order of TSN. * ... */ sctp_outq_flush_ctrl(&ctx); if (q->asoc->src_out_of_asoc_ok) goto sctp_flush_out; sctp_outq_flush_data(&ctx, rtx_timeout); sctp_flush_out: sctp_outq_flush_transports(&ctx); } /* Update unack_data based on the incoming SACK chunk */ static void sctp_sack_update_unack_data(struct sctp_association *assoc, struct sctp_sackhdr *sack) { union sctp_sack_variable *frags; __u16 unack_data; int i; unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1; frags = sack->variable; for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) { unack_data -= ((ntohs(frags[i].gab.end) - ntohs(frags[i].gab.start) + 1)); } assoc->unack_data = unack_data; } /* This is where we REALLY process a SACK. * * Process the SACK against the outqueue. Mostly, this just frees * things off the transmitted queue. */ int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk) { struct sctp_association *asoc = q->asoc; struct sctp_sackhdr *sack = chunk->subh.sack_hdr; struct sctp_transport *transport; struct sctp_chunk *tchunk = NULL; struct list_head *lchunk, *transport_list, *temp; union sctp_sack_variable *frags = sack->variable; __u32 sack_ctsn, ctsn, tsn; __u32 highest_tsn, highest_new_tsn; __u32 sack_a_rwnd; unsigned int outstanding; struct sctp_transport *primary = asoc->peer.primary_path; int count_of_newacks = 0; int gap_ack_blocks; u8 accum_moved = 0; /* Grab the association's destination address list. */ transport_list = &asoc->peer.transport_addr_list; /* SCTP path tracepoint for congestion control debugging. */ if (trace_sctp_probe_path_enabled()) { list_for_each_entry(transport, transport_list, transports) trace_sctp_probe_path(transport, asoc); } sack_ctsn = ntohl(sack->cum_tsn_ack); gap_ack_blocks = ntohs(sack->num_gap_ack_blocks); asoc->stats.gapcnt += gap_ack_blocks; /* * SFR-CACC algorithm: * On receipt of a SACK the sender SHOULD execute the * following statements. * * 1) If the cumulative ack in the SACK passes next tsn_at_change * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for * all destinations. * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE * is set the receiver of the SACK MUST take the following actions: * * A) Initialize the cacc_saw_newack to 0 for all destination * addresses. * * Only bother if changeover_active is set. Otherwise, this is * totally suboptimal to do on every SACK. */ if (primary->cacc.changeover_active) { u8 clear_cycling = 0; if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) { primary->cacc.changeover_active = 0; clear_cycling = 1; } if (clear_cycling || gap_ack_blocks) { list_for_each_entry(transport, transport_list, transports) { if (clear_cycling) transport->cacc.cycling_changeover = 0; if (gap_ack_blocks) transport->cacc.cacc_saw_newack = 0; } } } /* Get the highest TSN in the sack. */ highest_tsn = sack_ctsn; if (gap_ack_blocks) highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end); if (TSN_lt(asoc->highest_sacked, highest_tsn)) asoc->highest_sacked = highest_tsn; highest_new_tsn = sack_ctsn; /* Run through the retransmit queue. Credit bytes received * and free those chunks that we can. */ sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn); /* Run through the transmitted queue. * Credit bytes received and free those chunks which we can. * * This is a MASSIVE candidate for optimization. */ list_for_each_entry(transport, transport_list, transports) { sctp_check_transmitted(q, &transport->transmitted, transport, &chunk->source, sack, &highest_new_tsn); /* * SFR-CACC algorithm: * C) Let count_of_newacks be the number of * destinations for which cacc_saw_newack is set. */ if (transport->cacc.cacc_saw_newack) count_of_newacks++; } /* Move the Cumulative TSN Ack Point if appropriate. */ if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) { asoc->ctsn_ack_point = sack_ctsn; accum_moved = 1; } if (gap_ack_blocks) { if (asoc->fast_recovery && accum_moved) highest_new_tsn = highest_tsn; list_for_each_entry(transport, transport_list, transports) sctp_mark_missing(q, &transport->transmitted, transport, highest_new_tsn, count_of_newacks); } /* Update unack_data field in the assoc. */ sctp_sack_update_unack_data(asoc, sack); ctsn = asoc->ctsn_ack_point; /* Throw away stuff rotting on the sack queue. */ list_for_each_safe(lchunk, temp, &q->sacked) { tchunk = list_entry(lchunk, struct sctp_chunk, transmitted_list); tsn = ntohl(tchunk->subh.data_hdr->tsn); if (TSN_lte(tsn, ctsn)) { list_del_init(&tchunk->transmitted_list); if (asoc->peer.prsctp_capable && SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags)) asoc->sent_cnt_removable--; sctp_chunk_free(tchunk); } } /* ii) Set rwnd equal to the newly received a_rwnd minus the * number of bytes still outstanding after processing the * Cumulative TSN Ack and the Gap Ack Blocks. */ sack_a_rwnd = ntohl(sack->a_rwnd); asoc->peer.zero_window_announced = !sack_a_rwnd; outstanding = q->outstanding_bytes; if (outstanding < sack_a_rwnd) sack_a_rwnd -= outstanding; else sack_a_rwnd = 0; asoc->peer.rwnd = sack_a_rwnd; asoc->stream.si->generate_ftsn(q, sack_ctsn); pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn); pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, " "advertised peer ack point:0x%x\n", __func__, asoc, ctsn, asoc->adv_peer_ack_point); return sctp_outq_is_empty(q); } /* Is the outqueue empty? * The queue is empty when we have not pending data, no in-flight data * and nothing pending retransmissions. */ int sctp_outq_is_empty(const struct sctp_outq *q) { return q->out_qlen == 0 && q->outstanding_bytes == 0 && list_empty(&q->retransmit); } /******************************************************************** * 2nd Level Abstractions ********************************************************************/ /* Go through a transport's transmitted list or the association's retransmit * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked. * The retransmit list will not have an associated transport. * * I added coherent debug information output. --xguo * * Instead of printing 'sacked' or 'kept' for each TSN on the * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5. * KEPT TSN6-TSN7, etc. */ static void sctp_check_transmitted(struct sctp_outq *q, struct list_head *transmitted_queue, struct sctp_transport *transport, union sctp_addr *saddr, struct sctp_sackhdr *sack, __u32 *highest_new_tsn_in_sack) { struct list_head *lchunk; struct sctp_chunk *tchunk; struct list_head tlist; __u32 tsn; __u32 sack_ctsn; __u32 rtt; __u8 restart_timer = 0; int bytes_acked = 0; int migrate_bytes = 0; bool forward_progress = false; sack_ctsn = ntohl(sack->cum_tsn_ack); INIT_LIST_HEAD(&tlist); /* The while loop will skip empty transmitted queues. */ while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) { tchunk = list_entry(lchunk, struct sctp_chunk, transmitted_list); if (sctp_chunk_abandoned(tchunk)) { /* Move the chunk to abandoned list. */ sctp_insert_list(&q->abandoned, lchunk); /* If this chunk has not been acked, stop * considering it as 'outstanding'. */ if (transmitted_queue != &q->retransmit && !tchunk->tsn_gap_acked) { if (tchunk->transport) tchunk->transport->flight_size -= sctp_data_size(tchunk); q->outstanding_bytes -= sctp_data_size(tchunk); } continue; } tsn = ntohl(tchunk->subh.data_hdr->tsn); if (sctp_acked(sack, tsn)) { /* If this queue is the retransmit queue, the * retransmit timer has already reclaimed * the outstanding bytes for this chunk, so only * count bytes associated with a transport. */ if (transport && !tchunk->tsn_gap_acked) { /* If this chunk is being used for RTT * measurement, calculate the RTT and update * the RTO using this value. * * 6.3.1 C5) Karn's algorithm: RTT measurements * MUST NOT be made using packets that were * retransmitted (and thus for which it is * ambiguous whether the reply was for the * first instance of the packet or a later * instance). */ if (!sctp_chunk_retransmitted(tchunk) && tchunk->rtt_in_progress) { tchunk->rtt_in_progress = 0; rtt = jiffies - tchunk->sent_at; sctp_transport_update_rto(transport, rtt); } if (TSN_lte(tsn, sack_ctsn)) { /* * SFR-CACC algorithm: * 2) If the SACK contains gap acks * and the flag CHANGEOVER_ACTIVE is * set the receiver of the SACK MUST * take the following action: * * B) For each TSN t being acked that * has not been acked in any SACK so * far, set cacc_saw_newack to 1 for * the destination that the TSN was * sent to. */ if (sack->num_gap_ack_blocks && q->asoc->peer.primary_path->cacc. changeover_active) transport->cacc.cacc_saw_newack = 1; } } /* If the chunk hasn't been marked as ACKED, * mark it and account bytes_acked if the * chunk had a valid transport (it will not * have a transport if ASCONF had deleted it * while DATA was outstanding). */ if (!tchunk->tsn_gap_acked) { tchunk->tsn_gap_acked = 1; if (TSN_lt(*highest_new_tsn_in_sack, tsn)) *highest_new_tsn_in_sack = tsn; bytes_acked += sctp_data_size(tchunk); if (!tchunk->transport) migrate_bytes += sctp_data_size(tchunk); forward_progress = true; } if (TSN_lte(tsn, sack_ctsn)) { /* RFC 2960 6.3.2 Retransmission Timer Rules * * R3) Whenever a SACK is received * that acknowledges the DATA chunk * with the earliest outstanding TSN * for that address, restart T3-rtx * timer for that address with its * current RTO. */ restart_timer = 1; forward_progress = true; list_add_tail(&tchunk->transmitted_list, &q->sacked); } else { /* RFC2960 7.2.4, sctpimpguide-05 2.8.2 * M2) Each time a SACK arrives reporting * 'Stray DATA chunk(s)' record the highest TSN * reported as newly acknowledged, call this * value 'HighestTSNinSack'. A newly * acknowledged DATA chunk is one not * previously acknowledged in a SACK. * * When the SCTP sender of data receives a SACK * chunk that acknowledges, for the first time, * the receipt of a DATA chunk, all the still * unacknowledged DATA chunks whose TSN is * older than that newly acknowledged DATA * chunk, are qualified as 'Stray DATA chunks'. */ list_add_tail(lchunk, &tlist); } } else { if (tchunk->tsn_gap_acked) { pr_debug("%s: receiver reneged on data TSN:0x%x\n", __func__, tsn); tchunk->tsn_gap_acked = 0; if (tchunk->transport) bytes_acked -= sctp_data_size(tchunk); /* RFC 2960 6.3.2 Retransmission Timer Rules * * R4) Whenever a SACK is received missing a * TSN that was previously acknowledged via a * Gap Ack Block, start T3-rtx for the * destination address to which the DATA * chunk was originally * transmitted if it is not already running. */ restart_timer = 1; } list_add_tail(lchunk, &tlist); } } if (transport) { if (bytes_acked) { struct sctp_association *asoc = transport->asoc; /* We may have counted DATA that was migrated * to this transport due to DEL-IP operation. * Subtract those bytes, since the were never * send on this transport and shouldn't be * credited to this transport. */ bytes_acked -= migrate_bytes; /* 8.2. When an outstanding TSN is acknowledged, * the endpoint shall clear the error counter of * the destination transport address to which the * DATA chunk was last sent. * The association's overall error counter is * also cleared. */ transport->error_count = 0; transport->asoc->overall_error_count = 0; forward_progress = true; /* * While in SHUTDOWN PENDING, we may have started * the T5 shutdown guard timer after reaching the * retransmission limit. Stop that timer as soon * as the receiver acknowledged any data. */ if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING && del_timer(&asoc->timers [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD])) sctp_association_put(asoc); /* Mark the destination transport address as * active if it is not so marked. */ if ((transport->state == SCTP_INACTIVE || transport->state == SCTP_UNCONFIRMED) && sctp_cmp_addr_exact(&transport->ipaddr, saddr)) { sctp_assoc_control_transport( transport->asoc, transport, SCTP_TRANSPORT_UP, SCTP_RECEIVED_SACK); } sctp_transport_raise_cwnd(transport, sack_ctsn, bytes_acked); transport->flight_size -= bytes_acked; if (transport->flight_size == 0) transport->partial_bytes_acked = 0; q->outstanding_bytes -= bytes_acked + migrate_bytes; } else { /* RFC 2960 6.1, sctpimpguide-06 2.15.2 * When a sender is doing zero window probing, it * should not timeout the association if it continues * to receive new packets from the receiver. The * reason is that the receiver MAY keep its window * closed for an indefinite time. * A sender is doing zero window probing when the * receiver's advertised window is zero, and there is * only one data chunk in flight to the receiver. * * Allow the association to timeout while in SHUTDOWN * PENDING or SHUTDOWN RECEIVED in case the receiver * stays in zero window mode forever. */ if (!q->asoc->peer.rwnd && !list_empty(&tlist) && (sack_ctsn+2 == q->asoc->next_tsn) && q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) { pr_debug("%s: sack received for zero window " "probe:%u\n", __func__, sack_ctsn); q->asoc->overall_error_count = 0; transport->error_count = 0; } } /* RFC 2960 6.3.2 Retransmission Timer Rules * * R2) Whenever all outstanding data sent to an address have * been acknowledged, turn off the T3-rtx timer of that * address. */ if (!transport->flight_size) { if (del_timer(&transport->T3_rtx_timer)) sctp_transport_put(transport); } else if (restart_timer) { if (!mod_timer(&transport->T3_rtx_timer, jiffies + transport->rto)) sctp_transport_hold(transport); } if (forward_progress) { if (transport->dst) sctp_transport_dst_confirm(transport); } } list_splice(&tlist, transmitted_queue); } /* Mark chunks as missing and consequently may get retransmitted. */ static void sctp_mark_missing(struct sctp_outq *q, struct list_head *transmitted_queue, struct sctp_transport *transport, __u32 highest_new_tsn_in_sack, int count_of_newacks) { struct sctp_chunk *chunk; __u32 tsn; char do_fast_retransmit = 0; struct sctp_association *asoc = q->asoc; struct sctp_transport *primary = asoc->peer.primary_path; list_for_each_entry(chunk, transmitted_queue, transmitted_list) { tsn = ntohl(chunk->subh.data_hdr->tsn); /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all * 'Unacknowledged TSN's', if the TSN number of an * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack' * value, increment the 'TSN.Missing.Report' count on that * chunk if it has NOT been fast retransmitted or marked for * fast retransmit already. */ if (chunk->fast_retransmit == SCTP_CAN_FRTX && !chunk->tsn_gap_acked && TSN_lt(tsn, highest_new_tsn_in_sack)) { /* SFR-CACC may require us to skip marking * this chunk as missing. */ if (!transport || !sctp_cacc_skip(primary, chunk->transport, count_of_newacks, tsn)) { chunk->tsn_missing_report++; pr_debug("%s: tsn:0x%x missing counter:%d\n", __func__, tsn, chunk->tsn_missing_report); } } /* * M4) If any DATA chunk is found to have a * 'TSN.Missing.Report' * value larger than or equal to 3, mark that chunk for * retransmission and start the fast retransmit procedure. */ if (chunk->tsn_missing_report >= 3) { chunk->fast_retransmit = SCTP_NEED_FRTX; do_fast_retransmit = 1; } } if (transport) { if (do_fast_retransmit) sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX); pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, " "flight_size:%d, pba:%d\n", __func__, transport, transport->cwnd, transport->ssthresh, transport->flight_size, transport->partial_bytes_acked); } } /* Is the given TSN acked by this packet? */ static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn) { __u32 ctsn = ntohl(sack->cum_tsn_ack); union sctp_sack_variable *frags; __u16 tsn_offset, blocks; int i; if (TSN_lte(tsn, ctsn)) goto pass; /* 3.3.4 Selective Acknowledgment (SACK) (3): * * Gap Ack Blocks: * These fields contain the Gap Ack Blocks. They are repeated * for each Gap Ack Block up to the number of Gap Ack Blocks * defined in the Number of Gap Ack Blocks field. All DATA * chunks with TSNs greater than or equal to (Cumulative TSN * Ack + Gap Ack Block Start) and less than or equal to * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack * Block are assumed to have been received correctly. */ frags = sack->variable; blocks = ntohs(sack->num_gap_ack_blocks); tsn_offset = tsn - ctsn; for (i = 0; i < blocks; ++i) { if (tsn_offset >= ntohs(frags[i].gab.start) && tsn_offset <= ntohs(frags[i].gab.end)) goto pass; } return 0; pass: return 1; } static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist, int nskips, __be16 stream) { int i; for (i = 0; i < nskips; i++) { if (skiplist[i].stream == stream) return i; } return i; } /* Create and add a fwdtsn chunk to the outq's control queue if needed. */ void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn) { struct sctp_association *asoc = q->asoc; struct sctp_chunk *ftsn_chunk = NULL; struct sctp_fwdtsn_skip ftsn_skip_arr[10]; int nskips = 0; int skip_pos = 0; __u32 tsn; struct sctp_chunk *chunk; struct list_head *lchunk, *temp; if (!asoc->peer.prsctp_capable) return; /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the * received SACK. * * If (Advanced.Peer.Ack.Point < SackCumAck), then update * Advanced.Peer.Ack.Point to be equal to SackCumAck. */ if (TSN_lt(asoc->adv_peer_ack_point, ctsn)) asoc->adv_peer_ack_point = ctsn; /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point" * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as * the chunk next in the out-queue space is marked as "abandoned" as * shown in the following example: * * Assuming that a SACK arrived with the Cumulative TSN ACK 102 * and the Advanced.Peer.Ack.Point is updated to this value: * * out-queue at the end of ==> out-queue after Adv.Ack.Point * normal SACK processing local advancement * ... ... * Adv.Ack.Pt-> 102 acked 102 acked * 103 abandoned 103 abandoned * 104 abandoned Adv.Ack.P-> 104 abandoned * 105 105 * 106 acked 106 acked * ... ... * * In this example, the data sender successfully advanced the * "Advanced.Peer.Ack.Point" from 102 to 104 locally. */ list_for_each_safe(lchunk, temp, &q->abandoned) { chunk = list_entry(lchunk, struct sctp_chunk, transmitted_list); tsn = ntohl(chunk->subh.data_hdr->tsn); /* Remove any chunks in the abandoned queue that are acked by * the ctsn. */ if (TSN_lte(tsn, ctsn)) { list_del_init(lchunk); sctp_chunk_free(chunk); } else { if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) { asoc->adv_peer_ack_point = tsn; if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED) continue; skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0], nskips, chunk->subh.data_hdr->stream); ftsn_skip_arr[skip_pos].stream = chunk->subh.data_hdr->stream; ftsn_skip_arr[skip_pos].ssn = chunk->subh.data_hdr->ssn; if (skip_pos == nskips) nskips++; if (nskips == 10) break; } else break; } } /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point" * is greater than the Cumulative TSN ACK carried in the received * SACK, the data sender MUST send the data receiver a FORWARD TSN * chunk containing the latest value of the * "Advanced.Peer.Ack.Point". * * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD * list each stream and sequence number in the forwarded TSN. This * information will enable the receiver to easily find any * stranded TSN's waiting on stream reorder queues. Each stream * SHOULD only be reported once; this means that if multiple * abandoned messages occur in the same stream then only the * highest abandoned stream sequence number is reported. If the * total size of the FORWARD TSN does NOT fit in a single MTU then * the sender of the FORWARD TSN SHOULD lower the * Advanced.Peer.Ack.Point to the last TSN that will fit in a * single MTU. */ if (asoc->adv_peer_ack_point > ctsn) ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point, nskips, &ftsn_skip_arr[0]); if (ftsn_chunk) { list_add_tail(&ftsn_chunk->list, &q->control_chunk_list); SCTP_INC_STATS(asoc->base.net, SCTP_MIB_OUTCTRLCHUNKS); } }
789 6112 41 6113 6463 6121 6122 700 700 19 431 698 2 2 251 252 42 42 41 41 40 41 3 41 5200 5199 5196 5209 252 4811 4801 4796 4807 4820 138 34 34 34 34 34 505 504 3499 755 753 757 2 756 32 32 32 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 // SPDX-License-Identifier: GPL-2.0 /* * Kernel timekeeping code and accessor functions. Based on code from * timer.c, moved in commit 8524070b7982. */ #include <linux/timekeeper_internal.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/percpu.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/nmi.h> #include <linux/sched.h> #include <linux/sched/loadavg.h> #include <linux/sched/clock.h> #include <linux/syscore_ops.h> #include <linux/clocksource.h> #include <linux/jiffies.h> #include <linux/time.h> #include <linux/timex.h> #include <linux/tick.h> #include <linux/stop_machine.h> #include <linux/pvclock_gtod.h> #include <linux/compiler.h> #include <linux/audit.h> #include <linux/random.h> #include "tick-internal.h" #include "ntp_internal.h" #include "timekeeping_internal.h" #define TK_CLEAR_NTP (1 << 0) #define TK_MIRROR (1 << 1) #define TK_CLOCK_WAS_SET (1 << 2) enum timekeeping_adv_mode { /* Update timekeeper when a tick has passed */ TK_ADV_TICK, /* Update timekeeper on a direct frequency change */ TK_ADV_FREQ }; DEFINE_RAW_SPINLOCK(timekeeper_lock); /* * The most important data for readout fits into a single 64 byte * cache line. */ static struct { seqcount_raw_spinlock_t seq; struct timekeeper timekeeper; } tk_core ____cacheline_aligned = { .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock), }; static struct timekeeper shadow_timekeeper; /* flag for if timekeeping is suspended */ int __read_mostly timekeeping_suspended; /** * struct tk_fast - NMI safe timekeeper * @seq: Sequence counter for protecting updates. The lowest bit * is the index for the tk_read_base array * @base: tk_read_base array. Access is indexed by the lowest bit of * @seq. * * See @update_fast_timekeeper() below. */ struct tk_fast { seqcount_latch_t seq; struct tk_read_base base[2]; }; /* Suspend-time cycles value for halted fast timekeeper. */ static u64 cycles_at_suspend; static u64 dummy_clock_read(struct clocksource *cs) { if (timekeeping_suspended) return cycles_at_suspend; return local_clock(); } static struct clocksource dummy_clock = { .read = dummy_clock_read, }; /* * Boot time initialization which allows local_clock() to be utilized * during early boot when clocksources are not available. local_clock() * returns nanoseconds already so no conversion is required, hence mult=1 * and shift=0. When the first proper clocksource is installed then * the fast time keepers are updated with the correct values. */ #define FAST_TK_INIT \ { \ .clock = &dummy_clock, \ .mask = CLOCKSOURCE_MASK(64), \ .mult = 1, \ .shift = 0, \ } static struct tk_fast tk_fast_mono ____cacheline_aligned = { .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), .base[0] = FAST_TK_INIT, .base[1] = FAST_TK_INIT, }; static struct tk_fast tk_fast_raw ____cacheline_aligned = { .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), .base[0] = FAST_TK_INIT, .base[1] = FAST_TK_INIT, }; static inline void tk_normalize_xtime(struct timekeeper *tk) { while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; tk->xtime_sec++; } while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; tk->raw_sec++; } } static inline struct timespec64 tk_xtime(const struct timekeeper *tk) { struct timespec64 ts; ts.tv_sec = tk->xtime_sec; ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); return ts; } static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) { tk->xtime_sec = ts->tv_sec; tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; } static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) { tk->xtime_sec += ts->tv_sec; tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; tk_normalize_xtime(tk); } static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) { struct timespec64 tmp; /* * Verify consistency of: offset_real = -wall_to_monotonic * before modifying anything */ set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, -tk->wall_to_monotonic.tv_nsec); WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); tk->wall_to_monotonic = wtm; set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); tk->offs_real = timespec64_to_ktime(tmp); tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); } static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) { tk->offs_boot = ktime_add(tk->offs_boot, delta); /* * Timespec representation for VDSO update to avoid 64bit division * on every update. */ tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); } /* * tk_clock_read - atomic clocksource read() helper * * This helper is necessary to use in the read paths because, while the * seqcount ensures we don't return a bad value while structures are updated, * it doesn't protect from potential crashes. There is the possibility that * the tkr's clocksource may change between the read reference, and the * clock reference passed to the read function. This can cause crashes if * the wrong clocksource is passed to the wrong read function. * This isn't necessary to use when holding the timekeeper_lock or doing * a read of the fast-timekeeper tkrs (which is protected by its own locking * and update logic). */ static inline u64 tk_clock_read(const struct tk_read_base *tkr) { struct clocksource *clock = READ_ONCE(tkr->clock); return clock->read(clock); } #ifdef CONFIG_DEBUG_TIMEKEEPING #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ static void timekeeping_check_update(struct timekeeper *tk, u64 offset) { u64 max_cycles = tk->tkr_mono.clock->max_cycles; const char *name = tk->tkr_mono.clock->name; if (offset > max_cycles) { printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", offset, name, max_cycles); printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); } else { if (offset > (max_cycles >> 1)) { printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", offset, name, max_cycles >> 1); printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); } } if (tk->underflow_seen) { if (jiffies - tk->last_warning > WARNING_FREQ) { printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); printk_deferred(" Your kernel is probably still fine.\n"); tk->last_warning = jiffies; } tk->underflow_seen = 0; } if (tk->overflow_seen) { if (jiffies - tk->last_warning > WARNING_FREQ) { printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); printk_deferred(" Your kernel is probably still fine.\n"); tk->last_warning = jiffies; } tk->overflow_seen = 0; } } static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) { struct timekeeper *tk = &tk_core.timekeeper; u64 now, last, mask, max, delta; unsigned int seq; /* * Since we're called holding a seqcount, the data may shift * under us while we're doing the calculation. This can cause * false positives, since we'd note a problem but throw the * results away. So nest another seqcount here to atomically * grab the points we are checking with. */ do { seq = read_seqcount_begin(&tk_core.seq); now = tk_clock_read(tkr); last = tkr->cycle_last; mask = tkr->mask; max = tkr->clock->max_cycles; } while (read_seqcount_retry(&tk_core.seq, seq)); delta = clocksource_delta(now, last, mask); /* * Try to catch underflows by checking if we are seeing small * mask-relative negative values. */ if (unlikely((~delta & mask) < (mask >> 3))) { tk->underflow_seen = 1; delta = 0; } /* Cap delta value to the max_cycles values to avoid mult overflows */ if (unlikely(delta > max)) { tk->overflow_seen = 1; delta = tkr->clock->max_cycles; } return delta; } #else static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) { } static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) { u64 cycle_now, delta; /* read clocksource */ cycle_now = tk_clock_read(tkr); /* calculate the delta since the last update_wall_time */ delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); return delta; } #endif /** * tk_setup_internals - Set up internals to use clocksource clock. * * @tk: The target timekeeper to setup. * @clock: Pointer to clocksource. * * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment * pair and interval request. * * Unless you're the timekeeping code, you should not be using this! */ static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) { u64 interval; u64 tmp, ntpinterval; struct clocksource *old_clock; ++tk->cs_was_changed_seq; old_clock = tk->tkr_mono.clock; tk->tkr_mono.clock = clock; tk->tkr_mono.mask = clock->mask; tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); tk->tkr_raw.clock = clock; tk->tkr_raw.mask = clock->mask; tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; /* Do the ns -> cycle conversion first, using original mult */ tmp = NTP_INTERVAL_LENGTH; tmp <<= clock->shift; ntpinterval = tmp; tmp += clock->mult/2; do_div(tmp, clock->mult); if (tmp == 0) tmp = 1; interval = (u64) tmp; tk->cycle_interval = interval; /* Go back from cycles -> shifted ns */ tk->xtime_interval = interval * clock->mult; tk->xtime_remainder = ntpinterval - tk->xtime_interval; tk->raw_interval = interval * clock->mult; /* if changing clocks, convert xtime_nsec shift units */ if (old_clock) { int shift_change = clock->shift - old_clock->shift; if (shift_change < 0) { tk->tkr_mono.xtime_nsec >>= -shift_change; tk->tkr_raw.xtime_nsec >>= -shift_change; } else { tk->tkr_mono.xtime_nsec <<= shift_change; tk->tkr_raw.xtime_nsec <<= shift_change; } } tk->tkr_mono.shift = clock->shift; tk->tkr_raw.shift = clock->shift; tk->ntp_error = 0; tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; tk->ntp_tick = ntpinterval << tk->ntp_error_shift; /* * The timekeeper keeps its own mult values for the currently * active clocksource. These value will be adjusted via NTP * to counteract clock drifting. */ tk->tkr_mono.mult = clock->mult; tk->tkr_raw.mult = clock->mult; tk->ntp_err_mult = 0; tk->skip_second_overflow = 0; } /* Timekeeper helper functions. */ static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta) { u64 nsec; nsec = delta * tkr->mult + tkr->xtime_nsec; nsec >>= tkr->shift; return nsec; } static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) { u64 delta; delta = timekeeping_get_delta(tkr); return timekeeping_delta_to_ns(tkr, delta); } static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) { u64 delta; /* calculate the delta since the last update_wall_time */ delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); return timekeeping_delta_to_ns(tkr, delta); } /** * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. * @tkr: Timekeeping readout base from which we take the update * @tkf: Pointer to NMI safe timekeeper * * We want to use this from any context including NMI and tracing / * instrumenting the timekeeping code itself. * * Employ the latch technique; see @raw_write_seqcount_latch. * * So if a NMI hits the update of base[0] then it will use base[1] * which is still consistent. In the worst case this can result is a * slightly wrong timestamp (a few nanoseconds). See * @ktime_get_mono_fast_ns. */ static void update_fast_timekeeper(const struct tk_read_base *tkr, struct tk_fast *tkf) { struct tk_read_base *base = tkf->base; /* Force readers off to base[1] */ raw_write_seqcount_latch(&tkf->seq); /* Update base[0] */ memcpy(base, tkr, sizeof(*base)); /* Force readers back to base[0] */ raw_write_seqcount_latch(&tkf->seq); /* Update base[1] */ memcpy(base + 1, base, sizeof(*base)); } static __always_inline u64 fast_tk_get_delta_ns(struct tk_read_base *tkr) { u64 delta, cycles = tk_clock_read(tkr); delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); return timekeeping_delta_to_ns(tkr, delta); } static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) { struct tk_read_base *tkr; unsigned int seq; u64 now; do { seq = raw_read_seqcount_latch(&tkf->seq); tkr = tkf->base + (seq & 0x01); now = ktime_to_ns(tkr->base); now += fast_tk_get_delta_ns(tkr); } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); return now; } /** * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic * * This timestamp is not guaranteed to be monotonic across an update. * The timestamp is calculated by: * * now = base_mono + clock_delta * slope * * So if the update lowers the slope, readers who are forced to the * not yet updated second array are still using the old steeper slope. * * tmono * ^ * | o n * | o n * | u * | o * |o * |12345678---> reader order * * o = old slope * u = update * n = new slope * * So reader 6 will observe time going backwards versus reader 5. * * While other CPUs are likely to be able to observe that, the only way * for a CPU local observation is when an NMI hits in the middle of * the update. Timestamps taken from that NMI context might be ahead * of the following timestamps. Callers need to be aware of that and * deal with it. */ u64 notrace ktime_get_mono_fast_ns(void) { return __ktime_get_fast_ns(&tk_fast_mono); } EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); /** * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw * * Contrary to ktime_get_mono_fast_ns() this is always correct because the * conversion factor is not affected by NTP/PTP correction. */ u64 notrace ktime_get_raw_fast_ns(void) { return __ktime_get_fast_ns(&tk_fast_raw); } EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); /** * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. * * To keep it NMI safe since we're accessing from tracing, we're not using a * separate timekeeper with updates to monotonic clock and boot offset * protected with seqcounts. This has the following minor side effects: * * (1) Its possible that a timestamp be taken after the boot offset is updated * but before the timekeeper is updated. If this happens, the new boot offset * is added to the old timekeeping making the clock appear to update slightly * earlier: * CPU 0 CPU 1 * timekeeping_inject_sleeptime64() * __timekeeping_inject_sleeptime(tk, delta); * timestamp(); * timekeeping_update(tk, TK_CLEAR_NTP...); * * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be * partially updated. Since the tk->offs_boot update is a rare event, this * should be a rare occurrence which postprocessing should be able to handle. * * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() * apply as well. */ u64 notrace ktime_get_boot_fast_ns(void) { struct timekeeper *tk = &tk_core.timekeeper; return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); } EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); /** * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. * * The same limitations as described for ktime_get_boot_fast_ns() apply. The * mono time and the TAI offset are not read atomically which may yield wrong * readouts. However, an update of the TAI offset is an rare event e.g., caused * by settime or adjtimex with an offset. The user of this function has to deal * with the possibility of wrong timestamps in post processing. */ u64 notrace ktime_get_tai_fast_ns(void) { struct timekeeper *tk = &tk_core.timekeeper; return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); } EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono) { struct tk_read_base *tkr; u64 basem, baser, delta; unsigned int seq; do { seq = raw_read_seqcount_latch(&tkf->seq); tkr = tkf->base + (seq & 0x01); basem = ktime_to_ns(tkr->base); baser = ktime_to_ns(tkr->base_real); delta = fast_tk_get_delta_ns(tkr); } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); if (mono) *mono = basem + delta; return baser + delta; } /** * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. * * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. */ u64 ktime_get_real_fast_ns(void) { return __ktime_get_real_fast(&tk_fast_mono, NULL); } EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); /** * ktime_get_fast_timestamps: - NMI safe timestamps * @snapshot: Pointer to timestamp storage * * Stores clock monotonic, boottime and realtime timestamps. * * Boot time is a racy access on 32bit systems if the sleep time injection * happens late during resume and not in timekeeping_resume(). That could * be avoided by expanding struct tk_read_base with boot offset for 32bit * and adding more overhead to the update. As this is a hard to observe * once per resume event which can be filtered with reasonable effort using * the accurate mono/real timestamps, it's probably not worth the trouble. * * Aside of that it might be possible on 32 and 64 bit to observe the * following when the sleep time injection happens late: * * CPU 0 CPU 1 * timekeeping_resume() * ktime_get_fast_timestamps() * mono, real = __ktime_get_real_fast() * inject_sleep_time() * update boot offset * boot = mono + bootoffset; * * That means that boot time already has the sleep time adjustment, but * real time does not. On the next readout both are in sync again. * * Preventing this for 64bit is not really feasible without destroying the * careful cache layout of the timekeeper because the sequence count and * struct tk_read_base would then need two cache lines instead of one. * * Access to the time keeper clock source is disabled across the innermost * steps of suspend/resume. The accessors still work, but the timestamps * are frozen until time keeping is resumed which happens very early. * * For regular suspend/resume there is no observable difference vs. sched * clock, but it might affect some of the nasty low level debug printks. * * OTOH, access to sched clock is not guaranteed across suspend/resume on * all systems either so it depends on the hardware in use. * * If that turns out to be a real problem then this could be mitigated by * using sched clock in a similar way as during early boot. But it's not as * trivial as on early boot because it needs some careful protection * against the clock monotonic timestamp jumping backwards on resume. */ void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot) { struct timekeeper *tk = &tk_core.timekeeper; snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono); snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot)); } /** * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. * @tk: Timekeeper to snapshot. * * It generally is unsafe to access the clocksource after timekeeping has been * suspended, so take a snapshot of the readout base of @tk and use it as the * fast timekeeper's readout base while suspended. It will return the same * number of cycles every time until timekeeping is resumed at which time the * proper readout base for the fast timekeeper will be restored automatically. */ static void halt_fast_timekeeper(const struct timekeeper *tk) { static struct tk_read_base tkr_dummy; const struct tk_read_base *tkr = &tk->tkr_mono; memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); cycles_at_suspend = tk_clock_read(tkr); tkr_dummy.clock = &dummy_clock; tkr_dummy.base_real = tkr->base + tk->offs_real; update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); tkr = &tk->tkr_raw; memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); tkr_dummy.clock = &dummy_clock; update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); } static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) { raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); } /** * pvclock_gtod_register_notifier - register a pvclock timedata update listener * @nb: Pointer to the notifier block to register */ int pvclock_gtod_register_notifier(struct notifier_block *nb) { struct timekeeper *tk = &tk_core.timekeeper; unsigned long flags; int ret; raw_spin_lock_irqsave(&timekeeper_lock, flags); ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); update_pvclock_gtod(tk, true); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); return ret; } EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); /** * pvclock_gtod_unregister_notifier - unregister a pvclock * timedata update listener * @nb: Pointer to the notifier block to unregister */ int pvclock_gtod_unregister_notifier(struct notifier_block *nb) { unsigned long flags; int ret; raw_spin_lock_irqsave(&timekeeper_lock, flags); ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); return ret; } EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); /* * tk_update_leap_state - helper to update the next_leap_ktime */ static inline void tk_update_leap_state(struct timekeeper *tk) { tk->next_leap_ktime = ntp_get_next_leap(); if (tk->next_leap_ktime != KTIME_MAX) /* Convert to monotonic time */ tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); } /* * Update the ktime_t based scalar nsec members of the timekeeper */ static inline void tk_update_ktime_data(struct timekeeper *tk) { u64 seconds; u32 nsec; /* * The xtime based monotonic readout is: * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); * The ktime based monotonic readout is: * nsec = base_mono + now(); * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec */ seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); nsec = (u32) tk->wall_to_monotonic.tv_nsec; tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); /* * The sum of the nanoseconds portions of xtime and * wall_to_monotonic can be greater/equal one second. Take * this into account before updating tk->ktime_sec. */ nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); if (nsec >= NSEC_PER_SEC) seconds++; tk->ktime_sec = seconds; /* Update the monotonic raw base */ tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); } /* must hold timekeeper_lock */ static void timekeeping_update(struct timekeeper *tk, unsigned int action) { if (action & TK_CLEAR_NTP) { tk->ntp_error = 0; ntp_clear(); } tk_update_leap_state(tk); tk_update_ktime_data(tk); update_vsyscall(tk); update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); if (action & TK_CLOCK_WAS_SET) tk->clock_was_set_seq++; /* * The mirroring of the data to the shadow-timekeeper needs * to happen last here to ensure we don't over-write the * timekeeper structure on the next update with stale data */ if (action & TK_MIRROR) memcpy(&shadow_timekeeper, &tk_core.timekeeper, sizeof(tk_core.timekeeper)); } /** * timekeeping_forward_now - update clock to the current time * @tk: Pointer to the timekeeper to update * * Forward the current clock to update its state since the last call to * update_wall_time(). This is useful before significant clock changes, * as it avoids having to deal with this time offset explicitly. */ static void timekeeping_forward_now(struct timekeeper *tk) { u64 cycle_now, delta; cycle_now = tk_clock_read(&tk->tkr_mono); delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); tk->tkr_mono.cycle_last = cycle_now; tk->tkr_raw.cycle_last = cycle_now; tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult; tk_normalize_xtime(tk); } /** * ktime_get_real_ts64 - Returns the time of day in a timespec64. * @ts: pointer to the timespec to be set * * Returns the time of day in a timespec64 (WARN if suspended). */ void ktime_get_real_ts64(struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; u64 nsecs; WARN_ON(timekeeping_suspended); do { seq = read_seqcount_begin(&tk_core.seq); ts->tv_sec = tk->xtime_sec; nsecs = timekeeping_get_ns(&tk->tkr_mono); } while (read_seqcount_retry(&tk_core.seq, seq)); ts->tv_nsec = 0; timespec64_add_ns(ts, nsecs); } EXPORT_SYMBOL(ktime_get_real_ts64); ktime_t ktime_get(void) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; ktime_t base; u64 nsecs; WARN_ON(timekeeping_suspended); do { seq = read_seqcount_begin(&tk_core.seq); base = tk->tkr_mono.base; nsecs = timekeeping_get_ns(&tk->tkr_mono); } while (read_seqcount_retry(&tk_core.seq, seq)); return ktime_add_ns(base, nsecs); } EXPORT_SYMBOL_GPL(ktime_get); u32 ktime_get_resolution_ns(void) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; u32 nsecs; WARN_ON(timekeeping_suspended); do { seq = read_seqcount_begin(&tk_core.seq); nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; } while (read_seqcount_retry(&tk_core.seq, seq)); return nsecs; } EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); static ktime_t *offsets[TK_OFFS_MAX] = { [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, }; ktime_t ktime_get_with_offset(enum tk_offsets offs) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; ktime_t base, *offset = offsets[offs]; u64 nsecs; WARN_ON(timekeeping_suspended); do { seq = read_seqcount_begin(&tk_core.seq); base = ktime_add(tk->tkr_mono.base, *offset); nsecs = timekeeping_get_ns(&tk->tkr_mono); } while (read_seqcount_retry(&tk_core.seq, seq)); return ktime_add_ns(base, nsecs); } EXPORT_SYMBOL_GPL(ktime_get_with_offset); ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; ktime_t base, *offset = offsets[offs]; u64 nsecs; WARN_ON(timekeeping_suspended); do { seq = read_seqcount_begin(&tk_core.seq); base = ktime_add(tk->tkr_mono.base, *offset); nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; } while (read_seqcount_retry(&tk_core.seq, seq)); return ktime_add_ns(base, nsecs); } EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); /** * ktime_mono_to_any() - convert monotonic time to any other time * @tmono: time to convert. * @offs: which offset to use */ ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) { ktime_t *offset = offsets[offs]; unsigned int seq; ktime_t tconv; do { seq = read_seqcount_begin(&tk_core.seq); tconv = ktime_add(tmono, *offset); } while (read_seqcount_retry(&tk_core.seq, seq)); return tconv; } EXPORT_SYMBOL_GPL(ktime_mono_to_any); /** * ktime_get_raw - Returns the raw monotonic time in ktime_t format */ ktime_t ktime_get_raw(void) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; ktime_t base; u64 nsecs; do { seq = read_seqcount_begin(&tk_core.seq); base = tk->tkr_raw.base; nsecs = timekeeping_get_ns(&tk->tkr_raw); } while (read_seqcount_retry(&tk_core.seq, seq)); return ktime_add_ns(base, nsecs); } EXPORT_SYMBOL_GPL(ktime_get_raw); /** * ktime_get_ts64 - get the monotonic clock in timespec64 format * @ts: pointer to timespec variable * * The function calculates the monotonic clock from the realtime * clock and the wall_to_monotonic offset and stores the result * in normalized timespec64 format in the variable pointed to by @ts. */ void ktime_get_ts64(struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; struct timespec64 tomono; unsigned int seq; u64 nsec; WARN_ON(timekeeping_suspended); do { seq = read_seqcount_begin(&tk_core.seq); ts->tv_sec = tk->xtime_sec; nsec = timekeeping_get_ns(&tk->tkr_mono); tomono = tk->wall_to_monotonic; } while (read_seqcount_retry(&tk_core.seq, seq)); ts->tv_sec += tomono.tv_sec; ts->tv_nsec = 0; timespec64_add_ns(ts, nsec + tomono.tv_nsec); } EXPORT_SYMBOL_GPL(ktime_get_ts64); /** * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC * * Returns the seconds portion of CLOCK_MONOTONIC with a single non * serialized read. tk->ktime_sec is of type 'unsigned long' so this * works on both 32 and 64 bit systems. On 32 bit systems the readout * covers ~136 years of uptime which should be enough to prevent * premature wrap arounds. */ time64_t ktime_get_seconds(void) { struct timekeeper *tk = &tk_core.timekeeper; WARN_ON(timekeeping_suspended); return tk->ktime_sec; } EXPORT_SYMBOL_GPL(ktime_get_seconds); /** * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME * * Returns the wall clock seconds since 1970. * * For 64bit systems the fast access to tk->xtime_sec is preserved. On * 32bit systems the access must be protected with the sequence * counter to provide "atomic" access to the 64bit tk->xtime_sec * value. */ time64_t ktime_get_real_seconds(void) { struct timekeeper *tk = &tk_core.timekeeper; time64_t seconds; unsigned int seq; if (IS_ENABLED(CONFIG_64BIT)) return tk->xtime_sec; do { seq = read_seqcount_begin(&tk_core.seq); seconds = tk->xtime_sec; } while (read_seqcount_retry(&tk_core.seq, seq)); return seconds; } EXPORT_SYMBOL_GPL(ktime_get_real_seconds); /** * __ktime_get_real_seconds - The same as ktime_get_real_seconds * but without the sequence counter protect. This internal function * is called just when timekeeping lock is already held. */ noinstr time64_t __ktime_get_real_seconds(void) { struct timekeeper *tk = &tk_core.timekeeper; return tk->xtime_sec; } /** * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter * @systime_snapshot: pointer to struct receiving the system time snapshot */ void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; ktime_t base_raw; ktime_t base_real; u64 nsec_raw; u64 nsec_real; u64 now; WARN_ON_ONCE(timekeeping_suspended); do { seq = read_seqcount_begin(&tk_core.seq); now = tk_clock_read(&tk->tkr_mono); systime_snapshot->cs_id = tk->tkr_mono.clock->id; systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; base_real = ktime_add(tk->tkr_mono.base, tk_core.timekeeper.offs_real); base_raw = tk->tkr_raw.base; nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); } while (read_seqcount_retry(&tk_core.seq, seq)); systime_snapshot->cycles = now; systime_snapshot->real = ktime_add_ns(base_real, nsec_real); systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); } EXPORT_SYMBOL_GPL(ktime_get_snapshot); /* Scale base by mult/div checking for overflow */ static int scale64_check_overflow(u64 mult, u64 div, u64 *base) { u64 tmp, rem; tmp = div64_u64_rem(*base, div, &rem); if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) return -EOVERFLOW; tmp *= mult; rem = div64_u64(rem * mult, div); *base = tmp + rem; return 0; } /** * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval * @history: Snapshot representing start of history * @partial_history_cycles: Cycle offset into history (fractional part) * @total_history_cycles: Total history length in cycles * @discontinuity: True indicates clock was set on history period * @ts: Cross timestamp that should be adjusted using * partial/total ratio * * Helper function used by get_device_system_crosststamp() to correct the * crosstimestamp corresponding to the start of the current interval to the * system counter value (timestamp point) provided by the driver. The * total_history_* quantities are the total history starting at the provided * reference point and ending at the start of the current interval. The cycle * count between the driver timestamp point and the start of the current * interval is partial_history_cycles. */ static int adjust_historical_crosststamp(struct system_time_snapshot *history, u64 partial_history_cycles, u64 total_history_cycles, bool discontinuity, struct system_device_crosststamp *ts) { struct timekeeper *tk = &tk_core.timekeeper; u64 corr_raw, corr_real; bool interp_forward; int ret; if (total_history_cycles == 0 || partial_history_cycles == 0) return 0; /* Interpolate shortest distance from beginning or end of history */ interp_forward = partial_history_cycles > total_history_cycles / 2; partial_history_cycles = interp_forward ? total_history_cycles - partial_history_cycles : partial_history_cycles; /* * Scale the monotonic raw time delta by: * partial_history_cycles / total_history_cycles */ corr_raw = (u64)ktime_to_ns( ktime_sub(ts->sys_monoraw, history->raw)); ret = scale64_check_overflow(partial_history_cycles, total_history_cycles, &corr_raw); if (ret) return ret; /* * If there is a discontinuity in the history, scale monotonic raw * correction by: * mult(real)/mult(raw) yielding the realtime correction * Otherwise, calculate the realtime correction similar to monotonic * raw calculation */ if (discontinuity) { corr_real = mul_u64_u32_div (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); } else { corr_real = (u64)ktime_to_ns( ktime_sub(ts->sys_realtime, history->real)); ret = scale64_check_overflow(partial_history_cycles, total_history_cycles, &corr_real); if (ret) return ret; } /* Fixup monotonic raw and real time time values */ if (interp_forward) { ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); ts->sys_realtime = ktime_add_ns(history->real, corr_real); } else { ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); } return 0; } /* * timestamp_in_interval - true if ts is chronologically in [start, end] * * True if ts occurs chronologically at or after start, and before or at end. */ static bool timestamp_in_interval(u64 start, u64 end, u64 ts) { if (ts >= start && ts <= end) return true; if (start > end && (ts >= start || ts <= end)) return true; return false; } /** * get_device_system_crosststamp - Synchronously capture system/device timestamp * @get_time_fn: Callback to get simultaneous device time and * system counter from the device driver * @ctx: Context passed to get_time_fn() * @history_begin: Historical reference point used to interpolate system * time when counter provided by the driver is before the current interval * @xtstamp: Receives simultaneously captured system and device time * * Reads a timestamp from a device and correlates it to system time */ int get_device_system_crosststamp(int (*get_time_fn) (ktime_t *device_time, struct system_counterval_t *sys_counterval, void *ctx), void *ctx, struct system_time_snapshot *history_begin, struct system_device_crosststamp *xtstamp) { struct system_counterval_t system_counterval; struct timekeeper *tk = &tk_core.timekeeper; u64 cycles, now, interval_start; unsigned int clock_was_set_seq = 0; ktime_t base_real, base_raw; u64 nsec_real, nsec_raw; u8 cs_was_changed_seq; unsigned int seq; bool do_interp; int ret; do { seq = read_seqcount_begin(&tk_core.seq); /* * Try to synchronously capture device time and a system * counter value calling back into the device driver */ ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); if (ret) return ret; /* * Verify that the clocksource associated with the captured * system counter value is the same as the currently installed * timekeeper clocksource */ if (tk->tkr_mono.clock != system_counterval.cs) return -ENODEV; cycles = system_counterval.cycles; /* * Check whether the system counter value provided by the * device driver is on the current timekeeping interval. */ now = tk_clock_read(&tk->tkr_mono); interval_start = tk->tkr_mono.cycle_last; if (!timestamp_in_interval(interval_start, now, cycles)) { clock_was_set_seq = tk->clock_was_set_seq; cs_was_changed_seq = tk->cs_was_changed_seq; cycles = interval_start; do_interp = true; } else { do_interp = false; } base_real = ktime_add(tk->tkr_mono.base, tk_core.timekeeper.offs_real); base_raw = tk->tkr_raw.base; nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); } while (read_seqcount_retry(&tk_core.seq, seq)); xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); /* * Interpolate if necessary, adjusting back from the start of the * current interval */ if (do_interp) { u64 partial_history_cycles, total_history_cycles; bool discontinuity; /* * Check that the counter value is not before the provided * history reference and that the history doesn't cross a * clocksource change */ if (!history_begin || !timestamp_in_interval(history_begin->cycles, cycles, system_counterval.cycles) || history_begin->cs_was_changed_seq != cs_was_changed_seq) return -EINVAL; partial_history_cycles = cycles - system_counterval.cycles; total_history_cycles = cycles - history_begin->cycles; discontinuity = history_begin->clock_was_set_seq != clock_was_set_seq; ret = adjust_historical_crosststamp(history_begin, partial_history_cycles, total_history_cycles, discontinuity, xtstamp); if (ret) return ret; } return 0; } EXPORT_SYMBOL_GPL(get_device_system_crosststamp); /** * do_settimeofday64 - Sets the time of day. * @ts: pointer to the timespec64 variable containing the new time * * Sets the time of day to the new time and update NTP and notify hrtimers */ int do_settimeofday64(const struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; struct timespec64 ts_delta, xt; unsigned long flags; int ret = 0; if (!timespec64_valid_settod(ts)) return -EINVAL; raw_spin_lock_irqsave(&timekeeper_lock, flags); write_seqcount_begin(&tk_core.seq); timekeeping_forward_now(tk); xt = tk_xtime(tk); ts_delta = timespec64_sub(*ts, xt); if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { ret = -EINVAL; goto out; } tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); tk_set_xtime(tk, ts); out: timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); write_seqcount_end(&tk_core.seq); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); /* Signal hrtimers about time change */ clock_was_set(CLOCK_SET_WALL); if (!ret) { audit_tk_injoffset(ts_delta); add_device_randomness(ts, sizeof(*ts)); } return ret; } EXPORT_SYMBOL(do_settimeofday64); /** * timekeeping_inject_offset - Adds or subtracts from the current time. * @ts: Pointer to the timespec variable containing the offset * * Adds or subtracts an offset value from the current time. */ static int timekeeping_inject_offset(const struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; unsigned long flags; struct timespec64 tmp; int ret = 0; if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) return -EINVAL; raw_spin_lock_irqsave(&timekeeper_lock, flags); write_seqcount_begin(&tk_core.seq); timekeeping_forward_now(tk); /* Make sure the proposed value is valid */ tmp = timespec64_add(tk_xtime(tk), *ts); if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || !timespec64_valid_settod(&tmp)) { ret = -EINVAL; goto error; } tk_xtime_add(tk, ts); tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); error: /* even if we error out, we forwarded the time, so call update */ timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); write_seqcount_end(&tk_core.seq); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); /* Signal hrtimers about time change */ clock_was_set(CLOCK_SET_WALL); return ret; } /* * Indicates if there is an offset between the system clock and the hardware * clock/persistent clock/rtc. */ int persistent_clock_is_local; /* * Adjust the time obtained from the CMOS to be UTC time instead of * local time. * * This is ugly, but preferable to the alternatives. Otherwise we * would either need to write a program to do it in /etc/rc (and risk * confusion if the program gets run more than once; it would also be * hard to make the program warp the clock precisely n hours) or * compile in the timezone information into the kernel. Bad, bad.... * * - TYT, 1992-01-01 * * The best thing to do is to keep the CMOS clock in universal time (UTC) * as real UNIX machines always do it. This avoids all headaches about * daylight saving times and warping kernel clocks. */ void timekeeping_warp_clock(void) { if (sys_tz.tz_minuteswest != 0) { struct timespec64 adjust; persistent_clock_is_local = 1; adjust.tv_sec = sys_tz.tz_minuteswest * 60; adjust.tv_nsec = 0; timekeeping_inject_offset(&adjust); } } /* * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic */ static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) { tk->tai_offset = tai_offset; tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); } /* * change_clocksource - Swaps clocksources if a new one is available * * Accumulates current time interval and initializes new clocksource */ static int change_clocksource(void *data) { struct timekeeper *tk = &tk_core.timekeeper; struct clocksource *new, *old = NULL; unsigned long flags; bool change = false; new = (struct clocksource *) data; /* * If the cs is in module, get a module reference. Succeeds * for built-in code (owner == NULL) as well. */ if (try_module_get(new->owner)) { if (!new->enable || new->enable(new) == 0) change = true; else module_put(new->owner); } raw_spin_lock_irqsave(&timekeeper_lock, flags); write_seqcount_begin(&tk_core.seq); timekeeping_forward_now(tk); if (change) { old = tk->tkr_mono.clock; tk_setup_internals(tk, new); } timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); write_seqcount_end(&tk_core.seq); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); if (old) { if (old->disable) old->disable(old); module_put(old->owner); } return 0; } /** * timekeeping_notify - Install a new clock source * @clock: pointer to the clock source * * This function is called from clocksource.c after a new, better clock * source has been registered. The caller holds the clocksource_mutex. */ int timekeeping_notify(struct clocksource *clock) { struct timekeeper *tk = &tk_core.timekeeper; if (tk->tkr_mono.clock == clock) return 0; stop_machine(change_clocksource, clock, NULL); tick_clock_notify(); return tk->tkr_mono.clock == clock ? 0 : -1; } /** * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec * @ts: pointer to the timespec64 to be set * * Returns the raw monotonic time (completely un-modified by ntp) */ void ktime_get_raw_ts64(struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; u64 nsecs; do { seq = read_seqcount_begin(&tk_core.seq); ts->tv_sec = tk->raw_sec; nsecs = timekeeping_get_ns(&tk->tkr_raw); } while (read_seqcount_retry(&tk_core.seq, seq)); ts->tv_nsec = 0; timespec64_add_ns(ts, nsecs); } EXPORT_SYMBOL(ktime_get_raw_ts64); /** * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres */ int timekeeping_valid_for_hres(void) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; int ret; do { seq = read_seqcount_begin(&tk_core.seq); ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; } while (read_seqcount_retry(&tk_core.seq, seq)); return ret; } /** * timekeeping_max_deferment - Returns max time the clocksource can be deferred */ u64 timekeeping_max_deferment(void) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; u64 ret; do { seq = read_seqcount_begin(&tk_core.seq); ret = tk->tkr_mono.clock->max_idle_ns; } while (read_seqcount_retry(&tk_core.seq, seq)); return ret; } /** * read_persistent_clock64 - Return time from the persistent clock. * @ts: Pointer to the storage for the readout value * * Weak dummy function for arches that do not yet support it. * Reads the time from the battery backed persistent clock. * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. * * XXX - Do be sure to remove it once all arches implement it. */ void __weak read_persistent_clock64(struct timespec64 *ts) { ts->tv_sec = 0; ts->tv_nsec = 0; } /** * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset * from the boot. * * Weak dummy function for arches that do not yet support it. * @wall_time: - current time as returned by persistent clock * @boot_offset: - offset that is defined as wall_time - boot_time * * The default function calculates offset based on the current value of * local_clock(). This way architectures that support sched_clock() but don't * support dedicated boot time clock will provide the best estimate of the * boot time. */ void __weak __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, struct timespec64 *boot_offset) { read_persistent_clock64(wall_time); *boot_offset = ns_to_timespec64(local_clock()); } /* * Flag reflecting whether timekeeping_resume() has injected sleeptime. * * The flag starts of false and is only set when a suspend reaches * timekeeping_suspend(), timekeeping_resume() sets it to false when the * timekeeper clocksource is not stopping across suspend and has been * used to update sleep time. If the timekeeper clocksource has stopped * then the flag stays true and is used by the RTC resume code to decide * whether sleeptime must be injected and if so the flag gets false then. * * If a suspend fails before reaching timekeeping_resume() then the flag * stays false and prevents erroneous sleeptime injection. */ static bool suspend_timing_needed; /* Flag for if there is a persistent clock on this platform */ static bool persistent_clock_exists; /* * timekeeping_init - Initializes the clocksource and common timekeeping values */ void __init timekeeping_init(void) { struct timespec64 wall_time, boot_offset, wall_to_mono; struct timekeeper *tk = &tk_core.timekeeper; struct clocksource *clock; unsigned long flags; read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); if (timespec64_valid_settod(&wall_time) && timespec64_to_ns(&wall_time) > 0) { persistent_clock_exists = true; } else if (timespec64_to_ns(&wall_time) != 0) { pr_warn("Persistent clock returned invalid value"); wall_time = (struct timespec64){0}; } if (timespec64_compare(&wall_time, &boot_offset) < 0) boot_offset = (struct timespec64){0}; /* * We want set wall_to_mono, so the following is true: * wall time + wall_to_mono = boot time */ wall_to_mono = timespec64_sub(boot_offset, wall_time); raw_spin_lock_irqsave(&timekeeper_lock, flags); write_seqcount_begin(&tk_core.seq); ntp_init(); clock = clocksource_default_clock(); if (clock->enable) clock->enable(clock); tk_setup_internals(tk, clock); tk_set_xtime(tk, &wall_time); tk->raw_sec = 0; tk_set_wall_to_mono(tk, wall_to_mono); timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); write_seqcount_end(&tk_core.seq); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); } /* time in seconds when suspend began for persistent clock */ static struct timespec64 timekeeping_suspend_time; /** * __timekeeping_inject_sleeptime - Internal function to add sleep interval * @tk: Pointer to the timekeeper to be updated * @delta: Pointer to the delta value in timespec64 format * * Takes a timespec offset measuring a suspend interval and properly * adds the sleep offset to the timekeeping variables. */ static void __timekeeping_inject_sleeptime(struct timekeeper *tk, const struct timespec64 *delta) { if (!timespec64_valid_strict(delta)) { printk_deferred(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid " "sleep delta value!\n"); return; } tk_xtime_add(tk, delta); tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); tk_debug_account_sleep_time(delta); } #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) /** * We have three kinds of time sources to use for sleep time * injection, the preference order is: * 1) non-stop clocksource * 2) persistent clock (ie: RTC accessible when irqs are off) * 3) RTC * * 1) and 2) are used by timekeeping, 3) by RTC subsystem. * If system has neither 1) nor 2), 3) will be used finally. * * * If timekeeping has injected sleeptime via either 1) or 2), * 3) becomes needless, so in this case we don't need to call * rtc_resume(), and this is what timekeeping_rtc_skipresume() * means. */ bool timekeeping_rtc_skipresume(void) { return !suspend_timing_needed; } /** * 1) can be determined whether to use or not only when doing * timekeeping_resume() which is invoked after rtc_suspend(), * so we can't skip rtc_suspend() surely if system has 1). * * But if system has 2), 2) will definitely be used, so in this * case we don't need to call rtc_suspend(), and this is what * timekeeping_rtc_skipsuspend() means. */ bool timekeeping_rtc_skipsuspend(void) { return persistent_clock_exists; } /** * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values * @delta: pointer to a timespec64 delta value * * This hook is for architectures that cannot support read_persistent_clock64 * because their RTC/persistent clock is only accessible when irqs are enabled. * and also don't have an effective nonstop clocksource. * * This function should only be called by rtc_resume(), and allows * a suspend offset to be injected into the timekeeping values. */ void timekeeping_inject_sleeptime64(const struct timespec64 *delta) { struct timekeeper *tk = &tk_core.timekeeper; unsigned long flags; raw_spin_lock_irqsave(&timekeeper_lock, flags); write_seqcount_begin(&tk_core.seq); suspend_timing_needed = false; timekeeping_forward_now(tk); __timekeeping_inject_sleeptime(tk, delta); timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); write_seqcount_end(&tk_core.seq); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); /* Signal hrtimers about time change */ clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); } #endif /** * timekeeping_resume - Resumes the generic timekeeping subsystem. */ void timekeeping_resume(void) { struct timekeeper *tk = &tk_core.timekeeper; struct clocksource *clock = tk->tkr_mono.clock; unsigned long flags; struct timespec64 ts_new, ts_delta; u64 cycle_now, nsec; bool inject_sleeptime = false; read_persistent_clock64(&ts_new); clockevents_resume(); clocksource_resume(); raw_spin_lock_irqsave(&timekeeper_lock, flags); write_seqcount_begin(&tk_core.seq); /* * After system resumes, we need to calculate the suspended time and * compensate it for the OS time. There are 3 sources that could be * used: Nonstop clocksource during suspend, persistent clock and rtc * device. * * One specific platform may have 1 or 2 or all of them, and the * preference will be: * suspend-nonstop clocksource -> persistent clock -> rtc * The less preferred source will only be tried if there is no better * usable source. The rtc part is handled separately in rtc core code. */ cycle_now = tk_clock_read(&tk->tkr_mono); nsec = clocksource_stop_suspend_timing(clock, cycle_now); if (nsec > 0) { ts_delta = ns_to_timespec64(nsec); inject_sleeptime = true; } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); inject_sleeptime = true; } if (inject_sleeptime) { suspend_timing_needed = false; __timekeeping_inject_sleeptime(tk, &ts_delta); } /* Re-base the last cycle value */ tk->tkr_mono.cycle_last = cycle_now; tk->tkr_raw.cycle_last = cycle_now; tk->ntp_error = 0; timekeeping_suspended = 0; timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); write_seqcount_end(&tk_core.seq); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); touch_softlockup_watchdog(); /* Resume the clockevent device(s) and hrtimers */ tick_resume(); /* Notify timerfd as resume is equivalent to clock_was_set() */ timerfd_resume(); } int timekeeping_suspend(void) { struct timekeeper *tk = &tk_core.timekeeper; unsigned long flags; struct timespec64 delta, delta_delta; static struct timespec64 old_delta; struct clocksource *curr_clock; u64 cycle_now; read_persistent_clock64(&timekeeping_suspend_time); /* * On some systems the persistent_clock can not be detected at * timekeeping_init by its return value, so if we see a valid * value returned, update the persistent_clock_exists flag. */ if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) persistent_clock_exists = true; suspend_timing_needed = true; raw_spin_lock_irqsave(&timekeeper_lock, flags); write_seqcount_begin(&tk_core.seq); timekeeping_forward_now(tk); timekeeping_suspended = 1; /* * Since we've called forward_now, cycle_last stores the value * just read from the current clocksource. Save this to potentially * use in suspend timing. */ curr_clock = tk->tkr_mono.clock; cycle_now = tk->tkr_mono.cycle_last; clocksource_start_suspend_timing(curr_clock, cycle_now); if (persistent_clock_exists) { /* * To avoid drift caused by repeated suspend/resumes, * which each can add ~1 second drift error, * try to compensate so the difference in system time * and persistent_clock time stays close to constant. */ delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); delta_delta = timespec64_sub(delta, old_delta); if (abs(delta_delta.tv_sec) >= 2) { /* * if delta_delta is too large, assume time correction * has occurred and set old_delta to the current delta. */ old_delta = delta; } else { /* Otherwise try to adjust old_system to compensate */ timekeeping_suspend_time = timespec64_add(timekeeping_suspend_time, delta_delta); } } timekeeping_update(tk, TK_MIRROR); halt_fast_timekeeper(tk); write_seqcount_end(&tk_core.seq); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); tick_suspend(); clocksource_suspend(); clockevents_suspend(); return 0; } /* sysfs resume/suspend bits for timekeeping */ static struct syscore_ops timekeeping_syscore_ops = { .resume = timekeeping_resume, .suspend = timekeeping_suspend, }; static int __init timekeeping_init_ops(void) { register_syscore_ops(&timekeeping_syscore_ops); return 0; } device_initcall(timekeeping_init_ops); /* * Apply a multiplier adjustment to the timekeeper */ static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, s64 offset, s32 mult_adj) { s64 interval = tk->cycle_interval; if (mult_adj == 0) { return; } else if (mult_adj == -1) { interval = -interval; offset = -offset; } else if (mult_adj != 1) { interval *= mult_adj; offset *= mult_adj; } /* * So the following can be confusing. * * To keep things simple, lets assume mult_adj == 1 for now. * * When mult_adj != 1, remember that the interval and offset values * have been appropriately scaled so the math is the same. * * The basic idea here is that we're increasing the multiplier * by one, this causes the xtime_interval to be incremented by * one cycle_interval. This is because: * xtime_interval = cycle_interval * mult * So if mult is being incremented by one: * xtime_interval = cycle_interval * (mult + 1) * Its the same as: * xtime_interval = (cycle_interval * mult) + cycle_interval * Which can be shortened to: * xtime_interval += cycle_interval * * So offset stores the non-accumulated cycles. Thus the current * time (in shifted nanoseconds) is: * now = (offset * adj) + xtime_nsec * Now, even though we're adjusting the clock frequency, we have * to keep time consistent. In other words, we can't jump back * in time, and we also want to avoid jumping forward in time. * * So given the same offset value, we need the time to be the same * both before and after the freq adjustment. * now = (offset * adj_1) + xtime_nsec_1 * now = (offset * adj_2) + xtime_nsec_2 * So: * (offset * adj_1) + xtime_nsec_1 = * (offset * adj_2) + xtime_nsec_2 * And we know: * adj_2 = adj_1 + 1 * So: * (offset * adj_1) + xtime_nsec_1 = * (offset * (adj_1+1)) + xtime_nsec_2 * (offset * adj_1) + xtime_nsec_1 = * (offset * adj_1) + offset + xtime_nsec_2 * Canceling the sides: * xtime_nsec_1 = offset + xtime_nsec_2 * Which gives us: * xtime_nsec_2 = xtime_nsec_1 - offset * Which simplifies to: * xtime_nsec -= offset */ if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { /* NTP adjustment caused clocksource mult overflow */ WARN_ON_ONCE(1); return; } tk->tkr_mono.mult += mult_adj; tk->xtime_interval += interval; tk->tkr_mono.xtime_nsec -= offset; } /* * Adjust the timekeeper's multiplier to the correct frequency * and also to reduce the accumulated error value. */ static void timekeeping_adjust(struct timekeeper *tk, s64 offset) { u32 mult; /* * Determine the multiplier from the current NTP tick length. * Avoid expensive division when the tick length doesn't change. */ if (likely(tk->ntp_tick == ntp_tick_length())) { mult = tk->tkr_mono.mult - tk->ntp_err_mult; } else { tk->ntp_tick = ntp_tick_length(); mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - tk->xtime_remainder, tk->cycle_interval); } /* * If the clock is behind the NTP time, increase the multiplier by 1 * to catch up with it. If it's ahead and there was a remainder in the * tick division, the clock will slow down. Otherwise it will stay * ahead until the tick length changes to a non-divisible value. */ tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; mult += tk->ntp_err_mult; timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); if (unlikely(tk->tkr_mono.clock->maxadj && (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) > tk->tkr_mono.clock->maxadj))) { printk_once(KERN_WARNING "Adjusting %s more than 11%% (%ld vs %ld)\n", tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); } /* * It may be possible that when we entered this function, xtime_nsec * was very small. Further, if we're slightly speeding the clocksource * in the code above, its possible the required corrective factor to * xtime_nsec could cause it to underflow. * * Now, since we have already accumulated the second and the NTP * subsystem has been notified via second_overflow(), we need to skip * the next update. */ if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << tk->tkr_mono.shift; tk->xtime_sec--; tk->skip_second_overflow = 1; } } /* * accumulate_nsecs_to_secs - Accumulates nsecs into secs * * Helper function that accumulates the nsecs greater than a second * from the xtime_nsec field to the xtime_secs field. * It also calls into the NTP code to handle leapsecond processing. */ static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) { u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; unsigned int clock_set = 0; while (tk->tkr_mono.xtime_nsec >= nsecps) { int leap; tk->tkr_mono.xtime_nsec -= nsecps; tk->xtime_sec++; /* * Skip NTP update if this second was accumulated before, * i.e. xtime_nsec underflowed in timekeeping_adjust() */ if (unlikely(tk->skip_second_overflow)) { tk->skip_second_overflow = 0; continue; } /* Figure out if its a leap sec and apply if needed */ leap = second_overflow(tk->xtime_sec); if (unlikely(leap)) { struct timespec64 ts; tk->xtime_sec += leap; ts.tv_sec = leap; ts.tv_nsec = 0; tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts)); __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); clock_set = TK_CLOCK_WAS_SET; } } return clock_set; } /* * logarithmic_accumulation - shifted accumulation of cycles * * This functions accumulates a shifted interval of cycles into * a shifted interval nanoseconds. Allows for O(log) accumulation * loop. * * Returns the unconsumed cycles. */ static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, u32 shift, unsigned int *clock_set) { u64 interval = tk->cycle_interval << shift; u64 snsec_per_sec; /* If the offset is smaller than a shifted interval, do nothing */ if (offset < interval) return offset; /* Accumulate one shifted interval */ offset -= interval; tk->tkr_mono.cycle_last += interval; tk->tkr_raw.cycle_last += interval; tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; *clock_set |= accumulate_nsecs_to_secs(tk); /* Accumulate raw time */ tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { tk->tkr_raw.xtime_nsec -= snsec_per_sec; tk->raw_sec++; } /* Accumulate error between NTP and clock interval */ tk->ntp_error += tk->ntp_tick << shift; tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << (tk->ntp_error_shift + shift); return offset; } /* * timekeeping_advance - Updates the timekeeper to the current time and * current NTP tick length */ static bool timekeeping_advance(enum timekeeping_adv_mode mode) { struct timekeeper *real_tk = &tk_core.timekeeper; struct timekeeper *tk = &shadow_timekeeper; u64 offset; int shift = 0, maxshift; unsigned int clock_set = 0; unsigned long flags; raw_spin_lock_irqsave(&timekeeper_lock, flags); /* Make sure we're fully resumed: */ if (unlikely(timekeeping_suspended)) goto out; offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), tk->tkr_mono.cycle_last, tk->tkr_mono.mask); /* Check if there's really nothing to do */ if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) goto out; /* Do some additional sanity checking */ timekeeping_check_update(tk, offset); /* * With NO_HZ we may have to accumulate many cycle_intervals * (think "ticks") worth of time at once. To do this efficiently, * we calculate the largest doubling multiple of cycle_intervals * that is smaller than the offset. We then accumulate that * chunk in one go, and then try to consume the next smaller * doubled multiple. */ shift = ilog2(offset) - ilog2(tk->cycle_interval); shift = max(0, shift); /* Bound shift to one less than what overflows tick_length */ maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; shift = min(shift, maxshift); while (offset >= tk->cycle_interval) { offset = logarithmic_accumulation(tk, offset, shift, &clock_set); if (offset < tk->cycle_interval<<shift) shift--; } /* Adjust the multiplier to correct NTP error */ timekeeping_adjust(tk, offset); /* * Finally, make sure that after the rounding * xtime_nsec isn't larger than NSEC_PER_SEC */ clock_set |= accumulate_nsecs_to_secs(tk); write_seqcount_begin(&tk_core.seq); /* * Update the real timekeeper. * * We could avoid this memcpy by switching pointers, but that * requires changes to all other timekeeper usage sites as * well, i.e. move the timekeeper pointer getter into the * spinlocked/seqcount protected sections. And we trade this * memcpy under the tk_core.seq against one before we start * updating. */ timekeeping_update(tk, clock_set); memcpy(real_tk, tk, sizeof(*tk)); /* The memcpy must come last. Do not put anything here! */ write_seqcount_end(&tk_core.seq); out: raw_spin_unlock_irqrestore(&timekeeper_lock, flags); return !!clock_set; } /** * update_wall_time - Uses the current clocksource to increment the wall time * */ void update_wall_time(void) { if (timekeeping_advance(TK_ADV_TICK)) clock_was_set_delayed(); } /** * getboottime64 - Return the real time of system boot. * @ts: pointer to the timespec64 to be set * * Returns the wall-time of boot in a timespec64. * * This is based on the wall_to_monotonic offset and the total suspend * time. Calls to settimeofday will affect the value returned (which * basically means that however wrong your real time clock is at boot time, * you get the right time here). */ void getboottime64(struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); *ts = ktime_to_timespec64(t); } EXPORT_SYMBOL_GPL(getboottime64); void ktime_get_coarse_real_ts64(struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; do { seq = read_seqcount_begin(&tk_core.seq); *ts = tk_xtime(tk); } while (read_seqcount_retry(&tk_core.seq, seq)); } EXPORT_SYMBOL(ktime_get_coarse_real_ts64); void ktime_get_coarse_ts64(struct timespec64 *ts) { struct timekeeper *tk = &tk_core.timekeeper; struct timespec64 now, mono; unsigned int seq; do { seq = read_seqcount_begin(&tk_core.seq); now = tk_xtime(tk); mono = tk->wall_to_monotonic; } while (read_seqcount_retry(&tk_core.seq, seq)); set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, now.tv_nsec + mono.tv_nsec); } EXPORT_SYMBOL(ktime_get_coarse_ts64); /* * Must hold jiffies_lock */ void do_timer(unsigned long ticks) { jiffies_64 += ticks; calc_global_load(); } /** * ktime_get_update_offsets_now - hrtimer helper * @cwsseq: pointer to check and store the clock was set sequence number * @offs_real: pointer to storage for monotonic -> realtime offset * @offs_boot: pointer to storage for monotonic -> boottime offset * @offs_tai: pointer to storage for monotonic -> clock tai offset * * Returns current monotonic time and updates the offsets if the * sequence number in @cwsseq and timekeeper.clock_was_set_seq are * different. * * Called from hrtimer_interrupt() or retrigger_next_event() */ ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, ktime_t *offs_boot, ktime_t *offs_tai) { struct timekeeper *tk = &tk_core.timekeeper; unsigned int seq; ktime_t base; u64 nsecs; do { seq = read_seqcount_begin(&tk_core.seq); base = tk->tkr_mono.base; nsecs = timekeeping_get_ns(&tk->tkr_mono); base = ktime_add_ns(base, nsecs); if (*cwsseq != tk->clock_was_set_seq) { *cwsseq = tk->clock_was_set_seq; *offs_real = tk->offs_real; *offs_boot = tk->offs_boot; *offs_tai = tk->offs_tai; } /* Handle leapsecond insertion adjustments */ if (unlikely(base >= tk->next_leap_ktime)) *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); } while (read_seqcount_retry(&tk_core.seq, seq)); return base; } /* * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex */ static int timekeeping_validate_timex(const struct __kernel_timex *txc) { if (txc->modes & ADJ_ADJTIME) { /* singleshot must not be used with any other mode bits */ if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) return -EINVAL; if (!(txc->modes & ADJ_OFFSET_READONLY) && !capable(CAP_SYS_TIME)) return -EPERM; } else { /* In order to modify anything, you gotta be super-user! */ if (txc->modes && !capable(CAP_SYS_TIME)) return -EPERM; /* * if the quartz is off by more than 10% then * something is VERY wrong! */ if (txc->modes & ADJ_TICK && (txc->tick < 900000/USER_HZ || txc->tick > 1100000/USER_HZ)) return -EINVAL; } if (txc->modes & ADJ_SETOFFSET) { /* In order to inject time, you gotta be super-user! */ if (!capable(CAP_SYS_TIME)) return -EPERM; /* * Validate if a timespec/timeval used to inject a time * offset is valid. Offsets can be positive or negative, so * we don't check tv_sec. The value of the timeval/timespec * is the sum of its fields,but *NOTE*: * The field tv_usec/tv_nsec must always be non-negative and * we can't have more nanoseconds/microseconds than a second. */ if (txc->time.tv_usec < 0) return -EINVAL; if (txc->modes & ADJ_NANO) { if (txc->time.tv_usec >= NSEC_PER_SEC) return -EINVAL; } else { if (txc->time.tv_usec >= USEC_PER_SEC) return -EINVAL; } } /* * Check for potential multiplication overflows that can * only happen on 64-bit systems: */ if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { if (LLONG_MIN / PPM_SCALE > txc->freq) return -EINVAL; if (LLONG_MAX / PPM_SCALE < txc->freq) return -EINVAL; } return 0; } /** * random_get_entropy_fallback - Returns the raw clock source value, * used by random.c for platforms with no valid random_get_entropy(). */ unsigned long random_get_entropy_fallback(void) { struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; struct clocksource *clock = READ_ONCE(tkr->clock); if (unlikely(timekeeping_suspended || !clock)) return 0; return clock->read(clock); } EXPORT_SYMBOL_GPL(random_get_entropy_fallback); /** * do_adjtimex() - Accessor function to NTP __do_adjtimex function */ int do_adjtimex(struct __kernel_timex *txc) { struct timekeeper *tk = &tk_core.timekeeper; struct audit_ntp_data ad; bool clock_set = false; struct timespec64 ts; unsigned long flags; s32 orig_tai, tai; int ret; /* Validate the data before disabling interrupts */ ret = timekeeping_validate_timex(txc); if (ret) return ret; add_device_randomness(txc, sizeof(*txc)); if (txc->modes & ADJ_SETOFFSET) { struct timespec64 delta; delta.tv_sec = txc->time.tv_sec; delta.tv_nsec = txc->time.tv_usec; if (!(txc->modes & ADJ_NANO)) delta.tv_nsec *= 1000; ret = timekeeping_inject_offset(&delta); if (ret) return ret; audit_tk_injoffset(delta); } audit_ntp_init(&ad); ktime_get_real_ts64(&ts); add_device_randomness(&ts, sizeof(ts)); raw_spin_lock_irqsave(&timekeeper_lock, flags); write_seqcount_begin(&tk_core.seq); orig_tai = tai = tk->tai_offset; ret = __do_adjtimex(txc, &ts, &tai, &ad); if (tai != orig_tai) { __timekeeping_set_tai_offset(tk, tai); timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); clock_set = true; } tk_update_leap_state(tk); write_seqcount_end(&tk_core.seq); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); audit_ntp_log(&ad); /* Update the multiplier immediately if frequency was set directly */ if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) clock_set |= timekeeping_advance(TK_ADV_FREQ); if (clock_set) clock_was_set(CLOCK_SET_WALL); ntp_notify_cmos_timer(); return ret; } #ifdef CONFIG_NTP_PPS /** * hardpps() - Accessor function to NTP __hardpps function */ void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) { unsigned long flags; raw_spin_lock_irqsave(&timekeeper_lock, flags); write_seqcount_begin(&tk_core.seq); __hardpps(phase_ts, raw_ts); write_seqcount_end(&tk_core.seq); raw_spin_unlock_irqrestore(&timekeeper_lock, flags); } EXPORT_SYMBOL(hardpps); #endif /* CONFIG_NTP_PPS */
95 836 631 37 105 636 37 155 154 265 264 265 265 265 45 958 923 246 567 614 606 923 246 417 631 628 456 50 38 50 26 60 1407 957 503 1387 946 494 280 118 18 3 832 847 27 267 16 9 70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_FS_H #define _LINUX_FS_H #include <linux/linkage.h> #include <linux/wait_bit.h> #include <linux/kdev_t.h> #include <linux/dcache.h> #include <linux/path.h> #include <linux/stat.h> #include <linux/cache.h> #include <linux/list.h> #include <linux/list_lru.h> #include <linux/llist.h> #include <linux/radix-tree.h> #include <linux/xarray.h> #include <linux/rbtree.h> #include <linux/init.h> #include <linux/pid.h> #include <linux/bug.h> #include <linux/mutex.h> #include <linux/rwsem.h> #include <linux/mm_types.h> #include <linux/capability.h> #include <linux/semaphore.h> #include <linux/fcntl.h> #include <linux/rculist_bl.h> #include <linux/atomic.h> #include <linux/shrinker.h> #include <linux/migrate_mode.h> #include <linux/uidgid.h> #include <linux/lockdep.h> #include <linux/percpu-rwsem.h> #include <linux/workqueue.h> #include <linux/delayed_call.h> #include <linux/uuid.h> #include <linux/errseq.h> #include <linux/ioprio.h> #include <linux/fs_types.h> #include <linux/build_bug.h> #include <linux/stddef.h> #include <linux/mount.h> #include <linux/cred.h> #include <linux/mnt_idmapping.h> #include <linux/slab.h> #include <asm/byteorder.h> #include <uapi/linux/fs.h> struct backing_dev_info; struct bdi_writeback; struct bio; struct io_comp_batch; struct export_operations; struct fiemap_extent_info; struct hd_geometry; struct iovec; struct kiocb; struct kobject; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct vm_area_struct; struct vfsmount; struct cred; struct swap_info_struct; struct seq_file; struct workqueue_struct; struct iov_iter; struct fscrypt_info; struct fscrypt_operations; struct fsverity_info; struct fsverity_operations; struct fs_context; struct fs_parameter_spec; struct fileattr; struct iomap_ops; extern void __init inode_init(void); extern void __init inode_init_early(void); extern void __init files_init(void); extern void __init files_maxfiles_init(void); extern unsigned long get_max_files(void); extern unsigned int sysctl_nr_open; typedef __kernel_rwf_t rwf_t; struct buffer_head; typedef int (get_block_t)(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create); typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset, ssize_t bytes, void *private); #define MAY_EXEC 0x00000001 #define MAY_WRITE 0x00000002 #define MAY_READ 0x00000004 #define MAY_APPEND 0x00000008 #define MAY_ACCESS 0x00000010 #define MAY_OPEN 0x00000020 #define MAY_CHDIR 0x00000040 /* called from RCU mode, don't block */ #define MAY_NOT_BLOCK 0x00000080 /* * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open() */ /* file is open for reading */ #define FMODE_READ ((__force fmode_t)0x1) /* file is open for writing */ #define FMODE_WRITE ((__force fmode_t)0x2) /* file is seekable */ #define FMODE_LSEEK ((__force fmode_t)0x4) /* file can be accessed using pread */ #define FMODE_PREAD ((__force fmode_t)0x8) /* file can be accessed using pwrite */ #define FMODE_PWRITE ((__force fmode_t)0x10) /* File is opened for execution with sys_execve / sys_uselib */ #define FMODE_EXEC ((__force fmode_t)0x20) /* File is opened with O_NDELAY (only set for block devices) */ #define FMODE_NDELAY ((__force fmode_t)0x40) /* File is opened with O_EXCL (only set for block devices) */ #define FMODE_EXCL ((__force fmode_t)0x80) /* File is opened using open(.., 3, ..) and is writeable only for ioctls (specialy hack for floppy.c) */ #define FMODE_WRITE_IOCTL ((__force fmode_t)0x100) /* 32bit hashes as llseek() offset (for directories) */ #define FMODE_32BITHASH ((__force fmode_t)0x200) /* 64bit hashes as llseek() offset (for directories) */ #define FMODE_64BITHASH ((__force fmode_t)0x400) /* * Don't update ctime and mtime. * * Currently a special hack for the XFS open_by_handle ioctl, but we'll * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon. */ #define FMODE_NOCMTIME ((__force fmode_t)0x800) /* Expect random access pattern */ #define FMODE_RANDOM ((__force fmode_t)0x1000) /* File is huge (eg. /dev/mem): treat loff_t as unsigned */ #define FMODE_UNSIGNED_OFFSET ((__force fmode_t)0x2000) /* File is opened with O_PATH; almost nothing can be done with it */ #define FMODE_PATH ((__force fmode_t)0x4000) /* File needs atomic accesses to f_pos */ #define FMODE_ATOMIC_POS ((__force fmode_t)0x8000) /* Write access to underlying fs */ #define FMODE_WRITER ((__force fmode_t)0x10000) /* Has read method(s) */ #define FMODE_CAN_READ ((__force fmode_t)0x20000) /* Has write method(s) */ #define FMODE_CAN_WRITE ((__force fmode_t)0x40000) #define FMODE_OPENED ((__force fmode_t)0x80000) #define FMODE_CREATED ((__force fmode_t)0x100000) /* File is stream-like */ #define FMODE_STREAM ((__force fmode_t)0x200000) /* File supports DIRECT IO */ #define FMODE_CAN_ODIRECT ((__force fmode_t)0x400000) /* File was opened by fanotify and shouldn't generate fanotify events */ #define FMODE_NONOTIFY ((__force fmode_t)0x4000000) /* File is capable of returning -EAGAIN if I/O will block */ #define FMODE_NOWAIT ((__force fmode_t)0x8000000) /* File represents mount that needs unmounting */ #define FMODE_NEED_UNMOUNT ((__force fmode_t)0x10000000) /* File does not contribute to nr_files count */ #define FMODE_NOACCOUNT ((__force fmode_t)0x20000000) /* File supports async buffered reads */ #define FMODE_BUF_RASYNC ((__force fmode_t)0x40000000) /* File supports async nowait buffered writes */ #define FMODE_BUF_WASYNC ((__force fmode_t)0x80000000) /* * Attribute flags. These should be or-ed together to figure out what * has been changed! */ #define ATTR_MODE (1 << 0) #define ATTR_UID (1 << 1) #define ATTR_GID (1 << 2) #define ATTR_SIZE (1 << 3) #define ATTR_ATIME (1 << 4) #define ATTR_MTIME (1 << 5) #define ATTR_CTIME (1 << 6) #define ATTR_ATIME_SET (1 << 7) #define ATTR_MTIME_SET (1 << 8) #define ATTR_FORCE (1 << 9) /* Not a change, but a change it */ #define ATTR_KILL_SUID (1 << 11) #define ATTR_KILL_SGID (1 << 12) #define ATTR_FILE (1 << 13) #define ATTR_KILL_PRIV (1 << 14) #define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */ #define ATTR_TIMES_SET (1 << 16) #define ATTR_TOUCH (1 << 17) /* * Whiteout is represented by a char device. The following constants define the * mode and device number to use. */ #define WHITEOUT_MODE 0 #define WHITEOUT_DEV 0 /* * This is the Inode Attributes structure, used for notify_change(). It * uses the above definitions as flags, to know which values have changed. * Also, in this manner, a Filesystem can look at only the values it cares * about. Basically, these are the attributes that the VFS layer can * request to change from the FS layer. * * Derek Atkins <warlord@MIT.EDU> 94-10-20 */ struct iattr { unsigned int ia_valid; umode_t ia_mode; /* * The two anonymous unions wrap structures with the same member. * * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which * are a dedicated type requiring the filesystem to use the dedicated * helpers. Other filesystem can continue to use ia_{g,u}id until they * have been ported. * * They always contain the same value. In other words FS_ALLOW_IDMAP * pass down the same value on idmapped mounts as they would on regular * mounts. */ union { kuid_t ia_uid; vfsuid_t ia_vfsuid; }; union { kgid_t ia_gid; vfsgid_t ia_vfsgid; }; loff_t ia_size; struct timespec64 ia_atime; struct timespec64 ia_mtime; struct timespec64 ia_ctime; /* * Not an attribute, but an auxiliary info for filesystems wanting to * implement an ftruncate() like method. NOTE: filesystem should * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL). */ struct file *ia_file; }; /* * Includes for diskquotas. */ #include <linux/quota.h> /* * Maximum number of layers of fs stack. Needs to be limited to * prevent kernel stack overflow */ #define FILESYSTEM_MAX_STACK_DEPTH 2 /** * enum positive_aop_returns - aop return codes with specific semantics * * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has * completed, that the page is still locked, and * should be considered active. The VM uses this hint * to return the page to the active list -- it won't * be a candidate for writeback again in the near * future. Other callers must be careful to unlock * the page if they get this return. Returned by * writepage(); * * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has * unlocked it and the page might have been truncated. * The caller should back up to acquiring a new page and * trying again. The aop will be taking reasonable * precautions not to livelock. If the caller held a page * reference, it should drop it before retrying. Returned * by read_folio(). * * address_space_operation functions return these large constants to indicate * special semantics to the caller. These are much larger than the bytes in a * page to allow for functions that return the number of bytes operated on in a * given page. */ enum positive_aop_returns { AOP_WRITEPAGE_ACTIVATE = 0x80000, AOP_TRUNCATED_PAGE = 0x80001, }; /* * oh the beauties of C type declarations. */ struct page; struct address_space; struct writeback_control; struct readahead_control; /* * Write life time hint values. * Stored in struct inode as u8. */ enum rw_hint { WRITE_LIFE_NOT_SET = 0, WRITE_LIFE_NONE = RWH_WRITE_LIFE_NONE, WRITE_LIFE_SHORT = RWH_WRITE_LIFE_SHORT, WRITE_LIFE_MEDIUM = RWH_WRITE_LIFE_MEDIUM, WRITE_LIFE_LONG = RWH_WRITE_LIFE_LONG, WRITE_LIFE_EXTREME = RWH_WRITE_LIFE_EXTREME, }; /* Match RWF_* bits to IOCB bits */ #define IOCB_HIPRI (__force int) RWF_HIPRI #define IOCB_DSYNC (__force int) RWF_DSYNC #define IOCB_SYNC (__force int) RWF_SYNC #define IOCB_NOWAIT (__force int) RWF_NOWAIT #define IOCB_APPEND (__force int) RWF_APPEND /* non-RWF related bits - start at 16 */ #define IOCB_EVENTFD (1 << 16) #define IOCB_DIRECT (1 << 17) #define IOCB_WRITE (1 << 18) /* iocb->ki_waitq is valid */ #define IOCB_WAITQ (1 << 19) #define IOCB_NOIO (1 << 20) /* can use bio alloc cache */ #define IOCB_ALLOC_CACHE (1 << 21) /* kiocb is a read or write operation submitted by fs/aio.c. */ #define IOCB_AIO_RW (1 << 23) struct kiocb { struct file *ki_filp; loff_t ki_pos; void (*ki_complete)(struct kiocb *iocb, long ret); void *private; int ki_flags; u16 ki_ioprio; /* See linux/ioprio.h */ struct wait_page_queue *ki_waitq; /* for async buffered IO */ }; static inline bool is_sync_kiocb(struct kiocb *kiocb) { return kiocb->ki_complete == NULL; } struct address_space_operations { int (*writepage)(struct page *page, struct writeback_control *wbc); int (*read_folio)(struct file *, struct folio *); /* Write back some dirty pages from this mapping. */ int (*writepages)(struct address_space *, struct writeback_control *); /* Mark a folio dirty. Return true if this dirtied it */ bool (*dirty_folio)(struct address_space *, struct folio *); void (*readahead)(struct readahead_control *); int (*write_begin)(struct file *, struct address_space *mapping, loff_t pos, unsigned len, struct page **pagep, void **fsdata); int (*write_end)(struct file *, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata); /* Unfortunately this kludge is needed for FIBMAP. Don't use it */ sector_t (*bmap)(struct address_space *, sector_t); void (*invalidate_folio) (struct folio *, size_t offset, size_t len); bool (*release_folio)(struct folio *, gfp_t); void (*free_folio)(struct folio *folio); ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter); /* * migrate the contents of a folio to the specified target. If * migrate_mode is MIGRATE_ASYNC, it must not block. */ int (*migrate_folio)(struct address_space *, struct folio *dst, struct folio *src, enum migrate_mode); int (*launder_folio)(struct folio *); bool (*is_partially_uptodate) (struct folio *, size_t from, size_t count); void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb); int (*error_remove_page)(struct address_space *, struct page *); /* swapfile support */ int (*swap_activate)(struct swap_info_struct *sis, struct file *file, sector_t *span); void (*swap_deactivate)(struct file *file); int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter); }; extern const struct address_space_operations empty_aops; /** * struct address_space - Contents of a cacheable, mappable object. * @host: Owner, either the inode or the block_device. * @i_pages: Cached pages. * @invalidate_lock: Guards coherency between page cache contents and * file offset->disk block mappings in the filesystem during invalidates. * It is also used to block modification of page cache contents through * memory mappings. * @gfp_mask: Memory allocation flags to use for allocating pages. * @i_mmap_writable: Number of VM_SHARED mappings. * @nr_thps: Number of THPs in the pagecache (non-shmem only). * @i_mmap: Tree of private and shared mappings. * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable. * @nrpages: Number of page entries, protected by the i_pages lock. * @writeback_index: Writeback starts here. * @a_ops: Methods. * @flags: Error bits and flags (AS_*). * @wb_err: The most recent error which has occurred. * @private_lock: For use by the owner of the address_space. * @private_list: For use by the owner of the address_space. * @private_data: For use by the owner of the address_space. */ struct address_space { struct inode *host; struct xarray i_pages; struct rw_semaphore invalidate_lock; gfp_t gfp_mask; atomic_t i_mmap_writable; #ifdef CONFIG_READ_ONLY_THP_FOR_FS /* number of thp, only for non-shmem files */ atomic_t nr_thps; #endif struct rb_root_cached i_mmap; struct rw_semaphore i_mmap_rwsem; unsigned long nrpages; pgoff_t writeback_index; const struct address_space_operations *a_ops; unsigned long flags; errseq_t wb_err; spinlock_t private_lock; struct list_head private_list; void *private_data; } __attribute__((aligned(sizeof(long)))) __randomize_layout; /* * On most architectures that alignment is already the case; but * must be enforced here for CRIS, to let the least significant bit * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON. */ /* XArray tags, for tagging dirty and writeback pages in the pagecache. */ #define PAGECACHE_TAG_DIRTY XA_MARK_0 #define PAGECACHE_TAG_WRITEBACK XA_MARK_1 #define PAGECACHE_TAG_TOWRITE XA_MARK_2 /* * Returns true if any of the pages in the mapping are marked with the tag. */ static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag) { return xa_marked(&mapping->i_pages, tag); } static inline void i_mmap_lock_write(struct address_space *mapping) { down_write(&mapping->i_mmap_rwsem); } static inline int i_mmap_trylock_write(struct address_space *mapping) { return down_write_trylock(&mapping->i_mmap_rwsem); } static inline void i_mmap_unlock_write(struct address_space *mapping) { up_write(&mapping->i_mmap_rwsem); } static inline int i_mmap_trylock_read(struct address_space *mapping) { return down_read_trylock(&mapping->i_mmap_rwsem); } static inline void i_mmap_lock_read(struct address_space *mapping) { down_read(&mapping->i_mmap_rwsem); } static inline void i_mmap_unlock_read(struct address_space *mapping) { up_read(&mapping->i_mmap_rwsem); } static inline void i_mmap_assert_locked(struct address_space *mapping) { lockdep_assert_held(&mapping->i_mmap_rwsem); } static inline void i_mmap_assert_write_locked(struct address_space *mapping) { lockdep_assert_held_write(&mapping->i_mmap_rwsem); } /* * Might pages of this file be mapped into userspace? */ static inline int mapping_mapped(struct address_space *mapping) { return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root); } /* * Might pages of this file have been modified in userspace? * Note that i_mmap_writable counts all VM_SHARED vmas: do_mmap * marks vma as VM_SHARED if it is shared, and the file was opened for * writing i.e. vma may be mprotected writable even if now readonly. * * If i_mmap_writable is negative, no new writable mappings are allowed. You * can only deny writable mappings, if none exists right now. */ static inline int mapping_writably_mapped(struct address_space *mapping) { return atomic_read(&mapping->i_mmap_writable) > 0; } static inline int mapping_map_writable(struct address_space *mapping) { return atomic_inc_unless_negative(&mapping->i_mmap_writable) ? 0 : -EPERM; } static inline void mapping_unmap_writable(struct address_space *mapping) { atomic_dec(&mapping->i_mmap_writable); } static inline int mapping_deny_writable(struct address_space *mapping) { return atomic_dec_unless_positive(&mapping->i_mmap_writable) ? 0 : -EBUSY; } static inline void mapping_allow_writable(struct address_space *mapping) { atomic_inc(&mapping->i_mmap_writable); } /* * Use sequence counter to get consistent i_size on 32-bit processors. */ #if BITS_PER_LONG==32 && defined(CONFIG_SMP) #include <linux/seqlock.h> #define __NEED_I_SIZE_ORDERED #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount) #else #define i_size_ordered_init(inode) do { } while (0) #endif struct posix_acl; #define ACL_NOT_CACHED ((void *)(-1)) /* * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to * cache the ACL. This also means that ->get_acl() can be called in RCU mode * with the LOOKUP_RCU flag. */ #define ACL_DONT_CACHE ((void *)(-3)) static inline struct posix_acl * uncached_acl_sentinel(struct task_struct *task) { return (void *)task + 1; } static inline bool is_uncached_acl(struct posix_acl *acl) { return (long)acl & 1; } #define IOP_FASTPERM 0x0001 #define IOP_LOOKUP 0x0002 #define IOP_NOFOLLOW 0x0004 #define IOP_XATTR 0x0008 #define IOP_DEFAULT_READLINK 0x0010 struct fsnotify_mark_connector; /* * Keep mostly read-only and often accessed (especially for * the RCU path lookup and 'stat' data) fields at the beginning * of the 'struct inode' */ struct inode { umode_t i_mode; unsigned short i_opflags; kuid_t i_uid; kgid_t i_gid; unsigned int i_flags; #ifdef CONFIG_FS_POSIX_ACL struct posix_acl *i_acl; struct posix_acl *i_default_acl; #endif const struct inode_operations *i_op; struct super_block *i_sb; struct address_space *i_mapping; #ifdef CONFIG_SECURITY void *i_security; #endif /* Stat data, not accessed from path walking */ unsigned long i_ino; /* * Filesystems may only read i_nlink directly. They shall use the * following functions for modification: * * (set|clear|inc|drop)_nlink * inode_(inc|dec)_link_count */ union { const unsigned int i_nlink; unsigned int __i_nlink; }; dev_t i_rdev; loff_t i_size; struct timespec64 i_atime; struct timespec64 i_mtime; struct timespec64 i_ctime; spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */ unsigned short i_bytes; u8 i_blkbits; u8 i_write_hint; blkcnt_t i_blocks; #ifdef __NEED_I_SIZE_ORDERED seqcount_t i_size_seqcount; #endif /* Misc */ unsigned long i_state; struct rw_semaphore i_rwsem; unsigned long dirtied_when; /* jiffies of first dirtying */ unsigned long dirtied_time_when; struct hlist_node i_hash; struct list_head i_io_list; /* backing dev IO list */ #ifdef CONFIG_CGROUP_WRITEBACK struct bdi_writeback *i_wb; /* the associated cgroup wb */ /* foreign inode detection, see wbc_detach_inode() */ int i_wb_frn_winner; u16 i_wb_frn_avg_time; u16 i_wb_frn_history; #endif struct list_head i_lru; /* inode LRU list */ struct list_head i_sb_list; struct list_head i_wb_list; /* backing dev writeback list */ union { struct hlist_head i_dentry; struct rcu_head i_rcu; }; atomic64_t i_version; atomic64_t i_sequence; /* see futex */ atomic_t i_count; atomic_t i_dio_count; atomic_t i_writecount; #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) atomic_t i_readcount; /* struct files open RO */ #endif union { const struct file_operations *i_fop; /* former ->i_op->default_file_ops */ void (*free_inode)(struct inode *); }; struct file_lock_context *i_flctx; struct address_space i_data; struct list_head i_devices; union { struct pipe_inode_info *i_pipe; struct cdev *i_cdev; char *i_link; unsigned i_dir_seq; }; __u32 i_generation; #ifdef CONFIG_FSNOTIFY __u32 i_fsnotify_mask; /* all events this inode cares about */ struct fsnotify_mark_connector __rcu *i_fsnotify_marks; #endif #ifdef CONFIG_FS_ENCRYPTION struct fscrypt_info *i_crypt_info; #endif #ifdef CONFIG_FS_VERITY struct fsverity_info *i_verity_info; #endif void *i_private; /* fs or device private pointer */ } __randomize_layout; struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode); static inline unsigned int i_blocksize(const struct inode *node) { return (1 << node->i_blkbits); } static inline int inode_unhashed(struct inode *inode) { return hlist_unhashed(&inode->i_hash); } /* * __mark_inode_dirty expects inodes to be hashed. Since we don't * want special inodes in the fileset inode space, we make them * appear hashed, but do not put on any lists. hlist_del() * will work fine and require no locking. */ static inline void inode_fake_hash(struct inode *inode) { hlist_add_fake(&inode->i_hash); } /* * inode->i_mutex nesting subclasses for the lock validator: * * 0: the object of the current VFS operation * 1: parent * 2: child/target * 3: xattr * 4: second non-directory * 5: second parent (when locking independent directories in rename) * * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two * non-directories at once. * * The locking order between these classes is * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory */ enum inode_i_mutex_lock_class { I_MUTEX_NORMAL, I_MUTEX_PARENT, I_MUTEX_CHILD, I_MUTEX_XATTR, I_MUTEX_NONDIR2, I_MUTEX_PARENT2, }; static inline void inode_lock(struct inode *inode) { down_write(&inode->i_rwsem); } static inline void inode_unlock(struct inode *inode) { up_write(&inode->i_rwsem); } static inline void inode_lock_shared(struct inode *inode) { down_read(&inode->i_rwsem); } static inline void inode_unlock_shared(struct inode *inode) { up_read(&inode->i_rwsem); } static inline int inode_trylock(struct inode *inode) { return down_write_trylock(&inode->i_rwsem); } static inline int inode_trylock_shared(struct inode *inode) { return down_read_trylock(&inode->i_rwsem); } static inline int inode_is_locked(struct inode *inode) { return rwsem_is_locked(&inode->i_rwsem); } static inline void inode_lock_nested(struct inode *inode, unsigned subclass) { down_write_nested(&inode->i_rwsem, subclass); } static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass) { down_read_nested(&inode->i_rwsem, subclass); } static inline void filemap_invalidate_lock(struct address_space *mapping) { down_write(&mapping->invalidate_lock); } static inline void filemap_invalidate_unlock(struct address_space *mapping) { up_write(&mapping->invalidate_lock); } static inline void filemap_invalidate_lock_shared(struct address_space *mapping) { down_read(&mapping->invalidate_lock); } static inline int filemap_invalidate_trylock_shared( struct address_space *mapping) { return down_read_trylock(&mapping->invalidate_lock); } static inline void filemap_invalidate_unlock_shared( struct address_space *mapping) { up_read(&mapping->invalidate_lock); } void lock_two_nondirectories(struct inode *, struct inode*); void unlock_two_nondirectories(struct inode *, struct inode*); void filemap_invalidate_lock_two(struct address_space *mapping1, struct address_space *mapping2); void filemap_invalidate_unlock_two(struct address_space *mapping1, struct address_space *mapping2); /* * NOTE: in a 32bit arch with a preemptable kernel and * an UP compile the i_size_read/write must be atomic * with respect to the local cpu (unlike with preempt disabled), * but they don't need to be atomic with respect to other cpus like in * true SMP (so they need either to either locally disable irq around * the read or for example on x86 they can be still implemented as a * cmpxchg8b without the need of the lock prefix). For SMP compiles * and 64bit archs it makes no difference if preempt is enabled or not. */ static inline loff_t i_size_read(const struct inode *inode) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) loff_t i_size; unsigned int seq; do { seq = read_seqcount_begin(&inode->i_size_seqcount); i_size = inode->i_size; } while (read_seqcount_retry(&inode->i_size_seqcount, seq)); return i_size; #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) loff_t i_size; preempt_disable(); i_size = inode->i_size; preempt_enable(); return i_size; #else return inode->i_size; #endif } /* * NOTE: unlike i_size_read(), i_size_write() does need locking around it * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount * can be lost, resulting in subsequent i_size_read() calls spinning forever. */ static inline void i_size_write(struct inode *inode, loff_t i_size) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) preempt_disable(); write_seqcount_begin(&inode->i_size_seqcount); inode->i_size = i_size; write_seqcount_end(&inode->i_size_seqcount); preempt_enable(); #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) preempt_disable(); inode->i_size = i_size; preempt_enable(); #else inode->i_size = i_size; #endif } static inline unsigned iminor(const struct inode *inode) { return MINOR(inode->i_rdev); } static inline unsigned imajor(const struct inode *inode) { return MAJOR(inode->i_rdev); } struct fown_struct { rwlock_t lock; /* protects pid, uid, euid fields */ struct pid *pid; /* pid or -pgrp where SIGIO should be sent */ enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */ kuid_t uid, euid; /* uid/euid of process setting the owner */ int signum; /* posix.1b rt signal to be delivered on IO */ }; /** * struct file_ra_state - Track a file's readahead state. * @start: Where the most recent readahead started. * @size: Number of pages read in the most recent readahead. * @async_size: Numer of pages that were/are not needed immediately * and so were/are genuinely "ahead". Start next readahead when * the first of these pages is accessed. * @ra_pages: Maximum size of a readahead request, copied from the bdi. * @mmap_miss: How many mmap accesses missed in the page cache. * @prev_pos: The last byte in the most recent read request. * * When this structure is passed to ->readahead(), the "most recent" * readahead means the current readahead. */ struct file_ra_state { pgoff_t start; unsigned int size; unsigned int async_size; unsigned int ra_pages; unsigned int mmap_miss; loff_t prev_pos; }; /* * Check if @index falls in the readahead windows. */ static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index) { return (index >= ra->start && index < ra->start + ra->size); } struct file { union { struct llist_node f_llist; struct rcu_head f_rcuhead; unsigned int f_iocb_flags; }; struct path f_path; struct inode *f_inode; /* cached value */ const struct file_operations *f_op; /* * Protects f_ep, f_flags. * Must not be taken from IRQ context. */ spinlock_t f_lock; atomic_long_t f_count; unsigned int f_flags; fmode_t f_mode; struct mutex f_pos_lock; loff_t f_pos; struct fown_struct f_owner; const struct cred *f_cred; struct file_ra_state f_ra; u64 f_version; #ifdef CONFIG_SECURITY void *f_security; #endif /* needed for tty driver, and maybe others */ void *private_data; #ifdef CONFIG_EPOLL /* Used by fs/eventpoll.c to link all the hooks to this file */ struct hlist_head *f_ep; #endif /* #ifdef CONFIG_EPOLL */ struct address_space *f_mapping; errseq_t f_wb_err; errseq_t f_sb_err; /* for syncfs */ } __randomize_layout __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */ struct file_handle { __u32 handle_bytes; int handle_type; /* file identifier */ unsigned char f_handle[]; }; static inline struct file *get_file(struct file *f) { atomic_long_inc(&f->f_count); return f; } #define get_file_rcu(x) atomic_long_inc_not_zero(&(x)->f_count) #define file_count(x) atomic_long_read(&(x)->f_count) #define MAX_NON_LFS ((1UL<<31) - 1) /* Page cache limit. The filesystems should put that into their s_maxbytes limits, otherwise bad things can happen in VM. */ #if BITS_PER_LONG==32 #define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT) #elif BITS_PER_LONG==64 #define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX) #endif #define FL_POSIX 1 #define FL_FLOCK 2 #define FL_DELEG 4 /* NFSv4 delegation */ #define FL_ACCESS 8 /* not trying to lock, just looking */ #define FL_EXISTS 16 /* when unlocking, test for existence */ #define FL_LEASE 32 /* lease held on this file */ #define FL_CLOSE 64 /* unlock on close */ #define FL_SLEEP 128 /* A blocking lock */ #define FL_DOWNGRADE_PENDING 256 /* Lease is being downgraded */ #define FL_UNLOCK_PENDING 512 /* Lease is being broken */ #define FL_OFDLCK 1024 /* lock is "owned" by struct file */ #define FL_LAYOUT 2048 /* outstanding pNFS layout */ #define FL_RECLAIM 4096 /* reclaiming from a reboot server */ #define FL_CLOSE_POSIX (FL_POSIX | FL_CLOSE) /* * Special return value from posix_lock_file() and vfs_lock_file() for * asynchronous locking. */ #define FILE_LOCK_DEFERRED 1 /* legacy typedef, should eventually be removed */ typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock *, struct file_lock *); void (*fl_release_private)(struct file_lock *); }; struct lock_manager_operations { void *lm_mod_owner; fl_owner_t (*lm_get_owner)(fl_owner_t); void (*lm_put_owner)(fl_owner_t); void (*lm_notify)(struct file_lock *); /* unblock callback */ int (*lm_grant)(struct file_lock *, int); bool (*lm_break)(struct file_lock *); int (*lm_change)(struct file_lock *, int, struct list_head *); void (*lm_setup)(struct file_lock *, void **); bool (*lm_breaker_owns_lease)(struct file_lock *); bool (*lm_lock_expirable)(struct file_lock *cfl); void (*lm_expire_lock)(void); }; struct lock_manager { struct list_head list; /* * NFSv4 and up also want opens blocked during the grace period; * NLM doesn't care: */ bool block_opens; }; struct net; void locks_start_grace(struct net *, struct lock_manager *); void locks_end_grace(struct lock_manager *); bool locks_in_grace(struct net *); bool opens_in_grace(struct net *); /* that will die - we need it for nfs_lock_info */ #include <linux/nfs_fs_i.h> /* * struct file_lock represents a generic "file lock". It's used to represent * POSIX byte range locks, BSD (flock) locks, and leases. It's important to * note that the same struct is used to represent both a request for a lock and * the lock itself, but the same object is never used for both. * * FIXME: should we create a separate "struct lock_request" to help distinguish * these two uses? * * The varous i_flctx lists are ordered by: * * 1) lock owner * 2) lock range start * 3) lock range end * * Obviously, the last two criteria only matter for POSIX locks. */ struct file_lock { struct file_lock *fl_blocker; /* The lock, that is blocking us */ struct list_head fl_list; /* link into file_lock_context */ struct hlist_node fl_link; /* node in global lists */ struct list_head fl_blocked_requests; /* list of requests with * ->fl_blocker pointing here */ struct list_head fl_blocked_member; /* node in * ->fl_blocker->fl_blocked_requests */ fl_owner_t fl_owner; unsigned int fl_flags; unsigned char fl_type; unsigned int fl_pid; int fl_link_cpu; /* what cpu's list is this on? */ wait_queue_head_t fl_wait; struct file *fl_file; loff_t fl_start; loff_t fl_end; struct fasync_struct * fl_fasync; /* for lease break notifications */ /* for lease breaks: */ unsigned long fl_break_time; unsigned long fl_downgrade_time; const struct file_lock_operations *fl_ops; /* Callbacks for filesystems */ const struct lock_manager_operations *fl_lmops; /* Callbacks for lockmanagers */ union { struct nfs_lock_info nfs_fl; struct nfs4_lock_info nfs4_fl; struct { struct list_head link; /* link in AFS vnode's pending_locks list */ int state; /* state of grant or error if -ve */ unsigned int debug_id; } afs; } fl_u; } __randomize_layout; struct file_lock_context { spinlock_t flc_lock; struct list_head flc_flock; struct list_head flc_posix; struct list_head flc_lease; }; /* The following constant reflects the upper bound of the file/locking space */ #ifndef OFFSET_MAX #define INT_LIMIT(x) (~((x)1 << (sizeof(x)*8 - 1))) #define OFFSET_MAX INT_LIMIT(loff_t) #define OFFT_OFFSET_MAX INT_LIMIT(off_t) #endif extern void send_sigio(struct fown_struct *fown, int fd, int band); #define locks_inode(f) file_inode(f) #ifdef CONFIG_FILE_LOCKING extern int fcntl_getlk(struct file *, unsigned int, struct flock *); extern int fcntl_setlk(unsigned int, struct file *, unsigned int, struct flock *); #if BITS_PER_LONG == 32 extern int fcntl_getlk64(struct file *, unsigned int, struct flock64 *); extern int fcntl_setlk64(unsigned int, struct file *, unsigned int, struct flock64 *); #endif extern int fcntl_setlease(unsigned int fd, struct file *filp, long arg); extern int fcntl_getlease(struct file *filp); /* fs/locks.c */ void locks_free_lock_context(struct inode *inode); void locks_free_lock(struct file_lock *fl); extern void locks_init_lock(struct file_lock *); extern struct file_lock * locks_alloc_lock(void); extern void locks_copy_lock(struct file_lock *, struct file_lock *); extern void locks_copy_conflock(struct file_lock *, struct file_lock *); extern void locks_remove_posix(struct file *, fl_owner_t); extern void locks_remove_file(struct file *); extern void locks_release_private(struct file_lock *); extern void posix_test_lock(struct file *, struct file_lock *); extern int posix_lock_file(struct file *, struct file_lock *, struct file_lock *); extern int locks_delete_block(struct file_lock *); extern int vfs_test_lock(struct file *, struct file_lock *); extern int vfs_lock_file(struct file *, unsigned int, struct file_lock *, struct file_lock *); extern int vfs_cancel_lock(struct file *filp, struct file_lock *fl); bool vfs_inode_has_locks(struct inode *inode); extern int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl); extern int __break_lease(struct inode *inode, unsigned int flags, unsigned int type); extern void lease_get_mtime(struct inode *, struct timespec64 *time); extern int generic_setlease(struct file *, long, struct file_lock **, void **priv); extern int vfs_setlease(struct file *, long, struct file_lock **, void **); extern int lease_modify(struct file_lock *, int, struct list_head *); struct notifier_block; extern int lease_register_notifier(struct notifier_block *); extern void lease_unregister_notifier(struct notifier_block *); struct files_struct; extern void show_fd_locks(struct seq_file *f, struct file *filp, struct files_struct *files); extern bool locks_owner_has_blockers(struct file_lock_context *flctx, fl_owner_t owner); static inline struct file_lock_context * locks_inode_context(const struct inode *inode) { return smp_load_acquire(&inode->i_flctx); } #else /* !CONFIG_FILE_LOCKING */ static inline int fcntl_getlk(struct file *file, unsigned int cmd, struct flock __user *user) { return -EINVAL; } static inline int fcntl_setlk(unsigned int fd, struct file *file, unsigned int cmd, struct flock __user *user) { return -EACCES; } #if BITS_PER_LONG == 32 static inline int fcntl_getlk64(struct file *file, unsigned int cmd, struct flock64 *user) { return -EINVAL; } static inline int fcntl_setlk64(unsigned int fd, struct file *file, unsigned int cmd, struct flock64 *user) { return -EACCES; } #endif static inline int fcntl_setlease(unsigned int fd, struct file *filp, long arg) { return -EINVAL; } static inline int fcntl_getlease(struct file *filp) { return F_UNLCK; } static inline void locks_free_lock_context(struct inode *inode) { } static inline void locks_init_lock(struct file_lock *fl) { return; } static inline void locks_copy_conflock(struct file_lock *new, struct file_lock *fl) { return; } static inline void locks_copy_lock(struct file_lock *new, struct file_lock *fl) { return; } static inline void locks_remove_posix(struct file *filp, fl_owner_t owner) { return; } static inline void locks_remove_file(struct file *filp) { return; } static inline void posix_test_lock(struct file *filp, struct file_lock *fl) { return; } static inline int posix_lock_file(struct file *filp, struct file_lock *fl, struct file_lock *conflock) { return -ENOLCK; } static inline int locks_delete_block(struct file_lock *waiter) { return -ENOENT; } static inline int vfs_test_lock(struct file *filp, struct file_lock *fl) { return 0; } static inline int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf) { return -ENOLCK; } static inline int vfs_cancel_lock(struct file *filp, struct file_lock *fl) { return 0; } static inline bool vfs_inode_has_locks(struct inode *inode) { return false; } static inline int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl) { return -ENOLCK; } static inline int __break_lease(struct inode *inode, unsigned int mode, unsigned int type) { return 0; } static inline void lease_get_mtime(struct inode *inode, struct timespec64 *time) { return; } static inline int generic_setlease(struct file *filp, long arg, struct file_lock **flp, void **priv) { return -EINVAL; } static inline int vfs_setlease(struct file *filp, long arg, struct file_lock **lease, void **priv) { return -EINVAL; } static inline int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose) { return -EINVAL; } struct files_struct; static inline void show_fd_locks(struct seq_file *f, struct file *filp, struct files_struct *files) {} static inline bool locks_owner_has_blockers(struct file_lock_context *flctx, fl_owner_t owner) { return false; } static inline struct file_lock_context * locks_inode_context(const struct inode *inode) { return NULL; } #endif /* !CONFIG_FILE_LOCKING */ static inline struct inode *file_inode(const struct file *f) { return f->f_inode; } static inline struct dentry *file_dentry(const struct file *file) { return d_real(file->f_path.dentry, file_inode(file)); } static inline int locks_lock_file_wait(struct file *filp, struct file_lock *fl) { return locks_lock_inode_wait(locks_inode(filp), fl); } struct fasync_struct { rwlock_t fa_lock; int magic; int fa_fd; struct fasync_struct *fa_next; /* singly linked list */ struct file *fa_file; struct rcu_head fa_rcu; }; #define FASYNC_MAGIC 0x4601 /* SMP safe fasync helpers: */ extern int fasync_helper(int, struct file *, int, struct fasync_struct **); extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *); extern int fasync_remove_entry(struct file *, struct fasync_struct **); extern struct fasync_struct *fasync_alloc(void); extern void fasync_free(struct fasync_struct *); /* can be called from interrupts */ extern void kill_fasync(struct fasync_struct **, int, int); extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force); extern int f_setown(struct file *filp, unsigned long arg, int force); extern void f_delown(struct file *filp); extern pid_t f_getown(struct file *filp); extern int send_sigurg(struct fown_struct *fown); /* * sb->s_flags. Note that these mirror the equivalent MS_* flags where * represented in both. */ #define SB_RDONLY BIT(0) /* Mount read-only */ #define SB_NOSUID BIT(1) /* Ignore suid and sgid bits */ #define SB_NODEV BIT(2) /* Disallow access to device special files */ #define SB_NOEXEC BIT(3) /* Disallow program execution */ #define SB_SYNCHRONOUS BIT(4) /* Writes are synced at once */ #define SB_MANDLOCK BIT(6) /* Allow mandatory locks on an FS */ #define SB_DIRSYNC BIT(7) /* Directory modifications are synchronous */ #define SB_NOATIME BIT(10) /* Do not update access times. */ #define SB_NODIRATIME BIT(11) /* Do not update directory access times */ #define SB_SILENT BIT(15) #define SB_POSIXACL BIT(16) /* VFS does not apply the umask */ #define SB_INLINECRYPT BIT(17) /* Use blk-crypto for encrypted files */ #define SB_KERNMOUNT BIT(22) /* this is a kern_mount call */ #define SB_I_VERSION BIT(23) /* Update inode I_version field */ #define SB_LAZYTIME BIT(25) /* Update the on-disk [acm]times lazily */ /* These sb flags are internal to the kernel */ #define SB_SUBMOUNT BIT(26) #define SB_FORCE BIT(27) #define SB_NOSEC BIT(28) #define SB_BORN BIT(29) #define SB_ACTIVE BIT(30) #define SB_NOUSER BIT(31) /* These flags relate to encoding and casefolding */ #define SB_ENC_STRICT_MODE_FL (1 << 0) #define sb_has_strict_encoding(sb) \ (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL) /* * Umount options */ #define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */ #define MNT_DETACH 0x00000002 /* Just detach from the tree */ #define MNT_EXPIRE 0x00000004 /* Mark for expiry */ #define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */ #define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */ /* sb->s_iflags */ #define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */ #define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */ #define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */ #define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */ /* sb->s_iflags to limit user namespace mounts */ #define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */ #define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020 #define SB_I_UNTRUSTED_MOUNTER 0x00000040 #define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */ #define SB_I_PERSB_BDI 0x00000200 /* has a per-sb bdi */ #define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */ #define SB_I_RETIRED 0x00000800 /* superblock shouldn't be reused */ /* Possible states of 'frozen' field */ enum { SB_UNFROZEN = 0, /* FS is unfrozen */ SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */ SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */ SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop * internal threads if needed) */ SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */ }; #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1) struct sb_writers { int frozen; /* Is sb frozen? */ wait_queue_head_t wait_unfrozen; /* wait for thaw */ struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS]; }; struct super_block { struct list_head s_list; /* Keep this first */ dev_t s_dev; /* search index; _not_ kdev_t */ unsigned char s_blocksize_bits; unsigned long s_blocksize; loff_t s_maxbytes; /* Max file size */ struct file_system_type *s_type; const struct super_operations *s_op; const struct dquot_operations *dq_op; const struct quotactl_ops *s_qcop; const struct export_operations *s_export_op; unsigned long s_flags; unsigned long s_iflags; /* internal SB_I_* flags */ unsigned long s_magic; struct dentry *s_root; struct rw_semaphore s_umount; int s_count; atomic_t s_active; #ifdef CONFIG_SECURITY void *s_security; #endif const struct xattr_handler **s_xattr; #ifdef CONFIG_FS_ENCRYPTION const struct fscrypt_operations *s_cop; struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */ #endif #ifdef CONFIG_FS_VERITY const struct fsverity_operations *s_vop; #endif #if IS_ENABLED(CONFIG_UNICODE) struct unicode_map *s_encoding; __u16 s_encoding_flags; #endif struct hlist_bl_head s_roots; /* alternate root dentries for NFS */ struct list_head s_mounts; /* list of mounts; _not_ for fs use */ struct block_device *s_bdev; struct backing_dev_info *s_bdi; struct mtd_info *s_mtd; struct hlist_node s_instances; unsigned int s_quota_types; /* Bitmask of supported quota types */ struct quota_info s_dquot; /* Diskquota specific options */ struct sb_writers s_writers; /* * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and * s_fsnotify_marks together for cache efficiency. They are frequently * accessed and rarely modified. */ void *s_fs_info; /* Filesystem private info */ /* Granularity of c/m/atime in ns (cannot be worse than a second) */ u32 s_time_gran; /* Time limits for c/m/atime in seconds */ time64_t s_time_min; time64_t s_time_max; #ifdef CONFIG_FSNOTIFY __u32 s_fsnotify_mask; struct fsnotify_mark_connector __rcu *s_fsnotify_marks; #endif char s_id[32]; /* Informational name */ uuid_t s_uuid; /* UUID */ unsigned int s_max_links; fmode_t s_mode; /* * The next field is for VFS *only*. No filesystems have any business * even looking at it. You had been warned. */ struct mutex s_vfs_rename_mutex; /* Kludge */ /* * Filesystem subtype. If non-empty the filesystem type field * in /proc/mounts will be "type.subtype" */ const char *s_subtype; const struct dentry_operations *s_d_op; /* default d_op for dentries */ struct shrinker s_shrink; /* per-sb shrinker handle */ /* Number of inodes with nlink == 0 but still referenced */ atomic_long_t s_remove_count; /* * Number of inode/mount/sb objects that are being watched, note that * inodes objects are currently double-accounted. */ atomic_long_t s_fsnotify_connectors; /* Being remounted read-only */ int s_readonly_remount; /* per-sb errseq_t for reporting writeback errors via syncfs */ errseq_t s_wb_err; /* AIO completions deferred from interrupt context */ struct workqueue_struct *s_dio_done_wq; struct hlist_head s_pins; /* * Owning user namespace and default context in which to * interpret filesystem uids, gids, quotas, device nodes, * xattrs and security labels. */ struct user_namespace *s_user_ns; /* * The list_lru structure is essentially just a pointer to a table * of per-node lru lists, each of which has its own spinlock. * There is no need to put them into separate cachelines. */ struct list_lru s_dentry_lru; struct list_lru s_inode_lru; struct rcu_head rcu; struct work_struct destroy_work; struct mutex s_sync_lock; /* sync serialisation lock */ /* * Indicates how deep in a filesystem stack this SB is */ int s_stack_depth; /* s_inode_list_lock protects s_inodes */ spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp; struct list_head s_inodes; /* all inodes */ spinlock_t s_inode_wblist_lock; struct list_head s_inodes_wb; /* writeback inodes */ } __randomize_layout; static inline struct user_namespace *i_user_ns(const struct inode *inode) { return inode->i_sb->s_user_ns; } /* Helper functions so that in most cases filesystems will * not need to deal directly with kuid_t and kgid_t and can * instead deal with the raw numeric values that are stored * in the filesystem. */ static inline uid_t i_uid_read(const struct inode *inode) { return from_kuid(i_user_ns(inode), inode->i_uid); } static inline gid_t i_gid_read(const struct inode *inode) { return from_kgid(i_user_ns(inode), inode->i_gid); } static inline void i_uid_write(struct inode *inode, uid_t uid) { inode->i_uid = make_kuid(i_user_ns(inode), uid); } static inline void i_gid_write(struct inode *inode, gid_t gid) { inode->i_gid = make_kgid(i_user_ns(inode), gid); } /** * i_uid_into_mnt - map an inode's i_uid down into a mnt_userns * @mnt_userns: user namespace of the mount the inode was found from * @inode: inode to map * * Note, this will eventually be removed completely in favor of the type-safe * i_uid_into_vfsuid(). * * Return: the inode's i_uid mapped down according to @mnt_userns. * If the inode's i_uid has no mapping INVALID_UID is returned. */ static inline kuid_t i_uid_into_mnt(struct user_namespace *mnt_userns, const struct inode *inode) { return AS_KUIDT(make_vfsuid(mnt_userns, i_user_ns(inode), inode->i_uid)); } /** * i_uid_into_vfsuid - map an inode's i_uid down into a mnt_userns * @mnt_userns: user namespace of the mount the inode was found from * @inode: inode to map * * Return: whe inode's i_uid mapped down according to @mnt_userns. * If the inode's i_uid has no mapping INVALID_VFSUID is returned. */ static inline vfsuid_t i_uid_into_vfsuid(struct user_namespace *mnt_userns, const struct inode *inode) { return make_vfsuid(mnt_userns, i_user_ns(inode), inode->i_uid); } /** * i_uid_needs_update - check whether inode's i_uid needs to be updated * @mnt_userns: user namespace of the mount the inode was found from * @attr: the new attributes of @inode * @inode: the inode to update * * Check whether the $inode's i_uid field needs to be updated taking idmapped * mounts into account if the filesystem supports it. * * Return: true if @inode's i_uid field needs to be updated, false if not. */ static inline bool i_uid_needs_update(struct user_namespace *mnt_userns, const struct iattr *attr, const struct inode *inode) { return ((attr->ia_valid & ATTR_UID) && !vfsuid_eq(attr->ia_vfsuid, i_uid_into_vfsuid(mnt_userns, inode))); } /** * i_uid_update - update @inode's i_uid field * @mnt_userns: user namespace of the mount the inode was found from * @attr: the new attributes of @inode * @inode: the inode to update * * Safely update @inode's i_uid field translating the vfsuid of any idmapped * mount into the filesystem kuid. */ static inline void i_uid_update(struct user_namespace *mnt_userns, const struct iattr *attr, struct inode *inode) { if (attr->ia_valid & ATTR_UID) inode->i_uid = from_vfsuid(mnt_userns, i_user_ns(inode), attr->ia_vfsuid); } /** * i_gid_into_mnt - map an inode's i_gid down into a mnt_userns * @mnt_userns: user namespace of the mount the inode was found from * @inode: inode to map * * Note, this will eventually be removed completely in favor of the type-safe * i_gid_into_vfsgid(). * * Return: the inode's i_gid mapped down according to @mnt_userns. * If the inode's i_gid has no mapping INVALID_GID is returned. */ static inline kgid_t i_gid_into_mnt(struct user_namespace *mnt_userns, const struct inode *inode) { return AS_KGIDT(make_vfsgid(mnt_userns, i_user_ns(inode), inode->i_gid)); } /** * i_gid_into_vfsgid - map an inode's i_gid down into a mnt_userns * @mnt_userns: user namespace of the mount the inode was found from * @inode: inode to map * * Return: the inode's i_gid mapped down according to @mnt_userns. * If the inode's i_gid has no mapping INVALID_VFSGID is returned. */ static inline vfsgid_t i_gid_into_vfsgid(struct user_namespace *mnt_userns, const struct inode *inode) { return make_vfsgid(mnt_userns, i_user_ns(inode), inode->i_gid); } /** * i_gid_needs_update - check whether inode's i_gid needs to be updated * @mnt_userns: user namespace of the mount the inode was found from * @attr: the new attributes of @inode * @inode: the inode to update * * Check whether the $inode's i_gid field needs to be updated taking idmapped * mounts into account if the filesystem supports it. * * Return: true if @inode's i_gid field needs to be updated, false if not. */ static inline bool i_gid_needs_update(struct user_namespace *mnt_userns, const struct iattr *attr, const struct inode *inode) { return ((attr->ia_valid & ATTR_GID) && !vfsgid_eq(attr->ia_vfsgid, i_gid_into_vfsgid(mnt_userns, inode))); } /** * i_gid_update - update @inode's i_gid field * @mnt_userns: user namespace of the mount the inode was found from * @attr: the new attributes of @inode * @inode: the inode to update * * Safely update @inode's i_gid field translating the vfsgid of any idmapped * mount into the filesystem kgid. */ static inline void i_gid_update(struct user_namespace *mnt_userns, const struct iattr *attr, struct inode *inode) { if (attr->ia_valid & ATTR_GID) inode->i_gid = from_vfsgid(mnt_userns, i_user_ns(inode), attr->ia_vfsgid); } /** * inode_fsuid_set - initialize inode's i_uid field with callers fsuid * @inode: inode to initialize * @mnt_userns: user namespace of the mount the inode was found from * * Initialize the i_uid field of @inode. If the inode was found/created via * an idmapped mount map the caller's fsuid according to @mnt_users. */ static inline void inode_fsuid_set(struct inode *inode, struct user_namespace *mnt_userns) { inode->i_uid = mapped_fsuid(mnt_userns, i_user_ns(inode)); } /** * inode_fsgid_set - initialize inode's i_gid field with callers fsgid * @inode: inode to initialize * @mnt_userns: user namespace of the mount the inode was found from * * Initialize the i_gid field of @inode. If the inode was found/created via * an idmapped mount map the caller's fsgid according to @mnt_users. */ static inline void inode_fsgid_set(struct inode *inode, struct user_namespace *mnt_userns) { inode->i_gid = mapped_fsgid(mnt_userns, i_user_ns(inode)); } /** * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped * @sb: the superblock we want a mapping in * @mnt_userns: user namespace of the relevant mount * * Check whether the caller's fsuid and fsgid have a valid mapping in the * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map * the caller's fsuid and fsgid according to the @mnt_userns first. * * Return: true if fsuid and fsgid is mapped, false if not. */ static inline bool fsuidgid_has_mapping(struct super_block *sb, struct user_namespace *mnt_userns) { struct user_namespace *fs_userns = sb->s_user_ns; kuid_t kuid; kgid_t kgid; kuid = mapped_fsuid(mnt_userns, fs_userns); if (!uid_valid(kuid)) return false; kgid = mapped_fsgid(mnt_userns, fs_userns); if (!gid_valid(kgid)) return false; return kuid_has_mapping(fs_userns, kuid) && kgid_has_mapping(fs_userns, kgid); } struct timespec64 current_time(struct inode *inode); struct timespec64 inode_set_ctime_current(struct inode *inode); /** * inode_get_ctime - fetch the current ctime from the inode * @inode: inode from which to fetch ctime * * Grab the current ctime from the inode and return it. */ static inline struct timespec64 inode_get_ctime(const struct inode *inode) { return inode->i_ctime; } /** * inode_set_ctime_to_ts - set the ctime in the inode * @inode: inode in which to set the ctime * @ts: value to set in the ctime field * * Set the ctime in @inode to @ts */ static inline struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts) { inode->i_ctime = ts; return ts; } /** * inode_set_ctime - set the ctime in the inode * @inode: inode in which to set the ctime * @sec: tv_sec value to set * @nsec: tv_nsec value to set * * Set the ctime in @inode to { @sec, @nsec } */ static inline struct timespec64 inode_set_ctime(struct inode *inode, time64_t sec, long nsec) { struct timespec64 ts = { .tv_sec = sec, .tv_nsec = nsec }; return inode_set_ctime_to_ts(inode, ts); } /* * Snapshotting support. */ /* * These are internal functions, please use sb_start_{write,pagefault,intwrite} * instead. */ static inline void __sb_end_write(struct super_block *sb, int level) { percpu_up_read(sb->s_writers.rw_sem + level-1); } static inline void __sb_start_write(struct super_block *sb, int level) { percpu_down_read(sb->s_writers.rw_sem + level - 1); } static inline bool __sb_start_write_trylock(struct super_block *sb, int level) { return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1); } #define __sb_writers_acquired(sb, lev) \ percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) #define __sb_writers_release(sb, lev) \ percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) static inline bool sb_write_started(const struct super_block *sb) { return lockdep_is_held_type(sb->s_writers.rw_sem + SB_FREEZE_WRITE - 1, 1); } /** * sb_end_write - drop write access to a superblock * @sb: the super we wrote to * * Decrement number of writers to the filesystem. Wake up possible waiters * wanting to freeze the filesystem. */ static inline void sb_end_write(struct super_block *sb) { __sb_end_write(sb, SB_FREEZE_WRITE); } /** * sb_end_pagefault - drop write access to a superblock from a page fault * @sb: the super we wrote to * * Decrement number of processes handling write page fault to the filesystem. * Wake up possible waiters wanting to freeze the filesystem. */ static inline void sb_end_pagefault(struct super_block *sb) { __sb_end_write(sb, SB_FREEZE_PAGEFAULT); } /** * sb_end_intwrite - drop write access to a superblock for internal fs purposes * @sb: the super we wrote to * * Decrement fs-internal number of writers to the filesystem. Wake up possible * waiters wanting to freeze the filesystem. */ static inline void sb_end_intwrite(struct super_block *sb) { __sb_end_write(sb, SB_FREEZE_FS); } /** * sb_start_write - get write access to a superblock * @sb: the super we write to * * When a process wants to write data or metadata to a file system (i.e. dirty * a page or an inode), it should embed the operation in a sb_start_write() - * sb_end_write() pair to get exclusion against file system freezing. This * function increments number of writers preventing freezing. If the file * system is already frozen, the function waits until the file system is * thawed. * * Since freeze protection behaves as a lock, users have to preserve * ordering of freeze protection and other filesystem locks. Generally, * freeze protection should be the outermost lock. In particular, we have: * * sb_start_write * -> i_mutex (write path, truncate, directory ops, ...) * -> s_umount (freeze_super, thaw_super) */ static inline void sb_start_write(struct super_block *sb) { __sb_start_write(sb, SB_FREEZE_WRITE); } static inline bool sb_start_write_trylock(struct super_block *sb) { return __sb_start_write_trylock(sb, SB_FREEZE_WRITE); } /** * sb_start_pagefault - get write access to a superblock from a page fault * @sb: the super we write to * * When a process starts handling write page fault, it should embed the * operation into sb_start_pagefault() - sb_end_pagefault() pair to get * exclusion against file system freezing. This is needed since the page fault * is going to dirty a page. This function increments number of running page * faults preventing freezing. If the file system is already frozen, the * function waits until the file system is thawed. * * Since page fault freeze protection behaves as a lock, users have to preserve * ordering of freeze protection and other filesystem locks. It is advised to * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault * handling code implies lock dependency: * * mmap_lock * -> sb_start_pagefault */ static inline void sb_start_pagefault(struct super_block *sb) { __sb_start_write(sb, SB_FREEZE_PAGEFAULT); } /** * sb_start_intwrite - get write access to a superblock for internal fs purposes * @sb: the super we write to * * This is the third level of protection against filesystem freezing. It is * free for use by a filesystem. The only requirement is that it must rank * below sb_start_pagefault. * * For example filesystem can call sb_start_intwrite() when starting a * transaction which somewhat eases handling of freezing for internal sources * of filesystem changes (internal fs threads, discarding preallocation on file * close, etc.). */ static inline void sb_start_intwrite(struct super_block *sb) { __sb_start_write(sb, SB_FREEZE_FS); } static inline bool sb_start_intwrite_trylock(struct super_block *sb) { return __sb_start_write_trylock(sb, SB_FREEZE_FS); } bool inode_owner_or_capable(struct user_namespace *mnt_userns, const struct inode *inode); /* * VFS helper functions.. */ int vfs_create(struct user_namespace *, struct inode *, struct dentry *, umode_t, bool); int vfs_mkdir(struct user_namespace *, struct inode *, struct dentry *, umode_t); int vfs_mknod(struct user_namespace *, struct inode *, struct dentry *, umode_t, dev_t); int vfs_symlink(struct user_namespace *, struct inode *, struct dentry *, const char *); int vfs_link(struct dentry *, struct user_namespace *, struct inode *, struct dentry *, struct inode **); int vfs_rmdir(struct user_namespace *, struct inode *, struct dentry *); int vfs_unlink(struct user_namespace *, struct inode *, struct dentry *, struct inode **); /** * struct renamedata - contains all information required for renaming * @old_mnt_userns: old user namespace of the mount the inode was found from * @old_dir: parent of source * @old_dentry: source * @new_mnt_userns: new user namespace of the mount the inode was found from * @new_dir: parent of destination * @new_dentry: destination * @delegated_inode: returns an inode needing a delegation break * @flags: rename flags */ struct renamedata { struct user_namespace *old_mnt_userns; struct inode *old_dir; struct dentry *old_dentry; struct user_namespace *new_mnt_userns; struct inode *new_dir; struct dentry *new_dentry; struct inode **delegated_inode; unsigned int flags; } __randomize_layout; int vfs_rename(struct renamedata *); static inline int vfs_whiteout(struct user_namespace *mnt_userns, struct inode *dir, struct dentry *dentry) { return vfs_mknod(mnt_userns, dir, dentry, S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); } struct file *vfs_tmpfile_open(struct user_namespace *mnt_userns, const struct path *parentpath, umode_t mode, int open_flag, const struct cred *cred); int vfs_mkobj(struct dentry *, umode_t, int (*f)(struct dentry *, umode_t, void *), void *); int vfs_fchown(struct file *file, uid_t user, gid_t group); int vfs_fchmod(struct file *file, umode_t mode); int vfs_utimes(const struct path *path, struct timespec64 *times); extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); #ifdef CONFIG_COMPAT extern long compat_ptr_ioctl(struct file *file, unsigned int cmd, unsigned long arg); #else #define compat_ptr_ioctl NULL #endif /* * VFS file helper functions. */ void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode, const struct inode *dir, umode_t mode); extern bool may_open_dev(const struct path *path); umode_t mode_strip_sgid(struct user_namespace *mnt_userns, const struct inode *dir, umode_t mode); /* * This is the "filldir" function type, used by readdir() to let * the kernel specify what kind of dirent layout it wants to have. * This allows the kernel to read directories into kernel space or * to have different dirent layouts depending on the binary type. * Return 'true' to keep going and 'false' if there are no more entries. */ struct dir_context; typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64, unsigned); struct dir_context { filldir_t actor; loff_t pos; }; /* * These flags let !MMU mmap() govern direct device mapping vs immediate * copying more easily for MAP_PRIVATE, especially for ROM filesystems. * * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE) * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED) * NOMMU_MAP_READ: Can be mapped for reading * NOMMU_MAP_WRITE: Can be mapped for writing * NOMMU_MAP_EXEC: Can be mapped for execution */ #define NOMMU_MAP_COPY 0x00000001 #define NOMMU_MAP_DIRECT 0x00000008 #define NOMMU_MAP_READ VM_MAYREAD #define NOMMU_MAP_WRITE VM_MAYWRITE #define NOMMU_MAP_EXEC VM_MAYEXEC #define NOMMU_VMFLAGS \ (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC) /* * These flags control the behavior of the remap_file_range function pointer. * If it is called with len == 0 that means "remap to end of source file". * See Documentation/filesystems/vfs.rst for more details about this call. * * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate) * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request */ #define REMAP_FILE_DEDUP (1 << 0) #define REMAP_FILE_CAN_SHORTEN (1 << 1) /* * These flags signal that the caller is ok with altering various aspects of * the behavior of the remap operation. The changes must be made by the * implementation; the vfs remap helper functions can take advantage of them. * Flags in this category exist to preserve the quirky behavior of the hoisted * btrfs clone/dedupe ioctls. */ #define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN) /* * These flags control the behavior of vfs_copy_file_range(). * They are not available to the user via syscall. * * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops */ #define COPY_FILE_SPLICE (1 << 0) struct iov_iter; struct io_uring_cmd; struct file_operations { struct module *owner; loff_t (*llseek) (struct file *, loff_t, int); ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); ssize_t (*read_iter) (struct kiocb *, struct iov_iter *); ssize_t (*write_iter) (struct kiocb *, struct iov_iter *); int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *, unsigned int flags); int (*iterate) (struct file *, struct dir_context *); int (*iterate_shared) (struct file *, struct dir_context *); __poll_t (*poll) (struct file *, struct poll_table_struct *); long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); long (*compat_ioctl) (struct file *, unsigned int, unsigned long); int (*mmap) (struct file *, struct vm_area_struct *); unsigned long mmap_supported_flags; int (*open) (struct inode *, struct file *); int (*flush) (struct file *, fl_owner_t id); int (*release) (struct inode *, struct file *); int (*fsync) (struct file *, loff_t, loff_t, int datasync); int (*fasync) (int, struct file *, int); int (*lock) (struct file *, int, struct file_lock *); ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int); unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); int (*check_flags)(int); int (*flock) (struct file *, int, struct file_lock *); ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); void (*splice_eof)(struct file *file); int (*setlease)(struct file *, long, struct file_lock **, void **); long (*fallocate)(struct file *file, int mode, loff_t offset, loff_t len); void (*show_fdinfo)(struct seq_file *m, struct file *f); #ifndef CONFIG_MMU unsigned (*mmap_capabilities)(struct file *); #endif ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, loff_t, size_t, unsigned int); loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t len, unsigned int remap_flags); int (*fadvise)(struct file *, loff_t, loff_t, int); int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags); int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *, unsigned int poll_flags); } __randomize_layout; struct inode_operations { struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int); const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *); int (*permission) (struct user_namespace *, struct inode *, int); struct posix_acl * (*get_acl)(struct inode *, int, bool); int (*readlink) (struct dentry *, char __user *,int); int (*create) (struct user_namespace *, struct inode *,struct dentry *, umode_t, bool); int (*link) (struct dentry *,struct inode *,struct dentry *); int (*unlink) (struct inode *,struct dentry *); int (*symlink) (struct user_namespace *, struct inode *,struct dentry *, const char *); int (*mkdir) (struct user_namespace *, struct inode *,struct dentry *, umode_t); int (*rmdir) (struct inode *,struct dentry *); int (*mknod) (struct user_namespace *, struct inode *,struct dentry *, umode_t,dev_t); int (*rename) (struct user_namespace *, struct inode *, struct dentry *, struct inode *, struct dentry *, unsigned int); int (*setattr) (struct user_namespace *, struct dentry *, struct iattr *); int (*getattr) (struct user_namespace *, const struct path *, struct kstat *, u32, unsigned int); ssize_t (*listxattr) (struct dentry *, char *, size_t); int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, u64 len); int (*update_time)(struct inode *, struct timespec64 *, int); int (*atomic_open)(struct inode *, struct dentry *, struct file *, unsigned open_flag, umode_t create_mode); int (*tmpfile) (struct user_namespace *, struct inode *, struct file *, umode_t); int (*set_acl)(struct user_namespace *, struct inode *, struct posix_acl *, int); int (*fileattr_set)(struct user_namespace *mnt_userns, struct dentry *dentry, struct fileattr *fa); int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa); } ____cacheline_aligned; static inline ssize_t call_read_iter(struct file *file, struct kiocb *kio, struct iov_iter *iter) { return file->f_op->read_iter(kio, iter); } static inline ssize_t call_write_iter(struct file *file, struct kiocb *kio, struct iov_iter *iter) { return file->f_op->write_iter(kio, iter); } static inline int call_mmap(struct file *file, struct vm_area_struct *vma) { return file->f_op->mmap(file, vma); } extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *); extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *); extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *, loff_t, size_t, unsigned int); extern ssize_t generic_copy_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, size_t len, unsigned int flags); int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t *len, unsigned int remap_flags, const struct iomap_ops *dax_read_ops); int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t *count, unsigned int remap_flags); extern loff_t do_clone_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t len, unsigned int remap_flags); extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t len, unsigned int remap_flags); extern int vfs_dedupe_file_range(struct file *file, struct file_dedupe_range *same); extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos, struct file *dst_file, loff_t dst_pos, loff_t len, unsigned int remap_flags); struct super_operations { struct inode *(*alloc_inode)(struct super_block *sb); void (*destroy_inode)(struct inode *); void (*free_inode)(struct inode *); void (*dirty_inode) (struct inode *, int flags); int (*write_inode) (struct inode *, struct writeback_control *wbc); int (*drop_inode) (struct inode *); void (*evict_inode) (struct inode *); void (*put_super) (struct super_block *); int (*sync_fs)(struct super_block *sb, int wait); int (*freeze_super) (struct super_block *); int (*freeze_fs) (struct super_block *); int (*thaw_super) (struct super_block *); int (*unfreeze_fs) (struct super_block *); int (*statfs) (struct dentry *, struct kstatfs *); int (*remount_fs) (struct super_block *, int *, char *); void (*umount_begin) (struct super_block *); int (*show_options)(struct seq_file *, struct dentry *); int (*show_devname)(struct seq_file *, struct dentry *); int (*show_path)(struct seq_file *, struct dentry *); int (*show_stats)(struct seq_file *, struct dentry *); #ifdef CONFIG_QUOTA ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); struct dquot **(*get_dquots)(struct inode *); #endif long (*nr_cached_objects)(struct super_block *, struct shrink_control *); long (*free_cached_objects)(struct super_block *, struct shrink_control *); }; /* * Inode flags - they have no relation to superblock flags now */ #define S_SYNC (1 << 0) /* Writes are synced at once */ #define S_NOATIME (1 << 1) /* Do not update access times */ #define S_APPEND (1 << 2) /* Append-only file */ #define S_IMMUTABLE (1 << 3) /* Immutable file */ #define S_DEAD (1 << 4) /* removed, but still open directory */ #define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */ #define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */ #define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */ #define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */ #define S_PRIVATE (1 << 9) /* Inode is fs-internal */ #define S_IMA (1 << 10) /* Inode has an associated IMA struct */ #define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */ #define S_NOSEC (1 << 12) /* no suid or xattr security attributes */ #ifdef CONFIG_FS_DAX #define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */ #else #define S_DAX 0 /* Make all the DAX code disappear */ #endif #define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */ #define S_CASEFOLD (1 << 15) /* Casefolded file */ #define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */ #define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */ /* * Note that nosuid etc flags are inode-specific: setting some file-system * flags just means all the inodes inherit those flags by default. It might be * possible to override it selectively if you really wanted to with some * ioctl() that is not currently implemented. * * Exception: SB_RDONLY is always applied to the entire file system. * * Unfortunately, it is possible to change a filesystems flags with it mounted * with files in use. This means that all of the inodes will not have their * i_flags updated. Hence, i_flags no longer inherit the superblock mount * flags, so these have to be checked separately. -- rmk@arm.uk.linux.org */ #define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg)) static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; } #define IS_RDONLY(inode) sb_rdonly((inode)->i_sb) #define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \ ((inode)->i_flags & S_SYNC)) #define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \ ((inode)->i_flags & (S_SYNC|S_DIRSYNC))) #define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK) #define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME) #define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION) #define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA) #define IS_APPEND(inode) ((inode)->i_flags & S_APPEND) #define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE) #define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL) #define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD) #define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME) #define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE) #define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE) #define IS_IMA(inode) ((inode)->i_flags & S_IMA) #define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT) #define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC) #define IS_DAX(inode) ((inode)->i_flags & S_DAX) #define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED) #define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD) #define IS_VERITY(inode) ((inode)->i_flags & S_VERITY) #define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \ (inode)->i_rdev == WHITEOUT_DEV) static inline bool HAS_UNMAPPED_ID(struct user_namespace *mnt_userns, struct inode *inode) { return !vfsuid_valid(i_uid_into_vfsuid(mnt_userns, inode)) || !vfsgid_valid(i_gid_into_vfsgid(mnt_userns, inode)); } static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp) { *kiocb = (struct kiocb) { .ki_filp = filp, .ki_flags = filp->f_iocb_flags, .ki_ioprio = get_current_ioprio(), }; } static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src, struct file *filp) { *kiocb = (struct kiocb) { .ki_filp = filp, .ki_flags = kiocb_src->ki_flags, .ki_ioprio = kiocb_src->ki_ioprio, .ki_pos = kiocb_src->ki_pos, }; } /* * Inode state bits. Protected by inode->i_lock * * Four bits determine the dirty state of the inode: I_DIRTY_SYNC, * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME. * * Four bits define the lifetime of an inode. Initially, inodes are I_NEW, * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at * various stages of removing an inode. * * Two bits are used for locking and completion notification, I_NEW and I_SYNC. * * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on * fdatasync() (unless I_DIRTY_DATASYNC is also set). * Timestamp updates are the usual cause. * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of * these changes separately from I_DIRTY_SYNC so that we * don't have to write inode on fdatasync() when only * e.g. the timestamps have changed. * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean. * I_DIRTY_TIME The inode itself has dirty timestamps, and the * lazytime mount option is enabled. We keep track of this * separately from I_DIRTY_SYNC in order to implement * lazytime. This gets cleared if I_DIRTY_INODE * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already * in place because writeback might already be in progress * and we don't want to lose the time update * I_NEW Serves as both a mutex and completion notification. * New inodes set I_NEW. If two processes both create * the same inode, one of them will release its inode and * wait for I_NEW to be released before returning. * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can * also cause waiting on I_NEW, without I_NEW actually * being set. find_inode() uses this to prevent returning * nearly-dead inodes. * I_WILL_FREE Must be set when calling write_inode_now() if i_count * is zero. I_FREEING must be set when I_WILL_FREE is * cleared. * I_FREEING Set when inode is about to be freed but still has dirty * pages or buffers attached or the inode itself is still * dirty. * I_CLEAR Added by clear_inode(). In this state the inode is * clean and can be destroyed. Inode keeps I_FREEING. * * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are * prohibited for many purposes. iget() must wait for * the inode to be completely released, then create it * anew. Other functions will just ignore such inodes, * if appropriate. I_NEW is used for waiting. * * I_SYNC Writeback of inode is running. The bit is set during * data writeback, and cleared with a wakeup on the bit * address once it is done. The bit is also used to pin * the inode in memory for flusher thread. * * I_REFERENCED Marks the inode as recently references on the LRU list. * * I_DIO_WAKEUP Never set. Only used as a key for wait_on_bit(). * * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to * synchronize competing switching instances and to tell * wb stat updates to grab the i_pages lock. See * inode_switch_wbs_work_fn() for details. * * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper * and work dirs among overlayfs mounts. * * I_CREATING New object's inode in the middle of setting up. * * I_DONTCACHE Evict inode as soon as it is not used anymore. * * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists. * Used to detect that mark_inode_dirty() should not move * inode between dirty lists. * * I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback. * * I_LRU_ISOLATING Inode is pinned being isolated from LRU without holding * i_count. * * Q: What is the difference between I_WILL_FREE and I_FREEING? */ #define I_DIRTY_SYNC (1 << 0) #define I_DIRTY_DATASYNC (1 << 1) #define I_DIRTY_PAGES (1 << 2) #define __I_NEW 3 #define I_NEW (1 << __I_NEW) #define I_WILL_FREE (1 << 4) #define I_FREEING (1 << 5) #define I_CLEAR (1 << 6) #define __I_SYNC 7 #define I_SYNC (1 << __I_SYNC) #define I_REFERENCED (1 << 8) #define __I_DIO_WAKEUP 9 #define I_DIO_WAKEUP (1 << __I_DIO_WAKEUP) #define I_LINKABLE (1 << 10) #define I_DIRTY_TIME (1 << 11) #define I_WB_SWITCH (1 << 13) #define I_OVL_INUSE (1 << 14) #define I_CREATING (1 << 15) #define I_DONTCACHE (1 << 16) #define I_SYNC_QUEUED (1 << 17) #define I_PINNING_FSCACHE_WB (1 << 18) #define __I_LRU_ISOLATING 19 #define I_LRU_ISOLATING (1 << __I_LRU_ISOLATING) #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES) #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME) extern void __mark_inode_dirty(struct inode *, int); static inline void mark_inode_dirty(struct inode *inode) { __mark_inode_dirty(inode, I_DIRTY); } static inline void mark_inode_dirty_sync(struct inode *inode) { __mark_inode_dirty(inode, I_DIRTY_SYNC); } /* * Returns true if the given inode itself only has dirty timestamps (its pages * may still be dirty) and isn't currently being allocated or freed. * Filesystems should call this if when writing an inode when lazytime is * enabled, they want to opportunistically write the timestamps of other inodes * located very nearby on-disk, e.g. in the same inode block. This returns true * if the given inode is in need of such an opportunistic update. Requires * i_lock, or at least later re-checking under i_lock. */ static inline bool inode_is_dirtytime_only(struct inode *inode) { return (inode->i_state & (I_DIRTY_TIME | I_NEW | I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME; } extern void inc_nlink(struct inode *inode); extern void drop_nlink(struct inode *inode); extern void clear_nlink(struct inode *inode); extern void set_nlink(struct inode *inode, unsigned int nlink); static inline void inode_inc_link_count(struct inode *inode) { inc_nlink(inode); mark_inode_dirty(inode); } static inline void inode_dec_link_count(struct inode *inode) { drop_nlink(inode); mark_inode_dirty(inode); } enum file_time_flags { S_ATIME = 1, S_MTIME = 2, S_CTIME = 4, S_VERSION = 8, }; extern bool atime_needs_update(const struct path *, struct inode *); extern void touch_atime(const struct path *); int inode_update_time(struct inode *inode, struct timespec64 *time, int flags); static inline void file_accessed(struct file *file) { if (!(file->f_flags & O_NOATIME)) touch_atime(&file->f_path); } extern int file_modified(struct file *file); int kiocb_modified(struct kiocb *iocb); int sync_inode_metadata(struct inode *inode, int wait); struct file_system_type { const char *name; int fs_flags; #define FS_REQUIRES_DEV 1 #define FS_BINARY_MOUNTDATA 2 #define FS_HAS_SUBTYPE 4 #define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */ #define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */ #define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */ #define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */ int (*init_fs_context)(struct fs_context *); const struct fs_parameter_spec *parameters; struct dentry *(*mount) (struct file_system_type *, int, const char *, void *); void (*kill_sb) (struct super_block *); struct module *owner; struct file_system_type * next; struct hlist_head fs_supers; struct lock_class_key s_lock_key; struct lock_class_key s_umount_key; struct lock_class_key s_vfs_rename_key; struct lock_class_key s_writers_key[SB_FREEZE_LEVELS]; struct lock_class_key i_lock_key; struct lock_class_key i_mutex_key; struct lock_class_key invalidate_lock_key; struct lock_class_key i_mutex_dir_key; }; #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME) extern struct dentry *mount_bdev(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, int (*fill_super)(struct super_block *, void *, int)); extern struct dentry *mount_single(struct file_system_type *fs_type, int flags, void *data, int (*fill_super)(struct super_block *, void *, int)); extern struct dentry *mount_nodev(struct file_system_type *fs_type, int flags, void *data, int (*fill_super)(struct super_block *, void *, int)); extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path); void retire_super(struct super_block *sb); void generic_shutdown_super(struct super_block *sb); void kill_block_super(struct super_block *sb); void kill_anon_super(struct super_block *sb); void kill_litter_super(struct super_block *sb); void deactivate_super(struct super_block *sb); void deactivate_locked_super(struct super_block *sb); int set_anon_super(struct super_block *s, void *data); int set_anon_super_fc(struct super_block *s, struct fs_context *fc); int get_anon_bdev(dev_t *); void free_anon_bdev(dev_t); struct super_block *sget_fc(struct fs_context *fc, int (*test)(struct super_block *, struct fs_context *), int (*set)(struct super_block *, struct fs_context *)); struct super_block *sget(struct file_system_type *type, int (*test)(struct super_block *,void *), int (*set)(struct super_block *,void *), int flags, void *data); /* Alas, no aliases. Too much hassle with bringing module.h everywhere */ #define fops_get(fops) \ (((fops) && try_module_get((fops)->owner) ? (fops) : NULL)) #define fops_put(fops) \ do { if (fops) module_put((fops)->owner); } while(0) /* * This one is to be used *ONLY* from ->open() instances. * fops must be non-NULL, pinned down *and* module dependencies * should be sufficient to pin the caller down as well. */ #define replace_fops(f, fops) \ do { \ struct file *__file = (f); \ fops_put(__file->f_op); \ BUG_ON(!(__file->f_op = (fops))); \ } while(0) extern int register_filesystem(struct file_system_type *); extern int unregister_filesystem(struct file_system_type *); extern int vfs_statfs(const struct path *, struct kstatfs *); extern int user_statfs(const char __user *, struct kstatfs *); extern int fd_statfs(int, struct kstatfs *); extern int freeze_super(struct super_block *super); extern int thaw_super(struct super_block *super); extern __printf(2, 3) int super_setup_bdi_name(struct super_block *sb, char *fmt, ...); extern int super_setup_bdi(struct super_block *sb); extern int current_umask(void); extern void ihold(struct inode * inode); extern void iput(struct inode *); extern int generic_update_time(struct inode *, struct timespec64 *, int); /* /sys/fs */ extern struct kobject *fs_kobj; #define MAX_RW_COUNT (INT_MAX & PAGE_MASK) #ifdef CONFIG_FILE_LOCKING static inline int break_lease(struct inode *inode, unsigned int mode) { /* * Since this check is lockless, we must ensure that any refcounts * taken are done before checking i_flctx->flc_lease. Otherwise, we * could end up racing with tasks trying to set a new lease on this * file. */ smp_mb(); if (inode->i_flctx && !list_empty_careful(&inode->i_flctx->flc_lease)) return __break_lease(inode, mode, FL_LEASE); return 0; } static inline int break_deleg(struct inode *inode, unsigned int mode) { /* * Since this check is lockless, we must ensure that any refcounts * taken are done before checking i_flctx->flc_lease. Otherwise, we * could end up racing with tasks trying to set a new lease on this * file. */ smp_mb(); if (inode->i_flctx && !list_empty_careful(&inode->i_flctx->flc_lease)) return __break_lease(inode, mode, FL_DELEG); return 0; } static inline int try_break_deleg(struct inode *inode, struct inode **delegated_inode) { int ret; ret = break_deleg(inode, O_WRONLY|O_NONBLOCK); if (ret == -EWOULDBLOCK && delegated_inode) { *delegated_inode = inode; ihold(inode); } return ret; } static inline int break_deleg_wait(struct inode **delegated_inode) { int ret; ret = break_deleg(*delegated_inode, O_WRONLY); iput(*delegated_inode); *delegated_inode = NULL; return ret; } static inline int break_layout(struct inode *inode, bool wait) { smp_mb(); if (inode->i_flctx && !list_empty_careful(&inode->i_flctx->flc_lease)) return __break_lease(inode, wait ? O_WRONLY : O_WRONLY | O_NONBLOCK, FL_LAYOUT); return 0; } #else /* !CONFIG_FILE_LOCKING */ static inline int break_lease(struct inode *inode, unsigned int mode) { return 0; } static inline int break_deleg(struct inode *inode, unsigned int mode) { return 0; } static inline int try_break_deleg(struct inode *inode, struct inode **delegated_inode) { return 0; } static inline int break_deleg_wait(struct inode **delegated_inode) { BUG(); return 0; } static inline int break_layout(struct inode *inode, bool wait) { return 0; } #endif /* CONFIG_FILE_LOCKING */ /* fs/open.c */ struct audit_names; struct filename { const char *name; /* pointer to actual string */ const __user char *uptr; /* original userland pointer */ atomic_t refcnt; struct audit_names *aname; const char iname[]; }; static_assert(offsetof(struct filename, iname) % sizeof(long) == 0); static inline struct user_namespace *file_mnt_user_ns(struct file *file) { return mnt_user_ns(file->f_path.mnt); } /** * is_idmapped_mnt - check whether a mount is mapped * @mnt: the mount to check * * If @mnt has an idmapping attached different from the * filesystem's idmapping then @mnt is mapped. * * Return: true if mount is mapped, false if not. */ static inline bool is_idmapped_mnt(const struct vfsmount *mnt) { return mnt_user_ns(mnt) != mnt->mnt_sb->s_user_ns; } extern long vfs_truncate(const struct path *, loff_t); int do_truncate(struct user_namespace *, struct dentry *, loff_t start, unsigned int time_attrs, struct file *filp); extern int vfs_fallocate(struct file *file, int mode, loff_t offset, loff_t len); extern long do_sys_open(int dfd, const char __user *filename, int flags, umode_t mode); extern struct file *file_open_name(struct filename *, int, umode_t); extern struct file *filp_open(const char *, int, umode_t); extern struct file *file_open_root(const struct path *, const char *, int, umode_t); static inline struct file *file_open_root_mnt(struct vfsmount *mnt, const char *name, int flags, umode_t mode) { return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root}, name, flags, mode); } extern struct file * dentry_open(const struct path *, int, const struct cred *); extern struct file *dentry_create(const struct path *path, int flags, umode_t mode, const struct cred *cred); extern struct file * open_with_fake_path(const struct path *, int, struct inode*, const struct cred *); static inline struct file *file_clone_open(struct file *file) { return dentry_open(&file->f_path, file->f_flags, file->f_cred); } extern int filp_close(struct file *, fl_owner_t id); extern struct filename *getname_flags(const char __user *, int, int *); extern struct filename *getname_uflags(const char __user *, int); extern struct filename *getname(const char __user *); extern struct filename *getname_kernel(const char *); extern void putname(struct filename *name); extern int finish_open(struct file *file, struct dentry *dentry, int (*open)(struct inode *, struct file *)); extern int finish_no_open(struct file *file, struct dentry *dentry); /* Helper for the simple case when original dentry is used */ static inline int finish_open_simple(struct file *file, int error) { if (error) return error; return finish_open(file, file->f_path.dentry, NULL); } /* fs/dcache.c */ extern void __init vfs_caches_init_early(void); extern void __init vfs_caches_init(void); extern struct kmem_cache *names_cachep; #define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL) #define __putname(name) kmem_cache_free(names_cachep, (void *)(name)) extern struct super_block *blockdev_superblock; static inline bool sb_is_blkdev_sb(struct super_block *sb) { return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock; } void emergency_thaw_all(void); extern int sync_filesystem(struct super_block *); extern const struct file_operations def_blk_fops; extern const struct file_operations def_chr_fops; /* fs/char_dev.c */ #define CHRDEV_MAJOR_MAX 512 /* Marks the bottom of the first segment of free char majors */ #define CHRDEV_MAJOR_DYN_END 234 /* Marks the top and bottom of the second segment of free char majors */ #define CHRDEV_MAJOR_DYN_EXT_START 511 #define CHRDEV_MAJOR_DYN_EXT_END 384 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *); extern int register_chrdev_region(dev_t, unsigned, const char *); extern int __register_chrdev(unsigned int major, unsigned int baseminor, unsigned int count, const char *name, const struct file_operations *fops); extern void __unregister_chrdev(unsigned int major, unsigned int baseminor, unsigned int count, const char *name); extern void unregister_chrdev_region(dev_t, unsigned); extern void chrdev_show(struct seq_file *,off_t); static inline int register_chrdev(unsigned int major, const char *name, const struct file_operations *fops) { return __register_chrdev(major, 0, 256, name, fops); } static inline void unregister_chrdev(unsigned int major, const char *name) { __unregister_chrdev(major, 0, 256, name); } extern void init_special_inode(struct inode *, umode_t, dev_t); /* Invalid inode operations -- fs/bad_inode.c */ extern void make_bad_inode(struct inode *); extern bool is_bad_inode(struct inode *); extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart, loff_t lend); extern int __must_check file_check_and_advance_wb_err(struct file *file); extern int __must_check file_write_and_wait_range(struct file *file, loff_t start, loff_t end); static inline int file_write_and_wait(struct file *file) { return file_write_and_wait_range(file, 0, LLONG_MAX); } extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync); extern int vfs_fsync(struct file *file, int datasync); extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes, unsigned int flags); static inline bool iocb_is_dsync(const struct kiocb *iocb) { return (iocb->ki_flags & IOCB_DSYNC) || IS_SYNC(iocb->ki_filp->f_mapping->host); } /* * Sync the bytes written if this was a synchronous write. Expect ki_pos * to already be updated for the write, and will return either the amount * of bytes passed in, or an error if syncing the file failed. */ static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count) { if (iocb_is_dsync(iocb)) { int ret = vfs_fsync_range(iocb->ki_filp, iocb->ki_pos - count, iocb->ki_pos - 1, (iocb->ki_flags & IOCB_SYNC) ? 0 : 1); if (ret) return ret; } return count; } extern void emergency_sync(void); extern void emergency_remount(void); #ifdef CONFIG_BLOCK extern int bmap(struct inode *inode, sector_t *block); #else static inline int bmap(struct inode *inode, sector_t *block) { return -EINVAL; } #endif int notify_change(struct user_namespace *, struct dentry *, struct iattr *, struct inode **); int inode_permission(struct user_namespace *, struct inode *, int); int generic_permission(struct user_namespace *, struct inode *, int); static inline int file_permission(struct file *file, int mask) { return inode_permission(file_mnt_user_ns(file), file_inode(file), mask); } static inline int path_permission(const struct path *path, int mask) { return inode_permission(mnt_user_ns(path->mnt), d_inode(path->dentry), mask); } int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir, struct inode *inode); static inline bool execute_ok(struct inode *inode) { return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode); } static inline bool inode_wrong_type(const struct inode *inode, umode_t mode) { return (inode->i_mode ^ mode) & S_IFMT; } static inline void file_start_write(struct file *file) { if (!S_ISREG(file_inode(file)->i_mode)) return; sb_start_write(file_inode(file)->i_sb); } static inline bool file_start_write_trylock(struct file *file) { if (!S_ISREG(file_inode(file)->i_mode)) return true; return sb_start_write_trylock(file_inode(file)->i_sb); } static inline void file_end_write(struct file *file) { if (!S_ISREG(file_inode(file)->i_mode)) return; __sb_end_write(file_inode(file)->i_sb, SB_FREEZE_WRITE); } /** * kiocb_start_write - get write access to a superblock for async file io * @iocb: the io context we want to submit the write with * * This is a variant of sb_start_write() for async io submission. * Should be matched with a call to kiocb_end_write(). */ static inline void kiocb_start_write(struct kiocb *iocb) { struct inode *inode = file_inode(iocb->ki_filp); sb_start_write(inode->i_sb); /* * Fool lockdep by telling it the lock got released so that it * doesn't complain about the held lock when we return to userspace. */ __sb_writers_release(inode->i_sb, SB_FREEZE_WRITE); } /** * kiocb_end_write - drop write access to a superblock after async file io * @iocb: the io context we sumbitted the write with * * Should be matched with a call to kiocb_start_write(). */ static inline void kiocb_end_write(struct kiocb *iocb) { struct inode *inode = file_inode(iocb->ki_filp); /* * Tell lockdep we inherited freeze protection from submission thread. */ __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); sb_end_write(inode->i_sb); } /* * This is used for regular files where some users -- especially the * currently executed binary in a process, previously handled via * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap * read-write shared) accesses. * * get_write_access() gets write permission for a file. * put_write_access() releases this write permission. * deny_write_access() denies write access to a file. * allow_write_access() re-enables write access to a file. * * The i_writecount field of an inode can have the following values: * 0: no write access, no denied write access * < 0: (-i_writecount) users that denied write access to the file. * > 0: (i_writecount) users that have write access to the file. * * Normally we operate on that counter with atomic_{inc,dec} and it's safe * except for the cases where we don't hold i_writecount yet. Then we need to * use {get,deny}_write_access() - these functions check the sign and refuse * to do the change if sign is wrong. */ static inline int get_write_access(struct inode *inode) { return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY; } static inline int deny_write_access(struct file *file) { struct inode *inode = file_inode(file); return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY; } static inline void put_write_access(struct inode * inode) { atomic_dec(&inode->i_writecount); } static inline void allow_write_access(struct file *file) { if (file) atomic_inc(&file_inode(file)->i_writecount); } static inline bool inode_is_open_for_write(const struct inode *inode) { return atomic_read(&inode->i_writecount) > 0; } #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) static inline void i_readcount_dec(struct inode *inode) { BUG_ON(!atomic_read(&inode->i_readcount)); atomic_dec(&inode->i_readcount); } static inline void i_readcount_inc(struct inode *inode) { atomic_inc(&inode->i_readcount); } #else static inline void i_readcount_dec(struct inode *inode) { return; } static inline void i_readcount_inc(struct inode *inode) { return; } #endif extern int do_pipe_flags(int *, int); extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *); ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos); extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *); extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *); extern struct file * open_exec(const char *); /* fs/dcache.c -- generic fs support functions */ extern bool is_subdir(struct dentry *, struct dentry *); extern bool path_is_under(const struct path *, const struct path *); extern char *file_path(struct file *, char *, int); /** * is_dot_dotdot - returns true only if @name is "." or ".." * @name: file name to check * @len: length of file name, in bytes */ static inline bool is_dot_dotdot(const char *name, size_t len) { return len && unlikely(name[0] == '.') && (len == 1 || (len == 2 && name[1] == '.')); } #include <linux/err.h> /* needed for stackable file system support */ extern loff_t default_llseek(struct file *file, loff_t offset, int whence); extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence); extern int inode_init_always(struct super_block *, struct inode *); extern void inode_init_once(struct inode *); extern void address_space_init_once(struct address_space *mapping); extern struct inode * igrab(struct inode *); extern ino_t iunique(struct super_block *, ino_t); extern int inode_needs_sync(struct inode *inode); extern int generic_delete_inode(struct inode *inode); static inline int generic_drop_inode(struct inode *inode) { return !inode->i_nlink || inode_unhashed(inode); } extern void d_mark_dontcache(struct inode *inode); extern struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data); extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data); extern struct inode *ilookup(struct super_block *sb, unsigned long ino); extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data); extern struct inode * iget5_locked(struct super_block *, unsigned long, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *); extern struct inode * iget_locked(struct super_block *, unsigned long); extern struct inode *find_inode_nowait(struct super_block *, unsigned long, int (*match)(struct inode *, unsigned long, void *), void *data); extern struct inode *find_inode_rcu(struct super_block *, unsigned long, int (*)(struct inode *, void *), void *); extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long); extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *); extern int insert_inode_locked(struct inode *); #ifdef CONFIG_DEBUG_LOCK_ALLOC extern void lockdep_annotate_inode_mutex_key(struct inode *inode); #else static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { }; #endif extern void unlock_new_inode(struct inode *); extern void discard_new_inode(struct inode *); extern unsigned int get_next_ino(void); extern void evict_inodes(struct super_block *sb); void dump_mapping(const struct address_space *); /* * Userspace may rely on the the inode number being non-zero. For example, glibc * simply ignores files with zero i_ino in unlink() and other places. * * As an additional complication, if userspace was compiled with * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the * lower 32 bits, so we need to check that those aren't zero explicitly. With * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but * better safe than sorry. */ static inline bool is_zero_ino(ino_t ino) { return (u32)ino == 0; } extern void __iget(struct inode * inode); extern void iget_failed(struct inode *); extern void clear_inode(struct inode *); extern void __destroy_inode(struct inode *); extern struct inode *new_inode_pseudo(struct super_block *sb); extern struct inode *new_inode(struct super_block *sb); extern void free_inode_nonrcu(struct inode *inode); extern int setattr_should_drop_suidgid(struct user_namespace *, struct inode *); extern int file_remove_privs(struct file *); int setattr_should_drop_sgid(struct user_namespace *mnt_userns, const struct inode *inode); /* * This must be used for allocating filesystems specific inodes to set * up the inode reclaim context correctly. */ static inline void * alloc_inode_sb(struct super_block *sb, struct kmem_cache *cache, gfp_t gfp) { return kmem_cache_alloc_lru(cache, &sb->s_inode_lru, gfp); } extern void __insert_inode_hash(struct inode *, unsigned long hashval); static inline void insert_inode_hash(struct inode *inode) { __insert_inode_hash(inode, inode->i_ino); } extern void __remove_inode_hash(struct inode *); static inline void remove_inode_hash(struct inode *inode) { if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash)) __remove_inode_hash(inode); } extern void inode_sb_list_add(struct inode *inode); extern void inode_add_lru(struct inode *inode); extern int sb_set_blocksize(struct super_block *, int); extern int sb_min_blocksize(struct super_block *, int); extern int generic_file_mmap(struct file *, struct vm_area_struct *); extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *); extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *); int generic_write_checks_count(struct kiocb *iocb, loff_t *count); extern int generic_write_check_limits(struct file *file, loff_t pos, loff_t *count); extern int generic_file_rw_checks(struct file *file_in, struct file *file_out); ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to, ssize_t already_read); extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *); extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *); extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *); extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *); ssize_t generic_perform_write(struct kiocb *, struct iov_iter *); ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos, rwf_t flags); ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos, rwf_t flags); ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb, struct iov_iter *iter); ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb, struct iov_iter *iter); /* fs/splice.c */ extern ssize_t generic_file_splice_read(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); extern ssize_t iter_file_splice_write(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); extern ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, loff_t *, size_t len, unsigned int flags); extern long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, loff_t *opos, size_t len, unsigned int flags); extern void file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping); extern loff_t noop_llseek(struct file *file, loff_t offset, int whence); #define no_llseek NULL extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize); extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence); extern loff_t generic_file_llseek_size(struct file *file, loff_t offset, int whence, loff_t maxsize, loff_t eof); extern loff_t fixed_size_llseek(struct file *file, loff_t offset, int whence, loff_t size); extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t); extern loff_t no_seek_end_llseek(struct file *, loff_t, int); int rw_verify_area(int, struct file *, const loff_t *, size_t); extern int generic_file_open(struct inode * inode, struct file * filp); extern int nonseekable_open(struct inode * inode, struct file * filp); extern int stream_open(struct inode * inode, struct file * filp); #ifdef CONFIG_BLOCK typedef void (dio_submit_t)(struct bio *bio, struct inode *inode, loff_t file_offset); enum { /* need locking between buffered and direct access */ DIO_LOCKING = 0x01, /* filesystem does not support filling holes */ DIO_SKIP_HOLES = 0x02, }; ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, struct block_device *bdev, struct iov_iter *iter, get_block_t get_block, dio_iodone_t end_io, dio_submit_t submit_io, int flags); static inline ssize_t blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, struct iov_iter *iter, get_block_t get_block) { return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, get_block, NULL, NULL, DIO_LOCKING | DIO_SKIP_HOLES); } #endif void inode_dio_wait(struct inode *inode); /** * inode_dio_begin - signal start of a direct I/O requests * @inode: inode the direct I/O happens on * * This is called once we've finished processing a direct I/O request, * and is used to wake up callers waiting for direct I/O to be quiesced. */ static inline void inode_dio_begin(struct inode *inode) { atomic_inc(&inode->i_dio_count); } /** * inode_dio_end - signal finish of a direct I/O requests * @inode: inode the direct I/O happens on * * This is called once we've finished processing a direct I/O request, * and is used to wake up callers waiting for direct I/O to be quiesced. */ static inline void inode_dio_end(struct inode *inode) { if (atomic_dec_and_test(&inode->i_dio_count)) wake_up_bit(&inode->i_state, __I_DIO_WAKEUP); } /* * Warn about a page cache invalidation failure diring a direct I/O write. */ void dio_warn_stale_pagecache(struct file *filp); extern void inode_set_flags(struct inode *inode, unsigned int flags, unsigned int mask); extern const struct file_operations generic_ro_fops; #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m)) extern int readlink_copy(char __user *, int, const char *); extern int page_readlink(struct dentry *, char __user *, int); extern const char *page_get_link(struct dentry *, struct inode *, struct delayed_call *); extern void page_put_link(void *); extern int page_symlink(struct inode *inode, const char *symname, int len); extern const struct inode_operations page_symlink_inode_operations; extern void kfree_link(void *); void generic_fillattr(struct user_namespace *, struct inode *, struct kstat *); void generic_fill_statx_attr(struct inode *inode, struct kstat *stat); extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int); extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int); void __inode_add_bytes(struct inode *inode, loff_t bytes); void inode_add_bytes(struct inode *inode, loff_t bytes); void __inode_sub_bytes(struct inode *inode, loff_t bytes); void inode_sub_bytes(struct inode *inode, loff_t bytes); static inline loff_t __inode_get_bytes(struct inode *inode) { return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes; } loff_t inode_get_bytes(struct inode *inode); void inode_set_bytes(struct inode *inode, loff_t bytes); const char *simple_get_link(struct dentry *, struct inode *, struct delayed_call *); extern const struct inode_operations simple_symlink_inode_operations; extern int iterate_dir(struct file *, struct dir_context *); int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat, int flags); int vfs_fstat(int fd, struct kstat *stat); static inline int vfs_stat(const char __user *filename, struct kstat *stat) { return vfs_fstatat(AT_FDCWD, filename, stat, 0); } static inline int vfs_lstat(const char __user *name, struct kstat *stat) { return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW); } extern const char *vfs_get_link(struct dentry *, struct delayed_call *); extern int vfs_readlink(struct dentry *, char __user *, int); extern struct file_system_type *get_filesystem(struct file_system_type *fs); extern void put_filesystem(struct file_system_type *fs); extern struct file_system_type *get_fs_type(const char *name); extern struct super_block *get_super(struct block_device *); extern struct super_block *get_active_super(struct block_device *bdev); extern void drop_super(struct super_block *sb); extern void drop_super_exclusive(struct super_block *sb); extern void iterate_supers(void (*)(struct super_block *, void *), void *); extern void iterate_supers_type(struct file_system_type *, void (*)(struct super_block *, void *), void *); extern int dcache_dir_open(struct inode *, struct file *); extern int dcache_dir_close(struct inode *, struct file *); extern loff_t dcache_dir_lseek(struct file *, loff_t, int); extern int dcache_readdir(struct file *, struct dir_context *); extern int simple_setattr(struct user_namespace *, struct dentry *, struct iattr *); extern int simple_getattr(struct user_namespace *, const struct path *, struct kstat *, u32, unsigned int); extern int simple_statfs(struct dentry *, struct kstatfs *); extern int simple_open(struct inode *inode, struct file *file); extern int simple_link(struct dentry *, struct inode *, struct dentry *); extern int simple_unlink(struct inode *, struct dentry *); extern int simple_rmdir(struct inode *, struct dentry *); extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry); extern int simple_rename(struct user_namespace *, struct inode *, struct dentry *, struct inode *, struct dentry *, unsigned int); extern void simple_recursive_removal(struct dentry *, void (*callback)(struct dentry *)); extern int noop_fsync(struct file *, loff_t, loff_t, int); extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter); extern int simple_empty(struct dentry *); extern int simple_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, struct page **pagep, void **fsdata); extern const struct address_space_operations ram_aops; extern int always_delete_dentry(const struct dentry *); extern struct inode *alloc_anon_inode(struct super_block *); extern int simple_nosetlease(struct file *, long, struct file_lock **, void **); extern const struct dentry_operations simple_dentry_operations; extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags); extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *); extern const struct file_operations simple_dir_operations; extern const struct inode_operations simple_dir_inode_operations; extern void make_empty_dir_inode(struct inode *inode); extern bool is_empty_dir_inode(struct inode *inode); struct tree_descr { const char *name; const struct file_operations *ops; int mode; }; struct dentry *d_alloc_name(struct dentry *, const char *); extern int simple_fill_super(struct super_block *, unsigned long, const struct tree_descr *); extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count); extern void simple_release_fs(struct vfsmount **mount, int *count); extern ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, const void *from, size_t available); extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, const void __user *from, size_t count); extern int __generic_file_fsync(struct file *, loff_t, loff_t, int); extern int generic_file_fsync(struct file *, loff_t, loff_t, int); extern int generic_check_addressable(unsigned, u64); extern void generic_set_encrypted_ci_d_ops(struct dentry *dentry); int may_setattr(struct user_namespace *mnt_userns, struct inode *inode, unsigned int ia_valid); int setattr_prepare(struct user_namespace *, struct dentry *, struct iattr *); extern int inode_newsize_ok(const struct inode *, loff_t offset); void setattr_copy(struct user_namespace *, struct inode *inode, const struct iattr *attr); extern int file_update_time(struct file *file); static inline bool vma_is_dax(const struct vm_area_struct *vma) { return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host); } static inline bool vma_is_fsdax(struct vm_area_struct *vma) { struct inode *inode; if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file) return false; if (!vma_is_dax(vma)) return false; inode = file_inode(vma->vm_file); if (S_ISCHR(inode->i_mode)) return false; /* device-dax */ return true; } static inline int iocb_flags(struct file *file) { int res = 0; if (file->f_flags & O_APPEND) res |= IOCB_APPEND; if (file->f_flags & O_DIRECT) res |= IOCB_DIRECT; if (file->f_flags & O_DSYNC) res |= IOCB_DSYNC; if (file->f_flags & __O_SYNC) res |= IOCB_SYNC; return res; } static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags) { int kiocb_flags = 0; /* make sure there's no overlap between RWF and private IOCB flags */ BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD); if (!flags) return 0; if (unlikely(flags & ~RWF_SUPPORTED)) return -EOPNOTSUPP; if (flags & RWF_NOWAIT) { if (!(ki->ki_filp->f_mode & FMODE_NOWAIT)) return -EOPNOTSUPP; kiocb_flags |= IOCB_NOIO; } kiocb_flags |= (__force int) (flags & RWF_SUPPORTED); if (flags & RWF_SYNC) kiocb_flags |= IOCB_DSYNC; ki->ki_flags |= kiocb_flags; return 0; } static inline ino_t parent_ino(struct dentry *dentry) { ino_t res; /* * Don't strictly need d_lock here? If the parent ino could change * then surely we'd have a deeper race in the caller? */ spin_lock(&dentry->d_lock); res = dentry->d_parent->d_inode->i_ino; spin_unlock(&dentry->d_lock); return res; } /* Transaction based IO helpers */ /* * An argresp is stored in an allocated page and holds the * size of the argument or response, along with its content */ struct simple_transaction_argresp { ssize_t size; char data[]; }; #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp)) char *simple_transaction_get(struct file *file, const char __user *buf, size_t size); ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos); int simple_transaction_release(struct inode *inode, struct file *file); void simple_transaction_set(struct file *file, size_t n); /* * simple attribute files * * These attributes behave similar to those in sysfs: * * Writing to an attribute immediately sets a value, an open file can be * written to multiple times. * * Reading from an attribute creates a buffer from the value that might get * read with multiple read calls. When the attribute has been read * completely, no further read calls are possible until the file is opened * again. * * All attributes contain a text representation of a numeric value * that are accessed with the get() and set() functions. */ #define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \ static int __fops ## _open(struct inode *inode, struct file *file) \ { \ __simple_attr_check_format(__fmt, 0ull); \ return simple_attr_open(inode, file, __get, __set, __fmt); \ } \ static const struct file_operations __fops = { \ .owner = THIS_MODULE, \ .open = __fops ## _open, \ .release = simple_attr_release, \ .read = simple_attr_read, \ .write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \ .llseek = generic_file_llseek, \ } #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false) #define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \ DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true) static inline __printf(1, 2) void __simple_attr_check_format(const char *fmt, ...) { /* don't do anything, just let the compiler check the arguments; */ } int simple_attr_open(struct inode *inode, struct file *file, int (*get)(void *, u64 *), int (*set)(void *, u64), const char *fmt); int simple_attr_release(struct inode *inode, struct file *file); ssize_t simple_attr_read(struct file *file, char __user *buf, size_t len, loff_t *ppos); ssize_t simple_attr_write(struct file *file, const char __user *buf, size_t len, loff_t *ppos); ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, size_t len, loff_t *ppos); struct ctl_table; int __init list_bdev_fs_names(char *buf, size_t size); #define __FMODE_EXEC ((__force int) FMODE_EXEC) #define __FMODE_NONOTIFY ((__force int) FMODE_NONOTIFY) #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) #define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \ (flag & __FMODE_NONOTIFY))) static inline bool is_sxid(umode_t mode) { return mode & (S_ISUID | S_ISGID); } static inline int check_sticky(struct user_namespace *mnt_userns, struct inode *dir, struct inode *inode) { if (!(dir->i_mode & S_ISVTX)) return 0; return __check_sticky(mnt_userns, dir, inode); } static inline void inode_has_no_xattr(struct inode *inode) { if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC)) inode->i_flags |= S_NOSEC; } static inline bool is_root_inode(struct inode *inode) { return inode == inode->i_sb->s_root->d_inode; } static inline bool dir_emit(struct dir_context *ctx, const char *name, int namelen, u64 ino, unsigned type) { return ctx->actor(ctx, name, namelen, ctx->pos, ino, type); } static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx) { return ctx->actor(ctx, ".", 1, ctx->pos, file->f_path.dentry->d_inode->i_ino, DT_DIR); } static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx) { return ctx->actor(ctx, "..", 2, ctx->pos, parent_ino(file->f_path.dentry), DT_DIR); } static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx) { if (ctx->pos == 0) { if (!dir_emit_dot(file, ctx)) return false; ctx->pos = 1; } if (ctx->pos == 1) { if (!dir_emit_dotdot(file, ctx)) return false; ctx->pos = 2; } return true; } static inline bool dir_relax(struct inode *inode) { inode_unlock(inode); inode_lock(inode); return !IS_DEADDIR(inode); } static inline bool dir_relax_shared(struct inode *inode) { inode_unlock_shared(inode); inode_lock_shared(inode); return !IS_DEADDIR(inode); } extern bool path_noexec(const struct path *path); extern void inode_nohighmem(struct inode *inode); /* mm/fadvise.c */ extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len, int advice); extern int generic_fadvise(struct file *file, loff_t offset, loff_t len, int advice); #endif /* _LINUX_FS_H */
632 56 579 584 693 11 80 34 566 89 89 89 90 71 72 18 90 98 11 97 1 19 80 18 38 606 593 595 593 89 91 10 582 584 543 91 615 615 299 334 38 542 542 28 28 28 28 28 28 1 1 1 574 84 286 587 299 587 286 587 299 587 529 530 529 530 320 320 320 23 415 284 525 522 4 1 3 312 314 316 312 313 284 284 284 46 46 46 678 677 678 678 322 451 451 451 676 451 322 179 179 179 543 594 542 297 355 634 541 539 170 65 534 171 243 540 552 553 552 54 54 541 534 533 570 569 570 30 547 570 476 117 566 5 19 554 539 26 5 569 548 30 30 30 60 60 60 2 50 8 55 3 58 5 54 51 25 59 60 10 24 2 60 60 60 5 55 5 5 1 2 3 5 60 615 615 614 615 27 615 614 617 615 345 346 346 55 334 334 48 334 332 130 320 331 2 334 334 304 18 302 302 302 59 14 51 50 6 60 60 60 6 60 37 21 5 5 21 60 61 54 14 30 12 26 25 30 7 30 21 7 30 530 532 532 3 529 532 532 532 273 531 525 9 528 11 532 532 24 532 532 570 570 570 297 291 521 28 542 541 28 521 45 500 542 542 526 528 491 25 24 530 529 530 542 542 543 371 188 543 6 7 47 497 9 25 11 19 25 11 7 18 1 18 18 15 10 25 9 2 7 14 14 2 12 2 1 14 5 9 543 543 338 51 297 314 298 48 293 293 8 314 279 7 285 512 541 48 521 542 542 542 542 534 534 205 532 534 5 532 532 532 532 338 542 542 543 498 540 543 86 302 522 543 338 542 540 5 5 5 5 5 5 12 12 12 12 12 12 12 12 12 28 27 1 26 1 13 2 13 13 28 16 2 12 12 6 3 3 7 7 355 354 641 630 17 639 641 583 65 65 65 527 284 284 322 3 320 320 321 3 284 17 18 565 106 18 122 5 6 113 9 120 3 119 5 113 11 113 11 113 11 118 5 119 115 7 113 9 118 6 27 97 122 124 630 13 137 543 543 121 1 121 122 124 122 124 6 111 13 124 34 90 29 93 63 61 124 47 60 61 61 60 61 61 6 85 84 24 60 61 59 6 6 6 6 61 6 6 85 85 16 47 48 32 32 32 15 9 2 7 6 6 4 6 1 3 8 2 2 17 9 2 12 5 2 5 2 74 11 40 10 2 2 2 2 13 14 17 32 19 255 256 337 337 336 337 337 2 2 2 2 2 2 6 6 6 6 6 6 11 11 11 11 11 11 5 43 43 43 43 25 332 288 46 46 281 52 285 50 287 49 279 43 18 7 49 1 32 17 1 1 3 8 12 1 11 11 11 30 30 315 276 41 289 30 283 27 8 315 271 46 288 274 43 43 293 25 293 23 277 41 306 11 299 267 55 315 303 12 315 293 25 25 314 315 315 314 309 309 7 7 109 6 28 103 148 147 4 34 148 148 148 148 148 109 147 148 17 9 11 11 202 15 210 210 4 3 4 3 4 24 20 4 16 13 10 10 24 210 203 24 24 24 24 24 24 24 4 3 4 4 36 5 5 1 1 1 1 22 19 8 8 62 30 32 32 56 54 25 25 32 1736 1724 32 1722 67 19 18 11 11 1191 1184 532 318 279 1 313 7 5 11 319 318 308 11 12 12 2 11 316 5 91 46 95 2 79 245 2601 2234 349 50 322 29 316 245 136 133 121 433 36 433 435 433 1 434 121 433 3656 3941 3661 3944 433 435 435 434 434 434 434 9 36 36 6 30 36 36 11 11 1 1 47 17 16 20 20 6 17 20 45 45 40 45 20 20 20 20 20 76 27 1 1 4 45 2491 2494 2491 3655 2550 1857 1858 2550 2550 2493 2487 80 80 80 8 8 1 1 80 2551 54 388 28 2 8 352 88 28 61 1 28 35 11 11 11 11 11 4 7 2 3 3 2 67 2 60 9 2 50 48 46 1 2 68 57 15 15 15 124 123 7 7 40 282 196 37 60 121 300 300 215 215 297 296 212 7 243 27 47 1 174 1 10 1 9 9 9 8 8 3 230 27 199 1 7 585 532 532 8 10 749 745 4 743 4 302 642 10 649 2 4 15 722 35 720 25 720 722 519 518 28 229 8 749 26 27 566 27 589 14 616 35 575 15 582 8 583 9 576 15 578 13 579 13 574 14 581 11 578 14 578 13 576 15 66 531 10 102 589 590 758 8 415 369 754 723 35 109 662 723 34 15 709 752 10 741 752 132 634 630 2 1 630 630 35 531 78 618 17 6 11 41 111 804 18 4 776 2 6 3 2 754 2 7 10 5 11 743 30 726 52 142 641 750 17 2 762 14 1 2 11 2 2 6 6 12 9 3 15 513 13 13 12 13 785 1 36 22 728 727 725 22 27 721 704 46 46 731 13 741 2 678 2 642 2 636 588 160 388 226 568 27 585 52 540 4 7 6 5 33 560 9 55 513 562 563 513 563 543 542 543 48 499 540 543 24 24 32 41 64 158 226 28 3 22 3 7 1 6 35 35 35 29 35 35 8 35 178 154 7 1 35 35 281 179 179 158 3 23 281 280 281 179 40 40 40 40 28 28 28 31 31 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 // SPDX-License-Identifier: GPL-2.0 /* * Performance events core code: * * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> */ #include <linux/fs.h> #include <linux/mm.h> #include <linux/cpu.h> #include <linux/smp.h> #include <linux/idr.h> #include <linux/file.h> #include <linux/poll.h> #include <linux/slab.h> #include <linux/hash.h> #include <linux/tick.h> #include <linux/sysfs.h> #include <linux/dcache.h> #include <linux/percpu.h> #include <linux/ptrace.h> #include <linux/reboot.h> #include <linux/vmstat.h> #include <linux/device.h> #include <linux/export.h> #include <linux/vmalloc.h> #include <linux/hardirq.h> #include <linux/hugetlb.h> #include <linux/rculist.h> #include <linux/uaccess.h> #include <linux/syscalls.h> #include <linux/anon_inodes.h> #include <linux/kernel_stat.h> #include <linux/cgroup.h> #include <linux/perf_event.h> #include <linux/trace_events.h> #include <linux/hw_breakpoint.h> #include <linux/mm_types.h> #include <linux/module.h> #include <linux/mman.h> #include <linux/compat.h> #include <linux/bpf.h> #include <linux/filter.h> #include <linux/namei.h> #include <linux/parser.h> #include <linux/sched/clock.h> #include <linux/sched/mm.h> #include <linux/proc_ns.h> #include <linux/mount.h> #include <linux/min_heap.h> #include <linux/highmem.h> #include <linux/pgtable.h> #include <linux/buildid.h> #include <linux/task_work.h> #include "internal.h" #include <asm/irq_regs.h> typedef int (*remote_function_f)(void *); struct remote_function_call { struct task_struct *p; remote_function_f func; void *info; int ret; }; static void remote_function(void *data) { struct remote_function_call *tfc = data; struct task_struct *p = tfc->p; if (p) { /* -EAGAIN */ if (task_cpu(p) != smp_processor_id()) return; /* * Now that we're on right CPU with IRQs disabled, we can test * if we hit the right task without races. */ tfc->ret = -ESRCH; /* No such (running) process */ if (p != current) return; } tfc->ret = tfc->func(tfc->info); } /** * task_function_call - call a function on the cpu on which a task runs * @p: the task to evaluate * @func: the function to be called * @info: the function call argument * * Calls the function @func when the task is currently running. This might * be on the current CPU, which just calls the function directly. This will * retry due to any failures in smp_call_function_single(), such as if the * task_cpu() goes offline concurrently. * * returns @func return value or -ESRCH or -ENXIO when the process isn't running */ static int task_function_call(struct task_struct *p, remote_function_f func, void *info) { struct remote_function_call data = { .p = p, .func = func, .info = info, .ret = -EAGAIN, }; int ret; for (;;) { ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); if (!ret) ret = data.ret; if (ret != -EAGAIN) break; cond_resched(); } return ret; } /** * cpu_function_call - call a function on the cpu * @cpu: target cpu to queue this function * @func: the function to be called * @info: the function call argument * * Calls the function @func on the remote cpu. * * returns: @func return value or -ENXIO when the cpu is offline */ static int cpu_function_call(int cpu, remote_function_f func, void *info) { struct remote_function_call data = { .p = NULL, .func = func, .info = info, .ret = -ENXIO, /* No such CPU */ }; smp_call_function_single(cpu, remote_function, &data, 1); return data.ret; } static inline struct perf_cpu_context * __get_cpu_context(struct perf_event_context *ctx) { return this_cpu_ptr(ctx->pmu->pmu_cpu_context); } static void perf_ctx_lock(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) { raw_spin_lock(&cpuctx->ctx.lock); if (ctx) raw_spin_lock(&ctx->lock); } static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) { if (ctx) raw_spin_unlock(&ctx->lock); raw_spin_unlock(&cpuctx->ctx.lock); } #define TASK_TOMBSTONE ((void *)-1L) static bool is_kernel_event(struct perf_event *event) { return READ_ONCE(event->owner) == TASK_TOMBSTONE; } /* * On task ctx scheduling... * * When !ctx->nr_events a task context will not be scheduled. This means * we can disable the scheduler hooks (for performance) without leaving * pending task ctx state. * * This however results in two special cases: * * - removing the last event from a task ctx; this is relatively straight * forward and is done in __perf_remove_from_context. * * - adding the first event to a task ctx; this is tricky because we cannot * rely on ctx->is_active and therefore cannot use event_function_call(). * See perf_install_in_context(). * * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. */ typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, struct perf_event_context *, void *); struct event_function_struct { struct perf_event *event; event_f func; void *data; }; static int event_function(void *info) { struct event_function_struct *efs = info; struct perf_event *event = efs->event; struct perf_event_context *ctx = event->ctx; struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); struct perf_event_context *task_ctx = cpuctx->task_ctx; int ret = 0; lockdep_assert_irqs_disabled(); perf_ctx_lock(cpuctx, task_ctx); /* * Since we do the IPI call without holding ctx->lock things can have * changed, double check we hit the task we set out to hit. */ if (ctx->task) { if (ctx->task != current) { ret = -ESRCH; goto unlock; } /* * We only use event_function_call() on established contexts, * and event_function() is only ever called when active (or * rather, we'll have bailed in task_function_call() or the * above ctx->task != current test), therefore we must have * ctx->is_active here. */ WARN_ON_ONCE(!ctx->is_active); /* * And since we have ctx->is_active, cpuctx->task_ctx must * match. */ WARN_ON_ONCE(task_ctx != ctx); } else { WARN_ON_ONCE(&cpuctx->ctx != ctx); } efs->func(event, cpuctx, ctx, efs->data); unlock: perf_ctx_unlock(cpuctx, task_ctx); return ret; } static void event_function_call(struct perf_event *event, event_f func, void *data) { struct perf_event_context *ctx = event->ctx; struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ struct event_function_struct efs = { .event = event, .func = func, .data = data, }; if (!event->parent) { /* * If this is a !child event, we must hold ctx::mutex to * stabilize the event->ctx relation. See * perf_event_ctx_lock(). */ lockdep_assert_held(&ctx->mutex); } if (!task) { cpu_function_call(event->cpu, event_function, &efs); return; } if (task == TASK_TOMBSTONE) return; again: if (!task_function_call(task, event_function, &efs)) return; raw_spin_lock_irq(&ctx->lock); /* * Reload the task pointer, it might have been changed by * a concurrent perf_event_context_sched_out(). */ task = ctx->task; if (task == TASK_TOMBSTONE) { raw_spin_unlock_irq(&ctx->lock); return; } if (ctx->is_active) { raw_spin_unlock_irq(&ctx->lock); goto again; } func(event, NULL, ctx, data); raw_spin_unlock_irq(&ctx->lock); } /* * Similar to event_function_call() + event_function(), but hard assumes IRQs * are already disabled and we're on the right CPU. */ static void event_function_local(struct perf_event *event, event_f func, void *data) { struct perf_event_context *ctx = event->ctx; struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); struct task_struct *task = READ_ONCE(ctx->task); struct perf_event_context *task_ctx = NULL; lockdep_assert_irqs_disabled(); if (task) { if (task == TASK_TOMBSTONE) return; task_ctx = ctx; } perf_ctx_lock(cpuctx, task_ctx); task = ctx->task; if (task == TASK_TOMBSTONE) goto unlock; if (task) { /* * We must be either inactive or active and the right task, * otherwise we're screwed, since we cannot IPI to somewhere * else. */ if (ctx->is_active) { if (WARN_ON_ONCE(task != current)) goto unlock; if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) goto unlock; } } else { WARN_ON_ONCE(&cpuctx->ctx != ctx); } func(event, cpuctx, ctx, data); unlock: perf_ctx_unlock(cpuctx, task_ctx); } #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ PERF_FLAG_FD_OUTPUT |\ PERF_FLAG_PID_CGROUP |\ PERF_FLAG_FD_CLOEXEC) /* * branch priv levels that need permission checks */ #define PERF_SAMPLE_BRANCH_PERM_PLM \ (PERF_SAMPLE_BRANCH_KERNEL |\ PERF_SAMPLE_BRANCH_HV) enum event_type_t { EVENT_FLEXIBLE = 0x1, EVENT_PINNED = 0x2, EVENT_TIME = 0x4, /* see ctx_resched() for details */ EVENT_CPU = 0x8, EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, }; /* * perf_sched_events : >0 events exist * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu */ static void perf_sched_delayed(struct work_struct *work); DEFINE_STATIC_KEY_FALSE(perf_sched_events); static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); static DEFINE_MUTEX(perf_sched_mutex); static atomic_t perf_sched_count; static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); static DEFINE_PER_CPU(int, perf_sched_cb_usages); static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); static atomic_t nr_mmap_events __read_mostly; static atomic_t nr_comm_events __read_mostly; static atomic_t nr_namespaces_events __read_mostly; static atomic_t nr_task_events __read_mostly; static atomic_t nr_freq_events __read_mostly; static atomic_t nr_switch_events __read_mostly; static atomic_t nr_ksymbol_events __read_mostly; static atomic_t nr_bpf_events __read_mostly; static atomic_t nr_cgroup_events __read_mostly; static atomic_t nr_text_poke_events __read_mostly; static atomic_t nr_build_id_events __read_mostly; static LIST_HEAD(pmus); static DEFINE_MUTEX(pmus_lock); static struct srcu_struct pmus_srcu; static cpumask_var_t perf_online_mask; static struct kmem_cache *perf_event_cache; /* * perf event paranoia level: * -1 - not paranoid at all * 0 - disallow raw tracepoint access for unpriv * 1 - disallow cpu events for unpriv * 2 - disallow kernel profiling for unpriv */ int sysctl_perf_event_paranoid __read_mostly = 2; /* Minimum for 512 kiB + 1 user control page */ int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ /* * max perf event sample rate */ #define DEFAULT_MAX_SAMPLE_RATE 100000 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) #define DEFAULT_CPU_TIME_MAX_PERCENT 25 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; static int perf_sample_allowed_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; static void update_perf_cpu_limits(void) { u64 tmp = perf_sample_period_ns; tmp *= sysctl_perf_cpu_time_max_percent; tmp = div_u64(tmp, 100); if (!tmp) tmp = 1; WRITE_ONCE(perf_sample_allowed_ns, tmp); } static bool perf_rotate_context(struct perf_cpu_context *cpuctx); int perf_proc_update_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret; int perf_cpu = sysctl_perf_cpu_time_max_percent; /* * If throttling is disabled don't allow the write: */ if (write && (perf_cpu == 100 || perf_cpu == 0)) return -EINVAL; ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); if (ret || !write) return ret; max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; update_perf_cpu_limits(); return 0; } int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); if (ret || !write) return ret; if (sysctl_perf_cpu_time_max_percent == 100 || sysctl_perf_cpu_time_max_percent == 0) { printk(KERN_WARNING "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); WRITE_ONCE(perf_sample_allowed_ns, 0); } else { update_perf_cpu_limits(); } return 0; } /* * perf samples are done in some very critical code paths (NMIs). * If they take too much CPU time, the system can lock up and not * get any real work done. This will drop the sample rate when * we detect that events are taking too long. */ #define NR_ACCUMULATED_SAMPLES 128 static DEFINE_PER_CPU(u64, running_sample_length); static u64 __report_avg; static u64 __report_allowed; static void perf_duration_warn(struct irq_work *w) { printk_ratelimited(KERN_INFO "perf: interrupt took too long (%lld > %lld), lowering " "kernel.perf_event_max_sample_rate to %d\n", __report_avg, __report_allowed, sysctl_perf_event_sample_rate); } static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); void perf_sample_event_took(u64 sample_len_ns) { u64 max_len = READ_ONCE(perf_sample_allowed_ns); u64 running_len; u64 avg_len; u32 max; if (max_len == 0) return; /* Decay the counter by 1 average sample. */ running_len = __this_cpu_read(running_sample_length); running_len -= running_len/NR_ACCUMULATED_SAMPLES; running_len += sample_len_ns; __this_cpu_write(running_sample_length, running_len); /* * Note: this will be biased artifically low until we have * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us * from having to maintain a count. */ avg_len = running_len/NR_ACCUMULATED_SAMPLES; if (avg_len <= max_len) return; __report_avg = avg_len; __report_allowed = max_len; /* * Compute a throttle threshold 25% below the current duration. */ avg_len += avg_len / 4; max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; if (avg_len < max) max /= (u32)avg_len; else max = 1; WRITE_ONCE(perf_sample_allowed_ns, avg_len); WRITE_ONCE(max_samples_per_tick, max); sysctl_perf_event_sample_rate = max * HZ; perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; if (!irq_work_queue(&perf_duration_work)) { early_printk("perf: interrupt took too long (%lld > %lld), lowering " "kernel.perf_event_max_sample_rate to %d\n", __report_avg, __report_allowed, sysctl_perf_event_sample_rate); } } static atomic64_t perf_event_id; static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, enum event_type_t event_type); static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, enum event_type_t event_type); static void update_context_time(struct perf_event_context *ctx); static u64 perf_event_time(struct perf_event *event); void __weak perf_event_print_debug(void) { } static inline u64 perf_clock(void) { return local_clock(); } static inline u64 perf_event_clock(struct perf_event *event) { return event->clock(); } /* * State based event timekeeping... * * The basic idea is to use event->state to determine which (if any) time * fields to increment with the current delta. This means we only need to * update timestamps when we change state or when they are explicitly requested * (read). * * Event groups make things a little more complicated, but not terribly so. The * rules for a group are that if the group leader is OFF the entire group is * OFF, irrespecive of what the group member states are. This results in * __perf_effective_state(). * * A futher ramification is that when a group leader flips between OFF and * !OFF, we need to update all group member times. * * * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we * need to make sure the relevant context time is updated before we try and * update our timestamps. */ static __always_inline enum perf_event_state __perf_effective_state(struct perf_event *event) { struct perf_event *leader = event->group_leader; if (leader->state <= PERF_EVENT_STATE_OFF) return leader->state; return event->state; } static __always_inline void __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) { enum perf_event_state state = __perf_effective_state(event); u64 delta = now - event->tstamp; *enabled = event->total_time_enabled; if (state >= PERF_EVENT_STATE_INACTIVE) *enabled += delta; *running = event->total_time_running; if (state >= PERF_EVENT_STATE_ACTIVE) *running += delta; } static void perf_event_update_time(struct perf_event *event) { u64 now = perf_event_time(event); __perf_update_times(event, now, &event->total_time_enabled, &event->total_time_running); event->tstamp = now; } static void perf_event_update_sibling_time(struct perf_event *leader) { struct perf_event *sibling; for_each_sibling_event(sibling, leader) perf_event_update_time(sibling); } static void perf_event_set_state(struct perf_event *event, enum perf_event_state state) { if (event->state == state) return; perf_event_update_time(event); /* * If a group leader gets enabled/disabled all its siblings * are affected too. */ if ((event->state < 0) ^ (state < 0)) perf_event_update_sibling_time(event); WRITE_ONCE(event->state, state); } /* * UP store-release, load-acquire */ #define __store_release(ptr, val) \ do { \ barrier(); \ WRITE_ONCE(*(ptr), (val)); \ } while (0) #define __load_acquire(ptr) \ ({ \ __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ barrier(); \ ___p; \ }) #ifdef CONFIG_CGROUP_PERF static inline bool perf_cgroup_match(struct perf_event *event) { struct perf_event_context *ctx = event->ctx; struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); /* @event doesn't care about cgroup */ if (!event->cgrp) return true; /* wants specific cgroup scope but @cpuctx isn't associated with any */ if (!cpuctx->cgrp) return false; /* * Cgroup scoping is recursive. An event enabled for a cgroup is * also enabled for all its descendant cgroups. If @cpuctx's * cgroup is a descendant of @event's (the test covers identity * case), it's a match. */ return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, event->cgrp->css.cgroup); } static inline void perf_detach_cgroup(struct perf_event *event) { css_put(&event->cgrp->css); event->cgrp = NULL; } static inline int is_cgroup_event(struct perf_event *event) { return event->cgrp != NULL; } static inline u64 perf_cgroup_event_time(struct perf_event *event) { struct perf_cgroup_info *t; t = per_cpu_ptr(event->cgrp->info, event->cpu); return t->time; } static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) { struct perf_cgroup_info *t; t = per_cpu_ptr(event->cgrp->info, event->cpu); if (!__load_acquire(&t->active)) return t->time; now += READ_ONCE(t->timeoffset); return now; } static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) { if (adv) info->time += now - info->timestamp; info->timestamp = now; /* * see update_context_time() */ WRITE_ONCE(info->timeoffset, info->time - info->timestamp); } static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) { struct perf_cgroup *cgrp = cpuctx->cgrp; struct cgroup_subsys_state *css; struct perf_cgroup_info *info; if (cgrp) { u64 now = perf_clock(); for (css = &cgrp->css; css; css = css->parent) { cgrp = container_of(css, struct perf_cgroup, css); info = this_cpu_ptr(cgrp->info); __update_cgrp_time(info, now, true); if (final) __store_release(&info->active, 0); } } } static inline void update_cgrp_time_from_event(struct perf_event *event) { struct perf_cgroup_info *info; /* * ensure we access cgroup data only when needed and * when we know the cgroup is pinned (css_get) */ if (!is_cgroup_event(event)) return; info = this_cpu_ptr(event->cgrp->info); /* * Do not update time when cgroup is not active */ if (info->active) __update_cgrp_time(info, perf_clock(), true); } static inline void perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) { struct perf_event_context *ctx = &cpuctx->ctx; struct perf_cgroup *cgrp = cpuctx->cgrp; struct perf_cgroup_info *info; struct cgroup_subsys_state *css; /* * ctx->lock held by caller * ensure we do not access cgroup data * unless we have the cgroup pinned (css_get) */ if (!cgrp) return; WARN_ON_ONCE(!ctx->nr_cgroups); for (css = &cgrp->css; css; css = css->parent) { cgrp = container_of(css, struct perf_cgroup, css); info = this_cpu_ptr(cgrp->info); __update_cgrp_time(info, ctx->timestamp, false); __store_release(&info->active, 1); } } static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); /* * reschedule events based on the cgroup constraint of task. */ static void perf_cgroup_switch(struct task_struct *task) { struct perf_cgroup *cgrp; struct perf_cpu_context *cpuctx, *tmp; struct list_head *list; unsigned long flags; /* * Disable interrupts and preemption to avoid this CPU's * cgrp_cpuctx_entry to change under us. */ local_irq_save(flags); cgrp = perf_cgroup_from_task(task, NULL); list = this_cpu_ptr(&cgrp_cpuctx_list); list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) { WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); if (READ_ONCE(cpuctx->cgrp) == cgrp) continue; perf_ctx_lock(cpuctx, cpuctx->task_ctx); perf_pmu_disable(cpuctx->ctx.pmu); cpu_ctx_sched_out(cpuctx, EVENT_ALL); /* * must not be done before ctxswout due * to update_cgrp_time_from_cpuctx() in * ctx_sched_out() */ cpuctx->cgrp = cgrp; /* * set cgrp before ctxsw in to allow * perf_cgroup_set_timestamp() in ctx_sched_in() * to not have to pass task around */ cpu_ctx_sched_in(cpuctx, EVENT_ALL); perf_pmu_enable(cpuctx->ctx.pmu); perf_ctx_unlock(cpuctx, cpuctx->task_ctx); } local_irq_restore(flags); } static int perf_cgroup_ensure_storage(struct perf_event *event, struct cgroup_subsys_state *css) { struct perf_cpu_context *cpuctx; struct perf_event **storage; int cpu, heap_size, ret = 0; /* * Allow storage to have sufficent space for an iterator for each * possibly nested cgroup plus an iterator for events with no cgroup. */ for (heap_size = 1; css; css = css->parent) heap_size++; for_each_possible_cpu(cpu) { cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); if (heap_size <= cpuctx->heap_size) continue; storage = kmalloc_node(heap_size * sizeof(struct perf_event *), GFP_KERNEL, cpu_to_node(cpu)); if (!storage) { ret = -ENOMEM; break; } raw_spin_lock_irq(&cpuctx->ctx.lock); if (cpuctx->heap_size < heap_size) { swap(cpuctx->heap, storage); if (storage == cpuctx->heap_default) storage = NULL; cpuctx->heap_size = heap_size; } raw_spin_unlock_irq(&cpuctx->ctx.lock); kfree(storage); } return ret; } static inline int perf_cgroup_connect(int fd, struct perf_event *event, struct perf_event_attr *attr, struct perf_event *group_leader) { struct perf_cgroup *cgrp; struct cgroup_subsys_state *css; struct fd f = fdget(fd); int ret = 0; if (!f.file) return -EBADF; css = css_tryget_online_from_dir(f.file->f_path.dentry, &perf_event_cgrp_subsys); if (IS_ERR(css)) { ret = PTR_ERR(css); goto out; } ret = perf_cgroup_ensure_storage(event, css); if (ret) goto out; cgrp = container_of(css, struct perf_cgroup, css); event->cgrp = cgrp; /* * all events in a group must monitor * the same cgroup because a task belongs * to only one perf cgroup at a time */ if (group_leader && group_leader->cgrp != cgrp) { perf_detach_cgroup(event); ret = -EINVAL; } out: fdput(f); return ret; } static inline void perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) { struct perf_cpu_context *cpuctx; if (!is_cgroup_event(event)) return; /* * Because cgroup events are always per-cpu events, * @ctx == &cpuctx->ctx. */ cpuctx = container_of(ctx, struct perf_cpu_context, ctx); if (ctx->nr_cgroups++) return; cpuctx->cgrp = perf_cgroup_from_task(current, ctx); list_add(&cpuctx->cgrp_cpuctx_entry, per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); } static inline void perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) { struct perf_cpu_context *cpuctx; if (!is_cgroup_event(event)) return; /* * Because cgroup events are always per-cpu events, * @ctx == &cpuctx->ctx. */ cpuctx = container_of(ctx, struct perf_cpu_context, ctx); if (--ctx->nr_cgroups) return; cpuctx->cgrp = NULL; list_del(&cpuctx->cgrp_cpuctx_entry); } #else /* !CONFIG_CGROUP_PERF */ static inline bool perf_cgroup_match(struct perf_event *event) { return true; } static inline void perf_detach_cgroup(struct perf_event *event) {} static inline int is_cgroup_event(struct perf_event *event) { return 0; } static inline void update_cgrp_time_from_event(struct perf_event *event) { } static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) { } static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, struct perf_event_attr *attr, struct perf_event *group_leader) { return -EINVAL; } static inline void perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) { } static inline u64 perf_cgroup_event_time(struct perf_event *event) { return 0; } static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) { return 0; } static inline void perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) { } static inline void perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) { } static void perf_cgroup_switch(struct task_struct *task) { } #endif /* * set default to be dependent on timer tick just * like original code */ #define PERF_CPU_HRTIMER (1000 / HZ) /* * function must be called with interrupts disabled */ static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) { struct perf_cpu_context *cpuctx; bool rotations; lockdep_assert_irqs_disabled(); cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); rotations = perf_rotate_context(cpuctx); raw_spin_lock(&cpuctx->hrtimer_lock); if (rotations) hrtimer_forward_now(hr, cpuctx->hrtimer_interval); else cpuctx->hrtimer_active = 0; raw_spin_unlock(&cpuctx->hrtimer_lock); return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; } static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) { struct hrtimer *timer = &cpuctx->hrtimer; struct pmu *pmu = cpuctx->ctx.pmu; u64 interval; /* no multiplexing needed for SW PMU */ if (pmu->task_ctx_nr == perf_sw_context) return; /* * check default is sane, if not set then force to * default interval (1/tick) */ interval = pmu->hrtimer_interval_ms; if (interval < 1) interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); raw_spin_lock_init(&cpuctx->hrtimer_lock); hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); timer->function = perf_mux_hrtimer_handler; } static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) { struct hrtimer *timer = &cpuctx->hrtimer; struct pmu *pmu = cpuctx->ctx.pmu; unsigned long flags; /* not for SW PMU */ if (pmu->task_ctx_nr == perf_sw_context) return 0; raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); if (!cpuctx->hrtimer_active) { cpuctx->hrtimer_active = 1; hrtimer_forward_now(timer, cpuctx->hrtimer_interval); hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); } raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); return 0; } static int perf_mux_hrtimer_restart_ipi(void *arg) { return perf_mux_hrtimer_restart(arg); } void perf_pmu_disable(struct pmu *pmu) { int *count = this_cpu_ptr(pmu->pmu_disable_count); if (!(*count)++) pmu->pmu_disable(pmu); } void perf_pmu_enable(struct pmu *pmu) { int *count = this_cpu_ptr(pmu->pmu_disable_count); if (!--(*count)) pmu->pmu_enable(pmu); } static DEFINE_PER_CPU(struct list_head, active_ctx_list); /* * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and * perf_event_task_tick() are fully serialized because they're strictly cpu * affine and perf_event_ctx{activate,deactivate} are called with IRQs * disabled, while perf_event_task_tick is called from IRQ context. */ static void perf_event_ctx_activate(struct perf_event_context *ctx) { struct list_head *head = this_cpu_ptr(&active_ctx_list); lockdep_assert_irqs_disabled(); WARN_ON(!list_empty(&ctx->active_ctx_list)); list_add(&ctx->active_ctx_list, head); } static void perf_event_ctx_deactivate(struct perf_event_context *ctx) { lockdep_assert_irqs_disabled(); WARN_ON(list_empty(&ctx->active_ctx_list)); list_del_init(&ctx->active_ctx_list); } static void get_ctx(struct perf_event_context *ctx) { refcount_inc(&ctx->refcount); } static void *alloc_task_ctx_data(struct pmu *pmu) { if (pmu->task_ctx_cache) return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); return NULL; } static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) { if (pmu->task_ctx_cache && task_ctx_data) kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); } static void free_ctx(struct rcu_head *head) { struct perf_event_context *ctx; ctx = container_of(head, struct perf_event_context, rcu_head); free_task_ctx_data(ctx->pmu, ctx->task_ctx_data); kfree(ctx); } static void put_ctx(struct perf_event_context *ctx) { if (refcount_dec_and_test(&ctx->refcount)) { if (ctx->parent_ctx) put_ctx(ctx->parent_ctx); if (ctx->task && ctx->task != TASK_TOMBSTONE) put_task_struct(ctx->task); call_rcu(&ctx->rcu_head, free_ctx); } } /* * Because of perf_event::ctx migration in sys_perf_event_open::move_group and * perf_pmu_migrate_context() we need some magic. * * Those places that change perf_event::ctx will hold both * perf_event_ctx::mutex of the 'old' and 'new' ctx value. * * Lock ordering is by mutex address. There are two other sites where * perf_event_context::mutex nests and those are: * * - perf_event_exit_task_context() [ child , 0 ] * perf_event_exit_event() * put_event() [ parent, 1 ] * * - perf_event_init_context() [ parent, 0 ] * inherit_task_group() * inherit_group() * inherit_event() * perf_event_alloc() * perf_init_event() * perf_try_init_event() [ child , 1 ] * * While it appears there is an obvious deadlock here -- the parent and child * nesting levels are inverted between the two. This is in fact safe because * life-time rules separate them. That is an exiting task cannot fork, and a * spawning task cannot (yet) exit. * * But remember that these are parent<->child context relations, and * migration does not affect children, therefore these two orderings should not * interact. * * The change in perf_event::ctx does not affect children (as claimed above) * because the sys_perf_event_open() case will install a new event and break * the ctx parent<->child relation, and perf_pmu_migrate_context() is only * concerned with cpuctx and that doesn't have children. * * The places that change perf_event::ctx will issue: * * perf_remove_from_context(); * synchronize_rcu(); * perf_install_in_context(); * * to affect the change. The remove_from_context() + synchronize_rcu() should * quiesce the event, after which we can install it in the new location. This * means that only external vectors (perf_fops, prctl) can perturb the event * while in transit. Therefore all such accessors should also acquire * perf_event_context::mutex to serialize against this. * * However; because event->ctx can change while we're waiting to acquire * ctx->mutex we must be careful and use the below perf_event_ctx_lock() * function. * * Lock order: * exec_update_lock * task_struct::perf_event_mutex * perf_event_context::mutex * perf_event::child_mutex; * perf_event_context::lock * mmap_lock * perf_event::mmap_mutex * perf_buffer::aux_mutex * perf_addr_filters_head::lock * * cpu_hotplug_lock * pmus_lock * cpuctx->mutex / perf_event_context::mutex */ static struct perf_event_context * perf_event_ctx_lock_nested(struct perf_event *event, int nesting) { struct perf_event_context *ctx; again: rcu_read_lock(); ctx = READ_ONCE(event->ctx); if (!refcount_inc_not_zero(&ctx->refcount)) { rcu_read_unlock(); goto again; } rcu_read_unlock(); mutex_lock_nested(&ctx->mutex, nesting); if (event->ctx != ctx) { mutex_unlock(&ctx->mutex); put_ctx(ctx); goto again; } return ctx; } static inline struct perf_event_context * perf_event_ctx_lock(struct perf_event *event) { return perf_event_ctx_lock_nested(event, 0); } static void perf_event_ctx_unlock(struct perf_event *event, struct perf_event_context *ctx) { mutex_unlock(&ctx->mutex); put_ctx(ctx); } /* * This must be done under the ctx->lock, such as to serialize against * context_equiv(), therefore we cannot call put_ctx() since that might end up * calling scheduler related locks and ctx->lock nests inside those. */ static __must_check struct perf_event_context * unclone_ctx(struct perf_event_context *ctx) { struct perf_event_context *parent_ctx = ctx->parent_ctx; lockdep_assert_held(&ctx->lock); if (parent_ctx) ctx->parent_ctx = NULL; ctx->generation++; return parent_ctx; } static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, enum pid_type type) { u32 nr; /* * only top level events have the pid namespace they were created in */ if (event->parent) event = event->parent; nr = __task_pid_nr_ns(p, type, event->ns); /* avoid -1 if it is idle thread or runs in another ns */ if (!nr && !pid_alive(p)) nr = -1; return nr; } static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) { return perf_event_pid_type(event, p, PIDTYPE_TGID); } static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) { return perf_event_pid_type(event, p, PIDTYPE_PID); } /* * If we inherit events we want to return the parent event id * to userspace. */ static u64 primary_event_id(struct perf_event *event) { u64 id = event->id; if (event->parent) id = event->parent->id; return id; } /* * Get the perf_event_context for a task and lock it. * * This has to cope with the fact that until it is locked, * the context could get moved to another task. */ static struct perf_event_context * perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) { struct perf_event_context *ctx; retry: /* * One of the few rules of preemptible RCU is that one cannot do * rcu_read_unlock() while holding a scheduler (or nested) lock when * part of the read side critical section was irqs-enabled -- see * rcu_read_unlock_special(). * * Since ctx->lock nests under rq->lock we must ensure the entire read * side critical section has interrupts disabled. */ local_irq_save(*flags); rcu_read_lock(); ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); if (ctx) { /* * If this context is a clone of another, it might * get swapped for another underneath us by * perf_event_task_sched_out, though the * rcu_read_lock() protects us from any context * getting freed. Lock the context and check if it * got swapped before we could get the lock, and retry * if so. If we locked the right context, then it * can't get swapped on us any more. */ raw_spin_lock(&ctx->lock); if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { raw_spin_unlock(&ctx->lock); rcu_read_unlock(); local_irq_restore(*flags); goto retry; } if (ctx->task == TASK_TOMBSTONE || !refcount_inc_not_zero(&ctx->refcount)) { raw_spin_unlock(&ctx->lock); ctx = NULL; } else { WARN_ON_ONCE(ctx->task != task); } } rcu_read_unlock(); if (!ctx) local_irq_restore(*flags); return ctx; } /* * Get the context for a task and increment its pin_count so it * can't get swapped to another task. This also increments its * reference count so that the context can't get freed. */ static struct perf_event_context * perf_pin_task_context(struct task_struct *task, int ctxn) { struct perf_event_context *ctx; unsigned long flags; ctx = perf_lock_task_context(task, ctxn, &flags); if (ctx) { ++ctx->pin_count; raw_spin_unlock_irqrestore(&ctx->lock, flags); } return ctx; } static void perf_unpin_context(struct perf_event_context *ctx) { unsigned long flags; raw_spin_lock_irqsave(&ctx->lock, flags); --ctx->pin_count; raw_spin_unlock_irqrestore(&ctx->lock, flags); } /* * Update the record of the current time in a context. */ static void __update_context_time(struct perf_event_context *ctx, bool adv) { u64 now = perf_clock(); lockdep_assert_held(&ctx->lock); if (adv) ctx->time += now - ctx->timestamp; ctx->timestamp = now; /* * The above: time' = time + (now - timestamp), can be re-arranged * into: time` = now + (time - timestamp), which gives a single value * offset to compute future time without locks on. * * See perf_event_time_now(), which can be used from NMI context where * it's (obviously) not possible to acquire ctx->lock in order to read * both the above values in a consistent manner. */ WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); } static void update_context_time(struct perf_event_context *ctx) { __update_context_time(ctx, true); } static u64 perf_event_time(struct perf_event *event) { struct perf_event_context *ctx = event->ctx; if (unlikely(!ctx)) return 0; if (is_cgroup_event(event)) return perf_cgroup_event_time(event); return ctx->time; } static u64 perf_event_time_now(struct perf_event *event, u64 now) { struct perf_event_context *ctx = event->ctx; if (unlikely(!ctx)) return 0; if (is_cgroup_event(event)) return perf_cgroup_event_time_now(event, now); if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) return ctx->time; now += READ_ONCE(ctx->timeoffset); return now; } static enum event_type_t get_event_type(struct perf_event *event) { struct perf_event_context *ctx = event->ctx; enum event_type_t event_type; lockdep_assert_held(&ctx->lock); /* * It's 'group type', really, because if our group leader is * pinned, so are we. */ if (event->group_leader != event) event = event->group_leader; event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; if (!ctx->task) event_type |= EVENT_CPU; return event_type; } /* * Helper function to initialize event group nodes. */ static void init_event_group(struct perf_event *event) { RB_CLEAR_NODE(&event->group_node); event->group_index = 0; } /* * Extract pinned or flexible groups from the context * based on event attrs bits. */ static struct perf_event_groups * get_event_groups(struct perf_event *event, struct perf_event_context *ctx) { if (event->attr.pinned) return &ctx->pinned_groups; else return &ctx->flexible_groups; } /* * Helper function to initializes perf_event_group trees. */ static void perf_event_groups_init(struct perf_event_groups *groups) { groups->tree = RB_ROOT; groups->index = 0; } static inline struct cgroup *event_cgroup(const struct perf_event *event) { struct cgroup *cgroup = NULL; #ifdef CONFIG_CGROUP_PERF if (event->cgrp) cgroup = event->cgrp->css.cgroup; #endif return cgroup; } /* * Compare function for event groups; * * Implements complex key that first sorts by CPU and then by virtual index * which provides ordering when rotating groups for the same CPU. */ static __always_inline int perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup, const u64 left_group_index, const struct perf_event *right) { if (left_cpu < right->cpu) return -1; if (left_cpu > right->cpu) return 1; #ifdef CONFIG_CGROUP_PERF { const struct cgroup *right_cgroup = event_cgroup(right); if (left_cgroup != right_cgroup) { if (!left_cgroup) { /* * Left has no cgroup but right does, no * cgroups come first. */ return -1; } if (!right_cgroup) { /* * Right has no cgroup but left does, no * cgroups come first. */ return 1; } /* Two dissimilar cgroups, order by id. */ if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) return -1; return 1; } } #endif if (left_group_index < right->group_index) return -1; if (left_group_index > right->group_index) return 1; return 0; } #define __node_2_pe(node) \ rb_entry((node), struct perf_event, group_node) static inline bool __group_less(struct rb_node *a, const struct rb_node *b) { struct perf_event *e = __node_2_pe(a); return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index, __node_2_pe(b)) < 0; } struct __group_key { int cpu; struct cgroup *cgroup; }; static inline int __group_cmp(const void *key, const struct rb_node *node) { const struct __group_key *a = key; const struct perf_event *b = __node_2_pe(node); /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */ return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b); } /* * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for * key (see perf_event_groups_less). This places it last inside the CPU * subtree. */ static void perf_event_groups_insert(struct perf_event_groups *groups, struct perf_event *event) { event->group_index = ++groups->index; rb_add(&event->group_node, &groups->tree, __group_less); } /* * Helper function to insert event into the pinned or flexible groups. */ static void add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) { struct perf_event_groups *groups; groups = get_event_groups(event, ctx); perf_event_groups_insert(groups, event); } /* * Delete a group from a tree. */ static void perf_event_groups_delete(struct perf_event_groups *groups, struct perf_event *event) { WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || RB_EMPTY_ROOT(&groups->tree)); rb_erase(&event->group_node, &groups->tree); init_event_group(event); } /* * Helper function to delete event from its groups. */ static void del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) { struct perf_event_groups *groups; groups = get_event_groups(event, ctx); perf_event_groups_delete(groups, event); } /* * Get the leftmost event in the cpu/cgroup subtree. */ static struct perf_event * perf_event_groups_first(struct perf_event_groups *groups, int cpu, struct cgroup *cgrp) { struct __group_key key = { .cpu = cpu, .cgroup = cgrp, }; struct rb_node *node; node = rb_find_first(&key, &groups->tree, __group_cmp); if (node) return __node_2_pe(node); return NULL; } /* * Like rb_entry_next_safe() for the @cpu subtree. */ static struct perf_event * perf_event_groups_next(struct perf_event *event) { struct __group_key key = { .cpu = event->cpu, .cgroup = event_cgroup(event), }; struct rb_node *next; next = rb_next_match(&key, &event->group_node, __group_cmp); if (next) return __node_2_pe(next); return NULL; } /* * Iterate through the whole groups tree. */ #define perf_event_groups_for_each(event, groups) \ for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ typeof(*event), group_node); event; \ event = rb_entry_safe(rb_next(&event->group_node), \ typeof(*event), group_node)) /* * Add an event from the lists for its context. * Must be called with ctx->mutex and ctx->lock held. */ static void list_add_event(struct perf_event *event, struct perf_event_context *ctx) { lockdep_assert_held(&ctx->lock); WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); event->attach_state |= PERF_ATTACH_CONTEXT; event->tstamp = perf_event_time(event); /* * If we're a stand alone event or group leader, we go to the context * list, group events are kept attached to the group so that * perf_group_detach can, at all times, locate all siblings. */ if (event->group_leader == event) { event->group_caps = event->event_caps; add_event_to_groups(event, ctx); } list_add_rcu(&event->event_entry, &ctx->event_list); ctx->nr_events++; if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) ctx->nr_user++; if (event->attr.inherit_stat) ctx->nr_stat++; if (event->state > PERF_EVENT_STATE_OFF) perf_cgroup_event_enable(event, ctx); ctx->generation++; } /* * Initialize event state based on the perf_event_attr::disabled. */ static inline void perf_event__state_init(struct perf_event *event) { event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : PERF_EVENT_STATE_INACTIVE; } static int __perf_event_read_size(u64 read_format, int nr_siblings) { int entry = sizeof(u64); /* value */ int size = 0; int nr = 1; if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) size += sizeof(u64); if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) size += sizeof(u64); if (read_format & PERF_FORMAT_ID) entry += sizeof(u64); if (read_format & PERF_FORMAT_LOST) entry += sizeof(u64); if (read_format & PERF_FORMAT_GROUP) { nr += nr_siblings; size += sizeof(u64); } /* * Since perf_event_validate_size() limits this to 16k and inhibits * adding more siblings, this will never overflow. */ return size + nr * entry; } static void __perf_event_header_size(struct perf_event *event, u64 sample_type) { struct perf_sample_data *data; u16 size = 0; if (sample_type & PERF_SAMPLE_IP) size += sizeof(data->ip); if (sample_type & PERF_SAMPLE_ADDR) size += sizeof(data->addr); if (sample_type & PERF_SAMPLE_PERIOD) size += sizeof(data->period); if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) size += sizeof(data->weight.full); if (sample_type & PERF_SAMPLE_READ) size += event->read_size; if (sample_type & PERF_SAMPLE_DATA_SRC) size += sizeof(data->data_src.val); if (sample_type & PERF_SAMPLE_TRANSACTION) size += sizeof(data->txn); if (sample_type & PERF_SAMPLE_PHYS_ADDR) size += sizeof(data->phys_addr); if (sample_type & PERF_SAMPLE_CGROUP) size += sizeof(data->cgroup); if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) size += sizeof(data->data_page_size); if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) size += sizeof(data->code_page_size); event->header_size = size; } /* * Called at perf_event creation and when events are attached/detached from a * group. */ static void perf_event__header_size(struct perf_event *event) { event->read_size = __perf_event_read_size(event->attr.read_format, event->group_leader->nr_siblings); __perf_event_header_size(event, event->attr.sample_type); } static void perf_event__id_header_size(struct perf_event *event) { struct perf_sample_data *data; u64 sample_type = event->attr.sample_type; u16 size = 0; if (sample_type & PERF_SAMPLE_TID) size += sizeof(data->tid_entry); if (sample_type & PERF_SAMPLE_TIME) size += sizeof(data->time); if (sample_type & PERF_SAMPLE_IDENTIFIER) size += sizeof(data->id); if (sample_type & PERF_SAMPLE_ID) size += sizeof(data->id); if (sample_type & PERF_SAMPLE_STREAM_ID) size += sizeof(data->stream_id); if (sample_type & PERF_SAMPLE_CPU) size += sizeof(data->cpu_entry); event->id_header_size = size; } /* * Check that adding an event to the group does not result in anybody * overflowing the 64k event limit imposed by the output buffer. * * Specifically, check that the read_size for the event does not exceed 16k, * read_size being the one term that grows with groups size. Since read_size * depends on per-event read_format, also (re)check the existing events. * * This leaves 48k for the constant size fields and things like callchains, * branch stacks and register sets. */ static bool perf_event_validate_size(struct perf_event *event) { struct perf_event *sibling, *group_leader = event->group_leader; if (__perf_event_read_size(event->attr.read_format, group_leader->nr_siblings + 1) > 16*1024) return false; if (__perf_event_read_size(group_leader->attr.read_format, group_leader->nr_siblings + 1) > 16*1024) return false; /* * When creating a new group leader, group_leader->ctx is initialized * after the size has been validated, but we cannot safely use * for_each_sibling_event() until group_leader->ctx is set. A new group * leader cannot have any siblings yet, so we can safely skip checking * the non-existent siblings. */ if (event == group_leader) return true; for_each_sibling_event(sibling, group_leader) { if (__perf_event_read_size(sibling->attr.read_format, group_leader->nr_siblings + 1) > 16*1024) return false; } return true; } static void perf_group_attach(struct perf_event *event) { struct perf_event *group_leader = event->group_leader, *pos; lockdep_assert_held(&event->ctx->lock); /* * We can have double attach due to group movement in perf_event_open. */ if (event->attach_state & PERF_ATTACH_GROUP) return; event->attach_state |= PERF_ATTACH_GROUP; if (group_leader == event) return; WARN_ON_ONCE(group_leader->ctx != event->ctx); group_leader->group_caps &= event->event_caps; list_add_tail(&event->sibling_list, &group_leader->sibling_list); group_leader->nr_siblings++; group_leader->group_generation++; perf_event__header_size(group_leader); for_each_sibling_event(pos, group_leader) perf_event__header_size(pos); } /* * Remove an event from the lists for its context. * Must be called with ctx->mutex and ctx->lock held. */ static void list_del_event(struct perf_event *event, struct perf_event_context *ctx) { WARN_ON_ONCE(event->ctx != ctx); lockdep_assert_held(&ctx->lock); /* * We can have double detach due to exit/hot-unplug + close. */ if (!(event->attach_state & PERF_ATTACH_CONTEXT)) return; event->attach_state &= ~PERF_ATTACH_CONTEXT; ctx->nr_events--; if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) ctx->nr_user--; if (event->attr.inherit_stat) ctx->nr_stat--; list_del_rcu(&event->event_entry); if (event->group_leader == event) del_event_from_groups(event, ctx); /* * If event was in error state, then keep it * that way, otherwise bogus counts will be * returned on read(). The only way to get out * of error state is by explicit re-enabling * of the event */ if (event->state > PERF_EVENT_STATE_OFF) { perf_cgroup_event_disable(event, ctx); perf_event_set_state(event, PERF_EVENT_STATE_OFF); } ctx->generation++; } static int perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) { if (!has_aux(aux_event)) return 0; if (!event->pmu->aux_output_match) return 0; return event->pmu->aux_output_match(aux_event); } static void put_event(struct perf_event *event); static void event_sched_out(struct perf_event *event, struct perf_cpu_context *cpuctx, struct perf_event_context *ctx); static void perf_put_aux_event(struct perf_event *event) { struct perf_event_context *ctx = event->ctx; struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); struct perf_event *iter; /* * If event uses aux_event tear down the link */ if (event->aux_event) { iter = event->aux_event; event->aux_event = NULL; put_event(iter); return; } /* * If the event is an aux_event, tear down all links to * it from other events. */ for_each_sibling_event(iter, event->group_leader) { if (iter->aux_event != event) continue; iter->aux_event = NULL; put_event(event); /* * If it's ACTIVE, schedule it out and put it into ERROR * state so that we don't try to schedule it again. Note * that perf_event_enable() will clear the ERROR status. */ event_sched_out(iter, cpuctx, ctx); perf_event_set_state(event, PERF_EVENT_STATE_ERROR); } } static bool perf_need_aux_event(struct perf_event *event) { return !!event->attr.aux_output || !!event->attr.aux_sample_size; } static int perf_get_aux_event(struct perf_event *event, struct perf_event *group_leader) { /* * Our group leader must be an aux event if we want to be * an aux_output. This way, the aux event will precede its * aux_output events in the group, and therefore will always * schedule first. */ if (!group_leader) return 0; /* * aux_output and aux_sample_size are mutually exclusive. */ if (event->attr.aux_output && event->attr.aux_sample_size) return 0; if (event->attr.aux_output && !perf_aux_output_match(event, group_leader)) return 0; if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) return 0; if (!atomic_long_inc_not_zero(&group_leader->refcount)) return 0; /* * Link aux_outputs to their aux event; this is undone in * perf_group_detach() by perf_put_aux_event(). When the * group in torn down, the aux_output events loose their * link to the aux_event and can't schedule any more. */ event->aux_event = group_leader; return 1; } static inline struct list_head *get_event_list(struct perf_event *event) { struct perf_event_context *ctx = event->ctx; return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; } /* * Events that have PERF_EV_CAP_SIBLING require being part of a group and * cannot exist on their own, schedule them out and move them into the ERROR * state. Also see _perf_event_enable(), it will not be able to recover * this ERROR state. */ static inline void perf_remove_sibling_event(struct perf_event *event) { struct perf_event_context *ctx = event->ctx; struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); event_sched_out(event, cpuctx, ctx); perf_event_set_state(event, PERF_EVENT_STATE_ERROR); } static void perf_group_detach(struct perf_event *event) { struct perf_event *leader = event->group_leader; struct perf_event *sibling, *tmp; struct perf_event_context *ctx = event->ctx; lockdep_assert_held(&ctx->lock); /* * We can have double detach due to exit/hot-unplug + close. */ if (!(event->attach_state & PERF_ATTACH_GROUP)) return; event->attach_state &= ~PERF_ATTACH_GROUP; perf_put_aux_event(event); /* * If this is a sibling, remove it from its group. */ if (leader != event) { list_del_init(&event->sibling_list); event->group_leader->nr_siblings--; event->group_leader->group_generation++; goto out; } /* * If this was a group event with sibling events then * upgrade the siblings to singleton events by adding them * to whatever list we are on. */ list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { if (sibling->event_caps & PERF_EV_CAP_SIBLING) perf_remove_sibling_event(sibling); sibling->group_leader = sibling; list_del_init(&sibling->sibling_list); /* Inherit group flags from the previous leader */ sibling->group_caps = event->group_caps; if (sibling->attach_state & PERF_ATTACH_CONTEXT) { add_event_to_groups(sibling, event->ctx); if (sibling->state == PERF_EVENT_STATE_ACTIVE) list_add_tail(&sibling->active_list, get_event_list(sibling)); } WARN_ON_ONCE(sibling->ctx != event->ctx); } out: for_each_sibling_event(tmp, leader) perf_event__header_size(tmp); perf_event__header_size(leader); } static void sync_child_event(struct perf_event *child_event); static void perf_child_detach(struct perf_event *event) { struct perf_event *parent_event = event->parent; if (!(event->attach_state & PERF_ATTACH_CHILD)) return; event->attach_state &= ~PERF_ATTACH_CHILD; if (WARN_ON_ONCE(!parent_event)) return; lockdep_assert_held(&parent_event->child_mutex); sync_child_event(event); list_del_init(&event->child_list); } static bool is_orphaned_event(struct perf_event *event) { return event->state == PERF_EVENT_STATE_DEAD; } static inline int __pmu_filter_match(struct perf_event *event) { struct pmu *pmu = event->pmu; return pmu->filter_match ? pmu->filter_match(event) : 1; } /* * Check whether we should attempt to schedule an event group based on * PMU-specific filtering. An event group can consist of HW and SW events, * potentially with a SW leader, so we must check all the filters, to * determine whether a group is schedulable: */ static inline int pmu_filter_match(struct perf_event *event) { struct perf_event *sibling; unsigned long flags; int ret = 1; if (!__pmu_filter_match(event)) return 0; local_irq_save(flags); for_each_sibling_event(sibling, event) { if (!__pmu_filter_match(sibling)) { ret = 0; break; } } local_irq_restore(flags); return ret; } static inline int event_filter_match(struct perf_event *event) { return (event->cpu == -1 || event->cpu == smp_processor_id()) && perf_cgroup_match(event) && pmu_filter_match(event); } static void event_sched_out(struct perf_event *event, struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) { enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; WARN_ON_ONCE(event->ctx != ctx); lockdep_assert_held(&ctx->lock); if (event->state != PERF_EVENT_STATE_ACTIVE) return; /* * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but * we can schedule events _OUT_ individually through things like * __perf_remove_from_context(). */ list_del_init(&event->active_list); perf_pmu_disable(event->pmu); event->pmu->del(event, 0); event->oncpu = -1; if (event->pending_disable) { event->pending_disable = 0; perf_cgroup_event_disable(event, ctx); state = PERF_EVENT_STATE_OFF; } if (event->pending_sigtrap) { event->pending_sigtrap = 0; if (state != PERF_EVENT_STATE_OFF && !event->pending_work && !task_work_add(current, &event->pending_task, TWA_RESUME)) { event->pending_work = 1; } else { local_dec(&event->ctx->nr_pending); } } perf_event_set_state(event, state); if (!is_software_event(event)) cpuctx->active_oncpu--; if (!--ctx->nr_active) perf_event_ctx_deactivate(ctx); if (event->attr.freq && event->attr.sample_freq) ctx->nr_freq--; if (event->attr.exclusive || !cpuctx->active_oncpu) cpuctx->exclusive = 0; perf_pmu_enable(event->pmu); } static void group_sched_out(struct perf_event *group_event, struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) { struct perf_event *event; if (group_event->state != PERF_EVENT_STATE_ACTIVE) return; perf_pmu_disable(ctx->pmu); event_sched_out(group_event, cpuctx, ctx); /* * Schedule out siblings (if any): */ for_each_sibling_event(event, group_event) event_sched_out(event, cpuctx, ctx); perf_pmu_enable(ctx->pmu); } #define DETACH_GROUP 0x01UL #define DETACH_CHILD 0x02UL #define DETACH_DEAD 0x04UL /* * Cross CPU call to remove a performance event * * We disable the event on the hardware level first. After that we * remove it from the context list. */ static void __perf_remove_from_context(struct perf_event *event, struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, void *info) { unsigned long flags = (unsigned long)info; if (ctx->is_active & EVENT_TIME) { update_context_time(ctx); update_cgrp_time_from_cpuctx(cpuctx, false); } /* * Ensure event_sched_out() switches to OFF, at the very least * this avoids raising perf_pending_task() at this time. */ if (flags & DETACH_DEAD) event->pending_disable = 1; event_sched_out(event, cpuctx, ctx); if (flags & DETACH_GROUP) perf_group_detach(event); if (flags & DETACH_CHILD) perf_child_detach(event); list_del_event(event, ctx); if (flags & DETACH_DEAD) event->state = PERF_EVENT_STATE_DEAD; if (!ctx->nr_events && ctx->is_active) { if (ctx == &cpuctx->ctx) update_cgrp_time_from_cpuctx(cpuctx, true); ctx->is_active = 0; ctx->rotate_necessary = 0; if (ctx->task) { WARN_ON_ONCE(cpuctx->task_ctx != ctx); cpuctx->task_ctx = NULL; } } } /* * Remove the event from a task's (or a CPU's) list of events. * * If event->ctx is a cloned context, callers must make sure that * every task struct that event->ctx->task could possibly point to * remains valid. This is OK when called from perf_release since * that only calls us on the top-level context, which can't be a clone. * When called from perf_event_exit_task, it's OK because the * context has been detached from its task. */ static void perf_remove_from_context(struct perf_event *event, unsigned long flags) { struct perf_event_context *ctx = event->ctx; lockdep_assert_held(&ctx->mutex); /* * Because of perf_event_exit_task(), perf_remove_from_context() ought * to work in the face of TASK_TOMBSTONE, unlike every other * event_function_call() user. */ raw_spin_lock_irq(&ctx->lock); /* * Cgroup events are per-cpu events, and must IPI because of * cgrp_cpuctx_list. */ if (!ctx->is_active && !is_cgroup_event(event)) { __perf_remove_from_context(event, __get_cpu_context(ctx), ctx, (void *)flags); raw_spin_unlock_irq(&ctx->lock); return; } raw_spin_unlock_irq(&ctx->lock); event_function_call(event, __perf_remove_from_context, (void *)flags); } /* * Cross CPU call to disable a performance event */ static void __perf_event_disable(struct perf_event *event, struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, void *info) { if (event->state < PERF_EVENT_STATE_INACTIVE) return; if (ctx->is_active & EVENT_TIME) { update_context_time(ctx); update_cgrp_time_from_event(event); } if (event == event->group_leader) group_sched_out(event, cpuctx, ctx); else event_sched_out(event, cpuctx, ctx); perf_event_set_state(event, PERF_EVENT_STATE_OFF); perf_cgroup_event_disable(event, ctx); } /* * Disable an event. * * If event->ctx is a cloned context, callers must make sure that * every task struct that event->ctx->task could possibly point to * remains valid. This condition is satisfied when called through * perf_event_for_each_child or perf_event_for_each because they * hold the top-level event's child_mutex, so any descendant that * goes to exit will block in perf_event_exit_event(). * * When called from perf_pending_irq it's OK because event->ctx * is the current context on this CPU and preemption is disabled, * hence we can't get into perf_event_task_sched_out for this context. */ static void _perf_event_disable(struct perf_event *event) { struct perf_event_context *ctx = event->ctx; raw_spin_lock_irq(&ctx->lock); if (event->state <= PERF_EVENT_STATE_OFF) { raw_spin_unlock_irq(&ctx->lock); return; } raw_spin_unlock_irq(&ctx->lock); event_function_call(event, __perf_event_disable, NULL); } void perf_event_disable_local(struct perf_event *event) { event_function_local(event, __perf_event_disable, NULL); } /* * Strictly speaking kernel users cannot create groups and therefore this * interface does not need the perf_event_ctx_lock() magic. */ void perf_event_disable(struct perf_event *event) { struct perf_event_context *ctx; ctx = perf_event_ctx_lock(event); _perf_event_disable(event); perf_event_ctx_unlock(event, ctx); } EXPORT_SYMBOL_GPL(perf_event_disable); void perf_event_disable_inatomic(struct perf_event *event) { event->pending_disable = 1; irq_work_queue(&event->pending_irq); } #define MAX_INTERRUPTS (~0ULL) static void perf_log_throttle(struct perf_event *event, int enable); static void perf_log_itrace_start(struct perf_event *event); static int event_sched_in(struct perf_event *event, struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) { int ret = 0; WARN_ON_ONCE(event->ctx != ctx); lockdep_assert_held(&ctx->lock); if (event->state <= PERF_EVENT_STATE_OFF) return 0; WRITE_ONCE(event->oncpu, smp_processor_id()); /* * Order event::oncpu write to happen before the ACTIVE state is * visible. This allows perf_event_{stop,read}() to observe the correct * ->oncpu if it sees ACTIVE. */ smp_wmb(); perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); /* * Unthrottle events, since we scheduled we might have missed several * ticks already, also for a heavily scheduling task there is little * guarantee it'll get a tick in a timely manner. */ if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { perf_log_throttle(event, 1); event->hw.interrupts = 0; } perf_pmu_disable(event->pmu); perf_log_itrace_start(event); if (event->pmu->add(event, PERF_EF_START)) { perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); event->oncpu = -1; ret = -EAGAIN; goto out; } if (!is_software_event(event)) cpuctx->active_oncpu++; if (!ctx->nr_active++) perf_event_ctx_activate(ctx); if (event->attr.freq && event->attr.sample_freq) ctx->nr_freq++; if (event->attr.exclusive) cpuctx->exclusive = 1; out: perf_pmu_enable(event->pmu); return ret; } static int group_sched_in(struct perf_event *group_event, struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) { struct perf_event *event, *partial_group = NULL; struct pmu *pmu = ctx->pmu; if (group_event->state == PERF_EVENT_STATE_OFF) return 0; pmu->start_txn(pmu, PERF_PMU_TXN_ADD); if (event_sched_in(group_event, cpuctx, ctx)) goto error; /* * Schedule in siblings as one group (if any): */ for_each_sibling_event(event, group_event) { if (event_sched_in(event, cpuctx, ctx)) { partial_group = event; goto group_error; } } if (!pmu->commit_txn(pmu)) return 0; group_error: /* * Groups can be scheduled in as one unit only, so undo any * partial group before returning: * The events up to the failed event are scheduled out normally. */ for_each_sibling_event(event, group_event) { if (event == partial_group) break; event_sched_out(event, cpuctx, ctx); } event_sched_out(group_event, cpuctx, ctx); error: pmu->cancel_txn(pmu); return -EAGAIN; } /* * Work out whether we can put this event group on the CPU now. */ static int group_can_go_on(struct perf_event *event, struct perf_cpu_context *cpuctx, int can_add_hw) { /* * Groups consisting entirely of software events can always go on. */ if (event->group_caps & PERF_EV_CAP_SOFTWARE) return 1; /* * If an exclusive group is already on, no other hardware * events can go on. */ if (cpuctx->exclusive) return 0; /* * If this group is exclusive and there are already * events on the CPU, it can't go on. */ if (event->attr.exclusive && !list_empty(get_event_list(event))) return 0; /* * Otherwise, try to add it if all previous groups were able * to go on. */ return can_add_hw; } static void add_event_to_ctx(struct perf_event *event, struct perf_event_context *ctx) { list_add_event(event, ctx); perf_group_attach(event); } static void ctx_sched_out(struct perf_event_context *ctx, struct perf_cpu_context *cpuctx, enum event_type_t event_type); static void ctx_sched_in(struct perf_event_context *ctx, struct perf_cpu_context *cpuctx, enum event_type_t event_type); static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, enum event_type_t event_type) { if (!cpuctx->task_ctx) return; if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) return; ctx_sched_out(ctx, cpuctx, event_type); } static void perf_event_sched_in(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx) { cpu_ctx_sched_in(cpuctx, EVENT_PINNED); if (ctx) ctx_sched_in(ctx, cpuctx, EVENT_PINNED); cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE); if (ctx) ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE); } /* * We want to maintain the following priority of scheduling: * - CPU pinned (EVENT_CPU | EVENT_PINNED) * - task pinned (EVENT_PINNED) * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) * - task flexible (EVENT_FLEXIBLE). * * In order to avoid unscheduling and scheduling back in everything every * time an event is added, only do it for the groups of equal priority and * below. * * This can be called after a batch operation on task events, in which case * event_type is a bit mask of the types of events involved. For CPU events, * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. */ static void ctx_resched(struct perf_cpu_context *cpuctx, struct perf_event_context *task_ctx, enum event_type_t event_type) { enum event_type_t ctx_event_type; bool cpu_event = !!(event_type & EVENT_CPU); /* * If pinned groups are involved, flexible groups also need to be * scheduled out. */ if (event_type & EVENT_PINNED) event_type |= EVENT_FLEXIBLE; ctx_event_type = event_type & EVENT_ALL; perf_pmu_disable(cpuctx->ctx.pmu); if (task_ctx) task_ctx_sched_out(cpuctx, task_ctx, event_type); /* * Decide which cpu ctx groups to schedule out based on the types * of events that caused rescheduling: * - EVENT_CPU: schedule out corresponding groups; * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; * - otherwise, do nothing more. */ if (cpu_event) cpu_ctx_sched_out(cpuctx, ctx_event_type); else if (ctx_event_type & EVENT_PINNED) cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); perf_event_sched_in(cpuctx, task_ctx); perf_pmu_enable(cpuctx->ctx.pmu); } void perf_pmu_resched(struct pmu *pmu) { struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); struct perf_event_context *task_ctx = cpuctx->task_ctx; perf_ctx_lock(cpuctx, task_ctx); ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); perf_ctx_unlock(cpuctx, task_ctx); } /* * Cross CPU call to install and enable a performance event * * Very similar to remote_function() + event_function() but cannot assume that * things like ctx->is_active and cpuctx->task_ctx are set. */ static int __perf_install_in_context(void *info) { struct perf_event *event = info; struct perf_event_context *ctx = event->ctx; struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); struct perf_event_context *task_ctx = cpuctx->task_ctx; bool reprogram = true; int ret = 0; raw_spin_lock(&cpuctx->ctx.lock); if (ctx->task) { raw_spin_lock(&ctx->lock); task_ctx = ctx; reprogram = (ctx->task == current); /* * If the task is running, it must be running on this CPU, * otherwise we cannot reprogram things. * * If its not running, we don't care, ctx->lock will * serialize against it becoming runnable. */ if (task_curr(ctx->task) && !reprogram) { ret = -ESRCH; goto unlock; } WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); } else if (task_ctx) { raw_spin_lock(&task_ctx->lock); } #ifdef CONFIG_CGROUP_PERF if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { /* * If the current cgroup doesn't match the event's * cgroup, we should not try to schedule it. */ struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); reprogram = cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup); } #endif if (reprogram) { ctx_sched_out(ctx, cpuctx, EVENT_TIME); add_event_to_ctx(event, ctx); ctx_resched(cpuctx, task_ctx, get_event_type(event)); } else { add_event_to_ctx(event, ctx); } unlock: perf_ctx_unlock(cpuctx, task_ctx); return ret; } static bool exclusive_event_installable(struct perf_event *event, struct perf_event_context *ctx); /* * Attach a performance event to a context. * * Very similar to event_function_call, see comment there. */ static void perf_install_in_context(struct perf_event_context *ctx, struct perf_event *event, int cpu) { struct task_struct *task = READ_ONCE(ctx->task); lockdep_assert_held(&ctx->mutex); WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); if (event->cpu != -1) event->cpu = cpu; /* * Ensures that if we can observe event->ctx, both the event and ctx * will be 'complete'. See perf_iterate_sb_cpu(). */ smp_store_release(&event->ctx, ctx); /* * perf_event_attr::disabled events will not run and can be initialized * without IPI. Except when this is the first event for the context, in * that case we need the magic of the IPI to set ctx->is_active. * Similarly, cgroup events for the context also needs the IPI to * manipulate the cgrp_cpuctx_list. * * The IOC_ENABLE that is sure to follow the creation of a disabled * event will issue the IPI and reprogram the hardware. */ if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events && !is_cgroup_event(event)) { raw_spin_lock_irq(&ctx->lock); if (ctx->task == TASK_TOMBSTONE) { raw_spin_unlock_irq(&ctx->lock); return; } add_event_to_ctx(event, ctx); raw_spin_unlock_irq(&ctx->lock); return; } if (!task) { cpu_function_call(cpu, __perf_install_in_context, event); return; } /* * Should not happen, we validate the ctx is still alive before calling. */ if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) return; /* * Installing events is tricky because we cannot rely on ctx->is_active * to be set in case this is the nr_events 0 -> 1 transition. * * Instead we use task_curr(), which tells us if the task is running. * However, since we use task_curr() outside of rq::lock, we can race * against the actual state. This means the result can be wrong. * * If we get a false positive, we retry, this is harmless. * * If we get a false negative, things are complicated. If we are after * perf_event_context_sched_in() ctx::lock will serialize us, and the * value must be correct. If we're before, it doesn't matter since * perf_event_context_sched_in() will program the counter. * * However, this hinges on the remote context switch having observed * our task->perf_event_ctxp[] store, such that it will in fact take * ctx::lock in perf_event_context_sched_in(). * * We do this by task_function_call(), if the IPI fails to hit the task * we know any future context switch of task must see the * perf_event_ctpx[] store. */ /* * This smp_mb() orders the task->perf_event_ctxp[] store with the * task_cpu() load, such that if the IPI then does not find the task * running, a future context switch of that task must observe the * store. */ smp_mb(); again: if (!task_function_call(task, __perf_install_in_context, event)) return; raw_spin_lock_irq(&ctx->lock); task = ctx->task; if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { /* * Cannot happen because we already checked above (which also * cannot happen), and we hold ctx->mutex, which serializes us * against perf_event_exit_task_context(). */ raw_spin_unlock_irq(&ctx->lock); return; } /* * If the task is not running, ctx->lock will avoid it becoming so, * thus we can safely install the event. */ if (task_curr(task)) { raw_spin_unlock_irq(&ctx->lock); goto again; } add_event_to_ctx(event, ctx); raw_spin_unlock_irq(&ctx->lock); } /* * Cross CPU call to enable a performance event */ static void __perf_event_enable(struct perf_event *event, struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, void *info) { struct perf_event *leader = event->group_leader; struct perf_event_context *task_ctx; if (event->state >= PERF_EVENT_STATE_INACTIVE || event->state <= PERF_EVENT_STATE_ERROR) return; if (ctx->is_active) ctx_sched_out(ctx, cpuctx, EVENT_TIME); perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); perf_cgroup_event_enable(event, ctx); if (!ctx->is_active) return; if (!event_filter_match(event)) { ctx_sched_in(ctx, cpuctx, EVENT_TIME); return; } /* * If the event is in a group and isn't the group leader, * then don't put it on unless the group is on. */ if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { ctx_sched_in(ctx, cpuctx, EVENT_TIME); return; } task_ctx = cpuctx->task_ctx; if (ctx->task) WARN_ON_ONCE(task_ctx != ctx); ctx_resched(cpuctx, task_ctx, get_event_type(event)); } /* * Enable an event. * * If event->ctx is a cloned context, callers must make sure that * every task struct that event->ctx->task could possibly point to * remains valid. This condition is satisfied when called through * perf_event_for_each_child or perf_event_for_each as described * for perf_event_disable. */ static void _perf_event_enable(struct perf_event *event) { struct perf_event_context *ctx = event->ctx; raw_spin_lock_irq(&ctx->lock); if (event->state >= PERF_EVENT_STATE_INACTIVE || event->state < PERF_EVENT_STATE_ERROR) { out: raw_spin_unlock_irq(&ctx->lock); return; } /* * If the event is in error state, clear that first. * * That way, if we see the event in error state below, we know that it * has gone back into error state, as distinct from the task having * been scheduled away before the cross-call arrived. */ if (event->state == PERF_EVENT_STATE_ERROR) { /* * Detached SIBLING events cannot leave ERROR state. */ if (event->event_caps & PERF_EV_CAP_SIBLING && event->group_leader == event) goto out; event->state = PERF_EVENT_STATE_OFF; } raw_spin_unlock_irq(&ctx->lock); event_function_call(event, __perf_event_enable, NULL); } /* * See perf_event_disable(); */ void perf_event_enable(struct perf_event *event) { struct perf_event_context *ctx; ctx = perf_event_ctx_lock(event); _perf_event_enable(event); perf_event_ctx_unlock(event, ctx); } EXPORT_SYMBOL_GPL(perf_event_enable); struct stop_event_data { struct perf_event *event; unsigned int restart; }; static int __perf_event_stop(void *info) { struct stop_event_data *sd = info; struct perf_event *event = sd->event; /* if it's already INACTIVE, do nothing */ if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) return 0; /* matches smp_wmb() in event_sched_in() */ smp_rmb(); /* * There is a window with interrupts enabled before we get here, * so we need to check again lest we try to stop another CPU's event. */ if (READ_ONCE(event->oncpu) != smp_processor_id()) return -EAGAIN; event->pmu->stop(event, PERF_EF_UPDATE); /* * May race with the actual stop (through perf_pmu_output_stop()), * but it is only used for events with AUX ring buffer, and such * events will refuse to restart because of rb::aux_mmap_count==0, * see comments in perf_aux_output_begin(). * * Since this is happening on an event-local CPU, no trace is lost * while restarting. */ if (sd->restart) event->pmu->start(event, 0); return 0; } static int perf_event_stop(struct perf_event *event, int restart) { struct stop_event_data sd = { .event = event, .restart = restart, }; int ret = 0; do { if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) return 0; /* matches smp_wmb() in event_sched_in() */ smp_rmb(); /* * We only want to restart ACTIVE events, so if the event goes * inactive here (event->oncpu==-1), there's nothing more to do; * fall through with ret==-ENXIO. */ ret = cpu_function_call(READ_ONCE(event->oncpu), __perf_event_stop, &sd); } while (ret == -EAGAIN); return ret; } /* * In order to contain the amount of racy and tricky in the address filter * configuration management, it is a two part process: * * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, * we update the addresses of corresponding vmas in * event::addr_filter_ranges array and bump the event::addr_filters_gen; * (p2) when an event is scheduled in (pmu::add), it calls * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() * if the generation has changed since the previous call. * * If (p1) happens while the event is active, we restart it to force (p2). * * (1) perf_addr_filters_apply(): adjusting filters' offsets based on * pre-existing mappings, called once when new filters arrive via SET_FILTER * ioctl; * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly * registered mapping, called for every new mmap(), with mm::mmap_lock down * for reading; * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process * of exec. */ void perf_event_addr_filters_sync(struct perf_event *event) { struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); if (!has_addr_filter(event)) return; raw_spin_lock(&ifh->lock); if (event->addr_filters_gen != event->hw.addr_filters_gen) { event->pmu->addr_filters_sync(event); event->hw.addr_filters_gen = event->addr_filters_gen; } raw_spin_unlock(&ifh->lock); } EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); static int _perf_event_refresh(struct perf_event *event, int refresh) { /* * not supported on inherited events */ if (event->attr.inherit || !is_sampling_event(event)) return -EINVAL; atomic_add(refresh, &event->event_limit); _perf_event_enable(event); return 0; } /* * See perf_event_disable() */ int perf_event_refresh(struct perf_event *event, int refresh) { struct perf_event_context *ctx; int ret; ctx = perf_event_ctx_lock(event); ret = _perf_event_refresh(event, refresh); perf_event_ctx_unlock(event, ctx); return ret; } EXPORT_SYMBOL_GPL(perf_event_refresh); static int perf_event_modify_breakpoint(struct perf_event *bp, struct perf_event_attr *attr) { int err; _perf_event_disable(bp); err = modify_user_hw_breakpoint_check(bp, attr, true); if (!bp->attr.disabled) _perf_event_enable(bp); return err; } /* * Copy event-type-independent attributes that may be modified. */ static void perf_event_modify_copy_attr(struct perf_event_attr *to, const struct perf_event_attr *from) { to->sig_data = from->sig_data; } static int perf_event_modify_attr(struct perf_event *event, struct perf_event_attr *attr) { int (*func)(struct perf_event *, struct perf_event_attr *); struct perf_event *child; int err; if (event->attr.type != attr->type) return -EINVAL; switch (event->attr.type) { case PERF_TYPE_BREAKPOINT: func = perf_event_modify_breakpoint; break; default: /* Place holder for future additions. */ return -EOPNOTSUPP; } WARN_ON_ONCE(event->ctx->parent_ctx); mutex_lock(&event->child_mutex); /* * Event-type-independent attributes must be copied before event-type * modification, which will validate that final attributes match the * source attributes after all relevant attributes have been copied. */ perf_event_modify_copy_attr(&event->attr, attr); err = func(event, attr); if (err) goto out; list_for_each_entry(child, &event->child_list, child_list) { perf_event_modify_copy_attr(&child->attr, attr); err = func(child, attr); if (err) goto out; } out: mutex_unlock(&event->child_mutex); return err; } static void ctx_sched_out(struct perf_event_context *ctx, struct perf_cpu_context *cpuctx, enum event_type_t event_type) { struct perf_event *event, *tmp; int is_active = ctx->is_active; lockdep_assert_held(&ctx->lock); if (likely(!ctx->nr_events)) { /* * See __perf_remove_from_context(). */ WARN_ON_ONCE(ctx->is_active); if (ctx->task) WARN_ON_ONCE(cpuctx->task_ctx); return; } /* * Always update time if it was set; not only when it changes. * Otherwise we can 'forget' to update time for any but the last * context we sched out. For example: * * ctx_sched_out(.event_type = EVENT_FLEXIBLE) * ctx_sched_out(.event_type = EVENT_PINNED) * * would only update time for the pinned events. */ if (is_active & EVENT_TIME) { /* update (and stop) ctx time */ update_context_time(ctx); update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); /* * CPU-release for the below ->is_active store, * see __load_acquire() in perf_event_time_now() */ barrier(); } ctx->is_active &= ~event_type; if (!(ctx->is_active & EVENT_ALL)) ctx->is_active = 0; if (ctx->task) { WARN_ON_ONCE(cpuctx->task_ctx != ctx); if (!ctx->is_active) cpuctx->task_ctx = NULL; } is_active ^= ctx->is_active; /* changed bits */ if (!ctx->nr_active || !(is_active & EVENT_ALL)) return; perf_pmu_disable(ctx->pmu); if (is_active & EVENT_PINNED) { list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) group_sched_out(event, cpuctx, ctx); } if (is_active & EVENT_FLEXIBLE) { list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) group_sched_out(event, cpuctx, ctx); /* * Since we cleared EVENT_FLEXIBLE, also clear * rotate_necessary, is will be reset by * ctx_flexible_sched_in() when needed. */ ctx->rotate_necessary = 0; } perf_pmu_enable(ctx->pmu); } /* * Test whether two contexts are equivalent, i.e. whether they have both been * cloned from the same version of the same context. * * Equivalence is measured using a generation number in the context that is * incremented on each modification to it; see unclone_ctx(), list_add_event() * and list_del_event(). */ static int context_equiv(struct perf_event_context *ctx1, struct perf_event_context *ctx2) { lockdep_assert_held(&ctx1->lock); lockdep_assert_held(&ctx2->lock); /* Pinning disables the swap optimization */ if (ctx1->pin_count || ctx2->pin_count) return 0; /* If ctx1 is the parent of ctx2 */ if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) return 1; /* If ctx2 is the parent of ctx1 */ if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) return 1; /* * If ctx1 and ctx2 have the same parent; we flatten the parent * hierarchy, see perf_event_init_context(). */ if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && ctx1->parent_gen == ctx2->parent_gen) return 1; /* Unmatched */ return 0; } static void __perf_event_sync_stat(struct perf_event *event, struct perf_event *next_event) { u64 value; if (!event->attr.inherit_stat) return; /* * Update the event value, we cannot use perf_event_read() * because we're in the middle of a context switch and have IRQs * disabled, which upsets smp_call_function_single(), however * we know the event must be on the current CPU, therefore we * don't need to use it. */ if (event->state == PERF_EVENT_STATE_ACTIVE) event->pmu->read(event); perf_event_update_time(event); /* * In order to keep per-task stats reliable we need to flip the event * values when we flip the contexts. */ value = local64_read(&next_event->count); value = local64_xchg(&event->count, value); local64_set(&next_event->count, value); swap(event->total_time_enabled, next_event->total_time_enabled); swap(event->total_time_running, next_event->total_time_running); /* * Since we swizzled the values, update the user visible data too. */ perf_event_update_userpage(event); perf_event_update_userpage(next_event); } static void perf_event_sync_stat(struct perf_event_context *ctx, struct perf_event_context *next_ctx) { struct perf_event *event, *next_event; if (!ctx->nr_stat) return; update_context_time(ctx); event = list_first_entry(&ctx->event_list, struct perf_event, event_entry); next_event = list_first_entry(&next_ctx->event_list, struct perf_event, event_entry); while (&event->event_entry != &ctx->event_list && &next_event->event_entry != &next_ctx->event_list) { __perf_event_sync_stat(event, next_event); event = list_next_entry(event, event_entry); next_event = list_next_entry(next_event, event_entry); } } static void perf_event_context_sched_out(struct task_struct *task, int ctxn, struct task_struct *next) { struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; struct perf_event_context *next_ctx; struct perf_event_context *parent, *next_parent; struct perf_cpu_context *cpuctx; int do_switch = 1; struct pmu *pmu; if (likely(!ctx)) return; pmu = ctx->pmu; cpuctx = __get_cpu_context(ctx); if (!cpuctx->task_ctx) return; rcu_read_lock(); next_ctx = next->perf_event_ctxp[ctxn]; if (!next_ctx) goto unlock; parent = rcu_dereference(ctx->parent_ctx); next_parent = rcu_dereference(next_ctx->parent_ctx); /* If neither context have a parent context; they cannot be clones. */ if (!parent && !next_parent) goto unlock; if (next_parent == ctx || next_ctx == parent || next_parent == parent) { /* * Looks like the two contexts are clones, so we might be * able to optimize the context switch. We lock both * contexts and check that they are clones under the * lock (including re-checking that neither has been * uncloned in the meantime). It doesn't matter which * order we take the locks because no other cpu could * be trying to lock both of these tasks. */ raw_spin_lock(&ctx->lock); raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); if (context_equiv(ctx, next_ctx)) { perf_pmu_disable(pmu); /* PMIs are disabled; ctx->nr_pending is stable. */ if (local_read(&ctx->nr_pending) || local_read(&next_ctx->nr_pending)) { /* * Must not swap out ctx when there's pending * events that rely on the ctx->task relation. */ raw_spin_unlock(&next_ctx->lock); rcu_read_unlock(); goto inside_switch; } WRITE_ONCE(ctx->task, next); WRITE_ONCE(next_ctx->task, task); if (cpuctx->sched_cb_usage && pmu->sched_task) pmu->sched_task(ctx, false); /* * PMU specific parts of task perf context can require * additional synchronization. As an example of such * synchronization see implementation details of Intel * LBR call stack data profiling; */ if (pmu->swap_task_ctx) pmu->swap_task_ctx(ctx, next_ctx); else swap(ctx->task_ctx_data, next_ctx->task_ctx_data); perf_pmu_enable(pmu); /* * RCU_INIT_POINTER here is safe because we've not * modified the ctx and the above modification of * ctx->task and ctx->task_ctx_data are immaterial * since those values are always verified under * ctx->lock which we're now holding. */ RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); do_switch = 0; perf_event_sync_stat(ctx, next_ctx); } raw_spin_unlock(&next_ctx->lock); raw_spin_unlock(&ctx->lock); } unlock: rcu_read_unlock(); if (do_switch) { raw_spin_lock(&ctx->lock); perf_pmu_disable(pmu); inside_switch: if (cpuctx->sched_cb_usage && pmu->sched_task) pmu->sched_task(ctx, false); task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); perf_pmu_enable(pmu); raw_spin_unlock(&ctx->lock); } } static DEFINE_PER_CPU(struct list_head, sched_cb_list); void perf_sched_cb_dec(struct pmu *pmu) { struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); this_cpu_dec(perf_sched_cb_usages); if (!--cpuctx->sched_cb_usage) list_del(&cpuctx->sched_cb_entry); } void perf_sched_cb_inc(struct pmu *pmu) { struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); if (!cpuctx->sched_cb_usage++) list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); this_cpu_inc(perf_sched_cb_usages); } /* * This function provides the context switch callback to the lower code * layer. It is invoked ONLY when the context switch callback is enabled. * * This callback is relevant even to per-cpu events; for example multi event * PEBS requires this to provide PID/TID information. This requires we flush * all queued PEBS records before we context switch to a new task. */ static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in) { struct pmu *pmu; pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ if (WARN_ON_ONCE(!pmu->sched_task)) return; perf_ctx_lock(cpuctx, cpuctx->task_ctx); perf_pmu_disable(pmu); pmu->sched_task(cpuctx->task_ctx, sched_in); perf_pmu_enable(pmu); perf_ctx_unlock(cpuctx, cpuctx->task_ctx); } static void perf_pmu_sched_task(struct task_struct *prev, struct task_struct *next, bool sched_in) { struct perf_cpu_context *cpuctx; if (prev == next) return; list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { /* will be handled in perf_event_context_sched_in/out */ if (cpuctx->task_ctx) continue; __perf_pmu_sched_task(cpuctx, sched_in); } } static void perf_event_switch(struct task_struct *task, struct task_struct *next_prev, bool sched_in); #define for_each_task_context_nr(ctxn) \ for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) /* * Called from scheduler to remove the events of the current task, * with interrupts disabled. * * We stop each event and update the event value in event->count. * * This does not protect us against NMI, but disable() * sets the disabled bit in the control field of event _before_ * accessing the event control register. If a NMI hits, then it will * not restart the event. */ void __perf_event_task_sched_out(struct task_struct *task, struct task_struct *next) { int ctxn; if (__this_cpu_read(perf_sched_cb_usages)) perf_pmu_sched_task(task, next, false); if (atomic_read(&nr_switch_events)) perf_event_switch(task, next, false); for_each_task_context_nr(ctxn) perf_event_context_sched_out(task, ctxn, next); /* * if cgroup events exist on this CPU, then we need * to check if we have to switch out PMU state. * cgroup event are system-wide mode only */ if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) perf_cgroup_switch(next); } /* * Called with IRQs disabled */ static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, enum event_type_t event_type) { ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); } static bool perf_less_group_idx(const void *l, const void *r) { const struct perf_event *le = *(const struct perf_event **)l; const struct perf_event *re = *(const struct perf_event **)r; return le->group_index < re->group_index; } static void swap_ptr(void *l, void *r) { void **lp = l, **rp = r; swap(*lp, *rp); } static const struct min_heap_callbacks perf_min_heap = { .elem_size = sizeof(struct perf_event *), .less = perf_less_group_idx, .swp = swap_ptr, }; static void __heap_add(struct min_heap *heap, struct perf_event *event) { struct perf_event **itrs = heap->data; if (event) { itrs[heap->nr] = event; heap->nr++; } } static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, struct perf_event_groups *groups, int cpu, int (*func)(struct perf_event *, void *), void *data) { #ifdef CONFIG_CGROUP_PERF struct cgroup_subsys_state *css = NULL; #endif /* Space for per CPU and/or any CPU event iterators. */ struct perf_event *itrs[2]; struct min_heap event_heap; struct perf_event **evt; int ret; if (cpuctx) { event_heap = (struct min_heap){ .data = cpuctx->heap, .nr = 0, .size = cpuctx->heap_size, }; lockdep_assert_held(&cpuctx->ctx.lock); #ifdef CONFIG_CGROUP_PERF if (cpuctx->cgrp) css = &cpuctx->cgrp->css; #endif } else { event_heap = (struct min_heap){ .data = itrs, .nr = 0, .size = ARRAY_SIZE(itrs), }; /* Events not within a CPU context may be on any CPU. */ __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); } evt = event_heap.data; __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); #ifdef CONFIG_CGROUP_PERF for (; css; css = css->parent) __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); #endif min_heapify_all(&event_heap, &perf_min_heap); while (event_heap.nr) { ret = func(*evt, data); if (ret) return ret; *evt = perf_event_groups_next(*evt); if (*evt) min_heapify(&event_heap, 0, &perf_min_heap); else min_heap_pop(&event_heap, &perf_min_heap); } return 0; } /* * Because the userpage is strictly per-event (there is no concept of context, * so there cannot be a context indirection), every userpage must be updated * when context time starts :-( * * IOW, we must not miss EVENT_TIME edges. */ static inline bool event_update_userpage(struct perf_event *event) { if (likely(!atomic_read(&event->mmap_count))) return false; perf_event_update_time(event); perf_event_update_userpage(event); return true; } static inline void group_update_userpage(struct perf_event *group_event) { struct perf_event *event; if (!event_update_userpage(group_event)) return; for_each_sibling_event(event, group_event) event_update_userpage(event); } static int merge_sched_in(struct perf_event *event, void *data) { struct perf_event_context *ctx = event->ctx; struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); int *can_add_hw = data; if (event->state <= PERF_EVENT_STATE_OFF) return 0; if (!event_filter_match(event)) return 0; if (group_can_go_on(event, cpuctx, *can_add_hw)) { if (!group_sched_in(event, cpuctx, ctx)) list_add_tail(&event->active_list, get_event_list(event)); } if (event->state == PERF_EVENT_STATE_INACTIVE) { *can_add_hw = 0; if (event->attr.pinned) { perf_cgroup_event_disable(event, ctx); perf_event_set_state(event, PERF_EVENT_STATE_ERROR); } else { ctx->rotate_necessary = 1; perf_mux_hrtimer_restart(cpuctx); group_update_userpage(event); } } return 0; } static void ctx_pinned_sched_in(struct perf_event_context *ctx, struct perf_cpu_context *cpuctx) { int can_add_hw = 1; if (ctx != &cpuctx->ctx) cpuctx = NULL; visit_groups_merge(cpuctx, &ctx->pinned_groups, smp_processor_id(), merge_sched_in, &can_add_hw); } static void ctx_flexible_sched_in(struct perf_event_context *ctx, struct perf_cpu_context *cpuctx) { int can_add_hw = 1; if (ctx != &cpuctx->ctx) cpuctx = NULL; visit_groups_merge(cpuctx, &ctx->flexible_groups, smp_processor_id(), merge_sched_in, &can_add_hw); } static void ctx_sched_in(struct perf_event_context *ctx, struct perf_cpu_context *cpuctx, enum event_type_t event_type) { int is_active = ctx->is_active; lockdep_assert_held(&ctx->lock); if (likely(!ctx->nr_events)) return; if (!(is_active & EVENT_TIME)) { /* start ctx time */ __update_context_time(ctx, false); perf_cgroup_set_timestamp(cpuctx); /* * CPU-release for the below ->is_active store, * see __load_acquire() in perf_event_time_now() */ barrier(); } ctx->is_active |= (event_type | EVENT_TIME); if (ctx->task) { if (!is_active) cpuctx->task_ctx = ctx; else WARN_ON_ONCE(cpuctx->task_ctx != ctx); } is_active ^= ctx->is_active; /* changed bits */ /* * First go through the list and put on any pinned groups * in order to give them the best chance of going on. */ if (is_active & EVENT_PINNED) ctx_pinned_sched_in(ctx, cpuctx); /* Then walk through the lower prio flexible groups */ if (is_active & EVENT_FLEXIBLE) ctx_flexible_sched_in(ctx, cpuctx); } static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, enum event_type_t event_type) { struct perf_event_context *ctx = &cpuctx->ctx; ctx_sched_in(ctx, cpuctx, event_type); } static void perf_event_context_sched_in(struct perf_event_context *ctx, struct task_struct *task) { struct perf_cpu_context *cpuctx; struct pmu *pmu; cpuctx = __get_cpu_context(ctx); /* * HACK: for HETEROGENEOUS the task context might have switched to a * different PMU, force (re)set the context, */ pmu = ctx->pmu = cpuctx->ctx.pmu; if (cpuctx->task_ctx == ctx) { if (cpuctx->sched_cb_usage) __perf_pmu_sched_task(cpuctx, true); return; } perf_ctx_lock(cpuctx, ctx); /* * We must check ctx->nr_events while holding ctx->lock, such * that we serialize against perf_install_in_context(). */ if (!ctx->nr_events) goto unlock; perf_pmu_disable(pmu); /* * We want to keep the following priority order: * cpu pinned (that don't need to move), task pinned, * cpu flexible, task flexible. * * However, if task's ctx is not carrying any pinned * events, no need to flip the cpuctx's events around. */ if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); perf_event_sched_in(cpuctx, ctx); if (cpuctx->sched_cb_usage && pmu->sched_task) pmu->sched_task(cpuctx->task_ctx, true); perf_pmu_enable(pmu); unlock: perf_ctx_unlock(cpuctx, ctx); } /* * Called from scheduler to add the events of the current task * with interrupts disabled. * * We restore the event value and then enable it. * * This does not protect us against NMI, but enable() * sets the enabled bit in the control field of event _before_ * accessing the event control register. If a NMI hits, then it will * keep the event running. */ void __perf_event_task_sched_in(struct task_struct *prev, struct task_struct *task) { struct perf_event_context *ctx; int ctxn; for_each_task_context_nr(ctxn) { ctx = task->perf_event_ctxp[ctxn]; if (likely(!ctx)) continue; perf_event_context_sched_in(ctx, task); } if (atomic_read(&nr_switch_events)) perf_event_switch(task, prev, true); if (__this_cpu_read(perf_sched_cb_usages)) perf_pmu_sched_task(prev, task, true); } static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) { u64 frequency = event->attr.sample_freq; u64 sec = NSEC_PER_SEC; u64 divisor, dividend; int count_fls, nsec_fls, frequency_fls, sec_fls; count_fls = fls64(count); nsec_fls = fls64(nsec); frequency_fls = fls64(frequency); sec_fls = 30; /* * We got @count in @nsec, with a target of sample_freq HZ * the target period becomes: * * @count * 10^9 * period = ------------------- * @nsec * sample_freq * */ /* * Reduce accuracy by one bit such that @a and @b converge * to a similar magnitude. */ #define REDUCE_FLS(a, b) \ do { \ if (a##_fls > b##_fls) { \ a >>= 1; \ a##_fls--; \ } else { \ b >>= 1; \ b##_fls--; \ } \ } while (0) /* * Reduce accuracy until either term fits in a u64, then proceed with * the other, so that finally we can do a u64/u64 division. */ while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { REDUCE_FLS(nsec, frequency); REDUCE_FLS(sec, count); } if (count_fls + sec_fls > 64) { divisor = nsec * frequency; while (count_fls + sec_fls > 64) { REDUCE_FLS(count, sec); divisor >>= 1; } dividend = count * sec; } else { dividend = count * sec; while (nsec_fls + frequency_fls > 64) { REDUCE_FLS(nsec, frequency); dividend >>= 1; } divisor = nsec * frequency; } if (!divisor) return dividend; return div64_u64(dividend, divisor); } static DEFINE_PER_CPU(int, perf_throttled_count); static DEFINE_PER_CPU(u64, perf_throttled_seq); static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) { struct hw_perf_event *hwc = &event->hw; s64 period, sample_period; s64 delta; period = perf_calculate_period(event, nsec, count); delta = (s64)(period - hwc->sample_period); if (delta >= 0) delta += 7; else delta -= 7; delta /= 8; /* low pass filter */ sample_period = hwc->sample_period + delta; if (!sample_period) sample_period = 1; hwc->sample_period = sample_period; if (local64_read(&hwc->period_left) > 8*sample_period) { if (disable) event->pmu->stop(event, PERF_EF_UPDATE); local64_set(&hwc->period_left, 0); if (disable) event->pmu->start(event, PERF_EF_RELOAD); } } /* * combine freq adjustment with unthrottling to avoid two passes over the * events. At the same time, make sure, having freq events does not change * the rate of unthrottling as that would introduce bias. */ static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, int needs_unthr) { struct perf_event *event; struct hw_perf_event *hwc; u64 now, period = TICK_NSEC; s64 delta; /* * only need to iterate over all events iff: * - context have events in frequency mode (needs freq adjust) * - there are events to unthrottle on this cpu */ if (!(ctx->nr_freq || needs_unthr)) return; raw_spin_lock(&ctx->lock); perf_pmu_disable(ctx->pmu); list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { if (event->state != PERF_EVENT_STATE_ACTIVE) continue; if (!event_filter_match(event)) continue; perf_pmu_disable(event->pmu); hwc = &event->hw; if (hwc->interrupts == MAX_INTERRUPTS) { hwc->interrupts = 0; perf_log_throttle(event, 1); event->pmu->start(event, 0); } if (!event->attr.freq || !event->attr.sample_freq) goto next; /* * stop the event and update event->count */ event->pmu->stop(event, PERF_EF_UPDATE); now = local64_read(&event->count); delta = now - hwc->freq_count_stamp; hwc->freq_count_stamp = now; /* * restart the event * reload only if value has changed * we have stopped the event so tell that * to perf_adjust_period() to avoid stopping it * twice. */ if (delta > 0) perf_adjust_period(event, period, delta, false); event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); next: perf_pmu_enable(event->pmu); } perf_pmu_enable(ctx->pmu); raw_spin_unlock(&ctx->lock); } /* * Move @event to the tail of the @ctx's elegible events. */ static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) { /* * Rotate the first entry last of non-pinned groups. Rotation might be * disabled by the inheritance code. */ if (ctx->rotate_disable) return; perf_event_groups_delete(&ctx->flexible_groups, event); perf_event_groups_insert(&ctx->flexible_groups, event); } /* pick an event from the flexible_groups to rotate */ static inline struct perf_event * ctx_event_to_rotate(struct perf_event_context *ctx) { struct perf_event *event; /* pick the first active flexible event */ event = list_first_entry_or_null(&ctx->flexible_active, struct perf_event, active_list); /* if no active flexible event, pick the first event */ if (!event) { event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), typeof(*event), group_node); } /* * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() * finds there are unschedulable events, it will set it again. */ ctx->rotate_necessary = 0; return event; } static bool perf_rotate_context(struct perf_cpu_context *cpuctx) { struct perf_event *cpu_event = NULL, *task_event = NULL; struct perf_event_context *task_ctx = NULL; int cpu_rotate, task_rotate; /* * Since we run this from IRQ context, nobody can install new * events, thus the event count values are stable. */ cpu_rotate = cpuctx->ctx.rotate_necessary; task_ctx = cpuctx->task_ctx; task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; if (!(cpu_rotate || task_rotate)) return false; perf_ctx_lock(cpuctx, cpuctx->task_ctx); perf_pmu_disable(cpuctx->ctx.pmu); if (task_rotate) task_event = ctx_event_to_rotate(task_ctx); if (cpu_rotate) cpu_event = ctx_event_to_rotate(&cpuctx->ctx); /* * As per the order given at ctx_resched() first 'pop' task flexible * and then, if needed CPU flexible. */ if (task_event || (task_ctx && cpu_event)) ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); if (cpu_event) cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); if (task_event) rotate_ctx(task_ctx, task_event); if (cpu_event) rotate_ctx(&cpuctx->ctx, cpu_event); perf_event_sched_in(cpuctx, task_ctx); perf_pmu_enable(cpuctx->ctx.pmu); perf_ctx_unlock(cpuctx, cpuctx->task_ctx); return true; } void perf_event_task_tick(void) { struct list_head *head = this_cpu_ptr(&active_ctx_list); struct perf_event_context *ctx, *tmp; int throttled; lockdep_assert_irqs_disabled(); __this_cpu_inc(perf_throttled_seq); throttled = __this_cpu_xchg(perf_throttled_count, 0); tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) perf_adjust_freq_unthr_context(ctx, throttled); } static int event_enable_on_exec(struct perf_event *event, struct perf_event_context *ctx) { if (!event->attr.enable_on_exec) return 0; event->attr.enable_on_exec = 0; if (event->state >= PERF_EVENT_STATE_INACTIVE) return 0; perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); return 1; } /* * Enable all of a task's events that have been marked enable-on-exec. * This expects task == current. */ static void perf_event_enable_on_exec(int ctxn) { struct perf_event_context *ctx, *clone_ctx = NULL; enum event_type_t event_type = 0; struct perf_cpu_context *cpuctx; struct perf_event *event; unsigned long flags; int enabled = 0; local_irq_save(flags); ctx = current->perf_event_ctxp[ctxn]; if (!ctx || !ctx->nr_events) goto out; cpuctx = __get_cpu_context(ctx); perf_ctx_lock(cpuctx, ctx); ctx_sched_out(ctx, cpuctx, EVENT_TIME); list_for_each_entry(event, &ctx->event_list, event_entry) { enabled |= event_enable_on_exec(event, ctx); event_type |= get_event_type(event); } /* * Unclone and reschedule this context if we enabled any event. */ if (enabled) { clone_ctx = unclone_ctx(ctx); ctx_resched(cpuctx, ctx, event_type); } else { ctx_sched_in(ctx, cpuctx, EVENT_TIME); } perf_ctx_unlock(cpuctx, ctx); out: local_irq_restore(flags); if (clone_ctx) put_ctx(clone_ctx); } static void perf_remove_from_owner(struct perf_event *event); static void perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx); /* * Removes all events from the current task that have been marked * remove-on-exec, and feeds their values back to parent events. */ static void perf_event_remove_on_exec(int ctxn) { struct perf_event_context *ctx, *clone_ctx = NULL; struct perf_event *event, *next; unsigned long flags; bool modified = false; ctx = perf_pin_task_context(current, ctxn); if (!ctx) return; mutex_lock(&ctx->mutex); if (WARN_ON_ONCE(ctx->task != current)) goto unlock; list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { if (!event->attr.remove_on_exec) continue; if (!is_kernel_event(event)) perf_remove_from_owner(event); modified = true; perf_event_exit_event(event, ctx); } raw_spin_lock_irqsave(&ctx->lock, flags); if (modified) clone_ctx = unclone_ctx(ctx); --ctx->pin_count; raw_spin_unlock_irqrestore(&ctx->lock, flags); unlock: mutex_unlock(&ctx->mutex); put_ctx(ctx); if (clone_ctx) put_ctx(clone_ctx); } struct perf_read_data { struct perf_event *event; bool group; int ret; }; static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) { u16 local_pkg, event_pkg; if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { int local_cpu = smp_processor_id(); event_pkg = topology_physical_package_id(event_cpu); local_pkg = topology_physical_package_id(local_cpu); if (event_pkg == local_pkg) return local_cpu; } return event_cpu; } /* * Cross CPU call to read the hardware event */ static void __perf_event_read(void *info) { struct perf_read_data *data = info; struct perf_event *sub, *event = data->event; struct perf_event_context *ctx = event->ctx; struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); struct pmu *pmu = event->pmu; /* * If this is a task context, we need to check whether it is * the current task context of this cpu. If not it has been * scheduled out before the smp call arrived. In that case * event->count would have been updated to a recent sample * when the event was scheduled out. */ if (ctx->task && cpuctx->task_ctx != ctx) return; raw_spin_lock(&ctx->lock); if (ctx->is_active & EVENT_TIME) { update_context_time(ctx); update_cgrp_time_from_event(event); } perf_event_update_time(event); if (data->group) perf_event_update_sibling_time(event); if (event->state != PERF_EVENT_STATE_ACTIVE) goto unlock; if (!data->group) { pmu->read(event); data->ret = 0; goto unlock; } pmu->start_txn(pmu, PERF_PMU_TXN_READ); pmu->read(event); for_each_sibling_event(sub, event) { if (sub->state == PERF_EVENT_STATE_ACTIVE) { /* * Use sibling's PMU rather than @event's since * sibling could be on different (eg: software) PMU. */ sub->pmu->read(sub); } } data->ret = pmu->commit_txn(pmu); unlock: raw_spin_unlock(&ctx->lock); } static inline u64 perf_event_count(struct perf_event *event) { return local64_read(&event->count) + atomic64_read(&event->child_count); } static void calc_timer_values(struct perf_event *event, u64 *now, u64 *enabled, u64 *running) { u64 ctx_time; *now = perf_clock(); ctx_time = perf_event_time_now(event, *now); __perf_update_times(event, ctx_time, enabled, running); } /* * NMI-safe method to read a local event, that is an event that * is: * - either for the current task, or for this CPU * - does not have inherit set, for inherited task events * will not be local and we cannot read them atomically * - must not have a pmu::count method */ int perf_event_read_local(struct perf_event *event, u64 *value, u64 *enabled, u64 *running) { unsigned long flags; int ret = 0; /* * Disabling interrupts avoids all counter scheduling (context * switches, timer based rotation and IPIs). */ local_irq_save(flags); /* * It must not be an event with inherit set, we cannot read * all child counters from atomic context. */ if (event->attr.inherit) { ret = -EOPNOTSUPP; goto out; } /* If this is a per-task event, it must be for current */ if ((event->attach_state & PERF_ATTACH_TASK) && event->hw.target != current) { ret = -EINVAL; goto out; } /* If this is a per-CPU event, it must be for this CPU */ if (!(event->attach_state & PERF_ATTACH_TASK) && event->cpu != smp_processor_id()) { ret = -EINVAL; goto out; } /* If this is a pinned event it must be running on this CPU */ if (event->attr.pinned && event->oncpu != smp_processor_id()) { ret = -EBUSY; goto out; } /* * If the event is currently on this CPU, its either a per-task event, * or local to this CPU. Furthermore it means its ACTIVE (otherwise * oncpu == -1). */ if (event->oncpu == smp_processor_id()) event->pmu->read(event); *value = local64_read(&event->count); if (enabled || running) { u64 __enabled, __running, __now; calc_timer_values(event, &__now, &__enabled, &__running); if (enabled) *enabled = __enabled; if (running) *running = __running; } out: local_irq_restore(flags); return ret; } static int perf_event_read(struct perf_event *event, bool group) { enum perf_event_state state = READ_ONCE(event->state); int event_cpu, ret = 0; /* * If event is enabled and currently active on a CPU, update the * value in the event structure: */ again: if (state == PERF_EVENT_STATE_ACTIVE) { struct perf_read_data data; /* * Orders the ->state and ->oncpu loads such that if we see * ACTIVE we must also see the right ->oncpu. * * Matches the smp_wmb() from event_sched_in(). */ smp_rmb(); event_cpu = READ_ONCE(event->oncpu); if ((unsigned)event_cpu >= nr_cpu_ids) return 0; data = (struct perf_read_data){ .event = event, .group = group, .ret = 0, }; preempt_disable(); event_cpu = __perf_event_read_cpu(event, event_cpu); /* * Purposely ignore the smp_call_function_single() return * value. * * If event_cpu isn't a valid CPU it means the event got * scheduled out and that will have updated the event count. * * Therefore, either way, we'll have an up-to-date event count * after this. */ (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); preempt_enable(); ret = data.ret; } else if (state == PERF_EVENT_STATE_INACTIVE) { struct perf_event_context *ctx = event->ctx; unsigned long flags; raw_spin_lock_irqsave(&ctx->lock, flags); state = event->state; if (state != PERF_EVENT_STATE_INACTIVE) { raw_spin_unlock_irqrestore(&ctx->lock, flags); goto again; } /* * May read while context is not active (e.g., thread is * blocked), in that case we cannot update context time */ if (ctx->is_active & EVENT_TIME) { update_context_time(ctx); update_cgrp_time_from_event(event); } perf_event_update_time(event); if (group) perf_event_update_sibling_time(event); raw_spin_unlock_irqrestore(&ctx->lock, flags); } return ret; } /* * Initialize the perf_event context in a task_struct: */ static void __perf_event_init_context(struct perf_event_context *ctx) { raw_spin_lock_init(&ctx->lock); mutex_init(&ctx->mutex); INIT_LIST_HEAD(&ctx->active_ctx_list); perf_event_groups_init(&ctx->pinned_groups); perf_event_groups_init(&ctx->flexible_groups); INIT_LIST_HEAD(&ctx->event_list); INIT_LIST_HEAD(&ctx->pinned_active); INIT_LIST_HEAD(&ctx->flexible_active); refcount_set(&ctx->refcount, 1); } static struct perf_event_context * alloc_perf_context(struct pmu *pmu, struct task_struct *task) { struct perf_event_context *ctx; ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); if (!ctx) return NULL; __perf_event_init_context(ctx); if (task) ctx->task = get_task_struct(task); ctx->pmu = pmu; return ctx; } static struct task_struct * find_lively_task_by_vpid(pid_t vpid) { struct task_struct *task; rcu_read_lock(); if (!vpid) task = current; else task = find_task_by_vpid(vpid); if (task) get_task_struct(task); rcu_read_unlock(); if (!task) return ERR_PTR(-ESRCH); return task; } /* * Returns a matching context with refcount and pincount. */ static struct perf_event_context * find_get_context(struct pmu *pmu, struct task_struct *task, struct perf_event *event) { struct perf_event_context *ctx, *clone_ctx = NULL; struct perf_cpu_context *cpuctx; void *task_ctx_data = NULL; unsigned long flags; int ctxn, err; int cpu = event->cpu; if (!task) { /* Must be root to operate on a CPU event: */ err = perf_allow_cpu(&event->attr); if (err) return ERR_PTR(err); cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); ctx = &cpuctx->ctx; get_ctx(ctx); raw_spin_lock_irqsave(&ctx->lock, flags); ++ctx->pin_count; raw_spin_unlock_irqrestore(&ctx->lock, flags); return ctx; } err = -EINVAL; ctxn = pmu->task_ctx_nr; if (ctxn < 0) goto errout; if (event->attach_state & PERF_ATTACH_TASK_DATA) { task_ctx_data = alloc_task_ctx_data(pmu); if (!task_ctx_data) { err = -ENOMEM; goto errout; } } retry: ctx = perf_lock_task_context(task, ctxn, &flags); if (ctx) { clone_ctx = unclone_ctx(ctx); ++ctx->pin_count; if (task_ctx_data && !ctx->task_ctx_data) { ctx->task_ctx_data = task_ctx_data; task_ctx_data = NULL; } raw_spin_unlock_irqrestore(&ctx->lock, flags); if (clone_ctx) put_ctx(clone_ctx); } else { ctx = alloc_perf_context(pmu, task); err = -ENOMEM; if (!ctx) goto errout; if (task_ctx_data) { ctx->task_ctx_data = task_ctx_data; task_ctx_data = NULL; } err = 0; mutex_lock(&task->perf_event_mutex); /* * If it has already passed perf_event_exit_task(). * we must see PF_EXITING, it takes this mutex too. */ if (task->flags & PF_EXITING) err = -ESRCH; else if (task->perf_event_ctxp[ctxn]) err = -EAGAIN; else { get_ctx(ctx); ++ctx->pin_count; rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); } mutex_unlock(&task->perf_event_mutex); if (unlikely(err)) { put_ctx(ctx); if (err == -EAGAIN) goto retry; goto errout; } } free_task_ctx_data(pmu, task_ctx_data); return ctx; errout: free_task_ctx_data(pmu, task_ctx_data); return ERR_PTR(err); } static void perf_event_free_filter(struct perf_event *event); static void free_event_rcu(struct rcu_head *head) { struct perf_event *event; event = container_of(head, struct perf_event, rcu_head); if (event->ns) put_pid_ns(event->ns); perf_event_free_filter(event); kmem_cache_free(perf_event_cache, event); } static void ring_buffer_attach(struct perf_event *event, struct perf_buffer *rb); static void detach_sb_event(struct perf_event *event) { struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); raw_spin_lock(&pel->lock); list_del_rcu(&event->sb_list); raw_spin_unlock(&pel->lock); } static bool is_sb_event(struct perf_event *event) { struct perf_event_attr *attr = &event->attr; if (event->parent) return false; if (event->attach_state & PERF_ATTACH_TASK) return false; if (attr->mmap || attr->mmap_data || attr->mmap2 || attr->comm || attr->comm_exec || attr->task || attr->ksymbol || attr->context_switch || attr->text_poke || attr->bpf_event) return true; return false; } static void unaccount_pmu_sb_event(struct perf_event *event) { if (is_sb_event(event)) detach_sb_event(event); } static void unaccount_event_cpu(struct perf_event *event, int cpu) { if (event->parent) return; if (is_cgroup_event(event)) atomic_dec(&per_cpu(perf_cgroup_events, cpu)); } #ifdef CONFIG_NO_HZ_FULL static DEFINE_SPINLOCK(nr_freq_lock); #endif static void unaccount_freq_event_nohz(void) { #ifdef CONFIG_NO_HZ_FULL spin_lock(&nr_freq_lock); if (atomic_dec_and_test(&nr_freq_events)) tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); spin_unlock(&nr_freq_lock); #endif } static void unaccount_freq_event(void) { if (tick_nohz_full_enabled()) unaccount_freq_event_nohz(); else atomic_dec(&nr_freq_events); } static void unaccount_event(struct perf_event *event) { bool dec = false; if (event->parent) return; if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) dec = true; if (event->attr.mmap || event->attr.mmap_data) atomic_dec(&nr_mmap_events); if (event->attr.build_id) atomic_dec(&nr_build_id_events); if (event->attr.comm) atomic_dec(&nr_comm_events); if (event->attr.namespaces) atomic_dec(&nr_namespaces_events); if (event->attr.cgroup) atomic_dec(&nr_cgroup_events); if (event->attr.task) atomic_dec(&nr_task_events); if (event->attr.freq) unaccount_freq_event(); if (event->attr.context_switch) { dec = true; atomic_dec(&nr_switch_events); } if (is_cgroup_event(event)) dec = true; if (has_branch_stack(event)) dec = true; if (event->attr.ksymbol) atomic_dec(&nr_ksymbol_events); if (event->attr.bpf_event) atomic_dec(&nr_bpf_events); if (event->attr.text_poke) atomic_dec(&nr_text_poke_events); if (dec) { if (!atomic_add_unless(&perf_sched_count, -1, 1)) schedule_delayed_work(&perf_sched_work, HZ); } unaccount_event_cpu(event, event->cpu); unaccount_pmu_sb_event(event); } static void perf_sched_delayed(struct work_struct *work) { mutex_lock(&perf_sched_mutex); if (atomic_dec_and_test(&perf_sched_count)) static_branch_disable(&perf_sched_events); mutex_unlock(&perf_sched_mutex); } /* * The following implement mutual exclusion of events on "exclusive" pmus * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled * at a time, so we disallow creating events that might conflict, namely: * * 1) cpu-wide events in the presence of per-task events, * 2) per-task events in the presence of cpu-wide events, * 3) two matching events on the same context. * * The former two cases are handled in the allocation path (perf_event_alloc(), * _free_event()), the latter -- before the first perf_install_in_context(). */ static int exclusive_event_init(struct perf_event *event) { struct pmu *pmu = event->pmu; if (!is_exclusive_pmu(pmu)) return 0; /* * Prevent co-existence of per-task and cpu-wide events on the * same exclusive pmu. * * Negative pmu::exclusive_cnt means there are cpu-wide * events on this "exclusive" pmu, positive means there are * per-task events. * * Since this is called in perf_event_alloc() path, event::ctx * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK * to mean "per-task event", because unlike other attach states it * never gets cleared. */ if (event->attach_state & PERF_ATTACH_TASK) { if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) return -EBUSY; } else { if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) return -EBUSY; } return 0; } static void exclusive_event_destroy(struct perf_event *event) { struct pmu *pmu = event->pmu; if (!is_exclusive_pmu(pmu)) return; /* see comment in exclusive_event_init() */ if (event->attach_state & PERF_ATTACH_TASK) atomic_dec(&pmu->exclusive_cnt); else atomic_inc(&pmu->exclusive_cnt); } static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) { if ((e1->pmu == e2->pmu) && (e1->cpu == e2->cpu || e1->cpu == -1 || e2->cpu == -1)) return true; return false; } static bool exclusive_event_installable(struct perf_event *event, struct perf_event_context *ctx) { struct perf_event *iter_event; struct pmu *pmu = event->pmu; lockdep_assert_held(&ctx->mutex); if (!is_exclusive_pmu(pmu)) return true; list_for_each_entry(iter_event, &ctx->event_list, event_entry) { if (exclusive_event_match(iter_event, event)) return false; } return true; } static void perf_addr_filters_splice(struct perf_event *event, struct list_head *head); static void perf_pending_task_sync(struct perf_event *event) { struct callback_head *head = &event->pending_task; if (!event->pending_work) return; /* * If the task is queued to the current task's queue, we * obviously can't wait for it to complete. Simply cancel it. */ if (task_work_cancel(current, head)) { event->pending_work = 0; local_dec(&event->ctx->nr_pending); return; } /* * All accesses related to the event are within the same * non-preemptible section in perf_pending_task(). The RCU * grace period before the event is freed will make sure all * those accesses are complete by then. */ rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE); } static void _free_event(struct perf_event *event) { irq_work_sync(&event->pending_irq); perf_pending_task_sync(event); unaccount_event(event); security_perf_event_free(event); if (event->rb) { /* * Can happen when we close an event with re-directed output. * * Since we have a 0 refcount, perf_mmap_close() will skip * over us; possibly making our ring_buffer_put() the last. */ mutex_lock(&event->mmap_mutex); ring_buffer_attach(event, NULL); mutex_unlock(&event->mmap_mutex); } if (is_cgroup_event(event)) perf_detach_cgroup(event); if (!event->parent) { if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) put_callchain_buffers(); } perf_event_free_bpf_prog(event); perf_addr_filters_splice(event, NULL); kfree(event->addr_filter_ranges); if (event->destroy) event->destroy(event); /* * Must be after ->destroy(), due to uprobe_perf_close() using * hw.target. */ if (event->hw.target) put_task_struct(event->hw.target); /* * perf_event_free_task() relies on put_ctx() being 'last', in particular * all task references must be cleaned up. */ if (event->ctx) put_ctx(event->ctx); exclusive_event_destroy(event); module_put(event->pmu->module); call_rcu(&event->rcu_head, free_event_rcu); } /* * Used to free events which have a known refcount of 1, such as in error paths * where the event isn't exposed yet and inherited events. */ static void free_event(struct perf_event *event) { if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, "unexpected event refcount: %ld; ptr=%p\n", atomic_long_read(&event->refcount), event)) { /* leak to avoid use-after-free */ return; } _free_event(event); } /* * Remove user event from the owner task. */ static void perf_remove_from_owner(struct perf_event *event) { struct task_struct *owner; rcu_read_lock(); /* * Matches the smp_store_release() in perf_event_exit_task(). If we * observe !owner it means the list deletion is complete and we can * indeed free this event, otherwise we need to serialize on * owner->perf_event_mutex. */ owner = READ_ONCE(event->owner); if (owner) { /* * Since delayed_put_task_struct() also drops the last * task reference we can safely take a new reference * while holding the rcu_read_lock(). */ get_task_struct(owner); } rcu_read_unlock(); if (owner) { /* * If we're here through perf_event_exit_task() we're already * holding ctx->mutex which would be an inversion wrt. the * normal lock order. * * However we can safely take this lock because its the child * ctx->mutex. */ mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); /* * We have to re-check the event->owner field, if it is cleared * we raced with perf_event_exit_task(), acquiring the mutex * ensured they're done, and we can proceed with freeing the * event. */ if (event->owner) { list_del_init(&event->owner_entry); smp_store_release(&event->owner, NULL); } mutex_unlock(&owner->perf_event_mutex); put_task_struct(owner); } } static void put_event(struct perf_event *event) { if (!atomic_long_dec_and_test(&event->refcount)) return; _free_event(event); } /* * Kill an event dead; while event:refcount will preserve the event * object, it will not preserve its functionality. Once the last 'user' * gives up the object, we'll destroy the thing. */ int perf_event_release_kernel(struct perf_event *event) { struct perf_event_context *ctx = event->ctx; struct perf_event *child, *tmp; LIST_HEAD(free_list); /* * If we got here through err_file: fput(event_file); we will not have * attached to a context yet. */ if (!ctx) { WARN_ON_ONCE(event->attach_state & (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); goto no_ctx; } if (!is_kernel_event(event)) perf_remove_from_owner(event); ctx = perf_event_ctx_lock(event); WARN_ON_ONCE(ctx->parent_ctx); /* * Mark this event as STATE_DEAD, there is no external reference to it * anymore. * * Anybody acquiring event->child_mutex after the below loop _must_ * also see this, most importantly inherit_event() which will avoid * placing more children on the list. * * Thus this guarantees that we will in fact observe and kill _ALL_ * child events. */ perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); perf_event_ctx_unlock(event, ctx); again: mutex_lock(&event->child_mutex); list_for_each_entry(child, &event->child_list, child_list) { void *var = NULL; /* * Cannot change, child events are not migrated, see the * comment with perf_event_ctx_lock_nested(). */ ctx = READ_ONCE(child->ctx); /* * Since child_mutex nests inside ctx::mutex, we must jump * through hoops. We start by grabbing a reference on the ctx. * * Since the event cannot get freed while we hold the * child_mutex, the context must also exist and have a !0 * reference count. */ get_ctx(ctx); /* * Now that we have a ctx ref, we can drop child_mutex, and * acquire ctx::mutex without fear of it going away. Then we * can re-acquire child_mutex. */ mutex_unlock(&event->child_mutex); mutex_lock(&ctx->mutex); mutex_lock(&event->child_mutex); /* * Now that we hold ctx::mutex and child_mutex, revalidate our * state, if child is still the first entry, it didn't get freed * and we can continue doing so. */ tmp = list_first_entry_or_null(&event->child_list, struct perf_event, child_list); if (tmp == child) { perf_remove_from_context(child, DETACH_GROUP); list_move(&child->child_list, &free_list); /* * This matches the refcount bump in inherit_event(); * this can't be the last reference. */ put_event(event); } else { var = &ctx->refcount; } mutex_unlock(&event->child_mutex); mutex_unlock(&ctx->mutex); put_ctx(ctx); if (var) { /* * If perf_event_free_task() has deleted all events from the * ctx while the child_mutex got released above, make sure to * notify about the preceding put_ctx(). */ smp_mb(); /* pairs with wait_var_event() */ wake_up_var(var); } goto again; } mutex_unlock(&event->child_mutex); list_for_each_entry_safe(child, tmp, &free_list, child_list) { void *var = &child->ctx->refcount; list_del(&child->child_list); free_event(child); /* * Wake any perf_event_free_task() waiting for this event to be * freed. */ smp_mb(); /* pairs with wait_var_event() */ wake_up_var(var); } no_ctx: put_event(event); /* Must be the 'last' reference */ return 0; } EXPORT_SYMBOL_GPL(perf_event_release_kernel); /* * Called when the last reference to the file is gone. */ static int perf_release(struct inode *inode, struct file *file) { perf_event_release_kernel(file->private_data); return 0; } static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) { struct perf_event *child; u64 total = 0; *enabled = 0; *running = 0; mutex_lock(&event->child_mutex); (void)perf_event_read(event, false); total += perf_event_count(event); *enabled += event->total_time_enabled + atomic64_read(&event->child_total_time_enabled); *running += event->total_time_running + atomic64_read(&event->child_total_time_running); list_for_each_entry(child, &event->child_list, child_list) { (void)perf_event_read(child, false); total += perf_event_count(child); *enabled += child->total_time_enabled; *running += child->total_time_running; } mutex_unlock(&event->child_mutex); return total; } u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) { struct perf_event_context *ctx; u64 count; ctx = perf_event_ctx_lock(event); count = __perf_event_read_value(event, enabled, running); perf_event_ctx_unlock(event, ctx); return count; } EXPORT_SYMBOL_GPL(perf_event_read_value); static int __perf_read_group_add(struct perf_event *leader, u64 read_format, u64 *values) { struct perf_event_context *ctx = leader->ctx; struct perf_event *sub, *parent; unsigned long flags; int n = 1; /* skip @nr */ int ret; ret = perf_event_read(leader, true); if (ret) return ret; raw_spin_lock_irqsave(&ctx->lock, flags); /* * Verify the grouping between the parent and child (inherited) * events is still in tact. * * Specifically: * - leader->ctx->lock pins leader->sibling_list * - parent->child_mutex pins parent->child_list * - parent->ctx->mutex pins parent->sibling_list * * Because parent->ctx != leader->ctx (and child_list nests inside * ctx->mutex), group destruction is not atomic between children, also * see perf_event_release_kernel(). Additionally, parent can grow the * group. * * Therefore it is possible to have parent and child groups in a * different configuration and summing over such a beast makes no sense * what so ever. * * Reject this. */ parent = leader->parent; if (parent && (parent->group_generation != leader->group_generation || parent->nr_siblings != leader->nr_siblings)) { ret = -ECHILD; goto unlock; } /* * Since we co-schedule groups, {enabled,running} times of siblings * will be identical to those of the leader, so we only publish one * set. */ if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { values[n++] += leader->total_time_enabled + atomic64_read(&leader->child_total_time_enabled); } if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { values[n++] += leader->total_time_running + atomic64_read(&leader->child_total_time_running); } /* * Write {count,id} tuples for every sibling. */ values[n++] += perf_event_count(leader); if (read_format & PERF_FORMAT_ID) values[n++] = primary_event_id(leader); if (read_format & PERF_FORMAT_LOST) values[n++] = atomic64_read(&leader->lost_samples); for_each_sibling_event(sub, leader) { values[n++] += perf_event_count(sub); if (read_format & PERF_FORMAT_ID) values[n++] = primary_event_id(sub); if (read_format & PERF_FORMAT_LOST) values[n++] = atomic64_read(&sub->lost_samples); } unlock: raw_spin_unlock_irqrestore(&ctx->lock, flags); return ret; } static int perf_read_group(struct perf_event *event, u64 read_format, char __user *buf) { struct perf_event *leader = event->group_leader, *child; struct perf_event_context *ctx = leader->ctx; int ret; u64 *values; lockdep_assert_held(&ctx->mutex); values = kzalloc(event->read_size, GFP_KERNEL); if (!values) return -ENOMEM; values[0] = 1 + leader->nr_siblings; mutex_lock(&leader->child_mutex); ret = __perf_read_group_add(leader, read_format, values); if (ret) goto unlock; list_for_each_entry(child, &leader->child_list, child_list) { ret = __perf_read_group_add(child, read_format, values); if (ret) goto unlock; } mutex_unlock(&leader->child_mutex); ret = event->read_size; if (copy_to_user(buf, values, event->read_size)) ret = -EFAULT; goto out; unlock: mutex_unlock(&leader->child_mutex); out: kfree(values); return ret; } static int perf_read_one(struct perf_event *event, u64 read_format, char __user *buf) { u64 enabled, running; u64 values[5]; int n = 0; values[n++] = __perf_event_read_value(event, &enabled, &running); if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) values[n++] = enabled; if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) values[n++] = running; if (read_format & PERF_FORMAT_ID) values[n++] = primary_event_id(event); if (read_format & PERF_FORMAT_LOST) values[n++] = atomic64_read(&event->lost_samples); if (copy_to_user(buf, values, n * sizeof(u64))) return -EFAULT; return n * sizeof(u64); } static bool is_event_hup(struct perf_event *event) { bool no_children; if (event->state > PERF_EVENT_STATE_EXIT) return false; mutex_lock(&event->child_mutex); no_children = list_empty(&event->child_list); mutex_unlock(&event->child_mutex); return no_children; } /* * Read the performance event - simple non blocking version for now */ static ssize_t __perf_read(struct perf_event *event, char __user *buf, size_t count) { u64 read_format = event->attr.read_format; int ret; /* * Return end-of-file for a read on an event that is in * error state (i.e. because it was pinned but it couldn't be * scheduled on to the CPU at some point). */ if (event->state == PERF_EVENT_STATE_ERROR) return 0; if (count < event->read_size) return -ENOSPC; WARN_ON_ONCE(event->ctx->parent_ctx); if (read_format & PERF_FORMAT_GROUP) ret = perf_read_group(event, read_format, buf); else ret = perf_read_one(event, read_format, buf); return ret; } static ssize_t perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct perf_event *event = file->private_data; struct perf_event_context *ctx; int ret; ret = security_perf_event_read(event); if (ret) return ret; ctx = perf_event_ctx_lock(event); ret = __perf_read(event, buf, count); perf_event_ctx_unlock(event, ctx); return ret; } static __poll_t perf_poll(struct file *file, poll_table *wait) { struct perf_event *event = file->private_data; struct perf_buffer *rb; __poll_t events = EPOLLHUP; poll_wait(file, &event->waitq, wait); if (is_event_hup(event)) return events; /* * Pin the event->rb by taking event->mmap_mutex; otherwise * perf_event_set_output() can swizzle our rb and make us miss wakeups. */ mutex_lock(&event->mmap_mutex); rb = event->rb; if (rb) events = atomic_xchg(&rb->poll, 0); mutex_unlock(&event->mmap_mutex); return events; } static void _perf_event_reset(struct perf_event *event) { (void)perf_event_read(event, false); local64_set(&event->count, 0); perf_event_update_userpage(event); } /* Assume it's not an event with inherit set. */ u64 perf_event_pause(struct perf_event *event, bool reset) { struct perf_event_context *ctx; u64 count; ctx = perf_event_ctx_lock(event); WARN_ON_ONCE(event->attr.inherit); _perf_event_disable(event); count = local64_read(&event->count); if (reset) local64_set(&event->count, 0); perf_event_ctx_unlock(event, ctx); return count; } EXPORT_SYMBOL_GPL(perf_event_pause); /* * Holding the top-level event's child_mutex means that any * descendant process that has inherited this event will block * in perf_event_exit_event() if it goes to exit, thus satisfying the * task existence requirements of perf_event_enable/disable. */ static void perf_event_for_each_child(struct perf_event *event, void (*func)(struct perf_event *)) { struct perf_event *child; WARN_ON_ONCE(event->ctx->parent_ctx); mutex_lock(&event->child_mutex); func(event); list_for_each_entry(child, &event->child_list, child_list) func(child); mutex_unlock(&event->child_mutex); } static void perf_event_for_each(struct perf_event *event, void (*func)(struct perf_event *)) { struct perf_event_context *ctx = event->ctx; struct perf_event *sibling; lockdep_assert_held(&ctx->mutex); event = event->group_leader; perf_event_for_each_child(event, func); for_each_sibling_event(sibling, event) perf_event_for_each_child(sibling, func); } static void __perf_event_period(struct perf_event *event, struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, void *info) { u64 value = *((u64 *)info); bool active; if (event->attr.freq) { event->attr.sample_freq = value; } else { event->attr.sample_period = value; event->hw.sample_period = value; } active = (event->state == PERF_EVENT_STATE_ACTIVE); if (active) { perf_pmu_disable(ctx->pmu); /* * We could be throttled; unthrottle now to avoid the tick * trying to unthrottle while we already re-started the event. */ if (event->hw.interrupts == MAX_INTERRUPTS) { event->hw.interrupts = 0; perf_log_throttle(event, 1); } event->pmu->stop(event, PERF_EF_UPDATE); } local64_set(&event->hw.period_left, 0); if (active) { event->pmu->start(event, PERF_EF_RELOAD); perf_pmu_enable(ctx->pmu); } } static int perf_event_check_period(struct perf_event *event, u64 value) { return event->pmu->check_period(event, value); } static int _perf_event_period(struct perf_event *event, u64 value) { if (!is_sampling_event(event)) return -EINVAL; if (!value) return -EINVAL; if (event->attr.freq) { if (value > sysctl_perf_event_sample_rate) return -EINVAL; } else { if (perf_event_check_period(event, value)) return -EINVAL; if (value & (1ULL << 63)) return -EINVAL; } event_function_call(event, __perf_event_period, &value); return 0; } int perf_event_period(struct perf_event *event, u64 value) { struct perf_event_context *ctx; int ret; ctx = perf_event_ctx_lock(event); ret = _perf_event_period(event, value); perf_event_ctx_unlock(event, ctx); return ret; } EXPORT_SYMBOL_GPL(perf_event_period); static const struct file_operations perf_fops; static inline int perf_fget_light(int fd, struct fd *p) { struct fd f = fdget(fd); if (!f.file) return -EBADF; if (f.file->f_op != &perf_fops) { fdput(f); return -EBADF; } *p = f; return 0; } static int perf_event_set_output(struct perf_event *event, struct perf_event *output_event); static int perf_event_set_filter(struct perf_event *event, void __user *arg); static int perf_copy_attr(struct perf_event_attr __user *uattr, struct perf_event_attr *attr); static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) { void (*func)(struct perf_event *); u32 flags = arg; switch (cmd) { case PERF_EVENT_IOC_ENABLE: func = _perf_event_enable; break; case PERF_EVENT_IOC_DISABLE: func = _perf_event_disable; break; case PERF_EVENT_IOC_RESET: func = _perf_event_reset; break; case PERF_EVENT_IOC_REFRESH: return _perf_event_refresh(event, arg); case PERF_EVENT_IOC_PERIOD: { u64 value; if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) return -EFAULT; return _perf_event_period(event, value); } case PERF_EVENT_IOC_ID: { u64 id = primary_event_id(event); if (copy_to_user((void __user *)arg, &id, sizeof(id))) return -EFAULT; return 0; } case PERF_EVENT_IOC_SET_OUTPUT: { int ret; if (arg != -1) { struct perf_event *output_event; struct fd output; ret = perf_fget_light(arg, &output); if (ret) return ret; output_event = output.file->private_data; ret = perf_event_set_output(event, output_event); fdput(output); } else { ret = perf_event_set_output(event, NULL); } return ret; } case PERF_EVENT_IOC_SET_FILTER: return perf_event_set_filter(event, (void __user *)arg); case PERF_EVENT_IOC_SET_BPF: { struct bpf_prog *prog; int err; prog = bpf_prog_get(arg); if (IS_ERR(prog)) return PTR_ERR(prog); err = perf_event_set_bpf_prog(event, prog, 0); if (err) { bpf_prog_put(prog); return err; } return 0; } case PERF_EVENT_IOC_PAUSE_OUTPUT: { struct perf_buffer *rb; rcu_read_lock(); rb = rcu_dereference(event->rb); if (!rb || !rb->nr_pages) { rcu_read_unlock(); return -EINVAL; } rb_toggle_paused(rb, !!arg); rcu_read_unlock(); return 0; } case PERF_EVENT_IOC_QUERY_BPF: return perf_event_query_prog_array(event, (void __user *)arg); case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { struct perf_event_attr new_attr; int err = perf_copy_attr((struct perf_event_attr __user *)arg, &new_attr); if (err) return err; return perf_event_modify_attr(event, &new_attr); } default: return -ENOTTY; } if (flags & PERF_IOC_FLAG_GROUP) perf_event_for_each(event, func); else perf_event_for_each_child(event, func); return 0; } static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct perf_event *event = file->private_data; struct perf_event_context *ctx; long ret; /* Treat ioctl like writes as it is likely a mutating operation. */ ret = security_perf_event_write(event); if (ret) return ret; ctx = perf_event_ctx_lock(event); ret = _perf_ioctl(event, cmd, arg); perf_event_ctx_unlock(event, ctx); return ret; } #ifdef CONFIG_COMPAT static long perf_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { switch (_IOC_NR(cmd)) { case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): case _IOC_NR(PERF_EVENT_IOC_ID): case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { cmd &= ~IOCSIZE_MASK; cmd |= sizeof(void *) << IOCSIZE_SHIFT; } break; } return perf_ioctl(file, cmd, arg); } #else # define perf_compat_ioctl NULL #endif int perf_event_task_enable(void) { struct perf_event_context *ctx; struct perf_event *event; mutex_lock(&current->perf_event_mutex); list_for_each_entry(event, &current->perf_event_list, owner_entry) { ctx = perf_event_ctx_lock(event); perf_event_for_each_child(event, _perf_event_enable); perf_event_ctx_unlock(event, ctx); } mutex_unlock(&current->perf_event_mutex); return 0; } int perf_event_task_disable(void) { struct perf_event_context *ctx; struct perf_event *event; mutex_lock(&current->perf_event_mutex); list_for_each_entry(event, &current->perf_event_list, owner_entry) { ctx = perf_event_ctx_lock(event); perf_event_for_each_child(event, _perf_event_disable); perf_event_ctx_unlock(event, ctx); } mutex_unlock(&current->perf_event_mutex); return 0; } static int perf_event_index(struct perf_event *event) { if (event->hw.state & PERF_HES_STOPPED) return 0; if (event->state != PERF_EVENT_STATE_ACTIVE) return 0; return event->pmu->event_idx(event); } static void perf_event_init_userpage(struct perf_event *event) { struct perf_event_mmap_page *userpg; struct perf_buffer *rb; rcu_read_lock(); rb = rcu_dereference(event->rb); if (!rb) goto unlock; userpg = rb->user_page; /* Allow new userspace to detect that bit 0 is deprecated */ userpg->cap_bit0_is_deprecated = 1; userpg->size = offsetof(struct perf_event_mmap_page, __reserved); userpg->data_offset = PAGE_SIZE; userpg->data_size = perf_data_size(rb); unlock: rcu_read_unlock(); } void __weak arch_perf_update_userpage( struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) { } /* * Callers need to ensure there can be no nesting of this function, otherwise * the seqlock logic goes bad. We can not serialize this because the arch * code calls this from NMI context. */ void perf_event_update_userpage(struct perf_event *event) { struct perf_event_mmap_page *userpg; struct perf_buffer *rb; u64 enabled, running, now; rcu_read_lock(); rb = rcu_dereference(event->rb); if (!rb) goto unlock; /* * compute total_time_enabled, total_time_running * based on snapshot values taken when the event * was last scheduled in. * * we cannot simply called update_context_time() * because of locking issue as we can be called in * NMI context */ calc_timer_values(event, &now, &enabled, &running); userpg = rb->user_page; /* * Disable preemption to guarantee consistent time stamps are stored to * the user page. */ preempt_disable(); ++userpg->lock; barrier(); userpg->index = perf_event_index(event); userpg->offset = perf_event_count(event); if (userpg->index) userpg->offset -= local64_read(&event->hw.prev_count); userpg->time_enabled = enabled + atomic64_read(&event->child_total_time_enabled); userpg->time_running = running + atomic64_read(&event->child_total_time_running); arch_perf_update_userpage(event, userpg, now); barrier(); ++userpg->lock; preempt_enable(); unlock: rcu_read_unlock(); } EXPORT_SYMBOL_GPL(perf_event_update_userpage); static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) { struct perf_event *event = vmf->vma->vm_file->private_data; struct perf_buffer *rb; vm_fault_t ret = VM_FAULT_SIGBUS; if (vmf->flags & FAULT_FLAG_MKWRITE) { if (vmf->pgoff == 0) ret = 0; return ret; } rcu_read_lock(); rb = rcu_dereference(event->rb); if (!rb) goto unlock; if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) goto unlock; vmf->page = perf_mmap_to_page(rb, vmf->pgoff); if (!vmf->page) goto unlock; get_page(vmf->page); vmf->page->mapping = vmf->vma->vm_file->f_mapping; vmf->page->index = vmf->pgoff; ret = 0; unlock: rcu_read_unlock(); return ret; } static void ring_buffer_attach(struct perf_event *event, struct perf_buffer *rb) { struct perf_buffer *old_rb = NULL; unsigned long flags; WARN_ON_ONCE(event->parent); if (event->rb) { /* * Should be impossible, we set this when removing * event->rb_entry and wait/clear when adding event->rb_entry. */ WARN_ON_ONCE(event->rcu_pending); old_rb = event->rb; spin_lock_irqsave(&old_rb->event_lock, flags); list_del_rcu(&event->rb_entry); spin_unlock_irqrestore(&old_rb->event_lock, flags); event->rcu_batches = get_state_synchronize_rcu(); event->rcu_pending = 1; } if (rb) { if (event->rcu_pending) { cond_synchronize_rcu(event->rcu_batches); event->rcu_pending = 0; } spin_lock_irqsave(&rb->event_lock, flags); list_add_rcu(&event->rb_entry, &rb->event_list); spin_unlock_irqrestore(&rb->event_lock, flags); } /* * Avoid racing with perf_mmap_close(AUX): stop the event * before swizzling the event::rb pointer; if it's getting * unmapped, its aux_mmap_count will be 0 and it won't * restart. See the comment in __perf_pmu_output_stop(). * * Data will inevitably be lost when set_output is done in * mid-air, but then again, whoever does it like this is * not in for the data anyway. */ if (has_aux(event)) perf_event_stop(event, 0); rcu_assign_pointer(event->rb, rb); if (old_rb) { ring_buffer_put(old_rb); /* * Since we detached before setting the new rb, so that we * could attach the new rb, we could have missed a wakeup. * Provide it now. */ wake_up_all(&event->waitq); } } static void ring_buffer_wakeup(struct perf_event *event) { struct perf_buffer *rb; if (event->parent) event = event->parent; rcu_read_lock(); rb = rcu_dereference(event->rb); if (rb) { list_for_each_entry_rcu(event, &rb->event_list, rb_entry) wake_up_all(&event->waitq); } rcu_read_unlock(); } struct perf_buffer *ring_buffer_get(struct perf_event *event) { struct perf_buffer *rb; if (event->parent) event = event->parent; rcu_read_lock(); rb = rcu_dereference(event->rb); if (rb) { if (!refcount_inc_not_zero(&rb->refcount)) rb = NULL; } rcu_read_unlock(); return rb; } void ring_buffer_put(struct perf_buffer *rb) { if (!refcount_dec_and_test(&rb->refcount)) return; WARN_ON_ONCE(!list_empty(&rb->event_list)); call_rcu(&rb->rcu_head, rb_free_rcu); } static void perf_mmap_open(struct vm_area_struct *vma) { struct perf_event *event = vma->vm_file->private_data; atomic_inc(&event->mmap_count); atomic_inc(&event->rb->mmap_count); if (vma->vm_pgoff) atomic_inc(&event->rb->aux_mmap_count); if (event->pmu->event_mapped) event->pmu->event_mapped(event, vma->vm_mm); } static void perf_pmu_output_stop(struct perf_event *event); /* * A buffer can be mmap()ed multiple times; either directly through the same * event, or through other events by use of perf_event_set_output(). * * In order to undo the VM accounting done by perf_mmap() we need to destroy * the buffer here, where we still have a VM context. This means we need * to detach all events redirecting to us. */ static void perf_mmap_close(struct vm_area_struct *vma) { struct perf_event *event = vma->vm_file->private_data; struct perf_buffer *rb = ring_buffer_get(event); struct user_struct *mmap_user = rb->mmap_user; int mmap_locked = rb->mmap_locked; unsigned long size = perf_data_size(rb); bool detach_rest = false; if (event->pmu->event_unmapped) event->pmu->event_unmapped(event, vma->vm_mm); /* * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex * to avoid complications. */ if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) { /* * Stop all AUX events that are writing to this buffer, * so that we can free its AUX pages and corresponding PMU * data. Note that after rb::aux_mmap_count dropped to zero, * they won't start any more (see perf_aux_output_begin()). */ perf_pmu_output_stop(event); /* now it's safe to free the pages */ atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); /* this has to be the last one */ rb_free_aux(rb); WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); mutex_unlock(&rb->aux_mutex); } if (atomic_dec_and_test(&rb->mmap_count)) detach_rest = true; if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) goto out_put; ring_buffer_attach(event, NULL); mutex_unlock(&event->mmap_mutex); /* If there's still other mmap()s of this buffer, we're done. */ if (!detach_rest) goto out_put; /* * No other mmap()s, detach from all other events that might redirect * into the now unreachable buffer. Somewhat complicated by the * fact that rb::event_lock otherwise nests inside mmap_mutex. */ again: rcu_read_lock(); list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { if (!atomic_long_inc_not_zero(&event->refcount)) { /* * This event is en-route to free_event() which will * detach it and remove it from the list. */ continue; } rcu_read_unlock(); mutex_lock(&event->mmap_mutex); /* * Check we didn't race with perf_event_set_output() which can * swizzle the rb from under us while we were waiting to * acquire mmap_mutex. * * If we find a different rb; ignore this event, a next * iteration will no longer find it on the list. We have to * still restart the iteration to make sure we're not now * iterating the wrong list. */ if (event->rb == rb) ring_buffer_attach(event, NULL); mutex_unlock(&event->mmap_mutex); put_event(event); /* * Restart the iteration; either we're on the wrong list or * destroyed its integrity by doing a deletion. */ goto again; } rcu_read_unlock(); /* * It could be there's still a few 0-ref events on the list; they'll * get cleaned up by free_event() -- they'll also still have their * ref on the rb and will free it whenever they are done with it. * * Aside from that, this buffer is 'fully' detached and unmapped, * undo the VM accounting. */ atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, &mmap_user->locked_vm); atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); free_uid(mmap_user); out_put: ring_buffer_put(rb); /* could be last */ } static const struct vm_operations_struct perf_mmap_vmops = { .open = perf_mmap_open, .close = perf_mmap_close, /* non mergeable */ .fault = perf_mmap_fault, .page_mkwrite = perf_mmap_fault, }; static int perf_mmap(struct file *file, struct vm_area_struct *vma) { struct perf_event *event = file->private_data; unsigned long user_locked, user_lock_limit; struct user_struct *user = current_user(); struct mutex *aux_mutex = NULL; struct perf_buffer *rb = NULL; unsigned long locked, lock_limit; unsigned long vma_size; unsigned long nr_pages; long user_extra = 0, extra = 0; int ret = 0, flags = 0; /* * Don't allow mmap() of inherited per-task counters. This would * create a performance issue due to all children writing to the * same rb. */ if (event->cpu == -1 && event->attr.inherit) return -EINVAL; if (!(vma->vm_flags & VM_SHARED)) return -EINVAL; ret = security_perf_event_read(event); if (ret) return ret; vma_size = vma->vm_end - vma->vm_start; if (vma->vm_pgoff == 0) { nr_pages = (vma_size / PAGE_SIZE) - 1; } else { /* * AUX area mapping: if rb->aux_nr_pages != 0, it's already * mapped, all subsequent mappings should have the same size * and offset. Must be above the normal perf buffer. */ u64 aux_offset, aux_size; if (!event->rb) return -EINVAL; nr_pages = vma_size / PAGE_SIZE; if (nr_pages > INT_MAX) return -ENOMEM; mutex_lock(&event->mmap_mutex); ret = -EINVAL; rb = event->rb; if (!rb) goto aux_unlock; aux_mutex = &rb->aux_mutex; mutex_lock(aux_mutex); aux_offset = READ_ONCE(rb->user_page->aux_offset); aux_size = READ_ONCE(rb->user_page->aux_size); if (aux_offset < perf_data_size(rb) + PAGE_SIZE) goto aux_unlock; if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) goto aux_unlock; /* already mapped with a different offset */ if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) goto aux_unlock; if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) goto aux_unlock; /* already mapped with a different size */ if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) goto aux_unlock; if (!is_power_of_2(nr_pages)) goto aux_unlock; if (!atomic_inc_not_zero(&rb->mmap_count)) goto aux_unlock; if (rb_has_aux(rb)) { atomic_inc(&rb->aux_mmap_count); ret = 0; goto unlock; } atomic_set(&rb->aux_mmap_count, 1); user_extra = nr_pages; goto accounting; } /* * If we have rb pages ensure they're a power-of-two number, so we * can do bitmasks instead of modulo. */ if (nr_pages != 0 && !is_power_of_2(nr_pages)) return -EINVAL; if (vma_size != PAGE_SIZE * (1 + nr_pages)) return -EINVAL; WARN_ON_ONCE(event->ctx->parent_ctx); again: mutex_lock(&event->mmap_mutex); if (event->rb) { if (data_page_nr(event->rb) != nr_pages) { ret = -EINVAL; goto unlock; } if (!atomic_inc_not_zero(&event->rb->mmap_count)) { /* * Raced against perf_mmap_close(); remove the * event and try again. */ ring_buffer_attach(event, NULL); mutex_unlock(&event->mmap_mutex); goto again; } goto unlock; } user_extra = nr_pages + 1; accounting: user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); /* * Increase the limit linearly with more CPUs: */ user_lock_limit *= num_online_cpus(); user_locked = atomic_long_read(&user->locked_vm); /* * sysctl_perf_event_mlock may have changed, so that * user->locked_vm > user_lock_limit */ if (user_locked > user_lock_limit) user_locked = user_lock_limit; user_locked += user_extra; if (user_locked > user_lock_limit) { /* * charge locked_vm until it hits user_lock_limit; * charge the rest from pinned_vm */ extra = user_locked - user_lock_limit; user_extra -= extra; } lock_limit = rlimit(RLIMIT_MEMLOCK); lock_limit >>= PAGE_SHIFT; locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; if ((locked > lock_limit) && perf_is_paranoid() && !capable(CAP_IPC_LOCK)) { ret = -EPERM; goto unlock; } WARN_ON(!rb && event->rb); if (vma->vm_flags & VM_WRITE) flags |= RING_BUFFER_WRITABLE; if (!rb) { rb = rb_alloc(nr_pages, event->attr.watermark ? event->attr.wakeup_watermark : 0, event->cpu, flags); if (!rb) { ret = -ENOMEM; goto unlock; } atomic_set(&rb->mmap_count, 1); rb->mmap_user = get_current_user(); rb->mmap_locked = extra; ring_buffer_attach(event, rb); perf_event_update_time(event); perf_event_init_userpage(event); perf_event_update_userpage(event); } else { ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, event->attr.aux_watermark, flags); if (!ret) rb->aux_mmap_locked = extra; } unlock: if (!ret) { atomic_long_add(user_extra, &user->locked_vm); atomic64_add(extra, &vma->vm_mm->pinned_vm); atomic_inc(&event->mmap_count); } else if (rb) { atomic_dec(&rb->mmap_count); } aux_unlock: if (aux_mutex) mutex_unlock(aux_mutex); mutex_unlock(&event->mmap_mutex); /* * Since pinned accounting is per vm we cannot allow fork() to copy our * vma. */ vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; vma->vm_ops = &perf_mmap_vmops; if (event->pmu->event_mapped) event->pmu->event_mapped(event, vma->vm_mm); return ret; } static int perf_fasync(int fd, struct file *filp, int on) { struct inode *inode = file_inode(filp); struct perf_event *event = filp->private_data; int retval; inode_lock(inode); retval = fasync_helper(fd, filp, on, &event->fasync); inode_unlock(inode); if (retval < 0) return retval; return 0; } static const struct file_operations perf_fops = { .llseek = no_llseek, .release = perf_release, .read = perf_read, .poll = perf_poll, .unlocked_ioctl = perf_ioctl, .compat_ioctl = perf_compat_ioctl, .mmap = perf_mmap, .fasync = perf_fasync, }; /* * Perf event wakeup * * If there's data, ensure we set the poll() state and publish everything * to user-space before waking everybody up. */ static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) { /* only the parent has fasync state */ if (event->parent) event = event->parent; return &event->fasync; } void perf_event_wakeup(struct perf_event *event) { ring_buffer_wakeup(event); if (event->pending_kill) { kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); event->pending_kill = 0; } } static void perf_sigtrap(struct perf_event *event) { /* * We'd expect this to only occur if the irq_work is delayed and either * ctx->task or current has changed in the meantime. This can be the * case on architectures that do not implement arch_irq_work_raise(). */ if (WARN_ON_ONCE(event->ctx->task != current)) return; /* * Both perf_pending_task() and perf_pending_irq() can race with the * task exiting. */ if (current->flags & PF_EXITING) return; send_sig_perf((void __user *)event->pending_addr, event->attr.type, event->attr.sig_data); } /* * Deliver the pending work in-event-context or follow the context. */ static void __perf_pending_irq(struct perf_event *event) { int cpu = READ_ONCE(event->oncpu); /* * If the event isn't running; we done. event_sched_out() will have * taken care of things. */ if (cpu < 0) return; /* * Yay, we hit home and are in the context of the event. */ if (cpu == smp_processor_id()) { if (event->pending_sigtrap) { event->pending_sigtrap = 0; perf_sigtrap(event); local_dec(&event->ctx->nr_pending); } if (event->pending_disable) { event->pending_disable = 0; perf_event_disable_local(event); } return; } /* * CPU-A CPU-B * * perf_event_disable_inatomic() * @pending_disable = CPU-A; * irq_work_queue(); * * sched-out * @pending_disable = -1; * * sched-in * perf_event_disable_inatomic() * @pending_disable = CPU-B; * irq_work_queue(); // FAILS * * irq_work_run() * perf_pending_irq() * * But the event runs on CPU-B and wants disabling there. */ irq_work_queue_on(&event->pending_irq, cpu); } static void perf_pending_irq(struct irq_work *entry) { struct perf_event *event = container_of(entry, struct perf_event, pending_irq); int rctx; /* * If we 'fail' here, that's OK, it means recursion is already disabled * and we won't recurse 'further'. */ rctx = perf_swevent_get_recursion_context(); /* * The wakeup isn't bound to the context of the event -- it can happen * irrespective of where the event is. */ if (event->pending_wakeup) { event->pending_wakeup = 0; perf_event_wakeup(event); } __perf_pending_irq(event); if (rctx >= 0) perf_swevent_put_recursion_context(rctx); } static void perf_pending_task(struct callback_head *head) { struct perf_event *event = container_of(head, struct perf_event, pending_task); int rctx; /* * All accesses to the event must belong to the same implicit RCU read-side * critical section as the ->pending_work reset. See comment in * perf_pending_task_sync(). */ preempt_disable_notrace(); /* * If we 'fail' here, that's OK, it means recursion is already disabled * and we won't recurse 'further'. */ rctx = perf_swevent_get_recursion_context(); if (event->pending_work) { event->pending_work = 0; perf_sigtrap(event); local_dec(&event->ctx->nr_pending); rcuwait_wake_up(&event->pending_work_wait); } if (rctx >= 0) perf_swevent_put_recursion_context(rctx); preempt_enable_notrace(); } #ifdef CONFIG_GUEST_PERF_EVENTS struct perf_guest_info_callbacks __rcu *perf_guest_cbs; DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) { if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) return; rcu_assign_pointer(perf_guest_cbs, cbs); static_call_update(__perf_guest_state, cbs->state); static_call_update(__perf_guest_get_ip, cbs->get_ip); /* Implementing ->handle_intel_pt_intr is optional. */ if (cbs->handle_intel_pt_intr) static_call_update(__perf_guest_handle_intel_pt_intr, cbs->handle_intel_pt_intr); } EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) { if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) return; rcu_assign_pointer(perf_guest_cbs, NULL); static_call_update(__perf_guest_state, (void *)&__static_call_return0); static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); static_call_update(__perf_guest_handle_intel_pt_intr, (void *)&__static_call_return0); synchronize_rcu(); } EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); #endif static void perf_output_sample_regs(struct perf_output_handle *handle, struct pt_regs *regs, u64 mask) { int bit; DECLARE_BITMAP(_mask, 64); bitmap_from_u64(_mask, mask); for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { u64 val; val = perf_reg_value(regs, bit); perf_output_put(handle, val); } } static void perf_sample_regs_user(struct perf_regs *regs_user, struct pt_regs *regs) { if (user_mode(regs)) { regs_user->abi = perf_reg_abi(current); regs_user->regs = regs; } else if (!(current->flags & PF_KTHREAD)) { perf_get_regs_user(regs_user, regs); } else { regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; regs_user->regs = NULL; } } static void perf_sample_regs_intr(struct perf_regs *regs_intr, struct pt_regs *regs) { regs_intr->regs = regs; regs_intr->abi = perf_reg_abi(current); } /* * Get remaining task size from user stack pointer. * * It'd be better to take stack vma map and limit this more * precisely, but there's no way to get it safely under interrupt, * so using TASK_SIZE as limit. */ static u64 perf_ustack_task_size(struct pt_regs *regs) { unsigned long addr = perf_user_stack_pointer(regs); if (!addr || addr >= TASK_SIZE) return 0; return TASK_SIZE - addr; } static u16 perf_sample_ustack_size(u16 stack_size, u16 header_size, struct pt_regs *regs) { u64 task_size; /* No regs, no stack pointer, no dump. */ if (!regs) return 0; /* * Check if we fit in with the requested stack size into the: * - TASK_SIZE * If we don't, we limit the size to the TASK_SIZE. * * - remaining sample size * If we don't, we customize the stack size to * fit in to the remaining sample size. */ task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); stack_size = min(stack_size, (u16) task_size); /* Current header size plus static size and dynamic size. */ header_size += 2 * sizeof(u64); /* Do we fit in with the current stack dump size? */ if ((u16) (header_size + stack_size) < header_size) { /* * If we overflow the maximum size for the sample, * we customize the stack dump size to fit in. */ stack_size = USHRT_MAX - header_size - sizeof(u64); stack_size = round_up(stack_size, sizeof(u64)); } return stack_size; } static void perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, struct pt_regs *regs) { /* Case of a kernel thread, nothing to dump */ if (!regs) { u64 size = 0; perf_output_put(handle, size); } else { unsigned long sp; unsigned int rem; u64 dyn_size; /* * We dump: * static size * - the size requested by user or the best one we can fit * in to the sample max size * data * - user stack dump data * dynamic size * - the actual dumped size */ /* Static size. */ perf_output_put(handle, dump_size); /* Data. */ sp = perf_user_stack_pointer(regs); rem = __output_copy_user(handle, (void *) sp, dump_size); dyn_size = dump_size - rem; perf_output_skip(handle, rem); /* Dynamic size. */ perf_output_put(handle, dyn_size); } } static unsigned long perf_prepare_sample_aux(struct perf_event *event, struct perf_sample_data *data, size_t size) { struct perf_event *sampler = event->aux_event; struct perf_buffer *rb; data->aux_size = 0; if (!sampler) goto out; if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) goto out; if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) goto out; rb = ring_buffer_get(sampler); if (!rb) goto out; /* * If this is an NMI hit inside sampling code, don't take * the sample. See also perf_aux_sample_output(). */ if (READ_ONCE(rb->aux_in_sampling)) { data->aux_size = 0; } else { size = min_t(size_t, size, perf_aux_size(rb)); data->aux_size = ALIGN(size, sizeof(u64)); } ring_buffer_put(rb); out: return data->aux_size; } static long perf_pmu_snapshot_aux(struct perf_buffer *rb, struct perf_event *event, struct perf_output_handle *handle, unsigned long size) { unsigned long flags; long ret; /* * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler * paths. If we start calling them in NMI context, they may race with * the IRQ ones, that is, for example, re-starting an event that's just * been stopped, which is why we're using a separate callback that * doesn't change the event state. * * IRQs need to be disabled to prevent IPIs from racing with us. */ local_irq_save(flags); /* * Guard against NMI hits inside the critical section; * see also perf_prepare_sample_aux(). */ WRITE_ONCE(rb->aux_in_sampling, 1); barrier(); ret = event->pmu->snapshot_aux(event, handle, size); barrier(); WRITE_ONCE(rb->aux_in_sampling, 0); local_irq_restore(flags); return ret; } static void perf_aux_sample_output(struct perf_event *event, struct perf_output_handle *handle, struct perf_sample_data *data) { struct perf_event *sampler = event->aux_event; struct perf_buffer *rb; unsigned long pad; long size; if (WARN_ON_ONCE(!sampler || !data->aux_size)) return; rb = ring_buffer_get(sampler); if (!rb) return; size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); /* * An error here means that perf_output_copy() failed (returned a * non-zero surplus that it didn't copy), which in its current * enlightened implementation is not possible. If that changes, we'd * like to know. */ if (WARN_ON_ONCE(size < 0)) goto out_put; /* * The pad comes from ALIGN()ing data->aux_size up to u64 in * perf_prepare_sample_aux(), so should not be more than that. */ pad = data->aux_size - size; if (WARN_ON_ONCE(pad >= sizeof(u64))) pad = 8; if (pad) { u64 zero = 0; perf_output_copy(handle, &zero, pad); } out_put: ring_buffer_put(rb); } static void __perf_event_header__init_id(struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event, u64 sample_type) { data->type = event->attr.sample_type; header->size += event->id_header_size; if (sample_type & PERF_SAMPLE_TID) { /* namespace issues */ data->tid_entry.pid = perf_event_pid(event, current); data->tid_entry.tid = perf_event_tid(event, current); } if (sample_type & PERF_SAMPLE_TIME) data->time = perf_event_clock(event); if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) data->id = primary_event_id(event); if (sample_type & PERF_SAMPLE_STREAM_ID) data->stream_id = event->id; if (sample_type & PERF_SAMPLE_CPU) { data->cpu_entry.cpu = raw_smp_processor_id(); data->cpu_entry.reserved = 0; } } void perf_event_header__init_id(struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event) { if (event->attr.sample_id_all) __perf_event_header__init_id(header, data, event, event->attr.sample_type); } static void __perf_event__output_id_sample(struct perf_output_handle *handle, struct perf_sample_data *data) { u64 sample_type = data->type; if (sample_type & PERF_SAMPLE_TID) perf_output_put(handle, data->tid_entry); if (sample_type & PERF_SAMPLE_TIME) perf_output_put(handle, data->time); if (sample_type & PERF_SAMPLE_ID) perf_output_put(handle, data->id); if (sample_type & PERF_SAMPLE_STREAM_ID) perf_output_put(handle, data->stream_id); if (sample_type & PERF_SAMPLE_CPU) perf_output_put(handle, data->cpu_entry); if (sample_type & PERF_SAMPLE_IDENTIFIER) perf_output_put(handle, data->id); } void perf_event__output_id_sample(struct perf_event *event, struct perf_output_handle *handle, struct perf_sample_data *sample) { if (event->attr.sample_id_all) __perf_event__output_id_sample(handle, sample); } static void perf_output_read_one(struct perf_output_handle *handle, struct perf_event *event, u64 enabled, u64 running) { u64 read_format = event->attr.read_format; u64 values[5]; int n = 0; values[n++] = perf_event_count(event); if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { values[n++] = enabled + atomic64_read(&event->child_total_time_enabled); } if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { values[n++] = running + atomic64_read(&event->child_total_time_running); } if (read_format & PERF_FORMAT_ID) values[n++] = primary_event_id(event); if (read_format & PERF_FORMAT_LOST) values[n++] = atomic64_read(&event->lost_samples); __output_copy(handle, values, n * sizeof(u64)); } static void perf_output_read_group(struct perf_output_handle *handle, struct perf_event *event, u64 enabled, u64 running) { struct perf_event *leader = event->group_leader, *sub; u64 read_format = event->attr.read_format; unsigned long flags; u64 values[6]; int n = 0; /* * Disabling interrupts avoids all counter scheduling * (context switches, timer based rotation and IPIs). */ local_irq_save(flags); values[n++] = 1 + leader->nr_siblings; if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) values[n++] = enabled; if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) values[n++] = running; if ((leader != event) && (leader->state == PERF_EVENT_STATE_ACTIVE)) leader->pmu->read(leader); values[n++] = perf_event_count(leader); if (read_format & PERF_FORMAT_ID) values[n++] = primary_event_id(leader); if (read_format & PERF_FORMAT_LOST) values[n++] = atomic64_read(&leader->lost_samples); __output_copy(handle, values, n * sizeof(u64)); for_each_sibling_event(sub, leader) { n = 0; if ((sub != event) && (sub->state == PERF_EVENT_STATE_ACTIVE)) sub->pmu->read(sub); values[n++] = perf_event_count(sub); if (read_format & PERF_FORMAT_ID) values[n++] = primary_event_id(sub); if (read_format & PERF_FORMAT_LOST) values[n++] = atomic64_read(&sub->lost_samples); __output_copy(handle, values, n * sizeof(u64)); } local_irq_restore(flags); } #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ PERF_FORMAT_TOTAL_TIME_RUNNING) /* * XXX PERF_SAMPLE_READ vs inherited events seems difficult. * * The problem is that its both hard and excessively expensive to iterate the * child list, not to mention that its impossible to IPI the children running * on another CPU, from interrupt/NMI context. */ static void perf_output_read(struct perf_output_handle *handle, struct perf_event *event) { u64 enabled = 0, running = 0, now; u64 read_format = event->attr.read_format; /* * compute total_time_enabled, total_time_running * based on snapshot values taken when the event * was last scheduled in. * * we cannot simply called update_context_time() * because of locking issue as we are called in * NMI context */ if (read_format & PERF_FORMAT_TOTAL_TIMES) calc_timer_values(event, &now, &enabled, &running); if (event->attr.read_format & PERF_FORMAT_GROUP) perf_output_read_group(handle, event, enabled, running); else perf_output_read_one(handle, event, enabled, running); } void perf_output_sample(struct perf_output_handle *handle, struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event) { u64 sample_type = data->type; perf_output_put(handle, *header); if (sample_type & PERF_SAMPLE_IDENTIFIER) perf_output_put(handle, data->id); if (sample_type & PERF_SAMPLE_IP) perf_output_put(handle, data->ip); if (sample_type & PERF_SAMPLE_TID) perf_output_put(handle, data->tid_entry); if (sample_type & PERF_SAMPLE_TIME) perf_output_put(handle, data->time); if (sample_type & PERF_SAMPLE_ADDR) perf_output_put(handle, data->addr); if (sample_type & PERF_SAMPLE_ID) perf_output_put(handle, data->id); if (sample_type & PERF_SAMPLE_STREAM_ID) perf_output_put(handle, data->stream_id); if (sample_type & PERF_SAMPLE_CPU) perf_output_put(handle, data->cpu_entry); if (sample_type & PERF_SAMPLE_PERIOD) perf_output_put(handle, data->period); if (sample_type & PERF_SAMPLE_READ) perf_output_read(handle, event); if (sample_type & PERF_SAMPLE_CALLCHAIN) { int size = 1; size += data->callchain->nr; size *= sizeof(u64); __output_copy(handle, data->callchain, size); } if (sample_type & PERF_SAMPLE_RAW) { struct perf_raw_record *raw = data->raw; if (raw) { struct perf_raw_frag *frag = &raw->frag; perf_output_put(handle, raw->size); do { if (frag->copy) { __output_custom(handle, frag->copy, frag->data, frag->size); } else { __output_copy(handle, frag->data, frag->size); } if (perf_raw_frag_last(frag)) break; frag = frag->next; } while (1); if (frag->pad) __output_skip(handle, NULL, frag->pad); } else { struct { u32 size; u32 data; } raw = { .size = sizeof(u32), .data = 0, }; perf_output_put(handle, raw); } } if (sample_type & PERF_SAMPLE_BRANCH_STACK) { if (data->sample_flags & PERF_SAMPLE_BRANCH_STACK) { size_t size; size = data->br_stack->nr * sizeof(struct perf_branch_entry); perf_output_put(handle, data->br_stack->nr); if (branch_sample_hw_index(event)) perf_output_put(handle, data->br_stack->hw_idx); perf_output_copy(handle, data->br_stack->entries, size); } else { /* * we always store at least the value of nr */ u64 nr = 0; perf_output_put(handle, nr); } } if (sample_type & PERF_SAMPLE_REGS_USER) { u64 abi = data->regs_user.abi; /* * If there are no regs to dump, notice it through * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). */ perf_output_put(handle, abi); if (abi) { u64 mask = event->attr.sample_regs_user; perf_output_sample_regs(handle, data->regs_user.regs, mask); } } if (sample_type & PERF_SAMPLE_STACK_USER) { perf_output_sample_ustack(handle, data->stack_user_size, data->regs_user.regs); } if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) perf_output_put(handle, data->weight.full); if (sample_type & PERF_SAMPLE_DATA_SRC) perf_output_put(handle, data->data_src.val); if (sample_type & PERF_SAMPLE_TRANSACTION) perf_output_put(handle, data->txn); if (sample_type & PERF_SAMPLE_REGS_INTR) { u64 abi = data->regs_intr.abi; /* * If there are no regs to dump, notice it through * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). */ perf_output_put(handle, abi); if (abi) { u64 mask = event->attr.sample_regs_intr; perf_output_sample_regs(handle, data->regs_intr.regs, mask); } } if (sample_type & PERF_SAMPLE_PHYS_ADDR) perf_output_put(handle, data->phys_addr); if (sample_type & PERF_SAMPLE_CGROUP) perf_output_put(handle, data->cgroup); if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) perf_output_put(handle, data->data_page_size); if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) perf_output_put(handle, data->code_page_size); if (sample_type & PERF_SAMPLE_AUX) { perf_output_put(handle, data->aux_size); if (data->aux_size) perf_aux_sample_output(event, handle, data); } if (!event->attr.watermark) { int wakeup_events = event->attr.wakeup_events; if (wakeup_events) { struct perf_buffer *rb = handle->rb; int events = local_inc_return(&rb->events); if (events >= wakeup_events) { local_sub(wakeup_events, &rb->events); local_inc(&rb->wakeup); } } } } static u64 perf_virt_to_phys(u64 virt) { u64 phys_addr = 0; if (!virt) return 0; if (virt >= TASK_SIZE) { /* If it's vmalloc()d memory, leave phys_addr as 0 */ if (virt_addr_valid((void *)(uintptr_t)virt) && !(virt >= VMALLOC_START && virt < VMALLOC_END)) phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); } else { /* * Walking the pages tables for user address. * Interrupts are disabled, so it prevents any tear down * of the page tables. * Try IRQ-safe get_user_page_fast_only first. * If failed, leave phys_addr as 0. */ if (current->mm != NULL) { struct page *p; pagefault_disable(); if (get_user_page_fast_only(virt, 0, &p)) { phys_addr = page_to_phys(p) + virt % PAGE_SIZE; put_page(p); } pagefault_enable(); } } return phys_addr; } /* * Return the pagetable size of a given virtual address. */ static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) { u64 size = 0; #ifdef CONFIG_HAVE_FAST_GUP pgd_t *pgdp, pgd; p4d_t *p4dp, p4d; pud_t *pudp, pud; pmd_t *pmdp, pmd; pte_t *ptep, pte; pgdp = pgd_offset(mm, addr); pgd = READ_ONCE(*pgdp); if (pgd_none(pgd)) return 0; if (pgd_leaf(pgd)) return pgd_leaf_size(pgd); p4dp = p4d_offset_lockless(pgdp, pgd, addr); p4d = READ_ONCE(*p4dp); if (!p4d_present(p4d)) return 0; if (p4d_leaf(p4d)) return p4d_leaf_size(p4d); pudp = pud_offset_lockless(p4dp, p4d, addr); pud = READ_ONCE(*pudp); if (!pud_present(pud)) return 0; if (pud_leaf(pud)) return pud_leaf_size(pud); pmdp = pmd_offset_lockless(pudp, pud, addr); pmd = READ_ONCE(*pmdp); if (!pmd_present(pmd)) return 0; if (pmd_leaf(pmd)) return pmd_leaf_size(pmd); ptep = pte_offset_map(&pmd, addr); pte = ptep_get_lockless(ptep); if (pte_present(pte)) size = pte_leaf_size(pte); pte_unmap(ptep); #endif /* CONFIG_HAVE_FAST_GUP */ return size; } static u64 perf_get_page_size(unsigned long addr) { struct mm_struct *mm; unsigned long flags; u64 size; if (!addr) return 0; /* * Software page-table walkers must disable IRQs, * which prevents any tear down of the page tables. */ local_irq_save(flags); mm = current->mm; if (!mm) { /* * For kernel threads and the like, use init_mm so that * we can find kernel memory. */ mm = &init_mm; } size = perf_get_pgtable_size(mm, addr); local_irq_restore(flags); return size; } static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; struct perf_callchain_entry * perf_callchain(struct perf_event *event, struct pt_regs *regs) { bool kernel = !event->attr.exclude_callchain_kernel; bool user = !event->attr.exclude_callchain_user; /* Disallow cross-task user callchains. */ bool crosstask = event->ctx->task && event->ctx->task != current; const u32 max_stack = event->attr.sample_max_stack; struct perf_callchain_entry *callchain; if (!kernel && !user) return &__empty_callchain; callchain = get_perf_callchain(regs, 0, kernel, user, max_stack, crosstask, true); return callchain ?: &__empty_callchain; } void perf_prepare_sample(struct perf_event_header *header, struct perf_sample_data *data, struct perf_event *event, struct pt_regs *regs) { u64 sample_type = event->attr.sample_type; u64 filtered_sample_type; header->type = PERF_RECORD_SAMPLE; header->size = sizeof(*header) + event->header_size; header->misc = 0; header->misc |= perf_misc_flags(regs); /* * Clear the sample flags that have already been done by the * PMU driver. */ filtered_sample_type = sample_type & ~data->sample_flags; __perf_event_header__init_id(header, data, event, filtered_sample_type); if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE)) data->ip = perf_instruction_pointer(regs); if (sample_type & PERF_SAMPLE_CALLCHAIN) { int size = 1; if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) data->callchain = perf_callchain(event, regs); size += data->callchain->nr; header->size += size * sizeof(u64); } if (sample_type & PERF_SAMPLE_RAW) { struct perf_raw_record *raw = data->raw; int size; if (raw && (data->sample_flags & PERF_SAMPLE_RAW)) { struct perf_raw_frag *frag = &raw->frag; u32 sum = 0; do { sum += frag->size; if (perf_raw_frag_last(frag)) break; frag = frag->next; } while (1); size = round_up(sum + sizeof(u32), sizeof(u64)); raw->size = size - sizeof(u32); frag->pad = raw->size - sum; } else { size = sizeof(u64); data->raw = NULL; } header->size += size; } if (sample_type & PERF_SAMPLE_BRANCH_STACK) { int size = sizeof(u64); /* nr */ if (data->sample_flags & PERF_SAMPLE_BRANCH_STACK) { if (branch_sample_hw_index(event)) size += sizeof(u64); size += data->br_stack->nr * sizeof(struct perf_branch_entry); } header->size += size; } if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) perf_sample_regs_user(&data->regs_user, regs); if (sample_type & PERF_SAMPLE_REGS_USER) { /* regs dump ABI info */ int size = sizeof(u64); if (data->regs_user.regs) { u64 mask = event->attr.sample_regs_user; size += hweight64(mask) * sizeof(u64); } header->size += size; } if (sample_type & PERF_SAMPLE_STACK_USER) { /* * Either we need PERF_SAMPLE_STACK_USER bit to be always * processed as the last one or have additional check added * in case new sample type is added, because we could eat * up the rest of the sample size. */ u16 stack_size = event->attr.sample_stack_user; u16 size = sizeof(u64); stack_size = perf_sample_ustack_size(stack_size, header->size, data->regs_user.regs); /* * If there is something to dump, add space for the dump * itself and for the field that tells the dynamic size, * which is how many have been actually dumped. */ if (stack_size) size += sizeof(u64) + stack_size; data->stack_user_size = stack_size; header->size += size; } if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) data->weight.full = 0; if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) data->data_src.val = PERF_MEM_NA; if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) data->txn = 0; if (sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR | PERF_SAMPLE_DATA_PAGE_SIZE)) { if (filtered_sample_type & PERF_SAMPLE_ADDR) data->addr = 0; } if (sample_type & PERF_SAMPLE_REGS_INTR) { /* regs dump ABI info */ int size = sizeof(u64); perf_sample_regs_intr(&data->regs_intr, regs); if (data->regs_intr.regs) { u64 mask = event->attr.sample_regs_intr; size += hweight64(mask) * sizeof(u64); } header->size += size; } if (sample_type & PERF_SAMPLE_PHYS_ADDR && filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) data->phys_addr = perf_virt_to_phys(data->addr); #ifdef CONFIG_CGROUP_PERF if (sample_type & PERF_SAMPLE_CGROUP) { struct cgroup *cgrp; /* protected by RCU */ cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; data->cgroup = cgroup_id(cgrp); } #endif /* * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, * but the value will not dump to the userspace. */ if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) data->data_page_size = perf_get_page_size(data->addr); if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) data->code_page_size = perf_get_page_size(data->ip); if (sample_type & PERF_SAMPLE_AUX) { u64 size; header->size += sizeof(u64); /* size */ /* * Given the 16bit nature of header::size, an AUX sample can * easily overflow it, what with all the preceding sample bits. * Make sure this doesn't happen by using up to U16_MAX bytes * per sample in total (rounded down to 8 byte boundary). */ size = min_t(size_t, U16_MAX - header->size, event->attr.aux_sample_size); size = rounddown(size, 8); size = perf_prepare_sample_aux(event, data, size); WARN_ON_ONCE(size + header->size > U16_MAX); header->size += size; } /* * If you're adding more sample types here, you likely need to do * something about the overflowing header::size, like repurpose the * lowest 3 bits of size, which should be always zero at the moment. * This raises a more important question, do we really need 512k sized * samples and why, so good argumentation is in order for whatever you * do here next. */ WARN_ON_ONCE(header->size & 7); } static __always_inline int __perf_event_output(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs, int (*output_begin)(struct perf_output_handle *, struct perf_sample_data *, struct perf_event *, unsigned int)) { struct perf_output_handle handle; struct perf_event_header header; int err; /* protect the callchain buffers */ rcu_read_lock(); perf_prepare_sample(&header, data, event, regs); err = output_begin(&handle, data, event, header.size); if (err) goto exit; perf_output_sample(&handle, &header, data, event); perf_output_end(&handle); exit: rcu_read_unlock(); return err; } void perf_event_output_forward(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs) { __perf_event_output(event, data, regs, perf_output_begin_forward); } void perf_event_output_backward(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs) { __perf_event_output(event, data, regs, perf_output_begin_backward); } int perf_event_output(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs) { return __perf_event_output(event, data, regs, perf_output_begin); } /* * read event_id */ struct perf_read_event { struct perf_event_header header; u32 pid; u32 tid; }; static void perf_event_read_event(struct perf_event *event, struct task_struct *task) { struct perf_output_handle handle; struct perf_sample_data sample; struct perf_read_event read_event = { .header = { .type = PERF_RECORD_READ, .misc = 0, .size = sizeof(read_event) + event->read_size, }, .pid = perf_event_pid(event, task), .tid = perf_event_tid(event, task), }; int ret; perf_event_header__init_id(&read_event.header, &sample, event); ret = perf_output_begin(&handle, &sample, event, read_event.header.size); if (ret) return; perf_output_put(&handle, read_event); perf_output_read(&handle, event); perf_event__output_id_sample(event, &handle, &sample); perf_output_end(&handle); } typedef void (perf_iterate_f)(struct perf_event *event, void *data); static void perf_iterate_ctx(struct perf_event_context *ctx, perf_iterate_f output, void *data, bool all) { struct perf_event *event; list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { if (!all) { if (event->state < PERF_EVENT_STATE_INACTIVE) continue; if (!event_filter_match(event)) continue; } output(event, data); } } static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) { struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); struct perf_event *event; list_for_each_entry_rcu(event, &pel->list, sb_list) { /* * Skip events that are not fully formed yet; ensure that * if we observe event->ctx, both event and ctx will be * complete enough. See perf_install_in_context(). */ if (!smp_load_acquire(&event->ctx)) continue; if (event->state < PERF_EVENT_STATE_INACTIVE) continue; if (!event_filter_match(event)) continue; output(event, data); } } /* * Iterate all events that need to receive side-band events. * * For new callers; ensure that account_pmu_sb_event() includes * your event, otherwise it might not get delivered. */ static void perf_iterate_sb(perf_iterate_f output, void *data, struct perf_event_context *task_ctx) { struct perf_event_context *ctx; int ctxn; rcu_read_lock(); preempt_disable(); /* * If we have task_ctx != NULL we only notify the task context itself. * The task_ctx is set only for EXIT events before releasing task * context. */ if (task_ctx) { perf_iterate_ctx(task_ctx, output, data, false); goto done; } perf_iterate_sb_cpu(output, data); for_each_task_context_nr(ctxn) { ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); if (ctx) perf_iterate_ctx(ctx, output, data, false); } done: preempt_enable(); rcu_read_unlock(); } /* * Clear all file-based filters at exec, they'll have to be * re-instated when/if these objects are mmapped again. */ static void perf_event_addr_filters_exec(struct perf_event *event, void *data) { struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); struct perf_addr_filter *filter; unsigned int restart = 0, count = 0; unsigned long flags; if (!has_addr_filter(event)) return; raw_spin_lock_irqsave(&ifh->lock, flags); list_for_each_entry(filter, &ifh->list, entry) { if (filter->path.dentry) { event->addr_filter_ranges[count].start = 0; event->addr_filter_ranges[count].size = 0; restart++; } count++; } if (restart) event->addr_filters_gen++; raw_spin_unlock_irqrestore(&ifh->lock, flags); if (restart) perf_event_stop(event, 1); } void perf_event_exec(void) { struct perf_event_context *ctx; int ctxn; for_each_task_context_nr(ctxn) { perf_event_enable_on_exec(ctxn); perf_event_remove_on_exec(ctxn); rcu_read_lock(); ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); if (ctx) { perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); } rcu_read_unlock(); } } struct remote_output { struct perf_buffer *rb; int err; }; static void __perf_event_output_stop(struct perf_event *event, void *data) { struct perf_event *parent = event->parent; struct remote_output *ro = data; struct perf_buffer *rb = ro->rb; struct stop_event_data sd = { .event = event, }; if (!has_aux(event)) return; if (!parent) parent = event; /* * In case of inheritance, it will be the parent that links to the * ring-buffer, but it will be the child that's actually using it. * * We are using event::rb to determine if the event should be stopped, * however this may race with ring_buffer_attach() (through set_output), * which will make us skip the event that actually needs to be stopped. * So ring_buffer_attach() has to stop an aux event before re-assigning * its rb pointer. */ if (rcu_dereference(parent->rb) == rb) ro->err = __perf_event_stop(&sd); } static int __perf_pmu_output_stop(void *info) { struct perf_event *event = info; struct pmu *pmu = event->ctx->pmu; struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); struct remote_output ro = { .rb = event->rb, }; rcu_read_lock(); perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); if (cpuctx->task_ctx) perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, &ro, false); rcu_read_unlock(); return ro.err; } static void perf_pmu_output_stop(struct perf_event *event) { struct perf_event *iter; int err, cpu; restart: rcu_read_lock(); list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { /* * For per-CPU events, we need to make sure that neither they * nor their children are running; for cpu==-1 events it's * sufficient to stop the event itself if it's active, since * it can't have children. */ cpu = iter->cpu; if (cpu == -1) cpu = READ_ONCE(iter->oncpu); if (cpu == -1) continue; err = cpu_function_call(cpu, __perf_pmu_output_stop, event); if (err == -EAGAIN) { rcu_read_unlock(); goto restart; } } rcu_read_unlock(); } /* * task tracking -- fork/exit * * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task */ struct perf_task_event { struct task_struct *task; struct perf_event_context *task_ctx; struct { struct perf_event_header header; u32 pid; u32 ppid; u32 tid; u32 ptid; u64 time; } event_id; }; static int perf_event_task_match(struct perf_event *event) { return event->attr.comm || event->attr.mmap || event->attr.mmap2 || event->attr.mmap_data || event->attr.task; } static void perf_event_task_output(struct perf_event *event, void *data) { struct perf_task_event *task_event = data; struct perf_output_handle handle; struct perf_sample_data sample; struct task_struct *task = task_event->task; int ret, size = task_event->event_id.header.size; if (!perf_event_task_match(event)) return; perf_event_header__init_id(&task_event->event_id.header, &sample, event); ret = perf_output_begin(&handle, &sample, event, task_event->event_id.header.size); if (ret) goto out; task_event->event_id.pid = perf_event_pid(event, task); task_event->event_id.tid = perf_event_tid(event, task); if (task_event->event_id.header.type == PERF_RECORD_EXIT) { task_event->event_id.ppid = perf_event_pid(event, task->real_parent); task_event->event_id.ptid = perf_event_pid(event, task->real_parent); } else { /* PERF_RECORD_FORK */ task_event->event_id.ppid = perf_event_pid(event, current); task_event->event_id.ptid = perf_event_tid(event, current); } task_event->event_id.time = perf_event_clock(event); perf_output_put(&handle, task_event->event_id); perf_event__output_id_sample(event, &handle, &sample); perf_output_end(&handle); out: task_event->event_id.header.size = size; } static void perf_event_task(struct task_struct *task, struct perf_event_context *task_ctx, int new) { struct perf_task_event task_event; if (!atomic_read(&nr_comm_events) && !atomic_read(&nr_mmap_events) && !atomic_read(&nr_task_events)) return; task_event = (struct perf_task_event){ .task = task, .task_ctx = task_ctx, .event_id = { .header = { .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, .misc = 0, .size = sizeof(task_event.event_id), }, /* .pid */ /* .ppid */ /* .tid */ /* .ptid */ /* .time */ }, }; perf_iterate_sb(perf_event_task_output, &task_event, task_ctx); } void perf_event_fork(struct task_struct *task) { perf_event_task(task, NULL, 1); perf_event_namespaces(task); } /* * comm tracking */ struct perf_comm_event { struct task_struct *task; char *comm; int comm_size; struct { struct perf_event_header header; u32 pid; u32 tid; } event_id; }; static int perf_event_comm_match(struct perf_event *event) { return event->attr.comm; } static void perf_event_comm_output(struct perf_event *event, void *data) { struct perf_comm_event *comm_event = data; struct perf_output_handle handle; struct perf_sample_data sample; int size = comm_event->event_id.header.size; int ret; if (!perf_event_comm_match(event)) return; perf_event_header__init_id(&comm_event->event_id.header, &sample, event); ret = perf_output_begin(&handle, &sample, event, comm_event->event_id.header.size); if (ret) goto out; comm_event->event_id.pid = perf_event_pid(event, comm_event->task); comm_event->event_id.tid = perf_event_tid(event, comm_event->task); perf_output_put(&handle, comm_event->event_id); __output_copy(&handle, comm_event->comm, comm_event->comm_size); perf_event__output_id_sample(event, &handle, &sample); perf_output_end(&handle); out: comm_event->event_id.header.size = size; } static void perf_event_comm_event(struct perf_comm_event *comm_event) { char comm[TASK_COMM_LEN]; unsigned int size; memset(comm, 0, sizeof(comm)); strlcpy(comm, comm_event->task->comm, sizeof(comm)); size = ALIGN(strlen(comm)+1, sizeof(u64)); comm_event->comm = comm; comm_event->comm_size = size; comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; perf_iterate_sb(perf_event_comm_output, comm_event, NULL); } void perf_event_comm(struct task_struct *task, bool exec) { struct perf_comm_event comm_event; if (!atomic_read(&nr_comm_events)) return; comm_event = (struct perf_comm_event){ .task = task, /* .comm */ /* .comm_size */ .event_id = { .header = { .type = PERF_RECORD_COMM, .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, /* .size */ }, /* .pid */ /* .tid */ }, }; perf_event_comm_event(&comm_event); } /* * namespaces tracking */ struct perf_namespaces_event { struct task_struct *task; struct { struct perf_event_header header; u32 pid; u32 tid; u64 nr_namespaces; struct perf_ns_link_info link_info[NR_NAMESPACES]; } event_id; }; static int perf_event_namespaces_match(struct perf_event *event) { return event->attr.namespaces; } static void perf_event_namespaces_output(struct perf_event *event, void *data) { struct perf_namespaces_event *namespaces_event = data; struct perf_output_handle handle; struct perf_sample_data sample; u16 header_size = namespaces_event->event_id.header.size; int ret; if (!perf_event_namespaces_match(event)) return; perf_event_header__init_id(&namespaces_event->event_id.header, &sample, event); ret = perf_output_begin(&handle, &sample, event, namespaces_event->event_id.header.size); if (ret) goto out; namespaces_event->event_id.pid = perf_event_pid(event, namespaces_event->task); namespaces_event->event_id.tid = perf_event_tid(event, namespaces_event->task); perf_output_put(&handle, namespaces_event->event_id); perf_event__output_id_sample(event, &handle, &sample); perf_output_end(&handle); out: namespaces_event->event_id.header.size = header_size; } static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, struct task_struct *task, const struct proc_ns_operations *ns_ops) { struct path ns_path; struct inode *ns_inode; int error; error = ns_get_path(&ns_path, task, ns_ops); if (!error) { ns_inode = ns_path.dentry->d_inode; ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); ns_link_info->ino = ns_inode->i_ino; path_put(&ns_path); } } void perf_event_namespaces(struct task_struct *task) { struct perf_namespaces_event namespaces_event; struct perf_ns_link_info *ns_link_info; if (!atomic_read(&nr_namespaces_events)) return; namespaces_event = (struct perf_namespaces_event){ .task = task, .event_id = { .header = { .type = PERF_RECORD_NAMESPACES, .misc = 0, .size = sizeof(namespaces_event.event_id), }, /* .pid */ /* .tid */ .nr_namespaces = NR_NAMESPACES, /* .link_info[NR_NAMESPACES] */ }, }; ns_link_info = namespaces_event.event_id.link_info; perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], task, &mntns_operations); #ifdef CONFIG_USER_NS perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], task, &userns_operations); #endif #ifdef CONFIG_NET_NS perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], task, &netns_operations); #endif #ifdef CONFIG_UTS_NS perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], task, &utsns_operations); #endif #ifdef CONFIG_IPC_NS perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], task, &ipcns_operations); #endif #ifdef CONFIG_PID_NS perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], task, &pidns_operations); #endif #ifdef CONFIG_CGROUPS perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], task, &cgroupns_operations); #endif perf_iterate_sb(perf_event_namespaces_output, &namespaces_event, NULL); } /* * cgroup tracking */ #ifdef CONFIG_CGROUP_PERF struct perf_cgroup_event { char *path; int path_size; struct { struct perf_event_header header; u64 id; char path[]; } event_id; }; static int perf_event_cgroup_match(struct perf_event *event) { return event->attr.cgroup; } static void perf_event_cgroup_output(struct perf_event *event, void *data) { struct perf_cgroup_event *cgroup_event = data; struct perf_output_handle handle; struct perf_sample_data sample; u16 header_size = cgroup_event->event_id.header.size; int ret; if (!perf_event_cgroup_match(event)) return; perf_event_header__init_id(&cgroup_event->event_id.header, &sample, event); ret = perf_output_begin(&handle, &sample, event, cgroup_event->event_id.header.size); if (ret) goto out; perf_output_put(&handle, cgroup_event->event_id); __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); perf_event__output_id_sample(event, &handle, &sample); perf_output_end(&handle); out: cgroup_event->event_id.header.size = header_size; } static void perf_event_cgroup(struct cgroup *cgrp) { struct perf_cgroup_event cgroup_event; char path_enomem[16] = "//enomem"; char *pathname; size_t size; if (!atomic_read(&nr_cgroup_events)) return; cgroup_event = (struct perf_cgroup_event){ .event_id = { .header = { .type = PERF_RECORD_CGROUP, .misc = 0, .size = sizeof(cgroup_event.event_id), }, .id = cgroup_id(cgrp), }, }; pathname = kmalloc(PATH_MAX, GFP_KERNEL); if (pathname == NULL) { cgroup_event.path = path_enomem; } else { /* just to be sure to have enough space for alignment */ cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); cgroup_event.path = pathname; } /* * Since our buffer works in 8 byte units we need to align our string * size to a multiple of 8. However, we must guarantee the tail end is * zero'd out to avoid leaking random bits to userspace. */ size = strlen(cgroup_event.path) + 1; while (!IS_ALIGNED(size, sizeof(u64))) cgroup_event.path[size++] = '\0'; cgroup_event.event_id.header.size += size; cgroup_event.path_size = size; perf_iterate_sb(perf_event_cgroup_output, &cgroup_event, NULL); kfree(pathname); } #endif /* * mmap tracking */ struct perf_mmap_event { struct vm_area_struct *vma; const char *file_name; int file_size; int maj, min; u64 ino; u64 ino_generation; u32 prot, flags; u8 build_id[BUILD_ID_SIZE_MAX]; u32 build_id_size; struct { struct perf_event_header header; u32 pid; u32 tid; u64 start; u64 len; u64 pgoff; } event_id; }; static int perf_event_mmap_match(struct perf_event *event, void *data) { struct perf_mmap_event *mmap_event = data; struct vm_area_struct *vma = mmap_event->vma; int executable = vma->vm_flags & VM_EXEC; return (!executable && event->attr.mmap_data) || (executable && (event->attr.mmap || event->attr.mmap2)); } static void perf_event_mmap_output(struct perf_event *event, void *data) { struct perf_mmap_event *mmap_event = data; struct perf_output_handle handle; struct perf_sample_data sample; int size = mmap_event->event_id.header.size; u32 type = mmap_event->event_id.header.type; bool use_build_id; int ret; if (!perf_event_mmap_match(event, data)) return; if (event->attr.mmap2) { mmap_event->event_id.header.type = PERF_RECOR