Total coverage: 138719 (8%)of 1823457
1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 // SPDX-License-Identifier: GPL-2.0-or-later /* * * Copyright (C) Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk) * Copyright (C) 2002 Ralf Baechle DO1GRB (ralf@gnu.org) */ #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/in.h> #include <linux/kernel.h> #include <linux/jiffies.h> #include <linux/timer.h> #include <linux/string.h> #include <linux/sockios.h> #include <linux/net.h> #include <net/ax25.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <net/sock.h> #include <net/tcp_states.h> #include <linux/fcntl.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <net/rose.h> static void rose_heartbeat_expiry(struct timer_list *t); static void rose_timer_expiry(struct timer_list *); static void rose_idletimer_expiry(struct timer_list *); void rose_start_heartbeat(struct sock *sk) { sk_stop_timer(sk, &sk->sk_timer); sk->sk_timer.function = rose_heartbeat_expiry; sk->sk_timer.expires = jiffies + 5 * HZ; sk_reset_timer(sk, &sk->sk_timer, sk->sk_timer.expires); } void rose_start_t1timer(struct sock *sk) { struct rose_sock *rose = rose_sk(sk); sk_stop_timer(sk, &rose->timer); rose->timer.function = rose_timer_expiry; rose->timer.expires = jiffies + rose->t1; sk_reset_timer(sk, &rose->timer, rose->timer.expires); } void rose_start_t2timer(struct sock *sk) { struct rose_sock *rose = rose_sk(sk); sk_stop_timer(sk, &rose->timer); rose->timer.function = rose_timer_expiry; rose->timer.expires = jiffies + rose->t2; sk_reset_timer(sk, &rose->timer, rose->timer.expires); } void rose_start_t3timer(struct sock *sk) { struct rose_sock *rose = rose_sk(sk); sk_stop_timer(sk, &rose->timer); rose->timer.function = rose_timer_expiry; rose->timer.expires = jiffies + rose->t3; sk_reset_timer(sk, &rose->timer, rose->timer.expires); } void rose_start_hbtimer(struct sock *sk) { struct rose_sock *rose = rose_sk(sk); sk_stop_timer(sk, &rose->timer); rose->timer.function = rose_timer_expiry; rose->timer.expires = jiffies + rose->hb; sk_reset_timer(sk, &rose->timer, rose->timer.expires); } void rose_start_idletimer(struct sock *sk) { struct rose_sock *rose = rose_sk(sk); sk_stop_timer(sk, &rose->idletimer); if (rose->idle > 0) { rose->idletimer.function = rose_idletimer_expiry; rose->idletimer.expires = jiffies + rose->idle; sk_reset_timer(sk, &rose->idletimer, rose->idletimer.expires); } } void rose_stop_heartbeat(struct sock *sk) { sk_stop_timer(sk, &sk->sk_timer); } void rose_stop_timer(struct sock *sk) { sk_stop_timer(sk, &rose_sk(sk)->timer); } void rose_stop_idletimer(struct sock *sk) { sk_stop_timer(sk, &rose_sk(sk)->idletimer); } static void rose_heartbeat_expiry(struct timer_list *t) { struct sock *sk = from_timer(sk, t, sk_timer); struct rose_sock *rose = rose_sk(sk); bh_lock_sock(sk); switch (rose->state) { case ROSE_STATE_0: /* Magic here: If we listen() and a new link dies before it is accepted() it isn't 'dead' so doesn't get removed. */ if (sock_flag(sk, SOCK_DESTROY) || (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_DEAD))) { bh_unlock_sock(sk); rose_destroy_socket(sk); sock_put(sk); return; } break; case ROSE_STATE_3: /* * Check for the state of the receive buffer. */ if (atomic_read(&sk->sk_rmem_alloc) < (sk->sk_rcvbuf / 2) && (rose->condition & ROSE_COND_OWN_RX_BUSY)) { rose->condition &= ~ROSE_COND_OWN_RX_BUSY; rose->condition &= ~ROSE_COND_ACK_PENDING; rose->vl = rose->vr; rose_write_internal(sk, ROSE_RR); rose_stop_timer(sk); /* HB */ break; } break; } rose_start_heartbeat(sk); bh_unlock_sock(sk); sock_put(sk); } static void rose_timer_expiry(struct timer_list *t) { struct rose_sock *rose = from_timer(rose, t, timer); struct sock *sk = &rose->sock; bh_lock_sock(sk); switch (rose->state) { case ROSE_STATE_1: /* T1 */ case ROSE_STATE_4: /* T2 */ rose_write_internal(sk, ROSE_CLEAR_REQUEST); rose->state = ROSE_STATE_2; rose_start_t3timer(sk); break; case ROSE_STATE_2: /* T3 */ rose->neighbour->use--; rose_disconnect(sk, ETIMEDOUT, -1, -1); break; case ROSE_STATE_3: /* HB */ if (rose->condition & ROSE_COND_ACK_PENDING) { rose->condition &= ~ROSE_COND_ACK_PENDING; rose_enquiry_response(sk); } break; } bh_unlock_sock(sk); sock_put(sk); } static void rose_idletimer_expiry(struct timer_list *t) { struct rose_sock *rose = from_timer(rose, t, idletimer); struct sock *sk = &rose->sock; bh_lock_sock(sk); rose_clear_queues(sk); rose_write_internal(sk, ROSE_CLEAR_REQUEST); rose_sk(sk)->state = ROSE_STATE_2; rose_start_t3timer(sk); sk->sk_state = TCP_CLOSE; sk->sk_err = 0; sk->sk_shutdown |= SEND_SHUTDOWN; if (!sock_flag(sk, SOCK_DEAD)) { sk->sk_state_change(sk); sock_set_flag(sk, SOCK_DEAD); } bh_unlock_sock(sk); sock_put(sk); }
35 5 4 5 1 2 4 8 6 4 7 111 2 2 1 1 1 1 2 1 1 1 5 5 5 7 8 5 34 25 10 17 86 89 88 85 3 87 21 20 21 21 4 4 20 11 16 31 8 4 8 8 1 2 8 8 8 7 1 8 8 8 3 4 4 4 3 2 2 4 8 8 7 3 2 10 10 10 7 6 2 2 40 9 4 3 3 3 2 34 4 11 93 92 1 3 1 65 85 70 77 1 1 91 1 92 28 5 23 1 3 29 3 1 4 5 1 4 4 5 7 5 5 2 13 1 1 26 5 26 25 1 30 30 31 30 26 5 31 26 5 31 28 2 31 25 5 31 30 1 17 13 29 30 18 11 11 10 1 10 8 8 3 2 2 1 7 2 4 4 4 3 12 12 10 12 4 1 8 12 10 2 2 2 2 2 2 6 6 3 3 14 83 81 13 4 11 12 8 12 12 2 7 1 1 7 7 1 1 6 6 1 2 2 10 10 5 9 3 1 2 1 1 2 1 1 43 10 44 50 1 2 1 3 43 2 38 2 6 44 14 33 3 7 9 42 1 1 31 1 2 2 1 8 43 10 47 48 53 52 17 1 1 1 1 14 14 8 8 12 2 10 13 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 // SPDX-License-Identifier: GPL-2.0-or-later /* * fs/eventpoll.c (Efficient event retrieval implementation) * Copyright (C) 2001,...,2009 Davide Libenzi * * Davide Libenzi <davidel@xmailserver.org> */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/sched/signal.h> #include <linux/fs.h> #include <linux/file.h> #include <linux/signal.h> #include <linux/errno.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/poll.h> #include <linux/string.h> #include <linux/list.h> #include <linux/hash.h> #include <linux/spinlock.h> #include <linux/syscalls.h> #include <linux/rbtree.h> #include <linux/wait.h> #include <linux/eventpoll.h> #include <linux/mount.h> #include <linux/bitops.h> #include <linux/mutex.h> #include <linux/anon_inodes.h> #include <linux/device.h> #include <linux/uaccess.h> #include <asm/io.h> #include <asm/mman.h> #include <linux/atomic.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/compat.h> #include <linux/rculist.h> #include <linux/capability.h> #include <net/busy_poll.h> /* * LOCKING: * There are three level of locking required by epoll : * * 1) epnested_mutex (mutex) * 2) ep->mtx (mutex) * 3) ep->lock (rwlock) * * The acquire order is the one listed above, from 1 to 3. * We need a rwlock (ep->lock) because we manipulate objects * from inside the poll callback, that might be triggered from * a wake_up() that in turn might be called from IRQ context. * So we can't sleep inside the poll callback and hence we need * a spinlock. During the event transfer loop (from kernel to * user space) we could end up sleeping due a copy_to_user(), so * we need a lock that will allow us to sleep. This lock is a * mutex (ep->mtx). It is acquired during the event transfer loop, * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). * The epnested_mutex is acquired when inserting an epoll fd onto another * epoll fd. We do this so that we walk the epoll tree and ensure that this * insertion does not create a cycle of epoll file descriptors, which * could lead to deadlock. We need a global mutex to prevent two * simultaneous inserts (A into B and B into A) from racing and * constructing a cycle without either insert observing that it is * going to. * It is necessary to acquire multiple "ep->mtx"es at once in the * case when one epoll fd is added to another. In this case, we * always acquire the locks in the order of nesting (i.e. after * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired * before e2->mtx). Since we disallow cycles of epoll file * descriptors, this ensures that the mutexes are well-ordered. In * order to communicate this nesting to lockdep, when walking a tree * of epoll file descriptors, we use the current recursion depth as * the lockdep subkey. * It is possible to drop the "ep->mtx" and to use the global * mutex "epnested_mutex" (together with "ep->lock") to have it working, * but having "ep->mtx" will make the interface more scalable. * Events that require holding "epnested_mutex" are very rare, while for * normal operations the epoll private "ep->mtx" will guarantee * a better scalability. */ /* Epoll private bits inside the event mask */ #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) /* Maximum number of nesting allowed inside epoll sets */ #define EP_MAX_NESTS 4 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) #define EP_UNACTIVE_PTR ((void *) -1L) #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) struct epoll_filefd { struct file *file; int fd; } __packed; /* Wait structure used by the poll hooks */ struct eppoll_entry { /* List header used to link this structure to the "struct epitem" */ struct eppoll_entry *next; /* The "base" pointer is set to the container "struct epitem" */ struct epitem *base; /* * Wait queue item that will be linked to the target file wait * queue head. */ wait_queue_entry_t wait; /* The wait queue head that linked the "wait" wait queue item */ wait_queue_head_t *whead; }; /* * Each file descriptor added to the eventpoll interface will * have an entry of this type linked to the "rbr" RB tree. * Avoid increasing the size of this struct, there can be many thousands * of these on a server and we do not want this to take another cache line. */ struct epitem { union { /* RB tree node links this structure to the eventpoll RB tree */ struct rb_node rbn; /* Used to free the struct epitem */ struct rcu_head rcu; }; /* List header used to link this structure to the eventpoll ready list */ struct list_head rdllink; /* * Works together "struct eventpoll"->ovflist in keeping the * single linked chain of items. */ struct epitem *next; /* The file descriptor information this item refers to */ struct epoll_filefd ffd; /* * Protected by file->f_lock, true for to-be-released epitem already * removed from the "struct file" items list; together with * eventpoll->refcount orchestrates "struct eventpoll" disposal */ bool dying; /* List containing poll wait queues */ struct eppoll_entry *pwqlist; /* The "container" of this item */ struct eventpoll *ep; /* List header used to link this item to the "struct file" items list */ struct hlist_node fllink; /* wakeup_source used when EPOLLWAKEUP is set */ struct wakeup_source __rcu *ws; /* The structure that describe the interested events and the source fd */ struct epoll_event event; }; /* * This structure is stored inside the "private_data" member of the file * structure and represents the main data structure for the eventpoll * interface. */ struct eventpoll { /* * This mutex is used to ensure that files are not removed * while epoll is using them. This is held during the event * collection loop, the file cleanup path, the epoll file exit * code and the ctl operations. */ struct mutex mtx; /* Wait queue used by sys_epoll_wait() */ wait_queue_head_t wq; /* Wait queue used by file->poll() */ wait_queue_head_t poll_wait; /* List of ready file descriptors */ struct list_head rdllist; /* Lock which protects rdllist and ovflist */ rwlock_t lock; /* RB tree root used to store monitored fd structs */ struct rb_root_cached rbr; /* * This is a single linked list that chains all the "struct epitem" that * happened while transferring ready events to userspace w/out * holding ->lock. */ struct epitem *ovflist; /* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */ struct wakeup_source *ws; /* The user that created the eventpoll descriptor */ struct user_struct *user; struct file *file; /* used to optimize loop detection check */ u64 gen; struct hlist_head refs; /* * usage count, used together with epitem->dying to * orchestrate the disposal of this struct */ refcount_t refcount; #ifdef CONFIG_NET_RX_BUSY_POLL /* used to track busy poll napi_id */ unsigned int napi_id; /* busy poll timeout */ u32 busy_poll_usecs; /* busy poll packet budget */ u16 busy_poll_budget; bool prefer_busy_poll; #endif #ifdef CONFIG_DEBUG_LOCK_ALLOC /* tracks wakeup nests for lockdep validation */ u8 nests; #endif }; /* Wrapper struct used by poll queueing */ struct ep_pqueue { poll_table pt; struct epitem *epi; }; /* * Configuration options available inside /proc/sys/fs/epoll/ */ /* Maximum number of epoll watched descriptors, per user */ static long max_user_watches __read_mostly; /* Used for cycles detection */ static DEFINE_MUTEX(epnested_mutex); static u64 loop_check_gen = 0; /* Used to check for epoll file descriptor inclusion loops */ static struct eventpoll *inserting_into; /* Slab cache used to allocate "struct epitem" */ static struct kmem_cache *epi_cache __ro_after_init; /* Slab cache used to allocate "struct eppoll_entry" */ static struct kmem_cache *pwq_cache __ro_after_init; /* * List of files with newly added links, where we may need to limit the number * of emanating paths. Protected by the epnested_mutex. */ struct epitems_head { struct hlist_head epitems; struct epitems_head *next; }; static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; static struct kmem_cache *ephead_cache __ro_after_init; static inline void free_ephead(struct epitems_head *head) { if (head) kmem_cache_free(ephead_cache, head); } static void list_file(struct file *file) { struct epitems_head *head; head = container_of(file->f_ep, struct epitems_head, epitems); if (!head->next) { head->next = tfile_check_list; tfile_check_list = head; } } static void unlist_file(struct epitems_head *head) { struct epitems_head *to_free = head; struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); if (p) { struct epitem *epi= container_of(p, struct epitem, fllink); spin_lock(&epi->ffd.file->f_lock); if (!hlist_empty(&head->epitems)) to_free = NULL; head->next = NULL; spin_unlock(&epi->ffd.file->f_lock); } free_ephead(to_free); } #ifdef CONFIG_SYSCTL #include <linux/sysctl.h> static long long_zero; static long long_max = LONG_MAX; static struct ctl_table epoll_table[] = { { .procname = "max_user_watches", .data = &max_user_watches, .maxlen = sizeof(max_user_watches), .mode = 0644, .proc_handler = proc_doulongvec_minmax, .extra1 = &long_zero, .extra2 = &long_max, }, }; static void __init epoll_sysctls_init(void) { register_sysctl("fs/epoll", epoll_table); } #else #define epoll_sysctls_init() do { } while (0) #endif /* CONFIG_SYSCTL */ static const struct file_operations eventpoll_fops; static inline int is_file_epoll(struct file *f) { return f->f_op == &eventpoll_fops; } /* Setup the structure that is used as key for the RB tree */ static inline void ep_set_ffd(struct epoll_filefd *ffd, struct file *file, int fd) { ffd->file = file; ffd->fd = fd; } /* Compare RB tree keys */ static inline int ep_cmp_ffd(struct epoll_filefd *p1, struct epoll_filefd *p2) { return (p1->file > p2->file ? +1: (p1->file < p2->file ? -1 : p1->fd - p2->fd)); } /* Tells us if the item is currently linked */ static inline int ep_is_linked(struct epitem *epi) { return !list_empty(&epi->rdllink); } static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) { return container_of(p, struct eppoll_entry, wait); } /* Get the "struct epitem" from a wait queue pointer */ static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) { return container_of(p, struct eppoll_entry, wait)->base; } /** * ep_events_available - Checks if ready events might be available. * * @ep: Pointer to the eventpoll context. * * Return: a value different than %zero if ready events are available, * or %zero otherwise. */ static inline int ep_events_available(struct eventpoll *ep) { return !list_empty_careful(&ep->rdllist) || READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; } #ifdef CONFIG_NET_RX_BUSY_POLL /** * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value * from the epoll instance ep is preferred, but if it is not set fallback to * the system-wide global via busy_loop_timeout. * * @start_time: The start time used to compute the remaining time until timeout. * @ep: Pointer to the eventpoll context. * * Return: true if the timeout has expired, false otherwise. */ static bool busy_loop_ep_timeout(unsigned long start_time, struct eventpoll *ep) { unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs); if (bp_usec) { unsigned long end_time = start_time + bp_usec; unsigned long now = busy_loop_current_time(); return time_after(now, end_time); } else { return busy_loop_timeout(start_time); } } static bool ep_busy_loop_on(struct eventpoll *ep) { return !!READ_ONCE(ep->busy_poll_usecs) || net_busy_loop_on(); } static bool ep_busy_loop_end(void *p, unsigned long start_time) { struct eventpoll *ep = p; return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep); } /* * Busy poll if globally on and supporting sockets found && no events, * busy loop will return if need_resched or ep_events_available. * * we must do our busy polling with irqs enabled */ static bool ep_busy_loop(struct eventpoll *ep, int nonblock) { unsigned int napi_id = READ_ONCE(ep->napi_id); u16 budget = READ_ONCE(ep->busy_poll_budget); bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); if (!budget) budget = BUSY_POLL_BUDGET; if (napi_id >= MIN_NAPI_ID && ep_busy_loop_on(ep)) { napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, prefer_busy_poll, budget); if (ep_events_available(ep)) return true; /* * Busy poll timed out. Drop NAPI ID for now, we can add * it back in when we have moved a socket with a valid NAPI * ID onto the ready list. */ ep->napi_id = 0; return false; } return false; } /* * Set epoll busy poll NAPI ID from sk. */ static inline void ep_set_busy_poll_napi_id(struct epitem *epi) { struct eventpoll *ep = epi->ep; unsigned int napi_id; struct socket *sock; struct sock *sk; if (!ep_busy_loop_on(ep)) return; sock = sock_from_file(epi->ffd.file); if (!sock) return; sk = sock->sk; if (!sk) return; napi_id = READ_ONCE(sk->sk_napi_id); /* Non-NAPI IDs can be rejected * or * Nothing to do if we already have this ID */ if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) return; /* record NAPI ID for use in next busy poll */ ep->napi_id = napi_id; } static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct eventpoll *ep = file->private_data; void __user *uarg = (void __user *)arg; struct epoll_params epoll_params; switch (cmd) { case EPIOCSPARAMS: if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params))) return -EFAULT; /* pad byte must be zero */ if (epoll_params.__pad) return -EINVAL; if (epoll_params.busy_poll_usecs > S32_MAX) return -EINVAL; if (epoll_params.prefer_busy_poll > 1) return -EINVAL; if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT && !capable(CAP_NET_ADMIN)) return -EPERM; WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs); WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget); WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll); return 0; case EPIOCGPARAMS: memset(&epoll_params, 0, sizeof(epoll_params)); epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs); epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget); epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params))) return -EFAULT; return 0; default: return -ENOIOCTLCMD; } } #else static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock) { return false; } static inline void ep_set_busy_poll_napi_id(struct epitem *epi) { } static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { return -EOPNOTSUPP; } #endif /* CONFIG_NET_RX_BUSY_POLL */ /* * As described in commit 0ccf831cb lockdep: annotate epoll * the use of wait queues used by epoll is done in a very controlled * manner. Wake ups can nest inside each other, but are never done * with the same locking. For example: * * dfd = socket(...); * efd1 = epoll_create(); * efd2 = epoll_create(); * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); * * When a packet arrives to the device underneath "dfd", the net code will * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a * callback wakeup entry on that queue, and the wake_up() performed by the * "dfd" net code will end up in ep_poll_callback(). At this point epoll * (efd1) notices that it may have some event ready, so it needs to wake up * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() * that ends up in another wake_up(), after having checked about the * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid * stack blasting. * * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle * this special case of epoll. */ #ifdef CONFIG_DEBUG_LOCK_ALLOC static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, unsigned pollflags) { struct eventpoll *ep_src; unsigned long flags; u8 nests = 0; /* * To set the subclass or nesting level for spin_lock_irqsave_nested() * it might be natural to create a per-cpu nest count. However, since * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can * schedule() in the -rt kernel, the per-cpu variable are no longer * protected. Thus, we are introducing a per eventpoll nest field. * If we are not being call from ep_poll_callback(), epi is NULL and * we are at the first level of nesting, 0. Otherwise, we are being * called from ep_poll_callback() and if a previous wakeup source is * not an epoll file itself, we are at depth 1 since the wakeup source * is depth 0. If the wakeup source is a previous epoll file in the * wakeup chain then we use its nests value and record ours as * nests + 1. The previous epoll file nests value is stable since its * already holding its own poll_wait.lock. */ if (epi) { if ((is_file_epoll(epi->ffd.file))) { ep_src = epi->ffd.file->private_data; nests = ep_src->nests; } else { nests = 1; } } spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); ep->nests = nests + 1; wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags); ep->nests = 0; spin_unlock_irqrestore(&ep->poll_wait.lock, flags); } #else static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, __poll_t pollflags) { wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags); } #endif static void ep_remove_wait_queue(struct eppoll_entry *pwq) { wait_queue_head_t *whead; rcu_read_lock(); /* * If it is cleared by POLLFREE, it should be rcu-safe. * If we read NULL we need a barrier paired with * smp_store_release() in ep_poll_callback(), otherwise * we rely on whead->lock. */ whead = smp_load_acquire(&pwq->whead); if (whead) remove_wait_queue(whead, &pwq->wait); rcu_read_unlock(); } /* * This function unregisters poll callbacks from the associated file * descriptor. Must be called with "mtx" held. */ static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) { struct eppoll_entry **p = &epi->pwqlist; struct eppoll_entry *pwq; while ((pwq = *p) != NULL) { *p = pwq->next; ep_remove_wait_queue(pwq); kmem_cache_free(pwq_cache, pwq); } } /* call only when ep->mtx is held */ static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) { return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); } /* call only when ep->mtx is held */ static inline void ep_pm_stay_awake(struct epitem *epi) { struct wakeup_source *ws = ep_wakeup_source(epi); if (ws) __pm_stay_awake(ws); } static inline bool ep_has_wakeup_source(struct epitem *epi) { return rcu_access_pointer(epi->ws) ? true : false; } /* call when ep->mtx cannot be held (ep_poll_callback) */ static inline void ep_pm_stay_awake_rcu(struct epitem *epi) { struct wakeup_source *ws; rcu_read_lock(); ws = rcu_dereference(epi->ws); if (ws) __pm_stay_awake(ws); rcu_read_unlock(); } /* * ep->mutex needs to be held because we could be hit by * eventpoll_release_file() and epoll_ctl(). */ static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) { /* * Steal the ready list, and re-init the original one to the * empty list. Also, set ep->ovflist to NULL so that events * happening while looping w/out locks, are not lost. We cannot * have the poll callback to queue directly on ep->rdllist, * because we want the "sproc" callback to be able to do it * in a lockless way. */ lockdep_assert_irqs_enabled(); write_lock_irq(&ep->lock); list_splice_init(&ep->rdllist, txlist); WRITE_ONCE(ep->ovflist, NULL); write_unlock_irq(&ep->lock); } static void ep_done_scan(struct eventpoll *ep, struct list_head *txlist) { struct epitem *epi, *nepi; write_lock_irq(&ep->lock); /* * During the time we spent inside the "sproc" callback, some * other events might have been queued by the poll callback. * We re-insert them inside the main ready-list here. */ for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { /* * We need to check if the item is already in the list. * During the "sproc" callback execution time, items are * queued into ->ovflist but the "txlist" might already * contain them, and the list_splice() below takes care of them. */ if (!ep_is_linked(epi)) { /* * ->ovflist is LIFO, so we have to reverse it in order * to keep in FIFO. */ list_add(&epi->rdllink, &ep->rdllist); ep_pm_stay_awake(epi); } } /* * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after * releasing the lock, events will be queued in the normal way inside * ep->rdllist. */ WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); /* * Quickly re-inject items left on "txlist". */ list_splice(txlist, &ep->rdllist); __pm_relax(ep->ws); if (!list_empty(&ep->rdllist)) { if (waitqueue_active(&ep->wq)) wake_up(&ep->wq); } write_unlock_irq(&ep->lock); } static void ep_get(struct eventpoll *ep) { refcount_inc(&ep->refcount); } /* * Returns true if the event poll can be disposed */ static bool ep_refcount_dec_and_test(struct eventpoll *ep) { if (!refcount_dec_and_test(&ep->refcount)) return false; WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root)); return true; } static void ep_free(struct eventpoll *ep) { mutex_destroy(&ep->mtx); free_uid(ep->user); wakeup_source_unregister(ep->ws); kfree(ep); } /* * Removes a "struct epitem" from the eventpoll RB tree and deallocates * all the associated resources. Must be called with "mtx" held. * If the dying flag is set, do the removal only if force is true. * This prevents ep_clear_and_put() from dropping all the ep references * while running concurrently with eventpoll_release_file(). * Returns true if the eventpoll can be disposed. */ static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force) { struct file *file = epi->ffd.file; struct epitems_head *to_free; struct hlist_head *head; lockdep_assert_irqs_enabled(); /* * Removes poll wait queue hooks. */ ep_unregister_pollwait(ep, epi); /* Remove the current item from the list of epoll hooks */ spin_lock(&file->f_lock); if (epi->dying && !force) { spin_unlock(&file->f_lock); return false; } to_free = NULL; head = file->f_ep; if (head->first == &epi->fllink && !epi->fllink.next) { file->f_ep = NULL; if (!is_file_epoll(file)) { struct epitems_head *v; v = container_of(head, struct epitems_head, epitems); if (!smp_load_acquire(&v->next)) to_free = v; } } hlist_del_rcu(&epi->fllink); spin_unlock(&file->f_lock); free_ephead(to_free); rb_erase_cached(&epi->rbn, &ep->rbr); write_lock_irq(&ep->lock); if (ep_is_linked(epi)) list_del_init(&epi->rdllink); write_unlock_irq(&ep->lock); wakeup_source_unregister(ep_wakeup_source(epi)); /* * At this point it is safe to free the eventpoll item. Use the union * field epi->rcu, since we are trying to minimize the size of * 'struct epitem'. The 'rbn' field is no longer in use. Protected by * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make * use of the rbn field. */ kfree_rcu(epi, rcu); percpu_counter_dec(&ep->user->epoll_watches); return ep_refcount_dec_and_test(ep); } /* * ep_remove variant for callers owing an additional reference to the ep */ static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi) { WARN_ON_ONCE(__ep_remove(ep, epi, false)); } static void ep_clear_and_put(struct eventpoll *ep) { struct rb_node *rbp, *next; struct epitem *epi; bool dispose; /* We need to release all tasks waiting for these file */ if (waitqueue_active(&ep->poll_wait)) ep_poll_safewake(ep, NULL, 0); mutex_lock(&ep->mtx); /* * Walks through the whole tree by unregistering poll callbacks. */ for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { epi = rb_entry(rbp, struct epitem, rbn); ep_unregister_pollwait(ep, epi); cond_resched(); } /* * Walks through the whole tree and try to free each "struct epitem". * Note that ep_remove_safe() will not remove the epitem in case of a * racing eventpoll_release_file(); the latter will do the removal. * At this point we are sure no poll callbacks will be lingering around. * Since we still own a reference to the eventpoll struct, the loop can't * dispose it. */ for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) { next = rb_next(rbp); epi = rb_entry(rbp, struct epitem, rbn); ep_remove_safe(ep, epi); cond_resched(); } dispose = ep_refcount_dec_and_test(ep); mutex_unlock(&ep->mtx); if (dispose) ep_free(ep); } static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { int ret; if (!is_file_epoll(file)) return -EINVAL; switch (cmd) { case EPIOCSPARAMS: case EPIOCGPARAMS: ret = ep_eventpoll_bp_ioctl(file, cmd, arg); break; default: ret = -EINVAL; break; } return ret; } static int ep_eventpoll_release(struct inode *inode, struct file *file) { struct eventpoll *ep = file->private_data; if (ep) ep_clear_and_put(ep); return 0; } static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) { struct eventpoll *ep = file->private_data; LIST_HEAD(txlist); struct epitem *epi, *tmp; poll_table pt; __poll_t res = 0; init_poll_funcptr(&pt, NULL); /* Insert inside our poll wait queue */ poll_wait(file, &ep->poll_wait, wait); /* * Proceed to find out if wanted events are really available inside * the ready list. */ mutex_lock_nested(&ep->mtx, depth); ep_start_scan(ep, &txlist); list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { if (ep_item_poll(epi, &pt, depth + 1)) { res = EPOLLIN | EPOLLRDNORM; break; } else { /* * Item has been dropped into the ready list by the poll * callback, but it's not actually ready, as far as * caller requested events goes. We can remove it here. */ __pm_relax(ep_wakeup_source(epi)); list_del_init(&epi->rdllink); } } ep_done_scan(ep, &txlist); mutex_unlock(&ep->mtx); return res; } /* * The ffd.file pointer may be in the process of being torn down due to * being closed, but we may not have finished eventpoll_release() yet. * * Normally, even with the atomic_long_inc_not_zero, the file may have * been free'd and then gotten re-allocated to something else (since * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU). * * But for epoll, users hold the ep->mtx mutex, and as such any file in * the process of being free'd will block in eventpoll_release_file() * and thus the underlying file allocation will not be free'd, and the * file re-use cannot happen. * * For the same reason we can avoid a rcu_read_lock() around the * operation - 'ffd.file' cannot go away even if the refcount has * reached zero (but we must still not call out to ->poll() functions * etc). */ static struct file *epi_fget(const struct epitem *epi) { struct file *file; file = epi->ffd.file; if (!atomic_long_inc_not_zero(&file->f_count)) file = NULL; return file; } /* * Differs from ep_eventpoll_poll() in that internal callers already have * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() * is correctly annotated. */ static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth) { struct file *file = epi_fget(epi); __poll_t res; /* * We could return EPOLLERR | EPOLLHUP or something, but let's * treat this more as "file doesn't exist, poll didn't happen". */ if (!file) return 0; pt->_key = epi->event.events; if (!is_file_epoll(file)) res = vfs_poll(file, pt); else res = __ep_eventpoll_poll(file, pt, depth); fput(file); return res & epi->event.events; } static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) { return __ep_eventpoll_poll(file, wait, 0); } #ifdef CONFIG_PROC_FS static void ep_show_fdinfo(struct seq_file *m, struct file *f) { struct eventpoll *ep = f->private_data; struct rb_node *rbp; mutex_lock(&ep->mtx); for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { struct epitem *epi = rb_entry(rbp, struct epitem, rbn); struct inode *inode = file_inode(epi->ffd.file); seq_printf(m, "tfd: %8d events: %8x data: %16llx " " pos:%lli ino:%lx sdev:%x\n", epi->ffd.fd, epi->event.events, (long long)epi->event.data, (long long)epi->ffd.file->f_pos, inode->i_ino, inode->i_sb->s_dev); if (seq_has_overflowed(m)) break; } mutex_unlock(&ep->mtx); } #endif /* File callbacks that implement the eventpoll file behaviour */ static const struct file_operations eventpoll_fops = { #ifdef CONFIG_PROC_FS .show_fdinfo = ep_show_fdinfo, #endif .release = ep_eventpoll_release, .poll = ep_eventpoll_poll, .llseek = noop_llseek, .unlocked_ioctl = ep_eventpoll_ioctl, .compat_ioctl = compat_ptr_ioctl, }; /* * This is called from eventpoll_release() to unlink files from the eventpoll * interface. We need to have this facility to cleanup correctly files that are * closed without being removed from the eventpoll interface. */ void eventpoll_release_file(struct file *file) { struct eventpoll *ep; struct epitem *epi; bool dispose; /* * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from * touching the epitems list before eventpoll_release_file() can access * the ep->mtx. */ again: spin_lock(&file->f_lock); if (file->f_ep && file->f_ep->first) { epi = hlist_entry(file->f_ep->first, struct epitem, fllink); epi->dying = true; spin_unlock(&file->f_lock); /* * ep access is safe as we still own a reference to the ep * struct */ ep = epi->ep; mutex_lock(&ep->mtx); dispose = __ep_remove(ep, epi, true); mutex_unlock(&ep->mtx); if (dispose) ep_free(ep); goto again; } spin_unlock(&file->f_lock); } static int ep_alloc(struct eventpoll **pep) { struct eventpoll *ep; ep = kzalloc(sizeof(*ep), GFP_KERNEL); if (unlikely(!ep)) return -ENOMEM; mutex_init(&ep->mtx); rwlock_init(&ep->lock); init_waitqueue_head(&ep->wq); init_waitqueue_head(&ep->poll_wait); INIT_LIST_HEAD(&ep->rdllist); ep->rbr = RB_ROOT_CACHED; ep->ovflist = EP_UNACTIVE_PTR; ep->user = get_current_user(); refcount_set(&ep->refcount, 1); *pep = ep; return 0; } /* * Search the file inside the eventpoll tree. The RB tree operations * are protected by the "mtx" mutex, and ep_find() must be called with * "mtx" held. */ static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) { int kcmp; struct rb_node *rbp; struct epitem *epi, *epir = NULL; struct epoll_filefd ffd; ep_set_ffd(&ffd, file, fd); for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { epi = rb_entry(rbp, struct epitem, rbn); kcmp = ep_cmp_ffd(&ffd, &epi->ffd); if (kcmp > 0) rbp = rbp->rb_right; else if (kcmp < 0) rbp = rbp->rb_left; else { epir = epi; break; } } return epir; } #ifdef CONFIG_KCMP static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) { struct rb_node *rbp; struct epitem *epi; for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { epi = rb_entry(rbp, struct epitem, rbn); if (epi->ffd.fd == tfd) { if (toff == 0) return epi; else toff--; } cond_resched(); } return NULL; } struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, unsigned long toff) { struct file *file_raw; struct eventpoll *ep; struct epitem *epi; if (!is_file_epoll(file)) return ERR_PTR(-EINVAL); ep = file->private_data; mutex_lock(&ep->mtx); epi = ep_find_tfd(ep, tfd, toff); if (epi) file_raw = epi->ffd.file; else file_raw = ERR_PTR(-ENOENT); mutex_unlock(&ep->mtx); return file_raw; } #endif /* CONFIG_KCMP */ /* * Adds a new entry to the tail of the list in a lockless way, i.e. * multiple CPUs are allowed to call this function concurrently. * * Beware: it is necessary to prevent any other modifications of the * existing list until all changes are completed, in other words * concurrent list_add_tail_lockless() calls should be protected * with a read lock, where write lock acts as a barrier which * makes sure all list_add_tail_lockless() calls are fully * completed. * * Also an element can be locklessly added to the list only in one * direction i.e. either to the tail or to the head, otherwise * concurrent access will corrupt the list. * * Return: %false if element has been already added to the list, %true * otherwise. */ static inline bool list_add_tail_lockless(struct list_head *new, struct list_head *head) { struct list_head *prev; /* * This is simple 'new->next = head' operation, but cmpxchg() * is used in order to detect that same element has been just * added to the list from another CPU: the winner observes * new->next == new. */ if (!try_cmpxchg(&new->next, &new, head)) return false; /* * Initially ->next of a new element must be updated with the head * (we are inserting to the tail) and only then pointers are atomically * exchanged. XCHG guarantees memory ordering, thus ->next should be * updated before pointers are actually swapped and pointers are * swapped before prev->next is updated. */ prev = xchg(&head->prev, new); /* * It is safe to modify prev->next and new->prev, because a new element * is added only to the tail and new->next is updated before XCHG. */ prev->next = new; new->prev = prev; return true; } /* * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, * i.e. multiple CPUs are allowed to call this function concurrently. * * Return: %false if epi element has been already chained, %true otherwise. */ static inline bool chain_epi_lockless(struct epitem *epi) { struct eventpoll *ep = epi->ep; /* Fast preliminary check */ if (epi->next != EP_UNACTIVE_PTR) return false; /* Check that the same epi has not been just chained from another CPU */ if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) return false; /* Atomically exchange tail */ epi->next = xchg(&ep->ovflist, epi); return true; } /* * This is the callback that is passed to the wait queue wakeup * mechanism. It is called by the stored file descriptors when they * have events to report. * * This callback takes a read lock in order not to contend with concurrent * events from another file descriptor, thus all modifications to ->rdllist * or ->ovflist are lockless. Read lock is paired with the write lock from * ep_start/done_scan(), which stops all list modifications and guarantees * that lists state is seen correctly. * * Another thing worth to mention is that ep_poll_callback() can be called * concurrently for the same @epi from different CPUs if poll table was inited * with several wait queues entries. Plural wakeup from different CPUs of a * single wait queue is serialized by wq.lock, but the case when multiple wait * queues are used should be detected accordingly. This is detected using * cmpxchg() operation. */ static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) { int pwake = 0; struct epitem *epi = ep_item_from_wait(wait); struct eventpoll *ep = epi->ep; __poll_t pollflags = key_to_poll(key); unsigned long flags; int ewake = 0; read_lock_irqsave(&ep->lock, flags); ep_set_busy_poll_napi_id(epi); /* * If the event mask does not contain any poll(2) event, we consider the * descriptor to be disabled. This condition is likely the effect of the * EPOLLONESHOT bit that disables the descriptor when an event is received, * until the next EPOLL_CTL_MOD will be issued. */ if (!(epi->event.events & ~EP_PRIVATE_BITS)) goto out_unlock; /* * Check the events coming with the callback. At this stage, not * every device reports the events in the "key" parameter of the * callback. We need to be able to handle both cases here, hence the * test for "key" != NULL before the event match test. */ if (pollflags && !(pollflags & epi->event.events)) goto out_unlock; /* * If we are transferring events to userspace, we can hold no locks * (because we're accessing user memory, and because of linux f_op->poll() * semantics). All the events that happen during that period of time are * chained in ep->ovflist and requeued later on. */ if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { if (chain_epi_lockless(epi)) ep_pm_stay_awake_rcu(epi); } else if (!ep_is_linked(epi)) { /* In the usual case, add event to ready list. */ if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) ep_pm_stay_awake_rcu(epi); } /* * Wake up ( if active ) both the eventpoll wait list and the ->poll() * wait list. */ if (waitqueue_active(&ep->wq)) { if ((epi->event.events & EPOLLEXCLUSIVE) && !(pollflags & POLLFREE)) { switch (pollflags & EPOLLINOUT_BITS) { case EPOLLIN: if (epi->event.events & EPOLLIN) ewake = 1; break; case EPOLLOUT: if (epi->event.events & EPOLLOUT) ewake = 1; break; case 0: ewake = 1; break; } } wake_up(&ep->wq); } if (waitqueue_active(&ep->poll_wait)) pwake++; out_unlock: read_unlock_irqrestore(&ep->lock, flags); /* We have to call this outside the lock */ if (pwake) ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE); if (!(epi->event.events & EPOLLEXCLUSIVE)) ewake = 1; if (pollflags & POLLFREE) { /* * If we race with ep_remove_wait_queue() it can miss * ->whead = NULL and do another remove_wait_queue() after * us, so we can't use __remove_wait_queue(). */ list_del_init(&wait->entry); /* * ->whead != NULL protects us from the race with * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue() * takes whead->lock held by the caller. Once we nullify it, * nothing protects ep/epi or even wait. */ smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); } return ewake; } /* * This is the callback that is used to add our wait queue to the * target file wakeup lists. */ static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, poll_table *pt) { struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); struct epitem *epi = epq->epi; struct eppoll_entry *pwq; if (unlikely(!epi)) // an earlier allocation has failed return; pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); if (unlikely(!pwq)) { epq->epi = NULL; return; } init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); pwq->whead = whead; pwq->base = epi; if (epi->event.events & EPOLLEXCLUSIVE) add_wait_queue_exclusive(whead, &pwq->wait); else add_wait_queue(whead, &pwq->wait); pwq->next = epi->pwqlist; epi->pwqlist = pwq; } static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) { int kcmp; struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; struct epitem *epic; bool leftmost = true; while (*p) { parent = *p; epic = rb_entry(parent, struct epitem, rbn); kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); if (kcmp > 0) { p = &parent->rb_right; leftmost = false; } else p = &parent->rb_left; } rb_link_node(&epi->rbn, parent, p); rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); } #define PATH_ARR_SIZE 5 /* * These are the number paths of length 1 to 5, that we are allowing to emanate * from a single file of interest. For example, we allow 1000 paths of length * 1, to emanate from each file of interest. This essentially represents the * potential wakeup paths, which need to be limited in order to avoid massive * uncontrolled wakeup storms. The common use case should be a single ep which * is connected to n file sources. In this case each file source has 1 path * of length 1. Thus, the numbers below should be more than sufficient. These * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify * and delete can't add additional paths. Protected by the epnested_mutex. */ static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; static int path_count[PATH_ARR_SIZE]; static int path_count_inc(int nests) { /* Allow an arbitrary number of depth 1 paths */ if (nests == 0) return 0; if (++path_count[nests] > path_limits[nests]) return -1; return 0; } static void path_count_init(void) { int i; for (i = 0; i < PATH_ARR_SIZE; i++) path_count[i] = 0; } static int reverse_path_check_proc(struct hlist_head *refs, int depth) { int error = 0; struct epitem *epi; if (depth > EP_MAX_NESTS) /* too deep nesting */ return -1; /* CTL_DEL can remove links here, but that can't increase our count */ hlist_for_each_entry_rcu(epi, refs, fllink) { struct hlist_head *refs = &epi->ep->refs; if (hlist_empty(refs)) error = path_count_inc(depth); else error = reverse_path_check_proc(refs, depth + 1); if (error != 0) break; } return error; } /** * reverse_path_check - The tfile_check_list is list of epitem_head, which have * links that are proposed to be newly added. We need to * make sure that those added links don't add too many * paths such that we will spend all our time waking up * eventpoll objects. * * Return: %zero if the proposed links don't create too many paths, * %-1 otherwise. */ static int reverse_path_check(void) { struct epitems_head *p; for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { int error; path_count_init(); rcu_read_lock(); error = reverse_path_check_proc(&p->epitems, 0); rcu_read_unlock(); if (error) return error; } return 0; } static int ep_create_wakeup_source(struct epitem *epi) { struct name_snapshot n; struct wakeup_source *ws; if (!epi->ep->ws) { epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); if (!epi->ep->ws) return -ENOMEM; } take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); ws = wakeup_source_register(NULL, n.name.name); release_dentry_name_snapshot(&n); if (!ws) return -ENOMEM; rcu_assign_pointer(epi->ws, ws); return 0; } /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ static noinline void ep_destroy_wakeup_source(struct epitem *epi) { struct wakeup_source *ws = ep_wakeup_source(epi); RCU_INIT_POINTER(epi->ws, NULL); /* * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is * used internally by wakeup_source_remove, too (called by * wakeup_source_unregister), so we cannot use call_rcu */ synchronize_rcu(); wakeup_source_unregister(ws); } static int attach_epitem(struct file *file, struct epitem *epi) { struct epitems_head *to_free = NULL; struct hlist_head *head = NULL; struct eventpoll *ep = NULL; if (is_file_epoll(file)) ep = file->private_data; if (ep) { head = &ep->refs; } else if (!READ_ONCE(file->f_ep)) { allocate: to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); if (!to_free) return -ENOMEM; head = &to_free->epitems; } spin_lock(&file->f_lock); if (!file->f_ep) { if (unlikely(!head)) { spin_unlock(&file->f_lock); goto allocate; } file->f_ep = head; to_free = NULL; } hlist_add_head_rcu(&epi->fllink, file->f_ep); spin_unlock(&file->f_lock); free_ephead(to_free); return 0; } /* * Must be called with "mtx" held. */ static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, struct file *tfile, int fd, int full_check) { int error, pwake = 0; __poll_t revents; struct epitem *epi; struct ep_pqueue epq; struct eventpoll *tep = NULL; if (is_file_epoll(tfile)) tep = tfile->private_data; lockdep_assert_irqs_enabled(); if (unlikely(percpu_counter_compare(&ep->user->epoll_watches, max_user_watches) >= 0)) return -ENOSPC; percpu_counter_inc(&ep->user->epoll_watches); if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) { percpu_counter_dec(&ep->user->epoll_watches); return -ENOMEM; } /* Item initialization follow here ... */ INIT_LIST_HEAD(&epi->rdllink); epi->ep = ep; ep_set_ffd(&epi->ffd, tfile, fd); epi->event = *event; epi->next = EP_UNACTIVE_PTR; if (tep) mutex_lock_nested(&tep->mtx, 1); /* Add the current item to the list of active epoll hook for this file */ if (unlikely(attach_epitem(tfile, epi) < 0)) { if (tep) mutex_unlock(&tep->mtx); kmem_cache_free(epi_cache, epi); percpu_counter_dec(&ep->user->epoll_watches); return -ENOMEM; } if (full_check && !tep) list_file(tfile); /* * Add the current item to the RB tree. All RB tree operations are * protected by "mtx", and ep_insert() is called with "mtx" held. */ ep_rbtree_insert(ep, epi); if (tep) mutex_unlock(&tep->mtx); /* * ep_remove_safe() calls in the later error paths can't lead to * ep_free() as the ep file itself still holds an ep reference. */ ep_get(ep); /* now check if we've created too many backpaths */ if (unlikely(full_check && reverse_path_check())) { ep_remove_safe(ep, epi); return -EINVAL; } if (epi->event.events & EPOLLWAKEUP) { error = ep_create_wakeup_source(epi); if (error) { ep_remove_safe(ep, epi); return error; } } /* Initialize the poll table using the queue callback */ epq.epi = epi; init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); /* * Attach the item to the poll hooks and get current event bits. * We can safely use the file* here because its usage count has * been increased by the caller of this function. Note that after * this operation completes, the poll callback can start hitting * the new item. */ revents = ep_item_poll(epi, &epq.pt, 1); /* * We have to check if something went wrong during the poll wait queue * install process. Namely an allocation for a wait queue failed due * high memory pressure. */ if (unlikely(!epq.epi)) { ep_remove_safe(ep, epi); return -ENOMEM; } /* We have to drop the new item inside our item list to keep track of it */ write_lock_irq(&ep->lock); /* record NAPI ID of new item if present */ ep_set_busy_poll_napi_id(epi); /* If the file is already "ready" we drop it inside the ready list */ if (revents && !ep_is_linked(epi)) { list_add_tail(&epi->rdllink, &ep->rdllist); ep_pm_stay_awake(epi); /* Notify waiting tasks that events are available */ if (waitqueue_active(&ep->wq)) wake_up(&ep->wq); if (waitqueue_active(&ep->poll_wait)) pwake++; } write_unlock_irq(&ep->lock); /* We have to call this outside the lock */ if (pwake) ep_poll_safewake(ep, NULL, 0); return 0; } /* * Modify the interest event mask by dropping an event if the new mask * has a match in the current file status. Must be called with "mtx" held. */ static int ep_modify(struct eventpoll *ep, struct epitem *epi, const struct epoll_event *event) { int pwake = 0; poll_table pt; lockdep_assert_irqs_enabled(); init_poll_funcptr(&pt, NULL); /* * Set the new event interest mask before calling f_op->poll(); * otherwise we might miss an event that happens between the * f_op->poll() call and the new event set registering. */ epi->event.events = event->events; /* need barrier below */ epi->event.data = event->data; /* protected by mtx */ if (epi->event.events & EPOLLWAKEUP) { if (!ep_has_wakeup_source(epi)) ep_create_wakeup_source(epi); } else if (ep_has_wakeup_source(epi)) { ep_destroy_wakeup_source(epi); } /* * The following barrier has two effects: * * 1) Flush epi changes above to other CPUs. This ensures * we do not miss events from ep_poll_callback if an * event occurs immediately after we call f_op->poll(). * We need this because we did not take ep->lock while * changing epi above (but ep_poll_callback does take * ep->lock). * * 2) We also need to ensure we do not miss _past_ events * when calling f_op->poll(). This barrier also * pairs with the barrier in wq_has_sleeper (see * comments for wq_has_sleeper). * * This barrier will now guarantee ep_poll_callback or f_op->poll * (or both) will notice the readiness of an item. */ smp_mb(); /* * Get current event bits. We can safely use the file* here because * its usage count has been increased by the caller of this function. * If the item is "hot" and it is not registered inside the ready * list, push it inside. */ if (ep_item_poll(epi, &pt, 1)) { write_lock_irq(&ep->lock); if (!ep_is_linked(epi)) { list_add_tail(&epi->rdllink, &ep->rdllist); ep_pm_stay_awake(epi); /* Notify waiting tasks that events are available */ if (waitqueue_active(&ep->wq)) wake_up(&ep->wq); if (waitqueue_active(&ep->poll_wait)) pwake++; } write_unlock_irq(&ep->lock); } /* We have to call this outside the lock */ if (pwake) ep_poll_safewake(ep, NULL, 0); return 0; } static int ep_send_events(struct eventpoll *ep, struct epoll_event __user *events, int maxevents) { struct epitem *epi, *tmp; LIST_HEAD(txlist); poll_table pt; int res = 0; /* * Always short-circuit for fatal signals to allow threads to make a * timely exit without the chance of finding more events available and * fetching repeatedly. */ if (fatal_signal_pending(current)) return -EINTR; init_poll_funcptr(&pt, NULL); mutex_lock(&ep->mtx); ep_start_scan(ep, &txlist); /* * We can loop without lock because we are passed a task private list. * Items cannot vanish during the loop we are holding ep->mtx. */ list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { struct wakeup_source *ws; __poll_t revents; if (res >= maxevents) break; /* * Activate ep->ws before deactivating epi->ws to prevent * triggering auto-suspend here (in case we reactive epi->ws * below). * * This could be rearranged to delay the deactivation of epi->ws * instead, but then epi->ws would temporarily be out of sync * with ep_is_linked(). */ ws = ep_wakeup_source(epi); if (ws) { if (ws->active) __pm_stay_awake(ep->ws); __pm_relax(ws); } list_del_init(&epi->rdllink); /* * If the event mask intersect the caller-requested one, * deliver the event to userspace. Again, we are holding ep->mtx, * so no operations coming from userspace can change the item. */ revents = ep_item_poll(epi, &pt, 1); if (!revents) continue; events = epoll_put_uevent(revents, epi->event.data, events); if (!events) { list_add(&epi->rdllink, &txlist); ep_pm_stay_awake(epi); if (!res) res = -EFAULT; break; } res++; if (epi->event.events & EPOLLONESHOT) epi->event.events &= EP_PRIVATE_BITS; else if (!(epi->event.events & EPOLLET)) { /* * If this file has been added with Level * Trigger mode, we need to insert back inside * the ready list, so that the next call to * epoll_wait() will check again the events * availability. At this point, no one can insert * into ep->rdllist besides us. The epoll_ctl() * callers are locked out by * ep_send_events() holding "mtx" and the * poll callback will queue them in ep->ovflist. */ list_add_tail(&epi->rdllink, &ep->rdllist); ep_pm_stay_awake(epi); } } ep_done_scan(ep, &txlist); mutex_unlock(&ep->mtx); return res; } static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) { struct timespec64 now; if (ms < 0) return NULL; if (!ms) { to->tv_sec = 0; to->tv_nsec = 0; return to; } to->tv_sec = ms / MSEC_PER_SEC; to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); ktime_get_ts64(&now); *to = timespec64_add_safe(now, *to); return to; } /* * autoremove_wake_function, but remove even on failure to wake up, because we * know that default_wake_function/ttwu will only fail if the thread is already * woken, and in that case the ep_poll loop will remove the entry anyways, not * try to reuse it. */ static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned int mode, int sync, void *key) { int ret = default_wake_function(wq_entry, mode, sync, key); /* * Pairs with list_empty_careful in ep_poll, and ensures future loop * iterations see the cause of this wakeup. */ list_del_init_careful(&wq_entry->entry); return ret; } /** * ep_poll - Retrieves ready events, and delivers them to the caller-supplied * event buffer. * * @ep: Pointer to the eventpoll context. * @events: Pointer to the userspace buffer where the ready events should be * stored. * @maxevents: Size (in terms of number of events) of the caller event buffer. * @timeout: Maximum timeout for the ready events fetch operation, in * timespec. If the timeout is zero, the function will not block, * while if the @timeout ptr is NULL, the function will block * until at least one event has been retrieved (or an error * occurred). * * Return: the number of ready events which have been fetched, or an * error code, in case of error. */ static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, int maxevents, struct timespec64 *timeout) { int res, eavail, timed_out = 0; u64 slack = 0; wait_queue_entry_t wait; ktime_t expires, *to = NULL; lockdep_assert_irqs_enabled(); if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { slack = select_estimate_accuracy(timeout); to = &expires; *to = timespec64_to_ktime(*timeout); } else if (timeout) { /* * Avoid the unnecessary trip to the wait queue loop, if the * caller specified a non blocking operation. */ timed_out = 1; } /* * This call is racy: We may or may not see events that are being added * to the ready list under the lock (e.g., in IRQ callbacks). For cases * with a non-zero timeout, this thread will check the ready list under * lock and will add to the wait queue. For cases with a zero * timeout, the user by definition should not care and will have to * recheck again. */ eavail = ep_events_available(ep); while (1) { if (eavail) { /* * Try to transfer events to user space. In case we get * 0 events and there's still timeout left over, we go * trying again in search of more luck. */ res = ep_send_events(ep, events, maxevents); if (res) return res; } if (timed_out) return 0; eavail = ep_busy_loop(ep, timed_out); if (eavail) continue; if (signal_pending(current)) return -EINTR; /* * Internally init_wait() uses autoremove_wake_function(), * thus wait entry is removed from the wait queue on each * wakeup. Why it is important? In case of several waiters * each new wakeup will hit the next waiter, giving it the * chance to harvest new event. Otherwise wakeup can be * lost. This is also good performance-wise, because on * normal wakeup path no need to call __remove_wait_queue() * explicitly, thus ep->lock is not taken, which halts the * event delivery. * * In fact, we now use an even more aggressive function that * unconditionally removes, because we don't reuse the wait * entry between loop iterations. This lets us also avoid the * performance issue if a process is killed, causing all of its * threads to wake up without being removed normally. */ init_wait(&wait); wait.func = ep_autoremove_wake_function; write_lock_irq(&ep->lock); /* * Barrierless variant, waitqueue_active() is called under * the same lock on wakeup ep_poll_callback() side, so it * is safe to avoid an explicit barrier. */ __set_current_state(TASK_INTERRUPTIBLE); /* * Do the final check under the lock. ep_start/done_scan() * plays with two lists (->rdllist and ->ovflist) and there * is always a race when both lists are empty for short * period of time although events are pending, so lock is * important. */ eavail = ep_events_available(ep); if (!eavail) __add_wait_queue_exclusive(&ep->wq, &wait); write_unlock_irq(&ep->lock); if (!eavail) timed_out = !schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS); __set_current_state(TASK_RUNNING); /* * We were woken up, thus go and try to harvest some events. * If timed out and still on the wait queue, recheck eavail * carefully under lock, below. */ eavail = 1; if (!list_empty_careful(&wait.entry)) { write_lock_irq(&ep->lock); /* * If the thread timed out and is not on the wait queue, * it means that the thread was woken up after its * timeout expired before it could reacquire the lock. * Thus, when wait.entry is empty, it needs to harvest * events. */ if (timed_out) eavail = list_empty(&wait.entry); __remove_wait_queue(&ep->wq, &wait); write_unlock_irq(&ep->lock); } } } /** * ep_loop_check_proc - verify that adding an epoll file inside another * epoll structure does not violate the constraints, in * terms of closed loops, or too deep chains (which can * result in excessive stack usage). * * @ep: the &struct eventpoll to be currently checked. * @depth: Current depth of the path being checked. * * Return: %zero if adding the epoll @file inside current epoll * structure @ep does not violate the constraints, or %-1 otherwise. */ static int ep_loop_check_proc(struct eventpoll *ep, int depth) { int error = 0; struct rb_node *rbp; struct epitem *epi; mutex_lock_nested(&ep->mtx, depth + 1); ep->gen = loop_check_gen; for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { epi = rb_entry(rbp, struct epitem, rbn); if (unlikely(is_file_epoll(epi->ffd.file))) { struct eventpoll *ep_tovisit; ep_tovisit = epi->ffd.file->private_data; if (ep_tovisit->gen == loop_check_gen) continue; if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) error = -1; else error = ep_loop_check_proc(ep_tovisit, depth + 1); if (error != 0) break; } else { /* * If we've reached a file that is not associated with * an ep, then we need to check if the newly added * links are going to add too many wakeup paths. We do * this by adding it to the tfile_check_list, if it's * not already there, and calling reverse_path_check() * during ep_insert(). */ list_file(epi->ffd.file); } } mutex_unlock(&ep->mtx); return error; } /** * ep_loop_check - Performs a check to verify that adding an epoll file (@to) * into another epoll file (represented by @ep) does not create * closed loops or too deep chains. * * @ep: Pointer to the epoll we are inserting into. * @to: Pointer to the epoll to be inserted. * * Return: %zero if adding the epoll @to inside the epoll @from * does not violate the constraints, or %-1 otherwise. */ static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) { inserting_into = ep; return ep_loop_check_proc(to, 0); } static void clear_tfile_check_list(void) { rcu_read_lock(); while (tfile_check_list != EP_UNACTIVE_PTR) { struct epitems_head *head = tfile_check_list; tfile_check_list = head->next; unlist_file(head); } rcu_read_unlock(); } /* * Open an eventpoll file descriptor. */ static int do_epoll_create(int flags) { int error, fd; struct eventpoll *ep = NULL; struct file *file; /* Check the EPOLL_* constant for consistency. */ BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); if (flags & ~EPOLL_CLOEXEC) return -EINVAL; /* * Create the internal data structure ("struct eventpoll"). */ error = ep_alloc(&ep); if (error < 0) return error; /* * Creates all the items needed to setup an eventpoll file. That is, * a file structure and a free file descriptor. */ fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); if (fd < 0) { error = fd; goto out_free_ep; } file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, O_RDWR | (flags & O_CLOEXEC)); if (IS_ERR(file)) { error = PTR_ERR(file); goto out_free_fd; } ep->file = file; fd_install(fd, file); return fd; out_free_fd: put_unused_fd(fd); out_free_ep: ep_clear_and_put(ep); return error; } SYSCALL_DEFINE1(epoll_create1, int, flags) { return do_epoll_create(flags); } SYSCALL_DEFINE1(epoll_create, int, size) { if (size <= 0) return -EINVAL; return do_epoll_create(0); } #ifdef CONFIG_PM_SLEEP static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) { if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) epev->events &= ~EPOLLWAKEUP; } #else static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) { epev->events &= ~EPOLLWAKEUP; } #endif static inline int epoll_mutex_lock(struct mutex *mutex, int depth, bool nonblock) { if (!nonblock) { mutex_lock_nested(mutex, depth); return 0; } if (mutex_trylock(mutex)) return 0; return -EAGAIN; } int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, bool nonblock) { int error; int full_check = 0; struct fd f, tf; struct eventpoll *ep; struct epitem *epi; struct eventpoll *tep = NULL; error = -EBADF; f = fdget(epfd); if (!fd_file(f)) goto error_return; /* Get the "struct file *" for the target file */ tf = fdget(fd); if (!fd_file(tf)) goto error_fput; /* The target file descriptor must support poll */ error = -EPERM; if (!file_can_poll(fd_file(tf))) goto error_tgt_fput; /* Check if EPOLLWAKEUP is allowed */ if (ep_op_has_event(op)) ep_take_care_of_epollwakeup(epds); /* * We have to check that the file structure underneath the file descriptor * the user passed to us _is_ an eventpoll file. And also we do not permit * adding an epoll file descriptor inside itself. */ error = -EINVAL; if (fd_file(f) == fd_file(tf) || !is_file_epoll(fd_file(f))) goto error_tgt_fput; /* * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. * Also, we do not currently supported nested exclusive wakeups. */ if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { if (op == EPOLL_CTL_MOD) goto error_tgt_fput; if (op == EPOLL_CTL_ADD && (is_file_epoll(fd_file(tf)) || (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) goto error_tgt_fput; } /* * At this point it is safe to assume that the "private_data" contains * our own data structure. */ ep = fd_file(f)->private_data; /* * When we insert an epoll file descriptor inside another epoll file * descriptor, there is the chance of creating closed loops, which are * better be handled here, than in more critical paths. While we are * checking for loops we also determine the list of files reachable * and hang them on the tfile_check_list, so we can check that we * haven't created too many possible wakeup paths. * * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when * the epoll file descriptor is attaching directly to a wakeup source, * unless the epoll file descriptor is nested. The purpose of taking the * 'epnested_mutex' on add is to prevent complex toplogies such as loops and * deep wakeup paths from forming in parallel through multiple * EPOLL_CTL_ADD operations. */ error = epoll_mutex_lock(&ep->mtx, 0, nonblock); if (error) goto error_tgt_fput; if (op == EPOLL_CTL_ADD) { if (READ_ONCE(fd_file(f)->f_ep) || ep->gen == loop_check_gen || is_file_epoll(fd_file(tf))) { mutex_unlock(&ep->mtx); error = epoll_mutex_lock(&epnested_mutex, 0, nonblock); if (error) goto error_tgt_fput; loop_check_gen++; full_check = 1; if (is_file_epoll(fd_file(tf))) { tep = fd_file(tf)->private_data; error = -ELOOP; if (ep_loop_check(ep, tep) != 0) goto error_tgt_fput; } error = epoll_mutex_lock(&ep->mtx, 0, nonblock); if (error) goto error_tgt_fput; } } /* * Try to lookup the file inside our RB tree. Since we grabbed "mtx" * above, we can be sure to be able to use the item looked up by * ep_find() till we release the mutex. */ epi = ep_find(ep, fd_file(tf), fd); error = -EINVAL; switch (op) { case EPOLL_CTL_ADD: if (!epi) { epds->events |= EPOLLERR | EPOLLHUP; error = ep_insert(ep, epds, fd_file(tf), fd, full_check); } else error = -EEXIST; break; case EPOLL_CTL_DEL: if (epi) { /* * The eventpoll itself is still alive: the refcount * can't go to zero here. */ ep_remove_safe(ep, epi); error = 0; } else { error = -ENOENT; } break; case EPOLL_CTL_MOD: if (epi) { if (!(epi->event.events & EPOLLEXCLUSIVE)) { epds->events |= EPOLLERR | EPOLLHUP; error = ep_modify(ep, epi, epds); } } else error = -ENOENT; break; } mutex_unlock(&ep->mtx); error_tgt_fput: if (full_check) { clear_tfile_check_list(); loop_check_gen++; mutex_unlock(&epnested_mutex); } fdput(tf); error_fput: fdput(f); error_return: return error; } /* * The following function implements the controller interface for * the eventpoll file that enables the insertion/removal/change of * file descriptors inside the interest set. */ SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, struct epoll_event __user *, event) { struct epoll_event epds; if (ep_op_has_event(op) && copy_from_user(&epds, event, sizeof(struct epoll_event))) return -EFAULT; return do_epoll_ctl(epfd, op, fd, &epds, false); } /* * Implement the event wait interface for the eventpoll file. It is the kernel * part of the user space epoll_wait(2). */ static int do_epoll_wait(int epfd, struct epoll_event __user *events, int maxevents, struct timespec64 *to) { int error; struct fd f; struct eventpoll *ep; /* The maximum number of event must be greater than zero */ if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) return -EINVAL; /* Verify that the area passed by the user is writeable */ if (!access_ok(events, maxevents * sizeof(struct epoll_event))) return -EFAULT; /* Get the "struct file *" for the eventpoll file */ f = fdget(epfd); if (!fd_file(f)) return -EBADF; /* * We have to check that the file structure underneath the fd * the user passed to us _is_ an eventpoll file. */ error = -EINVAL; if (!is_file_epoll(fd_file(f))) goto error_fput; /* * At this point it is safe to assume that the "private_data" contains * our own data structure. */ ep = fd_file(f)->private_data; /* Time to fish for events ... */ error = ep_poll(ep, events, maxevents, to); error_fput: fdput(f); return error; } SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, int, maxevents, int, timeout) { struct timespec64 to; return do_epoll_wait(epfd, events, maxevents, ep_timeout_to_timespec(&to, timeout)); } /* * Implement the event wait interface for the eventpoll file. It is the kernel * part of the user space epoll_pwait(2). */ static int do_epoll_pwait(int epfd, struct epoll_event __user *events, int maxevents, struct timespec64 *to, const sigset_t __user *sigmask, size_t sigsetsize) { int error; /* * If the caller wants a certain signal mask to be set during the wait, * we apply it here. */ error = set_user_sigmask(sigmask, sigsetsize); if (error) return error; error = do_epoll_wait(epfd, events, maxevents, to); restore_saved_sigmask_unless(error == -EINTR); return error; } SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, int, maxevents, int, timeout, const sigset_t __user *, sigmask, size_t, sigsetsize) { struct timespec64 to; return do_epoll_pwait(epfd, events, maxevents, ep_timeout_to_timespec(&to, timeout), sigmask, sigsetsize); } SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, int, maxevents, const struct __kernel_timespec __user *, timeout, const sigset_t __user *, sigmask, size_t, sigsetsize) { struct timespec64 ts, *to = NULL; if (timeout) { if (get_timespec64(&ts, timeout)) return -EFAULT; to = &ts; if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) return -EINVAL; } return do_epoll_pwait(epfd, events, maxevents, to, sigmask, sigsetsize); } #ifdef CONFIG_COMPAT static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, int maxevents, struct timespec64 *timeout, const compat_sigset_t __user *sigmask, compat_size_t sigsetsize) { long err; /* * If the caller wants a certain signal mask to be set during the wait, * we apply it here. */ err = set_compat_user_sigmask(sigmask, sigsetsize); if (err) return err; err = do_epoll_wait(epfd, events, maxevents, timeout); restore_saved_sigmask_unless(err == -EINTR); return err; } COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, int, maxevents, int, timeout, const compat_sigset_t __user *, sigmask, compat_size_t, sigsetsize) { struct timespec64 to; return do_compat_epoll_pwait(epfd, events, maxevents, ep_timeout_to_timespec(&to, timeout), sigmask, sigsetsize); } COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, int, maxevents, const struct __kernel_timespec __user *, timeout, const compat_sigset_t __user *, sigmask, compat_size_t, sigsetsize) { struct timespec64 ts, *to = NULL; if (timeout) { if (get_timespec64(&ts, timeout)) return -EFAULT; to = &ts; if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) return -EINVAL; } return do_compat_epoll_pwait(epfd, events, maxevents, to, sigmask, sigsetsize); } #endif static int __init eventpoll_init(void) { struct sysinfo si; si_meminfo(&si); /* * Allows top 4% of lomem to be allocated for epoll watches (per user). */ max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / EP_ITEM_COST; BUG_ON(max_user_watches < 0); /* * We can have many thousands of epitems, so prevent this from * using an extra cache line on 64-bit (and smaller) CPUs */ BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); /* Allocates slab cache used to allocate "struct epitem" items */ epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); /* Allocates slab cache used to allocate "struct eppoll_entry" */ pwq_cache = kmem_cache_create("eventpoll_pwq", sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); epoll_sysctls_init(); ephead_cache = kmem_cache_create("ep_head", sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); return 0; } fs_initcall(eventpoll_init);
107 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Cryptographic API for algorithms (i.e., low-level API). * * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_ALGAPI_H #define _CRYPTO_ALGAPI_H #include <crypto/utils.h> #include <linux/align.h> #include <linux/cache.h> #include <linux/crypto.h> #include <linux/types.h> #include <linux/workqueue.h> /* * Maximum values for blocksize and alignmask, used to allocate * static buffers that are big enough for any combination of * algs and architectures. Ciphers have a lower maximum size. */ #define MAX_ALGAPI_BLOCKSIZE 160 #define MAX_ALGAPI_ALIGNMASK 127 #define MAX_CIPHER_BLOCKSIZE 16 #define MAX_CIPHER_ALIGNMASK 15 #ifdef ARCH_DMA_MINALIGN #define CRYPTO_DMA_ALIGN ARCH_DMA_MINALIGN #else #define CRYPTO_DMA_ALIGN CRYPTO_MINALIGN #endif #define CRYPTO_DMA_PADDING ((CRYPTO_DMA_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1)) /* * Autoloaded crypto modules should only use a prefixed name to avoid allowing * arbitrary modules to be loaded. Loading from userspace may still need the * unprefixed names, so retains those aliases as well. * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro * expands twice on the same line. Instead, use a separate base name for the * alias. */ #define MODULE_ALIAS_CRYPTO(name) \ __MODULE_INFO(alias, alias_userspace, name); \ __MODULE_INFO(alias, alias_crypto, "crypto-" name) struct crypto_aead; struct crypto_instance; struct module; struct notifier_block; struct rtattr; struct scatterlist; struct seq_file; struct sk_buff; struct crypto_type { unsigned int (*ctxsize)(struct crypto_alg *alg, u32 type, u32 mask); unsigned int (*extsize)(struct crypto_alg *alg); int (*init_tfm)(struct crypto_tfm *tfm); void (*show)(struct seq_file *m, struct crypto_alg *alg); int (*report)(struct sk_buff *skb, struct crypto_alg *alg); void (*free)(struct crypto_instance *inst); unsigned int type; unsigned int maskclear; unsigned int maskset; unsigned int tfmsize; }; struct crypto_instance { struct crypto_alg alg; struct crypto_template *tmpl; union { /* Node in list of instances after registration. */ struct hlist_node list; /* List of attached spawns before registration. */ struct crypto_spawn *spawns; }; struct work_struct free_work; void *__ctx[] CRYPTO_MINALIGN_ATTR; }; struct crypto_template { struct list_head list; struct hlist_head instances; struct module *module; int (*create)(struct crypto_template *tmpl, struct rtattr **tb); char name[CRYPTO_MAX_ALG_NAME]; }; struct crypto_spawn { struct list_head list; struct crypto_alg *alg; union { /* Back pointer to instance after registration.*/ struct crypto_instance *inst; /* Spawn list pointer prior to registration. */ struct crypto_spawn *next; }; const struct crypto_type *frontend; u32 mask; bool dead; bool registered; }; struct crypto_queue { struct list_head list; struct list_head *backlog; unsigned int qlen; unsigned int max_qlen; }; struct scatter_walk { struct scatterlist *sg; unsigned int offset; }; struct crypto_attr_alg { char name[CRYPTO_MAX_ALG_NAME]; }; struct crypto_attr_type { u32 type; u32 mask; }; /* * Algorithm registration interface. */ int crypto_register_alg(struct crypto_alg *alg); void crypto_unregister_alg(struct crypto_alg *alg); int crypto_register_algs(struct crypto_alg *algs, int count); void crypto_unregister_algs(struct crypto_alg *algs, int count); void crypto_mod_put(struct crypto_alg *alg); int crypto_register_template(struct crypto_template *tmpl); int crypto_register_templates(struct crypto_template *tmpls, int count); void crypto_unregister_template(struct crypto_template *tmpl); void crypto_unregister_templates(struct crypto_template *tmpls, int count); struct crypto_template *crypto_lookup_template(const char *name); int crypto_register_instance(struct crypto_template *tmpl, struct crypto_instance *inst); void crypto_unregister_instance(struct crypto_instance *inst); int crypto_grab_spawn(struct crypto_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask); void crypto_drop_spawn(struct crypto_spawn *spawn); struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type, u32 mask); void *crypto_spawn_tfm2(struct crypto_spawn *spawn); struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb); int crypto_check_attr_type(struct rtattr **tb, u32 type, u32 *mask_ret); const char *crypto_attr_alg_name(struct rtattr *rta); int crypto_inst_setname(struct crypto_instance *inst, const char *name, struct crypto_alg *alg); void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen); int crypto_enqueue_request(struct crypto_queue *queue, struct crypto_async_request *request); void crypto_enqueue_request_head(struct crypto_queue *queue, struct crypto_async_request *request); struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue); static inline unsigned int crypto_queue_len(struct crypto_queue *queue) { return queue->qlen; } void crypto_inc(u8 *a, unsigned int size); static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) { return tfm->__crt_ctx; } static inline void *crypto_tfm_ctx_align(struct crypto_tfm *tfm, unsigned int align) { if (align <= crypto_tfm_ctx_alignment()) align = 1; return PTR_ALIGN(crypto_tfm_ctx(tfm), align); } static inline unsigned int crypto_dma_align(void) { return CRYPTO_DMA_ALIGN; } static inline unsigned int crypto_dma_padding(void) { return (crypto_dma_align() - 1) & ~(crypto_tfm_ctx_alignment() - 1); } static inline void *crypto_tfm_ctx_dma(struct crypto_tfm *tfm) { return crypto_tfm_ctx_align(tfm, crypto_dma_align()); } static inline struct crypto_instance *crypto_tfm_alg_instance( struct crypto_tfm *tfm) { return container_of(tfm->__crt_alg, struct crypto_instance, alg); } static inline void *crypto_instance_ctx(struct crypto_instance *inst) { return inst->__ctx; } static inline struct crypto_async_request *crypto_get_backlog( struct crypto_queue *queue) { return queue->backlog == &queue->list ? NULL : container_of(queue->backlog, struct crypto_async_request, list); } static inline u32 crypto_requires_off(struct crypto_attr_type *algt, u32 off) { return (algt->type ^ off) & algt->mask & off; } /* * When an algorithm uses another algorithm (e.g., if it's an instance of a * template), these are the flags that should always be set on the "outer" * algorithm if any "inner" algorithm has them set. */ #define CRYPTO_ALG_INHERITED_FLAGS \ (CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK | \ CRYPTO_ALG_ALLOCATES_MEMORY) /* * Given the type and mask that specify the flags restrictions on a template * instance being created, return the mask that should be passed to * crypto_grab_*() (along with type=0) to honor any request the user made to * have any of the CRYPTO_ALG_INHERITED_FLAGS clear. */ static inline u32 crypto_algt_inherited_mask(struct crypto_attr_type *algt) { return crypto_requires_off(algt, CRYPTO_ALG_INHERITED_FLAGS); } int crypto_register_notifier(struct notifier_block *nb); int crypto_unregister_notifier(struct notifier_block *nb); /* Crypto notification events. */ enum { CRYPTO_MSG_ALG_REQUEST, CRYPTO_MSG_ALG_REGISTER, CRYPTO_MSG_ALG_LOADED, }; static inline void crypto_request_complete(struct crypto_async_request *req, int err) { req->complete(req->data, err); } static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) { return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; } #endif /* _CRYPTO_ALGAPI_H */
12 829 824 57 57 6 777 774 781 783 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 // SPDX-License-Identifier: GPL-2.0-only /* * fs/anon_inodes.c * * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> * * Thanks to Arnd Bergmann for code review and suggestions. * More changes for Thomas Gleixner suggestions. * */ #include <linux/cred.h> #include <linux/file.h> #include <linux/poll.h> #include <linux/sched.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/mount.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/magic.h> #include <linux/anon_inodes.h> #include <linux/pseudo_fs.h> #include <linux/uaccess.h> static struct vfsmount *anon_inode_mnt __ro_after_init; static struct inode *anon_inode_inode __ro_after_init; /* * anon_inodefs_dname() is called from d_path(). */ static char *anon_inodefs_dname(struct dentry *dentry, char *buffer, int buflen) { return dynamic_dname(buffer, buflen, "anon_inode:%s", dentry->d_name.name); } static const struct dentry_operations anon_inodefs_dentry_operations = { .d_dname = anon_inodefs_dname, }; static int anon_inodefs_init_fs_context(struct fs_context *fc) { struct pseudo_fs_context *ctx = init_pseudo(fc, ANON_INODE_FS_MAGIC); if (!ctx) return -ENOMEM; ctx->dops = &anon_inodefs_dentry_operations; return 0; } static struct file_system_type anon_inode_fs_type = { .name = "anon_inodefs", .init_fs_context = anon_inodefs_init_fs_context, .kill_sb = kill_anon_super, }; static struct inode *anon_inode_make_secure_inode( const char *name, const struct inode *context_inode) { struct inode *inode; const struct qstr qname = QSTR_INIT(name, strlen(name)); int error; inode = alloc_anon_inode(anon_inode_mnt->mnt_sb); if (IS_ERR(inode)) return inode; inode->i_flags &= ~S_PRIVATE; error = security_inode_init_security_anon(inode, &qname, context_inode); if (error) { iput(inode); return ERR_PTR(error); } return inode; } static struct file *__anon_inode_getfile(const char *name, const struct file_operations *fops, void *priv, int flags, const struct inode *context_inode, bool make_inode) { struct inode *inode; struct file *file; if (fops->owner && !try_module_get(fops->owner)) return ERR_PTR(-ENOENT); if (make_inode) { inode = anon_inode_make_secure_inode(name, context_inode); if (IS_ERR(inode)) { file = ERR_CAST(inode); goto err; } } else { inode = anon_inode_inode; if (IS_ERR(inode)) { file = ERR_PTR(-ENODEV); goto err; } /* * We know the anon_inode inode count is always * greater than zero, so ihold() is safe. */ ihold(inode); } file = alloc_file_pseudo(inode, anon_inode_mnt, name, flags & (O_ACCMODE | O_NONBLOCK), fops); if (IS_ERR(file)) goto err_iput; file->f_mapping = inode->i_mapping; file->private_data = priv; return file; err_iput: iput(inode); err: module_put(fops->owner); return file; } /** * anon_inode_getfile - creates a new file instance by hooking it up to an * anonymous inode, and a dentry that describe the "class" * of the file * * @name: [in] name of the "class" of the new file * @fops: [in] file operations for the new file * @priv: [in] private data for the new file (will be file's private_data) * @flags: [in] flags * * Creates a new file by hooking it on a single inode. This is useful for files * that do not need to have a full-fledged inode in order to operate correctly. * All the files created with anon_inode_getfile() will share a single inode, * hence saving memory and avoiding code duplication for the file/inode/dentry * setup. Returns the newly created file* or an error pointer. */ struct file *anon_inode_getfile(const char *name, const struct file_operations *fops, void *priv, int flags) { return __anon_inode_getfile(name, fops, priv, flags, NULL, false); } EXPORT_SYMBOL_GPL(anon_inode_getfile); /** * anon_inode_getfile_fmode - creates a new file instance by hooking it up to an * anonymous inode, and a dentry that describe the "class" * of the file * * @name: [in] name of the "class" of the new file * @fops: [in] file operations for the new file * @priv: [in] private data for the new file (will be file's private_data) * @flags: [in] flags * @f_mode: [in] fmode * * Creates a new file by hooking it on a single inode. This is useful for files * that do not need to have a full-fledged inode in order to operate correctly. * All the files created with anon_inode_getfile() will share a single inode, * hence saving memory and avoiding code duplication for the file/inode/dentry * setup. Allows setting the fmode. Returns the newly created file* or an error * pointer. */ struct file *anon_inode_getfile_fmode(const char *name, const struct file_operations *fops, void *priv, int flags, fmode_t f_mode) { struct file *file; file = __anon_inode_getfile(name, fops, priv, flags, NULL, false); if (!IS_ERR(file)) file->f_mode |= f_mode; return file; } EXPORT_SYMBOL_GPL(anon_inode_getfile_fmode); /** * anon_inode_create_getfile - Like anon_inode_getfile(), but creates a new * !S_PRIVATE anon inode rather than reuse the * singleton anon inode and calls the * inode_init_security_anon() LSM hook. * * @name: [in] name of the "class" of the new file * @fops: [in] file operations for the new file * @priv: [in] private data for the new file (will be file's private_data) * @flags: [in] flags * @context_inode: * [in] the logical relationship with the new inode (optional) * * Create a new anonymous inode and file pair. This can be done for two * reasons: * * - for the inode to have its own security context, so that LSMs can enforce * policy on the inode's creation; * * - if the caller needs a unique inode, for example in order to customize * the size returned by fstat() * * The LSM may use @context_inode in inode_init_security_anon(), but a * reference to it is not held. * * Returns the newly created file* or an error pointer. */ struct file *anon_inode_create_getfile(const char *name, const struct file_operations *fops, void *priv, int flags, const struct inode *context_inode) { return __anon_inode_getfile(name, fops, priv, flags, context_inode, true); } EXPORT_SYMBOL_GPL(anon_inode_create_getfile); static int __anon_inode_getfd(const char *name, const struct file_operations *fops, void *priv, int flags, const struct inode *context_inode, bool make_inode) { int error, fd; struct file *file; error = get_unused_fd_flags(flags); if (error < 0) return error; fd = error; file = __anon_inode_getfile(name, fops, priv, flags, context_inode, make_inode); if (IS_ERR(file)) { error = PTR_ERR(file); goto err_put_unused_fd; } fd_install(fd, file); return fd; err_put_unused_fd: put_unused_fd(fd); return error; } /** * anon_inode_getfd - creates a new file instance by hooking it up to * an anonymous inode and a dentry that describe * the "class" of the file * * @name: [in] name of the "class" of the new file * @fops: [in] file operations for the new file * @priv: [in] private data for the new file (will be file's private_data) * @flags: [in] flags * * Creates a new file by hooking it on a single inode. This is * useful for files that do not need to have a full-fledged inode in * order to operate correctly. All the files created with * anon_inode_getfd() will use the same singleton inode, reducing * memory use and avoiding code duplication for the file/inode/dentry * setup. Returns a newly created file descriptor or an error code. */ int anon_inode_getfd(const char *name, const struct file_operations *fops, void *priv, int flags) { return __anon_inode_getfd(name, fops, priv, flags, NULL, false); } EXPORT_SYMBOL_GPL(anon_inode_getfd); /** * anon_inode_create_getfd - Like anon_inode_getfd(), but creates a new * !S_PRIVATE anon inode rather than reuse the singleton anon inode, and calls * the inode_init_security_anon() LSM hook. * * @name: [in] name of the "class" of the new file * @fops: [in] file operations for the new file * @priv: [in] private data for the new file (will be file's private_data) * @flags: [in] flags * @context_inode: * [in] the logical relationship with the new inode (optional) * * Create a new anonymous inode and file pair. This can be done for two * reasons: * * - for the inode to have its own security context, so that LSMs can enforce * policy on the inode's creation; * * - if the caller needs a unique inode, for example in order to customize * the size returned by fstat() * * The LSM may use @context_inode in inode_init_security_anon(), but a * reference to it is not held. * * Returns a newly created file descriptor or an error code. */ int anon_inode_create_getfd(const char *name, const struct file_operations *fops, void *priv, int flags, const struct inode *context_inode) { return __anon_inode_getfd(name, fops, priv, flags, context_inode, true); } static int __init anon_inode_init(void) { anon_inode_mnt = kern_mount(&anon_inode_fs_type); if (IS_ERR(anon_inode_mnt)) panic("anon_inode_init() kernel mount failed (%ld)\n", PTR_ERR(anon_inode_mnt)); anon_inode_inode = alloc_anon_inode(anon_inode_mnt->mnt_sb); if (IS_ERR(anon_inode_inode)) panic("anon_inode_init() inode allocation failed (%ld)\n", PTR_ERR(anon_inode_inode)); return 0; } fs_initcall(anon_inode_init);
9 9 1 1 11 11 9 1 12 11 2 1 1 6 8 9 7 3 7 4 9 9 9 9 9 9 9 9 9 9 9 3 6 9 9 9 9 9 9 9 8 9 9 9 3 7 9 2 2 2 2 18 1 13 5 8 1 2 11 11 11 9 2 2 2 3 3 2 4 4 4 4 1 3 1 5 18 1 19 8 8 4 8 7 1 5 1 6 6 4 1 9 9 9 9 10 2 1 8 9 6 1 1 1 7 11 1 9 1 9 9 8 1 7 8 6 6 7 7 2 2 2 2 2 3 1 1 1 1 1 4 4 4 3 1 4 4 4 2 2 2 2 2 1 2 1 1 7 7 5 6 8 12 5 6 12 12 11 5 7 3 4 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 /* * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/bug.h> #include <linux/sched/signal.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/splice.h> #include <crypto/aead.h> #include <net/strparser.h> #include <net/tls.h> #include <trace/events/sock.h> #include "tls.h" struct tls_decrypt_arg { struct_group(inargs, bool zc; bool async; bool async_done; u8 tail; ); struct sk_buff *skb; }; struct tls_decrypt_ctx { struct sock *sk; u8 iv[TLS_MAX_IV_SIZE]; u8 aad[TLS_MAX_AAD_SIZE]; u8 tail; bool free_sgout; struct scatterlist sg[]; }; noinline void tls_err_abort(struct sock *sk, int err) { WARN_ON_ONCE(err >= 0); /* sk->sk_err should contain a positive error code. */ WRITE_ONCE(sk->sk_err, -err); /* Paired with smp_rmb() in tcp_poll() */ smp_wmb(); sk_error_report(sk); } static int __skb_nsg(struct sk_buff *skb, int offset, int len, unsigned int recursion_level) { int start = skb_headlen(skb); int i, chunk = start - offset; struct sk_buff *frag_iter; int elt = 0; if (unlikely(recursion_level >= 24)) return -EMSGSIZE; if (chunk > 0) { if (chunk > len) chunk = len; elt++; len -= chunk; if (len == 0) return elt; offset += chunk; } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { int end; WARN_ON(start > offset + len); end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); chunk = end - offset; if (chunk > 0) { if (chunk > len) chunk = len; elt++; len -= chunk; if (len == 0) return elt; offset += chunk; } start = end; } if (unlikely(skb_has_frag_list(skb))) { skb_walk_frags(skb, frag_iter) { int end, ret; WARN_ON(start > offset + len); end = start + frag_iter->len; chunk = end - offset; if (chunk > 0) { if (chunk > len) chunk = len; ret = __skb_nsg(frag_iter, offset - start, chunk, recursion_level + 1); if (unlikely(ret < 0)) return ret; elt += ret; len -= chunk; if (len == 0) return elt; offset += chunk; } start = end; } } BUG_ON(len); return elt; } /* Return the number of scatterlist elements required to completely map the * skb, or -EMSGSIZE if the recursion depth is exceeded. */ static int skb_nsg(struct sk_buff *skb, int offset, int len) { return __skb_nsg(skb, offset, len, 0); } static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb, struct tls_decrypt_arg *darg) { struct strp_msg *rxm = strp_msg(skb); struct tls_msg *tlm = tls_msg(skb); int sub = 0; /* Determine zero-padding length */ if (prot->version == TLS_1_3_VERSION) { int offset = rxm->full_len - TLS_TAG_SIZE - 1; char content_type = darg->zc ? darg->tail : 0; int err; while (content_type == 0) { if (offset < prot->prepend_size) return -EBADMSG; err = skb_copy_bits(skb, rxm->offset + offset, &content_type, 1); if (err) return err; if (content_type) break; sub++; offset--; } tlm->control = content_type; } return sub; } static void tls_decrypt_done(void *data, int err) { struct aead_request *aead_req = data; struct crypto_aead *aead = crypto_aead_reqtfm(aead_req); struct scatterlist *sgout = aead_req->dst; struct tls_sw_context_rx *ctx; struct tls_decrypt_ctx *dctx; struct tls_context *tls_ctx; struct scatterlist *sg; unsigned int pages; struct sock *sk; int aead_size; /* If requests get too backlogged crypto API returns -EBUSY and calls * ->complete(-EINPROGRESS) immediately followed by ->complete(0) * to make waiting for backlog to flush with crypto_wait_req() easier. * First wait converts -EBUSY -> -EINPROGRESS, and the second one * -EINPROGRESS -> 0. * We have a single struct crypto_async_request per direction, this * scheme doesn't help us, so just ignore the first ->complete(). */ if (err == -EINPROGRESS) return; aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead); aead_size = ALIGN(aead_size, __alignof__(*dctx)); dctx = (void *)((u8 *)aead_req + aead_size); sk = dctx->sk; tls_ctx = tls_get_ctx(sk); ctx = tls_sw_ctx_rx(tls_ctx); /* Propagate if there was an err */ if (err) { if (err == -EBADMSG) TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); ctx->async_wait.err = err; tls_err_abort(sk, err); } /* Free the destination pages if skb was not decrypted inplace */ if (dctx->free_sgout) { /* Skip the first S/G entry as it points to AAD */ for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { if (!sg) break; put_page(sg_page(sg)); } } kfree(aead_req); if (atomic_dec_and_test(&ctx->decrypt_pending)) complete(&ctx->async_wait.completion); } static int tls_decrypt_async_wait(struct tls_sw_context_rx *ctx) { if (!atomic_dec_and_test(&ctx->decrypt_pending)) crypto_wait_req(-EINPROGRESS, &ctx->async_wait); atomic_inc(&ctx->decrypt_pending); return ctx->async_wait.err; } static int tls_do_decryption(struct sock *sk, struct scatterlist *sgin, struct scatterlist *sgout, char *iv_recv, size_t data_len, struct aead_request *aead_req, struct tls_decrypt_arg *darg) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_prot_info *prot = &tls_ctx->prot_info; struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); int ret; aead_request_set_tfm(aead_req, ctx->aead_recv); aead_request_set_ad(aead_req, prot->aad_size); aead_request_set_crypt(aead_req, sgin, sgout, data_len + prot->tag_size, (u8 *)iv_recv); if (darg->async) { aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, tls_decrypt_done, aead_req); DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->decrypt_pending) < 1); atomic_inc(&ctx->decrypt_pending); } else { DECLARE_CRYPTO_WAIT(wait); aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); ret = crypto_aead_decrypt(aead_req); if (ret == -EINPROGRESS || ret == -EBUSY) ret = crypto_wait_req(ret, &wait); return ret; } ret = crypto_aead_decrypt(aead_req); if (ret == -EINPROGRESS) return 0; if (ret == -EBUSY) { ret = tls_decrypt_async_wait(ctx); darg->async_done = true; /* all completions have run, we're not doing async anymore */ darg->async = false; return ret; } atomic_dec(&ctx->decrypt_pending); darg->async = false; return ret; } static void tls_trim_both_msgs(struct sock *sk, int target_size) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_prot_info *prot = &tls_ctx->prot_info; struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec = ctx->open_rec; sk_msg_trim(sk, &rec->msg_plaintext, target_size); if (target_size > 0) target_size += prot->overhead_size; sk_msg_trim(sk, &rec->msg_encrypted, target_size); } static int tls_alloc_encrypted_msg(struct sock *sk, int len) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec = ctx->open_rec; struct sk_msg *msg_en = &rec->msg_encrypted; return sk_msg_alloc(sk, msg_en, len, 0); } static int tls_clone_plaintext_msg(struct sock *sk, int required) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_prot_info *prot = &tls_ctx->prot_info; struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec = ctx->open_rec; struct sk_msg *msg_pl = &rec->msg_plaintext; struct sk_msg *msg_en = &rec->msg_encrypted; int skip, len; /* We add page references worth len bytes from encrypted sg * at the end of plaintext sg. It is guaranteed that msg_en * has enough required room (ensured by caller). */ len = required - msg_pl->sg.size; /* Skip initial bytes in msg_en's data to be able to use * same offset of both plain and encrypted data. */ skip = prot->prepend_size + msg_pl->sg.size; return sk_msg_clone(sk, msg_pl, msg_en, skip, len); } static struct tls_rec *tls_get_rec(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_prot_info *prot = &tls_ctx->prot_info; struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct sk_msg *msg_pl, *msg_en; struct tls_rec *rec; int mem_size; mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); rec = kzalloc(mem_size, sk->sk_allocation); if (!rec) return NULL; msg_pl = &rec->msg_plaintext; msg_en = &rec->msg_encrypted; sk_msg_init(msg_pl); sk_msg_init(msg_en); sg_init_table(rec->sg_aead_in, 2); sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); sg_unmark_end(&rec->sg_aead_in[1]); sg_init_table(rec->sg_aead_out, 2); sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); sg_unmark_end(&rec->sg_aead_out[1]); rec->sk = sk; return rec; } static void tls_free_rec(struct sock *sk, struct tls_rec *rec) { sk_msg_free(sk, &rec->msg_encrypted); sk_msg_free(sk, &rec->msg_plaintext); kfree(rec); } static void tls_free_open_rec(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec = ctx->open_rec; if (rec) { tls_free_rec(sk, rec); ctx->open_rec = NULL; } } int tls_tx_records(struct sock *sk, int flags) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec, *tmp; struct sk_msg *msg_en; int tx_flags, rc = 0; if (tls_is_partially_sent_record(tls_ctx)) { rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); if (flags == -1) tx_flags = rec->tx_flags; else tx_flags = flags; rc = tls_push_partial_record(sk, tls_ctx, tx_flags); if (rc) goto tx_err; /* Full record has been transmitted. * Remove the head of tx_list */ list_del(&rec->list); sk_msg_free(sk, &rec->msg_plaintext); kfree(rec); } /* Tx all ready records */ list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { if (READ_ONCE(rec->tx_ready)) { if (flags == -1) tx_flags = rec->tx_flags; else tx_flags = flags; msg_en = &rec->msg_encrypted; rc = tls_push_sg(sk, tls_ctx, &msg_en->sg.data[msg_en->sg.curr], 0, tx_flags); if (rc) goto tx_err; list_del(&rec->list); sk_msg_free(sk, &rec->msg_plaintext); kfree(rec); } else { break; } } tx_err: if (rc < 0 && rc != -EAGAIN) tls_err_abort(sk, -EBADMSG); return rc; } static void tls_encrypt_done(void *data, int err) { struct tls_sw_context_tx *ctx; struct tls_context *tls_ctx; struct tls_prot_info *prot; struct tls_rec *rec = data; struct scatterlist *sge; struct sk_msg *msg_en; struct sock *sk; if (err == -EINPROGRESS) /* see the comment in tls_decrypt_done() */ return; msg_en = &rec->msg_encrypted; sk = rec->sk; tls_ctx = tls_get_ctx(sk); prot = &tls_ctx->prot_info; ctx = tls_sw_ctx_tx(tls_ctx); sge = sk_msg_elem(msg_en, msg_en->sg.curr); sge->offset -= prot->prepend_size; sge->length += prot->prepend_size; /* Check if error is previously set on socket */ if (err || sk->sk_err) { rec = NULL; /* If err is already set on socket, return the same code */ if (sk->sk_err) { ctx->async_wait.err = -sk->sk_err; } else { ctx->async_wait.err = err; tls_err_abort(sk, err); } } if (rec) { struct tls_rec *first_rec; /* Mark the record as ready for transmission */ smp_store_mb(rec->tx_ready, true); /* If received record is at head of tx_list, schedule tx */ first_rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); if (rec == first_rec) { /* Schedule the transmission */ if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) schedule_delayed_work(&ctx->tx_work.work, 1); } } if (atomic_dec_and_test(&ctx->encrypt_pending)) complete(&ctx->async_wait.completion); } static int tls_encrypt_async_wait(struct tls_sw_context_tx *ctx) { if (!atomic_dec_and_test(&ctx->encrypt_pending)) crypto_wait_req(-EINPROGRESS, &ctx->async_wait); atomic_inc(&ctx->encrypt_pending); return ctx->async_wait.err; } static int tls_do_encryption(struct sock *sk, struct tls_context *tls_ctx, struct tls_sw_context_tx *ctx, struct aead_request *aead_req, size_t data_len, u32 start) { struct tls_prot_info *prot = &tls_ctx->prot_info; struct tls_rec *rec = ctx->open_rec; struct sk_msg *msg_en = &rec->msg_encrypted; struct scatterlist *sge = sk_msg_elem(msg_en, start); int rc, iv_offset = 0; /* For CCM based ciphers, first byte of IV is a constant */ switch (prot->cipher_type) { case TLS_CIPHER_AES_CCM_128: rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; iv_offset = 1; break; case TLS_CIPHER_SM4_CCM: rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE; iv_offset = 1; break; } memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, prot->iv_size + prot->salt_size); tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset, tls_ctx->tx.rec_seq); sge->offset += prot->prepend_size; sge->length -= prot->prepend_size; msg_en->sg.curr = start; aead_request_set_tfm(aead_req, ctx->aead_send); aead_request_set_ad(aead_req, prot->aad_size); aead_request_set_crypt(aead_req, rec->sg_aead_in, rec->sg_aead_out, data_len, rec->iv_data); aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, tls_encrypt_done, rec); /* Add the record in tx_list */ list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->encrypt_pending) < 1); atomic_inc(&ctx->encrypt_pending); rc = crypto_aead_encrypt(aead_req); if (rc == -EBUSY) { rc = tls_encrypt_async_wait(ctx); rc = rc ?: -EINPROGRESS; } if (!rc || rc != -EINPROGRESS) { atomic_dec(&ctx->encrypt_pending); sge->offset -= prot->prepend_size; sge->length += prot->prepend_size; } if (!rc) { WRITE_ONCE(rec->tx_ready, true); } else if (rc != -EINPROGRESS) { list_del(&rec->list); return rc; } /* Unhook the record from context if encryption is not failure */ ctx->open_rec = NULL; tls_advance_record_sn(sk, prot, &tls_ctx->tx); return rc; } static int tls_split_open_record(struct sock *sk, struct tls_rec *from, struct tls_rec **to, struct sk_msg *msg_opl, struct sk_msg *msg_oen, u32 split_point, u32 tx_overhead_size, u32 *orig_end) { u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; struct scatterlist *sge, *osge, *nsge; u32 orig_size = msg_opl->sg.size; struct scatterlist tmp = { }; struct sk_msg *msg_npl; struct tls_rec *new; int ret; new = tls_get_rec(sk); if (!new) return -ENOMEM; ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + tx_overhead_size, 0); if (ret < 0) { tls_free_rec(sk, new); return ret; } *orig_end = msg_opl->sg.end; i = msg_opl->sg.start; sge = sk_msg_elem(msg_opl, i); while (apply && sge->length) { if (sge->length > apply) { u32 len = sge->length - apply; get_page(sg_page(sge)); sg_set_page(&tmp, sg_page(sge), len, sge->offset + apply); sge->length = apply; bytes += apply; apply = 0; } else { apply -= sge->length; bytes += sge->length; } sk_msg_iter_var_next(i); if (i == msg_opl->sg.end) break; sge = sk_msg_elem(msg_opl, i); } msg_opl->sg.end = i; msg_opl->sg.curr = i; msg_opl->sg.copybreak = 0; msg_opl->apply_bytes = 0; msg_opl->sg.size = bytes; msg_npl = &new->msg_plaintext; msg_npl->apply_bytes = apply; msg_npl->sg.size = orig_size - bytes; j = msg_npl->sg.start; nsge = sk_msg_elem(msg_npl, j); if (tmp.length) { memcpy(nsge, &tmp, sizeof(*nsge)); sk_msg_iter_var_next(j); nsge = sk_msg_elem(msg_npl, j); } osge = sk_msg_elem(msg_opl, i); while (osge->length) { memcpy(nsge, osge, sizeof(*nsge)); sg_unmark_end(nsge); sk_msg_iter_var_next(i); sk_msg_iter_var_next(j); if (i == *orig_end) break; osge = sk_msg_elem(msg_opl, i); nsge = sk_msg_elem(msg_npl, j); } msg_npl->sg.end = j; msg_npl->sg.curr = j; msg_npl->sg.copybreak = 0; *to = new; return 0; } static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, struct tls_rec *from, u32 orig_end) { struct sk_msg *msg_npl = &from->msg_plaintext; struct sk_msg *msg_opl = &to->msg_plaintext; struct scatterlist *osge, *nsge; u32 i, j; i = msg_opl->sg.end; sk_msg_iter_var_prev(i); j = msg_npl->sg.start; osge = sk_msg_elem(msg_opl, i); nsge = sk_msg_elem(msg_npl, j); if (sg_page(osge) == sg_page(nsge) && osge->offset + osge->length == nsge->offset) { osge->length += nsge->length; put_page(sg_page(nsge)); } msg_opl->sg.end = orig_end; msg_opl->sg.curr = orig_end; msg_opl->sg.copybreak = 0; msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; msg_opl->sg.size += msg_npl->sg.size; sk_msg_free(sk, &to->msg_encrypted); sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); kfree(from); } static int tls_push_record(struct sock *sk, int flags, unsigned char record_type) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_prot_info *prot = &tls_ctx->prot_info; struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec = ctx->open_rec, *tmp = NULL; u32 i, split_point, orig_end; struct sk_msg *msg_pl, *msg_en; struct aead_request *req; bool split; int rc; if (!rec) return 0; msg_pl = &rec->msg_plaintext; msg_en = &rec->msg_encrypted; split_point = msg_pl->apply_bytes; split = split_point && split_point < msg_pl->sg.size; if (unlikely((!split && msg_pl->sg.size + prot->overhead_size > msg_en->sg.size) || (split && split_point + prot->overhead_size > msg_en->sg.size))) { split = true; split_point = msg_en->sg.size; } if (split) { rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, split_point, prot->overhead_size, &orig_end); if (rc < 0) return rc; /* This can happen if above tls_split_open_record allocates * a single large encryption buffer instead of two smaller * ones. In this case adjust pointers and continue without * split. */ if (!msg_pl->sg.size) { tls_merge_open_record(sk, rec, tmp, orig_end); msg_pl = &rec->msg_plaintext; msg_en = &rec->msg_encrypted; split = false; } sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); } rec->tx_flags = flags; req = &rec->aead_req; i = msg_pl->sg.end; sk_msg_iter_var_prev(i); rec->content_type = record_type; if (prot->version == TLS_1_3_VERSION) { /* Add content type to end of message. No padding added */ sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); sg_mark_end(&rec->sg_content_type); sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, &rec->sg_content_type); } else { sg_mark_end(sk_msg_elem(msg_pl, i)); } if (msg_pl->sg.end < msg_pl->sg.start) { sg_chain(&msg_pl->sg.data[msg_pl->sg.start], MAX_SKB_FRAGS - msg_pl->sg.start + 1, msg_pl->sg.data); } i = msg_pl->sg.start; sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); i = msg_en->sg.end; sk_msg_iter_var_prev(i); sg_mark_end(sk_msg_elem(msg_en, i)); i = msg_en->sg.start; sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, tls_ctx->tx.rec_seq, record_type, prot); tls_fill_prepend(tls_ctx, page_address(sg_page(&msg_en->sg.data[i])) + msg_en->sg.data[i].offset, msg_pl->sg.size + prot->tail_size, record_type); tls_ctx->pending_open_record_frags = false; rc = tls_do_encryption(sk, tls_ctx, ctx, req, msg_pl->sg.size + prot->tail_size, i); if (rc < 0) { if (rc != -EINPROGRESS) { tls_err_abort(sk, -EBADMSG); if (split) { tls_ctx->pending_open_record_frags = true; tls_merge_open_record(sk, rec, tmp, orig_end); } } ctx->async_capable = 1; return rc; } else if (split) { msg_pl = &tmp->msg_plaintext; msg_en = &tmp->msg_encrypted; sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); tls_ctx->pending_open_record_frags = true; ctx->open_rec = tmp; } return tls_tx_records(sk, flags); } static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, bool full_record, u8 record_type, ssize_t *copied, int flags) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct sk_msg msg_redir = { }; struct sk_psock *psock; struct sock *sk_redir; struct tls_rec *rec; bool enospc, policy, redir_ingress; int err = 0, send; u32 delta = 0; policy = !(flags & MSG_SENDPAGE_NOPOLICY); psock = sk_psock_get(sk); if (!psock || !policy) { err = tls_push_record(sk, flags, record_type); if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { *copied -= sk_msg_free(sk, msg); tls_free_open_rec(sk); err = -sk->sk_err; } if (psock) sk_psock_put(sk, psock); return err; } more_data: enospc = sk_msg_full(msg); if (psock->eval == __SK_NONE) { delta = msg->sg.size; psock->eval = sk_psock_msg_verdict(sk, psock, msg); delta -= msg->sg.size; } if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && !enospc && !full_record) { err = -ENOSPC; goto out_err; } msg->cork_bytes = 0; send = msg->sg.size; if (msg->apply_bytes && msg->apply_bytes < send) send = msg->apply_bytes; switch (psock->eval) { case __SK_PASS: err = tls_push_record(sk, flags, record_type); if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { *copied -= sk_msg_free(sk, msg); tls_free_open_rec(sk); err = -sk->sk_err; goto out_err; } break; case __SK_REDIRECT: redir_ingress = psock->redir_ingress; sk_redir = psock->sk_redir; memcpy(&msg_redir, msg, sizeof(*msg)); if (msg->apply_bytes < send) msg->apply_bytes = 0; else msg->apply_bytes -= send; sk_msg_return_zero(sk, msg, send); msg->sg.size -= send; release_sock(sk); err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress, &msg_redir, send, flags); lock_sock(sk); if (err < 0) { *copied -= sk_msg_free_nocharge(sk, &msg_redir); msg->sg.size = 0; } if (msg->sg.size == 0) tls_free_open_rec(sk); break; case __SK_DROP: default: sk_msg_free_partial(sk, msg, send); if (msg->apply_bytes < send) msg->apply_bytes = 0; else msg->apply_bytes -= send; if (msg->sg.size == 0) tls_free_open_rec(sk); *copied -= (send + delta); err = -EACCES; } if (likely(!err)) { bool reset_eval = !ctx->open_rec; rec = ctx->open_rec; if (rec) { msg = &rec->msg_plaintext; if (!msg->apply_bytes) reset_eval = true; } if (reset_eval) { psock->eval = __SK_NONE; if (psock->sk_redir) { sock_put(psock->sk_redir); psock->sk_redir = NULL; } } if (rec) goto more_data; } out_err: sk_psock_put(sk, psock); return err; } static int tls_sw_push_pending_record(struct sock *sk, int flags) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec = ctx->open_rec; struct sk_msg *msg_pl; size_t copied; if (!rec) return 0; msg_pl = &rec->msg_plaintext; copied = msg_pl->sg.size; if (!copied) return 0; return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, &copied, flags); } static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg, struct sk_msg *msg_pl, size_t try_to_copy, ssize_t *copied) { struct page *page = NULL, **pages = &page; do { ssize_t part; size_t off; part = iov_iter_extract_pages(&msg->msg_iter, &pages, try_to_copy, 1, 0, &off); if (part <= 0) return part ?: -EIO; if (WARN_ON_ONCE(!sendpage_ok(page))) { iov_iter_revert(&msg->msg_iter, part); return -EIO; } sk_msg_page_add(msg_pl, page, part, off); msg_pl->sg.copybreak = 0; msg_pl->sg.curr = msg_pl->sg.end; sk_mem_charge(sk, part); *copied += part; try_to_copy -= part; } while (try_to_copy && !sk_msg_full(msg_pl)); return 0; } static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) { long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_prot_info *prot = &tls_ctx->prot_info; struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); bool async_capable = ctx->async_capable; unsigned char record_type = TLS_RECORD_TYPE_DATA; bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); bool eor = !(msg->msg_flags & MSG_MORE); size_t try_to_copy; ssize_t copied = 0; struct sk_msg *msg_pl, *msg_en; struct tls_rec *rec; int required_size; int num_async = 0; bool full_record; int record_room; int num_zc = 0; int orig_size; int ret = 0; if (!eor && (msg->msg_flags & MSG_EOR)) return -EINVAL; if (unlikely(msg->msg_controllen)) { ret = tls_process_cmsg(sk, msg, &record_type); if (ret) { if (ret == -EINPROGRESS) num_async++; else if (ret != -EAGAIN) goto send_end; } } while (msg_data_left(msg)) { if (sk->sk_err) { ret = -sk->sk_err; goto send_end; } if (ctx->open_rec) rec = ctx->open_rec; else rec = ctx->open_rec = tls_get_rec(sk); if (!rec) { ret = -ENOMEM; goto send_end; } msg_pl = &rec->msg_plaintext; msg_en = &rec->msg_encrypted; orig_size = msg_pl->sg.size; full_record = false; try_to_copy = msg_data_left(msg); record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; if (try_to_copy >= record_room) { try_to_copy = record_room; full_record = true; } required_size = msg_pl->sg.size + try_to_copy + prot->overhead_size; if (!sk_stream_memory_free(sk)) goto wait_for_sndbuf; alloc_encrypted: ret = tls_alloc_encrypted_msg(sk, required_size); if (ret) { if (ret != -ENOSPC) goto wait_for_memory; /* Adjust try_to_copy according to the amount that was * actually allocated. The difference is due * to max sg elements limit */ try_to_copy -= required_size - msg_en->sg.size; full_record = true; } if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) { ret = tls_sw_sendmsg_splice(sk, msg, msg_pl, try_to_copy, &copied); if (ret < 0) goto send_end; tls_ctx->pending_open_record_frags = true; if (sk_msg_full(msg_pl)) full_record = true; if (full_record || eor) goto copied; continue; } if (!is_kvec && (full_record || eor) && !async_capable) { u32 first = msg_pl->sg.end; ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, msg_pl, try_to_copy); if (ret) goto fallback_to_reg_send; num_zc++; copied += try_to_copy; sk_msg_sg_copy_set(msg_pl, first); ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, record_type, &copied, msg->msg_flags); if (ret) { if (ret == -EINPROGRESS) num_async++; else if (ret == -ENOMEM) goto wait_for_memory; else if (ctx->open_rec && ret == -ENOSPC) goto rollback_iter; else if (ret != -EAGAIN) goto send_end; } continue; rollback_iter: copied -= try_to_copy; sk_msg_sg_copy_clear(msg_pl, first); iov_iter_revert(&msg->msg_iter, msg_pl->sg.size - orig_size); fallback_to_reg_send: sk_msg_trim(sk, msg_pl, orig_size); } required_size = msg_pl->sg.size + try_to_copy; ret = tls_clone_plaintext_msg(sk, required_size); if (ret) { if (ret != -ENOSPC) goto send_end; /* Adjust try_to_copy according to the amount that was * actually allocated. The difference is due * to max sg elements limit */ try_to_copy -= required_size - msg_pl->sg.size; full_record = true; sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); } if (try_to_copy) { ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, msg_pl, try_to_copy); if (ret < 0) goto trim_sgl; } /* Open records defined only if successfully copied, otherwise * we would trim the sg but not reset the open record frags. */ tls_ctx->pending_open_record_frags = true; copied += try_to_copy; copied: if (full_record || eor) { ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, record_type, &copied, msg->msg_flags); if (ret) { if (ret == -EINPROGRESS) num_async++; else if (ret == -ENOMEM) goto wait_for_memory; else if (ret != -EAGAIN) { if (ret == -ENOSPC) ret = 0; goto send_end; } } } continue; wait_for_sndbuf: set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); wait_for_memory: ret = sk_stream_wait_memory(sk, &timeo); if (ret) { trim_sgl: if (ctx->open_rec) tls_trim_both_msgs(sk, orig_size); goto send_end; } if (ctx->open_rec && msg_en->sg.size < required_size) goto alloc_encrypted; } if (!num_async) { goto send_end; } else if (num_zc || eor) { int err; /* Wait for pending encryptions to get completed */ err = tls_encrypt_async_wait(ctx); if (err) { ret = err; copied = 0; } } /* Transmit if any encryptions have completed */ if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { cancel_delayed_work(&ctx->tx_work.work); tls_tx_records(sk, msg->msg_flags); } send_end: ret = sk_stream_error(sk, msg->msg_flags, ret); return copied > 0 ? copied : ret; } int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) { struct tls_context *tls_ctx = tls_get_ctx(sk); int ret; if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR | MSG_SENDPAGE_NOPOLICY)) return -EOPNOTSUPP; ret = mutex_lock_interruptible(&tls_ctx->tx_lock); if (ret) return ret; lock_sock(sk); ret = tls_sw_sendmsg_locked(sk, msg, size); release_sock(sk); mutex_unlock(&tls_ctx->tx_lock); return ret; } /* * Handle unexpected EOF during splice without SPLICE_F_MORE set. */ void tls_sw_splice_eof(struct socket *sock) { struct sock *sk = sock->sk; struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec; struct sk_msg *msg_pl; ssize_t copied = 0; bool retrying = false; int ret = 0; if (!ctx->open_rec) return; mutex_lock(&tls_ctx->tx_lock); lock_sock(sk); retry: /* same checks as in tls_sw_push_pending_record() */ rec = ctx->open_rec; if (!rec) goto unlock; msg_pl = &rec->msg_plaintext; if (msg_pl->sg.size == 0) goto unlock; /* Check the BPF advisor and perform transmission. */ ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA, &copied, 0); switch (ret) { case 0: case -EAGAIN: if (retrying) goto unlock; retrying = true; goto retry; case -EINPROGRESS: break; default: goto unlock; } /* Wait for pending encryptions to get completed */ if (tls_encrypt_async_wait(ctx)) goto unlock; /* Transmit if any encryptions have completed */ if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { cancel_delayed_work(&ctx->tx_work.work); tls_tx_records(sk, 0); } unlock: release_sock(sk); mutex_unlock(&tls_ctx->tx_lock); } static int tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock, bool released) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); DEFINE_WAIT_FUNC(wait, woken_wake_function); int ret = 0; long timeo; timeo = sock_rcvtimeo(sk, nonblock); while (!tls_strp_msg_ready(ctx)) { if (!sk_psock_queue_empty(psock)) return 0; if (sk->sk_err) return sock_error(sk); if (ret < 0) return ret; if (!skb_queue_empty(&sk->sk_receive_queue)) { tls_strp_check_rcv(&ctx->strp); if (tls_strp_msg_ready(ctx)) break; } if (sk->sk_shutdown & RCV_SHUTDOWN) return 0; if (sock_flag(sk, SOCK_DONE)) return 0; if (!timeo) return -EAGAIN; released = true; add_wait_queue(sk_sleep(sk), &wait); sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); ret = sk_wait_event(sk, &timeo, tls_strp_msg_ready(ctx) || !sk_psock_queue_empty(psock), &wait); sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); remove_wait_queue(sk_sleep(sk), &wait); /* Handle signals */ if (signal_pending(current)) return sock_intr_errno(timeo); } tls_strp_msg_load(&ctx->strp, released); return 1; } static int tls_setup_from_iter(struct iov_iter *from, int length, int *pages_used, struct scatterlist *to, int to_max_pages) { int rc = 0, i = 0, num_elem = *pages_used, maxpages; struct page *pages[MAX_SKB_FRAGS]; unsigned int size = 0; ssize_t copied, use; size_t offset; while (length > 0) { i = 0; maxpages = to_max_pages - num_elem; if (maxpages == 0) { rc = -EFAULT; goto out; } copied = iov_iter_get_pages2(from, pages, length, maxpages, &offset); if (copied <= 0) { rc = -EFAULT; goto out; } length -= copied; size += copied; while (copied) { use = min_t(int, copied, PAGE_SIZE - offset); sg_set_page(&to[num_elem], pages[i], use, offset); sg_unmark_end(&to[num_elem]); /* We do not uncharge memory from this API */ offset = 0; copied -= use; i++; num_elem++; } } /* Mark the end in the last sg entry if newly added */ if (num_elem > *pages_used) sg_mark_end(&to[num_elem - 1]); out: if (rc) iov_iter_revert(from, size); *pages_used = num_elem; return rc; } static struct sk_buff * tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb, unsigned int full_len) { struct strp_msg *clr_rxm; struct sk_buff *clr_skb; int err; clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER, &err, sk->sk_allocation); if (!clr_skb) return NULL; skb_copy_header(clr_skb, skb); clr_skb->len = full_len; clr_skb->data_len = full_len; clr_rxm = strp_msg(clr_skb); clr_rxm->offset = 0; return clr_skb; } /* Decrypt handlers * * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers. * They must transform the darg in/out argument are as follows: * | Input | Output * ------------------------------------------------------------------- * zc | Zero-copy decrypt allowed | Zero-copy performed * async | Async decrypt allowed | Async crypto used / in progress * skb | * | Output skb * * If ZC decryption was performed darg.skb will point to the input skb. */ /* This function decrypts the input skb into either out_iov or in out_sg * or in skb buffers itself. The input parameter 'darg->zc' indicates if * zero-copy mode needs to be tried or not. With zero-copy mode, either * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are * NULL, then the decryption happens inside skb buffers itself, i.e. * zero-copy gets disabled and 'darg->zc' is updated. */ static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov, struct scatterlist *out_sg, struct tls_decrypt_arg *darg) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); struct tls_prot_info *prot = &tls_ctx->prot_info; int n_sgin, n_sgout, aead_size, err, pages = 0; struct sk_buff *skb = tls_strp_msg(ctx); const struct strp_msg *rxm = strp_msg(skb); const struct tls_msg *tlm = tls_msg(skb); struct aead_request *aead_req; struct scatterlist *sgin = NULL; struct scatterlist *sgout = NULL; const int data_len = rxm->full_len - prot->overhead_size; int tail_pages = !!prot->tail_size; struct tls_decrypt_ctx *dctx; struct sk_buff *clear_skb; int iv_offset = 0; u8 *mem; n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, rxm->full_len - prot->prepend_size); if (n_sgin < 1) return n_sgin ?: -EBADMSG; if (darg->zc && (out_iov || out_sg)) { clear_skb = NULL; if (out_iov) n_sgout = 1 + tail_pages + iov_iter_npages_cap(out_iov, INT_MAX, data_len); else n_sgout = sg_nents(out_sg); } else { darg->zc = false; clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len); if (!clear_skb) return -ENOMEM; n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags; } /* Increment to accommodate AAD */ n_sgin = n_sgin + 1; /* Allocate a single block of memory which contains * aead_req || tls_decrypt_ctx. * Both structs are variable length. */ aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); aead_size = ALIGN(aead_size, __alignof__(*dctx)); mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)), sk->sk_allocation); if (!mem) { err = -ENOMEM; goto exit_free_skb; } /* Segment the allocated memory */ aead_req = (struct aead_request *)mem; dctx = (struct tls_decrypt_ctx *)(mem + aead_size); dctx->sk = sk; sgin = &dctx->sg[0]; sgout = &dctx->sg[n_sgin]; /* For CCM based ciphers, first byte of nonce+iv is a constant */ switch (prot->cipher_type) { case TLS_CIPHER_AES_CCM_128: dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE; iv_offset = 1; break; case TLS_CIPHER_SM4_CCM: dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE; iv_offset = 1; break; } /* Prepare IV */ if (prot->version == TLS_1_3_VERSION || prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->iv_size + prot->salt_size); } else { err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, &dctx->iv[iv_offset] + prot->salt_size, prot->iv_size); if (err < 0) goto exit_free; memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size); } tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq); /* Prepare AAD */ tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size + prot->tail_size, tls_ctx->rx.rec_seq, tlm->control, prot); /* Prepare sgin */ sg_init_table(sgin, n_sgin); sg_set_buf(&sgin[0], dctx->aad, prot->aad_size); err = skb_to_sgvec(skb, &sgin[1], rxm->offset + prot->prepend_size, rxm->full_len - prot->prepend_size); if (err < 0) goto exit_free; if (clear_skb) { sg_init_table(sgout, n_sgout); sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size, data_len + prot->tail_size); if (err < 0) goto exit_free; } else if (out_iov) { sg_init_table(sgout, n_sgout); sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1], (n_sgout - 1 - tail_pages)); if (err < 0) goto exit_free_pages; if (prot->tail_size) { sg_unmark_end(&sgout[pages]); sg_set_buf(&sgout[pages + 1], &dctx->tail, prot->tail_size); sg_mark_end(&sgout[pages + 1]); } } else if (out_sg) { memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); } dctx->free_sgout = !!pages; /* Prepare and submit AEAD request */ err = tls_do_decryption(sk, sgin, sgout, dctx->iv, data_len + prot->tail_size, aead_req, darg); if (err) { if (darg->async_done) goto exit_free_skb; goto exit_free_pages; } darg->skb = clear_skb ?: tls_strp_msg(ctx); clear_skb = NULL; if (unlikely(darg->async)) { err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold); if (err) __skb_queue_tail(&ctx->async_hold, darg->skb); return err; } if (unlikely(darg->async_done)) return 0; if (prot->tail_size) darg->tail = dctx->tail; exit_free_pages: /* Release the pages in case iov was mapped to pages */ for (; pages > 0; pages--) put_page(sg_page(&sgout[pages])); exit_free: kfree(mem); exit_free_skb: consume_skb(clear_skb); return err; } static int tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx, struct msghdr *msg, struct tls_decrypt_arg *darg) { struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); struct tls_prot_info *prot = &tls_ctx->prot_info; struct strp_msg *rxm; int pad, err; err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg); if (err < 0) { if (err == -EBADMSG) TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); return err; } /* keep going even for ->async, the code below is TLS 1.3 */ /* If opportunistic TLS 1.3 ZC failed retry without ZC */ if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION && darg->tail != TLS_RECORD_TYPE_DATA)) { darg->zc = false; if (!darg->tail) TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL); TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY); return tls_decrypt_sw(sk, tls_ctx, msg, darg); } pad = tls_padding_length(prot, darg->skb, darg); if (pad < 0) { if (darg->skb != tls_strp_msg(ctx)) consume_skb(darg->skb); return pad; } rxm = strp_msg(darg->skb); rxm->full_len -= pad; return 0; } static int tls_decrypt_device(struct sock *sk, struct msghdr *msg, struct tls_context *tls_ctx, struct tls_decrypt_arg *darg) { struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); struct tls_prot_info *prot = &tls_ctx->prot_info; struct strp_msg *rxm; int pad, err; if (tls_ctx->rx_conf != TLS_HW) return 0; err = tls_device_decrypted(sk, tls_ctx); if (err <= 0) return err; pad = tls_padding_length(prot, tls_strp_msg(ctx), darg); if (pad < 0) return pad; darg->async = false; darg->skb = tls_strp_msg(ctx); /* ->zc downgrade check, in case TLS 1.3 gets here */ darg->zc &= !(prot->version == TLS_1_3_VERSION && tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA); rxm = strp_msg(darg->skb); rxm->full_len -= pad; if (!darg->zc) { /* Non-ZC case needs a real skb */ darg->skb = tls_strp_msg_detach(ctx); if (!darg->skb) return -ENOMEM; } else { unsigned int off, len; /* In ZC case nobody cares about the output skb. * Just copy the data here. Note the skb is not fully trimmed. */ off = rxm->offset + prot->prepend_size; len = rxm->full_len - prot->overhead_size; err = skb_copy_datagram_msg(darg->skb, off, msg, len); if (err) return err; } return 1; } static int tls_rx_one_record(struct sock *sk, struct msghdr *msg, struct tls_decrypt_arg *darg) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_prot_info *prot = &tls_ctx->prot_info; struct strp_msg *rxm; int err; err = tls_decrypt_device(sk, msg, tls_ctx, darg); if (!err) err = tls_decrypt_sw(sk, tls_ctx, msg, darg); if (err < 0) return err; rxm = strp_msg(darg->skb); rxm->offset += prot->prepend_size; rxm->full_len -= prot->overhead_size; tls_advance_record_sn(sk, prot, &tls_ctx->rx); return 0; } int decrypt_skb(struct sock *sk, struct scatterlist *sgout) { struct tls_decrypt_arg darg = { .zc = true, }; return tls_decrypt_sg(sk, NULL, sgout, &darg); } static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm, u8 *control) { int err; if (!*control) { *control = tlm->control; if (!*control) return -EBADMSG; err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, sizeof(*control), control); if (*control != TLS_RECORD_TYPE_DATA) { if (err || msg->msg_flags & MSG_CTRUNC) return -EIO; } } else if (*control != tlm->control) { return 0; } return 1; } static void tls_rx_rec_done(struct tls_sw_context_rx *ctx) { tls_strp_msg_done(&ctx->strp); } /* This function traverses the rx_list in tls receive context to copies the * decrypted records into the buffer provided by caller zero copy is not * true. Further, the records are removed from the rx_list if it is not a peek * case and the record has been consumed completely. */ static int process_rx_list(struct tls_sw_context_rx *ctx, struct msghdr *msg, u8 *control, size_t skip, size_t len, bool is_peek, bool *more) { struct sk_buff *skb = skb_peek(&ctx->rx_list); struct tls_msg *tlm; ssize_t copied = 0; int err; while (skip && skb) { struct strp_msg *rxm = strp_msg(skb); tlm = tls_msg(skb); err = tls_record_content_type(msg, tlm, control); if (err <= 0) goto more; if (skip < rxm->full_len) break; skip = skip - rxm->full_len; skb = skb_peek_next(skb, &ctx->rx_list); } while (len && skb) { struct sk_buff *next_skb; struct strp_msg *rxm = strp_msg(skb); int chunk = min_t(unsigned int, rxm->full_len - skip, len); tlm = tls_msg(skb); err = tls_record_content_type(msg, tlm, control); if (err <= 0) goto more; err = skb_copy_datagram_msg(skb, rxm->offset + skip, msg, chunk); if (err < 0) goto more; len = len - chunk; copied = copied + chunk; /* Consume the data from record if it is non-peek case*/ if (!is_peek) { rxm->offset = rxm->offset + chunk; rxm->full_len = rxm->full_len - chunk; /* Return if there is unconsumed data in the record */ if (rxm->full_len - skip) break; } /* The remaining skip-bytes must lie in 1st record in rx_list. * So from the 2nd record, 'skip' should be 0. */ skip = 0; if (msg) msg->msg_flags |= MSG_EOR; next_skb = skb_peek_next(skb, &ctx->rx_list); if (!is_peek) { __skb_unlink(skb, &ctx->rx_list); consume_skb(skb); } skb = next_skb; } err = 0; out: return copied ? : err; more: if (more) *more = true; goto out; } static bool tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot, size_t len_left, size_t decrypted, ssize_t done, size_t *flushed_at) { size_t max_rec; if (len_left <= decrypted) return false; max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE; if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec) return false; *flushed_at = done; return sk_flush_backlog(sk); } static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx, bool nonblock) { long timeo; int ret; timeo = sock_rcvtimeo(sk, nonblock); while (unlikely(ctx->reader_present)) { DEFINE_WAIT_FUNC(wait, woken_wake_function); ctx->reader_contended = 1; add_wait_queue(&ctx->wq, &wait); ret = sk_wait_event(sk, &timeo, !READ_ONCE(ctx->reader_present), &wait); remove_wait_queue(&ctx->wq, &wait); if (timeo <= 0) return -EAGAIN; if (signal_pending(current)) return sock_intr_errno(timeo); if (ret < 0) return ret; } WRITE_ONCE(ctx->reader_present, 1); return 0; } static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx, bool nonblock) { int err; lock_sock(sk); err = tls_rx_reader_acquire(sk, ctx, nonblock); if (err) release_sock(sk); return err; } static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx) { if (unlikely(ctx->reader_contended)) { if (wq_has_sleeper(&ctx->wq)) wake_up(&ctx->wq); else ctx->reader_contended = 0; WARN_ON_ONCE(!ctx->reader_present); } WRITE_ONCE(ctx->reader_present, 0); } static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx) { tls_rx_reader_release(sk, ctx); release_sock(sk); } int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, int *addr_len) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); struct tls_prot_info *prot = &tls_ctx->prot_info; ssize_t decrypted = 0, async_copy_bytes = 0; struct sk_psock *psock; unsigned char control = 0; size_t flushed_at = 0; struct strp_msg *rxm; struct tls_msg *tlm; ssize_t copied = 0; ssize_t peeked = 0; bool async = false; int target, err; bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); bool is_peek = flags & MSG_PEEK; bool rx_more = false; bool released = true; bool bpf_strp_enabled; bool zc_capable; if (unlikely(flags & MSG_ERRQUEUE)) return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT); if (err < 0) return err; psock = sk_psock_get(sk); bpf_strp_enabled = sk_psock_strp_enabled(psock); /* If crypto failed the connection is broken */ err = ctx->async_wait.err; if (err) goto end; /* Process pending decrypted records. It must be non-zero-copy */ err = process_rx_list(ctx, msg, &control, 0, len, is_peek, &rx_more); if (err < 0) goto end; copied = err; if (len <= copied || (copied && control != TLS_RECORD_TYPE_DATA) || rx_more) goto end; target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); len = len - copied; zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek && ctx->zc_capable; decrypted = 0; while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) { struct tls_decrypt_arg darg; int to_decrypt, chunk; err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, released); if (err <= 0) { if (psock) { chunk = sk_msg_recvmsg(sk, psock, msg, len, flags); if (chunk > 0) { decrypted += chunk; len -= chunk; continue; } } goto recv_end; } memset(&darg.inargs, 0, sizeof(darg.inargs)); rxm = strp_msg(tls_strp_msg(ctx)); tlm = tls_msg(tls_strp_msg(ctx)); to_decrypt = rxm->full_len - prot->overhead_size; if (zc_capable && to_decrypt <= len && tlm->control == TLS_RECORD_TYPE_DATA) darg.zc = true; /* Do not use async mode if record is non-data */ if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) darg.async = ctx->async_capable; else darg.async = false; err = tls_rx_one_record(sk, msg, &darg); if (err < 0) { tls_err_abort(sk, -EBADMSG); goto recv_end; } async |= darg.async; /* If the type of records being processed is not known yet, * set it to record type just dequeued. If it is already known, * but does not match the record type just dequeued, go to end. * We always get record type here since for tls1.2, record type * is known just after record is dequeued from stream parser. * For tls1.3, we disable async. */ err = tls_record_content_type(msg, tls_msg(darg.skb), &control); if (err <= 0) { DEBUG_NET_WARN_ON_ONCE(darg.zc); tls_rx_rec_done(ctx); put_on_rx_list_err: __skb_queue_tail(&ctx->rx_list, darg.skb); goto recv_end; } /* periodically flush backlog, and feed strparser */ released = tls_read_flush_backlog(sk, prot, len, to_decrypt, decrypted + copied, &flushed_at); /* TLS 1.3 may have updated the length by more than overhead */ rxm = strp_msg(darg.skb); chunk = rxm->full_len; tls_rx_rec_done(ctx); if (!darg.zc) { bool partially_consumed = chunk > len; struct sk_buff *skb = darg.skb; DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor); if (async) { /* TLS 1.2-only, to_decrypt must be text len */ chunk = min_t(int, to_decrypt, len); async_copy_bytes += chunk; put_on_rx_list: decrypted += chunk; len -= chunk; __skb_queue_tail(&ctx->rx_list, skb); if (unlikely(control != TLS_RECORD_TYPE_DATA)) break; continue; } if (bpf_strp_enabled) { released = true; err = sk_psock_tls_strp_read(psock, skb); if (err != __SK_PASS) { rxm->offset = rxm->offset + rxm->full_len; rxm->full_len = 0; if (err == __SK_DROP) consume_skb(skb); continue; } } if (partially_consumed) chunk = len; err = skb_copy_datagram_msg(skb, rxm->offset, msg, chunk); if (err < 0) goto put_on_rx_list_err; if (is_peek) { peeked += chunk; goto put_on_rx_list; } if (partially_consumed) { rxm->offset += chunk; rxm->full_len -= chunk; goto put_on_rx_list; } consume_skb(skb); } decrypted += chunk; len -= chunk; /* Return full control message to userspace before trying * to parse another message type */ msg->msg_flags |= MSG_EOR; if (control != TLS_RECORD_TYPE_DATA) break; } recv_end: if (async) { int ret; /* Wait for all previously submitted records to be decrypted */ ret = tls_decrypt_async_wait(ctx); __skb_queue_purge(&ctx->async_hold); if (ret) { if (err >= 0 || err == -EINPROGRESS) err = ret; goto end; } /* Drain records from the rx_list & copy if required */ if (is_peek) err = process_rx_list(ctx, msg, &control, copied + peeked, decrypted - peeked, is_peek, NULL); else err = process_rx_list(ctx, msg, &control, 0, async_copy_bytes, is_peek, NULL); /* we could have copied less than we wanted, and possibly nothing */ decrypted += max(err, 0) - async_copy_bytes; } copied += decrypted; end: tls_rx_reader_unlock(sk, ctx); if (psock) sk_psock_put(sk, psock); return copied ? : err; } ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags) { struct tls_context *tls_ctx = tls_get_ctx(sock->sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); struct strp_msg *rxm = NULL; struct sock *sk = sock->sk; struct tls_msg *tlm; struct sk_buff *skb; ssize_t copied = 0; int chunk; int err; err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK); if (err < 0) return err; if (!skb_queue_empty(&ctx->rx_list)) { skb = __skb_dequeue(&ctx->rx_list); } else { struct tls_decrypt_arg darg; err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK, true); if (err <= 0) goto splice_read_end; memset(&darg.inargs, 0, sizeof(darg.inargs)); err = tls_rx_one_record(sk, NULL, &darg); if (err < 0) { tls_err_abort(sk, -EBADMSG); goto splice_read_end; } tls_rx_rec_done(ctx); skb = darg.skb; } rxm = strp_msg(skb); tlm = tls_msg(skb); /* splice does not support reading control messages */ if (tlm->control != TLS_RECORD_TYPE_DATA) { err = -EINVAL; goto splice_requeue; } chunk = min_t(unsigned int, rxm->full_len, len); copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); if (copied < 0) goto splice_requeue; if (chunk < rxm->full_len) { rxm->offset += len; rxm->full_len -= len; goto splice_requeue; } consume_skb(skb); splice_read_end: tls_rx_reader_unlock(sk, ctx); return copied ? : err; splice_requeue: __skb_queue_head(&ctx->rx_list, skb); goto splice_read_end; } int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc, sk_read_actor_t read_actor) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); struct tls_prot_info *prot = &tls_ctx->prot_info; struct strp_msg *rxm = NULL; struct sk_buff *skb = NULL; struct sk_psock *psock; size_t flushed_at = 0; bool released = true; struct tls_msg *tlm; ssize_t copied = 0; ssize_t decrypted; int err, used; psock = sk_psock_get(sk); if (psock) { sk_psock_put(sk, psock); return -EINVAL; } err = tls_rx_reader_acquire(sk, ctx, true); if (err < 0) return err; /* If crypto failed the connection is broken */ err = ctx->async_wait.err; if (err) goto read_sock_end; decrypted = 0; do { if (!skb_queue_empty(&ctx->rx_list)) { skb = __skb_dequeue(&ctx->rx_list); rxm = strp_msg(skb); tlm = tls_msg(skb); } else { struct tls_decrypt_arg darg; err = tls_rx_rec_wait(sk, NULL, true, released); if (err <= 0) goto read_sock_end; memset(&darg.inargs, 0, sizeof(darg.inargs)); err = tls_rx_one_record(sk, NULL, &darg); if (err < 0) { tls_err_abort(sk, -EBADMSG); goto read_sock_end; } released = tls_read_flush_backlog(sk, prot, INT_MAX, 0, decrypted, &flushed_at); skb = darg.skb; rxm = strp_msg(skb); tlm = tls_msg(skb); decrypted += rxm->full_len; tls_rx_rec_done(ctx); } /* read_sock does not support reading control messages */ if (tlm->control != TLS_RECORD_TYPE_DATA) { err = -EINVAL; goto read_sock_requeue; } used = read_actor(desc, skb, rxm->offset, rxm->full_len); if (used <= 0) { if (!copied) err = used; goto read_sock_requeue; } copied += used; if (used < rxm->full_len) { rxm->offset += used; rxm->full_len -= used; if (!desc->count) goto read_sock_requeue; } else { consume_skb(skb); if (!desc->count) skb = NULL; } } while (skb); read_sock_end: tls_rx_reader_release(sk, ctx); return copied ? : err; read_sock_requeue: __skb_queue_head(&ctx->rx_list, skb); goto read_sock_end; } bool tls_sw_sock_is_readable(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); bool ingress_empty = true; struct sk_psock *psock; rcu_read_lock(); psock = sk_psock(sk); if (psock) ingress_empty = list_empty(&psock->ingress_msg); rcu_read_unlock(); return !ingress_empty || tls_strp_msg_ready(ctx) || !skb_queue_empty(&ctx->rx_list); } int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb) { struct tls_context *tls_ctx = tls_get_ctx(strp->sk); struct tls_prot_info *prot = &tls_ctx->prot_info; char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE]; size_t cipher_overhead; size_t data_len = 0; int ret; /* Verify that we have a full TLS header, or wait for more data */ if (strp->stm.offset + prot->prepend_size > skb->len) return 0; /* Sanity-check size of on-stack buffer. */ if (WARN_ON(prot->prepend_size > sizeof(header))) { ret = -EINVAL; goto read_failure; } /* Linearize header to local buffer */ ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size); if (ret < 0) goto read_failure; strp->mark = header[0]; data_len = ((header[4] & 0xFF) | (header[3] << 8)); cipher_overhead = prot->tag_size; if (prot->version != TLS_1_3_VERSION && prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) cipher_overhead += prot->iv_size; if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + prot->tail_size) { ret = -EMSGSIZE; goto read_failure; } if (data_len < cipher_overhead) { ret = -EBADMSG; goto read_failure; } /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ if (header[1] != TLS_1_2_VERSION_MINOR || header[2] != TLS_1_2_VERSION_MAJOR) { ret = -EINVAL; goto read_failure; } tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, TCP_SKB_CB(skb)->seq + strp->stm.offset); return data_len + TLS_HEADER_SIZE; read_failure: tls_err_abort(strp->sk, ret); return ret; } void tls_rx_msg_ready(struct tls_strparser *strp) { struct tls_sw_context_rx *ctx; ctx = container_of(strp, struct tls_sw_context_rx, strp); ctx->saved_data_ready(strp->sk); } static void tls_data_ready(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); struct sk_psock *psock; gfp_t alloc_save; trace_sk_data_ready(sk); alloc_save = sk->sk_allocation; sk->sk_allocation = GFP_ATOMIC; tls_strp_data_ready(&ctx->strp); sk->sk_allocation = alloc_save; psock = sk_psock_get(sk); if (psock) { if (!list_empty(&psock->ingress_msg)) ctx->saved_data_ready(sk); sk_psock_put(sk, psock); } } void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) { struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); cancel_delayed_work_sync(&ctx->tx_work.work); } void tls_sw_release_resources_tx(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct tls_rec *rec, *tmp; /* Wait for any pending async encryptions to complete */ tls_encrypt_async_wait(ctx); tls_tx_records(sk, -1); /* Free up un-sent records in tx_list. First, free * the partially sent record if any at head of tx_list. */ if (tls_ctx->partially_sent_record) { tls_free_partial_record(sk, tls_ctx); rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); list_del(&rec->list); sk_msg_free(sk, &rec->msg_plaintext); kfree(rec); } list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { list_del(&rec->list); sk_msg_free(sk, &rec->msg_encrypted); sk_msg_free(sk, &rec->msg_plaintext); kfree(rec); } crypto_free_aead(ctx->aead_send); tls_free_open_rec(sk); } void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) { struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); kfree(ctx); } void tls_sw_release_resources_rx(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); if (ctx->aead_recv) { __skb_queue_purge(&ctx->rx_list); crypto_free_aead(ctx->aead_recv); tls_strp_stop(&ctx->strp); /* If tls_sw_strparser_arm() was not called (cleanup paths) * we still want to tls_strp_stop(), but sk->sk_data_ready was * never swapped. */ if (ctx->saved_data_ready) { write_lock_bh(&sk->sk_callback_lock); sk->sk_data_ready = ctx->saved_data_ready; write_unlock_bh(&sk->sk_callback_lock); } } } void tls_sw_strparser_done(struct tls_context *tls_ctx) { struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); tls_strp_done(&ctx->strp); } void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) { struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); kfree(ctx); } void tls_sw_free_resources_rx(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); tls_sw_release_resources_rx(sk); tls_sw_free_ctx_rx(tls_ctx); } /* The work handler to transmitt the encrypted records in tx_list */ static void tx_work_handler(struct work_struct *work) { struct delayed_work *delayed_work = to_delayed_work(work); struct tx_work *tx_work = container_of(delayed_work, struct tx_work, work); struct sock *sk = tx_work->sk; struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx; if (unlikely(!tls_ctx)) return; ctx = tls_sw_ctx_tx(tls_ctx); if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) return; if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) return; if (mutex_trylock(&tls_ctx->tx_lock)) { lock_sock(sk); tls_tx_records(sk, -1); release_sock(sk); mutex_unlock(&tls_ctx->tx_lock); } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { /* Someone is holding the tx_lock, they will likely run Tx * and cancel the work on their way out of the lock section. * Schedule a long delay just in case. */ schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10)); } } static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx) { struct tls_rec *rec; rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list); if (!rec) return false; return READ_ONCE(rec->tx_ready); } void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) { struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); /* Schedule the transmission if tx list is ready */ if (tls_is_tx_ready(tx_ctx) && !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) schedule_delayed_work(&tx_ctx->tx_work.work, 0); } void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) { struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); write_lock_bh(&sk->sk_callback_lock); rx_ctx->saved_data_ready = sk->sk_data_ready; sk->sk_data_ready = tls_data_ready; write_unlock_bh(&sk->sk_callback_lock); } void tls_update_rx_zc_capable(struct tls_context *tls_ctx) { struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); rx_ctx->zc_capable = tls_ctx->rx_no_pad || tls_ctx->prot_info.version != TLS_1_3_VERSION; } static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk) { struct tls_sw_context_tx *sw_ctx_tx; if (!ctx->priv_ctx_tx) { sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); if (!sw_ctx_tx) return NULL; } else { sw_ctx_tx = ctx->priv_ctx_tx; } crypto_init_wait(&sw_ctx_tx->async_wait); atomic_set(&sw_ctx_tx->encrypt_pending, 1); INIT_LIST_HEAD(&sw_ctx_tx->tx_list); INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); sw_ctx_tx->tx_work.sk = sk; return sw_ctx_tx; } static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx) { struct tls_sw_context_rx *sw_ctx_rx; if (!ctx->priv_ctx_rx) { sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); if (!sw_ctx_rx) return NULL; } else { sw_ctx_rx = ctx->priv_ctx_rx; } crypto_init_wait(&sw_ctx_rx->async_wait); atomic_set(&sw_ctx_rx->decrypt_pending, 1); init_waitqueue_head(&sw_ctx_rx->wq); skb_queue_head_init(&sw_ctx_rx->rx_list); skb_queue_head_init(&sw_ctx_rx->async_hold); return sw_ctx_rx; } int init_prot_info(struct tls_prot_info *prot, const struct tls_crypto_info *crypto_info, const struct tls_cipher_desc *cipher_desc) { u16 nonce_size = cipher_desc->nonce; if (crypto_info->version == TLS_1_3_VERSION) { nonce_size = 0; prot->aad_size = TLS_HEADER_SIZE; prot->tail_size = 1; } else { prot->aad_size = TLS_AAD_SPACE_SIZE; prot->tail_size = 0; } /* Sanity-check the sizes for stack allocations. */ if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE) return -EINVAL; prot->version = crypto_info->version; prot->cipher_type = crypto_info->cipher_type; prot->prepend_size = TLS_HEADER_SIZE + nonce_size; prot->tag_size = cipher_desc->tag; prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size; prot->iv_size = cipher_desc->iv; prot->salt_size = cipher_desc->salt; prot->rec_seq_size = cipher_desc->rec_seq; return 0; } int tls_set_sw_offload(struct sock *sk, int tx) { struct tls_sw_context_tx *sw_ctx_tx = NULL; struct tls_sw_context_rx *sw_ctx_rx = NULL; const struct tls_cipher_desc *cipher_desc; struct tls_crypto_info *crypto_info; char *iv, *rec_seq, *key, *salt; struct cipher_context *cctx; struct tls_prot_info *prot; struct crypto_aead **aead; struct tls_context *ctx; struct crypto_tfm *tfm; int rc = 0; ctx = tls_get_ctx(sk); prot = &ctx->prot_info; if (tx) { ctx->priv_ctx_tx = init_ctx_tx(ctx, sk); if (!ctx->priv_ctx_tx) return -ENOMEM; sw_ctx_tx = ctx->priv_ctx_tx; crypto_info = &ctx->crypto_send.info; cctx = &ctx->tx; aead = &sw_ctx_tx->aead_send; } else { ctx->priv_ctx_rx = init_ctx_rx(ctx); if (!ctx->priv_ctx_rx) return -ENOMEM; sw_ctx_rx = ctx->priv_ctx_rx; crypto_info = &ctx->crypto_recv.info; cctx = &ctx->rx; aead = &sw_ctx_rx->aead_recv; } cipher_desc = get_cipher_desc(crypto_info->cipher_type); if (!cipher_desc) { rc = -EINVAL; goto free_priv; } rc = init_prot_info(prot, crypto_info, cipher_desc); if (rc) goto free_priv; iv = crypto_info_iv(crypto_info, cipher_desc); key = crypto_info_key(crypto_info, cipher_desc); salt = crypto_info_salt(crypto_info, cipher_desc); rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc); memcpy(cctx->iv, salt, cipher_desc->salt); memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv); memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq); if (!*aead) { *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0); if (IS_ERR(*aead)) { rc = PTR_ERR(*aead); *aead = NULL; goto free_priv; } } ctx->push_pending_record = tls_sw_push_pending_record; rc = crypto_aead_setkey(*aead, key, cipher_desc->key); if (rc) goto free_aead; rc = crypto_aead_setauthsize(*aead, prot->tag_size); if (rc) goto free_aead; if (sw_ctx_rx) { tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); tls_update_rx_zc_capable(ctx); sw_ctx_rx->async_capable = crypto_info->version != TLS_1_3_VERSION && !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC); rc = tls_strp_init(&sw_ctx_rx->strp, sk); if (rc) goto free_aead; } goto out; free_aead: crypto_free_aead(*aead); *aead = NULL; free_priv: if (tx) { kfree(ctx->priv_ctx_tx); ctx->priv_ctx_tx = NULL; } else { kfree(ctx->priv_ctx_rx); ctx->priv_ctx_rx = NULL; } out: return rc; }
17970 17970 19 283 50 199 3 231 281 17970 3 17969 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_CPUMASK_H #define __LINUX_CPUMASK_H /* * Cpumasks provide a bitmap suitable for representing the * set of CPUs in a system, one bit position per CPU number. In general, * only nr_cpu_ids (<= NR_CPUS) bits are valid. */ #include <linux/cleanup.h> #include <linux/kernel.h> #include <linux/bitmap.h> #include <linux/cpumask_types.h> #include <linux/atomic.h> #include <linux/bug.h> #include <linux/gfp_types.h> #include <linux/numa.h> /** * cpumask_pr_args - printf args to output a cpumask * @maskp: cpumask to be printed * * Can be used to provide arguments for '%*pb[l]' when printing a cpumask. */ #define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp) #if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS) #define nr_cpu_ids ((unsigned int)NR_CPUS) #else extern unsigned int nr_cpu_ids; #endif static __always_inline void set_nr_cpu_ids(unsigned int nr) { #if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS) WARN_ON(nr != nr_cpu_ids); #else nr_cpu_ids = nr; #endif } /* * We have several different "preferred sizes" for the cpumask * operations, depending on operation. * * For example, the bitmap scanning and operating operations have * optimized routines that work for the single-word case, but only when * the size is constant. So if NR_CPUS fits in one single word, we are * better off using that small constant, in order to trigger the * optimized bit finding. That is 'small_cpumask_size'. * * The clearing and copying operations will similarly perform better * with a constant size, but we limit that size arbitrarily to four * words. We call this 'large_cpumask_size'. * * Finally, some operations just want the exact limit, either because * they set bits or just don't have any faster fixed-sized versions. We * call this just 'nr_cpumask_bits'. * * Note that these optional constants are always guaranteed to be at * least as big as 'nr_cpu_ids' itself is, and all our cpumask * allocations are at least that size (see cpumask_size()). The * optimization comes from being able to potentially use a compile-time * constant instead of a run-time generated exact number of CPUs. */ #if NR_CPUS <= BITS_PER_LONG #define small_cpumask_bits ((unsigned int)NR_CPUS) #define large_cpumask_bits ((unsigned int)NR_CPUS) #elif NR_CPUS <= 4*BITS_PER_LONG #define small_cpumask_bits nr_cpu_ids #define large_cpumask_bits ((unsigned int)NR_CPUS) #else #define small_cpumask_bits nr_cpu_ids #define large_cpumask_bits nr_cpu_ids #endif #define nr_cpumask_bits nr_cpu_ids /* * The following particular system cpumasks and operations manage * possible, present, active and online cpus. * * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable * cpu_present_mask - has bit 'cpu' set iff cpu is populated * cpu_enabled_mask - has bit 'cpu' set iff cpu can be brought online * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler * cpu_active_mask - has bit 'cpu' set iff cpu available to migration * * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online. * * The cpu_possible_mask is fixed at boot time, as the set of CPU IDs * that it is possible might ever be plugged in at anytime during the * life of that system boot. The cpu_present_mask is dynamic(*), * representing which CPUs are currently plugged in. And * cpu_online_mask is the dynamic subset of cpu_present_mask, * indicating those CPUs available for scheduling. * * If HOTPLUG is enabled, then cpu_present_mask varies dynamically, * depending on what ACPI reports as currently plugged in, otherwise * cpu_present_mask is just a copy of cpu_possible_mask. * * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot. * * Subtleties: * 1) UP ARCHes (NR_CPUS == 1, CONFIG_SMP not defined) hardcode * assumption that their single CPU is online. The UP * cpu_{online,possible,present}_masks are placebos. Changing them * will have no useful affect on the following num_*_cpus() * and cpu_*() macros in the UP case. This ugliness is a UP * optimization - don't waste any instructions or memory references * asking if you're online or how many CPUs there are if there is * only one CPU. */ extern struct cpumask __cpu_possible_mask; extern struct cpumask __cpu_online_mask; extern struct cpumask __cpu_enabled_mask; extern struct cpumask __cpu_present_mask; extern struct cpumask __cpu_active_mask; extern struct cpumask __cpu_dying_mask; #define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask) #define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask) #define cpu_enabled_mask ((const struct cpumask *)&__cpu_enabled_mask) #define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask) #define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask) #define cpu_dying_mask ((const struct cpumask *)&__cpu_dying_mask) extern atomic_t __num_online_cpus; extern cpumask_t cpus_booted_once_mask; static __always_inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits) { #ifdef CONFIG_DEBUG_PER_CPU_MAPS WARN_ON_ONCE(cpu >= bits); #endif /* CONFIG_DEBUG_PER_CPU_MAPS */ } /* verify cpu argument to cpumask_* operators */ static __always_inline unsigned int cpumask_check(unsigned int cpu) { cpu_max_bits_warn(cpu, small_cpumask_bits); return cpu; } /** * cpumask_first - get the first cpu in a cpumask * @srcp: the cpumask pointer * * Return: >= nr_cpu_ids if no cpus set. */ static __always_inline unsigned int cpumask_first(const struct cpumask *srcp) { return find_first_bit(cpumask_bits(srcp), small_cpumask_bits); } /** * cpumask_first_zero - get the first unset cpu in a cpumask * @srcp: the cpumask pointer * * Return: >= nr_cpu_ids if all cpus are set. */ static __always_inline unsigned int cpumask_first_zero(const struct cpumask *srcp) { return find_first_zero_bit(cpumask_bits(srcp), small_cpumask_bits); } /** * cpumask_first_and - return the first cpu from *srcp1 & *srcp2 * @srcp1: the first input * @srcp2: the second input * * Return: >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and(). */ static __always_inline unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2) { return find_first_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); } /** * cpumask_first_and_and - return the first cpu from *srcp1 & *srcp2 & *srcp3 * @srcp1: the first input * @srcp2: the second input * @srcp3: the third input * * Return: >= nr_cpu_ids if no cpus set in all. */ static __always_inline unsigned int cpumask_first_and_and(const struct cpumask *srcp1, const struct cpumask *srcp2, const struct cpumask *srcp3) { return find_first_and_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), cpumask_bits(srcp3), small_cpumask_bits); } /** * cpumask_last - get the last CPU in a cpumask * @srcp: - the cpumask pointer * * Return: >= nr_cpumask_bits if no CPUs set. */ static __always_inline unsigned int cpumask_last(const struct cpumask *srcp) { return find_last_bit(cpumask_bits(srcp), small_cpumask_bits); } /** * cpumask_next - get the next cpu in a cpumask * @n: the cpu prior to the place to search (i.e. return will be > @n) * @srcp: the cpumask pointer * * Return: >= nr_cpu_ids if no further cpus set. */ static __always_inline unsigned int cpumask_next(int n, const struct cpumask *srcp) { /* -1 is a legal arg here. */ if (n != -1) cpumask_check(n); return find_next_bit(cpumask_bits(srcp), small_cpumask_bits, n + 1); } /** * cpumask_next_zero - get the next unset cpu in a cpumask * @n: the cpu prior to the place to search (i.e. return will be > @n) * @srcp: the cpumask pointer * * Return: >= nr_cpu_ids if no further cpus unset. */ static __always_inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) { /* -1 is a legal arg here. */ if (n != -1) cpumask_check(n); return find_next_zero_bit(cpumask_bits(srcp), small_cpumask_bits, n+1); } #if NR_CPUS == 1 /* Uniprocessor: there is only one valid CPU */ static __always_inline unsigned int cpumask_local_spread(unsigned int i, int node) { return 0; } static __always_inline unsigned int cpumask_any_and_distribute(const struct cpumask *src1p, const struct cpumask *src2p) { return cpumask_first_and(src1p, src2p); } static __always_inline unsigned int cpumask_any_distribute(const struct cpumask *srcp) { return cpumask_first(srcp); } #else unsigned int cpumask_local_spread(unsigned int i, int node); unsigned int cpumask_any_and_distribute(const struct cpumask *src1p, const struct cpumask *src2p); unsigned int cpumask_any_distribute(const struct cpumask *srcp); #endif /* NR_CPUS */ /** * cpumask_next_and - get the next cpu in *src1p & *src2p * @n: the cpu prior to the place to search (i.e. return will be > @n) * @src1p: the first cpumask pointer * @src2p: the second cpumask pointer * * Return: >= nr_cpu_ids if no further cpus set in both. */ static __always_inline unsigned int cpumask_next_and(int n, const struct cpumask *src1p, const struct cpumask *src2p) { /* -1 is a legal arg here. */ if (n != -1) cpumask_check(n); return find_next_and_bit(cpumask_bits(src1p), cpumask_bits(src2p), small_cpumask_bits, n + 1); } /** * for_each_cpu - iterate over every cpu in a mask * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask pointer * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu(cpu, mask) \ for_each_set_bit(cpu, cpumask_bits(mask), small_cpumask_bits) #if NR_CPUS == 1 static __always_inline unsigned int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap) { cpumask_check(start); if (n != -1) cpumask_check(n); /* * Return the first available CPU when wrapping, or when starting before cpu0, * since there is only one valid option. */ if (wrap && n >= 0) return nr_cpumask_bits; return cpumask_first(mask); } #else unsigned int __pure cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap); #endif /** * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask pointer * @start: the start location * * The implementation does not assume any bit in @mask is set (including @start). * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_wrap(cpu, mask, start) \ for_each_set_bit_wrap(cpu, cpumask_bits(mask), small_cpumask_bits, start) /** * for_each_cpu_and - iterate over every cpu in both masks * @cpu: the (optionally unsigned) integer iterator * @mask1: the first cpumask pointer * @mask2: the second cpumask pointer * * This saves a temporary CPU mask in many places. It is equivalent to: * struct cpumask tmp; * cpumask_and(&tmp, &mask1, &mask2); * for_each_cpu(cpu, &tmp) * ... * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_and(cpu, mask1, mask2) \ for_each_and_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) /** * for_each_cpu_andnot - iterate over every cpu present in one mask, excluding * those present in another. * @cpu: the (optionally unsigned) integer iterator * @mask1: the first cpumask pointer * @mask2: the second cpumask pointer * * This saves a temporary CPU mask in many places. It is equivalent to: * struct cpumask tmp; * cpumask_andnot(&tmp, &mask1, &mask2); * for_each_cpu(cpu, &tmp) * ... * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_andnot(cpu, mask1, mask2) \ for_each_andnot_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) /** * for_each_cpu_or - iterate over every cpu present in either mask * @cpu: the (optionally unsigned) integer iterator * @mask1: the first cpumask pointer * @mask2: the second cpumask pointer * * This saves a temporary CPU mask in many places. It is equivalent to: * struct cpumask tmp; * cpumask_or(&tmp, &mask1, &mask2); * for_each_cpu(cpu, &tmp) * ... * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_or(cpu, mask1, mask2) \ for_each_or_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) /** * for_each_cpu_from - iterate over CPUs present in @mask, from @cpu to the end of @mask. * @cpu: the (optionally unsigned) integer iterator * @mask: the cpumask pointer * * After the loop, cpu is >= nr_cpu_ids. */ #define for_each_cpu_from(cpu, mask) \ for_each_set_bit_from(cpu, cpumask_bits(mask), small_cpumask_bits) /** * cpumask_any_but - return a "random" in a cpumask, but not this one. * @mask: the cpumask to search * @cpu: the cpu to ignore. * * Often used to find any cpu but smp_processor_id() in a mask. * Return: >= nr_cpu_ids if no cpus set. */ static __always_inline unsigned int cpumask_any_but(const struct cpumask *mask, unsigned int cpu) { unsigned int i; cpumask_check(cpu); for_each_cpu(i, mask) if (i != cpu) break; return i; } /** * cpumask_any_and_but - pick a "random" cpu from *mask1 & *mask2, but not this one. * @mask1: the first input cpumask * @mask2: the second input cpumask * @cpu: the cpu to ignore * * Returns >= nr_cpu_ids if no cpus set. */ static __always_inline unsigned int cpumask_any_and_but(const struct cpumask *mask1, const struct cpumask *mask2, unsigned int cpu) { unsigned int i; cpumask_check(cpu); i = cpumask_first_and(mask1, mask2); if (i != cpu) return i; return cpumask_next_and(cpu, mask1, mask2); } /** * cpumask_nth - get the Nth cpu in a cpumask * @srcp: the cpumask pointer * @cpu: the Nth cpu to find, starting from 0 * * Return: >= nr_cpu_ids if such cpu doesn't exist. */ static __always_inline unsigned int cpumask_nth(unsigned int cpu, const struct cpumask *srcp) { return find_nth_bit(cpumask_bits(srcp), small_cpumask_bits, cpumask_check(cpu)); } /** * cpumask_nth_and - get the Nth cpu in 2 cpumasks * @srcp1: the cpumask pointer * @srcp2: the cpumask pointer * @cpu: the Nth cpu to find, starting from 0 * * Return: >= nr_cpu_ids if such cpu doesn't exist. */ static __always_inline unsigned int cpumask_nth_and(unsigned int cpu, const struct cpumask *srcp1, const struct cpumask *srcp2) { return find_nth_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits, cpumask_check(cpu)); } /** * cpumask_nth_andnot - get the Nth cpu set in 1st cpumask, and clear in 2nd. * @srcp1: the cpumask pointer * @srcp2: the cpumask pointer * @cpu: the Nth cpu to find, starting from 0 * * Return: >= nr_cpu_ids if such cpu doesn't exist. */ static __always_inline unsigned int cpumask_nth_andnot(unsigned int cpu, const struct cpumask *srcp1, const struct cpumask *srcp2) { return find_nth_andnot_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits, cpumask_check(cpu)); } /** * cpumask_nth_and_andnot - get the Nth cpu set in 1st and 2nd cpumask, and clear in 3rd. * @srcp1: the cpumask pointer * @srcp2: the cpumask pointer * @srcp3: the cpumask pointer * @cpu: the Nth cpu to find, starting from 0 * * Return: >= nr_cpu_ids if such cpu doesn't exist. */ static __always_inline unsigned int cpumask_nth_and_andnot(unsigned int cpu, const struct cpumask *srcp1, const struct cpumask *srcp2, const struct cpumask *srcp3) { return find_nth_and_andnot_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), cpumask_bits(srcp3), small_cpumask_bits, cpumask_check(cpu)); } #define CPU_BITS_NONE \ { \ [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ } #define CPU_BITS_CPU0 \ { \ [0] = 1UL \ } /** * cpumask_set_cpu - set a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @dstp: the cpumask pointer */ static __always_inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) { set_bit(cpumask_check(cpu), cpumask_bits(dstp)); } static __always_inline void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) { __set_bit(cpumask_check(cpu), cpumask_bits(dstp)); } /** * cpumask_clear_cpu - clear a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @dstp: the cpumask pointer */ static __always_inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp) { clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); } static __always_inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp) { __clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); } /** * cpumask_assign_cpu - assign a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @dstp: the cpumask pointer * @bool: the value to assign */ static __always_inline void cpumask_assign_cpu(int cpu, struct cpumask *dstp, bool value) { assign_bit(cpumask_check(cpu), cpumask_bits(dstp), value); } static __always_inline void __cpumask_assign_cpu(int cpu, struct cpumask *dstp, bool value) { __assign_bit(cpumask_check(cpu), cpumask_bits(dstp), value); } /** * cpumask_test_cpu - test for a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * Return: true if @cpu is set in @cpumask, else returns false */ static __always_inline bool cpumask_test_cpu(int cpu, const struct cpumask *cpumask) { return test_bit(cpumask_check(cpu), cpumask_bits((cpumask))); } /** * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * test_and_set_bit wrapper for cpumasks. * * Return: true if @cpu is set in old bitmap of @cpumask, else returns false */ static __always_inline bool cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask) { return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask)); } /** * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask * @cpu: cpu number (< nr_cpu_ids) * @cpumask: the cpumask pointer * * test_and_clear_bit wrapper for cpumasks. * * Return: true if @cpu is set in old bitmap of @cpumask, else returns false */ static __always_inline bool cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask) { return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask)); } /** * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask * @dstp: the cpumask pointer */ static __always_inline void cpumask_setall(struct cpumask *dstp) { if (small_const_nbits(small_cpumask_bits)) { cpumask_bits(dstp)[0] = BITMAP_LAST_WORD_MASK(nr_cpumask_bits); return; } bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask * @dstp: the cpumask pointer */ static __always_inline void cpumask_clear(struct cpumask *dstp) { bitmap_zero(cpumask_bits(dstp), large_cpumask_bits); } /** * cpumask_and - *dstp = *src1p & *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input * * Return: false if *@dstp is empty, else returns true */ static __always_inline bool cpumask_and(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), small_cpumask_bits); } /** * cpumask_or - *dstp = *src1p | *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input */ static __always_inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), small_cpumask_bits); } /** * cpumask_xor - *dstp = *src1p ^ *src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input */ static __always_inline void cpumask_xor(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), small_cpumask_bits); } /** * cpumask_andnot - *dstp = *src1p & ~*src2p * @dstp: the cpumask result * @src1p: the first input * @src2p: the second input * * Return: false if *@dstp is empty, else returns true */ static __always_inline bool cpumask_andnot(struct cpumask *dstp, const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p), cpumask_bits(src2p), small_cpumask_bits); } /** * cpumask_equal - *src1p == *src2p * @src1p: the first input * @src2p: the second input * * Return: true if the cpumasks are equal, false if not */ static __always_inline bool cpumask_equal(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p), small_cpumask_bits); } /** * cpumask_or_equal - *src1p | *src2p == *src3p * @src1p: the first input * @src2p: the second input * @src3p: the third input * * Return: true if first cpumask ORed with second cpumask == third cpumask, * otherwise false */ static __always_inline bool cpumask_or_equal(const struct cpumask *src1p, const struct cpumask *src2p, const struct cpumask *src3p) { return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p), cpumask_bits(src3p), small_cpumask_bits); } /** * cpumask_intersects - (*src1p & *src2p) != 0 * @src1p: the first input * @src2p: the second input * * Return: true if first cpumask ANDed with second cpumask is non-empty, * otherwise false */ static __always_inline bool cpumask_intersects(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p), small_cpumask_bits); } /** * cpumask_subset - (*src1p & ~*src2p) == 0 * @src1p: the first input * @src2p: the second input * * Return: true if *@src1p is a subset of *@src2p, else returns false */ static __always_inline bool cpumask_subset(const struct cpumask *src1p, const struct cpumask *src2p) { return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p), small_cpumask_bits); } /** * cpumask_empty - *srcp == 0 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear. * * Return: true if srcp is empty (has no bits set), else false */ static __always_inline bool cpumask_empty(const struct cpumask *srcp) { return bitmap_empty(cpumask_bits(srcp), small_cpumask_bits); } /** * cpumask_full - *srcp == 0xFFFFFFFF... * @srcp: the cpumask to that all cpus < nr_cpu_ids are set. * * Return: true if srcp is full (has all bits set), else false */ static __always_inline bool cpumask_full(const struct cpumask *srcp) { return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits); } /** * cpumask_weight - Count of bits in *srcp * @srcp: the cpumask to count bits (< nr_cpu_ids) in. * * Return: count of bits set in *srcp */ static __always_inline unsigned int cpumask_weight(const struct cpumask *srcp) { return bitmap_weight(cpumask_bits(srcp), small_cpumask_bits); } /** * cpumask_weight_and - Count of bits in (*srcp1 & *srcp2) * @srcp1: the cpumask to count bits (< nr_cpu_ids) in. * @srcp2: the cpumask to count bits (< nr_cpu_ids) in. * * Return: count of bits set in both *srcp1 and *srcp2 */ static __always_inline unsigned int cpumask_weight_and(const struct cpumask *srcp1, const struct cpumask *srcp2) { return bitmap_weight_and(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); } /** * cpumask_weight_andnot - Count of bits in (*srcp1 & ~*srcp2) * @srcp1: the cpumask to count bits (< nr_cpu_ids) in. * @srcp2: the cpumask to count bits (< nr_cpu_ids) in. * * Return: count of bits set in both *srcp1 and *srcp2 */ static __always_inline unsigned int cpumask_weight_andnot(const struct cpumask *srcp1, const struct cpumask *srcp2) { return bitmap_weight_andnot(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); } /** * cpumask_shift_right - *dstp = *srcp >> n * @dstp: the cpumask result * @srcp: the input to shift * @n: the number of bits to shift by */ static __always_inline void cpumask_shift_right(struct cpumask *dstp, const struct cpumask *srcp, int n) { bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n, small_cpumask_bits); } /** * cpumask_shift_left - *dstp = *srcp << n * @dstp: the cpumask result * @srcp: the input to shift * @n: the number of bits to shift by */ static __always_inline void cpumask_shift_left(struct cpumask *dstp, const struct cpumask *srcp, int n) { bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n, nr_cpumask_bits); } /** * cpumask_copy - *dstp = *srcp * @dstp: the result * @srcp: the input cpumask */ static __always_inline void cpumask_copy(struct cpumask *dstp, const struct cpumask *srcp) { bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), large_cpumask_bits); } /** * cpumask_any - pick a "random" cpu from *srcp * @srcp: the input cpumask * * Return: >= nr_cpu_ids if no cpus set. */ #define cpumask_any(srcp) cpumask_first(srcp) /** * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2 * @mask1: the first input cpumask * @mask2: the second input cpumask * * Return: >= nr_cpu_ids if no cpus set. */ #define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2)) /** * cpumask_of - the cpumask containing just a given cpu * @cpu: the cpu (<= nr_cpu_ids) */ #define cpumask_of(cpu) (get_cpu_mask(cpu)) /** * cpumask_parse_user - extract a cpumask from a user string * @buf: the buffer to extract from * @len: the length of the buffer * @dstp: the cpumask to set. * * Return: -errno, or 0 for success. */ static __always_inline int cpumask_parse_user(const char __user *buf, int len, struct cpumask *dstp) { return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_parselist_user - extract a cpumask from a user string * @buf: the buffer to extract from * @len: the length of the buffer * @dstp: the cpumask to set. * * Return: -errno, or 0 for success. */ static __always_inline int cpumask_parselist_user(const char __user *buf, int len, struct cpumask *dstp) { return bitmap_parselist_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_parse - extract a cpumask from a string * @buf: the buffer to extract from * @dstp: the cpumask to set. * * Return: -errno, or 0 for success. */ static __always_inline int cpumask_parse(const char *buf, struct cpumask *dstp) { return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpulist_parse - extract a cpumask from a user string of ranges * @buf: the buffer to extract from * @dstp: the cpumask to set. * * Return: -errno, or 0 for success. */ static __always_inline int cpulist_parse(const char *buf, struct cpumask *dstp) { return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits); } /** * cpumask_size - calculate size to allocate for a 'struct cpumask' in bytes * * Return: size to allocate for a &struct cpumask in bytes */ static __always_inline unsigned int cpumask_size(void) { return bitmap_size(large_cpumask_bits); } #ifdef CONFIG_CPUMASK_OFFSTACK #define this_cpu_cpumask_var_ptr(x) this_cpu_read(x) #define __cpumask_var_read_mostly __read_mostly bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); static __always_inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) { return alloc_cpumask_var_node(mask, flags | __GFP_ZERO, node); } /** * alloc_cpumask_var - allocate a struct cpumask * @mask: pointer to cpumask_var_t where the cpumask is returned * @flags: GFP_ flags * * Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is * a nop returning a constant 1 (in <linux/cpumask.h>). * * See alloc_cpumask_var_node. * * Return: %true if allocation succeeded, %false if not */ static __always_inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) { return alloc_cpumask_var_node(mask, flags, NUMA_NO_NODE); } static __always_inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) { return alloc_cpumask_var(mask, flags | __GFP_ZERO); } void alloc_bootmem_cpumask_var(cpumask_var_t *mask); void free_cpumask_var(cpumask_var_t mask); void free_bootmem_cpumask_var(cpumask_var_t mask); static __always_inline bool cpumask_available(cpumask_var_t mask) { return mask != NULL; } #else #define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x) #define __cpumask_var_read_mostly static __always_inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) { return true; } static __always_inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) { return true; } static __always_inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) { cpumask_clear(*mask); return true; } static __always_inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) { cpumask_clear(*mask); return true; } static __always_inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask) { } static __always_inline void free_cpumask_var(cpumask_var_t mask) { } static __always_inline void free_bootmem_cpumask_var(cpumask_var_t mask) { } static __always_inline bool cpumask_available(cpumask_var_t mask) { return true; } #endif /* CONFIG_CPUMASK_OFFSTACK */ DEFINE_FREE(free_cpumask_var, struct cpumask *, if (_T) free_cpumask_var(_T)); /* It's common to want to use cpu_all_mask in struct member initializers, * so it has to refer to an address rather than a pointer. */ extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS); #define cpu_all_mask to_cpumask(cpu_all_bits) /* First bits of cpu_bit_bitmap are in fact unset. */ #define cpu_none_mask to_cpumask(cpu_bit_bitmap[0]) #if NR_CPUS == 1 /* Uniprocessor: the possible/online/present masks are always "1" */ #define for_each_possible_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) #define for_each_online_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) #define for_each_present_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) #else #define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask) #define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask) #define for_each_enabled_cpu(cpu) for_each_cpu((cpu), cpu_enabled_mask) #define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask) #endif /* Wrappers for arch boot code to manipulate normally-constant masks */ void init_cpu_present(const struct cpumask *src); void init_cpu_possible(const struct cpumask *src); void init_cpu_online(const struct cpumask *src); #define assign_cpu(cpu, mask, val) \ assign_bit(cpumask_check(cpu), cpumask_bits(mask), (val)) #define set_cpu_possible(cpu, possible) assign_cpu((cpu), &__cpu_possible_mask, (possible)) #define set_cpu_enabled(cpu, enabled) assign_cpu((cpu), &__cpu_enabled_mask, (enabled)) #define set_cpu_present(cpu, present) assign_cpu((cpu), &__cpu_present_mask, (present)) #define set_cpu_active(cpu, active) assign_cpu((cpu), &__cpu_active_mask, (active)) #define set_cpu_dying(cpu, dying) assign_cpu((cpu), &__cpu_dying_mask, (dying)) void set_cpu_online(unsigned int cpu, bool online); /** * to_cpumask - convert a NR_CPUS bitmap to a struct cpumask * * @bitmap: the bitmap * * There are a few places where cpumask_var_t isn't appropriate and * static cpumasks must be used (eg. very early boot), yet we don't * expose the definition of 'struct cpumask'. * * This does the conversion, and can be used as a constant initializer. */ #define to_cpumask(bitmap) \ ((struct cpumask *)(1 ? (bitmap) \ : (void *)sizeof(__check_is_bitmap(bitmap)))) static __always_inline int __check_is_bitmap(const unsigned long *bitmap) { return 1; } /* * Special-case data structure for "single bit set only" constant CPU masks. * * We pre-generate all the 64 (or 32) possible bit positions, with enough * padding to the left and the right, and return the constant pointer * appropriately offset. */ extern const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)]; static __always_inline const struct cpumask *get_cpu_mask(unsigned int cpu) { const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG]; p -= cpu / BITS_PER_LONG; return to_cpumask(p); } #if NR_CPUS > 1 /** * num_online_cpus() - Read the number of online CPUs * * Despite the fact that __num_online_cpus is of type atomic_t, this * interface gives only a momentary snapshot and is not protected against * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held * region. * * Return: momentary snapshot of the number of online CPUs */ static __always_inline unsigned int num_online_cpus(void) { return raw_atomic_read(&__num_online_cpus); } #define num_possible_cpus() cpumask_weight(cpu_possible_mask) #define num_enabled_cpus() cpumask_weight(cpu_enabled_mask) #define num_present_cpus() cpumask_weight(cpu_present_mask) #define num_active_cpus() cpumask_weight(cpu_active_mask) static __always_inline bool cpu_online(unsigned int cpu) { return cpumask_test_cpu(cpu, cpu_online_mask); } static __always_inline bool cpu_enabled(unsigned int cpu) { return cpumask_test_cpu(cpu, cpu_enabled_mask); } static __always_inline bool cpu_possible(unsigned int cpu) { return cpumask_test_cpu(cpu, cpu_possible_mask); } static __always_inline bool cpu_present(unsigned int cpu) { return cpumask_test_cpu(cpu, cpu_present_mask); } static __always_inline bool cpu_active(unsigned int cpu) { return cpumask_test_cpu(cpu, cpu_active_mask); } static __always_inline bool cpu_dying(unsigned int cpu) { return cpumask_test_cpu(cpu, cpu_dying_mask); } #else #define num_online_cpus() 1U #define num_possible_cpus() 1U #define num_enabled_cpus() 1U #define num_present_cpus() 1U #define num_active_cpus() 1U static __always_inline bool cpu_online(unsigned int cpu) { return cpu == 0; } static __always_inline bool cpu_possible(unsigned int cpu) { return cpu == 0; } static __always_inline bool cpu_enabled(unsigned int cpu) { return cpu == 0; } static __always_inline bool cpu_present(unsigned int cpu) { return cpu == 0; } static __always_inline bool cpu_active(unsigned int cpu) { return cpu == 0; } static __always_inline bool cpu_dying(unsigned int cpu) { return false; } #endif /* NR_CPUS > 1 */ #define cpu_is_offline(cpu) unlikely(!cpu_online(cpu)) #if NR_CPUS <= BITS_PER_LONG #define CPU_BITS_ALL \ { \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } #else /* NR_CPUS > BITS_PER_LONG */ #define CPU_BITS_ALL \ { \ [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } #endif /* NR_CPUS > BITS_PER_LONG */ /** * cpumap_print_to_pagebuf - copies the cpumask into the buffer either * as comma-separated list of cpus or hex values of cpumask * @list: indicates whether the cpumap must be list * @mask: the cpumask to copy * @buf: the buffer to copy into * * Return: the length of the (null-terminated) @buf string, zero if * nothing is copied. */ static __always_inline ssize_t cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask) { return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask), nr_cpu_ids); } /** * cpumap_print_bitmask_to_buf - copies the cpumask into the buffer as * hex values of cpumask * * @buf: the buffer to copy into * @mask: the cpumask to copy * @off: in the string from which we are copying, we copy to @buf * @count: the maximum number of bytes to print * * The function prints the cpumask into the buffer as hex values of * cpumask; Typically used by bin_attribute to export cpumask bitmask * ABI. * * Return: the length of how many bytes have been copied, excluding * terminating '\0'. */ static __always_inline ssize_t cpumap_print_bitmask_to_buf(char *buf, const struct cpumask *mask, loff_t off, size_t count) { return bitmap_print_bitmask_to_buf(buf, cpumask_bits(mask), nr_cpu_ids, off, count) - 1; } /** * cpumap_print_list_to_buf - copies the cpumask into the buffer as * comma-separated list of cpus * @buf: the buffer to copy into * @mask: the cpumask to copy * @off: in the string from which we are copying, we copy to @buf * @count: the maximum number of bytes to print * * Everything is same with the above cpumap_print_bitmask_to_buf() * except the print format. * * Return: the length of how many bytes have been copied, excluding * terminating '\0'. */ static __always_inline ssize_t cpumap_print_list_to_buf(char *buf, const struct cpumask *mask, loff_t off, size_t count) { return bitmap_print_list_to_buf(buf, cpumask_bits(mask), nr_cpu_ids, off, count) - 1; } #if NR_CPUS <= BITS_PER_LONG #define CPU_MASK_ALL \ (cpumask_t) { { \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } } #else #define CPU_MASK_ALL \ (cpumask_t) { { \ [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ } } #endif /* NR_CPUS > BITS_PER_LONG */ #define CPU_MASK_NONE \ (cpumask_t) { { \ [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ } } #define CPU_MASK_CPU0 \ (cpumask_t) { { \ [0] = 1UL \ } } /* * Provide a valid theoretical max size for cpumap and cpulist sysfs files * to avoid breaking userspace which may allocate a buffer based on the size * reported by e.g. fstat. * * for cpumap NR_CPUS * 9/32 - 1 should be an exact length. * * For cpulist 7 is (ceil(log10(NR_CPUS)) + 1) allowing for NR_CPUS to be up * to 2 orders of magnitude larger than 8192. And then we divide by 2 to * cover a worst-case of every other cpu being on one of two nodes for a * very large NR_CPUS. * * Use PAGE_SIZE as a minimum for smaller configurations while avoiding * unsigned comparison to -1. */ #define CPUMAP_FILE_MAX_BYTES (((NR_CPUS * 9)/32 > PAGE_SIZE) \ ? (NR_CPUS * 9)/32 - 1 : PAGE_SIZE) #define CPULIST_FILE_MAX_BYTES (((NR_CPUS * 7)/2 > PAGE_SIZE) ? (NR_CPUS * 7)/2 : PAGE_SIZE) #endif /* __LINUX_CPUMASK_H */
31 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_TEXT_PATCHING_H #define _ASM_X86_TEXT_PATCHING_H #include <linux/types.h> #include <linux/stddef.h> #include <asm/ptrace.h> /* * Currently, the max observed size in the kernel code is * JUMP_LABEL_NOP_SIZE/RELATIVEJUMP_SIZE, which are 5. * Raise it if needed. */ #define POKE_MAX_OPCODE_SIZE 5 extern void text_poke_early(void *addr, const void *opcode, size_t len); extern void apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len); /* * Clear and restore the kernel write-protection flag on the local CPU. * Allows the kernel to edit read-only pages. * Side-effect: any interrupt handler running between save and restore will have * the ability to write to read-only pages. * * Warning: * Code patching in the UP case is safe if NMIs and MCE handlers are stopped and * no thread can be preempted in the instructions being modified (no iret to an * invalid instruction possible) or if the instructions are changed from a * consistent state to another consistent state atomically. * On the local CPU you need to be protected against NMI or MCE handlers seeing * an inconsistent instruction while you patch. */ extern void *text_poke(void *addr, const void *opcode, size_t len); extern void text_poke_sync(void); extern void *text_poke_kgdb(void *addr, const void *opcode, size_t len); extern void *text_poke_copy(void *addr, const void *opcode, size_t len); extern void *text_poke_copy_locked(void *addr, const void *opcode, size_t len, bool core_ok); extern void *text_poke_set(void *addr, int c, size_t len); extern int poke_int3_handler(struct pt_regs *regs); extern void text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate); extern void text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate); extern void text_poke_finish(void); #define INT3_INSN_SIZE 1 #define INT3_INSN_OPCODE 0xCC #define RET_INSN_SIZE 1 #define RET_INSN_OPCODE 0xC3 #define CALL_INSN_SIZE 5 #define CALL_INSN_OPCODE 0xE8 #define JMP32_INSN_SIZE 5 #define JMP32_INSN_OPCODE 0xE9 #define JMP8_INSN_SIZE 2 #define JMP8_INSN_OPCODE 0xEB #define DISP32_SIZE 4 static __always_inline int text_opcode_size(u8 opcode) { int size = 0; #define __CASE(insn) \ case insn##_INSN_OPCODE: size = insn##_INSN_SIZE; break switch(opcode) { __CASE(INT3); __CASE(RET); __CASE(CALL); __CASE(JMP32); __CASE(JMP8); } #undef __CASE return size; } union text_poke_insn { u8 text[POKE_MAX_OPCODE_SIZE]; struct { u8 opcode; s32 disp; } __attribute__((packed)); }; static __always_inline void __text_gen_insn(void *buf, u8 opcode, const void *addr, const void *dest, int size) { union text_poke_insn *insn = buf; BUG_ON(size < text_opcode_size(opcode)); /* * Hide the addresses to avoid the compiler folding in constants when * referencing code, these can mess up annotations like * ANNOTATE_NOENDBR. */ OPTIMIZER_HIDE_VAR(insn); OPTIMIZER_HIDE_VAR(addr); OPTIMIZER_HIDE_VAR(dest); insn->opcode = opcode; if (size > 1) { insn->disp = (long)dest - (long)(addr + size); if (size == 2) { /* * Ensure that for JMP8 the displacement * actually fits the signed byte. */ BUG_ON((insn->disp >> 31) != (insn->disp >> 7)); } } } static __always_inline void *text_gen_insn(u8 opcode, const void *addr, const void *dest) { static union text_poke_insn insn; /* per instance */ __text_gen_insn(&insn, opcode, addr, dest, text_opcode_size(opcode)); return &insn.text; } extern int after_bootmem; extern __ro_after_init struct mm_struct *poking_mm; extern __ro_after_init unsigned long poking_addr; #ifndef CONFIG_UML_X86 static __always_inline void int3_emulate_jmp(struct pt_regs *regs, unsigned long ip) { regs->ip = ip; } static __always_inline void int3_emulate_push(struct pt_regs *regs, unsigned long val) { /* * The int3 handler in entry_64.S adds a gap between the * stack where the break point happened, and the saving of * pt_regs. We can extend the original stack because of * this gap. See the idtentry macro's create_gap option. * * Similarly entry_32.S will have a gap on the stack for (any) hardware * exception and pt_regs; see FIXUP_FRAME. */ regs->sp -= sizeof(unsigned long); *(unsigned long *)regs->sp = val; } static __always_inline unsigned long int3_emulate_pop(struct pt_regs *regs) { unsigned long val = *(unsigned long *)regs->sp; regs->sp += sizeof(unsigned long); return val; } static __always_inline void int3_emulate_call(struct pt_regs *regs, unsigned long func) { int3_emulate_push(regs, regs->ip - INT3_INSN_SIZE + CALL_INSN_SIZE); int3_emulate_jmp(regs, func); } static __always_inline void int3_emulate_ret(struct pt_regs *regs) { unsigned long ip = int3_emulate_pop(regs); int3_emulate_jmp(regs, ip); } static __always_inline void int3_emulate_jcc(struct pt_regs *regs, u8 cc, unsigned long ip, unsigned long disp) { static const unsigned long jcc_mask[6] = { [0] = X86_EFLAGS_OF, [1] = X86_EFLAGS_CF, [2] = X86_EFLAGS_ZF, [3] = X86_EFLAGS_CF | X86_EFLAGS_ZF, [4] = X86_EFLAGS_SF, [5] = X86_EFLAGS_PF, }; bool invert = cc & 1; bool match; if (cc < 0xc) { match = regs->flags & jcc_mask[cc >> 1]; } else { match = ((regs->flags & X86_EFLAGS_SF) >> X86_EFLAGS_SF_BIT) ^ ((regs->flags & X86_EFLAGS_OF) >> X86_EFLAGS_OF_BIT); if (cc >= 0xe) match = match || (regs->flags & X86_EFLAGS_ZF); } if ((match && !invert) || (!match && invert)) ip += disp; int3_emulate_jmp(regs, ip); } #endif /* !CONFIG_UML_X86 */ #endif /* _ASM_X86_TEXT_PATCHING_H */
402 6 235 118 80 145 1 35 36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 /* SPDX-License-Identifier: GPL-2.0-only */ /* * net busy poll support * Copyright(c) 2013 Intel Corporation. * * Author: Eliezer Tamir * * Contact Information: * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> */ #ifndef _LINUX_NET_BUSY_POLL_H #define _LINUX_NET_BUSY_POLL_H #include <linux/netdevice.h> #include <linux/sched/clock.h> #include <linux/sched/signal.h> #include <net/ip.h> #include <net/xdp.h> /* 0 - Reserved to indicate value not set * 1..NR_CPUS - Reserved for sender_cpu * NR_CPUS+1..~0 - Region available for NAPI IDs */ #define MIN_NAPI_ID ((unsigned int)(NR_CPUS + 1)) #define BUSY_POLL_BUDGET 8 #ifdef CONFIG_NET_RX_BUSY_POLL struct napi_struct; extern unsigned int sysctl_net_busy_read __read_mostly; extern unsigned int sysctl_net_busy_poll __read_mostly; static inline bool net_busy_loop_on(void) { return READ_ONCE(sysctl_net_busy_poll); } static inline bool sk_can_busy_loop(const struct sock *sk) { return READ_ONCE(sk->sk_ll_usec) && !signal_pending(current); } bool sk_busy_loop_end(void *p, unsigned long start_time); void napi_busy_loop(unsigned int napi_id, bool (*loop_end)(void *, unsigned long), void *loop_end_arg, bool prefer_busy_poll, u16 budget); void napi_busy_loop_rcu(unsigned int napi_id, bool (*loop_end)(void *, unsigned long), void *loop_end_arg, bool prefer_busy_poll, u16 budget); #else /* CONFIG_NET_RX_BUSY_POLL */ static inline unsigned long net_busy_loop_on(void) { return 0; } static inline bool sk_can_busy_loop(struct sock *sk) { return false; } #endif /* CONFIG_NET_RX_BUSY_POLL */ static inline unsigned long busy_loop_current_time(void) { #ifdef CONFIG_NET_RX_BUSY_POLL return (unsigned long)(ktime_get_ns() >> 10); #else return 0; #endif } /* in poll/select we use the global sysctl_net_ll_poll value */ static inline bool busy_loop_timeout(unsigned long start_time) { #ifdef CONFIG_NET_RX_BUSY_POLL unsigned long bp_usec = READ_ONCE(sysctl_net_busy_poll); if (bp_usec) { unsigned long end_time = start_time + bp_usec; unsigned long now = busy_loop_current_time(); return time_after(now, end_time); } #endif return true; } static inline bool sk_busy_loop_timeout(struct sock *sk, unsigned long start_time) { #ifdef CONFIG_NET_RX_BUSY_POLL unsigned long bp_usec = READ_ONCE(sk->sk_ll_usec); if (bp_usec) { unsigned long end_time = start_time + bp_usec; unsigned long now = busy_loop_current_time(); return time_after(now, end_time); } #endif return true; } static inline void sk_busy_loop(struct sock *sk, int nonblock) { #ifdef CONFIG_NET_RX_BUSY_POLL unsigned int napi_id = READ_ONCE(sk->sk_napi_id); if (napi_id >= MIN_NAPI_ID) napi_busy_loop(napi_id, nonblock ? NULL : sk_busy_loop_end, sk, READ_ONCE(sk->sk_prefer_busy_poll), READ_ONCE(sk->sk_busy_poll_budget) ?: BUSY_POLL_BUDGET); #endif } /* used in the NIC receive handler to mark the skb */ static inline void skb_mark_napi_id(struct sk_buff *skb, struct napi_struct *napi) { #ifdef CONFIG_NET_RX_BUSY_POLL /* If the skb was already marked with a valid NAPI ID, avoid overwriting * it. */ if (skb->napi_id < MIN_NAPI_ID) skb->napi_id = napi->napi_id; #endif } /* used in the protocol handler to propagate the napi_id to the socket */ static inline void sk_mark_napi_id(struct sock *sk, const struct sk_buff *skb) { #ifdef CONFIG_NET_RX_BUSY_POLL if (unlikely(READ_ONCE(sk->sk_napi_id) != skb->napi_id)) WRITE_ONCE(sk->sk_napi_id, skb->napi_id); #endif sk_rx_queue_update(sk, skb); } /* Variant of sk_mark_napi_id() for passive flow setup, * as sk->sk_napi_id and sk->sk_rx_queue_mapping content * needs to be set. */ static inline void sk_mark_napi_id_set(struct sock *sk, const struct sk_buff *skb) { #ifdef CONFIG_NET_RX_BUSY_POLL WRITE_ONCE(sk->sk_napi_id, skb->napi_id); #endif sk_rx_queue_set(sk, skb); } static inline void __sk_mark_napi_id_once(struct sock *sk, unsigned int napi_id) { #ifdef CONFIG_NET_RX_BUSY_POLL if (!READ_ONCE(sk->sk_napi_id)) WRITE_ONCE(sk->sk_napi_id, napi_id); #endif } /* variant used for unconnected sockets */ static inline void sk_mark_napi_id_once(struct sock *sk, const struct sk_buff *skb) { #ifdef CONFIG_NET_RX_BUSY_POLL __sk_mark_napi_id_once(sk, skb->napi_id); #endif } static inline void sk_mark_napi_id_once_xdp(struct sock *sk, const struct xdp_buff *xdp) { #ifdef CONFIG_NET_RX_BUSY_POLL __sk_mark_napi_id_once(sk, xdp->rxq->napi_id); #endif } #endif /* _LINUX_NET_BUSY_POLL_H */
9 5 3 6 2 2 4 1 2 1 6 2 2 2 2 2 2 3 1 2 1 1 1 1 15 7 7 8 1 8 1 5 2 4 1 1 2 3 169 169 40 143 3 3 1 1 1 5 5 1 1 2 1 3 3 1 2 4 4 1 2 1 15 12 12 2 1 1 1 11 3 3 3 13 1 14 5 9 2 1 2 2 2 1 2 3 3 5 4 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 5 1 1 1 1 2 1 1 7 1 2 1 1 1 1 2 1 1 9 1 5 1 2 2 1 1 3 2 2 2 1 1 3 1 1 1 1 1 9 1 9 1 1 7 7 4 1 1 6 1 5 2 2 2 2 2 1 1 1 2 2 1 1 1 1 4 5 5 1 1 1 1 1 1 2 2 3 3 2 1 2 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 2 1 1 3 1 1 1 3 85 82 114 52 164 24 3 4 15 2 1 1 2 1 1 1 1 2 1 1 2 5 2 7 2 3 1 9 1 6 2 1 4 1 1 5 1 3 1 1 1 1 2 4 2 9 1 1 1 2 2 1 1 1 2 4 3 5 1 1 2 3 166 157 8 112 51 167 1 161 1 5 168 91 58 1 4 13 1 162 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 // SPDX-License-Identifier: GPL-2.0-or-later /* * net/core/ethtool.c - Ethtool ioctl handler * Copyright (c) 2003 Matthew Wilcox <matthew@wil.cx> * * This file is where we call all the ethtool_ops commands to get * the information ethtool needs. */ #include <linux/compat.h> #include <linux/etherdevice.h> #include <linux/module.h> #include <linux/types.h> #include <linux/capability.h> #include <linux/errno.h> #include <linux/ethtool.h> #include <linux/netdevice.h> #include <linux/net_tstamp.h> #include <linux/phy.h> #include <linux/bitops.h> #include <linux/uaccess.h> #include <linux/vmalloc.h> #include <linux/sfp.h> #include <linux/slab.h> #include <linux/rtnetlink.h> #include <linux/sched/signal.h> #include <linux/net.h> #include <linux/pm_runtime.h> #include <linux/utsname.h> #include <net/devlink.h> #include <net/ipv6.h> #include <net/xdp_sock_drv.h> #include <net/flow_offload.h> #include <linux/ethtool_netlink.h> #include "common.h" /* State held across locks and calls for commands which have devlink fallback */ struct ethtool_devlink_compat { struct devlink *devlink; union { struct ethtool_flash efl; struct ethtool_drvinfo info; }; }; static struct devlink *netdev_to_devlink_get(struct net_device *dev) { if (!dev->devlink_port) return NULL; return devlink_try_get(dev->devlink_port->devlink); } /* * Some useful ethtool_ops methods that're device independent. * If we find that all drivers want to do the same thing here, * we can turn these into dev_() function calls. */ u32 ethtool_op_get_link(struct net_device *dev) { /* Synchronize carrier state with link watch, see also rtnl_getlink() */ linkwatch_sync_dev(dev); return netif_carrier_ok(dev) ? 1 : 0; } EXPORT_SYMBOL(ethtool_op_get_link); int ethtool_op_get_ts_info(struct net_device *dev, struct kernel_ethtool_ts_info *info) { info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | SOF_TIMESTAMPING_RX_SOFTWARE | SOF_TIMESTAMPING_SOFTWARE; info->phc_index = -1; return 0; } EXPORT_SYMBOL(ethtool_op_get_ts_info); /* Handlers for each ethtool command */ static int ethtool_get_features(struct net_device *dev, void __user *useraddr) { struct ethtool_gfeatures cmd = { .cmd = ETHTOOL_GFEATURES, .size = ETHTOOL_DEV_FEATURE_WORDS, }; struct ethtool_get_features_block features[ETHTOOL_DEV_FEATURE_WORDS]; u32 __user *sizeaddr; u32 copy_size; int i; /* in case feature bits run out again */ BUILD_BUG_ON(ETHTOOL_DEV_FEATURE_WORDS * sizeof(u32) > sizeof(netdev_features_t)); for (i = 0; i < ETHTOOL_DEV_FEATURE_WORDS; ++i) { features[i].available = (u32)(dev->hw_features >> (32 * i)); features[i].requested = (u32)(dev->wanted_features >> (32 * i)); features[i].active = (u32)(dev->features >> (32 * i)); features[i].never_changed = (u32)(NETIF_F_NEVER_CHANGE >> (32 * i)); } sizeaddr = useraddr + offsetof(struct ethtool_gfeatures, size); if (get_user(copy_size, sizeaddr)) return -EFAULT; if (copy_size > ETHTOOL_DEV_FEATURE_WORDS) copy_size = ETHTOOL_DEV_FEATURE_WORDS; if (copy_to_user(useraddr, &cmd, sizeof(cmd))) return -EFAULT; useraddr += sizeof(cmd); if (copy_to_user(useraddr, features, array_size(copy_size, sizeof(*features)))) return -EFAULT; return 0; } static int ethtool_set_features(struct net_device *dev, void __user *useraddr) { struct ethtool_sfeatures cmd; struct ethtool_set_features_block features[ETHTOOL_DEV_FEATURE_WORDS]; netdev_features_t wanted = 0, valid = 0; int i, ret = 0; if (copy_from_user(&cmd, useraddr, sizeof(cmd))) return -EFAULT; useraddr += sizeof(cmd); if (cmd.size != ETHTOOL_DEV_FEATURE_WORDS) return -EINVAL; if (copy_from_user(features, useraddr, sizeof(features))) return -EFAULT; for (i = 0; i < ETHTOOL_DEV_FEATURE_WORDS; ++i) { valid |= (netdev_features_t)features[i].valid << (32 * i); wanted |= (netdev_features_t)features[i].requested << (32 * i); } if (valid & ~NETIF_F_ETHTOOL_BITS) return -EINVAL; if (valid & ~dev->hw_features) { valid &= dev->hw_features; ret |= ETHTOOL_F_UNSUPPORTED; } dev->wanted_features &= ~valid; dev->wanted_features |= wanted & valid; __netdev_update_features(dev); if ((dev->wanted_features ^ dev->features) & valid) ret |= ETHTOOL_F_WISH; return ret; } static int __ethtool_get_sset_count(struct net_device *dev, int sset) { const struct ethtool_phy_ops *phy_ops = ethtool_phy_ops; const struct ethtool_ops *ops = dev->ethtool_ops; if (sset == ETH_SS_FEATURES) return ARRAY_SIZE(netdev_features_strings); if (sset == ETH_SS_RSS_HASH_FUNCS) return ARRAY_SIZE(rss_hash_func_strings); if (sset == ETH_SS_TUNABLES) return ARRAY_SIZE(tunable_strings); if (sset == ETH_SS_PHY_TUNABLES) return ARRAY_SIZE(phy_tunable_strings); if (sset == ETH_SS_PHY_STATS && dev->phydev && !ops->get_ethtool_phy_stats && phy_ops && phy_ops->get_sset_count) return phy_ops->get_sset_count(dev->phydev); if (sset == ETH_SS_LINK_MODES) return __ETHTOOL_LINK_MODE_MASK_NBITS; if (ops->get_sset_count && ops->get_strings) return ops->get_sset_count(dev, sset); else return -EOPNOTSUPP; } static void __ethtool_get_strings(struct net_device *dev, u32 stringset, u8 *data) { const struct ethtool_phy_ops *phy_ops = ethtool_phy_ops; const struct ethtool_ops *ops = dev->ethtool_ops; if (stringset == ETH_SS_FEATURES) memcpy(data, netdev_features_strings, sizeof(netdev_features_strings)); else if (stringset == ETH_SS_RSS_HASH_FUNCS) memcpy(data, rss_hash_func_strings, sizeof(rss_hash_func_strings)); else if (stringset == ETH_SS_TUNABLES) memcpy(data, tunable_strings, sizeof(tunable_strings)); else if (stringset == ETH_SS_PHY_TUNABLES) memcpy(data, phy_tunable_strings, sizeof(phy_tunable_strings)); else if (stringset == ETH_SS_PHY_STATS && dev->phydev && !ops->get_ethtool_phy_stats && phy_ops && phy_ops->get_strings) phy_ops->get_strings(dev->phydev, data); else if (stringset == ETH_SS_LINK_MODES) memcpy(data, link_mode_names, __ETHTOOL_LINK_MODE_MASK_NBITS * ETH_GSTRING_LEN); else /* ops->get_strings is valid because checked earlier */ ops->get_strings(dev, stringset, data); } static netdev_features_t ethtool_get_feature_mask(u32 eth_cmd) { /* feature masks of legacy discrete ethtool ops */ switch (eth_cmd) { case ETHTOOL_GTXCSUM: case ETHTOOL_STXCSUM: return NETIF_F_CSUM_MASK | NETIF_F_FCOE_CRC | NETIF_F_SCTP_CRC; case ETHTOOL_GRXCSUM: case ETHTOOL_SRXCSUM: return NETIF_F_RXCSUM; case ETHTOOL_GSG: case ETHTOOL_SSG: return NETIF_F_SG | NETIF_F_FRAGLIST; case ETHTOOL_GTSO: case ETHTOOL_STSO: return NETIF_F_ALL_TSO; case ETHTOOL_GGSO: case ETHTOOL_SGSO: return NETIF_F_GSO; case ETHTOOL_GGRO: case ETHTOOL_SGRO: return NETIF_F_GRO; default: BUG(); } } static int ethtool_get_one_feature(struct net_device *dev, char __user *useraddr, u32 ethcmd) { netdev_features_t mask = ethtool_get_feature_mask(ethcmd); struct ethtool_value edata = { .cmd = ethcmd, .data = !!(dev->features & mask), }; if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } static int ethtool_set_one_feature(struct net_device *dev, void __user *useraddr, u32 ethcmd) { struct ethtool_value edata; netdev_features_t mask; if (copy_from_user(&edata, useraddr, sizeof(edata))) return -EFAULT; mask = ethtool_get_feature_mask(ethcmd); mask &= dev->hw_features; if (!mask) return -EOPNOTSUPP; if (edata.data) dev->wanted_features |= mask; else dev->wanted_features &= ~mask; __netdev_update_features(dev); return 0; } #define ETH_ALL_FLAGS (ETH_FLAG_LRO | ETH_FLAG_RXVLAN | ETH_FLAG_TXVLAN | \ ETH_FLAG_NTUPLE | ETH_FLAG_RXHASH) #define ETH_ALL_FEATURES (NETIF_F_LRO | NETIF_F_HW_VLAN_CTAG_RX | \ NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_NTUPLE | \ NETIF_F_RXHASH) static u32 __ethtool_get_flags(struct net_device *dev) { u32 flags = 0; if (dev->features & NETIF_F_LRO) flags |= ETH_FLAG_LRO; if (dev->features & NETIF_F_HW_VLAN_CTAG_RX) flags |= ETH_FLAG_RXVLAN; if (dev->features & NETIF_F_HW_VLAN_CTAG_TX) flags |= ETH_FLAG_TXVLAN; if (dev->features & NETIF_F_NTUPLE) flags |= ETH_FLAG_NTUPLE; if (dev->features & NETIF_F_RXHASH) flags |= ETH_FLAG_RXHASH; return flags; } static int __ethtool_set_flags(struct net_device *dev, u32 data) { netdev_features_t features = 0, changed; if (data & ~ETH_ALL_FLAGS) return -EINVAL; if (data & ETH_FLAG_LRO) features |= NETIF_F_LRO; if (data & ETH_FLAG_RXVLAN) features |= NETIF_F_HW_VLAN_CTAG_RX; if (data & ETH_FLAG_TXVLAN) features |= NETIF_F_HW_VLAN_CTAG_TX; if (data & ETH_FLAG_NTUPLE) features |= NETIF_F_NTUPLE; if (data & ETH_FLAG_RXHASH) features |= NETIF_F_RXHASH; /* allow changing only bits set in hw_features */ changed = (features ^ dev->features) & ETH_ALL_FEATURES; if (changed & ~dev->hw_features) return (changed & dev->hw_features) ? -EINVAL : -EOPNOTSUPP; dev->wanted_features = (dev->wanted_features & ~changed) | (features & changed); __netdev_update_features(dev); return 0; } /* Given two link masks, AND them together and save the result in dst. */ void ethtool_intersect_link_masks(struct ethtool_link_ksettings *dst, struct ethtool_link_ksettings *src) { unsigned int size = BITS_TO_LONGS(__ETHTOOL_LINK_MODE_MASK_NBITS); unsigned int idx = 0; for (; idx < size; idx++) { dst->link_modes.supported[idx] &= src->link_modes.supported[idx]; dst->link_modes.advertising[idx] &= src->link_modes.advertising[idx]; } } EXPORT_SYMBOL(ethtool_intersect_link_masks); void ethtool_convert_legacy_u32_to_link_mode(unsigned long *dst, u32 legacy_u32) { linkmode_zero(dst); dst[0] = legacy_u32; } EXPORT_SYMBOL(ethtool_convert_legacy_u32_to_link_mode); /* return false if src had higher bits set. lower bits always updated. */ bool ethtool_convert_link_mode_to_legacy_u32(u32 *legacy_u32, const unsigned long *src) { *legacy_u32 = src[0]; return find_next_bit(src, __ETHTOOL_LINK_MODE_MASK_NBITS, 32) == __ETHTOOL_LINK_MODE_MASK_NBITS; } EXPORT_SYMBOL(ethtool_convert_link_mode_to_legacy_u32); /* return false if ksettings link modes had higher bits * set. legacy_settings always updated (best effort) */ static bool convert_link_ksettings_to_legacy_settings( struct ethtool_cmd *legacy_settings, const struct ethtool_link_ksettings *link_ksettings) { bool retval = true; memset(legacy_settings, 0, sizeof(*legacy_settings)); /* this also clears the deprecated fields in legacy structure: * __u8 transceiver; * __u32 maxtxpkt; * __u32 maxrxpkt; */ retval &= ethtool_convert_link_mode_to_legacy_u32( &legacy_settings->supported, link_ksettings->link_modes.supported); retval &= ethtool_convert_link_mode_to_legacy_u32( &legacy_settings->advertising, link_ksettings->link_modes.advertising); retval &= ethtool_convert_link_mode_to_legacy_u32( &legacy_settings->lp_advertising, link_ksettings->link_modes.lp_advertising); ethtool_cmd_speed_set(legacy_settings, link_ksettings->base.speed); legacy_settings->duplex = link_ksettings->base.duplex; legacy_settings->port = link_ksettings->base.port; legacy_settings->phy_address = link_ksettings->base.phy_address; legacy_settings->autoneg = link_ksettings->base.autoneg; legacy_settings->mdio_support = link_ksettings->base.mdio_support; legacy_settings->eth_tp_mdix = link_ksettings->base.eth_tp_mdix; legacy_settings->eth_tp_mdix_ctrl = link_ksettings->base.eth_tp_mdix_ctrl; legacy_settings->transceiver = link_ksettings->base.transceiver; return retval; } /* number of 32-bit words to store the user's link mode bitmaps */ #define __ETHTOOL_LINK_MODE_MASK_NU32 \ DIV_ROUND_UP(__ETHTOOL_LINK_MODE_MASK_NBITS, 32) /* layout of the struct passed from/to userland */ struct ethtool_link_usettings { struct ethtool_link_settings base; struct { __u32 supported[__ETHTOOL_LINK_MODE_MASK_NU32]; __u32 advertising[__ETHTOOL_LINK_MODE_MASK_NU32]; __u32 lp_advertising[__ETHTOOL_LINK_MODE_MASK_NU32]; } link_modes; }; /* Internal kernel helper to query a device ethtool_link_settings. */ int __ethtool_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *link_ksettings) { ASSERT_RTNL(); if (!dev->ethtool_ops->get_link_ksettings) return -EOPNOTSUPP; if (!netif_device_present(dev)) return -ENODEV; memset(link_ksettings, 0, sizeof(*link_ksettings)); return dev->ethtool_ops->get_link_ksettings(dev, link_ksettings); } EXPORT_SYMBOL(__ethtool_get_link_ksettings); /* convert ethtool_link_usettings in user space to a kernel internal * ethtool_link_ksettings. return 0 on success, errno on error. */ static int load_link_ksettings_from_user(struct ethtool_link_ksettings *to, const void __user *from) { struct ethtool_link_usettings link_usettings; if (copy_from_user(&link_usettings, from, sizeof(link_usettings))) return -EFAULT; memcpy(&to->base, &link_usettings.base, sizeof(to->base)); bitmap_from_arr32(to->link_modes.supported, link_usettings.link_modes.supported, __ETHTOOL_LINK_MODE_MASK_NBITS); bitmap_from_arr32(to->link_modes.advertising, link_usettings.link_modes.advertising, __ETHTOOL_LINK_MODE_MASK_NBITS); bitmap_from_arr32(to->link_modes.lp_advertising, link_usettings.link_modes.lp_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS); return 0; } /* Check if the user is trying to change anything besides speed/duplex */ bool ethtool_virtdev_validate_cmd(const struct ethtool_link_ksettings *cmd) { struct ethtool_link_settings base2 = {}; base2.speed = cmd->base.speed; base2.port = PORT_OTHER; base2.duplex = cmd->base.duplex; base2.cmd = cmd->base.cmd; base2.link_mode_masks_nwords = cmd->base.link_mode_masks_nwords; return !memcmp(&base2, &cmd->base, sizeof(base2)) && bitmap_empty(cmd->link_modes.supported, __ETHTOOL_LINK_MODE_MASK_NBITS) && bitmap_empty(cmd->link_modes.lp_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS); } /* convert a kernel internal ethtool_link_ksettings to * ethtool_link_usettings in user space. return 0 on success, errno on * error. */ static int store_link_ksettings_for_user(void __user *to, const struct ethtool_link_ksettings *from) { struct ethtool_link_usettings link_usettings; memcpy(&link_usettings, from, sizeof(link_usettings)); bitmap_to_arr32(link_usettings.link_modes.supported, from->link_modes.supported, __ETHTOOL_LINK_MODE_MASK_NBITS); bitmap_to_arr32(link_usettings.link_modes.advertising, from->link_modes.advertising, __ETHTOOL_LINK_MODE_MASK_NBITS); bitmap_to_arr32(link_usettings.link_modes.lp_advertising, from->link_modes.lp_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS); if (copy_to_user(to, &link_usettings, sizeof(link_usettings))) return -EFAULT; return 0; } /* Query device for its ethtool_link_settings. */ static int ethtool_get_link_ksettings(struct net_device *dev, void __user *useraddr) { int err = 0; struct ethtool_link_ksettings link_ksettings; ASSERT_RTNL(); if (!dev->ethtool_ops->get_link_ksettings) return -EOPNOTSUPP; /* handle bitmap nbits handshake */ if (copy_from_user(&link_ksettings.base, useraddr, sizeof(link_ksettings.base))) return -EFAULT; if (__ETHTOOL_LINK_MODE_MASK_NU32 != link_ksettings.base.link_mode_masks_nwords) { /* wrong link mode nbits requested */ memset(&link_ksettings, 0, sizeof(link_ksettings)); link_ksettings.base.cmd = ETHTOOL_GLINKSETTINGS; /* send back number of words required as negative val */ compiletime_assert(__ETHTOOL_LINK_MODE_MASK_NU32 <= S8_MAX, "need too many bits for link modes!"); link_ksettings.base.link_mode_masks_nwords = -((s8)__ETHTOOL_LINK_MODE_MASK_NU32); /* copy the base fields back to user, not the link * mode bitmaps */ if (copy_to_user(useraddr, &link_ksettings.base, sizeof(link_ksettings.base))) return -EFAULT; return 0; } /* handshake successful: user/kernel agree on * link_mode_masks_nwords */ memset(&link_ksettings, 0, sizeof(link_ksettings)); err = dev->ethtool_ops->get_link_ksettings(dev, &link_ksettings); if (err < 0) return err; /* make sure we tell the right values to user */ link_ksettings.base.cmd = ETHTOOL_GLINKSETTINGS; link_ksettings.base.link_mode_masks_nwords = __ETHTOOL_LINK_MODE_MASK_NU32; link_ksettings.base.master_slave_cfg = MASTER_SLAVE_CFG_UNSUPPORTED; link_ksettings.base.master_slave_state = MASTER_SLAVE_STATE_UNSUPPORTED; link_ksettings.base.rate_matching = RATE_MATCH_NONE; return store_link_ksettings_for_user(useraddr, &link_ksettings); } /* Update device ethtool_link_settings. */ static int ethtool_set_link_ksettings(struct net_device *dev, void __user *useraddr) { struct ethtool_link_ksettings link_ksettings = {}; int err; ASSERT_RTNL(); if (!dev->ethtool_ops->set_link_ksettings) return -EOPNOTSUPP; /* make sure nbits field has expected value */ if (copy_from_user(&link_ksettings.base, useraddr, sizeof(link_ksettings.base))) return -EFAULT; if (__ETHTOOL_LINK_MODE_MASK_NU32 != link_ksettings.base.link_mode_masks_nwords) return -EINVAL; /* copy the whole structure, now that we know it has expected * format */ err = load_link_ksettings_from_user(&link_ksettings, useraddr); if (err) return err; /* re-check nwords field, just in case */ if (__ETHTOOL_LINK_MODE_MASK_NU32 != link_ksettings.base.link_mode_masks_nwords) return -EINVAL; if (link_ksettings.base.master_slave_cfg || link_ksettings.base.master_slave_state) return -EINVAL; err = dev->ethtool_ops->set_link_ksettings(dev, &link_ksettings); if (err >= 0) { ethtool_notify(dev, ETHTOOL_MSG_LINKINFO_NTF, NULL); ethtool_notify(dev, ETHTOOL_MSG_LINKMODES_NTF, NULL); } return err; } int ethtool_virtdev_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd, u32 *dev_speed, u8 *dev_duplex) { u32 speed; u8 duplex; speed = cmd->base.speed; duplex = cmd->base.duplex; /* don't allow custom speed and duplex */ if (!ethtool_validate_speed(speed) || !ethtool_validate_duplex(duplex) || !ethtool_virtdev_validate_cmd(cmd)) return -EINVAL; *dev_speed = speed; *dev_duplex = duplex; return 0; } EXPORT_SYMBOL(ethtool_virtdev_set_link_ksettings); /* Query device for its ethtool_cmd settings. * * Backward compatibility note: for compatibility with legacy ethtool, this is * now implemented via get_link_ksettings. When driver reports higher link mode * bits, a kernel warning is logged once (with name of 1st driver/device) to * recommend user to upgrade ethtool, but the command is successful (only the * lower link mode bits reported back to user). Deprecated fields from * ethtool_cmd (transceiver/maxrxpkt/maxtxpkt) are always set to zero. */ static int ethtool_get_settings(struct net_device *dev, void __user *useraddr) { struct ethtool_link_ksettings link_ksettings; struct ethtool_cmd cmd; int err; ASSERT_RTNL(); if (!dev->ethtool_ops->get_link_ksettings) return -EOPNOTSUPP; if (dev->ethtool->module_fw_flash_in_progress) return -EBUSY; memset(&link_ksettings, 0, sizeof(link_ksettings)); err = dev->ethtool_ops->get_link_ksettings(dev, &link_ksettings); if (err < 0) return err; convert_link_ksettings_to_legacy_settings(&cmd, &link_ksettings); /* send a sensible cmd tag back to user */ cmd.cmd = ETHTOOL_GSET; if (copy_to_user(useraddr, &cmd, sizeof(cmd))) return -EFAULT; return 0; } /* Update device link settings with given ethtool_cmd. * * Backward compatibility note: for compatibility with legacy ethtool, this is * now always implemented via set_link_settings. When user's request updates * deprecated ethtool_cmd fields (transceiver/maxrxpkt/maxtxpkt), a kernel * warning is logged once (with name of 1st driver/device) to recommend user to * upgrade ethtool, and the request is rejected. */ static int ethtool_set_settings(struct net_device *dev, void __user *useraddr) { struct ethtool_link_ksettings link_ksettings; struct ethtool_cmd cmd; int ret; ASSERT_RTNL(); if (copy_from_user(&cmd, useraddr, sizeof(cmd))) return -EFAULT; if (!dev->ethtool_ops->set_link_ksettings) return -EOPNOTSUPP; if (!convert_legacy_settings_to_link_ksettings(&link_ksettings, &cmd)) return -EINVAL; link_ksettings.base.link_mode_masks_nwords = __ETHTOOL_LINK_MODE_MASK_NU32; ret = dev->ethtool_ops->set_link_ksettings(dev, &link_ksettings); if (ret >= 0) { ethtool_notify(dev, ETHTOOL_MSG_LINKINFO_NTF, NULL); ethtool_notify(dev, ETHTOOL_MSG_LINKMODES_NTF, NULL); } return ret; } static int ethtool_get_drvinfo(struct net_device *dev, struct ethtool_devlink_compat *rsp) { const struct ethtool_ops *ops = dev->ethtool_ops; struct device *parent = dev->dev.parent; rsp->info.cmd = ETHTOOL_GDRVINFO; strscpy(rsp->info.version, init_uts_ns.name.release, sizeof(rsp->info.version)); if (ops->get_drvinfo) { ops->get_drvinfo(dev, &rsp->info); if (!rsp->info.bus_info[0] && parent) strscpy(rsp->info.bus_info, dev_name(parent), sizeof(rsp->info.bus_info)); if (!rsp->info.driver[0] && parent && parent->driver) strscpy(rsp->info.driver, parent->driver->name, sizeof(rsp->info.driver)); } else if (parent && parent->driver) { strscpy(rsp->info.bus_info, dev_name(parent), sizeof(rsp->info.bus_info)); strscpy(rsp->info.driver, parent->driver->name, sizeof(rsp->info.driver)); } else if (dev->rtnl_link_ops) { strscpy(rsp->info.driver, dev->rtnl_link_ops->kind, sizeof(rsp->info.driver)); } else { return -EOPNOTSUPP; } /* * this method of obtaining string set info is deprecated; * Use ETHTOOL_GSSET_INFO instead. */ if (ops->get_sset_count) { int rc; rc = ops->get_sset_count(dev, ETH_SS_TEST); if (rc >= 0) rsp->info.testinfo_len = rc; rc = ops->get_sset_count(dev, ETH_SS_STATS); if (rc >= 0) rsp->info.n_stats = rc; rc = ops->get_sset_count(dev, ETH_SS_PRIV_FLAGS); if (rc >= 0) rsp->info.n_priv_flags = rc; } if (ops->get_regs_len) { int ret = ops->get_regs_len(dev); if (ret > 0) rsp->info.regdump_len = ret; } if (ops->get_eeprom_len) rsp->info.eedump_len = ops->get_eeprom_len(dev); if (!rsp->info.fw_version[0]) rsp->devlink = netdev_to_devlink_get(dev); return 0; } static noinline_for_stack int ethtool_get_sset_info(struct net_device *dev, void __user *useraddr) { struct ethtool_sset_info info; u64 sset_mask; int i, idx = 0, n_bits = 0, ret, rc; u32 *info_buf = NULL; if (copy_from_user(&info, useraddr, sizeof(info))) return -EFAULT; /* store copy of mask, because we zero struct later on */ sset_mask = info.sset_mask; if (!sset_mask) return 0; /* calculate size of return buffer */ n_bits = hweight64(sset_mask); memset(&info, 0, sizeof(info)); info.cmd = ETHTOOL_GSSET_INFO; info_buf = kcalloc(n_bits, sizeof(u32), GFP_USER); if (!info_buf) return -ENOMEM; /* * fill return buffer based on input bitmask and successful * get_sset_count return */ for (i = 0; i < 64; i++) { if (!(sset_mask & (1ULL << i))) continue; rc = __ethtool_get_sset_count(dev, i); if (rc >= 0) { info.sset_mask |= (1ULL << i); info_buf[idx++] = rc; } } ret = -EFAULT; if (copy_to_user(useraddr, &info, sizeof(info))) goto out; useraddr += offsetof(struct ethtool_sset_info, data); if (copy_to_user(useraddr, info_buf, array_size(idx, sizeof(u32)))) goto out; ret = 0; out: kfree(info_buf); return ret; } static noinline_for_stack int ethtool_rxnfc_copy_from_compat(struct ethtool_rxnfc *rxnfc, const struct compat_ethtool_rxnfc __user *useraddr, size_t size) { struct compat_ethtool_rxnfc crxnfc = {}; /* We expect there to be holes between fs.m_ext and * fs.ring_cookie and at the end of fs, but nowhere else. * On non-x86, no conversion should be needed. */ BUILD_BUG_ON(!IS_ENABLED(CONFIG_X86_64) && sizeof(struct compat_ethtool_rxnfc) != sizeof(struct ethtool_rxnfc)); BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + sizeof(useraddr->fs.m_ext) != offsetof(struct ethtool_rxnfc, fs.m_ext) + sizeof(rxnfc->fs.m_ext)); BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.location) - offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != offsetof(struct ethtool_rxnfc, fs.location) - offsetof(struct ethtool_rxnfc, fs.ring_cookie)); if (copy_from_user(&crxnfc, useraddr, min(size, sizeof(crxnfc)))) return -EFAULT; *rxnfc = (struct ethtool_rxnfc) { .cmd = crxnfc.cmd, .flow_type = crxnfc.flow_type, .data = crxnfc.data, .fs = { .flow_type = crxnfc.fs.flow_type, .h_u = crxnfc.fs.h_u, .h_ext = crxnfc.fs.h_ext, .m_u = crxnfc.fs.m_u, .m_ext = crxnfc.fs.m_ext, .ring_cookie = crxnfc.fs.ring_cookie, .location = crxnfc.fs.location, }, .rule_cnt = crxnfc.rule_cnt, }; return 0; } static int ethtool_rxnfc_copy_from_user(struct ethtool_rxnfc *rxnfc, const void __user *useraddr, size_t size) { if (compat_need_64bit_alignment_fixup()) return ethtool_rxnfc_copy_from_compat(rxnfc, useraddr, size); if (copy_from_user(rxnfc, useraddr, size)) return -EFAULT; return 0; } static int ethtool_rxnfc_copy_to_compat(void __user *useraddr, const struct ethtool_rxnfc *rxnfc, size_t size, const u32 *rule_buf) { struct compat_ethtool_rxnfc crxnfc; memset(&crxnfc, 0, sizeof(crxnfc)); crxnfc = (struct compat_ethtool_rxnfc) { .cmd = rxnfc->cmd, .flow_type = rxnfc->flow_type, .data = rxnfc->data, .fs = { .flow_type = rxnfc->fs.flow_type, .h_u = rxnfc->fs.h_u, .h_ext = rxnfc->fs.h_ext, .m_u = rxnfc->fs.m_u, .m_ext = rxnfc->fs.m_ext, .ring_cookie = rxnfc->fs.ring_cookie, .location = rxnfc->fs.location, }, .rule_cnt = rxnfc->rule_cnt, }; if (copy_to_user(useraddr, &crxnfc, min(size, sizeof(crxnfc)))) return -EFAULT; return 0; } static int ethtool_rxnfc_copy_struct(u32 cmd, struct ethtool_rxnfc *info, size_t *info_size, void __user *useraddr) { /* struct ethtool_rxnfc was originally defined for * ETHTOOL_{G,S}RXFH with only the cmd, flow_type and data * members. User-space might still be using that * definition. */ if (cmd == ETHTOOL_GRXFH || cmd == ETHTOOL_SRXFH) *info_size = (offsetof(struct ethtool_rxnfc, data) + sizeof(info->data)); if (ethtool_rxnfc_copy_from_user(info, useraddr, *info_size)) return -EFAULT; if ((cmd == ETHTOOL_GRXFH || cmd == ETHTOOL_SRXFH) && info->flow_type & FLOW_RSS) { *info_size = sizeof(*info); if (ethtool_rxnfc_copy_from_user(info, useraddr, *info_size)) return -EFAULT; /* Since malicious users may modify the original data, * we need to check whether FLOW_RSS is still requested. */ if (!(info->flow_type & FLOW_RSS)) return -EINVAL; } if (info->cmd != cmd) return -EINVAL; return 0; } static int ethtool_rxnfc_copy_to_user(void __user *useraddr, const struct ethtool_rxnfc *rxnfc, size_t size, const u32 *rule_buf) { int ret; if (compat_need_64bit_alignment_fixup()) { ret = ethtool_rxnfc_copy_to_compat(useraddr, rxnfc, size, rule_buf); useraddr += offsetof(struct compat_ethtool_rxnfc, rule_locs); } else { ret = copy_to_user(useraddr, rxnfc, size); useraddr += offsetof(struct ethtool_rxnfc, rule_locs); } if (ret) return -EFAULT; if (rule_buf) { if (copy_to_user(useraddr, rule_buf, rxnfc->rule_cnt * sizeof(u32))) return -EFAULT; } return 0; } static noinline_for_stack int ethtool_set_rxnfc(struct net_device *dev, u32 cmd, void __user *useraddr) { const struct ethtool_ops *ops = dev->ethtool_ops; struct ethtool_rxnfc info; size_t info_size = sizeof(info); int rc; if (!ops->set_rxnfc) return -EOPNOTSUPP; rc = ethtool_rxnfc_copy_struct(cmd, &info, &info_size, useraddr); if (rc) return rc; if (ops->get_rxfh) { struct ethtool_rxfh_param rxfh = {}; rc = ops->get_rxfh(dev, &rxfh); if (rc) return rc; /* Sanity check: if symmetric-xor is set, then: * 1 - no other fields besides IP src/dst and/or L4 src/dst * 2 - If src is set, dst must also be set */ if ((rxfh.input_xfrm & RXH_XFRM_SYM_XOR) && ((info.data & ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3)) || (!!(info.data & RXH_IP_SRC) ^ !!(info.data & RXH_IP_DST)) || (!!(info.data & RXH_L4_B_0_1) ^ !!(info.data & RXH_L4_B_2_3)))) return -EINVAL; } rc = ops->set_rxnfc(dev, &info); if (rc) return rc; if (cmd == ETHTOOL_SRXCLSRLINS && ethtool_rxnfc_copy_to_user(useraddr, &info, info_size, NULL)) return -EFAULT; return 0; } static noinline_for_stack int ethtool_get_rxnfc(struct net_device *dev, u32 cmd, void __user *useraddr) { struct ethtool_rxnfc info; size_t info_size = sizeof(info); const struct ethtool_ops *ops = dev->ethtool_ops; int ret; void *rule_buf = NULL; if (!ops->get_rxnfc) return -EOPNOTSUPP; ret = ethtool_rxnfc_copy_struct(cmd, &info, &info_size, useraddr); if (ret) return ret; if (info.cmd == ETHTOOL_GRXCLSRLALL) { if (info.rule_cnt > 0) { if (info.rule_cnt <= KMALLOC_MAX_SIZE / sizeof(u32)) rule_buf = kcalloc(info.rule_cnt, sizeof(u32), GFP_USER); if (!rule_buf) return -ENOMEM; } } ret = ops->get_rxnfc(dev, &info, rule_buf); if (ret < 0) goto err_out; ret = ethtool_rxnfc_copy_to_user(useraddr, &info, info_size, rule_buf); err_out: kfree(rule_buf); return ret; } static int ethtool_copy_validate_indir(u32 *indir, void __user *useraddr, struct ethtool_rxnfc *rx_rings, u32 size) { int i; if (copy_from_user(indir, useraddr, array_size(size, sizeof(indir[0])))) return -EFAULT; /* Validate ring indices */ for (i = 0; i < size; i++) if (indir[i] >= rx_rings->data) return -EINVAL; return 0; } u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; void netdev_rss_key_fill(void *buffer, size_t len) { BUG_ON(len > sizeof(netdev_rss_key)); net_get_random_once(netdev_rss_key, sizeof(netdev_rss_key)); memcpy(buffer, netdev_rss_key, len); } EXPORT_SYMBOL(netdev_rss_key_fill); static noinline_for_stack int ethtool_get_rxfh_indir(struct net_device *dev, void __user *useraddr) { struct ethtool_rxfh_param rxfh = {}; u32 user_size; int ret; if (!dev->ethtool_ops->get_rxfh_indir_size || !dev->ethtool_ops->get_rxfh) return -EOPNOTSUPP; rxfh.indir_size = dev->ethtool_ops->get_rxfh_indir_size(dev); if (rxfh.indir_size == 0) return -EOPNOTSUPP; if (copy_from_user(&user_size, useraddr + offsetof(struct ethtool_rxfh_indir, size), sizeof(user_size))) return -EFAULT; if (copy_to_user(useraddr + offsetof(struct ethtool_rxfh_indir, size), &rxfh.indir_size, sizeof(rxfh.indir_size))) return -EFAULT; /* If the user buffer size is 0, this is just a query for the * device table size. Otherwise, if it's smaller than the * device table size it's an error. */ if (user_size < rxfh.indir_size) return user_size == 0 ? 0 : -EINVAL; rxfh.indir = kcalloc(rxfh.indir_size, sizeof(rxfh.indir[0]), GFP_USER); if (!rxfh.indir) return -ENOMEM; ret = dev->ethtool_ops->get_rxfh(dev, &rxfh); if (ret) goto out; if (copy_to_user(useraddr + offsetof(struct ethtool_rxfh_indir, ring_index[0]), rxfh.indir, rxfh.indir_size * sizeof(*rxfh.indir))) ret = -EFAULT; out: kfree(rxfh.indir); return ret; } static noinline_for_stack int ethtool_set_rxfh_indir(struct net_device *dev, void __user *useraddr) { const struct ethtool_ops *ops = dev->ethtool_ops; struct ethtool_rxfh_param rxfh_dev = {}; struct netlink_ext_ack *extack = NULL; struct ethtool_rxnfc rx_rings; u32 user_size, i; int ret; u32 ringidx_offset = offsetof(struct ethtool_rxfh_indir, ring_index[0]); if (!ops->get_rxfh_indir_size || !ops->set_rxfh || !ops->get_rxnfc) return -EOPNOTSUPP; rxfh_dev.indir_size = ops->get_rxfh_indir_size(dev); if (rxfh_dev.indir_size == 0) return -EOPNOTSUPP; if (copy_from_user(&user_size, useraddr + offsetof(struct ethtool_rxfh_indir, size), sizeof(user_size))) return -EFAULT; if (user_size != 0 && user_size != rxfh_dev.indir_size) return -EINVAL; rxfh_dev.indir = kcalloc(rxfh_dev.indir_size, sizeof(rxfh_dev.indir[0]), GFP_USER); if (!rxfh_dev.indir) return -ENOMEM; rx_rings.cmd = ETHTOOL_GRXRINGS; ret = ops->get_rxnfc(dev, &rx_rings, NULL); if (ret) goto out; if (user_size == 0) { u32 *indir = rxfh_dev.indir; for (i = 0; i < rxfh_dev.indir_size; i++) indir[i] = ethtool_rxfh_indir_default(i, rx_rings.data); } else { ret = ethtool_copy_validate_indir(rxfh_dev.indir, useraddr + ringidx_offset, &rx_rings, rxfh_dev.indir_size); if (ret) goto out; } rxfh_dev.hfunc = ETH_RSS_HASH_NO_CHANGE; ret = ops->set_rxfh(dev, &rxfh_dev, extack); if (ret) goto out; /* indicate whether rxfh was set to default */ if (user_size == 0) dev->priv_flags &= ~IFF_RXFH_CONFIGURED; else dev->priv_flags |= IFF_RXFH_CONFIGURED; out: kfree(rxfh_dev.indir); return ret; } static noinline_for_stack int ethtool_get_rxfh(struct net_device *dev, void __user *useraddr) { const struct ethtool_ops *ops = dev->ethtool_ops; struct ethtool_rxfh_param rxfh_dev = {}; u32 user_indir_size, user_key_size; struct ethtool_rxfh_context *ctx; struct ethtool_rxfh rxfh; u32 indir_bytes; u8 *rss_config; u32 total_size; int ret; if (!ops->get_rxfh) return -EOPNOTSUPP; if (ops->get_rxfh_indir_size) rxfh_dev.indir_size = ops->get_rxfh_indir_size(dev); if (ops->get_rxfh_key_size) rxfh_dev.key_size = ops->get_rxfh_key_size(dev); if (copy_from_user(&rxfh, useraddr, sizeof(rxfh))) return -EFAULT; user_indir_size = rxfh.indir_size; user_key_size = rxfh.key_size; /* Check that reserved fields are 0 for now */ if (rxfh.rsvd8[0] || rxfh.rsvd8[1] || rxfh.rsvd32) return -EINVAL; /* Most drivers don't handle rss_context, check it's 0 as well */ if (rxfh.rss_context && !(ops->cap_rss_ctx_supported || ops->create_rxfh_context)) return -EOPNOTSUPP; rxfh.indir_size = rxfh_dev.indir_size; rxfh.key_size = rxfh_dev.key_size; if (copy_to_user(useraddr, &rxfh, sizeof(rxfh))) return -EFAULT; if ((user_indir_size && user_indir_size != rxfh_dev.indir_size) || (user_key_size && user_key_size != rxfh_dev.key_size)) return -EINVAL; indir_bytes = user_indir_size * sizeof(rxfh_dev.indir[0]); total_size = indir_bytes + user_key_size; rss_config = kzalloc(total_size, GFP_USER); if (!rss_config) return -ENOMEM; if (user_indir_size) rxfh_dev.indir = (u32 *)rss_config; if (user_key_size) rxfh_dev.key = rss_config + indir_bytes; if (rxfh.rss_context) { ctx = xa_load(&dev->ethtool->rss_ctx, rxfh.rss_context); if (!ctx) { ret = -ENOENT; goto out; } if (rxfh_dev.indir) memcpy(rxfh_dev.indir, ethtool_rxfh_context_indir(ctx), indir_bytes); if (!ops->rxfh_per_ctx_key) { rxfh_dev.key_size = 0; } else { if (rxfh_dev.key) memcpy(rxfh_dev.key, ethtool_rxfh_context_key(ctx), user_key_size); rxfh_dev.hfunc = ctx->hfunc; } rxfh_dev.input_xfrm = ctx->input_xfrm; ret = 0; } else { ret = dev->ethtool_ops->get_rxfh(dev, &rxfh_dev); if (ret) goto out; } if (copy_to_user(useraddr + offsetof(struct ethtool_rxfh, hfunc), &rxfh_dev.hfunc, sizeof(rxfh.hfunc))) { ret = -EFAULT; } else if (copy_to_user(useraddr + offsetof(struct ethtool_rxfh, input_xfrm), &rxfh_dev.input_xfrm, sizeof(rxfh.input_xfrm))) { ret = -EFAULT; } else if (copy_to_user(useraddr + offsetof(struct ethtool_rxfh, key_size), &rxfh_dev.key_size, sizeof(rxfh.key_size))) { ret = -EFAULT; } else if (copy_to_user(useraddr + offsetof(struct ethtool_rxfh, rss_config[0]), rss_config, total_size)) { ret = -EFAULT; } out: kfree(rss_config); return ret; } static struct ethtool_rxfh_context * ethtool_rxfh_ctx_alloc(const struct ethtool_ops *ops, u32 indir_size, u32 key_size) { size_t indir_bytes, flex_len, key_off, size; struct ethtool_rxfh_context *ctx; u32 priv_bytes, indir_max; u16 key_max; key_max = max(key_size, ops->rxfh_key_space); indir_max = max(indir_size, ops->rxfh_indir_space); priv_bytes = ALIGN(ops->rxfh_priv_size, sizeof(u32)); indir_bytes = array_size(indir_max, sizeof(u32)); key_off = size_add(priv_bytes, indir_bytes); flex_len = size_add(key_off, key_max); size = struct_size_t(struct ethtool_rxfh_context, data, flex_len); ctx = kzalloc(size, GFP_KERNEL_ACCOUNT); if (!ctx) return NULL; ctx->indir_size = indir_size; ctx->key_size = key_size; ctx->key_off = key_off; ctx->priv_size = ops->rxfh_priv_size; ctx->hfunc = ETH_RSS_HASH_NO_CHANGE; ctx->input_xfrm = RXH_XFRM_NO_CHANGE; return ctx; } static noinline_for_stack int ethtool_set_rxfh(struct net_device *dev, void __user *useraddr) { u32 rss_cfg_offset = offsetof(struct ethtool_rxfh, rss_config[0]); const struct ethtool_ops *ops = dev->ethtool_ops; u32 dev_indir_size = 0, dev_key_size = 0, i; u32 user_indir_len = 0, indir_bytes = 0; struct ethtool_rxfh_param rxfh_dev = {}; struct ethtool_rxfh_context *ctx = NULL; struct netlink_ext_ack *extack = NULL; struct ethtool_rxnfc rx_rings; struct ethtool_rxfh rxfh; bool locked = false; /* dev->ethtool->rss_lock taken */ bool create = false; u8 *rss_config; int ret; if (!ops->get_rxnfc || !ops->set_rxfh) return -EOPNOTSUPP; if (ops->get_rxfh_indir_size) dev_indir_size = ops->get_rxfh_indir_size(dev); if (ops->get_rxfh_key_size) dev_key_size = ops->get_rxfh_key_size(dev); if (copy_from_user(&rxfh, useraddr, sizeof(rxfh))) return -EFAULT; /* Check that reserved fields are 0 for now */ if (rxfh.rsvd8[0] || rxfh.rsvd8[1] || rxfh.rsvd32) return -EINVAL; /* Most drivers don't handle rss_context, check it's 0 as well */ if (rxfh.rss_context && !(ops->cap_rss_ctx_supported || ops->create_rxfh_context)) return -EOPNOTSUPP; /* Check input data transformation capabilities */ if (rxfh.input_xfrm && rxfh.input_xfrm != RXH_XFRM_SYM_XOR && rxfh.input_xfrm != RXH_XFRM_NO_CHANGE) return -EINVAL; if (rxfh.input_xfrm != RXH_XFRM_NO_CHANGE && (rxfh.input_xfrm & RXH_XFRM_SYM_XOR) && !ops->cap_rss_sym_xor_supported) return -EOPNOTSUPP; create = rxfh.rss_context == ETH_RXFH_CONTEXT_ALLOC; if ((rxfh.indir_size && rxfh.indir_size != ETH_RXFH_INDIR_NO_CHANGE && rxfh.indir_size != dev_indir_size) || (rxfh.key_size && rxfh.key_size != dev_key_size)) return -EINVAL; /* Must request at least one change: indir size, hash key, function * or input transformation. * There's no need for any of it in case of context creation. */ if (!create && (rxfh.indir_size == ETH_RXFH_INDIR_NO_CHANGE && rxfh.key_size == 0 && rxfh.hfunc == ETH_RSS_HASH_NO_CHANGE && rxfh.input_xfrm == RXH_XFRM_NO_CHANGE)) return -EINVAL; indir_bytes = dev_indir_size * sizeof(rxfh_dev.indir[0]); /* Check settings which may be global rather than per RSS-context */ if (rxfh.rss_context && !ops->rxfh_per_ctx_key) if (rxfh.key_size || (rxfh.hfunc && rxfh.hfunc != ETH_RSS_HASH_NO_CHANGE) || (rxfh.input_xfrm && rxfh.input_xfrm != RXH_XFRM_NO_CHANGE)) return -EOPNOTSUPP; rss_config = kzalloc(indir_bytes + dev_key_size, GFP_USER); if (!rss_config) return -ENOMEM; rx_rings.cmd = ETHTOOL_GRXRINGS; ret = ops->get_rxnfc(dev, &rx_rings, NULL); if (ret) goto out; /* rxfh.indir_size == 0 means reset the indir table to default (master * context) or delete the context (other RSS contexts). * rxfh.indir_size == ETH_RXFH_INDIR_NO_CHANGE means leave it unchanged. */ if (rxfh.indir_size && rxfh.indir_size != ETH_RXFH_INDIR_NO_CHANGE) { user_indir_len = indir_bytes; rxfh_dev.indir = (u32 *)rss_config; rxfh_dev.indir_size = dev_indir_size; ret = ethtool_copy_validate_indir(rxfh_dev.indir, useraddr + rss_cfg_offset, &rx_rings, rxfh.indir_size); if (ret) goto out; } else if (rxfh.indir_size == 0) { if (rxfh.rss_context == 0) { u32 *indir; rxfh_dev.indir = (u32 *)rss_config; rxfh_dev.indir_size = dev_indir_size; indir = rxfh_dev.indir; for (i = 0; i < dev_indir_size; i++) indir[i] = ethtool_rxfh_indir_default(i, rx_rings.data); } else { rxfh_dev.rss_delete = true; } } if (rxfh.key_size) { rxfh_dev.key_size = dev_key_size; rxfh_dev.key = rss_config + indir_bytes; if (copy_from_user(rxfh_dev.key, useraddr + rss_cfg_offset + user_indir_len, rxfh.key_size)) { ret = -EFAULT; goto out; } } if (rxfh.rss_context) { mutex_lock(&dev->ethtool->rss_lock); locked = true; } if (create) { if (rxfh_dev.rss_delete) { ret = -EINVAL; goto out; } ctx = ethtool_rxfh_ctx_alloc(ops, dev_indir_size, dev_key_size); if (!ctx) { ret = -ENOMEM; goto out; } if (ops->create_rxfh_context) { u32 limit = ops->rxfh_max_num_contexts ?: U32_MAX; u32 ctx_id; /* driver uses new API, core allocates ID */ ret = xa_alloc(&dev->ethtool->rss_ctx, &ctx_id, ctx, XA_LIMIT(1, limit - 1), GFP_KERNEL_ACCOUNT); if (ret < 0) { kfree(ctx); goto out; } WARN_ON(!ctx_id); /* can't happen */ rxfh.rss_context = ctx_id; } } else if (rxfh.rss_context) { ctx = xa_load(&dev->ethtool->rss_ctx, rxfh.rss_context); if (!ctx) { ret = -ENOENT; goto out; } } rxfh_dev.hfunc = rxfh.hfunc; rxfh_dev.rss_context = rxfh.rss_context; rxfh_dev.input_xfrm = rxfh.input_xfrm; if (rxfh.rss_context && ops->create_rxfh_context) { if (create) { ret = ops->create_rxfh_context(dev, ctx, &rxfh_dev, extack); /* Make sure driver populates defaults */ WARN_ON_ONCE(!ret && !rxfh_dev.key && !memchr_inv(ethtool_rxfh_context_key(ctx), 0, ctx->key_size)); } else if (rxfh_dev.rss_delete) { ret = ops->remove_rxfh_context(dev, ctx, rxfh.rss_context, extack); } else { ret = ops->modify_rxfh_context(dev, ctx, &rxfh_dev, extack); } } else { ret = ops->set_rxfh(dev, &rxfh_dev, extack); } if (ret) { if (create) { /* failed to create, free our new tracking entry */ if (ops->create_rxfh_context) xa_erase(&dev->ethtool->rss_ctx, rxfh.rss_context); kfree(ctx); } goto out; } if (copy_to_user(useraddr + offsetof(struct ethtool_rxfh, rss_context), &rxfh_dev.rss_context, sizeof(rxfh_dev.rss_context))) ret = -EFAULT; if (!rxfh_dev.rss_context) { /* indicate whether rxfh was set to default */ if (rxfh.indir_size == 0) dev->priv_flags &= ~IFF_RXFH_CONFIGURED; else if (rxfh.indir_size != ETH_RXFH_INDIR_NO_CHANGE) dev->priv_flags |= IFF_RXFH_CONFIGURED; } /* Update rss_ctx tracking */ if (create && !ops->create_rxfh_context) { /* driver uses old API, it chose context ID */ if (WARN_ON(xa_load(&dev->ethtool->rss_ctx, rxfh_dev.rss_context))) { /* context ID reused, our tracking is screwed */ kfree(ctx); goto out; } /* Allocate the exact ID the driver gave us */ if (xa_is_err(xa_store(&dev->ethtool->rss_ctx, rxfh_dev.rss_context, ctx, GFP_KERNEL))) { kfree(ctx); goto out; } /* Fetch the defaults for the old API, in the new API drivers * should write defaults into ctx themselves. */ rxfh_dev.indir = (u32 *)rss_config; rxfh_dev.indir_size = dev_indir_size; rxfh_dev.key = rss_config + indir_bytes; rxfh_dev.key_size = dev_key_size; ret = ops->get_rxfh(dev, &rxfh_dev); if (WARN_ON(ret)) { xa_erase(&dev->ethtool->rss_ctx, rxfh.rss_context); kfree(ctx); goto out; } } if (rxfh_dev.rss_delete) { WARN_ON(xa_erase(&dev->ethtool->rss_ctx, rxfh.rss_context) != ctx); kfree(ctx); } else if (ctx) { if (rxfh_dev.indir) { for (i = 0; i < dev_indir_size; i++) ethtool_rxfh_context_indir(ctx)[i] = rxfh_dev.indir[i]; ctx->indir_configured = rxfh.indir_size && rxfh.indir_size != ETH_RXFH_INDIR_NO_CHANGE; } if (rxfh_dev.key) { memcpy(ethtool_rxfh_context_key(ctx), rxfh_dev.key, dev_key_size); ctx->key_configured = !!rxfh.key_size; } if (rxfh_dev.hfunc != ETH_RSS_HASH_NO_CHANGE) ctx->hfunc = rxfh_dev.hfunc; if (rxfh_dev.input_xfrm != RXH_XFRM_NO_CHANGE) ctx->input_xfrm = rxfh_dev.input_xfrm; } out: if (locked) mutex_unlock(&dev->ethtool->rss_lock); kfree(rss_config); return ret; } static int ethtool_get_regs(struct net_device *dev, char __user *useraddr) { struct ethtool_regs regs; const struct ethtool_ops *ops = dev->ethtool_ops; void *regbuf; int reglen, ret; if (!ops->get_regs || !ops->get_regs_len) return -EOPNOTSUPP; if (copy_from_user(&regs, useraddr, sizeof(regs))) return -EFAULT; reglen = ops->get_regs_len(dev); if (reglen <= 0) return reglen; if (regs.len > reglen) regs.len = reglen; regbuf = vzalloc(reglen); if (!regbuf) return -ENOMEM; if (regs.len < reglen) reglen = regs.len; ops->get_regs(dev, &regs, regbuf); ret = -EFAULT; if (copy_to_user(useraddr, &regs, sizeof(regs))) goto out; useraddr += offsetof(struct ethtool_regs, data); if (copy_to_user(useraddr, regbuf, reglen)) goto out; ret = 0; out: vfree(regbuf); return ret; } static int ethtool_reset(struct net_device *dev, char __user *useraddr) { struct ethtool_value reset; int ret; if (!dev->ethtool_ops->reset) return -EOPNOTSUPP; if (dev->ethtool->module_fw_flash_in_progress) return -EBUSY; if (copy_from_user(&reset, useraddr, sizeof(reset))) return -EFAULT; ret = dev->ethtool_ops->reset(dev, &reset.data); if (ret) return ret; if (copy_to_user(useraddr, &reset, sizeof(reset))) return -EFAULT; return 0; } static int ethtool_get_wol(struct net_device *dev, char __user *useraddr) { struct ethtool_wolinfo wol; if (!dev->ethtool_ops->get_wol) return -EOPNOTSUPP; memset(&wol, 0, sizeof(struct ethtool_wolinfo)); wol.cmd = ETHTOOL_GWOL; dev->ethtool_ops->get_wol(dev, &wol); if (copy_to_user(useraddr, &wol, sizeof(wol))) return -EFAULT; return 0; } static int ethtool_set_wol(struct net_device *dev, char __user *useraddr) { struct ethtool_wolinfo wol, cur_wol; int ret; if (!dev->ethtool_ops->get_wol || !dev->ethtool_ops->set_wol) return -EOPNOTSUPP; memset(&cur_wol, 0, sizeof(struct ethtool_wolinfo)); cur_wol.cmd = ETHTOOL_GWOL; dev->ethtool_ops->get_wol(dev, &cur_wol); if (copy_from_user(&wol, useraddr, sizeof(wol))) return -EFAULT; if (wol.wolopts & ~cur_wol.supported) return -EINVAL; if (wol.wolopts == cur_wol.wolopts && !memcmp(wol.sopass, cur_wol.sopass, sizeof(wol.sopass))) return 0; ret = dev->ethtool_ops->set_wol(dev, &wol); if (ret) return ret; dev->ethtool->wol_enabled = !!wol.wolopts; ethtool_notify(dev, ETHTOOL_MSG_WOL_NTF, NULL); return 0; } static void eee_to_keee(struct ethtool_keee *keee, const struct ethtool_eee *eee) { memset(keee, 0, sizeof(*keee)); keee->eee_enabled = eee->eee_enabled; keee->tx_lpi_enabled = eee->tx_lpi_enabled; keee->tx_lpi_timer = eee->tx_lpi_timer; ethtool_convert_legacy_u32_to_link_mode(keee->advertised, eee->advertised); } static void keee_to_eee(struct ethtool_eee *eee, const struct ethtool_keee *keee) { bool overflow; memset(eee, 0, sizeof(*eee)); eee->eee_active = keee->eee_active; eee->eee_enabled = keee->eee_enabled; eee->tx_lpi_enabled = keee->tx_lpi_enabled; eee->tx_lpi_timer = keee->tx_lpi_timer; overflow = !ethtool_convert_link_mode_to_legacy_u32(&eee->supported, keee->supported); ethtool_convert_link_mode_to_legacy_u32(&eee->advertised, keee->advertised); ethtool_convert_link_mode_to_legacy_u32(&eee->lp_advertised, keee->lp_advertised); if (overflow) pr_warn("Ethtool ioctl interface doesn't support passing EEE linkmodes beyond bit 32\n"); } static int ethtool_get_eee(struct net_device *dev, char __user *useraddr) { struct ethtool_keee keee; struct ethtool_eee eee; int rc; if (!dev->ethtool_ops->get_eee) return -EOPNOTSUPP; memset(&keee, 0, sizeof(keee)); rc = dev->ethtool_ops->get_eee(dev, &keee); if (rc) return rc; keee_to_eee(&eee, &keee); if (copy_to_user(useraddr, &eee, sizeof(eee))) return -EFAULT; return 0; } static int ethtool_set_eee(struct net_device *dev, char __user *useraddr) { struct ethtool_keee keee; struct ethtool_eee eee; int ret; if (!dev->ethtool_ops->set_eee) return -EOPNOTSUPP; if (copy_from_user(&eee, useraddr, sizeof(eee))) return -EFAULT; eee_to_keee(&keee, &eee); ret = dev->ethtool_ops->set_eee(dev, &keee); if (!ret) ethtool_notify(dev, ETHTOOL_MSG_EEE_NTF, NULL); return ret; } static int ethtool_nway_reset(struct net_device *dev) { if (!dev->ethtool_ops->nway_reset) return -EOPNOTSUPP; return dev->ethtool_ops->nway_reset(dev); } static int ethtool_get_link(struct net_device *dev, char __user *useraddr) { struct ethtool_value edata = { .cmd = ETHTOOL_GLINK }; int link = __ethtool_get_link(dev); if (link < 0) return link; edata.data = link; if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } static int ethtool_get_any_eeprom(struct net_device *dev, void __user *useraddr, int (*getter)(struct net_device *, struct ethtool_eeprom *, u8 *), u32 total_len) { struct ethtool_eeprom eeprom; void __user *userbuf = useraddr + sizeof(eeprom); u32 bytes_remaining; u8 *data; int ret = 0; if (copy_from_user(&eeprom, useraddr, sizeof(eeprom))) return -EFAULT; /* Check for wrap and zero */ if (eeprom.offset + eeprom.len <= eeprom.offset) return -EINVAL; /* Check for exceeding total eeprom len */ if (eeprom.offset + eeprom.len > total_len) return -EINVAL; data = kzalloc(PAGE_SIZE, GFP_USER); if (!data) return -ENOMEM; bytes_remaining = eeprom.len; while (bytes_remaining > 0) { eeprom.len = min(bytes_remaining, (u32)PAGE_SIZE); ret = getter(dev, &eeprom, data); if (ret) break; if (!eeprom.len) { ret = -EIO; break; } if (copy_to_user(userbuf, data, eeprom.len)) { ret = -EFAULT; break; } userbuf += eeprom.len; eeprom.offset += eeprom.len; bytes_remaining -= eeprom.len; } eeprom.len = userbuf - (useraddr + sizeof(eeprom)); eeprom.offset -= eeprom.len; if (copy_to_user(useraddr, &eeprom, sizeof(eeprom))) ret = -EFAULT; kfree(data); return ret; } static int ethtool_get_eeprom(struct net_device *dev, void __user *useraddr) { const struct ethtool_ops *ops = dev->ethtool_ops; if (!ops->get_eeprom || !ops->get_eeprom_len || !ops->get_eeprom_len(dev)) return -EOPNOTSUPP; return ethtool_get_any_eeprom(dev, useraddr, ops->get_eeprom, ops->get_eeprom_len(dev)); } static int ethtool_set_eeprom(struct net_device *dev, void __user *useraddr) { struct ethtool_eeprom eeprom; const struct ethtool_ops *ops = dev->ethtool_ops; void __user *userbuf = useraddr + sizeof(eeprom); u32 bytes_remaining; u8 *data; int ret = 0; if (!ops->set_eeprom || !ops->get_eeprom_len || !ops->get_eeprom_len(dev)) return -EOPNOTSUPP; if (copy_from_user(&eeprom, useraddr, sizeof(eeprom))) return -EFAULT; /* Check for wrap and zero */ if (eeprom.offset + eeprom.len <= eeprom.offset) return -EINVAL; /* Check for exceeding total eeprom len */ if (eeprom.offset + eeprom.len > ops->get_eeprom_len(dev)) return -EINVAL; data = kzalloc(PAGE_SIZE, GFP_USER); if (!data) return -ENOMEM; bytes_remaining = eeprom.len; while (bytes_remaining > 0) { eeprom.len = min(bytes_remaining, (u32)PAGE_SIZE); if (copy_from_user(data, userbuf, eeprom.len)) { ret = -EFAULT; break; } ret = ops->set_eeprom(dev, &eeprom, data); if (ret) break; userbuf += eeprom.len; eeprom.offset += eeprom.len; bytes_remaining -= eeprom.len; } kfree(data); return ret; } static noinline_for_stack int ethtool_get_coalesce(struct net_device *dev, void __user *useraddr) { struct ethtool_coalesce coalesce = { .cmd = ETHTOOL_GCOALESCE }; struct kernel_ethtool_coalesce kernel_coalesce = {}; int ret; if (!dev->ethtool_ops->get_coalesce) return -EOPNOTSUPP; ret = dev->ethtool_ops->get_coalesce(dev, &coalesce, &kernel_coalesce, NULL); if (ret) return ret; if (copy_to_user(useraddr, &coalesce, sizeof(coalesce))) return -EFAULT; return 0; } static bool ethtool_set_coalesce_supported(struct net_device *dev, struct ethtool_coalesce *coalesce) { u32 supported_params = dev->ethtool_ops->supported_coalesce_params; u32 nonzero_params = 0; if (coalesce->rx_coalesce_usecs) nonzero_params |= ETHTOOL_COALESCE_RX_USECS; if (coalesce->rx_max_coalesced_frames) nonzero_params |= ETHTOOL_COALESCE_RX_MAX_FRAMES; if (coalesce->rx_coalesce_usecs_irq) nonzero_params |= ETHTOOL_COALESCE_RX_USECS_IRQ; if (coalesce->rx_max_coalesced_frames_irq) nonzero_params |= ETHTOOL_COALESCE_RX_MAX_FRAMES_IRQ; if (coalesce->tx_coalesce_usecs) nonzero_params |= ETHTOOL_COALESCE_TX_USECS; if (coalesce->tx_max_coalesced_frames) nonzero_params |= ETHTOOL_COALESCE_TX_MAX_FRAMES; if (coalesce->tx_coalesce_usecs_irq) nonzero_params |= ETHTOOL_COALESCE_TX_USECS_IRQ; if (coalesce->tx_max_coalesced_frames_irq) nonzero_params |= ETHTOOL_COALESCE_TX_MAX_FRAMES_IRQ; if (coalesce->stats_block_coalesce_usecs) nonzero_params |= ETHTOOL_COALESCE_STATS_BLOCK_USECS; if (coalesce->use_adaptive_rx_coalesce) nonzero_params |= ETHTOOL_COALESCE_USE_ADAPTIVE_RX; if (coalesce->use_adaptive_tx_coalesce) nonzero_params |= ETHTOOL_COALESCE_USE_ADAPTIVE_TX; if (coalesce->pkt_rate_low) nonzero_params |= ETHTOOL_COALESCE_PKT_RATE_LOW; if (coalesce->rx_coalesce_usecs_low) nonzero_params |= ETHTOOL_COALESCE_RX_USECS_LOW; if (coalesce->rx_max_coalesced_frames_low) nonzero_params |= ETHTOOL_COALESCE_RX_MAX_FRAMES_LOW; if (coalesce->tx_coalesce_usecs_low) nonzero_params |= ETHTOOL_COALESCE_TX_USECS_LOW; if (coalesce->tx_max_coalesced_frames_low) nonzero_params |= ETHTOOL_COALESCE_TX_MAX_FRAMES_LOW; if (coalesce->pkt_rate_high) nonzero_params |= ETHTOOL_COALESCE_PKT_RATE_HIGH; if (coalesce->rx_coalesce_usecs_high) nonzero_params |= ETHTOOL_COALESCE_RX_USECS_HIGH; if (coalesce->rx_max_coalesced_frames_high) nonzero_params |= ETHTOOL_COALESCE_RX_MAX_FRAMES_HIGH; if (coalesce->tx_coalesce_usecs_high) nonzero_params |= ETHTOOL_COALESCE_TX_USECS_HIGH; if (coalesce->tx_max_coalesced_frames_high) nonzero_params |= ETHTOOL_COALESCE_TX_MAX_FRAMES_HIGH; if (coalesce->rate_sample_interval) nonzero_params |= ETHTOOL_COALESCE_RATE_SAMPLE_INTERVAL; return (supported_params & nonzero_params) == nonzero_params; } static noinline_for_stack int ethtool_set_coalesce(struct net_device *dev, void __user *useraddr) { struct kernel_ethtool_coalesce kernel_coalesce = {}; struct ethtool_coalesce coalesce; int ret; if (!dev->ethtool_ops->set_coalesce || !dev->ethtool_ops->get_coalesce) return -EOPNOTSUPP; ret = dev->ethtool_ops->get_coalesce(dev, &coalesce, &kernel_coalesce, NULL); if (ret) return ret; if (copy_from_user(&coalesce, useraddr, sizeof(coalesce))) return -EFAULT; if (!ethtool_set_coalesce_supported(dev, &coalesce)) return -EOPNOTSUPP; ret = dev->ethtool_ops->set_coalesce(dev, &coalesce, &kernel_coalesce, NULL); if (!ret) ethtool_notify(dev, ETHTOOL_MSG_COALESCE_NTF, NULL); return ret; } static int ethtool_get_ringparam(struct net_device *dev, void __user *useraddr) { struct ethtool_ringparam ringparam = { .cmd = ETHTOOL_GRINGPARAM }; struct kernel_ethtool_ringparam kernel_ringparam = {}; if (!dev->ethtool_ops->get_ringparam) return -EOPNOTSUPP; dev->ethtool_ops->get_ringparam(dev, &ringparam, &kernel_ringparam, NULL); if (copy_to_user(useraddr, &ringparam, sizeof(ringparam))) return -EFAULT; return 0; } static int ethtool_set_ringparam(struct net_device *dev, void __user *useraddr) { struct ethtool_ringparam ringparam, max = { .cmd = ETHTOOL_GRINGPARAM }; struct kernel_ethtool_ringparam kernel_ringparam; int ret; if (!dev->ethtool_ops->set_ringparam || !dev->ethtool_ops->get_ringparam) return -EOPNOTSUPP; if (copy_from_user(&ringparam, useraddr, sizeof(ringparam))) return -EFAULT; dev->ethtool_ops->get_ringparam(dev, &max, &kernel_ringparam, NULL); /* ensure new ring parameters are within the maximums */ if (ringparam.rx_pending > max.rx_max_pending || ringparam.rx_mini_pending > max.rx_mini_max_pending || ringparam.rx_jumbo_pending > max.rx_jumbo_max_pending || ringparam.tx_pending > max.tx_max_pending) return -EINVAL; ret = dev->ethtool_ops->set_ringparam(dev, &ringparam, &kernel_ringparam, NULL); if (!ret) ethtool_notify(dev, ETHTOOL_MSG_RINGS_NTF, NULL); return ret; } static noinline_for_stack int ethtool_get_channels(struct net_device *dev, void __user *useraddr) { struct ethtool_channels channels = { .cmd = ETHTOOL_GCHANNELS }; if (!dev->ethtool_ops->get_channels) return -EOPNOTSUPP; dev->ethtool_ops->get_channels(dev, &channels); if (copy_to_user(useraddr, &channels, sizeof(channels))) return -EFAULT; return 0; } static noinline_for_stack int ethtool_set_channels(struct net_device *dev, void __user *useraddr) { struct ethtool_channels channels, curr = { .cmd = ETHTOOL_GCHANNELS }; u16 from_channel, to_channel; unsigned int i; int ret; if (!dev->ethtool_ops->set_channels || !dev->ethtool_ops->get_channels) return -EOPNOTSUPP; if (copy_from_user(&channels, useraddr, sizeof(channels))) return -EFAULT; dev->ethtool_ops->get_channels(dev, &curr); if (channels.rx_count == curr.rx_count && channels.tx_count == curr.tx_count && channels.combined_count == curr.combined_count && channels.other_count == curr.other_count) return 0; /* ensure new counts are within the maximums */ if (channels.rx_count > curr.max_rx || channels.tx_count > curr.max_tx || channels.combined_count > curr.max_combined || channels.other_count > curr.max_other) return -EINVAL; /* ensure there is at least one RX and one TX channel */ if (!channels.combined_count && (!channels.rx_count || !channels.tx_count)) return -EINVAL; ret = ethtool_check_max_channel(dev, channels, NULL); if (ret) return ret; /* Disabling channels, query zero-copy AF_XDP sockets */ from_channel = channels.combined_count + min(channels.rx_count, channels.tx_count); to_channel = curr.combined_count + max(curr.rx_count, curr.tx_count); for (i = from_channel; i < to_channel; i++) if (xsk_get_pool_from_qid(dev, i)) return -EINVAL; ret = dev->ethtool_ops->set_channels(dev, &channels); if (!ret) ethtool_notify(dev, ETHTOOL_MSG_CHANNELS_NTF, NULL); return ret; } static int ethtool_get_pauseparam(struct net_device *dev, void __user *useraddr) { struct ethtool_pauseparam pauseparam = { .cmd = ETHTOOL_GPAUSEPARAM }; if (!dev->ethtool_ops->get_pauseparam) return -EOPNOTSUPP; dev->ethtool_ops->get_pauseparam(dev, &pauseparam); if (copy_to_user(useraddr, &pauseparam, sizeof(pauseparam))) return -EFAULT; return 0; } static int ethtool_set_pauseparam(struct net_device *dev, void __user *useraddr) { struct ethtool_pauseparam pauseparam; int ret; if (!dev->ethtool_ops->set_pauseparam) return -EOPNOTSUPP; if (copy_from_user(&pauseparam, useraddr, sizeof(pauseparam))) return -EFAULT; ret = dev->ethtool_ops->set_pauseparam(dev, &pauseparam); if (!ret) ethtool_notify(dev, ETHTOOL_MSG_PAUSE_NTF, NULL); return ret; } static int ethtool_self_test(struct net_device *dev, char __user *useraddr) { struct ethtool_test test; const struct ethtool_ops *ops = dev->ethtool_ops; u64 *data; int ret, test_len; if (!ops->self_test || !ops->get_sset_count) return -EOPNOTSUPP; test_len = ops->get_sset_count(dev, ETH_SS_TEST); if (test_len < 0) return test_len; WARN_ON(test_len == 0); if (copy_from_user(&test, useraddr, sizeof(test))) return -EFAULT; test.len = test_len; data = kcalloc(test_len, sizeof(u64), GFP_USER); if (!data) return -ENOMEM; netif_testing_on(dev); ops->self_test(dev, &test, data); netif_testing_off(dev); ret = -EFAULT; if (copy_to_user(useraddr, &test, sizeof(test))) goto out; useraddr += sizeof(test); if (copy_to_user(useraddr, data, array_size(test.len, sizeof(u64)))) goto out; ret = 0; out: kfree(data); return ret; } static int ethtool_get_strings(struct net_device *dev, void __user *useraddr) { struct ethtool_gstrings gstrings; u8 *data; int ret; if (copy_from_user(&gstrings, useraddr, sizeof(gstrings))) return -EFAULT; ret = __ethtool_get_sset_count(dev, gstrings.string_set); if (ret < 0) return ret; if (ret > S32_MAX / ETH_GSTRING_LEN) return -ENOMEM; WARN_ON_ONCE(!ret); gstrings.len = ret; if (gstrings.len) { data = vzalloc(array_size(gstrings.len, ETH_GSTRING_LEN)); if (!data) return -ENOMEM; __ethtool_get_strings(dev, gstrings.string_set, data); } else { data = NULL; } ret = -EFAULT; if (copy_to_user(useraddr, &gstrings, sizeof(gstrings))) goto out; useraddr += sizeof(gstrings); if (gstrings.len && copy_to_user(useraddr, data, array_size(gstrings.len, ETH_GSTRING_LEN))) goto out; ret = 0; out: vfree(data); return ret; } __printf(2, 3) void ethtool_sprintf(u8 **data, const char *fmt, ...) { va_list args; va_start(args, fmt); vsnprintf(*data, ETH_GSTRING_LEN, fmt, args); va_end(args); *data += ETH_GSTRING_LEN; } EXPORT_SYMBOL(ethtool_sprintf); void ethtool_puts(u8 **data, const char *str) { strscpy(*data, str, ETH_GSTRING_LEN); *data += ETH_GSTRING_LEN; } EXPORT_SYMBOL(ethtool_puts); static int ethtool_phys_id(struct net_device *dev, void __user *useraddr) { struct ethtool_value id; static bool busy; const struct ethtool_ops *ops = dev->ethtool_ops; netdevice_tracker dev_tracker; int rc; if (!ops->set_phys_id) return -EOPNOTSUPP; if (busy) return -EBUSY; if (copy_from_user(&id, useraddr, sizeof(id))) return -EFAULT; rc = ops->set_phys_id(dev, ETHTOOL_ID_ACTIVE); if (rc < 0) return rc; /* Drop the RTNL lock while waiting, but prevent reentry or * removal of the device. */ busy = true; netdev_hold(dev, &dev_tracker, GFP_KERNEL); rtnl_unlock(); if (rc == 0) { /* Driver will handle this itself */ schedule_timeout_interruptible( id.data ? (id.data * HZ) : MAX_SCHEDULE_TIMEOUT); } else { /* Driver expects to be called at twice the frequency in rc */ int n = rc * 2, interval = HZ / n; u64 count = mul_u32_u32(n, id.data); u64 i = 0; do { rtnl_lock(); rc = ops->set_phys_id(dev, (i++ & 1) ? ETHTOOL_ID_OFF : ETHTOOL_ID_ON); rtnl_unlock(); if (rc) break; schedule_timeout_interruptible(interval); } while (!signal_pending(current) && (!id.data || i < count)); } rtnl_lock(); netdev_put(dev, &dev_tracker); busy = false; (void) ops->set_phys_id(dev, ETHTOOL_ID_INACTIVE); return rc; } static int ethtool_get_stats(struct net_device *dev, void __user *useraddr) { struct ethtool_stats stats; const struct ethtool_ops *ops = dev->ethtool_ops; u64 *data; int ret, n_stats; if (!ops->get_ethtool_stats || !ops->get_sset_count) return -EOPNOTSUPP; n_stats = ops->get_sset_count(dev, ETH_SS_STATS); if (n_stats < 0) return n_stats; if (n_stats > S32_MAX / sizeof(u64)) return -ENOMEM; WARN_ON_ONCE(!n_stats); if (copy_from_user(&stats, useraddr, sizeof(stats))) return -EFAULT; stats.n_stats = n_stats; if (n_stats) { data = vzalloc(array_size(n_stats, sizeof(u64))); if (!data) return -ENOMEM; ops->get_ethtool_stats(dev, &stats, data); } else { data = NULL; } ret = -EFAULT; if (copy_to_user(useraddr, &stats, sizeof(stats))) goto out; useraddr += sizeof(stats); if (n_stats && copy_to_user(useraddr, data, array_size(n_stats, sizeof(u64)))) goto out; ret = 0; out: vfree(data); return ret; } static int ethtool_vzalloc_stats_array(int n_stats, u64 **data) { if (n_stats < 0) return n_stats; if (n_stats > S32_MAX / sizeof(u64)) return -ENOMEM; if (WARN_ON_ONCE(!n_stats)) return -EOPNOTSUPP; *data = vzalloc(array_size(n_stats, sizeof(u64))); if (!*data) return -ENOMEM; return 0; } static int ethtool_get_phy_stats_phydev(struct phy_device *phydev, struct ethtool_stats *stats, u64 **data) { const struct ethtool_phy_ops *phy_ops = ethtool_phy_ops; int n_stats, ret; if (!phy_ops || !phy_ops->get_sset_count || !phy_ops->get_stats) return -EOPNOTSUPP; n_stats = phy_ops->get_sset_count(phydev); ret = ethtool_vzalloc_stats_array(n_stats, data); if (ret) return ret; stats->n_stats = n_stats; return phy_ops->get_stats(phydev, stats, *data); } static int ethtool_get_phy_stats_ethtool(struct net_device *dev, struct ethtool_stats *stats, u64 **data) { const struct ethtool_ops *ops = dev->ethtool_ops; int n_stats, ret; if (!ops || !ops->get_sset_count || !ops->get_ethtool_phy_stats) return -EOPNOTSUPP; n_stats = ops->get_sset_count(dev, ETH_SS_PHY_STATS); ret = ethtool_vzalloc_stats_array(n_stats, data); if (ret) return ret; stats->n_stats = n_stats; ops->get_ethtool_phy_stats(dev, stats, *data); return 0; } static int ethtool_get_phy_stats(struct net_device *dev, void __user *useraddr) { struct phy_device *phydev = dev->phydev; struct ethtool_stats stats; u64 *data = NULL; int ret = -EOPNOTSUPP; if (copy_from_user(&stats, useraddr, sizeof(stats))) return -EFAULT; if (phydev) ret = ethtool_get_phy_stats_phydev(phydev, &stats, &data); if (ret == -EOPNOTSUPP) ret = ethtool_get_phy_stats_ethtool(dev, &stats, &data); if (ret) goto out; if (copy_to_user(useraddr, &stats, sizeof(stats))) { ret = -EFAULT; goto out; } useraddr += sizeof(stats); if (copy_to_user(useraddr, data, array_size(stats.n_stats, sizeof(u64)))) ret = -EFAULT; out: vfree(data); return ret; } static int ethtool_get_perm_addr(struct net_device *dev, void __user *useraddr) { struct ethtool_perm_addr epaddr; if (copy_from_user(&epaddr, useraddr, sizeof(epaddr))) return -EFAULT; if (epaddr.size < dev->addr_len) return -ETOOSMALL; epaddr.size = dev->addr_len; if (copy_to_user(useraddr, &epaddr, sizeof(epaddr))) return -EFAULT; useraddr += sizeof(epaddr); if (copy_to_user(useraddr, dev->perm_addr, epaddr.size)) return -EFAULT; return 0; } static int ethtool_get_value(struct net_device *dev, char __user *useraddr, u32 cmd, u32 (*actor)(struct net_device *)) { struct ethtool_value edata = { .cmd = cmd }; if (!actor) return -EOPNOTSUPP; edata.data = actor(dev); if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } static int ethtool_set_value_void(struct net_device *dev, char __user *useraddr, void (*actor)(struct net_device *, u32)) { struct ethtool_value edata; if (!actor) return -EOPNOTSUPP; if (copy_from_user(&edata, useraddr, sizeof(edata))) return -EFAULT; actor(dev, edata.data); return 0; } static int ethtool_set_value(struct net_device *dev, char __user *useraddr, int (*actor)(struct net_device *, u32)) { struct ethtool_value edata; if (!actor) return -EOPNOTSUPP; if (copy_from_user(&edata, useraddr, sizeof(edata))) return -EFAULT; return actor(dev, edata.data); } static int ethtool_flash_device(struct net_device *dev, struct ethtool_devlink_compat *req) { if (!dev->ethtool_ops->flash_device) { req->devlink = netdev_to_devlink_get(dev); return 0; } return dev->ethtool_ops->flash_device(dev, &req->efl); } static int ethtool_set_dump(struct net_device *dev, void __user *useraddr) { struct ethtool_dump dump; if (!dev->ethtool_ops->set_dump) return -EOPNOTSUPP; if (copy_from_user(&dump, useraddr, sizeof(dump))) return -EFAULT; return dev->ethtool_ops->set_dump(dev, &dump); } static int ethtool_get_dump_flag(struct net_device *dev, void __user *useraddr) { int ret; struct ethtool_dump dump; const struct ethtool_ops *ops = dev->ethtool_ops; if (!ops->get_dump_flag) return -EOPNOTSUPP; if (copy_from_user(&dump, useraddr, sizeof(dump))) return -EFAULT; ret = ops->get_dump_flag(dev, &dump); if (ret) return ret; if (copy_to_user(useraddr, &dump, sizeof(dump))) return -EFAULT; return 0; } static int ethtool_get_dump_data(struct net_device *dev, void __user *useraddr) { int ret; __u32 len; struct ethtool_dump dump, tmp; const struct ethtool_ops *ops = dev->ethtool_ops; void *data = NULL; if (!ops->get_dump_data || !ops->get_dump_flag) return -EOPNOTSUPP; if (copy_from_user(&dump, useraddr, sizeof(dump))) return -EFAULT; memset(&tmp, 0, sizeof(tmp)); tmp.cmd = ETHTOOL_GET_DUMP_FLAG; ret = ops->get_dump_flag(dev, &tmp); if (ret) return ret; len = min(tmp.len, dump.len); if (!len) return -EFAULT; /* Don't ever let the driver think there's more space available * than it requested with .get_dump_flag(). */ dump.len = len; /* Always allocate enough space to hold the whole thing so that the * driver does not need to check the length and bother with partial * dumping. */ data = vzalloc(tmp.len); if (!data) return -ENOMEM; ret = ops->get_dump_data(dev, &dump, data); if (ret) goto out; /* There are two sane possibilities: * 1. The driver's .get_dump_data() does not touch dump.len. * 2. Or it may set dump.len to how much it really writes, which * should be tmp.len (or len if it can do a partial dump). * In any case respond to userspace with the actual length of data * it's receiving. */ WARN_ON(dump.len != len && dump.len != tmp.len); dump.len = len; if (copy_to_user(useraddr, &dump, sizeof(dump))) { ret = -EFAULT; goto out; } useraddr += offsetof(struct ethtool_dump, data); if (copy_to_user(useraddr, data, len)) ret = -EFAULT; out: vfree(data); return ret; } static int ethtool_get_ts_info(struct net_device *dev, void __user *useraddr) { struct kernel_ethtool_ts_info kernel_info; struct ethtool_ts_info info = {}; int err; err = __ethtool_get_ts_info(dev, &kernel_info); if (err) return err; info.cmd = kernel_info.cmd; info.so_timestamping = kernel_info.so_timestamping; info.phc_index = kernel_info.phc_index; info.tx_types = kernel_info.tx_types; info.rx_filters = kernel_info.rx_filters; if (copy_to_user(useraddr, &info, sizeof(info))) return -EFAULT; return 0; } int ethtool_get_module_info_call(struct net_device *dev, struct ethtool_modinfo *modinfo) { const struct ethtool_ops *ops = dev->ethtool_ops; struct phy_device *phydev = dev->phydev; if (dev->ethtool->module_fw_flash_in_progress) return -EBUSY; if (dev->sfp_bus) return sfp_get_module_info(dev->sfp_bus, modinfo); if (phydev && phydev->drv && phydev->drv->module_info) return phydev->drv->module_info(phydev, modinfo); if (ops->get_module_info) return ops->get_module_info(dev, modinfo); return -EOPNOTSUPP; } static int ethtool_get_module_info(struct net_device *dev, void __user *useraddr) { int ret; struct ethtool_modinfo modinfo; if (copy_from_user(&modinfo, useraddr, sizeof(modinfo))) return -EFAULT; ret = ethtool_get_module_info_call(dev, &modinfo); if (ret) return ret; if (copy_to_user(useraddr, &modinfo, sizeof(modinfo))) return -EFAULT; return 0; } int ethtool_get_module_eeprom_call(struct net_device *dev, struct ethtool_eeprom *ee, u8 *data) { const struct ethtool_ops *ops = dev->ethtool_ops; struct phy_device *phydev = dev->phydev; if (dev->ethtool->module_fw_flash_in_progress) return -EBUSY; if (dev->sfp_bus) return sfp_get_module_eeprom(dev->sfp_bus, ee, data); if (phydev && phydev->drv && phydev->drv->module_eeprom) return phydev->drv->module_eeprom(phydev, ee, data); if (ops->get_module_eeprom) return ops->get_module_eeprom(dev, ee, data); return -EOPNOTSUPP; } static int ethtool_get_module_eeprom(struct net_device *dev, void __user *useraddr) { int ret; struct ethtool_modinfo modinfo; ret = ethtool_get_module_info_call(dev, &modinfo); if (ret) return ret; return ethtool_get_any_eeprom(dev, useraddr, ethtool_get_module_eeprom_call, modinfo.eeprom_len); } static int ethtool_tunable_valid(const struct ethtool_tunable *tuna) { switch (tuna->id) { case ETHTOOL_RX_COPYBREAK: case ETHTOOL_TX_COPYBREAK: case ETHTOOL_TX_COPYBREAK_BUF_SIZE: if (tuna->len != sizeof(u32) || tuna->type_id != ETHTOOL_TUNABLE_U32) return -EINVAL; break; case ETHTOOL_PFC_PREVENTION_TOUT: if (tuna->len != sizeof(u16) || tuna->type_id != ETHTOOL_TUNABLE_U16) return -EINVAL; break; default: return -EINVAL; } return 0; } static int ethtool_get_tunable(struct net_device *dev, void __user *useraddr) { int ret; struct ethtool_tunable tuna; const struct ethtool_ops *ops = dev->ethtool_ops; void *data; if (!ops->get_tunable) return -EOPNOTSUPP; if (copy_from_user(&tuna, useraddr, sizeof(tuna))) return -EFAULT; ret = ethtool_tunable_valid(&tuna); if (ret) return ret; data = kzalloc(tuna.len, GFP_USER); if (!data) return -ENOMEM; ret = ops->get_tunable(dev, &tuna, data); if (ret) goto out; useraddr += sizeof(tuna); ret = -EFAULT; if (copy_to_user(useraddr, data, tuna.len)) goto out; ret = 0; out: kfree(data); return ret; } static int ethtool_set_tunable(struct net_device *dev, void __user *useraddr) { int ret; struct ethtool_tunable tuna; const struct ethtool_ops *ops = dev->ethtool_ops; void *data; if (!ops->set_tunable) return -EOPNOTSUPP; if (copy_from_user(&tuna, useraddr, sizeof(tuna))) return -EFAULT; ret = ethtool_tunable_valid(&tuna); if (ret) return ret; useraddr += sizeof(tuna); data = memdup_user(useraddr, tuna.len); if (IS_ERR(data)) return PTR_ERR(data); ret = ops->set_tunable(dev, &tuna, data); kfree(data); return ret; } static noinline_for_stack int ethtool_get_per_queue_coalesce(struct net_device *dev, void __user *useraddr, struct ethtool_per_queue_op *per_queue_opt) { u32 bit; int ret; DECLARE_BITMAP(queue_mask, MAX_NUM_QUEUE); if (!dev->ethtool_ops->get_per_queue_coalesce) return -EOPNOTSUPP; useraddr += sizeof(*per_queue_opt); bitmap_from_arr32(queue_mask, per_queue_opt->queue_mask, MAX_NUM_QUEUE); for_each_set_bit(bit, queue_mask, MAX_NUM_QUEUE) { struct ethtool_coalesce coalesce = { .cmd = ETHTOOL_GCOALESCE }; ret = dev->ethtool_ops->get_per_queue_coalesce(dev, bit, &coalesce); if (ret != 0) return ret; if (copy_to_user(useraddr, &coalesce, sizeof(coalesce))) return -EFAULT; useraddr += sizeof(coalesce); } return 0; } static noinline_for_stack int ethtool_set_per_queue_coalesce(struct net_device *dev, void __user *useraddr, struct ethtool_per_queue_op *per_queue_opt) { u32 bit; int i, ret = 0; int n_queue; struct ethtool_coalesce *backup = NULL, *tmp = NULL; DECLARE_BITMAP(queue_mask, MAX_NUM_QUEUE); if ((!dev->ethtool_ops->set_per_queue_coalesce) || (!dev->ethtool_ops->get_per_queue_coalesce)) return -EOPNOTSUPP; useraddr += sizeof(*per_queue_opt); bitmap_from_arr32(queue_mask, per_queue_opt->queue_mask, MAX_NUM_QUEUE); n_queue = bitmap_weight(queue_mask, MAX_NUM_QUEUE); tmp = backup = kmalloc_array(n_queue, sizeof(*backup), GFP_KERNEL); if (!backup) return -ENOMEM; for_each_set_bit(bit, queue_mask, MAX_NUM_QUEUE) { struct ethtool_coalesce coalesce; ret = dev->ethtool_ops->get_per_queue_coalesce(dev, bit, tmp); if (ret != 0) goto roll_back; tmp++; if (copy_from_user(&coalesce, useraddr, sizeof(coalesce))) { ret = -EFAULT; goto roll_back; } if (!ethtool_set_coalesce_supported(dev, &coalesce)) { ret = -EOPNOTSUPP; goto roll_back; } ret = dev->ethtool_ops->set_per_queue_coalesce(dev, bit, &coalesce); if (ret != 0) goto roll_back; useraddr += sizeof(coalesce); } roll_back: if (ret != 0) { tmp = backup; for_each_set_bit(i, queue_mask, bit) { dev->ethtool_ops->set_per_queue_coalesce(dev, i, tmp); tmp++; } } kfree(backup); return ret; } static int noinline_for_stack ethtool_set_per_queue(struct net_device *dev, void __user *useraddr, u32 sub_cmd) { struct ethtool_per_queue_op per_queue_opt; if (copy_from_user(&per_queue_opt, useraddr, sizeof(per_queue_opt))) return -EFAULT; if (per_queue_opt.sub_command != sub_cmd) return -EINVAL; switch (per_queue_opt.sub_command) { case ETHTOOL_GCOALESCE: return ethtool_get_per_queue_coalesce(dev, useraddr, &per_queue_opt); case ETHTOOL_SCOALESCE: return ethtool_set_per_queue_coalesce(dev, useraddr, &per_queue_opt); default: return -EOPNOTSUPP; } } static int ethtool_phy_tunable_valid(const struct ethtool_tunable *tuna) { switch (tuna->id) { case ETHTOOL_PHY_DOWNSHIFT: case ETHTOOL_PHY_FAST_LINK_DOWN: if (tuna->len != sizeof(u8) || tuna->type_id != ETHTOOL_TUNABLE_U8) return -EINVAL; break; case ETHTOOL_PHY_EDPD: if (tuna->len != sizeof(u16) || tuna->type_id != ETHTOOL_TUNABLE_U16) return -EINVAL; break; default: return -EINVAL; } return 0; } static int get_phy_tunable(struct net_device *dev, void __user *useraddr) { struct phy_device *phydev = dev->phydev; struct ethtool_tunable tuna; bool phy_drv_tunable; void *data; int ret; phy_drv_tunable = phydev && phydev->drv && phydev->drv->get_tunable; if (!phy_drv_tunable && !dev->ethtool_ops->get_phy_tunable) return -EOPNOTSUPP; if (copy_from_user(&tuna, useraddr, sizeof(tuna))) return -EFAULT; ret = ethtool_phy_tunable_valid(&tuna); if (ret) return ret; data = kzalloc(tuna.len, GFP_USER); if (!data) return -ENOMEM; if (phy_drv_tunable) { mutex_lock(&phydev->lock); ret = phydev->drv->get_tunable(phydev, &tuna, data); mutex_unlock(&phydev->lock); } else { ret = dev->ethtool_ops->get_phy_tunable(dev, &tuna, data); } if (ret) goto out; useraddr += sizeof(tuna); ret = -EFAULT; if (copy_to_user(useraddr, data, tuna.len)) goto out; ret = 0; out: kfree(data); return ret; } static int set_phy_tunable(struct net_device *dev, void __user *useraddr) { struct phy_device *phydev = dev->phydev; struct ethtool_tunable tuna; bool phy_drv_tunable; void *data; int ret; phy_drv_tunable = phydev && phydev->drv && phydev->drv->get_tunable; if (!phy_drv_tunable && !dev->ethtool_ops->set_phy_tunable) return -EOPNOTSUPP; if (copy_from_user(&tuna, useraddr, sizeof(tuna))) return -EFAULT; ret = ethtool_phy_tunable_valid(&tuna); if (ret) return ret; useraddr += sizeof(tuna); data = memdup_user(useraddr, tuna.len); if (IS_ERR(data)) return PTR_ERR(data); if (phy_drv_tunable) { mutex_lock(&phydev->lock); ret = phydev->drv->set_tunable(phydev, &tuna, data); mutex_unlock(&phydev->lock); } else { ret = dev->ethtool_ops->set_phy_tunable(dev, &tuna, data); } kfree(data); return ret; } static int ethtool_get_fecparam(struct net_device *dev, void __user *useraddr) { struct ethtool_fecparam fecparam = { .cmd = ETHTOOL_GFECPARAM }; int rc; if (!dev->ethtool_ops->get_fecparam) return -EOPNOTSUPP; rc = dev->ethtool_ops->get_fecparam(dev, &fecparam); if (rc) return rc; if (WARN_ON_ONCE(fecparam.reserved)) fecparam.reserved = 0; if (copy_to_user(useraddr, &fecparam, sizeof(fecparam))) return -EFAULT; return 0; } static int ethtool_set_fecparam(struct net_device *dev, void __user *useraddr) { struct ethtool_fecparam fecparam; if (!dev->ethtool_ops->set_fecparam) return -EOPNOTSUPP; if (copy_from_user(&fecparam, useraddr, sizeof(fecparam))) return -EFAULT; if (!fecparam.fec || fecparam.fec & ETHTOOL_FEC_NONE) return -EINVAL; fecparam.active_fec = 0; fecparam.reserved = 0; return dev->ethtool_ops->set_fecparam(dev, &fecparam); } /* The main entry point in this file. Called from net/core/dev_ioctl.c */ static int __dev_ethtool(struct net *net, struct ifreq *ifr, void __user *useraddr, u32 ethcmd, struct ethtool_devlink_compat *devlink_state) { struct net_device *dev; u32 sub_cmd; int rc; netdev_features_t old_features; dev = __dev_get_by_name(net, ifr->ifr_name); if (!dev) return -ENODEV; if (ethcmd == ETHTOOL_PERQUEUE) { if (copy_from_user(&sub_cmd, useraddr + sizeof(ethcmd), sizeof(sub_cmd))) return -EFAULT; } else { sub_cmd = ethcmd; } /* Allow some commands to be done by anyone */ switch (sub_cmd) { case ETHTOOL_GSET: case ETHTOOL_GDRVINFO: case ETHTOOL_GMSGLVL: case ETHTOOL_GLINK: case ETHTOOL_GCOALESCE: case ETHTOOL_GRINGPARAM: case ETHTOOL_GPAUSEPARAM: case ETHTOOL_GRXCSUM: case ETHTOOL_GTXCSUM: case ETHTOOL_GSG: case ETHTOOL_GSSET_INFO: case ETHTOOL_GSTRINGS: case ETHTOOL_GSTATS: case ETHTOOL_GPHYSTATS: case ETHTOOL_GTSO: case ETHTOOL_GPERMADDR: case ETHTOOL_GUFO: case ETHTOOL_GGSO: case ETHTOOL_GGRO: case ETHTOOL_GFLAGS: case ETHTOOL_GPFLAGS: case ETHTOOL_GRXFH: case ETHTOOL_GRXRINGS: case ETHTOOL_GRXCLSRLCNT: case ETHTOOL_GRXCLSRULE: case ETHTOOL_GRXCLSRLALL: case ETHTOOL_GRXFHINDIR: case ETHTOOL_GRSSH: case ETHTOOL_GFEATURES: case ETHTOOL_GCHANNELS: case ETHTOOL_GET_TS_INFO: case ETHTOOL_GEEE: case ETHTOOL_GTUNABLE: case ETHTOOL_PHY_GTUNABLE: case ETHTOOL_GLINKSETTINGS: case ETHTOOL_GFECPARAM: break; default: if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) return -EPERM; } if (dev->dev.parent) pm_runtime_get_sync(dev->dev.parent); if (!netif_device_present(dev)) { rc = -ENODEV; goto out; } if (dev->ethtool_ops->begin) { rc = dev->ethtool_ops->begin(dev); if (rc < 0) goto out; } old_features = dev->features; switch (ethcmd) { case ETHTOOL_GSET: rc = ethtool_get_settings(dev, useraddr); break; case ETHTOOL_SSET: rc = ethtool_set_settings(dev, useraddr); break; case ETHTOOL_GDRVINFO: rc = ethtool_get_drvinfo(dev, devlink_state); break; case ETHTOOL_GREGS: rc = ethtool_get_regs(dev, useraddr); break; case ETHTOOL_GWOL: rc = ethtool_get_wol(dev, useraddr); break; case ETHTOOL_SWOL: rc = ethtool_set_wol(dev, useraddr); break; case ETHTOOL_GMSGLVL: rc = ethtool_get_value(dev, useraddr, ethcmd, dev->ethtool_ops->get_msglevel); break; case ETHTOOL_SMSGLVL: rc = ethtool_set_value_void(dev, useraddr, dev->ethtool_ops->set_msglevel); if (!rc) ethtool_notify(dev, ETHTOOL_MSG_DEBUG_NTF, NULL); break; case ETHTOOL_GEEE: rc = ethtool_get_eee(dev, useraddr); break; case ETHTOOL_SEEE: rc = ethtool_set_eee(dev, useraddr); break; case ETHTOOL_NWAY_RST: rc = ethtool_nway_reset(dev); break; case ETHTOOL_GLINK: rc = ethtool_get_link(dev, useraddr); break; case ETHTOOL_GEEPROM: rc = ethtool_get_eeprom(dev, useraddr); break; case ETHTOOL_SEEPROM: rc = ethtool_set_eeprom(dev, useraddr); break; case ETHTOOL_GCOALESCE: rc = ethtool_get_coalesce(dev, useraddr); break; case ETHTOOL_SCOALESCE: rc = ethtool_set_coalesce(dev, useraddr); break; case ETHTOOL_GRINGPARAM: rc = ethtool_get_ringparam(dev, useraddr); break; case ETHTOOL_SRINGPARAM: rc = ethtool_set_ringparam(dev, useraddr); break; case ETHTOOL_GPAUSEPARAM: rc = ethtool_get_pauseparam(dev, useraddr); break; case ETHTOOL_SPAUSEPARAM: rc = ethtool_set_pauseparam(dev, useraddr); break; case ETHTOOL_TEST: rc = ethtool_self_test(dev, useraddr); break; case ETHTOOL_GSTRINGS: rc = ethtool_get_strings(dev, useraddr); break; case ETHTOOL_PHYS_ID: rc = ethtool_phys_id(dev, useraddr); break; case ETHTOOL_GSTATS: rc = ethtool_get_stats(dev, useraddr); break; case ETHTOOL_GPERMADDR: rc = ethtool_get_perm_addr(dev, useraddr); break; case ETHTOOL_GFLAGS: rc = ethtool_get_value(dev, useraddr, ethcmd, __ethtool_get_flags); break; case ETHTOOL_SFLAGS: rc = ethtool_set_value(dev, useraddr, __ethtool_set_flags); break; case ETHTOOL_GPFLAGS: rc = ethtool_get_value(dev, useraddr, ethcmd, dev->ethtool_ops->get_priv_flags); if (!rc) ethtool_notify(dev, ETHTOOL_MSG_PRIVFLAGS_NTF, NULL); break; case ETHTOOL_SPFLAGS: rc = ethtool_set_value(dev, useraddr, dev->ethtool_ops->set_priv_flags); break; case ETHTOOL_GRXFH: case ETHTOOL_GRXRINGS: case ETHTOOL_GRXCLSRLCNT: case ETHTOOL_GRXCLSRULE: case ETHTOOL_GRXCLSRLALL: rc = ethtool_get_rxnfc(dev, ethcmd, useraddr); break; case ETHTOOL_SRXFH: case ETHTOOL_SRXCLSRLDEL: case ETHTOOL_SRXCLSRLINS: rc = ethtool_set_rxnfc(dev, ethcmd, useraddr); break; case ETHTOOL_FLASHDEV: rc = ethtool_flash_device(dev, devlink_state); break; case ETHTOOL_RESET: rc = ethtool_reset(dev, useraddr); break; case ETHTOOL_GSSET_INFO: rc = ethtool_get_sset_info(dev, useraddr); break; case ETHTOOL_GRXFHINDIR: rc = ethtool_get_rxfh_indir(dev, useraddr); break; case ETHTOOL_SRXFHINDIR: rc = ethtool_set_rxfh_indir(dev, useraddr); break; case ETHTOOL_GRSSH: rc = ethtool_get_rxfh(dev, useraddr); break; case ETHTOOL_SRSSH: rc = ethtool_set_rxfh(dev, useraddr); break; case ETHTOOL_GFEATURES: rc = ethtool_get_features(dev, useraddr); break; case ETHTOOL_SFEATURES: rc = ethtool_set_features(dev, useraddr); break; case ETHTOOL_GTXCSUM: case ETHTOOL_GRXCSUM: case ETHTOOL_GSG: case ETHTOOL_GTSO: case ETHTOOL_GGSO: case ETHTOOL_GGRO: rc = ethtool_get_one_feature(dev, useraddr, ethcmd); break; case ETHTOOL_STXCSUM: case ETHTOOL_SRXCSUM: case ETHTOOL_SSG: case ETHTOOL_STSO: case ETHTOOL_SGSO: case ETHTOOL_SGRO: rc = ethtool_set_one_feature(dev, useraddr, ethcmd); break; case ETHTOOL_GCHANNELS: rc = ethtool_get_channels(dev, useraddr); break; case ETHTOOL_SCHANNELS: rc = ethtool_set_channels(dev, useraddr); break; case ETHTOOL_SET_DUMP: rc = ethtool_set_dump(dev, useraddr); break; case ETHTOOL_GET_DUMP_FLAG: rc = ethtool_get_dump_flag(dev, useraddr); break; case ETHTOOL_GET_DUMP_DATA: rc = ethtool_get_dump_data(dev, useraddr); break; case ETHTOOL_GET_TS_INFO: rc = ethtool_get_ts_info(dev, useraddr); break; case ETHTOOL_GMODULEINFO: rc = ethtool_get_module_info(dev, useraddr); break; case ETHTOOL_GMODULEEEPROM: rc = ethtool_get_module_eeprom(dev, useraddr); break; case ETHTOOL_GTUNABLE: rc = ethtool_get_tunable(dev, useraddr); break; case ETHTOOL_STUNABLE: rc = ethtool_set_tunable(dev, useraddr); break; case ETHTOOL_GPHYSTATS: rc = ethtool_get_phy_stats(dev, useraddr); break; case ETHTOOL_PERQUEUE: rc = ethtool_set_per_queue(dev, useraddr, sub_cmd); break; case ETHTOOL_GLINKSETTINGS: rc = ethtool_get_link_ksettings(dev, useraddr); break; case ETHTOOL_SLINKSETTINGS: rc = ethtool_set_link_ksettings(dev, useraddr); break; case ETHTOOL_PHY_GTUNABLE: rc = get_phy_tunable(dev, useraddr); break; case ETHTOOL_PHY_STUNABLE: rc = set_phy_tunable(dev, useraddr); break; case ETHTOOL_GFECPARAM: rc = ethtool_get_fecparam(dev, useraddr); break; case ETHTOOL_SFECPARAM: rc = ethtool_set_fecparam(dev, useraddr); break; default: rc = -EOPNOTSUPP; } if (dev->ethtool_ops->complete) dev->ethtool_ops->complete(dev); if (old_features != dev->features) netdev_features_change(dev); out: if (dev->dev.parent) pm_runtime_put(dev->dev.parent); return rc; } int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *useraddr) { struct ethtool_devlink_compat *state; u32 ethcmd; int rc; if (copy_from_user(&ethcmd, useraddr, sizeof(ethcmd))) return -EFAULT; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return -ENOMEM; switch (ethcmd) { case ETHTOOL_FLASHDEV: if (copy_from_user(&state->efl, useraddr, sizeof(state->efl))) { rc = -EFAULT; goto exit_free; } state->efl.data[ETHTOOL_FLASH_MAX_FILENAME - 1] = 0; break; } rtnl_lock(); rc = __dev_ethtool(net, ifr, useraddr, ethcmd, state); rtnl_unlock(); if (rc) goto exit_free; switch (ethcmd) { case ETHTOOL_FLASHDEV: if (state->devlink) rc = devlink_compat_flash_update(state->devlink, state->efl.data); break; case ETHTOOL_GDRVINFO: if (state->devlink) devlink_compat_running_version(state->devlink, state->info.fw_version, sizeof(state->info.fw_version)); if (copy_to_user(useraddr, &state->info, sizeof(state->info))) { rc = -EFAULT; goto exit_free; } break; } exit_free: if (state->devlink) devlink_put(state->devlink); kfree(state); return rc; } struct ethtool_rx_flow_key { struct flow_dissector_key_basic basic; union { struct flow_dissector_key_ipv4_addrs ipv4; struct flow_dissector_key_ipv6_addrs ipv6; }; struct flow_dissector_key_ports tp; struct flow_dissector_key_ip ip; struct flow_dissector_key_vlan vlan; struct flow_dissector_key_eth_addrs eth_addrs; } __aligned(BITS_PER_LONG / 8); /* Ensure that we can do comparisons as longs. */ struct ethtool_rx_flow_match { struct flow_dissector dissector; struct ethtool_rx_flow_key key; struct ethtool_rx_flow_key mask; }; struct ethtool_rx_flow_rule * ethtool_rx_flow_rule_create(const struct ethtool_rx_flow_spec_input *input) { const struct ethtool_rx_flow_spec *fs = input->fs; struct ethtool_rx_flow_match *match; struct ethtool_rx_flow_rule *flow; struct flow_action_entry *act; flow = kzalloc(sizeof(struct ethtool_rx_flow_rule) + sizeof(struct ethtool_rx_flow_match), GFP_KERNEL); if (!flow) return ERR_PTR(-ENOMEM); /* ethtool_rx supports only one single action per rule. */ flow->rule = flow_rule_alloc(1); if (!flow->rule) { kfree(flow); return ERR_PTR(-ENOMEM); } match = (struct ethtool_rx_flow_match *)flow->priv; flow->rule->match.dissector = &match->dissector; flow->rule->match.mask = &match->mask; flow->rule->match.key = &match->key; match->mask.basic.n_proto = htons(0xffff); switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS)) { case ETHER_FLOW: { const struct ethhdr *ether_spec, *ether_m_spec; ether_spec = &fs->h_u.ether_spec; ether_m_spec = &fs->m_u.ether_spec; if (!is_zero_ether_addr(ether_m_spec->h_source)) { ether_addr_copy(match->key.eth_addrs.src, ether_spec->h_source); ether_addr_copy(match->mask.eth_addrs.src, ether_m_spec->h_source); } if (!is_zero_ether_addr(ether_m_spec->h_dest)) { ether_addr_copy(match->key.eth_addrs.dst, ether_spec->h_dest); ether_addr_copy(match->mask.eth_addrs.dst, ether_m_spec->h_dest); } if (ether_m_spec->h_proto) { match->key.basic.n_proto = ether_spec->h_proto; match->mask.basic.n_proto = ether_m_spec->h_proto; } } break; case TCP_V4_FLOW: case UDP_V4_FLOW: { const struct ethtool_tcpip4_spec *v4_spec, *v4_m_spec; match->key.basic.n_proto = htons(ETH_P_IP); v4_spec = &fs->h_u.tcp_ip4_spec; v4_m_spec = &fs->m_u.tcp_ip4_spec; if (v4_m_spec->ip4src) { match->key.ipv4.src = v4_spec->ip4src; match->mask.ipv4.src = v4_m_spec->ip4src; } if (v4_m_spec->ip4dst) { match->key.ipv4.dst = v4_spec->ip4dst; match->mask.ipv4.dst = v4_m_spec->ip4dst; } if (v4_m_spec->ip4src || v4_m_spec->ip4dst) { match->dissector.used_keys |= BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS); match->dissector.offset[FLOW_DISSECTOR_KEY_IPV4_ADDRS] = offsetof(struct ethtool_rx_flow_key, ipv4); } if (v4_m_spec->psrc) { match->key.tp.src = v4_spec->psrc; match->mask.tp.src = v4_m_spec->psrc; } if (v4_m_spec->pdst) { match->key.tp.dst = v4_spec->pdst; match->mask.tp.dst = v4_m_spec->pdst; } if (v4_m_spec->psrc || v4_m_spec->pdst) { match->dissector.used_keys |= BIT_ULL(FLOW_DISSECTOR_KEY_PORTS); match->dissector.offset[FLOW_DISSECTOR_KEY_PORTS] = offsetof(struct ethtool_rx_flow_key, tp); } if (v4_m_spec->tos) { match->key.ip.tos = v4_spec->tos; match->mask.ip.tos = v4_m_spec->tos; match->dissector.used_keys |= BIT(FLOW_DISSECTOR_KEY_IP); match->dissector.offset[FLOW_DISSECTOR_KEY_IP] = offsetof(struct ethtool_rx_flow_key, ip); } } break; case TCP_V6_FLOW: case UDP_V6_FLOW: { const struct ethtool_tcpip6_spec *v6_spec, *v6_m_spec; match->key.basic.n_proto = htons(ETH_P_IPV6); v6_spec = &fs->h_u.tcp_ip6_spec; v6_m_spec = &fs->m_u.tcp_ip6_spec; if (!ipv6_addr_any((struct in6_addr *)v6_m_spec->ip6src)) { memcpy(&match->key.ipv6.src, v6_spec->ip6src, sizeof(match->key.ipv6.src)); memcpy(&match->mask.ipv6.src, v6_m_spec->ip6src, sizeof(match->mask.ipv6.src)); } if (!ipv6_addr_any((struct in6_addr *)v6_m_spec->ip6dst)) { memcpy(&match->key.ipv6.dst, v6_spec->ip6dst, sizeof(match->key.ipv6.dst)); memcpy(&match->mask.ipv6.dst, v6_m_spec->ip6dst, sizeof(match->mask.ipv6.dst)); } if (!ipv6_addr_any((struct in6_addr *)v6_m_spec->ip6src) || !ipv6_addr_any((struct in6_addr *)v6_m_spec->ip6dst)) { match->dissector.used_keys |= BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS); match->dissector.offset[FLOW_DISSECTOR_KEY_IPV6_ADDRS] = offsetof(struct ethtool_rx_flow_key, ipv6); } if (v6_m_spec->psrc) { match->key.tp.src = v6_spec->psrc; match->mask.tp.src = v6_m_spec->psrc; } if (v6_m_spec->pdst) { match->key.tp.dst = v6_spec->pdst; match->mask.tp.dst = v6_m_spec->pdst; } if (v6_m_spec->psrc || v6_m_spec->pdst) { match->dissector.used_keys |= BIT_ULL(FLOW_DISSECTOR_KEY_PORTS); match->dissector.offset[FLOW_DISSECTOR_KEY_PORTS] = offsetof(struct ethtool_rx_flow_key, tp); } if (v6_m_spec->tclass) { match->key.ip.tos = v6_spec->tclass; match->mask.ip.tos = v6_m_spec->tclass; match->dissector.used_keys |= BIT_ULL(FLOW_DISSECTOR_KEY_IP); match->dissector.offset[FLOW_DISSECTOR_KEY_IP] = offsetof(struct ethtool_rx_flow_key, ip); } } break; default: ethtool_rx_flow_rule_destroy(flow); return ERR_PTR(-EINVAL); } switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS)) { case TCP_V4_FLOW: case TCP_V6_FLOW: match->key.basic.ip_proto = IPPROTO_TCP; match->mask.basic.ip_proto = 0xff; break; case UDP_V4_FLOW: case UDP_V6_FLOW: match->key.basic.ip_proto = IPPROTO_UDP; match->mask.basic.ip_proto = 0xff; break; } match->dissector.used_keys |= BIT_ULL(FLOW_DISSECTOR_KEY_BASIC); match->dissector.offset[FLOW_DISSECTOR_KEY_BASIC] = offsetof(struct ethtool_rx_flow_key, basic); if (fs->flow_type & FLOW_EXT) { const struct ethtool_flow_ext *ext_h_spec = &fs->h_ext; const struct ethtool_flow_ext *ext_m_spec = &fs->m_ext; if (ext_m_spec->vlan_etype) { match->key.vlan.vlan_tpid = ext_h_spec->vlan_etype; match->mask.vlan.vlan_tpid = ext_m_spec->vlan_etype; } if (ext_m_spec->vlan_tci) { match->key.vlan.vlan_id = ntohs(ext_h_spec->vlan_tci) & 0x0fff; match->mask.vlan.vlan_id = ntohs(ext_m_spec->vlan_tci) & 0x0fff; match->key.vlan.vlan_dei = !!(ext_h_spec->vlan_tci & htons(0x1000)); match->mask.vlan.vlan_dei = !!(ext_m_spec->vlan_tci & htons(0x1000)); match->key.vlan.vlan_priority = (ntohs(ext_h_spec->vlan_tci) & 0xe000) >> 13; match->mask.vlan.vlan_priority = (ntohs(ext_m_spec->vlan_tci) & 0xe000) >> 13; } if (ext_m_spec->vlan_etype || ext_m_spec->vlan_tci) { match->dissector.used_keys |= BIT_ULL(FLOW_DISSECTOR_KEY_VLAN); match->dissector.offset[FLOW_DISSECTOR_KEY_VLAN] = offsetof(struct ethtool_rx_flow_key, vlan); } } if (fs->flow_type & FLOW_MAC_EXT) { const struct ethtool_flow_ext *ext_h_spec = &fs->h_ext; const struct ethtool_flow_ext *ext_m_spec = &fs->m_ext; memcpy(match->key.eth_addrs.dst, ext_h_spec->h_dest, ETH_ALEN); memcpy(match->mask.eth_addrs.dst, ext_m_spec->h_dest, ETH_ALEN); match->dissector.used_keys |= BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS); match->dissector.offset[FLOW_DISSECTOR_KEY_ETH_ADDRS] = offsetof(struct ethtool_rx_flow_key, eth_addrs); } act = &flow->rule->action.entries[0]; switch (fs->ring_cookie) { case RX_CLS_FLOW_DISC: act->id = FLOW_ACTION_DROP; break; case RX_CLS_FLOW_WAKE: act->id = FLOW_ACTION_WAKE; break; default: act->id = FLOW_ACTION_QUEUE; if (fs->flow_type & FLOW_RSS) act->queue.ctx = input->rss_ctx; act->queue.vf = ethtool_get_flow_spec_ring_vf(fs->ring_cookie); act->queue.index = ethtool_get_flow_spec_ring(fs->ring_cookie); break; } return flow; } EXPORT_SYMBOL(ethtool_rx_flow_rule_create); void ethtool_rx_flow_rule_destroy(struct ethtool_rx_flow_rule *flow) { kfree(flow->rule); kfree(flow); } EXPORT_SYMBOL(ethtool_rx_flow_rule_destroy);
2 2 2 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 // SPDX-License-Identifier: GPL-2.0-only /* * linux/net/sunrpc/svc_xprt.c * * Author: Tom Tucker <tom@opengridcomputing.com> */ #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/errno.h> #include <linux/freezer.h> #include <linux/slab.h> #include <net/sock.h> #include <linux/sunrpc/addr.h> #include <linux/sunrpc/stats.h> #include <linux/sunrpc/svc_xprt.h> #include <linux/sunrpc/svcsock.h> #include <linux/sunrpc/xprt.h> #include <linux/sunrpc/bc_xprt.h> #include <linux/module.h> #include <linux/netdevice.h> #include <trace/events/sunrpc.h> #define RPCDBG_FACILITY RPCDBG_SVCXPRT static unsigned int svc_rpc_per_connection_limit __read_mostly; module_param(svc_rpc_per_connection_limit, uint, 0644); static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); static int svc_deferred_recv(struct svc_rqst *rqstp); static struct cache_deferred_req *svc_defer(struct cache_req *req); static void svc_age_temp_xprts(struct timer_list *t); static void svc_delete_xprt(struct svc_xprt *xprt); /* apparently the "standard" is that clients close * idle connections after 5 minutes, servers after * 6 minutes * http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf */ static int svc_conn_age_period = 6*60; /* List of registered transport classes */ static DEFINE_SPINLOCK(svc_xprt_class_lock); static LIST_HEAD(svc_xprt_class_list); /* SMP locking strategy: * * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. * when both need to be taken (rare), svc_serv->sv_lock is first. * The "service mutex" protects svc_serv->sv_nrthread. * svc_sock->sk_lock protects the svc_sock->sk_deferred list * and the ->sk_info_authunix cache. * * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being * enqueued multiply. During normal transport processing this bit * is set by svc_xprt_enqueue and cleared by svc_xprt_received. * Providers should not manipulate this bit directly. * * Some flags can be set to certain values at any time * providing that certain rules are followed: * * XPT_CONN, XPT_DATA: * - Can be set or cleared at any time. * - After a set, svc_xprt_enqueue must be called to enqueue * the transport for processing. * - After a clear, the transport must be read/accepted. * If this succeeds, it must be set again. * XPT_CLOSE: * - Can set at any time. It is never cleared. * XPT_DEAD: * - Can only be set while XPT_BUSY is held which ensures * that no other thread will be using the transport or will * try to set XPT_DEAD. */ /** * svc_reg_xprt_class - Register a server-side RPC transport class * @xcl: New transport class to be registered * * Returns zero on success; otherwise a negative errno is returned. */ int svc_reg_xprt_class(struct svc_xprt_class *xcl) { struct svc_xprt_class *cl; int res = -EEXIST; INIT_LIST_HEAD(&xcl->xcl_list); spin_lock(&svc_xprt_class_lock); /* Make sure there isn't already a class with the same name */ list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) goto out; } list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); res = 0; out: spin_unlock(&svc_xprt_class_lock); return res; } EXPORT_SYMBOL_GPL(svc_reg_xprt_class); /** * svc_unreg_xprt_class - Unregister a server-side RPC transport class * @xcl: Transport class to be unregistered * */ void svc_unreg_xprt_class(struct svc_xprt_class *xcl) { spin_lock(&svc_xprt_class_lock); list_del_init(&xcl->xcl_list); spin_unlock(&svc_xprt_class_lock); } EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); /** * svc_print_xprts - Format the transport list for printing * @buf: target buffer for formatted address * @maxlen: length of target buffer * * Fills in @buf with a string containing a list of transport names, each name * terminated with '\n'. If the buffer is too small, some entries may be * missing, but it is guaranteed that all lines in the output buffer are * complete. * * Returns positive length of the filled-in string. */ int svc_print_xprts(char *buf, int maxlen) { struct svc_xprt_class *xcl; char tmpstr[80]; int len = 0; buf[0] = '\0'; spin_lock(&svc_xprt_class_lock); list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { int slen; slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload); if (slen >= sizeof(tmpstr) || len + slen >= maxlen) break; len += slen; strcat(buf, tmpstr); } spin_unlock(&svc_xprt_class_lock); return len; } /** * svc_xprt_deferred_close - Close a transport * @xprt: transport instance * * Used in contexts that need to defer the work of shutting down * the transport to an nfsd thread. */ void svc_xprt_deferred_close(struct svc_xprt *xprt) { trace_svc_xprt_close(xprt); if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags)) svc_xprt_enqueue(xprt); } EXPORT_SYMBOL_GPL(svc_xprt_deferred_close); static void svc_xprt_free(struct kref *kref) { struct svc_xprt *xprt = container_of(kref, struct svc_xprt, xpt_ref); struct module *owner = xprt->xpt_class->xcl_owner; if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)) svcauth_unix_info_release(xprt); put_cred(xprt->xpt_cred); put_net_track(xprt->xpt_net, &xprt->ns_tracker); /* See comment on corresponding get in xs_setup_bc_tcp(): */ if (xprt->xpt_bc_xprt) xprt_put(xprt->xpt_bc_xprt); if (xprt->xpt_bc_xps) xprt_switch_put(xprt->xpt_bc_xps); trace_svc_xprt_free(xprt); xprt->xpt_ops->xpo_free(xprt); module_put(owner); } void svc_xprt_put(struct svc_xprt *xprt) { kref_put(&xprt->xpt_ref, svc_xprt_free); } EXPORT_SYMBOL_GPL(svc_xprt_put); /* * Called by transport drivers to initialize the transport independent * portion of the transport instance. */ void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl, struct svc_xprt *xprt, struct svc_serv *serv) { memset(xprt, 0, sizeof(*xprt)); xprt->xpt_class = xcl; xprt->xpt_ops = xcl->xcl_ops; kref_init(&xprt->xpt_ref); xprt->xpt_server = serv; INIT_LIST_HEAD(&xprt->xpt_list); INIT_LIST_HEAD(&xprt->xpt_deferred); INIT_LIST_HEAD(&xprt->xpt_users); mutex_init(&xprt->xpt_mutex); spin_lock_init(&xprt->xpt_lock); set_bit(XPT_BUSY, &xprt->xpt_flags); xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC); strcpy(xprt->xpt_remotebuf, "uninitialized"); } EXPORT_SYMBOL_GPL(svc_xprt_init); /** * svc_xprt_received - start next receiver thread * @xprt: controlling transport * * The caller must hold the XPT_BUSY bit and must * not thereafter touch transport data. * * Note: XPT_DATA only gets cleared when a read-attempt finds no (or * insufficient) data. */ void svc_xprt_received(struct svc_xprt *xprt) { if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) { WARN_ONCE(1, "xprt=0x%p already busy!", xprt); return; } /* As soon as we clear busy, the xprt could be closed and * 'put', so we need a reference to call svc_xprt_enqueue with: */ svc_xprt_get(xprt); smp_mb__before_atomic(); clear_bit(XPT_BUSY, &xprt->xpt_flags); svc_xprt_enqueue(xprt); svc_xprt_put(xprt); } EXPORT_SYMBOL_GPL(svc_xprt_received); void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new) { clear_bit(XPT_TEMP, &new->xpt_flags); spin_lock_bh(&serv->sv_lock); list_add(&new->xpt_list, &serv->sv_permsocks); spin_unlock_bh(&serv->sv_lock); svc_xprt_received(new); } static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name, struct net *net, struct sockaddr *sap, size_t len, int flags, const struct cred *cred) { struct svc_xprt_class *xcl; spin_lock(&svc_xprt_class_lock); list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { struct svc_xprt *newxprt; unsigned short newport; if (strcmp(xprt_name, xcl->xcl_name)) continue; if (!try_module_get(xcl->xcl_owner)) goto err; spin_unlock(&svc_xprt_class_lock); newxprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags); if (IS_ERR(newxprt)) { trace_svc_xprt_create_err(serv->sv_programs->pg_name, xcl->xcl_name, sap, len, newxprt); module_put(xcl->xcl_owner); return PTR_ERR(newxprt); } newxprt->xpt_cred = get_cred(cred); svc_add_new_perm_xprt(serv, newxprt); newport = svc_xprt_local_port(newxprt); return newport; } err: spin_unlock(&svc_xprt_class_lock); /* This errno is exposed to user space. Provide a reasonable * perror msg for a bad transport. */ return -EPROTONOSUPPORT; } /** * svc_xprt_create_from_sa - Add a new listener to @serv from socket address * @serv: target RPC service * @xprt_name: transport class name * @net: network namespace * @sap: socket address pointer * @flags: SVC_SOCK flags * @cred: credential to bind to this transport * * Return local xprt port on success or %-EPROTONOSUPPORT on failure */ int svc_xprt_create_from_sa(struct svc_serv *serv, const char *xprt_name, struct net *net, struct sockaddr *sap, int flags, const struct cred *cred) { size_t len; int err; switch (sap->sa_family) { case AF_INET: len = sizeof(struct sockaddr_in); break; #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: len = sizeof(struct sockaddr_in6); break; #endif default: return -EAFNOSUPPORT; } err = _svc_xprt_create(serv, xprt_name, net, sap, len, flags, cred); if (err == -EPROTONOSUPPORT) { request_module("svc%s", xprt_name); err = _svc_xprt_create(serv, xprt_name, net, sap, len, flags, cred); } return err; } EXPORT_SYMBOL_GPL(svc_xprt_create_from_sa); /** * svc_xprt_create - Add a new listener to @serv * @serv: target RPC service * @xprt_name: transport class name * @net: network namespace * @family: network address family * @port: listener port * @flags: SVC_SOCK flags * @cred: credential to bind to this transport * * Return local xprt port on success or %-EPROTONOSUPPORT on failure */ int svc_xprt_create(struct svc_serv *serv, const char *xprt_name, struct net *net, const int family, const unsigned short port, int flags, const struct cred *cred) { struct sockaddr_in sin = { .sin_family = AF_INET, .sin_addr.s_addr = htonl(INADDR_ANY), .sin_port = htons(port), }; #if IS_ENABLED(CONFIG_IPV6) struct sockaddr_in6 sin6 = { .sin6_family = AF_INET6, .sin6_addr = IN6ADDR_ANY_INIT, .sin6_port = htons(port), }; #endif struct sockaddr *sap; switch (family) { case PF_INET: sap = (struct sockaddr *)&sin; break; #if IS_ENABLED(CONFIG_IPV6) case PF_INET6: sap = (struct sockaddr *)&sin6; break; #endif default: return -EAFNOSUPPORT; } return svc_xprt_create_from_sa(serv, xprt_name, net, sap, flags, cred); } EXPORT_SYMBOL_GPL(svc_xprt_create); /* * Copy the local and remote xprt addresses to the rqstp structure */ void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) { memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); rqstp->rq_addrlen = xprt->xpt_remotelen; /* * Destination address in request is needed for binding the * source address in RPC replies/callbacks later. */ memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen); rqstp->rq_daddrlen = xprt->xpt_locallen; } EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); /** * svc_print_addr - Format rq_addr field for printing * @rqstp: svc_rqst struct containing address to print * @buf: target buffer for formatted address * @len: length of target buffer * */ char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) { return __svc_print_addr(svc_addr(rqstp), buf, len); } EXPORT_SYMBOL_GPL(svc_print_addr); static bool svc_xprt_slots_in_range(struct svc_xprt *xprt) { unsigned int limit = svc_rpc_per_connection_limit; int nrqsts = atomic_read(&xprt->xpt_nr_rqsts); return limit == 0 || (nrqsts >= 0 && nrqsts < limit); } static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt) { if (!test_bit(RQ_DATA, &rqstp->rq_flags)) { if (!svc_xprt_slots_in_range(xprt)) return false; atomic_inc(&xprt->xpt_nr_rqsts); set_bit(RQ_DATA, &rqstp->rq_flags); } return true; } static void svc_xprt_release_slot(struct svc_rqst *rqstp) { struct svc_xprt *xprt = rqstp->rq_xprt; if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) { atomic_dec(&xprt->xpt_nr_rqsts); smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */ svc_xprt_enqueue(xprt); } } static bool svc_xprt_ready(struct svc_xprt *xprt) { unsigned long xpt_flags; /* * If another cpu has recently updated xpt_flags, * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to * know about it; otherwise it's possible that both that cpu and * this one could call svc_xprt_enqueue() without either * svc_xprt_enqueue() recognizing that the conditions below * are satisfied, and we could stall indefinitely: */ smp_rmb(); xpt_flags = READ_ONCE(xprt->xpt_flags); trace_svc_xprt_enqueue(xprt, xpt_flags); if (xpt_flags & BIT(XPT_BUSY)) return false; if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE) | BIT(XPT_HANDSHAKE))) return true; if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) { if (xprt->xpt_ops->xpo_has_wspace(xprt) && svc_xprt_slots_in_range(xprt)) return true; trace_svc_xprt_no_write_space(xprt); return false; } return false; } /** * svc_xprt_enqueue - Queue a transport on an idle nfsd thread * @xprt: transport with data pending * */ void svc_xprt_enqueue(struct svc_xprt *xprt) { struct svc_pool *pool; if (!svc_xprt_ready(xprt)) return; /* Mark transport as busy. It will remain in this state until * the provider calls svc_xprt_received. We update XPT_BUSY * atomically because it also guards against trying to enqueue * the transport twice. */ if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) return; pool = svc_pool_for_cpu(xprt->xpt_server); percpu_counter_inc(&pool->sp_sockets_queued); lwq_enqueue(&xprt->xpt_ready, &pool->sp_xprts); svc_pool_wake_idle_thread(pool); } EXPORT_SYMBOL_GPL(svc_xprt_enqueue); /* * Dequeue the first transport, if there is one. */ static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) { struct svc_xprt *xprt = NULL; xprt = lwq_dequeue(&pool->sp_xprts, struct svc_xprt, xpt_ready); if (xprt) svc_xprt_get(xprt); return xprt; } /** * svc_reserve - change the space reserved for the reply to a request. * @rqstp: The request in question * @space: new max space to reserve * * Each request reserves some space on the output queue of the transport * to make sure the reply fits. This function reduces that reserved * space to be the amount of space used already, plus @space. * */ void svc_reserve(struct svc_rqst *rqstp, int space) { struct svc_xprt *xprt = rqstp->rq_xprt; space += rqstp->rq_res.head[0].iov_len; if (xprt && space < rqstp->rq_reserved) { atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); rqstp->rq_reserved = space; smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */ svc_xprt_enqueue(xprt); } } EXPORT_SYMBOL_GPL(svc_reserve); static void free_deferred(struct svc_xprt *xprt, struct svc_deferred_req *dr) { if (!dr) return; xprt->xpt_ops->xpo_release_ctxt(xprt, dr->xprt_ctxt); kfree(dr); } static void svc_xprt_release(struct svc_rqst *rqstp) { struct svc_xprt *xprt = rqstp->rq_xprt; xprt->xpt_ops->xpo_release_ctxt(xprt, rqstp->rq_xprt_ctxt); rqstp->rq_xprt_ctxt = NULL; free_deferred(xprt, rqstp->rq_deferred); rqstp->rq_deferred = NULL; svc_rqst_release_pages(rqstp); rqstp->rq_res.page_len = 0; rqstp->rq_res.page_base = 0; /* Reset response buffer and release * the reservation. * But first, check that enough space was reserved * for the reply, otherwise we have a bug! */ if ((rqstp->rq_res.len) > rqstp->rq_reserved) printk(KERN_ERR "RPC request reserved %d but used %d\n", rqstp->rq_reserved, rqstp->rq_res.len); rqstp->rq_res.head[0].iov_len = 0; svc_reserve(rqstp, 0); svc_xprt_release_slot(rqstp); rqstp->rq_xprt = NULL; svc_xprt_put(xprt); } /** * svc_wake_up - Wake up a service thread for non-transport work * @serv: RPC service * * Some svc_serv's will have occasional work to do, even when a xprt is not * waiting to be serviced. This function is there to "kick" a task in one of * those services so that it can wake up and do that work. Note that we only * bother with pool 0 as we don't need to wake up more than one thread for * this purpose. */ void svc_wake_up(struct svc_serv *serv) { struct svc_pool *pool = &serv->sv_pools[0]; set_bit(SP_TASK_PENDING, &pool->sp_flags); svc_pool_wake_idle_thread(pool); } EXPORT_SYMBOL_GPL(svc_wake_up); int svc_port_is_privileged(struct sockaddr *sin) { switch (sin->sa_family) { case AF_INET: return ntohs(((struct sockaddr_in *)sin)->sin_port) < PROT_SOCK; case AF_INET6: return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) < PROT_SOCK; default: return 0; } } /* * Make sure that we don't have too many active connections. If we have, * something must be dropped. It's not clear what will happen if we allow * "too many" connections, but when dealing with network-facing software, * we have to code defensively. Here we do that by imposing hard limits. * * There's no point in trying to do random drop here for DoS * prevention. The NFS clients does 1 reconnect in 15 seconds. An * attacker can easily beat that. * * The only somewhat efficient mechanism would be if drop old * connections from the same IP first. But right now we don't even * record the client IP in svc_sock. * * single-threaded services that expect a lot of clients will probably * need to set sv_maxconn to override the default value which is based * on the number of threads */ static void svc_check_conn_limits(struct svc_serv *serv) { unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn : (serv->sv_nrthreads+3) * 20; if (serv->sv_tmpcnt > limit) { struct svc_xprt *xprt = NULL; spin_lock_bh(&serv->sv_lock); if (!list_empty(&serv->sv_tempsocks)) { /* Try to help the admin */ net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n", serv->sv_name, serv->sv_maxconn ? "max number of connections" : "number of threads"); /* * Always select the oldest connection. It's not fair, * but so is life */ xprt = list_entry(serv->sv_tempsocks.prev, struct svc_xprt, xpt_list); set_bit(XPT_CLOSE, &xprt->xpt_flags); svc_xprt_get(xprt); } spin_unlock_bh(&serv->sv_lock); if (xprt) { svc_xprt_enqueue(xprt); svc_xprt_put(xprt); } } } static bool svc_alloc_arg(struct svc_rqst *rqstp) { struct svc_serv *serv = rqstp->rq_server; struct xdr_buf *arg = &rqstp->rq_arg; unsigned long pages, filled, ret; pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT; if (pages > RPCSVC_MAXPAGES) { pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n", pages, RPCSVC_MAXPAGES); /* use as many pages as possible */ pages = RPCSVC_MAXPAGES; } for (filled = 0; filled < pages; filled = ret) { ret = alloc_pages_bulk_array(GFP_KERNEL, pages, rqstp->rq_pages); if (ret > filled) /* Made progress, don't sleep yet */ continue; set_current_state(TASK_IDLE); if (svc_thread_should_stop(rqstp)) { set_current_state(TASK_RUNNING); return false; } trace_svc_alloc_arg_err(pages, ret); memalloc_retry_wait(GFP_KERNEL); } rqstp->rq_page_end = &rqstp->rq_pages[pages]; rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */ /* Make arg->head point to first page and arg->pages point to rest */ arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); arg->head[0].iov_len = PAGE_SIZE; arg->pages = rqstp->rq_pages + 1; arg->page_base = 0; /* save at least one page for response */ arg->page_len = (pages-2)*PAGE_SIZE; arg->len = (pages-1)*PAGE_SIZE; arg->tail[0].iov_len = 0; rqstp->rq_xid = xdr_zero; return true; } static bool svc_thread_should_sleep(struct svc_rqst *rqstp) { struct svc_pool *pool = rqstp->rq_pool; /* did someone call svc_wake_up? */ if (test_bit(SP_TASK_PENDING, &pool->sp_flags)) return false; /* was a socket queued? */ if (!lwq_empty(&pool->sp_xprts)) return false; /* are we shutting down? */ if (svc_thread_should_stop(rqstp)) return false; #if defined(CONFIG_SUNRPC_BACKCHANNEL) if (svc_is_backchannel(rqstp)) { if (!lwq_empty(&rqstp->rq_server->sv_cb_list)) return false; } #endif return true; } static void svc_thread_wait_for_work(struct svc_rqst *rqstp) { struct svc_pool *pool = rqstp->rq_pool; if (svc_thread_should_sleep(rqstp)) { set_current_state(TASK_IDLE | TASK_FREEZABLE); llist_add(&rqstp->rq_idle, &pool->sp_idle_threads); if (likely(svc_thread_should_sleep(rqstp))) schedule(); while (!llist_del_first_this(&pool->sp_idle_threads, &rqstp->rq_idle)) { /* Work just became available. This thread can only * handle it after removing rqstp from the idle * list. If that attempt failed, some other thread * must have queued itself after finding no * work to do, so that thread has taken responsibly * for this new work. This thread can safely sleep * until woken again. */ schedule(); set_current_state(TASK_IDLE | TASK_FREEZABLE); } __set_current_state(TASK_RUNNING); } else { cond_resched(); } try_to_freeze(); } static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt) { spin_lock_bh(&serv->sv_lock); set_bit(XPT_TEMP, &newxpt->xpt_flags); list_add(&newxpt->xpt_list, &serv->sv_tempsocks); serv->sv_tmpcnt++; if (serv->sv_temptimer.function == NULL) { /* setup timer to age temp transports */ serv->sv_temptimer.function = svc_age_temp_xprts; mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); } spin_unlock_bh(&serv->sv_lock); svc_xprt_received(newxpt); } static void svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt) { struct svc_serv *serv = rqstp->rq_server; int len = 0; if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags)) xprt->xpt_ops->xpo_kill_temp_xprt(xprt); svc_delete_xprt(xprt); /* Leave XPT_BUSY set on the dead xprt: */ goto out; } if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { struct svc_xprt *newxpt; /* * We know this module_get will succeed because the * listener holds a reference too */ __module_get(xprt->xpt_class->xcl_owner); svc_check_conn_limits(xprt->xpt_server); newxpt = xprt->xpt_ops->xpo_accept(xprt); if (newxpt) { newxpt->xpt_cred = get_cred(xprt->xpt_cred); svc_add_new_temp_xprt(serv, newxpt); trace_svc_xprt_accept(newxpt, serv->sv_name); } else { module_put(xprt->xpt_class->xcl_owner); } svc_xprt_received(xprt); } else if (test_bit(XPT_HANDSHAKE, &xprt->xpt_flags)) { xprt->xpt_ops->xpo_handshake(xprt); svc_xprt_received(xprt); } else if (svc_xprt_reserve_slot(rqstp, xprt)) { /* XPT_DATA|XPT_DEFERRED case: */ rqstp->rq_deferred = svc_deferred_dequeue(xprt); if (rqstp->rq_deferred) len = svc_deferred_recv(rqstp); else len = xprt->xpt_ops->xpo_recvfrom(rqstp); rqstp->rq_reserved = serv->sv_max_mesg; atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); if (len <= 0) goto out; trace_svc_xdr_recvfrom(&rqstp->rq_arg); clear_bit(XPT_OLD, &xprt->xpt_flags); rqstp->rq_chandle.defer = svc_defer; if (serv->sv_stats) serv->sv_stats->netcnt++; percpu_counter_inc(&rqstp->rq_pool->sp_messages_arrived); rqstp->rq_stime = ktime_get(); svc_process(rqstp); } else svc_xprt_received(xprt); out: rqstp->rq_res.len = 0; svc_xprt_release(rqstp); } static void svc_thread_wake_next(struct svc_rqst *rqstp) { if (!svc_thread_should_sleep(rqstp)) /* More work pending after I dequeued some, * wake another worker */ svc_pool_wake_idle_thread(rqstp->rq_pool); } /** * svc_recv - Receive and process the next request on any transport * @rqstp: an idle RPC service thread * * This code is carefully organised not to touch any cachelines in * the shared svc_serv structure, only cachelines in the local * svc_pool. */ void svc_recv(struct svc_rqst *rqstp) { struct svc_pool *pool = rqstp->rq_pool; if (!svc_alloc_arg(rqstp)) return; svc_thread_wait_for_work(rqstp); clear_bit(SP_TASK_PENDING, &pool->sp_flags); if (svc_thread_should_stop(rqstp)) { svc_thread_wake_next(rqstp); return; } rqstp->rq_xprt = svc_xprt_dequeue(pool); if (rqstp->rq_xprt) { struct svc_xprt *xprt = rqstp->rq_xprt; svc_thread_wake_next(rqstp); /* Normally we will wait up to 5 seconds for any required * cache information to be provided. When there are no * idle threads, we reduce the wait time. */ if (pool->sp_idle_threads.first) rqstp->rq_chandle.thread_wait = 5 * HZ; else rqstp->rq_chandle.thread_wait = 1 * HZ; trace_svc_xprt_dequeue(rqstp); svc_handle_xprt(rqstp, xprt); } #if defined(CONFIG_SUNRPC_BACKCHANNEL) if (svc_is_backchannel(rqstp)) { struct svc_serv *serv = rqstp->rq_server; struct rpc_rqst *req; req = lwq_dequeue(&serv->sv_cb_list, struct rpc_rqst, rq_bc_list); if (req) { svc_thread_wake_next(rqstp); svc_process_bc(req, rqstp); } } #endif } EXPORT_SYMBOL_GPL(svc_recv); /** * svc_send - Return reply to client * @rqstp: RPC transaction context * */ void svc_send(struct svc_rqst *rqstp) { struct svc_xprt *xprt; struct xdr_buf *xb; int status; xprt = rqstp->rq_xprt; /* calculate over-all length */ xb = &rqstp->rq_res; xb->len = xb->head[0].iov_len + xb->page_len + xb->tail[0].iov_len; trace_svc_xdr_sendto(rqstp->rq_xid, xb); trace_svc_stats_latency(rqstp); status = xprt->xpt_ops->xpo_sendto(rqstp); trace_svc_send(rqstp, status); } /* * Timer function to close old temporary transports, using * a mark-and-sweep algorithm. */ static void svc_age_temp_xprts(struct timer_list *t) { struct svc_serv *serv = from_timer(serv, t, sv_temptimer); struct svc_xprt *xprt; struct list_head *le, *next; dprintk("svc_age_temp_xprts\n"); if (!spin_trylock_bh(&serv->sv_lock)) { /* busy, try again 1 sec later */ dprintk("svc_age_temp_xprts: busy\n"); mod_timer(&serv->sv_temptimer, jiffies + HZ); return; } list_for_each_safe(le, next, &serv->sv_tempsocks) { xprt = list_entry(le, struct svc_xprt, xpt_list); /* First time through, just mark it OLD. Second time * through, close it. */ if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) continue; if (kref_read(&xprt->xpt_ref) > 1 || test_bit(XPT_BUSY, &xprt->xpt_flags)) continue; list_del_init(le); set_bit(XPT_CLOSE, &xprt->xpt_flags); dprintk("queuing xprt %p for closing\n", xprt); /* a thread will dequeue and close it soon */ svc_xprt_enqueue(xprt); } spin_unlock_bh(&serv->sv_lock); mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); } /* Close temporary transports whose xpt_local matches server_addr immediately * instead of waiting for them to be picked up by the timer. * * This is meant to be called from a notifier_block that runs when an ip * address is deleted. */ void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr) { struct svc_xprt *xprt; struct list_head *le, *next; LIST_HEAD(to_be_closed); spin_lock_bh(&serv->sv_lock); list_for_each_safe(le, next, &serv->sv_tempsocks) { xprt = list_entry(le, struct svc_xprt, xpt_list); if (rpc_cmp_addr(server_addr, (struct sockaddr *) &xprt->xpt_local)) { dprintk("svc_age_temp_xprts_now: found %p\n", xprt); list_move(le, &to_be_closed); } } spin_unlock_bh(&serv->sv_lock); while (!list_empty(&to_be_closed)) { le = to_be_closed.next; list_del_init(le); xprt = list_entry(le, struct svc_xprt, xpt_list); set_bit(XPT_CLOSE, &xprt->xpt_flags); set_bit(XPT_KILL_TEMP, &xprt->xpt_flags); dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n", xprt); svc_xprt_enqueue(xprt); } } EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now); static void call_xpt_users(struct svc_xprt *xprt) { struct svc_xpt_user *u; spin_lock(&xprt->xpt_lock); while (!list_empty(&xprt->xpt_users)) { u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list); list_del_init(&u->list); u->callback(u); } spin_unlock(&xprt->xpt_lock); } /* * Remove a dead transport */ static void svc_delete_xprt(struct svc_xprt *xprt) { struct svc_serv *serv = xprt->xpt_server; struct svc_deferred_req *dr; if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) return; trace_svc_xprt_detach(xprt); xprt->xpt_ops->xpo_detach(xprt); if (xprt->xpt_bc_xprt) xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt); spin_lock_bh(&serv->sv_lock); list_del_init(&xprt->xpt_list); if (test_bit(XPT_TEMP, &xprt->xpt_flags)) serv->sv_tmpcnt--; spin_unlock_bh(&serv->sv_lock); while ((dr = svc_deferred_dequeue(xprt)) != NULL) free_deferred(xprt, dr); call_xpt_users(xprt); svc_xprt_put(xprt); } /** * svc_xprt_close - Close a client connection * @xprt: transport to disconnect * */ void svc_xprt_close(struct svc_xprt *xprt) { trace_svc_xprt_close(xprt); set_bit(XPT_CLOSE, &xprt->xpt_flags); if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) /* someone else will have to effect the close */ return; /* * We expect svc_close_xprt() to work even when no threads are * running (e.g., while configuring the server before starting * any threads), so if the transport isn't busy, we delete * it ourself: */ svc_delete_xprt(xprt); } EXPORT_SYMBOL_GPL(svc_xprt_close); static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net) { struct svc_xprt *xprt; int ret = 0; spin_lock_bh(&serv->sv_lock); list_for_each_entry(xprt, xprt_list, xpt_list) { if (xprt->xpt_net != net) continue; ret++; set_bit(XPT_CLOSE, &xprt->xpt_flags); svc_xprt_enqueue(xprt); } spin_unlock_bh(&serv->sv_lock); return ret; } static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net) { struct svc_xprt *xprt; int i; for (i = 0; i < serv->sv_nrpools; i++) { struct svc_pool *pool = &serv->sv_pools[i]; struct llist_node *q, **t1, *t2; q = lwq_dequeue_all(&pool->sp_xprts); lwq_for_each_safe(xprt, t1, t2, &q, xpt_ready) { if (xprt->xpt_net == net) { set_bit(XPT_CLOSE, &xprt->xpt_flags); svc_delete_xprt(xprt); xprt = NULL; } } if (q) lwq_enqueue_batch(q, &pool->sp_xprts); } } /** * svc_xprt_destroy_all - Destroy transports associated with @serv * @serv: RPC service to be shut down * @net: target network namespace * * Server threads may still be running (especially in the case where the * service is still running in other network namespaces). * * So we shut down sockets the same way we would on a running server, by * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do * the close. In the case there are no such other threads, * threads running, svc_clean_up_xprts() does a simple version of a * server's main event loop, and in the case where there are other * threads, we may need to wait a little while and then check again to * see if they're done. */ void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net) { int delay = 0; while (svc_close_list(serv, &serv->sv_permsocks, net) + svc_close_list(serv, &serv->sv_tempsocks, net)) { svc_clean_up_xprts(serv, net); msleep(delay++); } } EXPORT_SYMBOL_GPL(svc_xprt_destroy_all); /* * Handle defer and revisit of requests */ static void svc_revisit(struct cache_deferred_req *dreq, int too_many) { struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle); struct svc_xprt *xprt = dr->xprt; spin_lock(&xprt->xpt_lock); set_bit(XPT_DEFERRED, &xprt->xpt_flags); if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) { spin_unlock(&xprt->xpt_lock); trace_svc_defer_drop(dr); free_deferred(xprt, dr); svc_xprt_put(xprt); return; } dr->xprt = NULL; list_add(&dr->handle.recent, &xprt->xpt_deferred); spin_unlock(&xprt->xpt_lock); trace_svc_defer_queue(dr); svc_xprt_enqueue(xprt); svc_xprt_put(xprt); } /* * Save the request off for later processing. The request buffer looks * like this: * * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> * * This code can only handle requests that consist of an xprt-header * and rpc-header. */ static struct cache_deferred_req *svc_defer(struct cache_req *req) { struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); struct svc_deferred_req *dr; if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags)) return NULL; /* if more than a page, give up FIXME */ if (rqstp->rq_deferred) { dr = rqstp->rq_deferred; rqstp->rq_deferred = NULL; } else { size_t skip; size_t size; /* FIXME maybe discard if size too large */ size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; dr = kmalloc(size, GFP_KERNEL); if (dr == NULL) return NULL; dr->handle.owner = rqstp->rq_server; dr->prot = rqstp->rq_prot; memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); dr->addrlen = rqstp->rq_addrlen; dr->daddr = rqstp->rq_daddr; dr->argslen = rqstp->rq_arg.len >> 2; /* back up head to the start of the buffer and copy */ skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, dr->argslen << 2); } dr->xprt_ctxt = rqstp->rq_xprt_ctxt; rqstp->rq_xprt_ctxt = NULL; trace_svc_defer(rqstp); svc_xprt_get(rqstp->rq_xprt); dr->xprt = rqstp->rq_xprt; set_bit(RQ_DROPME, &rqstp->rq_flags); dr->handle.revisit = svc_revisit; return &dr->handle; } /* * recv data from a deferred request into an active one */ static noinline int svc_deferred_recv(struct svc_rqst *rqstp) { struct svc_deferred_req *dr = rqstp->rq_deferred; trace_svc_defer_recv(dr); /* setup iov_base past transport header */ rqstp->rq_arg.head[0].iov_base = dr->args; /* The iov_len does not include the transport header bytes */ rqstp->rq_arg.head[0].iov_len = dr->argslen << 2; rqstp->rq_arg.page_len = 0; /* The rq_arg.len includes the transport header bytes */ rqstp->rq_arg.len = dr->argslen << 2; rqstp->rq_prot = dr->prot; memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); rqstp->rq_addrlen = dr->addrlen; /* Save off transport header len in case we get deferred again */ rqstp->rq_daddr = dr->daddr; rqstp->rq_respages = rqstp->rq_pages; rqstp->rq_xprt_ctxt = dr->xprt_ctxt; dr->xprt_ctxt = NULL; svc_xprt_received(rqstp->rq_xprt); return dr->argslen << 2; } static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) { struct svc_deferred_req *dr = NULL; if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) return NULL; spin_lock(&xprt->xpt_lock); if (!list_empty(&xprt->xpt_deferred)) { dr = list_entry(xprt->xpt_deferred.next, struct svc_deferred_req, handle.recent); list_del_init(&dr->handle.recent); } else clear_bit(XPT_DEFERRED, &xprt->xpt_flags); spin_unlock(&xprt->xpt_lock); return dr; } /** * svc_find_listener - find an RPC transport instance * @serv: pointer to svc_serv to search * @xcl_name: C string containing transport's class name * @net: owner net pointer * @sa: sockaddr containing address * * Return the transport instance pointer for the endpoint accepting * connections/peer traffic from the specified transport class, * and matching sockaddr. */ struct svc_xprt *svc_find_listener(struct svc_serv *serv, const char *xcl_name, struct net *net, const struct sockaddr *sa) { struct svc_xprt *xprt; struct svc_xprt *found = NULL; spin_lock_bh(&serv->sv_lock); list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { if (xprt->xpt_net != net) continue; if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) continue; if (!rpc_cmp_addr_port(sa, (struct sockaddr *)&xprt->xpt_local)) continue; found = xprt; svc_xprt_get(xprt); break; } spin_unlock_bh(&serv->sv_lock); return found; } EXPORT_SYMBOL_GPL(svc_find_listener); /** * svc_find_xprt - find an RPC transport instance * @serv: pointer to svc_serv to search * @xcl_name: C string containing transport's class name * @net: owner net pointer * @af: Address family of transport's local address * @port: transport's IP port number * * Return the transport instance pointer for the endpoint accepting * connections/peer traffic from the specified transport class, * address family and port. * * Specifying 0 for the address family or port is effectively a * wild-card, and will result in matching the first transport in the * service's list that has a matching class name. */ struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name, struct net *net, const sa_family_t af, const unsigned short port) { struct svc_xprt *xprt; struct svc_xprt *found = NULL; /* Sanity check the args */ if (serv == NULL || xcl_name == NULL) return found; spin_lock_bh(&serv->sv_lock); list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { if (xprt->xpt_net != net) continue; if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) continue; if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) continue; if (port != 0 && port != svc_xprt_local_port(xprt)) continue; found = xprt; svc_xprt_get(xprt); break; } spin_unlock_bh(&serv->sv_lock); return found; } EXPORT_SYMBOL_GPL(svc_find_xprt); static int svc_one_xprt_name(const struct svc_xprt *xprt, char *pos, int remaining) { int len; len = snprintf(pos, remaining, "%s %u\n", xprt->xpt_class->xcl_name, svc_xprt_local_port(xprt)); if (len >= remaining) return -ENAMETOOLONG; return len; } /** * svc_xprt_names - format a buffer with a list of transport names * @serv: pointer to an RPC service * @buf: pointer to a buffer to be filled in * @buflen: length of buffer to be filled in * * Fills in @buf with a string containing a list of transport names, * each name terminated with '\n'. * * Returns positive length of the filled-in string on success; otherwise * a negative errno value is returned if an error occurs. */ int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen) { struct svc_xprt *xprt; int len, totlen; char *pos; /* Sanity check args */ if (!serv) return 0; spin_lock_bh(&serv->sv_lock); pos = buf; totlen = 0; list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { len = svc_one_xprt_name(xprt, pos, buflen - totlen); if (len < 0) { *buf = '\0'; totlen = len; } if (len <= 0) break; pos += len; totlen += len; } spin_unlock_bh(&serv->sv_lock); return totlen; } EXPORT_SYMBOL_GPL(svc_xprt_names); /*----------------------------------------------------------------------------*/ static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos) { unsigned int pidx = (unsigned int)*pos; struct svc_info *si = m->private; dprintk("svc_pool_stats_start, *pidx=%u\n", pidx); mutex_lock(si->mutex); if (!pidx) return SEQ_START_TOKEN; if (!si->serv) return NULL; return pidx > si->serv->sv_nrpools ? NULL : &si->serv->sv_pools[pidx - 1]; } static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos) { struct svc_pool *pool = p; struct svc_info *si = m->private; struct svc_serv *serv = si->serv; dprintk("svc_pool_stats_next, *pos=%llu\n", *pos); if (!serv) { pool = NULL; } else if (p == SEQ_START_TOKEN) { pool = &serv->sv_pools[0]; } else { unsigned int pidx = (pool - &serv->sv_pools[0]); if (pidx < serv->sv_nrpools-1) pool = &serv->sv_pools[pidx+1]; else pool = NULL; } ++*pos; return pool; } static void svc_pool_stats_stop(struct seq_file *m, void *p) { struct svc_info *si = m->private; mutex_unlock(si->mutex); } static int svc_pool_stats_show(struct seq_file *m, void *p) { struct svc_pool *pool = p; if (p == SEQ_START_TOKEN) { seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n"); return 0; } seq_printf(m, "%u %llu %llu %llu 0\n", pool->sp_id, percpu_counter_sum_positive(&pool->sp_messages_arrived), percpu_counter_sum_positive(&pool->sp_sockets_queued), percpu_counter_sum_positive(&pool->sp_threads_woken)); return 0; } static const struct seq_operations svc_pool_stats_seq_ops = { .start = svc_pool_stats_start, .next = svc_pool_stats_next, .stop = svc_pool_stats_stop, .show = svc_pool_stats_show, }; int svc_pool_stats_open(struct svc_info *info, struct file *file) { struct seq_file *seq; int err; err = seq_open(file, &svc_pool_stats_seq_ops); if (err) return err; seq = file->private_data; seq->private = info; return 0; } EXPORT_SYMBOL(svc_pool_stats_open); /*----------------------------------------------------------------------------*/
6 6 31 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 // SPDX-License-Identifier: GPL-2.0-or-later /****************************************************************************** * vlanproc.c VLAN Module. /proc filesystem interface. * * This module is completely hardware-independent and provides * access to the router using Linux /proc filesystem. * * Author: Ben Greear, <greearb@candelatech.com> coppied from wanproc.c * by: Gene Kozin <genek@compuserve.com> * * Copyright: (c) 1998 Ben Greear * * ============================================================================ * Jan 20, 1998 Ben Greear Initial Version *****************************************************************************/ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/fs.h> #include <linux/netdevice.h> #include <linux/if_vlan.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include "vlanproc.h" #include "vlan.h" /****** Function Prototypes *************************************************/ /* Methods for preparing data for reading proc entries */ static int vlan_seq_show(struct seq_file *seq, void *v); static void *vlan_seq_start(struct seq_file *seq, loff_t *pos); static void *vlan_seq_next(struct seq_file *seq, void *v, loff_t *pos); static void vlan_seq_stop(struct seq_file *seq, void *); static int vlandev_seq_show(struct seq_file *seq, void *v); /* * Global Data */ /* * Names of the proc directory entries */ static const char name_root[] = "vlan"; static const char name_conf[] = "config"; /* * Structures for interfacing with the /proc filesystem. * VLAN creates its own directory /proc/net/vlan with the following * entries: * config device status/configuration * <device> entry for each device */ /* * Generic /proc/net/vlan/<file> file and inode operations */ static const struct seq_operations vlan_seq_ops = { .start = vlan_seq_start, .next = vlan_seq_next, .stop = vlan_seq_stop, .show = vlan_seq_show, }; /* * Proc filesystem directory entries. */ /* Strings */ static const char *const vlan_name_type_str[VLAN_NAME_TYPE_HIGHEST] = { [VLAN_NAME_TYPE_RAW_PLUS_VID] = "VLAN_NAME_TYPE_RAW_PLUS_VID", [VLAN_NAME_TYPE_PLUS_VID_NO_PAD] = "VLAN_NAME_TYPE_PLUS_VID_NO_PAD", [VLAN_NAME_TYPE_RAW_PLUS_VID_NO_PAD] = "VLAN_NAME_TYPE_RAW_PLUS_VID_NO_PAD", [VLAN_NAME_TYPE_PLUS_VID] = "VLAN_NAME_TYPE_PLUS_VID", }; /* * Interface functions */ /* * Clean up /proc/net/vlan entries */ void vlan_proc_cleanup(struct net *net) { struct vlan_net *vn = net_generic(net, vlan_net_id); if (vn->proc_vlan_conf) remove_proc_entry(name_conf, vn->proc_vlan_dir); if (vn->proc_vlan_dir) remove_proc_entry(name_root, net->proc_net); /* Dynamically added entries should be cleaned up as their vlan_device * is removed, so we should not have to take care of it here... */ } /* * Create /proc/net/vlan entries */ int __net_init vlan_proc_init(struct net *net) { struct vlan_net *vn = net_generic(net, vlan_net_id); vn->proc_vlan_dir = proc_net_mkdir(net, name_root, net->proc_net); if (!vn->proc_vlan_dir) goto err; vn->proc_vlan_conf = proc_create_net(name_conf, S_IFREG | 0600, vn->proc_vlan_dir, &vlan_seq_ops, sizeof(struct seq_net_private)); if (!vn->proc_vlan_conf) goto err; return 0; err: pr_err("can't create entry in proc filesystem!\n"); vlan_proc_cleanup(net); return -ENOBUFS; } /* * Add directory entry for VLAN device. */ int vlan_proc_add_dev(struct net_device *vlandev) { struct vlan_dev_priv *vlan = vlan_dev_priv(vlandev); struct vlan_net *vn = net_generic(dev_net(vlandev), vlan_net_id); if (!strcmp(vlandev->name, name_conf)) return -EINVAL; vlan->dent = proc_create_single_data(vlandev->name, S_IFREG | 0600, vn->proc_vlan_dir, vlandev_seq_show, vlandev); if (!vlan->dent) return -ENOBUFS; return 0; } /* * Delete directory entry for VLAN device. */ void vlan_proc_rem_dev(struct net_device *vlandev) { /** NOTE: This will consume the memory pointed to by dent, it seems. */ proc_remove(vlan_dev_priv(vlandev)->dent); vlan_dev_priv(vlandev)->dent = NULL; } /****** Proc filesystem entry points ****************************************/ /* * The following few functions build the content of /proc/net/vlan/config */ static void *vlan_seq_from_index(struct seq_file *seq, loff_t *pos) { unsigned long ifindex = *pos; struct net_device *dev; for_each_netdev_dump(seq_file_net(seq), dev, ifindex) { if (!is_vlan_dev(dev)) continue; *pos = dev->ifindex; return dev; } return NULL; } static void *vlan_seq_start(struct seq_file *seq, loff_t *pos) __acquires(rcu) { rcu_read_lock(); if (*pos == 0) return SEQ_START_TOKEN; return vlan_seq_from_index(seq, pos); } static void *vlan_seq_next(struct seq_file *seq, void *v, loff_t *pos) { ++*pos; return vlan_seq_from_index(seq, pos); } static void vlan_seq_stop(struct seq_file *seq, void *v) __releases(rcu) { rcu_read_unlock(); } static int vlan_seq_show(struct seq_file *seq, void *v) { struct net *net = seq_file_net(seq); struct vlan_net *vn = net_generic(net, vlan_net_id); if (v == SEQ_START_TOKEN) { const char *nmtype = NULL; seq_puts(seq, "VLAN Dev name | VLAN ID\n"); if (vn->name_type < ARRAY_SIZE(vlan_name_type_str)) nmtype = vlan_name_type_str[vn->name_type]; seq_printf(seq, "Name-Type: %s\n", nmtype ? nmtype : "UNKNOWN"); } else { const struct net_device *vlandev = v; const struct vlan_dev_priv *vlan = vlan_dev_priv(vlandev); seq_printf(seq, "%-15s| %d | %s\n", vlandev->name, vlan->vlan_id, vlan->real_dev->name); } return 0; } static int vlandev_seq_show(struct seq_file *seq, void *offset) { struct net_device *vlandev = (struct net_device *) seq->private; const struct vlan_dev_priv *vlan = vlan_dev_priv(vlandev); struct rtnl_link_stats64 temp; const struct rtnl_link_stats64 *stats; static const char fmt64[] = "%30s %12llu\n"; int i; if (!is_vlan_dev(vlandev)) return 0; stats = dev_get_stats(vlandev, &temp); seq_printf(seq, "%s VID: %d REORDER_HDR: %i dev->priv_flags: %x\n", vlandev->name, vlan->vlan_id, (int)(vlan->flags & 1), (u32)vlandev->priv_flags); seq_printf(seq, fmt64, "total frames received", stats->rx_packets); seq_printf(seq, fmt64, "total bytes received", stats->rx_bytes); seq_printf(seq, fmt64, "Broadcast/Multicast Rcvd", stats->multicast); seq_puts(seq, "\n"); seq_printf(seq, fmt64, "total frames transmitted", stats->tx_packets); seq_printf(seq, fmt64, "total bytes transmitted", stats->tx_bytes); seq_printf(seq, "Device: %s", vlan->real_dev->name); /* now show all PRIORITY mappings relating to this VLAN */ seq_printf(seq, "\nINGRESS priority mappings: " "0:%u 1:%u 2:%u 3:%u 4:%u 5:%u 6:%u 7:%u\n", vlan->ingress_priority_map[0], vlan->ingress_priority_map[1], vlan->ingress_priority_map[2], vlan->ingress_priority_map[3], vlan->ingress_priority_map[4], vlan->ingress_priority_map[5], vlan->ingress_priority_map[6], vlan->ingress_priority_map[7]); seq_printf(seq, " EGRESS priority mappings: "); for (i = 0; i < 16; i++) { const struct vlan_priority_tci_mapping *mp = vlan->egress_priority_map[i]; while (mp) { seq_printf(seq, "%u:%d ", mp->priority, ((mp->vlan_qos >> 13) & 0x7)); mp = mp->next; } } seq_puts(seq, "\n"); return 0; }
268 61 50 7 61 46 21 21 18 39 37 1 2 1 20 12 4 9 9 9 9 9 9 19 8 33 18 33 4 1 5 20 7 33 1 85 85 79 81 81 5 1 2 76 76 56 1 64 55 64 16 7 4 5 3 3 51 21 12 7 12 12 12 29 14 40 28 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 /* SPDX-License-Identifier: GPL-2.0 */ /* Multipath TCP * * Copyright (c) 2017 - 2019, Intel Corporation. */ #ifndef __MPTCP_PROTOCOL_H #define __MPTCP_PROTOCOL_H #include <linux/random.h> #include <net/tcp.h> #include <net/inet_connection_sock.h> #include <uapi/linux/mptcp.h> #include <net/genetlink.h> #include <net/rstreason.h> #define MPTCP_SUPPORTED_VERSION 1 /* MPTCP option bits */ #define OPTION_MPTCP_MPC_SYN BIT(0) #define OPTION_MPTCP_MPC_SYNACK BIT(1) #define OPTION_MPTCP_MPC_ACK BIT(2) #define OPTION_MPTCP_MPJ_SYN BIT(3) #define OPTION_MPTCP_MPJ_SYNACK BIT(4) #define OPTION_MPTCP_MPJ_ACK BIT(5) #define OPTION_MPTCP_ADD_ADDR BIT(6) #define OPTION_MPTCP_RM_ADDR BIT(7) #define OPTION_MPTCP_FASTCLOSE BIT(8) #define OPTION_MPTCP_PRIO BIT(9) #define OPTION_MPTCP_RST BIT(10) #define OPTION_MPTCP_DSS BIT(11) #define OPTION_MPTCP_FAIL BIT(12) #define OPTION_MPTCP_CSUMREQD BIT(13) #define OPTIONS_MPTCP_MPC (OPTION_MPTCP_MPC_SYN | OPTION_MPTCP_MPC_SYNACK | \ OPTION_MPTCP_MPC_ACK) #define OPTIONS_MPTCP_MPJ (OPTION_MPTCP_MPJ_SYN | OPTION_MPTCP_MPJ_SYNACK | \ OPTION_MPTCP_MPJ_ACK) /* MPTCP option subtypes */ #define MPTCPOPT_MP_CAPABLE 0 #define MPTCPOPT_MP_JOIN 1 #define MPTCPOPT_DSS 2 #define MPTCPOPT_ADD_ADDR 3 #define MPTCPOPT_RM_ADDR 4 #define MPTCPOPT_MP_PRIO 5 #define MPTCPOPT_MP_FAIL 6 #define MPTCPOPT_MP_FASTCLOSE 7 #define MPTCPOPT_RST 8 /* MPTCP suboption lengths */ #define TCPOLEN_MPTCP_MPC_SYN 4 #define TCPOLEN_MPTCP_MPC_SYNACK 12 #define TCPOLEN_MPTCP_MPC_ACK 20 #define TCPOLEN_MPTCP_MPC_ACK_DATA 22 #define TCPOLEN_MPTCP_MPJ_SYN 12 #define TCPOLEN_MPTCP_MPJ_SYNACK 16 #define TCPOLEN_MPTCP_MPJ_ACK 24 #define TCPOLEN_MPTCP_DSS_BASE 4 #define TCPOLEN_MPTCP_DSS_ACK32 4 #define TCPOLEN_MPTCP_DSS_ACK64 8 #define TCPOLEN_MPTCP_DSS_MAP32 10 #define TCPOLEN_MPTCP_DSS_MAP64 14 #define TCPOLEN_MPTCP_DSS_CHECKSUM 2 #define TCPOLEN_MPTCP_ADD_ADDR 16 #define TCPOLEN_MPTCP_ADD_ADDR_PORT 18 #define TCPOLEN_MPTCP_ADD_ADDR_BASE 8 #define TCPOLEN_MPTCP_ADD_ADDR_BASE_PORT 10 #define TCPOLEN_MPTCP_ADD_ADDR6 28 #define TCPOLEN_MPTCP_ADD_ADDR6_PORT 30 #define TCPOLEN_MPTCP_ADD_ADDR6_BASE 20 #define TCPOLEN_MPTCP_ADD_ADDR6_BASE_PORT 22 #define TCPOLEN_MPTCP_PORT_LEN 2 #define TCPOLEN_MPTCP_PORT_ALIGN 2 #define TCPOLEN_MPTCP_RM_ADDR_BASE 3 #define TCPOLEN_MPTCP_PRIO 3 #define TCPOLEN_MPTCP_PRIO_ALIGN 4 #define TCPOLEN_MPTCP_FASTCLOSE 12 #define TCPOLEN_MPTCP_RST 4 #define TCPOLEN_MPTCP_FAIL 12 #define TCPOLEN_MPTCP_MPC_ACK_DATA_CSUM (TCPOLEN_MPTCP_DSS_CHECKSUM + TCPOLEN_MPTCP_MPC_ACK_DATA) /* MPTCP MP_JOIN flags */ #define MPTCPOPT_BACKUP BIT(0) #define MPTCPOPT_THMAC_LEN 8 /* MPTCP MP_CAPABLE flags */ #define MPTCP_VERSION_MASK (0x0F) #define MPTCP_CAP_CHECKSUM_REQD BIT(7) #define MPTCP_CAP_EXTENSIBILITY BIT(6) #define MPTCP_CAP_DENY_JOIN_ID0 BIT(5) #define MPTCP_CAP_HMAC_SHA256 BIT(0) #define MPTCP_CAP_FLAG_MASK (0x1F) /* MPTCP DSS flags */ #define MPTCP_DSS_DATA_FIN BIT(4) #define MPTCP_DSS_DSN64 BIT(3) #define MPTCP_DSS_HAS_MAP BIT(2) #define MPTCP_DSS_ACK64 BIT(1) #define MPTCP_DSS_HAS_ACK BIT(0) #define MPTCP_DSS_FLAG_MASK (0x1F) /* MPTCP ADD_ADDR flags */ #define MPTCP_ADDR_ECHO BIT(0) /* MPTCP MP_PRIO flags */ #define MPTCP_PRIO_BKUP BIT(0) /* MPTCP TCPRST flags */ #define MPTCP_RST_TRANSIENT BIT(0) /* MPTCP socket atomic flags */ #define MPTCP_WORK_RTX 1 #define MPTCP_FALLBACK_DONE 2 #define MPTCP_WORK_CLOSE_SUBFLOW 3 /* MPTCP socket release cb flags */ #define MPTCP_PUSH_PENDING 1 #define MPTCP_CLEAN_UNA 2 #define MPTCP_ERROR_REPORT 3 #define MPTCP_RETRANSMIT 4 #define MPTCP_FLUSH_JOIN_LIST 5 #define MPTCP_SYNC_STATE 6 #define MPTCP_SYNC_SNDBUF 7 struct mptcp_skb_cb { u64 map_seq; u64 end_seq; u32 offset; u8 has_rxtstamp:1; }; #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0])) static inline bool before64(__u64 seq1, __u64 seq2) { return (__s64)(seq1 - seq2) < 0; } #define after64(seq2, seq1) before64(seq1, seq2) struct mptcp_options_received { u64 sndr_key; u64 rcvr_key; u64 data_ack; u64 data_seq; u32 subflow_seq; u16 data_len; __sum16 csum; u16 suboptions; u32 token; u32 nonce; u16 use_map:1, dsn64:1, data_fin:1, use_ack:1, ack64:1, mpc_map:1, reset_reason:4, reset_transient:1, echo:1, backup:1, deny_join_id0:1, __unused:2; u8 join_id; u64 thmac; u8 hmac[MPTCPOPT_HMAC_LEN]; struct mptcp_addr_info addr; struct mptcp_rm_list rm_list; u64 ahmac; u64 fail_seq; }; static inline __be32 mptcp_option(u8 subopt, u8 len, u8 nib, u8 field) { return htonl((TCPOPT_MPTCP << 24) | (len << 16) | (subopt << 12) | ((nib & 0xF) << 8) | field); } enum mptcp_pm_status { MPTCP_PM_ADD_ADDR_RECEIVED, MPTCP_PM_ADD_ADDR_SEND_ACK, MPTCP_PM_RM_ADDR_RECEIVED, MPTCP_PM_ESTABLISHED, MPTCP_PM_SUBFLOW_ESTABLISHED, MPTCP_PM_ALREADY_ESTABLISHED, /* persistent status, set after ESTABLISHED event */ MPTCP_PM_MPC_ENDPOINT_ACCOUNTED /* persistent status, set after MPC local address is * accounted int id_avail_bitmap */ }; enum mptcp_pm_type { MPTCP_PM_TYPE_KERNEL = 0, MPTCP_PM_TYPE_USERSPACE, __MPTCP_PM_TYPE_NR, __MPTCP_PM_TYPE_MAX = __MPTCP_PM_TYPE_NR - 1, }; /* Status bits below MPTCP_PM_ALREADY_ESTABLISHED need pm worker actions */ #define MPTCP_PM_WORK_MASK ((1 << MPTCP_PM_ALREADY_ESTABLISHED) - 1) enum mptcp_addr_signal_status { MPTCP_ADD_ADDR_SIGNAL, MPTCP_ADD_ADDR_ECHO, MPTCP_RM_ADDR_SIGNAL, }; /* max value of mptcp_addr_info.id */ #define MPTCP_PM_MAX_ADDR_ID U8_MAX struct mptcp_pm_data { struct mptcp_addr_info local; struct mptcp_addr_info remote; struct list_head anno_list; struct list_head userspace_pm_local_addr_list; spinlock_t lock; /*protects the whole PM data */ u8 addr_signal; bool server_side; bool work_pending; bool accept_addr; bool accept_subflow; bool remote_deny_join_id0; u8 add_addr_signaled; u8 add_addr_accepted; u8 local_addr_used; u8 pm_type; u8 subflows; u8 status; DECLARE_BITMAP(id_avail_bitmap, MPTCP_PM_MAX_ADDR_ID + 1); struct mptcp_rm_list rm_list_tx; struct mptcp_rm_list rm_list_rx; }; struct mptcp_pm_local { struct mptcp_addr_info addr; u8 flags; int ifindex; }; struct mptcp_pm_addr_entry { struct list_head list; struct mptcp_addr_info addr; u8 flags; int ifindex; struct socket *lsk; }; struct mptcp_data_frag { struct list_head list; u64 data_seq; u16 data_len; u16 offset; u16 overhead; u16 already_sent; struct page *page; }; /* MPTCP connection sock */ struct mptcp_sock { /* inet_connection_sock must be the first member */ struct inet_connection_sock sk; u64 local_key; /* protected by the first subflow socket lock * lockless access read */ u64 remote_key; /* same as above */ u64 write_seq; u64 bytes_sent; u64 snd_nxt; u64 bytes_received; u64 ack_seq; atomic64_t rcv_wnd_sent; u64 rcv_data_fin_seq; u64 bytes_retrans; u64 bytes_consumed; int rmem_fwd_alloc; int snd_burst; int old_wspace; u64 recovery_snd_nxt; /* in recovery mode accept up to this seq; * recovery related fields are under data_lock * protection */ u64 bytes_acked; u64 snd_una; u64 wnd_end; u32 last_data_sent; u32 last_data_recv; u32 last_ack_recv; unsigned long timer_ival; u32 token; int rmem_released; unsigned long flags; unsigned long cb_flags; bool recovery; /* closing subflow write queue reinjected */ bool can_ack; bool fully_established; bool rcv_data_fin; bool snd_data_fin_enable; bool rcv_fastclose; bool use_64bit_ack; /* Set when we received a 64-bit DSN */ bool csum_enabled; bool allow_infinite_fallback; u8 pending_state; /* A subflow asked to set this sk_state, * protected by the msk data lock */ u8 mpc_endpoint_id; u8 recvmsg_inq:1, cork:1, nodelay:1, fastopening:1, in_accept_queue:1, free_first:1, rcvspace_init:1; u32 notsent_lowat; int keepalive_cnt; int keepalive_idle; int keepalive_intvl; struct work_struct work; struct sk_buff *ooo_last_skb; struct rb_root out_of_order_queue; struct sk_buff_head receive_queue; struct list_head conn_list; struct list_head rtx_queue; struct mptcp_data_frag *first_pending; struct list_head join_list; struct sock *first; /* The mptcp ops can safely dereference, using suitable * ONCE annotation, the subflow outside the socket * lock as such sock is freed after close(). */ struct mptcp_pm_data pm; struct mptcp_sched_ops *sched; struct { u32 space; /* bytes copied in last measurement window */ u32 copied; /* bytes copied in this measurement window */ u64 time; /* start time of measurement window */ u64 rtt_us; /* last maximum rtt of subflows */ } rcvq_space; u8 scaling_ratio; u32 subflow_id; u32 setsockopt_seq; char ca_name[TCP_CA_NAME_MAX]; }; #define mptcp_data_lock(sk) spin_lock_bh(&(sk)->sk_lock.slock) #define mptcp_data_unlock(sk) spin_unlock_bh(&(sk)->sk_lock.slock) #define mptcp_for_each_subflow(__msk, __subflow) \ list_for_each_entry(__subflow, &((__msk)->conn_list), node) #define mptcp_for_each_subflow_safe(__msk, __subflow, __tmp) \ list_for_each_entry_safe(__subflow, __tmp, &((__msk)->conn_list), node) extern struct genl_family mptcp_genl_family; static inline void msk_owned_by_me(const struct mptcp_sock *msk) { sock_owned_by_me((const struct sock *)msk); } #ifdef CONFIG_DEBUG_NET /* MPTCP-specific: we might (indirectly) call this helper with the wrong sk */ #undef tcp_sk #define tcp_sk(ptr) ({ \ typeof(ptr) _ptr = (ptr); \ WARN_ON(_ptr->sk_protocol != IPPROTO_TCP); \ container_of_const(_ptr, struct tcp_sock, inet_conn.icsk_inet.sk); \ }) #define mptcp_sk(ptr) ({ \ typeof(ptr) _ptr = (ptr); \ WARN_ON(_ptr->sk_protocol != IPPROTO_MPTCP); \ container_of_const(_ptr, struct mptcp_sock, sk.icsk_inet.sk); \ }) #else /* !CONFIG_DEBUG_NET */ #define mptcp_sk(ptr) container_of_const(ptr, struct mptcp_sock, sk.icsk_inet.sk) #endif /* the msk socket don't use the backlog, also account for the bulk * free memory */ static inline int __mptcp_rmem(const struct sock *sk) { return atomic_read(&sk->sk_rmem_alloc) - READ_ONCE(mptcp_sk(sk)->rmem_released); } static inline int mptcp_win_from_space(const struct sock *sk, int space) { return __tcp_win_from_space(mptcp_sk(sk)->scaling_ratio, space); } static inline int mptcp_space_from_win(const struct sock *sk, int win) { return __tcp_space_from_win(mptcp_sk(sk)->scaling_ratio, win); } static inline int __mptcp_space(const struct sock *sk) { return mptcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - __mptcp_rmem(sk)); } static inline struct mptcp_data_frag *mptcp_send_head(const struct sock *sk) { const struct mptcp_sock *msk = mptcp_sk(sk); return READ_ONCE(msk->first_pending); } static inline struct mptcp_data_frag *mptcp_send_next(struct sock *sk) { struct mptcp_sock *msk = mptcp_sk(sk); struct mptcp_data_frag *cur; cur = msk->first_pending; return list_is_last(&cur->list, &msk->rtx_queue) ? NULL : list_next_entry(cur, list); } static inline struct mptcp_data_frag *mptcp_pending_tail(const struct sock *sk) { const struct mptcp_sock *msk = mptcp_sk(sk); if (!msk->first_pending) return NULL; if (WARN_ON_ONCE(list_empty(&msk->rtx_queue))) return NULL; return list_last_entry(&msk->rtx_queue, struct mptcp_data_frag, list); } static inline struct mptcp_data_frag *mptcp_rtx_head(struct sock *sk) { struct mptcp_sock *msk = mptcp_sk(sk); if (msk->snd_una == msk->snd_nxt) return NULL; return list_first_entry_or_null(&msk->rtx_queue, struct mptcp_data_frag, list); } struct csum_pseudo_header { __be64 data_seq; __be32 subflow_seq; __be16 data_len; __sum16 csum; }; struct mptcp_subflow_request_sock { struct tcp_request_sock sk; u16 mp_capable : 1, mp_join : 1, backup : 1, request_bkup : 1, csum_reqd : 1, allow_join_id0 : 1; u8 local_id; u8 remote_id; u64 local_key; u64 idsn; u32 token; u32 ssn_offset; u64 thmac; u32 local_nonce; u32 remote_nonce; struct mptcp_sock *msk; struct hlist_nulls_node token_node; }; static inline struct mptcp_subflow_request_sock * mptcp_subflow_rsk(const struct request_sock *rsk) { return (struct mptcp_subflow_request_sock *)rsk; } struct mptcp_delegated_action { struct napi_struct napi; struct list_head head; }; DECLARE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); #define MPTCP_DELEGATE_SCHEDULED 0 #define MPTCP_DELEGATE_SEND 1 #define MPTCP_DELEGATE_ACK 2 #define MPTCP_DELEGATE_SNDBUF 3 #define MPTCP_DELEGATE_ACTIONS_MASK (~BIT(MPTCP_DELEGATE_SCHEDULED)) /* MPTCP subflow context */ struct mptcp_subflow_context { struct list_head node;/* conn_list of subflows */ struct_group(reset, unsigned long avg_pacing_rate; /* protected by msk socket lock */ u64 local_key; u64 remote_key; u64 idsn; u64 map_seq; u32 snd_isn; u32 token; u32 rel_write_seq; u32 map_subflow_seq; u32 ssn_offset; u32 map_data_len; __wsum map_data_csum; u32 map_csum_len; u32 request_mptcp : 1, /* send MP_CAPABLE */ request_join : 1, /* send MP_JOIN */ request_bkup : 1, mp_capable : 1, /* remote is MPTCP capable */ mp_join : 1, /* remote is JOINing */ fully_established : 1, /* path validated */ pm_notified : 1, /* PM hook called for established status */ conn_finished : 1, map_valid : 1, map_csum_reqd : 1, map_data_fin : 1, mpc_map : 1, backup : 1, send_mp_prio : 1, send_mp_fail : 1, send_fastclose : 1, send_infinite_map : 1, remote_key_valid : 1, /* received the peer key from */ disposable : 1, /* ctx can be free at ulp release time */ stale : 1, /* unable to snd/rcv data, do not use for xmit */ valid_csum_seen : 1, /* at least one csum validated */ is_mptfo : 1, /* subflow is doing TFO */ close_event_done : 1, /* has done the post-closed part */ mpc_drop : 1, /* the MPC option has been dropped in a rtx */ __unused : 8; bool data_avail; bool scheduled; bool pm_listener; /* a listener managed by the kernel PM? */ u32 remote_nonce; u64 thmac; u32 local_nonce; u32 remote_token; union { u8 hmac[MPTCPOPT_HMAC_LEN]; /* MPJ subflow only */ u64 iasn; /* initial ack sequence number, MPC subflows only */ }; s16 local_id; /* if negative not initialized yet */ u8 remote_id; u8 reset_seen:1; u8 reset_transient:1; u8 reset_reason:4; u8 stale_count; u32 subflow_id; long delegated_status; unsigned long fail_tout; ); struct list_head delegated_node; /* link into delegated_action, protected by local BH */ u32 setsockopt_seq; u32 stale_rcv_tstamp; int cached_sndbuf; /* sndbuf size when last synced with the msk sndbuf, * protected by the msk socket lock */ struct sock *tcp_sock; /* tcp sk backpointer */ struct sock *conn; /* parent mptcp_sock */ const struct inet_connection_sock_af_ops *icsk_af_ops; void (*tcp_state_change)(struct sock *sk); void (*tcp_error_report)(struct sock *sk); struct rcu_head rcu; }; static inline struct mptcp_subflow_context * mptcp_subflow_ctx(const struct sock *sk) { const struct inet_connection_sock *icsk = inet_csk(sk); /* Use RCU on icsk_ulp_data only for sock diag code */ return (__force struct mptcp_subflow_context *)icsk->icsk_ulp_data; } static inline struct sock * mptcp_subflow_tcp_sock(const struct mptcp_subflow_context *subflow) { return subflow->tcp_sock; } static inline void mptcp_subflow_ctx_reset(struct mptcp_subflow_context *subflow) { memset(&subflow->reset, 0, sizeof(subflow->reset)); subflow->request_mptcp = 1; WRITE_ONCE(subflow->local_id, -1); } /* Convert reset reasons in MPTCP to enum sk_rst_reason type */ static inline enum sk_rst_reason sk_rst_convert_mptcp_reason(u32 reason) { switch (reason) { case MPTCP_RST_EUNSPEC: return SK_RST_REASON_MPTCP_RST_EUNSPEC; case MPTCP_RST_EMPTCP: return SK_RST_REASON_MPTCP_RST_EMPTCP; case MPTCP_RST_ERESOURCE: return SK_RST_REASON_MPTCP_RST_ERESOURCE; case MPTCP_RST_EPROHIBIT: return SK_RST_REASON_MPTCP_RST_EPROHIBIT; case MPTCP_RST_EWQ2BIG: return SK_RST_REASON_MPTCP_RST_EWQ2BIG; case MPTCP_RST_EBADPERF: return SK_RST_REASON_MPTCP_RST_EBADPERF; case MPTCP_RST_EMIDDLEBOX: return SK_RST_REASON_MPTCP_RST_EMIDDLEBOX; default: /* It should not happen, or else errors may occur * in MPTCP layer */ return SK_RST_REASON_ERROR; } } static inline void mptcp_send_active_reset_reason(struct sock *sk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); enum sk_rst_reason reason; reason = sk_rst_convert_mptcp_reason(subflow->reset_reason); tcp_send_active_reset(sk, GFP_ATOMIC, reason); } static inline u64 mptcp_subflow_get_map_offset(const struct mptcp_subflow_context *subflow) { return tcp_sk(mptcp_subflow_tcp_sock(subflow))->copied_seq - subflow->ssn_offset - subflow->map_subflow_seq; } static inline u64 mptcp_subflow_get_mapped_dsn(const struct mptcp_subflow_context *subflow) { return subflow->map_seq + mptcp_subflow_get_map_offset(subflow); } void mptcp_subflow_process_delegated(struct sock *ssk, long actions); static inline void mptcp_subflow_delegate(struct mptcp_subflow_context *subflow, int action) { long old, set_bits = BIT(MPTCP_DELEGATE_SCHEDULED) | BIT(action); struct mptcp_delegated_action *delegated; bool schedule; /* the caller held the subflow bh socket lock */ lockdep_assert_in_softirq(); /* The implied barrier pairs with tcp_release_cb_override() * mptcp_napi_poll(), and ensures the below list check sees list * updates done prior to delegated status bits changes */ old = set_mask_bits(&subflow->delegated_status, 0, set_bits); if (!(old & BIT(MPTCP_DELEGATE_SCHEDULED))) { if (WARN_ON_ONCE(!list_empty(&subflow->delegated_node))) return; delegated = this_cpu_ptr(&mptcp_delegated_actions); schedule = list_empty(&delegated->head); list_add_tail(&subflow->delegated_node, &delegated->head); sock_hold(mptcp_subflow_tcp_sock(subflow)); if (schedule) napi_schedule(&delegated->napi); } } static inline struct mptcp_subflow_context * mptcp_subflow_delegated_next(struct mptcp_delegated_action *delegated) { struct mptcp_subflow_context *ret; if (list_empty(&delegated->head)) return NULL; ret = list_first_entry(&delegated->head, struct mptcp_subflow_context, delegated_node); list_del_init(&ret->delegated_node); return ret; } int mptcp_is_enabled(const struct net *net); unsigned int mptcp_get_add_addr_timeout(const struct net *net); int mptcp_is_checksum_enabled(const struct net *net); int mptcp_allow_join_id0(const struct net *net); unsigned int mptcp_stale_loss_cnt(const struct net *net); unsigned int mptcp_close_timeout(const struct sock *sk); int mptcp_get_pm_type(const struct net *net); const char *mptcp_get_scheduler(const struct net *net); void mptcp_active_disable(struct sock *sk); bool mptcp_active_should_disable(struct sock *ssk); void mptcp_active_enable(struct sock *sk); void mptcp_get_available_schedulers(char *buf, size_t maxlen); void __mptcp_subflow_fully_established(struct mptcp_sock *msk, struct mptcp_subflow_context *subflow, const struct mptcp_options_received *mp_opt); bool __mptcp_retransmit_pending_data(struct sock *sk); void mptcp_check_and_set_pending(struct sock *sk); void __mptcp_push_pending(struct sock *sk, unsigned int flags); bool mptcp_subflow_data_available(struct sock *sk); void __init mptcp_subflow_init(void); void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how); void mptcp_close_ssk(struct sock *sk, struct sock *ssk, struct mptcp_subflow_context *subflow); void __mptcp_subflow_send_ack(struct sock *ssk); void mptcp_subflow_reset(struct sock *ssk); void mptcp_subflow_queue_clean(struct sock *sk, struct sock *ssk); void mptcp_sock_graft(struct sock *sk, struct socket *parent); struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk); bool __mptcp_close(struct sock *sk, long timeout); void mptcp_cancel_work(struct sock *sk); void __mptcp_unaccepted_force_close(struct sock *sk); void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk); void mptcp_set_state(struct sock *sk, int state); bool mptcp_addresses_equal(const struct mptcp_addr_info *a, const struct mptcp_addr_info *b, bool use_port); void mptcp_local_address(const struct sock_common *skc, struct mptcp_addr_info *addr); /* called with sk socket lock held */ int __mptcp_subflow_connect(struct sock *sk, const struct mptcp_pm_local *local, const struct mptcp_addr_info *remote); int mptcp_subflow_create_socket(struct sock *sk, unsigned short family, struct socket **new_sock); void mptcp_info2sockaddr(const struct mptcp_addr_info *info, struct sockaddr_storage *addr, unsigned short family); struct mptcp_sched_ops *mptcp_sched_find(const char *name); int mptcp_register_scheduler(struct mptcp_sched_ops *sched); void mptcp_unregister_scheduler(struct mptcp_sched_ops *sched); void mptcp_sched_init(void); int mptcp_init_sched(struct mptcp_sock *msk, struct mptcp_sched_ops *sched); void mptcp_release_sched(struct mptcp_sock *msk); void mptcp_subflow_set_scheduled(struct mptcp_subflow_context *subflow, bool scheduled); struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk); struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk); int mptcp_sched_get_send(struct mptcp_sock *msk); int mptcp_sched_get_retrans(struct mptcp_sock *msk); static inline u64 mptcp_data_avail(const struct mptcp_sock *msk) { return READ_ONCE(msk->bytes_received) - READ_ONCE(msk->bytes_consumed); } static inline bool mptcp_epollin_ready(const struct sock *sk) { /* mptcp doesn't have to deal with small skbs in the receive queue, * at it can always coalesce them */ return (mptcp_data_avail(mptcp_sk(sk)) >= sk->sk_rcvlowat) || (mem_cgroup_sockets_enabled && sk->sk_memcg && mem_cgroup_under_socket_pressure(sk->sk_memcg)) || READ_ONCE(tcp_memory_pressure); } int mptcp_set_rcvlowat(struct sock *sk, int val); static inline bool __tcp_can_send(const struct sock *ssk) { /* only send if our side has not closed yet */ return ((1 << inet_sk_state_load(ssk)) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)); } static inline bool __mptcp_subflow_active(struct mptcp_subflow_context *subflow) { /* can't send if JOIN hasn't completed yet (i.e. is usable for mptcp) */ if (subflow->request_join && !subflow->fully_established) return false; return __tcp_can_send(mptcp_subflow_tcp_sock(subflow)); } void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow); bool mptcp_subflow_active(struct mptcp_subflow_context *subflow); void mptcp_subflow_drop_ctx(struct sock *ssk); static inline void mptcp_subflow_tcp_fallback(struct sock *sk, struct mptcp_subflow_context *ctx) { sk->sk_data_ready = sock_def_readable; sk->sk_state_change = ctx->tcp_state_change; sk->sk_write_space = sk_stream_write_space; sk->sk_error_report = ctx->tcp_error_report; inet_csk(sk)->icsk_af_ops = ctx->icsk_af_ops; } void __init mptcp_proto_init(void); #if IS_ENABLED(CONFIG_MPTCP_IPV6) int __init mptcp_proto_v6_init(void); #endif struct sock *mptcp_sk_clone_init(const struct sock *sk, const struct mptcp_options_received *mp_opt, struct sock *ssk, struct request_sock *req); void mptcp_get_options(const struct sk_buff *skb, struct mptcp_options_received *mp_opt); void mptcp_finish_connect(struct sock *sk); void __mptcp_sync_state(struct sock *sk, int state); void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout); static inline void mptcp_stop_tout_timer(struct sock *sk) { if (!inet_csk(sk)->icsk_mtup.probe_timestamp) return; sk_stop_timer(sk, &sk->sk_timer); inet_csk(sk)->icsk_mtup.probe_timestamp = 0; } static inline void mptcp_set_close_tout(struct sock *sk, unsigned long tout) { /* avoid 0 timestamp, as that means no close timeout */ inet_csk(sk)->icsk_mtup.probe_timestamp = tout ? : 1; } static inline void mptcp_start_tout_timer(struct sock *sk) { mptcp_set_close_tout(sk, tcp_jiffies32); mptcp_reset_tout_timer(mptcp_sk(sk), 0); } static inline bool mptcp_is_fully_established(struct sock *sk) { return inet_sk_state_load(sk) == TCP_ESTABLISHED && READ_ONCE(mptcp_sk(sk)->fully_established); } void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk); void mptcp_data_ready(struct sock *sk, struct sock *ssk); bool mptcp_finish_join(struct sock *sk); bool mptcp_schedule_work(struct sock *sk); int mptcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen); int mptcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *option); u64 __mptcp_expand_seq(u64 old_seq, u64 cur_seq); static inline u64 mptcp_expand_seq(u64 old_seq, u64 cur_seq, bool use_64bit) { if (use_64bit) return cur_seq; return __mptcp_expand_seq(old_seq, cur_seq); } void __mptcp_check_push(struct sock *sk, struct sock *ssk); void __mptcp_data_acked(struct sock *sk); void __mptcp_error_report(struct sock *sk); bool mptcp_update_rcv_data_fin(struct mptcp_sock *msk, u64 data_fin_seq, bool use_64bit); static inline bool mptcp_data_fin_enabled(const struct mptcp_sock *msk) { return READ_ONCE(msk->snd_data_fin_enable) && READ_ONCE(msk->write_seq) == READ_ONCE(msk->snd_nxt); } static inline u32 mptcp_notsent_lowat(const struct sock *sk) { struct net *net = sock_net(sk); u32 val; val = READ_ONCE(mptcp_sk(sk)->notsent_lowat); return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat); } static inline bool mptcp_stream_memory_free(const struct sock *sk, int wake) { const struct mptcp_sock *msk = mptcp_sk(sk); u32 notsent_bytes; notsent_bytes = READ_ONCE(msk->write_seq) - READ_ONCE(msk->snd_nxt); return (notsent_bytes << wake) < mptcp_notsent_lowat(sk); } static inline bool __mptcp_stream_is_writeable(const struct sock *sk, int wake) { return mptcp_stream_memory_free(sk, wake) && __sk_stream_is_writeable(sk, wake); } static inline void mptcp_write_space(struct sock *sk) { /* pairs with memory barrier in mptcp_poll */ smp_mb(); if (mptcp_stream_memory_free(sk, 1)) sk_stream_write_space(sk); } static inline void __mptcp_sync_sndbuf(struct sock *sk) { struct mptcp_subflow_context *subflow; int ssk_sndbuf, new_sndbuf; if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) return; new_sndbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]); mptcp_for_each_subflow(mptcp_sk(sk), subflow) { ssk_sndbuf = READ_ONCE(mptcp_subflow_tcp_sock(subflow)->sk_sndbuf); subflow->cached_sndbuf = ssk_sndbuf; new_sndbuf += ssk_sndbuf; } /* the msk max wmem limit is <nr_subflows> * tcp wmem[2] */ WRITE_ONCE(sk->sk_sndbuf, new_sndbuf); mptcp_write_space(sk); } /* The called held both the msk socket and the subflow socket locks, * possibly under BH */ static inline void __mptcp_propagate_sndbuf(struct sock *sk, struct sock *ssk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); if (READ_ONCE(ssk->sk_sndbuf) != subflow->cached_sndbuf) __mptcp_sync_sndbuf(sk); } /* the caller held only the subflow socket lock, either in process or * BH context. Additionally this can be called under the msk data lock, * so we can't acquire such lock here: let the delegate action acquires * the needed locks in suitable order. */ static inline void mptcp_propagate_sndbuf(struct sock *sk, struct sock *ssk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); if (likely(READ_ONCE(ssk->sk_sndbuf) == subflow->cached_sndbuf)) return; local_bh_disable(); mptcp_subflow_delegate(subflow, MPTCP_DELEGATE_SNDBUF); local_bh_enable(); } void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags); #define MPTCP_TOKEN_MAX_RETRIES 4 void __init mptcp_token_init(void); static inline void mptcp_token_init_request(struct request_sock *req) { mptcp_subflow_rsk(req)->token_node.pprev = NULL; } int mptcp_token_new_request(struct request_sock *req); void mptcp_token_destroy_request(struct request_sock *req); int mptcp_token_new_connect(struct sock *ssk); void mptcp_token_accept(struct mptcp_subflow_request_sock *r, struct mptcp_sock *msk); bool mptcp_token_exists(u32 token); struct mptcp_sock *mptcp_token_get_sock(struct net *net, u32 token); struct mptcp_sock *mptcp_token_iter_next(const struct net *net, long *s_slot, long *s_num); void mptcp_token_destroy(struct mptcp_sock *msk); void mptcp_crypto_key_sha(u64 key, u32 *token, u64 *idsn); void mptcp_crypto_hmac_sha(u64 key1, u64 key2, u8 *msg, int len, void *hmac); __sum16 __mptcp_make_csum(u64 data_seq, u32 subflow_seq, u16 data_len, __wsum sum); void __init mptcp_pm_init(void); void mptcp_pm_data_init(struct mptcp_sock *msk); void mptcp_pm_data_reset(struct mptcp_sock *msk); int mptcp_pm_parse_addr(struct nlattr *attr, struct genl_info *info, struct mptcp_addr_info *addr); int mptcp_pm_parse_entry(struct nlattr *attr, struct genl_info *info, bool require_family, struct mptcp_pm_addr_entry *entry); bool mptcp_pm_addr_families_match(const struct sock *sk, const struct mptcp_addr_info *loc, const struct mptcp_addr_info *rem); void mptcp_pm_subflow_chk_stale(const struct mptcp_sock *msk, struct sock *ssk); void mptcp_pm_nl_subflow_chk_stale(const struct mptcp_sock *msk, struct sock *ssk); void mptcp_pm_new_connection(struct mptcp_sock *msk, const struct sock *ssk, int server_side); void mptcp_pm_fully_established(struct mptcp_sock *msk, const struct sock *ssk); bool mptcp_pm_allow_new_subflow(struct mptcp_sock *msk); void mptcp_pm_connection_closed(struct mptcp_sock *msk); void mptcp_pm_subflow_established(struct mptcp_sock *msk); bool mptcp_pm_nl_check_work_pending(struct mptcp_sock *msk); void mptcp_pm_subflow_check_next(struct mptcp_sock *msk, const struct mptcp_subflow_context *subflow); void mptcp_pm_add_addr_received(const struct sock *ssk, const struct mptcp_addr_info *addr); void mptcp_pm_add_addr_echoed(struct mptcp_sock *msk, const struct mptcp_addr_info *addr); void mptcp_pm_add_addr_send_ack(struct mptcp_sock *msk); bool mptcp_pm_nl_is_init_remote_addr(struct mptcp_sock *msk, const struct mptcp_addr_info *remote); void mptcp_pm_nl_addr_send_ack(struct mptcp_sock *msk); void mptcp_pm_rm_addr_received(struct mptcp_sock *msk, const struct mptcp_rm_list *rm_list); void mptcp_pm_mp_prio_received(struct sock *sk, u8 bkup); void mptcp_pm_mp_fail_received(struct sock *sk, u64 fail_seq); int mptcp_pm_nl_mp_prio_send_ack(struct mptcp_sock *msk, struct mptcp_addr_info *addr, struct mptcp_addr_info *rem, u8 bkup); bool mptcp_pm_alloc_anno_list(struct mptcp_sock *msk, const struct mptcp_addr_info *addr); void mptcp_pm_free_anno_list(struct mptcp_sock *msk); bool mptcp_pm_sport_in_anno_list(struct mptcp_sock *msk, const struct sock *sk); struct mptcp_pm_add_entry * mptcp_pm_del_add_timer(struct mptcp_sock *msk, const struct mptcp_addr_info *addr, bool check_id); struct mptcp_pm_add_entry * mptcp_lookup_anno_list_by_saddr(const struct mptcp_sock *msk, const struct mptcp_addr_info *addr); int mptcp_pm_set_flags(struct sk_buff *skb, struct genl_info *info); int mptcp_pm_nl_set_flags(struct sk_buff *skb, struct genl_info *info); int mptcp_userspace_pm_set_flags(struct sk_buff *skb, struct genl_info *info); int mptcp_pm_announce_addr(struct mptcp_sock *msk, const struct mptcp_addr_info *addr, bool echo); int mptcp_pm_remove_addr(struct mptcp_sock *msk, const struct mptcp_rm_list *rm_list); void mptcp_pm_remove_addrs(struct mptcp_sock *msk, struct list_head *rm_list); void mptcp_free_local_addr_list(struct mptcp_sock *msk); void mptcp_event(enum mptcp_event_type type, const struct mptcp_sock *msk, const struct sock *ssk, gfp_t gfp); void mptcp_event_addr_announced(const struct sock *ssk, const struct mptcp_addr_info *info); void mptcp_event_addr_removed(const struct mptcp_sock *msk, u8 id); void mptcp_event_pm_listener(const struct sock *ssk, enum mptcp_event_type event); bool mptcp_userspace_pm_active(const struct mptcp_sock *msk); void __mptcp_fastopen_gen_msk_ackseq(struct mptcp_sock *msk, struct mptcp_subflow_context *subflow, const struct mptcp_options_received *mp_opt); void mptcp_fastopen_subflow_synack_set_params(struct mptcp_subflow_context *subflow, struct request_sock *req); int mptcp_nl_fill_addr(struct sk_buff *skb, struct mptcp_pm_addr_entry *entry); static inline bool mptcp_pm_should_add_signal(struct mptcp_sock *msk) { return READ_ONCE(msk->pm.addr_signal) & (BIT(MPTCP_ADD_ADDR_SIGNAL) | BIT(MPTCP_ADD_ADDR_ECHO)); } static inline bool mptcp_pm_should_add_signal_addr(struct mptcp_sock *msk) { return READ_ONCE(msk->pm.addr_signal) & BIT(MPTCP_ADD_ADDR_SIGNAL); } static inline bool mptcp_pm_should_add_signal_echo(struct mptcp_sock *msk) { return READ_ONCE(msk->pm.addr_signal) & BIT(MPTCP_ADD_ADDR_ECHO); } static inline bool mptcp_pm_should_rm_signal(struct mptcp_sock *msk) { return READ_ONCE(msk->pm.addr_signal) & BIT(MPTCP_RM_ADDR_SIGNAL); } static inline bool mptcp_pm_is_userspace(const struct mptcp_sock *msk) { return READ_ONCE(msk->pm.pm_type) == MPTCP_PM_TYPE_USERSPACE; } static inline bool mptcp_pm_is_kernel(const struct mptcp_sock *msk) { return READ_ONCE(msk->pm.pm_type) == MPTCP_PM_TYPE_KERNEL; } static inline unsigned int mptcp_add_addr_len(int family, bool echo, bool port) { u8 len = TCPOLEN_MPTCP_ADD_ADDR_BASE; if (family == AF_INET6) len = TCPOLEN_MPTCP_ADD_ADDR6_BASE; if (!echo) len += MPTCPOPT_THMAC_LEN; /* account for 2 trailing 'nop' options */ if (port) len += TCPOLEN_MPTCP_PORT_LEN + TCPOLEN_MPTCP_PORT_ALIGN; return len; } static inline int mptcp_rm_addr_len(const struct mptcp_rm_list *rm_list) { if (rm_list->nr == 0 || rm_list->nr > MPTCP_RM_IDS_MAX) return -EINVAL; return TCPOLEN_MPTCP_RM_ADDR_BASE + roundup(rm_list->nr - 1, 4) + 1; } bool mptcp_pm_add_addr_signal(struct mptcp_sock *msk, const struct sk_buff *skb, unsigned int opt_size, unsigned int remaining, struct mptcp_addr_info *addr, bool *echo, bool *drop_other_suboptions); bool mptcp_pm_rm_addr_signal(struct mptcp_sock *msk, unsigned int remaining, struct mptcp_rm_list *rm_list); int mptcp_pm_get_local_id(struct mptcp_sock *msk, struct sock_common *skc); int mptcp_pm_nl_get_local_id(struct mptcp_sock *msk, struct mptcp_addr_info *skc); int mptcp_userspace_pm_get_local_id(struct mptcp_sock *msk, struct mptcp_addr_info *skc); bool mptcp_pm_is_backup(struct mptcp_sock *msk, struct sock_common *skc); bool mptcp_pm_nl_is_backup(struct mptcp_sock *msk, struct mptcp_addr_info *skc); bool mptcp_userspace_pm_is_backup(struct mptcp_sock *msk, struct mptcp_addr_info *skc); int mptcp_pm_dump_addr(struct sk_buff *msg, struct netlink_callback *cb); int mptcp_pm_nl_dump_addr(struct sk_buff *msg, struct netlink_callback *cb); int mptcp_userspace_pm_dump_addr(struct sk_buff *msg, struct netlink_callback *cb); int mptcp_pm_get_addr(struct sk_buff *skb, struct genl_info *info); int mptcp_pm_nl_get_addr(struct sk_buff *skb, struct genl_info *info); int mptcp_userspace_pm_get_addr(struct sk_buff *skb, struct genl_info *info); static inline u8 subflow_get_local_id(const struct mptcp_subflow_context *subflow) { int local_id = READ_ONCE(subflow->local_id); if (local_id < 0) return 0; return local_id; } void __init mptcp_pm_nl_init(void); void mptcp_pm_nl_work(struct mptcp_sock *msk); unsigned int mptcp_pm_get_add_addr_signal_max(const struct mptcp_sock *msk); unsigned int mptcp_pm_get_add_addr_accept_max(const struct mptcp_sock *msk); unsigned int mptcp_pm_get_subflows_max(const struct mptcp_sock *msk); unsigned int mptcp_pm_get_local_addr_max(const struct mptcp_sock *msk); /* called under PM lock */ static inline void __mptcp_pm_close_subflow(struct mptcp_sock *msk) { if (--msk->pm.subflows < mptcp_pm_get_subflows_max(msk)) WRITE_ONCE(msk->pm.accept_subflow, true); } static inline void mptcp_pm_close_subflow(struct mptcp_sock *msk) { spin_lock_bh(&msk->pm.lock); __mptcp_pm_close_subflow(msk); spin_unlock_bh(&msk->pm.lock); } void mptcp_sockopt_sync_locked(struct mptcp_sock *msk, struct sock *ssk); static inline struct mptcp_ext *mptcp_get_ext(const struct sk_buff *skb) { return (struct mptcp_ext *)skb_ext_find(skb, SKB_EXT_MPTCP); } void mptcp_diag_subflow_init(struct tcp_ulp_ops *ops); static inline bool __mptcp_check_fallback(const struct mptcp_sock *msk) { return test_bit(MPTCP_FALLBACK_DONE, &msk->flags); } static inline bool mptcp_check_fallback(const struct sock *sk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); struct mptcp_sock *msk = mptcp_sk(subflow->conn); return __mptcp_check_fallback(msk); } static inline void __mptcp_do_fallback(struct mptcp_sock *msk) { if (__mptcp_check_fallback(msk)) { pr_debug("TCP fallback already done (msk=%p)\n", msk); return; } set_bit(MPTCP_FALLBACK_DONE, &msk->flags); } static inline bool __mptcp_has_initial_subflow(const struct mptcp_sock *msk) { struct sock *ssk = READ_ONCE(msk->first); return ssk && ((1 << inet_sk_state_load(ssk)) & (TCPF_ESTABLISHED | TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_LISTEN)); } static inline void mptcp_do_fallback(struct sock *ssk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); struct sock *sk = subflow->conn; struct mptcp_sock *msk; msk = mptcp_sk(sk); __mptcp_do_fallback(msk); if (READ_ONCE(msk->snd_data_fin_enable) && !(ssk->sk_shutdown & SEND_SHUTDOWN)) { gfp_t saved_allocation = ssk->sk_allocation; /* we are in a atomic (BH) scope, override ssk default for data * fin allocation */ ssk->sk_allocation = GFP_ATOMIC; ssk->sk_shutdown |= SEND_SHUTDOWN; tcp_shutdown(ssk, SEND_SHUTDOWN); ssk->sk_allocation = saved_allocation; } } #define pr_fallback(a) pr_debug("%s:fallback to TCP (msk=%p)\n", __func__, a) static inline void mptcp_subflow_early_fallback(struct mptcp_sock *msk, struct mptcp_subflow_context *subflow) { pr_fallback(msk); subflow->request_mptcp = 0; __mptcp_do_fallback(msk); } static inline bool mptcp_check_infinite_map(struct sk_buff *skb) { struct mptcp_ext *mpext; mpext = skb ? mptcp_get_ext(skb) : NULL; if (mpext && mpext->infinite_map) return true; return false; } static inline bool is_active_ssk(struct mptcp_subflow_context *subflow) { return (subflow->request_mptcp || subflow->request_join); } static inline bool subflow_simultaneous_connect(struct sock *sk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); return (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSING) && is_active_ssk(subflow) && !subflow->conn_finished; } #ifdef CONFIG_SYN_COOKIES void subflow_init_req_cookie_join_save(const struct mptcp_subflow_request_sock *subflow_req, struct sk_buff *skb); bool mptcp_token_join_cookie_init_state(struct mptcp_subflow_request_sock *subflow_req, struct sk_buff *skb); void __init mptcp_join_cookie_init(void); #else static inline void subflow_init_req_cookie_join_save(const struct mptcp_subflow_request_sock *subflow_req, struct sk_buff *skb) {} static inline bool mptcp_token_join_cookie_init_state(struct mptcp_subflow_request_sock *subflow_req, struct sk_buff *skb) { return false; } static inline void mptcp_join_cookie_init(void) {} #endif #endif /* __MPTCP_PROTOCOL_H */
3 2 1 3 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 // SPDX-License-Identifier: GPL-2.0-or-later /* * net/sched/em_ipt.c IPtables matches Ematch * * (c) 2018 Eyal Birger <eyal.birger@gmail.com> */ #include <linux/gfp.h> #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/skbuff.h> #include <linux/tc_ematch/tc_em_ipt.h> #include <linux/netfilter.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter_ipv4/ip_tables.h> #include <linux/netfilter_ipv6/ip6_tables.h> #include <net/pkt_cls.h> struct em_ipt_match { const struct xt_match *match; u32 hook; u8 nfproto; u8 match_data[] __aligned(8); }; struct em_ipt_xt_match { char *match_name; int (*validate_match_data)(struct nlattr **tb, u8 mrev); }; static const struct nla_policy em_ipt_policy[TCA_EM_IPT_MAX + 1] = { [TCA_EM_IPT_MATCH_NAME] = { .type = NLA_STRING, .len = XT_EXTENSION_MAXNAMELEN }, [TCA_EM_IPT_MATCH_REVISION] = { .type = NLA_U8 }, [TCA_EM_IPT_HOOK] = { .type = NLA_U32 }, [TCA_EM_IPT_NFPROTO] = { .type = NLA_U8 }, [TCA_EM_IPT_MATCH_DATA] = { .type = NLA_UNSPEC }, }; static int check_match(struct net *net, struct em_ipt_match *im, int mdata_len) { struct xt_mtchk_param mtpar = {}; union { struct ipt_entry e4; struct ip6t_entry e6; } e = {}; mtpar.net = net; mtpar.table = "filter"; mtpar.hook_mask = 1 << im->hook; mtpar.family = im->match->family; mtpar.match = im->match; mtpar.entryinfo = &e; mtpar.matchinfo = (void *)im->match_data; return xt_check_match(&mtpar, mdata_len, 0, 0); } static int policy_validate_match_data(struct nlattr **tb, u8 mrev) { if (mrev != 0) { pr_err("only policy match revision 0 supported"); return -EINVAL; } if (nla_get_u32(tb[TCA_EM_IPT_HOOK]) != NF_INET_PRE_ROUTING) { pr_err("policy can only be matched on NF_INET_PRE_ROUTING"); return -EINVAL; } return 0; } static int addrtype_validate_match_data(struct nlattr **tb, u8 mrev) { if (mrev != 1) { pr_err("only addrtype match revision 1 supported"); return -EINVAL; } return 0; } static const struct em_ipt_xt_match em_ipt_xt_matches[] = { { .match_name = "policy", .validate_match_data = policy_validate_match_data }, { .match_name = "addrtype", .validate_match_data = addrtype_validate_match_data }, {} }; static struct xt_match *get_xt_match(struct nlattr **tb) { const struct em_ipt_xt_match *m; struct nlattr *mname_attr; u8 nfproto, mrev = 0; int ret; mname_attr = tb[TCA_EM_IPT_MATCH_NAME]; for (m = em_ipt_xt_matches; m->match_name; m++) { if (!nla_strcmp(mname_attr, m->match_name)) break; } if (!m->match_name) { pr_err("Unsupported xt match"); return ERR_PTR(-EINVAL); } if (tb[TCA_EM_IPT_MATCH_REVISION]) mrev = nla_get_u8(tb[TCA_EM_IPT_MATCH_REVISION]); ret = m->validate_match_data(tb, mrev); if (ret < 0) return ERR_PTR(ret); nfproto = nla_get_u8(tb[TCA_EM_IPT_NFPROTO]); return xt_request_find_match(nfproto, m->match_name, mrev); } static int em_ipt_change(struct net *net, void *data, int data_len, struct tcf_ematch *em) { struct nlattr *tb[TCA_EM_IPT_MAX + 1]; struct em_ipt_match *im = NULL; struct xt_match *match; int mdata_len, ret; u8 nfproto; ret = nla_parse_deprecated(tb, TCA_EM_IPT_MAX, data, data_len, em_ipt_policy, NULL); if (ret < 0) return ret; if (!tb[TCA_EM_IPT_HOOK] || !tb[TCA_EM_IPT_MATCH_NAME] || !tb[TCA_EM_IPT_MATCH_DATA] || !tb[TCA_EM_IPT_NFPROTO]) return -EINVAL; nfproto = nla_get_u8(tb[TCA_EM_IPT_NFPROTO]); switch (nfproto) { case NFPROTO_IPV4: case NFPROTO_IPV6: break; default: return -EINVAL; } match = get_xt_match(tb); if (IS_ERR(match)) { pr_err("unable to load match\n"); return PTR_ERR(match); } mdata_len = XT_ALIGN(nla_len(tb[TCA_EM_IPT_MATCH_DATA])); im = kzalloc(sizeof(*im) + mdata_len, GFP_KERNEL); if (!im) { ret = -ENOMEM; goto err; } im->match = match; im->hook = nla_get_u32(tb[TCA_EM_IPT_HOOK]); im->nfproto = nfproto; nla_memcpy(im->match_data, tb[TCA_EM_IPT_MATCH_DATA], mdata_len); ret = check_match(net, im, mdata_len); if (ret) goto err; em->datalen = sizeof(*im) + mdata_len; em->data = (unsigned long)im; return 0; err: kfree(im); module_put(match->me); return ret; } static void em_ipt_destroy(struct tcf_ematch *em) { struct em_ipt_match *im = (void *)em->data; if (!im) return; if (im->match->destroy) { struct xt_mtdtor_param par = { .net = em->net, .match = im->match, .matchinfo = im->match_data, .family = im->match->family }; im->match->destroy(&par); } module_put(im->match->me); kfree(im); } static int em_ipt_match(struct sk_buff *skb, struct tcf_ematch *em, struct tcf_pkt_info *info) { const struct em_ipt_match *im = (const void *)em->data; struct xt_action_param acpar = {}; struct net_device *indev = NULL; u8 nfproto = im->match->family; struct nf_hook_state state; int ret; switch (skb_protocol(skb, true)) { case htons(ETH_P_IP): if (!pskb_network_may_pull(skb, sizeof(struct iphdr))) return 0; if (nfproto == NFPROTO_UNSPEC) nfproto = NFPROTO_IPV4; break; case htons(ETH_P_IPV6): if (!pskb_network_may_pull(skb, sizeof(struct ipv6hdr))) return 0; if (nfproto == NFPROTO_UNSPEC) nfproto = NFPROTO_IPV6; break; default: return 0; } rcu_read_lock(); if (skb->skb_iif) indev = dev_get_by_index_rcu(em->net, skb->skb_iif); nf_hook_state_init(&state, im->hook, nfproto, indev ?: skb->dev, skb->dev, NULL, em->net, NULL); acpar.match = im->match; acpar.matchinfo = im->match_data; acpar.state = &state; ret = im->match->match(skb, &acpar); rcu_read_unlock(); return ret; } static int em_ipt_dump(struct sk_buff *skb, struct tcf_ematch *em) { struct em_ipt_match *im = (void *)em->data; if (nla_put_string(skb, TCA_EM_IPT_MATCH_NAME, im->match->name) < 0) return -EMSGSIZE; if (nla_put_u32(skb, TCA_EM_IPT_HOOK, im->hook) < 0) return -EMSGSIZE; if (nla_put_u8(skb, TCA_EM_IPT_MATCH_REVISION, im->match->revision) < 0) return -EMSGSIZE; if (nla_put_u8(skb, TCA_EM_IPT_NFPROTO, im->nfproto) < 0) return -EMSGSIZE; if (nla_put(skb, TCA_EM_IPT_MATCH_DATA, im->match->usersize ?: im->match->matchsize, im->match_data) < 0) return -EMSGSIZE; return 0; } static struct tcf_ematch_ops em_ipt_ops = { .kind = TCF_EM_IPT, .change = em_ipt_change, .destroy = em_ipt_destroy, .match = em_ipt_match, .dump = em_ipt_dump, .owner = THIS_MODULE, .link = LIST_HEAD_INIT(em_ipt_ops.link) }; static int __init init_em_ipt(void) { return tcf_em_register(&em_ipt_ops); } static void __exit exit_em_ipt(void) { tcf_em_unregister(&em_ipt_ops); } MODULE_LICENSE("GPL"); MODULE_AUTHOR("Eyal Birger <eyal.birger@gmail.com>"); MODULE_DESCRIPTION("TC extended match for IPtables matches"); module_init(init_em_ipt); module_exit(exit_em_ipt); MODULE_ALIAS_TCF_EMATCH(TCF_EM_IPT);
8 8 9 9 8 21 21 777 774 603 605 577 16 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2005-2010 IBM Corporation * * Author: * Mimi Zohar <zohar@us.ibm.com> * Kylene Hall <kjhall@us.ibm.com> * * File: evm_main.c * implements evm_inode_setxattr, evm_inode_post_setxattr, * evm_inode_removexattr, evm_verifyxattr, and evm_inode_set_acl. */ #define pr_fmt(fmt) "EVM: "fmt #include <linux/init.h> #include <linux/audit.h> #include <linux/xattr.h> #include <linux/integrity.h> #include <linux/evm.h> #include <linux/magic.h> #include <linux/posix_acl_xattr.h> #include <linux/lsm_hooks.h> #include <crypto/hash.h> #include <crypto/hash_info.h> #include <crypto/utils.h> #include "evm.h" int evm_initialized; static const char * const integrity_status_msg[] = { "pass", "pass_immutable", "fail", "fail_immutable", "no_label", "no_xattrs", "unknown" }; int evm_hmac_attrs; static struct xattr_list evm_config_default_xattrnames[] = { { .name = XATTR_NAME_SELINUX, .enabled = IS_ENABLED(CONFIG_SECURITY_SELINUX) }, { .name = XATTR_NAME_SMACK, .enabled = IS_ENABLED(CONFIG_SECURITY_SMACK) }, { .name = XATTR_NAME_SMACKEXEC, .enabled = IS_ENABLED(CONFIG_EVM_EXTRA_SMACK_XATTRS) }, { .name = XATTR_NAME_SMACKTRANSMUTE, .enabled = IS_ENABLED(CONFIG_EVM_EXTRA_SMACK_XATTRS) }, { .name = XATTR_NAME_SMACKMMAP, .enabled = IS_ENABLED(CONFIG_EVM_EXTRA_SMACK_XATTRS) }, { .name = XATTR_NAME_APPARMOR, .enabled = IS_ENABLED(CONFIG_SECURITY_APPARMOR) }, { .name = XATTR_NAME_IMA, .enabled = IS_ENABLED(CONFIG_IMA_APPRAISE) }, { .name = XATTR_NAME_CAPS, .enabled = true }, }; LIST_HEAD(evm_config_xattrnames); static int evm_fixmode __ro_after_init; static int __init evm_set_fixmode(char *str) { if (strncmp(str, "fix", 3) == 0) evm_fixmode = 1; else pr_err("invalid \"%s\" mode", str); return 1; } __setup("evm=", evm_set_fixmode); static void __init evm_init_config(void) { int i, xattrs; xattrs = ARRAY_SIZE(evm_config_default_xattrnames); pr_info("Initialising EVM extended attributes:\n"); for (i = 0; i < xattrs; i++) { pr_info("%s%s\n", evm_config_default_xattrnames[i].name, !evm_config_default_xattrnames[i].enabled ? " (disabled)" : ""); list_add_tail(&evm_config_default_xattrnames[i].list, &evm_config_xattrnames); } #ifdef CONFIG_EVM_ATTR_FSUUID evm_hmac_attrs |= EVM_ATTR_FSUUID; #endif pr_info("HMAC attrs: 0x%x\n", evm_hmac_attrs); } static bool evm_key_loaded(void) { return (bool)(evm_initialized & EVM_KEY_MASK); } /* * This function determines whether or not it is safe to ignore verification * errors, based on the ability of EVM to calculate HMACs. If the HMAC key * is not loaded, and it cannot be loaded in the future due to the * EVM_SETUP_COMPLETE initialization flag, allowing an operation despite the * attrs/xattrs being found invalid will not make them valid. */ static bool evm_hmac_disabled(void) { if (evm_initialized & EVM_INIT_HMAC) return false; if (!(evm_initialized & EVM_SETUP_COMPLETE)) return false; return true; } static int evm_find_protected_xattrs(struct dentry *dentry) { struct inode *inode = d_backing_inode(dentry); struct xattr_list *xattr; int error; int count = 0; if (!(inode->i_opflags & IOP_XATTR)) return -EOPNOTSUPP; list_for_each_entry_lockless(xattr, &evm_config_xattrnames, list) { error = __vfs_getxattr(dentry, inode, xattr->name, NULL, 0); if (error < 0) { if (error == -ENODATA) continue; return error; } count++; } return count; } static int is_unsupported_hmac_fs(struct dentry *dentry) { struct inode *inode = d_backing_inode(dentry); if (inode->i_sb->s_iflags & SB_I_EVM_HMAC_UNSUPPORTED) { pr_info_once("%s not supported\n", inode->i_sb->s_type->name); return 1; } return 0; } /* * evm_verify_hmac - calculate and compare the HMAC with the EVM xattr * * Compute the HMAC on the dentry's protected set of extended attributes * and compare it against the stored security.evm xattr. * * For performance: * - use the previoulsy retrieved xattr value and length to calculate the * HMAC.) * - cache the verification result in the iint, when available. * * Returns integrity status */ static enum integrity_status evm_verify_hmac(struct dentry *dentry, const char *xattr_name, char *xattr_value, size_t xattr_value_len) { struct evm_ima_xattr_data *xattr_data = NULL; struct signature_v2_hdr *hdr; enum integrity_status evm_status = INTEGRITY_PASS; struct evm_digest digest; struct inode *inode = d_backing_inode(dentry); struct evm_iint_cache *iint = evm_iint_inode(inode); int rc, xattr_len, evm_immutable = 0; if (iint && (iint->evm_status == INTEGRITY_PASS || iint->evm_status == INTEGRITY_PASS_IMMUTABLE)) return iint->evm_status; /* * On unsupported filesystems without EVM_INIT_X509 enabled, skip * signature verification. */ if (!(evm_initialized & EVM_INIT_X509) && is_unsupported_hmac_fs(dentry)) return INTEGRITY_UNKNOWN; /* if status is not PASS, try to check again - against -ENOMEM */ /* first need to know the sig type */ rc = vfs_getxattr_alloc(&nop_mnt_idmap, dentry, XATTR_NAME_EVM, (char **)&xattr_data, 0, GFP_NOFS); if (rc <= 0) { evm_status = INTEGRITY_FAIL; if (rc == -ENODATA) { rc = evm_find_protected_xattrs(dentry); if (rc > 0) evm_status = INTEGRITY_NOLABEL; else if (rc == 0) evm_status = INTEGRITY_NOXATTRS; /* new file */ } else if (rc == -EOPNOTSUPP) { evm_status = INTEGRITY_UNKNOWN; } goto out; } xattr_len = rc; /* check value type */ switch (xattr_data->type) { case EVM_XATTR_HMAC: if (xattr_len != sizeof(struct evm_xattr)) { evm_status = INTEGRITY_FAIL; goto out; } digest.hdr.algo = HASH_ALGO_SHA1; rc = evm_calc_hmac(dentry, xattr_name, xattr_value, xattr_value_len, &digest, iint); if (rc) break; rc = crypto_memneq(xattr_data->data, digest.digest, SHA1_DIGEST_SIZE); if (rc) rc = -EINVAL; break; case EVM_XATTR_PORTABLE_DIGSIG: evm_immutable = 1; fallthrough; case EVM_IMA_XATTR_DIGSIG: /* accept xattr with non-empty signature field */ if (xattr_len <= sizeof(struct signature_v2_hdr)) { evm_status = INTEGRITY_FAIL; goto out; } hdr = (struct signature_v2_hdr *)xattr_data; digest.hdr.algo = hdr->hash_algo; rc = evm_calc_hash(dentry, xattr_name, xattr_value, xattr_value_len, xattr_data->type, &digest, iint); if (rc) break; rc = integrity_digsig_verify(INTEGRITY_KEYRING_EVM, (const char *)xattr_data, xattr_len, digest.digest, digest.hdr.length); if (!rc) { if (xattr_data->type == EVM_XATTR_PORTABLE_DIGSIG) { if (iint) iint->flags |= EVM_IMMUTABLE_DIGSIG; evm_status = INTEGRITY_PASS_IMMUTABLE; } else if (!IS_RDONLY(inode) && !(inode->i_sb->s_readonly_remount) && !IS_IMMUTABLE(inode) && !is_unsupported_hmac_fs(dentry)) { evm_update_evmxattr(dentry, xattr_name, xattr_value, xattr_value_len); } } break; default: rc = -EINVAL; break; } if (rc) { if (rc == -ENODATA) evm_status = INTEGRITY_NOXATTRS; else if (evm_immutable) evm_status = INTEGRITY_FAIL_IMMUTABLE; else evm_status = INTEGRITY_FAIL; } pr_debug("digest: (%d) [%*phN]\n", digest.hdr.length, digest.hdr.length, digest.digest); out: if (iint) iint->evm_status = evm_status; kfree(xattr_data); return evm_status; } static int evm_protected_xattr_common(const char *req_xattr_name, bool all_xattrs) { int namelen; int found = 0; struct xattr_list *xattr; namelen = strlen(req_xattr_name); list_for_each_entry_lockless(xattr, &evm_config_xattrnames, list) { if (!all_xattrs && !xattr->enabled) continue; if ((strlen(xattr->name) == namelen) && (strncmp(req_xattr_name, xattr->name, namelen) == 0)) { found = 1; break; } if (strncmp(req_xattr_name, xattr->name + XATTR_SECURITY_PREFIX_LEN, strlen(req_xattr_name)) == 0) { found = 1; break; } } return found; } int evm_protected_xattr(const char *req_xattr_name) { return evm_protected_xattr_common(req_xattr_name, false); } int evm_protected_xattr_if_enabled(const char *req_xattr_name) { return evm_protected_xattr_common(req_xattr_name, true); } /** * evm_read_protected_xattrs - read EVM protected xattr names, lengths, values * @dentry: dentry of the read xattrs * @buffer: buffer xattr names, lengths or values are copied to * @buffer_size: size of buffer * @type: n: names, l: lengths, v: values * @canonical_fmt: data format (true: little endian, false: native format) * * Read protected xattr names (separated by |), lengths (u32) or values for a * given dentry and return the total size of copied data. If buffer is NULL, * just return the total size. * * Returns the total size on success, a negative value on error. */ int evm_read_protected_xattrs(struct dentry *dentry, u8 *buffer, int buffer_size, char type, bool canonical_fmt) { struct xattr_list *xattr; int rc, size, total_size = 0; list_for_each_entry_lockless(xattr, &evm_config_xattrnames, list) { rc = __vfs_getxattr(dentry, d_backing_inode(dentry), xattr->name, NULL, 0); if (rc < 0 && rc == -ENODATA) continue; else if (rc < 0) return rc; switch (type) { case 'n': size = strlen(xattr->name) + 1; if (buffer) { if (total_size) *(buffer + total_size - 1) = '|'; memcpy(buffer + total_size, xattr->name, size); } break; case 'l': size = sizeof(u32); if (buffer) { if (canonical_fmt) rc = (__force int)cpu_to_le32(rc); *(u32 *)(buffer + total_size) = rc; } break; case 'v': size = rc; if (buffer) { rc = __vfs_getxattr(dentry, d_backing_inode(dentry), xattr->name, buffer + total_size, buffer_size - total_size); if (rc < 0) return rc; } break; default: return -EINVAL; } total_size += size; } return total_size; } /** * evm_verifyxattr - verify the integrity of the requested xattr * @dentry: object of the verify xattr * @xattr_name: requested xattr * @xattr_value: requested xattr value * @xattr_value_len: requested xattr value length * * Calculate the HMAC for the given dentry and verify it against the stored * security.evm xattr. For performance, use the xattr value and length * previously retrieved to calculate the HMAC. * * Returns the xattr integrity status. * * This function requires the caller to lock the inode's i_mutex before it * is executed. */ enum integrity_status evm_verifyxattr(struct dentry *dentry, const char *xattr_name, void *xattr_value, size_t xattr_value_len) { if (!evm_key_loaded() || !evm_protected_xattr(xattr_name)) return INTEGRITY_UNKNOWN; return evm_verify_hmac(dentry, xattr_name, xattr_value, xattr_value_len); } EXPORT_SYMBOL_GPL(evm_verifyxattr); /* * evm_verify_current_integrity - verify the dentry's metadata integrity * @dentry: pointer to the affected dentry * * Verify and return the dentry's metadata integrity. The exceptions are * before EVM is initialized or in 'fix' mode. */ static enum integrity_status evm_verify_current_integrity(struct dentry *dentry) { struct inode *inode = d_backing_inode(dentry); if (!evm_key_loaded() || !S_ISREG(inode->i_mode) || evm_fixmode) return INTEGRITY_PASS; return evm_verify_hmac(dentry, NULL, NULL, 0); } /* * evm_xattr_change - check if passed xattr value differs from current value * @idmap: idmap of the mount * @dentry: pointer to the affected dentry * @xattr_name: requested xattr * @xattr_value: requested xattr value * @xattr_value_len: requested xattr value length * * Check if passed xattr value differs from current value. * * Returns 1 if passed xattr value differs from current value, 0 otherwise. */ static int evm_xattr_change(struct mnt_idmap *idmap, struct dentry *dentry, const char *xattr_name, const void *xattr_value, size_t xattr_value_len) { char *xattr_data = NULL; int rc = 0; rc = vfs_getxattr_alloc(&nop_mnt_idmap, dentry, xattr_name, &xattr_data, 0, GFP_NOFS); if (rc < 0) { rc = 1; goto out; } if (rc == xattr_value_len) rc = !!memcmp(xattr_value, xattr_data, rc); else rc = 1; out: kfree(xattr_data); return rc; } /* * evm_protect_xattr - protect the EVM extended attribute * * Prevent security.evm from being modified or removed without the * necessary permissions or when the existing value is invalid. * * The posix xattr acls are 'system' prefixed, which normally would not * affect security.evm. An interesting side affect of writing posix xattr * acls is their modifying of the i_mode, which is included in security.evm. * For posix xattr acls only, permit security.evm, even if it currently * doesn't exist, to be updated unless the EVM signature is immutable. */ static int evm_protect_xattr(struct mnt_idmap *idmap, struct dentry *dentry, const char *xattr_name, const void *xattr_value, size_t xattr_value_len) { enum integrity_status evm_status; if (strcmp(xattr_name, XATTR_NAME_EVM) == 0) { if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (is_unsupported_hmac_fs(dentry)) return -EPERM; } else if (!evm_protected_xattr(xattr_name)) { if (!posix_xattr_acl(xattr_name)) return 0; if (is_unsupported_hmac_fs(dentry)) return 0; evm_status = evm_verify_current_integrity(dentry); if ((evm_status == INTEGRITY_PASS) || (evm_status == INTEGRITY_NOXATTRS)) return 0; goto out; } else if (is_unsupported_hmac_fs(dentry)) return 0; evm_status = evm_verify_current_integrity(dentry); if (evm_status == INTEGRITY_NOXATTRS) { struct evm_iint_cache *iint; /* Exception if the HMAC is not going to be calculated. */ if (evm_hmac_disabled()) return 0; iint = evm_iint_inode(d_backing_inode(dentry)); if (iint && (iint->flags & EVM_NEW_FILE)) return 0; /* exception for pseudo filesystems */ if (dentry->d_sb->s_magic == TMPFS_MAGIC || dentry->d_sb->s_magic == SYSFS_MAGIC) return 0; integrity_audit_msg(AUDIT_INTEGRITY_METADATA, dentry->d_inode, dentry->d_name.name, "update_metadata", integrity_status_msg[evm_status], -EPERM, 0); } out: /* Exception if the HMAC is not going to be calculated. */ if (evm_hmac_disabled() && (evm_status == INTEGRITY_NOLABEL || evm_status == INTEGRITY_UNKNOWN)) return 0; /* * Writing other xattrs is safe for portable signatures, as portable * signatures are immutable and can never be updated. */ if (evm_status == INTEGRITY_FAIL_IMMUTABLE) return 0; if (evm_status == INTEGRITY_PASS_IMMUTABLE && !evm_xattr_change(idmap, dentry, xattr_name, xattr_value, xattr_value_len)) return 0; if (evm_status != INTEGRITY_PASS && evm_status != INTEGRITY_PASS_IMMUTABLE) integrity_audit_msg(AUDIT_INTEGRITY_METADATA, d_backing_inode(dentry), dentry->d_name.name, "appraise_metadata", integrity_status_msg[evm_status], -EPERM, 0); return evm_status == INTEGRITY_PASS ? 0 : -EPERM; } /** * evm_inode_setxattr - protect the EVM extended attribute * @idmap: idmap of the mount * @dentry: pointer to the affected dentry * @xattr_name: pointer to the affected extended attribute name * @xattr_value: pointer to the new extended attribute value * @xattr_value_len: pointer to the new extended attribute value length * @flags: flags to pass into filesystem operations * * Before allowing the 'security.evm' protected xattr to be updated, * verify the existing value is valid. As only the kernel should have * access to the EVM encrypted key needed to calculate the HMAC, prevent * userspace from writing HMAC value. Writing 'security.evm' requires * requires CAP_SYS_ADMIN privileges. */ static int evm_inode_setxattr(struct mnt_idmap *idmap, struct dentry *dentry, const char *xattr_name, const void *xattr_value, size_t xattr_value_len, int flags) { const struct evm_ima_xattr_data *xattr_data = xattr_value; /* Policy permits modification of the protected xattrs even though * there's no HMAC key loaded */ if (evm_initialized & EVM_ALLOW_METADATA_WRITES) return 0; if (strcmp(xattr_name, XATTR_NAME_EVM) == 0) { if (!xattr_value_len) return -EINVAL; if (xattr_data->type != EVM_IMA_XATTR_DIGSIG && xattr_data->type != EVM_XATTR_PORTABLE_DIGSIG) return -EPERM; } return evm_protect_xattr(idmap, dentry, xattr_name, xattr_value, xattr_value_len); } /** * evm_inode_removexattr - protect the EVM extended attribute * @idmap: idmap of the mount * @dentry: pointer to the affected dentry * @xattr_name: pointer to the affected extended attribute name * * Removing 'security.evm' requires CAP_SYS_ADMIN privileges and that * the current value is valid. */ static int evm_inode_removexattr(struct mnt_idmap *idmap, struct dentry *dentry, const char *xattr_name) { /* Policy permits modification of the protected xattrs even though * there's no HMAC key loaded */ if (evm_initialized & EVM_ALLOW_METADATA_WRITES) return 0; return evm_protect_xattr(idmap, dentry, xattr_name, NULL, 0); } #ifdef CONFIG_FS_POSIX_ACL static int evm_inode_set_acl_change(struct mnt_idmap *idmap, struct dentry *dentry, const char *name, struct posix_acl *kacl) { int rc; umode_t mode; struct inode *inode = d_backing_inode(dentry); if (!kacl) return 1; rc = posix_acl_update_mode(idmap, inode, &mode, &kacl); if (rc || (inode->i_mode != mode)) return 1; return 0; } #else static inline int evm_inode_set_acl_change(struct mnt_idmap *idmap, struct dentry *dentry, const char *name, struct posix_acl *kacl) { return 0; } #endif /** * evm_inode_set_acl - protect the EVM extended attribute from posix acls * @idmap: idmap of the idmapped mount * @dentry: pointer to the affected dentry * @acl_name: name of the posix acl * @kacl: pointer to the posix acls * * Prevent modifying posix acls causing the EVM HMAC to be re-calculated * and 'security.evm' xattr updated, unless the existing 'security.evm' is * valid. * * Return: zero on success, -EPERM on failure. */ static int evm_inode_set_acl(struct mnt_idmap *idmap, struct dentry *dentry, const char *acl_name, struct posix_acl *kacl) { enum integrity_status evm_status; /* Policy permits modification of the protected xattrs even though * there's no HMAC key loaded */ if (evm_initialized & EVM_ALLOW_METADATA_WRITES) return 0; evm_status = evm_verify_current_integrity(dentry); if ((evm_status == INTEGRITY_PASS) || (evm_status == INTEGRITY_NOXATTRS)) return 0; /* Exception if the HMAC is not going to be calculated. */ if (evm_hmac_disabled() && (evm_status == INTEGRITY_NOLABEL || evm_status == INTEGRITY_UNKNOWN)) return 0; /* * Writing other xattrs is safe for portable signatures, as portable * signatures are immutable and can never be updated. */ if (evm_status == INTEGRITY_FAIL_IMMUTABLE) return 0; if (evm_status == INTEGRITY_PASS_IMMUTABLE && !evm_inode_set_acl_change(idmap, dentry, acl_name, kacl)) return 0; if (evm_status != INTEGRITY_PASS_IMMUTABLE) integrity_audit_msg(AUDIT_INTEGRITY_METADATA, d_backing_inode(dentry), dentry->d_name.name, "appraise_metadata", integrity_status_msg[evm_status], -EPERM, 0); return -EPERM; } /** * evm_inode_remove_acl - Protect the EVM extended attribute from posix acls * @idmap: idmap of the mount * @dentry: pointer to the affected dentry * @acl_name: name of the posix acl * * Prevent removing posix acls causing the EVM HMAC to be re-calculated * and 'security.evm' xattr updated, unless the existing 'security.evm' is * valid. * * Return: zero on success, -EPERM on failure. */ static int evm_inode_remove_acl(struct mnt_idmap *idmap, struct dentry *dentry, const char *acl_name) { return evm_inode_set_acl(idmap, dentry, acl_name, NULL); } static void evm_reset_status(struct inode *inode) { struct evm_iint_cache *iint; iint = evm_iint_inode(inode); if (iint) iint->evm_status = INTEGRITY_UNKNOWN; } /** * evm_metadata_changed: Detect changes to the metadata * @inode: a file's inode * @metadata_inode: metadata inode * * On a stacked filesystem detect whether the metadata has changed. If this is * the case reset the evm_status associated with the inode that represents the * file. */ bool evm_metadata_changed(struct inode *inode, struct inode *metadata_inode) { struct evm_iint_cache *iint = evm_iint_inode(inode); bool ret = false; if (iint) { ret = (!IS_I_VERSION(metadata_inode) || integrity_inode_attrs_changed(&iint->metadata_inode, metadata_inode)); if (ret) iint->evm_status = INTEGRITY_UNKNOWN; } return ret; } /** * evm_revalidate_status - report whether EVM status re-validation is necessary * @xattr_name: pointer to the affected extended attribute name * * Report whether callers of evm_verifyxattr() should re-validate the * EVM status. * * Return true if re-validation is necessary, false otherwise. */ bool evm_revalidate_status(const char *xattr_name) { if (!evm_key_loaded()) return false; /* evm_inode_post_setattr() passes NULL */ if (!xattr_name) return true; if (!evm_protected_xattr(xattr_name) && !posix_xattr_acl(xattr_name) && strcmp(xattr_name, XATTR_NAME_EVM)) return false; return true; } /** * evm_inode_post_setxattr - update 'security.evm' to reflect the changes * @dentry: pointer to the affected dentry * @xattr_name: pointer to the affected extended attribute name * @xattr_value: pointer to the new extended attribute value * @xattr_value_len: pointer to the new extended attribute value length * @flags: flags to pass into filesystem operations * * Update the HMAC stored in 'security.evm' to reflect the change. * * No need to take the i_mutex lock here, as this function is called from * __vfs_setxattr_noperm(). The caller of which has taken the inode's * i_mutex lock. */ static void evm_inode_post_setxattr(struct dentry *dentry, const char *xattr_name, const void *xattr_value, size_t xattr_value_len, int flags) { if (!evm_revalidate_status(xattr_name)) return; evm_reset_status(dentry->d_inode); if (!strcmp(xattr_name, XATTR_NAME_EVM)) return; if (!(evm_initialized & EVM_INIT_HMAC)) return; if (is_unsupported_hmac_fs(dentry)) return; evm_update_evmxattr(dentry, xattr_name, xattr_value, xattr_value_len); } /** * evm_inode_post_set_acl - Update the EVM extended attribute from posix acls * @dentry: pointer to the affected dentry * @acl_name: name of the posix acl * @kacl: pointer to the posix acls * * Update the 'security.evm' xattr with the EVM HMAC re-calculated after setting * posix acls. */ static void evm_inode_post_set_acl(struct dentry *dentry, const char *acl_name, struct posix_acl *kacl) { return evm_inode_post_setxattr(dentry, acl_name, NULL, 0, 0); } /** * evm_inode_post_removexattr - update 'security.evm' after removing the xattr * @dentry: pointer to the affected dentry * @xattr_name: pointer to the affected extended attribute name * * Update the HMAC stored in 'security.evm' to reflect removal of the xattr. * * No need to take the i_mutex lock here, as this function is called from * vfs_removexattr() which takes the i_mutex. */ static void evm_inode_post_removexattr(struct dentry *dentry, const char *xattr_name) { if (!evm_revalidate_status(xattr_name)) return; evm_reset_status(dentry->d_inode); if (!strcmp(xattr_name, XATTR_NAME_EVM)) return; if (!(evm_initialized & EVM_INIT_HMAC)) return; evm_update_evmxattr(dentry, xattr_name, NULL, 0); } /** * evm_inode_post_remove_acl - Update the EVM extended attribute from posix acls * @idmap: idmap of the mount * @dentry: pointer to the affected dentry * @acl_name: name of the posix acl * * Update the 'security.evm' xattr with the EVM HMAC re-calculated after * removing posix acls. */ static inline void evm_inode_post_remove_acl(struct mnt_idmap *idmap, struct dentry *dentry, const char *acl_name) { evm_inode_post_removexattr(dentry, acl_name); } static int evm_attr_change(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *attr) { struct inode *inode = d_backing_inode(dentry); unsigned int ia_valid = attr->ia_valid; if (!i_uid_needs_update(idmap, attr, inode) && !i_gid_needs_update(idmap, attr, inode) && (!(ia_valid & ATTR_MODE) || attr->ia_mode == inode->i_mode)) return 0; return 1; } /** * evm_inode_setattr - prevent updating an invalid EVM extended attribute * @idmap: idmap of the mount * @dentry: pointer to the affected dentry * @attr: iattr structure containing the new file attributes * * Permit update of file attributes when files have a valid EVM signature, * except in the case of them having an immutable portable signature. */ static int evm_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *attr) { unsigned int ia_valid = attr->ia_valid; enum integrity_status evm_status; /* Policy permits modification of the protected attrs even though * there's no HMAC key loaded */ if (evm_initialized & EVM_ALLOW_METADATA_WRITES) return 0; if (is_unsupported_hmac_fs(dentry)) return 0; if (!(ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID))) return 0; evm_status = evm_verify_current_integrity(dentry); /* * Writing attrs is safe for portable signatures, as portable signatures * are immutable and can never be updated. */ if ((evm_status == INTEGRITY_PASS) || (evm_status == INTEGRITY_NOXATTRS) || (evm_status == INTEGRITY_FAIL_IMMUTABLE) || (evm_hmac_disabled() && (evm_status == INTEGRITY_NOLABEL || evm_status == INTEGRITY_UNKNOWN))) return 0; if (evm_status == INTEGRITY_PASS_IMMUTABLE && !evm_attr_change(idmap, dentry, attr)) return 0; integrity_audit_msg(AUDIT_INTEGRITY_METADATA, d_backing_inode(dentry), dentry->d_name.name, "appraise_metadata", integrity_status_msg[evm_status], -EPERM, 0); return -EPERM; } /** * evm_inode_post_setattr - update 'security.evm' after modifying metadata * @idmap: idmap of the idmapped mount * @dentry: pointer to the affected dentry * @ia_valid: for the UID and GID status * * For now, update the HMAC stored in 'security.evm' to reflect UID/GID * changes. * * This function is called from notify_change(), which expects the caller * to lock the inode's i_mutex. */ static void evm_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry, int ia_valid) { if (!evm_revalidate_status(NULL)) return; evm_reset_status(dentry->d_inode); if (!(evm_initialized & EVM_INIT_HMAC)) return; if (is_unsupported_hmac_fs(dentry)) return; if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID)) evm_update_evmxattr(dentry, NULL, NULL, 0); } static int evm_inode_copy_up_xattr(struct dentry *src, const char *name) { struct evm_ima_xattr_data *xattr_data = NULL; int rc; if (strcmp(name, XATTR_NAME_EVM) != 0) return -EOPNOTSUPP; /* first need to know the sig type */ rc = vfs_getxattr_alloc(&nop_mnt_idmap, src, XATTR_NAME_EVM, (char **)&xattr_data, 0, GFP_NOFS); if (rc <= 0) return -EPERM; if (rc < offsetof(struct evm_ima_xattr_data, type) + sizeof(xattr_data->type)) return -EPERM; switch (xattr_data->type) { case EVM_XATTR_PORTABLE_DIGSIG: rc = 0; /* allow copy-up */ break; case EVM_XATTR_HMAC: case EVM_IMA_XATTR_DIGSIG: default: rc = -ECANCELED; /* discard */ } kfree(xattr_data); return rc; } /* * evm_inode_init_security - initializes security.evm HMAC value */ int evm_inode_init_security(struct inode *inode, struct inode *dir, const struct qstr *qstr, struct xattr *xattrs, int *xattr_count) { struct evm_xattr *xattr_data; struct xattr *xattr, *evm_xattr; bool evm_protected_xattrs = false; int rc; if (!(evm_initialized & EVM_INIT_HMAC) || !xattrs) return 0; /* * security_inode_init_security() makes sure that the xattrs array is * contiguous, there is enough space for security.evm, and that there is * a terminator at the end of the array. */ for (xattr = xattrs; xattr->name; xattr++) { if (evm_protected_xattr(xattr->name)) evm_protected_xattrs = true; } /* EVM xattr not needed. */ if (!evm_protected_xattrs) return 0; evm_xattr = lsm_get_xattr_slot(xattrs, xattr_count); /* * Array terminator (xattr name = NULL) must be the first non-filled * xattr slot. */ WARN_ONCE(evm_xattr != xattr, "%s: xattrs terminator is not the first non-filled slot\n", __func__); xattr_data = kzalloc(sizeof(*xattr_data), GFP_NOFS); if (!xattr_data) return -ENOMEM; xattr_data->data.type = EVM_XATTR_HMAC; rc = evm_init_hmac(inode, xattrs, xattr_data->digest); if (rc < 0) goto out; evm_xattr->value = xattr_data; evm_xattr->value_len = sizeof(*xattr_data); evm_xattr->name = XATTR_EVM_SUFFIX; return 0; out: kfree(xattr_data); return rc; } EXPORT_SYMBOL_GPL(evm_inode_init_security); static int evm_inode_alloc_security(struct inode *inode) { struct evm_iint_cache *iint = evm_iint_inode(inode); /* Called by security_inode_alloc(), it cannot be NULL. */ iint->flags = 0UL; iint->evm_status = INTEGRITY_UNKNOWN; return 0; } static void evm_file_release(struct file *file) { struct inode *inode = file_inode(file); struct evm_iint_cache *iint = evm_iint_inode(inode); fmode_t mode = file->f_mode; if (!S_ISREG(inode->i_mode) || !(mode & FMODE_WRITE)) return; if (iint && atomic_read(&inode->i_writecount) == 1) iint->flags &= ~EVM_NEW_FILE; } static void evm_post_path_mknod(struct mnt_idmap *idmap, struct dentry *dentry) { struct inode *inode = d_backing_inode(dentry); struct evm_iint_cache *iint = evm_iint_inode(inode); if (!S_ISREG(inode->i_mode)) return; if (iint) iint->flags |= EVM_NEW_FILE; } #ifdef CONFIG_EVM_LOAD_X509 void __init evm_load_x509(void) { int rc; rc = integrity_load_x509(INTEGRITY_KEYRING_EVM, CONFIG_EVM_X509_PATH); if (!rc) evm_initialized |= EVM_INIT_X509; } #endif static int __init init_evm(void) { int error; struct list_head *pos, *q; evm_init_config(); error = integrity_init_keyring(INTEGRITY_KEYRING_EVM); if (error) goto error; error = evm_init_secfs(); if (error < 0) { pr_info("Error registering secfs\n"); goto error; } error: if (error != 0) { if (!list_empty(&evm_config_xattrnames)) { list_for_each_safe(pos, q, &evm_config_xattrnames) list_del(pos); } } return error; } static struct security_hook_list evm_hooks[] __ro_after_init = { LSM_HOOK_INIT(inode_setattr, evm_inode_setattr), LSM_HOOK_INIT(inode_post_setattr, evm_inode_post_setattr), LSM_HOOK_INIT(inode_copy_up_xattr, evm_inode_copy_up_xattr), LSM_HOOK_INIT(inode_setxattr, evm_inode_setxattr), LSM_HOOK_INIT(inode_post_setxattr, evm_inode_post_setxattr), LSM_HOOK_INIT(inode_set_acl, evm_inode_set_acl), LSM_HOOK_INIT(inode_post_set_acl, evm_inode_post_set_acl), LSM_HOOK_INIT(inode_remove_acl, evm_inode_remove_acl), LSM_HOOK_INIT(inode_post_remove_acl, evm_inode_post_remove_acl), LSM_HOOK_INIT(inode_removexattr, evm_inode_removexattr), LSM_HOOK_INIT(inode_post_removexattr, evm_inode_post_removexattr), LSM_HOOK_INIT(inode_init_security, evm_inode_init_security), LSM_HOOK_INIT(inode_alloc_security, evm_inode_alloc_security), LSM_HOOK_INIT(file_release, evm_file_release), LSM_HOOK_INIT(path_post_mknod, evm_post_path_mknod), }; static const struct lsm_id evm_lsmid = { .name = "evm", .id = LSM_ID_EVM, }; static int __init init_evm_lsm(void) { security_add_hooks(evm_hooks, ARRAY_SIZE(evm_hooks), &evm_lsmid); return 0; } struct lsm_blob_sizes evm_blob_sizes __ro_after_init = { .lbs_inode = sizeof(struct evm_iint_cache), .lbs_xattr_count = 1, }; DEFINE_LSM(evm) = { .name = "evm", .init = init_evm_lsm, .order = LSM_ORDER_LAST, .blobs = &evm_blob_sizes, }; late_initcall(init_evm);
6 1 1 1 3 1 2 2 2 1 1 1 1 2 1 2 2 2 6 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 // SPDX-License-Identifier: GPL-2.0-or-later /* * Checksum updating actions * * Copyright (c) 2010 Gregoire Baron <baronchon@n7mm.org> */ #include <linux/types.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/spinlock.h> #include <linux/netlink.h> #include <net/netlink.h> #include <linux/rtnetlink.h> #include <linux/skbuff.h> #include <net/ip.h> #include <net/ipv6.h> #include <net/icmp.h> #include <linux/icmpv6.h> #include <linux/igmp.h> #include <net/tcp.h> #include <net/udp.h> #include <net/ip6_checksum.h> #include <net/sctp/checksum.h> #include <net/act_api.h> #include <net/pkt_cls.h> #include <linux/tc_act/tc_csum.h> #include <net/tc_act/tc_csum.h> #include <net/tc_wrapper.h> static const struct nla_policy csum_policy[TCA_CSUM_MAX + 1] = { [TCA_CSUM_PARMS] = { .len = sizeof(struct tc_csum), }, }; static struct tc_action_ops act_csum_ops; static int tcf_csum_init(struct net *net, struct nlattr *nla, struct nlattr *est, struct tc_action **a, struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack) { struct tc_action_net *tn = net_generic(net, act_csum_ops.net_id); bool bind = flags & TCA_ACT_FLAGS_BIND; struct tcf_csum_params *params_new; struct nlattr *tb[TCA_CSUM_MAX + 1]; struct tcf_chain *goto_ch = NULL; struct tc_csum *parm; struct tcf_csum *p; int ret = 0, err; u32 index; if (nla == NULL) return -EINVAL; err = nla_parse_nested_deprecated(tb, TCA_CSUM_MAX, nla, csum_policy, NULL); if (err < 0) return err; if (tb[TCA_CSUM_PARMS] == NULL) return -EINVAL; parm = nla_data(tb[TCA_CSUM_PARMS]); index = parm->index; err = tcf_idr_check_alloc(tn, &index, a, bind); if (!err) { ret = tcf_idr_create_from_flags(tn, index, est, a, &act_csum_ops, bind, flags); if (ret) { tcf_idr_cleanup(tn, index); return ret; } ret = ACT_P_CREATED; } else if (err > 0) { if (bind) /* dont override defaults */ return ACT_P_BOUND; if (!(flags & TCA_ACT_FLAGS_REPLACE)) { tcf_idr_release(*a, bind); return -EEXIST; } } else { return err; } err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); if (err < 0) goto release_idr; p = to_tcf_csum(*a); params_new = kzalloc(sizeof(*params_new), GFP_KERNEL); if (unlikely(!params_new)) { err = -ENOMEM; goto put_chain; } params_new->update_flags = parm->update_flags; spin_lock_bh(&p->tcf_lock); goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); params_new = rcu_replace_pointer(p->params, params_new, lockdep_is_held(&p->tcf_lock)); spin_unlock_bh(&p->tcf_lock); if (goto_ch) tcf_chain_put_by_act(goto_ch); if (params_new) kfree_rcu(params_new, rcu); return ret; put_chain: if (goto_ch) tcf_chain_put_by_act(goto_ch); release_idr: tcf_idr_release(*a, bind); return err; } /** * tcf_csum_skb_nextlayer - Get next layer pointer * @skb: sk_buff to use * @ihl: previous summed headers length * @ipl: complete packet length * @jhl: next header length * * Check the expected next layer availability in the specified sk_buff. * Return the next layer pointer if pass, NULL otherwise. */ static void *tcf_csum_skb_nextlayer(struct sk_buff *skb, unsigned int ihl, unsigned int ipl, unsigned int jhl) { int ntkoff = skb_network_offset(skb); int hl = ihl + jhl; if (!pskb_may_pull(skb, ipl + ntkoff) || (ipl < hl) || skb_try_make_writable(skb, hl + ntkoff)) return NULL; else return (void *)(skb_network_header(skb) + ihl); } static int tcf_csum_ipv4_icmp(struct sk_buff *skb, unsigned int ihl, unsigned int ipl) { struct icmphdr *icmph; icmph = tcf_csum_skb_nextlayer(skb, ihl, ipl, sizeof(*icmph)); if (icmph == NULL) return 0; icmph->checksum = 0; skb->csum = csum_partial(icmph, ipl - ihl, 0); icmph->checksum = csum_fold(skb->csum); skb->ip_summed = CHECKSUM_NONE; return 1; } static int tcf_csum_ipv4_igmp(struct sk_buff *skb, unsigned int ihl, unsigned int ipl) { struct igmphdr *igmph; igmph = tcf_csum_skb_nextlayer(skb, ihl, ipl, sizeof(*igmph)); if (igmph == NULL) return 0; igmph->csum = 0; skb->csum = csum_partial(igmph, ipl - ihl, 0); igmph->csum = csum_fold(skb->csum); skb->ip_summed = CHECKSUM_NONE; return 1; } static int tcf_csum_ipv6_icmp(struct sk_buff *skb, unsigned int ihl, unsigned int ipl) { struct icmp6hdr *icmp6h; const struct ipv6hdr *ip6h; icmp6h = tcf_csum_skb_nextlayer(skb, ihl, ipl, sizeof(*icmp6h)); if (icmp6h == NULL) return 0; ip6h = ipv6_hdr(skb); icmp6h->icmp6_cksum = 0; skb->csum = csum_partial(icmp6h, ipl - ihl, 0); icmp6h->icmp6_cksum = csum_ipv6_magic(&ip6h->saddr, &ip6h->daddr, ipl - ihl, IPPROTO_ICMPV6, skb->csum); skb->ip_summed = CHECKSUM_NONE; return 1; } static int tcf_csum_ipv4_tcp(struct sk_buff *skb, unsigned int ihl, unsigned int ipl) { struct tcphdr *tcph; const struct iphdr *iph; if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) return 1; tcph = tcf_csum_skb_nextlayer(skb, ihl, ipl, sizeof(*tcph)); if (tcph == NULL) return 0; iph = ip_hdr(skb); tcph->check = 0; skb->csum = csum_partial(tcph, ipl - ihl, 0); tcph->check = tcp_v4_check(ipl - ihl, iph->saddr, iph->daddr, skb->csum); skb->ip_summed = CHECKSUM_NONE; return 1; } static int tcf_csum_ipv6_tcp(struct sk_buff *skb, unsigned int ihl, unsigned int ipl) { struct tcphdr *tcph; const struct ipv6hdr *ip6h; if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) return 1; tcph = tcf_csum_skb_nextlayer(skb, ihl, ipl, sizeof(*tcph)); if (tcph == NULL) return 0; ip6h = ipv6_hdr(skb); tcph->check = 0; skb->csum = csum_partial(tcph, ipl - ihl, 0); tcph->check = csum_ipv6_magic(&ip6h->saddr, &ip6h->daddr, ipl - ihl, IPPROTO_TCP, skb->csum); skb->ip_summed = CHECKSUM_NONE; return 1; } static int tcf_csum_ipv4_udp(struct sk_buff *skb, unsigned int ihl, unsigned int ipl, int udplite) { struct udphdr *udph; const struct iphdr *iph; u16 ul; if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_UDP) return 1; /* * Support both UDP and UDPLITE checksum algorithms, Don't use * udph->len to get the real length without any protocol check, * UDPLITE uses udph->len for another thing, * Use iph->tot_len, or just ipl. */ udph = tcf_csum_skb_nextlayer(skb, ihl, ipl, sizeof(*udph)); if (udph == NULL) return 0; iph = ip_hdr(skb); ul = ntohs(udph->len); if (udplite || udph->check) { udph->check = 0; if (udplite) { if (ul == 0) skb->csum = csum_partial(udph, ipl - ihl, 0); else if ((ul >= sizeof(*udph)) && (ul <= ipl - ihl)) skb->csum = csum_partial(udph, ul, 0); else goto ignore_obscure_skb; } else { if (ul != ipl - ihl) goto ignore_obscure_skb; skb->csum = csum_partial(udph, ul, 0); } udph->check = csum_tcpudp_magic(iph->saddr, iph->daddr, ul, iph->protocol, skb->csum); if (!udph->check) udph->check = CSUM_MANGLED_0; } skb->ip_summed = CHECKSUM_NONE; ignore_obscure_skb: return 1; } static int tcf_csum_ipv6_udp(struct sk_buff *skb, unsigned int ihl, unsigned int ipl, int udplite) { struct udphdr *udph; const struct ipv6hdr *ip6h; u16 ul; if (skb_is_gso(skb) && skb_shinfo(skb)->gso_type & SKB_GSO_UDP) return 1; /* * Support both UDP and UDPLITE checksum algorithms, Don't use * udph->len to get the real length without any protocol check, * UDPLITE uses udph->len for another thing, * Use ip6h->payload_len + sizeof(*ip6h) ... , or just ipl. */ udph = tcf_csum_skb_nextlayer(skb, ihl, ipl, sizeof(*udph)); if (udph == NULL) return 0; ip6h = ipv6_hdr(skb); ul = ntohs(udph->len); udph->check = 0; if (udplite) { if (ul == 0) skb->csum = csum_partial(udph, ipl - ihl, 0); else if ((ul >= sizeof(*udph)) && (ul <= ipl - ihl)) skb->csum = csum_partial(udph, ul, 0); else goto ignore_obscure_skb; } else { if (ul != ipl - ihl) goto ignore_obscure_skb; skb->csum = csum_partial(udph, ul, 0); } udph->check = csum_ipv6_magic(&ip6h->saddr, &ip6h->daddr, ul, udplite ? IPPROTO_UDPLITE : IPPROTO_UDP, skb->csum); if (!udph->check) udph->check = CSUM_MANGLED_0; skb->ip_summed = CHECKSUM_NONE; ignore_obscure_skb: return 1; } static int tcf_csum_sctp(struct sk_buff *skb, unsigned int ihl, unsigned int ipl) { struct sctphdr *sctph; if (skb_is_gso(skb) && skb_is_gso_sctp(skb)) return 1; sctph = tcf_csum_skb_nextlayer(skb, ihl, ipl, sizeof(*sctph)); if (!sctph) return 0; sctph->checksum = sctp_compute_cksum(skb, skb_network_offset(skb) + ihl); skb_reset_csum_not_inet(skb); return 1; } static int tcf_csum_ipv4(struct sk_buff *skb, u32 update_flags) { const struct iphdr *iph; int ntkoff; ntkoff = skb_network_offset(skb); if (!pskb_may_pull(skb, sizeof(*iph) + ntkoff)) goto fail; iph = ip_hdr(skb); switch (iph->frag_off & htons(IP_OFFSET) ? 0 : iph->protocol) { case IPPROTO_ICMP: if (update_flags & TCA_CSUM_UPDATE_FLAG_ICMP) if (!tcf_csum_ipv4_icmp(skb, iph->ihl * 4, ntohs(iph->tot_len))) goto fail; break; case IPPROTO_IGMP: if (update_flags & TCA_CSUM_UPDATE_FLAG_IGMP) if (!tcf_csum_ipv4_igmp(skb, iph->ihl * 4, ntohs(iph->tot_len))) goto fail; break; case IPPROTO_TCP: if (update_flags & TCA_CSUM_UPDATE_FLAG_TCP) if (!tcf_csum_ipv4_tcp(skb, iph->ihl * 4, ntohs(iph->tot_len))) goto fail; break; case IPPROTO_UDP: if (update_flags & TCA_CSUM_UPDATE_FLAG_UDP) if (!tcf_csum_ipv4_udp(skb, iph->ihl * 4, ntohs(iph->tot_len), 0)) goto fail; break; case IPPROTO_UDPLITE: if (update_flags & TCA_CSUM_UPDATE_FLAG_UDPLITE) if (!tcf_csum_ipv4_udp(skb, iph->ihl * 4, ntohs(iph->tot_len), 1)) goto fail; break; case IPPROTO_SCTP: if ((update_flags & TCA_CSUM_UPDATE_FLAG_SCTP) && !tcf_csum_sctp(skb, iph->ihl * 4, ntohs(iph->tot_len))) goto fail; break; } if (update_flags & TCA_CSUM_UPDATE_FLAG_IPV4HDR) { if (skb_try_make_writable(skb, sizeof(*iph) + ntkoff)) goto fail; ip_send_check(ip_hdr(skb)); } return 1; fail: return 0; } static int tcf_csum_ipv6_hopopts(struct ipv6_opt_hdr *ip6xh, unsigned int ixhl, unsigned int *pl) { int off, len, optlen; unsigned char *xh = (void *)ip6xh; off = sizeof(*ip6xh); len = ixhl - off; while (len > 1) { switch (xh[off]) { case IPV6_TLV_PAD1: optlen = 1; break; case IPV6_TLV_JUMBO: optlen = xh[off + 1] + 2; if (optlen != 6 || len < 6 || (off & 3) != 2) /* wrong jumbo option length/alignment */ return 0; *pl = ntohl(*(__be32 *)(xh + off + 2)); goto done; default: optlen = xh[off + 1] + 2; if (optlen > len) /* ignore obscure options */ goto done; break; } off += optlen; len -= optlen; } done: return 1; } static int tcf_csum_ipv6(struct sk_buff *skb, u32 update_flags) { struct ipv6hdr *ip6h; struct ipv6_opt_hdr *ip6xh; unsigned int hl, ixhl; unsigned int pl; int ntkoff; u8 nexthdr; ntkoff = skb_network_offset(skb); hl = sizeof(*ip6h); if (!pskb_may_pull(skb, hl + ntkoff)) goto fail; ip6h = ipv6_hdr(skb); pl = ntohs(ip6h->payload_len); nexthdr = ip6h->nexthdr; do { switch (nexthdr) { case NEXTHDR_FRAGMENT: goto ignore_skb; case NEXTHDR_ROUTING: case NEXTHDR_HOP: case NEXTHDR_DEST: if (!pskb_may_pull(skb, hl + sizeof(*ip6xh) + ntkoff)) goto fail; ip6xh = (void *)(skb_network_header(skb) + hl); ixhl = ipv6_optlen(ip6xh); if (!pskb_may_pull(skb, hl + ixhl + ntkoff)) goto fail; ip6xh = (void *)(skb_network_header(skb) + hl); if ((nexthdr == NEXTHDR_HOP) && !(tcf_csum_ipv6_hopopts(ip6xh, ixhl, &pl))) goto fail; nexthdr = ip6xh->nexthdr; hl += ixhl; break; case IPPROTO_ICMPV6: if (update_flags & TCA_CSUM_UPDATE_FLAG_ICMP) if (!tcf_csum_ipv6_icmp(skb, hl, pl + sizeof(*ip6h))) goto fail; goto done; case IPPROTO_TCP: if (update_flags & TCA_CSUM_UPDATE_FLAG_TCP) if (!tcf_csum_ipv6_tcp(skb, hl, pl + sizeof(*ip6h))) goto fail; goto done; case IPPROTO_UDP: if (update_flags & TCA_CSUM_UPDATE_FLAG_UDP) if (!tcf_csum_ipv6_udp(skb, hl, pl + sizeof(*ip6h), 0)) goto fail; goto done; case IPPROTO_UDPLITE: if (update_flags & TCA_CSUM_UPDATE_FLAG_UDPLITE) if (!tcf_csum_ipv6_udp(skb, hl, pl + sizeof(*ip6h), 1)) goto fail; goto done; case IPPROTO_SCTP: if ((update_flags & TCA_CSUM_UPDATE_FLAG_SCTP) && !tcf_csum_sctp(skb, hl, pl + sizeof(*ip6h))) goto fail; goto done; default: goto ignore_skb; } } while (pskb_may_pull(skb, hl + 1 + ntkoff)); done: ignore_skb: return 1; fail: return 0; } TC_INDIRECT_SCOPE int tcf_csum_act(struct sk_buff *skb, const struct tc_action *a, struct tcf_result *res) { struct tcf_csum *p = to_tcf_csum(a); bool orig_vlan_tag_present = false; unsigned int vlan_hdr_count = 0; struct tcf_csum_params *params; u32 update_flags; __be16 protocol; int action; params = rcu_dereference_bh(p->params); tcf_lastuse_update(&p->tcf_tm); tcf_action_update_bstats(&p->common, skb); action = READ_ONCE(p->tcf_action); if (unlikely(action == TC_ACT_SHOT)) goto drop; update_flags = params->update_flags; protocol = skb_protocol(skb, false); again: switch (protocol) { case cpu_to_be16(ETH_P_IP): if (!tcf_csum_ipv4(skb, update_flags)) goto drop; break; case cpu_to_be16(ETH_P_IPV6): if (!tcf_csum_ipv6(skb, update_flags)) goto drop; break; case cpu_to_be16(ETH_P_8021AD): fallthrough; case cpu_to_be16(ETH_P_8021Q): if (skb_vlan_tag_present(skb) && !orig_vlan_tag_present) { protocol = skb->protocol; orig_vlan_tag_present = true; } else { struct vlan_hdr *vlan = (struct vlan_hdr *)skb->data; protocol = vlan->h_vlan_encapsulated_proto; skb_pull(skb, VLAN_HLEN); skb_reset_network_header(skb); vlan_hdr_count++; } goto again; } out: /* Restore the skb for the pulled VLAN tags */ while (vlan_hdr_count--) { skb_push(skb, VLAN_HLEN); skb_reset_network_header(skb); } return action; drop: tcf_action_inc_drop_qstats(&p->common); action = TC_ACT_SHOT; goto out; } static int tcf_csum_dump(struct sk_buff *skb, struct tc_action *a, int bind, int ref) { unsigned char *b = skb_tail_pointer(skb); struct tcf_csum *p = to_tcf_csum(a); struct tcf_csum_params *params; struct tc_csum opt = { .index = p->tcf_index, .refcnt = refcount_read(&p->tcf_refcnt) - ref, .bindcnt = atomic_read(&p->tcf_bindcnt) - bind, }; struct tcf_t t; spin_lock_bh(&p->tcf_lock); params = rcu_dereference_protected(p->params, lockdep_is_held(&p->tcf_lock)); opt.action = p->tcf_action; opt.update_flags = params->update_flags; if (nla_put(skb, TCA_CSUM_PARMS, sizeof(opt), &opt)) goto nla_put_failure; tcf_tm_dump(&t, &p->tcf_tm); if (nla_put_64bit(skb, TCA_CSUM_TM, sizeof(t), &t, TCA_CSUM_PAD)) goto nla_put_failure; spin_unlock_bh(&p->tcf_lock); return skb->len; nla_put_failure: spin_unlock_bh(&p->tcf_lock); nlmsg_trim(skb, b); return -1; } static void tcf_csum_cleanup(struct tc_action *a) { struct tcf_csum *p = to_tcf_csum(a); struct tcf_csum_params *params; params = rcu_dereference_protected(p->params, 1); if (params) kfree_rcu(params, rcu); } static size_t tcf_csum_get_fill_size(const struct tc_action *act) { return nla_total_size(sizeof(struct tc_csum)); } static int tcf_csum_offload_act_setup(struct tc_action *act, void *entry_data, u32 *index_inc, bool bind, struct netlink_ext_ack *extack) { if (bind) { struct flow_action_entry *entry = entry_data; entry->id = FLOW_ACTION_CSUM; entry->csum_flags = tcf_csum_update_flags(act); *index_inc = 1; } else { struct flow_offload_action *fl_action = entry_data; fl_action->id = FLOW_ACTION_CSUM; } return 0; } static struct tc_action_ops act_csum_ops = { .kind = "csum", .id = TCA_ID_CSUM, .owner = THIS_MODULE, .act = tcf_csum_act, .dump = tcf_csum_dump, .init = tcf_csum_init, .cleanup = tcf_csum_cleanup, .get_fill_size = tcf_csum_get_fill_size, .offload_act_setup = tcf_csum_offload_act_setup, .size = sizeof(struct tcf_csum), }; MODULE_ALIAS_NET_ACT("csum"); static __net_init int csum_init_net(struct net *net) { struct tc_action_net *tn = net_generic(net, act_csum_ops.net_id); return tc_action_net_init(net, tn, &act_csum_ops); } static void __net_exit csum_exit_net(struct list_head *net_list) { tc_action_net_exit(net_list, act_csum_ops.net_id); } static struct pernet_operations csum_net_ops = { .init = csum_init_net, .exit_batch = csum_exit_net, .id = &act_csum_ops.net_id, .size = sizeof(struct tc_action_net), }; MODULE_DESCRIPTION("Checksum updating actions"); MODULE_LICENSE("GPL"); static int __init csum_init_module(void) { return tcf_register_action(&act_csum_ops, &csum_net_ops); } static void __exit csum_cleanup_module(void) { tcf_unregister_action(&act_csum_ops, &csum_net_ops); } module_init(csum_init_module); module_exit(csum_cleanup_module);
1 4 4 1 2 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2 14 1 8 7 4 6 4 2 2 2 1 1 5 3 1 1 3 1 1 6 3 1 2 1 2 3 1 1 1 8 1 1 7 1 2 3 3 2 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 6 1 4 1 1 1 3 1 1 1 3 9 6 1 4 1 4 1 1 4 1 3 1 1 1 2 13 1 9 6 2 1 1 6 1 1 2 1 1 2 4 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 22 1 4 1 4 5 2 2 2 1 1 7 1 1 1 4 1 1 1 3 3 1 4 1 1 2 3 3 3 1 1 2 1 2 1 1 2 1 2 6 5 2 3 1 2 1 3 3 1 2 1 1 2 5 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 // SPDX-License-Identifier: GPL-2.0 /* * cfg80211 - wext compat code * * This is temporary code until all wireless functionality is migrated * into cfg80211, when that happens all the exports here go away and * we directly assign the wireless handlers of wireless interfaces. * * Copyright 2008-2009 Johannes Berg <johannes@sipsolutions.net> * Copyright (C) 2019-2023 Intel Corporation */ #include <linux/export.h> #include <linux/wireless.h> #include <linux/nl80211.h> #include <linux/if_arp.h> #include <linux/etherdevice.h> #include <linux/slab.h> #include <net/iw_handler.h> #include <net/cfg80211.h> #include <net/cfg80211-wext.h> #include "wext-compat.h" #include "core.h" #include "rdev-ops.h" int cfg80211_wext_giwname(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { strcpy(wrqu->name, "IEEE 802.11"); return 0; } EXPORT_WEXT_HANDLER(cfg80211_wext_giwname); int cfg80211_wext_siwmode(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { __u32 *mode = &wrqu->mode; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev; struct vif_params vifparams; enum nl80211_iftype type; int ret; rdev = wiphy_to_rdev(wdev->wiphy); switch (*mode) { case IW_MODE_INFRA: type = NL80211_IFTYPE_STATION; break; case IW_MODE_ADHOC: type = NL80211_IFTYPE_ADHOC; break; case IW_MODE_MONITOR: type = NL80211_IFTYPE_MONITOR; break; default: return -EINVAL; } if (type == wdev->iftype) return 0; memset(&vifparams, 0, sizeof(vifparams)); wiphy_lock(wdev->wiphy); ret = cfg80211_change_iface(rdev, dev, type, &vifparams); wiphy_unlock(wdev->wiphy); return ret; } EXPORT_WEXT_HANDLER(cfg80211_wext_siwmode); int cfg80211_wext_giwmode(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { __u32 *mode = &wrqu->mode; struct wireless_dev *wdev = dev->ieee80211_ptr; if (!wdev) return -EOPNOTSUPP; switch (wdev->iftype) { case NL80211_IFTYPE_AP: *mode = IW_MODE_MASTER; break; case NL80211_IFTYPE_STATION: *mode = IW_MODE_INFRA; break; case NL80211_IFTYPE_ADHOC: *mode = IW_MODE_ADHOC; break; case NL80211_IFTYPE_MONITOR: *mode = IW_MODE_MONITOR; break; case NL80211_IFTYPE_WDS: *mode = IW_MODE_REPEAT; break; case NL80211_IFTYPE_AP_VLAN: *mode = IW_MODE_SECOND; /* FIXME */ break; default: *mode = IW_MODE_AUTO; break; } return 0; } EXPORT_WEXT_HANDLER(cfg80211_wext_giwmode); int cfg80211_wext_giwrange(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct iw_point *data = &wrqu->data; struct wireless_dev *wdev = dev->ieee80211_ptr; struct iw_range *range = (struct iw_range *) extra; enum nl80211_band band; int i, c = 0; if (!wdev) return -EOPNOTSUPP; data->length = sizeof(struct iw_range); memset(range, 0, sizeof(struct iw_range)); range->we_version_compiled = WIRELESS_EXT; range->we_version_source = 21; range->retry_capa = IW_RETRY_LIMIT; range->retry_flags = IW_RETRY_LIMIT; range->min_retry = 0; range->max_retry = 255; range->min_rts = 0; range->max_rts = 2347; range->min_frag = 256; range->max_frag = 2346; range->max_encoding_tokens = 4; range->max_qual.updated = IW_QUAL_NOISE_INVALID; switch (wdev->wiphy->signal_type) { case CFG80211_SIGNAL_TYPE_NONE: break; case CFG80211_SIGNAL_TYPE_MBM: range->max_qual.level = (u8)-110; range->max_qual.qual = 70; range->avg_qual.qual = 35; range->max_qual.updated |= IW_QUAL_DBM; range->max_qual.updated |= IW_QUAL_QUAL_UPDATED; range->max_qual.updated |= IW_QUAL_LEVEL_UPDATED; break; case CFG80211_SIGNAL_TYPE_UNSPEC: range->max_qual.level = 100; range->max_qual.qual = 100; range->avg_qual.qual = 50; range->max_qual.updated |= IW_QUAL_QUAL_UPDATED; range->max_qual.updated |= IW_QUAL_LEVEL_UPDATED; break; } range->avg_qual.level = range->max_qual.level / 2; range->avg_qual.noise = range->max_qual.noise / 2; range->avg_qual.updated = range->max_qual.updated; for (i = 0; i < wdev->wiphy->n_cipher_suites; i++) { switch (wdev->wiphy->cipher_suites[i]) { case WLAN_CIPHER_SUITE_TKIP: range->enc_capa |= (IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_WPA); break; case WLAN_CIPHER_SUITE_CCMP: range->enc_capa |= (IW_ENC_CAPA_CIPHER_CCMP | IW_ENC_CAPA_WPA2); break; case WLAN_CIPHER_SUITE_WEP40: range->encoding_size[range->num_encoding_sizes++] = WLAN_KEY_LEN_WEP40; break; case WLAN_CIPHER_SUITE_WEP104: range->encoding_size[range->num_encoding_sizes++] = WLAN_KEY_LEN_WEP104; break; } } for (band = 0; band < NUM_NL80211_BANDS; band ++) { struct ieee80211_supported_band *sband; sband = wdev->wiphy->bands[band]; if (!sband) continue; for (i = 0; i < sband->n_channels && c < IW_MAX_FREQUENCIES; i++) { struct ieee80211_channel *chan = &sband->channels[i]; if (!(chan->flags & IEEE80211_CHAN_DISABLED)) { range->freq[c].i = ieee80211_frequency_to_channel( chan->center_freq); range->freq[c].m = chan->center_freq; range->freq[c].e = 6; c++; } } } range->num_channels = c; range->num_frequency = c; IW_EVENT_CAPA_SET_KERNEL(range->event_capa); IW_EVENT_CAPA_SET(range->event_capa, SIOCGIWAP); IW_EVENT_CAPA_SET(range->event_capa, SIOCGIWSCAN); if (wdev->wiphy->max_scan_ssids > 0) range->scan_capa |= IW_SCAN_CAPA_ESSID; return 0; } EXPORT_WEXT_HANDLER(cfg80211_wext_giwrange); /** * cfg80211_wext_freq - get wext frequency for non-"auto" * @freq: the wext freq encoding * * Returns: a frequency, or a negative error code, or 0 for auto. */ int cfg80211_wext_freq(struct iw_freq *freq) { /* * Parse frequency - return 0 for auto and * -EINVAL for impossible things. */ if (freq->e == 0) { enum nl80211_band band = NL80211_BAND_2GHZ; if (freq->m < 0) return 0; if (freq->m > 14) band = NL80211_BAND_5GHZ; return ieee80211_channel_to_frequency(freq->m, band); } else { int i, div = 1000000; for (i = 0; i < freq->e; i++) div /= 10; if (div <= 0) return -EINVAL; return freq->m / div; } } int cfg80211_wext_siwrts(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct iw_param *rts = &wrqu->rts; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); u32 orts = wdev->wiphy->rts_threshold; int err; wiphy_lock(&rdev->wiphy); if (rts->disabled || !rts->fixed) { wdev->wiphy->rts_threshold = (u32) -1; } else if (rts->value < 0) { err = -EINVAL; goto out; } else { wdev->wiphy->rts_threshold = rts->value; } err = rdev_set_wiphy_params(rdev, WIPHY_PARAM_RTS_THRESHOLD); if (err) wdev->wiphy->rts_threshold = orts; out: wiphy_unlock(&rdev->wiphy); return err; } EXPORT_WEXT_HANDLER(cfg80211_wext_siwrts); int cfg80211_wext_giwrts(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct iw_param *rts = &wrqu->rts; struct wireless_dev *wdev = dev->ieee80211_ptr; rts->value = wdev->wiphy->rts_threshold; rts->disabled = rts->value == (u32) -1; rts->fixed = 1; return 0; } EXPORT_WEXT_HANDLER(cfg80211_wext_giwrts); int cfg80211_wext_siwfrag(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct iw_param *frag = &wrqu->frag; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); u32 ofrag = wdev->wiphy->frag_threshold; int err; wiphy_lock(&rdev->wiphy); if (frag->disabled || !frag->fixed) { wdev->wiphy->frag_threshold = (u32) -1; } else if (frag->value < 256) { err = -EINVAL; goto out; } else { /* Fragment length must be even, so strip LSB. */ wdev->wiphy->frag_threshold = frag->value & ~0x1; } err = rdev_set_wiphy_params(rdev, WIPHY_PARAM_FRAG_THRESHOLD); if (err) wdev->wiphy->frag_threshold = ofrag; out: wiphy_unlock(&rdev->wiphy); return err; } EXPORT_WEXT_HANDLER(cfg80211_wext_siwfrag); int cfg80211_wext_giwfrag(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct iw_param *frag = &wrqu->frag; struct wireless_dev *wdev = dev->ieee80211_ptr; frag->value = wdev->wiphy->frag_threshold; frag->disabled = frag->value == (u32) -1; frag->fixed = 1; return 0; } EXPORT_WEXT_HANDLER(cfg80211_wext_giwfrag); static int cfg80211_wext_siwretry(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct iw_param *retry = &wrqu->retry; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); u32 changed = 0; u8 olong = wdev->wiphy->retry_long; u8 oshort = wdev->wiphy->retry_short; int err; if (retry->disabled || retry->value < 1 || retry->value > 255 || (retry->flags & IW_RETRY_TYPE) != IW_RETRY_LIMIT) return -EINVAL; wiphy_lock(&rdev->wiphy); if (retry->flags & IW_RETRY_LONG) { wdev->wiphy->retry_long = retry->value; changed |= WIPHY_PARAM_RETRY_LONG; } else if (retry->flags & IW_RETRY_SHORT) { wdev->wiphy->retry_short = retry->value; changed |= WIPHY_PARAM_RETRY_SHORT; } else { wdev->wiphy->retry_short = retry->value; wdev->wiphy->retry_long = retry->value; changed |= WIPHY_PARAM_RETRY_LONG; changed |= WIPHY_PARAM_RETRY_SHORT; } err = rdev_set_wiphy_params(rdev, changed); if (err) { wdev->wiphy->retry_short = oshort; wdev->wiphy->retry_long = olong; } wiphy_unlock(&rdev->wiphy); return err; } int cfg80211_wext_giwretry(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct iw_param *retry = &wrqu->retry; struct wireless_dev *wdev = dev->ieee80211_ptr; retry->disabled = 0; if (retry->flags == 0 || (retry->flags & IW_RETRY_SHORT)) { /* * First return short value, iwconfig will ask long value * later if needed */ retry->flags |= IW_RETRY_LIMIT | IW_RETRY_SHORT; retry->value = wdev->wiphy->retry_short; if (wdev->wiphy->retry_long == wdev->wiphy->retry_short) retry->flags |= IW_RETRY_LONG; return 0; } if (retry->flags & IW_RETRY_LONG) { retry->flags = IW_RETRY_LIMIT | IW_RETRY_LONG; retry->value = wdev->wiphy->retry_long; } return 0; } EXPORT_WEXT_HANDLER(cfg80211_wext_giwretry); static int cfg80211_set_encryption(struct cfg80211_registered_device *rdev, struct net_device *dev, bool pairwise, const u8 *addr, bool remove, bool tx_key, int idx, struct key_params *params) { struct wireless_dev *wdev = dev->ieee80211_ptr; int err, i; bool rejoin = false; if (wdev->valid_links) return -EINVAL; if (pairwise && !addr) return -EINVAL; /* * In many cases we won't actually need this, but it's better * to do it first in case the allocation fails. Don't use wext. */ if (!wdev->wext.keys) { wdev->wext.keys = kzalloc(sizeof(*wdev->wext.keys), GFP_KERNEL); if (!wdev->wext.keys) return -ENOMEM; for (i = 0; i < 4; i++) wdev->wext.keys->params[i].key = wdev->wext.keys->data[i]; } if (wdev->iftype != NL80211_IFTYPE_ADHOC && wdev->iftype != NL80211_IFTYPE_STATION) return -EOPNOTSUPP; if (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC) { if (!wdev->connected) return -ENOLINK; if (!rdev->ops->set_default_mgmt_key) return -EOPNOTSUPP; if (idx < 4 || idx > 5) return -EINVAL; } else if (idx < 0 || idx > 3) return -EINVAL; if (remove) { err = 0; if (wdev->connected || (wdev->iftype == NL80211_IFTYPE_ADHOC && wdev->u.ibss.current_bss)) { /* * If removing the current TX key, we will need to * join a new IBSS without the privacy bit clear. */ if (idx == wdev->wext.default_key && wdev->iftype == NL80211_IFTYPE_ADHOC) { cfg80211_leave_ibss(rdev, wdev->netdev, true); rejoin = true; } if (!pairwise && addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) err = -ENOENT; else err = rdev_del_key(rdev, dev, -1, idx, pairwise, addr); } wdev->wext.connect.privacy = false; /* * Applications using wireless extensions expect to be * able to delete keys that don't exist, so allow that. */ if (err == -ENOENT) err = 0; if (!err) { if (!addr && idx < 4) { memset(wdev->wext.keys->data[idx], 0, sizeof(wdev->wext.keys->data[idx])); wdev->wext.keys->params[idx].key_len = 0; wdev->wext.keys->params[idx].cipher = 0; } if (idx == wdev->wext.default_key) wdev->wext.default_key = -1; else if (idx == wdev->wext.default_mgmt_key) wdev->wext.default_mgmt_key = -1; } if (!err && rejoin) err = cfg80211_ibss_wext_join(rdev, wdev); return err; } if (addr) tx_key = false; if (cfg80211_validate_key_settings(rdev, params, idx, pairwise, addr)) return -EINVAL; err = 0; if (wdev->connected || (wdev->iftype == NL80211_IFTYPE_ADHOC && wdev->u.ibss.current_bss)) err = rdev_add_key(rdev, dev, -1, idx, pairwise, addr, params); else if (params->cipher != WLAN_CIPHER_SUITE_WEP40 && params->cipher != WLAN_CIPHER_SUITE_WEP104) return -EINVAL; if (err) return err; /* * We only need to store WEP keys, since they're the only keys that * can be set before a connection is established and persist after * disconnecting. */ if (!addr && (params->cipher == WLAN_CIPHER_SUITE_WEP40 || params->cipher == WLAN_CIPHER_SUITE_WEP104)) { wdev->wext.keys->params[idx] = *params; memcpy(wdev->wext.keys->data[idx], params->key, params->key_len); wdev->wext.keys->params[idx].key = wdev->wext.keys->data[idx]; } if ((params->cipher == WLAN_CIPHER_SUITE_WEP40 || params->cipher == WLAN_CIPHER_SUITE_WEP104) && (tx_key || (!addr && wdev->wext.default_key == -1))) { if (wdev->connected || (wdev->iftype == NL80211_IFTYPE_ADHOC && wdev->u.ibss.current_bss)) { /* * If we are getting a new TX key from not having * had one before we need to join a new IBSS with * the privacy bit set. */ if (wdev->iftype == NL80211_IFTYPE_ADHOC && wdev->wext.default_key == -1) { cfg80211_leave_ibss(rdev, wdev->netdev, true); rejoin = true; } err = rdev_set_default_key(rdev, dev, -1, idx, true, true); } if (!err) { wdev->wext.default_key = idx; if (rejoin) err = cfg80211_ibss_wext_join(rdev, wdev); } return err; } if (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC && (tx_key || (!addr && wdev->wext.default_mgmt_key == -1))) { if (wdev->connected || (wdev->iftype == NL80211_IFTYPE_ADHOC && wdev->u.ibss.current_bss)) err = rdev_set_default_mgmt_key(rdev, dev, -1, idx); if (!err) wdev->wext.default_mgmt_key = idx; return err; } return 0; } static int cfg80211_wext_siwencode(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *keybuf) { struct iw_point *erq = &wrqu->encoding; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); int idx, err; bool remove = false; struct key_params params; if (wdev->iftype != NL80211_IFTYPE_STATION && wdev->iftype != NL80211_IFTYPE_ADHOC) return -EOPNOTSUPP; /* no use -- only MFP (set_default_mgmt_key) is optional */ if (!rdev->ops->del_key || !rdev->ops->add_key || !rdev->ops->set_default_key) return -EOPNOTSUPP; wiphy_lock(&rdev->wiphy); if (wdev->valid_links) { err = -EOPNOTSUPP; goto out; } idx = erq->flags & IW_ENCODE_INDEX; if (idx == 0) { idx = wdev->wext.default_key; if (idx < 0) idx = 0; } else if (idx < 1 || idx > 4) { err = -EINVAL; goto out; } else { idx--; } if (erq->flags & IW_ENCODE_DISABLED) remove = true; else if (erq->length == 0) { /* No key data - just set the default TX key index */ err = 0; if (wdev->connected || (wdev->iftype == NL80211_IFTYPE_ADHOC && wdev->u.ibss.current_bss)) err = rdev_set_default_key(rdev, dev, -1, idx, true, true); if (!err) wdev->wext.default_key = idx; goto out; } memset(&params, 0, sizeof(params)); params.key = keybuf; params.key_len = erq->length; if (erq->length == 5) { params.cipher = WLAN_CIPHER_SUITE_WEP40; } else if (erq->length == 13) { params.cipher = WLAN_CIPHER_SUITE_WEP104; } else if (!remove) { err = -EINVAL; goto out; } err = cfg80211_set_encryption(rdev, dev, false, NULL, remove, wdev->wext.default_key == -1, idx, &params); out: wiphy_unlock(&rdev->wiphy); return err; } static int cfg80211_wext_siwencodeext(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct iw_point *erq = &wrqu->encoding; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct iw_encode_ext *ext = (struct iw_encode_ext *) extra; const u8 *addr; int idx; bool remove = false; struct key_params params; u32 cipher; int ret; if (wdev->iftype != NL80211_IFTYPE_STATION && wdev->iftype != NL80211_IFTYPE_ADHOC) return -EOPNOTSUPP; /* no use -- only MFP (set_default_mgmt_key) is optional */ if (!rdev->ops->del_key || !rdev->ops->add_key || !rdev->ops->set_default_key) return -EOPNOTSUPP; if (wdev->valid_links) return -EOPNOTSUPP; switch (ext->alg) { case IW_ENCODE_ALG_NONE: remove = true; cipher = 0; break; case IW_ENCODE_ALG_WEP: if (ext->key_len == 5) cipher = WLAN_CIPHER_SUITE_WEP40; else if (ext->key_len == 13) cipher = WLAN_CIPHER_SUITE_WEP104; else return -EINVAL; break; case IW_ENCODE_ALG_TKIP: cipher = WLAN_CIPHER_SUITE_TKIP; break; case IW_ENCODE_ALG_CCMP: cipher = WLAN_CIPHER_SUITE_CCMP; break; case IW_ENCODE_ALG_AES_CMAC: cipher = WLAN_CIPHER_SUITE_AES_CMAC; break; default: return -EOPNOTSUPP; } if (erq->flags & IW_ENCODE_DISABLED) remove = true; idx = erq->flags & IW_ENCODE_INDEX; if (cipher == WLAN_CIPHER_SUITE_AES_CMAC) { if (idx < 4 || idx > 5) { idx = wdev->wext.default_mgmt_key; if (idx < 0) return -EINVAL; } else idx--; } else { if (idx < 1 || idx > 4) { idx = wdev->wext.default_key; if (idx < 0) return -EINVAL; } else idx--; } addr = ext->addr.sa_data; if (is_broadcast_ether_addr(addr)) addr = NULL; memset(&params, 0, sizeof(params)); params.key = ext->key; params.key_len = ext->key_len; params.cipher = cipher; if (ext->ext_flags & IW_ENCODE_EXT_RX_SEQ_VALID) { params.seq = ext->rx_seq; params.seq_len = 6; } wiphy_lock(wdev->wiphy); ret = cfg80211_set_encryption( rdev, dev, !(ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY), addr, remove, ext->ext_flags & IW_ENCODE_EXT_SET_TX_KEY, idx, &params); wiphy_unlock(wdev->wiphy); return ret; } static int cfg80211_wext_giwencode(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *keybuf) { struct iw_point *erq = &wrqu->encoding; struct wireless_dev *wdev = dev->ieee80211_ptr; int idx; if (wdev->iftype != NL80211_IFTYPE_STATION && wdev->iftype != NL80211_IFTYPE_ADHOC) return -EOPNOTSUPP; idx = erq->flags & IW_ENCODE_INDEX; if (idx == 0) { idx = wdev->wext.default_key; if (idx < 0) idx = 0; } else if (idx < 1 || idx > 4) return -EINVAL; else idx--; erq->flags = idx + 1; if (!wdev->wext.keys || !wdev->wext.keys->params[idx].cipher) { erq->flags |= IW_ENCODE_DISABLED; erq->length = 0; return 0; } erq->length = min_t(size_t, erq->length, wdev->wext.keys->params[idx].key_len); memcpy(keybuf, wdev->wext.keys->params[idx].key, erq->length); erq->flags |= IW_ENCODE_ENABLED; return 0; } static int cfg80211_wext_siwfreq(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct iw_freq *wextfreq = &wrqu->freq; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct cfg80211_chan_def chandef = { .width = NL80211_CHAN_WIDTH_20_NOHT, }; int freq, ret; wiphy_lock(&rdev->wiphy); switch (wdev->iftype) { case NL80211_IFTYPE_STATION: ret = cfg80211_mgd_wext_siwfreq(dev, info, wextfreq, extra); break; case NL80211_IFTYPE_ADHOC: ret = cfg80211_ibss_wext_siwfreq(dev, info, wextfreq, extra); break; case NL80211_IFTYPE_MONITOR: freq = cfg80211_wext_freq(wextfreq); if (freq < 0) { ret = freq; break; } if (freq == 0) { ret = -EINVAL; break; } chandef.center_freq1 = freq; chandef.chan = ieee80211_get_channel(&rdev->wiphy, freq); if (!chandef.chan) { ret = -EINVAL; break; } ret = cfg80211_set_monitor_channel(rdev, &chandef); break; case NL80211_IFTYPE_MESH_POINT: freq = cfg80211_wext_freq(wextfreq); if (freq < 0) { ret = freq; break; } if (freq == 0) { ret = -EINVAL; break; } chandef.center_freq1 = freq; chandef.chan = ieee80211_get_channel(&rdev->wiphy, freq); if (!chandef.chan) { ret = -EINVAL; break; } ret = cfg80211_set_mesh_channel(rdev, wdev, &chandef); break; default: ret = -EOPNOTSUPP; break; } wiphy_unlock(&rdev->wiphy); return ret; } static int cfg80211_wext_giwfreq(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct iw_freq *freq = &wrqu->freq; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct cfg80211_chan_def chandef = {}; int ret; wiphy_lock(&rdev->wiphy); switch (wdev->iftype) { case NL80211_IFTYPE_STATION: ret = cfg80211_mgd_wext_giwfreq(dev, info, freq, extra); break; case NL80211_IFTYPE_ADHOC: ret = cfg80211_ibss_wext_giwfreq(dev, info, freq, extra); break; case NL80211_IFTYPE_MONITOR: if (!rdev->ops->get_channel) { ret = -EINVAL; break; } ret = rdev_get_channel(rdev, wdev, 0, &chandef); if (ret) break; freq->m = chandef.chan->center_freq; freq->e = 6; ret = 0; break; default: ret = -EINVAL; break; } wiphy_unlock(&rdev->wiphy); return ret; } static int cfg80211_wext_siwtxpower(struct net_device *dev, struct iw_request_info *info, union iwreq_data *data, char *extra) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); enum nl80211_tx_power_setting type; int dbm = 0; int ret; if ((data->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM) return -EINVAL; if (data->txpower.flags & IW_TXPOW_RANGE) return -EINVAL; if (!rdev->ops->set_tx_power) return -EOPNOTSUPP; /* only change when not disabling */ if (!data->txpower.disabled) { rfkill_set_sw_state(rdev->wiphy.rfkill, false); if (data->txpower.fixed) { /* * wext doesn't support negative values, see * below where it's for automatic */ if (data->txpower.value < 0) return -EINVAL; dbm = data->txpower.value; type = NL80211_TX_POWER_FIXED; /* TODO: do regulatory check! */ } else { /* * Automatic power level setting, max being the value * passed in from userland. */ if (data->txpower.value < 0) { type = NL80211_TX_POWER_AUTOMATIC; } else { dbm = data->txpower.value; type = NL80211_TX_POWER_LIMITED; } } } else { if (rfkill_set_sw_state(rdev->wiphy.rfkill, true)) schedule_work(&rdev->rfkill_block); return 0; } wiphy_lock(&rdev->wiphy); ret = rdev_set_tx_power(rdev, wdev, type, DBM_TO_MBM(dbm)); wiphy_unlock(&rdev->wiphy); return ret; } static int cfg80211_wext_giwtxpower(struct net_device *dev, struct iw_request_info *info, union iwreq_data *data, char *extra) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); int err, val; if ((data->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM) return -EINVAL; if (data->txpower.flags & IW_TXPOW_RANGE) return -EINVAL; if (!rdev->ops->get_tx_power) return -EOPNOTSUPP; wiphy_lock(&rdev->wiphy); err = rdev_get_tx_power(rdev, wdev, &val); wiphy_unlock(&rdev->wiphy); if (err) return err; /* well... oh well */ data->txpower.fixed = 1; data->txpower.disabled = rfkill_blocked(rdev->wiphy.rfkill); data->txpower.value = val; data->txpower.flags = IW_TXPOW_DBM; return 0; } static int cfg80211_set_auth_alg(struct wireless_dev *wdev, s32 auth_alg) { int nr_alg = 0; if (!auth_alg) return -EINVAL; if (auth_alg & ~(IW_AUTH_ALG_OPEN_SYSTEM | IW_AUTH_ALG_SHARED_KEY | IW_AUTH_ALG_LEAP)) return -EINVAL; if (auth_alg & IW_AUTH_ALG_OPEN_SYSTEM) { nr_alg++; wdev->wext.connect.auth_type = NL80211_AUTHTYPE_OPEN_SYSTEM; } if (auth_alg & IW_AUTH_ALG_SHARED_KEY) { nr_alg++; wdev->wext.connect.auth_type = NL80211_AUTHTYPE_SHARED_KEY; } if (auth_alg & IW_AUTH_ALG_LEAP) { nr_alg++; wdev->wext.connect.auth_type = NL80211_AUTHTYPE_NETWORK_EAP; } if (nr_alg > 1) wdev->wext.connect.auth_type = NL80211_AUTHTYPE_AUTOMATIC; return 0; } static int cfg80211_set_wpa_version(struct wireless_dev *wdev, u32 wpa_versions) { if (wpa_versions & ~(IW_AUTH_WPA_VERSION_WPA | IW_AUTH_WPA_VERSION_WPA2| IW_AUTH_WPA_VERSION_DISABLED)) return -EINVAL; if ((wpa_versions & IW_AUTH_WPA_VERSION_DISABLED) && (wpa_versions & (IW_AUTH_WPA_VERSION_WPA| IW_AUTH_WPA_VERSION_WPA2))) return -EINVAL; if (wpa_versions & IW_AUTH_WPA_VERSION_DISABLED) wdev->wext.connect.crypto.wpa_versions &= ~(NL80211_WPA_VERSION_1|NL80211_WPA_VERSION_2); if (wpa_versions & IW_AUTH_WPA_VERSION_WPA) wdev->wext.connect.crypto.wpa_versions |= NL80211_WPA_VERSION_1; if (wpa_versions & IW_AUTH_WPA_VERSION_WPA2) wdev->wext.connect.crypto.wpa_versions |= NL80211_WPA_VERSION_2; return 0; } static int cfg80211_set_cipher_group(struct wireless_dev *wdev, u32 cipher) { if (cipher & IW_AUTH_CIPHER_WEP40) wdev->wext.connect.crypto.cipher_group = WLAN_CIPHER_SUITE_WEP40; else if (cipher & IW_AUTH_CIPHER_WEP104) wdev->wext.connect.crypto.cipher_group = WLAN_CIPHER_SUITE_WEP104; else if (cipher & IW_AUTH_CIPHER_TKIP) wdev->wext.connect.crypto.cipher_group = WLAN_CIPHER_SUITE_TKIP; else if (cipher & IW_AUTH_CIPHER_CCMP) wdev->wext.connect.crypto.cipher_group = WLAN_CIPHER_SUITE_CCMP; else if (cipher & IW_AUTH_CIPHER_AES_CMAC) wdev->wext.connect.crypto.cipher_group = WLAN_CIPHER_SUITE_AES_CMAC; else if (cipher & IW_AUTH_CIPHER_NONE) wdev->wext.connect.crypto.cipher_group = 0; else return -EINVAL; return 0; } static int cfg80211_set_cipher_pairwise(struct wireless_dev *wdev, u32 cipher) { int nr_ciphers = 0; u32 *ciphers_pairwise = wdev->wext.connect.crypto.ciphers_pairwise; if (cipher & IW_AUTH_CIPHER_WEP40) { ciphers_pairwise[nr_ciphers] = WLAN_CIPHER_SUITE_WEP40; nr_ciphers++; } if (cipher & IW_AUTH_CIPHER_WEP104) { ciphers_pairwise[nr_ciphers] = WLAN_CIPHER_SUITE_WEP104; nr_ciphers++; } if (cipher & IW_AUTH_CIPHER_TKIP) { ciphers_pairwise[nr_ciphers] = WLAN_CIPHER_SUITE_TKIP; nr_ciphers++; } if (cipher & IW_AUTH_CIPHER_CCMP) { ciphers_pairwise[nr_ciphers] = WLAN_CIPHER_SUITE_CCMP; nr_ciphers++; } if (cipher & IW_AUTH_CIPHER_AES_CMAC) { ciphers_pairwise[nr_ciphers] = WLAN_CIPHER_SUITE_AES_CMAC; nr_ciphers++; } BUILD_BUG_ON(NL80211_MAX_NR_CIPHER_SUITES < 5); wdev->wext.connect.crypto.n_ciphers_pairwise = nr_ciphers; return 0; } static int cfg80211_set_key_mgt(struct wireless_dev *wdev, u32 key_mgt) { int nr_akm_suites = 0; if (key_mgt & ~(IW_AUTH_KEY_MGMT_802_1X | IW_AUTH_KEY_MGMT_PSK)) return -EINVAL; if (key_mgt & IW_AUTH_KEY_MGMT_802_1X) { wdev->wext.connect.crypto.akm_suites[nr_akm_suites] = WLAN_AKM_SUITE_8021X; nr_akm_suites++; } if (key_mgt & IW_AUTH_KEY_MGMT_PSK) { wdev->wext.connect.crypto.akm_suites[nr_akm_suites] = WLAN_AKM_SUITE_PSK; nr_akm_suites++; } wdev->wext.connect.crypto.n_akm_suites = nr_akm_suites; return 0; } static int cfg80211_wext_siwauth(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct iw_param *data = &wrqu->param; struct wireless_dev *wdev = dev->ieee80211_ptr; if (wdev->iftype != NL80211_IFTYPE_STATION) return -EOPNOTSUPP; switch (data->flags & IW_AUTH_INDEX) { case IW_AUTH_PRIVACY_INVOKED: wdev->wext.connect.privacy = data->value; return 0; case IW_AUTH_WPA_VERSION: return cfg80211_set_wpa_version(wdev, data->value); case IW_AUTH_CIPHER_GROUP: return cfg80211_set_cipher_group(wdev, data->value); case IW_AUTH_KEY_MGMT: return cfg80211_set_key_mgt(wdev, data->value); case IW_AUTH_CIPHER_PAIRWISE: return cfg80211_set_cipher_pairwise(wdev, data->value); case IW_AUTH_80211_AUTH_ALG: return cfg80211_set_auth_alg(wdev, data->value); case IW_AUTH_WPA_ENABLED: case IW_AUTH_RX_UNENCRYPTED_EAPOL: case IW_AUTH_DROP_UNENCRYPTED: case IW_AUTH_MFP: return 0; default: return -EOPNOTSUPP; } } static int cfg80211_wext_giwauth(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { /* XXX: what do we need? */ return -EOPNOTSUPP; } static int cfg80211_wext_siwpower(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct iw_param *wrq = &wrqu->power; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); bool ps; int timeout = wdev->ps_timeout; int err; if (wdev->iftype != NL80211_IFTYPE_STATION) return -EINVAL; if (!rdev->ops->set_power_mgmt) return -EOPNOTSUPP; if (wrq->disabled) { ps = false; } else { switch (wrq->flags & IW_POWER_MODE) { case IW_POWER_ON: /* If not specified */ case IW_POWER_MODE: /* If set all mask */ case IW_POWER_ALL_R: /* If explicitely state all */ ps = true; break; default: /* Otherwise we ignore */ return -EINVAL; } if (wrq->flags & ~(IW_POWER_MODE | IW_POWER_TIMEOUT)) return -EINVAL; if (wrq->flags & IW_POWER_TIMEOUT) timeout = wrq->value / 1000; } wiphy_lock(&rdev->wiphy); err = rdev_set_power_mgmt(rdev, dev, ps, timeout); wiphy_unlock(&rdev->wiphy); if (err) return err; wdev->ps = ps; wdev->ps_timeout = timeout; return 0; } static int cfg80211_wext_giwpower(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct iw_param *wrq = &wrqu->power; struct wireless_dev *wdev = dev->ieee80211_ptr; wrq->disabled = !wdev->ps; return 0; } static int cfg80211_wext_siwrate(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct iw_param *rate = &wrqu->bitrate; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct cfg80211_bitrate_mask mask; u32 fixed, maxrate; struct ieee80211_supported_band *sband; int band, ridx, ret; bool match = false; if (!rdev->ops->set_bitrate_mask) return -EOPNOTSUPP; memset(&mask, 0, sizeof(mask)); fixed = 0; maxrate = (u32)-1; if (rate->value < 0) { /* nothing */ } else if (rate->fixed) { fixed = rate->value / 100000; } else { maxrate = rate->value / 100000; } for (band = 0; band < NUM_NL80211_BANDS; band++) { sband = wdev->wiphy->bands[band]; if (sband == NULL) continue; for (ridx = 0; ridx < sband->n_bitrates; ridx++) { struct ieee80211_rate *srate = &sband->bitrates[ridx]; if (fixed == srate->bitrate) { mask.control[band].legacy = 1 << ridx; match = true; break; } if (srate->bitrate <= maxrate) { mask.control[band].legacy |= 1 << ridx; match = true; } } } if (!match) return -EINVAL; wiphy_lock(&rdev->wiphy); if (dev->ieee80211_ptr->valid_links) ret = -EOPNOTSUPP; else ret = rdev_set_bitrate_mask(rdev, dev, 0, NULL, &mask); wiphy_unlock(&rdev->wiphy); return ret; } static int cfg80211_wext_giwrate(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct iw_param *rate = &wrqu->bitrate; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct station_info sinfo = {}; u8 addr[ETH_ALEN]; int err; if (wdev->iftype != NL80211_IFTYPE_STATION) return -EOPNOTSUPP; if (!rdev->ops->get_station) return -EOPNOTSUPP; err = 0; if (!wdev->valid_links && wdev->links[0].client.current_bss) memcpy(addr, wdev->links[0].client.current_bss->pub.bssid, ETH_ALEN); else err = -EOPNOTSUPP; if (err) return err; wiphy_lock(&rdev->wiphy); err = rdev_get_station(rdev, dev, addr, &sinfo); wiphy_unlock(&rdev->wiphy); if (err) return err; if (!(sinfo.filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) { err = -EOPNOTSUPP; goto free; } rate->value = 100000 * cfg80211_calculate_bitrate(&sinfo.txrate); free: cfg80211_sinfo_release_content(&sinfo); return err; } /* Get wireless statistics. Called by /proc/net/wireless and by SIOCGIWSTATS */ static struct iw_statistics *cfg80211_wireless_stats(struct net_device *dev) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); /* we are under RTNL - globally locked - so can use static structs */ static struct iw_statistics wstats; static struct station_info sinfo = {}; u8 bssid[ETH_ALEN]; int ret; if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_STATION) return NULL; if (!rdev->ops->get_station) return NULL; /* Grab BSSID of current BSS, if any */ wiphy_lock(&rdev->wiphy); if (wdev->valid_links || !wdev->links[0].client.current_bss) { wiphy_unlock(&rdev->wiphy); return NULL; } memcpy(bssid, wdev->links[0].client.current_bss->pub.bssid, ETH_ALEN); memset(&sinfo, 0, sizeof(sinfo)); ret = rdev_get_station(rdev, dev, bssid, &sinfo); wiphy_unlock(&rdev->wiphy); if (ret) return NULL; memset(&wstats, 0, sizeof(wstats)); switch (rdev->wiphy.signal_type) { case CFG80211_SIGNAL_TYPE_MBM: if (sinfo.filled & BIT_ULL(NL80211_STA_INFO_SIGNAL)) { int sig = sinfo.signal; wstats.qual.updated |= IW_QUAL_LEVEL_UPDATED; wstats.qual.updated |= IW_QUAL_QUAL_UPDATED; wstats.qual.updated |= IW_QUAL_DBM; wstats.qual.level = sig; if (sig < -110) sig = -110; else if (sig > -40) sig = -40; wstats.qual.qual = sig + 110; break; } fallthrough; case CFG80211_SIGNAL_TYPE_UNSPEC: if (sinfo.filled & BIT_ULL(NL80211_STA_INFO_SIGNAL)) { wstats.qual.updated |= IW_QUAL_LEVEL_UPDATED; wstats.qual.updated |= IW_QUAL_QUAL_UPDATED; wstats.qual.level = sinfo.signal; wstats.qual.qual = sinfo.signal; break; } fallthrough; default: wstats.qual.updated |= IW_QUAL_LEVEL_INVALID; wstats.qual.updated |= IW_QUAL_QUAL_INVALID; } wstats.qual.updated |= IW_QUAL_NOISE_INVALID; if (sinfo.filled & BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC)) wstats.discard.misc = sinfo.rx_dropped_misc; if (sinfo.filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED)) wstats.discard.retries = sinfo.tx_failed; cfg80211_sinfo_release_content(&sinfo); return &wstats; } static int cfg80211_wext_siwap(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct sockaddr *ap_addr = &wrqu->ap_addr; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); int ret; wiphy_lock(&rdev->wiphy); switch (wdev->iftype) { case NL80211_IFTYPE_ADHOC: ret = cfg80211_ibss_wext_siwap(dev, info, ap_addr, extra); break; case NL80211_IFTYPE_STATION: ret = cfg80211_mgd_wext_siwap(dev, info, ap_addr, extra); break; default: ret = -EOPNOTSUPP; break; } wiphy_unlock(&rdev->wiphy); return ret; } static int cfg80211_wext_giwap(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct sockaddr *ap_addr = &wrqu->ap_addr; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); int ret; wiphy_lock(&rdev->wiphy); switch (wdev->iftype) { case NL80211_IFTYPE_ADHOC: ret = cfg80211_ibss_wext_giwap(dev, info, ap_addr, extra); break; case NL80211_IFTYPE_STATION: ret = cfg80211_mgd_wext_giwap(dev, info, ap_addr, extra); break; default: ret = -EOPNOTSUPP; break; } wiphy_unlock(&rdev->wiphy); return ret; } static int cfg80211_wext_siwessid(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *ssid) { struct iw_point *data = &wrqu->data; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); int ret; wiphy_lock(&rdev->wiphy); switch (wdev->iftype) { case NL80211_IFTYPE_ADHOC: ret = cfg80211_ibss_wext_siwessid(dev, info, data, ssid); break; case NL80211_IFTYPE_STATION: ret = cfg80211_mgd_wext_siwessid(dev, info, data, ssid); break; default: ret = -EOPNOTSUPP; break; } wiphy_unlock(&rdev->wiphy); return ret; } static int cfg80211_wext_giwessid(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *ssid) { struct iw_point *data = &wrqu->data; struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); int ret; data->flags = 0; data->length = 0; wiphy_lock(&rdev->wiphy); switch (wdev->iftype) { case NL80211_IFTYPE_ADHOC: ret = cfg80211_ibss_wext_giwessid(dev, info, data, ssid); break; case NL80211_IFTYPE_STATION: ret = cfg80211_mgd_wext_giwessid(dev, info, data, ssid); break; default: ret = -EOPNOTSUPP; break; } wiphy_unlock(&rdev->wiphy); return ret; } static int cfg80211_wext_siwpmksa(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct wireless_dev *wdev = dev->ieee80211_ptr; struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct cfg80211_pmksa cfg_pmksa; struct iw_pmksa *pmksa = (struct iw_pmksa *)extra; int ret; memset(&cfg_pmksa, 0, sizeof(struct cfg80211_pmksa)); if (wdev->iftype != NL80211_IFTYPE_STATION) return -EINVAL; cfg_pmksa.bssid = pmksa->bssid.sa_data; cfg_pmksa.pmkid = pmksa->pmkid; wiphy_lock(&rdev->wiphy); switch (pmksa->cmd) { case IW_PMKSA_ADD: if (!rdev->ops->set_pmksa) { ret = -EOPNOTSUPP; break; } ret = rdev_set_pmksa(rdev, dev, &cfg_pmksa); break; case IW_PMKSA_REMOVE: if (!rdev->ops->del_pmksa) { ret = -EOPNOTSUPP; break; } ret = rdev_del_pmksa(rdev, dev, &cfg_pmksa); break; case IW_PMKSA_FLUSH: if (!rdev->ops->flush_pmksa) { ret = -EOPNOTSUPP; break; } ret = rdev_flush_pmksa(rdev, dev); break; default: ret = -EOPNOTSUPP; break; } wiphy_unlock(&rdev->wiphy); return ret; } static const iw_handler cfg80211_handlers[] = { IW_HANDLER(SIOCGIWNAME, cfg80211_wext_giwname), IW_HANDLER(SIOCSIWFREQ, cfg80211_wext_siwfreq), IW_HANDLER(SIOCGIWFREQ, cfg80211_wext_giwfreq), IW_HANDLER(SIOCSIWMODE, cfg80211_wext_siwmode), IW_HANDLER(SIOCGIWMODE, cfg80211_wext_giwmode), IW_HANDLER(SIOCGIWRANGE, cfg80211_wext_giwrange), IW_HANDLER(SIOCSIWAP, cfg80211_wext_siwap), IW_HANDLER(SIOCGIWAP, cfg80211_wext_giwap), IW_HANDLER(SIOCSIWMLME, cfg80211_wext_siwmlme), IW_HANDLER(SIOCSIWSCAN, cfg80211_wext_siwscan), IW_HANDLER(SIOCGIWSCAN, cfg80211_wext_giwscan), IW_HANDLER(SIOCSIWESSID, cfg80211_wext_siwessid), IW_HANDLER(SIOCGIWESSID, cfg80211_wext_giwessid), IW_HANDLER(SIOCSIWRATE, cfg80211_wext_siwrate), IW_HANDLER(SIOCGIWRATE, cfg80211_wext_giwrate), IW_HANDLER(SIOCSIWRTS, cfg80211_wext_siwrts), IW_HANDLER(SIOCGIWRTS, cfg80211_wext_giwrts), IW_HANDLER(SIOCSIWFRAG, cfg80211_wext_siwfrag), IW_HANDLER(SIOCGIWFRAG, cfg80211_wext_giwfrag), IW_HANDLER(SIOCSIWTXPOW, cfg80211_wext_siwtxpower), IW_HANDLER(SIOCGIWTXPOW, cfg80211_wext_giwtxpower), IW_HANDLER(SIOCSIWRETRY, cfg80211_wext_siwretry), IW_HANDLER(SIOCGIWRETRY, cfg80211_wext_giwretry), IW_HANDLER(SIOCSIWENCODE, cfg80211_wext_siwencode), IW_HANDLER(SIOCGIWENCODE, cfg80211_wext_giwencode), IW_HANDLER(SIOCSIWPOWER, cfg80211_wext_siwpower), IW_HANDLER(SIOCGIWPOWER, cfg80211_wext_giwpower), IW_HANDLER(SIOCSIWGENIE, cfg80211_wext_siwgenie), IW_HANDLER(SIOCSIWAUTH, cfg80211_wext_siwauth), IW_HANDLER(SIOCGIWAUTH, cfg80211_wext_giwauth), IW_HANDLER(SIOCSIWENCODEEXT, cfg80211_wext_siwencodeext), IW_HANDLER(SIOCSIWPMKSA, cfg80211_wext_siwpmksa), }; const struct iw_handler_def cfg80211_wext_handler = { .num_standard = ARRAY_SIZE(cfg80211_handlers), .standard = cfg80211_handlers, .get_wireless_stats = cfg80211_wireless_stats, };
8 8 3 3 3 66 66 124 67 66 67 8 8 4 178 178 181 180 68 66 32 11 16 9 8 116 187 68 69 32 30 19 17 17 194 7 1 194 112 116 4 115 17 18 18 18 3 3 3 3 3 3 3 3 8 8 8 7 8 8 8 8 8 8 8 8 8 5 5 5 5 5 5 8 8 8 8 8 7 8 8 8 8 4 4 4 4 4 806 807 747 64 3 4 4 840 154 810 1358 1363 8 8 8 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 8 4 1 3 1 4 8 8 8 8 8 8 8 8 8 8 3 3 3 8 7 8 77 70 8 8 8 7 8 7 8 8 8 1 7 1 7 73 73 1 1 3 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 // SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/namespace.c * * (C) Copyright Al Viro 2000, 2001 * * Based on code from fs/super.c, copyright Linus Torvalds and others. * Heavily rewritten. */ #include <linux/syscalls.h> #include <linux/export.h> #include <linux/capability.h> #include <linux/mnt_namespace.h> #include <linux/user_namespace.h> #include <linux/namei.h> #include <linux/security.h> #include <linux/cred.h> #include <linux/idr.h> #include <linux/init.h> /* init_rootfs */ #include <linux/fs_struct.h> /* get_fs_root et.al. */ #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ #include <linux/file.h> #include <linux/uaccess.h> #include <linux/proc_ns.h> #include <linux/magic.h> #include <linux/memblock.h> #include <linux/proc_fs.h> #include <linux/task_work.h> #include <linux/sched/task.h> #include <uapi/linux/mount.h> #include <linux/fs_context.h> #include <linux/shmem_fs.h> #include <linux/mnt_idmapping.h> #include <linux/nospec.h> #include "pnode.h" #include "internal.h" /* Maximum number of mounts in a mount namespace */ static unsigned int sysctl_mount_max __read_mostly = 100000; static unsigned int m_hash_mask __ro_after_init; static unsigned int m_hash_shift __ro_after_init; static unsigned int mp_hash_mask __ro_after_init; static unsigned int mp_hash_shift __ro_after_init; static __initdata unsigned long mhash_entries; static int __init set_mhash_entries(char *str) { if (!str) return 0; mhash_entries = simple_strtoul(str, &str, 0); return 1; } __setup("mhash_entries=", set_mhash_entries); static __initdata unsigned long mphash_entries; static int __init set_mphash_entries(char *str) { if (!str) return 0; mphash_entries = simple_strtoul(str, &str, 0); return 1; } __setup("mphash_entries=", set_mphash_entries); static u64 event; static DEFINE_IDA(mnt_id_ida); static DEFINE_IDA(mnt_group_ida); /* Don't allow confusion with old 32bit mount ID */ #define MNT_UNIQUE_ID_OFFSET (1ULL << 31) static atomic64_t mnt_id_ctr = ATOMIC64_INIT(MNT_UNIQUE_ID_OFFSET); static struct hlist_head *mount_hashtable __ro_after_init; static struct hlist_head *mountpoint_hashtable __ro_after_init; static struct kmem_cache *mnt_cache __ro_after_init; static DECLARE_RWSEM(namespace_sem); static HLIST_HEAD(unmounted); /* protected by namespace_sem */ static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ static DEFINE_RWLOCK(mnt_ns_tree_lock); static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */ struct mount_kattr { unsigned int attr_set; unsigned int attr_clr; unsigned int propagation; unsigned int lookup_flags; bool recurse; struct user_namespace *mnt_userns; struct mnt_idmap *mnt_idmap; }; /* /sys/fs */ struct kobject *fs_kobj __ro_after_init; EXPORT_SYMBOL_GPL(fs_kobj); /* * vfsmount lock may be taken for read to prevent changes to the * vfsmount hash, ie. during mountpoint lookups or walking back * up the tree. * * It should be taken for write in all cases where the vfsmount * tree or hash is modified or when a vfsmount structure is modified. */ __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); static int mnt_ns_cmp(u64 seq, const struct mnt_namespace *ns) { u64 seq_b = ns->seq; if (seq < seq_b) return -1; if (seq > seq_b) return 1; return 0; } static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node) { if (!node) return NULL; return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node); } static bool mnt_ns_less(struct rb_node *a, const struct rb_node *b) { struct mnt_namespace *ns_a = node_to_mnt_ns(a); struct mnt_namespace *ns_b = node_to_mnt_ns(b); u64 seq_a = ns_a->seq; return mnt_ns_cmp(seq_a, ns_b) < 0; } static void mnt_ns_tree_add(struct mnt_namespace *ns) { guard(write_lock)(&mnt_ns_tree_lock); rb_add(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_less); } static void mnt_ns_release(struct mnt_namespace *ns) { lockdep_assert_not_held(&mnt_ns_tree_lock); /* keep alive for {list,stat}mount() */ if (refcount_dec_and_test(&ns->passive)) { put_user_ns(ns->user_ns); kfree(ns); } } DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T)) static void mnt_ns_tree_remove(struct mnt_namespace *ns) { /* remove from global mount namespace list */ if (!is_anon_ns(ns)) { guard(write_lock)(&mnt_ns_tree_lock); rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree); } mnt_ns_release(ns); } /* * Returns the mount namespace which either has the specified id, or has the * next smallest id afer the specified one. */ static struct mnt_namespace *mnt_ns_find_id_at(u64 mnt_ns_id) { struct rb_node *node = mnt_ns_tree.rb_node; struct mnt_namespace *ret = NULL; lockdep_assert_held(&mnt_ns_tree_lock); while (node) { struct mnt_namespace *n = node_to_mnt_ns(node); if (mnt_ns_id <= n->seq) { ret = node_to_mnt_ns(node); if (mnt_ns_id == n->seq) break; node = node->rb_left; } else { node = node->rb_right; } } return ret; } /* * Lookup a mount namespace by id and take a passive reference count. Taking a * passive reference means the mount namespace can be emptied if e.g., the last * task holding an active reference exits. To access the mounts of the * namespace the @namespace_sem must first be acquired. If the namespace has * already shut down before acquiring @namespace_sem, {list,stat}mount() will * see that the mount rbtree of the namespace is empty. */ static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id) { struct mnt_namespace *ns; guard(read_lock)(&mnt_ns_tree_lock); ns = mnt_ns_find_id_at(mnt_ns_id); if (!ns || ns->seq != mnt_ns_id) return NULL; refcount_inc(&ns->passive); return ns; } static inline void lock_mount_hash(void) { write_seqlock(&mount_lock); } static inline void unlock_mount_hash(void) { write_sequnlock(&mount_lock); } static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) { unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); tmp += ((unsigned long)dentry / L1_CACHE_BYTES); tmp = tmp + (tmp >> m_hash_shift); return &mount_hashtable[tmp & m_hash_mask]; } static inline struct hlist_head *mp_hash(struct dentry *dentry) { unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); tmp = tmp + (tmp >> mp_hash_shift); return &mountpoint_hashtable[tmp & mp_hash_mask]; } static int mnt_alloc_id(struct mount *mnt) { int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); if (res < 0) return res; mnt->mnt_id = res; mnt->mnt_id_unique = atomic64_inc_return(&mnt_id_ctr); return 0; } static void mnt_free_id(struct mount *mnt) { ida_free(&mnt_id_ida, mnt->mnt_id); } /* * Allocate a new peer group ID */ static int mnt_alloc_group_id(struct mount *mnt) { int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); if (res < 0) return res; mnt->mnt_group_id = res; return 0; } /* * Release a peer group ID */ void mnt_release_group_id(struct mount *mnt) { ida_free(&mnt_group_ida, mnt->mnt_group_id); mnt->mnt_group_id = 0; } /* * vfsmount lock must be held for read */ static inline void mnt_add_count(struct mount *mnt, int n) { #ifdef CONFIG_SMP this_cpu_add(mnt->mnt_pcp->mnt_count, n); #else preempt_disable(); mnt->mnt_count += n; preempt_enable(); #endif } /* * vfsmount lock must be held for write */ int mnt_get_count(struct mount *mnt) { #ifdef CONFIG_SMP int count = 0; int cpu; for_each_possible_cpu(cpu) { count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; } return count; #else return mnt->mnt_count; #endif } static struct mount *alloc_vfsmnt(const char *name) { struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); if (mnt) { int err; err = mnt_alloc_id(mnt); if (err) goto out_free_cache; if (name) { mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL_ACCOUNT); if (!mnt->mnt_devname) goto out_free_id; } #ifdef CONFIG_SMP mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); if (!mnt->mnt_pcp) goto out_free_devname; this_cpu_add(mnt->mnt_pcp->mnt_count, 1); #else mnt->mnt_count = 1; mnt->mnt_writers = 0; #endif INIT_HLIST_NODE(&mnt->mnt_hash); INIT_LIST_HEAD(&mnt->mnt_child); INIT_LIST_HEAD(&mnt->mnt_mounts); INIT_LIST_HEAD(&mnt->mnt_list); INIT_LIST_HEAD(&mnt->mnt_expire); INIT_LIST_HEAD(&mnt->mnt_share); INIT_LIST_HEAD(&mnt->mnt_slave_list); INIT_LIST_HEAD(&mnt->mnt_slave); INIT_HLIST_NODE(&mnt->mnt_mp_list); INIT_LIST_HEAD(&mnt->mnt_umounting); INIT_HLIST_HEAD(&mnt->mnt_stuck_children); mnt->mnt.mnt_idmap = &nop_mnt_idmap; } return mnt; #ifdef CONFIG_SMP out_free_devname: kfree_const(mnt->mnt_devname); #endif out_free_id: mnt_free_id(mnt); out_free_cache: kmem_cache_free(mnt_cache, mnt); return NULL; } /* * Most r/o checks on a fs are for operations that take * discrete amounts of time, like a write() or unlink(). * We must keep track of when those operations start * (for permission checks) and when they end, so that * we can determine when writes are able to occur to * a filesystem. */ /* * __mnt_is_readonly: check whether a mount is read-only * @mnt: the mount to check for its write status * * This shouldn't be used directly ouside of the VFS. * It does not guarantee that the filesystem will stay * r/w, just that it is right *now*. This can not and * should not be used in place of IS_RDONLY(inode). * mnt_want/drop_write() will _keep_ the filesystem * r/w. */ bool __mnt_is_readonly(struct vfsmount *mnt) { return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); } EXPORT_SYMBOL_GPL(__mnt_is_readonly); static inline void mnt_inc_writers(struct mount *mnt) { #ifdef CONFIG_SMP this_cpu_inc(mnt->mnt_pcp->mnt_writers); #else mnt->mnt_writers++; #endif } static inline void mnt_dec_writers(struct mount *mnt) { #ifdef CONFIG_SMP this_cpu_dec(mnt->mnt_pcp->mnt_writers); #else mnt->mnt_writers--; #endif } static unsigned int mnt_get_writers(struct mount *mnt) { #ifdef CONFIG_SMP unsigned int count = 0; int cpu; for_each_possible_cpu(cpu) { count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; } return count; #else return mnt->mnt_writers; #endif } static int mnt_is_readonly(struct vfsmount *mnt) { if (READ_ONCE(mnt->mnt_sb->s_readonly_remount)) return 1; /* * The barrier pairs with the barrier in sb_start_ro_state_change() * making sure if we don't see s_readonly_remount set yet, we also will * not see any superblock / mount flag changes done by remount. * It also pairs with the barrier in sb_end_ro_state_change() * assuring that if we see s_readonly_remount already cleared, we will * see the values of superblock / mount flags updated by remount. */ smp_rmb(); return __mnt_is_readonly(mnt); } /* * Most r/o & frozen checks on a fs are for operations that take discrete * amounts of time, like a write() or unlink(). We must keep track of when * those operations start (for permission checks) and when they end, so that we * can determine when writes are able to occur to a filesystem. */ /** * mnt_get_write_access - get write access to a mount without freeze protection * @m: the mount on which to take a write * * This tells the low-level filesystem that a write is about to be performed to * it, and makes sure that writes are allowed (mnt it read-write) before * returning success. This operation does not protect against filesystem being * frozen. When the write operation is finished, mnt_put_write_access() must be * called. This is effectively a refcount. */ int mnt_get_write_access(struct vfsmount *m) { struct mount *mnt = real_mount(m); int ret = 0; preempt_disable(); mnt_inc_writers(mnt); /* * The store to mnt_inc_writers must be visible before we pass * MNT_WRITE_HOLD loop below, so that the slowpath can see our * incremented count after it has set MNT_WRITE_HOLD. */ smp_mb(); might_lock(&mount_lock.lock); while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) { if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { cpu_relax(); } else { /* * This prevents priority inversion, if the task * setting MNT_WRITE_HOLD got preempted on a remote * CPU, and it prevents life lock if the task setting * MNT_WRITE_HOLD has a lower priority and is bound to * the same CPU as the task that is spinning here. */ preempt_enable(); lock_mount_hash(); unlock_mount_hash(); preempt_disable(); } } /* * The barrier pairs with the barrier sb_start_ro_state_change() making * sure that if we see MNT_WRITE_HOLD cleared, we will also see * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in * mnt_is_readonly() and bail in case we are racing with remount * read-only. */ smp_rmb(); if (mnt_is_readonly(m)) { mnt_dec_writers(mnt); ret = -EROFS; } preempt_enable(); return ret; } EXPORT_SYMBOL_GPL(mnt_get_write_access); /** * mnt_want_write - get write access to a mount * @m: the mount on which to take a write * * This tells the low-level filesystem that a write is about to be performed to * it, and makes sure that writes are allowed (mount is read-write, filesystem * is not frozen) before returning success. When the write operation is * finished, mnt_drop_write() must be called. This is effectively a refcount. */ int mnt_want_write(struct vfsmount *m) { int ret; sb_start_write(m->mnt_sb); ret = mnt_get_write_access(m); if (ret) sb_end_write(m->mnt_sb); return ret; } EXPORT_SYMBOL_GPL(mnt_want_write); /** * mnt_get_write_access_file - get write access to a file's mount * @file: the file who's mount on which to take a write * * This is like mnt_get_write_access, but if @file is already open for write it * skips incrementing mnt_writers (since the open file already has a reference) * and instead only does the check for emergency r/o remounts. This must be * paired with mnt_put_write_access_file. */ int mnt_get_write_access_file(struct file *file) { if (file->f_mode & FMODE_WRITER) { /* * Superblock may have become readonly while there are still * writable fd's, e.g. due to a fs error with errors=remount-ro */ if (__mnt_is_readonly(file->f_path.mnt)) return -EROFS; return 0; } return mnt_get_write_access(file->f_path.mnt); } /** * mnt_want_write_file - get write access to a file's mount * @file: the file who's mount on which to take a write * * This is like mnt_want_write, but if the file is already open for writing it * skips incrementing mnt_writers (since the open file already has a reference) * and instead only does the freeze protection and the check for emergency r/o * remounts. This must be paired with mnt_drop_write_file. */ int mnt_want_write_file(struct file *file) { int ret; sb_start_write(file_inode(file)->i_sb); ret = mnt_get_write_access_file(file); if (ret) sb_end_write(file_inode(file)->i_sb); return ret; } EXPORT_SYMBOL_GPL(mnt_want_write_file); /** * mnt_put_write_access - give up write access to a mount * @mnt: the mount on which to give up write access * * Tells the low-level filesystem that we are done * performing writes to it. Must be matched with * mnt_get_write_access() call above. */ void mnt_put_write_access(struct vfsmount *mnt) { preempt_disable(); mnt_dec_writers(real_mount(mnt)); preempt_enable(); } EXPORT_SYMBOL_GPL(mnt_put_write_access); /** * mnt_drop_write - give up write access to a mount * @mnt: the mount on which to give up write access * * Tells the low-level filesystem that we are done performing writes to it and * also allows filesystem to be frozen again. Must be matched with * mnt_want_write() call above. */ void mnt_drop_write(struct vfsmount *mnt) { mnt_put_write_access(mnt); sb_end_write(mnt->mnt_sb); } EXPORT_SYMBOL_GPL(mnt_drop_write); void mnt_put_write_access_file(struct file *file) { if (!(file->f_mode & FMODE_WRITER)) mnt_put_write_access(file->f_path.mnt); } void mnt_drop_write_file(struct file *file) { mnt_put_write_access_file(file); sb_end_write(file_inode(file)->i_sb); } EXPORT_SYMBOL(mnt_drop_write_file); /** * mnt_hold_writers - prevent write access to the given mount * @mnt: mnt to prevent write access to * * Prevents write access to @mnt if there are no active writers for @mnt. * This function needs to be called and return successfully before changing * properties of @mnt that need to remain stable for callers with write access * to @mnt. * * After this functions has been called successfully callers must pair it with * a call to mnt_unhold_writers() in order to stop preventing write access to * @mnt. * * Context: This function expects lock_mount_hash() to be held serializing * setting MNT_WRITE_HOLD. * Return: On success 0 is returned. * On error, -EBUSY is returned. */ static inline int mnt_hold_writers(struct mount *mnt) { mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; /* * After storing MNT_WRITE_HOLD, we'll read the counters. This store * should be visible before we do. */ smp_mb(); /* * With writers on hold, if this value is zero, then there are * definitely no active writers (although held writers may subsequently * increment the count, they'll have to wait, and decrement it after * seeing MNT_READONLY). * * It is OK to have counter incremented on one CPU and decremented on * another: the sum will add up correctly. The danger would be when we * sum up each counter, if we read a counter before it is incremented, * but then read another CPU's count which it has been subsequently * decremented from -- we would see more decrements than we should. * MNT_WRITE_HOLD protects against this scenario, because * mnt_want_write first increments count, then smp_mb, then spins on * MNT_WRITE_HOLD, so it can't be decremented by another CPU while * we're counting up here. */ if (mnt_get_writers(mnt) > 0) return -EBUSY; return 0; } /** * mnt_unhold_writers - stop preventing write access to the given mount * @mnt: mnt to stop preventing write access to * * Stop preventing write access to @mnt allowing callers to gain write access * to @mnt again. * * This function can only be called after a successful call to * mnt_hold_writers(). * * Context: This function expects lock_mount_hash() to be held. */ static inline void mnt_unhold_writers(struct mount *mnt) { /* * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers * that become unheld will see MNT_READONLY. */ smp_wmb(); mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; } static int mnt_make_readonly(struct mount *mnt) { int ret; ret = mnt_hold_writers(mnt); if (!ret) mnt->mnt.mnt_flags |= MNT_READONLY; mnt_unhold_writers(mnt); return ret; } int sb_prepare_remount_readonly(struct super_block *sb) { struct mount *mnt; int err = 0; /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ if (atomic_long_read(&sb->s_remove_count)) return -EBUSY; lock_mount_hash(); list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { err = mnt_hold_writers(mnt); if (err) break; } } if (!err && atomic_long_read(&sb->s_remove_count)) err = -EBUSY; if (!err) sb_start_ro_state_change(sb); list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; } unlock_mount_hash(); return err; } static void free_vfsmnt(struct mount *mnt) { mnt_idmap_put(mnt_idmap(&mnt->mnt)); kfree_const(mnt->mnt_devname); #ifdef CONFIG_SMP free_percpu(mnt->mnt_pcp); #endif kmem_cache_free(mnt_cache, mnt); } static void delayed_free_vfsmnt(struct rcu_head *head) { free_vfsmnt(container_of(head, struct mount, mnt_rcu)); } /* call under rcu_read_lock */ int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) { struct mount *mnt; if (read_seqretry(&mount_lock, seq)) return 1; if (bastard == NULL) return 0; mnt = real_mount(bastard); mnt_add_count(mnt, 1); smp_mb(); // see mntput_no_expire() if (likely(!read_seqretry(&mount_lock, seq))) return 0; if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { mnt_add_count(mnt, -1); return 1; } lock_mount_hash(); if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { mnt_add_count(mnt, -1); unlock_mount_hash(); return 1; } unlock_mount_hash(); /* caller will mntput() */ return -1; } /* call under rcu_read_lock */ static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) { int res = __legitimize_mnt(bastard, seq); if (likely(!res)) return true; if (unlikely(res < 0)) { rcu_read_unlock(); mntput(bastard); rcu_read_lock(); } return false; } /** * __lookup_mnt - find first child mount * @mnt: parent mount * @dentry: mountpoint * * If @mnt has a child mount @c mounted @dentry find and return it. * * Note that the child mount @c need not be unique. There are cases * where shadow mounts are created. For example, during mount * propagation when a source mount @mnt whose root got overmounted by a * mount @o after path lookup but before @namespace_sem could be * acquired gets copied and propagated. So @mnt gets copied including * @o. When @mnt is propagated to a destination mount @d that already * has another mount @n mounted at the same mountpoint then the source * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt * on @dentry. * * Return: The first child of @mnt mounted @dentry or NULL. */ struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) { struct hlist_head *head = m_hash(mnt, dentry); struct mount *p; hlist_for_each_entry_rcu(p, head, mnt_hash) if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) return p; return NULL; } /* * lookup_mnt - Return the first child mount mounted at path * * "First" means first mounted chronologically. If you create the * following mounts: * * mount /dev/sda1 /mnt * mount /dev/sda2 /mnt * mount /dev/sda3 /mnt * * Then lookup_mnt() on the base /mnt dentry in the root mount will * return successively the root dentry and vfsmount of /dev/sda1, then * /dev/sda2, then /dev/sda3, then NULL. * * lookup_mnt takes a reference to the found vfsmount. */ struct vfsmount *lookup_mnt(const struct path *path) { struct mount *child_mnt; struct vfsmount *m; unsigned seq; rcu_read_lock(); do { seq = read_seqbegin(&mount_lock); child_mnt = __lookup_mnt(path->mnt, path->dentry); m = child_mnt ? &child_mnt->mnt : NULL; } while (!legitimize_mnt(m, seq)); rcu_read_unlock(); return m; } /* * __is_local_mountpoint - Test to see if dentry is a mountpoint in the * current mount namespace. * * The common case is dentries are not mountpoints at all and that * test is handled inline. For the slow case when we are actually * dealing with a mountpoint of some kind, walk through all of the * mounts in the current mount namespace and test to see if the dentry * is a mountpoint. * * The mount_hashtable is not usable in the context because we * need to identify all mounts that may be in the current mount * namespace not just a mount that happens to have some specified * parent mount. */ bool __is_local_mountpoint(struct dentry *dentry) { struct mnt_namespace *ns = current->nsproxy->mnt_ns; struct mount *mnt, *n; bool is_covered = false; down_read(&namespace_sem); rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { is_covered = (mnt->mnt_mountpoint == dentry); if (is_covered) break; } up_read(&namespace_sem); return is_covered; } static struct mountpoint *lookup_mountpoint(struct dentry *dentry) { struct hlist_head *chain = mp_hash(dentry); struct mountpoint *mp; hlist_for_each_entry(mp, chain, m_hash) { if (mp->m_dentry == dentry) { mp->m_count++; return mp; } } return NULL; } static struct mountpoint *get_mountpoint(struct dentry *dentry) { struct mountpoint *mp, *new = NULL; int ret; if (d_mountpoint(dentry)) { /* might be worth a WARN_ON() */ if (d_unlinked(dentry)) return ERR_PTR(-ENOENT); mountpoint: read_seqlock_excl(&mount_lock); mp = lookup_mountpoint(dentry); read_sequnlock_excl(&mount_lock); if (mp) goto done; } if (!new) new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); if (!new) return ERR_PTR(-ENOMEM); /* Exactly one processes may set d_mounted */ ret = d_set_mounted(dentry); /* Someone else set d_mounted? */ if (ret == -EBUSY) goto mountpoint; /* The dentry is not available as a mountpoint? */ mp = ERR_PTR(ret); if (ret) goto done; /* Add the new mountpoint to the hash table */ read_seqlock_excl(&mount_lock); new->m_dentry = dget(dentry); new->m_count = 1; hlist_add_head(&new->m_hash, mp_hash(dentry)); INIT_HLIST_HEAD(&new->m_list); read_sequnlock_excl(&mount_lock); mp = new; new = NULL; done: kfree(new); return mp; } /* * vfsmount lock must be held. Additionally, the caller is responsible * for serializing calls for given disposal list. */ static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) { if (!--mp->m_count) { struct dentry *dentry = mp->m_dentry; BUG_ON(!hlist_empty(&mp->m_list)); spin_lock(&dentry->d_lock); dentry->d_flags &= ~DCACHE_MOUNTED; spin_unlock(&dentry->d_lock); dput_to_list(dentry, list); hlist_del(&mp->m_hash); kfree(mp); } } /* called with namespace_lock and vfsmount lock */ static void put_mountpoint(struct mountpoint *mp) { __put_mountpoint(mp, &ex_mountpoints); } static inline int check_mnt(struct mount *mnt) { return mnt->mnt_ns == current->nsproxy->mnt_ns; } /* * vfsmount lock must be held for write */ static void touch_mnt_namespace(struct mnt_namespace *ns) { if (ns) { ns->event = ++event; wake_up_interruptible(&ns->poll); } } /* * vfsmount lock must be held for write */ static void __touch_mnt_namespace(struct mnt_namespace *ns) { if (ns && ns->event != event) { ns->event = event; wake_up_interruptible(&ns->poll); } } /* * vfsmount lock must be held for write */ static struct mountpoint *unhash_mnt(struct mount *mnt) { struct mountpoint *mp; mnt->mnt_parent = mnt; mnt->mnt_mountpoint = mnt->mnt.mnt_root; list_del_init(&mnt->mnt_child); hlist_del_init_rcu(&mnt->mnt_hash); hlist_del_init(&mnt->mnt_mp_list); mp = mnt->mnt_mp; mnt->mnt_mp = NULL; return mp; } /* * vfsmount lock must be held for write */ static void umount_mnt(struct mount *mnt) { put_mountpoint(unhash_mnt(mnt)); } /* * vfsmount lock must be held for write */ void mnt_set_mountpoint(struct mount *mnt, struct mountpoint *mp, struct mount *child_mnt) { mp->m_count++; mnt_add_count(mnt, 1); /* essentially, that's mntget */ child_mnt->mnt_mountpoint = mp->m_dentry; child_mnt->mnt_parent = mnt; child_mnt->mnt_mp = mp; hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); } /** * mnt_set_mountpoint_beneath - mount a mount beneath another one * * @new_parent: the source mount * @top_mnt: the mount beneath which @new_parent is mounted * @new_mp: the new mountpoint of @top_mnt on @new_parent * * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and * parent @top_mnt->mnt_parent and mount it on top of @new_parent at * @new_mp. And mount @new_parent on the old parent and old * mountpoint of @top_mnt. * * Context: This function expects namespace_lock() and lock_mount_hash() * to have been acquired in that order. */ static void mnt_set_mountpoint_beneath(struct mount *new_parent, struct mount *top_mnt, struct mountpoint *new_mp) { struct mount *old_top_parent = top_mnt->mnt_parent; struct mountpoint *old_top_mp = top_mnt->mnt_mp; mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent); mnt_change_mountpoint(new_parent, new_mp, top_mnt); } static void __attach_mnt(struct mount *mnt, struct mount *parent) { hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mnt->mnt_mountpoint)); list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); } /** * attach_mnt - mount a mount, attach to @mount_hashtable and parent's * list of child mounts * @parent: the parent * @mnt: the new mount * @mp: the new mountpoint * @beneath: whether to mount @mnt beneath or on top of @parent * * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt * to @parent's child mount list and to @mount_hashtable. * * If @beneath is true, remove @mnt from its current parent and * mountpoint and mount it on @mp on @parent, and mount @parent on the * old parent and old mountpoint of @mnt. Finally, attach @parent to * @mnt_hashtable and @parent->mnt_parent->mnt_mounts. * * Note, when __attach_mnt() is called @mnt->mnt_parent already points * to the correct parent. * * Context: This function expects namespace_lock() and lock_mount_hash() * to have been acquired in that order. */ static void attach_mnt(struct mount *mnt, struct mount *parent, struct mountpoint *mp, bool beneath) { if (beneath) mnt_set_mountpoint_beneath(mnt, parent, mp); else mnt_set_mountpoint(parent, mp, mnt); /* * Note, @mnt->mnt_parent has to be used. If @mnt was mounted * beneath @parent then @mnt will need to be attached to * @parent's old parent, not @parent. IOW, @mnt->mnt_parent * isn't the same mount as @parent. */ __attach_mnt(mnt, mnt->mnt_parent); } void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) { struct mountpoint *old_mp = mnt->mnt_mp; struct mount *old_parent = mnt->mnt_parent; list_del_init(&mnt->mnt_child); hlist_del_init(&mnt->mnt_mp_list); hlist_del_init_rcu(&mnt->mnt_hash); attach_mnt(mnt, parent, mp, false); put_mountpoint(old_mp); mnt_add_count(old_parent, -1); } static inline struct mount *node_to_mount(struct rb_node *node) { return node ? rb_entry(node, struct mount, mnt_node) : NULL; } static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt) { struct rb_node **link = &ns->mounts.rb_node; struct rb_node *parent = NULL; WARN_ON(mnt->mnt.mnt_flags & MNT_ONRB); mnt->mnt_ns = ns; while (*link) { parent = *link; if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) link = &parent->rb_left; else link = &parent->rb_right; } rb_link_node(&mnt->mnt_node, parent, link); rb_insert_color(&mnt->mnt_node, &ns->mounts); mnt->mnt.mnt_flags |= MNT_ONRB; } /* * vfsmount lock must be held for write */ static void commit_tree(struct mount *mnt) { struct mount *parent = mnt->mnt_parent; struct mount *m; LIST_HEAD(head); struct mnt_namespace *n = parent->mnt_ns; BUG_ON(parent == mnt); list_add_tail(&head, &mnt->mnt_list); while (!list_empty(&head)) { m = list_first_entry(&head, typeof(*m), mnt_list); list_del(&m->mnt_list); mnt_add_to_ns(n, m); } n->nr_mounts += n->pending_mounts; n->pending_mounts = 0; __attach_mnt(mnt, parent); touch_mnt_namespace(n); } static struct mount *next_mnt(struct mount *p, struct mount *root) { struct list_head *next = p->mnt_mounts.next; if (next == &p->mnt_mounts) { while (1) { if (p == root) return NULL; next = p->mnt_child.next; if (next != &p->mnt_parent->mnt_mounts) break; p = p->mnt_parent; } } return list_entry(next, struct mount, mnt_child); } static struct mount *skip_mnt_tree(struct mount *p) { struct list_head *prev = p->mnt_mounts.prev; while (prev != &p->mnt_mounts) { p = list_entry(prev, struct mount, mnt_child); prev = p->mnt_mounts.prev; } return p; } /** * vfs_create_mount - Create a mount for a configured superblock * @fc: The configuration context with the superblock attached * * Create a mount to an already configured superblock. If necessary, the * caller should invoke vfs_get_tree() before calling this. * * Note that this does not attach the mount to anything. */ struct vfsmount *vfs_create_mount(struct fs_context *fc) { struct mount *mnt; if (!fc->root) return ERR_PTR(-EINVAL); mnt = alloc_vfsmnt(fc->source ?: "none"); if (!mnt) return ERR_PTR(-ENOMEM); if (fc->sb_flags & SB_KERNMOUNT) mnt->mnt.mnt_flags = MNT_INTERNAL; atomic_inc(&fc->root->d_sb->s_active); mnt->mnt.mnt_sb = fc->root->d_sb; mnt->mnt.mnt_root = dget(fc->root); mnt->mnt_mountpoint = mnt->mnt.mnt_root; mnt->mnt_parent = mnt; lock_mount_hash(); list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); unlock_mount_hash(); return &mnt->mnt; } EXPORT_SYMBOL(vfs_create_mount); struct vfsmount *fc_mount(struct fs_context *fc) { int err = vfs_get_tree(fc); if (!err) { up_write(&fc->root->d_sb->s_umount); return vfs_create_mount(fc); } return ERR_PTR(err); } EXPORT_SYMBOL(fc_mount); struct vfsmount *vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) { struct fs_context *fc; struct vfsmount *mnt; int ret = 0; if (!type) return ERR_PTR(-EINVAL); fc = fs_context_for_mount(type, flags); if (IS_ERR(fc)) return ERR_CAST(fc); if (name) ret = vfs_parse_fs_string(fc, "source", name, strlen(name)); if (!ret) ret = parse_monolithic_mount_data(fc, data); if (!ret) mnt = fc_mount(fc); else mnt = ERR_PTR(ret); put_fs_context(fc); return mnt; } EXPORT_SYMBOL_GPL(vfs_kern_mount); struct vfsmount * vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, const char *name, void *data) { /* Until it is worked out how to pass the user namespace * through from the parent mount to the submount don't support * unprivileged mounts with submounts. */ if (mountpoint->d_sb->s_user_ns != &init_user_ns) return ERR_PTR(-EPERM); return vfs_kern_mount(type, SB_SUBMOUNT, name, data); } EXPORT_SYMBOL_GPL(vfs_submount); static struct mount *clone_mnt(struct mount *old, struct dentry *root, int flag) { struct super_block *sb = old->mnt.mnt_sb; struct mount *mnt; int err; mnt = alloc_vfsmnt(old->mnt_devname); if (!mnt) return ERR_PTR(-ENOMEM); if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) mnt->mnt_group_id = 0; /* not a peer of original */ else mnt->mnt_group_id = old->mnt_group_id; if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { err = mnt_alloc_group_id(mnt); if (err) goto out_free; } mnt->mnt.mnt_flags = old->mnt.mnt_flags; mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL|MNT_ONRB); atomic_inc(&sb->s_active); mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt)); mnt->mnt.mnt_sb = sb; mnt->mnt.mnt_root = dget(root); mnt->mnt_mountpoint = mnt->mnt.mnt_root; mnt->mnt_parent = mnt; lock_mount_hash(); list_add_tail(&mnt->mnt_instance, &sb->s_mounts); unlock_mount_hash(); if ((flag & CL_SLAVE) || ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { list_add(&mnt->mnt_slave, &old->mnt_slave_list); mnt->mnt_master = old; CLEAR_MNT_SHARED(mnt); } else if (!(flag & CL_PRIVATE)) { if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) list_add(&mnt->mnt_share, &old->mnt_share); if (IS_MNT_SLAVE(old)) list_add(&mnt->mnt_slave, &old->mnt_slave); mnt->mnt_master = old->mnt_master; } else { CLEAR_MNT_SHARED(mnt); } if (flag & CL_MAKE_SHARED) set_mnt_shared(mnt); /* stick the duplicate mount on the same expiry list * as the original if that was on one */ if (flag & CL_EXPIRE) { if (!list_empty(&old->mnt_expire)) list_add(&mnt->mnt_expire, &old->mnt_expire); } return mnt; out_free: mnt_free_id(mnt); free_vfsmnt(mnt); return ERR_PTR(err); } static void cleanup_mnt(struct mount *mnt) { struct hlist_node *p; struct mount *m; /* * The warning here probably indicates that somebody messed * up a mnt_want/drop_write() pair. If this happens, the * filesystem was probably unable to make r/w->r/o transitions. * The locking used to deal with mnt_count decrement provides barriers, * so mnt_get_writers() below is safe. */ WARN_ON(mnt_get_writers(mnt)); if (unlikely(mnt->mnt_pins.first)) mnt_pin_kill(mnt); hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { hlist_del(&m->mnt_umount); mntput(&m->mnt); } fsnotify_vfsmount_delete(&mnt->mnt); dput(mnt->mnt.mnt_root); deactivate_super(mnt->mnt.mnt_sb); mnt_free_id(mnt); call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); } static void __cleanup_mnt(struct rcu_head *head) { cleanup_mnt(container_of(head, struct mount, mnt_rcu)); } static LLIST_HEAD(delayed_mntput_list); static void delayed_mntput(struct work_struct *unused) { struct llist_node *node = llist_del_all(&delayed_mntput_list); struct mount *m, *t; llist_for_each_entry_safe(m, t, node, mnt_llist) cleanup_mnt(m); } static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); static void mntput_no_expire(struct mount *mnt) { LIST_HEAD(list); int count; rcu_read_lock(); if (likely(READ_ONCE(mnt->mnt_ns))) { /* * Since we don't do lock_mount_hash() here, * ->mnt_ns can change under us. However, if it's * non-NULL, then there's a reference that won't * be dropped until after an RCU delay done after * turning ->mnt_ns NULL. So if we observe it * non-NULL under rcu_read_lock(), the reference * we are dropping is not the final one. */ mnt_add_count(mnt, -1); rcu_read_unlock(); return; } lock_mount_hash(); /* * make sure that if __legitimize_mnt() has not seen us grab * mount_lock, we'll see their refcount increment here. */ smp_mb(); mnt_add_count(mnt, -1); count = mnt_get_count(mnt); if (count != 0) { WARN_ON(count < 0); rcu_read_unlock(); unlock_mount_hash(); return; } if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { rcu_read_unlock(); unlock_mount_hash(); return; } mnt->mnt.mnt_flags |= MNT_DOOMED; rcu_read_unlock(); list_del(&mnt->mnt_instance); if (unlikely(!list_empty(&mnt->mnt_mounts))) { struct mount *p, *tmp; list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { __put_mountpoint(unhash_mnt(p), &list); hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); } } unlock_mount_hash(); shrink_dentry_list(&list); if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { struct task_struct *task = current; if (likely(!(task->flags & PF_KTHREAD))) { init_task_work(&mnt->mnt_rcu, __cleanup_mnt); if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) return; } if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) schedule_delayed_work(&delayed_mntput_work, 1); return; } cleanup_mnt(mnt); } void mntput(struct vfsmount *mnt) { if (mnt) { struct mount *m = real_mount(mnt); /* avoid cacheline pingpong */ if (unlikely(m->mnt_expiry_mark)) WRITE_ONCE(m->mnt_expiry_mark, 0); mntput_no_expire(m); } } EXPORT_SYMBOL(mntput); struct vfsmount *mntget(struct vfsmount *mnt) { if (mnt) mnt_add_count(real_mount(mnt), 1); return mnt; } EXPORT_SYMBOL(mntget); /* * Make a mount point inaccessible to new lookups. * Because there may still be current users, the caller MUST WAIT * for an RCU grace period before destroying the mount point. */ void mnt_make_shortterm(struct vfsmount *mnt) { if (mnt) real_mount(mnt)->mnt_ns = NULL; } /** * path_is_mountpoint() - Check if path is a mount in the current namespace. * @path: path to check * * d_mountpoint() can only be used reliably to establish if a dentry is * not mounted in any namespace and that common case is handled inline. * d_mountpoint() isn't aware of the possibility there may be multiple * mounts using a given dentry in a different namespace. This function * checks if the passed in path is a mountpoint rather than the dentry * alone. */ bool path_is_mountpoint(const struct path *path) { unsigned seq; bool res; if (!d_mountpoint(path->dentry)) return false; rcu_read_lock(); do { seq = read_seqbegin(&mount_lock); res = __path_is_mountpoint(path); } while (read_seqretry(&mount_lock, seq)); rcu_read_unlock(); return res; } EXPORT_SYMBOL(path_is_mountpoint); struct vfsmount *mnt_clone_internal(const struct path *path) { struct mount *p; p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); if (IS_ERR(p)) return ERR_CAST(p); p->mnt.mnt_flags |= MNT_INTERNAL; return &p->mnt; } /* * Returns the mount which either has the specified mnt_id, or has the next * smallest id afer the specified one. */ static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id) { struct rb_node *node = ns->mounts.rb_node; struct mount *ret = NULL; while (node) { struct mount *m = node_to_mount(node); if (mnt_id <= m->mnt_id_unique) { ret = node_to_mount(node); if (mnt_id == m->mnt_id_unique) break; node = node->rb_left; } else { node = node->rb_right; } } return ret; } /* * Returns the mount which either has the specified mnt_id, or has the next * greater id before the specified one. */ static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id) { struct rb_node *node = ns->mounts.rb_node; struct mount *ret = NULL; while (node) { struct mount *m = node_to_mount(node); if (mnt_id >= m->mnt_id_unique) { ret = node_to_mount(node); if (mnt_id == m->mnt_id_unique) break; node = node->rb_right; } else { node = node->rb_left; } } return ret; } #ifdef CONFIG_PROC_FS /* iterator; we want it to have access to namespace_sem, thus here... */ static void *m_start(struct seq_file *m, loff_t *pos) { struct proc_mounts *p = m->private; down_read(&namespace_sem); return mnt_find_id_at(p->ns, *pos); } static void *m_next(struct seq_file *m, void *v, loff_t *pos) { struct mount *next = NULL, *mnt = v; struct rb_node *node = rb_next(&mnt->mnt_node); ++*pos; if (node) { next = node_to_mount(node); *pos = next->mnt_id_unique; } return next; } static void m_stop(struct seq_file *m, void *v) { up_read(&namespace_sem); } static int m_show(struct seq_file *m, void *v) { struct proc_mounts *p = m->private; struct mount *r = v; return p->show(m, &r->mnt); } const struct seq_operations mounts_op = { .start = m_start, .next = m_next, .stop = m_stop, .show = m_show, }; #endif /* CONFIG_PROC_FS */ /** * may_umount_tree - check if a mount tree is busy * @m: root of mount tree * * This is called to check if a tree of mounts has any * open files, pwds, chroots or sub mounts that are * busy. */ int may_umount_tree(struct vfsmount *m) { struct mount *mnt = real_mount(m); int actual_refs = 0; int minimum_refs = 0; struct mount *p; BUG_ON(!m); /* write lock needed for mnt_get_count */ lock_mount_hash(); for (p = mnt; p; p = next_mnt(p, mnt)) { actual_refs += mnt_get_count(p); minimum_refs += 2; } unlock_mount_hash(); if (actual_refs > minimum_refs) return 0; return 1; } EXPORT_SYMBOL(may_umount_tree); /** * may_umount - check if a mount point is busy * @mnt: root of mount * * This is called to check if a mount point has any * open files, pwds, chroots or sub mounts. If the * mount has sub mounts this will return busy * regardless of whether the sub mounts are busy. * * Doesn't take quota and stuff into account. IOW, in some cases it will * give false negatives. The main reason why it's here is that we need * a non-destructive way to look for easily umountable filesystems. */ int may_umount(struct vfsmount *mnt) { int ret = 1; down_read(&namespace_sem); lock_mount_hash(); if (propagate_mount_busy(real_mount(mnt), 2)) ret = 0; unlock_mount_hash(); up_read(&namespace_sem); return ret; } EXPORT_SYMBOL(may_umount); static void namespace_unlock(void) { struct hlist_head head; struct hlist_node *p; struct mount *m; LIST_HEAD(list); hlist_move_list(&unmounted, &head); list_splice_init(&ex_mountpoints, &list); up_write(&namespace_sem); shrink_dentry_list(&list); if (likely(hlist_empty(&head))) return; synchronize_rcu_expedited(); hlist_for_each_entry_safe(m, p, &head, mnt_umount) { hlist_del(&m->mnt_umount); mntput(&m->mnt); } } static inline void namespace_lock(void) { down_write(&namespace_sem); } enum umount_tree_flags { UMOUNT_SYNC = 1, UMOUNT_PROPAGATE = 2, UMOUNT_CONNECTED = 4, }; static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) { /* Leaving mounts connected is only valid for lazy umounts */ if (how & UMOUNT_SYNC) return true; /* A mount without a parent has nothing to be connected to */ if (!mnt_has_parent(mnt)) return true; /* Because the reference counting rules change when mounts are * unmounted and connected, umounted mounts may not be * connected to mounted mounts. */ if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) return true; /* Has it been requested that the mount remain connected? */ if (how & UMOUNT_CONNECTED) return false; /* Is the mount locked such that it needs to remain connected? */ if (IS_MNT_LOCKED(mnt)) return false; /* By default disconnect the mount */ return true; } /* * mount_lock must be held * namespace_sem must be held for write */ static void umount_tree(struct mount *mnt, enum umount_tree_flags how) { LIST_HEAD(tmp_list); struct mount *p; if (how & UMOUNT_PROPAGATE) propagate_mount_unlock(mnt); /* Gather the mounts to umount */ for (p = mnt; p; p = next_mnt(p, mnt)) { p->mnt.mnt_flags |= MNT_UMOUNT; if (p->mnt.mnt_flags & MNT_ONRB) move_from_ns(p, &tmp_list); else list_move(&p->mnt_list, &tmp_list); } /* Hide the mounts from mnt_mounts */ list_for_each_entry(p, &tmp_list, mnt_list) { list_del_init(&p->mnt_child); } /* Add propagated mounts to the tmp_list */ if (how & UMOUNT_PROPAGATE) propagate_umount(&tmp_list); while (!list_empty(&tmp_list)) { struct mnt_namespace *ns; bool disconnect; p = list_first_entry(&tmp_list, struct mount, mnt_list); list_del_init(&p->mnt_expire); list_del_init(&p->mnt_list); ns = p->mnt_ns; if (ns) { ns->nr_mounts--; __touch_mnt_namespace(ns); } p->mnt_ns = NULL; if (how & UMOUNT_SYNC) p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; disconnect = disconnect_mount(p, how); if (mnt_has_parent(p)) { mnt_add_count(p->mnt_parent, -1); if (!disconnect) { /* Don't forget about p */ list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); } else { umount_mnt(p); } } change_mnt_propagation(p, MS_PRIVATE); if (disconnect) hlist_add_head(&p->mnt_umount, &unmounted); } } static void shrink_submounts(struct mount *mnt); static int do_umount_root(struct super_block *sb) { int ret = 0; down_write(&sb->s_umount); if (!sb_rdonly(sb)) { struct fs_context *fc; fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, SB_RDONLY); if (IS_ERR(fc)) { ret = PTR_ERR(fc); } else { ret = parse_monolithic_mount_data(fc, NULL); if (!ret) ret = reconfigure_super(fc); put_fs_context(fc); } } up_write(&sb->s_umount); return ret; } static int do_umount(struct mount *mnt, int flags) { struct super_block *sb = mnt->mnt.mnt_sb; int retval; retval = security_sb_umount(&mnt->mnt, flags); if (retval) return retval; /* * Allow userspace to request a mountpoint be expired rather than * unmounting unconditionally. Unmount only happens if: * (1) the mark is already set (the mark is cleared by mntput()) * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] */ if (flags & MNT_EXPIRE) { if (&mnt->mnt == current->fs->root.mnt || flags & (MNT_FORCE | MNT_DETACH)) return -EINVAL; /* * probably don't strictly need the lock here if we examined * all race cases, but it's a slowpath. */ lock_mount_hash(); if (mnt_get_count(mnt) != 2) { unlock_mount_hash(); return -EBUSY; } unlock_mount_hash(); if (!xchg(&mnt->mnt_expiry_mark, 1)) return -EAGAIN; } /* * If we may have to abort operations to get out of this * mount, and they will themselves hold resources we must * allow the fs to do things. In the Unix tradition of * 'Gee thats tricky lets do it in userspace' the umount_begin * might fail to complete on the first run through as other tasks * must return, and the like. Thats for the mount program to worry * about for the moment. */ if (flags & MNT_FORCE && sb->s_op->umount_begin) { sb->s_op->umount_begin(sb); } /* * No sense to grab the lock for this test, but test itself looks * somewhat bogus. Suggestions for better replacement? * Ho-hum... In principle, we might treat that as umount + switch * to rootfs. GC would eventually take care of the old vfsmount. * Actually it makes sense, especially if rootfs would contain a * /reboot - static binary that would close all descriptors and * call reboot(9). Then init(8) could umount root and exec /reboot. */ if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { /* * Special case for "unmounting" root ... * we just try to remount it readonly. */ if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) return -EPERM; return do_umount_root(sb); } namespace_lock(); lock_mount_hash(); /* Recheck MNT_LOCKED with the locks held */ retval = -EINVAL; if (mnt->mnt.mnt_flags & MNT_LOCKED) goto out; event++; if (flags & MNT_DETACH) { if (mnt->mnt.mnt_flags & MNT_ONRB || !list_empty(&mnt->mnt_list)) umount_tree(mnt, UMOUNT_PROPAGATE); retval = 0; } else { shrink_submounts(mnt); retval = -EBUSY; if (!propagate_mount_busy(mnt, 2)) { if (mnt->mnt.mnt_flags & MNT_ONRB || !list_empty(&mnt->mnt_list)) umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); retval = 0; } } out: unlock_mount_hash(); namespace_unlock(); return retval; } /* * __detach_mounts - lazily unmount all mounts on the specified dentry * * During unlink, rmdir, and d_drop it is possible to loose the path * to an existing mountpoint, and wind up leaking the mount. * detach_mounts allows lazily unmounting those mounts instead of * leaking them. * * The caller may hold dentry->d_inode->i_mutex. */ void __detach_mounts(struct dentry *dentry) { struct mountpoint *mp; struct mount *mnt; namespace_lock(); lock_mount_hash(); mp = lookup_mountpoint(dentry); if (!mp) goto out_unlock; event++; while (!hlist_empty(&mp->m_list)) { mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); if (mnt->mnt.mnt_flags & MNT_UMOUNT) { umount_mnt(mnt); hlist_add_head(&mnt->mnt_umount, &unmounted); } else umount_tree(mnt, UMOUNT_CONNECTED); } put_mountpoint(mp); out_unlock: unlock_mount_hash(); namespace_unlock(); } /* * Is the caller allowed to modify his namespace? */ bool may_mount(void) { return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); } static void warn_mandlock(void) { pr_warn_once("=======================================================\n" "WARNING: The mand mount option has been deprecated and\n" " and is ignored by this kernel. Remove the mand\n" " option from the mount to silence this warning.\n" "=======================================================\n"); } static int can_umount(const struct path *path, int flags) { struct mount *mnt = real_mount(path->mnt); if (!may_mount()) return -EPERM; if (!path_mounted(path)) return -EINVAL; if (!check_mnt(mnt)) return -EINVAL; if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ return -EINVAL; if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) return -EPERM; return 0; } // caller is responsible for flags being sane int path_umount(struct path *path, int flags) { struct mount *mnt = real_mount(path->mnt); int ret; ret = can_umount(path, flags); if (!ret) ret = do_umount(mnt, flags); /* we mustn't call path_put() as that would clear mnt_expiry_mark */ dput(path->dentry); mntput_no_expire(mnt); return ret; } static int ksys_umount(char __user *name, int flags) { int lookup_flags = LOOKUP_MOUNTPOINT; struct path path; int ret; // basic validity checks done first if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) return -EINVAL; if (!(flags & UMOUNT_NOFOLLOW)) lookup_flags |= LOOKUP_FOLLOW; ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); if (ret) return ret; return path_umount(&path, flags); } SYSCALL_DEFINE2(umount, char __user *, name, int, flags) { return ksys_umount(name, flags); } #ifdef __ARCH_WANT_SYS_OLDUMOUNT /* * The 2.0 compatible umount. No flags. */ SYSCALL_DEFINE1(oldumount, char __user *, name) { return ksys_umount(name, 0); } #endif static bool is_mnt_ns_file(struct dentry *dentry) { /* Is this a proxy for a mount namespace? */ return dentry->d_op == &ns_dentry_operations && dentry->d_fsdata == &mntns_operations; } struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) { return &mnt->ns; } struct mnt_namespace *__lookup_next_mnt_ns(struct mnt_namespace *mntns, bool previous) { guard(read_lock)(&mnt_ns_tree_lock); for (;;) { struct rb_node *node; if (previous) node = rb_prev(&mntns->mnt_ns_tree_node); else node = rb_next(&mntns->mnt_ns_tree_node); if (!node) return ERR_PTR(-ENOENT); mntns = node_to_mnt_ns(node); node = &mntns->mnt_ns_tree_node; if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN)) continue; /* * Holding mnt_ns_tree_lock prevents the mount namespace from * being freed but it may well be on it's deathbed. We want an * active reference, not just a passive one here as we're * persisting the mount namespace. */ if (!refcount_inc_not_zero(&mntns->ns.count)) continue; return mntns; } } static bool mnt_ns_loop(struct dentry *dentry) { /* Could bind mounting the mount namespace inode cause a * mount namespace loop? */ struct mnt_namespace *mnt_ns; if (!is_mnt_ns_file(dentry)) return false; mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; } struct mount *copy_tree(struct mount *src_root, struct dentry *dentry, int flag) { struct mount *res, *src_parent, *src_root_child, *src_mnt, *dst_parent, *dst_mnt; if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root)) return ERR_PTR(-EINVAL); if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) return ERR_PTR(-EINVAL); res = dst_mnt = clone_mnt(src_root, dentry, flag); if (IS_ERR(dst_mnt)) return dst_mnt; src_parent = src_root; dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint; list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) { if (!is_subdir(src_root_child->mnt_mountpoint, dentry)) continue; for (src_mnt = src_root_child; src_mnt; src_mnt = next_mnt(src_mnt, src_root_child)) { if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_mnt)) { if (src_mnt->mnt.mnt_flags & MNT_LOCKED) { /* Both unbindable and locked. */ dst_mnt = ERR_PTR(-EPERM); goto out; } else { src_mnt = skip_mnt_tree(src_mnt); continue; } } if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(src_mnt->mnt.mnt_root)) { src_mnt = skip_mnt_tree(src_mnt); continue; } while (src_parent != src_mnt->mnt_parent) { src_parent = src_parent->mnt_parent; dst_mnt = dst_mnt->mnt_parent; } src_parent = src_mnt; dst_parent = dst_mnt; dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag); if (IS_ERR(dst_mnt)) goto out; lock_mount_hash(); list_add_tail(&dst_mnt->mnt_list, &res->mnt_list); attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false); unlock_mount_hash(); } } return res; out: if (res) { lock_mount_hash(); umount_tree(res, UMOUNT_SYNC); unlock_mount_hash(); } return dst_mnt; } /* Caller should check returned pointer for errors */ struct vfsmount *collect_mounts(const struct path *path) { struct mount *tree; namespace_lock(); if (!check_mnt(real_mount(path->mnt))) tree = ERR_PTR(-EINVAL); else tree = copy_tree(real_mount(path->mnt), path->dentry, CL_COPY_ALL | CL_PRIVATE); namespace_unlock(); if (IS_ERR(tree)) return ERR_CAST(tree); return &tree->mnt; } static void free_mnt_ns(struct mnt_namespace *); static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); void dissolve_on_fput(struct vfsmount *mnt) { struct mnt_namespace *ns; namespace_lock(); lock_mount_hash(); ns = real_mount(mnt)->mnt_ns; if (ns) { if (is_anon_ns(ns)) umount_tree(real_mount(mnt), UMOUNT_CONNECTED); else ns = NULL; } unlock_mount_hash(); namespace_unlock(); if (ns) free_mnt_ns(ns); } void drop_collected_mounts(struct vfsmount *mnt) { namespace_lock(); lock_mount_hash(); umount_tree(real_mount(mnt), 0); unlock_mount_hash(); namespace_unlock(); } bool has_locked_children(struct mount *mnt, struct dentry *dentry) { struct mount *child; list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { if (!is_subdir(child->mnt_mountpoint, dentry)) continue; if (child->mnt.mnt_flags & MNT_LOCKED) return true; } return false; } /** * clone_private_mount - create a private clone of a path * @path: path to clone * * This creates a new vfsmount, which will be the clone of @path. The new mount * will not be attached anywhere in the namespace and will be private (i.e. * changes to the originating mount won't be propagated into this). * * Release with mntput(). */ struct vfsmount *clone_private_mount(const struct path *path) { struct mount *old_mnt = real_mount(path->mnt); struct mount *new_mnt; down_read(&namespace_sem); if (IS_MNT_UNBINDABLE(old_mnt)) goto invalid; if (!check_mnt(old_mnt)) goto invalid; if (has_locked_children(old_mnt, path->dentry)) goto invalid; new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); up_read(&namespace_sem); if (IS_ERR(new_mnt)) return ERR_CAST(new_mnt); /* Longterm mount to be removed by kern_unmount*() */ new_mnt->mnt_ns = MNT_NS_INTERNAL; return &new_mnt->mnt; invalid: up_read(&namespace_sem); return ERR_PTR(-EINVAL); } EXPORT_SYMBOL_GPL(clone_private_mount); int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, struct vfsmount *root) { struct mount *mnt; int res = f(root, arg); if (res) return res; list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { res = f(&mnt->mnt, arg); if (res) return res; } return 0; } static void lock_mnt_tree(struct mount *mnt) { struct mount *p; for (p = mnt; p; p = next_mnt(p, mnt)) { int flags = p->mnt.mnt_flags; /* Don't allow unprivileged users to change mount flags */ flags |= MNT_LOCK_ATIME; if (flags & MNT_READONLY) flags |= MNT_LOCK_READONLY; if (flags & MNT_NODEV) flags |= MNT_LOCK_NODEV; if (flags & MNT_NOSUID) flags |= MNT_LOCK_NOSUID; if (flags & MNT_NOEXEC) flags |= MNT_LOCK_NOEXEC; /* Don't allow unprivileged users to reveal what is under a mount */ if (list_empty(&p->mnt_expire)) flags |= MNT_LOCKED; p->mnt.mnt_flags = flags; } } static void cleanup_group_ids(struct mount *mnt, struct mount *end) { struct mount *p; for (p = mnt; p != end; p = next_mnt(p, mnt)) { if (p->mnt_group_id && !IS_MNT_SHARED(p)) mnt_release_group_id(p); } } static int invent_group_ids(struct mount *mnt, bool recurse) { struct mount *p; for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { int err = mnt_alloc_group_id(p); if (err) { cleanup_group_ids(mnt, p); return err; } } } return 0; } int count_mounts(struct mnt_namespace *ns, struct mount *mnt) { unsigned int max = READ_ONCE(sysctl_mount_max); unsigned int mounts = 0; struct mount *p; if (ns->nr_mounts >= max) return -ENOSPC; max -= ns->nr_mounts; if (ns->pending_mounts >= max) return -ENOSPC; max -= ns->pending_mounts; for (p = mnt; p; p = next_mnt(p, mnt)) mounts++; if (mounts > max) return -ENOSPC; ns->pending_mounts += mounts; return 0; } enum mnt_tree_flags_t { MNT_TREE_MOVE = BIT(0), MNT_TREE_BENEATH = BIT(1), }; /** * attach_recursive_mnt - attach a source mount tree * @source_mnt: mount tree to be attached * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath * @dest_mp: the mountpoint @source_mnt will be mounted at * @flags: modify how @source_mnt is supposed to be attached * * NOTE: in the table below explains the semantics when a source mount * of a given type is attached to a destination mount of a given type. * --------------------------------------------------------------------------- * | BIND MOUNT OPERATION | * |************************************************************************** * | source-->| shared | private | slave | unbindable | * | dest | | | | | * | | | | | | | * | v | | | | | * |************************************************************************** * | shared | shared (++) | shared (+) | shared(+++)| invalid | * | | | | | | * |non-shared| shared (+) | private | slave (*) | invalid | * *************************************************************************** * A bind operation clones the source mount and mounts the clone on the * destination mount. * * (++) the cloned mount is propagated to all the mounts in the propagation * tree of the destination mount and the cloned mount is added to * the peer group of the source mount. * (+) the cloned mount is created under the destination mount and is marked * as shared. The cloned mount is added to the peer group of the source * mount. * (+++) the mount is propagated to all the mounts in the propagation tree * of the destination mount and the cloned mount is made slave * of the same master as that of the source mount. The cloned mount * is marked as 'shared and slave'. * (*) the cloned mount is made a slave of the same master as that of the * source mount. * * --------------------------------------------------------------------------- * | MOVE MOUNT OPERATION | * |************************************************************************** * | source-->| shared | private | slave | unbindable | * | dest | | | | | * | | | | | | | * | v | | | | | * |************************************************************************** * | shared | shared (+) | shared (+) | shared(+++) | invalid | * | | | | | | * |non-shared| shared (+*) | private | slave (*) | unbindable | * *************************************************************************** * * (+) the mount is moved to the destination. And is then propagated to * all the mounts in the propagation tree of the destination mount. * (+*) the mount is moved to the destination. * (+++) the mount is moved to the destination and is then propagated to * all the mounts belonging to the destination mount's propagation tree. * the mount is marked as 'shared and slave'. * (*) the mount continues to be a slave at the new location. * * if the source mount is a tree, the operations explained above is * applied to each mount in the tree. * Must be called without spinlocks held, since this function can sleep * in allocations. * * Context: The function expects namespace_lock() to be held. * Return: If @source_mnt was successfully attached 0 is returned. * Otherwise a negative error code is returned. */ static int attach_recursive_mnt(struct mount *source_mnt, struct mount *top_mnt, struct mountpoint *dest_mp, enum mnt_tree_flags_t flags) { struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; HLIST_HEAD(tree_list); struct mnt_namespace *ns = top_mnt->mnt_ns; struct mountpoint *smp; struct mount *child, *dest_mnt, *p; struct hlist_node *n; int err = 0; bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH; /* * Preallocate a mountpoint in case the new mounts need to be * mounted beneath mounts on the same mountpoint. */ smp = get_mountpoint(source_mnt->mnt.mnt_root); if (IS_ERR(smp)) return PTR_ERR(smp); /* Is there space to add these mounts to the mount namespace? */ if (!moving) { err = count_mounts(ns, source_mnt); if (err) goto out; } if (beneath) dest_mnt = top_mnt->mnt_parent; else dest_mnt = top_mnt; if (IS_MNT_SHARED(dest_mnt)) { err = invent_group_ids(source_mnt, true); if (err) goto out; err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); } lock_mount_hash(); if (err) goto out_cleanup_ids; if (IS_MNT_SHARED(dest_mnt)) { for (p = source_mnt; p; p = next_mnt(p, source_mnt)) set_mnt_shared(p); } if (moving) { if (beneath) dest_mp = smp; unhash_mnt(source_mnt); attach_mnt(source_mnt, top_mnt, dest_mp, beneath); touch_mnt_namespace(source_mnt->mnt_ns); } else { if (source_mnt->mnt_ns) { LIST_HEAD(head); /* move from anon - the caller will destroy */ for (p = source_mnt; p; p = next_mnt(p, source_mnt)) move_from_ns(p, &head); list_del_init(&head); } if (beneath) mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp); else mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); commit_tree(source_mnt); } hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { struct mount *q; hlist_del_init(&child->mnt_hash); q = __lookup_mnt(&child->mnt_parent->mnt, child->mnt_mountpoint); if (q) mnt_change_mountpoint(child, smp, q); /* Notice when we are propagating across user namespaces */ if (child->mnt_parent->mnt_ns->user_ns != user_ns) lock_mnt_tree(child); child->mnt.mnt_flags &= ~MNT_LOCKED; commit_tree(child); } put_mountpoint(smp); unlock_mount_hash(); return 0; out_cleanup_ids: while (!hlist_empty(&tree_list)) { child = hlist_entry(tree_list.first, struct mount, mnt_hash); child->mnt_parent->mnt_ns->pending_mounts = 0; umount_tree(child, UMOUNT_SYNC); } unlock_mount_hash(); cleanup_group_ids(source_mnt, NULL); out: ns->pending_mounts = 0; read_seqlock_excl(&mount_lock); put_mountpoint(smp); read_sequnlock_excl(&mount_lock); return err; } /** * do_lock_mount - lock mount and mountpoint * @path: target path * @beneath: whether the intention is to mount beneath @path * * Follow the mount stack on @path until the top mount @mnt is found. If * the initial @path->{mnt,dentry} is a mountpoint lookup the first * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root} * until nothing is stacked on top of it anymore. * * Acquire the inode_lock() on the top mount's ->mnt_root to protect * against concurrent removal of the new mountpoint from another mount * namespace. * * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint * @mp on @mnt->mnt_parent must be acquired. This protects against a * concurrent unlink of @mp->mnt_dentry from another mount namespace * where @mnt doesn't have a child mount mounted @mp. A concurrent * removal of @mnt->mnt_root doesn't matter as nothing will be mounted * on top of it for @beneath. * * In addition, @beneath needs to make sure that @mnt hasn't been * unmounted or moved from its current mountpoint in between dropping * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt * being unmounted would be detected later by e.g., calling * check_mnt(mnt) in the function it's called from. For the @beneath * case however, it's useful to detect it directly in do_lock_mount(). * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL. * * Return: Either the target mountpoint on the top mount or the top * mount's mountpoint. */ static struct mountpoint *do_lock_mount(struct path *path, bool beneath) { struct vfsmount *mnt = path->mnt; struct dentry *dentry; struct mountpoint *mp = ERR_PTR(-ENOENT); for (;;) { struct mount *m; if (beneath) { m = real_mount(mnt); read_seqlock_excl(&mount_lock); dentry = dget(m->mnt_mountpoint); read_sequnlock_excl(&mount_lock); } else { dentry = path->dentry; } inode_lock(dentry->d_inode); if (unlikely(cant_mount(dentry))) { inode_unlock(dentry->d_inode); goto out; } namespace_lock(); if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) { namespace_unlock(); inode_unlock(dentry->d_inode); goto out; } mnt = lookup_mnt(path); if (likely(!mnt)) break; namespace_unlock(); inode_unlock(dentry->d_inode); if (beneath) dput(dentry); path_put(path); path->mnt = mnt; path->dentry = dget(mnt->mnt_root); } mp = get_mountpoint(dentry); if (IS_ERR(mp)) { namespace_unlock(); inode_unlock(dentry->d_inode); } out: if (beneath) dput(dentry); return mp; } static inline struct mountpoint *lock_mount(struct path *path) { return do_lock_mount(path, false); } static void unlock_mount(struct mountpoint *where) { struct dentry *dentry = where->m_dentry; read_seqlock_excl(&mount_lock); put_mountpoint(where); read_sequnlock_excl(&mount_lock); namespace_unlock(); inode_unlock(dentry->d_inode); } static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) { if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) return -EINVAL; if (d_is_dir(mp->m_dentry) != d_is_dir(mnt->mnt.mnt_root)) return -ENOTDIR; return attach_recursive_mnt(mnt, p, mp, 0); } /* * Sanity check the flags to change_mnt_propagation. */ static int flags_to_propagation_type(int ms_flags) { int type = ms_flags & ~(MS_REC | MS_SILENT); /* Fail if any non-propagation flags are set */ if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) return 0; /* Only one propagation flag should be set */ if (!is_power_of_2(type)) return 0; return type; } /* * recursively change the type of the mountpoint. */ static int do_change_type(struct path *path, int ms_flags) { struct mount *m; struct mount *mnt = real_mount(path->mnt); int recurse = ms_flags & MS_REC; int type; int err = 0; if (!path_mounted(path)) return -EINVAL; type = flags_to_propagation_type(ms_flags); if (!type) return -EINVAL; namespace_lock(); if (type == MS_SHARED) { err = invent_group_ids(mnt, recurse); if (err) goto out_unlock; } lock_mount_hash(); for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) change_mnt_propagation(m, type); unlock_mount_hash(); out_unlock: namespace_unlock(); return err; } static struct mount *__do_loopback(struct path *old_path, int recurse) { struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); if (IS_MNT_UNBINDABLE(old)) return mnt; if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) return mnt; if (!recurse && has_locked_children(old, old_path->dentry)) return mnt; if (recurse) mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); else mnt = clone_mnt(old, old_path->dentry, 0); if (!IS_ERR(mnt)) mnt->mnt.mnt_flags &= ~MNT_LOCKED; return mnt; } /* * do loopback mount. */ static int do_loopback(struct path *path, const char *old_name, int recurse) { struct path old_path; struct mount *mnt = NULL, *parent; struct mountpoint *mp; int err; if (!old_name || !*old_name) return -EINVAL; err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); if (err) return err; err = -EINVAL; if (mnt_ns_loop(old_path.dentry)) goto out; mp = lock_mount(path); if (IS_ERR(mp)) { err = PTR_ERR(mp); goto out; } parent = real_mount(path->mnt); if (!check_mnt(parent)) goto out2; mnt = __do_loopback(&old_path, recurse); if (IS_ERR(mnt)) { err = PTR_ERR(mnt); goto out2; } err = graft_tree(mnt, parent, mp); if (err) { lock_mount_hash(); umount_tree(mnt, UMOUNT_SYNC); unlock_mount_hash(); } out2: unlock_mount(mp); out: path_put(&old_path); return err; } static struct file *open_detached_copy(struct path *path, bool recursive) { struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); struct mount *mnt, *p; struct file *file; if (IS_ERR(ns)) return ERR_CAST(ns); namespace_lock(); mnt = __do_loopback(path, recursive); if (IS_ERR(mnt)) { namespace_unlock(); free_mnt_ns(ns); return ERR_CAST(mnt); } lock_mount_hash(); for (p = mnt; p; p = next_mnt(p, mnt)) { mnt_add_to_ns(ns, p); ns->nr_mounts++; } ns->root = mnt; mntget(&mnt->mnt); unlock_mount_hash(); namespace_unlock(); mntput(path->mnt); path->mnt = &mnt->mnt; file = dentry_open(path, O_PATH, current_cred()); if (IS_ERR(file)) dissolve_on_fput(path->mnt); else file->f_mode |= FMODE_NEED_UNMOUNT; return file; } SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) { struct file *file; struct path path; int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; bool detached = flags & OPEN_TREE_CLONE; int error; int fd; BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | OPEN_TREE_CLOEXEC)) return -EINVAL; if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) return -EINVAL; if (flags & AT_NO_AUTOMOUNT) lookup_flags &= ~LOOKUP_AUTOMOUNT; if (flags & AT_SYMLINK_NOFOLLOW) lookup_flags &= ~LOOKUP_FOLLOW; if (flags & AT_EMPTY_PATH) lookup_flags |= LOOKUP_EMPTY; if (detached && !may_mount()) return -EPERM; fd = get_unused_fd_flags(flags & O_CLOEXEC); if (fd < 0) return fd; error = user_path_at(dfd, filename, lookup_flags, &path); if (unlikely(error)) { file = ERR_PTR(error); } else { if (detached) file = open_detached_copy(&path, flags & AT_RECURSIVE); else file = dentry_open(&path, O_PATH, current_cred()); path_put(&path); } if (IS_ERR(file)) { put_unused_fd(fd); return PTR_ERR(file); } fd_install(fd, file); return fd; } /* * Don't allow locked mount flags to be cleared. * * No locks need to be held here while testing the various MNT_LOCK * flags because those flags can never be cleared once they are set. */ static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) { unsigned int fl = mnt->mnt.mnt_flags; if ((fl & MNT_LOCK_READONLY) && !(mnt_flags & MNT_READONLY)) return false; if ((fl & MNT_LOCK_NODEV) && !(mnt_flags & MNT_NODEV)) return false; if ((fl & MNT_LOCK_NOSUID) && !(mnt_flags & MNT_NOSUID)) return false; if ((fl & MNT_LOCK_NOEXEC) && !(mnt_flags & MNT_NOEXEC)) return false; if ((fl & MNT_LOCK_ATIME) && ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) return false; return true; } static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) { bool readonly_request = (mnt_flags & MNT_READONLY); if (readonly_request == __mnt_is_readonly(&mnt->mnt)) return 0; if (readonly_request) return mnt_make_readonly(mnt); mnt->mnt.mnt_flags &= ~MNT_READONLY; return 0; } static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) { mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; mnt->mnt.mnt_flags = mnt_flags; touch_mnt_namespace(mnt->mnt_ns); } static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) { struct super_block *sb = mnt->mnt_sb; if (!__mnt_is_readonly(mnt) && (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) && (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { char *buf, *mntpath; buf = (char *)__get_free_page(GFP_KERNEL); if (buf) mntpath = d_path(mountpoint, buf, PAGE_SIZE); else mntpath = ERR_PTR(-ENOMEM); if (IS_ERR(mntpath)) mntpath = "(unknown)"; pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n", sb->s_type->name, is_mounted(mnt) ? "remounted" : "mounted", mntpath, &sb->s_time_max, (unsigned long long)sb->s_time_max); sb->s_iflags |= SB_I_TS_EXPIRY_WARNED; if (buf) free_page((unsigned long)buf); } } /* * Handle reconfiguration of the mountpoint only without alteration of the * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND * to mount(2). */ static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) { struct super_block *sb = path->mnt->mnt_sb; struct mount *mnt = real_mount(path->mnt); int ret; if (!check_mnt(mnt)) return -EINVAL; if (!path_mounted(path)) return -EINVAL; if (!can_change_locked_flags(mnt, mnt_flags)) return -EPERM; /* * We're only checking whether the superblock is read-only not * changing it, so only take down_read(&sb->s_umount). */ down_read(&sb->s_umount); lock_mount_hash(); ret = change_mount_ro_state(mnt, mnt_flags); if (ret == 0) set_mount_attributes(mnt, mnt_flags); unlock_mount_hash(); up_read(&sb->s_umount); mnt_warn_timestamp_expiry(path, &mnt->mnt); return ret; } /* * change filesystem flags. dir should be a physical root of filesystem. * If you've mounted a non-root directory somewhere and want to do remount * on it - tough luck. */ static int do_remount(struct path *path, int ms_flags, int sb_flags, int mnt_flags, void *data) { int err; struct super_block *sb = path->mnt->mnt_sb; struct mount *mnt = real_mount(path->mnt); struct fs_context *fc; if (!check_mnt(mnt)) return -EINVAL; if (!path_mounted(path)) return -EINVAL; if (!can_change_locked_flags(mnt, mnt_flags)) return -EPERM; fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); if (IS_ERR(fc)) return PTR_ERR(fc); /* * Indicate to the filesystem that the remount request is coming * from the legacy mount system call. */ fc->oldapi = true; err = parse_monolithic_mount_data(fc, data); if (!err) { down_write(&sb->s_umount); err = -EPERM; if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { err = reconfigure_super(fc); if (!err) { lock_mount_hash(); set_mount_attributes(mnt, mnt_flags); unlock_mount_hash(); } } up_write(&sb->s_umount); } mnt_warn_timestamp_expiry(path, &mnt->mnt); put_fs_context(fc); return err; } static inline int tree_contains_unbindable(struct mount *mnt) { struct mount *p; for (p = mnt; p; p = next_mnt(p, mnt)) { if (IS_MNT_UNBINDABLE(p)) return 1; } return 0; } /* * Check that there aren't references to earlier/same mount namespaces in the * specified subtree. Such references can act as pins for mount namespaces * that aren't checked by the mount-cycle checking code, thereby allowing * cycles to be made. */ static bool check_for_nsfs_mounts(struct mount *subtree) { struct mount *p; bool ret = false; lock_mount_hash(); for (p = subtree; p; p = next_mnt(p, subtree)) if (mnt_ns_loop(p->mnt.mnt_root)) goto out; ret = true; out: unlock_mount_hash(); return ret; } static int do_set_group(struct path *from_path, struct path *to_path) { struct mount *from, *to; int err; from = real_mount(from_path->mnt); to = real_mount(to_path->mnt); namespace_lock(); err = -EINVAL; /* To and From must be mounted */ if (!is_mounted(&from->mnt)) goto out; if (!is_mounted(&to->mnt)) goto out; err = -EPERM; /* We should be allowed to modify mount namespaces of both mounts */ if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) goto out; if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) goto out; err = -EINVAL; /* To and From paths should be mount roots */ if (!path_mounted(from_path)) goto out; if (!path_mounted(to_path)) goto out; /* Setting sharing groups is only allowed across same superblock */ if (from->mnt.mnt_sb != to->mnt.mnt_sb) goto out; /* From mount root should be wider than To mount root */ if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) goto out; /* From mount should not have locked children in place of To's root */ if (has_locked_children(from, to->mnt.mnt_root)) goto out; /* Setting sharing groups is only allowed on private mounts */ if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) goto out; /* From should not be private */ if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) goto out; if (IS_MNT_SLAVE(from)) { struct mount *m = from->mnt_master; list_add(&to->mnt_slave, &m->mnt_slave_list); to->mnt_master = m; } if (IS_MNT_SHARED(from)) { to->mnt_group_id = from->mnt_group_id; list_add(&to->mnt_share, &from->mnt_share); lock_mount_hash(); set_mnt_shared(to); unlock_mount_hash(); } err = 0; out: namespace_unlock(); return err; } /** * path_overmounted - check if path is overmounted * @path: path to check * * Check if path is overmounted, i.e., if there's a mount on top of * @path->mnt with @path->dentry as mountpoint. * * Context: This function expects namespace_lock() to be held. * Return: If path is overmounted true is returned, false if not. */ static inline bool path_overmounted(const struct path *path) { rcu_read_lock(); if (unlikely(__lookup_mnt(path->mnt, path->dentry))) { rcu_read_unlock(); return true; } rcu_read_unlock(); return false; } /** * can_move_mount_beneath - check that we can mount beneath the top mount * @from: mount to mount beneath * @to: mount under which to mount * @mp: mountpoint of @to * * - Make sure that @to->dentry is actually the root of a mount under * which we can mount another mount. * - Make sure that nothing can be mounted beneath the caller's current * root or the rootfs of the namespace. * - Make sure that the caller can unmount the topmost mount ensuring * that the caller could reveal the underlying mountpoint. * - Ensure that nothing has been mounted on top of @from before we * grabbed @namespace_sem to avoid creating pointless shadow mounts. * - Prevent mounting beneath a mount if the propagation relationship * between the source mount, parent mount, and top mount would lead to * nonsensical mount trees. * * Context: This function expects namespace_lock() to be held. * Return: On success 0, and on error a negative error code is returned. */ static int can_move_mount_beneath(const struct path *from, const struct path *to, const struct mountpoint *mp) { struct mount *mnt_from = real_mount(from->mnt), *mnt_to = real_mount(to->mnt), *parent_mnt_to = mnt_to->mnt_parent; if (!mnt_has_parent(mnt_to)) return -EINVAL; if (!path_mounted(to)) return -EINVAL; if (IS_MNT_LOCKED(mnt_to)) return -EINVAL; /* Avoid creating shadow mounts during mount propagation. */ if (path_overmounted(from)) return -EINVAL; /* * Mounting beneath the rootfs only makes sense when the * semantics of pivot_root(".", ".") are used. */ if (&mnt_to->mnt == current->fs->root.mnt) return -EINVAL; if (parent_mnt_to == current->nsproxy->mnt_ns->root) return -EINVAL; for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent) if (p == mnt_to) return -EINVAL; /* * If the parent mount propagates to the child mount this would * mean mounting @mnt_from on @mnt_to->mnt_parent and then * propagating a copy @c of @mnt_from on top of @mnt_to. This * defeats the whole purpose of mounting beneath another mount. */ if (propagation_would_overmount(parent_mnt_to, mnt_to, mp)) return -EINVAL; /* * If @mnt_to->mnt_parent propagates to @mnt_from this would * mean propagating a copy @c of @mnt_from on top of @mnt_from. * Afterwards @mnt_from would be mounted on top of * @mnt_to->mnt_parent and @mnt_to would be unmounted from * @mnt->mnt_parent and remounted on @mnt_from. But since @c is * already mounted on @mnt_from, @mnt_to would ultimately be * remounted on top of @c. Afterwards, @mnt_from would be * covered by a copy @c of @mnt_from and @c would be covered by * @mnt_from itself. This defeats the whole purpose of mounting * @mnt_from beneath @mnt_to. */ if (propagation_would_overmount(parent_mnt_to, mnt_from, mp)) return -EINVAL; return 0; } static int do_move_mount(struct path *old_path, struct path *new_path, bool beneath) { struct mnt_namespace *ns; struct mount *p; struct mount *old; struct mount *parent; struct mountpoint *mp, *old_mp; int err; bool attached; enum mnt_tree_flags_t flags = 0; mp = do_lock_mount(new_path, beneath); if (IS_ERR(mp)) return PTR_ERR(mp); old = real_mount(old_path->mnt); p = real_mount(new_path->mnt); parent = old->mnt_parent; attached = mnt_has_parent(old); if (attached) flags |= MNT_TREE_MOVE; old_mp = old->mnt_mp; ns = old->mnt_ns; err = -EINVAL; /* The mountpoint must be in our namespace. */ if (!check_mnt(p)) goto out; /* The thing moved must be mounted... */ if (!is_mounted(&old->mnt)) goto out; /* ... and either ours or the root of anon namespace */ if (!(attached ? check_mnt(old) : is_anon_ns(ns))) goto out; if (old->mnt.mnt_flags & MNT_LOCKED) goto out; if (!path_mounted(old_path)) goto out; if (d_is_dir(new_path->dentry) != d_is_dir(old_path->dentry)) goto out; /* * Don't move a mount residing in a shared parent. */ if (attached && IS_MNT_SHARED(parent)) goto out; if (beneath) { err = can_move_mount_beneath(old_path, new_path, mp); if (err) goto out; err = -EINVAL; p = p->mnt_parent; flags |= MNT_TREE_BENEATH; } /* * Don't move a mount tree containing unbindable mounts to a destination * mount which is shared. */ if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) goto out; err = -ELOOP; if (!check_for_nsfs_mounts(old)) goto out; for (; mnt_has_parent(p); p = p->mnt_parent) if (p == old) goto out; err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags); if (err) goto out; /* if the mount is moved, it should no longer be expire * automatically */ list_del_init(&old->mnt_expire); if (attached) put_mountpoint(old_mp); out: unlock_mount(mp); if (!err) { if (attached) mntput_no_expire(parent); else free_mnt_ns(ns); } return err; } static int do_move_mount_old(struct path *path, const char *old_name) { struct path old_path; int err; if (!old_name || !*old_name) return -EINVAL; err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); if (err) return err; err = do_move_mount(&old_path, path, false); path_put(&old_path); return err; } /* * add a mount into a namespace's mount tree */ static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, const struct path *path, int mnt_flags) { struct mount *parent = real_mount(path->mnt); mnt_flags &= ~MNT_INTERNAL_FLAGS; if (unlikely(!check_mnt(parent))) { /* that's acceptable only for automounts done in private ns */ if (!(mnt_flags & MNT_SHRINKABLE)) return -EINVAL; /* ... and for those we'd better have mountpoint still alive */ if (!parent->mnt_ns) return -EINVAL; } /* Refuse the same filesystem on the same mount point */ if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path)) return -EBUSY; if (d_is_symlink(newmnt->mnt.mnt_root)) return -EINVAL; newmnt->mnt.mnt_flags = mnt_flags; return graft_tree(newmnt, parent, mp); } static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); /* * Create a new mount using a superblock configuration and request it * be added to the namespace tree. */ static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, unsigned int mnt_flags) { struct vfsmount *mnt; struct mountpoint *mp; struct super_block *sb = fc->root->d_sb; int error; error = security_sb_kern_mount(sb); if (!error && mount_too_revealing(sb, &mnt_flags)) error = -EPERM; if (unlikely(error)) { fc_drop_locked(fc); return error; } up_write(&sb->s_umount); mnt = vfs_create_mount(fc); if (IS_ERR(mnt)) return PTR_ERR(mnt); mnt_warn_timestamp_expiry(mountpoint, mnt); mp = lock_mount(mountpoint); if (IS_ERR(mp)) { mntput(mnt); return PTR_ERR(mp); } error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); unlock_mount(mp); if (error < 0) mntput(mnt); return error; } /* * create a new mount for userspace and request it to be added into the * namespace's tree */ static int do_new_mount(struct path *path, const char *fstype, int sb_flags, int mnt_flags, const char *name, void *data) { struct file_system_type *type; struct fs_context *fc; const char *subtype = NULL; int err = 0; if (!fstype) return -EINVAL; type = get_fs_type(fstype); if (!type) return -ENODEV; if (type->fs_flags & FS_HAS_SUBTYPE) { subtype = strchr(fstype, '.'); if (subtype) { subtype++; if (!*subtype) { put_filesystem(type); return -EINVAL; } } } fc = fs_context_for_mount(type, sb_flags); put_filesystem(type); if (IS_ERR(fc)) return PTR_ERR(fc); /* * Indicate to the filesystem that the mount request is coming * from the legacy mount system call. */ fc->oldapi = true; if (subtype) err = vfs_parse_fs_string(fc, "subtype", subtype, strlen(subtype)); if (!err && name) err = vfs_parse_fs_string(fc, "source", name, strlen(name)); if (!err) err = parse_monolithic_mount_data(fc, data); if (!err && !mount_capable(fc)) err = -EPERM; if (!err) err = vfs_get_tree(fc); if (!err) err = do_new_mount_fc(fc, path, mnt_flags); put_fs_context(fc); return err; } int finish_automount(struct vfsmount *m, const struct path *path) { struct dentry *dentry = path->dentry; struct mountpoint *mp; struct mount *mnt; int err; if (!m) return 0; if (IS_ERR(m)) return PTR_ERR(m); mnt = real_mount(m); /* The new mount record should have at least 2 refs to prevent it being * expired before we get a chance to add it */ BUG_ON(mnt_get_count(mnt) < 2); if (m->mnt_sb == path->mnt->mnt_sb && m->mnt_root == dentry) { err = -ELOOP; goto discard; } /* * we don't want to use lock_mount() - in this case finding something * that overmounts our mountpoint to be means "quitely drop what we've * got", not "try to mount it on top". */ inode_lock(dentry->d_inode); namespace_lock(); if (unlikely(cant_mount(dentry))) { err = -ENOENT; goto discard_locked; } if (path_overmounted(path)) { err = 0; goto discard_locked; } mp = get_mountpoint(dentry); if (IS_ERR(mp)) { err = PTR_ERR(mp); goto discard_locked; } err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); unlock_mount(mp); if (unlikely(err)) goto discard; mntput(m); return 0; discard_locked: namespace_unlock(); inode_unlock(dentry->d_inode); discard: /* remove m from any expiration list it may be on */ if (!list_empty(&mnt->mnt_expire)) { namespace_lock(); list_del_init(&mnt->mnt_expire); namespace_unlock(); } mntput(m); mntput(m); return err; } /** * mnt_set_expiry - Put a mount on an expiration list * @mnt: The mount to list. * @expiry_list: The list to add the mount to. */ void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) { namespace_lock(); list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); namespace_unlock(); } EXPORT_SYMBOL(mnt_set_expiry); /* * process a list of expirable mountpoints with the intent of discarding any * mountpoints that aren't in use and haven't been touched since last we came * here */ void mark_mounts_for_expiry(struct list_head *mounts) { struct mount *mnt, *next; LIST_HEAD(graveyard); if (list_empty(mounts)) return; namespace_lock(); lock_mount_hash(); /* extract from the expiration list every vfsmount that matches the * following criteria: * - only referenced by its parent vfsmount * - still marked for expiry (marked on the last call here; marks are * cleared by mntput()) */ list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { if (!xchg(&mnt->mnt_expiry_mark, 1) || propagate_mount_busy(mnt, 1)) continue; list_move(&mnt->mnt_expire, &graveyard); } while (!list_empty(&graveyard)) { mnt = list_first_entry(&graveyard, struct mount, mnt_expire); touch_mnt_namespace(mnt->mnt_ns); umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); } unlock_mount_hash(); namespace_unlock(); } EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); /* * Ripoff of 'select_parent()' * * search the list of submounts for a given mountpoint, and move any * shrinkable submounts to the 'graveyard' list. */ static int select_submounts(struct mount *parent, struct list_head *graveyard) { struct mount *this_parent = parent; struct list_head *next; int found = 0; repeat: next = this_parent->mnt_mounts.next; resume: while (next != &this_parent->mnt_mounts) { struct list_head *tmp = next; struct mount *mnt = list_entry(tmp, struct mount, mnt_child); next = tmp->next; if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) continue; /* * Descend a level if the d_mounts list is non-empty. */ if (!list_empty(&mnt->mnt_mounts)) { this_parent = mnt; goto repeat; } if (!propagate_mount_busy(mnt, 1)) { list_move_tail(&mnt->mnt_expire, graveyard); found++; } } /* * All done at this level ... ascend and resume the search */ if (this_parent != parent) { next = this_parent->mnt_child.next; this_parent = this_parent->mnt_parent; goto resume; } return found; } /* * process a list of expirable mountpoints with the intent of discarding any * submounts of a specific parent mountpoint * * mount_lock must be held for write */ static void shrink_submounts(struct mount *mnt) { LIST_HEAD(graveyard); struct mount *m; /* extract submounts of 'mountpoint' from the expiration list */ while (select_submounts(mnt, &graveyard)) { while (!list_empty(&graveyard)) { m = list_first_entry(&graveyard, struct mount, mnt_expire); touch_mnt_namespace(m->mnt_ns); umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); } } } static void *copy_mount_options(const void __user * data) { char *copy; unsigned left, offset; if (!data) return NULL; copy = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!copy) return ERR_PTR(-ENOMEM); left = copy_from_user(copy, data, PAGE_SIZE); /* * Not all architectures have an exact copy_from_user(). Resort to * byte at a time. */ offset = PAGE_SIZE - left; while (left) { char c; if (get_user(c, (const char __user *)data + offset)) break; copy[offset] = c; left--; offset++; } if (left == PAGE_SIZE) { kfree(copy); return ERR_PTR(-EFAULT); } return copy; } static char *copy_mount_string(const void __user *data) { return data ? strndup_user(data, PATH_MAX) : NULL; } /* * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to * be given to the mount() call (ie: read-only, no-dev, no-suid etc). * * data is a (void *) that can point to any structure up to * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent * information (or be NULL). * * Pre-0.97 versions of mount() didn't have a flags word. * When the flags word was introduced its top half was required * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. * Therefore, if this magic number is present, it carries no information * and must be discarded. */ int path_mount(const char *dev_name, struct path *path, const char *type_page, unsigned long flags, void *data_page) { unsigned int mnt_flags = 0, sb_flags; int ret; /* Discard magic */ if ((flags & MS_MGC_MSK) == MS_MGC_VAL) flags &= ~MS_MGC_MSK; /* Basic sanity checks */ if (data_page) ((char *)data_page)[PAGE_SIZE - 1] = 0; if (flags & MS_NOUSER) return -EINVAL; ret = security_sb_mount(dev_name, path, type_page, flags, data_page); if (ret) return ret; if (!may_mount()) return -EPERM; if (flags & SB_MANDLOCK) warn_mandlock(); /* Default to relatime unless overriden */ if (!(flags & MS_NOATIME)) mnt_flags |= MNT_RELATIME; /* Separate the per-mountpoint flags */ if (flags & MS_NOSUID) mnt_flags |= MNT_NOSUID; if (flags & MS_NODEV) mnt_flags |= MNT_NODEV; if (flags & MS_NOEXEC) mnt_flags |= MNT_NOEXEC; if (flags & MS_NOATIME) mnt_flags |= MNT_NOATIME; if (flags & MS_NODIRATIME) mnt_flags |= MNT_NODIRATIME; if (flags & MS_STRICTATIME) mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); if (flags & MS_RDONLY) mnt_flags |= MNT_READONLY; if (flags & MS_NOSYMFOLLOW) mnt_flags |= MNT_NOSYMFOLLOW; /* The default atime for remount is preservation */ if ((flags & MS_REMOUNT) && ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | MS_STRICTATIME)) == 0)) { mnt_flags &= ~MNT_ATIME_MASK; mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; } sb_flags = flags & (SB_RDONLY | SB_SYNCHRONOUS | SB_MANDLOCK | SB_DIRSYNC | SB_SILENT | SB_POSIXACL | SB_LAZYTIME | SB_I_VERSION); if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) return do_reconfigure_mnt(path, mnt_flags); if (flags & MS_REMOUNT) return do_remount(path, flags, sb_flags, mnt_flags, data_page); if (flags & MS_BIND) return do_loopback(path, dev_name, flags & MS_REC); if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) return do_change_type(path, flags); if (flags & MS_MOVE) return do_move_mount_old(path, dev_name); return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, data_page); } long do_mount(const char *dev_name, const char __user *dir_name, const char *type_page, unsigned long flags, void *data_page) { struct path path; int ret; ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); if (ret) return ret; ret = path_mount(dev_name, &path, type_page, flags, data_page); path_put(&path); return ret; } static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) { return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); } static void dec_mnt_namespaces(struct ucounts *ucounts) { dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); } static void free_mnt_ns(struct mnt_namespace *ns) { if (!is_anon_ns(ns)) ns_free_inum(&ns->ns); dec_mnt_namespaces(ns->ucounts); mnt_ns_tree_remove(ns); } /* * Assign a sequence number so we can detect when we attempt to bind * mount a reference to an older mount namespace into the current * mount namespace, preventing reference counting loops. A 64bit * number incrementing at 10Ghz will take 12,427 years to wrap which * is effectively never, so we can ignore the possibility. */ static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) { struct mnt_namespace *new_ns; struct ucounts *ucounts; int ret; ucounts = inc_mnt_namespaces(user_ns); if (!ucounts) return ERR_PTR(-ENOSPC); new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); if (!new_ns) { dec_mnt_namespaces(ucounts); return ERR_PTR(-ENOMEM); } if (!anon) { ret = ns_alloc_inum(&new_ns->ns); if (ret) { kfree(new_ns); dec_mnt_namespaces(ucounts); return ERR_PTR(ret); } } new_ns->ns.ops = &mntns_operations; if (!anon) new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); refcount_set(&new_ns->ns.count, 1); refcount_set(&new_ns->passive, 1); new_ns->mounts = RB_ROOT; RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node); init_waitqueue_head(&new_ns->poll); new_ns->user_ns = get_user_ns(user_ns); new_ns->ucounts = ucounts; return new_ns; } __latent_entropy struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, struct user_namespace *user_ns, struct fs_struct *new_fs) { struct mnt_namespace *new_ns; struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; struct mount *p, *q; struct mount *old; struct mount *new; int copy_flags; BUG_ON(!ns); if (likely(!(flags & CLONE_NEWNS))) { get_mnt_ns(ns); return ns; } old = ns->root; new_ns = alloc_mnt_ns(user_ns, false); if (IS_ERR(new_ns)) return new_ns; namespace_lock(); /* First pass: copy the tree topology */ copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; if (user_ns != ns->user_ns) copy_flags |= CL_SHARED_TO_SLAVE; new = copy_tree(old, old->mnt.mnt_root, copy_flags); if (IS_ERR(new)) { namespace_unlock(); free_mnt_ns(new_ns); return ERR_CAST(new); } if (user_ns != ns->user_ns) { lock_mount_hash(); lock_mnt_tree(new); unlock_mount_hash(); } new_ns->root = new; /* * Second pass: switch the tsk->fs->* elements and mark new vfsmounts * as belonging to new namespace. We have already acquired a private * fs_struct, so tsk->fs->lock is not needed. */ p = old; q = new; while (p) { mnt_add_to_ns(new_ns, q); new_ns->nr_mounts++; if (new_fs) { if (&p->mnt == new_fs->root.mnt) { new_fs->root.mnt = mntget(&q->mnt); rootmnt = &p->mnt; } if (&p->mnt == new_fs->pwd.mnt) { new_fs->pwd.mnt = mntget(&q->mnt); pwdmnt = &p->mnt; } } p = next_mnt(p, old); q = next_mnt(q, new); if (!q) break; // an mntns binding we'd skipped? while (p->mnt.mnt_root != q->mnt.mnt_root) p = next_mnt(skip_mnt_tree(p), old); } mnt_ns_tree_add(new_ns); namespace_unlock(); if (rootmnt) mntput(rootmnt); if (pwdmnt) mntput(pwdmnt); return new_ns; } struct dentry *mount_subtree(struct vfsmount *m, const char *name) { struct mount *mnt = real_mount(m); struct mnt_namespace *ns; struct super_block *s; struct path path; int err; ns = alloc_mnt_ns(&init_user_ns, true); if (IS_ERR(ns)) { mntput(m); return ERR_CAST(ns); } ns->root = mnt; ns->nr_mounts++; mnt_add_to_ns(ns, mnt); err = vfs_path_lookup(m->mnt_root, m, name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); put_mnt_ns(ns); if (err) return ERR_PTR(err); /* trade a vfsmount reference for active sb one */ s = path.mnt->mnt_sb; atomic_inc(&s->s_active); mntput(path.mnt); /* lock the sucker */ down_write(&s->s_umount); /* ... and return the root of (sub)tree on it */ return path.dentry; } EXPORT_SYMBOL(mount_subtree); SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, char __user *, type, unsigned long, flags, void __user *, data) { int ret; char *kernel_type; char *kernel_dev; void *options; kernel_type = copy_mount_string(type); ret = PTR_ERR(kernel_type); if (IS_ERR(kernel_type)) goto out_type; kernel_dev = copy_mount_string(dev_name); ret = PTR_ERR(kernel_dev); if (IS_ERR(kernel_dev)) goto out_dev; options = copy_mount_options(data); ret = PTR_ERR(options); if (IS_ERR(options)) goto out_data; ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); kfree(options); out_data: kfree(kernel_dev); out_dev: kfree(kernel_type); out_type: return ret; } #define FSMOUNT_VALID_FLAGS \ (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ MOUNT_ATTR_NOSYMFOLLOW) #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) #define MOUNT_SETATTR_PROPAGATION_FLAGS \ (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) { unsigned int mnt_flags = 0; if (attr_flags & MOUNT_ATTR_RDONLY) mnt_flags |= MNT_READONLY; if (attr_flags & MOUNT_ATTR_NOSUID) mnt_flags |= MNT_NOSUID; if (attr_flags & MOUNT_ATTR_NODEV) mnt_flags |= MNT_NODEV; if (attr_flags & MOUNT_ATTR_NOEXEC) mnt_flags |= MNT_NOEXEC; if (attr_flags & MOUNT_ATTR_NODIRATIME) mnt_flags |= MNT_NODIRATIME; if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) mnt_flags |= MNT_NOSYMFOLLOW; return mnt_flags; } /* * Create a kernel mount representation for a new, prepared superblock * (specified by fs_fd) and attach to an open_tree-like file descriptor. */ SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, unsigned int, attr_flags) { struct mnt_namespace *ns; struct fs_context *fc; struct file *file; struct path newmount; struct mount *mnt; struct fd f; unsigned int mnt_flags = 0; long ret; if (!may_mount()) return -EPERM; if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) return -EINVAL; if (attr_flags & ~FSMOUNT_VALID_FLAGS) return -EINVAL; mnt_flags = attr_flags_to_mnt_flags(attr_flags); switch (attr_flags & MOUNT_ATTR__ATIME) { case MOUNT_ATTR_STRICTATIME: break; case MOUNT_ATTR_NOATIME: mnt_flags |= MNT_NOATIME; break; case MOUNT_ATTR_RELATIME: mnt_flags |= MNT_RELATIME; break; default: return -EINVAL; } f = fdget(fs_fd); if (!fd_file(f)) return -EBADF; ret = -EINVAL; if (fd_file(f)->f_op != &fscontext_fops) goto err_fsfd; fc = fd_file(f)->private_data; ret = mutex_lock_interruptible(&fc->uapi_mutex); if (ret < 0) goto err_fsfd; /* There must be a valid superblock or we can't mount it */ ret = -EINVAL; if (!fc->root) goto err_unlock; ret = -EPERM; if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { pr_warn("VFS: Mount too revealing\n"); goto err_unlock; } ret = -EBUSY; if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) goto err_unlock; if (fc->sb_flags & SB_MANDLOCK) warn_mandlock(); newmount.mnt = vfs_create_mount(fc); if (IS_ERR(newmount.mnt)) { ret = PTR_ERR(newmount.mnt); goto err_unlock; } newmount.dentry = dget(fc->root); newmount.mnt->mnt_flags = mnt_flags; /* We've done the mount bit - now move the file context into more or * less the same state as if we'd done an fspick(). We don't want to * do any memory allocation or anything like that at this point as we * don't want to have to handle any errors incurred. */ vfs_clean_context(fc); ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); if (IS_ERR(ns)) { ret = PTR_ERR(ns); goto err_path; } mnt = real_mount(newmount.mnt); ns->root = mnt; ns->nr_mounts = 1; mnt_add_to_ns(ns, mnt); mntget(newmount.mnt); /* Attach to an apparent O_PATH fd with a note that we need to unmount * it, not just simply put it. */ file = dentry_open(&newmount, O_PATH, fc->cred); if (IS_ERR(file)) { dissolve_on_fput(newmount.mnt); ret = PTR_ERR(file); goto err_path; } file->f_mode |= FMODE_NEED_UNMOUNT; ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); if (ret >= 0) fd_install(ret, file); else fput(file); err_path: path_put(&newmount); err_unlock: mutex_unlock(&fc->uapi_mutex); err_fsfd: fdput(f); return ret; } /* * Move a mount from one place to another. In combination with * fsopen()/fsmount() this is used to install a new mount and in combination * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy * a mount subtree. * * Note the flags value is a combination of MOVE_MOUNT_* flags. */ SYSCALL_DEFINE5(move_mount, int, from_dfd, const char __user *, from_pathname, int, to_dfd, const char __user *, to_pathname, unsigned int, flags) { struct path from_path, to_path; unsigned int lflags; int ret = 0; if (!may_mount()) return -EPERM; if (flags & ~MOVE_MOUNT__MASK) return -EINVAL; if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) == (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) return -EINVAL; /* If someone gives a pathname, they aren't permitted to move * from an fd that requires unmount as we can't get at the flag * to clear it afterwards. */ lflags = 0; if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); if (ret < 0) return ret; lflags = 0; if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); if (ret < 0) goto out_from; ret = security_move_mount(&from_path, &to_path); if (ret < 0) goto out_to; if (flags & MOVE_MOUNT_SET_GROUP) ret = do_set_group(&from_path, &to_path); else ret = do_move_mount(&from_path, &to_path, (flags & MOVE_MOUNT_BENEATH)); out_to: path_put(&to_path); out_from: path_put(&from_path); return ret; } /* * Return true if path is reachable from root * * namespace_sem or mount_lock is held */ bool is_path_reachable(struct mount *mnt, struct dentry *dentry, const struct path *root) { while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { dentry = mnt->mnt_mountpoint; mnt = mnt->mnt_parent; } return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); } bool path_is_under(const struct path *path1, const struct path *path2) { bool res; read_seqlock_excl(&mount_lock); res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); read_sequnlock_excl(&mount_lock); return res; } EXPORT_SYMBOL(path_is_under); /* * pivot_root Semantics: * Moves the root file system of the current process to the directory put_old, * makes new_root as the new root file system of the current process, and sets * root/cwd of all processes which had them on the current root to new_root. * * Restrictions: * The new_root and put_old must be directories, and must not be on the * same file system as the current process root. The put_old must be * underneath new_root, i.e. adding a non-zero number of /.. to the string * pointed to by put_old must yield the same directory as new_root. No other * file system may be mounted on put_old. After all, new_root is a mountpoint. * * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives * in this situation. * * Notes: * - we don't move root/cwd if they are not at the root (reason: if something * cared enough to change them, it's probably wrong to force them elsewhere) * - it's okay to pick a root that isn't the root of a file system, e.g. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root * first. */ SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, const char __user *, put_old) { struct path new, old, root; struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; struct mountpoint *old_mp, *root_mp; int error; if (!may_mount()) return -EPERM; error = user_path_at(AT_FDCWD, new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); if (error) goto out0; error = user_path_at(AT_FDCWD, put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); if (error) goto out1; error = security_sb_pivotroot(&old, &new); if (error) goto out2; get_fs_root(current->fs, &root); old_mp = lock_mount(&old); error = PTR_ERR(old_mp); if (IS_ERR(old_mp)) goto out3; error = -EINVAL; new_mnt = real_mount(new.mnt); root_mnt = real_mount(root.mnt); old_mnt = real_mount(old.mnt); ex_parent = new_mnt->mnt_parent; root_parent = root_mnt->mnt_parent; if (IS_MNT_SHARED(old_mnt) || IS_MNT_SHARED(ex_parent) || IS_MNT_SHARED(root_parent)) goto out4; if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) goto out4; if (new_mnt->mnt.mnt_flags & MNT_LOCKED) goto out4; error = -ENOENT; if (d_unlinked(new.dentry)) goto out4; error = -EBUSY; if (new_mnt == root_mnt || old_mnt == root_mnt) goto out4; /* loop, on the same file system */ error = -EINVAL; if (!path_mounted(&root)) goto out4; /* not a mountpoint */ if (!mnt_has_parent(root_mnt)) goto out4; /* not attached */ if (!path_mounted(&new)) goto out4; /* not a mountpoint */ if (!mnt_has_parent(new_mnt)) goto out4; /* not attached */ /* make sure we can reach put_old from new_root */ if (!is_path_reachable(old_mnt, old.dentry, &new)) goto out4; /* make certain new is below the root */ if (!is_path_reachable(new_mnt, new.dentry, &root)) goto out4; lock_mount_hash(); umount_mnt(new_mnt); root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { new_mnt->mnt.mnt_flags |= MNT_LOCKED; root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; } /* mount old root on put_old */ attach_mnt(root_mnt, old_mnt, old_mp, false); /* mount new_root on / */ attach_mnt(new_mnt, root_parent, root_mp, false); mnt_add_count(root_parent, -1); touch_mnt_namespace(current->nsproxy->mnt_ns); /* A moved mount should not expire automatically */ list_del_init(&new_mnt->mnt_expire); put_mountpoint(root_mp); unlock_mount_hash(); chroot_fs_refs(&root, &new); error = 0; out4: unlock_mount(old_mp); if (!error) mntput_no_expire(ex_parent); out3: path_put(&root); out2: path_put(&old); out1: path_put(&new); out0: return error; } static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) { unsigned int flags = mnt->mnt.mnt_flags; /* flags to clear */ flags &= ~kattr->attr_clr; /* flags to raise */ flags |= kattr->attr_set; return flags; } static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) { struct vfsmount *m = &mnt->mnt; struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; if (!kattr->mnt_idmap) return 0; /* * Creating an idmapped mount with the filesystem wide idmapping * doesn't make sense so block that. We don't allow mushy semantics. */ if (kattr->mnt_userns == m->mnt_sb->s_user_ns) return -EINVAL; /* * Once a mount has been idmapped we don't allow it to change its * mapping. It makes things simpler and callers can just create * another bind-mount they can idmap if they want to. */ if (is_idmapped_mnt(m)) return -EPERM; /* The underlying filesystem doesn't support idmapped mounts yet. */ if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) return -EINVAL; /* The filesystem has turned off idmapped mounts. */ if (m->mnt_sb->s_iflags & SB_I_NOIDMAP) return -EINVAL; /* We're not controlling the superblock. */ if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) return -EPERM; /* Mount has already been visible in the filesystem hierarchy. */ if (!is_anon_ns(mnt->mnt_ns)) return -EINVAL; return 0; } /** * mnt_allow_writers() - check whether the attribute change allows writers * @kattr: the new mount attributes * @mnt: the mount to which @kattr will be applied * * Check whether thew new mount attributes in @kattr allow concurrent writers. * * Return: true if writers need to be held, false if not */ static inline bool mnt_allow_writers(const struct mount_kattr *kattr, const struct mount *mnt) { return (!(kattr->attr_set & MNT_READONLY) || (mnt->mnt.mnt_flags & MNT_READONLY)) && !kattr->mnt_idmap; } static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt) { struct mount *m; int err; for (m = mnt; m; m = next_mnt(m, mnt)) { if (!can_change_locked_flags(m, recalc_flags(kattr, m))) { err = -EPERM; break; } err = can_idmap_mount(kattr, m); if (err) break; if (!mnt_allow_writers(kattr, m)) { err = mnt_hold_writers(m); if (err) break; } if (!kattr->recurse) return 0; } if (err) { struct mount *p; /* * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all * mounts and needs to take care to include the first mount. */ for (p = mnt; p; p = next_mnt(p, mnt)) { /* If we had to hold writers unblock them. */ if (p->mnt.mnt_flags & MNT_WRITE_HOLD) mnt_unhold_writers(p); /* * We're done once the first mount we changed got * MNT_WRITE_HOLD unset. */ if (p == m) break; } } return err; } static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) { if (!kattr->mnt_idmap) return; /* * Pairs with smp_load_acquire() in mnt_idmap(). * * Since we only allow a mount to change the idmapping once and * verified this in can_idmap_mount() we know that the mount has * @nop_mnt_idmap attached to it. So there's no need to drop any * references. */ smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap)); } static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt) { struct mount *m; for (m = mnt; m; m = next_mnt(m, mnt)) { unsigned int flags; do_idmap_mount(kattr, m); flags = recalc_flags(kattr, m); WRITE_ONCE(m->mnt.mnt_flags, flags); /* If we had to hold writers unblock them. */ if (m->mnt.mnt_flags & MNT_WRITE_HOLD) mnt_unhold_writers(m); if (kattr->propagation) change_mnt_propagation(m, kattr->propagation); if (!kattr->recurse) break; } touch_mnt_namespace(mnt->mnt_ns); } static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) { struct mount *mnt = real_mount(path->mnt); int err = 0; if (!path_mounted(path)) return -EINVAL; if (kattr->mnt_userns) { struct mnt_idmap *mnt_idmap; mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns); if (IS_ERR(mnt_idmap)) return PTR_ERR(mnt_idmap); kattr->mnt_idmap = mnt_idmap; } if (kattr->propagation) { /* * Only take namespace_lock() if we're actually changing * propagation. */ namespace_lock(); if (kattr->propagation == MS_SHARED) { err = invent_group_ids(mnt, kattr->recurse); if (err) { namespace_unlock(); return err; } } } err = -EINVAL; lock_mount_hash(); /* Ensure that this isn't anything purely vfs internal. */ if (!is_mounted(&mnt->mnt)) goto out; /* * If this is an attached mount make sure it's located in the callers * mount namespace. If it's not don't let the caller interact with it. * * If this mount doesn't have a parent it's most often simply a * detached mount with an anonymous mount namespace. IOW, something * that's simply not attached yet. But there are apparently also users * that do change mount properties on the rootfs itself. That obviously * neither has a parent nor is it a detached mount so we cannot * unconditionally check for detached mounts. */ if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt)) goto out; /* * First, we get the mount tree in a shape where we can change mount * properties without failure. If we succeeded to do so we commit all * changes and if we failed we clean up. */ err = mount_setattr_prepare(kattr, mnt); if (!err) mount_setattr_commit(kattr, mnt); out: unlock_mount_hash(); if (kattr->propagation) { if (err) cleanup_group_ids(mnt, NULL); namespace_unlock(); } return err; } static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, struct mount_kattr *kattr, unsigned int flags) { int err = 0; struct ns_common *ns; struct user_namespace *mnt_userns; struct fd f; if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) return 0; /* * We currently do not support clearing an idmapped mount. If this ever * is a use-case we can revisit this but for now let's keep it simple * and not allow it. */ if (attr->attr_clr & MOUNT_ATTR_IDMAP) return -EINVAL; if (attr->userns_fd > INT_MAX) return -EINVAL; f = fdget(attr->userns_fd); if (!fd_file(f)) return -EBADF; if (!proc_ns_file(fd_file(f))) { err = -EINVAL; goto out_fput; } ns = get_proc_ns(file_inode(fd_file(f))); if (ns->ops->type != CLONE_NEWUSER) { err = -EINVAL; goto out_fput; } /* * The initial idmapping cannot be used to create an idmapped * mount. We use the initial idmapping as an indicator of a mount * that is not idmapped. It can simply be passed into helpers that * are aware of idmapped mounts as a convenient shortcut. A user * can just create a dedicated identity mapping to achieve the same * result. */ mnt_userns = container_of(ns, struct user_namespace, ns); if (mnt_userns == &init_user_ns) { err = -EPERM; goto out_fput; } /* We're not controlling the target namespace. */ if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) { err = -EPERM; goto out_fput; } kattr->mnt_userns = get_user_ns(mnt_userns); out_fput: fdput(f); return err; } static int build_mount_kattr(const struct mount_attr *attr, size_t usize, struct mount_kattr *kattr, unsigned int flags) { unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; if (flags & AT_NO_AUTOMOUNT) lookup_flags &= ~LOOKUP_AUTOMOUNT; if (flags & AT_SYMLINK_NOFOLLOW) lookup_flags &= ~LOOKUP_FOLLOW; if (flags & AT_EMPTY_PATH) lookup_flags |= LOOKUP_EMPTY; *kattr = (struct mount_kattr) { .lookup_flags = lookup_flags, .recurse = !!(flags & AT_RECURSIVE), }; if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) return -EINVAL; if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) return -EINVAL; kattr->propagation = attr->propagation; if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) return -EINVAL; kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); /* * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, * users wanting to transition to a different atime setting cannot * simply specify the atime setting in @attr_set, but must also * specify MOUNT_ATTR__ATIME in the @attr_clr field. * So ensure that MOUNT_ATTR__ATIME can't be partially set in * @attr_clr and that @attr_set can't have any atime bits set if * MOUNT_ATTR__ATIME isn't set in @attr_clr. */ if (attr->attr_clr & MOUNT_ATTR__ATIME) { if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) return -EINVAL; /* * Clear all previous time settings as they are mutually * exclusive. */ kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; switch (attr->attr_set & MOUNT_ATTR__ATIME) { case MOUNT_ATTR_RELATIME: kattr->attr_set |= MNT_RELATIME; break; case MOUNT_ATTR_NOATIME: kattr->attr_set |= MNT_NOATIME; break; case MOUNT_ATTR_STRICTATIME: break; default: return -EINVAL; } } else { if (attr->attr_set & MOUNT_ATTR__ATIME) return -EINVAL; } return build_mount_idmapped(attr, usize, kattr, flags); } static void finish_mount_kattr(struct mount_kattr *kattr) { put_user_ns(kattr->mnt_userns); kattr->mnt_userns = NULL; if (kattr->mnt_idmap) mnt_idmap_put(kattr->mnt_idmap); } SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, unsigned int, flags, struct mount_attr __user *, uattr, size_t, usize) { int err; struct path target; struct mount_attr attr; struct mount_kattr kattr; BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); if (flags & ~(AT_EMPTY_PATH | AT_RECURSIVE | AT_SYMLINK_NOFOLLOW | AT_NO_AUTOMOUNT)) return -EINVAL; if (unlikely(usize > PAGE_SIZE)) return -E2BIG; if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) return -EINVAL; if (!may_mount()) return -EPERM; err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); if (err) return err; /* Don't bother walking through the mounts if this is a nop. */ if (attr.attr_set == 0 && attr.attr_clr == 0 && attr.propagation == 0) return 0; err = build_mount_kattr(&attr, usize, &kattr, flags); if (err) return err; err = user_path_at(dfd, path, kattr.lookup_flags, &target); if (!err) { err = do_mount_setattr(&target, &kattr); path_put(&target); } finish_mount_kattr(&kattr); return err; } int show_path(struct seq_file *m, struct dentry *root) { if (root->d_sb->s_op->show_path) return root->d_sb->s_op->show_path(m, root); seq_dentry(m, root, " \t\n\\"); return 0; } static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns) { struct mount *mnt = mnt_find_id_at(ns, id); if (!mnt || mnt->mnt_id_unique != id) return NULL; return &mnt->mnt; } struct kstatmount { struct statmount __user *buf; size_t bufsize; struct vfsmount *mnt; u64 mask; struct path root; struct statmount sm; struct seq_file seq; }; static u64 mnt_to_attr_flags(struct vfsmount *mnt) { unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags); u64 attr_flags = 0; if (mnt_flags & MNT_READONLY) attr_flags |= MOUNT_ATTR_RDONLY; if (mnt_flags & MNT_NOSUID) attr_flags |= MOUNT_ATTR_NOSUID; if (mnt_flags & MNT_NODEV) attr_flags |= MOUNT_ATTR_NODEV; if (mnt_flags & MNT_NOEXEC) attr_flags |= MOUNT_ATTR_NOEXEC; if (mnt_flags & MNT_NODIRATIME) attr_flags |= MOUNT_ATTR_NODIRATIME; if (mnt_flags & MNT_NOSYMFOLLOW) attr_flags |= MOUNT_ATTR_NOSYMFOLLOW; if (mnt_flags & MNT_NOATIME) attr_flags |= MOUNT_ATTR_NOATIME; else if (mnt_flags & MNT_RELATIME) attr_flags |= MOUNT_ATTR_RELATIME; else attr_flags |= MOUNT_ATTR_STRICTATIME; if (is_idmapped_mnt(mnt)) attr_flags |= MOUNT_ATTR_IDMAP; return attr_flags; } static u64 mnt_to_propagation_flags(struct mount *m) { u64 propagation = 0; if (IS_MNT_SHARED(m)) propagation |= MS_SHARED; if (IS_MNT_SLAVE(m)) propagation |= MS_SLAVE; if (IS_MNT_UNBINDABLE(m)) propagation |= MS_UNBINDABLE; if (!propagation) propagation |= MS_PRIVATE; return propagation; } static void statmount_sb_basic(struct kstatmount *s) { struct super_block *sb = s->mnt->mnt_sb; s->sm.mask |= STATMOUNT_SB_BASIC; s->sm.sb_dev_major = MAJOR(sb->s_dev); s->sm.sb_dev_minor = MINOR(sb->s_dev); s->sm.sb_magic = sb->s_magic; s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME); } static void statmount_mnt_basic(struct kstatmount *s) { struct mount *m = real_mount(s->mnt); s->sm.mask |= STATMOUNT_MNT_BASIC; s->sm.mnt_id = m->mnt_id_unique; s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique; s->sm.mnt_id_old = m->mnt_id; s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id; s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt); s->sm.mnt_propagation = mnt_to_propagation_flags(m); s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0; s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0; } static void statmount_propagate_from(struct kstatmount *s) { struct mount *m = real_mount(s->mnt); s->sm.mask |= STATMOUNT_PROPAGATE_FROM; if (IS_MNT_SLAVE(m)) s->sm.propagate_from = get_dominating_id(m, &current->fs->root); } static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq) { int ret; size_t start = seq->count; ret = show_path(seq, s->mnt->mnt_root); if (ret) return ret; if (unlikely(seq_has_overflowed(seq))) return -EAGAIN; /* * Unescape the result. It would be better if supplied string was not * escaped in the first place, but that's a pretty invasive change. */ seq->buf[seq->count] = '\0'; seq->count = start; seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL)); return 0; } static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq) { struct vfsmount *mnt = s->mnt; struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; int err; err = seq_path_root(seq, &mnt_path, &s->root, ""); return err == SEQ_SKIP ? 0 : err; } static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq) { struct super_block *sb = s->mnt->mnt_sb; seq_puts(seq, sb->s_type->name); return 0; } static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns) { s->sm.mask |= STATMOUNT_MNT_NS_ID; s->sm.mnt_ns_id = ns->seq; } static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq) { struct vfsmount *mnt = s->mnt; struct super_block *sb = mnt->mnt_sb; int err; if (sb->s_op->show_options) { size_t start = seq->count; err = sb->s_op->show_options(seq, mnt->mnt_root); if (err) return err; if (unlikely(seq_has_overflowed(seq))) return -EAGAIN; if (seq->count == start) return 0; /* skip leading comma */ memmove(seq->buf + start, seq->buf + start + 1, seq->count - start - 1); seq->count--; } return 0; } static int statmount_string(struct kstatmount *s, u64 flag) { int ret; size_t kbufsize; struct seq_file *seq = &s->seq; struct statmount *sm = &s->sm; switch (flag) { case STATMOUNT_FS_TYPE: sm->fs_type = seq->count; ret = statmount_fs_type(s, seq); break; case STATMOUNT_MNT_ROOT: sm->mnt_root = seq->count; ret = statmount_mnt_root(s, seq); break; case STATMOUNT_MNT_POINT: sm->mnt_point = seq->count; ret = statmount_mnt_point(s, seq); break; case STATMOUNT_MNT_OPTS: sm->mnt_opts = seq->count; ret = statmount_mnt_opts(s, seq); break; default: WARN_ON_ONCE(true); return -EINVAL; } if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize))) return -EOVERFLOW; if (kbufsize >= s->bufsize) return -EOVERFLOW; /* signal a retry */ if (unlikely(seq_has_overflowed(seq))) return -EAGAIN; if (ret) return ret; seq->buf[seq->count++] = '\0'; sm->mask |= flag; return 0; } static int copy_statmount_to_user(struct kstatmount *s) { struct statmount *sm = &s->sm; struct seq_file *seq = &s->seq; char __user *str = ((char __user *)s->buf) + sizeof(*sm); size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm)); if (seq->count && copy_to_user(str, seq->buf, seq->count)) return -EFAULT; /* Return the number of bytes copied to the buffer */ sm->size = copysize + seq->count; if (copy_to_user(s->buf, sm, copysize)) return -EFAULT; return 0; } static struct mount *listmnt_next(struct mount *curr, bool reverse) { struct rb_node *node; if (reverse) node = rb_prev(&curr->mnt_node); else node = rb_next(&curr->mnt_node); return node_to_mount(node); } static int grab_requested_root(struct mnt_namespace *ns, struct path *root) { struct mount *first, *child; rwsem_assert_held(&namespace_sem); /* We're looking at our own ns, just use get_fs_root. */ if (ns == current->nsproxy->mnt_ns) { get_fs_root(current->fs, root); return 0; } /* * We have to find the first mount in our ns and use that, however it * may not exist, so handle that properly. */ if (RB_EMPTY_ROOT(&ns->mounts)) return -ENOENT; first = child = ns->root; for (;;) { child = listmnt_next(child, false); if (!child) return -ENOENT; if (child->mnt_parent == first) break; } root->mnt = mntget(&child->mnt); root->dentry = dget(root->mnt->mnt_root); return 0; } static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id, struct mnt_namespace *ns) { struct path root __free(path_put) = {}; struct mount *m; int err; /* Has the namespace already been emptied? */ if (mnt_ns_id && RB_EMPTY_ROOT(&ns->mounts)) return -ENOENT; s->mnt = lookup_mnt_in_ns(mnt_id, ns); if (!s->mnt) return -ENOENT; err = grab_requested_root(ns, &root); if (err) return err; /* * Don't trigger audit denials. We just want to determine what * mounts to show users. */ m = real_mount(s->mnt); if (!is_path_reachable(m, m->mnt.mnt_root, &root) && !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) return -EPERM; err = security_sb_statfs(s->mnt->mnt_root); if (err) return err; s->root = root; if (s->mask & STATMOUNT_SB_BASIC) statmount_sb_basic(s); if (s->mask & STATMOUNT_MNT_BASIC) statmount_mnt_basic(s); if (s->mask & STATMOUNT_PROPAGATE_FROM) statmount_propagate_from(s); if (s->mask & STATMOUNT_FS_TYPE) err = statmount_string(s, STATMOUNT_FS_TYPE); if (!err && s->mask & STATMOUNT_MNT_ROOT) err = statmount_string(s, STATMOUNT_MNT_ROOT); if (!err && s->mask & STATMOUNT_MNT_POINT) err = statmount_string(s, STATMOUNT_MNT_POINT); if (!err && s->mask & STATMOUNT_MNT_OPTS) err = statmount_string(s, STATMOUNT_MNT_OPTS); if (!err && s->mask & STATMOUNT_MNT_NS_ID) statmount_mnt_ns_id(s, ns); if (err) return err; return 0; } static inline bool retry_statmount(const long ret, size_t *seq_size) { if (likely(ret != -EAGAIN)) return false; if (unlikely(check_mul_overflow(*seq_size, 2, seq_size))) return false; if (unlikely(*seq_size > MAX_RW_COUNT)) return false; return true; } #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \ STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS) static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq, struct statmount __user *buf, size_t bufsize, size_t seq_size) { if (!access_ok(buf, bufsize)) return -EFAULT; memset(ks, 0, sizeof(*ks)); ks->mask = kreq->param; ks->buf = buf; ks->bufsize = bufsize; if (ks->mask & STATMOUNT_STRING_REQ) { if (bufsize == sizeof(ks->sm)) return -EOVERFLOW; ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT); if (!ks->seq.buf) return -ENOMEM; ks->seq.size = seq_size; } return 0; } static int copy_mnt_id_req(const struct mnt_id_req __user *req, struct mnt_id_req *kreq) { int ret; size_t usize; BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1); ret = get_user(usize, &req->size); if (ret) return -EFAULT; if (unlikely(usize > PAGE_SIZE)) return -E2BIG; if (unlikely(usize < MNT_ID_REQ_SIZE_VER0)) return -EINVAL; memset(kreq, 0, sizeof(*kreq)); ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize); if (ret) return ret; if (kreq->spare != 0) return -EINVAL; /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET) return -EINVAL; return 0; } /* * If the user requested a specific mount namespace id, look that up and return * that, or if not simply grab a passive reference on our mount namespace and * return that. */ static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq) { struct mnt_namespace *mnt_ns; if (kreq->mnt_ns_id && kreq->spare) return ERR_PTR(-EINVAL); if (kreq->mnt_ns_id) return lookup_mnt_ns(kreq->mnt_ns_id); if (kreq->spare) { struct ns_common *ns; CLASS(fd, f)(kreq->spare); if (fd_empty(f)) return ERR_PTR(-EBADF); if (!proc_ns_file(fd_file(f))) return ERR_PTR(-EINVAL); ns = get_proc_ns(file_inode(fd_file(f))); if (ns->ops->type != CLONE_NEWNS) return ERR_PTR(-EINVAL); mnt_ns = to_mnt_ns(ns); } else { mnt_ns = current->nsproxy->mnt_ns; } refcount_inc(&mnt_ns->passive); return mnt_ns; } SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req, struct statmount __user *, buf, size_t, bufsize, unsigned int, flags) { struct mnt_namespace *ns __free(mnt_ns_release) = NULL; struct kstatmount *ks __free(kfree) = NULL; struct mnt_id_req kreq; /* We currently support retrieval of 3 strings. */ size_t seq_size = 3 * PATH_MAX; int ret; if (flags) return -EINVAL; ret = copy_mnt_id_req(req, &kreq); if (ret) return ret; ns = grab_requested_mnt_ns(&kreq); if (!ns) return -ENOENT; if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) && !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) return -ENOENT; ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT); if (!ks) return -ENOMEM; retry: ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size); if (ret) return ret; scoped_guard(rwsem_read, &namespace_sem) ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns); if (!ret) ret = copy_statmount_to_user(ks); kvfree(ks->seq.buf); if (retry_statmount(ret, &seq_size)) goto retry; return ret; } static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id, u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids, bool reverse) { struct path root __free(path_put) = {}; struct path orig; struct mount *r, *first; ssize_t ret; rwsem_assert_held(&namespace_sem); ret = grab_requested_root(ns, &root); if (ret) return ret; if (mnt_parent_id == LSMT_ROOT) { orig = root; } else { orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns); if (!orig.mnt) return -ENOENT; orig.dentry = orig.mnt->mnt_root; } /* * Don't trigger audit denials. We just want to determine what * mounts to show users. */ if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) && !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) return -EPERM; ret = security_sb_statfs(orig.dentry); if (ret) return ret; if (!last_mnt_id) { if (reverse) first = node_to_mount(rb_last(&ns->mounts)); else first = node_to_mount(rb_first(&ns->mounts)); } else { if (reverse) first = mnt_find_id_at_reverse(ns, last_mnt_id - 1); else first = mnt_find_id_at(ns, last_mnt_id + 1); } for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) { if (r->mnt_id_unique == mnt_parent_id) continue; if (!is_path_reachable(r, r->mnt.mnt_root, &orig)) continue; *mnt_ids = r->mnt_id_unique; mnt_ids++; nr_mnt_ids--; ret++; } return ret; } SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req, u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags) { u64 *kmnt_ids __free(kvfree) = NULL; const size_t maxcount = 1000000; struct mnt_namespace *ns __free(mnt_ns_release) = NULL; struct mnt_id_req kreq; u64 last_mnt_id; ssize_t ret; if (flags & ~LISTMOUNT_REVERSE) return -EINVAL; /* * If the mount namespace really has more than 1 million mounts the * caller must iterate over the mount namespace (and reconsider their * system design...). */ if (unlikely(nr_mnt_ids > maxcount)) return -EOVERFLOW; if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids))) return -EFAULT; ret = copy_mnt_id_req(req, &kreq); if (ret) return ret; last_mnt_id = kreq.param; /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET) return -EINVAL; kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids), GFP_KERNEL_ACCOUNT); if (!kmnt_ids) return -ENOMEM; ns = grab_requested_mnt_ns(&kreq); if (!ns) return -ENOENT; if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) && !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) return -ENOENT; scoped_guard(rwsem_read, &namespace_sem) ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids, nr_mnt_ids, (flags & LISTMOUNT_REVERSE)); if (ret <= 0) return ret; if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids))) return -EFAULT; return ret; } static void __init init_mount_tree(void) { struct vfsmount *mnt; struct mount *m; struct mnt_namespace *ns; struct path root; mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); if (IS_ERR(mnt)) panic("Can't create rootfs"); ns = alloc_mnt_ns(&init_user_ns, false); if (IS_ERR(ns)) panic("Can't allocate initial namespace"); m = real_mount(mnt); ns->root = m; ns->nr_mounts = 1; mnt_add_to_ns(ns, m); init_task.nsproxy->mnt_ns = ns; get_mnt_ns(ns); root.mnt = mnt; root.dentry = mnt->mnt_root; mnt->mnt_flags |= MNT_LOCKED; set_fs_pwd(current->fs, &root); set_fs_root(current->fs, &root); mnt_ns_tree_add(ns); } void __init mnt_init(void) { int err; mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); mount_hashtable = alloc_large_system_hash("Mount-cache", sizeof(struct hlist_head), mhash_entries, 19, HASH_ZERO, &m_hash_shift, &m_hash_mask, 0, 0); mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", sizeof(struct hlist_head), mphash_entries, 19, HASH_ZERO, &mp_hash_shift, &mp_hash_mask, 0, 0); if (!mount_hashtable || !mountpoint_hashtable) panic("Failed to allocate mount hash table\n"); kernfs_init(); err = sysfs_init(); if (err) printk(KERN_WARNING "%s: sysfs_init error: %d\n", __func__, err); fs_kobj = kobject_create_and_add("fs", NULL); if (!fs_kobj) printk(KERN_WARNING "%s: kobj create error\n", __func__); shmem_init(); init_rootfs(); init_mount_tree(); } void put_mnt_ns(struct mnt_namespace *ns) { if (!refcount_dec_and_test(&ns->ns.count)) return; drop_collected_mounts(&ns->root->mnt); free_mnt_ns(ns); } struct vfsmount *kern_mount(struct file_system_type *type) { struct vfsmount *mnt; mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); if (!IS_ERR(mnt)) { /* * it is a longterm mount, don't release mnt until * we unmount before file sys is unregistered */ real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; } return mnt; } EXPORT_SYMBOL_GPL(kern_mount); void kern_unmount(struct vfsmount *mnt) { /* release long term mount so mount point can be released */ if (!IS_ERR(mnt)) { mnt_make_shortterm(mnt); synchronize_rcu(); /* yecchhh... */ mntput(mnt); } } EXPORT_SYMBOL(kern_unmount); void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) { unsigned int i; for (i = 0; i < num; i++) mnt_make_shortterm(mnt[i]); synchronize_rcu_expedited(); for (i = 0; i < num; i++) mntput(mnt[i]); } EXPORT_SYMBOL(kern_unmount_array); bool our_mnt(struct vfsmount *mnt) { return check_mnt(real_mount(mnt)); } bool current_chrooted(void) { /* Does the current process have a non-standard root */ struct path ns_root; struct path fs_root; bool chrooted; /* Find the namespace root */ ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt; ns_root.dentry = ns_root.mnt->mnt_root; path_get(&ns_root); while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) ; get_fs_root(current->fs, &fs_root); chrooted = !path_equal(&fs_root, &ns_root); path_put(&fs_root); path_put(&ns_root); return chrooted; } static bool mnt_already_visible(struct mnt_namespace *ns, const struct super_block *sb, int *new_mnt_flags) { int new_flags = *new_mnt_flags; struct mount *mnt, *n; bool visible = false; down_read(&namespace_sem); rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { struct mount *child; int mnt_flags; if (mnt->mnt.mnt_sb->s_type != sb->s_type) continue; /* This mount is not fully visible if it's root directory * is not the root directory of the filesystem. */ if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) continue; /* A local view of the mount flags */ mnt_flags = mnt->mnt.mnt_flags; /* Don't miss readonly hidden in the superblock flags */ if (sb_rdonly(mnt->mnt.mnt_sb)) mnt_flags |= MNT_LOCK_READONLY; /* Verify the mount flags are equal to or more permissive * than the proposed new mount. */ if ((mnt_flags & MNT_LOCK_READONLY) && !(new_flags & MNT_READONLY)) continue; if ((mnt_flags & MNT_LOCK_ATIME) && ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) continue; /* This mount is not fully visible if there are any * locked child mounts that cover anything except for * empty directories. */ list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { struct inode *inode = child->mnt_mountpoint->d_inode; /* Only worry about locked mounts */ if (!(child->mnt.mnt_flags & MNT_LOCKED)) continue; /* Is the directory permanently empty? */ if (!is_empty_dir_inode(inode)) goto next; } /* Preserve the locked attributes */ *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ MNT_LOCK_ATIME); visible = true; goto found; next: ; } found: up_read(&namespace_sem); return visible; } static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) { const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; struct mnt_namespace *ns = current->nsproxy->mnt_ns; unsigned long s_iflags; if (ns->user_ns == &init_user_ns) return false; /* Can this filesystem be too revealing? */ s_iflags = sb->s_iflags; if (!(s_iflags & SB_I_USERNS_VISIBLE)) return false; if ((s_iflags & required_iflags) != required_iflags) { WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", required_iflags); return true; } return !mnt_already_visible(ns, sb, new_mnt_flags); } bool mnt_may_suid(struct vfsmount *mnt) { /* * Foreign mounts (accessed via fchdir or through /proc * symlinks) are always treated as if they are nosuid. This * prevents namespaces from trusting potentially unsafe * suid/sgid bits, file caps, or security labels that originate * in other namespaces. */ return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && current_in_userns(mnt->mnt_sb->s_user_ns); } static struct ns_common *mntns_get(struct task_struct *task) { struct ns_common *ns = NULL; struct nsproxy *nsproxy; task_lock(task); nsproxy = task->nsproxy; if (nsproxy) { ns = &nsproxy->mnt_ns->ns; get_mnt_ns(to_mnt_ns(ns)); } task_unlock(task); return ns; } static void mntns_put(struct ns_common *ns) { put_mnt_ns(to_mnt_ns(ns)); } static int mntns_install(struct nsset *nsset, struct ns_common *ns) { struct nsproxy *nsproxy = nsset->nsproxy; struct fs_struct *fs = nsset->fs; struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; struct user_namespace *user_ns = nsset->cred->user_ns; struct path root; int err; if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || !ns_capable(user_ns, CAP_SYS_CHROOT) || !ns_capable(user_ns, CAP_SYS_ADMIN)) return -EPERM; if (is_anon_ns(mnt_ns)) return -EINVAL; if (fs->users != 1) return -EINVAL; get_mnt_ns(mnt_ns); old_mnt_ns = nsproxy->mnt_ns; nsproxy->mnt_ns = mnt_ns; /* Find the root */ err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, "/", LOOKUP_DOWN, &root); if (err) { /* revert to old namespace */ nsproxy->mnt_ns = old_mnt_ns; put_mnt_ns(mnt_ns); return err; } put_mnt_ns(old_mnt_ns); /* Update the pwd and root */ set_fs_pwd(fs, &root); set_fs_root(fs, &root); path_put(&root); return 0; } static struct user_namespace *mntns_owner(struct ns_common *ns) { return to_mnt_ns(ns)->user_ns; } const struct proc_ns_operations mntns_operations = { .name = "mnt", .type = CLONE_NEWNS, .get = mntns_get, .put = mntns_put, .install = mntns_install, .owner = mntns_owner, }; #ifdef CONFIG_SYSCTL static struct ctl_table fs_namespace_sysctls[] = { { .procname = "mount-max", .data = &sysctl_mount_max, .maxlen = sizeof(unsigned int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ONE, }, }; static int __init init_fs_namespace_sysctls(void) { register_sysctl_init("fs", fs_namespace_sysctls); return 0; } fs_initcall(init_fs_namespace_sysctls); #endif /* CONFIG_SYSCTL */
1 4 4 1 5 4 1 1 4 4 1 1 4 4 4 4 4 1 4 1 4 1 1 3 6 1 5 5 4 3 1 4 1 1 1 6 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 // SPDX-License-Identifier: GPL-2.0 /* * main.c - Multi purpose firmware loading support * * Copyright (c) 2003 Manuel Estrada Sainz * * Please see Documentation/driver-api/firmware/ for more information. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/capability.h> #include <linux/device.h> #include <linux/kernel_read_file.h> #include <linux/module.h> #include <linux/init.h> #include <linux/initrd.h> #include <linux/timer.h> #include <linux/vmalloc.h> #include <linux/interrupt.h> #include <linux/bitops.h> #include <linux/mutex.h> #include <linux/workqueue.h> #include <linux/highmem.h> #include <linux/firmware.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/file.h> #include <linux/list.h> #include <linux/fs.h> #include <linux/async.h> #include <linux/pm.h> #include <linux/suspend.h> #include <linux/syscore_ops.h> #include <linux/reboot.h> #include <linux/security.h> #include <linux/zstd.h> #include <linux/xz.h> #include <generated/utsrelease.h> #include "../base.h" #include "firmware.h" #include "fallback.h" MODULE_AUTHOR("Manuel Estrada Sainz"); MODULE_DESCRIPTION("Multi purpose firmware loading support"); MODULE_LICENSE("GPL"); struct firmware_cache { /* firmware_buf instance will be added into the below list */ spinlock_t lock; struct list_head head; int state; #ifdef CONFIG_FW_CACHE /* * Names of firmware images which have been cached successfully * will be added into the below list so that device uncache * helper can trace which firmware images have been cached * before. */ spinlock_t name_lock; struct list_head fw_names; struct delayed_work work; struct notifier_block pm_notify; #endif }; struct fw_cache_entry { struct list_head list; const char *name; }; struct fw_name_devm { unsigned long magic; const char *name; }; static inline struct fw_priv *to_fw_priv(struct kref *ref) { return container_of(ref, struct fw_priv, ref); } #define FW_LOADER_NO_CACHE 0 #define FW_LOADER_START_CACHE 1 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just * guarding for corner cases a global lock should be OK */ DEFINE_MUTEX(fw_lock); struct firmware_cache fw_cache; bool fw_load_abort_all; void fw_state_init(struct fw_priv *fw_priv) { struct fw_state *fw_st = &fw_priv->fw_st; init_completion(&fw_st->completion); fw_st->status = FW_STATUS_UNKNOWN; } static inline int fw_state_wait(struct fw_priv *fw_priv) { return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT); } static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv); static struct fw_priv *__allocate_fw_priv(const char *fw_name, struct firmware_cache *fwc, void *dbuf, size_t size, size_t offset, u32 opt_flags) { struct fw_priv *fw_priv; /* For a partial read, the buffer must be preallocated. */ if ((opt_flags & FW_OPT_PARTIAL) && !dbuf) return NULL; /* Only partial reads are allowed to use an offset. */ if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL)) return NULL; fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC); if (!fw_priv) return NULL; fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC); if (!fw_priv->fw_name) { kfree(fw_priv); return NULL; } kref_init(&fw_priv->ref); fw_priv->fwc = fwc; fw_priv->data = dbuf; fw_priv->allocated_size = size; fw_priv->offset = offset; fw_priv->opt_flags = opt_flags; fw_state_init(fw_priv); #ifdef CONFIG_FW_LOADER_USER_HELPER INIT_LIST_HEAD(&fw_priv->pending_list); #endif pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv); return fw_priv; } static struct fw_priv *__lookup_fw_priv(const char *fw_name) { struct fw_priv *tmp; struct firmware_cache *fwc = &fw_cache; list_for_each_entry(tmp, &fwc->head, list) if (!strcmp(tmp->fw_name, fw_name)) return tmp; return NULL; } /* Returns 1 for batching firmware requests with the same name */ int alloc_lookup_fw_priv(const char *fw_name, struct firmware_cache *fwc, struct fw_priv **fw_priv, void *dbuf, size_t size, size_t offset, u32 opt_flags) { struct fw_priv *tmp; spin_lock(&fwc->lock); /* * Do not merge requests that are marked to be non-cached or * are performing partial reads. */ if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) { tmp = __lookup_fw_priv(fw_name); if (tmp) { kref_get(&tmp->ref); spin_unlock(&fwc->lock); *fw_priv = tmp; pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n"); return 1; } } tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags); if (tmp) { INIT_LIST_HEAD(&tmp->list); if (!(opt_flags & FW_OPT_NOCACHE)) list_add(&tmp->list, &fwc->head); } spin_unlock(&fwc->lock); *fw_priv = tmp; return tmp ? 0 : -ENOMEM; } static void __free_fw_priv(struct kref *ref) __releases(&fwc->lock) { struct fw_priv *fw_priv = to_fw_priv(ref); struct firmware_cache *fwc = fw_priv->fwc; pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", __func__, fw_priv->fw_name, fw_priv, fw_priv->data, (unsigned int)fw_priv->size); list_del(&fw_priv->list); spin_unlock(&fwc->lock); if (fw_is_paged_buf(fw_priv)) fw_free_paged_buf(fw_priv); else if (!fw_priv->allocated_size) vfree(fw_priv->data); kfree_const(fw_priv->fw_name); kfree(fw_priv); } void free_fw_priv(struct fw_priv *fw_priv) { struct firmware_cache *fwc = fw_priv->fwc; spin_lock(&fwc->lock); if (!kref_put(&fw_priv->ref, __free_fw_priv)) spin_unlock(&fwc->lock); } #ifdef CONFIG_FW_LOADER_PAGED_BUF bool fw_is_paged_buf(struct fw_priv *fw_priv) { return fw_priv->is_paged_buf; } void fw_free_paged_buf(struct fw_priv *fw_priv) { int i; if (!fw_priv->pages) return; vunmap(fw_priv->data); for (i = 0; i < fw_priv->nr_pages; i++) __free_page(fw_priv->pages[i]); kvfree(fw_priv->pages); fw_priv->pages = NULL; fw_priv->page_array_size = 0; fw_priv->nr_pages = 0; fw_priv->data = NULL; fw_priv->size = 0; } int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed) { /* If the array of pages is too small, grow it */ if (fw_priv->page_array_size < pages_needed) { int new_array_size = max(pages_needed, fw_priv->page_array_size * 2); struct page **new_pages; new_pages = kvmalloc_array(new_array_size, sizeof(void *), GFP_KERNEL); if (!new_pages) return -ENOMEM; memcpy(new_pages, fw_priv->pages, fw_priv->page_array_size * sizeof(void *)); memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) * (new_array_size - fw_priv->page_array_size)); kvfree(fw_priv->pages); fw_priv->pages = new_pages; fw_priv->page_array_size = new_array_size; } while (fw_priv->nr_pages < pages_needed) { fw_priv->pages[fw_priv->nr_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM); if (!fw_priv->pages[fw_priv->nr_pages]) return -ENOMEM; fw_priv->nr_pages++; } return 0; } int fw_map_paged_buf(struct fw_priv *fw_priv) { /* one pages buffer should be mapped/unmapped only once */ if (!fw_priv->pages) return 0; vunmap(fw_priv->data); fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0, PAGE_KERNEL_RO); if (!fw_priv->data) return -ENOMEM; return 0; } #endif /* * ZSTD-compressed firmware support */ #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD static int fw_decompress_zstd(struct device *dev, struct fw_priv *fw_priv, size_t in_size, const void *in_buffer) { size_t len, out_size, workspace_size; void *workspace, *out_buf; zstd_dctx *ctx; int err; if (fw_priv->allocated_size) { out_size = fw_priv->allocated_size; out_buf = fw_priv->data; } else { zstd_frame_header params; if (zstd_get_frame_header(&params, in_buffer, in_size) || params.frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) { dev_dbg(dev, "%s: invalid zstd header\n", __func__); return -EINVAL; } out_size = params.frameContentSize; out_buf = vzalloc(out_size); if (!out_buf) return -ENOMEM; } workspace_size = zstd_dctx_workspace_bound(); workspace = kvzalloc(workspace_size, GFP_KERNEL); if (!workspace) { err = -ENOMEM; goto error; } ctx = zstd_init_dctx(workspace, workspace_size); if (!ctx) { dev_dbg(dev, "%s: failed to initialize context\n", __func__); err = -EINVAL; goto error; } len = zstd_decompress_dctx(ctx, out_buf, out_size, in_buffer, in_size); if (zstd_is_error(len)) { dev_dbg(dev, "%s: failed to decompress: %d\n", __func__, zstd_get_error_code(len)); err = -EINVAL; goto error; } if (!fw_priv->allocated_size) fw_priv->data = out_buf; fw_priv->size = len; err = 0; error: kvfree(workspace); if (err && !fw_priv->allocated_size) vfree(out_buf); return err; } #endif /* CONFIG_FW_LOADER_COMPRESS_ZSTD */ /* * XZ-compressed firmware support */ #ifdef CONFIG_FW_LOADER_COMPRESS_XZ /* show an error and return the standard error code */ static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret) { if (xz_ret != XZ_STREAM_END) { dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret); return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL; } return 0; } /* single-shot decompression onto the pre-allocated buffer */ static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv, size_t in_size, const void *in_buffer) { struct xz_dec *xz_dec; struct xz_buf xz_buf; enum xz_ret xz_ret; xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1); if (!xz_dec) return -ENOMEM; xz_buf.in_size = in_size; xz_buf.in = in_buffer; xz_buf.in_pos = 0; xz_buf.out_size = fw_priv->allocated_size; xz_buf.out = fw_priv->data; xz_buf.out_pos = 0; xz_ret = xz_dec_run(xz_dec, &xz_buf); xz_dec_end(xz_dec); fw_priv->size = xz_buf.out_pos; return fw_decompress_xz_error(dev, xz_ret); } /* decompression on paged buffer and map it */ static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv, size_t in_size, const void *in_buffer) { struct xz_dec *xz_dec; struct xz_buf xz_buf; enum xz_ret xz_ret; struct page *page; int err = 0; xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1); if (!xz_dec) return -ENOMEM; xz_buf.in_size = in_size; xz_buf.in = in_buffer; xz_buf.in_pos = 0; fw_priv->is_paged_buf = true; fw_priv->size = 0; do { if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) { err = -ENOMEM; goto out; } /* decompress onto the new allocated page */ page = fw_priv->pages[fw_priv->nr_pages - 1]; xz_buf.out = kmap_local_page(page); xz_buf.out_pos = 0; xz_buf.out_size = PAGE_SIZE; xz_ret = xz_dec_run(xz_dec, &xz_buf); kunmap_local(xz_buf.out); fw_priv->size += xz_buf.out_pos; /* partial decompression means either end or error */ if (xz_buf.out_pos != PAGE_SIZE) break; } while (xz_ret == XZ_OK); err = fw_decompress_xz_error(dev, xz_ret); if (!err) err = fw_map_paged_buf(fw_priv); out: xz_dec_end(xz_dec); return err; } static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv, size_t in_size, const void *in_buffer) { /* if the buffer is pre-allocated, we can perform in single-shot mode */ if (fw_priv->data) return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer); else return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer); } #endif /* CONFIG_FW_LOADER_COMPRESS_XZ */ /* direct firmware loading support */ static char fw_path_para[256]; static const char * const fw_path[] = { fw_path_para, "/lib/firmware/updates/" UTS_RELEASE, "/lib/firmware/updates", "/lib/firmware/" UTS_RELEASE, "/lib/firmware" }; /* * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH' * from kernel command line because firmware_class is generally built in * kernel instead of module. */ module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644); MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path"); static int fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv, const char *suffix, int (*decompress)(struct device *dev, struct fw_priv *fw_priv, size_t in_size, const void *in_buffer)) { size_t size; int i, len, maxlen = 0; int rc = -ENOENT; char *path, *nt = NULL; size_t msize = INT_MAX; void *buffer = NULL; /* Already populated data member means we're loading into a buffer */ if (!decompress && fw_priv->data) { buffer = fw_priv->data; msize = fw_priv->allocated_size; } path = __getname(); if (!path) return -ENOMEM; wait_for_initramfs(); for (i = 0; i < ARRAY_SIZE(fw_path); i++) { size_t file_size = 0; size_t *file_size_ptr = NULL; /* skip the unset customized path */ if (!fw_path[i][0]) continue; /* strip off \n from customized path */ maxlen = strlen(fw_path[i]); if (i == 0) { nt = strchr(fw_path[i], '\n'); if (nt) maxlen = nt - fw_path[i]; } len = snprintf(path, PATH_MAX, "%.*s/%s%s", maxlen, fw_path[i], fw_priv->fw_name, suffix); if (len >= PATH_MAX) { rc = -ENAMETOOLONG; break; } fw_priv->size = 0; /* * The total file size is only examined when doing a partial * read; the "full read" case needs to fail if the whole * firmware was not completely loaded. */ if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer) file_size_ptr = &file_size; /* load firmware files from the mount namespace of init */ rc = kernel_read_file_from_path_initns(path, fw_priv->offset, &buffer, msize, file_size_ptr, READING_FIRMWARE); if (rc < 0) { if (!(fw_priv->opt_flags & FW_OPT_NO_WARN)) { if (rc != -ENOENT) dev_warn(device, "loading %s failed with error %d\n", path, rc); else dev_dbg(device, "loading %s failed for no such file or directory.\n", path); } continue; } size = rc; rc = 0; dev_dbg(device, "Loading firmware from %s\n", path); if (decompress) { dev_dbg(device, "f/w decompressing %s\n", fw_priv->fw_name); rc = decompress(device, fw_priv, size, buffer); /* discard the superfluous original content */ vfree(buffer); buffer = NULL; if (rc) { fw_free_paged_buf(fw_priv); continue; } } else { dev_dbg(device, "direct-loading %s\n", fw_priv->fw_name); if (!fw_priv->data) fw_priv->data = buffer; fw_priv->size = size; } fw_state_done(fw_priv); break; } __putname(path); return rc; } /* firmware holds the ownership of pages */ static void firmware_free_data(const struct firmware *fw) { /* Loaded directly? */ if (!fw->priv) { vfree(fw->data); return; } free_fw_priv(fw->priv); } /* store the pages buffer info firmware from buf */ static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw) { fw->priv = fw_priv; fw->size = fw_priv->size; fw->data = fw_priv->data; pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n", __func__, fw_priv->fw_name, fw_priv, fw_priv->data, (unsigned int)fw_priv->size); } #ifdef CONFIG_FW_CACHE static void fw_name_devm_release(struct device *dev, void *res) { struct fw_name_devm *fwn = res; if (fwn->magic == (unsigned long)&fw_cache) pr_debug("%s: fw_name-%s devm-%p released\n", __func__, fwn->name, res); kfree_const(fwn->name); } static int fw_devm_match(struct device *dev, void *res, void *match_data) { struct fw_name_devm *fwn = res; return (fwn->magic == (unsigned long)&fw_cache) && !strcmp(fwn->name, match_data); } static struct fw_name_devm *fw_find_devm_name(struct device *dev, const char *name) { struct fw_name_devm *fwn; fwn = devres_find(dev, fw_name_devm_release, fw_devm_match, (void *)name); return fwn; } static bool fw_cache_is_setup(struct device *dev, const char *name) { struct fw_name_devm *fwn; fwn = fw_find_devm_name(dev, name); if (fwn) return true; return false; } /* add firmware name into devres list */ static int fw_add_devm_name(struct device *dev, const char *name) { struct fw_name_devm *fwn; if (fw_cache_is_setup(dev, name)) return 0; fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm), GFP_KERNEL); if (!fwn) return -ENOMEM; fwn->name = kstrdup_const(name, GFP_KERNEL); if (!fwn->name) { devres_free(fwn); return -ENOMEM; } fwn->magic = (unsigned long)&fw_cache; devres_add(dev, fwn); return 0; } #else static bool fw_cache_is_setup(struct device *dev, const char *name) { return false; } static int fw_add_devm_name(struct device *dev, const char *name) { return 0; } #endif int assign_fw(struct firmware *fw, struct device *device) { struct fw_priv *fw_priv = fw->priv; int ret; mutex_lock(&fw_lock); if (!fw_priv->size || fw_state_is_aborted(fw_priv)) { mutex_unlock(&fw_lock); return -ENOENT; } /* * add firmware name into devres list so that we can auto cache * and uncache firmware for device. * * device may has been deleted already, but the problem * should be fixed in devres or driver core. */ /* don't cache firmware handled without uevent */ if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) && !(fw_priv->opt_flags & FW_OPT_NOCACHE)) { ret = fw_add_devm_name(device, fw_priv->fw_name); if (ret) { mutex_unlock(&fw_lock); return ret; } } /* * After caching firmware image is started, let it piggyback * on request firmware. */ if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) && fw_priv->fwc->state == FW_LOADER_START_CACHE) fw_cache_piggyback_on_request(fw_priv); /* pass the pages buffer to driver at the last minute */ fw_set_page_data(fw_priv, fw); mutex_unlock(&fw_lock); return 0; } /* prepare firmware and firmware_buf structs; * return 0 if a firmware is already assigned, 1 if need to load one, * or a negative error code */ static int _request_firmware_prepare(struct firmware **firmware_p, const char *name, struct device *device, void *dbuf, size_t size, size_t offset, u32 opt_flags) { struct firmware *firmware; struct fw_priv *fw_priv; int ret; *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL); if (!firmware) { dev_err(device, "%s: kmalloc(struct firmware) failed\n", __func__); return -ENOMEM; } if (firmware_request_builtin_buf(firmware, name, dbuf, size)) { dev_dbg(device, "using built-in %s\n", name); return 0; /* assigned */ } ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size, offset, opt_flags); /* * bind with 'priv' now to avoid warning in failure path * of requesting firmware. */ firmware->priv = fw_priv; if (ret > 0) { ret = fw_state_wait(fw_priv); if (!ret) { fw_set_page_data(fw_priv, firmware); return 0; /* assigned */ } } if (ret < 0) return ret; return 1; /* need to load */ } /* * Batched requests need only one wake, we need to do this step last due to the * fallback mechanism. The buf is protected with kref_get(), and it won't be * released until the last user calls release_firmware(). * * Failed batched requests are possible as well, in such cases we just share * the struct fw_priv and won't release it until all requests are woken * and have gone through this same path. */ static void fw_abort_batch_reqs(struct firmware *fw) { struct fw_priv *fw_priv; /* Loaded directly? */ if (!fw || !fw->priv) return; fw_priv = fw->priv; mutex_lock(&fw_lock); if (!fw_state_is_aborted(fw_priv)) fw_state_aborted(fw_priv); mutex_unlock(&fw_lock); } #if defined(CONFIG_FW_LOADER_DEBUG) #include <crypto/hash.h> #include <crypto/sha2.h> static void fw_log_firmware_info(const struct firmware *fw, const char *name, struct device *device) { struct shash_desc *shash; struct crypto_shash *alg; u8 *sha256buf; char *outbuf; alg = crypto_alloc_shash("sha256", 0, 0); if (IS_ERR(alg)) return; sha256buf = kmalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); outbuf = kmalloc(SHA256_BLOCK_SIZE + 1, GFP_KERNEL); shash = kmalloc(sizeof(*shash) + crypto_shash_descsize(alg), GFP_KERNEL); if (!sha256buf || !outbuf || !shash) goto out_free; shash->tfm = alg; if (crypto_shash_digest(shash, fw->data, fw->size, sha256buf) < 0) goto out_shash; for (int i = 0; i < SHA256_DIGEST_SIZE; i++) sprintf(&outbuf[i * 2], "%02x", sha256buf[i]); outbuf[SHA256_BLOCK_SIZE] = 0; dev_dbg(device, "Loaded FW: %s, sha256: %s\n", name, outbuf); out_shash: crypto_free_shash(alg); out_free: kfree(shash); kfree(outbuf); kfree(sha256buf); } #else static void fw_log_firmware_info(const struct firmware *fw, const char *name, struct device *device) {} #endif /* * Reject firmware file names with ".." path components. * There are drivers that construct firmware file names from device-supplied * strings, and we don't want some device to be able to tell us "I would like to * be sent my firmware from ../../../etc/shadow, please". * * Search for ".." surrounded by either '/' or start/end of string. * * This intentionally only looks at the firmware name, not at the firmware base * directory or at symlink contents. */ static bool name_contains_dotdot(const char *name) { size_t name_len = strlen(name); return strcmp(name, "..") == 0 || strncmp(name, "../", 3) == 0 || strstr(name, "/../") != NULL || (name_len >= 3 && strcmp(name+name_len-3, "/..") == 0); } /* called from request_firmware() and request_firmware_work_func() */ static int _request_firmware(const struct firmware **firmware_p, const char *name, struct device *device, void *buf, size_t size, size_t offset, u32 opt_flags) { struct firmware *fw = NULL; struct cred *kern_cred = NULL; const struct cred *old_cred; bool nondirect = false; int ret; if (!firmware_p) return -EINVAL; if (!name || name[0] == '\0') { ret = -EINVAL; goto out; } if (name_contains_dotdot(name)) { dev_warn(device, "Firmware load for '%s' refused, path contains '..' component\n", name); ret = -EINVAL; goto out; } ret = _request_firmware_prepare(&fw, name, device, buf, size, offset, opt_flags); if (ret <= 0) /* error or already assigned */ goto out; /* * We are about to try to access the firmware file. Because we may have been * called by a driver when serving an unrelated request from userland, we use * the kernel credentials to read the file. */ kern_cred = prepare_kernel_cred(&init_task); if (!kern_cred) { ret = -ENOMEM; goto out; } old_cred = override_creds(kern_cred); ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL); /* Only full reads can support decompression, platform, and sysfs. */ if (!(opt_flags & FW_OPT_PARTIAL)) nondirect = true; #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD if (ret == -ENOENT && nondirect) ret = fw_get_filesystem_firmware(device, fw->priv, ".zst", fw_decompress_zstd); #endif #ifdef CONFIG_FW_LOADER_COMPRESS_XZ if (ret == -ENOENT && nondirect) ret = fw_get_filesystem_firmware(device, fw->priv, ".xz", fw_decompress_xz); #endif if (ret == -ENOENT && nondirect) ret = firmware_fallback_platform(fw->priv); if (ret) { if (!(opt_flags & FW_OPT_NO_WARN)) dev_warn(device, "Direct firmware load for %s failed with error %d\n", name, ret); if (nondirect) ret = firmware_fallback_sysfs(fw, name, device, opt_flags, ret); } else ret = assign_fw(fw, device); revert_creds(old_cred); put_cred(kern_cred); out: if (ret < 0) { fw_abort_batch_reqs(fw); release_firmware(fw); fw = NULL; } else { fw_log_firmware_info(fw, name, device); } *firmware_p = fw; return ret; } /** * request_firmware() - send firmware request and wait for it * @firmware_p: pointer to firmware image * @name: name of firmware file * @device: device for which firmware is being loaded * * @firmware_p will be used to return a firmware image by the name * of @name for device @device. * * Should be called from user context where sleeping is allowed. * * @name will be used as $FIRMWARE in the uevent environment and * should be distinctive enough not to be confused with any other * firmware image for this or any other device. * It must not contain any ".." path components - "foo/bar..bin" is * allowed, but "foo/../bar.bin" is not. * * Caller must hold the reference count of @device. * * The function can be called safely inside device's suspend and * resume callback. **/ int request_firmware(const struct firmware **firmware_p, const char *name, struct device *device) { int ret; /* Need to pin this module until return */ __module_get(THIS_MODULE); ret = _request_firmware(firmware_p, name, device, NULL, 0, 0, FW_OPT_UEVENT); module_put(THIS_MODULE); return ret; } EXPORT_SYMBOL(request_firmware); /** * firmware_request_nowarn() - request for an optional fw module * @firmware: pointer to firmware image * @name: name of firmware file * @device: device for which firmware is being loaded * * This function is similar in behaviour to request_firmware(), except it * doesn't produce warning messages when the file is not found. The sysfs * fallback mechanism is enabled if direct filesystem lookup fails. However, * failures to find the firmware file with it are still suppressed. It is * therefore up to the driver to check for the return value of this call and to * decide when to inform the users of errors. **/ int firmware_request_nowarn(const struct firmware **firmware, const char *name, struct device *device) { int ret; /* Need to pin this module until return */ __module_get(THIS_MODULE); ret = _request_firmware(firmware, name, device, NULL, 0, 0, FW_OPT_UEVENT | FW_OPT_NO_WARN); module_put(THIS_MODULE); return ret; } EXPORT_SYMBOL_GPL(firmware_request_nowarn); /** * request_firmware_direct() - load firmware directly without usermode helper * @firmware_p: pointer to firmware image * @name: name of firmware file * @device: device for which firmware is being loaded * * This function works pretty much like request_firmware(), but this doesn't * fall back to usermode helper even if the firmware couldn't be loaded * directly from fs. Hence it's useful for loading optional firmwares, which * aren't always present, without extra long timeouts of udev. **/ int request_firmware_direct(const struct firmware **firmware_p, const char *name, struct device *device) { int ret; __module_get(THIS_MODULE); ret = _request_firmware(firmware_p, name, device, NULL, 0, 0, FW_OPT_UEVENT | FW_OPT_NO_WARN | FW_OPT_NOFALLBACK_SYSFS); module_put(THIS_MODULE); return ret; } EXPORT_SYMBOL_GPL(request_firmware_direct); /** * firmware_request_platform() - request firmware with platform-fw fallback * @firmware: pointer to firmware image * @name: name of firmware file * @device: device for which firmware is being loaded * * This function is similar in behaviour to request_firmware, except that if * direct filesystem lookup fails, it will fallback to looking for a copy of the * requested firmware embedded in the platform's main (e.g. UEFI) firmware. **/ int firmware_request_platform(const struct firmware **firmware, const char *name, struct device *device) { int ret; /* Need to pin this module until return */ __module_get(THIS_MODULE); ret = _request_firmware(firmware, name, device, NULL, 0, 0, FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM); module_put(THIS_MODULE); return ret; } EXPORT_SYMBOL_GPL(firmware_request_platform); /** * firmware_request_cache() - cache firmware for suspend so resume can use it * @name: name of firmware file * @device: device for which firmware should be cached for * * There are some devices with an optimization that enables the device to not * require loading firmware on system reboot. This optimization may still * require the firmware present on resume from suspend. This routine can be * used to ensure the firmware is present on resume from suspend in these * situations. This helper is not compatible with drivers which use * request_firmware_into_buf() or request_firmware_nowait() with no uevent set. **/ int firmware_request_cache(struct device *device, const char *name) { int ret; mutex_lock(&fw_lock); ret = fw_add_devm_name(device, name); mutex_unlock(&fw_lock); return ret; } EXPORT_SYMBOL_GPL(firmware_request_cache); /** * request_firmware_into_buf() - load firmware into a previously allocated buffer * @firmware_p: pointer to firmware image * @name: name of firmware file * @device: device for which firmware is being loaded and DMA region allocated * @buf: address of buffer to load firmware into * @size: size of buffer * * This function works pretty much like request_firmware(), but it doesn't * allocate a buffer to hold the firmware data. Instead, the firmware * is loaded directly into the buffer pointed to by @buf and the @firmware_p * data member is pointed at @buf. * * This function doesn't cache firmware either. */ int request_firmware_into_buf(const struct firmware **firmware_p, const char *name, struct device *device, void *buf, size_t size) { int ret; if (fw_cache_is_setup(device, name)) return -EOPNOTSUPP; __module_get(THIS_MODULE); ret = _request_firmware(firmware_p, name, device, buf, size, 0, FW_OPT_UEVENT | FW_OPT_NOCACHE); module_put(THIS_MODULE); return ret; } EXPORT_SYMBOL(request_firmware_into_buf); /** * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer * @firmware_p: pointer to firmware image * @name: name of firmware file * @device: device for which firmware is being loaded and DMA region allocated * @buf: address of buffer to load firmware into * @size: size of buffer * @offset: offset into file to read * * This function works pretty much like request_firmware_into_buf except * it allows a partial read of the file. */ int request_partial_firmware_into_buf(const struct firmware **firmware_p, const char *name, struct device *device, void *buf, size_t size, size_t offset) { int ret; if (fw_cache_is_setup(device, name)) return -EOPNOTSUPP; __module_get(THIS_MODULE); ret = _request_firmware(firmware_p, name, device, buf, size, offset, FW_OPT_UEVENT | FW_OPT_NOCACHE | FW_OPT_PARTIAL); module_put(THIS_MODULE); return ret; } EXPORT_SYMBOL(request_partial_firmware_into_buf); /** * release_firmware() - release the resource associated with a firmware image * @fw: firmware resource to release **/ void release_firmware(const struct firmware *fw) { if (fw) { if (!firmware_is_builtin(fw)) firmware_free_data(fw); kfree(fw); } } EXPORT_SYMBOL(release_firmware); /* Async support */ struct firmware_work { struct work_struct work; struct module *module; const char *name; struct device *device; void *context; void (*cont)(const struct firmware *fw, void *context); u32 opt_flags; }; static void request_firmware_work_func(struct work_struct *work) { struct firmware_work *fw_work; const struct firmware *fw; fw_work = container_of(work, struct firmware_work, work); _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0, fw_work->opt_flags); fw_work->cont(fw, fw_work->context); put_device(fw_work->device); /* taken in request_firmware_nowait() */ module_put(fw_work->module); kfree_const(fw_work->name); kfree(fw_work); } static int _request_firmware_nowait( struct module *module, bool uevent, const char *name, struct device *device, gfp_t gfp, void *context, void (*cont)(const struct firmware *fw, void *context), bool nowarn) { struct firmware_work *fw_work; fw_work = kzalloc(sizeof(struct firmware_work), gfp); if (!fw_work) return -ENOMEM; fw_work->module = module; fw_work->name = kstrdup_const(name, gfp); if (!fw_work->name) { kfree(fw_work); return -ENOMEM; } fw_work->device = device; fw_work->context = context; fw_work->cont = cont; fw_work->opt_flags = FW_OPT_NOWAIT | (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER) | (nowarn ? FW_OPT_NO_WARN : 0); if (!uevent && fw_cache_is_setup(device, name)) { kfree_const(fw_work->name); kfree(fw_work); return -EOPNOTSUPP; } if (!try_module_get(module)) { kfree_const(fw_work->name); kfree(fw_work); return -EFAULT; } get_device(fw_work->device); INIT_WORK(&fw_work->work, request_firmware_work_func); schedule_work(&fw_work->work); return 0; } /** * request_firmware_nowait() - asynchronous version of request_firmware * @module: module requesting the firmware * @uevent: sends uevent to copy the firmware image if this flag * is non-zero else the firmware copy must be done manually. * @name: name of firmware file * @device: device for which firmware is being loaded * @gfp: allocation flags * @context: will be passed over to @cont, and * @fw may be %NULL if firmware request fails. * @cont: function will be called asynchronously when the firmware * request is over. * * Caller must hold the reference count of @device. * * Asynchronous variant of request_firmware() for user contexts: * - sleep for as small periods as possible since it may * increase kernel boot time of built-in device drivers * requesting firmware in their ->probe() methods, if * @gfp is GFP_KERNEL. * * - can't sleep at all if @gfp is GFP_ATOMIC. **/ int request_firmware_nowait( struct module *module, bool uevent, const char *name, struct device *device, gfp_t gfp, void *context, void (*cont)(const struct firmware *fw, void *context)) { return _request_firmware_nowait(module, uevent, name, device, gfp, context, cont, false); } EXPORT_SYMBOL(request_firmware_nowait); /** * firmware_request_nowait_nowarn() - async version of request_firmware_nowarn * @module: module requesting the firmware * @name: name of firmware file * @device: device for which firmware is being loaded * @gfp: allocation flags * @context: will be passed over to @cont, and * @fw may be %NULL if firmware request fails. * @cont: function will be called asynchronously when the firmware * request is over. * * Similar in function to request_firmware_nowait(), but doesn't print a warning * when the firmware file could not be found and always sends a uevent to copy * the firmware image. */ int firmware_request_nowait_nowarn( struct module *module, const char *name, struct device *device, gfp_t gfp, void *context, void (*cont)(const struct firmware *fw, void *context)) { return _request_firmware_nowait(module, FW_ACTION_UEVENT, name, device, gfp, context, cont, true); } EXPORT_SYMBOL_GPL(firmware_request_nowait_nowarn); #ifdef CONFIG_FW_CACHE static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain); /** * cache_firmware() - cache one firmware image in kernel memory space * @fw_name: the firmware image name * * Cache firmware in kernel memory so that drivers can use it when * system isn't ready for them to request firmware image from userspace. * Once it returns successfully, driver can use request_firmware or its * nowait version to get the cached firmware without any interacting * with userspace * * Return 0 if the firmware image has been cached successfully * Return !0 otherwise * */ static int cache_firmware(const char *fw_name) { int ret; const struct firmware *fw; pr_debug("%s: %s\n", __func__, fw_name); ret = request_firmware(&fw, fw_name, NULL); if (!ret) kfree(fw); pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret); return ret; } static struct fw_priv *lookup_fw_priv(const char *fw_name) { struct fw_priv *tmp; struct firmware_cache *fwc = &fw_cache; spin_lock(&fwc->lock); tmp = __lookup_fw_priv(fw_name); spin_unlock(&fwc->lock); return tmp; } /** * uncache_firmware() - remove one cached firmware image * @fw_name: the firmware image name * * Uncache one firmware image which has been cached successfully * before. * * Return 0 if the firmware cache has been removed successfully * Return !0 otherwise * */ static int uncache_firmware(const char *fw_name) { struct fw_priv *fw_priv; struct firmware fw; pr_debug("%s: %s\n", __func__, fw_name); if (firmware_request_builtin(&fw, fw_name)) return 0; fw_priv = lookup_fw_priv(fw_name); if (fw_priv) { free_fw_priv(fw_priv); return 0; } return -EINVAL; } static struct fw_cache_entry *alloc_fw_cache_entry(const char *name) { struct fw_cache_entry *fce; fce = kzalloc(sizeof(*fce), GFP_ATOMIC); if (!fce) goto exit; fce->name = kstrdup_const(name, GFP_ATOMIC); if (!fce->name) { kfree(fce); fce = NULL; goto exit; } exit: return fce; } static int __fw_entry_found(const char *name) { struct firmware_cache *fwc = &fw_cache; struct fw_cache_entry *fce; list_for_each_entry(fce, &fwc->fw_names, list) { if (!strcmp(fce->name, name)) return 1; } return 0; } static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv) { const char *name = fw_priv->fw_name; struct firmware_cache *fwc = fw_priv->fwc; struct fw_cache_entry *fce; spin_lock(&fwc->name_lock); if (__fw_entry_found(name)) goto found; fce = alloc_fw_cache_entry(name); if (fce) { list_add(&fce->list, &fwc->fw_names); kref_get(&fw_priv->ref); pr_debug("%s: fw: %s\n", __func__, name); } found: spin_unlock(&fwc->name_lock); } static void free_fw_cache_entry(struct fw_cache_entry *fce) { kfree_const(fce->name); kfree(fce); } static void __async_dev_cache_fw_image(void *fw_entry, async_cookie_t cookie) { struct fw_cache_entry *fce = fw_entry; struct firmware_cache *fwc = &fw_cache; int ret; ret = cache_firmware(fce->name); if (ret) { spin_lock(&fwc->name_lock); list_del(&fce->list); spin_unlock(&fwc->name_lock); free_fw_cache_entry(fce); } } /* called with dev->devres_lock held */ static void dev_create_fw_entry(struct device *dev, void *res, void *data) { struct fw_name_devm *fwn = res; const char *fw_name = fwn->name; struct list_head *head = data; struct fw_cache_entry *fce; fce = alloc_fw_cache_entry(fw_name); if (fce) list_add(&fce->list, head); } static int devm_name_match(struct device *dev, void *res, void *match_data) { struct fw_name_devm *fwn = res; return (fwn->magic == (unsigned long)match_data); } static void dev_cache_fw_image(struct device *dev, void *data) { LIST_HEAD(todo); struct fw_cache_entry *fce; struct fw_cache_entry *fce_next; struct firmware_cache *fwc = &fw_cache; devres_for_each_res(dev, fw_name_devm_release, devm_name_match, &fw_cache, dev_create_fw_entry, &todo); list_for_each_entry_safe(fce, fce_next, &todo, list) { list_del(&fce->list); spin_lock(&fwc->name_lock); /* only one cache entry for one firmware */ if (!__fw_entry_found(fce->name)) { list_add(&fce->list, &fwc->fw_names); } else { free_fw_cache_entry(fce); fce = NULL; } spin_unlock(&fwc->name_lock); if (fce) async_schedule_domain(__async_dev_cache_fw_image, (void *)fce, &fw_cache_domain); } } static void __device_uncache_fw_images(void) { struct firmware_cache *fwc = &fw_cache; struct fw_cache_entry *fce; spin_lock(&fwc->name_lock); while (!list_empty(&fwc->fw_names)) { fce = list_entry(fwc->fw_names.next, struct fw_cache_entry, list); list_del(&fce->list); spin_unlock(&fwc->name_lock); uncache_firmware(fce->name); free_fw_cache_entry(fce); spin_lock(&fwc->name_lock); } spin_unlock(&fwc->name_lock); } /** * device_cache_fw_images() - cache devices' firmware * * If one device called request_firmware or its nowait version * successfully before, the firmware names are recored into the * device's devres link list, so device_cache_fw_images can call * cache_firmware() to cache these firmwares for the device, * then the device driver can load its firmwares easily at * time when system is not ready to complete loading firmware. */ static void device_cache_fw_images(void) { struct firmware_cache *fwc = &fw_cache; DEFINE_WAIT(wait); pr_debug("%s\n", __func__); /* cancel uncache work */ cancel_delayed_work_sync(&fwc->work); fw_fallback_set_cache_timeout(); mutex_lock(&fw_lock); fwc->state = FW_LOADER_START_CACHE; dpm_for_each_dev(NULL, dev_cache_fw_image); mutex_unlock(&fw_lock); /* wait for completion of caching firmware for all devices */ async_synchronize_full_domain(&fw_cache_domain); fw_fallback_set_default_timeout(); } /** * device_uncache_fw_images() - uncache devices' firmware * * uncache all firmwares which have been cached successfully * by device_uncache_fw_images earlier */ static void device_uncache_fw_images(void) { pr_debug("%s\n", __func__); __device_uncache_fw_images(); } static void device_uncache_fw_images_work(struct work_struct *work) { device_uncache_fw_images(); } /** * device_uncache_fw_images_delay() - uncache devices firmwares * @delay: number of milliseconds to delay uncache device firmwares * * uncache all devices's firmwares which has been cached successfully * by device_cache_fw_images after @delay milliseconds. */ static void device_uncache_fw_images_delay(unsigned long delay) { queue_delayed_work(system_power_efficient_wq, &fw_cache.work, msecs_to_jiffies(delay)); } static int fw_pm_notify(struct notifier_block *notify_block, unsigned long mode, void *unused) { switch (mode) { case PM_HIBERNATION_PREPARE: case PM_SUSPEND_PREPARE: case PM_RESTORE_PREPARE: /* * Here, kill pending fallback requests will only kill * non-uevent firmware request to avoid stalling suspend. */ kill_pending_fw_fallback_reqs(false); device_cache_fw_images(); break; case PM_POST_SUSPEND: case PM_POST_HIBERNATION: case PM_POST_RESTORE: /* * In case that system sleep failed and syscore_suspend is * not called. */ mutex_lock(&fw_lock); fw_cache.state = FW_LOADER_NO_CACHE; mutex_unlock(&fw_lock); device_uncache_fw_images_delay(10 * MSEC_PER_SEC); break; } return 0; } /* stop caching firmware once syscore_suspend is reached */ static int fw_suspend(void) { fw_cache.state = FW_LOADER_NO_CACHE; return 0; } static struct syscore_ops fw_syscore_ops = { .suspend = fw_suspend, }; static int __init register_fw_pm_ops(void) { int ret; spin_lock_init(&fw_cache.name_lock); INIT_LIST_HEAD(&fw_cache.fw_names); INIT_DELAYED_WORK(&fw_cache.work, device_uncache_fw_images_work); fw_cache.pm_notify.notifier_call = fw_pm_notify; ret = register_pm_notifier(&fw_cache.pm_notify); if (ret) return ret; register_syscore_ops(&fw_syscore_ops); return ret; } static inline void unregister_fw_pm_ops(void) { unregister_syscore_ops(&fw_syscore_ops); unregister_pm_notifier(&fw_cache.pm_notify); } #else static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv) { } static inline int register_fw_pm_ops(void) { return 0; } static inline void unregister_fw_pm_ops(void) { } #endif static void __init fw_cache_init(void) { spin_lock_init(&fw_cache.lock); INIT_LIST_HEAD(&fw_cache.head); fw_cache.state = FW_LOADER_NO_CACHE; } static int fw_shutdown_notify(struct notifier_block *unused1, unsigned long unused2, void *unused3) { /* * Kill all pending fallback requests to avoid both stalling shutdown, * and avoid a deadlock with the usermode_lock. */ kill_pending_fw_fallback_reqs(true); return NOTIFY_DONE; } static struct notifier_block fw_shutdown_nb = { .notifier_call = fw_shutdown_notify, }; static int __init firmware_class_init(void) { int ret; /* No need to unfold these on exit */ fw_cache_init(); ret = register_fw_pm_ops(); if (ret) return ret; ret = register_reboot_notifier(&fw_shutdown_nb); if (ret) goto out; return register_sysfs_loader(); out: unregister_fw_pm_ops(); return ret; } static void __exit firmware_class_exit(void) { unregister_fw_pm_ops(); unregister_reboot_notifier(&fw_shutdown_nb); unregister_sysfs_loader(); } fs_initcall(firmware_class_init); module_exit(firmware_class_exit);
20 13 2 1 1 2 2 14 14 7 2 6 8 1 12 12 8 6 1 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 1 16 2 1 16 1 1 17 17 1 18 16 1 25 1 23 1 23 1 23 1 5 20 17 1 10 14 1 1 20 1 2 1 7 7 7 1 6 5 5 1 4 5 49 1 49 848 853 853 288 112 4 4 4 4 4 7 2 48 56 56 14 1 1 1 2 1 1 5 1 1 1 1 1 27 3 25 23 4 1 4 3 48 48 1 39 7 1 3 43 28 25 25 25 24 24 24 5 7 6 8 5 1 1 2 5 7 5 5 1 4 7 19 7 7 7 51 50 1 50 51 51 44 6 50 1 50 49 50 1 1 48 2 48 7 7 7 7 7 13 13 13 9 13 13 13 13 13 13 13 13 13 9 9 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 // SPDX-License-Identifier: GPL-2.0 /* net/sched/sch_taprio.c Time Aware Priority Scheduler * * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> * */ #include <linux/ethtool.h> #include <linux/ethtool_netlink.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/list.h> #include <linux/errno.h> #include <linux/skbuff.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/spinlock.h> #include <linux/rcupdate.h> #include <linux/time.h> #include <net/gso.h> #include <net/netlink.h> #include <net/pkt_sched.h> #include <net/pkt_cls.h> #include <net/sch_generic.h> #include <net/sock.h> #include <net/tcp.h> #define TAPRIO_STAT_NOT_SET (~0ULL) #include "sch_mqprio_lib.h" static LIST_HEAD(taprio_list); static struct static_key_false taprio_have_broken_mqprio; static struct static_key_false taprio_have_working_mqprio; #define TAPRIO_ALL_GATES_OPEN -1 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) #define TAPRIO_SUPPORTED_FLAGS \ (TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) #define TAPRIO_FLAGS_INVALID U32_MAX struct sched_entry { /* Durations between this GCL entry and the GCL entry where the * respective traffic class gate closes */ u64 gate_duration[TC_MAX_QUEUE]; atomic_t budget[TC_MAX_QUEUE]; /* The qdisc makes some effort so that no packet leaves * after this time */ ktime_t gate_close_time[TC_MAX_QUEUE]; struct list_head list; /* Used to calculate when to advance the schedule */ ktime_t end_time; ktime_t next_txtime; int index; u32 gate_mask; u32 interval; u8 command; }; struct sched_gate_list { /* Longest non-zero contiguous gate durations per traffic class, * or 0 if a traffic class gate never opens during the schedule. */ u64 max_open_gate_duration[TC_MAX_QUEUE]; u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */ u32 max_sdu[TC_MAX_QUEUE]; /* for dump */ struct rcu_head rcu; struct list_head entries; size_t num_entries; ktime_t cycle_end_time; s64 cycle_time; s64 cycle_time_extension; s64 base_time; }; struct taprio_sched { struct Qdisc **qdiscs; struct Qdisc *root; u32 flags; enum tk_offsets tk_offset; int clockid; bool offloaded; bool detected_mqprio; bool broken_mqprio; atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ * speeds it's sub-nanoseconds per byte */ /* Protects the update side of the RCU protected current_entry */ spinlock_t current_entry_lock; struct sched_entry __rcu *current_entry; struct sched_gate_list __rcu *oper_sched; struct sched_gate_list __rcu *admin_sched; struct hrtimer advance_timer; struct list_head taprio_list; int cur_txq[TC_MAX_QUEUE]; u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */ u32 fp[TC_QOPT_MAX_QUEUE]; /* only for dump and offloading */ u32 txtime_delay; }; struct __tc_taprio_qopt_offload { refcount_t users; struct tc_taprio_qopt_offload offload; }; static void taprio_calculate_gate_durations(struct taprio_sched *q, struct sched_gate_list *sched) { struct net_device *dev = qdisc_dev(q->root); int num_tc = netdev_get_num_tc(dev); struct sched_entry *entry, *cur; int tc; list_for_each_entry(entry, &sched->entries, list) { u32 gates_still_open = entry->gate_mask; /* For each traffic class, calculate each open gate duration, * starting at this schedule entry and ending at the schedule * entry containing a gate close event for that TC. */ cur = entry; do { if (!gates_still_open) break; for (tc = 0; tc < num_tc; tc++) { if (!(gates_still_open & BIT(tc))) continue; if (cur->gate_mask & BIT(tc)) entry->gate_duration[tc] += cur->interval; else gates_still_open &= ~BIT(tc); } cur = list_next_entry_circular(cur, &sched->entries, list); } while (cur != entry); /* Keep track of the maximum gate duration for each traffic * class, taking care to not confuse a traffic class which is * temporarily closed with one that is always closed. */ for (tc = 0; tc < num_tc; tc++) if (entry->gate_duration[tc] && sched->max_open_gate_duration[tc] < entry->gate_duration[tc]) sched->max_open_gate_duration[tc] = entry->gate_duration[tc]; } } static bool taprio_entry_allows_tx(ktime_t skb_end_time, struct sched_entry *entry, int tc) { return ktime_before(skb_end_time, entry->gate_close_time[tc]); } static ktime_t sched_base_time(const struct sched_gate_list *sched) { if (!sched) return KTIME_MAX; return ns_to_ktime(sched->base_time); } static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono) { /* This pairs with WRITE_ONCE() in taprio_parse_clockid() */ enum tk_offsets tk_offset = READ_ONCE(q->tk_offset); switch (tk_offset) { case TK_OFFS_MAX: return mono; default: return ktime_mono_to_any(mono, tk_offset); } } static ktime_t taprio_get_time(const struct taprio_sched *q) { return taprio_mono_to_any(q, ktime_get()); } static void taprio_free_sched_cb(struct rcu_head *head) { struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); struct sched_entry *entry, *n; list_for_each_entry_safe(entry, n, &sched->entries, list) { list_del(&entry->list); kfree(entry); } kfree(sched); } static void switch_schedules(struct taprio_sched *q, struct sched_gate_list **admin, struct sched_gate_list **oper) { rcu_assign_pointer(q->oper_sched, *admin); rcu_assign_pointer(q->admin_sched, NULL); if (*oper) call_rcu(&(*oper)->rcu, taprio_free_sched_cb); *oper = *admin; *admin = NULL; } /* Get how much time has been already elapsed in the current cycle. */ static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time) { ktime_t time_since_sched_start; s32 time_elapsed; time_since_sched_start = ktime_sub(time, sched->base_time); div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed); return time_elapsed; } static ktime_t get_interval_end_time(struct sched_gate_list *sched, struct sched_gate_list *admin, struct sched_entry *entry, ktime_t intv_start) { s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start); ktime_t intv_end, cycle_ext_end, cycle_end; cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed); intv_end = ktime_add_ns(intv_start, entry->interval); cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension); if (ktime_before(intv_end, cycle_end)) return intv_end; else if (admin && admin != sched && ktime_after(admin->base_time, cycle_end) && ktime_before(admin->base_time, cycle_ext_end)) return admin->base_time; else return cycle_end; } static int length_to_duration(struct taprio_sched *q, int len) { return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC); } static int duration_to_length(struct taprio_sched *q, u64 duration) { return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte)); } /* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the * q->max_sdu[] requested by the user and the max_sdu dynamically determined by * the maximum open gate durations at the given link speed. */ static void taprio_update_queue_max_sdu(struct taprio_sched *q, struct sched_gate_list *sched, struct qdisc_size_table *stab) { struct net_device *dev = qdisc_dev(q->root); int num_tc = netdev_get_num_tc(dev); u32 max_sdu_from_user; u32 max_sdu_dynamic; u32 max_sdu; int tc; for (tc = 0; tc < num_tc; tc++) { max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX; /* TC gate never closes => keep the queueMaxSDU * selected by the user */ if (sched->max_open_gate_duration[tc] == sched->cycle_time) { max_sdu_dynamic = U32_MAX; } else { u32 max_frm_len; max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]); /* Compensate for L1 overhead from size table, * but don't let the frame size go negative */ if (stab) { max_frm_len -= stab->szopts.overhead; max_frm_len = max_t(int, max_frm_len, dev->hard_header_len + 1); } max_sdu_dynamic = max_frm_len - dev->hard_header_len; if (max_sdu_dynamic > dev->max_mtu) max_sdu_dynamic = U32_MAX; } max_sdu = min(max_sdu_dynamic, max_sdu_from_user); if (max_sdu != U32_MAX) { sched->max_frm_len[tc] = max_sdu + dev->hard_header_len; sched->max_sdu[tc] = max_sdu; } else { sched->max_frm_len[tc] = U32_MAX; /* never oversized */ sched->max_sdu[tc] = 0; } } } /* Returns the entry corresponding to next available interval. If * validate_interval is set, it only validates whether the timestamp occurs * when the gate corresponding to the skb's traffic class is open. */ static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb, struct Qdisc *sch, struct sched_gate_list *sched, struct sched_gate_list *admin, ktime_t time, ktime_t *interval_start, ktime_t *interval_end, bool validate_interval) { ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time; ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time; struct sched_entry *entry = NULL, *entry_found = NULL; struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); bool entry_available = false; s32 cycle_elapsed; int tc, n; tc = netdev_get_prio_tc_map(dev, skb->priority); packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb)); *interval_start = 0; *interval_end = 0; if (!sched) return NULL; cycle = sched->cycle_time; cycle_elapsed = get_cycle_time_elapsed(sched, time); curr_intv_end = ktime_sub_ns(time, cycle_elapsed); cycle_end = ktime_add_ns(curr_intv_end, cycle); list_for_each_entry(entry, &sched->entries, list) { curr_intv_start = curr_intv_end; curr_intv_end = get_interval_end_time(sched, admin, entry, curr_intv_start); if (ktime_after(curr_intv_start, cycle_end)) break; if (!(entry->gate_mask & BIT(tc)) || packet_transmit_time > entry->interval) continue; txtime = entry->next_txtime; if (ktime_before(txtime, time) || validate_interval) { transmit_end_time = ktime_add_ns(time, packet_transmit_time); if ((ktime_before(curr_intv_start, time) && ktime_before(transmit_end_time, curr_intv_end)) || (ktime_after(curr_intv_start, time) && !validate_interval)) { entry_found = entry; *interval_start = curr_intv_start; *interval_end = curr_intv_end; break; } else if (!entry_available && !validate_interval) { /* Here, we are just trying to find out the * first available interval in the next cycle. */ entry_available = true; entry_found = entry; *interval_start = ktime_add_ns(curr_intv_start, cycle); *interval_end = ktime_add_ns(curr_intv_end, cycle); } } else if (ktime_before(txtime, earliest_txtime) && !entry_available) { earliest_txtime = txtime; entry_found = entry; n = div_s64(ktime_sub(txtime, curr_intv_start), cycle); *interval_start = ktime_add(curr_intv_start, n * cycle); *interval_end = ktime_add(curr_intv_end, n * cycle); } } return entry_found; } static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct sched_gate_list *sched, *admin; ktime_t interval_start, interval_end; struct sched_entry *entry; rcu_read_lock(); sched = rcu_dereference(q->oper_sched); admin = rcu_dereference(q->admin_sched); entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp, &interval_start, &interval_end, true); rcu_read_unlock(); return entry; } /* This returns the tstamp value set by TCP in terms of the set clock. */ static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb) { unsigned int offset = skb_network_offset(skb); const struct ipv6hdr *ipv6h; const struct iphdr *iph; struct ipv6hdr _ipv6h; ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); if (!ipv6h) return 0; if (ipv6h->version == 4) { iph = (struct iphdr *)ipv6h; offset += iph->ihl * 4; /* special-case 6in4 tunnelling, as that is a common way to get * v6 connectivity in the home */ if (iph->protocol == IPPROTO_IPV6) { ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) return 0; } else if (iph->protocol != IPPROTO_TCP) { return 0; } } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) { return 0; } return taprio_mono_to_any(q, skb->skb_mstamp_ns); } /* There are a few scenarios where we will have to modify the txtime from * what is read from next_txtime in sched_entry. They are: * 1. If txtime is in the past, * a. The gate for the traffic class is currently open and packet can be * transmitted before it closes, schedule the packet right away. * b. If the gate corresponding to the traffic class is going to open later * in the cycle, set the txtime of packet to the interval start. * 2. If txtime is in the future, there are packets corresponding to the * current traffic class waiting to be transmitted. So, the following * possibilities exist: * a. We can transmit the packet before the window containing the txtime * closes. * b. The window might close before the transmission can be completed * successfully. So, schedule the packet in the next open window. */ static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch) { ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp; struct taprio_sched *q = qdisc_priv(sch); struct sched_gate_list *sched, *admin; ktime_t minimum_time, now, txtime; int len, packet_transmit_time; struct sched_entry *entry; bool sched_changed; now = taprio_get_time(q); minimum_time = ktime_add_ns(now, q->txtime_delay); tcp_tstamp = get_tcp_tstamp(q, skb); minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp); rcu_read_lock(); admin = rcu_dereference(q->admin_sched); sched = rcu_dereference(q->oper_sched); if (admin && ktime_after(minimum_time, admin->base_time)) switch_schedules(q, &admin, &sched); /* Until the schedule starts, all the queues are open */ if (!sched || ktime_before(minimum_time, sched->base_time)) { txtime = minimum_time; goto done; } len = qdisc_pkt_len(skb); packet_transmit_time = length_to_duration(q, len); do { sched_changed = false; entry = find_entry_to_transmit(skb, sch, sched, admin, minimum_time, &interval_start, &interval_end, false); if (!entry) { txtime = 0; goto done; } txtime = entry->next_txtime; txtime = max_t(ktime_t, txtime, minimum_time); txtime = max_t(ktime_t, txtime, interval_start); if (admin && admin != sched && ktime_after(txtime, admin->base_time)) { sched = admin; sched_changed = true; continue; } transmit_end_time = ktime_add(txtime, packet_transmit_time); minimum_time = transmit_end_time; /* Update the txtime of current entry to the next time it's * interval starts. */ if (ktime_after(transmit_end_time, interval_end)) entry->next_txtime = ktime_add(interval_start, sched->cycle_time); } while (sched_changed || ktime_after(transmit_end_time, interval_end)); entry->next_txtime = transmit_end_time; done: rcu_read_unlock(); return txtime; } /* Devices with full offload are expected to honor this in hardware */ static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch, struct sk_buff *skb) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct sched_gate_list *sched; int prio = skb->priority; bool exceeds = false; u8 tc; tc = netdev_get_prio_tc_map(dev, prio); rcu_read_lock(); sched = rcu_dereference(q->oper_sched); if (sched && skb->len > sched->max_frm_len[tc]) exceeds = true; rcu_read_unlock(); return exceeds; } static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch, struct Qdisc *child, struct sk_buff **to_free) { struct taprio_sched *q = qdisc_priv(sch); /* sk_flags are only safe to use on full sockets. */ if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) { if (!is_valid_interval(skb, sch)) return qdisc_drop(skb, sch, to_free); } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { skb->tstamp = get_packet_txtime(skb, sch); if (!skb->tstamp) return qdisc_drop(skb, sch, to_free); } qdisc_qstats_backlog_inc(sch, skb); sch->q.qlen++; return qdisc_enqueue(skb, child, to_free); } static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch, struct Qdisc *child, struct sk_buff **to_free) { unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb); netdev_features_t features = netif_skb_features(skb); struct sk_buff *segs, *nskb; int ret; segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); if (IS_ERR_OR_NULL(segs)) return qdisc_drop(skb, sch, to_free); skb_list_walk_safe(segs, segs, nskb) { skb_mark_not_on_list(segs); qdisc_skb_cb(segs)->pkt_len = segs->len; slen += segs->len; /* FIXME: we should be segmenting to a smaller size * rather than dropping these */ if (taprio_skb_exceeds_queue_max_sdu(sch, segs)) ret = qdisc_drop(segs, sch, to_free); else ret = taprio_enqueue_one(segs, sch, child, to_free); if (ret != NET_XMIT_SUCCESS) { if (net_xmit_drop_count(ret)) qdisc_qstats_drop(sch); } else { numsegs++; } } if (numsegs > 1) qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen); consume_skb(skb); return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP; } /* Will not be called in the full offload case, since the TX queues are * attached to the Qdisc created using qdisc_create_dflt() */ static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { struct taprio_sched *q = qdisc_priv(sch); struct Qdisc *child; int queue; queue = skb_get_queue_mapping(skb); child = q->qdiscs[queue]; if (unlikely(!child)) return qdisc_drop(skb, sch, to_free); if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) { /* Large packets might not be transmitted when the transmission * duration exceeds any configured interval. Therefore, segment * the skb into smaller chunks. Drivers with full offload are * expected to handle this in hardware. */ if (skb_is_gso(skb)) return taprio_enqueue_segmented(skb, sch, child, to_free); return qdisc_drop(skb, sch, to_free); } return taprio_enqueue_one(skb, sch, child, to_free); } static struct sk_buff *taprio_peek(struct Qdisc *sch) { WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented"); return NULL; } static void taprio_set_budgets(struct taprio_sched *q, struct sched_gate_list *sched, struct sched_entry *entry) { struct net_device *dev = qdisc_dev(q->root); int num_tc = netdev_get_num_tc(dev); int tc, budget; for (tc = 0; tc < num_tc; tc++) { /* Traffic classes which never close have infinite budget */ if (entry->gate_duration[tc] == sched->cycle_time) budget = INT_MAX; else budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte)); atomic_set(&entry->budget[tc], budget); } } /* When an skb is sent, it consumes from the budget of all traffic classes */ static int taprio_update_budgets(struct sched_entry *entry, size_t len, int tc_consumed, int num_tc) { int tc, budget, new_budget = 0; for (tc = 0; tc < num_tc; tc++) { budget = atomic_read(&entry->budget[tc]); /* Don't consume from infinite budget */ if (budget == INT_MAX) { if (tc == tc_consumed) new_budget = budget; continue; } if (tc == tc_consumed) new_budget = atomic_sub_return(len, &entry->budget[tc]); else atomic_sub(len, &entry->budget[tc]); } return new_budget; } static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq, struct sched_entry *entry, u32 gate_mask) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct Qdisc *child = q->qdiscs[txq]; int num_tc = netdev_get_num_tc(dev); struct sk_buff *skb; ktime_t guard; int prio; int len; u8 tc; if (unlikely(!child)) return NULL; if (TXTIME_ASSIST_IS_ENABLED(q->flags)) goto skip_peek_checks; skb = child->ops->peek(child); if (!skb) return NULL; prio = skb->priority; tc = netdev_get_prio_tc_map(dev, prio); if (!(gate_mask & BIT(tc))) return NULL; len = qdisc_pkt_len(skb); guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len)); /* In the case that there's no gate entry, there's no * guard band ... */ if (gate_mask != TAPRIO_ALL_GATES_OPEN && !taprio_entry_allows_tx(guard, entry, tc)) return NULL; /* ... and no budget. */ if (gate_mask != TAPRIO_ALL_GATES_OPEN && taprio_update_budgets(entry, len, tc, num_tc) < 0) return NULL; skip_peek_checks: skb = child->ops->dequeue(child); if (unlikely(!skb)) return NULL; qdisc_bstats_update(sch, skb); qdisc_qstats_backlog_dec(sch, skb); sch->q.qlen--; return skb; } static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq) { int offset = dev->tc_to_txq[tc].offset; int count = dev->tc_to_txq[tc].count; (*txq)++; if (*txq == offset + count) *txq = offset; } /* Prioritize higher traffic classes, and select among TXQs belonging to the * same TC using round robin */ static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch, struct sched_entry *entry, u32 gate_mask) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); int num_tc = netdev_get_num_tc(dev); struct sk_buff *skb; int tc; for (tc = num_tc - 1; tc >= 0; tc--) { int first_txq = q->cur_txq[tc]; if (!(gate_mask & BIT(tc))) continue; do { skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc], entry, gate_mask); taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]); if (q->cur_txq[tc] >= dev->num_tx_queues) q->cur_txq[tc] = first_txq; if (skb) return skb; } while (q->cur_txq[tc] != first_txq); } return NULL; } /* Broken way of prioritizing smaller TXQ indices and ignoring the traffic * class other than to determine whether the gate is open or not */ static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch, struct sched_entry *entry, u32 gate_mask) { struct net_device *dev = qdisc_dev(sch); struct sk_buff *skb; int i; for (i = 0; i < dev->num_tx_queues; i++) { skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask); if (skb) return skb; } return NULL; } /* Will not be called in the full offload case, since the TX queues are * attached to the Qdisc created using qdisc_create_dflt() */ static struct sk_buff *taprio_dequeue(struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct sk_buff *skb = NULL; struct sched_entry *entry; u32 gate_mask; rcu_read_lock(); entry = rcu_dereference(q->current_entry); /* if there's no entry, it means that the schedule didn't * start yet, so force all gates to be open, this is in * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 * "AdminGateStates" */ gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; if (!gate_mask) goto done; if (static_branch_unlikely(&taprio_have_broken_mqprio) && !static_branch_likely(&taprio_have_working_mqprio)) { /* Single NIC kind which is broken */ skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); } else if (static_branch_likely(&taprio_have_working_mqprio) && !static_branch_unlikely(&taprio_have_broken_mqprio)) { /* Single NIC kind which prioritizes properly */ skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); } else { /* Mixed NIC kinds present in system, need dynamic testing */ if (q->broken_mqprio) skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); else skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); } done: rcu_read_unlock(); return skb; } static bool should_restart_cycle(const struct sched_gate_list *oper, const struct sched_entry *entry) { if (list_is_last(&entry->list, &oper->entries)) return true; if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0) return true; return false; } static bool should_change_schedules(const struct sched_gate_list *admin, const struct sched_gate_list *oper, ktime_t end_time) { ktime_t next_base_time, extension_time; if (!admin) return false; next_base_time = sched_base_time(admin); /* This is the simple case, the end_time would fall after * the next schedule base_time. */ if (ktime_compare(next_base_time, end_time) <= 0) return true; /* This is the cycle_time_extension case, if the end_time * plus the amount that can be extended would fall after the * next schedule base_time, we can extend the current schedule * for that amount. */ extension_time = ktime_add_ns(end_time, oper->cycle_time_extension); /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about * how precisely the extension should be made. So after * conformance testing, this logic may change. */ if (ktime_compare(next_base_time, extension_time) <= 0) return true; return false; } static enum hrtimer_restart advance_sched(struct hrtimer *timer) { struct taprio_sched *q = container_of(timer, struct taprio_sched, advance_timer); struct net_device *dev = qdisc_dev(q->root); struct sched_gate_list *oper, *admin; int num_tc = netdev_get_num_tc(dev); struct sched_entry *entry, *next; struct Qdisc *sch = q->root; ktime_t end_time; int tc; spin_lock(&q->current_entry_lock); entry = rcu_dereference_protected(q->current_entry, lockdep_is_held(&q->current_entry_lock)); oper = rcu_dereference_protected(q->oper_sched, lockdep_is_held(&q->current_entry_lock)); admin = rcu_dereference_protected(q->admin_sched, lockdep_is_held(&q->current_entry_lock)); if (!oper) switch_schedules(q, &admin, &oper); /* This can happen in two cases: 1. this is the very first run * of this function (i.e. we weren't running any schedule * previously); 2. The previous schedule just ended. The first * entry of all schedules are pre-calculated during the * schedule initialization. */ if (unlikely(!entry || entry->end_time == oper->base_time)) { next = list_first_entry(&oper->entries, struct sched_entry, list); end_time = next->end_time; goto first_run; } if (should_restart_cycle(oper, entry)) { next = list_first_entry(&oper->entries, struct sched_entry, list); oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time, oper->cycle_time); } else { next = list_next_entry(entry, list); } end_time = ktime_add_ns(entry->end_time, next->interval); end_time = min_t(ktime_t, end_time, oper->cycle_end_time); for (tc = 0; tc < num_tc; tc++) { if (next->gate_duration[tc] == oper->cycle_time) next->gate_close_time[tc] = KTIME_MAX; else next->gate_close_time[tc] = ktime_add_ns(entry->end_time, next->gate_duration[tc]); } if (should_change_schedules(admin, oper, end_time)) { /* Set things so the next time this runs, the new * schedule runs. */ end_time = sched_base_time(admin); switch_schedules(q, &admin, &oper); } next->end_time = end_time; taprio_set_budgets(q, oper, next); first_run: rcu_assign_pointer(q->current_entry, next); spin_unlock(&q->current_entry_lock); hrtimer_set_expires(&q->advance_timer, end_time); rcu_read_lock(); __netif_schedule(sch); rcu_read_unlock(); return HRTIMER_RESTART; } static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, }; static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { [TCA_TAPRIO_TC_ENTRY_INDEX] = NLA_POLICY_MAX(NLA_U32, TC_QOPT_MAX_QUEUE), [TCA_TAPRIO_TC_ENTRY_MAX_SDU] = { .type = NLA_U32 }, [TCA_TAPRIO_TC_ENTRY_FP] = NLA_POLICY_RANGE(NLA_U32, TC_FP_EXPRESS, TC_FP_PREEMPTIBLE), }; static const struct netlink_range_validation_signed taprio_cycle_time_range = { .min = 0, .max = INT_MAX, }; static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { [TCA_TAPRIO_ATTR_PRIOMAP] = { .len = sizeof(struct tc_mqprio_qopt) }, [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = NLA_POLICY_FULL_RANGE_SIGNED(NLA_S64, &taprio_cycle_time_range), [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, [TCA_TAPRIO_ATTR_FLAGS] = NLA_POLICY_MASK(NLA_U32, TAPRIO_SUPPORTED_FLAGS), [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 }, [TCA_TAPRIO_ATTR_TC_ENTRY] = { .type = NLA_NESTED }, }; static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb, struct sched_entry *entry, struct netlink_ext_ack *extack) { int min_duration = length_to_duration(q, ETH_ZLEN); u32 interval = 0; if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) entry->command = nla_get_u8( tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) entry->gate_mask = nla_get_u32( tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) interval = nla_get_u32( tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); /* The interval should allow at least the minimum ethernet * frame to go out. */ if (interval < min_duration) { NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); return -EINVAL; } entry->interval = interval; return 0; } static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n, struct sched_entry *entry, int index, struct netlink_ext_ack *extack) { struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; int err; err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, entry_policy, NULL); if (err < 0) { NL_SET_ERR_MSG(extack, "Could not parse nested entry"); return -EINVAL; } entry->index = index; return fill_sched_entry(q, tb, entry, extack); } static int parse_sched_list(struct taprio_sched *q, struct nlattr *list, struct sched_gate_list *sched, struct netlink_ext_ack *extack) { struct nlattr *n; int err, rem; int i = 0; if (!list) return -EINVAL; nla_for_each_nested(n, list, rem) { struct sched_entry *entry; if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); continue; } entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (!entry) { NL_SET_ERR_MSG(extack, "Not enough memory for entry"); return -ENOMEM; } err = parse_sched_entry(q, n, entry, i, extack); if (err < 0) { kfree(entry); return err; } list_add_tail(&entry->list, &sched->entries); i++; } sched->num_entries = i; return i; } static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb, struct sched_gate_list *new, struct netlink_ext_ack *extack) { int err = 0; if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); return -ENOTSUPP; } if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], new, extack); if (err < 0) return err; if (!new->cycle_time) { struct sched_entry *entry; ktime_t cycle = 0; list_for_each_entry(entry, &new->entries, list) cycle = ktime_add_ns(cycle, entry->interval); if (cycle < 0 || cycle > INT_MAX) { NL_SET_ERR_MSG(extack, "'cycle_time' is too big"); return -EINVAL; } new->cycle_time = cycle; } if (new->cycle_time < new->num_entries * length_to_duration(q, ETH_ZLEN)) { NL_SET_ERR_MSG(extack, "'cycle_time' is too small"); return -EINVAL; } taprio_calculate_gate_durations(q, new); return 0; } static int taprio_parse_mqprio_opt(struct net_device *dev, struct tc_mqprio_qopt *qopt, struct netlink_ext_ack *extack, u32 taprio_flags) { bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags); if (!qopt) { if (!dev->num_tc) { NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); return -EINVAL; } return 0; } /* taprio imposes that traffic classes map 1:n to tx queues */ if (qopt->num_tc > dev->num_tx_queues) { NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); return -EINVAL; } /* For some reason, in txtime-assist mode, we allow TXQ ranges for * different TCs to overlap, and just validate the TXQ ranges. */ return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs, extack); } static int taprio_get_start_time(struct Qdisc *sch, struct sched_gate_list *sched, ktime_t *start) { struct taprio_sched *q = qdisc_priv(sch); ktime_t now, base, cycle; s64 n; base = sched_base_time(sched); now = taprio_get_time(q); if (ktime_after(base, now)) { *start = base; return 0; } cycle = sched->cycle_time; /* The qdisc is expected to have at least one sched_entry. Moreover, * any entry must have 'interval' > 0. Thus if the cycle time is zero, * something went really wrong. In that case, we should warn about this * inconsistent state and return error. */ if (WARN_ON(!cycle)) return -EFAULT; /* Schedule the start time for the beginning of the next * cycle. */ n = div64_s64(ktime_sub_ns(now, base), cycle); *start = ktime_add_ns(base, (n + 1) * cycle); return 0; } static void setup_first_end_time(struct taprio_sched *q, struct sched_gate_list *sched, ktime_t base) { struct net_device *dev = qdisc_dev(q->root); int num_tc = netdev_get_num_tc(dev); struct sched_entry *first; ktime_t cycle; int tc; first = list_first_entry(&sched->entries, struct sched_entry, list); cycle = sched->cycle_time; /* FIXME: find a better place to do this */ sched->cycle_end_time = ktime_add_ns(base, cycle); first->end_time = ktime_add_ns(base, first->interval); taprio_set_budgets(q, sched, first); for (tc = 0; tc < num_tc; tc++) { if (first->gate_duration[tc] == sched->cycle_time) first->gate_close_time[tc] = KTIME_MAX; else first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]); } rcu_assign_pointer(q->current_entry, NULL); } static void taprio_start_sched(struct Qdisc *sch, ktime_t start, struct sched_gate_list *new) { struct taprio_sched *q = qdisc_priv(sch); ktime_t expires; if (FULL_OFFLOAD_IS_ENABLED(q->flags)) return; expires = hrtimer_get_expires(&q->advance_timer); if (expires == 0) expires = KTIME_MAX; /* If the new schedule starts before the next expiration, we * reprogram it to the earliest one, so we change the admin * schedule to the operational one at the right time. */ start = min_t(ktime_t, start, expires); hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); } static void taprio_set_picos_per_byte(struct net_device *dev, struct taprio_sched *q) { struct ethtool_link_ksettings ecmd; int speed = SPEED_10; int picos_per_byte; int err; err = __ethtool_get_link_ksettings(dev, &ecmd); if (err < 0) goto skip; if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN) speed = ecmd.base.speed; skip: picos_per_byte = (USEC_PER_SEC * 8) / speed; atomic64_set(&q->picos_per_byte, picos_per_byte); netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", dev->name, (long long)atomic64_read(&q->picos_per_byte), ecmd.base.speed); } static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct sched_gate_list *oper, *admin; struct qdisc_size_table *stab; struct taprio_sched *q; ASSERT_RTNL(); if (event != NETDEV_UP && event != NETDEV_CHANGE) return NOTIFY_DONE; list_for_each_entry(q, &taprio_list, taprio_list) { if (dev != qdisc_dev(q->root)) continue; taprio_set_picos_per_byte(dev, q); stab = rtnl_dereference(q->root->stab); oper = rtnl_dereference(q->oper_sched); if (oper) taprio_update_queue_max_sdu(q, oper, stab); admin = rtnl_dereference(q->admin_sched); if (admin) taprio_update_queue_max_sdu(q, admin, stab); break; } return NOTIFY_DONE; } static void setup_txtime(struct taprio_sched *q, struct sched_gate_list *sched, ktime_t base) { struct sched_entry *entry; u64 interval = 0; list_for_each_entry(entry, &sched->entries, list) { entry->next_txtime = ktime_add_ns(base, interval); interval += entry->interval; } } static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries) { struct __tc_taprio_qopt_offload *__offload; __offload = kzalloc(struct_size(__offload, offload.entries, num_entries), GFP_KERNEL); if (!__offload) return NULL; refcount_set(&__offload->users, 1); return &__offload->offload; } struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload *offload) { struct __tc_taprio_qopt_offload *__offload; __offload = container_of(offload, struct __tc_taprio_qopt_offload, offload); refcount_inc(&__offload->users); return offload; } EXPORT_SYMBOL_GPL(taprio_offload_get); void taprio_offload_free(struct tc_taprio_qopt_offload *offload) { struct __tc_taprio_qopt_offload *__offload; __offload = container_of(offload, struct __tc_taprio_qopt_offload, offload); if (!refcount_dec_and_test(&__offload->users)) return; kfree(__offload); } EXPORT_SYMBOL_GPL(taprio_offload_free); /* The function will only serve to keep the pointers to the "oper" and "admin" * schedules valid in relation to their base times, so when calling dump() the * users looks at the right schedules. * When using full offload, the admin configuration is promoted to oper at the * base_time in the PHC time domain. But because the system time is not * necessarily in sync with that, we can't just trigger a hrtimer to call * switch_schedules at the right hardware time. * At the moment we call this by hand right away from taprio, but in the future * it will be useful to create a mechanism for drivers to notify taprio of the * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump(). * This is left as TODO. */ static void taprio_offload_config_changed(struct taprio_sched *q) { struct sched_gate_list *oper, *admin; oper = rtnl_dereference(q->oper_sched); admin = rtnl_dereference(q->admin_sched); switch_schedules(q, &admin, &oper); } static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask) { u32 i, queue_mask = 0; for (i = 0; i < dev->num_tc; i++) { u32 offset, count; if (!(tc_mask & BIT(i))) continue; offset = dev->tc_to_txq[i].offset; count = dev->tc_to_txq[i].count; queue_mask |= GENMASK(offset + count - 1, offset); } return queue_mask; } static void taprio_sched_to_offload(struct net_device *dev, struct sched_gate_list *sched, struct tc_taprio_qopt_offload *offload, const struct tc_taprio_caps *caps) { struct sched_entry *entry; int i = 0; offload->base_time = sched->base_time; offload->cycle_time = sched->cycle_time; offload->cycle_time_extension = sched->cycle_time_extension; list_for_each_entry(entry, &sched->entries, list) { struct tc_taprio_sched_entry *e = &offload->entries[i]; e->command = entry->command; e->interval = entry->interval; if (caps->gate_mask_per_txq) e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask); else e->gate_mask = entry->gate_mask; i++; } offload->num_entries = i; } static void taprio_detect_broken_mqprio(struct taprio_sched *q) { struct net_device *dev = qdisc_dev(q->root); struct tc_taprio_caps caps; qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, &caps, sizeof(caps)); q->broken_mqprio = caps.broken_mqprio; if (q->broken_mqprio) static_branch_inc(&taprio_have_broken_mqprio); else static_branch_inc(&taprio_have_working_mqprio); q->detected_mqprio = true; } static void taprio_cleanup_broken_mqprio(struct taprio_sched *q) { if (!q->detected_mqprio) return; if (q->broken_mqprio) static_branch_dec(&taprio_have_broken_mqprio); else static_branch_dec(&taprio_have_working_mqprio); } static int taprio_enable_offload(struct net_device *dev, struct taprio_sched *q, struct sched_gate_list *sched, struct netlink_ext_ack *extack) { const struct net_device_ops *ops = dev->netdev_ops; struct tc_taprio_qopt_offload *offload; struct tc_taprio_caps caps; int tc, err = 0; if (!ops->ndo_setup_tc) { NL_SET_ERR_MSG(extack, "Device does not support taprio offload"); return -EOPNOTSUPP; } qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, &caps, sizeof(caps)); if (!caps.supports_queue_max_sdu) { for (tc = 0; tc < TC_MAX_QUEUE; tc++) { if (q->max_sdu[tc]) { NL_SET_ERR_MSG_MOD(extack, "Device does not handle queueMaxSDU"); return -EOPNOTSUPP; } } } offload = taprio_offload_alloc(sched->num_entries); if (!offload) { NL_SET_ERR_MSG(extack, "Not enough memory for enabling offload mode"); return -ENOMEM; } offload->cmd = TAPRIO_CMD_REPLACE; offload->extack = extack; mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt); offload->mqprio.extack = extack; taprio_sched_to_offload(dev, sched, offload, &caps); mqprio_fp_to_offload(q->fp, &offload->mqprio); for (tc = 0; tc < TC_MAX_QUEUE; tc++) offload->max_sdu[tc] = q->max_sdu[tc]; err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); if (err < 0) { NL_SET_ERR_MSG_WEAK(extack, "Device failed to setup taprio offload"); goto done; } q->offloaded = true; done: /* The offload structure may linger around via a reference taken by the * device driver, so clear up the netlink extack pointer so that the * driver isn't tempted to dereference data which stopped being valid */ offload->extack = NULL; offload->mqprio.extack = NULL; taprio_offload_free(offload); return err; } static int taprio_disable_offload(struct net_device *dev, struct taprio_sched *q, struct netlink_ext_ack *extack) { const struct net_device_ops *ops = dev->netdev_ops; struct tc_taprio_qopt_offload *offload; int err; if (!q->offloaded) return 0; offload = taprio_offload_alloc(0); if (!offload) { NL_SET_ERR_MSG(extack, "Not enough memory to disable offload mode"); return -ENOMEM; } offload->cmd = TAPRIO_CMD_DESTROY; err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); if (err < 0) { NL_SET_ERR_MSG(extack, "Device failed to disable offload"); goto out; } q->offloaded = false; out: taprio_offload_free(offload); return err; } /* If full offload is enabled, the only possible clockid is the net device's * PHC. For that reason, specifying a clockid through netlink is incorrect. * For txtime-assist, it is implicitly assumed that the device's PHC is kept * in sync with the specified clockid via a user space daemon such as phc2sys. * For both software taprio and txtime-assist, the clockid is used for the * hrtimer that advances the schedule and hence mandatory. */ static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb, struct netlink_ext_ack *extack) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); int err = -EINVAL; if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { const struct ethtool_ops *ops = dev->ethtool_ops; struct kernel_ethtool_ts_info info = { .cmd = ETHTOOL_GET_TS_INFO, .phc_index = -1, }; if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { NL_SET_ERR_MSG(extack, "The 'clockid' cannot be specified for full offload"); goto out; } if (ops && ops->get_ts_info) err = ops->get_ts_info(dev, &info); if (err || info.phc_index < 0) { NL_SET_ERR_MSG(extack, "Device does not have a PTP clock"); err = -ENOTSUPP; goto out; } } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); enum tk_offsets tk_offset; /* We only support static clockids and we don't allow * for it to be modified after the first init. */ if (clockid < 0 || (q->clockid != -1 && q->clockid != clockid)) { NL_SET_ERR_MSG(extack, "Changing the 'clockid' of a running schedule is not supported"); err = -ENOTSUPP; goto out; } switch (clockid) { case CLOCK_REALTIME: tk_offset = TK_OFFS_REAL; break; case CLOCK_MONOTONIC: tk_offset = TK_OFFS_MAX; break; case CLOCK_BOOTTIME: tk_offset = TK_OFFS_BOOT; break; case CLOCK_TAI: tk_offset = TK_OFFS_TAI; break; default: NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); err = -EINVAL; goto out; } /* This pairs with READ_ONCE() in taprio_mono_to_any */ WRITE_ONCE(q->tk_offset, tk_offset); q->clockid = clockid; } else { NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); goto out; } /* Everything went ok, return success. */ err = 0; out: return err; } static int taprio_parse_tc_entry(struct Qdisc *sch, struct nlattr *opt, u32 max_sdu[TC_QOPT_MAX_QUEUE], u32 fp[TC_QOPT_MAX_QUEUE], unsigned long *seen_tcs, struct netlink_ext_ack *extack) { struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { }; struct net_device *dev = qdisc_dev(sch); int err, tc; u32 val; err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt, taprio_tc_policy, extack); if (err < 0) return err; if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) { NL_SET_ERR_MSG_MOD(extack, "TC entry index missing"); return -EINVAL; } tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]); if (tc >= TC_QOPT_MAX_QUEUE) { NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range"); return -ERANGE; } if (*seen_tcs & BIT(tc)) { NL_SET_ERR_MSG_MOD(extack, "Duplicate TC entry"); return -EINVAL; } *seen_tcs |= BIT(tc); if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) { val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]); if (val > dev->max_mtu) { NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU"); return -ERANGE; } max_sdu[tc] = val; } if (tb[TCA_TAPRIO_TC_ENTRY_FP]) fp[tc] = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]); return 0; } static int taprio_parse_tc_entries(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); u32 max_sdu[TC_QOPT_MAX_QUEUE]; bool have_preemption = false; unsigned long seen_tcs = 0; u32 fp[TC_QOPT_MAX_QUEUE]; struct nlattr *n; int tc, rem; int err = 0; for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { max_sdu[tc] = q->max_sdu[tc]; fp[tc] = q->fp[tc]; } nla_for_each_nested_type(n, TCA_TAPRIO_ATTR_TC_ENTRY, opt, rem) { err = taprio_parse_tc_entry(sch, n, max_sdu, fp, &seen_tcs, extack); if (err) return err; } for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { q->max_sdu[tc] = max_sdu[tc]; q->fp[tc] = fp[tc]; if (fp[tc] != TC_FP_EXPRESS) have_preemption = true; } if (have_preemption) { if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) { NL_SET_ERR_MSG(extack, "Preemption only supported with full offload"); return -EOPNOTSUPP; } if (!ethtool_dev_mm_supported(dev)) { NL_SET_ERR_MSG(extack, "Device does not support preemption"); return -EOPNOTSUPP; } } return err; } static int taprio_mqprio_cmp(const struct net_device *dev, const struct tc_mqprio_qopt *mqprio) { int i; if (!mqprio || mqprio->num_tc != dev->num_tc) return -1; for (i = 0; i < mqprio->num_tc; i++) if (dev->tc_to_txq[i].count != mqprio->count[i] || dev->tc_to_txq[i].offset != mqprio->offset[i]) return -1; for (i = 0; i <= TC_BITMASK; i++) if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i]) return -1; return 0; } static int taprio_change(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct qdisc_size_table *stab = rtnl_dereference(sch->stab); struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; struct sched_gate_list *oper, *admin, *new_admin; struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct tc_mqprio_qopt *mqprio = NULL; unsigned long flags; u32 taprio_flags; ktime_t start; int i, err; err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, taprio_policy, extack); if (err < 0) return err; if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); /* The semantics of the 'flags' argument in relation to 'change()' * requests, are interpreted following two rules (which are applied in * this order): (1) an omitted 'flags' argument is interpreted as * zero; (2) the 'flags' of a "running" taprio instance cannot be * changed. */ taprio_flags = tb[TCA_TAPRIO_ATTR_FLAGS] ? nla_get_u32(tb[TCA_TAPRIO_ATTR_FLAGS]) : 0; /* txtime-assist and full offload are mutually exclusive */ if ((taprio_flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) && (taprio_flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) { NL_SET_ERR_MSG_ATTR(extack, tb[TCA_TAPRIO_ATTR_FLAGS], "TXTIME_ASSIST and FULL_OFFLOAD are mutually exclusive"); return -EINVAL; } if (q->flags != TAPRIO_FLAGS_INVALID && q->flags != taprio_flags) { NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported"); return -EOPNOTSUPP; } q->flags = taprio_flags; /* Needed for length_to_duration() during netlink attribute parsing */ taprio_set_picos_per_byte(dev, q); err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags); if (err < 0) return err; err = taprio_parse_tc_entries(sch, opt, extack); if (err) return err; new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); if (!new_admin) { NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); return -ENOMEM; } INIT_LIST_HEAD(&new_admin->entries); oper = rtnl_dereference(q->oper_sched); admin = rtnl_dereference(q->admin_sched); /* no changes - no new mqprio settings */ if (!taprio_mqprio_cmp(dev, mqprio)) mqprio = NULL; if (mqprio && (oper || admin)) { NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); err = -ENOTSUPP; goto free_sched; } if (mqprio) { err = netdev_set_num_tc(dev, mqprio->num_tc); if (err) goto free_sched; for (i = 0; i < mqprio->num_tc; i++) { netdev_set_tc_queue(dev, i, mqprio->count[i], mqprio->offset[i]); q->cur_txq[i] = mqprio->offset[i]; } /* Always use supplied priority mappings */ for (i = 0; i <= TC_BITMASK; i++) netdev_set_prio_tc_map(dev, i, mqprio->prio_tc_map[i]); } err = parse_taprio_schedule(q, tb, new_admin, extack); if (err < 0) goto free_sched; if (new_admin->num_entries == 0) { NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); err = -EINVAL; goto free_sched; } err = taprio_parse_clockid(sch, tb, extack); if (err < 0) goto free_sched; taprio_update_queue_max_sdu(q, new_admin, stab); if (FULL_OFFLOAD_IS_ENABLED(q->flags)) err = taprio_enable_offload(dev, q, new_admin, extack); else err = taprio_disable_offload(dev, q, extack); if (err) goto free_sched; /* Protects against enqueue()/dequeue() */ spin_lock_bh(qdisc_lock(sch)); if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) { NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled"); err = -EINVAL; goto unlock; } q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); } if (!TXTIME_ASSIST_IS_ENABLED(q->flags) && !FULL_OFFLOAD_IS_ENABLED(q->flags) && !hrtimer_active(&q->advance_timer)) { hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); q->advance_timer.function = advance_sched; } err = taprio_get_start_time(sch, new_admin, &start); if (err < 0) { NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); goto unlock; } setup_txtime(q, new_admin, start); if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { if (!oper) { rcu_assign_pointer(q->oper_sched, new_admin); err = 0; new_admin = NULL; goto unlock; } /* Not going to race against advance_sched(), but still */ admin = rcu_replace_pointer(q->admin_sched, new_admin, lockdep_rtnl_is_held()); if (admin) call_rcu(&admin->rcu, taprio_free_sched_cb); } else { setup_first_end_time(q, new_admin, start); /* Protects against advance_sched() */ spin_lock_irqsave(&q->current_entry_lock, flags); taprio_start_sched(sch, start, new_admin); rcu_assign_pointer(q->admin_sched, new_admin); if (admin) call_rcu(&admin->rcu, taprio_free_sched_cb); spin_unlock_irqrestore(&q->current_entry_lock, flags); if (FULL_OFFLOAD_IS_ENABLED(q->flags)) taprio_offload_config_changed(q); } new_admin = NULL; err = 0; if (!stab) NL_SET_ERR_MSG_MOD(extack, "Size table not specified, frame length estimations may be inaccurate"); unlock: spin_unlock_bh(qdisc_lock(sch)); free_sched: if (new_admin) call_rcu(&new_admin->rcu, taprio_free_sched_cb); return err; } static void taprio_reset(struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); int i; hrtimer_cancel(&q->advance_timer); if (q->qdiscs) { for (i = 0; i < dev->num_tx_queues; i++) if (q->qdiscs[i]) qdisc_reset(q->qdiscs[i]); } } static void taprio_destroy(struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct sched_gate_list *oper, *admin; unsigned int i; list_del(&q->taprio_list); /* Note that taprio_reset() might not be called if an error * happens in qdisc_create(), after taprio_init() has been called. */ hrtimer_cancel(&q->advance_timer); qdisc_synchronize(sch); taprio_disable_offload(dev, q, NULL); if (q->qdiscs) { for (i = 0; i < dev->num_tx_queues; i++) qdisc_put(q->qdiscs[i]); kfree(q->qdiscs); } q->qdiscs = NULL; netdev_reset_tc(dev); oper = rtnl_dereference(q->oper_sched); admin = rtnl_dereference(q->admin_sched); if (oper) call_rcu(&oper->rcu, taprio_free_sched_cb); if (admin) call_rcu(&admin->rcu, taprio_free_sched_cb); taprio_cleanup_broken_mqprio(q); } static int taprio_init(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); int i, tc; spin_lock_init(&q->current_entry_lock); hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); q->advance_timer.function = advance_sched; q->root = sch; /* We only support static clockids. Use an invalid value as default * and get the valid one on taprio_change(). */ q->clockid = -1; q->flags = TAPRIO_FLAGS_INVALID; list_add(&q->taprio_list, &taprio_list); if (sch->parent != TC_H_ROOT) { NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc"); return -EOPNOTSUPP; } if (!netif_is_multiqueue(dev)) { NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required"); return -EOPNOTSUPP; } q->qdiscs = kcalloc(dev->num_tx_queues, sizeof(q->qdiscs[0]), GFP_KERNEL); if (!q->qdiscs) return -ENOMEM; if (!opt) return -EINVAL; for (i = 0; i < dev->num_tx_queues; i++) { struct netdev_queue *dev_queue; struct Qdisc *qdisc; dev_queue = netdev_get_tx_queue(dev, i); qdisc = qdisc_create_dflt(dev_queue, &pfifo_qdisc_ops, TC_H_MAKE(TC_H_MAJ(sch->handle), TC_H_MIN(i + 1)), extack); if (!qdisc) return -ENOMEM; if (i < dev->real_num_tx_queues) qdisc_hash_add(qdisc, false); q->qdiscs[i] = qdisc; } for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) q->fp[tc] = TC_FP_EXPRESS; taprio_detect_broken_mqprio(q); return taprio_change(sch, opt, extack); } static void taprio_attach(struct Qdisc *sch) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); unsigned int ntx; /* Attach underlying qdisc */ for (ntx = 0; ntx < dev->num_tx_queues; ntx++) { struct netdev_queue *dev_queue = netdev_get_tx_queue(dev, ntx); struct Qdisc *old, *dev_queue_qdisc; if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { struct Qdisc *qdisc = q->qdiscs[ntx]; /* In offload mode, the root taprio qdisc is bypassed * and the netdev TX queues see the children directly */ qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; dev_queue_qdisc = qdisc; } else { /* In software mode, attach the root taprio qdisc * to all netdev TX queues, so that dev_qdisc_enqueue() * goes through taprio_enqueue(). */ dev_queue_qdisc = sch; } old = dev_graft_qdisc(dev_queue, dev_queue_qdisc); /* The qdisc's refcount requires to be elevated once * for each netdev TX queue it is grafted onto */ qdisc_refcount_inc(dev_queue_qdisc); if (old) qdisc_put(old); } } static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, unsigned long cl) { struct net_device *dev = qdisc_dev(sch); unsigned long ntx = cl - 1; if (ntx >= dev->num_tx_queues) return NULL; return netdev_get_tx_queue(dev, ntx); } static int taprio_graft(struct Qdisc *sch, unsigned long cl, struct Qdisc *new, struct Qdisc **old, struct netlink_ext_ack *extack) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); if (!dev_queue) return -EINVAL; if (dev->flags & IFF_UP) dev_deactivate(dev); /* In offload mode, the child Qdisc is directly attached to the netdev * TX queue, and thus, we need to keep its refcount elevated in order * to counteract qdisc_graft()'s call to qdisc_put() once per TX queue. * However, save the reference to the new qdisc in the private array in * both software and offload cases, to have an up-to-date reference to * our children. */ *old = q->qdiscs[cl - 1]; if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { WARN_ON_ONCE(dev_graft_qdisc(dev_queue, new) != *old); if (new) qdisc_refcount_inc(new); if (*old) qdisc_put(*old); } q->qdiscs[cl - 1] = new; if (new) new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; if (dev->flags & IFF_UP) dev_activate(dev); return 0; } static int dump_entry(struct sk_buff *msg, const struct sched_entry *entry) { struct nlattr *item; item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); if (!item) return -ENOSPC; if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) goto nla_put_failure; if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) goto nla_put_failure; if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, entry->gate_mask)) goto nla_put_failure; if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, entry->interval)) goto nla_put_failure; return nla_nest_end(msg, item); nla_put_failure: nla_nest_cancel(msg, item); return -1; } static int dump_schedule(struct sk_buff *msg, const struct sched_gate_list *root) { struct nlattr *entry_list; struct sched_entry *entry; if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, root->base_time, TCA_TAPRIO_PAD)) return -1; if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, root->cycle_time, TCA_TAPRIO_PAD)) return -1; if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, root->cycle_time_extension, TCA_TAPRIO_PAD)) return -1; entry_list = nla_nest_start_noflag(msg, TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); if (!entry_list) goto error_nest; list_for_each_entry(entry, &root->entries, list) { if (dump_entry(msg, entry) < 0) goto error_nest; } nla_nest_end(msg, entry_list); return 0; error_nest: nla_nest_cancel(msg, entry_list); return -1; } static int taprio_dump_tc_entries(struct sk_buff *skb, struct taprio_sched *q, struct sched_gate_list *sched) { struct nlattr *n; int tc; for (tc = 0; tc < TC_MAX_QUEUE; tc++) { n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY); if (!n) return -EMSGSIZE; if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc)) goto nla_put_failure; if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU, sched->max_sdu[tc])) goto nla_put_failure; if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_FP, q->fp[tc])) goto nla_put_failure; nla_nest_end(skb, n); } return 0; nla_put_failure: nla_nest_cancel(skb, n); return -EMSGSIZE; } static int taprio_put_stat(struct sk_buff *skb, u64 val, u16 attrtype) { if (val == TAPRIO_STAT_NOT_SET) return 0; if (nla_put_u64_64bit(skb, attrtype, val, TCA_TAPRIO_OFFLOAD_STATS_PAD)) return -EMSGSIZE; return 0; } static int taprio_dump_xstats(struct Qdisc *sch, struct gnet_dump *d, struct tc_taprio_qopt_offload *offload, struct tc_taprio_qopt_stats *stats) { struct net_device *dev = qdisc_dev(sch); const struct net_device_ops *ops; struct sk_buff *skb = d->skb; struct nlattr *xstats; int err; ops = qdisc_dev(sch)->netdev_ops; /* FIXME I could use qdisc_offload_dump_helper(), but that messes * with sch->flags depending on whether the device reports taprio * stats, and I'm not sure whether that's a good idea, considering * that stats are optional to the offload itself */ if (!ops->ndo_setup_tc) return 0; memset(stats, 0xff, sizeof(*stats)); err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); if (err == -EOPNOTSUPP) return 0; if (err) return err; xstats = nla_nest_start(skb, TCA_STATS_APP); if (!xstats) goto err; if (taprio_put_stat(skb, stats->window_drops, TCA_TAPRIO_OFFLOAD_STATS_WINDOW_DROPS) || taprio_put_stat(skb, stats->tx_overruns, TCA_TAPRIO_OFFLOAD_STATS_TX_OVERRUNS)) goto err_cancel; nla_nest_end(skb, xstats); return 0; err_cancel: nla_nest_cancel(skb, xstats); err: return -EMSGSIZE; } static int taprio_dump_stats(struct Qdisc *sch, struct gnet_dump *d) { struct tc_taprio_qopt_offload offload = { .cmd = TAPRIO_CMD_STATS, }; return taprio_dump_xstats(sch, d, &offload, &offload.stats); } static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); struct sched_gate_list *oper, *admin; struct tc_mqprio_qopt opt = { 0 }; struct nlattr *nest, *sched_nest; oper = rtnl_dereference(q->oper_sched); admin = rtnl_dereference(q->admin_sched); mqprio_qopt_reconstruct(dev, &opt); nest = nla_nest_start_noflag(skb, TCA_OPTIONS); if (!nest) goto start_error; if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) goto options_error; if (!FULL_OFFLOAD_IS_ENABLED(q->flags) && nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) goto options_error; if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags)) goto options_error; if (q->txtime_delay && nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay)) goto options_error; if (oper && taprio_dump_tc_entries(skb, q, oper)) goto options_error; if (oper && dump_schedule(skb, oper)) goto options_error; if (!admin) goto done; sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); if (!sched_nest) goto options_error; if (dump_schedule(skb, admin)) goto admin_error; nla_nest_end(skb, sched_nest); done: return nla_nest_end(skb, nest); admin_error: nla_nest_cancel(skb, sched_nest); options_error: nla_nest_cancel(skb, nest); start_error: return -ENOSPC; } static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) { struct taprio_sched *q = qdisc_priv(sch); struct net_device *dev = qdisc_dev(sch); unsigned int ntx = cl - 1; if (ntx >= dev->num_tx_queues) return NULL; return q->qdiscs[ntx]; } static unsigned long taprio_find(struct Qdisc *sch, u32 classid) { unsigned int ntx = TC_H_MIN(classid); if (!taprio_queue_get(sch, ntx)) return 0; return ntx; } static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, struct sk_buff *skb, struct tcmsg *tcm) { struct Qdisc *child = taprio_leaf(sch, cl); tcm->tcm_parent = TC_H_ROOT; tcm->tcm_handle |= TC_H_MIN(cl); tcm->tcm_info = child->handle; return 0; } static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, struct gnet_dump *d) __releases(d->lock) __acquires(d->lock) { struct Qdisc *child = taprio_leaf(sch, cl); struct tc_taprio_qopt_offload offload = { .cmd = TAPRIO_CMD_QUEUE_STATS, .queue_stats = { .queue = cl - 1, }, }; if (gnet_stats_copy_basic(d, NULL, &child->bstats, true) < 0 || qdisc_qstats_copy(d, child) < 0) return -1; return taprio_dump_xstats(sch, d, &offload, &offload.queue_stats.stats); } static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) { struct net_device *dev = qdisc_dev(sch); unsigned long ntx; if (arg->stop) return; arg->count = arg->skip; for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { if (!tc_qdisc_stats_dump(sch, ntx + 1, arg)) break; } } static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, struct tcmsg *tcm) { return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); } static const struct Qdisc_class_ops taprio_class_ops = { .graft = taprio_graft, .leaf = taprio_leaf, .find = taprio_find, .walk = taprio_walk, .dump = taprio_dump_class, .dump_stats = taprio_dump_class_stats, .select_queue = taprio_select_queue, }; static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { .cl_ops = &taprio_class_ops, .id = "taprio", .priv_size = sizeof(struct taprio_sched), .init = taprio_init, .change = taprio_change, .destroy = taprio_destroy, .reset = taprio_reset, .attach = taprio_attach, .peek = taprio_peek, .dequeue = taprio_dequeue, .enqueue = taprio_enqueue, .dump = taprio_dump, .dump_stats = taprio_dump_stats, .owner = THIS_MODULE, }; MODULE_ALIAS_NET_SCH("taprio"); static struct notifier_block taprio_device_notifier = { .notifier_call = taprio_dev_notifier, }; static int __init taprio_module_init(void) { int err = register_netdevice_notifier(&taprio_device_notifier); if (err) return err; return register_qdisc(&taprio_qdisc_ops); } static void __exit taprio_module_exit(void) { unregister_qdisc(&taprio_qdisc_ops); unregister_netdevice_notifier(&taprio_device_notifier); } module_init(taprio_module_init); module_exit(taprio_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Time Aware Priority qdisc");
1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 // SPDX-License-Identifier: GPL-2.0-only #include "netlink.h" #include "common.h" struct rss_req_info { struct ethnl_req_info base; u32 rss_context; }; struct rss_reply_data { struct ethnl_reply_data base; bool no_key_fields; u32 indir_size; u32 hkey_size; u32 hfunc; u32 input_xfrm; u32 *indir_table; u8 *hkey; }; #define RSS_REQINFO(__req_base) \ container_of(__req_base, struct rss_req_info, base) #define RSS_REPDATA(__reply_base) \ container_of(__reply_base, struct rss_reply_data, base) const struct nla_policy ethnl_rss_get_policy[] = { [ETHTOOL_A_RSS_HEADER] = NLA_POLICY_NESTED(ethnl_header_policy), [ETHTOOL_A_RSS_CONTEXT] = { .type = NLA_U32 }, [ETHTOOL_A_RSS_START_CONTEXT] = { .type = NLA_U32 }, }; static int rss_parse_request(struct ethnl_req_info *req_info, struct nlattr **tb, struct netlink_ext_ack *extack) { struct rss_req_info *request = RSS_REQINFO(req_info); if (tb[ETHTOOL_A_RSS_CONTEXT]) request->rss_context = nla_get_u32(tb[ETHTOOL_A_RSS_CONTEXT]); if (tb[ETHTOOL_A_RSS_START_CONTEXT]) { NL_SET_BAD_ATTR(extack, tb[ETHTOOL_A_RSS_START_CONTEXT]); return -EINVAL; } return 0; } static int rss_prepare_get(const struct rss_req_info *request, struct net_device *dev, struct rss_reply_data *data, const struct genl_info *info) { struct ethtool_rxfh_param rxfh = {}; const struct ethtool_ops *ops; u32 total_size, indir_bytes; u8 *rss_config; int ret; ops = dev->ethtool_ops; ret = ethnl_ops_begin(dev); if (ret < 0) return ret; data->indir_size = 0; data->hkey_size = 0; if (ops->get_rxfh_indir_size) data->indir_size = ops->get_rxfh_indir_size(dev); if (ops->get_rxfh_key_size) data->hkey_size = ops->get_rxfh_key_size(dev); indir_bytes = data->indir_size * sizeof(u32); total_size = indir_bytes + data->hkey_size; rss_config = kzalloc(total_size, GFP_KERNEL); if (!rss_config) { ret = -ENOMEM; goto out_ops; } if (data->indir_size) data->indir_table = (u32 *)rss_config; if (data->hkey_size) data->hkey = rss_config + indir_bytes; rxfh.indir_size = data->indir_size; rxfh.indir = data->indir_table; rxfh.key_size = data->hkey_size; rxfh.key = data->hkey; ret = ops->get_rxfh(dev, &rxfh); if (ret) goto out_ops; data->hfunc = rxfh.hfunc; data->input_xfrm = rxfh.input_xfrm; out_ops: ethnl_ops_complete(dev); return ret; } static int rss_prepare_ctx(const struct rss_req_info *request, struct net_device *dev, struct rss_reply_data *data, const struct genl_info *info) { struct ethtool_rxfh_context *ctx; u32 total_size, indir_bytes; u8 *rss_config; ctx = xa_load(&dev->ethtool->rss_ctx, request->rss_context); if (!ctx) return -ENOENT; data->indir_size = ctx->indir_size; data->hkey_size = ctx->key_size; data->hfunc = ctx->hfunc; data->input_xfrm = ctx->input_xfrm; indir_bytes = data->indir_size * sizeof(u32); total_size = indir_bytes + data->hkey_size; rss_config = kzalloc(total_size, GFP_KERNEL); if (!rss_config) return -ENOMEM; data->indir_table = (u32 *)rss_config; memcpy(data->indir_table, ethtool_rxfh_context_indir(ctx), indir_bytes); if (data->hkey_size) { data->hkey = rss_config + indir_bytes; memcpy(data->hkey, ethtool_rxfh_context_key(ctx), data->hkey_size); } return 0; } static int rss_prepare_data(const struct ethnl_req_info *req_base, struct ethnl_reply_data *reply_base, const struct genl_info *info) { struct rss_reply_data *data = RSS_REPDATA(reply_base); struct rss_req_info *request = RSS_REQINFO(req_base); struct net_device *dev = reply_base->dev; const struct ethtool_ops *ops; ops = dev->ethtool_ops; if (!ops->get_rxfh) return -EOPNOTSUPP; /* Some drivers don't handle rss_context */ if (request->rss_context) { if (!ops->cap_rss_ctx_supported && !ops->create_rxfh_context) return -EOPNOTSUPP; data->no_key_fields = !ops->rxfh_per_ctx_key; return rss_prepare_ctx(request, dev, data, info); } return rss_prepare_get(request, dev, data, info); } static int rss_reply_size(const struct ethnl_req_info *req_base, const struct ethnl_reply_data *reply_base) { const struct rss_reply_data *data = RSS_REPDATA(reply_base); int len; len = nla_total_size(sizeof(u32)) + /* _RSS_CONTEXT */ nla_total_size(sizeof(u32)) + /* _RSS_HFUNC */ nla_total_size(sizeof(u32)) + /* _RSS_INPUT_XFRM */ nla_total_size(sizeof(u32) * data->indir_size) + /* _RSS_INDIR */ nla_total_size(data->hkey_size); /* _RSS_HKEY */ return len; } static int rss_fill_reply(struct sk_buff *skb, const struct ethnl_req_info *req_base, const struct ethnl_reply_data *reply_base) { const struct rss_reply_data *data = RSS_REPDATA(reply_base); struct rss_req_info *request = RSS_REQINFO(req_base); if (request->rss_context && nla_put_u32(skb, ETHTOOL_A_RSS_CONTEXT, request->rss_context)) return -EMSGSIZE; if ((data->indir_size && nla_put(skb, ETHTOOL_A_RSS_INDIR, sizeof(u32) * data->indir_size, data->indir_table))) return -EMSGSIZE; if (data->no_key_fields) return 0; if ((data->hfunc && nla_put_u32(skb, ETHTOOL_A_RSS_HFUNC, data->hfunc)) || (data->input_xfrm && nla_put_u32(skb, ETHTOOL_A_RSS_INPUT_XFRM, data->input_xfrm)) || (data->hkey_size && nla_put(skb, ETHTOOL_A_RSS_HKEY, data->hkey_size, data->hkey))) return -EMSGSIZE; return 0; } static void rss_cleanup_data(struct ethnl_reply_data *reply_base) { const struct rss_reply_data *data = RSS_REPDATA(reply_base); kfree(data->indir_table); } struct rss_nl_dump_ctx { unsigned long ifindex; unsigned long ctx_idx; /* User wants to only dump contexts from given ifindex */ unsigned int match_ifindex; unsigned int start_ctx; }; static struct rss_nl_dump_ctx *rss_dump_ctx(struct netlink_callback *cb) { NL_ASSERT_DUMP_CTX_FITS(struct rss_nl_dump_ctx); return (struct rss_nl_dump_ctx *)cb->ctx; } int ethnl_rss_dump_start(struct netlink_callback *cb) { const struct genl_info *info = genl_info_dump(cb); struct rss_nl_dump_ctx *ctx = rss_dump_ctx(cb); struct ethnl_req_info req_info = {}; struct nlattr **tb = info->attrs; int ret; /* Filtering by context not supported */ if (tb[ETHTOOL_A_RSS_CONTEXT]) { NL_SET_BAD_ATTR(info->extack, tb[ETHTOOL_A_RSS_CONTEXT]); return -EINVAL; } if (tb[ETHTOOL_A_RSS_START_CONTEXT]) { ctx->start_ctx = nla_get_u32(tb[ETHTOOL_A_RSS_START_CONTEXT]); ctx->ctx_idx = ctx->start_ctx; } ret = ethnl_parse_header_dev_get(&req_info, tb[ETHTOOL_A_RSS_HEADER], sock_net(cb->skb->sk), cb->extack, false); if (req_info.dev) { ctx->match_ifindex = req_info.dev->ifindex; ctx->ifindex = ctx->match_ifindex; ethnl_parse_header_dev_put(&req_info); req_info.dev = NULL; } return ret; } static int rss_dump_one_ctx(struct sk_buff *skb, struct netlink_callback *cb, struct net_device *dev, u32 rss_context) { const struct genl_info *info = genl_info_dump(cb); struct rss_reply_data data = {}; struct rss_req_info req = {}; void *ehdr; int ret; req.rss_context = rss_context; ehdr = ethnl_dump_put(skb, cb, ETHTOOL_MSG_RSS_GET_REPLY); if (!ehdr) return -EMSGSIZE; ret = ethnl_fill_reply_header(skb, dev, ETHTOOL_A_RSS_HEADER); if (ret < 0) goto err_cancel; /* Context 0 is not currently storred or cached in the XArray */ if (!rss_context) ret = rss_prepare_get(&req, dev, &data, info); else ret = rss_prepare_ctx(&req, dev, &data, info); if (ret) goto err_cancel; ret = rss_fill_reply(skb, &req.base, &data.base); if (ret) goto err_cleanup; genlmsg_end(skb, ehdr); rss_cleanup_data(&data.base); return 0; err_cleanup: rss_cleanup_data(&data.base); err_cancel: genlmsg_cancel(skb, ehdr); return ret; } static int rss_dump_one_dev(struct sk_buff *skb, struct netlink_callback *cb, struct net_device *dev) { struct rss_nl_dump_ctx *ctx = rss_dump_ctx(cb); int ret; if (!dev->ethtool_ops->get_rxfh) return 0; if (!ctx->ctx_idx) { ret = rss_dump_one_ctx(skb, cb, dev, 0); if (ret) return ret; ctx->ctx_idx++; } for (; xa_find(&dev->ethtool->rss_ctx, &ctx->ctx_idx, ULONG_MAX, XA_PRESENT); ctx->ctx_idx++) { ret = rss_dump_one_ctx(skb, cb, dev, ctx->ctx_idx); if (ret) return ret; } ctx->ctx_idx = ctx->start_ctx; return 0; } int ethnl_rss_dumpit(struct sk_buff *skb, struct netlink_callback *cb) { struct rss_nl_dump_ctx *ctx = rss_dump_ctx(cb); struct net *net = sock_net(skb->sk); struct net_device *dev; int ret = 0; rtnl_lock(); for_each_netdev_dump(net, dev, ctx->ifindex) { if (ctx->match_ifindex && ctx->match_ifindex != ctx->ifindex) break; ret = rss_dump_one_dev(skb, cb, dev); if (ret) break; } rtnl_unlock(); return ret; } const struct ethnl_request_ops ethnl_rss_request_ops = { .request_cmd = ETHTOOL_MSG_RSS_GET, .reply_cmd = ETHTOOL_MSG_RSS_GET_REPLY, .hdr_attr = ETHTOOL_A_RSS_HEADER, .req_info_size = sizeof(struct rss_req_info), .reply_data_size = sizeof(struct rss_reply_data), .parse_request = rss_parse_request, .prepare_data = rss_prepare_data, .reply_size = rss_reply_size, .fill_reply = rss_fill_reply, .cleanup_data = rss_cleanup_data, };
4 465 465 4 466 2270 2005 465 459 4 464 8 8 8 468 26 466 459 455 469 465 9 2276 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 // SPDX-License-Identifier: GPL-2.0 /* * A fast, small, non-recursive O(n log n) sort for the Linux kernel * * This performs n*log2(n) + 0.37*n + o(n) comparisons on average, * and 1.5*n*log2(n) + O(n) in the (very contrived) worst case. * * Quicksort manages n*log2(n) - 1.26*n for random inputs (1.63*n * better) at the expense of stack usage and much larger code to avoid * quicksort's O(n^2) worst case. */ #include <linux/types.h> #include <linux/export.h> #include <linux/sort.h> /** * is_aligned - is this pointer & size okay for word-wide copying? * @base: pointer to data * @size: size of each element * @align: required alignment (typically 4 or 8) * * Returns true if elements can be copied using word loads and stores. * The size must be a multiple of the alignment, and the base address must * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS. * * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)" * to "if ((a | b) & mask)", so we do that by hand. */ __attribute_const__ __always_inline static bool is_aligned(const void *base, size_t size, unsigned char align) { unsigned char lsbits = (unsigned char)size; (void)base; #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS lsbits |= (unsigned char)(uintptr_t)base; #endif return (lsbits & (align - 1)) == 0; } /** * swap_words_32 - swap two elements in 32-bit chunks * @a: pointer to the first element to swap * @b: pointer to the second element to swap * @n: element size (must be a multiple of 4) * * Exchange the two objects in memory. This exploits base+index addressing, * which basically all CPUs have, to minimize loop overhead computations. * * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the * bottom of the loop, even though the zero flag is still valid from the * subtract (since the intervening mov instructions don't alter the flags). * Gcc 8.1.0 doesn't have that problem. */ static void swap_words_32(void *a, void *b, size_t n) { do { u32 t = *(u32 *)(a + (n -= 4)); *(u32 *)(a + n) = *(u32 *)(b + n); *(u32 *)(b + n) = t; } while (n); } /** * swap_words_64 - swap two elements in 64-bit chunks * @a: pointer to the first element to swap * @b: pointer to the second element to swap * @n: element size (must be a multiple of 8) * * Exchange the two objects in memory. This exploits base+index * addressing, which basically all CPUs have, to minimize loop overhead * computations. * * We'd like to use 64-bit loads if possible. If they're not, emulating * one requires base+index+4 addressing which x86 has but most other * processors do not. If CONFIG_64BIT, we definitely have 64-bit loads, * but it's possible to have 64-bit loads without 64-bit pointers (e.g. * x32 ABI). Are there any cases the kernel needs to worry about? */ static void swap_words_64(void *a, void *b, size_t n) { do { #ifdef CONFIG_64BIT u64 t = *(u64 *)(a + (n -= 8)); *(u64 *)(a + n) = *(u64 *)(b + n); *(u64 *)(b + n) = t; #else /* Use two 32-bit transfers to avoid base+index+4 addressing */ u32 t = *(u32 *)(a + (n -= 4)); *(u32 *)(a + n) = *(u32 *)(b + n); *(u32 *)(b + n) = t; t = *(u32 *)(a + (n -= 4)); *(u32 *)(a + n) = *(u32 *)(b + n); *(u32 *)(b + n) = t; #endif } while (n); } /** * swap_bytes - swap two elements a byte at a time * @a: pointer to the first element to swap * @b: pointer to the second element to swap * @n: element size * * This is the fallback if alignment doesn't allow using larger chunks. */ static void swap_bytes(void *a, void *b, size_t n) { do { char t = ((char *)a)[--n]; ((char *)a)[n] = ((char *)b)[n]; ((char *)b)[n] = t; } while (n); } /* * The values are arbitrary as long as they can't be confused with * a pointer, but small integers make for the smallest compare * instructions. */ #define SWAP_WORDS_64 (swap_r_func_t)0 #define SWAP_WORDS_32 (swap_r_func_t)1 #define SWAP_BYTES (swap_r_func_t)2 #define SWAP_WRAPPER (swap_r_func_t)3 struct wrapper { cmp_func_t cmp; swap_func_t swap; }; /* * The function pointer is last to make tail calls most efficient if the * compiler decides not to inline this function. */ static void do_swap(void *a, void *b, size_t size, swap_r_func_t swap_func, const void *priv) { if (swap_func == SWAP_WRAPPER) { ((const struct wrapper *)priv)->swap(a, b, (int)size); return; } if (swap_func == SWAP_WORDS_64) swap_words_64(a, b, size); else if (swap_func == SWAP_WORDS_32) swap_words_32(a, b, size); else if (swap_func == SWAP_BYTES) swap_bytes(a, b, size); else swap_func(a, b, (int)size, priv); } #define _CMP_WRAPPER ((cmp_r_func_t)0L) static int do_cmp(const void *a, const void *b, cmp_r_func_t cmp, const void *priv) { if (cmp == _CMP_WRAPPER) return ((const struct wrapper *)priv)->cmp(a, b); return cmp(a, b, priv); } /** * parent - given the offset of the child, find the offset of the parent. * @i: the offset of the heap element whose parent is sought. Non-zero. * @lsbit: a precomputed 1-bit mask, equal to "size & -size" * @size: size of each element * * In terms of array indexes, the parent of element j = @i/@size is simply * (j-1)/2. But when working in byte offsets, we can't use implicit * truncation of integer divides. * * Fortunately, we only need one bit of the quotient, not the full divide. * @size has a least significant bit. That bit will be clear if @i is * an even multiple of @size, and set if it's an odd multiple. * * Logically, we're doing "if (i & lsbit) i -= size;", but since the * branch is unpredictable, it's done with a bit of clever branch-free * code instead. */ __attribute_const__ __always_inline static size_t parent(size_t i, unsigned int lsbit, size_t size) { i -= size; i -= size & -(i & lsbit); return i / 2; } /** * sort_r - sort an array of elements * @base: pointer to data to sort * @num: number of elements * @size: size of each element * @cmp_func: pointer to comparison function * @swap_func: pointer to swap function or NULL * @priv: third argument passed to comparison function * * This function does a heapsort on the given array. You may provide * a swap_func function if you need to do something more than a memory * copy (e.g. fix up pointers or auxiliary data), but the built-in swap * avoids a slow retpoline and so is significantly faster. * * Sorting time is O(n log n) both on average and worst-case. While * quicksort is slightly faster on average, it suffers from exploitable * O(n*n) worst-case behavior and extra memory requirements that make * it less suitable for kernel use. */ void sort_r(void *base, size_t num, size_t size, cmp_r_func_t cmp_func, swap_r_func_t swap_func, const void *priv) { /* pre-scale counters for performance */ size_t n = num * size, a = (num/2) * size; const unsigned int lsbit = size & -size; /* Used to find parent */ size_t shift = 0; if (!a) /* num < 2 || size == 0 */ return; /* called from 'sort' without swap function, let's pick the default */ if (swap_func == SWAP_WRAPPER && !((struct wrapper *)priv)->swap) swap_func = NULL; if (!swap_func) { if (is_aligned(base, size, 8)) swap_func = SWAP_WORDS_64; else if (is_aligned(base, size, 4)) swap_func = SWAP_WORDS_32; else swap_func = SWAP_BYTES; } /* * Loop invariants: * 1. elements [a,n) satisfy the heap property (compare greater than * all of their children), * 2. elements [n,num*size) are sorted, and * 3. a <= b <= c <= d <= n (whenever they are valid). */ for (;;) { size_t b, c, d; if (a) /* Building heap: sift down a */ a -= size << shift; else if (n > 3 * size) { /* Sorting: Extract two largest elements */ n -= size; do_swap(base, base + n, size, swap_func, priv); shift = do_cmp(base + size, base + 2 * size, cmp_func, priv) <= 0; a = size << shift; n -= size; do_swap(base + a, base + n, size, swap_func, priv); } else { /* Sort complete */ break; } /* * Sift element at "a" down into heap. This is the * "bottom-up" variant, which significantly reduces * calls to cmp_func(): we find the sift-down path all * the way to the leaves (one compare per level), then * backtrack to find where to insert the target element. * * Because elements tend to sift down close to the leaves, * this uses fewer compares than doing two per level * on the way down. (A bit more than half as many on * average, 3/4 worst-case.) */ for (b = a; c = 2*b + size, (d = c + size) < n;) b = do_cmp(base + c, base + d, cmp_func, priv) > 0 ? c : d; if (d == n) /* Special case last leaf with no sibling */ b = c; /* Now backtrack from "b" to the correct location for "a" */ while (b != a && do_cmp(base + a, base + b, cmp_func, priv) >= 0) b = parent(b, lsbit, size); c = b; /* Where "a" belongs */ while (b != a) { /* Shift it into place */ b = parent(b, lsbit, size); do_swap(base + b, base + c, size, swap_func, priv); } } n -= size; do_swap(base, base + n, size, swap_func, priv); if (n == size * 2 && do_cmp(base, base + size, cmp_func, priv) > 0) do_swap(base, base + size, size, swap_func, priv); } EXPORT_SYMBOL(sort_r); void sort(void *base, size_t num, size_t size, cmp_func_t cmp_func, swap_func_t swap_func) { struct wrapper w = { .cmp = cmp_func, .swap = swap_func, }; return sort_r(base, num, size, _CMP_WRAPPER, SWAP_WRAPPER, &w); } EXPORT_SYMBOL(sort);
1 1 1 1 27 21 1 4 2 2 3 3 3 3 4 2 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 /* * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/in.h> #include <linux/module.h> #include <net/tcp.h> #include <net/net_namespace.h> #include <net/netns/generic.h> #include <net/addrconf.h> #include "rds.h" #include "tcp.h" /* only for info exporting */ static DEFINE_SPINLOCK(rds_tcp_tc_list_lock); static LIST_HEAD(rds_tcp_tc_list); /* rds_tcp_tc_count counts only IPv4 connections. * rds6_tcp_tc_count counts both IPv4 and IPv6 connections. */ static unsigned int rds_tcp_tc_count; #if IS_ENABLED(CONFIG_IPV6) static unsigned int rds6_tcp_tc_count; #endif /* Track rds_tcp_connection structs so they can be cleaned up */ static DEFINE_SPINLOCK(rds_tcp_conn_lock); static LIST_HEAD(rds_tcp_conn_list); static atomic_t rds_tcp_unloading = ATOMIC_INIT(0); static struct kmem_cache *rds_tcp_conn_slab; static int rds_tcp_skbuf_handler(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *fpos); static int rds_tcp_min_sndbuf = SOCK_MIN_SNDBUF; static int rds_tcp_min_rcvbuf = SOCK_MIN_RCVBUF; static struct ctl_table rds_tcp_sysctl_table[] = { #define RDS_TCP_SNDBUF 0 { .procname = "rds_tcp_sndbuf", /* data is per-net pointer */ .maxlen = sizeof(int), .mode = 0644, .proc_handler = rds_tcp_skbuf_handler, .extra1 = &rds_tcp_min_sndbuf, }, #define RDS_TCP_RCVBUF 1 { .procname = "rds_tcp_rcvbuf", /* data is per-net pointer */ .maxlen = sizeof(int), .mode = 0644, .proc_handler = rds_tcp_skbuf_handler, .extra1 = &rds_tcp_min_rcvbuf, }, }; u32 rds_tcp_write_seq(struct rds_tcp_connection *tc) { /* seq# of the last byte of data in tcp send buffer */ return tcp_sk(tc->t_sock->sk)->write_seq; } u32 rds_tcp_snd_una(struct rds_tcp_connection *tc) { return tcp_sk(tc->t_sock->sk)->snd_una; } void rds_tcp_restore_callbacks(struct socket *sock, struct rds_tcp_connection *tc) { rdsdebug("restoring sock %p callbacks from tc %p\n", sock, tc); write_lock_bh(&sock->sk->sk_callback_lock); /* done under the callback_lock to serialize with write_space */ spin_lock(&rds_tcp_tc_list_lock); list_del_init(&tc->t_list_item); #if IS_ENABLED(CONFIG_IPV6) rds6_tcp_tc_count--; #endif if (!tc->t_cpath->cp_conn->c_isv6) rds_tcp_tc_count--; spin_unlock(&rds_tcp_tc_list_lock); tc->t_sock = NULL; sock->sk->sk_write_space = tc->t_orig_write_space; sock->sk->sk_data_ready = tc->t_orig_data_ready; sock->sk->sk_state_change = tc->t_orig_state_change; sock->sk->sk_user_data = NULL; write_unlock_bh(&sock->sk->sk_callback_lock); } /* * rds_tcp_reset_callbacks() switches the to the new sock and * returns the existing tc->t_sock. * * The only functions that set tc->t_sock are rds_tcp_set_callbacks * and rds_tcp_reset_callbacks. Send and receive trust that * it is set. The absence of RDS_CONN_UP bit protects those paths * from being called while it isn't set. */ void rds_tcp_reset_callbacks(struct socket *sock, struct rds_conn_path *cp) { struct rds_tcp_connection *tc = cp->cp_transport_data; struct socket *osock = tc->t_sock; if (!osock) goto newsock; /* Need to resolve a duelling SYN between peers. * We have an outstanding SYN to this peer, which may * potentially have transitioned to the RDS_CONN_UP state, * so we must quiesce any send threads before resetting * cp_transport_data. We quiesce these threads by setting * cp_state to something other than RDS_CONN_UP, and then * waiting for any existing threads in rds_send_xmit to * complete release_in_xmit(). (Subsequent threads entering * rds_send_xmit() will bail on !rds_conn_up(). * * However an incoming syn-ack at this point would end up * marking the conn as RDS_CONN_UP, and would again permit * rds_send_xmi() threads through, so ideally we would * synchronize on RDS_CONN_UP after lock_sock(), but cannot * do that: waiting on !RDS_IN_XMIT after lock_sock() may * end up deadlocking with tcp_sendmsg(), and the RDS_IN_XMIT * would not get set. As a result, we set c_state to * RDS_CONN_RESETTTING, to ensure that rds_tcp_state_change * cannot mark rds_conn_path_up() in the window before lock_sock() */ atomic_set(&cp->cp_state, RDS_CONN_RESETTING); wait_event(cp->cp_waitq, !test_bit(RDS_IN_XMIT, &cp->cp_flags)); /* reset receive side state for rds_tcp_data_recv() for osock */ cancel_delayed_work_sync(&cp->cp_send_w); cancel_delayed_work_sync(&cp->cp_recv_w); lock_sock(osock->sk); if (tc->t_tinc) { rds_inc_put(&tc->t_tinc->ti_inc); tc->t_tinc = NULL; } tc->t_tinc_hdr_rem = sizeof(struct rds_header); tc->t_tinc_data_rem = 0; rds_tcp_restore_callbacks(osock, tc); release_sock(osock->sk); sock_release(osock); newsock: rds_send_path_reset(cp); lock_sock(sock->sk); rds_tcp_set_callbacks(sock, cp); release_sock(sock->sk); } /* Add tc to rds_tcp_tc_list and set tc->t_sock. See comments * above rds_tcp_reset_callbacks for notes about synchronization * with data path */ void rds_tcp_set_callbacks(struct socket *sock, struct rds_conn_path *cp) { struct rds_tcp_connection *tc = cp->cp_transport_data; rdsdebug("setting sock %p callbacks to tc %p\n", sock, tc); write_lock_bh(&sock->sk->sk_callback_lock); /* done under the callback_lock to serialize with write_space */ spin_lock(&rds_tcp_tc_list_lock); list_add_tail(&tc->t_list_item, &rds_tcp_tc_list); #if IS_ENABLED(CONFIG_IPV6) rds6_tcp_tc_count++; #endif if (!tc->t_cpath->cp_conn->c_isv6) rds_tcp_tc_count++; spin_unlock(&rds_tcp_tc_list_lock); /* accepted sockets need our listen data ready undone */ if (sock->sk->sk_data_ready == rds_tcp_listen_data_ready) sock->sk->sk_data_ready = sock->sk->sk_user_data; tc->t_sock = sock; tc->t_cpath = cp; tc->t_orig_data_ready = sock->sk->sk_data_ready; tc->t_orig_write_space = sock->sk->sk_write_space; tc->t_orig_state_change = sock->sk->sk_state_change; sock->sk->sk_user_data = cp; sock->sk->sk_data_ready = rds_tcp_data_ready; sock->sk->sk_write_space = rds_tcp_write_space; sock->sk->sk_state_change = rds_tcp_state_change; write_unlock_bh(&sock->sk->sk_callback_lock); } /* Handle RDS_INFO_TCP_SOCKETS socket option. It only returns IPv4 * connections for backward compatibility. */ static void rds_tcp_tc_info(struct socket *rds_sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { struct rds_info_tcp_socket tsinfo; struct rds_tcp_connection *tc; unsigned long flags; spin_lock_irqsave(&rds_tcp_tc_list_lock, flags); if (len / sizeof(tsinfo) < rds_tcp_tc_count) goto out; list_for_each_entry(tc, &rds_tcp_tc_list, t_list_item) { struct inet_sock *inet = inet_sk(tc->t_sock->sk); if (tc->t_cpath->cp_conn->c_isv6) continue; tsinfo.local_addr = inet->inet_saddr; tsinfo.local_port = inet->inet_sport; tsinfo.peer_addr = inet->inet_daddr; tsinfo.peer_port = inet->inet_dport; tsinfo.hdr_rem = tc->t_tinc_hdr_rem; tsinfo.data_rem = tc->t_tinc_data_rem; tsinfo.last_sent_nxt = tc->t_last_sent_nxt; tsinfo.last_expected_una = tc->t_last_expected_una; tsinfo.last_seen_una = tc->t_last_seen_una; tsinfo.tos = tc->t_cpath->cp_conn->c_tos; rds_info_copy(iter, &tsinfo, sizeof(tsinfo)); } out: lens->nr = rds_tcp_tc_count; lens->each = sizeof(tsinfo); spin_unlock_irqrestore(&rds_tcp_tc_list_lock, flags); } #if IS_ENABLED(CONFIG_IPV6) /* Handle RDS6_INFO_TCP_SOCKETS socket option. It returns both IPv4 and * IPv6 connections. IPv4 connection address is returned in an IPv4 mapped * address. */ static void rds6_tcp_tc_info(struct socket *sock, unsigned int len, struct rds_info_iterator *iter, struct rds_info_lengths *lens) { struct rds6_info_tcp_socket tsinfo6; struct rds_tcp_connection *tc; unsigned long flags; spin_lock_irqsave(&rds_tcp_tc_list_lock, flags); if (len / sizeof(tsinfo6) < rds6_tcp_tc_count) goto out; list_for_each_entry(tc, &rds_tcp_tc_list, t_list_item) { struct sock *sk = tc->t_sock->sk; struct inet_sock *inet = inet_sk(sk); tsinfo6.local_addr = sk->sk_v6_rcv_saddr; tsinfo6.local_port = inet->inet_sport; tsinfo6.peer_addr = sk->sk_v6_daddr; tsinfo6.peer_port = inet->inet_dport; tsinfo6.hdr_rem = tc->t_tinc_hdr_rem; tsinfo6.data_rem = tc->t_tinc_data_rem; tsinfo6.last_sent_nxt = tc->t_last_sent_nxt; tsinfo6.last_expected_una = tc->t_last_expected_una; tsinfo6.last_seen_una = tc->t_last_seen_una; rds_info_copy(iter, &tsinfo6, sizeof(tsinfo6)); } out: lens->nr = rds6_tcp_tc_count; lens->each = sizeof(tsinfo6); spin_unlock_irqrestore(&rds_tcp_tc_list_lock, flags); } #endif int rds_tcp_laddr_check(struct net *net, const struct in6_addr *addr, __u32 scope_id) { struct net_device *dev = NULL; #if IS_ENABLED(CONFIG_IPV6) int ret; #endif if (ipv6_addr_v4mapped(addr)) { if (inet_addr_type(net, addr->s6_addr32[3]) == RTN_LOCAL) return 0; return -EADDRNOTAVAIL; } /* If the scope_id is specified, check only those addresses * hosted on the specified interface. */ if (scope_id != 0) { rcu_read_lock(); dev = dev_get_by_index_rcu(net, scope_id); /* scope_id is not valid... */ if (!dev) { rcu_read_unlock(); return -EADDRNOTAVAIL; } rcu_read_unlock(); } #if IS_ENABLED(CONFIG_IPV6) ret = ipv6_chk_addr(net, addr, dev, 0); if (ret) return 0; #endif return -EADDRNOTAVAIL; } static void rds_tcp_conn_free(void *arg) { struct rds_tcp_connection *tc = arg; unsigned long flags; rdsdebug("freeing tc %p\n", tc); spin_lock_irqsave(&rds_tcp_conn_lock, flags); if (!tc->t_tcp_node_detached) list_del(&tc->t_tcp_node); spin_unlock_irqrestore(&rds_tcp_conn_lock, flags); kmem_cache_free(rds_tcp_conn_slab, tc); } static int rds_tcp_conn_alloc(struct rds_connection *conn, gfp_t gfp) { struct rds_tcp_connection *tc; int i, j; int ret = 0; for (i = 0; i < RDS_MPATH_WORKERS; i++) { tc = kmem_cache_alloc(rds_tcp_conn_slab, gfp); if (!tc) { ret = -ENOMEM; goto fail; } mutex_init(&tc->t_conn_path_lock); tc->t_sock = NULL; tc->t_tinc = NULL; tc->t_tinc_hdr_rem = sizeof(struct rds_header); tc->t_tinc_data_rem = 0; conn->c_path[i].cp_transport_data = tc; tc->t_cpath = &conn->c_path[i]; tc->t_tcp_node_detached = true; rdsdebug("rds_conn_path [%d] tc %p\n", i, conn->c_path[i].cp_transport_data); } spin_lock_irq(&rds_tcp_conn_lock); for (i = 0; i < RDS_MPATH_WORKERS; i++) { tc = conn->c_path[i].cp_transport_data; tc->t_tcp_node_detached = false; list_add_tail(&tc->t_tcp_node, &rds_tcp_conn_list); } spin_unlock_irq(&rds_tcp_conn_lock); fail: if (ret) { for (j = 0; j < i; j++) rds_tcp_conn_free(conn->c_path[j].cp_transport_data); } return ret; } static bool list_has_conn(struct list_head *list, struct rds_connection *conn) { struct rds_tcp_connection *tc, *_tc; list_for_each_entry_safe(tc, _tc, list, t_tcp_node) { if (tc->t_cpath->cp_conn == conn) return true; } return false; } static void rds_tcp_set_unloading(void) { atomic_set(&rds_tcp_unloading, 1); } static bool rds_tcp_is_unloading(struct rds_connection *conn) { return atomic_read(&rds_tcp_unloading) != 0; } static void rds_tcp_destroy_conns(void) { struct rds_tcp_connection *tc, *_tc; LIST_HEAD(tmp_list); /* avoid calling conn_destroy with irqs off */ spin_lock_irq(&rds_tcp_conn_lock); list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) { if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn)) list_move_tail(&tc->t_tcp_node, &tmp_list); } spin_unlock_irq(&rds_tcp_conn_lock); list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node) rds_conn_destroy(tc->t_cpath->cp_conn); } static void rds_tcp_exit(void); static u8 rds_tcp_get_tos_map(u8 tos) { /* all user tos mapped to default 0 for TCP transport */ return 0; } struct rds_transport rds_tcp_transport = { .laddr_check = rds_tcp_laddr_check, .xmit_path_prepare = rds_tcp_xmit_path_prepare, .xmit_path_complete = rds_tcp_xmit_path_complete, .xmit = rds_tcp_xmit, .recv_path = rds_tcp_recv_path, .conn_alloc = rds_tcp_conn_alloc, .conn_free = rds_tcp_conn_free, .conn_path_connect = rds_tcp_conn_path_connect, .conn_path_shutdown = rds_tcp_conn_path_shutdown, .inc_copy_to_user = rds_tcp_inc_copy_to_user, .inc_free = rds_tcp_inc_free, .stats_info_copy = rds_tcp_stats_info_copy, .exit = rds_tcp_exit, .get_tos_map = rds_tcp_get_tos_map, .t_owner = THIS_MODULE, .t_name = "tcp", .t_type = RDS_TRANS_TCP, .t_prefer_loopback = 1, .t_mp_capable = 1, .t_unloading = rds_tcp_is_unloading, }; static unsigned int rds_tcp_netid; /* per-network namespace private data for this module */ struct rds_tcp_net { struct socket *rds_tcp_listen_sock; struct work_struct rds_tcp_accept_w; struct ctl_table_header *rds_tcp_sysctl; struct ctl_table *ctl_table; int sndbuf_size; int rcvbuf_size; }; /* All module specific customizations to the RDS-TCP socket should be done in * rds_tcp_tune() and applied after socket creation. */ bool rds_tcp_tune(struct socket *sock) { struct sock *sk = sock->sk; struct net *net = sock_net(sk); struct rds_tcp_net *rtn; tcp_sock_set_nodelay(sock->sk); lock_sock(sk); /* TCP timer functions might access net namespace even after * a process which created this net namespace terminated. */ if (!sk->sk_net_refcnt) { if (!maybe_get_net(net)) { release_sock(sk); return false; } /* Update ns_tracker to current stack trace and refcounted tracker */ __netns_tracker_free(net, &sk->ns_tracker, false); sk->sk_net_refcnt = 1; netns_tracker_alloc(net, &sk->ns_tracker, GFP_KERNEL); sock_inuse_add(net, 1); } rtn = net_generic(net, rds_tcp_netid); if (rtn->sndbuf_size > 0) { sk->sk_sndbuf = rtn->sndbuf_size; sk->sk_userlocks |= SOCK_SNDBUF_LOCK; } if (rtn->rcvbuf_size > 0) { sk->sk_rcvbuf = rtn->rcvbuf_size; sk->sk_userlocks |= SOCK_RCVBUF_LOCK; } release_sock(sk); return true; } static void rds_tcp_accept_worker(struct work_struct *work) { struct rds_tcp_net *rtn = container_of(work, struct rds_tcp_net, rds_tcp_accept_w); while (rds_tcp_accept_one(rtn->rds_tcp_listen_sock) == 0) cond_resched(); } void rds_tcp_accept_work(struct sock *sk) { struct net *net = sock_net(sk); struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); queue_work(rds_wq, &rtn->rds_tcp_accept_w); } static __net_init int rds_tcp_init_net(struct net *net) { struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); struct ctl_table *tbl; int err = 0; memset(rtn, 0, sizeof(*rtn)); /* {snd, rcv}buf_size default to 0, which implies we let the * stack pick the value, and permit auto-tuning of buffer size. */ if (net == &init_net) { tbl = rds_tcp_sysctl_table; } else { tbl = kmemdup(rds_tcp_sysctl_table, sizeof(rds_tcp_sysctl_table), GFP_KERNEL); if (!tbl) { pr_warn("could not set allocate sysctl table\n"); return -ENOMEM; } rtn->ctl_table = tbl; } tbl[RDS_TCP_SNDBUF].data = &rtn->sndbuf_size; tbl[RDS_TCP_RCVBUF].data = &rtn->rcvbuf_size; rtn->rds_tcp_sysctl = register_net_sysctl_sz(net, "net/rds/tcp", tbl, ARRAY_SIZE(rds_tcp_sysctl_table)); if (!rtn->rds_tcp_sysctl) { pr_warn("could not register sysctl\n"); err = -ENOMEM; goto fail; } #if IS_ENABLED(CONFIG_IPV6) rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, true); #else rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, false); #endif if (!rtn->rds_tcp_listen_sock) { pr_warn("could not set up IPv6 listen sock\n"); #if IS_ENABLED(CONFIG_IPV6) /* Try IPv4 as some systems disable IPv6 */ rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, false); if (!rtn->rds_tcp_listen_sock) { #endif unregister_net_sysctl_table(rtn->rds_tcp_sysctl); rtn->rds_tcp_sysctl = NULL; err = -EAFNOSUPPORT; goto fail; #if IS_ENABLED(CONFIG_IPV6) } #endif } INIT_WORK(&rtn->rds_tcp_accept_w, rds_tcp_accept_worker); return 0; fail: if (net != &init_net) kfree(tbl); return err; } static void rds_tcp_kill_sock(struct net *net) { struct rds_tcp_connection *tc, *_tc; LIST_HEAD(tmp_list); struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); struct socket *lsock = rtn->rds_tcp_listen_sock; rtn->rds_tcp_listen_sock = NULL; rds_tcp_listen_stop(lsock, &rtn->rds_tcp_accept_w); spin_lock_irq(&rds_tcp_conn_lock); list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) { struct net *c_net = read_pnet(&tc->t_cpath->cp_conn->c_net); if (net != c_net) continue; if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn)) { list_move_tail(&tc->t_tcp_node, &tmp_list); } else { list_del(&tc->t_tcp_node); tc->t_tcp_node_detached = true; } } spin_unlock_irq(&rds_tcp_conn_lock); list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node) rds_conn_destroy(tc->t_cpath->cp_conn); } static void __net_exit rds_tcp_exit_net(struct net *net) { struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); rds_tcp_kill_sock(net); if (rtn->rds_tcp_sysctl) unregister_net_sysctl_table(rtn->rds_tcp_sysctl); if (net != &init_net) kfree(rtn->ctl_table); } static struct pernet_operations rds_tcp_net_ops = { .init = rds_tcp_init_net, .exit = rds_tcp_exit_net, .id = &rds_tcp_netid, .size = sizeof(struct rds_tcp_net), }; void *rds_tcp_listen_sock_def_readable(struct net *net) { struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); struct socket *lsock = rtn->rds_tcp_listen_sock; if (!lsock) return NULL; return lsock->sk->sk_user_data; } /* when sysctl is used to modify some kernel socket parameters,this * function resets the RDS connections in that netns so that we can * restart with new parameters. The assumption is that such reset * events are few and far-between. */ static void rds_tcp_sysctl_reset(struct net *net) { struct rds_tcp_connection *tc, *_tc; spin_lock_irq(&rds_tcp_conn_lock); list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) { struct net *c_net = read_pnet(&tc->t_cpath->cp_conn->c_net); if (net != c_net || !tc->t_sock) continue; /* reconnect with new parameters */ rds_conn_path_drop(tc->t_cpath, false); } spin_unlock_irq(&rds_tcp_conn_lock); } static int rds_tcp_skbuf_handler(const struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *fpos) { struct net *net = current->nsproxy->net_ns; int err; err = proc_dointvec_minmax(ctl, write, buffer, lenp, fpos); if (err < 0) { pr_warn("Invalid input. Must be >= %d\n", *(int *)(ctl->extra1)); return err; } if (write) rds_tcp_sysctl_reset(net); return 0; } static void rds_tcp_exit(void) { rds_tcp_set_unloading(); synchronize_rcu(); rds_info_deregister_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info); #if IS_ENABLED(CONFIG_IPV6) rds_info_deregister_func(RDS6_INFO_TCP_SOCKETS, rds6_tcp_tc_info); #endif unregister_pernet_device(&rds_tcp_net_ops); rds_tcp_destroy_conns(); rds_trans_unregister(&rds_tcp_transport); rds_tcp_recv_exit(); kmem_cache_destroy(rds_tcp_conn_slab); } module_exit(rds_tcp_exit); static int __init rds_tcp_init(void) { int ret; rds_tcp_conn_slab = KMEM_CACHE(rds_tcp_connection, 0); if (!rds_tcp_conn_slab) { ret = -ENOMEM; goto out; } ret = rds_tcp_recv_init(); if (ret) goto out_slab; ret = register_pernet_device(&rds_tcp_net_ops); if (ret) goto out_recv; rds_trans_register(&rds_tcp_transport); rds_info_register_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info); #if IS_ENABLED(CONFIG_IPV6) rds_info_register_func(RDS6_INFO_TCP_SOCKETS, rds6_tcp_tc_info); #endif goto out; out_recv: rds_tcp_recv_exit(); out_slab: kmem_cache_destroy(rds_tcp_conn_slab); out: return ret; } module_init(rds_tcp_init); MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>"); MODULE_DESCRIPTION("RDS: TCP transport"); MODULE_LICENSE("Dual BSD/GPL");
4 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 /* SPDX-License-Identifier: GPL-2.0 */ /* Rewritten and vastly simplified by Rusty Russell for in-kernel * module loader: * Copyright 2002 Rusty Russell <rusty@rustcorp.com.au> IBM Corporation */ #ifndef _LINUX_KALLSYMS_H #define _LINUX_KALLSYMS_H #include <linux/errno.h> #include <linux/buildid.h> #include <linux/kernel.h> #include <linux/stddef.h> #include <linux/mm.h> #include <linux/module.h> #include <asm/sections.h> #define KSYM_NAME_LEN 512 #define KSYM_SYMBOL_LEN (sizeof("%s+%#lx/%#lx [%s %s]") + \ (KSYM_NAME_LEN - 1) + \ 2*(BITS_PER_LONG*3/10) + (MODULE_NAME_LEN - 1) + \ (BUILD_ID_SIZE_MAX * 2) + 1) struct cred; struct module; static inline int is_kernel_text(unsigned long addr) { if (__is_kernel_text(addr)) return 1; return in_gate_area_no_mm(addr); } static inline int is_kernel(unsigned long addr) { if (__is_kernel(addr)) return 1; return in_gate_area_no_mm(addr); } static inline int is_ksym_addr(unsigned long addr) { if (IS_ENABLED(CONFIG_KALLSYMS_ALL)) return is_kernel(addr); return is_kernel_text(addr) || is_kernel_inittext(addr); } static inline void *dereference_symbol_descriptor(void *ptr) { #ifdef CONFIG_HAVE_FUNCTION_DESCRIPTORS struct module *mod; ptr = dereference_kernel_function_descriptor(ptr); if (is_ksym_addr((unsigned long)ptr)) return ptr; preempt_disable(); mod = __module_address((unsigned long)ptr); preempt_enable(); if (mod) ptr = dereference_module_function_descriptor(mod, ptr); #endif return ptr; } /* How and when do we show kallsyms values? */ extern bool kallsyms_show_value(const struct cred *cred); #ifdef CONFIG_KALLSYMS unsigned long kallsyms_sym_address(int idx); int kallsyms_on_each_symbol(int (*fn)(void *, const char *, unsigned long), void *data); int kallsyms_on_each_match_symbol(int (*fn)(void *, unsigned long), const char *name, void *data); /* Lookup the address for a symbol. Returns 0 if not found. */ unsigned long kallsyms_lookup_name(const char *name); extern int kallsyms_lookup_size_offset(unsigned long addr, unsigned long *symbolsize, unsigned long *offset); /* Lookup an address. modname is set to NULL if it's in the kernel. */ const char *kallsyms_lookup(unsigned long addr, unsigned long *symbolsize, unsigned long *offset, char **modname, char *namebuf); /* Look up a kernel symbol and return it in a text buffer. */ extern int sprint_symbol(char *buffer, unsigned long address); extern int sprint_symbol_build_id(char *buffer, unsigned long address); extern int sprint_symbol_no_offset(char *buffer, unsigned long address); extern int sprint_backtrace(char *buffer, unsigned long address); extern int sprint_backtrace_build_id(char *buffer, unsigned long address); int lookup_symbol_name(unsigned long addr, char *symname); #else /* !CONFIG_KALLSYMS */ static inline unsigned long kallsyms_lookup_name(const char *name) { return 0; } static inline int kallsyms_lookup_size_offset(unsigned long addr, unsigned long *symbolsize, unsigned long *offset) { return 0; } static inline const char *kallsyms_lookup(unsigned long addr, unsigned long *symbolsize, unsigned long *offset, char **modname, char *namebuf) { return NULL; } static inline int sprint_symbol(char *buffer, unsigned long addr) { *buffer = '\0'; return 0; } static inline int sprint_symbol_build_id(char *buffer, unsigned long address) { *buffer = '\0'; return 0; } static inline int sprint_symbol_no_offset(char *buffer, unsigned long addr) { *buffer = '\0'; return 0; } static inline int sprint_backtrace(char *buffer, unsigned long addr) { *buffer = '\0'; return 0; } static inline int sprint_backtrace_build_id(char *buffer, unsigned long addr) { *buffer = '\0'; return 0; } static inline int lookup_symbol_name(unsigned long addr, char *symname) { return -ERANGE; } static inline int kallsyms_on_each_symbol(int (*fn)(void *, const char *, unsigned long), void *data) { return -EOPNOTSUPP; } static inline int kallsyms_on_each_match_symbol(int (*fn)(void *, unsigned long), const char *name, void *data) { return -EOPNOTSUPP; } #endif /*CONFIG_KALLSYMS*/ static inline void print_ip_sym(const char *loglvl, unsigned long ip) { printk("%s[<%px>] %pS\n", loglvl, (void *) ip, (void *) ip); } #endif /*_LINUX_KALLSYMS_H*/
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 1 15 15 7 1 8 8 8 15 9 1 7 7 7 1 6 7 2 7 15 15 16 15 3 3 3 3 7 7 7 7 1 1 4 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 /* * llc_conn.c - Driver routines for connection component. * * Copyright (c) 1997 by Procom Technology, Inc. * 2001-2003 by Arnaldo Carvalho de Melo <acme@conectiva.com.br> * * This program can be redistributed or modified under the terms of the * GNU General Public License as published by the Free Software Foundation. * This program is distributed without any warranty or implied warranty * of merchantability or fitness for a particular purpose. * * See the GNU General Public License for more details. */ #include <linux/init.h> #include <linux/slab.h> #include <net/llc.h> #include <net/llc_c_ac.h> #include <net/llc_c_ev.h> #include <net/llc_c_st.h> #include <net/llc_conn.h> #include <net/llc_pdu.h> #include <net/llc_sap.h> #include <net/sock.h> #include <net/tcp_states.h> #if 0 #define dprintk(args...) printk(KERN_DEBUG args) #else #define dprintk(args...) #endif static int llc_find_offset(int state, int ev_type); static void llc_conn_send_pdus(struct sock *sk); static int llc_conn_service(struct sock *sk, struct sk_buff *skb); static int llc_exec_conn_trans_actions(struct sock *sk, const struct llc_conn_state_trans *trans, struct sk_buff *ev); static const struct llc_conn_state_trans *llc_qualify_conn_ev(struct sock *sk, struct sk_buff *skb); /* Offset table on connection states transition diagram */ static int llc_offset_table[NBR_CONN_STATES][NBR_CONN_EV]; int sysctl_llc2_ack_timeout = LLC2_ACK_TIME * HZ; int sysctl_llc2_p_timeout = LLC2_P_TIME * HZ; int sysctl_llc2_rej_timeout = LLC2_REJ_TIME * HZ; int sysctl_llc2_busy_timeout = LLC2_BUSY_TIME * HZ; /** * llc_conn_state_process - sends event to connection state machine * @sk: connection * @skb: occurred event * * Sends an event to connection state machine. After processing event * (executing it's actions and changing state), upper layer will be * indicated or confirmed, if needed. Returns 0 for success, 1 for * failure. The socket lock has to be held before calling this function. * * This function always consumes a reference to the skb. */ int llc_conn_state_process(struct sock *sk, struct sk_buff *skb) { int rc; struct llc_sock *llc = llc_sk(skb->sk); struct llc_conn_state_ev *ev = llc_conn_ev(skb); ev->ind_prim = ev->cfm_prim = 0; /* * Send event to state machine */ rc = llc_conn_service(skb->sk, skb); if (unlikely(rc != 0)) { printk(KERN_ERR "%s: llc_conn_service failed\n", __func__); goto out_skb_put; } switch (ev->ind_prim) { case LLC_DATA_PRIM: skb_get(skb); llc_save_primitive(sk, skb, LLC_DATA_PRIM); if (unlikely(sock_queue_rcv_skb(sk, skb))) { /* * shouldn't happen */ printk(KERN_ERR "%s: sock_queue_rcv_skb failed!\n", __func__); kfree_skb(skb); } break; case LLC_CONN_PRIM: /* * Can't be sock_queue_rcv_skb, because we have to leave the * skb->sk pointing to the newly created struct sock in * llc_conn_handler. -acme */ skb_get(skb); skb_queue_tail(&sk->sk_receive_queue, skb); sk->sk_state_change(sk); break; case LLC_DISC_PRIM: sock_hold(sk); if (sk->sk_type == SOCK_STREAM && sk->sk_state == TCP_ESTABLISHED) { sk->sk_shutdown = SHUTDOWN_MASK; sk->sk_socket->state = SS_UNCONNECTED; sk->sk_state = TCP_CLOSE; if (!sock_flag(sk, SOCK_DEAD)) { sock_set_flag(sk, SOCK_DEAD); sk->sk_state_change(sk); } } sock_put(sk); break; case LLC_RESET_PRIM: /* * FIXME: * RESET is not being notified to upper layers for now */ printk(KERN_INFO "%s: received a reset ind!\n", __func__); break; default: if (ev->ind_prim) printk(KERN_INFO "%s: received unknown %d prim!\n", __func__, ev->ind_prim); /* No indication */ break; } switch (ev->cfm_prim) { case LLC_DATA_PRIM: if (!llc_data_accept_state(llc->state)) sk->sk_write_space(sk); else rc = llc->failed_data_req = 1; break; case LLC_CONN_PRIM: if (sk->sk_type == SOCK_STREAM && sk->sk_state == TCP_SYN_SENT) { if (ev->status) { sk->sk_socket->state = SS_UNCONNECTED; sk->sk_state = TCP_CLOSE; } else { sk->sk_socket->state = SS_CONNECTED; sk->sk_state = TCP_ESTABLISHED; } sk->sk_state_change(sk); } break; case LLC_DISC_PRIM: sock_hold(sk); if (sk->sk_type == SOCK_STREAM && sk->sk_state == TCP_CLOSING) { sk->sk_socket->state = SS_UNCONNECTED; sk->sk_state = TCP_CLOSE; sk->sk_state_change(sk); } sock_put(sk); break; case LLC_RESET_PRIM: /* * FIXME: * RESET is not being notified to upper layers for now */ printk(KERN_INFO "%s: received a reset conf!\n", __func__); break; default: if (ev->cfm_prim) printk(KERN_INFO "%s: received unknown %d prim!\n", __func__, ev->cfm_prim); /* No confirmation */ break; } out_skb_put: kfree_skb(skb); return rc; } void llc_conn_send_pdu(struct sock *sk, struct sk_buff *skb) { /* queue PDU to send to MAC layer */ skb_queue_tail(&sk->sk_write_queue, skb); llc_conn_send_pdus(sk); } /** * llc_conn_rtn_pdu - sends received data pdu to upper layer * @sk: Active connection * @skb: Received data frame * * Sends received data pdu to upper layer (by using indicate function). * Prepares service parameters (prim and prim_data). calling indication * function will be done in llc_conn_state_process. */ void llc_conn_rtn_pdu(struct sock *sk, struct sk_buff *skb) { struct llc_conn_state_ev *ev = llc_conn_ev(skb); ev->ind_prim = LLC_DATA_PRIM; } /** * llc_conn_resend_i_pdu_as_cmd - resend all all unacknowledged I PDUs * @sk: active connection * @nr: NR * @first_p_bit: p_bit value of first pdu * * Resend all unacknowledged I PDUs, starting with the NR; send first as * command PDU with P bit equal first_p_bit; if more than one send * subsequent as command PDUs with P bit equal zero (0). */ void llc_conn_resend_i_pdu_as_cmd(struct sock *sk, u8 nr, u8 first_p_bit) { struct sk_buff *skb; struct llc_pdu_sn *pdu; u16 nbr_unack_pdus; struct llc_sock *llc; u8 howmany_resend = 0; llc_conn_remove_acked_pdus(sk, nr, &nbr_unack_pdus); if (!nbr_unack_pdus) goto out; /* * Process unack PDUs only if unack queue is not empty; remove * appropriate PDUs, fix them up, and put them on mac_pdu_q. */ llc = llc_sk(sk); while ((skb = skb_dequeue(&llc->pdu_unack_q)) != NULL) { pdu = llc_pdu_sn_hdr(skb); llc_pdu_set_cmd_rsp(skb, LLC_PDU_CMD); llc_pdu_set_pf_bit(skb, first_p_bit); skb_queue_tail(&sk->sk_write_queue, skb); first_p_bit = 0; llc->vS = LLC_I_GET_NS(pdu); howmany_resend++; } if (howmany_resend > 0) llc->vS = (llc->vS + 1) % LLC_2_SEQ_NBR_MODULO; /* any PDUs to re-send are queued up; start sending to MAC */ llc_conn_send_pdus(sk); out:; } /** * llc_conn_resend_i_pdu_as_rsp - Resend all unacknowledged I PDUs * @sk: active connection. * @nr: NR * @first_f_bit: f_bit value of first pdu. * * Resend all unacknowledged I PDUs, starting with the NR; send first as * response PDU with F bit equal first_f_bit; if more than one send * subsequent as response PDUs with F bit equal zero (0). */ void llc_conn_resend_i_pdu_as_rsp(struct sock *sk, u8 nr, u8 first_f_bit) { struct sk_buff *skb; u16 nbr_unack_pdus; struct llc_sock *llc = llc_sk(sk); u8 howmany_resend = 0; llc_conn_remove_acked_pdus(sk, nr, &nbr_unack_pdus); if (!nbr_unack_pdus) goto out; /* * Process unack PDUs only if unack queue is not empty; remove * appropriate PDUs, fix them up, and put them on mac_pdu_q */ while ((skb = skb_dequeue(&llc->pdu_unack_q)) != NULL) { struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); llc_pdu_set_cmd_rsp(skb, LLC_PDU_RSP); llc_pdu_set_pf_bit(skb, first_f_bit); skb_queue_tail(&sk->sk_write_queue, skb); first_f_bit = 0; llc->vS = LLC_I_GET_NS(pdu); howmany_resend++; } if (howmany_resend > 0) llc->vS = (llc->vS + 1) % LLC_2_SEQ_NBR_MODULO; /* any PDUs to re-send are queued up; start sending to MAC */ llc_conn_send_pdus(sk); out:; } /** * llc_conn_remove_acked_pdus - Removes acknowledged pdus from tx queue * @sk: active connection * @nr: NR * @how_many_unacked: size of pdu_unack_q after removing acked pdus * * Removes acknowledged pdus from transmit queue (pdu_unack_q). Returns * the number of pdus that removed from queue. */ int llc_conn_remove_acked_pdus(struct sock *sk, u8 nr, u16 *how_many_unacked) { int pdu_pos, i; struct sk_buff *skb; struct llc_pdu_sn *pdu; int nbr_acked = 0; struct llc_sock *llc = llc_sk(sk); int q_len = skb_queue_len(&llc->pdu_unack_q); if (!q_len) goto out; skb = skb_peek(&llc->pdu_unack_q); pdu = llc_pdu_sn_hdr(skb); /* finding position of last acked pdu in queue */ pdu_pos = ((int)LLC_2_SEQ_NBR_MODULO + (int)nr - (int)LLC_I_GET_NS(pdu)) % LLC_2_SEQ_NBR_MODULO; for (i = 0; i < pdu_pos && i < q_len; i++) { skb = skb_dequeue(&llc->pdu_unack_q); kfree_skb(skb); nbr_acked++; } out: *how_many_unacked = skb_queue_len(&llc->pdu_unack_q); return nbr_acked; } /** * llc_conn_send_pdus - Sends queued PDUs * @sk: active connection * * Sends queued pdus to MAC layer for transmission. */ static void llc_conn_send_pdus(struct sock *sk) { struct sk_buff *skb; while ((skb = skb_dequeue(&sk->sk_write_queue)) != NULL) { struct llc_pdu_sn *pdu = llc_pdu_sn_hdr(skb); if (LLC_PDU_TYPE_IS_I(pdu) && !(skb->dev->flags & IFF_LOOPBACK)) { struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); skb_queue_tail(&llc_sk(sk)->pdu_unack_q, skb); if (!skb2) break; skb = skb2; } dev_queue_xmit(skb); } } /** * llc_conn_service - finds transition and changes state of connection * @sk: connection * @skb: happened event * * This function finds transition that matches with happened event, then * executes related actions and finally changes state of connection. * Returns 0 for success, 1 for failure. */ static int llc_conn_service(struct sock *sk, struct sk_buff *skb) { const struct llc_conn_state_trans *trans; struct llc_sock *llc = llc_sk(sk); int rc = 1; if (llc->state > NBR_CONN_STATES) goto out; rc = 0; trans = llc_qualify_conn_ev(sk, skb); if (trans) { rc = llc_exec_conn_trans_actions(sk, trans, skb); if (!rc && trans->next_state != NO_STATE_CHANGE) { llc->state = trans->next_state; if (!llc_data_accept_state(llc->state)) sk->sk_state_change(sk); } } out: return rc; } /** * llc_qualify_conn_ev - finds transition for event * @sk: connection * @skb: happened event * * This function finds transition that matches with happened event. * Returns pointer to found transition on success, %NULL otherwise. */ static const struct llc_conn_state_trans *llc_qualify_conn_ev(struct sock *sk, struct sk_buff *skb) { const struct llc_conn_state_trans **next_trans; const llc_conn_ev_qfyr_t *next_qualifier; struct llc_conn_state_ev *ev = llc_conn_ev(skb); struct llc_sock *llc = llc_sk(sk); struct llc_conn_state *curr_state = &llc_conn_state_table[llc->state - 1]; /* search thru events for this state until * list exhausted or until no more */ for (next_trans = curr_state->transitions + llc_find_offset(llc->state - 1, ev->type); (*next_trans)->ev; next_trans++) { if (!((*next_trans)->ev)(sk, skb)) { /* got POSSIBLE event match; the event may require * qualification based on the values of a number of * state flags; if all qualifications are met (i.e., * if all qualifying functions return success, or 0, * then this is THE event we're looking for */ for (next_qualifier = (*next_trans)->ev_qualifiers; next_qualifier && *next_qualifier && !(*next_qualifier)(sk, skb); next_qualifier++) /* nothing */; if (!next_qualifier || !*next_qualifier) /* all qualifiers executed successfully; this is * our transition; return it so we can perform * the associated actions & change the state */ return *next_trans; } } return NULL; } /** * llc_exec_conn_trans_actions - executes related actions * @sk: connection * @trans: transition that it's actions must be performed * @skb: event * * Executes actions that is related to happened event. Returns 0 for * success, 1 to indicate failure of at least one action. */ static int llc_exec_conn_trans_actions(struct sock *sk, const struct llc_conn_state_trans *trans, struct sk_buff *skb) { int rc = 0; const llc_conn_action_t *next_action; for (next_action = trans->ev_actions; next_action && *next_action; next_action++) { int rc2 = (*next_action)(sk, skb); if (rc2 == 2) { rc = rc2; break; } else if (rc2) rc = 1; } return rc; } static inline bool llc_estab_match(const struct llc_sap *sap, const struct llc_addr *daddr, const struct llc_addr *laddr, const struct sock *sk, const struct net *net) { struct llc_sock *llc = llc_sk(sk); return net_eq(sock_net(sk), net) && llc->laddr.lsap == laddr->lsap && llc->daddr.lsap == daddr->lsap && ether_addr_equal(llc->laddr.mac, laddr->mac) && ether_addr_equal(llc->daddr.mac, daddr->mac); } /** * __llc_lookup_established - Finds connection for the remote/local sap/mac * @sap: SAP * @daddr: address of remote LLC (MAC + SAP) * @laddr: address of local LLC (MAC + SAP) * @net: netns to look up a socket in * * Search connection list of the SAP and finds connection using the remote * mac, remote sap, local mac, and local sap. Returns pointer for * connection found, %NULL otherwise. * Caller has to make sure local_bh is disabled. */ static struct sock *__llc_lookup_established(struct llc_sap *sap, struct llc_addr *daddr, struct llc_addr *laddr, const struct net *net) { struct sock *rc; struct hlist_nulls_node *node; int slot = llc_sk_laddr_hashfn(sap, laddr); struct hlist_nulls_head *laddr_hb = &sap->sk_laddr_hash[slot]; rcu_read_lock(); again: sk_nulls_for_each_rcu(rc, node, laddr_hb) { if (llc_estab_match(sap, daddr, laddr, rc, net)) { /* Extra checks required by SLAB_TYPESAFE_BY_RCU */ if (unlikely(!refcount_inc_not_zero(&rc->sk_refcnt))) goto again; if (unlikely(llc_sk(rc)->sap != sap || !llc_estab_match(sap, daddr, laddr, rc, net))) { sock_put(rc); continue; } goto found; } } rc = NULL; /* * if the nulls value we got at the end of this lookup is * not the expected one, we must restart lookup. * We probably met an item that was moved to another chain. */ if (unlikely(get_nulls_value(node) != slot)) goto again; found: rcu_read_unlock(); return rc; } struct sock *llc_lookup_established(struct llc_sap *sap, struct llc_addr *daddr, struct llc_addr *laddr, const struct net *net) { struct sock *sk; local_bh_disable(); sk = __llc_lookup_established(sap, daddr, laddr, net); local_bh_enable(); return sk; } static inline bool llc_listener_match(const struct llc_sap *sap, const struct llc_addr *laddr, const struct sock *sk, const struct net *net) { struct llc_sock *llc = llc_sk(sk); return net_eq(sock_net(sk), net) && sk->sk_type == SOCK_STREAM && sk->sk_state == TCP_LISTEN && llc->laddr.lsap == laddr->lsap && ether_addr_equal(llc->laddr.mac, laddr->mac); } static struct sock *__llc_lookup_listener(struct llc_sap *sap, struct llc_addr *laddr, const struct net *net) { struct sock *rc; struct hlist_nulls_node *node; int slot = llc_sk_laddr_hashfn(sap, laddr); struct hlist_nulls_head *laddr_hb = &sap->sk_laddr_hash[slot]; rcu_read_lock(); again: sk_nulls_for_each_rcu(rc, node, laddr_hb) { if (llc_listener_match(sap, laddr, rc, net)) { /* Extra checks required by SLAB_TYPESAFE_BY_RCU */ if (unlikely(!refcount_inc_not_zero(&rc->sk_refcnt))) goto again; if (unlikely(llc_sk(rc)->sap != sap || !llc_listener_match(sap, laddr, rc, net))) { sock_put(rc); continue; } goto found; } } rc = NULL; /* * if the nulls value we got at the end of this lookup is * not the expected one, we must restart lookup. * We probably met an item that was moved to another chain. */ if (unlikely(get_nulls_value(node) != slot)) goto again; found: rcu_read_unlock(); return rc; } /** * llc_lookup_listener - Finds listener for local MAC + SAP * @sap: SAP * @laddr: address of local LLC (MAC + SAP) * @net: netns to look up a socket in * * Search connection list of the SAP and finds connection listening on * local mac, and local sap. Returns pointer for parent socket found, * %NULL otherwise. * Caller has to make sure local_bh is disabled. */ static struct sock *llc_lookup_listener(struct llc_sap *sap, struct llc_addr *laddr, const struct net *net) { struct sock *rc = __llc_lookup_listener(sap, laddr, net); static struct llc_addr null_addr; if (!rc) rc = __llc_lookup_listener(sap, &null_addr, net); return rc; } static struct sock *__llc_lookup(struct llc_sap *sap, struct llc_addr *daddr, struct llc_addr *laddr, const struct net *net) { struct sock *sk = __llc_lookup_established(sap, daddr, laddr, net); return sk ? : llc_lookup_listener(sap, laddr, net); } /** * llc_data_accept_state - designates if in this state data can be sent. * @state: state of connection. * * Returns 0 if data can be sent, 1 otherwise. */ u8 llc_data_accept_state(u8 state) { return state != LLC_CONN_STATE_NORMAL && state != LLC_CONN_STATE_BUSY && state != LLC_CONN_STATE_REJ; } /** * llc_find_next_offset - finds offset for next category of transitions * @state: state table. * @offset: start offset. * * Finds offset of next category of transitions in transition table. * Returns the start index of next category. */ static u16 __init llc_find_next_offset(struct llc_conn_state *state, u16 offset) { const struct llc_conn_state_trans **next_trans; u16 cnt = 0; for (next_trans = state->transitions + offset; (*next_trans)->ev; next_trans++) ++cnt; return cnt; } /** * llc_build_offset_table - builds offset table of connection * * Fills offset table of connection state transition table * (llc_offset_table). */ void __init llc_build_offset_table(void) { struct llc_conn_state *curr_state; int state, ev_type, next_offset; for (state = 0; state < NBR_CONN_STATES; state++) { curr_state = &llc_conn_state_table[state]; next_offset = 0; for (ev_type = 0; ev_type < NBR_CONN_EV; ev_type++) { llc_offset_table[state][ev_type] = next_offset; next_offset += llc_find_next_offset(curr_state, next_offset) + 1; } } } /** * llc_find_offset - finds start offset of category of transitions * @state: state of connection * @ev_type: type of happened event * * Finds start offset of desired category of transitions. Returns the * desired start offset. */ static int llc_find_offset(int state, int ev_type) { int rc = 0; /* at this stage, llc_offset_table[..][2] is not important. it is for * init_pf_cycle and I don't know what is it. */ switch (ev_type) { case LLC_CONN_EV_TYPE_PRIM: rc = llc_offset_table[state][0]; break; case LLC_CONN_EV_TYPE_PDU: rc = llc_offset_table[state][4]; break; case LLC_CONN_EV_TYPE_SIMPLE: rc = llc_offset_table[state][1]; break; case LLC_CONN_EV_TYPE_P_TMR: case LLC_CONN_EV_TYPE_ACK_TMR: case LLC_CONN_EV_TYPE_REJ_TMR: case LLC_CONN_EV_TYPE_BUSY_TMR: rc = llc_offset_table[state][3]; break; } return rc; } /** * llc_sap_add_socket - adds a socket to a SAP * @sap: SAP * @sk: socket * * This function adds a socket to the hash tables of a SAP. */ void llc_sap_add_socket(struct llc_sap *sap, struct sock *sk) { struct llc_sock *llc = llc_sk(sk); struct hlist_head *dev_hb = llc_sk_dev_hash(sap, llc->dev->ifindex); struct hlist_nulls_head *laddr_hb = llc_sk_laddr_hash(sap, &llc->laddr); llc_sap_hold(sap); llc_sk(sk)->sap = sap; spin_lock_bh(&sap->sk_lock); sock_set_flag(sk, SOCK_RCU_FREE); sap->sk_count++; sk_nulls_add_node_rcu(sk, laddr_hb); hlist_add_head(&llc->dev_hash_node, dev_hb); spin_unlock_bh(&sap->sk_lock); } /** * llc_sap_remove_socket - removes a socket from SAP * @sap: SAP * @sk: socket * * This function removes a connection from the hash tables of a SAP if * the connection was in this list. */ void llc_sap_remove_socket(struct llc_sap *sap, struct sock *sk) { struct llc_sock *llc = llc_sk(sk); spin_lock_bh(&sap->sk_lock); sk_nulls_del_node_init_rcu(sk); hlist_del(&llc->dev_hash_node); sap->sk_count--; spin_unlock_bh(&sap->sk_lock); llc_sap_put(sap); } /** * llc_conn_rcv - sends received pdus to the connection state machine * @sk: current connection structure. * @skb: received frame. * * Sends received pdus to the connection state machine. */ static int llc_conn_rcv(struct sock *sk, struct sk_buff *skb) { struct llc_conn_state_ev *ev = llc_conn_ev(skb); ev->type = LLC_CONN_EV_TYPE_PDU; ev->reason = 0; return llc_conn_state_process(sk, skb); } static struct sock *llc_create_incoming_sock(struct sock *sk, struct net_device *dev, struct llc_addr *saddr, struct llc_addr *daddr) { struct sock *newsk = llc_sk_alloc(sock_net(sk), sk->sk_family, GFP_ATOMIC, sk->sk_prot, 0); struct llc_sock *newllc, *llc = llc_sk(sk); if (!newsk) goto out; newllc = llc_sk(newsk); memcpy(&newllc->laddr, daddr, sizeof(newllc->laddr)); memcpy(&newllc->daddr, saddr, sizeof(newllc->daddr)); newllc->dev = dev; dev_hold(dev); llc_sap_add_socket(llc->sap, newsk); llc_sap_hold(llc->sap); out: return newsk; } void llc_conn_handler(struct llc_sap *sap, struct sk_buff *skb) { struct llc_addr saddr, daddr; struct sock *sk; llc_pdu_decode_sa(skb, saddr.mac); llc_pdu_decode_ssap(skb, &saddr.lsap); llc_pdu_decode_da(skb, daddr.mac); llc_pdu_decode_dsap(skb, &daddr.lsap); sk = __llc_lookup(sap, &saddr, &daddr, dev_net(skb->dev)); if (!sk) goto drop; bh_lock_sock(sk); /* * This has to be done here and not at the upper layer ->accept * method because of the way the PROCOM state machine works: * it needs to set several state variables (see, for instance, * llc_adm_actions_2 in net/llc/llc_c_st.c) and send a packet to * the originator of the new connection, and this state has to be * in the newly created struct sock private area. -acme */ if (unlikely(sk->sk_state == TCP_LISTEN)) { struct sock *newsk = llc_create_incoming_sock(sk, skb->dev, &saddr, &daddr); if (!newsk) goto drop_unlock; skb_set_owner_r(skb, newsk); } else { /* * Can't be skb_set_owner_r, this will be done at the * llc_conn_state_process function, later on, when we will use * skb_queue_rcv_skb to send it to upper layers, this is * another trick required to cope with how the PROCOM state * machine works. -acme */ skb_orphan(skb); sock_hold(sk); skb->sk = sk; skb->destructor = sock_efree; } if (!sock_owned_by_user(sk)) llc_conn_rcv(sk, skb); else { dprintk("%s: adding to backlog...\n", __func__); llc_set_backlog_type(skb, LLC_PACKET); if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) goto drop_unlock; } out: bh_unlock_sock(sk); sock_put(sk); return; drop: kfree_skb(skb); return; drop_unlock: kfree_skb(skb); goto out; } #undef LLC_REFCNT_DEBUG #ifdef LLC_REFCNT_DEBUG static atomic_t llc_sock_nr; #endif /** * llc_backlog_rcv - Processes rx frames and expired timers. * @sk: LLC sock (p8022 connection) * @skb: queued rx frame or event * * This function processes frames that has received and timers that has * expired during sending an I pdu (refer to data_req_handler). frames * queue by llc_rcv function (llc_mac.c) and timers queue by timer * callback functions(llc_c_ac.c). */ static int llc_backlog_rcv(struct sock *sk, struct sk_buff *skb) { int rc = 0; struct llc_sock *llc = llc_sk(sk); if (likely(llc_backlog_type(skb) == LLC_PACKET)) { if (likely(llc->state > 1)) /* not closed */ rc = llc_conn_rcv(sk, skb); else goto out_kfree_skb; } else if (llc_backlog_type(skb) == LLC_EVENT) { /* timer expiration event */ if (likely(llc->state > 1)) /* not closed */ rc = llc_conn_state_process(sk, skb); else goto out_kfree_skb; } else { printk(KERN_ERR "%s: invalid skb in backlog\n", __func__); goto out_kfree_skb; } out: return rc; out_kfree_skb: kfree_skb(skb); goto out; } /** * llc_sk_init - Initializes a socket with default llc values. * @sk: socket to initialize. * * Initializes a socket with default llc values. */ static void llc_sk_init(struct sock *sk) { struct llc_sock *llc = llc_sk(sk); llc->state = LLC_CONN_STATE_ADM; llc->inc_cntr = llc->dec_cntr = 2; llc->dec_step = llc->connect_step = 1; timer_setup(&llc->ack_timer.timer, llc_conn_ack_tmr_cb, 0); llc->ack_timer.expire = sysctl_llc2_ack_timeout; timer_setup(&llc->pf_cycle_timer.timer, llc_conn_pf_cycle_tmr_cb, 0); llc->pf_cycle_timer.expire = sysctl_llc2_p_timeout; timer_setup(&llc->rej_sent_timer.timer, llc_conn_rej_tmr_cb, 0); llc->rej_sent_timer.expire = sysctl_llc2_rej_timeout; timer_setup(&llc->busy_state_timer.timer, llc_conn_busy_tmr_cb, 0); llc->busy_state_timer.expire = sysctl_llc2_busy_timeout; llc->n2 = 2; /* max retransmit */ llc->k = 2; /* tx win size, will adjust dynam */ llc->rw = 128; /* rx win size (opt and equal to * tx_win of remote LLC) */ skb_queue_head_init(&llc->pdu_unack_q); sk->sk_backlog_rcv = llc_backlog_rcv; } /** * llc_sk_alloc - Allocates LLC sock * @net: network namespace * @family: upper layer protocol family * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) * @prot: struct proto associated with this new sock instance * @kern: is this to be a kernel socket? * * Allocates a LLC sock and initializes it. Returns the new LLC sock * or %NULL if there's no memory available for one */ struct sock *llc_sk_alloc(struct net *net, int family, gfp_t priority, struct proto *prot, int kern) { struct sock *sk = sk_alloc(net, family, priority, prot, kern); if (!sk) goto out; llc_sk_init(sk); sock_init_data(NULL, sk); #ifdef LLC_REFCNT_DEBUG atomic_inc(&llc_sock_nr); printk(KERN_DEBUG "LLC socket %p created in %s, now we have %d alive\n", sk, __func__, atomic_read(&llc_sock_nr)); #endif out: return sk; } void llc_sk_stop_all_timers(struct sock *sk, bool sync) { struct llc_sock *llc = llc_sk(sk); if (sync) { del_timer_sync(&llc->pf_cycle_timer.timer); del_timer_sync(&llc->ack_timer.timer); del_timer_sync(&llc->rej_sent_timer.timer); del_timer_sync(&llc->busy_state_timer.timer); } else { del_timer(&llc->pf_cycle_timer.timer); del_timer(&llc->ack_timer.timer); del_timer(&llc->rej_sent_timer.timer); del_timer(&llc->busy_state_timer.timer); } llc->ack_must_be_send = 0; llc->ack_pf = 0; } /** * llc_sk_free - Frees a LLC socket * @sk: - socket to free * * Frees a LLC socket */ void llc_sk_free(struct sock *sk) { struct llc_sock *llc = llc_sk(sk); llc->state = LLC_CONN_OUT_OF_SVC; /* Stop all (possibly) running timers */ llc_sk_stop_all_timers(sk, true); #ifdef DEBUG_LLC_CONN_ALLOC printk(KERN_INFO "%s: unackq=%d, txq=%d\n", __func__, skb_queue_len(&llc->pdu_unack_q), skb_queue_len(&sk->sk_write_queue)); #endif skb_queue_purge(&sk->sk_receive_queue); skb_queue_purge(&sk->sk_write_queue); skb_queue_purge(&llc->pdu_unack_q); #ifdef LLC_REFCNT_DEBUG if (refcount_read(&sk->sk_refcnt) != 1) { printk(KERN_DEBUG "Destruction of LLC sock %p delayed in %s, cnt=%d\n", sk, __func__, refcount_read(&sk->sk_refcnt)); printk(KERN_DEBUG "%d LLC sockets are still alive\n", atomic_read(&llc_sock_nr)); } else { atomic_dec(&llc_sock_nr); printk(KERN_DEBUG "LLC socket %p released in %s, %d are still alive\n", sk, __func__, atomic_read(&llc_sock_nr)); } #endif sock_put(sk); } /** * llc_sk_reset - resets a connection * @sk: LLC socket to reset * * Resets a connection to the out of service state. Stops its timers * and frees any frames in the queues of the connection. */ void llc_sk_reset(struct sock *sk) { struct llc_sock *llc = llc_sk(sk); llc_conn_ac_stop_all_timers(sk, NULL); skb_queue_purge(&sk->sk_write_queue); skb_queue_purge(&llc->pdu_unack_q); llc->remote_busy_flag = 0; llc->cause_flag = 0; llc->retry_count = 0; llc_conn_set_p_flag(sk, 0); llc->f_flag = 0; llc->s_flag = 0; llc->ack_pf = 0; llc->first_pdu_Ns = 0; llc->ack_must_be_send = 0; llc->dec_step = 1; llc->inc_cntr = 2; llc->dec_cntr = 2; llc->X = 0; llc->failed_data_req = 0 ; llc->last_nr = 0; }
6 6 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 // SPDX-License-Identifier: GPL-2.0 /* Copyright (C) B.A.T.M.A.N. contributors: * * Antonio Quartulli */ #include "bat_v_ogm.h" #include "main.h" #include <linux/atomic.h> #include <linux/byteorder/generic.h> #include <linux/container_of.h> #include <linux/errno.h> #include <linux/etherdevice.h> #include <linux/gfp.h> #include <linux/if_ether.h> #include <linux/jiffies.h> #include <linux/kref.h> #include <linux/list.h> #include <linux/lockdep.h> #include <linux/minmax.h> #include <linux/mutex.h> #include <linux/netdevice.h> #include <linux/random.h> #include <linux/rculist.h> #include <linux/rcupdate.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/stddef.h> #include <linux/string.h> #include <linux/types.h> #include <linux/workqueue.h> #include <uapi/linux/batadv_packet.h> #include "bat_algo.h" #include "hard-interface.h" #include "hash.h" #include "log.h" #include "originator.h" #include "routing.h" #include "send.h" #include "translation-table.h" #include "tvlv.h" /** * batadv_v_ogm_orig_get() - retrieve and possibly create an originator node * @bat_priv: the bat priv with all the soft interface information * @addr: the address of the originator * * Return: the orig_node corresponding to the specified address. If such an * object does not exist, it is allocated here. In case of allocation failure * returns NULL. */ struct batadv_orig_node *batadv_v_ogm_orig_get(struct batadv_priv *bat_priv, const u8 *addr) { struct batadv_orig_node *orig_node; int hash_added; orig_node = batadv_orig_hash_find(bat_priv, addr); if (orig_node) return orig_node; orig_node = batadv_orig_node_new(bat_priv, addr); if (!orig_node) return NULL; kref_get(&orig_node->refcount); hash_added = batadv_hash_add(bat_priv->orig_hash, batadv_compare_orig, batadv_choose_orig, orig_node, &orig_node->hash_entry); if (hash_added != 0) { /* remove refcnt for newly created orig_node and hash entry */ batadv_orig_node_put(orig_node); batadv_orig_node_put(orig_node); orig_node = NULL; } return orig_node; } /** * batadv_v_ogm_start_queue_timer() - restart the OGM aggregation timer * @hard_iface: the interface to use to send the OGM */ static void batadv_v_ogm_start_queue_timer(struct batadv_hard_iface *hard_iface) { unsigned int msecs = BATADV_MAX_AGGREGATION_MS * 1000; /* msecs * [0.9, 1.1] */ msecs += get_random_u32_below(msecs / 5) - (msecs / 10); queue_delayed_work(batadv_event_workqueue, &hard_iface->bat_v.aggr_wq, msecs_to_jiffies(msecs / 1000)); } /** * batadv_v_ogm_start_timer() - restart the OGM sending timer * @bat_priv: the bat priv with all the soft interface information */ static void batadv_v_ogm_start_timer(struct batadv_priv *bat_priv) { unsigned long msecs; /* this function may be invoked in different contexts (ogm rescheduling * or hard_iface activation), but the work timer should not be reset */ if (delayed_work_pending(&bat_priv->bat_v.ogm_wq)) return; msecs = atomic_read(&bat_priv->orig_interval) - BATADV_JITTER; msecs += get_random_u32_below(2 * BATADV_JITTER); queue_delayed_work(batadv_event_workqueue, &bat_priv->bat_v.ogm_wq, msecs_to_jiffies(msecs)); } /** * batadv_v_ogm_send_to_if() - send a batman ogm using a given interface * @skb: the OGM to send * @hard_iface: the interface to use to send the OGM */ static void batadv_v_ogm_send_to_if(struct sk_buff *skb, struct batadv_hard_iface *hard_iface) { struct batadv_priv *bat_priv = netdev_priv(hard_iface->soft_iface); if (hard_iface->if_status != BATADV_IF_ACTIVE) { kfree_skb(skb); return; } batadv_inc_counter(bat_priv, BATADV_CNT_MGMT_TX); batadv_add_counter(bat_priv, BATADV_CNT_MGMT_TX_BYTES, skb->len + ETH_HLEN); batadv_send_broadcast_skb(skb, hard_iface); } /** * batadv_v_ogm_len() - OGMv2 packet length * @skb: the OGM to check * * Return: Length of the given OGMv2 packet, including tvlv length, excluding * ethernet header length. */ static unsigned int batadv_v_ogm_len(struct sk_buff *skb) { struct batadv_ogm2_packet *ogm_packet; ogm_packet = (struct batadv_ogm2_packet *)skb->data; return BATADV_OGM2_HLEN + ntohs(ogm_packet->tvlv_len); } /** * batadv_v_ogm_queue_left() - check if given OGM still fits aggregation queue * @skb: the OGM to check * @hard_iface: the interface to use to send the OGM * * Caller needs to hold the hard_iface->bat_v.aggr_list.lock. * * Return: True, if the given OGMv2 packet still fits, false otherwise. */ static bool batadv_v_ogm_queue_left(struct sk_buff *skb, struct batadv_hard_iface *hard_iface) { unsigned int max = min_t(unsigned int, hard_iface->net_dev->mtu, BATADV_MAX_AGGREGATION_BYTES); unsigned int ogm_len = batadv_v_ogm_len(skb); lockdep_assert_held(&hard_iface->bat_v.aggr_list.lock); return hard_iface->bat_v.aggr_len + ogm_len <= max; } /** * batadv_v_ogm_aggr_list_free - free all elements in an aggregation queue * @hard_iface: the interface holding the aggregation queue * * Empties the OGMv2 aggregation queue and frees all the skbs it contains. * * Caller needs to hold the hard_iface->bat_v.aggr_list.lock. */ static void batadv_v_ogm_aggr_list_free(struct batadv_hard_iface *hard_iface) { lockdep_assert_held(&hard_iface->bat_v.aggr_list.lock); __skb_queue_purge(&hard_iface->bat_v.aggr_list); hard_iface->bat_v.aggr_len = 0; } /** * batadv_v_ogm_aggr_send() - flush & send aggregation queue * @hard_iface: the interface with the aggregation queue to flush * * Aggregates all OGMv2 packets currently in the aggregation queue into a * single OGMv2 packet and transmits this aggregate. * * The aggregation queue is empty after this call. * * Caller needs to hold the hard_iface->bat_v.aggr_list.lock. */ static void batadv_v_ogm_aggr_send(struct batadv_hard_iface *hard_iface) { unsigned int aggr_len = hard_iface->bat_v.aggr_len; struct sk_buff *skb_aggr; unsigned int ogm_len; struct sk_buff *skb; lockdep_assert_held(&hard_iface->bat_v.aggr_list.lock); if (!aggr_len) return; skb_aggr = dev_alloc_skb(aggr_len + ETH_HLEN + NET_IP_ALIGN); if (!skb_aggr) { batadv_v_ogm_aggr_list_free(hard_iface); return; } skb_reserve(skb_aggr, ETH_HLEN + NET_IP_ALIGN); skb_reset_network_header(skb_aggr); while ((skb = __skb_dequeue(&hard_iface->bat_v.aggr_list))) { hard_iface->bat_v.aggr_len -= batadv_v_ogm_len(skb); ogm_len = batadv_v_ogm_len(skb); skb_put_data(skb_aggr, skb->data, ogm_len); consume_skb(skb); } batadv_v_ogm_send_to_if(skb_aggr, hard_iface); } /** * batadv_v_ogm_queue_on_if() - queue a batman ogm on a given interface * @skb: the OGM to queue * @hard_iface: the interface to queue the OGM on */ static void batadv_v_ogm_queue_on_if(struct sk_buff *skb, struct batadv_hard_iface *hard_iface) { struct batadv_priv *bat_priv = netdev_priv(hard_iface->soft_iface); if (!atomic_read(&bat_priv->aggregated_ogms)) { batadv_v_ogm_send_to_if(skb, hard_iface); return; } spin_lock_bh(&hard_iface->bat_v.aggr_list.lock); if (!batadv_v_ogm_queue_left(skb, hard_iface)) batadv_v_ogm_aggr_send(hard_iface); hard_iface->bat_v.aggr_len += batadv_v_ogm_len(skb); __skb_queue_tail(&hard_iface->bat_v.aggr_list, skb); spin_unlock_bh(&hard_iface->bat_v.aggr_list.lock); } /** * batadv_v_ogm_send_softif() - periodic worker broadcasting the own OGM * @bat_priv: the bat priv with all the soft interface information */ static void batadv_v_ogm_send_softif(struct batadv_priv *bat_priv) { struct batadv_hard_iface *hard_iface; struct batadv_ogm2_packet *ogm_packet; struct sk_buff *skb, *skb_tmp; unsigned char *ogm_buff; int ogm_buff_len; u16 tvlv_len = 0; int ret; lockdep_assert_held(&bat_priv->bat_v.ogm_buff_mutex); if (atomic_read(&bat_priv->mesh_state) == BATADV_MESH_DEACTIVATING) goto out; ogm_buff = bat_priv->bat_v.ogm_buff; ogm_buff_len = bat_priv->bat_v.ogm_buff_len; /* tt changes have to be committed before the tvlv data is * appended as it may alter the tt tvlv container */ batadv_tt_local_commit_changes(bat_priv); tvlv_len = batadv_tvlv_container_ogm_append(bat_priv, &ogm_buff, &ogm_buff_len, BATADV_OGM2_HLEN); bat_priv->bat_v.ogm_buff = ogm_buff; bat_priv->bat_v.ogm_buff_len = ogm_buff_len; skb = netdev_alloc_skb_ip_align(NULL, ETH_HLEN + ogm_buff_len); if (!skb) goto reschedule; skb_reserve(skb, ETH_HLEN); skb_put_data(skb, ogm_buff, ogm_buff_len); ogm_packet = (struct batadv_ogm2_packet *)skb->data; ogm_packet->seqno = htonl(atomic_read(&bat_priv->bat_v.ogm_seqno)); atomic_inc(&bat_priv->bat_v.ogm_seqno); ogm_packet->tvlv_len = htons(tvlv_len); /* broadcast on every interface */ rcu_read_lock(); list_for_each_entry_rcu(hard_iface, &batadv_hardif_list, list) { if (hard_iface->soft_iface != bat_priv->soft_iface) continue; if (!kref_get_unless_zero(&hard_iface->refcount)) continue; ret = batadv_hardif_no_broadcast(hard_iface, NULL, NULL); if (ret) { char *type; switch (ret) { case BATADV_HARDIF_BCAST_NORECIPIENT: type = "no neighbor"; break; case BATADV_HARDIF_BCAST_DUPFWD: type = "single neighbor is source"; break; case BATADV_HARDIF_BCAST_DUPORIG: type = "single neighbor is originator"; break; default: type = "unknown"; } batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "OGM2 from ourselves on %s suppressed: %s\n", hard_iface->net_dev->name, type); batadv_hardif_put(hard_iface); continue; } batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Sending own OGM2 packet (originator %pM, seqno %u, throughput %u, TTL %d) on interface %s [%pM]\n", ogm_packet->orig, ntohl(ogm_packet->seqno), ntohl(ogm_packet->throughput), ogm_packet->ttl, hard_iface->net_dev->name, hard_iface->net_dev->dev_addr); /* this skb gets consumed by batadv_v_ogm_send_to_if() */ skb_tmp = skb_clone(skb, GFP_ATOMIC); if (!skb_tmp) { batadv_hardif_put(hard_iface); break; } batadv_v_ogm_queue_on_if(skb_tmp, hard_iface); batadv_hardif_put(hard_iface); } rcu_read_unlock(); consume_skb(skb); reschedule: batadv_v_ogm_start_timer(bat_priv); out: return; } /** * batadv_v_ogm_send() - periodic worker broadcasting the own OGM * @work: work queue item */ static void batadv_v_ogm_send(struct work_struct *work) { struct batadv_priv_bat_v *bat_v; struct batadv_priv *bat_priv; bat_v = container_of(work, struct batadv_priv_bat_v, ogm_wq.work); bat_priv = container_of(bat_v, struct batadv_priv, bat_v); mutex_lock(&bat_priv->bat_v.ogm_buff_mutex); batadv_v_ogm_send_softif(bat_priv); mutex_unlock(&bat_priv->bat_v.ogm_buff_mutex); } /** * batadv_v_ogm_aggr_work() - OGM queue periodic task per interface * @work: work queue item * * Emits aggregated OGM messages in regular intervals. */ void batadv_v_ogm_aggr_work(struct work_struct *work) { struct batadv_hard_iface_bat_v *batv; struct batadv_hard_iface *hard_iface; batv = container_of(work, struct batadv_hard_iface_bat_v, aggr_wq.work); hard_iface = container_of(batv, struct batadv_hard_iface, bat_v); spin_lock_bh(&hard_iface->bat_v.aggr_list.lock); batadv_v_ogm_aggr_send(hard_iface); spin_unlock_bh(&hard_iface->bat_v.aggr_list.lock); batadv_v_ogm_start_queue_timer(hard_iface); } /** * batadv_v_ogm_iface_enable() - prepare an interface for B.A.T.M.A.N. V * @hard_iface: the interface to prepare * * Takes care of scheduling its own OGM sending routine for this interface. * * Return: 0 on success or a negative error code otherwise */ int batadv_v_ogm_iface_enable(struct batadv_hard_iface *hard_iface) { struct batadv_priv *bat_priv = netdev_priv(hard_iface->soft_iface); batadv_v_ogm_start_queue_timer(hard_iface); batadv_v_ogm_start_timer(bat_priv); return 0; } /** * batadv_v_ogm_iface_disable() - release OGM interface private resources * @hard_iface: interface for which the resources have to be released */ void batadv_v_ogm_iface_disable(struct batadv_hard_iface *hard_iface) { cancel_delayed_work_sync(&hard_iface->bat_v.aggr_wq); spin_lock_bh(&hard_iface->bat_v.aggr_list.lock); batadv_v_ogm_aggr_list_free(hard_iface); spin_unlock_bh(&hard_iface->bat_v.aggr_list.lock); } /** * batadv_v_ogm_primary_iface_set() - set a new primary interface * @primary_iface: the new primary interface */ void batadv_v_ogm_primary_iface_set(struct batadv_hard_iface *primary_iface) { struct batadv_priv *bat_priv = netdev_priv(primary_iface->soft_iface); struct batadv_ogm2_packet *ogm_packet; mutex_lock(&bat_priv->bat_v.ogm_buff_mutex); if (!bat_priv->bat_v.ogm_buff) goto unlock; ogm_packet = (struct batadv_ogm2_packet *)bat_priv->bat_v.ogm_buff; ether_addr_copy(ogm_packet->orig, primary_iface->net_dev->dev_addr); unlock: mutex_unlock(&bat_priv->bat_v.ogm_buff_mutex); } /** * batadv_v_forward_penalty() - apply a penalty to the throughput metric * forwarded with B.A.T.M.A.N. V OGMs * @bat_priv: the bat priv with all the soft interface information * @if_incoming: the interface where the OGM has been received * @if_outgoing: the interface where the OGM has to be forwarded to * @throughput: the current throughput * * Apply a penalty on the current throughput metric value based on the * characteristic of the interface where the OGM has been received. * * Initially the per hardif hop penalty is applied to the throughput. After * that the return value is then computed as follows: * - throughput * 50% if the incoming and outgoing interface are the * same WiFi interface and the throughput is above * 1MBit/s * - throughput if the outgoing interface is the default * interface (i.e. this OGM is processed for the * internal table and not forwarded) * - throughput * node hop penalty otherwise * * Return: the penalised throughput metric. */ static u32 batadv_v_forward_penalty(struct batadv_priv *bat_priv, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing, u32 throughput) { int if_hop_penalty = atomic_read(&if_incoming->hop_penalty); int hop_penalty = atomic_read(&bat_priv->hop_penalty); int hop_penalty_max = BATADV_TQ_MAX_VALUE; /* Apply per hardif hop penalty */ throughput = throughput * (hop_penalty_max - if_hop_penalty) / hop_penalty_max; /* Don't apply hop penalty in default originator table. */ if (if_outgoing == BATADV_IF_DEFAULT) return throughput; /* Forwarding on the same WiFi interface cuts the throughput in half * due to the store & forward characteristics of WIFI. * Very low throughput values are the exception. */ if (throughput > 10 && if_incoming == if_outgoing && !(if_incoming->bat_v.flags & BATADV_FULL_DUPLEX)) return throughput / 2; /* hop penalty of 255 equals 100% */ return throughput * (hop_penalty_max - hop_penalty) / hop_penalty_max; } /** * batadv_v_ogm_forward() - check conditions and forward an OGM to the given * outgoing interface * @bat_priv: the bat priv with all the soft interface information * @ogm_received: previously received OGM to be forwarded * @orig_node: the originator which has been updated * @neigh_node: the neigh_node through with the OGM has been received * @if_incoming: the interface on which this OGM was received on * @if_outgoing: the interface to which the OGM has to be forwarded to * * Forward an OGM to an interface after having altered the throughput metric and * the TTL value contained in it. The original OGM isn't modified. */ static void batadv_v_ogm_forward(struct batadv_priv *bat_priv, const struct batadv_ogm2_packet *ogm_received, struct batadv_orig_node *orig_node, struct batadv_neigh_node *neigh_node, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing) { struct batadv_neigh_ifinfo *neigh_ifinfo = NULL; struct batadv_orig_ifinfo *orig_ifinfo = NULL; struct batadv_neigh_node *router = NULL; struct batadv_ogm2_packet *ogm_forward; unsigned char *skb_buff; struct sk_buff *skb; size_t packet_len; u16 tvlv_len; /* only forward for specific interfaces, not for the default one. */ if (if_outgoing == BATADV_IF_DEFAULT) goto out; orig_ifinfo = batadv_orig_ifinfo_new(orig_node, if_outgoing); if (!orig_ifinfo) goto out; /* acquire possibly updated router */ router = batadv_orig_router_get(orig_node, if_outgoing); /* strict rule: forward packets coming from the best next hop only */ if (neigh_node != router) goto out; /* don't forward the same seqno twice on one interface */ if (orig_ifinfo->last_seqno_forwarded == ntohl(ogm_received->seqno)) goto out; orig_ifinfo->last_seqno_forwarded = ntohl(ogm_received->seqno); if (ogm_received->ttl <= 1) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "ttl exceeded\n"); goto out; } neigh_ifinfo = batadv_neigh_ifinfo_get(neigh_node, if_outgoing); if (!neigh_ifinfo) goto out; tvlv_len = ntohs(ogm_received->tvlv_len); packet_len = BATADV_OGM2_HLEN + tvlv_len; skb = netdev_alloc_skb_ip_align(if_outgoing->net_dev, ETH_HLEN + packet_len); if (!skb) goto out; skb_reserve(skb, ETH_HLEN); skb_buff = skb_put_data(skb, ogm_received, packet_len); /* apply forward penalty */ ogm_forward = (struct batadv_ogm2_packet *)skb_buff; ogm_forward->throughput = htonl(neigh_ifinfo->bat_v.throughput); ogm_forward->ttl--; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Forwarding OGM2 packet on %s: throughput %u, ttl %u, received via %s\n", if_outgoing->net_dev->name, ntohl(ogm_forward->throughput), ogm_forward->ttl, if_incoming->net_dev->name); batadv_v_ogm_queue_on_if(skb, if_outgoing); out: batadv_orig_ifinfo_put(orig_ifinfo); batadv_neigh_node_put(router); batadv_neigh_ifinfo_put(neigh_ifinfo); } /** * batadv_v_ogm_metric_update() - update route metric based on OGM * @bat_priv: the bat priv with all the soft interface information * @ogm2: OGM2 structure * @orig_node: Originator structure for which the OGM has been received * @neigh_node: the neigh_node through with the OGM has been received * @if_incoming: the interface where this packet was received * @if_outgoing: the interface for which the packet should be considered * * Return: * 1 if the OGM is new, * 0 if it is not new but valid, * <0 on error (e.g. old OGM) */ static int batadv_v_ogm_metric_update(struct batadv_priv *bat_priv, const struct batadv_ogm2_packet *ogm2, struct batadv_orig_node *orig_node, struct batadv_neigh_node *neigh_node, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing) { struct batadv_orig_ifinfo *orig_ifinfo; struct batadv_neigh_ifinfo *neigh_ifinfo = NULL; bool protection_started = false; int ret = -EINVAL; u32 path_throughput; s32 seq_diff; orig_ifinfo = batadv_orig_ifinfo_new(orig_node, if_outgoing); if (!orig_ifinfo) goto out; seq_diff = ntohl(ogm2->seqno) - orig_ifinfo->last_real_seqno; if (!hlist_empty(&orig_node->neigh_list) && batadv_window_protected(bat_priv, seq_diff, BATADV_OGM_MAX_AGE, &orig_ifinfo->batman_seqno_reset, &protection_started)) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: packet within window protection time from %pM\n", ogm2->orig); batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Last reset: %ld, %ld\n", orig_ifinfo->batman_seqno_reset, jiffies); goto out; } /* drop packets with old seqnos, however accept the first packet after * a host has been rebooted. */ if (seq_diff < 0 && !protection_started) goto out; neigh_node->last_seen = jiffies; orig_node->last_seen = jiffies; orig_ifinfo->last_real_seqno = ntohl(ogm2->seqno); orig_ifinfo->last_ttl = ogm2->ttl; neigh_ifinfo = batadv_neigh_ifinfo_new(neigh_node, if_outgoing); if (!neigh_ifinfo) goto out; path_throughput = batadv_v_forward_penalty(bat_priv, if_incoming, if_outgoing, ntohl(ogm2->throughput)); neigh_ifinfo->bat_v.throughput = path_throughput; neigh_ifinfo->bat_v.last_seqno = ntohl(ogm2->seqno); neigh_ifinfo->last_ttl = ogm2->ttl; if (seq_diff > 0 || protection_started) ret = 1; else ret = 0; out: batadv_orig_ifinfo_put(orig_ifinfo); batadv_neigh_ifinfo_put(neigh_ifinfo); return ret; } /** * batadv_v_ogm_route_update() - update routes based on OGM * @bat_priv: the bat priv with all the soft interface information * @ethhdr: the Ethernet header of the OGM2 * @ogm2: OGM2 structure * @orig_node: Originator structure for which the OGM has been received * @neigh_node: the neigh_node through with the OGM has been received * @if_incoming: the interface where this packet was received * @if_outgoing: the interface for which the packet should be considered * * Return: true if the packet should be forwarded, false otherwise */ static bool batadv_v_ogm_route_update(struct batadv_priv *bat_priv, const struct ethhdr *ethhdr, const struct batadv_ogm2_packet *ogm2, struct batadv_orig_node *orig_node, struct batadv_neigh_node *neigh_node, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing) { struct batadv_neigh_node *router = NULL; struct batadv_orig_node *orig_neigh_node; struct batadv_neigh_node *orig_neigh_router = NULL; struct batadv_neigh_ifinfo *router_ifinfo = NULL, *neigh_ifinfo = NULL; u32 router_throughput, neigh_throughput; u32 router_last_seqno; u32 neigh_last_seqno; s32 neigh_seq_diff; bool forward = false; orig_neigh_node = batadv_v_ogm_orig_get(bat_priv, ethhdr->h_source); if (!orig_neigh_node) goto out; orig_neigh_router = batadv_orig_router_get(orig_neigh_node, if_outgoing); /* drop packet if sender is not a direct neighbor and if we * don't route towards it */ router = batadv_orig_router_get(orig_node, if_outgoing); if (router && router->orig_node != orig_node && !orig_neigh_router) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: OGM via unknown neighbor!\n"); goto out; } /* Mark the OGM to be considered for forwarding, and update routes * if needed. */ forward = true; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Searching and updating originator entry of received packet\n"); /* if this neighbor already is our next hop there is nothing * to change */ if (router == neigh_node) goto out; /* don't consider neighbours with worse throughput. * also switch route if this seqno is BATADV_V_MAX_ORIGDIFF newer than * the last received seqno from our best next hop. */ if (router) { router_ifinfo = batadv_neigh_ifinfo_get(router, if_outgoing); neigh_ifinfo = batadv_neigh_ifinfo_get(neigh_node, if_outgoing); /* if these are not allocated, something is wrong. */ if (!router_ifinfo || !neigh_ifinfo) goto out; neigh_last_seqno = neigh_ifinfo->bat_v.last_seqno; router_last_seqno = router_ifinfo->bat_v.last_seqno; neigh_seq_diff = neigh_last_seqno - router_last_seqno; router_throughput = router_ifinfo->bat_v.throughput; neigh_throughput = neigh_ifinfo->bat_v.throughput; if (neigh_seq_diff < BATADV_OGM_MAX_ORIGDIFF && router_throughput >= neigh_throughput) goto out; } batadv_update_route(bat_priv, orig_node, if_outgoing, neigh_node); out: batadv_neigh_node_put(router); batadv_neigh_node_put(orig_neigh_router); batadv_orig_node_put(orig_neigh_node); batadv_neigh_ifinfo_put(router_ifinfo); batadv_neigh_ifinfo_put(neigh_ifinfo); return forward; } /** * batadv_v_ogm_process_per_outif() - process a batman v OGM for an outgoing if * @bat_priv: the bat priv with all the soft interface information * @ethhdr: the Ethernet header of the OGM2 * @ogm2: OGM2 structure * @orig_node: Originator structure for which the OGM has been received * @neigh_node: the neigh_node through with the OGM has been received * @if_incoming: the interface where this packet was received * @if_outgoing: the interface for which the packet should be considered */ static void batadv_v_ogm_process_per_outif(struct batadv_priv *bat_priv, const struct ethhdr *ethhdr, const struct batadv_ogm2_packet *ogm2, struct batadv_orig_node *orig_node, struct batadv_neigh_node *neigh_node, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing) { int seqno_age; bool forward; /* first, update the metric with according sanity checks */ seqno_age = batadv_v_ogm_metric_update(bat_priv, ogm2, orig_node, neigh_node, if_incoming, if_outgoing); /* outdated sequence numbers are to be discarded */ if (seqno_age < 0) return; /* only unknown & newer OGMs contain TVLVs we are interested in */ if (seqno_age > 0 && if_outgoing == BATADV_IF_DEFAULT) batadv_tvlv_containers_process(bat_priv, BATADV_OGM2, orig_node, NULL, (unsigned char *)(ogm2 + 1), ntohs(ogm2->tvlv_len)); /* if the metric update went through, update routes if needed */ forward = batadv_v_ogm_route_update(bat_priv, ethhdr, ogm2, orig_node, neigh_node, if_incoming, if_outgoing); /* if the routes have been processed correctly, check and forward */ if (forward) batadv_v_ogm_forward(bat_priv, ogm2, orig_node, neigh_node, if_incoming, if_outgoing); } /** * batadv_v_ogm_aggr_packet() - checks if there is another OGM aggregated * @buff_pos: current position in the skb * @packet_len: total length of the skb * @ogm2_packet: potential OGM2 in buffer * * Return: true if there is enough space for another OGM, false otherwise. */ static bool batadv_v_ogm_aggr_packet(int buff_pos, int packet_len, const struct batadv_ogm2_packet *ogm2_packet) { int next_buff_pos = 0; /* check if there is enough space for the header */ next_buff_pos += buff_pos + sizeof(*ogm2_packet); if (next_buff_pos > packet_len) return false; /* check if there is enough space for the optional TVLV */ next_buff_pos += ntohs(ogm2_packet->tvlv_len); return (next_buff_pos <= packet_len) && (next_buff_pos <= BATADV_MAX_AGGREGATION_BYTES); } /** * batadv_v_ogm_process() - process an incoming batman v OGM * @skb: the skb containing the OGM * @ogm_offset: offset to the OGM which should be processed (for aggregates) * @if_incoming: the interface where this packet was received */ static void batadv_v_ogm_process(const struct sk_buff *skb, int ogm_offset, struct batadv_hard_iface *if_incoming) { struct batadv_priv *bat_priv = netdev_priv(if_incoming->soft_iface); struct ethhdr *ethhdr; struct batadv_orig_node *orig_node = NULL; struct batadv_hardif_neigh_node *hardif_neigh = NULL; struct batadv_neigh_node *neigh_node = NULL; struct batadv_hard_iface *hard_iface; struct batadv_ogm2_packet *ogm_packet; u32 ogm_throughput, link_throughput, path_throughput; int ret; ethhdr = eth_hdr(skb); ogm_packet = (struct batadv_ogm2_packet *)(skb->data + ogm_offset); ogm_throughput = ntohl(ogm_packet->throughput); batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Received OGM2 packet via NB: %pM, IF: %s [%pM] (from OG: %pM, seqno %u, throughput %u, TTL %u, V %u, tvlv_len %u)\n", ethhdr->h_source, if_incoming->net_dev->name, if_incoming->net_dev->dev_addr, ogm_packet->orig, ntohl(ogm_packet->seqno), ogm_throughput, ogm_packet->ttl, ogm_packet->version, ntohs(ogm_packet->tvlv_len)); if (batadv_is_my_mac(bat_priv, ogm_packet->orig)) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: originator packet from ourself\n"); return; } /* If the throughput metric is 0, immediately drop the packet. No need * to create orig_node / neigh_node for an unusable route. */ if (ogm_throughput == 0) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: originator packet with throughput metric of 0\n"); return; } /* require ELP packets be to received from this neighbor first */ hardif_neigh = batadv_hardif_neigh_get(if_incoming, ethhdr->h_source); if (!hardif_neigh) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: OGM via unknown neighbor!\n"); goto out; } orig_node = batadv_v_ogm_orig_get(bat_priv, ogm_packet->orig); if (!orig_node) goto out; neigh_node = batadv_neigh_node_get_or_create(orig_node, if_incoming, ethhdr->h_source); if (!neigh_node) goto out; /* Update the received throughput metric to match the link * characteristic: * - If this OGM traveled one hop so far (emitted by single hop * neighbor) the path throughput metric equals the link throughput. * - For OGMs traversing more than hop the path throughput metric is * the smaller of the path throughput and the link throughput. */ link_throughput = ewma_throughput_read(&hardif_neigh->bat_v.throughput); path_throughput = min_t(u32, link_throughput, ogm_throughput); ogm_packet->throughput = htonl(path_throughput); batadv_v_ogm_process_per_outif(bat_priv, ethhdr, ogm_packet, orig_node, neigh_node, if_incoming, BATADV_IF_DEFAULT); rcu_read_lock(); list_for_each_entry_rcu(hard_iface, &batadv_hardif_list, list) { if (hard_iface->if_status != BATADV_IF_ACTIVE) continue; if (hard_iface->soft_iface != bat_priv->soft_iface) continue; if (!kref_get_unless_zero(&hard_iface->refcount)) continue; ret = batadv_hardif_no_broadcast(hard_iface, ogm_packet->orig, hardif_neigh->orig); if (ret) { char *type; switch (ret) { case BATADV_HARDIF_BCAST_NORECIPIENT: type = "no neighbor"; break; case BATADV_HARDIF_BCAST_DUPFWD: type = "single neighbor is source"; break; case BATADV_HARDIF_BCAST_DUPORIG: type = "single neighbor is originator"; break; default: type = "unknown"; } batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "OGM2 packet from %pM on %s suppressed: %s\n", ogm_packet->orig, hard_iface->net_dev->name, type); batadv_hardif_put(hard_iface); continue; } batadv_v_ogm_process_per_outif(bat_priv, ethhdr, ogm_packet, orig_node, neigh_node, if_incoming, hard_iface); batadv_hardif_put(hard_iface); } rcu_read_unlock(); out: batadv_orig_node_put(orig_node); batadv_neigh_node_put(neigh_node); batadv_hardif_neigh_put(hardif_neigh); } /** * batadv_v_ogm_packet_recv() - OGM2 receiving handler * @skb: the received OGM * @if_incoming: the interface where this OGM has been received * * Return: NET_RX_SUCCESS and consume the skb on success or returns NET_RX_DROP * (without freeing the skb) on failure */ int batadv_v_ogm_packet_recv(struct sk_buff *skb, struct batadv_hard_iface *if_incoming) { struct batadv_priv *bat_priv = netdev_priv(if_incoming->soft_iface); struct batadv_ogm2_packet *ogm_packet; struct ethhdr *ethhdr; int ogm_offset; u8 *packet_pos; int ret = NET_RX_DROP; /* did we receive a OGM2 packet on an interface that does not have * B.A.T.M.A.N. V enabled ? */ if (strcmp(bat_priv->algo_ops->name, "BATMAN_V") != 0) goto free_skb; if (!batadv_check_management_packet(skb, if_incoming, BATADV_OGM2_HLEN)) goto free_skb; ethhdr = eth_hdr(skb); if (batadv_is_my_mac(bat_priv, ethhdr->h_source)) goto free_skb; batadv_inc_counter(bat_priv, BATADV_CNT_MGMT_RX); batadv_add_counter(bat_priv, BATADV_CNT_MGMT_RX_BYTES, skb->len + ETH_HLEN); ogm_offset = 0; ogm_packet = (struct batadv_ogm2_packet *)skb->data; while (batadv_v_ogm_aggr_packet(ogm_offset, skb_headlen(skb), ogm_packet)) { batadv_v_ogm_process(skb, ogm_offset, if_incoming); ogm_offset += BATADV_OGM2_HLEN; ogm_offset += ntohs(ogm_packet->tvlv_len); packet_pos = skb->data + ogm_offset; ogm_packet = (struct batadv_ogm2_packet *)packet_pos; } ret = NET_RX_SUCCESS; free_skb: if (ret == NET_RX_SUCCESS) consume_skb(skb); else kfree_skb(skb); return ret; } /** * batadv_v_ogm_init() - initialise the OGM2 engine * @bat_priv: the bat priv with all the soft interface information * * Return: 0 on success or a negative error code in case of failure */ int batadv_v_ogm_init(struct batadv_priv *bat_priv) { struct batadv_ogm2_packet *ogm_packet; unsigned char *ogm_buff; u32 random_seqno; bat_priv->bat_v.ogm_buff_len = BATADV_OGM2_HLEN; ogm_buff = kzalloc(bat_priv->bat_v.ogm_buff_len, GFP_ATOMIC); if (!ogm_buff) return -ENOMEM; bat_priv->bat_v.ogm_buff = ogm_buff; ogm_packet = (struct batadv_ogm2_packet *)ogm_buff; ogm_packet->packet_type = BATADV_OGM2; ogm_packet->version = BATADV_COMPAT_VERSION; ogm_packet->ttl = BATADV_TTL; ogm_packet->flags = BATADV_NO_FLAGS; ogm_packet->throughput = htonl(BATADV_THROUGHPUT_MAX_VALUE); /* randomize initial seqno to avoid collision */ get_random_bytes(&random_seqno, sizeof(random_seqno)); atomic_set(&bat_priv->bat_v.ogm_seqno, random_seqno); INIT_DELAYED_WORK(&bat_priv->bat_v.ogm_wq, batadv_v_ogm_send); mutex_init(&bat_priv->bat_v.ogm_buff_mutex); return 0; } /** * batadv_v_ogm_free() - free OGM private resources * @bat_priv: the bat priv with all the soft interface information */ void batadv_v_ogm_free(struct batadv_priv *bat_priv) { cancel_delayed_work_sync(&bat_priv->bat_v.ogm_wq); mutex_lock(&bat_priv->bat_v.ogm_buff_mutex); kfree(bat_priv->bat_v.ogm_buff); bat_priv->bat_v.ogm_buff = NULL; bat_priv->bat_v.ogm_buff_len = 0; mutex_unlock(&bat_priv->bat_v.ogm_buff_mutex); }
2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 /* SPDX-License-Identifier: GPL-2.0 */ /* taskstats_kern.h - kernel header for per-task statistics interface * * Copyright (C) Shailabh Nagar, IBM Corp. 2006 * (C) Balbir Singh, IBM Corp. 2006 */ #ifndef _LINUX_TASKSTATS_KERN_H #define _LINUX_TASKSTATS_KERN_H #include <linux/taskstats.h> #include <linux/sched/signal.h> #include <linux/slab.h> #ifdef CONFIG_TASKSTATS extern struct kmem_cache *taskstats_cache; extern struct mutex taskstats_exit_mutex; static inline void taskstats_tgid_free(struct signal_struct *sig) { if (sig->stats) kmem_cache_free(taskstats_cache, sig->stats); } extern void taskstats_exit(struct task_struct *, int group_dead); extern void taskstats_init_early(void); #else static inline void taskstats_exit(struct task_struct *tsk, int group_dead) {} static inline void taskstats_tgid_free(struct signal_struct *sig) {} static inline void taskstats_init_early(void) {} #endif /* CONFIG_TASKSTATS */ #endif
850 849 4 4 4 4 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 /* * Copyright (c) 2004 Topspin Communications. All rights reserved. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. * Copyright (c) 2004 Voltaire, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "ipoib.h" #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/kernel.h> #include <linux/vmalloc.h> #include <linux/if_arp.h> /* For ARPHRD_xxx */ #include <linux/ip.h> #include <linux/in.h> #include <linux/jhash.h> #include <net/arp.h> #include <net/addrconf.h> #include <linux/inetdevice.h> #include <rdma/ib_cache.h> MODULE_AUTHOR("Roland Dreier"); MODULE_DESCRIPTION("IP-over-InfiniBand net driver"); MODULE_LICENSE("Dual BSD/GPL"); int ipoib_sendq_size __read_mostly = IPOIB_TX_RING_SIZE; int ipoib_recvq_size __read_mostly = IPOIB_RX_RING_SIZE; module_param_named(send_queue_size, ipoib_sendq_size, int, 0444); MODULE_PARM_DESC(send_queue_size, "Number of descriptors in send queue"); module_param_named(recv_queue_size, ipoib_recvq_size, int, 0444); MODULE_PARM_DESC(recv_queue_size, "Number of descriptors in receive queue"); #ifdef CONFIG_INFINIBAND_IPOIB_DEBUG int ipoib_debug_level; module_param_named(debug_level, ipoib_debug_level, int, 0644); MODULE_PARM_DESC(debug_level, "Enable debug tracing if > 0"); #endif struct ipoib_path_iter { struct net_device *dev; struct ipoib_path path; }; static const u8 ipv4_bcast_addr[] = { 0x00, 0xff, 0xff, 0xff, 0xff, 0x12, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff }; struct workqueue_struct *ipoib_workqueue; struct ib_sa_client ipoib_sa_client; static int ipoib_add_one(struct ib_device *device); static void ipoib_remove_one(struct ib_device *device, void *client_data); static void ipoib_neigh_reclaim(struct rcu_head *rp); static struct net_device *ipoib_get_net_dev_by_params( struct ib_device *dev, u32 port, u16 pkey, const union ib_gid *gid, const struct sockaddr *addr, void *client_data); static int ipoib_set_mac(struct net_device *dev, void *addr); static int ipoib_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd); static struct ib_client ipoib_client = { .name = "ipoib", .add = ipoib_add_one, .remove = ipoib_remove_one, .get_net_dev_by_params = ipoib_get_net_dev_by_params, }; #ifdef CONFIG_INFINIBAND_IPOIB_DEBUG static int ipoib_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct netdev_notifier_info *ni = ptr; struct net_device *dev = ni->dev; if (dev->netdev_ops->ndo_open != ipoib_open) return NOTIFY_DONE; switch (event) { case NETDEV_REGISTER: ipoib_create_debug_files(dev); break; case NETDEV_CHANGENAME: ipoib_delete_debug_files(dev); ipoib_create_debug_files(dev); break; case NETDEV_UNREGISTER: ipoib_delete_debug_files(dev); break; } return NOTIFY_DONE; } #endif int ipoib_open(struct net_device *dev) { struct ipoib_dev_priv *priv = ipoib_priv(dev); ipoib_dbg(priv, "bringing up interface\n"); netif_carrier_off(dev); set_bit(IPOIB_FLAG_ADMIN_UP, &priv->flags); if (ipoib_ib_dev_open(dev)) { if (!test_bit(IPOIB_PKEY_ASSIGNED, &priv->flags)) return 0; goto err_disable; } ipoib_ib_dev_up(dev); if (!test_bit(IPOIB_FLAG_SUBINTERFACE, &priv->flags)) { struct ipoib_dev_priv *cpriv; /* Bring up any child interfaces too */ down_read(&priv->vlan_rwsem); list_for_each_entry(cpriv, &priv->child_intfs, list) { int flags; flags = cpriv->dev->flags; if (flags & IFF_UP) continue; dev_change_flags(cpriv->dev, flags | IFF_UP, NULL); } up_read(&priv->vlan_rwsem); } else if (priv->parent) { struct ipoib_dev_priv *ppriv = ipoib_priv(priv->parent); if (!test_bit(IPOIB_FLAG_ADMIN_UP, &ppriv->flags)) ipoib_dbg(priv, "parent device %s is not up, so child device may be not functioning.\n", ppriv->dev->name); } netif_start_queue(dev); return 0; err_disable: clear_bit(IPOIB_FLAG_ADMIN_UP, &priv->flags); return -EINVAL; } static int ipoib_stop(struct net_device *dev) { struct ipoib_dev_priv *priv = ipoib_priv(dev); ipoib_dbg(priv, "stopping interface\n"); clear_bit(IPOIB_FLAG_ADMIN_UP, &priv->flags); netif_stop_queue(dev); ipoib_ib_dev_down(dev); ipoib_ib_dev_stop(dev); if (!test_bit(IPOIB_FLAG_SUBINTERFACE, &priv->flags)) { struct ipoib_dev_priv *cpriv; /* Bring down any child interfaces too */ down_read(&priv->vlan_rwsem); list_for_each_entry(cpriv, &priv->child_intfs, list) { int flags; flags = cpriv->dev->flags; if (!(flags & IFF_UP)) continue; dev_change_flags(cpriv->dev, flags & ~IFF_UP, NULL); } up_read(&priv->vlan_rwsem); } return 0; } static netdev_features_t ipoib_fix_features(struct net_device *dev, netdev_features_t features) { struct ipoib_dev_priv *priv = ipoib_priv(dev); if (test_bit(IPOIB_FLAG_ADMIN_CM, &priv->flags)) features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); return features; } static int ipoib_change_mtu(struct net_device *dev, int new_mtu) { struct ipoib_dev_priv *priv = ipoib_priv(dev); int ret = 0; /* dev->mtu > 2K ==> connected mode */ if (ipoib_cm_admin_enabled(dev)) { if (new_mtu > ipoib_cm_max_mtu(dev)) return -EINVAL; if (new_mtu > priv->mcast_mtu) ipoib_warn(priv, "mtu > %d will cause multicast packet drops.\n", priv->mcast_mtu); WRITE_ONCE(dev->mtu, new_mtu); return 0; } if (new_mtu < (ETH_MIN_MTU + IPOIB_ENCAP_LEN) || new_mtu > IPOIB_UD_MTU(priv->max_ib_mtu)) return -EINVAL; priv->admin_mtu = new_mtu; if (priv->mcast_mtu < priv->admin_mtu) ipoib_dbg(priv, "MTU must be smaller than the underlying " "link layer MTU - 4 (%u)\n", priv->mcast_mtu); new_mtu = min(priv->mcast_mtu, priv->admin_mtu); if (priv->rn_ops->ndo_change_mtu) { bool carrier_status = netif_carrier_ok(dev); netif_carrier_off(dev); /* notify lower level on the real mtu */ ret = priv->rn_ops->ndo_change_mtu(dev, new_mtu); if (carrier_status) netif_carrier_on(dev); } else { WRITE_ONCE(dev->mtu, new_mtu); } return ret; } static void ipoib_get_stats(struct net_device *dev, struct rtnl_link_stats64 *stats) { struct ipoib_dev_priv *priv = ipoib_priv(dev); if (priv->rn_ops->ndo_get_stats64) priv->rn_ops->ndo_get_stats64(dev, stats); else netdev_stats_to_stats64(stats, &dev->stats); } /* Called with an RCU read lock taken */ static bool ipoib_is_dev_match_addr_rcu(const struct sockaddr *addr, struct net_device *dev) { struct net *net = dev_net(dev); struct in_device *in_dev; struct sockaddr_in *addr_in = (struct sockaddr_in *)addr; struct sockaddr_in6 *addr_in6 = (struct sockaddr_in6 *)addr; __be32 ret_addr; switch (addr->sa_family) { case AF_INET: in_dev = in_dev_get(dev); if (!in_dev) return false; ret_addr = inet_confirm_addr(net, in_dev, 0, addr_in->sin_addr.s_addr, RT_SCOPE_HOST); in_dev_put(in_dev); if (ret_addr) return true; break; case AF_INET6: if (IS_ENABLED(CONFIG_IPV6) && ipv6_chk_addr(net, &addr_in6->sin6_addr, dev, 1)) return true; break; } return false; } /* * Find the master net_device on top of the given net_device. * @dev: base IPoIB net_device * * Returns the master net_device with a reference held, or the same net_device * if no master exists. */ static struct net_device *ipoib_get_master_net_dev(struct net_device *dev) { struct net_device *master; rcu_read_lock(); master = netdev_master_upper_dev_get_rcu(dev); dev_hold(master); rcu_read_unlock(); if (master) return master; dev_hold(dev); return dev; } struct ipoib_walk_data { const struct sockaddr *addr; struct net_device *result; }; static int ipoib_upper_walk(struct net_device *upper, struct netdev_nested_priv *priv) { struct ipoib_walk_data *data = (struct ipoib_walk_data *)priv->data; int ret = 0; if (ipoib_is_dev_match_addr_rcu(data->addr, upper)) { dev_hold(upper); data->result = upper; ret = 1; } return ret; } /** * ipoib_get_net_dev_match_addr - Find a net_device matching * the given address, which is an upper device of the given net_device. * * @addr: IP address to look for. * @dev: base IPoIB net_device * * If found, returns the net_device with a reference held. Otherwise return * NULL. */ static struct net_device *ipoib_get_net_dev_match_addr( const struct sockaddr *addr, struct net_device *dev) { struct netdev_nested_priv priv; struct ipoib_walk_data data = { .addr = addr, }; priv.data = (void *)&data; rcu_read_lock(); if (ipoib_is_dev_match_addr_rcu(addr, dev)) { dev_hold(dev); data.result = dev; goto out; } netdev_walk_all_upper_dev_rcu(dev, ipoib_upper_walk, &priv); out: rcu_read_unlock(); return data.result; } /* returns the number of IPoIB netdevs on top a given ipoib device matching a * pkey_index and address, if one exists. * * @found_net_dev: contains a matching net_device if the return value >= 1, * with a reference held. */ static int ipoib_match_gid_pkey_addr(struct ipoib_dev_priv *priv, const union ib_gid *gid, u16 pkey_index, const struct sockaddr *addr, int nesting, struct net_device **found_net_dev) { struct ipoib_dev_priv *child_priv; struct net_device *net_dev = NULL; int matches = 0; if (priv->pkey_index == pkey_index && (!gid || !memcmp(gid, &priv->local_gid, sizeof(*gid)))) { if (!addr) { net_dev = ipoib_get_master_net_dev(priv->dev); } else { /* Verify the net_device matches the IP address, as * IPoIB child devices currently share a GID. */ net_dev = ipoib_get_net_dev_match_addr(addr, priv->dev); } if (net_dev) { if (!*found_net_dev) *found_net_dev = net_dev; else dev_put(net_dev); ++matches; } } /* Check child interfaces */ down_read_nested(&priv->vlan_rwsem, nesting); list_for_each_entry(child_priv, &priv->child_intfs, list) { matches += ipoib_match_gid_pkey_addr(child_priv, gid, pkey_index, addr, nesting + 1, found_net_dev); if (matches > 1) break; } up_read(&priv->vlan_rwsem); return matches; } /* Returns the number of matching net_devs found (between 0 and 2). Also * return the matching net_device in the @net_dev parameter, holding a * reference to the net_device, if the number of matches >= 1 */ static int __ipoib_get_net_dev_by_params(struct list_head *dev_list, u32 port, u16 pkey_index, const union ib_gid *gid, const struct sockaddr *addr, struct net_device **net_dev) { struct ipoib_dev_priv *priv; int matches = 0; *net_dev = NULL; list_for_each_entry(priv, dev_list, list) { if (priv->port != port) continue; matches += ipoib_match_gid_pkey_addr(priv, gid, pkey_index, addr, 0, net_dev); if (matches > 1) break; } return matches; } static struct net_device *ipoib_get_net_dev_by_params( struct ib_device *dev, u32 port, u16 pkey, const union ib_gid *gid, const struct sockaddr *addr, void *client_data) { struct net_device *net_dev; struct list_head *dev_list = client_data; u16 pkey_index; int matches; int ret; if (!rdma_protocol_ib(dev, port)) return NULL; ret = ib_find_cached_pkey(dev, port, pkey, &pkey_index); if (ret) return NULL; /* See if we can find a unique device matching the L2 parameters */ matches = __ipoib_get_net_dev_by_params(dev_list, port, pkey_index, gid, NULL, &net_dev); switch (matches) { case 0: return NULL; case 1: return net_dev; } dev_put(net_dev); /* Couldn't find a unique device with L2 parameters only. Use L3 * address to uniquely match the net device */ matches = __ipoib_get_net_dev_by_params(dev_list, port, pkey_index, gid, addr, &net_dev); switch (matches) { case 0: return NULL; default: dev_warn_ratelimited(&dev->dev, "duplicate IP address detected\n"); fallthrough; case 1: return net_dev; } } int ipoib_set_mode(struct net_device *dev, const char *buf) { struct ipoib_dev_priv *priv = ipoib_priv(dev); if ((test_bit(IPOIB_FLAG_ADMIN_CM, &priv->flags) && !strcmp(buf, "connected\n")) || (!test_bit(IPOIB_FLAG_ADMIN_CM, &priv->flags) && !strcmp(buf, "datagram\n"))) { return 0; } /* flush paths if we switch modes so that connections are restarted */ if (IPOIB_CM_SUPPORTED(dev->dev_addr) && !strcmp(buf, "connected\n")) { set_bit(IPOIB_FLAG_ADMIN_CM, &priv->flags); ipoib_warn(priv, "enabling connected mode " "will cause multicast packet drops\n"); netdev_update_features(dev); dev_set_mtu(dev, ipoib_cm_max_mtu(dev)); netif_set_real_num_tx_queues(dev, 1); rtnl_unlock(); priv->tx_wr.wr.send_flags &= ~IB_SEND_IP_CSUM; ipoib_flush_paths(dev); return (!rtnl_trylock()) ? -EBUSY : 0; } if (!strcmp(buf, "datagram\n")) { clear_bit(IPOIB_FLAG_ADMIN_CM, &priv->flags); netdev_update_features(dev); dev_set_mtu(dev, min(priv->mcast_mtu, dev->mtu)); netif_set_real_num_tx_queues(dev, dev->num_tx_queues); rtnl_unlock(); ipoib_flush_paths(dev); return (!rtnl_trylock()) ? -EBUSY : 0; } return -EINVAL; } struct ipoib_path *__path_find(struct net_device *dev, void *gid) { struct ipoib_dev_priv *priv = ipoib_priv(dev); struct rb_node *n = priv->path_tree.rb_node; struct ipoib_path *path; int ret; while (n) { path = rb_entry(n, struct ipoib_path, rb_node); ret = memcmp(gid, path->pathrec.dgid.raw, sizeof (union ib_gid)); if (ret < 0) n = n->rb_left; else if (ret > 0) n = n->rb_right; else return path; } return NULL; } static int __path_add(struct net_device *dev, struct ipoib_path *path) { struct ipoib_dev_priv *priv = ipoib_priv(dev); struct rb_node **n = &priv->path_tree.rb_node; struct rb_node *pn = NULL; struct ipoib_path *tpath; int ret; while (*n) { pn = *n; tpath = rb_entry(pn, struct ipoib_path, rb_node); ret = memcmp(path->pathrec.dgid.raw, tpath->pathrec.dgid.raw, sizeof (union ib_gid)); if (ret < 0) n = &pn->rb_left; else if (ret > 0) n = &pn->rb_right; else return -EEXIST; } rb_link_node(&path->rb_node, pn, n); rb_insert_color(&path->rb_node, &priv->path_tree); list_add_tail(&path->list, &priv->path_list); return 0; } static void path_free(struct net_device *dev, struct ipoib_path *path) { struct sk_buff *skb; while ((skb = __skb_dequeue(&path->queue))) dev_kfree_skb_irq(skb); ipoib_dbg(ipoib_priv(dev), "%s\n", __func__); /* remove all neigh connected to this path */ ipoib_del_neighs_by_gid(dev, path->pathrec.dgid.raw); if (path->ah) ipoib_put_ah(path->ah); kfree(path); } #ifdef CONFIG_INFINIBAND_IPOIB_DEBUG struct ipoib_path_iter *ipoib_path_iter_init(struct net_device *dev) { struct ipoib_path_iter *iter; iter = kmalloc(sizeof(*iter), GFP_KERNEL); if (!iter) return NULL; iter->dev = dev; memset(iter->path.pathrec.dgid.raw, 0, 16); if (ipoib_path_iter_next(iter)) { kfree(iter); return NULL; } return iter; } int ipoib_path_iter_next(struct ipoib_path_iter *iter) { struct ipoib_dev_priv *priv = ipoib_priv(iter->dev); struct rb_node *n; struct ipoib_path *path; int ret = 1; spin_lock_irq(&priv->lock); n = rb_first(&priv->path_tree); while (n) { path = rb_entry(n, struct ipoib_path, rb_node); if (memcmp(iter->path.pathrec.dgid.raw, path->pathrec.dgid.raw, sizeof (union ib_gid)) < 0) { iter->path = *path; ret = 0; break; } n = rb_next(n); } spin_unlock_irq(&priv->lock); return ret; } void ipoib_path_iter_read(struct ipoib_path_iter *iter, struct ipoib_path *path) { *path = iter->path; } #endif /* CONFIG_INFINIBAND_IPOIB_DEBUG */ void ipoib_mark_paths_invalid(struct net_device *dev) { struct ipoib_dev_priv *priv = ipoib_priv(dev); struct ipoib_path *path, *tp; spin_lock_irq(&priv->lock); list_for_each_entry_safe(path, tp, &priv->path_list, list) { ipoib_dbg(priv, "mark path LID 0x%08x GID %pI6 invalid\n", be32_to_cpu(sa_path_get_dlid(&path->pathrec)), path->pathrec.dgid.raw); if (path->ah) path->ah->valid = 0; } spin_unlock_irq(&priv->lock); } static void push_pseudo_header(struct sk_buff *skb, const char *daddr) { struct ipoib_pseudo_header *phdr; phdr = skb_push(skb, sizeof(*phdr)); memcpy(phdr->hwaddr, daddr, INFINIBAND_ALEN); } void ipoib_flush_paths(struct net_device *dev) { struct ipoib_dev_priv *priv = ipoib_priv(dev); struct ipoib_path *path, *tp; LIST_HEAD(remove_list); unsigned long flags; netif_tx_lock_bh(dev); spin_lock_irqsave(&priv->lock, flags); list_splice_init(&priv->path_list, &remove_list); list_for_each_entry(path, &remove_list, list) rb_erase(&path->rb_node, &priv->path_tree); list_for_each_entry_safe(path, tp, &remove_list, list) { if (path->query) ib_sa_cancel_query(path->query_id, path->query); spin_unlock_irqrestore(&priv->lock, flags); netif_tx_unlock_bh(dev); wait_for_completion(&path->done); path_free(dev, path); netif_tx_lock_bh(dev); spin_lock_irqsave(&priv->lock, flags); } spin_unlock_irqrestore(&priv->lock, flags); netif_tx_unlock_bh(dev); } static void path_rec_completion(int status, struct sa_path_rec *pathrec, unsigned int num_prs, void *path_ptr) { struct ipoib_path *path = path_ptr; struct net_device *dev = path->dev; struct ipoib_dev_priv *priv = ipoib_priv(dev); struct ipoib_ah *ah = NULL; struct ipoib_ah *old_ah = NULL; struct ipoib_neigh *neigh, *tn; struct sk_buff_head skqueue; struct sk_buff *skb; unsigned long flags; if (!status) ipoib_dbg(priv, "PathRec LID 0x%04x for GID %pI6\n", be32_to_cpu(sa_path_get_dlid(pathrec)), pathrec->dgid.raw); else ipoib_dbg(priv, "PathRec status %d for GID %pI6\n", status, path->pathrec.dgid.raw); skb_queue_head_init(&skqueue); if (!status) { struct rdma_ah_attr av; if (!ib_init_ah_attr_from_path(priv->ca, priv->port, pathrec, &av, NULL)) { ah = ipoib_create_ah(dev, priv->pd, &av); rdma_destroy_ah_attr(&av); } } spin_lock_irqsave(&priv->lock, flags); if (!IS_ERR_OR_NULL(ah)) { /* * pathrec.dgid is used as the database key from the LLADDR, * it must remain unchanged even if the SA returns a different * GID to use in the AH. */ if (memcmp(pathrec->dgid.raw, path->pathrec.dgid.raw, sizeof(union ib_gid))) { ipoib_dbg( priv, "%s got PathRec for gid %pI6 while asked for %pI6\n", dev->name, pathrec->dgid.raw, path->pathrec.dgid.raw); memcpy(pathrec->dgid.raw, path->pathrec.dgid.raw, sizeof(union ib_gid)); } path->pathrec = *pathrec; old_ah = path->ah; path->ah = ah; ipoib_dbg(priv, "created address handle %p for LID 0x%04x, SL %d\n", ah, be32_to_cpu(sa_path_get_dlid(pathrec)), pathrec->sl); while ((skb = __skb_dequeue(&path->queue))) __skb_queue_tail(&skqueue, skb); list_for_each_entry_safe(neigh, tn, &path->neigh_list, list) { if (neigh->ah) { WARN_ON(neigh->ah != old_ah); /* * Dropping the ah reference inside * priv->lock is safe here, because we * will hold one more reference from * the original value of path->ah (ie * old_ah). */ ipoib_put_ah(neigh->ah); } kref_get(&path->ah->ref); neigh->ah = path->ah; if (ipoib_cm_enabled(dev, neigh->daddr)) { if (!ipoib_cm_get(neigh)) ipoib_cm_set(neigh, ipoib_cm_create_tx(dev, path, neigh)); if (!ipoib_cm_get(neigh)) { ipoib_neigh_free(neigh); continue; } } while ((skb = __skb_dequeue(&neigh->queue))) __skb_queue_tail(&skqueue, skb); } path->ah->valid = 1; } path->query = NULL; complete(&path->done); spin_unlock_irqrestore(&priv->lock, flags); if (IS_ERR_OR_NULL(ah)) ipoib_del_neighs_by_gid(dev, path->pathrec.dgid.raw); if (old_ah) ipoib_put_ah(old_ah); while ((skb = __skb_dequeue(&skqueue))) { int ret; skb->dev = dev; ret = dev_queue_xmit(skb); if (ret) ipoib_warn(priv, "%s: dev_queue_xmit failed to re-queue packet, ret:%d\n", __func__, ret); } } static void init_path_rec(struct ipoib_dev_priv *priv, struct ipoib_path *path, void *gid) { path->dev = priv->dev; if (rdma_cap_opa_ah(priv->ca, priv->port)) path->pathrec.rec_type = SA_PATH_REC_TYPE_OPA; else path->pathrec.rec_type = SA_PATH_REC_TYPE_IB; memcpy(path->pathrec.dgid.raw, gid, sizeof(union ib_gid)); path->pathrec.sgid = priv->local_gid; path->pathrec.pkey = cpu_to_be16(priv->pkey); path->pathrec.numb_path = 1; path->pathrec.traffic_class = priv->broadcast->mcmember.traffic_class; } static struct ipoib_path *path_rec_create(struct net_device *dev, void *gid) { struct ipoib_dev_priv *priv = ipoib_priv(dev); struct ipoib_path *path; if (!priv->broadcast) return NULL; path = kzalloc(sizeof(*path), GFP_ATOMIC); if (!path) return NULL; skb_queue_head_init(&path->queue); INIT_LIST_HEAD(&path->neigh_list); init_path_rec(priv, path, gid); return path; } static int path_rec_start(struct net_device *dev, struct ipoib_path *path) { struct ipoib_dev_priv *priv = ipoib_priv(dev); ipoib_dbg(priv, "Start path record lookup for %pI6\n", path->pathrec.dgid.raw); init_completion(&path->done); path->query_id = ib_sa_path_rec_get(&ipoib_sa_client, priv->ca, priv->port, &path->pathrec, IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | IB_SA_PATH_REC_NUMB_PATH | IB_SA_PATH_REC_TRAFFIC_CLASS | IB_SA_PATH_REC_PKEY, 1000, GFP_ATOMIC, path_rec_completion, path, &path->query); if (path->query_id < 0) { ipoib_warn(priv, "ib_sa_path_rec_get failed: %d\n", path->query_id); path->query = NULL; complete(&path->done); return path->query_id; } return 0; } static void neigh_refresh_path(struct ipoib_neigh *neigh, u8 *daddr, struct net_device *dev) { struct ipoib_dev_priv *priv = ipoib_priv(dev); struct ipoib_path *path; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); path = __path_find(dev, daddr + 4); if (!path) goto out; if (!path->query) path_rec_start(dev, path); out: spin_unlock_irqrestore(&priv->lock, flags); } static struct ipoib_neigh *neigh_add_path(struct sk_buff *skb, u8 *daddr, struct net_device *dev) { struct ipoib_dev_priv *priv = ipoib_priv(dev); struct rdma_netdev *rn = netdev_priv(dev); struct ipoib_path *path; struct ipoib_neigh *neigh; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); neigh = ipoib_neigh_alloc(daddr, dev); if (!neigh) { spin_unlock_irqrestore(&priv->lock, flags); ++dev->stats.tx_dropped; dev_kfree_skb_any(skb); return NULL; } /* To avoid race condition, make sure that the * neigh will be added only once. */ if (unlikely(!list_empty(&neigh->list))) { spin_unlock_irqrestore(&priv->lock, flags); return neigh; } path = __path_find(dev, daddr + 4); if (!path) { path = path_rec_create(dev, daddr + 4); if (!path) goto err_path; __path_add(dev, path); } list_add_tail(&neigh->list, &path->neigh_list); if (path->ah && path->ah->valid) { kref_get(&path->ah->ref); neigh->ah = path->ah; if (ipoib_cm_enabled(dev, neigh->daddr)) { if (!ipoib_cm_get(neigh)) ipoib_cm_set(neigh, ipoib_cm_create_tx(dev, path, neigh)); if (!ipoib_cm_get(neigh)) { ipoib_neigh_free(neigh); goto err_drop; } if (skb_queue_len(&neigh->queue) < IPOIB_MAX_PATH_REC_QUEUE) { push_pseudo_header(skb, neigh->daddr); __skb_queue_tail(&neigh->queue, skb); } else { ipoib_warn(priv, "queue length limit %d. Packet drop.\n", skb_queue_len(&neigh->queue)); goto err_drop; } } else { spin_unlock_irqrestore(&priv->lock, flags); path->ah->last_send = rn->send(dev, skb, path->ah->ah, IPOIB_QPN(daddr)); ipoib_neigh_put(neigh); return NULL; } } else { neigh->ah = NULL; if (!path->query && path_rec_start(dev, path)) goto err_path; if (skb_queue_len(&neigh->queue) < IPOIB_MAX_PATH_REC_QUEUE) { push_pseudo_header(skb, neigh->daddr); __skb_queue_tail(&neigh->queue, skb); } else { goto err_drop; } } spin_unlock_irqrestore(&priv->lock, flags); ipoib_neigh_put(neigh); return NULL; err_path: ipoib_neigh_free(neigh); err_drop: ++dev->stats.tx_dropped; dev_kfree_skb_any(skb); spin_unlock_irqrestore(&priv->lock, flags); ipoib_neigh_put(neigh); return NULL; } static void unicast_arp_send(struct sk_buff *skb, struct net_device *dev, struct ipoib_pseudo_header *phdr) { struct ipoib_dev_priv *priv = ipoib_priv(dev); struct rdma_netdev *rn = netdev_priv(dev); struct ipoib_path *path; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); /* no broadcast means that all paths are (going to be) not valid */ if (!priv->broadcast) goto drop_and_unlock; path = __path_find(dev, phdr->hwaddr + 4); if (!path || !path->ah || !path->ah->valid) { if (!path) { path = path_rec_create(dev, phdr->hwaddr + 4); if (!path) goto drop_and_unlock; __path_add(dev, path); } else { /* * make sure there are no changes in the existing * path record */ init_path_rec(priv, path, phdr->hwaddr + 4); } if (!path->query && path_rec_start(dev, path)) { goto drop_and_unlock; } if (skb_queue_len(&path->queue) < IPOIB_MAX_PATH_REC_QUEUE) { push_pseudo_header(skb, phdr->hwaddr); __skb_queue_tail(&path->queue, skb); goto unlock; } else { goto drop_and_unlock; } } spin_unlock_irqrestore(&priv->lock, flags); ipoib_dbg(priv, "Send unicast ARP to %08x\n", be32_to_cpu(sa_path_get_dlid(&path->pathrec))); path->ah->last_send = rn->send(dev, skb, path->ah->ah, IPOIB_QPN(phdr->hwaddr)); return; drop_and_unlock: ++dev->stats.tx_dropped; dev_kfree_skb_any(skb); unlock: spin_unlock_irqrestore(&priv->lock, flags); } static netdev_tx_t ipoib_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ipoib_dev_priv *priv = ipoib_priv(dev); struct rdma_netdev *rn = netdev_priv(dev); struct ipoib_neigh *neigh; struct ipoib_pseudo_header *phdr; struct ipoib_header *header; unsigned long flags; phdr = (struct ipoib_pseudo_header *) skb->data; skb_pull(skb, sizeof(*phdr)); header = (struct ipoib_header *) skb->data; if (unlikely(phdr->hwaddr[4] == 0xff)) { /* multicast, arrange "if" according to probability */ if ((header->proto != htons(ETH_P_IP)) && (header->proto != htons(ETH_P_IPV6)) && (header->proto != htons(ETH_P_ARP)) && (header->proto != htons(ETH_P_RARP)) && (header->proto != htons(ETH_P_TIPC))) { /* ethertype not supported by IPoIB */ ++dev->stats.tx_dropped; dev_kfree_skb_any(skb); return NETDEV_TX_OK; } /* Add in the P_Key for multicast*/ phdr->hwaddr[8] = (priv->pkey >> 8) & 0xff; phdr->hwaddr[9] = priv->pkey & 0xff; neigh = ipoib_neigh_get(dev, phdr->hwaddr); if (likely(neigh)) goto send_using_neigh; ipoib_mcast_send(dev, phdr->hwaddr, skb); return NETDEV_TX_OK; } /* unicast, arrange "switch" according to probability */ switch (header->proto) { case htons(ETH_P_IP): case htons(ETH_P_IPV6): case htons(ETH_P_TIPC): neigh = ipoib_neigh_get(dev, phdr->hwaddr); if (unlikely(!neigh)) { neigh = neigh_add_path(skb, phdr->hwaddr, dev); if (likely(!neigh)) return NETDEV_TX_OK; } break; case htons(ETH_P_ARP): case htons(ETH_P_RARP): /* for unicast ARP and RARP should always perform path find */ unicast_arp_send(skb, dev, phdr); return NETDEV_TX_OK; default: /* ethertype not supported by IPoIB */ ++dev->stats.tx_dropped; dev_kfree_skb_any(skb); return NETDEV_TX_OK; } send_using_neigh: /* note we now hold a ref to neigh */ if (ipoib_cm_get(neigh)) { if (ipoib_cm_up(neigh)) { ipoib_cm_send(dev, skb, ipoib_cm_get(neigh)); goto unref; } } else if (neigh->ah && neigh->ah->valid) { neigh->ah->last_send = rn->send(dev, skb, neigh->ah->ah, IPOIB_QPN(phdr->hwaddr)); goto unref; } else if (neigh->ah) { neigh_refresh_path(neigh, phdr->hwaddr, dev); } if (skb_queue_len(&neigh->queue) < IPOIB_MAX_PATH_REC_QUEUE) { push_pseudo_header(skb, phdr->hwaddr); spin_lock_irqsave(&priv->lock, flags); __skb_queue_tail(&neigh->queue, skb); spin_unlock_irqrestore(&priv->lock, flags); } else { ++dev->stats.tx_dropped; dev_kfree_skb_any(skb); } unref: ipoib_neigh_put(neigh); return NETDEV_TX_OK; } static void ipoib_timeout(struct net_device *dev, unsigned int txqueue) { struct ipoib_dev_priv *priv = ipoib_priv(dev); struct rdma_netdev *rn = netdev_priv(dev); if (rn->tx_timeout) { rn->tx_timeout(dev, txqueue); return; } ipoib_warn(priv, "transmit timeout: latency %d msecs\n", jiffies_to_msecs(jiffies - dev_trans_start(dev))); ipoib_warn(priv, "queue stopped %d, tx_head %u, tx_tail %u, global_tx_head %u, global_tx_tail %u\n", netif_queue_stopped(dev), priv->tx_head, priv->tx_tail, priv->global_tx_head, priv->global_tx_tail); schedule_work(&priv->tx_timeout_work); } void ipoib_ib_tx_timeout_work(struct work_struct *work) { struct ipoib_dev_priv *priv = container_of(work, struct ipoib_dev_priv, tx_timeout_work); int err; rtnl_lock(); if (!test_bit(IPOIB_FLAG_ADMIN_UP, &priv->flags)) goto unlock; ipoib_stop(priv->dev); err = ipoib_open(priv->dev); if (err) { ipoib_warn(priv, "ipoib_open failed recovering from a tx_timeout, err(%d).\n", err); goto unlock; } netif_tx_wake_all_queues(priv->dev); unlock: rtnl_unlock(); } static int ipoib_hard_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned int len) { struct ipoib_header *header; header = skb_push(skb, sizeof(*header)); header->proto = htons(type); header->reserved = 0; /* * we don't rely on dst_entry structure, always stuff the * destination address into skb hard header so we can figure out where * to send the packet later. */ push_pseudo_header(skb, daddr); return IPOIB_HARD_LEN; } static void ipoib_set_mcast_list(struct net_device *dev) { struct ipoib_dev_priv *priv = ipoib_priv(dev); if (!test_bit(IPOIB_FLAG_OPER_UP, &priv->flags)) { ipoib_dbg(priv, "IPOIB_FLAG_OPER_UP not set"); return; } queue_work(priv->wq, &priv->restart_task); } static int ipoib_get_iflink(const struct net_device *dev) { struct ipoib_dev_priv *priv = ipoib_priv(dev); /* parent interface */ if (!test_bit(IPOIB_FLAG_SUBINTERFACE, &priv->flags)) return READ_ONCE(dev->ifindex); /* child/vlan interface */ return READ_ONCE(priv->parent->ifindex); } static u32 ipoib_addr_hash(struct ipoib_neigh_hash *htbl, u8 *daddr) { /* * Use only the address parts that contributes to spreading * The subnet prefix is not used as one can not connect to * same remote port (GUID) using the same remote QPN via two * different subnets. */ /* qpn octets[1:4) & port GUID octets[12:20) */ u32 *d32 = (u32 *) daddr; u32 hv; hv = jhash_3words(d32[3], d32[4], IPOIB_QPN_MASK & d32[0], 0); return hv & htbl->mask; } struct ipoib_neigh *ipoib_neigh_get(struct net_device *dev, u8 *daddr) { struct ipoib_dev_priv *priv = ipoib_priv(dev); struct ipoib_neigh_table *ntbl = &priv->ntbl; struct ipoib_neigh_hash *htbl; struct ipoib_neigh *neigh = NULL; u32 hash_val; rcu_read_lock_bh(); htbl = rcu_dereference_bh(ntbl->htbl); if (!htbl) goto out_unlock; hash_val = ipoib_addr_hash(htbl, daddr); for (neigh = rcu_dereference_bh(htbl->buckets[hash_val]); neigh != NULL; neigh = rcu_dereference_bh(neigh->hnext)) { if (memcmp(daddr, neigh->daddr, INFINIBAND_ALEN) == 0) { /* found, take one ref on behalf of the caller */ if (!refcount_inc_not_zero(&neigh->refcnt)) { /* deleted */ neigh = NULL; goto out_unlock; } if (likely(skb_queue_len(&neigh->queue) < IPOIB_MAX_PATH_REC_QUEUE)) neigh->alive = jiffies; goto out_unlock; } } out_unlock: rcu_read_unlock_bh(); return neigh; } static void __ipoib_reap_neigh(struct ipoib_dev_priv *priv) { struct ipoib_neigh_table *ntbl = &priv->ntbl; struct ipoib_neigh_hash *htbl; unsigned long neigh_obsolete; unsigned long dt; unsigned long flags; int i; LIST_HEAD(remove_list); spin_lock_irqsave(&priv->lock, flags); htbl = rcu_dereference_protected(ntbl->htbl, lockdep_is_held(&priv->lock)); if (!htbl) goto out_unlock; /* neigh is obsolete if it was idle for two GC periods */ dt = 2 * arp_tbl.gc_interval; neigh_obsolete = jiffies - dt; for (i = 0; i < htbl->size; i++) { struct ipoib_neigh *neigh; struct ipoib_neigh __rcu **np = &htbl->buckets[i]; while ((neigh = rcu_dereference_protected(*np, lockdep_is_held(&priv->lock))) != NULL) { /* was the neigh idle for two GC periods */ if (time_after(neigh_obsolete, neigh->alive)) { ipoib_check_and_add_mcast_sendonly(priv, neigh->daddr + 4, &remove_list); rcu_assign_pointer(*np, rcu_dereference_protected(neigh->hnext, lockdep_is_held(&priv->lock))); /* remove from path/mc list */ list_del_init(&neigh->list); call_rcu(&neigh->rcu, ipoib_neigh_reclaim); } else { np = &neigh->hnext; } } } out_unlock: spin_unlock_irqrestore(&priv->lock, flags); ipoib_mcast_remove_list(&remove_list); } static void ipoib_reap_neigh(struct work_struct *work) { struct ipoib_dev_priv *priv = container_of(work, struct ipoib_dev_priv, neigh_reap_task.work); __ipoib_reap_neigh(priv); queue_delayed_work(priv->wq, &priv->neigh_reap_task, arp_tbl.gc_interval); } static struct ipoib_neigh *ipoib_neigh_ctor(u8 *daddr, struct net_device *dev) { struct ipoib_neigh *neigh; neigh = kzalloc(sizeof(*neigh), GFP_ATOMIC); if (!neigh) return NULL; neigh->dev = dev; memcpy(&neigh->daddr, daddr, sizeof(neigh->daddr)); skb_queue_head_init(&neigh->queue); INIT_LIST_HEAD(&neigh->list); ipoib_cm_set(neigh, NULL); /* one ref on behalf of the caller */ refcount_set(&neigh->refcnt, 1); return neigh; } struct ipoib_neigh *ipoib_neigh_alloc(u8 *daddr, struct net_device *dev) { struct ipoib_dev_priv *priv = ipoib_priv(dev); struct ipoib_neigh_table *ntbl = &priv->ntbl; struct ipoib_neigh_hash *htbl; struct ipoib_neigh *neigh; u32 hash_val; htbl = rcu_dereference_protected(ntbl->htbl, lockdep_is_held(&priv->lock)); if (!htbl) { neigh = NULL; goto out_unlock; } /* need to add a new neigh, but maybe some other thread succeeded? * recalc hash, maybe hash resize took place so we do a search */ hash_val = ipoib_addr_hash(htbl, daddr); for (neigh = rcu_dereference_protected(htbl->buckets[hash_val], lockdep_is_held(&priv->lock)); neigh != NULL; neigh = rcu_dereference_protected(neigh->hnext, lockdep_is_held(&priv->lock))) { if (memcmp(daddr, neigh->daddr, INFINIBAND_ALEN) == 0) { /* found, take one ref on behalf of the caller */ if (!refcount_inc_not_zero(&neigh->refcnt)) { /* deleted */ neigh = NULL; break; } neigh->alive = jiffies; goto out_unlock; } } neigh = ipoib_neigh_ctor(daddr, dev); if (!neigh) goto out_unlock; /* one ref on behalf of the hash table */ refcount_inc(&neigh->refcnt); neigh->alive = jiffies; /* put in hash */ rcu_assign_pointer(neigh->hnext, rcu_dereference_protected(htbl->buckets[hash_val], lockdep_is_held(&priv->lock))); rcu_assign_pointer(htbl->buckets[hash_val], neigh); atomic_inc(&ntbl->entries); out_unlock: return neigh; } void ipoib_neigh_dtor(struct ipoib_neigh *neigh) { /* neigh reference count was dropprd to zero */ struct net_device *dev = neigh->dev; struct ipoib_dev_priv *priv = ipoib_priv(dev); struct sk_buff *skb; if (neigh->ah) ipoib_put_ah(neigh->ah); while ((skb = __skb_dequeue(&neigh->queue))) { ++dev->stats.tx_dropped; dev_kfree_skb_any(skb); } if (ipoib_cm_get(neigh)) ipoib_cm_destroy_tx(ipoib_cm_get(neigh)); ipoib_dbg(ipoib_priv(dev), "neigh free for %06x %pI6\n", IPOIB_QPN(neigh->daddr), neigh->daddr + 4); kfree(neigh); if (atomic_dec_and_test(&priv->ntbl.entries)) { if (test_bit(IPOIB_NEIGH_TBL_FLUSH, &priv->flags)) complete(&priv->ntbl.flushed); } } static void ipoib_neigh_reclaim(struct rcu_head *rp) { /* Called as a result of removal from hash table */ struct ipoib_neigh *neigh = container_of(rp, struct ipoib_neigh, rcu); /* note TX context may hold another ref */ ipoib_neigh_put(neigh); } void ipoib_neigh_free(struct ipoib_neigh *neigh) { struct net_device *dev = neigh->dev; struct ipoib_dev_priv *priv = ipoib_priv(dev); struct ipoib_neigh_table *ntbl = &priv->ntbl; struct ipoib_neigh_hash *htbl; struct ipoib_neigh __rcu **np; struct ipoib_neigh *n; u32 hash_val; htbl = rcu_dereference_protected(ntbl->htbl, lockdep_is_held(&priv->lock)); if (!htbl) return; hash_val = ipoib_addr_hash(htbl, neigh->daddr); np = &htbl->buckets[hash_val]; for (n = rcu_dereference_protected(*np, lockdep_is_held(&priv->lock)); n != NULL; n = rcu_dereference_protected(*np, lockdep_is_held(&priv->lock))) { if (n == neigh) { /* found */ rcu_assign_pointer(*np, rcu_dereference_protected(neigh->hnext, lockdep_is_held(&priv->lock))); /* remove from parent list */ list_del_init(&neigh->list); call_rcu(&neigh->rcu, ipoib_neigh_reclaim); return; } else { np = &n->hnext; } } } static int ipoib_neigh_hash_init(struct ipoib_dev_priv *priv) { struct ipoib_neigh_table *ntbl = &priv->ntbl; struct ipoib_neigh_hash *htbl; struct ipoib_neigh __rcu **buckets; u32 size; clear_bit(IPOIB_NEIGH_TBL_FLUSH, &priv->flags); ntbl->htbl = NULL; htbl = kzalloc(sizeof(*htbl), GFP_KERNEL); if (!htbl) return -ENOMEM; size = roundup_pow_of_two(arp_tbl.gc_thresh3); buckets = kvcalloc(size, sizeof(*buckets), GFP_KERNEL); if (!buckets) { kfree(htbl); return -ENOMEM; } htbl->size = size; htbl->mask = (size - 1); htbl->buckets = buckets; RCU_INIT_POINTER(ntbl->htbl, htbl); htbl->ntbl = ntbl; atomic_set(&ntbl->entries, 0); /* start garbage collection */ queue_delayed_work(priv->wq, &priv->neigh_reap_task, arp_tbl.gc_interval); return 0; } static void neigh_hash_free_rcu(struct rcu_head *head) { struct ipoib_neigh_hash *htbl = container_of(head, struct ipoib_neigh_hash, rcu); struct ipoib_neigh __rcu **buckets = htbl->buckets; struct ipoib_neigh_table *ntbl = htbl->ntbl; kvfree(buckets); kfree(htbl); complete(&ntbl->deleted); } void ipoib_del_neighs_by_gid(struct net_device *dev, u8 *gid) { struct ipoib_dev_priv *priv = ipoib_priv(dev); struct ipoib_neigh_table *ntbl = &priv->ntbl; struct ipoib_neigh_hash *htbl; unsigned long flags; int i; /* remove all neigh connected to a given path or mcast */ spin_lock_irqsave(&priv->lock, flags); htbl = rcu_dereference_protected(ntbl->htbl, lockdep_is_held(&priv->lock)); if (!htbl) goto out_unlock; for (i = 0; i < htbl->size; i++) { struct ipoib_neigh *neigh; struct ipoib_neigh __rcu **np = &htbl->buckets[i]; while ((neigh = rcu_dereference_protected(*np, lockdep_is_held(&priv->lock))) != NULL) { /* delete neighs belong to this parent */ if (!memcmp(gid, neigh->daddr + 4, sizeof (union ib_gid))) { rcu_assign_pointer(*np, rcu_dereference_protected(neigh->hnext, lockdep_is_held(&priv->lock))); /* remove from parent list */ list_del_init(&neigh->list); call_rcu(&neigh->rcu, ipoib_neigh_reclaim); } else { np = &neigh->hnext; } } } out_unlock: spin_unlock_irqrestore(&priv->lock, flags); } static void ipoib_flush_neighs(struct ipoib_dev_priv *priv) { struct ipoib_neigh_table *ntbl = &priv->ntbl; struct ipoib_neigh_hash *htbl; unsigned long flags; int i, wait_flushed = 0; init_completion(&priv->ntbl.flushed); set_bit(IPOIB_NEIGH_TBL_FLUSH, &priv->flags); spin_lock_irqsave(&priv->lock, flags); htbl = rcu_dereference_protected(ntbl->htbl, lockdep_is_held(&priv->lock)); if (!htbl) goto out_unlock; wait_flushed = atomic_read(&priv->ntbl.entries); if (!wait_flushed) goto free_htbl; for (i = 0; i < htbl->size; i++) { struct ipoib_neigh *neigh; struct ipoib_neigh __rcu **np = &htbl->buckets[i]; while ((neigh = rcu_dereference_protected(*np, lockdep_is_held(&priv->lock))) != NULL) { rcu_assign_pointer(*np, rcu_dereference_protected(neigh->hnext, lockdep_is_held(&priv->lock))); /* remove from path/mc list */ list_del_init(&neigh->list); call_rcu(&neigh->rcu, ipoib_neigh_reclaim); } } free_htbl: rcu_assign_pointer(ntbl->htbl, NULL); call_rcu(&htbl->rcu, neigh_hash_free_rcu); out_unlock: spin_unlock_irqrestore(&priv->lock, flags); if (wait_flushed) wait_for_completion(&priv->ntbl.flushed); } static void ipoib_neigh_hash_uninit(struct net_device *dev) { struct ipoib_dev_priv *priv = ipoib_priv(dev); ipoib_dbg(priv, "%s\n", __func__); init_completion(&priv->ntbl.deleted); cancel_delayed_work_sync(&priv->neigh_reap_task); ipoib_flush_neighs(priv); wait_for_completion(&priv->ntbl.deleted); } static void ipoib_napi_add(struct net_device *dev) { struct ipoib_dev_priv *priv = ipoib_priv(dev); netif_napi_add_weight(dev, &priv->recv_napi, ipoib_rx_poll, IPOIB_NUM_WC); netif_napi_add_weight(dev, &priv->send_napi, ipoib_tx_poll, MAX_SEND_CQE); } static void ipoib_napi_del(struct net_device *dev) { struct ipoib_dev_priv *priv = ipoib_priv(dev); netif_napi_del(&priv->recv_napi); netif_napi_del(&priv->send_napi); } static void ipoib_dev_uninit_default(struct net_device *dev) { struct ipoib_dev_priv *priv = ipoib_priv(dev); ipoib_transport_dev_cleanup(dev); ipoib_napi_del(dev); ipoib_cm_dev_cleanup(dev); kfree(priv->rx_ring); vfree(priv->tx_ring); priv->rx_ring = NULL; priv->tx_ring = NULL; } static int ipoib_dev_init_default(struct net_device *dev) { struct ipoib_dev_priv *priv = ipoib_priv(dev); u8 addr_mod[3]; ipoib_napi_add(dev); /* Allocate RX/TX "rings" to hold queued skbs */ priv->rx_ring = kcalloc(ipoib_recvq_size, sizeof(*priv->rx_ring), GFP_KERNEL); if (!priv->rx_ring) goto out; priv->tx_ring = vzalloc(array_size(ipoib_sendq_size, sizeof(*priv->tx_ring))); if (!priv->tx_ring) { pr_warn("%s: failed to allocate TX ring (%d entries)\n", priv->ca->name, ipoib_sendq_size); goto out_rx_ring_cleanup; } /* priv->tx_head, tx_tail and global_tx_tail/head are already 0 */ if (ipoib_transport_dev_init(dev, priv->ca)) { pr_warn("%s: ipoib_transport_dev_init failed\n", priv->ca->name); goto out_tx_ring_cleanup; } /* after qp created set dev address */ addr_mod[0] = (priv->qp->qp_num >> 16) & 0xff; addr_mod[1] = (priv->qp->qp_num >> 8) & 0xff; addr_mod[2] = (priv->qp->qp_num) & 0xff; dev_addr_mod(priv->dev, 1, addr_mod, sizeof(addr_mod)); return 0; out_tx_ring_cleanup: vfree(priv->tx_ring); out_rx_ring_cleanup: kfree(priv->rx_ring); out: ipoib_napi_del(dev); return -ENOMEM; } static int ipoib_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct ipoib_dev_priv *priv = ipoib_priv(dev); if (!priv->rn_ops->ndo_eth_ioctl) return -EOPNOTSUPP; return priv->rn_ops->ndo_eth_ioctl(dev, ifr, cmd); } static int ipoib_dev_init(struct net_device *dev) { struct ipoib_dev_priv *priv = ipoib_priv(dev); int ret = -ENOMEM; priv->qp = NULL; /* * the various IPoIB tasks assume they will never race against * themselves, so always use a single thread workqueue */ priv->wq = alloc_ordered_workqueue("ipoib_wq", WQ_MEM_RECLAIM); if (!priv->wq) { pr_warn("%s: failed to allocate device WQ\n", dev->name); goto out; } /* create pd, which used both for control and datapath*/ priv->pd = ib_alloc_pd(priv->ca, 0); if (IS_ERR(priv->pd)) { pr_warn("%s: failed to allocate PD\n", priv->ca->name); goto clean_wq; } ret = priv->rn_ops->ndo_init(dev); if (ret) { pr_warn("%s failed to init HW resource\n", dev->name); goto out_free_pd; } ret = ipoib_neigh_hash_init(priv); if (ret) { pr_warn("%s failed to init neigh hash\n", dev->name); goto out_dev_uninit; } if (dev->flags & IFF_UP) { if (ipoib_ib_dev_open(dev)) { pr_warn("%s failed to open device\n", dev->name); ret = -ENODEV; goto out_hash_uninit; } } return 0; out_hash_uninit: ipoib_neigh_hash_uninit(dev); out_dev_uninit: ipoib_ib_dev_cleanup(dev); out_free_pd: if (priv->pd) { ib_dealloc_pd(priv->pd); priv->pd = NULL; } clean_wq: if (priv->wq) { destroy_workqueue(priv->wq); priv->wq = NULL; } out: return ret; } /* * This must be called before doing an unregister_netdev on a parent device to * shutdown the IB event handler. */ static void ipoib_parent_unregister_pre(struct net_device *ndev) { struct ipoib_dev_priv *priv = ipoib_priv(ndev); /* * ipoib_set_mac checks netif_running before pushing work, clearing * running ensures the it will not add more work. */ rtnl_lock(); dev_change_flags(priv->dev, priv->dev->flags & ~IFF_UP, NULL); rtnl_unlock(); /* ipoib_event() cannot be running once this returns */ ib_unregister_event_handler(&priv->event_handler); /* * Work on the queue grabs the rtnl lock, so this cannot be done while * also holding it. */ flush_workqueue(ipoib_workqueue); } static void ipoib_set_dev_features(struct ipoib_dev_priv *priv) { priv->hca_caps = priv->ca->attrs.device_cap_flags; priv->kernel_caps = priv->ca->attrs.kernel_cap_flags; if (priv->hca_caps & IB_DEVICE_UD_IP_CSUM) { priv->dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_RXCSUM; if (priv->kernel_caps & IBK_UD_TSO) priv->dev->hw_features |= NETIF_F_TSO; priv->dev->features |= priv->dev->hw_features; } } static int ipoib_parent_init(struct net_device *ndev) { struct ipoib_dev_priv *priv = ipoib_priv(ndev); struct ib_port_attr attr; int result; result = ib_query_port(priv->ca, priv->port, &attr); if (result) { pr_warn("%s: ib_query_port %d failed\n", priv->ca->name, priv->port); return result; } priv->max_ib_mtu = rdma_mtu_from_attr(priv->ca, priv->port, &attr); result = ib_query_pkey(priv->ca, priv->port, 0, &priv->pkey); if (result) { pr_warn("%s: ib_query_pkey port %d failed (ret = %d)\n", priv->ca->name, priv->port, result); return result; } result = rdma_query_gid(priv->ca, priv->port, 0, &priv->local_gid); if (result) { pr_warn("%s: rdma_query_gid port %d failed (ret = %d)\n", priv->ca->name, priv->port, result); return result; } dev_addr_mod(priv->dev, 4, priv->local_gid.raw, sizeof(union ib_gid)); SET_NETDEV_DEV(priv->dev, priv->ca->dev.parent); priv->dev->dev_port = priv->port - 1; /* Let's set this one too for backwards compatibility. */ priv->dev->dev_id = priv->port - 1; return 0; } static void ipoib_child_init(struct net_device *ndev) { struct ipoib_dev_priv *priv = ipoib_priv(ndev); struct ipoib_dev_priv *ppriv = ipoib_priv(priv->parent); priv->max_ib_mtu = ppriv->max_ib_mtu; set_bit(IPOIB_FLAG_SUBINTERFACE, &priv->flags); if (memchr_inv(priv->dev->dev_addr, 0, INFINIBAND_ALEN)) memcpy(&priv->local_gid, priv->dev->dev_addr + 4, sizeof(priv->local_gid)); else { __dev_addr_set(priv->dev, ppriv->dev->dev_addr, INFINIBAND_ALEN); memcpy(&priv->local_gid, &ppriv->local_gid, sizeof(priv->local_gid)); } } static int ipoib_ndo_init(struct net_device *ndev) { struct ipoib_dev_priv *priv = ipoib_priv(ndev); int rc; struct rdma_netdev *rn = netdev_priv(ndev); if (priv->parent) { ipoib_child_init(ndev); } else { rc = ipoib_parent_init(ndev); if (rc) return rc; } /* MTU will be reset when mcast join happens */ ndev->mtu = IPOIB_UD_MTU(priv->max_ib_mtu); priv->mcast_mtu = priv->admin_mtu = ndev->mtu; rn->mtu = priv->mcast_mtu; ndev->max_mtu = IPOIB_CM_MTU; ndev->neigh_priv_len = sizeof(struct ipoib_neigh); /* * Set the full membership bit, so that we join the right * broadcast group, etc. */ priv->pkey |= 0x8000; ndev->broadcast[8] = priv->pkey >> 8; ndev->broadcast[9] = priv->pkey & 0xff; set_bit(IPOIB_FLAG_DEV_ADDR_SET, &priv->flags); ipoib_set_dev_features(priv); rc = ipoib_dev_init(ndev); if (rc) { pr_warn("%s: failed to initialize device: %s port %d (ret = %d)\n", priv->ca->name, priv->dev->name, priv->port, rc); return rc; } if (priv->parent) { struct ipoib_dev_priv *ppriv = ipoib_priv(priv->parent); dev_hold(priv->parent); down_write(&ppriv->vlan_rwsem); list_add_tail(&priv->list, &ppriv->child_intfs); up_write(&ppriv->vlan_rwsem); } return 0; } static void ipoib_ndo_uninit(struct net_device *dev) { struct ipoib_dev_priv *priv = ipoib_priv(dev); ASSERT_RTNL(); /* * ipoib_remove_one guarantees the children are removed before the * parent, and that is the only place where a parent can be removed. */ WARN_ON(!list_empty(&priv->child_intfs)); if (priv->parent) { struct ipoib_dev_priv *ppriv = ipoib_priv(priv->parent); down_write(&ppriv->vlan_rwsem); list_del(&priv->list); up_write(&ppriv->vlan_rwsem); } ipoib_neigh_hash_uninit(dev); ipoib_ib_dev_cleanup(dev); /* no more works over the priv->wq */ if (priv->wq) { /* See ipoib_mcast_carrier_on_task() */ WARN_ON(test_bit(IPOIB_FLAG_OPER_UP, &priv->flags)); destroy_workqueue(priv->wq); priv->wq = NULL; } dev_put(priv->parent); } static int ipoib_set_vf_link_state(struct net_device *dev, int vf, int link_state) { struct ipoib_dev_priv *priv = ipoib_priv(dev); return ib_set_vf_link_state(priv->ca, vf, priv->port, link_state); } static int ipoib_get_vf_config(struct net_device *dev, int vf, struct ifla_vf_info *ivf) { struct ipoib_dev_priv *priv = ipoib_priv(dev); int err; err = ib_get_vf_config(priv->ca, vf, priv->port, ivf); if (err) return err; ivf->vf = vf; memcpy(ivf->mac, dev->dev_addr, dev->addr_len); return 0; } static int ipoib_set_vf_guid(struct net_device *dev, int vf, u64 guid, int type) { struct ipoib_dev_priv *priv = ipoib_priv(dev); if (type != IFLA_VF_IB_NODE_GUID && type != IFLA_VF_IB_PORT_GUID) return -EINVAL; return ib_set_vf_guid(priv->ca, vf, priv->port, guid, type); } static int ipoib_get_vf_guid(struct net_device *dev, int vf, struct ifla_vf_guid *node_guid, struct ifla_vf_guid *port_guid) { struct ipoib_dev_priv *priv = ipoib_priv(dev); return ib_get_vf_guid(priv->ca, vf, priv->port, node_guid, port_guid); } static int ipoib_get_vf_stats(struct net_device *dev, int vf, struct ifla_vf_stats *vf_stats) { struct ipoib_dev_priv *priv = ipoib_priv(dev); return ib_get_vf_stats(priv->ca, vf, priv->port, vf_stats); } static const struct header_ops ipoib_header_ops = { .create = ipoib_hard_header, }; static const struct net_device_ops ipoib_netdev_ops_pf = { .ndo_init = ipoib_ndo_init, .ndo_uninit = ipoib_ndo_uninit, .ndo_open = ipoib_open, .ndo_stop = ipoib_stop, .ndo_change_mtu = ipoib_change_mtu, .ndo_fix_features = ipoib_fix_features, .ndo_start_xmit = ipoib_start_xmit, .ndo_tx_timeout = ipoib_timeout, .ndo_set_rx_mode = ipoib_set_mcast_list, .ndo_get_iflink = ipoib_get_iflink, .ndo_set_vf_link_state = ipoib_set_vf_link_state, .ndo_get_vf_config = ipoib_get_vf_config, .ndo_get_vf_stats = ipoib_get_vf_stats, .ndo_get_vf_guid = ipoib_get_vf_guid, .ndo_set_vf_guid = ipoib_set_vf_guid, .ndo_set_mac_address = ipoib_set_mac, .ndo_get_stats64 = ipoib_get_stats, .ndo_eth_ioctl = ipoib_ioctl, }; static const struct net_device_ops ipoib_netdev_ops_vf = { .ndo_init = ipoib_ndo_init, .ndo_uninit = ipoib_ndo_uninit, .ndo_open = ipoib_open, .ndo_stop = ipoib_stop, .ndo_change_mtu = ipoib_change_mtu, .ndo_fix_features = ipoib_fix_features, .ndo_start_xmit = ipoib_start_xmit, .ndo_tx_timeout = ipoib_timeout, .ndo_set_rx_mode = ipoib_set_mcast_list, .ndo_get_iflink = ipoib_get_iflink, .ndo_get_stats64 = ipoib_get_stats, .ndo_eth_ioctl = ipoib_ioctl, }; static const struct net_device_ops ipoib_netdev_default_pf = { .ndo_init = ipoib_dev_init_default, .ndo_uninit = ipoib_dev_uninit_default, .ndo_open = ipoib_ib_dev_open_default, .ndo_stop = ipoib_ib_dev_stop_default, }; void ipoib_setup_common(struct net_device *dev) { dev->header_ops = &ipoib_header_ops; dev->netdev_ops = &ipoib_netdev_default_pf; ipoib_set_ethtool_ops(dev); dev->watchdog_timeo = 10 * HZ; dev->flags |= IFF_BROADCAST | IFF_MULTICAST; dev->hard_header_len = IPOIB_HARD_LEN; dev->addr_len = INFINIBAND_ALEN; dev->type = ARPHRD_INFINIBAND; dev->tx_queue_len = ipoib_sendq_size * 2; dev->features = (NETIF_F_VLAN_CHALLENGED | NETIF_F_HIGHDMA); netif_keep_dst(dev); memcpy(dev->broadcast, ipv4_bcast_addr, INFINIBAND_ALEN); /* * unregister_netdev always frees the netdev, we use this mode * consistently to unify all the various unregister paths, including * those connected to rtnl_link_ops which require it. */ dev->needs_free_netdev = true; } static void ipoib_build_priv(struct net_device *dev) { struct ipoib_dev_priv *priv = ipoib_priv(dev); priv->dev = dev; spin_lock_init(&priv->lock); init_rwsem(&priv->vlan_rwsem); mutex_init(&priv->mcast_mutex); INIT_LIST_HEAD(&priv->path_list); INIT_LIST_HEAD(&priv->child_intfs); INIT_LIST_HEAD(&priv->dead_ahs); INIT_LIST_HEAD(&priv->multicast_list); INIT_DELAYED_WORK(&priv->mcast_task, ipoib_mcast_join_task); INIT_WORK(&priv->carrier_on_task, ipoib_mcast_carrier_on_task); INIT_WORK(&priv->reschedule_napi_work, ipoib_napi_schedule_work); INIT_WORK(&priv->flush_light, ipoib_ib_dev_flush_light); INIT_WORK(&priv->flush_normal, ipoib_ib_dev_flush_normal); INIT_WORK(&priv->flush_heavy, ipoib_ib_dev_flush_heavy); INIT_WORK(&priv->restart_task, ipoib_mcast_restart_task); INIT_WORK(&priv->tx_timeout_work, ipoib_ib_tx_timeout_work); INIT_DELAYED_WORK(&priv->ah_reap_task, ipoib_reap_ah); INIT_DELAYED_WORK(&priv->neigh_reap_task, ipoib_reap_neigh); } static struct net_device *ipoib_alloc_netdev(struct ib_device *hca, u32 port, const char *name) { struct net_device *dev; dev = rdma_alloc_netdev(hca, port, RDMA_NETDEV_IPOIB, name, NET_NAME_UNKNOWN, ipoib_setup_common); if (!IS_ERR(dev) || PTR_ERR(dev) != -EOPNOTSUPP) return dev; dev = alloc_netdev(sizeof(struct rdma_netdev), name, NET_NAME_UNKNOWN, ipoib_setup_common); if (!dev) return ERR_PTR(-ENOMEM); return dev; } int ipoib_intf_init(struct ib_device *hca, u32 port, const char *name, struct net_device *dev) { struct rdma_netdev *rn = netdev_priv(dev); struct ipoib_dev_priv *priv; int rc; priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->ca = hca; priv->port = port; rc = rdma_init_netdev(hca, port, RDMA_NETDEV_IPOIB, name, NET_NAME_UNKNOWN, ipoib_setup_common, dev); if (rc) { if (rc != -EOPNOTSUPP) goto out; rn->send = ipoib_send; rn->attach_mcast = ipoib_mcast_attach; rn->detach_mcast = ipoib_mcast_detach; rn->hca = hca; rc = netif_set_real_num_tx_queues(dev, 1); if (rc) goto out; rc = netif_set_real_num_rx_queues(dev, 1); if (rc) goto out; } priv->rn_ops = dev->netdev_ops; if (hca->attrs.kernel_cap_flags & IBK_VIRTUAL_FUNCTION) dev->netdev_ops = &ipoib_netdev_ops_vf; else dev->netdev_ops = &ipoib_netdev_ops_pf; rn->clnt_priv = priv; /* * Only the child register_netdev flows can handle priv_destructor * being set, so we force it to NULL here and handle manually until it * is safe to turn on. */ priv->next_priv_destructor = dev->priv_destructor; dev->priv_destructor = NULL; ipoib_build_priv(dev); return 0; out: kfree(priv); return rc; } struct net_device *ipoib_intf_alloc(struct ib_device *hca, u32 port, const char *name) { struct net_device *dev; int rc; dev = ipoib_alloc_netdev(hca, port, name); if (IS_ERR(dev)) return dev; rc = ipoib_intf_init(hca, port, name, dev); if (rc) { free_netdev(dev); return ERR_PTR(rc); } /* * Upon success the caller must ensure ipoib_intf_free is called or * register_netdevice succeed'd and priv_destructor is set to * ipoib_intf_free. */ return dev; } void ipoib_intf_free(struct net_device *dev) { struct ipoib_dev_priv *priv = ipoib_priv(dev); struct rdma_netdev *rn = netdev_priv(dev); dev->priv_destructor = priv->next_priv_destructor; if (dev->priv_destructor) dev->priv_destructor(dev); /* * There are some error flows around register_netdev failing that may * attempt to call priv_destructor twice, prevent that from happening. */ dev->priv_destructor = NULL; /* unregister/destroy is very complicated. Make bugs more obvious. */ rn->clnt_priv = NULL; kfree(priv); } static ssize_t pkey_show(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *ndev = to_net_dev(dev); struct ipoib_dev_priv *priv = ipoib_priv(ndev); return sysfs_emit(buf, "0x%04x\n", priv->pkey); } static DEVICE_ATTR_RO(pkey); static ssize_t umcast_show(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *ndev = to_net_dev(dev); struct ipoib_dev_priv *priv = ipoib_priv(ndev); return sysfs_emit(buf, "%d\n", test_bit(IPOIB_FLAG_UMCAST, &priv->flags)); } void ipoib_set_umcast(struct net_device *ndev, int umcast_val) { struct ipoib_dev_priv *priv = ipoib_priv(ndev); if (umcast_val > 0) { set_bit(IPOIB_FLAG_UMCAST, &priv->flags); ipoib_warn(priv, "ignoring multicast groups joined directly " "by userspace\n"); } else clear_bit(IPOIB_FLAG_UMCAST, &priv->flags); } static ssize_t umcast_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long umcast_val = simple_strtoul(buf, NULL, 0); ipoib_set_umcast(to_net_dev(dev), umcast_val); return count; } static DEVICE_ATTR_RW(umcast); int ipoib_add_umcast_attr(struct net_device *dev) { return device_create_file(&dev->dev, &dev_attr_umcast); } static void set_base_guid(struct ipoib_dev_priv *priv, union ib_gid *gid) { struct ipoib_dev_priv *child_priv; struct net_device *netdev = priv->dev; netif_addr_lock_bh(netdev); memcpy(&priv->local_gid.global.interface_id, &gid->global.interface_id, sizeof(gid->global.interface_id)); dev_addr_mod(netdev, 4, (u8 *)&priv->local_gid, sizeof(priv->local_gid)); clear_bit(IPOIB_FLAG_DEV_ADDR_SET, &priv->flags); netif_addr_unlock_bh(netdev); if (!test_bit(IPOIB_FLAG_SUBINTERFACE, &priv->flags)) { down_read(&priv->vlan_rwsem); list_for_each_entry(child_priv, &priv->child_intfs, list) set_base_guid(child_priv, gid); up_read(&priv->vlan_rwsem); } } static int ipoib_check_lladdr(struct net_device *dev, struct sockaddr_storage *ss) { union ib_gid *gid = (union ib_gid *)(ss->__data + 4); int ret = 0; netif_addr_lock_bh(dev); /* Make sure the QPN, reserved and subnet prefix match the current * lladdr, it also makes sure the lladdr is unicast. */ if (memcmp(dev->dev_addr, ss->__data, 4 + sizeof(gid->global.subnet_prefix)) || gid->global.interface_id == 0) ret = -EINVAL; netif_addr_unlock_bh(dev); return ret; } static int ipoib_set_mac(struct net_device *dev, void *addr) { struct ipoib_dev_priv *priv = ipoib_priv(dev); struct sockaddr_storage *ss = addr; int ret; if (!(dev->priv_flags & IFF_LIVE_ADDR_CHANGE) && netif_running(dev)) return -EBUSY; ret = ipoib_check_lladdr(dev, ss); if (ret) return ret; set_base_guid(priv, (union ib_gid *)(ss->__data + 4)); queue_work(ipoib_workqueue, &priv->flush_light); return 0; } static ssize_t create_child_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int pkey; int ret; if (sscanf(buf, "%i", &pkey) != 1) return -EINVAL; if (pkey <= 0 || pkey > 0xffff || pkey == 0x8000) return -EINVAL; ret = ipoib_vlan_add(to_net_dev(dev), pkey); return ret ? ret : count; } static DEVICE_ATTR_WO(create_child); static ssize_t delete_child_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int pkey; int ret; if (sscanf(buf, "%i", &pkey) != 1) return -EINVAL; if (pkey < 0 || pkey > 0xffff) return -EINVAL; ret = ipoib_vlan_delete(to_net_dev(dev), pkey); return ret ? ret : count; } static DEVICE_ATTR_WO(delete_child); int ipoib_add_pkey_attr(struct net_device *dev) { return device_create_file(&dev->dev, &dev_attr_pkey); } /* * We erroneously exposed the iface's port number in the dev_id * sysfs field long after dev_port was introduced for that purpose[1], * and we need to stop everyone from relying on that. * Let's overload the shower routine for the dev_id file here * to gently bring the issue up. * * [1] https://www.spinics.net/lists/netdev/msg272123.html */ static ssize_t dev_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *ndev = to_net_dev(dev); /* * ndev->dev_port will be equal to 0 in old kernel prior to commit * 9b8b2a323008 ("IB/ipoib: Use dev_port to expose network interface * port numbers") Zero was chosen as special case for user space * applications to fallback and query dev_id to check if it has * different value or not. * * Don't print warning in such scenario. * * https://github.com/systemd/systemd/blob/master/src/udev/udev-builtin-net_id.c#L358 */ if (ndev->dev_port && ndev->dev_id == ndev->dev_port) netdev_info_once(ndev, "\"%s\" wants to know my dev_id. Should it look at dev_port instead? See Documentation/ABI/testing/sysfs-class-net for more info.\n", current->comm); return sysfs_emit(buf, "%#x\n", ndev->dev_id); } static DEVICE_ATTR_RO(dev_id); static int ipoib_intercept_dev_id_attr(struct net_device *dev) { device_remove_file(&dev->dev, &dev_attr_dev_id); return device_create_file(&dev->dev, &dev_attr_dev_id); } static struct net_device *ipoib_add_port(const char *format, struct ib_device *hca, u32 port) { struct rtnl_link_ops *ops = ipoib_get_link_ops(); struct rdma_netdev_alloc_params params; struct ipoib_dev_priv *priv; struct net_device *ndev; int result; ndev = ipoib_intf_alloc(hca, port, format); if (IS_ERR(ndev)) { pr_warn("%s, %d: ipoib_intf_alloc failed %ld\n", hca->name, port, PTR_ERR(ndev)); return ndev; } priv = ipoib_priv(ndev); INIT_IB_EVENT_HANDLER(&priv->event_handler, priv->ca, ipoib_event); ib_register_event_handler(&priv->event_handler); /* call event handler to ensure pkey in sync */ queue_work(ipoib_workqueue, &priv->flush_heavy); ndev->rtnl_link_ops = ipoib_get_link_ops(); result = register_netdev(ndev); if (result) { pr_warn("%s: couldn't register ipoib port %d; error %d\n", hca->name, port, result); ipoib_parent_unregister_pre(ndev); ipoib_intf_free(ndev); free_netdev(ndev); return ERR_PTR(result); } if (hca->ops.rdma_netdev_get_params) { int rc = hca->ops.rdma_netdev_get_params(hca, port, RDMA_NETDEV_IPOIB, &params); if (!rc && ops->priv_size < params.sizeof_priv) ops->priv_size = params.sizeof_priv; } /* * We cannot set priv_destructor before register_netdev because we * need priv to be always valid during the error flow to execute * ipoib_parent_unregister_pre(). Instead handle it manually and only * enter priv_destructor mode once we are completely registered. */ ndev->priv_destructor = ipoib_intf_free; if (ipoib_intercept_dev_id_attr(ndev)) goto sysfs_failed; if (ipoib_cm_add_mode_attr(ndev)) goto sysfs_failed; if (ipoib_add_pkey_attr(ndev)) goto sysfs_failed; if (ipoib_add_umcast_attr(ndev)) goto sysfs_failed; if (device_create_file(&ndev->dev, &dev_attr_create_child)) goto sysfs_failed; if (device_create_file(&ndev->dev, &dev_attr_delete_child)) goto sysfs_failed; return ndev; sysfs_failed: ipoib_parent_unregister_pre(ndev); unregister_netdev(ndev); return ERR_PTR(-ENOMEM); } static int ipoib_add_one(struct ib_device *device) { struct list_head *dev_list; struct net_device *dev; struct ipoib_dev_priv *priv; unsigned int p; int count = 0; dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL); if (!dev_list) return -ENOMEM; INIT_LIST_HEAD(dev_list); rdma_for_each_port (device, p) { if (!rdma_protocol_ib(device, p)) continue; dev = ipoib_add_port("ib%d", device, p); if (!IS_ERR(dev)) { priv = ipoib_priv(dev); list_add_tail(&priv->list, dev_list); count++; } } if (!count) { kfree(dev_list); return -EOPNOTSUPP; } ib_set_client_data(device, &ipoib_client, dev_list); return 0; } static void ipoib_remove_one(struct ib_device *device, void *client_data) { struct ipoib_dev_priv *priv, *tmp, *cpriv, *tcpriv; struct list_head *dev_list = client_data; list_for_each_entry_safe(priv, tmp, dev_list, list) { LIST_HEAD(head); ipoib_parent_unregister_pre(priv->dev); rtnl_lock(); list_for_each_entry_safe(cpriv, tcpriv, &priv->child_intfs, list) unregister_netdevice_queue(cpriv->dev, &head); unregister_netdevice_queue(priv->dev, &head); unregister_netdevice_many(&head); rtnl_unlock(); } kfree(dev_list); } #ifdef CONFIG_INFINIBAND_IPOIB_DEBUG static struct notifier_block ipoib_netdev_notifier = { .notifier_call = ipoib_netdev_event, }; #endif static int __init ipoib_init_module(void) { int ret; ipoib_recvq_size = roundup_pow_of_two(ipoib_recvq_size); ipoib_recvq_size = min(ipoib_recvq_size, IPOIB_MAX_QUEUE_SIZE); ipoib_recvq_size = max(ipoib_recvq_size, IPOIB_MIN_QUEUE_SIZE); ipoib_sendq_size = roundup_pow_of_two(ipoib_sendq_size); ipoib_sendq_size = min(ipoib_sendq_size, IPOIB_MAX_QUEUE_SIZE); ipoib_sendq_size = max3(ipoib_sendq_size, 2 * MAX_SEND_CQE, IPOIB_MIN_QUEUE_SIZE); #ifdef CONFIG_INFINIBAND_IPOIB_CM ipoib_max_conn_qp = min(ipoib_max_conn_qp, IPOIB_CM_MAX_CONN_QP); ipoib_max_conn_qp = max(ipoib_max_conn_qp, 0); #endif /* * When copying small received packets, we only copy from the * linear data part of the SKB, so we rely on this condition. */ BUILD_BUG_ON(IPOIB_CM_COPYBREAK > IPOIB_CM_HEAD_SIZE); ipoib_register_debugfs(); /* * We create a global workqueue here that is used for all flush * operations. However, if you attempt to flush a workqueue * from a task on that same workqueue, it deadlocks the system. * We want to be able to flush the tasks associated with a * specific net device, so we also create a workqueue for each * netdevice. We queue up the tasks for that device only on * its private workqueue, and we only queue up flush events * on our global flush workqueue. This avoids the deadlocks. */ ipoib_workqueue = alloc_ordered_workqueue("ipoib_flush", 0); if (!ipoib_workqueue) { ret = -ENOMEM; goto err_fs; } ib_sa_register_client(&ipoib_sa_client); ret = ib_register_client(&ipoib_client); if (ret) goto err_sa; ret = ipoib_netlink_init(); if (ret) goto err_client; #ifdef CONFIG_INFINIBAND_IPOIB_DEBUG register_netdevice_notifier(&ipoib_netdev_notifier); #endif return 0; err_client: ib_unregister_client(&ipoib_client); err_sa: ib_sa_unregister_client(&ipoib_sa_client); destroy_workqueue(ipoib_workqueue); err_fs: ipoib_unregister_debugfs(); return ret; } static void __exit ipoib_cleanup_module(void) { #ifdef CONFIG_INFINIBAND_IPOIB_DEBUG unregister_netdevice_notifier(&ipoib_netdev_notifier); #endif ipoib_netlink_fini(); ib_unregister_client(&ipoib_client); ib_sa_unregister_client(&ipoib_sa_client); ipoib_unregister_debugfs(); destroy_workqueue(ipoib_workqueue); } module_init(ipoib_init_module); module_exit(ipoib_cleanup_module);
7 1 2 2 6 6 6 8 8 8 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 // SPDX-License-Identifier: GPL-2.0 /* Copyright (C) B.A.T.M.A.N. contributors: * * Martin Hundebøll, Jeppe Ledet-Pedersen */ #include "network-coding.h" #include "main.h" #include <linux/atomic.h> #include <linux/bitops.h> #include <linux/byteorder/generic.h> #include <linux/compiler.h> #include <linux/container_of.h> #include <linux/errno.h> #include <linux/etherdevice.h> #include <linux/gfp.h> #include <linux/if_ether.h> #include <linux/if_packet.h> #include <linux/init.h> #include <linux/jhash.h> #include <linux/jiffies.h> #include <linux/kref.h> #include <linux/list.h> #include <linux/lockdep.h> #include <linux/net.h> #include <linux/netdevice.h> #include <linux/printk.h> #include <linux/random.h> #include <linux/rculist.h> #include <linux/rcupdate.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/stddef.h> #include <linux/string.h> #include <linux/workqueue.h> #include <uapi/linux/batadv_packet.h> #include "hash.h" #include "log.h" #include "originator.h" #include "routing.h" #include "send.h" #include "tvlv.h" static struct lock_class_key batadv_nc_coding_hash_lock_class_key; static struct lock_class_key batadv_nc_decoding_hash_lock_class_key; static void batadv_nc_worker(struct work_struct *work); static int batadv_nc_recv_coded_packet(struct sk_buff *skb, struct batadv_hard_iface *recv_if); /** * batadv_nc_init() - one-time initialization for network coding * * Return: 0 on success or negative error number in case of failure */ int __init batadv_nc_init(void) { /* Register our packet type */ return batadv_recv_handler_register(BATADV_CODED, batadv_nc_recv_coded_packet); } /** * batadv_nc_start_timer() - initialise the nc periodic worker * @bat_priv: the bat priv with all the soft interface information */ static void batadv_nc_start_timer(struct batadv_priv *bat_priv) { queue_delayed_work(batadv_event_workqueue, &bat_priv->nc.work, msecs_to_jiffies(10)); } /** * batadv_nc_tvlv_container_update() - update the network coding tvlv container * after network coding setting change * @bat_priv: the bat priv with all the soft interface information */ static void batadv_nc_tvlv_container_update(struct batadv_priv *bat_priv) { char nc_mode; nc_mode = atomic_read(&bat_priv->network_coding); switch (nc_mode) { case 0: batadv_tvlv_container_unregister(bat_priv, BATADV_TVLV_NC, 1); break; case 1: batadv_tvlv_container_register(bat_priv, BATADV_TVLV_NC, 1, NULL, 0); break; } } /** * batadv_nc_status_update() - update the network coding tvlv container after * network coding setting change * @net_dev: the soft interface net device */ void batadv_nc_status_update(struct net_device *net_dev) { struct batadv_priv *bat_priv = netdev_priv(net_dev); batadv_nc_tvlv_container_update(bat_priv); } /** * batadv_nc_tvlv_ogm_handler_v1() - process incoming nc tvlv container * @bat_priv: the bat priv with all the soft interface information * @orig: the orig_node of the ogm * @flags: flags indicating the tvlv state (see batadv_tvlv_handler_flags) * @tvlv_value: tvlv buffer containing the gateway data * @tvlv_value_len: tvlv buffer length */ static void batadv_nc_tvlv_ogm_handler_v1(struct batadv_priv *bat_priv, struct batadv_orig_node *orig, u8 flags, void *tvlv_value, u16 tvlv_value_len) { if (flags & BATADV_TVLV_HANDLER_OGM_CIFNOTFND) clear_bit(BATADV_ORIG_CAPA_HAS_NC, &orig->capabilities); else set_bit(BATADV_ORIG_CAPA_HAS_NC, &orig->capabilities); } /** * batadv_nc_mesh_init() - initialise coding hash table and start housekeeping * @bat_priv: the bat priv with all the soft interface information * * Return: 0 on success or negative error number in case of failure */ int batadv_nc_mesh_init(struct batadv_priv *bat_priv) { bat_priv->nc.timestamp_fwd_flush = jiffies; bat_priv->nc.timestamp_sniffed_purge = jiffies; if (bat_priv->nc.coding_hash || bat_priv->nc.decoding_hash) return 0; bat_priv->nc.coding_hash = batadv_hash_new(128); if (!bat_priv->nc.coding_hash) goto err; batadv_hash_set_lock_class(bat_priv->nc.coding_hash, &batadv_nc_coding_hash_lock_class_key); bat_priv->nc.decoding_hash = batadv_hash_new(128); if (!bat_priv->nc.decoding_hash) { batadv_hash_destroy(bat_priv->nc.coding_hash); goto err; } batadv_hash_set_lock_class(bat_priv->nc.decoding_hash, &batadv_nc_decoding_hash_lock_class_key); INIT_DELAYED_WORK(&bat_priv->nc.work, batadv_nc_worker); batadv_nc_start_timer(bat_priv); batadv_tvlv_handler_register(bat_priv, batadv_nc_tvlv_ogm_handler_v1, NULL, NULL, BATADV_TVLV_NC, 1, BATADV_TVLV_HANDLER_OGM_CIFNOTFND); batadv_nc_tvlv_container_update(bat_priv); return 0; err: return -ENOMEM; } /** * batadv_nc_init_bat_priv() - initialise the nc specific bat_priv variables * @bat_priv: the bat priv with all the soft interface information */ void batadv_nc_init_bat_priv(struct batadv_priv *bat_priv) { atomic_set(&bat_priv->network_coding, 0); bat_priv->nc.min_tq = 200; bat_priv->nc.max_fwd_delay = 10; bat_priv->nc.max_buffer_time = 200; } /** * batadv_nc_init_orig() - initialise the nc fields of an orig_node * @orig_node: the orig_node which is going to be initialised */ void batadv_nc_init_orig(struct batadv_orig_node *orig_node) { INIT_LIST_HEAD(&orig_node->in_coding_list); INIT_LIST_HEAD(&orig_node->out_coding_list); spin_lock_init(&orig_node->in_coding_list_lock); spin_lock_init(&orig_node->out_coding_list_lock); } /** * batadv_nc_node_release() - release nc_node from lists and queue for free * after rcu grace period * @ref: kref pointer of the nc_node */ static void batadv_nc_node_release(struct kref *ref) { struct batadv_nc_node *nc_node; nc_node = container_of(ref, struct batadv_nc_node, refcount); batadv_orig_node_put(nc_node->orig_node); kfree_rcu(nc_node, rcu); } /** * batadv_nc_node_put() - decrement the nc_node refcounter and possibly * release it * @nc_node: nc_node to be free'd */ static void batadv_nc_node_put(struct batadv_nc_node *nc_node) { if (!nc_node) return; kref_put(&nc_node->refcount, batadv_nc_node_release); } /** * batadv_nc_path_release() - release nc_path from lists and queue for free * after rcu grace period * @ref: kref pointer of the nc_path */ static void batadv_nc_path_release(struct kref *ref) { struct batadv_nc_path *nc_path; nc_path = container_of(ref, struct batadv_nc_path, refcount); kfree_rcu(nc_path, rcu); } /** * batadv_nc_path_put() - decrement the nc_path refcounter and possibly * release it * @nc_path: nc_path to be free'd */ static void batadv_nc_path_put(struct batadv_nc_path *nc_path) { if (!nc_path) return; kref_put(&nc_path->refcount, batadv_nc_path_release); } /** * batadv_nc_packet_free() - frees nc packet * @nc_packet: the nc packet to free * @dropped: whether the packet is freed because is dropped */ static void batadv_nc_packet_free(struct batadv_nc_packet *nc_packet, bool dropped) { if (dropped) kfree_skb(nc_packet->skb); else consume_skb(nc_packet->skb); batadv_nc_path_put(nc_packet->nc_path); kfree(nc_packet); } /** * batadv_nc_to_purge_nc_node() - checks whether an nc node has to be purged * @bat_priv: the bat priv with all the soft interface information * @nc_node: the nc node to check * * Return: true if the entry has to be purged now, false otherwise */ static bool batadv_nc_to_purge_nc_node(struct batadv_priv *bat_priv, struct batadv_nc_node *nc_node) { if (atomic_read(&bat_priv->mesh_state) != BATADV_MESH_ACTIVE) return true; return batadv_has_timed_out(nc_node->last_seen, BATADV_NC_NODE_TIMEOUT); } /** * batadv_nc_to_purge_nc_path_coding() - checks whether an nc path has timed out * @bat_priv: the bat priv with all the soft interface information * @nc_path: the nc path to check * * Return: true if the entry has to be purged now, false otherwise */ static bool batadv_nc_to_purge_nc_path_coding(struct batadv_priv *bat_priv, struct batadv_nc_path *nc_path) { if (atomic_read(&bat_priv->mesh_state) != BATADV_MESH_ACTIVE) return true; /* purge the path when no packets has been added for 10 times the * max_fwd_delay time */ return batadv_has_timed_out(nc_path->last_valid, bat_priv->nc.max_fwd_delay * 10); } /** * batadv_nc_to_purge_nc_path_decoding() - checks whether an nc path has timed * out * @bat_priv: the bat priv with all the soft interface information * @nc_path: the nc path to check * * Return: true if the entry has to be purged now, false otherwise */ static bool batadv_nc_to_purge_nc_path_decoding(struct batadv_priv *bat_priv, struct batadv_nc_path *nc_path) { if (atomic_read(&bat_priv->mesh_state) != BATADV_MESH_ACTIVE) return true; /* purge the path when no packets has been added for 10 times the * max_buffer time */ return batadv_has_timed_out(nc_path->last_valid, bat_priv->nc.max_buffer_time * 10); } /** * batadv_nc_purge_orig_nc_nodes() - go through list of nc nodes and purge stale * entries * @bat_priv: the bat priv with all the soft interface information * @list: list of nc nodes * @lock: nc node list lock * @to_purge: function in charge to decide whether an entry has to be purged or * not. This function takes the nc node as argument and has to return * a boolean value: true if the entry has to be deleted, false * otherwise */ static void batadv_nc_purge_orig_nc_nodes(struct batadv_priv *bat_priv, struct list_head *list, spinlock_t *lock, bool (*to_purge)(struct batadv_priv *, struct batadv_nc_node *)) { struct batadv_nc_node *nc_node, *nc_node_tmp; /* For each nc_node in list */ spin_lock_bh(lock); list_for_each_entry_safe(nc_node, nc_node_tmp, list, list) { /* if an helper function has been passed as parameter, * ask it if the entry has to be purged or not */ if (to_purge && !to_purge(bat_priv, nc_node)) continue; batadv_dbg(BATADV_DBG_NC, bat_priv, "Removing nc_node %pM -> %pM\n", nc_node->addr, nc_node->orig_node->orig); list_del_rcu(&nc_node->list); batadv_nc_node_put(nc_node); } spin_unlock_bh(lock); } /** * batadv_nc_purge_orig() - purges all nc node data attached of the given * originator * @bat_priv: the bat priv with all the soft interface information * @orig_node: orig_node with the nc node entries to be purged * @to_purge: function in charge to decide whether an entry has to be purged or * not. This function takes the nc node as argument and has to return * a boolean value: true is the entry has to be deleted, false * otherwise */ void batadv_nc_purge_orig(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node, bool (*to_purge)(struct batadv_priv *, struct batadv_nc_node *)) { /* Check ingoing nc_node's of this orig_node */ batadv_nc_purge_orig_nc_nodes(bat_priv, &orig_node->in_coding_list, &orig_node->in_coding_list_lock, to_purge); /* Check outgoing nc_node's of this orig_node */ batadv_nc_purge_orig_nc_nodes(bat_priv, &orig_node->out_coding_list, &orig_node->out_coding_list_lock, to_purge); } /** * batadv_nc_purge_orig_hash() - traverse entire originator hash to check if * they have timed out nc nodes * @bat_priv: the bat priv with all the soft interface information */ static void batadv_nc_purge_orig_hash(struct batadv_priv *bat_priv) { struct batadv_hashtable *hash = bat_priv->orig_hash; struct hlist_head *head; struct batadv_orig_node *orig_node; u32 i; if (!hash) return; /* For each orig_node */ for (i = 0; i < hash->size; i++) { head = &hash->table[i]; rcu_read_lock(); hlist_for_each_entry_rcu(orig_node, head, hash_entry) batadv_nc_purge_orig(bat_priv, orig_node, batadv_nc_to_purge_nc_node); rcu_read_unlock(); } } /** * batadv_nc_purge_paths() - traverse all nc paths part of the hash and remove * unused ones * @bat_priv: the bat priv with all the soft interface information * @hash: hash table containing the nc paths to check * @to_purge: function in charge to decide whether an entry has to be purged or * not. This function takes the nc node as argument and has to return * a boolean value: true is the entry has to be deleted, false * otherwise */ static void batadv_nc_purge_paths(struct batadv_priv *bat_priv, struct batadv_hashtable *hash, bool (*to_purge)(struct batadv_priv *, struct batadv_nc_path *)) { struct hlist_head *head; struct hlist_node *node_tmp; struct batadv_nc_path *nc_path; spinlock_t *lock; /* Protects lists in hash */ u32 i; for (i = 0; i < hash->size; i++) { head = &hash->table[i]; lock = &hash->list_locks[i]; /* For each nc_path in this bin */ spin_lock_bh(lock); hlist_for_each_entry_safe(nc_path, node_tmp, head, hash_entry) { /* if an helper function has been passed as parameter, * ask it if the entry has to be purged or not */ if (to_purge && !to_purge(bat_priv, nc_path)) continue; /* purging an non-empty nc_path should never happen, but * is observed under high CPU load. Delay the purging * until next iteration to allow the packet_list to be * emptied first. */ if (!unlikely(list_empty(&nc_path->packet_list))) { net_ratelimited_function(printk, KERN_WARNING "Skipping free of non-empty nc_path (%pM -> %pM)!\n", nc_path->prev_hop, nc_path->next_hop); continue; } /* nc_path is unused, so remove it */ batadv_dbg(BATADV_DBG_NC, bat_priv, "Remove nc_path %pM -> %pM\n", nc_path->prev_hop, nc_path->next_hop); hlist_del_rcu(&nc_path->hash_entry); batadv_nc_path_put(nc_path); } spin_unlock_bh(lock); } } /** * batadv_nc_hash_key_gen() - computes the nc_path hash key * @key: buffer to hold the final hash key * @src: source ethernet mac address going into the hash key * @dst: destination ethernet mac address going into the hash key */ static void batadv_nc_hash_key_gen(struct batadv_nc_path *key, const char *src, const char *dst) { memcpy(key->prev_hop, src, sizeof(key->prev_hop)); memcpy(key->next_hop, dst, sizeof(key->next_hop)); } /** * batadv_nc_hash_choose() - compute the hash value for an nc path * @data: data to hash * @size: size of the hash table * * Return: the selected index in the hash table for the given data. */ static u32 batadv_nc_hash_choose(const void *data, u32 size) { const struct batadv_nc_path *nc_path = data; u32 hash = 0; hash = jhash(&nc_path->prev_hop, sizeof(nc_path->prev_hop), hash); hash = jhash(&nc_path->next_hop, sizeof(nc_path->next_hop), hash); return hash % size; } /** * batadv_nc_hash_compare() - comparing function used in the network coding hash * tables * @node: node in the local table * @data2: second object to compare the node to * * Return: true if the two entry are the same, false otherwise */ static bool batadv_nc_hash_compare(const struct hlist_node *node, const void *data2) { const struct batadv_nc_path *nc_path1, *nc_path2; nc_path1 = container_of(node, struct batadv_nc_path, hash_entry); nc_path2 = data2; /* Return 1 if the two keys are identical */ if (!batadv_compare_eth(nc_path1->prev_hop, nc_path2->prev_hop)) return false; if (!batadv_compare_eth(nc_path1->next_hop, nc_path2->next_hop)) return false; return true; } /** * batadv_nc_hash_find() - search for an existing nc path and return it * @hash: hash table containing the nc path * @data: search key * * Return: the nc_path if found, NULL otherwise. */ static struct batadv_nc_path * batadv_nc_hash_find(struct batadv_hashtable *hash, void *data) { struct hlist_head *head; struct batadv_nc_path *nc_path, *nc_path_tmp = NULL; int index; if (!hash) return NULL; index = batadv_nc_hash_choose(data, hash->size); head = &hash->table[index]; rcu_read_lock(); hlist_for_each_entry_rcu(nc_path, head, hash_entry) { if (!batadv_nc_hash_compare(&nc_path->hash_entry, data)) continue; if (!kref_get_unless_zero(&nc_path->refcount)) continue; nc_path_tmp = nc_path; break; } rcu_read_unlock(); return nc_path_tmp; } /** * batadv_nc_send_packet() - send non-coded packet and free nc_packet struct * @nc_packet: the nc packet to send */ static void batadv_nc_send_packet(struct batadv_nc_packet *nc_packet) { batadv_send_unicast_skb(nc_packet->skb, nc_packet->neigh_node); nc_packet->skb = NULL; batadv_nc_packet_free(nc_packet, false); } /** * batadv_nc_sniffed_purge() - Checks timestamp of given sniffed nc_packet. * @bat_priv: the bat priv with all the soft interface information * @nc_path: the nc path the packet belongs to * @nc_packet: the nc packet to be checked * * Checks whether the given sniffed (overheard) nc_packet has hit its buffering * timeout. If so, the packet is no longer kept and the entry deleted from the * queue. Has to be called with the appropriate locks. * * Return: false as soon as the entry in the fifo queue has not been timed out * yet and true otherwise. */ static bool batadv_nc_sniffed_purge(struct batadv_priv *bat_priv, struct batadv_nc_path *nc_path, struct batadv_nc_packet *nc_packet) { unsigned long timeout = bat_priv->nc.max_buffer_time; bool res = false; lockdep_assert_held(&nc_path->packet_list_lock); /* Packets are added to tail, so the remaining packets did not time * out and we can stop processing the current queue */ if (atomic_read(&bat_priv->mesh_state) == BATADV_MESH_ACTIVE && !batadv_has_timed_out(nc_packet->timestamp, timeout)) goto out; /* purge nc packet */ list_del(&nc_packet->list); batadv_nc_packet_free(nc_packet, true); res = true; out: return res; } /** * batadv_nc_fwd_flush() - Checks the timestamp of the given nc packet. * @bat_priv: the bat priv with all the soft interface information * @nc_path: the nc path the packet belongs to * @nc_packet: the nc packet to be checked * * Checks whether the given nc packet has hit its forward timeout. If so, the * packet is no longer delayed, immediately sent and the entry deleted from the * queue. Has to be called with the appropriate locks. * * Return: false as soon as the entry in the fifo queue has not been timed out * yet and true otherwise. */ static bool batadv_nc_fwd_flush(struct batadv_priv *bat_priv, struct batadv_nc_path *nc_path, struct batadv_nc_packet *nc_packet) { unsigned long timeout = bat_priv->nc.max_fwd_delay; lockdep_assert_held(&nc_path->packet_list_lock); /* Packets are added to tail, so the remaining packets did not time * out and we can stop processing the current queue */ if (atomic_read(&bat_priv->mesh_state) == BATADV_MESH_ACTIVE && !batadv_has_timed_out(nc_packet->timestamp, timeout)) return false; /* Send packet */ batadv_inc_counter(bat_priv, BATADV_CNT_FORWARD); batadv_add_counter(bat_priv, BATADV_CNT_FORWARD_BYTES, nc_packet->skb->len + ETH_HLEN); list_del(&nc_packet->list); batadv_nc_send_packet(nc_packet); return true; } /** * batadv_nc_process_nc_paths() - traverse given nc packet pool and free timed * out nc packets * @bat_priv: the bat priv with all the soft interface information * @hash: to be processed hash table * @process_fn: Function called to process given nc packet. Should return true * to encourage this function to proceed with the next packet. * Otherwise the rest of the current queue is skipped. */ static void batadv_nc_process_nc_paths(struct batadv_priv *bat_priv, struct batadv_hashtable *hash, bool (*process_fn)(struct batadv_priv *, struct batadv_nc_path *, struct batadv_nc_packet *)) { struct hlist_head *head; struct batadv_nc_packet *nc_packet, *nc_packet_tmp; struct batadv_nc_path *nc_path; bool ret; int i; if (!hash) return; /* Loop hash table bins */ for (i = 0; i < hash->size; i++) { head = &hash->table[i]; /* Loop coding paths */ rcu_read_lock(); hlist_for_each_entry_rcu(nc_path, head, hash_entry) { /* Loop packets */ spin_lock_bh(&nc_path->packet_list_lock); list_for_each_entry_safe(nc_packet, nc_packet_tmp, &nc_path->packet_list, list) { ret = process_fn(bat_priv, nc_path, nc_packet); if (!ret) break; } spin_unlock_bh(&nc_path->packet_list_lock); } rcu_read_unlock(); } } /** * batadv_nc_worker() - periodic task for housekeeping related to network * coding * @work: kernel work struct */ static void batadv_nc_worker(struct work_struct *work) { struct delayed_work *delayed_work; struct batadv_priv_nc *priv_nc; struct batadv_priv *bat_priv; unsigned long timeout; delayed_work = to_delayed_work(work); priv_nc = container_of(delayed_work, struct batadv_priv_nc, work); bat_priv = container_of(priv_nc, struct batadv_priv, nc); batadv_nc_purge_orig_hash(bat_priv); batadv_nc_purge_paths(bat_priv, bat_priv->nc.coding_hash, batadv_nc_to_purge_nc_path_coding); batadv_nc_purge_paths(bat_priv, bat_priv->nc.decoding_hash, batadv_nc_to_purge_nc_path_decoding); timeout = bat_priv->nc.max_fwd_delay; if (batadv_has_timed_out(bat_priv->nc.timestamp_fwd_flush, timeout)) { batadv_nc_process_nc_paths(bat_priv, bat_priv->nc.coding_hash, batadv_nc_fwd_flush); bat_priv->nc.timestamp_fwd_flush = jiffies; } if (batadv_has_timed_out(bat_priv->nc.timestamp_sniffed_purge, bat_priv->nc.max_buffer_time)) { batadv_nc_process_nc_paths(bat_priv, bat_priv->nc.decoding_hash, batadv_nc_sniffed_purge); bat_priv->nc.timestamp_sniffed_purge = jiffies; } /* Schedule a new check */ batadv_nc_start_timer(bat_priv); } /** * batadv_can_nc_with_orig() - checks whether the given orig node is suitable * for coding or not * @bat_priv: the bat priv with all the soft interface information * @orig_node: neighboring orig node which may be used as nc candidate * @ogm_packet: incoming ogm packet also used for the checks * * Return: true if: * 1) The OGM must have the most recent sequence number. * 2) The TTL must be decremented by one and only one. * 3) The OGM must be received from the first hop from orig_node. * 4) The TQ value of the OGM must be above bat_priv->nc.min_tq. */ static bool batadv_can_nc_with_orig(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node, struct batadv_ogm_packet *ogm_packet) { struct batadv_orig_ifinfo *orig_ifinfo; u32 last_real_seqno; u8 last_ttl; orig_ifinfo = batadv_orig_ifinfo_get(orig_node, BATADV_IF_DEFAULT); if (!orig_ifinfo) return false; last_ttl = orig_ifinfo->last_ttl; last_real_seqno = orig_ifinfo->last_real_seqno; batadv_orig_ifinfo_put(orig_ifinfo); if (last_real_seqno != ntohl(ogm_packet->seqno)) return false; if (last_ttl != ogm_packet->ttl + 1) return false; if (!batadv_compare_eth(ogm_packet->orig, ogm_packet->prev_sender)) return false; if (ogm_packet->tq < bat_priv->nc.min_tq) return false; return true; } /** * batadv_nc_find_nc_node() - search for an existing nc node and return it * @orig_node: orig node originating the ogm packet * @orig_neigh_node: neighboring orig node from which we received the ogm packet * (can be equal to orig_node) * @in_coding: traverse incoming or outgoing network coding list * * Return: the nc_node if found, NULL otherwise. */ static struct batadv_nc_node * batadv_nc_find_nc_node(struct batadv_orig_node *orig_node, struct batadv_orig_node *orig_neigh_node, bool in_coding) { struct batadv_nc_node *nc_node, *nc_node_out = NULL; struct list_head *list; if (in_coding) list = &orig_neigh_node->in_coding_list; else list = &orig_neigh_node->out_coding_list; /* Traverse list of nc_nodes to orig_node */ rcu_read_lock(); list_for_each_entry_rcu(nc_node, list, list) { if (!batadv_compare_eth(nc_node->addr, orig_node->orig)) continue; if (!kref_get_unless_zero(&nc_node->refcount)) continue; /* Found a match */ nc_node_out = nc_node; break; } rcu_read_unlock(); return nc_node_out; } /** * batadv_nc_get_nc_node() - retrieves an nc node or creates the entry if it was * not found * @bat_priv: the bat priv with all the soft interface information * @orig_node: orig node originating the ogm packet * @orig_neigh_node: neighboring orig node from which we received the ogm packet * (can be equal to orig_node) * @in_coding: traverse incoming or outgoing network coding list * * Return: the nc_node if found or created, NULL in case of an error. */ static struct batadv_nc_node * batadv_nc_get_nc_node(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node, struct batadv_orig_node *orig_neigh_node, bool in_coding) { struct batadv_nc_node *nc_node; spinlock_t *lock; /* Used to lock list selected by "int in_coding" */ struct list_head *list; /* Select ingoing or outgoing coding node */ if (in_coding) { lock = &orig_neigh_node->in_coding_list_lock; list = &orig_neigh_node->in_coding_list; } else { lock = &orig_neigh_node->out_coding_list_lock; list = &orig_neigh_node->out_coding_list; } spin_lock_bh(lock); /* Check if nc_node is already added */ nc_node = batadv_nc_find_nc_node(orig_node, orig_neigh_node, in_coding); /* Node found */ if (nc_node) goto unlock; nc_node = kzalloc(sizeof(*nc_node), GFP_ATOMIC); if (!nc_node) goto unlock; /* Initialize nc_node */ INIT_LIST_HEAD(&nc_node->list); kref_init(&nc_node->refcount); ether_addr_copy(nc_node->addr, orig_node->orig); kref_get(&orig_neigh_node->refcount); nc_node->orig_node = orig_neigh_node; batadv_dbg(BATADV_DBG_NC, bat_priv, "Adding nc_node %pM -> %pM\n", nc_node->addr, nc_node->orig_node->orig); /* Add nc_node to orig_node */ kref_get(&nc_node->refcount); list_add_tail_rcu(&nc_node->list, list); unlock: spin_unlock_bh(lock); return nc_node; } /** * batadv_nc_update_nc_node() - updates stored incoming and outgoing nc node * structs (best called on incoming OGMs) * @bat_priv: the bat priv with all the soft interface information * @orig_node: orig node originating the ogm packet * @orig_neigh_node: neighboring orig node from which we received the ogm packet * (can be equal to orig_node) * @ogm_packet: incoming ogm packet * @is_single_hop_neigh: orig_node is a single hop neighbor */ void batadv_nc_update_nc_node(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node, struct batadv_orig_node *orig_neigh_node, struct batadv_ogm_packet *ogm_packet, int is_single_hop_neigh) { struct batadv_nc_node *in_nc_node = NULL; struct batadv_nc_node *out_nc_node = NULL; /* Check if network coding is enabled */ if (!atomic_read(&bat_priv->network_coding)) goto out; /* check if orig node is network coding enabled */ if (!test_bit(BATADV_ORIG_CAPA_HAS_NC, &orig_node->capabilities)) goto out; /* accept ogms from 'good' neighbors and single hop neighbors */ if (!batadv_can_nc_with_orig(bat_priv, orig_node, ogm_packet) && !is_single_hop_neigh) goto out; /* Add orig_node as in_nc_node on hop */ in_nc_node = batadv_nc_get_nc_node(bat_priv, orig_node, orig_neigh_node, true); if (!in_nc_node) goto out; in_nc_node->last_seen = jiffies; /* Add hop as out_nc_node on orig_node */ out_nc_node = batadv_nc_get_nc_node(bat_priv, orig_neigh_node, orig_node, false); if (!out_nc_node) goto out; out_nc_node->last_seen = jiffies; out: batadv_nc_node_put(in_nc_node); batadv_nc_node_put(out_nc_node); } /** * batadv_nc_get_path() - get existing nc_path or allocate a new one * @bat_priv: the bat priv with all the soft interface information * @hash: hash table containing the nc path * @src: ethernet source address - first half of the nc path search key * @dst: ethernet destination address - second half of the nc path search key * * Return: pointer to nc_path if the path was found or created, returns NULL * on error. */ static struct batadv_nc_path *batadv_nc_get_path(struct batadv_priv *bat_priv, struct batadv_hashtable *hash, u8 *src, u8 *dst) { int hash_added; struct batadv_nc_path *nc_path, nc_path_key; batadv_nc_hash_key_gen(&nc_path_key, src, dst); /* Search for existing nc_path */ nc_path = batadv_nc_hash_find(hash, (void *)&nc_path_key); if (nc_path) { /* Set timestamp to delay removal of nc_path */ nc_path->last_valid = jiffies; return nc_path; } /* No existing nc_path was found; create a new */ nc_path = kzalloc(sizeof(*nc_path), GFP_ATOMIC); if (!nc_path) return NULL; /* Initialize nc_path */ INIT_LIST_HEAD(&nc_path->packet_list); spin_lock_init(&nc_path->packet_list_lock); kref_init(&nc_path->refcount); nc_path->last_valid = jiffies; ether_addr_copy(nc_path->next_hop, dst); ether_addr_copy(nc_path->prev_hop, src); batadv_dbg(BATADV_DBG_NC, bat_priv, "Adding nc_path %pM -> %pM\n", nc_path->prev_hop, nc_path->next_hop); /* Add nc_path to hash table */ kref_get(&nc_path->refcount); hash_added = batadv_hash_add(hash, batadv_nc_hash_compare, batadv_nc_hash_choose, &nc_path_key, &nc_path->hash_entry); if (hash_added < 0) { kfree(nc_path); return NULL; } return nc_path; } /** * batadv_nc_random_weight_tq() - scale the receivers TQ-value to avoid unfair * selection of a receiver with slightly lower TQ than the other * @tq: to be weighted tq value * * Return: scaled tq value */ static u8 batadv_nc_random_weight_tq(u8 tq) { /* randomize the estimated packet loss (max TQ - estimated TQ) */ u8 rand_tq = get_random_u32_below(BATADV_TQ_MAX_VALUE + 1 - tq); /* convert to (randomized) estimated tq again */ return BATADV_TQ_MAX_VALUE - rand_tq; } /** * batadv_nc_memxor() - XOR destination with source * @dst: byte array to XOR into * @src: byte array to XOR from * @len: length of destination array */ static void batadv_nc_memxor(char *dst, const char *src, unsigned int len) { unsigned int i; for (i = 0; i < len; ++i) dst[i] ^= src[i]; } /** * batadv_nc_code_packets() - code a received unicast_packet with an nc packet * into a coded_packet and send it * @bat_priv: the bat priv with all the soft interface information * @skb: data skb to forward * @ethhdr: pointer to the ethernet header inside the skb * @nc_packet: structure containing the packet to the skb can be coded with * @neigh_node: next hop to forward packet to * * Return: true if both packets are consumed, false otherwise. */ static bool batadv_nc_code_packets(struct batadv_priv *bat_priv, struct sk_buff *skb, struct ethhdr *ethhdr, struct batadv_nc_packet *nc_packet, struct batadv_neigh_node *neigh_node) { u8 tq_weighted_neigh, tq_weighted_coding, tq_tmp; struct sk_buff *skb_dest, *skb_src; struct batadv_unicast_packet *packet1; struct batadv_unicast_packet *packet2; struct batadv_coded_packet *coded_packet; struct batadv_neigh_node *neigh_tmp, *router_neigh, *first_dest; struct batadv_neigh_node *router_coding = NULL, *second_dest; struct batadv_neigh_ifinfo *router_neigh_ifinfo = NULL; struct batadv_neigh_ifinfo *router_coding_ifinfo = NULL; u8 *first_source, *second_source; __be32 packet_id1, packet_id2; size_t count; bool res = false; int coding_len; int unicast_size = sizeof(*packet1); int coded_size = sizeof(*coded_packet); int header_add = coded_size - unicast_size; /* TODO: do we need to consider the outgoing interface for * coded packets? */ router_neigh = batadv_orig_router_get(neigh_node->orig_node, BATADV_IF_DEFAULT); if (!router_neigh) goto out; router_neigh_ifinfo = batadv_neigh_ifinfo_get(router_neigh, BATADV_IF_DEFAULT); if (!router_neigh_ifinfo) goto out; neigh_tmp = nc_packet->neigh_node; router_coding = batadv_orig_router_get(neigh_tmp->orig_node, BATADV_IF_DEFAULT); if (!router_coding) goto out; router_coding_ifinfo = batadv_neigh_ifinfo_get(router_coding, BATADV_IF_DEFAULT); if (!router_coding_ifinfo) goto out; tq_tmp = router_neigh_ifinfo->bat_iv.tq_avg; tq_weighted_neigh = batadv_nc_random_weight_tq(tq_tmp); tq_tmp = router_coding_ifinfo->bat_iv.tq_avg; tq_weighted_coding = batadv_nc_random_weight_tq(tq_tmp); /* Select one destination for the MAC-header dst-field based on * weighted TQ-values. */ if (tq_weighted_neigh >= tq_weighted_coding) { /* Destination from nc_packet is selected for MAC-header */ first_dest = nc_packet->neigh_node; first_source = nc_packet->nc_path->prev_hop; second_dest = neigh_node; second_source = ethhdr->h_source; packet1 = (struct batadv_unicast_packet *)nc_packet->skb->data; packet2 = (struct batadv_unicast_packet *)skb->data; packet_id1 = nc_packet->packet_id; packet_id2 = batadv_skb_crc32(skb, skb->data + sizeof(*packet2)); } else { /* Destination for skb is selected for MAC-header */ first_dest = neigh_node; first_source = ethhdr->h_source; second_dest = nc_packet->neigh_node; second_source = nc_packet->nc_path->prev_hop; packet1 = (struct batadv_unicast_packet *)skb->data; packet2 = (struct batadv_unicast_packet *)nc_packet->skb->data; packet_id1 = batadv_skb_crc32(skb, skb->data + sizeof(*packet1)); packet_id2 = nc_packet->packet_id; } /* Instead of zero padding the smallest data buffer, we * code into the largest. */ if (skb->len <= nc_packet->skb->len) { skb_dest = nc_packet->skb; skb_src = skb; } else { skb_dest = skb; skb_src = nc_packet->skb; } /* coding_len is used when decoding the packet shorter packet */ coding_len = skb_src->len - unicast_size; if (skb_linearize(skb_dest) < 0 || skb_linearize(skb_src) < 0) goto out; skb_push(skb_dest, header_add); coded_packet = (struct batadv_coded_packet *)skb_dest->data; skb_reset_mac_header(skb_dest); coded_packet->packet_type = BATADV_CODED; coded_packet->version = BATADV_COMPAT_VERSION; coded_packet->ttl = packet1->ttl; /* Info about first unicast packet */ ether_addr_copy(coded_packet->first_source, first_source); ether_addr_copy(coded_packet->first_orig_dest, packet1->dest); coded_packet->first_crc = packet_id1; coded_packet->first_ttvn = packet1->ttvn; /* Info about second unicast packet */ ether_addr_copy(coded_packet->second_dest, second_dest->addr); ether_addr_copy(coded_packet->second_source, second_source); ether_addr_copy(coded_packet->second_orig_dest, packet2->dest); coded_packet->second_crc = packet_id2; coded_packet->second_ttl = packet2->ttl; coded_packet->second_ttvn = packet2->ttvn; coded_packet->coded_len = htons(coding_len); /* This is where the magic happens: Code skb_src into skb_dest */ batadv_nc_memxor(skb_dest->data + coded_size, skb_src->data + unicast_size, coding_len); /* Update counters accordingly */ if (BATADV_SKB_CB(skb_src)->decoded && BATADV_SKB_CB(skb_dest)->decoded) { /* Both packets are recoded */ count = skb_src->len + ETH_HLEN; count += skb_dest->len + ETH_HLEN; batadv_add_counter(bat_priv, BATADV_CNT_NC_RECODE, 2); batadv_add_counter(bat_priv, BATADV_CNT_NC_RECODE_BYTES, count); } else if (!BATADV_SKB_CB(skb_src)->decoded && !BATADV_SKB_CB(skb_dest)->decoded) { /* Both packets are newly coded */ count = skb_src->len + ETH_HLEN; count += skb_dest->len + ETH_HLEN; batadv_add_counter(bat_priv, BATADV_CNT_NC_CODE, 2); batadv_add_counter(bat_priv, BATADV_CNT_NC_CODE_BYTES, count); } else if (BATADV_SKB_CB(skb_src)->decoded && !BATADV_SKB_CB(skb_dest)->decoded) { /* skb_src recoded and skb_dest is newly coded */ batadv_inc_counter(bat_priv, BATADV_CNT_NC_RECODE); batadv_add_counter(bat_priv, BATADV_CNT_NC_RECODE_BYTES, skb_src->len + ETH_HLEN); batadv_inc_counter(bat_priv, BATADV_CNT_NC_CODE); batadv_add_counter(bat_priv, BATADV_CNT_NC_CODE_BYTES, skb_dest->len + ETH_HLEN); } else if (!BATADV_SKB_CB(skb_src)->decoded && BATADV_SKB_CB(skb_dest)->decoded) { /* skb_src is newly coded and skb_dest is recoded */ batadv_inc_counter(bat_priv, BATADV_CNT_NC_CODE); batadv_add_counter(bat_priv, BATADV_CNT_NC_CODE_BYTES, skb_src->len + ETH_HLEN); batadv_inc_counter(bat_priv, BATADV_CNT_NC_RECODE); batadv_add_counter(bat_priv, BATADV_CNT_NC_RECODE_BYTES, skb_dest->len + ETH_HLEN); } /* skb_src is now coded into skb_dest, so free it */ consume_skb(skb_src); /* avoid duplicate free of skb from nc_packet */ nc_packet->skb = NULL; batadv_nc_packet_free(nc_packet, false); /* Send the coded packet and return true */ batadv_send_unicast_skb(skb_dest, first_dest); res = true; out: batadv_neigh_node_put(router_neigh); batadv_neigh_node_put(router_coding); batadv_neigh_ifinfo_put(router_neigh_ifinfo); batadv_neigh_ifinfo_put(router_coding_ifinfo); return res; } /** * batadv_nc_skb_coding_possible() - true if a decoded skb is available at dst. * @skb: data skb to forward * @dst: destination mac address of the other skb to code with * @src: source mac address of skb * * Whenever we network code a packet we have to check whether we received it in * a network coded form. If so, we may not be able to use it for coding because * some neighbors may also have received (overheard) the packet in the network * coded form without being able to decode it. It is hard to know which of the * neighboring nodes was able to decode the packet, therefore we can only * re-code the packet if the source of the previous encoded packet is involved. * Since the source encoded the packet we can be certain it has all necessary * decode information. * * Return: true if coding of a decoded packet is allowed. */ static bool batadv_nc_skb_coding_possible(struct sk_buff *skb, u8 *dst, u8 *src) { if (BATADV_SKB_CB(skb)->decoded && !batadv_compare_eth(dst, src)) return false; return true; } /** * batadv_nc_path_search() - Find the coding path matching in_nc_node and * out_nc_node to retrieve a buffered packet that can be used for coding. * @bat_priv: the bat priv with all the soft interface information * @in_nc_node: pointer to skb next hop's neighbor nc node * @out_nc_node: pointer to skb source's neighbor nc node * @skb: data skb to forward * @eth_dst: next hop mac address of skb * * Return: true if coding of a decoded skb is allowed. */ static struct batadv_nc_packet * batadv_nc_path_search(struct batadv_priv *bat_priv, struct batadv_nc_node *in_nc_node, struct batadv_nc_node *out_nc_node, struct sk_buff *skb, u8 *eth_dst) { struct batadv_nc_path *nc_path, nc_path_key; struct batadv_nc_packet *nc_packet_out = NULL; struct batadv_nc_packet *nc_packet, *nc_packet_tmp; struct batadv_hashtable *hash = bat_priv->nc.coding_hash; int idx; if (!hash) return NULL; /* Create almost path key */ batadv_nc_hash_key_gen(&nc_path_key, in_nc_node->addr, out_nc_node->addr); idx = batadv_nc_hash_choose(&nc_path_key, hash->size); /* Check for coding opportunities in this nc_path */ rcu_read_lock(); hlist_for_each_entry_rcu(nc_path, &hash->table[idx], hash_entry) { if (!batadv_compare_eth(nc_path->prev_hop, in_nc_node->addr)) continue; if (!batadv_compare_eth(nc_path->next_hop, out_nc_node->addr)) continue; spin_lock_bh(&nc_path->packet_list_lock); if (list_empty(&nc_path->packet_list)) { spin_unlock_bh(&nc_path->packet_list_lock); continue; } list_for_each_entry_safe(nc_packet, nc_packet_tmp, &nc_path->packet_list, list) { if (!batadv_nc_skb_coding_possible(nc_packet->skb, eth_dst, in_nc_node->addr)) continue; /* Coding opportunity is found! */ list_del(&nc_packet->list); nc_packet_out = nc_packet; break; } spin_unlock_bh(&nc_path->packet_list_lock); break; } rcu_read_unlock(); return nc_packet_out; } /** * batadv_nc_skb_src_search() - Loops through the list of neighboring nodes of * the skb's sender (may be equal to the originator). * @bat_priv: the bat priv with all the soft interface information * @skb: data skb to forward * @eth_dst: next hop mac address of skb * @eth_src: source mac address of skb * @in_nc_node: pointer to skb next hop's neighbor nc node * * Return: an nc packet if a suitable coding packet was found, NULL otherwise. */ static struct batadv_nc_packet * batadv_nc_skb_src_search(struct batadv_priv *bat_priv, struct sk_buff *skb, u8 *eth_dst, u8 *eth_src, struct batadv_nc_node *in_nc_node) { struct batadv_orig_node *orig_node; struct batadv_nc_node *out_nc_node; struct batadv_nc_packet *nc_packet = NULL; orig_node = batadv_orig_hash_find(bat_priv, eth_src); if (!orig_node) return NULL; rcu_read_lock(); list_for_each_entry_rcu(out_nc_node, &orig_node->out_coding_list, list) { /* Check if the skb is decoded and if recoding is possible */ if (!batadv_nc_skb_coding_possible(skb, out_nc_node->addr, eth_src)) continue; /* Search for an opportunity in this nc_path */ nc_packet = batadv_nc_path_search(bat_priv, in_nc_node, out_nc_node, skb, eth_dst); if (nc_packet) break; } rcu_read_unlock(); batadv_orig_node_put(orig_node); return nc_packet; } /** * batadv_nc_skb_store_before_coding() - set the ethernet src and dst of the * unicast skb before it is stored for use in later decoding * @bat_priv: the bat priv with all the soft interface information * @skb: data skb to store * @eth_dst_new: new destination mac address of skb */ static void batadv_nc_skb_store_before_coding(struct batadv_priv *bat_priv, struct sk_buff *skb, u8 *eth_dst_new) { struct ethhdr *ethhdr; /* Copy skb header to change the mac header */ skb = pskb_copy_for_clone(skb, GFP_ATOMIC); if (!skb) return; /* Set the mac header as if we actually sent the packet uncoded */ ethhdr = eth_hdr(skb); ether_addr_copy(ethhdr->h_source, ethhdr->h_dest); ether_addr_copy(ethhdr->h_dest, eth_dst_new); /* Set data pointer to MAC header to mimic packets from our tx path */ skb_push(skb, ETH_HLEN); /* Add the packet to the decoding packet pool */ batadv_nc_skb_store_for_decoding(bat_priv, skb); /* batadv_nc_skb_store_for_decoding() clones the skb, so we must free * our ref */ consume_skb(skb); } /** * batadv_nc_skb_dst_search() - Loops through list of neighboring nodes to dst. * @skb: data skb to forward * @neigh_node: next hop to forward packet to * @ethhdr: pointer to the ethernet header inside the skb * * Loops through the list of neighboring nodes the next hop has a good * connection to (receives OGMs with a sufficient quality). We need to find a * neighbor of our next hop that potentially sent a packet which our next hop * also received (overheard) and has stored for later decoding. * * Return: true if the skb was consumed (encoded packet sent) or false otherwise */ static bool batadv_nc_skb_dst_search(struct sk_buff *skb, struct batadv_neigh_node *neigh_node, struct ethhdr *ethhdr) { struct net_device *netdev = neigh_node->if_incoming->soft_iface; struct batadv_priv *bat_priv = netdev_priv(netdev); struct batadv_orig_node *orig_node = neigh_node->orig_node; struct batadv_nc_node *nc_node; struct batadv_nc_packet *nc_packet = NULL; rcu_read_lock(); list_for_each_entry_rcu(nc_node, &orig_node->in_coding_list, list) { /* Search for coding opportunity with this in_nc_node */ nc_packet = batadv_nc_skb_src_search(bat_priv, skb, neigh_node->addr, ethhdr->h_source, nc_node); /* Opportunity was found, so stop searching */ if (nc_packet) break; } rcu_read_unlock(); if (!nc_packet) return false; /* Save packets for later decoding */ batadv_nc_skb_store_before_coding(bat_priv, skb, neigh_node->addr); batadv_nc_skb_store_before_coding(bat_priv, nc_packet->skb, nc_packet->neigh_node->addr); /* Code and send packets */ if (batadv_nc_code_packets(bat_priv, skb, ethhdr, nc_packet, neigh_node)) return true; /* out of mem ? Coding failed - we have to free the buffered packet * to avoid memleaks. The skb passed as argument will be dealt with * by the calling function. */ batadv_nc_send_packet(nc_packet); return false; } /** * batadv_nc_skb_add_to_path() - buffer skb for later encoding / decoding * @skb: skb to add to path * @nc_path: path to add skb to * @neigh_node: next hop to forward packet to * @packet_id: checksum to identify packet * * Return: true if the packet was buffered or false in case of an error. */ static bool batadv_nc_skb_add_to_path(struct sk_buff *skb, struct batadv_nc_path *nc_path, struct batadv_neigh_node *neigh_node, __be32 packet_id) { struct batadv_nc_packet *nc_packet; nc_packet = kzalloc(sizeof(*nc_packet), GFP_ATOMIC); if (!nc_packet) return false; /* Initialize nc_packet */ nc_packet->timestamp = jiffies; nc_packet->packet_id = packet_id; nc_packet->skb = skb; nc_packet->neigh_node = neigh_node; nc_packet->nc_path = nc_path; /* Add coding packet to list */ spin_lock_bh(&nc_path->packet_list_lock); list_add_tail(&nc_packet->list, &nc_path->packet_list); spin_unlock_bh(&nc_path->packet_list_lock); return true; } /** * batadv_nc_skb_forward() - try to code a packet or add it to the coding packet * buffer * @skb: data skb to forward * @neigh_node: next hop to forward packet to * * Return: true if the skb was consumed (encoded packet sent) or false otherwise */ bool batadv_nc_skb_forward(struct sk_buff *skb, struct batadv_neigh_node *neigh_node) { const struct net_device *netdev = neigh_node->if_incoming->soft_iface; struct batadv_priv *bat_priv = netdev_priv(netdev); struct batadv_unicast_packet *packet; struct batadv_nc_path *nc_path; struct ethhdr *ethhdr = eth_hdr(skb); __be32 packet_id; u8 *payload; /* Check if network coding is enabled */ if (!atomic_read(&bat_priv->network_coding)) goto out; /* We only handle unicast packets */ payload = skb_network_header(skb); packet = (struct batadv_unicast_packet *)payload; if (packet->packet_type != BATADV_UNICAST) goto out; /* Try to find a coding opportunity and send the skb if one is found */ if (batadv_nc_skb_dst_search(skb, neigh_node, ethhdr)) return true; /* Find or create a nc_path for this src-dst pair */ nc_path = batadv_nc_get_path(bat_priv, bat_priv->nc.coding_hash, ethhdr->h_source, neigh_node->addr); if (!nc_path) goto out; /* Add skb to nc_path */ packet_id = batadv_skb_crc32(skb, payload + sizeof(*packet)); if (!batadv_nc_skb_add_to_path(skb, nc_path, neigh_node, packet_id)) goto free_nc_path; /* Packet is consumed */ return true; free_nc_path: batadv_nc_path_put(nc_path); out: /* Packet is not consumed */ return false; } /** * batadv_nc_skb_store_for_decoding() - save a clone of the skb which can be * used when decoding coded packets * @bat_priv: the bat priv with all the soft interface information * @skb: data skb to store */ void batadv_nc_skb_store_for_decoding(struct batadv_priv *bat_priv, struct sk_buff *skb) { struct batadv_unicast_packet *packet; struct batadv_nc_path *nc_path; struct ethhdr *ethhdr = eth_hdr(skb); __be32 packet_id; u8 *payload; /* Check if network coding is enabled */ if (!atomic_read(&bat_priv->network_coding)) goto out; /* Check for supported packet type */ payload = skb_network_header(skb); packet = (struct batadv_unicast_packet *)payload; if (packet->packet_type != BATADV_UNICAST) goto out; /* Find existing nc_path or create a new */ nc_path = batadv_nc_get_path(bat_priv, bat_priv->nc.decoding_hash, ethhdr->h_source, ethhdr->h_dest); if (!nc_path) goto out; /* Clone skb and adjust skb->data to point at batman header */ skb = skb_clone(skb, GFP_ATOMIC); if (unlikely(!skb)) goto free_nc_path; if (unlikely(!pskb_may_pull(skb, ETH_HLEN))) goto free_skb; if (unlikely(!skb_pull_rcsum(skb, ETH_HLEN))) goto free_skb; /* Add skb to nc_path */ packet_id = batadv_skb_crc32(skb, payload + sizeof(*packet)); if (!batadv_nc_skb_add_to_path(skb, nc_path, NULL, packet_id)) goto free_skb; batadv_inc_counter(bat_priv, BATADV_CNT_NC_BUFFER); return; free_skb: kfree_skb(skb); free_nc_path: batadv_nc_path_put(nc_path); out: return; } /** * batadv_nc_skb_store_sniffed_unicast() - check if a received unicast packet * should be saved in the decoding buffer and, if so, store it there * @bat_priv: the bat priv with all the soft interface information * @skb: unicast skb to store */ void batadv_nc_skb_store_sniffed_unicast(struct batadv_priv *bat_priv, struct sk_buff *skb) { struct ethhdr *ethhdr = eth_hdr(skb); if (batadv_is_my_mac(bat_priv, ethhdr->h_dest)) return; /* Set data pointer to MAC header to mimic packets from our tx path */ skb_push(skb, ETH_HLEN); batadv_nc_skb_store_for_decoding(bat_priv, skb); } /** * batadv_nc_skb_decode_packet() - decode given skb using the decode data stored * in nc_packet * @bat_priv: the bat priv with all the soft interface information * @skb: unicast skb to decode * @nc_packet: decode data needed to decode the skb * * Return: pointer to decoded unicast packet if the packet was decoded or NULL * in case of an error. */ static struct batadv_unicast_packet * batadv_nc_skb_decode_packet(struct batadv_priv *bat_priv, struct sk_buff *skb, struct batadv_nc_packet *nc_packet) { const int h_size = sizeof(struct batadv_unicast_packet); const int h_diff = sizeof(struct batadv_coded_packet) - h_size; struct batadv_unicast_packet *unicast_packet; struct batadv_coded_packet coded_packet_tmp; struct ethhdr *ethhdr, ethhdr_tmp; u8 *orig_dest, ttl, ttvn; unsigned int coding_len; int err; /* Save headers temporarily */ memcpy(&coded_packet_tmp, skb->data, sizeof(coded_packet_tmp)); memcpy(&ethhdr_tmp, skb_mac_header(skb), sizeof(ethhdr_tmp)); if (skb_cow(skb, 0) < 0) return NULL; if (unlikely(!skb_pull_rcsum(skb, h_diff))) return NULL; /* Data points to batman header, so set mac header 14 bytes before * and network to data */ skb_set_mac_header(skb, -ETH_HLEN); skb_reset_network_header(skb); /* Reconstruct original mac header */ ethhdr = eth_hdr(skb); *ethhdr = ethhdr_tmp; /* Select the correct unicast header information based on the location * of our mac address in the coded_packet header */ if (batadv_is_my_mac(bat_priv, coded_packet_tmp.second_dest)) { /* If we are the second destination the packet was overheard, * so the Ethernet address must be copied to h_dest and * pkt_type changed from PACKET_OTHERHOST to PACKET_HOST */ ether_addr_copy(ethhdr->h_dest, coded_packet_tmp.second_dest); skb->pkt_type = PACKET_HOST; orig_dest = coded_packet_tmp.second_orig_dest; ttl = coded_packet_tmp.second_ttl; ttvn = coded_packet_tmp.second_ttvn; } else { orig_dest = coded_packet_tmp.first_orig_dest; ttl = coded_packet_tmp.ttl; ttvn = coded_packet_tmp.first_ttvn; } coding_len = ntohs(coded_packet_tmp.coded_len); if (coding_len > skb->len) return NULL; /* Here the magic is reversed: * extract the missing packet from the received coded packet */ batadv_nc_memxor(skb->data + h_size, nc_packet->skb->data + h_size, coding_len); /* Resize decoded skb if decoded with larger packet */ if (nc_packet->skb->len > coding_len + h_size) { err = pskb_trim_rcsum(skb, coding_len + h_size); if (err) return NULL; } /* Create decoded unicast packet */ unicast_packet = (struct batadv_unicast_packet *)skb->data; unicast_packet->packet_type = BATADV_UNICAST; unicast_packet->version = BATADV_COMPAT_VERSION; unicast_packet->ttl = ttl; ether_addr_copy(unicast_packet->dest, orig_dest); unicast_packet->ttvn = ttvn; batadv_nc_packet_free(nc_packet, false); return unicast_packet; } /** * batadv_nc_find_decoding_packet() - search through buffered decoding data to * find the data needed to decode the coded packet * @bat_priv: the bat priv with all the soft interface information * @ethhdr: pointer to the ethernet header inside the coded packet * @coded: coded packet we try to find decode data for * * Return: pointer to nc packet if the needed data was found or NULL otherwise. */ static struct batadv_nc_packet * batadv_nc_find_decoding_packet(struct batadv_priv *bat_priv, struct ethhdr *ethhdr, struct batadv_coded_packet *coded) { struct batadv_hashtable *hash = bat_priv->nc.decoding_hash; struct batadv_nc_packet *tmp_nc_packet, *nc_packet = NULL; struct batadv_nc_path *nc_path, nc_path_key; u8 *dest, *source; __be32 packet_id; int index; if (!hash) return NULL; /* Select the correct packet id based on the location of our mac-addr */ dest = ethhdr->h_source; if (!batadv_is_my_mac(bat_priv, coded->second_dest)) { source = coded->second_source; packet_id = coded->second_crc; } else { source = coded->first_source; packet_id = coded->first_crc; } batadv_nc_hash_key_gen(&nc_path_key, source, dest); index = batadv_nc_hash_choose(&nc_path_key, hash->size); /* Search for matching coding path */ rcu_read_lock(); hlist_for_each_entry_rcu(nc_path, &hash->table[index], hash_entry) { /* Find matching nc_packet */ spin_lock_bh(&nc_path->packet_list_lock); list_for_each_entry(tmp_nc_packet, &nc_path->packet_list, list) { if (packet_id == tmp_nc_packet->packet_id) { list_del(&tmp_nc_packet->list); nc_packet = tmp_nc_packet; break; } } spin_unlock_bh(&nc_path->packet_list_lock); if (nc_packet) break; } rcu_read_unlock(); if (!nc_packet) batadv_dbg(BATADV_DBG_NC, bat_priv, "No decoding packet found for %u\n", packet_id); return nc_packet; } /** * batadv_nc_recv_coded_packet() - try to decode coded packet and enqueue the * resulting unicast packet * @skb: incoming coded packet * @recv_if: pointer to interface this packet was received on * * Return: NET_RX_SUCCESS if the packet has been consumed or NET_RX_DROP * otherwise. */ static int batadv_nc_recv_coded_packet(struct sk_buff *skb, struct batadv_hard_iface *recv_if) { struct batadv_priv *bat_priv = netdev_priv(recv_if->soft_iface); struct batadv_unicast_packet *unicast_packet; struct batadv_coded_packet *coded_packet; struct batadv_nc_packet *nc_packet; struct ethhdr *ethhdr; int hdr_size = sizeof(*coded_packet); /* Check if network coding is enabled */ if (!atomic_read(&bat_priv->network_coding)) goto free_skb; /* Make sure we can access (and remove) header */ if (unlikely(!pskb_may_pull(skb, hdr_size))) goto free_skb; coded_packet = (struct batadv_coded_packet *)skb->data; ethhdr = eth_hdr(skb); /* Verify frame is destined for us */ if (!batadv_is_my_mac(bat_priv, ethhdr->h_dest) && !batadv_is_my_mac(bat_priv, coded_packet->second_dest)) goto free_skb; /* Update stat counter */ if (batadv_is_my_mac(bat_priv, coded_packet->second_dest)) batadv_inc_counter(bat_priv, BATADV_CNT_NC_SNIFFED); nc_packet = batadv_nc_find_decoding_packet(bat_priv, ethhdr, coded_packet); if (!nc_packet) { batadv_inc_counter(bat_priv, BATADV_CNT_NC_DECODE_FAILED); goto free_skb; } /* Make skb's linear, because decoding accesses the entire buffer */ if (skb_linearize(skb) < 0) goto free_nc_packet; if (skb_linearize(nc_packet->skb) < 0) goto free_nc_packet; /* Decode the packet */ unicast_packet = batadv_nc_skb_decode_packet(bat_priv, skb, nc_packet); if (!unicast_packet) { batadv_inc_counter(bat_priv, BATADV_CNT_NC_DECODE_FAILED); goto free_nc_packet; } /* Mark packet as decoded to do correct recoding when forwarding */ BATADV_SKB_CB(skb)->decoded = true; batadv_inc_counter(bat_priv, BATADV_CNT_NC_DECODE); batadv_add_counter(bat_priv, BATADV_CNT_NC_DECODE_BYTES, skb->len + ETH_HLEN); return batadv_recv_unicast_packet(skb, recv_if); free_nc_packet: batadv_nc_packet_free(nc_packet, true); free_skb: kfree_skb(skb); return NET_RX_DROP; } /** * batadv_nc_mesh_free() - clean up network coding memory * @bat_priv: the bat priv with all the soft interface information */ void batadv_nc_mesh_free(struct batadv_priv *bat_priv) { batadv_tvlv_container_unregister(bat_priv, BATADV_TVLV_NC, 1); batadv_tvlv_handler_unregister(bat_priv, BATADV_TVLV_NC, 1); cancel_delayed_work_sync(&bat_priv->nc.work); batadv_nc_purge_paths(bat_priv, bat_priv->nc.coding_hash, NULL); batadv_hash_destroy(bat_priv->nc.coding_hash); batadv_nc_purge_paths(bat_priv, bat_priv->nc.decoding_hash, NULL); batadv_hash_destroy(bat_priv->nc.decoding_hash); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 /* SPDX-License-Identifier: GPL-2.0 */ /* * fscrypt_private.h * * Copyright (C) 2015, Google, Inc. * * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar. * Heavily modified since then. */ #ifndef _FSCRYPT_PRIVATE_H #define _FSCRYPT_PRIVATE_H #include <linux/fscrypt.h> #include <linux/siphash.h> #include <crypto/hash.h> #include <linux/blk-crypto.h> #define CONST_STRLEN(str) (sizeof(str) - 1) #define FSCRYPT_FILE_NONCE_SIZE 16 /* * Minimum size of an fscrypt master key. Note: a longer key will be required * if ciphers with a 256-bit security strength are used. This is just the * absolute minimum, which applies when only 128-bit encryption is used. */ #define FSCRYPT_MIN_KEY_SIZE 16 #define FSCRYPT_CONTEXT_V1 1 #define FSCRYPT_CONTEXT_V2 2 /* Keep this in sync with include/uapi/linux/fscrypt.h */ #define FSCRYPT_MODE_MAX FSCRYPT_MODE_AES_256_HCTR2 struct fscrypt_context_v1 { u8 version; /* FSCRYPT_CONTEXT_V1 */ u8 contents_encryption_mode; u8 filenames_encryption_mode; u8 flags; u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE]; u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; }; struct fscrypt_context_v2 { u8 version; /* FSCRYPT_CONTEXT_V2 */ u8 contents_encryption_mode; u8 filenames_encryption_mode; u8 flags; u8 log2_data_unit_size; u8 __reserved[3]; u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]; u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; }; /* * fscrypt_context - the encryption context of an inode * * This is the on-disk equivalent of an fscrypt_policy, stored alongside each * encrypted file usually in a hidden extended attribute. It contains the * fields from the fscrypt_policy, in order to identify the encryption algorithm * and key with which the file is encrypted. It also contains a nonce that was * randomly generated by fscrypt itself; this is used as KDF input or as a tweak * to cause different files to be encrypted differently. */ union fscrypt_context { u8 version; struct fscrypt_context_v1 v1; struct fscrypt_context_v2 v2; }; /* * Return the size expected for the given fscrypt_context based on its version * number, or 0 if the context version is unrecognized. */ static inline int fscrypt_context_size(const union fscrypt_context *ctx) { switch (ctx->version) { case FSCRYPT_CONTEXT_V1: BUILD_BUG_ON(sizeof(ctx->v1) != 28); return sizeof(ctx->v1); case FSCRYPT_CONTEXT_V2: BUILD_BUG_ON(sizeof(ctx->v2) != 40); return sizeof(ctx->v2); } return 0; } /* Check whether an fscrypt_context has a recognized version number and size */ static inline bool fscrypt_context_is_valid(const union fscrypt_context *ctx, int ctx_size) { return ctx_size >= 1 && ctx_size == fscrypt_context_size(ctx); } /* Retrieve the context's nonce, assuming the context was already validated */ static inline const u8 *fscrypt_context_nonce(const union fscrypt_context *ctx) { switch (ctx->version) { case FSCRYPT_CONTEXT_V1: return ctx->v1.nonce; case FSCRYPT_CONTEXT_V2: return ctx->v2.nonce; } WARN_ON_ONCE(1); return NULL; } union fscrypt_policy { u8 version; struct fscrypt_policy_v1 v1; struct fscrypt_policy_v2 v2; }; /* * Return the size expected for the given fscrypt_policy based on its version * number, or 0 if the policy version is unrecognized. */ static inline int fscrypt_policy_size(const union fscrypt_policy *policy) { switch (policy->version) { case FSCRYPT_POLICY_V1: return sizeof(policy->v1); case FSCRYPT_POLICY_V2: return sizeof(policy->v2); } return 0; } /* Return the contents encryption mode of a valid encryption policy */ static inline u8 fscrypt_policy_contents_mode(const union fscrypt_policy *policy) { switch (policy->version) { case FSCRYPT_POLICY_V1: return policy->v1.contents_encryption_mode; case FSCRYPT_POLICY_V2: return policy->v2.contents_encryption_mode; } BUG(); } /* Return the filenames encryption mode of a valid encryption policy */ static inline u8 fscrypt_policy_fnames_mode(const union fscrypt_policy *policy) { switch (policy->version) { case FSCRYPT_POLICY_V1: return policy->v1.filenames_encryption_mode; case FSCRYPT_POLICY_V2: return policy->v2.filenames_encryption_mode; } BUG(); } /* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */ static inline u8 fscrypt_policy_flags(const union fscrypt_policy *policy) { switch (policy->version) { case FSCRYPT_POLICY_V1: return policy->v1.flags; case FSCRYPT_POLICY_V2: return policy->v2.flags; } BUG(); } static inline int fscrypt_policy_v2_du_bits(const struct fscrypt_policy_v2 *policy, const struct inode *inode) { return policy->log2_data_unit_size ?: inode->i_blkbits; } static inline int fscrypt_policy_du_bits(const union fscrypt_policy *policy, const struct inode *inode) { switch (policy->version) { case FSCRYPT_POLICY_V1: return inode->i_blkbits; case FSCRYPT_POLICY_V2: return fscrypt_policy_v2_du_bits(&policy->v2, inode); } BUG(); } /* * For encrypted symlinks, the ciphertext length is stored at the beginning * of the string in little-endian format. */ struct fscrypt_symlink_data { __le16 len; char encrypted_path[]; } __packed; /** * struct fscrypt_prepared_key - a key prepared for actual encryption/decryption * @tfm: crypto API transform object * @blk_key: key for blk-crypto * * Normally only one of the fields will be non-NULL. */ struct fscrypt_prepared_key { struct crypto_skcipher *tfm; #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT struct blk_crypto_key *blk_key; #endif }; /* * fscrypt_inode_info - the "encryption key" for an inode * * When an encrypted file's key is made available, an instance of this struct is * allocated and stored in ->i_crypt_info. Once created, it remains until the * inode is evicted. */ struct fscrypt_inode_info { /* The key in a form prepared for actual encryption/decryption */ struct fscrypt_prepared_key ci_enc_key; /* True if ci_enc_key should be freed when this struct is freed */ u8 ci_owns_key : 1; #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT /* * True if this inode will use inline encryption (blk-crypto) instead of * the traditional filesystem-layer encryption. */ u8 ci_inlinecrypt : 1; #endif /* True if ci_dirhash_key is initialized */ u8 ci_dirhash_key_initialized : 1; /* * log2 of the data unit size (granularity of contents encryption) of * this file. This is computable from ci_policy and ci_inode but is * cached here for efficiency. Only used for regular files. */ u8 ci_data_unit_bits; /* Cached value: log2 of number of data units per FS block */ u8 ci_data_units_per_block_bits; /* Hashed inode number. Only set for IV_INO_LBLK_32 */ u32 ci_hashed_ino; /* * Encryption mode used for this inode. It corresponds to either the * contents or filenames encryption mode, depending on the inode type. */ struct fscrypt_mode *ci_mode; /* Back-pointer to the inode */ struct inode *ci_inode; /* * The master key with which this inode was unlocked (decrypted). This * will be NULL if the master key was found in a process-subscribed * keyring rather than in the filesystem-level keyring. */ struct fscrypt_master_key *ci_master_key; /* * Link in list of inodes that were unlocked with the master key. * Only used when ->ci_master_key is set. */ struct list_head ci_master_key_link; /* * If non-NULL, then encryption is done using the master key directly * and ci_enc_key will equal ci_direct_key->dk_key. */ struct fscrypt_direct_key *ci_direct_key; /* * This inode's hash key for filenames. This is a 128-bit SipHash-2-4 * key. This is only set for directories that use a keyed dirhash over * the plaintext filenames -- currently just casefolded directories. */ siphash_key_t ci_dirhash_key; /* The encryption policy used by this inode */ union fscrypt_policy ci_policy; /* This inode's nonce, copied from the fscrypt_context */ u8 ci_nonce[FSCRYPT_FILE_NONCE_SIZE]; }; typedef enum { FS_DECRYPT = 0, FS_ENCRYPT, } fscrypt_direction_t; /* crypto.c */ extern struct kmem_cache *fscrypt_inode_info_cachep; int fscrypt_initialize(struct super_block *sb); int fscrypt_crypt_data_unit(const struct fscrypt_inode_info *ci, fscrypt_direction_t rw, u64 index, struct page *src_page, struct page *dest_page, unsigned int len, unsigned int offs, gfp_t gfp_flags); struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags); void __printf(3, 4) __cold fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...); #define fscrypt_warn(inode, fmt, ...) \ fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__) #define fscrypt_err(inode, fmt, ...) \ fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__) #define FSCRYPT_MAX_IV_SIZE 32 union fscrypt_iv { struct { /* zero-based index of data unit within the file */ __le64 index; /* per-file nonce; only set in DIRECT_KEY mode */ u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; }; u8 raw[FSCRYPT_MAX_IV_SIZE]; __le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)]; }; void fscrypt_generate_iv(union fscrypt_iv *iv, u64 index, const struct fscrypt_inode_info *ci); /* * Return the number of bits used by the maximum file data unit index that is * possible on the given filesystem, using the given log2 data unit size. */ static inline int fscrypt_max_file_dun_bits(const struct super_block *sb, int du_bits) { return fls64(sb->s_maxbytes - 1) - du_bits; } /* fname.c */ bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy, u32 orig_len, u32 max_len, u32 *encrypted_len_ret); /* hkdf.c */ struct fscrypt_hkdf { struct crypto_shash *hmac_tfm; }; int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key, unsigned int master_key_size); /* * The list of contexts in which fscrypt uses HKDF. These values are used as * the first byte of the HKDF application-specific info string to guarantee that * info strings are never repeated between contexts. This ensures that all HKDF * outputs are unique and cryptographically isolated, i.e. knowledge of one * output doesn't reveal another. */ #define HKDF_CONTEXT_KEY_IDENTIFIER 1 /* info=<empty> */ #define HKDF_CONTEXT_PER_FILE_ENC_KEY 2 /* info=file_nonce */ #define HKDF_CONTEXT_DIRECT_KEY 3 /* info=mode_num */ #define HKDF_CONTEXT_IV_INO_LBLK_64_KEY 4 /* info=mode_num||fs_uuid */ #define HKDF_CONTEXT_DIRHASH_KEY 5 /* info=file_nonce */ #define HKDF_CONTEXT_IV_INO_LBLK_32_KEY 6 /* info=mode_num||fs_uuid */ #define HKDF_CONTEXT_INODE_HASH_KEY 7 /* info=<empty> */ int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context, const u8 *info, unsigned int infolen, u8 *okm, unsigned int okmlen); void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf); /* inline_crypt.c */ #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT int fscrypt_select_encryption_impl(struct fscrypt_inode_info *ci); static inline bool fscrypt_using_inline_encryption(const struct fscrypt_inode_info *ci) { return ci->ci_inlinecrypt; } int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key, const u8 *raw_key, const struct fscrypt_inode_info *ci); void fscrypt_destroy_inline_crypt_key(struct super_block *sb, struct fscrypt_prepared_key *prep_key); /* * Check whether the crypto transform or blk-crypto key has been allocated in * @prep_key, depending on which encryption implementation the file will use. */ static inline bool fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key, const struct fscrypt_inode_info *ci) { /* * The two smp_load_acquire()'s here pair with the smp_store_release()'s * in fscrypt_prepare_inline_crypt_key() and fscrypt_prepare_key(). * I.e., in some cases (namely, if this prep_key is a per-mode * encryption key) another task can publish blk_key or tfm concurrently, * executing a RELEASE barrier. We need to use smp_load_acquire() here * to safely ACQUIRE the memory the other task published. */ if (fscrypt_using_inline_encryption(ci)) return smp_load_acquire(&prep_key->blk_key) != NULL; return smp_load_acquire(&prep_key->tfm) != NULL; } #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ static inline int fscrypt_select_encryption_impl(struct fscrypt_inode_info *ci) { return 0; } static inline bool fscrypt_using_inline_encryption(const struct fscrypt_inode_info *ci) { return false; } static inline int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key, const u8 *raw_key, const struct fscrypt_inode_info *ci) { WARN_ON_ONCE(1); return -EOPNOTSUPP; } static inline void fscrypt_destroy_inline_crypt_key(struct super_block *sb, struct fscrypt_prepared_key *prep_key) { } static inline bool fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key, const struct fscrypt_inode_info *ci) { return smp_load_acquire(&prep_key->tfm) != NULL; } #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */ /* keyring.c */ /* * fscrypt_master_key_secret - secret key material of an in-use master key */ struct fscrypt_master_key_secret { /* * For v2 policy keys: HKDF context keyed by this master key. * For v1 policy keys: not set (hkdf.hmac_tfm == NULL). */ struct fscrypt_hkdf hkdf; /* * Size of the raw key in bytes. This remains set even if ->raw was * zeroized due to no longer being needed. I.e. we still remember the * size of the key even if we don't need to remember the key itself. */ u32 size; /* For v1 policy keys: the raw key. Wiped for v2 policy keys. */ u8 raw[FSCRYPT_MAX_KEY_SIZE]; } __randomize_layout; /* * fscrypt_master_key - an in-use master key * * This represents a master encryption key which has been added to the * filesystem. There are three high-level states that a key can be in: * * FSCRYPT_KEY_STATUS_PRESENT * Key is fully usable; it can be used to unlock inodes that are encrypted * with it (this includes being able to create new inodes). ->mk_present * indicates whether the key is in this state. ->mk_secret exists, the key * is in the keyring, and ->mk_active_refs > 0 due to ->mk_present. * * FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED * Removal of this key has been initiated, but some inodes that were * unlocked with it are still in-use. Like ABSENT, ->mk_secret is wiped, * and the key can no longer be used to unlock inodes. Unlike ABSENT, the * key is still in the keyring; ->mk_decrypted_inodes is nonempty; and * ->mk_active_refs > 0, being equal to the size of ->mk_decrypted_inodes. * * This state transitions to ABSENT if ->mk_decrypted_inodes becomes empty, * or to PRESENT if FS_IOC_ADD_ENCRYPTION_KEY is called again for this key. * * FSCRYPT_KEY_STATUS_ABSENT * Key is fully removed. The key is no longer in the keyring, * ->mk_decrypted_inodes is empty, ->mk_active_refs == 0, ->mk_secret is * wiped, and the key can no longer be used to unlock inodes. */ struct fscrypt_master_key { /* * Link in ->s_master_keys->key_hashtable. * Only valid if ->mk_active_refs > 0. */ struct hlist_node mk_node; /* Semaphore that protects ->mk_secret, ->mk_users, and ->mk_present */ struct rw_semaphore mk_sem; /* * Active and structural reference counts. An active ref guarantees * that the struct continues to exist, continues to be in the keyring * ->s_master_keys, and that any embedded subkeys (e.g. * ->mk_direct_keys) that have been prepared continue to exist. * A structural ref only guarantees that the struct continues to exist. * * There is one active ref associated with ->mk_present being true, and * one active ref for each inode in ->mk_decrypted_inodes. * * There is one structural ref associated with the active refcount being * nonzero. Finding a key in the keyring also takes a structural ref, * which is then held temporarily while the key is operated on. */ refcount_t mk_active_refs; refcount_t mk_struct_refs; struct rcu_head mk_rcu_head; /* * The secret key material. Wiped as soon as it is no longer needed; * for details, see the fscrypt_master_key struct comment. * * Locking: protected by ->mk_sem. */ struct fscrypt_master_key_secret mk_secret; /* * For v1 policy keys: an arbitrary key descriptor which was assigned by * userspace (->descriptor). * * For v2 policy keys: a cryptographic hash of this key (->identifier). */ struct fscrypt_key_specifier mk_spec; /* * Keyring which contains a key of type 'key_type_fscrypt_user' for each * user who has added this key. Normally each key will be added by just * one user, but it's possible that multiple users share a key, and in * that case we need to keep track of those users so that one user can't * remove the key before the others want it removed too. * * This is NULL for v1 policy keys; those can only be added by root. * * Locking: protected by ->mk_sem. (We don't just rely on the keyrings * subsystem semaphore ->mk_users->sem, as we need support for atomic * search+insert along with proper synchronization with other fields.) */ struct key *mk_users; /* * List of inodes that were unlocked using this key. This allows the * inodes to be evicted efficiently if the key is removed. */ struct list_head mk_decrypted_inodes; spinlock_t mk_decrypted_inodes_lock; /* * Per-mode encryption keys for the various types of encryption policies * that use them. Allocated and derived on-demand. */ struct fscrypt_prepared_key mk_direct_keys[FSCRYPT_MODE_MAX + 1]; struct fscrypt_prepared_key mk_iv_ino_lblk_64_keys[FSCRYPT_MODE_MAX + 1]; struct fscrypt_prepared_key mk_iv_ino_lblk_32_keys[FSCRYPT_MODE_MAX + 1]; /* Hash key for inode numbers. Initialized only when needed. */ siphash_key_t mk_ino_hash_key; bool mk_ino_hash_key_initialized; /* * Whether this key is in the "present" state, i.e. fully usable. For * details, see the fscrypt_master_key struct comment. * * Locking: protected by ->mk_sem, but can be read locklessly using * READ_ONCE(). Writers must use WRITE_ONCE() when concurrent readers * are possible. */ bool mk_present; } __randomize_layout; static inline const char *master_key_spec_type( const struct fscrypt_key_specifier *spec) { switch (spec->type) { case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: return "descriptor"; case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: return "identifier"; } return "[unknown]"; } static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec) { switch (spec->type) { case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: return FSCRYPT_KEY_DESCRIPTOR_SIZE; case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: return FSCRYPT_KEY_IDENTIFIER_SIZE; } return 0; } void fscrypt_put_master_key(struct fscrypt_master_key *mk); void fscrypt_put_master_key_activeref(struct super_block *sb, struct fscrypt_master_key *mk); struct fscrypt_master_key * fscrypt_find_master_key(struct super_block *sb, const struct fscrypt_key_specifier *mk_spec); int fscrypt_get_test_dummy_key_identifier( u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]); int fscrypt_add_test_dummy_key(struct super_block *sb, struct fscrypt_key_specifier *key_spec); int fscrypt_verify_key_added(struct super_block *sb, const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]); int __init fscrypt_init_keyring(void); /* keysetup.c */ struct fscrypt_mode { const char *friendly_name; const char *cipher_str; int keysize; /* key size in bytes */ int security_strength; /* security strength in bytes */ int ivsize; /* IV size in bytes */ int logged_cryptoapi_impl; int logged_blk_crypto_native; int logged_blk_crypto_fallback; enum blk_crypto_mode_num blk_crypto_mode; }; extern struct fscrypt_mode fscrypt_modes[]; int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key, const u8 *raw_key, const struct fscrypt_inode_info *ci); void fscrypt_destroy_prepared_key(struct super_block *sb, struct fscrypt_prepared_key *prep_key); int fscrypt_set_per_file_enc_key(struct fscrypt_inode_info *ci, const u8 *raw_key); int fscrypt_derive_dirhash_key(struct fscrypt_inode_info *ci, const struct fscrypt_master_key *mk); void fscrypt_hash_inode_number(struct fscrypt_inode_info *ci, const struct fscrypt_master_key *mk); int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported); /** * fscrypt_require_key() - require an inode's encryption key * @inode: the inode we need the key for * * If the inode is encrypted, set up its encryption key if not already done. * Then require that the key be present and return -ENOKEY otherwise. * * No locks are needed, and the key will live as long as the struct inode --- so * it won't go away from under you. * * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code * if a problem occurred while setting up the encryption key. */ static inline int fscrypt_require_key(struct inode *inode) { if (IS_ENCRYPTED(inode)) { int err = fscrypt_get_encryption_info(inode, false); if (err) return err; if (!fscrypt_has_encryption_key(inode)) return -ENOKEY; } return 0; } /* keysetup_v1.c */ void fscrypt_put_direct_key(struct fscrypt_direct_key *dk); int fscrypt_setup_v1_file_key(struct fscrypt_inode_info *ci, const u8 *raw_master_key); int fscrypt_setup_v1_file_key_via_subscribed_keyrings( struct fscrypt_inode_info *ci); /* policy.c */ bool fscrypt_policies_equal(const union fscrypt_policy *policy1, const union fscrypt_policy *policy2); int fscrypt_policy_to_key_spec(const union fscrypt_policy *policy, struct fscrypt_key_specifier *key_spec); const union fscrypt_policy *fscrypt_get_dummy_policy(struct super_block *sb); bool fscrypt_supported_policy(const union fscrypt_policy *policy_u, const struct inode *inode); int fscrypt_policy_from_context(union fscrypt_policy *policy_u, const union fscrypt_context *ctx_u, int ctx_size); const union fscrypt_policy *fscrypt_policy_to_inherit(struct inode *dir); #endif /* _FSCRYPT_PRIVATE_H */
10 10 10 10 10 3 3 3 3 6 1 1 1 1 1 1 1 1 2 6 7 3 2 13 1 12 9 2 8 3 10 1 9 1 1 1 1 1 5 4 1 1 2 19 1 1 1 2 14 1 13 10 10 9 4 1 3 6 4 2 7 3 7 2 1 2 2 1 4 7 7 8 8 1 7 7 7 8 8 10 10 10 10 10 6 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* - * net/sched/act_ct.c Connection Tracking action * * Authors: Paul Blakey <paulb@mellanox.com> * Yossi Kuperman <yossiku@mellanox.com> * Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> */ #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <linux/pkt_cls.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/rhashtable.h> #include <net/netlink.h> #include <net/pkt_sched.h> #include <net/pkt_cls.h> #include <net/act_api.h> #include <net/ip.h> #include <net/ipv6_frag.h> #include <uapi/linux/tc_act/tc_ct.h> #include <net/tc_act/tc_ct.h> #include <net/tc_wrapper.h> #include <net/netfilter/nf_flow_table.h> #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_core.h> #include <net/netfilter/nf_conntrack_zones.h> #include <net/netfilter/nf_conntrack_helper.h> #include <net/netfilter/nf_conntrack_acct.h> #include <net/netfilter/ipv6/nf_defrag_ipv6.h> #include <net/netfilter/nf_conntrack_act_ct.h> #include <net/netfilter/nf_conntrack_seqadj.h> #include <uapi/linux/netfilter/nf_nat.h> static struct workqueue_struct *act_ct_wq; static struct rhashtable zones_ht; static DEFINE_MUTEX(zones_mutex); struct zones_ht_key { struct net *net; u16 zone; }; struct tcf_ct_flow_table { struct rhash_head node; /* In zones tables */ struct rcu_work rwork; struct nf_flowtable nf_ft; refcount_t ref; struct zones_ht_key key; bool dying; }; static const struct rhashtable_params zones_params = { .head_offset = offsetof(struct tcf_ct_flow_table, node), .key_offset = offsetof(struct tcf_ct_flow_table, key), .key_len = offsetofend(struct zones_ht_key, zone), .automatic_shrinking = true, }; static struct flow_action_entry * tcf_ct_flow_table_flow_action_get_next(struct flow_action *flow_action) { int i = flow_action->num_entries++; return &flow_action->entries[i]; } static void tcf_ct_add_mangle_action(struct flow_action *action, enum flow_action_mangle_base htype, u32 offset, u32 mask, u32 val) { struct flow_action_entry *entry; entry = tcf_ct_flow_table_flow_action_get_next(action); entry->id = FLOW_ACTION_MANGLE; entry->mangle.htype = htype; entry->mangle.mask = ~mask; entry->mangle.offset = offset; entry->mangle.val = val; } /* The following nat helper functions check if the inverted reverse tuple * (target) is different then the current dir tuple - meaning nat for ports * and/or ip is needed, and add the relevant mangle actions. */ static void tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple *tuple, struct nf_conntrack_tuple target, struct flow_action *action) { if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, offsetof(struct iphdr, saddr), 0xFFFFFFFF, be32_to_cpu(target.src.u3.ip)); if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, offsetof(struct iphdr, daddr), 0xFFFFFFFF, be32_to_cpu(target.dst.u3.ip)); } static void tcf_ct_add_ipv6_addr_mangle_action(struct flow_action *action, union nf_inet_addr *addr, u32 offset) { int i; for (i = 0; i < sizeof(struct in6_addr) / sizeof(u32); i++) tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP6, i * sizeof(u32) + offset, 0xFFFFFFFF, be32_to_cpu(addr->ip6[i])); } static void tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple *tuple, struct nf_conntrack_tuple target, struct flow_action *action) { if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) tcf_ct_add_ipv6_addr_mangle_action(action, &target.src.u3, offsetof(struct ipv6hdr, saddr)); if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) tcf_ct_add_ipv6_addr_mangle_action(action, &target.dst.u3, offsetof(struct ipv6hdr, daddr)); } static void tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple *tuple, struct nf_conntrack_tuple target, struct flow_action *action) { __be16 target_src = target.src.u.tcp.port; __be16 target_dst = target.dst.u.tcp.port; if (target_src != tuple->src.u.tcp.port) tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, offsetof(struct tcphdr, source), 0xFFFF, be16_to_cpu(target_src)); if (target_dst != tuple->dst.u.tcp.port) tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, offsetof(struct tcphdr, dest), 0xFFFF, be16_to_cpu(target_dst)); } static void tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple *tuple, struct nf_conntrack_tuple target, struct flow_action *action) { __be16 target_src = target.src.u.udp.port; __be16 target_dst = target.dst.u.udp.port; if (target_src != tuple->src.u.udp.port) tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP, offsetof(struct udphdr, source), 0xFFFF, be16_to_cpu(target_src)); if (target_dst != tuple->dst.u.udp.port) tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP, offsetof(struct udphdr, dest), 0xFFFF, be16_to_cpu(target_dst)); } static void tcf_ct_flow_table_add_action_meta(struct nf_conn *ct, enum ip_conntrack_dir dir, enum ip_conntrack_info ctinfo, struct flow_action *action) { struct nf_conn_labels *ct_labels; struct flow_action_entry *entry; u32 *act_ct_labels; entry = tcf_ct_flow_table_flow_action_get_next(action); entry->id = FLOW_ACTION_CT_METADATA; #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) entry->ct_metadata.mark = READ_ONCE(ct->mark); #endif /* aligns with the CT reference on the SKB nf_ct_set */ entry->ct_metadata.cookie = (unsigned long)ct | ctinfo; entry->ct_metadata.orig_dir = dir == IP_CT_DIR_ORIGINAL; act_ct_labels = entry->ct_metadata.labels; ct_labels = nf_ct_labels_find(ct); if (ct_labels) memcpy(act_ct_labels, ct_labels->bits, NF_CT_LABELS_MAX_SIZE); else memset(act_ct_labels, 0, NF_CT_LABELS_MAX_SIZE); } static int tcf_ct_flow_table_add_action_nat(struct net *net, struct nf_conn *ct, enum ip_conntrack_dir dir, struct flow_action *action) { const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple; struct nf_conntrack_tuple target; if (!(ct->status & IPS_NAT_MASK)) return 0; nf_ct_invert_tuple(&target, &ct->tuplehash[!dir].tuple); switch (tuple->src.l3num) { case NFPROTO_IPV4: tcf_ct_flow_table_add_action_nat_ipv4(tuple, target, action); break; case NFPROTO_IPV6: tcf_ct_flow_table_add_action_nat_ipv6(tuple, target, action); break; default: return -EOPNOTSUPP; } switch (nf_ct_protonum(ct)) { case IPPROTO_TCP: tcf_ct_flow_table_add_action_nat_tcp(tuple, target, action); break; case IPPROTO_UDP: tcf_ct_flow_table_add_action_nat_udp(tuple, target, action); break; default: return -EOPNOTSUPP; } return 0; } static int tcf_ct_flow_table_fill_actions(struct net *net, struct flow_offload *flow, enum flow_offload_tuple_dir tdir, struct nf_flow_rule *flow_rule) { struct flow_action *action = &flow_rule->rule->action; int num_entries = action->num_entries; struct nf_conn *ct = flow->ct; enum ip_conntrack_info ctinfo; enum ip_conntrack_dir dir; int i, err; switch (tdir) { case FLOW_OFFLOAD_DIR_ORIGINAL: dir = IP_CT_DIR_ORIGINAL; ctinfo = test_bit(IPS_SEEN_REPLY_BIT, &ct->status) ? IP_CT_ESTABLISHED : IP_CT_NEW; if (ctinfo == IP_CT_ESTABLISHED) set_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags); break; case FLOW_OFFLOAD_DIR_REPLY: dir = IP_CT_DIR_REPLY; ctinfo = IP_CT_ESTABLISHED_REPLY; break; default: return -EOPNOTSUPP; } err = tcf_ct_flow_table_add_action_nat(net, ct, dir, action); if (err) goto err_nat; tcf_ct_flow_table_add_action_meta(ct, dir, ctinfo, action); return 0; err_nat: /* Clear filled actions */ for (i = num_entries; i < action->num_entries; i++) memset(&action->entries[i], 0, sizeof(action->entries[i])); action->num_entries = num_entries; return err; } static bool tcf_ct_flow_is_outdated(const struct flow_offload *flow) { return test_bit(IPS_SEEN_REPLY_BIT, &flow->ct->status) && test_bit(IPS_HW_OFFLOAD_BIT, &flow->ct->status) && !test_bit(NF_FLOW_HW_PENDING, &flow->flags) && !test_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags); } static void tcf_ct_flow_table_get_ref(struct tcf_ct_flow_table *ct_ft); static void tcf_ct_nf_get(struct nf_flowtable *ft) { struct tcf_ct_flow_table *ct_ft = container_of(ft, struct tcf_ct_flow_table, nf_ft); tcf_ct_flow_table_get_ref(ct_ft); } static void tcf_ct_flow_table_put(struct tcf_ct_flow_table *ct_ft); static void tcf_ct_nf_put(struct nf_flowtable *ft) { struct tcf_ct_flow_table *ct_ft = container_of(ft, struct tcf_ct_flow_table, nf_ft); tcf_ct_flow_table_put(ct_ft); } static struct nf_flowtable_type flowtable_ct = { .gc = tcf_ct_flow_is_outdated, .action = tcf_ct_flow_table_fill_actions, .get = tcf_ct_nf_get, .put = tcf_ct_nf_put, .owner = THIS_MODULE, }; static int tcf_ct_flow_table_get(struct net *net, struct tcf_ct_params *params) { struct zones_ht_key key = { .net = net, .zone = params->zone }; struct tcf_ct_flow_table *ct_ft; int err = -ENOMEM; mutex_lock(&zones_mutex); ct_ft = rhashtable_lookup_fast(&zones_ht, &key, zones_params); if (ct_ft && refcount_inc_not_zero(&ct_ft->ref)) goto out_unlock; ct_ft = kzalloc(sizeof(*ct_ft), GFP_KERNEL); if (!ct_ft) goto err_alloc; refcount_set(&ct_ft->ref, 1); ct_ft->key = key; err = rhashtable_insert_fast(&zones_ht, &ct_ft->node, zones_params); if (err) goto err_insert; ct_ft->nf_ft.type = &flowtable_ct; ct_ft->nf_ft.flags |= NF_FLOWTABLE_HW_OFFLOAD | NF_FLOWTABLE_COUNTER; err = nf_flow_table_init(&ct_ft->nf_ft); if (err) goto err_init; write_pnet(&ct_ft->nf_ft.net, net); __module_get(THIS_MODULE); out_unlock: params->ct_ft = ct_ft; params->nf_ft = &ct_ft->nf_ft; mutex_unlock(&zones_mutex); return 0; err_init: rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); err_insert: kfree(ct_ft); err_alloc: mutex_unlock(&zones_mutex); return err; } static void tcf_ct_flow_table_get_ref(struct tcf_ct_flow_table *ct_ft) { refcount_inc(&ct_ft->ref); } static void tcf_ct_flow_table_cleanup_work(struct work_struct *work) { struct tcf_ct_flow_table *ct_ft; struct flow_block *block; ct_ft = container_of(to_rcu_work(work), struct tcf_ct_flow_table, rwork); nf_flow_table_free(&ct_ft->nf_ft); block = &ct_ft->nf_ft.flow_block; down_write(&ct_ft->nf_ft.flow_block_lock); WARN_ON(!list_empty(&block->cb_list)); up_write(&ct_ft->nf_ft.flow_block_lock); kfree(ct_ft); module_put(THIS_MODULE); } static void tcf_ct_flow_table_put(struct tcf_ct_flow_table *ct_ft) { if (refcount_dec_and_test(&ct_ft->ref)) { rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); INIT_RCU_WORK(&ct_ft->rwork, tcf_ct_flow_table_cleanup_work); queue_rcu_work(act_ct_wq, &ct_ft->rwork); } } static void tcf_ct_flow_tc_ifidx(struct flow_offload *entry, struct nf_conn_act_ct_ext *act_ct_ext, u8 dir) { entry->tuplehash[dir].tuple.xmit_type = FLOW_OFFLOAD_XMIT_TC; entry->tuplehash[dir].tuple.tc.iifidx = act_ct_ext->ifindex[dir]; } static void tcf_ct_flow_ct_ext_ifidx_update(struct flow_offload *entry) { struct nf_conn_act_ct_ext *act_ct_ext; act_ct_ext = nf_conn_act_ct_ext_find(entry->ct); if (act_ct_ext) { tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_ORIGINAL); tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_REPLY); } } static void tcf_ct_flow_table_add(struct tcf_ct_flow_table *ct_ft, struct nf_conn *ct, bool tcp, bool bidirectional) { struct nf_conn_act_ct_ext *act_ct_ext; struct flow_offload *entry; int err; if (test_and_set_bit(IPS_OFFLOAD_BIT, &ct->status)) return; entry = flow_offload_alloc(ct); if (!entry) { WARN_ON_ONCE(1); goto err_alloc; } if (tcp) { ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; } if (bidirectional) __set_bit(NF_FLOW_HW_BIDIRECTIONAL, &entry->flags); act_ct_ext = nf_conn_act_ct_ext_find(ct); if (act_ct_ext) { tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_ORIGINAL); tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_REPLY); } err = flow_offload_add(&ct_ft->nf_ft, entry); if (err) goto err_add; return; err_add: flow_offload_free(entry); err_alloc: clear_bit(IPS_OFFLOAD_BIT, &ct->status); } static void tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table *ct_ft, struct nf_conn *ct, enum ip_conntrack_info ctinfo) { bool tcp = false, bidirectional = true; switch (nf_ct_protonum(ct)) { case IPPROTO_TCP: if ((ctinfo != IP_CT_ESTABLISHED && ctinfo != IP_CT_ESTABLISHED_REPLY) || !test_bit(IPS_ASSURED_BIT, &ct->status) || ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED) return; tcp = true; break; case IPPROTO_UDP: if (!nf_ct_is_confirmed(ct)) return; if (!test_bit(IPS_ASSURED_BIT, &ct->status)) bidirectional = false; break; #ifdef CONFIG_NF_CT_PROTO_GRE case IPPROTO_GRE: { struct nf_conntrack_tuple *tuple; if ((ctinfo != IP_CT_ESTABLISHED && ctinfo != IP_CT_ESTABLISHED_REPLY) || !test_bit(IPS_ASSURED_BIT, &ct->status) || ct->status & IPS_NAT_MASK) return; tuple = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; /* No support for GRE v1 */ if (tuple->src.u.gre.key || tuple->dst.u.gre.key) return; break; } #endif default: return; } if (nf_ct_ext_exist(ct, NF_CT_EXT_HELPER) || ct->status & IPS_SEQ_ADJUST) return; tcf_ct_flow_table_add(ct_ft, ct, tcp, bidirectional); } static bool tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff *skb, struct flow_offload_tuple *tuple, struct tcphdr **tcph) { struct flow_ports *ports; unsigned int thoff; struct iphdr *iph; size_t hdrsize; u8 ipproto; if (!pskb_network_may_pull(skb, sizeof(*iph))) return false; iph = ip_hdr(skb); thoff = iph->ihl * 4; if (ip_is_fragment(iph) || unlikely(thoff != sizeof(struct iphdr))) return false; ipproto = iph->protocol; switch (ipproto) { case IPPROTO_TCP: hdrsize = sizeof(struct tcphdr); break; case IPPROTO_UDP: hdrsize = sizeof(*ports); break; #ifdef CONFIG_NF_CT_PROTO_GRE case IPPROTO_GRE: hdrsize = sizeof(struct gre_base_hdr); break; #endif default: return false; } if (iph->ttl <= 1) return false; if (!pskb_network_may_pull(skb, thoff + hdrsize)) return false; switch (ipproto) { case IPPROTO_TCP: *tcph = (void *)(skb_network_header(skb) + thoff); fallthrough; case IPPROTO_UDP: ports = (struct flow_ports *)(skb_network_header(skb) + thoff); tuple->src_port = ports->source; tuple->dst_port = ports->dest; break; case IPPROTO_GRE: { struct gre_base_hdr *greh; greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff); if ((greh->flags & GRE_VERSION) != GRE_VERSION_0) return false; break; } } iph = ip_hdr(skb); tuple->src_v4.s_addr = iph->saddr; tuple->dst_v4.s_addr = iph->daddr; tuple->l3proto = AF_INET; tuple->l4proto = ipproto; return true; } static bool tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff *skb, struct flow_offload_tuple *tuple, struct tcphdr **tcph) { struct flow_ports *ports; struct ipv6hdr *ip6h; unsigned int thoff; size_t hdrsize; u8 nexthdr; if (!pskb_network_may_pull(skb, sizeof(*ip6h))) return false; ip6h = ipv6_hdr(skb); thoff = sizeof(*ip6h); nexthdr = ip6h->nexthdr; switch (nexthdr) { case IPPROTO_TCP: hdrsize = sizeof(struct tcphdr); break; case IPPROTO_UDP: hdrsize = sizeof(*ports); break; #ifdef CONFIG_NF_CT_PROTO_GRE case IPPROTO_GRE: hdrsize = sizeof(struct gre_base_hdr); break; #endif default: return false; } if (ip6h->hop_limit <= 1) return false; if (!pskb_network_may_pull(skb, thoff + hdrsize)) return false; switch (nexthdr) { case IPPROTO_TCP: *tcph = (void *)(skb_network_header(skb) + thoff); fallthrough; case IPPROTO_UDP: ports = (struct flow_ports *)(skb_network_header(skb) + thoff); tuple->src_port = ports->source; tuple->dst_port = ports->dest; break; case IPPROTO_GRE: { struct gre_base_hdr *greh; greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff); if ((greh->flags & GRE_VERSION) != GRE_VERSION_0) return false; break; } } ip6h = ipv6_hdr(skb); tuple->src_v6 = ip6h->saddr; tuple->dst_v6 = ip6h->daddr; tuple->l3proto = AF_INET6; tuple->l4proto = nexthdr; return true; } static bool tcf_ct_flow_table_lookup(struct tcf_ct_params *p, struct sk_buff *skb, u8 family) { struct nf_flowtable *nf_ft = &p->ct_ft->nf_ft; struct flow_offload_tuple_rhash *tuplehash; struct flow_offload_tuple tuple = {}; enum ip_conntrack_info ctinfo; struct tcphdr *tcph = NULL; bool force_refresh = false; struct flow_offload *flow; struct nf_conn *ct; u8 dir; switch (family) { case NFPROTO_IPV4: if (!tcf_ct_flow_table_fill_tuple_ipv4(skb, &tuple, &tcph)) return false; break; case NFPROTO_IPV6: if (!tcf_ct_flow_table_fill_tuple_ipv6(skb, &tuple, &tcph)) return false; break; default: return false; } tuplehash = flow_offload_lookup(nf_ft, &tuple); if (!tuplehash) return false; dir = tuplehash->tuple.dir; flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]); ct = flow->ct; if (dir == FLOW_OFFLOAD_DIR_REPLY && !test_bit(NF_FLOW_HW_BIDIRECTIONAL, &flow->flags)) { /* Only offload reply direction after connection became * assured. */ if (test_bit(IPS_ASSURED_BIT, &ct->status)) set_bit(NF_FLOW_HW_BIDIRECTIONAL, &flow->flags); else if (test_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags)) /* If flow_table flow has already been updated to the * established state, then don't refresh. */ return false; force_refresh = true; } if (tcph && (unlikely(tcph->fin || tcph->rst))) { flow_offload_teardown(flow); return false; } if (dir == FLOW_OFFLOAD_DIR_ORIGINAL) ctinfo = test_bit(IPS_SEEN_REPLY_BIT, &ct->status) ? IP_CT_ESTABLISHED : IP_CT_NEW; else ctinfo = IP_CT_ESTABLISHED_REPLY; nf_conn_act_ct_ext_fill(skb, ct, ctinfo); tcf_ct_flow_ct_ext_ifidx_update(flow); flow_offload_refresh(nf_ft, flow, force_refresh); if (!test_bit(IPS_ASSURED_BIT, &ct->status)) { /* Process this flow in SW to allow promoting to ASSURED */ return false; } nf_conntrack_get(&ct->ct_general); nf_ct_set(skb, ct, ctinfo); if (nf_ft->flags & NF_FLOWTABLE_COUNTER) nf_ct_acct_update(ct, dir, skb->len); return true; } static int tcf_ct_flow_tables_init(void) { return rhashtable_init(&zones_ht, &zones_params); } static void tcf_ct_flow_tables_uninit(void) { rhashtable_destroy(&zones_ht); } static struct tc_action_ops act_ct_ops; struct tc_ct_action_net { struct tc_action_net tn; /* Must be first */ }; /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb, struct tcf_ct_params *p) { enum ip_conntrack_info ctinfo; struct nf_conn *ct; ct = nf_ct_get(skb, &ctinfo); if (!ct) return false; if (!net_eq(net, read_pnet(&ct->ct_net))) goto drop_ct; if (nf_ct_zone(ct)->id != p->zone) goto drop_ct; if (p->helper) { struct nf_conn_help *help; help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); if (help && rcu_access_pointer(help->helper) != p->helper) goto drop_ct; } /* Force conntrack entry direction. */ if ((p->ct_action & TCA_CT_ACT_FORCE) && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { if (nf_ct_is_confirmed(ct)) nf_ct_kill(ct); goto drop_ct; } return true; drop_ct: nf_ct_put(ct); nf_ct_set(skb, NULL, IP_CT_UNTRACKED); return false; } static u8 tcf_ct_skb_nf_family(struct sk_buff *skb) { u8 family = NFPROTO_UNSPEC; switch (skb_protocol(skb, true)) { case htons(ETH_P_IP): family = NFPROTO_IPV4; break; case htons(ETH_P_IPV6): family = NFPROTO_IPV6; break; default: break; } return family; } static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag) { unsigned int len; len = skb_network_offset(skb) + sizeof(struct iphdr); if (unlikely(skb->len < len)) return -EINVAL; if (unlikely(!pskb_may_pull(skb, len))) return -ENOMEM; *frag = ip_is_fragment(ip_hdr(skb)); return 0; } static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag) { unsigned int flags = 0, len, payload_ofs = 0; unsigned short frag_off; int nexthdr; len = skb_network_offset(skb) + sizeof(struct ipv6hdr); if (unlikely(skb->len < len)) return -EINVAL; if (unlikely(!pskb_may_pull(skb, len))) return -ENOMEM; nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags); if (unlikely(nexthdr < 0)) return -EPROTO; *frag = flags & IP6_FH_F_FRAG; return 0; } static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb, u8 family, u16 zone, bool *defrag) { enum ip_conntrack_info ctinfo; struct nf_conn *ct; int err = 0; bool frag; u8 proto; u16 mru; /* Previously seen (loopback)? Ignore. */ ct = nf_ct_get(skb, &ctinfo); if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED) return 0; if (family == NFPROTO_IPV4) err = tcf_ct_ipv4_is_fragment(skb, &frag); else err = tcf_ct_ipv6_is_fragment(skb, &frag); if (err || !frag) return err; err = nf_ct_handle_fragments(net, skb, zone, family, &proto, &mru); if (err) return err; *defrag = true; tc_skb_cb(skb)->mru = mru; return 0; } static void tcf_ct_params_free(struct tcf_ct_params *params) { if (params->helper) { #if IS_ENABLED(CONFIG_NF_NAT) if (params->ct_action & TCA_CT_ACT_NAT) nf_nat_helper_put(params->helper); #endif nf_conntrack_helper_put(params->helper); } if (params->ct_ft) tcf_ct_flow_table_put(params->ct_ft); if (params->tmpl) { if (params->put_labels) nf_connlabels_put(nf_ct_net(params->tmpl)); nf_ct_put(params->tmpl); } kfree(params); } static void tcf_ct_params_free_rcu(struct rcu_head *head) { struct tcf_ct_params *params; params = container_of(head, struct tcf_ct_params, rcu); tcf_ct_params_free(params); } static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask) { #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) u32 new_mark; if (!mask) return; new_mark = mark | (READ_ONCE(ct->mark) & ~(mask)); if (READ_ONCE(ct->mark) != new_mark) { WRITE_ONCE(ct->mark, new_mark); if (nf_ct_is_confirmed(ct)) nf_conntrack_event_cache(IPCT_MARK, ct); } #endif } static void tcf_ct_act_set_labels(struct nf_conn *ct, u32 *labels, u32 *labels_m) { #if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) size_t labels_sz = sizeof_field(struct tcf_ct_params, labels); if (!memchr_inv(labels_m, 0, labels_sz)) return; nf_connlabels_replace(ct, labels, labels_m, 4); #endif } static int tcf_ct_act_nat(struct sk_buff *skb, struct nf_conn *ct, enum ip_conntrack_info ctinfo, int ct_action, struct nf_nat_range2 *range, bool commit) { #if IS_ENABLED(CONFIG_NF_NAT) int err, action = 0; if (!(ct_action & TCA_CT_ACT_NAT)) return NF_ACCEPT; if (ct_action & TCA_CT_ACT_NAT_SRC) action |= BIT(NF_NAT_MANIP_SRC); if (ct_action & TCA_CT_ACT_NAT_DST) action |= BIT(NF_NAT_MANIP_DST); err = nf_ct_nat(skb, ct, ctinfo, &action, range, commit); if (err != NF_ACCEPT) return err & NF_VERDICT_MASK; if (action & BIT(NF_NAT_MANIP_SRC)) tc_skb_cb(skb)->post_ct_snat = 1; if (action & BIT(NF_NAT_MANIP_DST)) tc_skb_cb(skb)->post_ct_dnat = 1; return err; #else return NF_ACCEPT; #endif } TC_INDIRECT_SCOPE int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a, struct tcf_result *res) { struct net *net = dev_net(skb->dev); enum ip_conntrack_info ctinfo; struct tcf_ct *c = to_ct(a); struct nf_conn *tmpl = NULL; struct nf_hook_state state; bool cached, commit, clear; int nh_ofs, err, retval; struct tcf_ct_params *p; bool add_helper = false; bool skip_add = false; bool defrag = false; struct nf_conn *ct; u8 family; p = rcu_dereference_bh(c->params); retval = READ_ONCE(c->tcf_action); commit = p->ct_action & TCA_CT_ACT_COMMIT; clear = p->ct_action & TCA_CT_ACT_CLEAR; tmpl = p->tmpl; tcf_lastuse_update(&c->tcf_tm); tcf_action_update_bstats(&c->common, skb); if (clear) { tc_skb_cb(skb)->post_ct = false; ct = nf_ct_get(skb, &ctinfo); if (ct) { nf_ct_put(ct); nf_ct_set(skb, NULL, IP_CT_UNTRACKED); } goto out_clear; } family = tcf_ct_skb_nf_family(skb); if (family == NFPROTO_UNSPEC) goto drop; /* The conntrack module expects to be working at L3. * We also try to pull the IPv4/6 header to linear area */ nh_ofs = skb_network_offset(skb); skb_pull_rcsum(skb, nh_ofs); err = tcf_ct_handle_fragments(net, skb, family, p->zone, &defrag); if (err) goto out_frag; err = nf_ct_skb_network_trim(skb, family); if (err) goto drop; /* If we are recirculating packets to match on ct fields and * committing with a separate ct action, then we don't need to * actually run the packet through conntrack twice unless it's for a * different zone. */ cached = tcf_ct_skb_nfct_cached(net, skb, p); if (!cached) { if (tcf_ct_flow_table_lookup(p, skb, family)) { skip_add = true; goto do_nat; } /* Associate skb with specified zone. */ if (tmpl) { nf_conntrack_put(skb_nfct(skb)); nf_conntrack_get(&tmpl->ct_general); nf_ct_set(skb, tmpl, IP_CT_NEW); } state.hook = NF_INET_PRE_ROUTING; state.net = net; state.pf = family; err = nf_conntrack_in(skb, &state); if (err != NF_ACCEPT) goto nf_error; } do_nat: ct = nf_ct_get(skb, &ctinfo); if (!ct) goto out_push; nf_ct_deliver_cached_events(ct); nf_conn_act_ct_ext_fill(skb, ct, ctinfo); err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit); if (err != NF_ACCEPT) goto nf_error; if (!nf_ct_is_confirmed(ct) && commit && p->helper && !nfct_help(ct)) { err = __nf_ct_try_assign_helper(ct, p->tmpl, GFP_ATOMIC); if (err) goto drop; add_helper = true; if (p->ct_action & TCA_CT_ACT_NAT && !nfct_seqadj(ct)) { if (!nfct_seqadj_ext_add(ct)) goto drop; } } if (nf_ct_is_confirmed(ct) ? ((!cached && !skip_add) || add_helper) : commit) { err = nf_ct_helper(skb, ct, ctinfo, family); if (err != NF_ACCEPT) goto nf_error; } if (commit) { tcf_ct_act_set_mark(ct, p->mark, p->mark_mask); tcf_ct_act_set_labels(ct, p->labels, p->labels_mask); if (!nf_ct_is_confirmed(ct)) nf_conn_act_ct_ext_add(skb, ct, ctinfo); /* This will take care of sending queued events * even if the connection is already confirmed. */ err = nf_conntrack_confirm(skb); if (err != NF_ACCEPT) goto nf_error; /* The ct may be dropped if a clash has been resolved, * so it's necessary to retrieve it from skb again to * prevent UAF. */ ct = nf_ct_get(skb, &ctinfo); if (!ct) skip_add = true; } if (!skip_add) tcf_ct_flow_table_process_conn(p->ct_ft, ct, ctinfo); out_push: skb_push_rcsum(skb, nh_ofs); tc_skb_cb(skb)->post_ct = true; tc_skb_cb(skb)->zone = p->zone; out_clear: if (defrag) qdisc_skb_cb(skb)->pkt_len = skb->len; return retval; out_frag: if (err != -EINPROGRESS) tcf_action_inc_drop_qstats(&c->common); return TC_ACT_CONSUMED; drop: tcf_action_inc_drop_qstats(&c->common); return TC_ACT_SHOT; nf_error: /* some verdicts store extra data in upper bits, such * as errno or queue number. */ switch (err & NF_VERDICT_MASK) { case NF_DROP: goto drop; case NF_STOLEN: tcf_action_inc_drop_qstats(&c->common); return TC_ACT_CONSUMED; default: DEBUG_NET_WARN_ON_ONCE(1); goto drop; } } static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = { [TCA_CT_ACTION] = { .type = NLA_U16 }, [TCA_CT_PARMS] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_ct)), [TCA_CT_ZONE] = { .type = NLA_U16 }, [TCA_CT_MARK] = { .type = NLA_U32 }, [TCA_CT_MARK_MASK] = { .type = NLA_U32 }, [TCA_CT_LABELS] = { .type = NLA_BINARY, .len = 128 / BITS_PER_BYTE }, [TCA_CT_LABELS_MASK] = { .type = NLA_BINARY, .len = 128 / BITS_PER_BYTE }, [TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 }, [TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 }, [TCA_CT_NAT_IPV6_MIN] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), [TCA_CT_NAT_IPV6_MAX] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), [TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 }, [TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 }, [TCA_CT_HELPER_NAME] = { .type = NLA_STRING, .len = NF_CT_HELPER_NAME_LEN }, [TCA_CT_HELPER_FAMILY] = { .type = NLA_U8 }, [TCA_CT_HELPER_PROTO] = { .type = NLA_U8 }, }; static int tcf_ct_fill_params_nat(struct tcf_ct_params *p, struct tc_ct *parm, struct nlattr **tb, struct netlink_ext_ack *extack) { struct nf_nat_range2 *range; if (!(p->ct_action & TCA_CT_ACT_NAT)) return 0; if (!IS_ENABLED(CONFIG_NF_NAT)) { NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel"); return -EOPNOTSUPP; } if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) return 0; if ((p->ct_action & TCA_CT_ACT_NAT_SRC) && (p->ct_action & TCA_CT_ACT_NAT_DST)) { NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time"); return -EOPNOTSUPP; } range = &p->range; if (tb[TCA_CT_NAT_IPV4_MIN]) { struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX]; p->ipv4_range = true; range->flags |= NF_NAT_RANGE_MAP_IPS; range->min_addr.ip = nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]); range->max_addr.ip = max_attr ? nla_get_in_addr(max_attr) : range->min_addr.ip; } else if (tb[TCA_CT_NAT_IPV6_MIN]) { struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX]; p->ipv4_range = false; range->flags |= NF_NAT_RANGE_MAP_IPS; range->min_addr.in6 = nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]); range->max_addr.in6 = max_attr ? nla_get_in6_addr(max_attr) : range->min_addr.in6; } if (tb[TCA_CT_NAT_PORT_MIN]) { range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED; range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]); range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ? nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) : range->min_proto.all; } return 0; } static void tcf_ct_set_key_val(struct nlattr **tb, void *val, int val_type, void *mask, int mask_type, int len) { if (!tb[val_type]) return; nla_memcpy(val, tb[val_type], len); if (!mask) return; if (mask_type == TCA_CT_UNSPEC || !tb[mask_type]) memset(mask, 0xff, len); else nla_memcpy(mask, tb[mask_type], len); } static int tcf_ct_fill_params(struct net *net, struct tcf_ct_params *p, struct tc_ct *parm, struct nlattr **tb, struct netlink_ext_ack *extack) { struct nf_conntrack_zone zone; int err, family, proto, len; bool put_labels = false; struct nf_conn *tmpl; char *name; p->zone = NF_CT_DEFAULT_ZONE_ID; tcf_ct_set_key_val(tb, &p->ct_action, TCA_CT_ACTION, NULL, TCA_CT_UNSPEC, sizeof(p->ct_action)); if (p->ct_action & TCA_CT_ACT_CLEAR) return 0; err = tcf_ct_fill_params_nat(p, parm, tb, extack); if (err) return err; if (tb[TCA_CT_MARK]) { if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) { NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled."); return -EOPNOTSUPP; } tcf_ct_set_key_val(tb, &p->mark, TCA_CT_MARK, &p->mark_mask, TCA_CT_MARK_MASK, sizeof(p->mark)); } if (tb[TCA_CT_LABELS]) { unsigned int n_bits = sizeof_field(struct tcf_ct_params, labels) * 8; if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) { NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled."); return -EOPNOTSUPP; } if (nf_connlabels_get(net, n_bits - 1)) { NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length"); return -EOPNOTSUPP; } else { put_labels = true; } tcf_ct_set_key_val(tb, p->labels, TCA_CT_LABELS, p->labels_mask, TCA_CT_LABELS_MASK, sizeof(p->labels)); } if (tb[TCA_CT_ZONE]) { if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) { NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled."); return -EOPNOTSUPP; } tcf_ct_set_key_val(tb, &p->zone, TCA_CT_ZONE, NULL, TCA_CT_UNSPEC, sizeof(p->zone)); } nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0); tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL); if (!tmpl) { NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template"); return -ENOMEM; } p->tmpl = tmpl; if (tb[TCA_CT_HELPER_NAME]) { name = nla_data(tb[TCA_CT_HELPER_NAME]); len = nla_len(tb[TCA_CT_HELPER_NAME]); if (len > 16 || name[len - 1] != '\0') { NL_SET_ERR_MSG_MOD(extack, "Failed to parse helper name."); err = -EINVAL; goto err; } family = tb[TCA_CT_HELPER_FAMILY] ? nla_get_u8(tb[TCA_CT_HELPER_FAMILY]) : AF_INET; proto = tb[TCA_CT_HELPER_PROTO] ? nla_get_u8(tb[TCA_CT_HELPER_PROTO]) : IPPROTO_TCP; err = nf_ct_add_helper(tmpl, name, family, proto, p->ct_action & TCA_CT_ACT_NAT, &p->helper); if (err) { NL_SET_ERR_MSG_MOD(extack, "Failed to add helper"); goto err; } } p->put_labels = put_labels; if (p->ct_action & TCA_CT_ACT_COMMIT) __set_bit(IPS_CONFIRMED_BIT, &tmpl->status); return 0; err: if (put_labels) nf_connlabels_put(net); nf_ct_put(p->tmpl); p->tmpl = NULL; return err; } static int tcf_ct_init(struct net *net, struct nlattr *nla, struct nlattr *est, struct tc_action **a, struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack) { struct tc_action_net *tn = net_generic(net, act_ct_ops.net_id); bool bind = flags & TCA_ACT_FLAGS_BIND; struct tcf_ct_params *params = NULL; struct nlattr *tb[TCA_CT_MAX + 1]; struct tcf_chain *goto_ch = NULL; struct tc_ct *parm; struct tcf_ct *c; int err, res = 0; u32 index; if (!nla) { NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed"); return -EINVAL; } err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack); if (err < 0) return err; if (!tb[TCA_CT_PARMS]) { NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters"); return -EINVAL; } parm = nla_data(tb[TCA_CT_PARMS]); index = parm->index; err = tcf_idr_check_alloc(tn, &index, a, bind); if (err < 0) return err; if (!err) { err = tcf_idr_create_from_flags(tn, index, est, a, &act_ct_ops, bind, flags); if (err) { tcf_idr_cleanup(tn, index); return err; } res = ACT_P_CREATED; } else { if (bind) return ACT_P_BOUND; if (!(flags & TCA_ACT_FLAGS_REPLACE)) { tcf_idr_release(*a, bind); return -EEXIST; } } err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); if (err < 0) goto cleanup; c = to_ct(*a); params = kzalloc(sizeof(*params), GFP_KERNEL); if (unlikely(!params)) { err = -ENOMEM; goto cleanup; } err = tcf_ct_fill_params(net, params, parm, tb, extack); if (err) goto cleanup; err = tcf_ct_flow_table_get(net, params); if (err) goto cleanup; spin_lock_bh(&c->tcf_lock); goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); params = rcu_replace_pointer(c->params, params, lockdep_is_held(&c->tcf_lock)); spin_unlock_bh(&c->tcf_lock); if (goto_ch) tcf_chain_put_by_act(goto_ch); if (params) call_rcu(&params->rcu, tcf_ct_params_free_rcu); return res; cleanup: if (goto_ch) tcf_chain_put_by_act(goto_ch); if (params) tcf_ct_params_free(params); tcf_idr_release(*a, bind); return err; } static void tcf_ct_cleanup(struct tc_action *a) { struct tcf_ct_params *params; struct tcf_ct *c = to_ct(a); params = rcu_dereference_protected(c->params, 1); if (params) call_rcu(&params->rcu, tcf_ct_params_free_rcu); } static int tcf_ct_dump_key_val(struct sk_buff *skb, void *val, int val_type, void *mask, int mask_type, int len) { int err; if (mask && !memchr_inv(mask, 0, len)) return 0; err = nla_put(skb, val_type, len, val); if (err) return err; if (mask_type != TCA_CT_UNSPEC) { err = nla_put(skb, mask_type, len, mask); if (err) return err; } return 0; } static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p) { struct nf_nat_range2 *range = &p->range; if (!(p->ct_action & TCA_CT_ACT_NAT)) return 0; if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) return 0; if (range->flags & NF_NAT_RANGE_MAP_IPS) { if (p->ipv4_range) { if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN, range->min_addr.ip)) return -1; if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX, range->max_addr.ip)) return -1; } else { if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN, &range->min_addr.in6)) return -1; if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX, &range->max_addr.in6)) return -1; } } if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) { if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN, range->min_proto.all)) return -1; if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX, range->max_proto.all)) return -1; } return 0; } static int tcf_ct_dump_helper(struct sk_buff *skb, struct nf_conntrack_helper *helper) { if (!helper) return 0; if (nla_put_string(skb, TCA_CT_HELPER_NAME, helper->name) || nla_put_u8(skb, TCA_CT_HELPER_FAMILY, helper->tuple.src.l3num) || nla_put_u8(skb, TCA_CT_HELPER_PROTO, helper->tuple.dst.protonum)) return -1; return 0; } static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a, int bind, int ref) { unsigned char *b = skb_tail_pointer(skb); struct tcf_ct *c = to_ct(a); struct tcf_ct_params *p; struct tc_ct opt = { .index = c->tcf_index, .refcnt = refcount_read(&c->tcf_refcnt) - ref, .bindcnt = atomic_read(&c->tcf_bindcnt) - bind, }; struct tcf_t t; spin_lock_bh(&c->tcf_lock); p = rcu_dereference_protected(c->params, lockdep_is_held(&c->tcf_lock)); opt.action = c->tcf_action; if (tcf_ct_dump_key_val(skb, &p->ct_action, TCA_CT_ACTION, NULL, TCA_CT_UNSPEC, sizeof(p->ct_action))) goto nla_put_failure; if (p->ct_action & TCA_CT_ACT_CLEAR) goto skip_dump; if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && tcf_ct_dump_key_val(skb, &p->mark, TCA_CT_MARK, &p->mark_mask, TCA_CT_MARK_MASK, sizeof(p->mark))) goto nla_put_failure; if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && tcf_ct_dump_key_val(skb, p->labels, TCA_CT_LABELS, p->labels_mask, TCA_CT_LABELS_MASK, sizeof(p->labels))) goto nla_put_failure; if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && tcf_ct_dump_key_val(skb, &p->zone, TCA_CT_ZONE, NULL, TCA_CT_UNSPEC, sizeof(p->zone))) goto nla_put_failure; if (tcf_ct_dump_nat(skb, p)) goto nla_put_failure; if (tcf_ct_dump_helper(skb, p->helper)) goto nla_put_failure; skip_dump: if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt)) goto nla_put_failure; tcf_tm_dump(&t, &c->tcf_tm); if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD)) goto nla_put_failure; spin_unlock_bh(&c->tcf_lock); return skb->len; nla_put_failure: spin_unlock_bh(&c->tcf_lock); nlmsg_trim(skb, b); return -1; } static void tcf_stats_update(struct tc_action *a, u64 bytes, u64 packets, u64 drops, u64 lastuse, bool hw) { struct tcf_ct *c = to_ct(a); tcf_action_update_stats(a, bytes, packets, drops, hw); c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse); } static int tcf_ct_offload_act_setup(struct tc_action *act, void *entry_data, u32 *index_inc, bool bind, struct netlink_ext_ack *extack) { if (bind) { struct flow_action_entry *entry = entry_data; if (tcf_ct_helper(act)) return -EOPNOTSUPP; entry->id = FLOW_ACTION_CT; entry->ct.action = tcf_ct_action(act); entry->ct.zone = tcf_ct_zone(act); entry->ct.flow_table = tcf_ct_ft(act); *index_inc = 1; } else { struct flow_offload_action *fl_action = entry_data; fl_action->id = FLOW_ACTION_CT; } return 0; } static struct tc_action_ops act_ct_ops = { .kind = "ct", .id = TCA_ID_CT, .owner = THIS_MODULE, .act = tcf_ct_act, .dump = tcf_ct_dump, .init = tcf_ct_init, .cleanup = tcf_ct_cleanup, .stats_update = tcf_stats_update, .offload_act_setup = tcf_ct_offload_act_setup, .size = sizeof(struct tcf_ct), }; MODULE_ALIAS_NET_ACT("ct"); static __net_init int ct_init_net(struct net *net) { struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id); return tc_action_net_init(net, &tn->tn, &act_ct_ops); } static void __net_exit ct_exit_net(struct list_head *net_list) { tc_action_net_exit(net_list, act_ct_ops.net_id); } static struct pernet_operations ct_net_ops = { .init = ct_init_net, .exit_batch = ct_exit_net, .id = &act_ct_ops.net_id, .size = sizeof(struct tc_ct_action_net), }; static int __init ct_init_module(void) { int err; act_ct_wq = alloc_ordered_workqueue("act_ct_workqueue", 0); if (!act_ct_wq) return -ENOMEM; err = tcf_ct_flow_tables_init(); if (err) goto err_tbl_init; err = tcf_register_action(&act_ct_ops, &ct_net_ops); if (err) goto err_register; static_branch_inc(&tcf_frag_xmit_count); return 0; err_register: tcf_ct_flow_tables_uninit(); err_tbl_init: destroy_workqueue(act_ct_wq); return err; } static void __exit ct_cleanup_module(void) { static_branch_dec(&tcf_frag_xmit_count); tcf_unregister_action(&act_ct_ops, &ct_net_ops); tcf_ct_flow_tables_uninit(); destroy_workqueue(act_ct_wq); } module_init(ct_init_module); module_exit(ct_cleanup_module); MODULE_AUTHOR("Paul Blakey <paulb@mellanox.com>"); MODULE_AUTHOR("Yossi Kuperman <yossiku@mellanox.com>"); MODULE_AUTHOR("Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>"); MODULE_DESCRIPTION("Connection tracking action"); MODULE_LICENSE("GPL v2");
2609 149 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 /* SPDX-License-Identifier: GPL-2.0 */ /* rwsem.h: R/W semaphores, public interface * * Written by David Howells (dhowells@redhat.com). * Derived from asm-i386/semaphore.h */ #ifndef _LINUX_RWSEM_H #define _LINUX_RWSEM_H #include <linux/linkage.h> #include <linux/types.h> #include <linux/list.h> #include <linux/spinlock.h> #include <linux/atomic.h> #include <linux/err.h> #include <linux/cleanup.h> #ifdef CONFIG_DEBUG_LOCK_ALLOC # define __RWSEM_DEP_MAP_INIT(lockname) \ .dep_map = { \ .name = #lockname, \ .wait_type_inner = LD_WAIT_SLEEP, \ }, #else # define __RWSEM_DEP_MAP_INIT(lockname) #endif #ifndef CONFIG_PREEMPT_RT #ifdef CONFIG_RWSEM_SPIN_ON_OWNER #include <linux/osq_lock.h> #endif /* * For an uncontended rwsem, count and owner are the only fields a task * needs to touch when acquiring the rwsem. So they are put next to each * other to increase the chance that they will share the same cacheline. * * In a contended rwsem, the owner is likely the most frequently accessed * field in the structure as the optimistic waiter that holds the osq lock * will spin on owner. For an embedded rwsem, other hot fields in the * containing structure should be moved further away from the rwsem to * reduce the chance that they will share the same cacheline causing * cacheline bouncing problem. */ struct rw_semaphore { atomic_long_t count; /* * Write owner or one of the read owners as well flags regarding * the current state of the rwsem. Can be used as a speculative * check to see if the write owner is running on the cpu. */ atomic_long_t owner; #ifdef CONFIG_RWSEM_SPIN_ON_OWNER struct optimistic_spin_queue osq; /* spinner MCS lock */ #endif raw_spinlock_t wait_lock; struct list_head wait_list; #ifdef CONFIG_DEBUG_RWSEMS void *magic; #endif #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif }; #define RWSEM_UNLOCKED_VALUE 0UL #define RWSEM_WRITER_LOCKED (1UL << 0) #define __RWSEM_COUNT_INIT(name) .count = ATOMIC_LONG_INIT(RWSEM_UNLOCKED_VALUE) static inline int rwsem_is_locked(struct rw_semaphore *sem) { return atomic_long_read(&sem->count) != RWSEM_UNLOCKED_VALUE; } static inline void rwsem_assert_held_nolockdep(const struct rw_semaphore *sem) { WARN_ON(atomic_long_read(&sem->count) == RWSEM_UNLOCKED_VALUE); } static inline void rwsem_assert_held_write_nolockdep(const struct rw_semaphore *sem) { WARN_ON(!(atomic_long_read(&sem->count) & RWSEM_WRITER_LOCKED)); } /* Common initializer macros and functions */ #ifdef CONFIG_DEBUG_RWSEMS # define __RWSEM_DEBUG_INIT(lockname) .magic = &lockname, #else # define __RWSEM_DEBUG_INIT(lockname) #endif #ifdef CONFIG_RWSEM_SPIN_ON_OWNER #define __RWSEM_OPT_INIT(lockname) .osq = OSQ_LOCK_UNLOCKED, #else #define __RWSEM_OPT_INIT(lockname) #endif #define __RWSEM_INITIALIZER(name) \ { __RWSEM_COUNT_INIT(name), \ .owner = ATOMIC_LONG_INIT(0), \ __RWSEM_OPT_INIT(name) \ .wait_lock = __RAW_SPIN_LOCK_UNLOCKED(name.wait_lock),\ .wait_list = LIST_HEAD_INIT((name).wait_list), \ __RWSEM_DEBUG_INIT(name) \ __RWSEM_DEP_MAP_INIT(name) } #define DECLARE_RWSEM(name) \ struct rw_semaphore name = __RWSEM_INITIALIZER(name) extern void __init_rwsem(struct rw_semaphore *sem, const char *name, struct lock_class_key *key); #define init_rwsem(sem) \ do { \ static struct lock_class_key __key; \ \ __init_rwsem((sem), #sem, &__key); \ } while (0) /* * This is the same regardless of which rwsem implementation that is being used. * It is just a heuristic meant to be called by somebody already holding the * rwsem to see if somebody from an incompatible type is wanting access to the * lock. */ static inline int rwsem_is_contended(struct rw_semaphore *sem) { return !list_empty(&sem->wait_list); } #else /* !CONFIG_PREEMPT_RT */ #include <linux/rwbase_rt.h> struct rw_semaphore { struct rwbase_rt rwbase; #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif }; #define __RWSEM_INITIALIZER(name) \ { \ .rwbase = __RWBASE_INITIALIZER(name), \ __RWSEM_DEP_MAP_INIT(name) \ } #define DECLARE_RWSEM(lockname) \ struct rw_semaphore lockname = __RWSEM_INITIALIZER(lockname) extern void __init_rwsem(struct rw_semaphore *rwsem, const char *name, struct lock_class_key *key); #define init_rwsem(sem) \ do { \ static struct lock_class_key __key; \ \ __init_rwsem((sem), #sem, &__key); \ } while (0) static __always_inline int rwsem_is_locked(const struct rw_semaphore *sem) { return rw_base_is_locked(&sem->rwbase); } static __always_inline void rwsem_assert_held_nolockdep(const struct rw_semaphore *sem) { WARN_ON(!rwsem_is_locked(sem)); } static __always_inline void rwsem_assert_held_write_nolockdep(const struct rw_semaphore *sem) { WARN_ON(!rw_base_is_write_locked(&sem->rwbase)); } static __always_inline int rwsem_is_contended(struct rw_semaphore *sem) { return rw_base_is_contended(&sem->rwbase); } #endif /* CONFIG_PREEMPT_RT */ /* * The functions below are the same for all rwsem implementations including * the RT specific variant. */ static inline void rwsem_assert_held(const struct rw_semaphore *sem) { if (IS_ENABLED(CONFIG_LOCKDEP)) lockdep_assert_held(sem); else rwsem_assert_held_nolockdep(sem); } static inline void rwsem_assert_held_write(const struct rw_semaphore *sem) { if (IS_ENABLED(CONFIG_LOCKDEP)) lockdep_assert_held_write(sem); else rwsem_assert_held_write_nolockdep(sem); } /* * lock for reading */ extern void down_read(struct rw_semaphore *sem); extern int __must_check down_read_interruptible(struct rw_semaphore *sem); extern int __must_check down_read_killable(struct rw_semaphore *sem); /* * trylock for reading -- returns 1 if successful, 0 if contention */ extern int down_read_trylock(struct rw_semaphore *sem); /* * lock for writing */ extern void down_write(struct rw_semaphore *sem); extern int __must_check down_write_killable(struct rw_semaphore *sem); /* * trylock for writing -- returns 1 if successful, 0 if contention */ extern int down_write_trylock(struct rw_semaphore *sem); /* * release a read lock */ extern void up_read(struct rw_semaphore *sem); /* * release a write lock */ extern void up_write(struct rw_semaphore *sem); DEFINE_GUARD(rwsem_read, struct rw_semaphore *, down_read(_T), up_read(_T)) DEFINE_GUARD_COND(rwsem_read, _try, down_read_trylock(_T)) DEFINE_GUARD_COND(rwsem_read, _intr, down_read_interruptible(_T) == 0) DEFINE_GUARD(rwsem_write, struct rw_semaphore *, down_write(_T), up_write(_T)) DEFINE_GUARD_COND(rwsem_write, _try, down_write_trylock(_T)) /* * downgrade write lock to read lock */ extern void downgrade_write(struct rw_semaphore *sem); #ifdef CONFIG_DEBUG_LOCK_ALLOC /* * nested locking. NOTE: rwsems are not allowed to recurse * (which occurs if the same task tries to acquire the same * lock instance multiple times), but multiple locks of the * same lock class might be taken, if the order of the locks * is always the same. This ordering rule can be expressed * to lockdep via the _nested() APIs, but enumerating the * subclasses that are used. (If the nesting relationship is * static then another method for expressing nested locking is * the explicit definition of lock class keys and the use of * lockdep_set_class() at lock initialization time. * See Documentation/locking/lockdep-design.rst for more details.) */ extern void down_read_nested(struct rw_semaphore *sem, int subclass); extern int __must_check down_read_killable_nested(struct rw_semaphore *sem, int subclass); extern void down_write_nested(struct rw_semaphore *sem, int subclass); extern int down_write_killable_nested(struct rw_semaphore *sem, int subclass); extern void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest_lock); # define down_write_nest_lock(sem, nest_lock) \ do { \ typecheck(struct lockdep_map *, &(nest_lock)->dep_map); \ _down_write_nest_lock(sem, &(nest_lock)->dep_map); \ } while (0) /* * Take/release a lock when not the owner will release it. * * [ This API should be avoided as much as possible - the * proper abstraction for this case is completions. ] */ extern void down_read_non_owner(struct rw_semaphore *sem); extern void up_read_non_owner(struct rw_semaphore *sem); #else # define down_read_nested(sem, subclass) down_read(sem) # define down_read_killable_nested(sem, subclass) down_read_killable(sem) # define down_write_nest_lock(sem, nest_lock) down_write(sem) # define down_write_nested(sem, subclass) down_write(sem) # define down_write_killable_nested(sem, subclass) down_write_killable(sem) # define down_read_non_owner(sem) down_read(sem) # define up_read_non_owner(sem) up_read(sem) #endif #endif /* _LINUX_RWSEM_H */
1 1 3 1 3 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 // SPDX-License-Identifier: GPL-2.0-only /* * debugfs code for HSR & PRP * Copyright (C) 2019 Texas Instruments Incorporated * * Author(s): * Murali Karicheri <m-karicheri2@ti.com> */ #include <linux/module.h> #include <linux/errno.h> #include <linux/debugfs.h> #include "hsr_main.h" #include "hsr_framereg.h" static struct dentry *hsr_debugfs_root_dir; /* hsr_node_table_show - Formats and prints node_table entries */ static int hsr_node_table_show(struct seq_file *sfp, void *data) { struct hsr_priv *priv = (struct hsr_priv *)sfp->private; struct hsr_node *node; seq_printf(sfp, "Node Table entries for (%s) device\n", (priv->prot_version == PRP_V1 ? "PRP" : "HSR")); seq_puts(sfp, "MAC-Address-A, MAC-Address-B, time_in[A], "); seq_puts(sfp, "time_in[B], Address-B port, "); if (priv->prot_version == PRP_V1) seq_puts(sfp, "SAN-A, SAN-B, DAN-P\n"); else seq_puts(sfp, "DAN-H\n"); rcu_read_lock(); list_for_each_entry_rcu(node, &priv->node_db, mac_list) { /* skip self node */ if (hsr_addr_is_self(priv, node->macaddress_A)) continue; seq_printf(sfp, "%pM ", &node->macaddress_A[0]); seq_printf(sfp, "%pM ", &node->macaddress_B[0]); seq_printf(sfp, "%10lx, ", node->time_in[HSR_PT_SLAVE_A]); seq_printf(sfp, "%10lx, ", node->time_in[HSR_PT_SLAVE_B]); seq_printf(sfp, "%14x, ", node->addr_B_port); if (priv->prot_version == PRP_V1) seq_printf(sfp, "%5x, %5x, %5x\n", node->san_a, node->san_b, (node->san_a == 0 && node->san_b == 0)); else seq_printf(sfp, "%5x\n", 1); } rcu_read_unlock(); return 0; } DEFINE_SHOW_ATTRIBUTE(hsr_node_table); void hsr_debugfs_rename(struct net_device *dev) { struct hsr_priv *priv = netdev_priv(dev); struct dentry *d; d = debugfs_rename(hsr_debugfs_root_dir, priv->node_tbl_root, hsr_debugfs_root_dir, dev->name); if (IS_ERR(d)) netdev_warn(dev, "failed to rename\n"); else priv->node_tbl_root = d; } /* hsr_debugfs_init - create hsr node_table file for dumping * the node table * * Description: * When debugfs is configured this routine sets up the node_table file per * hsr device for dumping the node_table entries */ void hsr_debugfs_init(struct hsr_priv *priv, struct net_device *hsr_dev) { struct dentry *de = NULL; de = debugfs_create_dir(hsr_dev->name, hsr_debugfs_root_dir); if (IS_ERR(de)) { pr_err("Cannot create hsr debugfs directory\n"); return; } priv->node_tbl_root = de; de = debugfs_create_file("node_table", S_IFREG | 0444, priv->node_tbl_root, priv, &hsr_node_table_fops); if (IS_ERR(de)) { pr_err("Cannot create hsr node_table file\n"); debugfs_remove(priv->node_tbl_root); priv->node_tbl_root = NULL; return; } } /* hsr_debugfs_term - Tear down debugfs intrastructure * * Description: * When Debugfs is configured this routine removes debugfs file system * elements that are specific to hsr */ void hsr_debugfs_term(struct hsr_priv *priv) { debugfs_remove_recursive(priv->node_tbl_root); priv->node_tbl_root = NULL; } void hsr_debugfs_create_root(void) { hsr_debugfs_root_dir = debugfs_create_dir("hsr", NULL); if (IS_ERR(hsr_debugfs_root_dir)) { pr_err("Cannot create hsr debugfs root directory\n"); hsr_debugfs_root_dir = NULL; } } void hsr_debugfs_remove_root(void) { /* debugfs_remove() internally checks NULL and ERROR */ debugfs_remove(hsr_debugfs_root_dir); }
1 113 185 4 50 5 58 284 57 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __SOCK_DIAG_H__ #define __SOCK_DIAG_H__ #include <linux/netlink.h> #include <linux/user_namespace.h> #include <net/net_namespace.h> #include <net/sock.h> #include <uapi/linux/sock_diag.h> struct sk_buff; struct nlmsghdr; struct sock; struct sock_diag_handler { struct module *owner; __u8 family; int (*dump)(struct sk_buff *skb, struct nlmsghdr *nlh); int (*get_info)(struct sk_buff *skb, struct sock *sk); int (*destroy)(struct sk_buff *skb, struct nlmsghdr *nlh); }; int sock_diag_register(const struct sock_diag_handler *h); void sock_diag_unregister(const struct sock_diag_handler *h); struct sock_diag_inet_compat { struct module *owner; int (*fn)(struct sk_buff *skb, struct nlmsghdr *nlh); }; void sock_diag_register_inet_compat(const struct sock_diag_inet_compat *ptr); void sock_diag_unregister_inet_compat(const struct sock_diag_inet_compat *ptr); u64 __sock_gen_cookie(struct sock *sk); static inline u64 sock_gen_cookie(struct sock *sk) { u64 cookie; preempt_disable(); cookie = __sock_gen_cookie(sk); preempt_enable(); return cookie; } int sock_diag_check_cookie(struct sock *sk, const __u32 *cookie); void sock_diag_save_cookie(struct sock *sk, __u32 *cookie); int sock_diag_put_meminfo(struct sock *sk, struct sk_buff *skb, int attr); int sock_diag_put_filterinfo(bool may_report_filterinfo, struct sock *sk, struct sk_buff *skb, int attrtype); static inline enum sknetlink_groups sock_diag_destroy_group(const struct sock *sk) { switch (sk->sk_family) { case AF_INET: if (sk->sk_type == SOCK_RAW) return SKNLGRP_NONE; switch (sk->sk_protocol) { case IPPROTO_TCP: return SKNLGRP_INET_TCP_DESTROY; case IPPROTO_UDP: return SKNLGRP_INET_UDP_DESTROY; default: return SKNLGRP_NONE; } case AF_INET6: if (sk->sk_type == SOCK_RAW) return SKNLGRP_NONE; switch (sk->sk_protocol) { case IPPROTO_TCP: return SKNLGRP_INET6_TCP_DESTROY; case IPPROTO_UDP: return SKNLGRP_INET6_UDP_DESTROY; default: return SKNLGRP_NONE; } default: return SKNLGRP_NONE; } } static inline bool sock_diag_has_destroy_listeners(const struct sock *sk) { const struct net *n = sock_net(sk); const enum sknetlink_groups group = sock_diag_destroy_group(sk); return group != SKNLGRP_NONE && n->diag_nlsk && netlink_has_listeners(n->diag_nlsk, group); } void sock_diag_broadcast_destroy(struct sock *sk); int sock_diag_destroy(struct sock *sk, int err); #endif
30 30 30 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 // SPDX-License-Identifier: GPL-2.0 /* * Workingset detection * * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner */ #include <linux/memcontrol.h> #include <linux/mm_inline.h> #include <linux/writeback.h> #include <linux/shmem_fs.h> #include <linux/pagemap.h> #include <linux/atomic.h> #include <linux/module.h> #include <linux/swap.h> #include <linux/dax.h> #include <linux/fs.h> #include <linux/mm.h> #include "internal.h" /* * Double CLOCK lists * * Per node, two clock lists are maintained for file pages: the * inactive and the active list. Freshly faulted pages start out at * the head of the inactive list and page reclaim scans pages from the * tail. Pages that are accessed multiple times on the inactive list * are promoted to the active list, to protect them from reclaim, * whereas active pages are demoted to the inactive list when the * active list grows too big. * * fault ------------------------+ * | * +--------------+ | +-------------+ * reclaim <- | inactive | <-+-- demotion | active | <--+ * +--------------+ +-------------+ | * | | * +-------------- promotion ------------------+ * * * Access frequency and refault distance * * A workload is thrashing when its pages are frequently used but they * are evicted from the inactive list every time before another access * would have promoted them to the active list. * * In cases where the average access distance between thrashing pages * is bigger than the size of memory there is nothing that can be * done - the thrashing set could never fit into memory under any * circumstance. * * However, the average access distance could be bigger than the * inactive list, yet smaller than the size of memory. In this case, * the set could fit into memory if it weren't for the currently * active pages - which may be used more, hopefully less frequently: * * +-memory available to cache-+ * | | * +-inactive------+-active----+ * a b | c d e f g h i | J K L M N | * +---------------+-----------+ * * It is prohibitively expensive to accurately track access frequency * of pages. But a reasonable approximation can be made to measure * thrashing on the inactive list, after which refaulting pages can be * activated optimistically to compete with the existing active pages. * * Approximating inactive page access frequency - Observations: * * 1. When a page is accessed for the first time, it is added to the * head of the inactive list, slides every existing inactive page * towards the tail by one slot, and pushes the current tail page * out of memory. * * 2. When a page is accessed for the second time, it is promoted to * the active list, shrinking the inactive list by one slot. This * also slides all inactive pages that were faulted into the cache * more recently than the activated page towards the tail of the * inactive list. * * Thus: * * 1. The sum of evictions and activations between any two points in * time indicate the minimum number of inactive pages accessed in * between. * * 2. Moving one inactive page N page slots towards the tail of the * list requires at least N inactive page accesses. * * Combining these: * * 1. When a page is finally evicted from memory, the number of * inactive pages accessed while the page was in cache is at least * the number of page slots on the inactive list. * * 2. In addition, measuring the sum of evictions and activations (E) * at the time of a page's eviction, and comparing it to another * reading (R) at the time the page faults back into memory tells * the minimum number of accesses while the page was not cached. * This is called the refault distance. * * Because the first access of the page was the fault and the second * access the refault, we combine the in-cache distance with the * out-of-cache distance to get the complete minimum access distance * of this page: * * NR_inactive + (R - E) * * And knowing the minimum access distance of a page, we can easily * tell if the page would be able to stay in cache assuming all page * slots in the cache were available: * * NR_inactive + (R - E) <= NR_inactive + NR_active * * If we have swap we should consider about NR_inactive_anon and * NR_active_anon, so for page cache and anonymous respectively: * * NR_inactive_file + (R - E) <= NR_inactive_file + NR_active_file * + NR_inactive_anon + NR_active_anon * * NR_inactive_anon + (R - E) <= NR_inactive_anon + NR_active_anon * + NR_inactive_file + NR_active_file * * Which can be further simplified to: * * (R - E) <= NR_active_file + NR_inactive_anon + NR_active_anon * * (R - E) <= NR_active_anon + NR_inactive_file + NR_active_file * * Put into words, the refault distance (out-of-cache) can be seen as * a deficit in inactive list space (in-cache). If the inactive list * had (R - E) more page slots, the page would not have been evicted * in between accesses, but activated instead. And on a full system, * the only thing eating into inactive list space is active pages. * * * Refaulting inactive pages * * All that is known about the active list is that the pages have been * accessed more than once in the past. This means that at any given * time there is actually a good chance that pages on the active list * are no longer in active use. * * So when a refault distance of (R - E) is observed and there are at * least (R - E) pages in the userspace workingset, the refaulting page * is activated optimistically in the hope that (R - E) pages are actually * used less frequently than the refaulting page - or even not used at * all anymore. * * That means if inactive cache is refaulting with a suitable refault * distance, we assume the cache workingset is transitioning and put * pressure on the current workingset. * * If this is wrong and demotion kicks in, the pages which are truly * used more frequently will be reactivated while the less frequently * used once will be evicted from memory. * * But if this is right, the stale pages will be pushed out of memory * and the used pages get to stay in cache. * * Refaulting active pages * * If on the other hand the refaulting pages have recently been * deactivated, it means that the active list is no longer protecting * actively used cache from reclaim. The cache is NOT transitioning to * a different workingset; the existing workingset is thrashing in the * space allocated to the page cache. * * * Implementation * * For each node's LRU lists, a counter for inactive evictions and * activations is maintained (node->nonresident_age). * * On eviction, a snapshot of this counter (along with some bits to * identify the node) is stored in the now empty page cache * slot of the evicted page. This is called a shadow entry. * * On cache misses for which there are shadow entries, an eligible * refault distance will immediately activate the refaulting page. */ #define WORKINGSET_SHIFT 1 #define EVICTION_SHIFT ((BITS_PER_LONG - BITS_PER_XA_VALUE) + \ WORKINGSET_SHIFT + NODES_SHIFT + \ MEM_CGROUP_ID_SHIFT) #define EVICTION_MASK (~0UL >> EVICTION_SHIFT) /* * Eviction timestamps need to be able to cover the full range of * actionable refaults. However, bits are tight in the xarray * entry, and after storing the identifier for the lruvec there might * not be enough left to represent every single actionable refault. In * that case, we have to sacrifice granularity for distance, and group * evictions into coarser buckets by shaving off lower timestamp bits. */ static unsigned int bucket_order __read_mostly; static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction, bool workingset) { eviction &= EVICTION_MASK; eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid; eviction = (eviction << NODES_SHIFT) | pgdat->node_id; eviction = (eviction << WORKINGSET_SHIFT) | workingset; return xa_mk_value(eviction); } static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat, unsigned long *evictionp, bool *workingsetp) { unsigned long entry = xa_to_value(shadow); int memcgid, nid; bool workingset; workingset = entry & ((1UL << WORKINGSET_SHIFT) - 1); entry >>= WORKINGSET_SHIFT; nid = entry & ((1UL << NODES_SHIFT) - 1); entry >>= NODES_SHIFT; memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1); entry >>= MEM_CGROUP_ID_SHIFT; *memcgidp = memcgid; *pgdat = NODE_DATA(nid); *evictionp = entry; *workingsetp = workingset; } #ifdef CONFIG_LRU_GEN static void *lru_gen_eviction(struct folio *folio) { int hist; unsigned long token; unsigned long min_seq; struct lruvec *lruvec; struct lru_gen_folio *lrugen; int type = folio_is_file_lru(folio); int delta = folio_nr_pages(folio); int refs = folio_lru_refs(folio); int tier = lru_tier_from_refs(refs); struct mem_cgroup *memcg = folio_memcg(folio); struct pglist_data *pgdat = folio_pgdat(folio); BUILD_BUG_ON(LRU_GEN_WIDTH + LRU_REFS_WIDTH > BITS_PER_LONG - EVICTION_SHIFT); lruvec = mem_cgroup_lruvec(memcg, pgdat); lrugen = &lruvec->lrugen; min_seq = READ_ONCE(lrugen->min_seq[type]); token = (min_seq << LRU_REFS_WIDTH) | max(refs - 1, 0); hist = lru_hist_from_seq(min_seq); atomic_long_add(delta, &lrugen->evicted[hist][type][tier]); return pack_shadow(mem_cgroup_id(memcg), pgdat, token, refs); } /* * Tests if the shadow entry is for a folio that was recently evicted. * Fills in @lruvec, @token, @workingset with the values unpacked from shadow. */ static bool lru_gen_test_recent(void *shadow, bool file, struct lruvec **lruvec, unsigned long *token, bool *workingset) { int memcg_id; unsigned long min_seq; struct mem_cgroup *memcg; struct pglist_data *pgdat; unpack_shadow(shadow, &memcg_id, &pgdat, token, workingset); memcg = mem_cgroup_from_id(memcg_id); *lruvec = mem_cgroup_lruvec(memcg, pgdat); min_seq = READ_ONCE((*lruvec)->lrugen.min_seq[file]); return (*token >> LRU_REFS_WIDTH) == (min_seq & (EVICTION_MASK >> LRU_REFS_WIDTH)); } static void lru_gen_refault(struct folio *folio, void *shadow) { bool recent; int hist, tier, refs; bool workingset; unsigned long token; struct lruvec *lruvec; struct lru_gen_folio *lrugen; int type = folio_is_file_lru(folio); int delta = folio_nr_pages(folio); rcu_read_lock(); recent = lru_gen_test_recent(shadow, type, &lruvec, &token, &workingset); if (lruvec != folio_lruvec(folio)) goto unlock; mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + type, delta); if (!recent) goto unlock; lrugen = &lruvec->lrugen; hist = lru_hist_from_seq(READ_ONCE(lrugen->min_seq[type])); /* see the comment in folio_lru_refs() */ refs = (token & (BIT(LRU_REFS_WIDTH) - 1)) + workingset; tier = lru_tier_from_refs(refs); atomic_long_add(delta, &lrugen->refaulted[hist][type][tier]); mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta); /* * Count the following two cases as stalls: * 1. For pages accessed through page tables, hotter pages pushed out * hot pages which refaulted immediately. * 2. For pages accessed multiple times through file descriptors, * they would have been protected by sort_folio(). */ if (lru_gen_in_fault() || refs >= BIT(LRU_REFS_WIDTH) - 1) { set_mask_bits(&folio->flags, 0, LRU_REFS_MASK | BIT(PG_workingset)); mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + type, delta); } unlock: rcu_read_unlock(); } #else /* !CONFIG_LRU_GEN */ static void *lru_gen_eviction(struct folio *folio) { return NULL; } static bool lru_gen_test_recent(void *shadow, bool file, struct lruvec **lruvec, unsigned long *token, bool *workingset) { return false; } static void lru_gen_refault(struct folio *folio, void *shadow) { } #endif /* CONFIG_LRU_GEN */ /** * workingset_age_nonresident - age non-resident entries as LRU ages * @lruvec: the lruvec that was aged * @nr_pages: the number of pages to count * * As in-memory pages are aged, non-resident pages need to be aged as * well, in order for the refault distances later on to be comparable * to the in-memory dimensions. This function allows reclaim and LRU * operations to drive the non-resident aging along in parallel. */ void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages) { /* * Reclaiming a cgroup means reclaiming all its children in a * round-robin fashion. That means that each cgroup has an LRU * order that is composed of the LRU orders of its child * cgroups; and every page has an LRU position not just in the * cgroup that owns it, but in all of that group's ancestors. * * So when the physical inactive list of a leaf cgroup ages, * the virtual inactive lists of all its parents, including * the root cgroup's, age as well. */ do { atomic_long_add(nr_pages, &lruvec->nonresident_age); } while ((lruvec = parent_lruvec(lruvec))); } /** * workingset_eviction - note the eviction of a folio from memory * @target_memcg: the cgroup that is causing the reclaim * @folio: the folio being evicted * * Return: a shadow entry to be stored in @folio->mapping->i_pages in place * of the evicted @folio so that a later refault can be detected. */ void *workingset_eviction(struct folio *folio, struct mem_cgroup *target_memcg) { struct pglist_data *pgdat = folio_pgdat(folio); unsigned long eviction; struct lruvec *lruvec; int memcgid; /* Folio is fully exclusive and pins folio's memory cgroup pointer */ VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); if (lru_gen_enabled()) return lru_gen_eviction(folio); lruvec = mem_cgroup_lruvec(target_memcg, pgdat); /* XXX: target_memcg can be NULL, go through lruvec */ memcgid = mem_cgroup_id(lruvec_memcg(lruvec)); eviction = atomic_long_read(&lruvec->nonresident_age); eviction >>= bucket_order; workingset_age_nonresident(lruvec, folio_nr_pages(folio)); return pack_shadow(memcgid, pgdat, eviction, folio_test_workingset(folio)); } /** * workingset_test_recent - tests if the shadow entry is for a folio that was * recently evicted. Also fills in @workingset with the value unpacked from * shadow. * @shadow: the shadow entry to be tested. * @file: whether the corresponding folio is from the file lru. * @workingset: where the workingset value unpacked from shadow should * be stored. * @flush: whether to flush cgroup rstat. * * Return: true if the shadow is for a recently evicted folio; false otherwise. */ bool workingset_test_recent(void *shadow, bool file, bool *workingset, bool flush) { struct mem_cgroup *eviction_memcg; struct lruvec *eviction_lruvec; unsigned long refault_distance; unsigned long workingset_size; unsigned long refault; int memcgid; struct pglist_data *pgdat; unsigned long eviction; rcu_read_lock(); if (lru_gen_enabled()) { bool recent = lru_gen_test_recent(shadow, file, &eviction_lruvec, &eviction, workingset); rcu_read_unlock(); return recent; } unpack_shadow(shadow, &memcgid, &pgdat, &eviction, workingset); eviction <<= bucket_order; /* * Look up the memcg associated with the stored ID. It might * have been deleted since the folio's eviction. * * Note that in rare events the ID could have been recycled * for a new cgroup that refaults a shared folio. This is * impossible to tell from the available data. However, this * should be a rare and limited disturbance, and activations * are always speculative anyway. Ultimately, it's the aging * algorithm's job to shake out the minimum access frequency * for the active cache. * * XXX: On !CONFIG_MEMCG, this will always return NULL; it * would be better if the root_mem_cgroup existed in all * configurations instead. */ eviction_memcg = mem_cgroup_from_id(memcgid); if (!mem_cgroup_disabled() && (!eviction_memcg || !mem_cgroup_tryget(eviction_memcg))) { rcu_read_unlock(); return false; } rcu_read_unlock(); /* * Flush stats (and potentially sleep) outside the RCU read section. * * Note that workingset_test_recent() itself might be called in RCU read * section (for e.g, in cachestat) - these callers need to skip flushing * stats (via the flush argument). * * XXX: With per-memcg flushing and thresholding, is ratelimiting * still needed here? */ if (flush) mem_cgroup_flush_stats_ratelimited(eviction_memcg); eviction_lruvec = mem_cgroup_lruvec(eviction_memcg, pgdat); refault = atomic_long_read(&eviction_lruvec->nonresident_age); /* * Calculate the refault distance * * The unsigned subtraction here gives an accurate distance * across nonresident_age overflows in most cases. There is a * special case: usually, shadow entries have a short lifetime * and are either refaulted or reclaimed along with the inode * before they get too old. But it is not impossible for the * nonresident_age to lap a shadow entry in the field, which * can then result in a false small refault distance, leading * to a false activation should this old entry actually * refault again. However, earlier kernels used to deactivate * unconditionally with *every* reclaim invocation for the * longest time, so the occasional inappropriate activation * leading to pressure on the active list is not a problem. */ refault_distance = (refault - eviction) & EVICTION_MASK; /* * Compare the distance to the existing workingset size. We * don't activate pages that couldn't stay resident even if * all the memory was available to the workingset. Whether * workingset competition needs to consider anon or not depends * on having free swap space. */ workingset_size = lruvec_page_state(eviction_lruvec, NR_ACTIVE_FILE); if (!file) { workingset_size += lruvec_page_state(eviction_lruvec, NR_INACTIVE_FILE); } if (mem_cgroup_get_nr_swap_pages(eviction_memcg) > 0) { workingset_size += lruvec_page_state(eviction_lruvec, NR_ACTIVE_ANON); if (file) { workingset_size += lruvec_page_state(eviction_lruvec, NR_INACTIVE_ANON); } } mem_cgroup_put(eviction_memcg); return refault_distance <= workingset_size; } /** * workingset_refault - Evaluate the refault of a previously evicted folio. * @folio: The freshly allocated replacement folio. * @shadow: Shadow entry of the evicted folio. * * Calculates and evaluates the refault distance of the previously * evicted folio in the context of the node and the memcg whose memory * pressure caused the eviction. */ void workingset_refault(struct folio *folio, void *shadow) { bool file = folio_is_file_lru(folio); struct pglist_data *pgdat; struct mem_cgroup *memcg; struct lruvec *lruvec; bool workingset; long nr; if (lru_gen_enabled()) { lru_gen_refault(folio, shadow); return; } /* * The activation decision for this folio is made at the level * where the eviction occurred, as that is where the LRU order * during folio reclaim is being determined. * * However, the cgroup that will own the folio is the one that * is actually experiencing the refault event. Make sure the folio is * locked to guarantee folio_memcg() stability throughout. */ VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); nr = folio_nr_pages(folio); memcg = folio_memcg(folio); pgdat = folio_pgdat(folio); lruvec = mem_cgroup_lruvec(memcg, pgdat); mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + file, nr); if (!workingset_test_recent(shadow, file, &workingset, true)) return; folio_set_active(folio); workingset_age_nonresident(lruvec, nr); mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + file, nr); /* Folio was active prior to eviction */ if (workingset) { folio_set_workingset(folio); /* * XXX: Move to folio_add_lru() when it supports new vs * putback */ lru_note_cost_refault(folio); mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + file, nr); } } /** * workingset_activation - note a page activation * @folio: Folio that is being activated. */ void workingset_activation(struct folio *folio) { struct mem_cgroup *memcg; rcu_read_lock(); /* * Filter non-memcg pages here, e.g. unmap can call * mark_page_accessed() on VDSO pages. * * XXX: See workingset_refault() - this should return * root_mem_cgroup even for !CONFIG_MEMCG. */ memcg = folio_memcg_rcu(folio); if (!mem_cgroup_disabled() && !memcg) goto out; workingset_age_nonresident(folio_lruvec(folio), folio_nr_pages(folio)); out: rcu_read_unlock(); } /* * Shadow entries reflect the share of the working set that does not * fit into memory, so their number depends on the access pattern of * the workload. In most cases, they will refault or get reclaimed * along with the inode, but a (malicious) workload that streams * through files with a total size several times that of available * memory, while preventing the inodes from being reclaimed, can * create excessive amounts of shadow nodes. To keep a lid on this, * track shadow nodes and reclaim them when they grow way past the * point where they would still be useful. */ struct list_lru shadow_nodes; void workingset_update_node(struct xa_node *node) { struct address_space *mapping; struct page *page = virt_to_page(node); /* * Track non-empty nodes that contain only shadow entries; * unlink those that contain pages or are being freed. * * Avoid acquiring the list_lru lock when the nodes are * already where they should be. The list_empty() test is safe * as node->private_list is protected by the i_pages lock. */ mapping = container_of(node->array, struct address_space, i_pages); lockdep_assert_held(&mapping->i_pages.xa_lock); if (node->count && node->count == node->nr_values) { if (list_empty(&node->private_list)) { list_lru_add_obj(&shadow_nodes, &node->private_list); __inc_node_page_state(page, WORKINGSET_NODES); } } else { if (!list_empty(&node->private_list)) { list_lru_del_obj(&shadow_nodes, &node->private_list); __dec_node_page_state(page, WORKINGSET_NODES); } } } static unsigned long count_shadow_nodes(struct shrinker *shrinker, struct shrink_control *sc) { unsigned long max_nodes; unsigned long nodes; unsigned long pages; nodes = list_lru_shrink_count(&shadow_nodes, sc); if (!nodes) return SHRINK_EMPTY; /* * Approximate a reasonable limit for the nodes * containing shadow entries. We don't need to keep more * shadow entries than possible pages on the active list, * since refault distances bigger than that are dismissed. * * The size of the active list converges toward 100% of * overall page cache as memory grows, with only a tiny * inactive list. Assume the total cache size for that. * * Nodes might be sparsely populated, with only one shadow * entry in the extreme case. Obviously, we cannot keep one * node for every eligible shadow entry, so compromise on a * worst-case density of 1/8th. Below that, not all eligible * refaults can be detected anymore. * * On 64-bit with 7 xa_nodes per page and 64 slots * each, this will reclaim shadow entries when they consume * ~1.8% of available memory: * * PAGE_SIZE / xa_nodes / node_entries * 8 / PAGE_SIZE */ #ifdef CONFIG_MEMCG if (sc->memcg) { struct lruvec *lruvec; int i; mem_cgroup_flush_stats_ratelimited(sc->memcg); lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid)); for (pages = 0, i = 0; i < NR_LRU_LISTS; i++) pages += lruvec_page_state_local(lruvec, NR_LRU_BASE + i); pages += lruvec_page_state_local( lruvec, NR_SLAB_RECLAIMABLE_B) >> PAGE_SHIFT; pages += lruvec_page_state_local( lruvec, NR_SLAB_UNRECLAIMABLE_B) >> PAGE_SHIFT; } else #endif pages = node_present_pages(sc->nid); max_nodes = pages >> (XA_CHUNK_SHIFT - 3); if (nodes <= max_nodes) return 0; return nodes - max_nodes; } static enum lru_status shadow_lru_isolate(struct list_head *item, struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) __must_hold(lru_lock) { struct xa_node *node = container_of(item, struct xa_node, private_list); struct address_space *mapping; int ret; /* * Page cache insertions and deletions synchronously maintain * the shadow node LRU under the i_pages lock and the * lru_lock. Because the page cache tree is emptied before * the inode can be destroyed, holding the lru_lock pins any * address_space that has nodes on the LRU. * * We can then safely transition to the i_pages lock to * pin only the address_space of the particular node we want * to reclaim, take the node off-LRU, and drop the lru_lock. */ mapping = container_of(node->array, struct address_space, i_pages); /* Coming from the list, invert the lock order */ if (!xa_trylock(&mapping->i_pages)) { spin_unlock_irq(lru_lock); ret = LRU_RETRY; goto out; } /* For page cache we need to hold i_lock */ if (mapping->host != NULL) { if (!spin_trylock(&mapping->host->i_lock)) { xa_unlock(&mapping->i_pages); spin_unlock_irq(lru_lock); ret = LRU_RETRY; goto out; } } list_lru_isolate(lru, item); __dec_node_page_state(virt_to_page(node), WORKINGSET_NODES); spin_unlock(lru_lock); /* * The nodes should only contain one or more shadow entries, * no pages, so we expect to be able to remove them all and * delete and free the empty node afterwards. */ if (WARN_ON_ONCE(!node->nr_values)) goto out_invalid; if (WARN_ON_ONCE(node->count != node->nr_values)) goto out_invalid; xa_delete_node(node, workingset_update_node); __inc_lruvec_kmem_state(node, WORKINGSET_NODERECLAIM); out_invalid: xa_unlock_irq(&mapping->i_pages); if (mapping->host != NULL) { if (mapping_shrinkable(mapping)) inode_add_lru(mapping->host); spin_unlock(&mapping->host->i_lock); } ret = LRU_REMOVED_RETRY; out: cond_resched(); spin_lock_irq(lru_lock); return ret; } static unsigned long scan_shadow_nodes(struct shrinker *shrinker, struct shrink_control *sc) { /* list_lru lock nests inside the IRQ-safe i_pages lock */ return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate, NULL); } /* * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe * i_pages lock. */ static struct lock_class_key shadow_nodes_key; static int __init workingset_init(void) { struct shrinker *workingset_shadow_shrinker; unsigned int timestamp_bits; unsigned int max_order; int ret = -ENOMEM; BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT); /* * Calculate the eviction bucket size to cover the longest * actionable refault distance, which is currently half of * memory (totalram_pages/2). However, memory hotplug may add * some more pages at runtime, so keep working with up to * double the initial memory by using totalram_pages as-is. */ timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT; max_order = fls_long(totalram_pages() - 1); if (max_order > timestamp_bits) bucket_order = max_order - timestamp_bits; pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n", timestamp_bits, max_order, bucket_order); workingset_shadow_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-shadow"); if (!workingset_shadow_shrinker) goto err; ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key, workingset_shadow_shrinker); if (ret) goto err_list_lru; workingset_shadow_shrinker->count_objects = count_shadow_nodes; workingset_shadow_shrinker->scan_objects = scan_shadow_nodes; /* ->count reports only fully expendable nodes */ workingset_shadow_shrinker->seeks = 0; shrinker_register(workingset_shadow_shrinker); return 0; err_list_lru: shrinker_free(workingset_shadow_shrinker); err: return ret; } module_init(workingset_init);
852 849 170 6 6 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 // SPDX-License-Identifier: GPL-2.0-or-later /* * vrf.c: device driver to encapsulate a VRF space * * Copyright (c) 2015 Cumulus Networks. All rights reserved. * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com> * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com> * * Based on dummy, team and ipvlan drivers */ #include <linux/ethtool.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ip.h> #include <linux/init.h> #include <linux/moduleparam.h> #include <linux/netfilter.h> #include <linux/rtnetlink.h> #include <net/rtnetlink.h> #include <linux/u64_stats_sync.h> #include <linux/hashtable.h> #include <linux/spinlock_types.h> #include <linux/inetdevice.h> #include <net/arp.h> #include <net/ip.h> #include <net/ip_fib.h> #include <net/ip6_fib.h> #include <net/ip6_route.h> #include <net/route.h> #include <net/addrconf.h> #include <net/l3mdev.h> #include <net/fib_rules.h> #include <net/sch_generic.h> #include <net/netns/generic.h> #include <net/netfilter/nf_conntrack.h> #include <net/inet_dscp.h> #define DRV_NAME "vrf" #define DRV_VERSION "1.1" #define FIB_RULE_PREF 1000 /* default preference for FIB rules */ #define HT_MAP_BITS 4 #define HASH_INITVAL ((u32)0xcafef00d) struct vrf_map { DECLARE_HASHTABLE(ht, HT_MAP_BITS); spinlock_t vmap_lock; /* shared_tables: * count how many distinct tables do not comply with the strict mode * requirement. * shared_tables value must be 0 in order to enable the strict mode. * * example of the evolution of shared_tables: * | time * add vrf0 --> table 100 shared_tables = 0 | t0 * add vrf1 --> table 101 shared_tables = 0 | t1 * add vrf2 --> table 100 shared_tables = 1 | t2 * add vrf3 --> table 100 shared_tables = 1 | t3 * add vrf4 --> table 101 shared_tables = 2 v t4 * * shared_tables is a "step function" (or "staircase function") * and it is increased by one when the second vrf is associated to a * table. * * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1. * * at t3, another dev (vrf3) is bound to the same table 100 but the * value of shared_tables is still 1. * This means that no matter how many new vrfs will register on the * table 100, the shared_tables will not increase (considering only * table 100). * * at t4, vrf4 is bound to table 101, and shared_tables = 2. * * Looking at the value of shared_tables we can immediately know if * the strict_mode can or cannot be enforced. Indeed, strict_mode * can be enforced iff shared_tables = 0. * * Conversely, shared_tables is decreased when a vrf is de-associated * from a table with exactly two associated vrfs. */ u32 shared_tables; bool strict_mode; }; struct vrf_map_elem { struct hlist_node hnode; struct list_head vrf_list; /* VRFs registered to this table */ u32 table_id; int users; int ifindex; }; static unsigned int vrf_net_id; /* per netns vrf data */ struct netns_vrf { /* protected by rtnl lock */ bool add_fib_rules; struct vrf_map vmap; struct ctl_table_header *ctl_hdr; }; struct net_vrf { struct rtable __rcu *rth; struct rt6_info __rcu *rt6; #if IS_ENABLED(CONFIG_IPV6) struct fib6_table *fib6_table; #endif u32 tb_id; struct list_head me_list; /* entry in vrf_map_elem */ int ifindex; }; static void vrf_rx_stats(struct net_device *dev, int len) { struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); u64_stats_update_begin(&dstats->syncp); u64_stats_inc(&dstats->rx_packets); u64_stats_add(&dstats->rx_bytes, len); u64_stats_update_end(&dstats->syncp); } static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb) { vrf_dev->stats.tx_errors++; kfree_skb(skb); } static struct vrf_map *netns_vrf_map(struct net *net) { struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id); return &nn_vrf->vmap; } static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev) { return netns_vrf_map(dev_net(dev)); } static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me) { struct list_head *me_head = &me->vrf_list; struct net_vrf *vrf; if (list_empty(me_head)) return -ENODEV; vrf = list_first_entry(me_head, struct net_vrf, me_list); return vrf->ifindex; } static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags) { struct vrf_map_elem *me; me = kmalloc(sizeof(*me), flags); if (!me) return NULL; return me; } static void vrf_map_elem_free(struct vrf_map_elem *me) { kfree(me); } static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id, int ifindex, int users) { me->table_id = table_id; me->ifindex = ifindex; me->users = users; INIT_LIST_HEAD(&me->vrf_list); } static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap, u32 table_id) { struct vrf_map_elem *me; u32 key; key = jhash_1word(table_id, HASH_INITVAL); hash_for_each_possible(vmap->ht, me, hnode, key) { if (me->table_id == table_id) return me; } return NULL; } static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me) { u32 table_id = me->table_id; u32 key; key = jhash_1word(table_id, HASH_INITVAL); hash_add(vmap->ht, &me->hnode, key); } static void vrf_map_del_elem(struct vrf_map_elem *me) { hash_del(&me->hnode); } static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock) { spin_lock(&vmap->vmap_lock); } static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock) { spin_unlock(&vmap->vmap_lock); } /* called with rtnl lock held */ static int vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack) { struct vrf_map *vmap = netns_vrf_map_by_dev(dev); struct net_vrf *vrf = netdev_priv(dev); struct vrf_map_elem *new_me, *me; u32 table_id = vrf->tb_id; bool free_new_me = false; int users; int res; /* we pre-allocate elements used in the spin-locked section (so that we * keep the spinlock as short as possible). */ new_me = vrf_map_elem_alloc(GFP_KERNEL); if (!new_me) return -ENOMEM; vrf_map_elem_init(new_me, table_id, dev->ifindex, 0); vrf_map_lock(vmap); me = vrf_map_lookup_elem(vmap, table_id); if (!me) { me = new_me; vrf_map_add_elem(vmap, me); goto link_vrf; } /* we already have an entry in the vrf_map, so it means there is (at * least) a vrf registered on the specific table. */ free_new_me = true; if (vmap->strict_mode) { /* vrfs cannot share the same table */ NL_SET_ERR_MSG(extack, "Table is used by another VRF"); res = -EBUSY; goto unlock; } link_vrf: users = ++me->users; if (users == 2) ++vmap->shared_tables; list_add(&vrf->me_list, &me->vrf_list); res = 0; unlock: vrf_map_unlock(vmap); /* clean-up, if needed */ if (free_new_me) vrf_map_elem_free(new_me); return res; } /* called with rtnl lock held */ static void vrf_map_unregister_dev(struct net_device *dev) { struct vrf_map *vmap = netns_vrf_map_by_dev(dev); struct net_vrf *vrf = netdev_priv(dev); u32 table_id = vrf->tb_id; struct vrf_map_elem *me; int users; vrf_map_lock(vmap); me = vrf_map_lookup_elem(vmap, table_id); if (!me) goto unlock; list_del(&vrf->me_list); users = --me->users; if (users == 1) { --vmap->shared_tables; } else if (users == 0) { vrf_map_del_elem(me); /* no one will refer to this element anymore */ vrf_map_elem_free(me); } unlock: vrf_map_unlock(vmap); } /* return the vrf device index associated with the table_id */ static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id) { struct vrf_map *vmap = netns_vrf_map(net); struct vrf_map_elem *me; int ifindex; vrf_map_lock(vmap); if (!vmap->strict_mode) { ifindex = -EPERM; goto unlock; } me = vrf_map_lookup_elem(vmap, table_id); if (!me) { ifindex = -ENODEV; goto unlock; } ifindex = vrf_map_elem_get_vrf_ifindex(me); unlock: vrf_map_unlock(vmap); return ifindex; } /* by default VRF devices do not have a qdisc and are expected * to be created with only a single queue. */ static bool qdisc_tx_is_default(const struct net_device *dev) { struct netdev_queue *txq; struct Qdisc *qdisc; if (dev->num_tx_queues > 1) return false; txq = netdev_get_tx_queue(dev, 0); qdisc = rcu_access_pointer(txq->qdisc); return !qdisc->enqueue; } /* Local traffic destined to local address. Reinsert the packet to rx * path, similar to loopback handling. */ static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev, struct dst_entry *dst) { int len = skb->len; skb_orphan(skb); skb_dst_set(skb, dst); /* set pkt_type to avoid skb hitting packet taps twice - * once on Tx and again in Rx processing */ skb->pkt_type = PACKET_LOOPBACK; skb->protocol = eth_type_trans(skb, dev); if (likely(__netif_rx(skb) == NET_RX_SUCCESS)) { vrf_rx_stats(dev, len); } else { struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); u64_stats_update_begin(&dstats->syncp); u64_stats_inc(&dstats->rx_drops); u64_stats_update_end(&dstats->syncp); } return NETDEV_TX_OK; } static void vrf_nf_set_untracked(struct sk_buff *skb) { if (skb_get_nfct(skb) == 0) nf_ct_set(skb, NULL, IP_CT_UNTRACKED); } static void vrf_nf_reset_ct(struct sk_buff *skb) { if (skb_get_nfct(skb) == IP_CT_UNTRACKED) nf_reset_ct(skb); } #if IS_ENABLED(CONFIG_IPV6) static int vrf_ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) { int err; vrf_nf_reset_ct(skb); err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, skb, NULL, skb_dst(skb)->dev, dst_output); if (likely(err == 1)) err = dst_output(net, sk, skb); return err; } static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, struct net_device *dev) { const struct ipv6hdr *iph; struct net *net = dev_net(skb->dev); struct flowi6 fl6; int ret = NET_XMIT_DROP; struct dst_entry *dst; struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst; if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr))) goto err; iph = ipv6_hdr(skb); memset(&fl6, 0, sizeof(fl6)); /* needed to match OIF rule */ fl6.flowi6_l3mdev = dev->ifindex; fl6.flowi6_iif = LOOPBACK_IFINDEX; fl6.daddr = iph->daddr; fl6.saddr = iph->saddr; fl6.flowlabel = ip6_flowinfo(iph); fl6.flowi6_mark = skb->mark; fl6.flowi6_proto = iph->nexthdr; dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL); if (IS_ERR(dst) || dst == dst_null) goto err; skb_dst_drop(skb); /* if dst.dev is the VRF device again this is locally originated traffic * destined to a local address. Short circuit to Rx path. */ if (dst->dev == dev) return vrf_local_xmit(skb, dev, dst); skb_dst_set(skb, dst); /* strip the ethernet header added for pass through VRF device */ __skb_pull(skb, skb_network_offset(skb)); memset(IP6CB(skb), 0, sizeof(*IP6CB(skb))); ret = vrf_ip6_local_out(net, skb->sk, skb); if (unlikely(net_xmit_eval(ret))) dev->stats.tx_errors++; else ret = NET_XMIT_SUCCESS; return ret; err: vrf_tx_error(dev, skb); return NET_XMIT_DROP; } #else static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, struct net_device *dev) { vrf_tx_error(dev, skb); return NET_XMIT_DROP; } #endif /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */ static int vrf_ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) { int err; vrf_nf_reset_ct(skb); err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, skb, NULL, skb_dst(skb)->dev, dst_output); if (likely(err == 1)) err = dst_output(net, sk, skb); return err; } static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb, struct net_device *vrf_dev) { struct iphdr *ip4h; int ret = NET_XMIT_DROP; struct flowi4 fl4; struct net *net = dev_net(vrf_dev); struct rtable *rt; if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr))) goto err; ip4h = ip_hdr(skb); memset(&fl4, 0, sizeof(fl4)); /* needed to match OIF rule */ fl4.flowi4_l3mdev = vrf_dev->ifindex; fl4.flowi4_iif = LOOPBACK_IFINDEX; fl4.flowi4_tos = ip4h->tos & INET_DSCP_MASK; fl4.flowi4_flags = FLOWI_FLAG_ANYSRC; fl4.flowi4_proto = ip4h->protocol; fl4.daddr = ip4h->daddr; fl4.saddr = ip4h->saddr; rt = ip_route_output_flow(net, &fl4, NULL); if (IS_ERR(rt)) goto err; skb_dst_drop(skb); /* if dst.dev is the VRF device again this is locally originated traffic * destined to a local address. Short circuit to Rx path. */ if (rt->dst.dev == vrf_dev) return vrf_local_xmit(skb, vrf_dev, &rt->dst); skb_dst_set(skb, &rt->dst); /* strip the ethernet header added for pass through VRF device */ __skb_pull(skb, skb_network_offset(skb)); if (!ip4h->saddr) { ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0, RT_SCOPE_LINK); } memset(IPCB(skb), 0, sizeof(*IPCB(skb))); ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb); if (unlikely(net_xmit_eval(ret))) vrf_dev->stats.tx_errors++; else ret = NET_XMIT_SUCCESS; out: return ret; err: vrf_tx_error(vrf_dev, skb); goto out; } static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev) { switch (skb->protocol) { case htons(ETH_P_IP): return vrf_process_v4_outbound(skb, dev); case htons(ETH_P_IPV6): return vrf_process_v6_outbound(skb, dev); default: vrf_tx_error(dev, skb); return NET_XMIT_DROP; } } static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev) { struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); int len = skb->len; netdev_tx_t ret = is_ip_tx_frame(skb, dev); u64_stats_update_begin(&dstats->syncp); if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) { u64_stats_inc(&dstats->tx_packets); u64_stats_add(&dstats->tx_bytes, len); } else { u64_stats_inc(&dstats->tx_drops); } u64_stats_update_end(&dstats->syncp); return ret; } static void vrf_finish_direct(struct sk_buff *skb) { struct net_device *vrf_dev = skb->dev; if (!list_empty(&vrf_dev->ptype_all) && likely(skb_headroom(skb) >= ETH_HLEN)) { struct ethhdr *eth = skb_push(skb, ETH_HLEN); ether_addr_copy(eth->h_source, vrf_dev->dev_addr); eth_zero_addr(eth->h_dest); eth->h_proto = skb->protocol; rcu_read_lock_bh(); dev_queue_xmit_nit(skb, vrf_dev); rcu_read_unlock_bh(); skb_pull(skb, ETH_HLEN); } vrf_nf_reset_ct(skb); } #if IS_ENABLED(CONFIG_IPV6) /* modelled after ip6_finish_output2 */ static int vrf_finish_output6(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct net_device *dev = dst->dev; const struct in6_addr *nexthop; struct neighbour *neigh; int ret; vrf_nf_reset_ct(skb); skb->protocol = htons(ETH_P_IPV6); skb->dev = dev; rcu_read_lock(); nexthop = rt6_nexthop(dst_rt6_info(dst), &ipv6_hdr(skb)->daddr); neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop); if (unlikely(!neigh)) neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false); if (!IS_ERR(neigh)) { sock_confirm_neigh(skb, neigh); ret = neigh_output(neigh, skb, false); rcu_read_unlock(); return ret; } rcu_read_unlock(); IP6_INC_STATS(dev_net(dst->dev), ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); kfree_skb(skb); return -EINVAL; } /* modelled after ip6_output */ static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb) { return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb, NULL, skb_dst(skb)->dev, vrf_finish_output6, !(IP6CB(skb)->flags & IP6SKB_REROUTED)); } /* set dst on skb to send packet to us via dev_xmit path. Allows * packet to go through device based features such as qdisc, netfilter * hooks and packet sockets with skb->dev set to vrf device. */ static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev, struct sk_buff *skb) { struct net_vrf *vrf = netdev_priv(vrf_dev); struct dst_entry *dst = NULL; struct rt6_info *rt6; rcu_read_lock(); rt6 = rcu_dereference(vrf->rt6); if (likely(rt6)) { dst = &rt6->dst; dst_hold(dst); } rcu_read_unlock(); if (unlikely(!dst)) { vrf_tx_error(vrf_dev, skb); return NULL; } skb_dst_drop(skb); skb_dst_set(skb, dst); return skb; } static int vrf_output6_direct_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { vrf_finish_direct(skb); return vrf_ip6_local_out(net, sk, skb); } static int vrf_output6_direct(struct net *net, struct sock *sk, struct sk_buff *skb) { int err = 1; skb->protocol = htons(ETH_P_IPV6); if (!(IPCB(skb)->flags & IPSKB_REROUTED)) err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb, NULL, skb->dev, vrf_output6_direct_finish); if (likely(err == 1)) vrf_finish_direct(skb); return err; } static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { int err; err = vrf_output6_direct(net, sk, skb); if (likely(err == 1)) err = vrf_ip6_local_out(net, sk, skb); return err; } static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev, struct sock *sk, struct sk_buff *skb) { struct net *net = dev_net(vrf_dev); int err; skb->dev = vrf_dev; err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, skb, NULL, vrf_dev, vrf_ip6_out_direct_finish); if (likely(err == 1)) err = vrf_output6_direct(net, sk, skb); if (likely(err == 1)) return skb; return NULL; } static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, struct sock *sk, struct sk_buff *skb) { /* don't divert link scope packets */ if (rt6_need_strict(&ipv6_hdr(skb)->daddr)) return skb; vrf_nf_set_untracked(skb); if (qdisc_tx_is_default(vrf_dev) || IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) return vrf_ip6_out_direct(vrf_dev, sk, skb); return vrf_ip6_out_redirect(vrf_dev, skb); } /* holding rtnl */ static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) { struct rt6_info *rt6 = rtnl_dereference(vrf->rt6); struct net *net = dev_net(dev); struct dst_entry *dst; RCU_INIT_POINTER(vrf->rt6, NULL); synchronize_rcu(); /* move dev in dst's to loopback so this VRF device can be deleted * - based on dst_ifdown */ if (rt6) { dst = &rt6->dst; netdev_ref_replace(dst->dev, net->loopback_dev, &dst->dev_tracker, GFP_KERNEL); dst->dev = net->loopback_dev; dst_release(dst); } } static int vrf_rt6_create(struct net_device *dev) { int flags = DST_NOPOLICY | DST_NOXFRM; struct net_vrf *vrf = netdev_priv(dev); struct net *net = dev_net(dev); struct rt6_info *rt6; int rc = -ENOMEM; /* IPv6 can be CONFIG enabled and then disabled runtime */ if (!ipv6_mod_enabled()) return 0; vrf->fib6_table = fib6_new_table(net, vrf->tb_id); if (!vrf->fib6_table) goto out; /* create a dst for routing packets out a VRF device */ rt6 = ip6_dst_alloc(net, dev, flags); if (!rt6) goto out; rt6->dst.output = vrf_output6; rcu_assign_pointer(vrf->rt6, rt6); rc = 0; out: return rc; } #else static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, struct sock *sk, struct sk_buff *skb) { return skb; } static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) { } static int vrf_rt6_create(struct net_device *dev) { return 0; } #endif /* modelled after ip_finish_output2 */ static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) { struct dst_entry *dst = skb_dst(skb); struct rtable *rt = dst_rtable(dst); struct net_device *dev = dst->dev; unsigned int hh_len = LL_RESERVED_SPACE(dev); struct neighbour *neigh; bool is_v6gw = false; vrf_nf_reset_ct(skb); /* Be paranoid, rather than too clever. */ if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { skb = skb_expand_head(skb, hh_len); if (!skb) { dev->stats.tx_errors++; return -ENOMEM; } } rcu_read_lock(); neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); if (!IS_ERR(neigh)) { int ret; sock_confirm_neigh(skb, neigh); /* if crossing protocols, can not use the cached header */ ret = neigh_output(neigh, skb, is_v6gw); rcu_read_unlock(); return ret; } rcu_read_unlock(); vrf_tx_error(skb->dev, skb); return -EINVAL; } static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb) { struct net_device *dev = skb_dst(skb)->dev; IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); skb->dev = dev; skb->protocol = htons(ETH_P_IP); return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb, NULL, dev, vrf_finish_output, !(IPCB(skb)->flags & IPSKB_REROUTED)); } /* set dst on skb to send packet to us via dev_xmit path. Allows * packet to go through device based features such as qdisc, netfilter * hooks and packet sockets with skb->dev set to vrf device. */ static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev, struct sk_buff *skb) { struct net_vrf *vrf = netdev_priv(vrf_dev); struct dst_entry *dst = NULL; struct rtable *rth; rcu_read_lock(); rth = rcu_dereference(vrf->rth); if (likely(rth)) { dst = &rth->dst; dst_hold(dst); } rcu_read_unlock(); if (unlikely(!dst)) { vrf_tx_error(vrf_dev, skb); return NULL; } skb_dst_drop(skb); skb_dst_set(skb, dst); return skb; } static int vrf_output_direct_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { vrf_finish_direct(skb); return vrf_ip_local_out(net, sk, skb); } static int vrf_output_direct(struct net *net, struct sock *sk, struct sk_buff *skb) { int err = 1; skb->protocol = htons(ETH_P_IP); if (!(IPCB(skb)->flags & IPSKB_REROUTED)) err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb, NULL, skb->dev, vrf_output_direct_finish); if (likely(err == 1)) vrf_finish_direct(skb); return err; } static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { int err; err = vrf_output_direct(net, sk, skb); if (likely(err == 1)) err = vrf_ip_local_out(net, sk, skb); return err; } static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev, struct sock *sk, struct sk_buff *skb) { struct net *net = dev_net(vrf_dev); int err; skb->dev = vrf_dev; err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, skb, NULL, vrf_dev, vrf_ip_out_direct_finish); if (likely(err == 1)) err = vrf_output_direct(net, sk, skb); if (likely(err == 1)) return skb; return NULL; } static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev, struct sock *sk, struct sk_buff *skb) { /* don't divert multicast or local broadcast */ if (ipv4_is_multicast(ip_hdr(skb)->daddr) || ipv4_is_lbcast(ip_hdr(skb)->daddr)) return skb; vrf_nf_set_untracked(skb); if (qdisc_tx_is_default(vrf_dev) || IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) return vrf_ip_out_direct(vrf_dev, sk, skb); return vrf_ip_out_redirect(vrf_dev, skb); } /* called with rcu lock held */ static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev, struct sock *sk, struct sk_buff *skb, u16 proto) { switch (proto) { case AF_INET: return vrf_ip_out(vrf_dev, sk, skb); case AF_INET6: return vrf_ip6_out(vrf_dev, sk, skb); } return skb; } /* holding rtnl */ static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf) { struct rtable *rth = rtnl_dereference(vrf->rth); struct net *net = dev_net(dev); struct dst_entry *dst; RCU_INIT_POINTER(vrf->rth, NULL); synchronize_rcu(); /* move dev in dst's to loopback so this VRF device can be deleted * - based on dst_ifdown */ if (rth) { dst = &rth->dst; netdev_ref_replace(dst->dev, net->loopback_dev, &dst->dev_tracker, GFP_KERNEL); dst->dev = net->loopback_dev; dst_release(dst); } } static int vrf_rtable_create(struct net_device *dev) { struct net_vrf *vrf = netdev_priv(dev); struct rtable *rth; if (!fib_new_table(dev_net(dev), vrf->tb_id)) return -ENOMEM; /* create a dst for routing packets out through a VRF device */ rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1); if (!rth) return -ENOMEM; rth->dst.output = vrf_output; rcu_assign_pointer(vrf->rth, rth); return 0; } /**************************** device handling ********************/ /* cycle interface to flush neighbor cache and move routes across tables */ static void cycle_netdev(struct net_device *dev, struct netlink_ext_ack *extack) { unsigned int flags = dev->flags; int ret; if (!netif_running(dev)) return; ret = dev_change_flags(dev, flags & ~IFF_UP, extack); if (ret >= 0) ret = dev_change_flags(dev, flags, extack); if (ret < 0) { netdev_err(dev, "Failed to cycle device %s; route tables might be wrong!\n", dev->name); } } static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev, struct netlink_ext_ack *extack) { int ret; /* do not allow loopback device to be enslaved to a VRF. * The vrf device acts as the loopback for the vrf. */ if (port_dev == dev_net(dev)->loopback_dev) { NL_SET_ERR_MSG(extack, "Can not enslave loopback device to a VRF"); return -EOPNOTSUPP; } port_dev->priv_flags |= IFF_L3MDEV_SLAVE; ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack); if (ret < 0) goto err; cycle_netdev(port_dev, extack); return 0; err: port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; return ret; } static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev, struct netlink_ext_ack *extack) { if (netif_is_l3_master(port_dev)) { NL_SET_ERR_MSG(extack, "Can not enslave an L3 master device to a VRF"); return -EINVAL; } if (netif_is_l3_slave(port_dev)) return -EINVAL; return do_vrf_add_slave(dev, port_dev, extack); } /* inverse of do_vrf_add_slave */ static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev) { netdev_upper_dev_unlink(port_dev, dev); port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; cycle_netdev(port_dev, NULL); return 0; } static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev) { return do_vrf_del_slave(dev, port_dev); } static void vrf_dev_uninit(struct net_device *dev) { struct net_vrf *vrf = netdev_priv(dev); vrf_rtable_release(dev, vrf); vrf_rt6_release(dev, vrf); } static int vrf_dev_init(struct net_device *dev) { struct net_vrf *vrf = netdev_priv(dev); /* create the default dst which points back to us */ if (vrf_rtable_create(dev) != 0) goto out_nomem; if (vrf_rt6_create(dev) != 0) goto out_rth; dev->flags = IFF_MASTER | IFF_NOARP; /* similarly, oper state is irrelevant; set to up to avoid confusion */ dev->operstate = IF_OPER_UP; netdev_lockdep_set_classes(dev); return 0; out_rth: vrf_rtable_release(dev, vrf); out_nomem: return -ENOMEM; } static const struct net_device_ops vrf_netdev_ops = { .ndo_init = vrf_dev_init, .ndo_uninit = vrf_dev_uninit, .ndo_start_xmit = vrf_xmit, .ndo_set_mac_address = eth_mac_addr, .ndo_add_slave = vrf_add_slave, .ndo_del_slave = vrf_del_slave, }; static u32 vrf_fib_table(const struct net_device *dev) { struct net_vrf *vrf = netdev_priv(dev); return vrf->tb_id; } static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb) { kfree_skb(skb); return 0; } static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook, struct sk_buff *skb, struct net_device *dev) { struct net *net = dev_net(dev); if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1) skb = NULL; /* kfree_skb(skb) handled by nf code */ return skb; } static int vrf_prepare_mac_header(struct sk_buff *skb, struct net_device *vrf_dev, u16 proto) { struct ethhdr *eth; int err; /* in general, we do not know if there is enough space in the head of * the packet for hosting the mac header. */ err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev)); if (unlikely(err)) /* no space in the skb head */ return -ENOBUFS; __skb_push(skb, ETH_HLEN); eth = (struct ethhdr *)skb->data; skb_reset_mac_header(skb); skb_reset_mac_len(skb); /* we set the ethernet destination and the source addresses to the * address of the VRF device. */ ether_addr_copy(eth->h_dest, vrf_dev->dev_addr); ether_addr_copy(eth->h_source, vrf_dev->dev_addr); eth->h_proto = htons(proto); /* the destination address of the Ethernet frame corresponds to the * address set on the VRF interface; therefore, the packet is intended * to be processed locally. */ skb->protocol = eth->h_proto; skb->pkt_type = PACKET_HOST; skb_postpush_rcsum(skb, skb->data, ETH_HLEN); skb_pull_inline(skb, ETH_HLEN); return 0; } /* prepare and add the mac header to the packet if it was not set previously. * In this way, packet sniffers such as tcpdump can parse the packet correctly. * If the mac header was already set, the original mac header is left * untouched and the function returns immediately. */ static int vrf_add_mac_header_if_unset(struct sk_buff *skb, struct net_device *vrf_dev, u16 proto, struct net_device *orig_dev) { if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev)) return 0; return vrf_prepare_mac_header(skb, vrf_dev, proto); } #if IS_ENABLED(CONFIG_IPV6) /* neighbor handling is done with actual device; do not want * to flip skb->dev for those ndisc packets. This really fails * for multiple next protocols (e.g., NEXTHDR_HOP). But it is * a start. */ static bool ipv6_ndisc_frame(const struct sk_buff *skb) { const struct ipv6hdr *iph = ipv6_hdr(skb); bool rc = false; if (iph->nexthdr == NEXTHDR_ICMP) { const struct icmp6hdr *icmph; struct icmp6hdr _icmph; icmph = skb_header_pointer(skb, sizeof(*iph), sizeof(_icmph), &_icmph); if (!icmph) goto out; switch (icmph->icmp6_type) { case NDISC_ROUTER_SOLICITATION: case NDISC_ROUTER_ADVERTISEMENT: case NDISC_NEIGHBOUR_SOLICITATION: case NDISC_NEIGHBOUR_ADVERTISEMENT: case NDISC_REDIRECT: rc = true; break; } } out: return rc; } static struct rt6_info *vrf_ip6_route_lookup(struct net *net, const struct net_device *dev, struct flowi6 *fl6, int ifindex, const struct sk_buff *skb, int flags) { struct net_vrf *vrf = netdev_priv(dev); return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags); } static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev, int ifindex) { const struct ipv6hdr *iph = ipv6_hdr(skb); struct flowi6 fl6 = { .flowi6_iif = ifindex, .flowi6_mark = skb->mark, .flowi6_proto = iph->nexthdr, .daddr = iph->daddr, .saddr = iph->saddr, .flowlabel = ip6_flowinfo(iph), }; struct net *net = dev_net(vrf_dev); struct rt6_info *rt6; rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb, RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE); if (unlikely(!rt6)) return; if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst)) return; skb_dst_set(skb, &rt6->dst); } static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, struct sk_buff *skb) { int orig_iif = skb->skb_iif; bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr); bool is_ndisc = ipv6_ndisc_frame(skb); /* loopback, multicast & non-ND link-local traffic; do not push through * packet taps again. Reset pkt_type for upper layers to process skb. * For non-loopback strict packets, determine the dst using the original * ifindex. */ if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) { skb->dev = vrf_dev; skb->skb_iif = vrf_dev->ifindex; IP6CB(skb)->flags |= IP6SKB_L3SLAVE; if (skb->pkt_type == PACKET_LOOPBACK) skb->pkt_type = PACKET_HOST; else vrf_ip6_input_dst(skb, vrf_dev, orig_iif); goto out; } /* if packet is NDISC then keep the ingress interface */ if (!is_ndisc) { struct net_device *orig_dev = skb->dev; vrf_rx_stats(vrf_dev, skb->len); skb->dev = vrf_dev; skb->skb_iif = vrf_dev->ifindex; if (!list_empty(&vrf_dev->ptype_all)) { int err; err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IPV6, orig_dev); if (likely(!err)) { skb_push(skb, skb->mac_len); dev_queue_xmit_nit(skb, vrf_dev); skb_pull(skb, skb->mac_len); } } IP6CB(skb)->flags |= IP6SKB_L3SLAVE; } if (need_strict) vrf_ip6_input_dst(skb, vrf_dev, orig_iif); skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev); out: return skb; } #else static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, struct sk_buff *skb) { return skb; } #endif static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev, struct sk_buff *skb) { struct net_device *orig_dev = skb->dev; skb->dev = vrf_dev; skb->skb_iif = vrf_dev->ifindex; IPCB(skb)->flags |= IPSKB_L3SLAVE; if (ipv4_is_multicast(ip_hdr(skb)->daddr)) goto out; /* loopback traffic; do not push through packet taps again. * Reset pkt_type for upper layers to process skb */ if (skb->pkt_type == PACKET_LOOPBACK) { skb->pkt_type = PACKET_HOST; goto out; } vrf_rx_stats(vrf_dev, skb->len); if (!list_empty(&vrf_dev->ptype_all)) { int err; err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP, orig_dev); if (likely(!err)) { skb_push(skb, skb->mac_len); dev_queue_xmit_nit(skb, vrf_dev); skb_pull(skb, skb->mac_len); } } skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev); out: return skb; } /* called with rcu lock held */ static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev, struct sk_buff *skb, u16 proto) { switch (proto) { case AF_INET: return vrf_ip_rcv(vrf_dev, skb); case AF_INET6: return vrf_ip6_rcv(vrf_dev, skb); } return skb; } #if IS_ENABLED(CONFIG_IPV6) /* send to link-local or multicast address via interface enslaved to * VRF device. Force lookup to VRF table without changing flow struct * Note: Caller to this function must hold rcu_read_lock() and no refcnt * is taken on the dst by this function. */ static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev, struct flowi6 *fl6) { struct net *net = dev_net(dev); int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF; struct dst_entry *dst = NULL; struct rt6_info *rt; /* VRF device does not have a link-local address and * sending packets to link-local or mcast addresses over * a VRF device does not make sense */ if (fl6->flowi6_oif == dev->ifindex) { dst = &net->ipv6.ip6_null_entry->dst; return dst; } if (!ipv6_addr_any(&fl6->saddr)) flags |= RT6_LOOKUP_F_HAS_SADDR; rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags); if (rt) dst = &rt->dst; return dst; } #endif static const struct l3mdev_ops vrf_l3mdev_ops = { .l3mdev_fib_table = vrf_fib_table, .l3mdev_l3_rcv = vrf_l3_rcv, .l3mdev_l3_out = vrf_l3_out, #if IS_ENABLED(CONFIG_IPV6) .l3mdev_link_scope_lookup = vrf_link_scope_lookup, #endif }; static void vrf_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strscpy(info->driver, DRV_NAME, sizeof(info->driver)); strscpy(info->version, DRV_VERSION, sizeof(info->version)); } static const struct ethtool_ops vrf_ethtool_ops = { .get_drvinfo = vrf_get_drvinfo, }; static inline size_t vrf_fib_rule_nl_size(void) { size_t sz; sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr)); sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */ sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */ sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */ return sz; } static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it) { struct fib_rule_hdr *frh; struct nlmsghdr *nlh; struct sk_buff *skb; int err; if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) && !ipv6_mod_enabled()) return 0; skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL); if (!skb) return -ENOMEM; nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0); if (!nlh) goto nla_put_failure; /* rule only needs to appear once */ nlh->nlmsg_flags |= NLM_F_EXCL; frh = nlmsg_data(nlh); memset(frh, 0, sizeof(*frh)); frh->family = family; frh->action = FR_ACT_TO_TBL; if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL)) goto nla_put_failure; if (nla_put_u8(skb, FRA_L3MDEV, 1)) goto nla_put_failure; if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF)) goto nla_put_failure; nlmsg_end(skb, nlh); /* fib_nl_{new,del}rule handling looks for net from skb->sk */ skb->sk = dev_net(dev)->rtnl; if (add_it) { err = fib_nl_newrule(skb, nlh, NULL); if (err == -EEXIST) err = 0; } else { err = fib_nl_delrule(skb, nlh, NULL); if (err == -ENOENT) err = 0; } nlmsg_free(skb); return err; nla_put_failure: nlmsg_free(skb); return -EMSGSIZE; } static int vrf_add_fib_rules(const struct net_device *dev) { int err; err = vrf_fib_rule(dev, AF_INET, true); if (err < 0) goto out_err; err = vrf_fib_rule(dev, AF_INET6, true); if (err < 0) goto ipv6_err; #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true); if (err < 0) goto ipmr_err; #endif #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true); if (err < 0) goto ip6mr_err; #endif return 0; #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) ip6mr_err: vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false); #endif #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) ipmr_err: vrf_fib_rule(dev, AF_INET6, false); #endif ipv6_err: vrf_fib_rule(dev, AF_INET, false); out_err: netdev_err(dev, "Failed to add FIB rules.\n"); return err; } static void vrf_setup(struct net_device *dev) { ether_setup(dev); /* Initialize the device structure. */ dev->netdev_ops = &vrf_netdev_ops; dev->l3mdev_ops = &vrf_l3mdev_ops; dev->ethtool_ops = &vrf_ethtool_ops; dev->needs_free_netdev = true; /* Fill in device structure with ethernet-generic values. */ eth_hw_addr_random(dev); /* don't acquire vrf device's netif_tx_lock when transmitting */ dev->lltx = true; /* don't allow vrf devices to change network namespaces. */ dev->netns_local = true; /* does not make sense for a VLAN to be added to a vrf device */ dev->features |= NETIF_F_VLAN_CHALLENGED; /* enable offload features */ dev->features |= NETIF_F_GSO_SOFTWARE; dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC; dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA; dev->hw_features = dev->features; dev->hw_enc_features = dev->features; /* default to no qdisc; user can add if desired */ dev->priv_flags |= IFF_NO_QUEUE; dev->priv_flags |= IFF_NO_RX_HANDLER; dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; /* VRF devices do not care about MTU, but if the MTU is set * too low then the ipv4 and ipv6 protocols are disabled * which breaks networking. */ dev->min_mtu = IPV6_MIN_MTU; dev->max_mtu = IP6_MAX_MTU; dev->mtu = dev->max_mtu; dev->pcpu_stat_type = NETDEV_PCPU_STAT_DSTATS; } static int vrf_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { if (tb[IFLA_ADDRESS]) { if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) { NL_SET_ERR_MSG(extack, "Invalid hardware address"); return -EINVAL; } if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) { NL_SET_ERR_MSG(extack, "Invalid hardware address"); return -EADDRNOTAVAIL; } } return 0; } static void vrf_dellink(struct net_device *dev, struct list_head *head) { struct net_device *port_dev; struct list_head *iter; netdev_for_each_lower_dev(dev, port_dev, iter) vrf_del_slave(dev, port_dev); vrf_map_unregister_dev(dev); unregister_netdevice_queue(dev, head); } static int vrf_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct net_vrf *vrf = netdev_priv(dev); struct netns_vrf *nn_vrf; bool *add_fib_rules; struct net *net; int err; if (!data || !data[IFLA_VRF_TABLE]) { NL_SET_ERR_MSG(extack, "VRF table id is missing"); return -EINVAL; } vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]); if (vrf->tb_id == RT_TABLE_UNSPEC) { NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE], "Invalid VRF table id"); return -EINVAL; } dev->priv_flags |= IFF_L3MDEV_MASTER; err = register_netdevice(dev); if (err) goto out; /* mapping between table_id and vrf; * note: such binding could not be done in the dev init function * because dev->ifindex id is not available yet. */ vrf->ifindex = dev->ifindex; err = vrf_map_register_dev(dev, extack); if (err) { unregister_netdevice(dev); goto out; } net = dev_net(dev); nn_vrf = net_generic(net, vrf_net_id); add_fib_rules = &nn_vrf->add_fib_rules; if (*add_fib_rules) { err = vrf_add_fib_rules(dev); if (err) { vrf_map_unregister_dev(dev); unregister_netdevice(dev); goto out; } *add_fib_rules = false; } out: return err; } static size_t vrf_nl_getsize(const struct net_device *dev) { return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */ } static int vrf_fillinfo(struct sk_buff *skb, const struct net_device *dev) { struct net_vrf *vrf = netdev_priv(dev); return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id); } static size_t vrf_get_slave_size(const struct net_device *bond_dev, const struct net_device *slave_dev) { return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */ } static int vrf_fill_slave_info(struct sk_buff *skb, const struct net_device *vrf_dev, const struct net_device *slave_dev) { struct net_vrf *vrf = netdev_priv(vrf_dev); if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id)) return -EMSGSIZE; return 0; } static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = { [IFLA_VRF_TABLE] = { .type = NLA_U32 }, }; static struct rtnl_link_ops vrf_link_ops __read_mostly = { .kind = DRV_NAME, .priv_size = sizeof(struct net_vrf), .get_size = vrf_nl_getsize, .policy = vrf_nl_policy, .validate = vrf_validate, .fill_info = vrf_fillinfo, .get_slave_size = vrf_get_slave_size, .fill_slave_info = vrf_fill_slave_info, .newlink = vrf_newlink, .dellink = vrf_dellink, .setup = vrf_setup, .maxtype = IFLA_VRF_MAX, }; static int vrf_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); /* only care about unregister events to drop slave references */ if (event == NETDEV_UNREGISTER) { struct net_device *vrf_dev; if (!netif_is_l3_slave(dev)) goto out; vrf_dev = netdev_master_upper_dev_get(dev); vrf_del_slave(vrf_dev, dev); } out: return NOTIFY_DONE; } static struct notifier_block vrf_notifier_block __read_mostly = { .notifier_call = vrf_device_event, }; static int vrf_map_init(struct vrf_map *vmap) { spin_lock_init(&vmap->vmap_lock); hash_init(vmap->ht); vmap->strict_mode = false; return 0; } #ifdef CONFIG_SYSCTL static bool vrf_strict_mode(struct vrf_map *vmap) { bool strict_mode; vrf_map_lock(vmap); strict_mode = vmap->strict_mode; vrf_map_unlock(vmap); return strict_mode; } static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode) { bool *cur_mode; int res = 0; vrf_map_lock(vmap); cur_mode = &vmap->strict_mode; if (*cur_mode == new_mode) goto unlock; if (*cur_mode) { /* disable strict mode */ *cur_mode = false; } else { if (vmap->shared_tables) { /* we cannot allow strict_mode because there are some * vrfs that share one or more tables. */ res = -EBUSY; goto unlock; } /* no tables are shared among vrfs, so we can go back * to 1:1 association between a vrf with its table. */ *cur_mode = true; } unlock: vrf_map_unlock(vmap); return res; } static int vrf_shared_table_handler(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct net *net = (struct net *)table->extra1; struct vrf_map *vmap = netns_vrf_map(net); int proc_strict_mode = 0; struct ctl_table tmp = { .procname = table->procname, .data = &proc_strict_mode, .maxlen = sizeof(int), .mode = table->mode, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }; int ret; if (!write) proc_strict_mode = vrf_strict_mode(vmap); ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); if (write && ret == 0) ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode); return ret; } static const struct ctl_table vrf_table[] = { { .procname = "strict_mode", .data = NULL, .maxlen = sizeof(int), .mode = 0644, .proc_handler = vrf_shared_table_handler, /* set by the vrf_netns_init */ .extra1 = NULL, }, }; static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf) { struct ctl_table *table; table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL); if (!table) return -ENOMEM; /* init the extra1 parameter with the reference to current netns */ table[0].extra1 = net; nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table, ARRAY_SIZE(vrf_table)); if (!nn_vrf->ctl_hdr) { kfree(table); return -ENOMEM; } return 0; } static void vrf_netns_exit_sysctl(struct net *net) { struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id); const struct ctl_table *table; table = nn_vrf->ctl_hdr->ctl_table_arg; unregister_net_sysctl_table(nn_vrf->ctl_hdr); kfree(table); } #else static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf) { return 0; } static void vrf_netns_exit_sysctl(struct net *net) { } #endif /* Initialize per network namespace state */ static int __net_init vrf_netns_init(struct net *net) { struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id); nn_vrf->add_fib_rules = true; vrf_map_init(&nn_vrf->vmap); return vrf_netns_init_sysctl(net, nn_vrf); } static void __net_exit vrf_netns_exit(struct net *net) { vrf_netns_exit_sysctl(net); } static struct pernet_operations vrf_net_ops __net_initdata = { .init = vrf_netns_init, .exit = vrf_netns_exit, .id = &vrf_net_id, .size = sizeof(struct netns_vrf), }; static int __init vrf_init_module(void) { int rc; register_netdevice_notifier(&vrf_notifier_block); rc = register_pernet_subsys(&vrf_net_ops); if (rc < 0) goto error; rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF, vrf_ifindex_lookup_by_table_id); if (rc < 0) goto unreg_pernet; rc = rtnl_link_register(&vrf_link_ops); if (rc < 0) goto table_lookup_unreg; return 0; table_lookup_unreg: l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF, vrf_ifindex_lookup_by_table_id); unreg_pernet: unregister_pernet_subsys(&vrf_net_ops); error: unregister_netdevice_notifier(&vrf_notifier_block); return rc; } module_init(vrf_init_module); MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern"); MODULE_DESCRIPTION("Device driver to instantiate VRF domains"); MODULE_LICENSE("GPL"); MODULE_ALIAS_RTNL_LINK(DRV_NAME); MODULE_VERSION(DRV_VERSION);
204 204 23 23 23 23 23 23 22 2 23 23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 // SPDX-License-Identifier: GPL-2.0 /* * drivers/base/dd.c - The core device/driver interactions. * * This file contains the (sometimes tricky) code that controls the * interactions between devices and drivers, which primarily includes * driver binding and unbinding. * * All of this code used to exist in drivers/base/bus.c, but was * relocated to here in the name of compartmentalization (since it wasn't * strictly code just for the 'struct bus_type'. * * Copyright (c) 2002-5 Patrick Mochel * Copyright (c) 2002-3 Open Source Development Labs * Copyright (c) 2007-2009 Greg Kroah-Hartman <gregkh@suse.de> * Copyright (c) 2007-2009 Novell Inc. */ #include <linux/debugfs.h> #include <linux/device.h> #include <linux/delay.h> #include <linux/dma-map-ops.h> #include <linux/init.h> #include <linux/module.h> #include <linux/kthread.h> #include <linux/wait.h> #include <linux/async.h> #include <linux/pm_runtime.h> #include <linux/pinctrl/devinfo.h> #include <linux/slab.h> #include "base.h" #include "power/power.h" /* * Deferred Probe infrastructure. * * Sometimes driver probe order matters, but the kernel doesn't always have * dependency information which means some drivers will get probed before a * resource it depends on is available. For example, an SDHCI driver may * first need a GPIO line from an i2c GPIO controller before it can be * initialized. If a required resource is not available yet, a driver can * request probing to be deferred by returning -EPROBE_DEFER from its probe hook * * Deferred probe maintains two lists of devices, a pending list and an active * list. A driver returning -EPROBE_DEFER causes the device to be added to the * pending list. A successful driver probe will trigger moving all devices * from the pending to the active list so that the workqueue will eventually * retry them. * * The deferred_probe_mutex must be held any time the deferred_probe_*_list * of the (struct device*)->p->deferred_probe pointers are manipulated */ static DEFINE_MUTEX(deferred_probe_mutex); static LIST_HEAD(deferred_probe_pending_list); static LIST_HEAD(deferred_probe_active_list); static atomic_t deferred_trigger_count = ATOMIC_INIT(0); static bool initcalls_done; /* Save the async probe drivers' name from kernel cmdline */ #define ASYNC_DRV_NAMES_MAX_LEN 256 static char async_probe_drv_names[ASYNC_DRV_NAMES_MAX_LEN]; static bool async_probe_default; /* * In some cases, like suspend to RAM or hibernation, It might be reasonable * to prohibit probing of devices as it could be unsafe. * Once defer_all_probes is true all drivers probes will be forcibly deferred. */ static bool defer_all_probes; static void __device_set_deferred_probe_reason(const struct device *dev, char *reason) { kfree(dev->p->deferred_probe_reason); dev->p->deferred_probe_reason = reason; } /* * deferred_probe_work_func() - Retry probing devices in the active list. */ static void deferred_probe_work_func(struct work_struct *work) { struct device *dev; struct device_private *private; /* * This block processes every device in the deferred 'active' list. * Each device is removed from the active list and passed to * bus_probe_device() to re-attempt the probe. The loop continues * until every device in the active list is removed and retried. * * Note: Once the device is removed from the list and the mutex is * released, it is possible for the device get freed by another thread * and cause a illegal pointer dereference. This code uses * get/put_device() to ensure the device structure cannot disappear * from under our feet. */ mutex_lock(&deferred_probe_mutex); while (!list_empty(&deferred_probe_active_list)) { private = list_first_entry(&deferred_probe_active_list, typeof(*dev->p), deferred_probe); dev = private->device; list_del_init(&private->deferred_probe); get_device(dev); __device_set_deferred_probe_reason(dev, NULL); /* * Drop the mutex while probing each device; the probe path may * manipulate the deferred list */ mutex_unlock(&deferred_probe_mutex); /* * Force the device to the end of the dpm_list since * the PM code assumes that the order we add things to * the list is a good order for suspend but deferred * probe makes that very unsafe. */ device_pm_move_to_tail(dev); dev_dbg(dev, "Retrying from deferred list\n"); bus_probe_device(dev); mutex_lock(&deferred_probe_mutex); put_device(dev); } mutex_unlock(&deferred_probe_mutex); } static DECLARE_WORK(deferred_probe_work, deferred_probe_work_func); void driver_deferred_probe_add(struct device *dev) { if (!dev->can_match) return; mutex_lock(&deferred_probe_mutex); if (list_empty(&dev->p->deferred_probe)) { dev_dbg(dev, "Added to deferred list\n"); list_add_tail(&dev->p->deferred_probe, &deferred_probe_pending_list); } mutex_unlock(&deferred_probe_mutex); } void driver_deferred_probe_del(struct device *dev) { mutex_lock(&deferred_probe_mutex); if (!list_empty(&dev->p->deferred_probe)) { dev_dbg(dev, "Removed from deferred list\n"); list_del_init(&dev->p->deferred_probe); __device_set_deferred_probe_reason(dev, NULL); } mutex_unlock(&deferred_probe_mutex); } static bool driver_deferred_probe_enable; /** * driver_deferred_probe_trigger() - Kick off re-probing deferred devices * * This functions moves all devices from the pending list to the active * list and schedules the deferred probe workqueue to process them. It * should be called anytime a driver is successfully bound to a device. * * Note, there is a race condition in multi-threaded probe. In the case where * more than one device is probing at the same time, it is possible for one * probe to complete successfully while another is about to defer. If the second * depends on the first, then it will get put on the pending list after the * trigger event has already occurred and will be stuck there. * * The atomic 'deferred_trigger_count' is used to determine if a successful * trigger has occurred in the midst of probing a driver. If the trigger count * changes in the midst of a probe, then deferred processing should be triggered * again. */ void driver_deferred_probe_trigger(void) { if (!driver_deferred_probe_enable) return; /* * A successful probe means that all the devices in the pending list * should be triggered to be reprobed. Move all the deferred devices * into the active list so they can be retried by the workqueue */ mutex_lock(&deferred_probe_mutex); atomic_inc(&deferred_trigger_count); list_splice_tail_init(&deferred_probe_pending_list, &deferred_probe_active_list); mutex_unlock(&deferred_probe_mutex); /* * Kick the re-probe thread. It may already be scheduled, but it is * safe to kick it again. */ queue_work(system_unbound_wq, &deferred_probe_work); } /** * device_block_probing() - Block/defer device's probes * * It will disable probing of devices and defer their probes instead. */ void device_block_probing(void) { defer_all_probes = true; /* sync with probes to avoid races. */ wait_for_device_probe(); } /** * device_unblock_probing() - Unblock/enable device's probes * * It will restore normal behavior and trigger re-probing of deferred * devices. */ void device_unblock_probing(void) { defer_all_probes = false; driver_deferred_probe_trigger(); } /** * device_set_deferred_probe_reason() - Set defer probe reason message for device * @dev: the pointer to the struct device * @vaf: the pointer to va_format structure with message */ void device_set_deferred_probe_reason(const struct device *dev, struct va_format *vaf) { const char *drv = dev_driver_string(dev); char *reason; mutex_lock(&deferred_probe_mutex); reason = kasprintf(GFP_KERNEL, "%s: %pV", drv, vaf); __device_set_deferred_probe_reason(dev, reason); mutex_unlock(&deferred_probe_mutex); } /* * deferred_devs_show() - Show the devices in the deferred probe pending list. */ static int deferred_devs_show(struct seq_file *s, void *data) { struct device_private *curr; mutex_lock(&deferred_probe_mutex); list_for_each_entry(curr, &deferred_probe_pending_list, deferred_probe) seq_printf(s, "%s\t%s", dev_name(curr->device), curr->deferred_probe_reason ?: "\n"); mutex_unlock(&deferred_probe_mutex); return 0; } DEFINE_SHOW_ATTRIBUTE(deferred_devs); #ifdef CONFIG_MODULES static int driver_deferred_probe_timeout = 10; #else static int driver_deferred_probe_timeout; #endif static int __init deferred_probe_timeout_setup(char *str) { int timeout; if (!kstrtoint(str, 10, &timeout)) driver_deferred_probe_timeout = timeout; return 1; } __setup("deferred_probe_timeout=", deferred_probe_timeout_setup); /** * driver_deferred_probe_check_state() - Check deferred probe state * @dev: device to check * * Return: * * -ENODEV if initcalls have completed and modules are disabled. * * -ETIMEDOUT if the deferred probe timeout was set and has expired * and modules are enabled. * * -EPROBE_DEFER in other cases. * * Drivers or subsystems can opt-in to calling this function instead of directly * returning -EPROBE_DEFER. */ int driver_deferred_probe_check_state(struct device *dev) { if (!IS_ENABLED(CONFIG_MODULES) && initcalls_done) { dev_warn(dev, "ignoring dependency for device, assuming no driver\n"); return -ENODEV; } if (!driver_deferred_probe_timeout && initcalls_done) { dev_warn(dev, "deferred probe timeout, ignoring dependency\n"); return -ETIMEDOUT; } return -EPROBE_DEFER; } EXPORT_SYMBOL_GPL(driver_deferred_probe_check_state); static void deferred_probe_timeout_work_func(struct work_struct *work) { struct device_private *p; fw_devlink_drivers_done(); driver_deferred_probe_timeout = 0; driver_deferred_probe_trigger(); flush_work(&deferred_probe_work); mutex_lock(&deferred_probe_mutex); list_for_each_entry(p, &deferred_probe_pending_list, deferred_probe) dev_warn(p->device, "deferred probe pending: %s", p->deferred_probe_reason ?: "(reason unknown)\n"); mutex_unlock(&deferred_probe_mutex); fw_devlink_probing_done(); } static DECLARE_DELAYED_WORK(deferred_probe_timeout_work, deferred_probe_timeout_work_func); void deferred_probe_extend_timeout(void) { /* * If the work hasn't been queued yet or if the work expired, don't * start a new one. */ if (cancel_delayed_work(&deferred_probe_timeout_work)) { schedule_delayed_work(&deferred_probe_timeout_work, driver_deferred_probe_timeout * HZ); pr_debug("Extended deferred probe timeout by %d secs\n", driver_deferred_probe_timeout); } } /** * deferred_probe_initcall() - Enable probing of deferred devices * * We don't want to get in the way when the bulk of drivers are getting probed. * Instead, this initcall makes sure that deferred probing is delayed until * late_initcall time. */ static int deferred_probe_initcall(void) { debugfs_create_file("devices_deferred", 0444, NULL, NULL, &deferred_devs_fops); driver_deferred_probe_enable = true; driver_deferred_probe_trigger(); /* Sort as many dependencies as possible before exiting initcalls */ flush_work(&deferred_probe_work); initcalls_done = true; if (!IS_ENABLED(CONFIG_MODULES)) fw_devlink_drivers_done(); /* * Trigger deferred probe again, this time we won't defer anything * that is optional */ driver_deferred_probe_trigger(); flush_work(&deferred_probe_work); if (driver_deferred_probe_timeout > 0) { schedule_delayed_work(&deferred_probe_timeout_work, driver_deferred_probe_timeout * HZ); } if (!IS_ENABLED(CONFIG_MODULES)) fw_devlink_probing_done(); return 0; } late_initcall(deferred_probe_initcall); static void __exit deferred_probe_exit(void) { debugfs_lookup_and_remove("devices_deferred", NULL); } __exitcall(deferred_probe_exit); /** * device_is_bound() - Check if device is bound to a driver * @dev: device to check * * Returns true if passed device has already finished probing successfully * against a driver. * * This function must be called with the device lock held. */ bool device_is_bound(struct device *dev) { return dev->p && klist_node_attached(&dev->p->knode_driver); } EXPORT_SYMBOL_GPL(device_is_bound); static void driver_bound(struct device *dev) { if (device_is_bound(dev)) { dev_warn(dev, "%s: device already bound\n", __func__); return; } dev_dbg(dev, "driver: '%s': %s: bound to device\n", dev->driver->name, __func__); klist_add_tail(&dev->p->knode_driver, &dev->driver->p->klist_devices); device_links_driver_bound(dev); device_pm_check_callbacks(dev); /* * Make sure the device is no longer in one of the deferred lists and * kick off retrying all pending devices */ driver_deferred_probe_del(dev); driver_deferred_probe_trigger(); bus_notify(dev, BUS_NOTIFY_BOUND_DRIVER); kobject_uevent(&dev->kobj, KOBJ_BIND); } static ssize_t coredump_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { device_lock(dev); dev->driver->coredump(dev); device_unlock(dev); return count; } static DEVICE_ATTR_WO(coredump); static int driver_sysfs_add(struct device *dev) { int ret; bus_notify(dev, BUS_NOTIFY_BIND_DRIVER); ret = sysfs_create_link(&dev->driver->p->kobj, &dev->kobj, kobject_name(&dev->kobj)); if (ret) goto fail; ret = sysfs_create_link(&dev->kobj, &dev->driver->p->kobj, "driver"); if (ret) goto rm_dev; if (!IS_ENABLED(CONFIG_DEV_COREDUMP) || !dev->driver->coredump) return 0; ret = device_create_file(dev, &dev_attr_coredump); if (!ret) return 0; sysfs_remove_link(&dev->kobj, "driver"); rm_dev: sysfs_remove_link(&dev->driver->p->kobj, kobject_name(&dev->kobj)); fail: return ret; } static void driver_sysfs_remove(struct device *dev) { struct device_driver *drv = dev->driver; if (drv) { if (drv->coredump) device_remove_file(dev, &dev_attr_coredump); sysfs_remove_link(&drv->p->kobj, kobject_name(&dev->kobj)); sysfs_remove_link(&dev->kobj, "driver"); } } /** * device_bind_driver - bind a driver to one device. * @dev: device. * * Allow manual attachment of a driver to a device. * Caller must have already set @dev->driver. * * Note that this does not modify the bus reference count. * Please verify that is accounted for before calling this. * (It is ok to call with no other effort from a driver's probe() method.) * * This function must be called with the device lock held. * * Callers should prefer to use device_driver_attach() instead. */ int device_bind_driver(struct device *dev) { int ret; ret = driver_sysfs_add(dev); if (!ret) { device_links_force_bind(dev); driver_bound(dev); } else bus_notify(dev, BUS_NOTIFY_DRIVER_NOT_BOUND); return ret; } EXPORT_SYMBOL_GPL(device_bind_driver); static atomic_t probe_count = ATOMIC_INIT(0); static DECLARE_WAIT_QUEUE_HEAD(probe_waitqueue); static ssize_t state_synced_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret = 0; if (strcmp("1", buf)) return -EINVAL; device_lock(dev); if (!dev->state_synced) { dev->state_synced = true; dev_sync_state(dev); } else { ret = -EINVAL; } device_unlock(dev); return ret ? ret : count; } static ssize_t state_synced_show(struct device *dev, struct device_attribute *attr, char *buf) { bool val; device_lock(dev); val = dev->state_synced; device_unlock(dev); return sysfs_emit(buf, "%u\n", val); } static DEVICE_ATTR_RW(state_synced); static void device_unbind_cleanup(struct device *dev) { devres_release_all(dev); arch_teardown_dma_ops(dev); kfree(dev->dma_range_map); dev->dma_range_map = NULL; dev->driver = NULL; dev_set_drvdata(dev, NULL); if (dev->pm_domain && dev->pm_domain->dismiss) dev->pm_domain->dismiss(dev); pm_runtime_reinit(dev); dev_pm_set_driver_flags(dev, 0); } static void device_remove(struct device *dev) { device_remove_file(dev, &dev_attr_state_synced); device_remove_groups(dev, dev->driver->dev_groups); if (dev->bus && dev->bus->remove) dev->bus->remove(dev); else if (dev->driver->remove) dev->driver->remove(dev); } static int call_driver_probe(struct device *dev, const struct device_driver *drv) { int ret = 0; if (dev->bus->probe) ret = dev->bus->probe(dev); else if (drv->probe) ret = drv->probe(dev); switch (ret) { case 0: break; case -EPROBE_DEFER: /* Driver requested deferred probing */ dev_dbg(dev, "Driver %s requests probe deferral\n", drv->name); break; case -ENODEV: case -ENXIO: dev_dbg(dev, "probe with driver %s rejects match %d\n", drv->name, ret); break; default: /* driver matched but the probe failed */ dev_err(dev, "probe with driver %s failed with error %d\n", drv->name, ret); break; } return ret; } static int really_probe(struct device *dev, const struct device_driver *drv) { bool test_remove = IS_ENABLED(CONFIG_DEBUG_TEST_DRIVER_REMOVE) && !drv->suppress_bind_attrs; int ret, link_ret; if (defer_all_probes) { /* * Value of defer_all_probes can be set only by * device_block_probing() which, in turn, will call * wait_for_device_probe() right after that to avoid any races. */ dev_dbg(dev, "Driver %s force probe deferral\n", drv->name); return -EPROBE_DEFER; } link_ret = device_links_check_suppliers(dev); if (link_ret == -EPROBE_DEFER) return link_ret; dev_dbg(dev, "bus: '%s': %s: probing driver %s with device\n", drv->bus->name, __func__, drv->name); if (!list_empty(&dev->devres_head)) { dev_crit(dev, "Resources present before probing\n"); ret = -EBUSY; goto done; } re_probe: // FIXME - this cast should not be needed "soon" dev->driver = (struct device_driver *)drv; /* If using pinctrl, bind pins now before probing */ ret = pinctrl_bind_pins(dev); if (ret) goto pinctrl_bind_failed; if (dev->bus->dma_configure) { ret = dev->bus->dma_configure(dev); if (ret) goto pinctrl_bind_failed; } ret = driver_sysfs_add(dev); if (ret) { dev_err(dev, "%s: driver_sysfs_add failed\n", __func__); goto sysfs_failed; } if (dev->pm_domain && dev->pm_domain->activate) { ret = dev->pm_domain->activate(dev); if (ret) goto probe_failed; } ret = call_driver_probe(dev, drv); if (ret) { /* * If fw_devlink_best_effort is active (denoted by -EAGAIN), the * device might actually probe properly once some of its missing * suppliers have probed. So, treat this as if the driver * returned -EPROBE_DEFER. */ if (link_ret == -EAGAIN) ret = -EPROBE_DEFER; /* * Return probe errors as positive values so that the callers * can distinguish them from other errors. */ ret = -ret; goto probe_failed; } ret = device_add_groups(dev, drv->dev_groups); if (ret) { dev_err(dev, "device_add_groups() failed\n"); goto dev_groups_failed; } if (dev_has_sync_state(dev)) { ret = device_create_file(dev, &dev_attr_state_synced); if (ret) { dev_err(dev, "state_synced sysfs add failed\n"); goto dev_sysfs_state_synced_failed; } } if (test_remove) { test_remove = false; device_remove(dev); driver_sysfs_remove(dev); if (dev->bus && dev->bus->dma_cleanup) dev->bus->dma_cleanup(dev); device_unbind_cleanup(dev); goto re_probe; } pinctrl_init_done(dev); if (dev->pm_domain && dev->pm_domain->sync) dev->pm_domain->sync(dev); driver_bound(dev); dev_dbg(dev, "bus: '%s': %s: bound device to driver %s\n", drv->bus->name, __func__, drv->name); goto done; dev_sysfs_state_synced_failed: dev_groups_failed: device_remove(dev); probe_failed: driver_sysfs_remove(dev); sysfs_failed: bus_notify(dev, BUS_NOTIFY_DRIVER_NOT_BOUND); if (dev->bus && dev->bus->dma_cleanup) dev->bus->dma_cleanup(dev); pinctrl_bind_failed: device_links_no_driver(dev); device_unbind_cleanup(dev); done: return ret; } /* * For initcall_debug, show the driver probe time. */ static int really_probe_debug(struct device *dev, const struct device_driver *drv) { ktime_t calltime, rettime; int ret; calltime = ktime_get(); ret = really_probe(dev, drv); rettime = ktime_get(); /* * Don't change this to pr_debug() because that requires * CONFIG_DYNAMIC_DEBUG and we want a simple 'initcall_debug' on the * kernel commandline to print this all the time at the debug level. */ printk(KERN_DEBUG "probe of %s returned %d after %lld usecs\n", dev_name(dev), ret, ktime_us_delta(rettime, calltime)); return ret; } /** * driver_probe_done * Determine if the probe sequence is finished or not. * * Should somehow figure out how to use a semaphore, not an atomic variable... */ bool __init driver_probe_done(void) { int local_probe_count = atomic_read(&probe_count); pr_debug("%s: probe_count = %d\n", __func__, local_probe_count); return !local_probe_count; } /** * wait_for_device_probe * Wait for device probing to be completed. */ void wait_for_device_probe(void) { /* wait for the deferred probe workqueue to finish */ flush_work(&deferred_probe_work); /* wait for the known devices to complete their probing */ wait_event(probe_waitqueue, atomic_read(&probe_count) == 0); async_synchronize_full(); } EXPORT_SYMBOL_GPL(wait_for_device_probe); static int __driver_probe_device(const struct device_driver *drv, struct device *dev) { int ret = 0; if (dev->p->dead || !device_is_registered(dev)) return -ENODEV; if (dev->driver) return -EBUSY; dev->can_match = true; dev_dbg(dev, "bus: '%s': %s: matched device with driver %s\n", drv->bus->name, __func__, drv->name); pm_runtime_get_suppliers(dev); if (dev->parent) pm_runtime_get_sync(dev->parent); pm_runtime_barrier(dev); if (initcall_debug) ret = really_probe_debug(dev, drv); else ret = really_probe(dev, drv); pm_request_idle(dev); if (dev->parent) pm_runtime_put(dev->parent); pm_runtime_put_suppliers(dev); return ret; } /** * driver_probe_device - attempt to bind device & driver together * @drv: driver to bind a device to * @dev: device to try to bind to the driver * * This function returns -ENODEV if the device is not registered, -EBUSY if it * already has a driver, 0 if the device is bound successfully and a positive * (inverted) error code for failures from the ->probe method. * * This function must be called with @dev lock held. When called for a * USB interface, @dev->parent lock must be held as well. * * If the device has a parent, runtime-resume the parent before driver probing. */ static int driver_probe_device(const struct device_driver *drv, struct device *dev) { int trigger_count = atomic_read(&deferred_trigger_count); int ret; atomic_inc(&probe_count); ret = __driver_probe_device(drv, dev); if (ret == -EPROBE_DEFER || ret == EPROBE_DEFER) { driver_deferred_probe_add(dev); /* * Did a trigger occur while probing? Need to re-trigger if yes */ if (trigger_count != atomic_read(&deferred_trigger_count) && !defer_all_probes) driver_deferred_probe_trigger(); } atomic_dec(&probe_count); wake_up_all(&probe_waitqueue); return ret; } static inline bool cmdline_requested_async_probing(const char *drv_name) { bool async_drv; async_drv = parse_option_str(async_probe_drv_names, drv_name); return (async_probe_default != async_drv); } /* The option format is "driver_async_probe=drv_name1,drv_name2,..." */ static int __init save_async_options(char *buf) { if (strlen(buf) >= ASYNC_DRV_NAMES_MAX_LEN) pr_warn("Too long list of driver names for 'driver_async_probe'!\n"); strscpy(async_probe_drv_names, buf, ASYNC_DRV_NAMES_MAX_LEN); async_probe_default = parse_option_str(async_probe_drv_names, "*"); return 1; } __setup("driver_async_probe=", save_async_options); static bool driver_allows_async_probing(const struct device_driver *drv) { switch (drv->probe_type) { case PROBE_PREFER_ASYNCHRONOUS: return true; case PROBE_FORCE_SYNCHRONOUS: return false; default: if (cmdline_requested_async_probing(drv->name)) return true; if (module_requested_async_probing(drv->owner)) return true; return false; } } struct device_attach_data { struct device *dev; /* * Indicates whether we are considering asynchronous probing or * not. Only initial binding after device or driver registration * (including deferral processing) may be done asynchronously, the * rest is always synchronous, as we expect it is being done by * request from userspace. */ bool check_async; /* * Indicates if we are binding synchronous or asynchronous drivers. * When asynchronous probing is enabled we'll execute 2 passes * over drivers: first pass doing synchronous probing and second * doing asynchronous probing (if synchronous did not succeed - * most likely because there was no driver requiring synchronous * probing - and we found asynchronous driver during first pass). * The 2 passes are done because we can't shoot asynchronous * probe for given device and driver from bus_for_each_drv() since * driver pointer is not guaranteed to stay valid once * bus_for_each_drv() iterates to the next driver on the bus. */ bool want_async; /* * We'll set have_async to 'true' if, while scanning for matching * driver, we'll encounter one that requests asynchronous probing. */ bool have_async; }; static int __device_attach_driver(struct device_driver *drv, void *_data) { struct device_attach_data *data = _data; struct device *dev = data->dev; bool async_allowed; int ret; ret = driver_match_device(drv, dev); if (ret == 0) { /* no match */ return 0; } else if (ret == -EPROBE_DEFER) { dev_dbg(dev, "Device match requests probe deferral\n"); dev->can_match = true; driver_deferred_probe_add(dev); /* * Device can't match with a driver right now, so don't attempt * to match or bind with other drivers on the bus. */ return ret; } else if (ret < 0) { dev_dbg(dev, "Bus failed to match device: %d\n", ret); return ret; } /* ret > 0 means positive match */ async_allowed = driver_allows_async_probing(drv); if (async_allowed) data->have_async = true; if (data->check_async && async_allowed != data->want_async) return 0; /* * Ignore errors returned by ->probe so that the next driver can try * its luck. */ ret = driver_probe_device(drv, dev); if (ret < 0) return ret; return ret == 0; } static void __device_attach_async_helper(void *_dev, async_cookie_t cookie) { struct device *dev = _dev; struct device_attach_data data = { .dev = dev, .check_async = true, .want_async = true, }; device_lock(dev); /* * Check if device has already been removed or claimed. This may * happen with driver loading, device discovery/registration, * and deferred probe processing happens all at once with * multiple threads. */ if (dev->p->dead || dev->driver) goto out_unlock; if (dev->parent) pm_runtime_get_sync(dev->parent); bus_for_each_drv(dev->bus, NULL, &data, __device_attach_driver); dev_dbg(dev, "async probe completed\n"); pm_request_idle(dev); if (dev->parent) pm_runtime_put(dev->parent); out_unlock: device_unlock(dev); put_device(dev); } static int __device_attach(struct device *dev, bool allow_async) { int ret = 0; bool async = false; device_lock(dev); if (dev->p->dead) { goto out_unlock; } else if (dev->driver) { if (device_is_bound(dev)) { ret = 1; goto out_unlock; } ret = device_bind_driver(dev); if (ret == 0) ret = 1; else { dev->driver = NULL; ret = 0; } } else { struct device_attach_data data = { .dev = dev, .check_async = allow_async, .want_async = false, }; if (dev->parent) pm_runtime_get_sync(dev->parent); ret = bus_for_each_drv(dev->bus, NULL, &data, __device_attach_driver); if (!ret && allow_async && data.have_async) { /* * If we could not find appropriate driver * synchronously and we are allowed to do * async probes and there are drivers that * want to probe asynchronously, we'll * try them. */ dev_dbg(dev, "scheduling asynchronous probe\n"); get_device(dev); async = true; } else { pm_request_idle(dev); } if (dev->parent) pm_runtime_put(dev->parent); } out_unlock: device_unlock(dev); if (async) async_schedule_dev(__device_attach_async_helper, dev); return ret; } /** * device_attach - try to attach device to a driver. * @dev: device. * * Walk the list of drivers that the bus has and call * driver_probe_device() for each pair. If a compatible * pair is found, break out and return. * * Returns 1 if the device was bound to a driver; * 0 if no matching driver was found; * -ENODEV if the device is not registered. * * When called for a USB interface, @dev->parent lock must be held. */ int device_attach(struct device *dev) { return __device_attach(dev, false); } EXPORT_SYMBOL_GPL(device_attach); void device_initial_probe(struct device *dev) { __device_attach(dev, true); } /* * __device_driver_lock - acquire locks needed to manipulate dev->drv * @dev: Device we will update driver info for * @parent: Parent device. Needed if the bus requires parent lock * * This function will take the required locks for manipulating dev->drv. * Normally this will just be the @dev lock, but when called for a USB * interface, @parent lock will be held as well. */ static void __device_driver_lock(struct device *dev, struct device *parent) { if (parent && dev->bus->need_parent_lock) device_lock(parent); device_lock(dev); } /* * __device_driver_unlock - release locks needed to manipulate dev->drv * @dev: Device we will update driver info for * @parent: Parent device. Needed if the bus requires parent lock * * This function will release the required locks for manipulating dev->drv. * Normally this will just be the @dev lock, but when called for a * USB interface, @parent lock will be released as well. */ static void __device_driver_unlock(struct device *dev, struct device *parent) { device_unlock(dev); if (parent && dev->bus->need_parent_lock) device_unlock(parent); } /** * device_driver_attach - attach a specific driver to a specific device * @drv: Driver to attach * @dev: Device to attach it to * * Manually attach driver to a device. Will acquire both @dev lock and * @dev->parent lock if needed. Returns 0 on success, -ERR on failure. */ int device_driver_attach(const struct device_driver *drv, struct device *dev) { int ret; __device_driver_lock(dev, dev->parent); ret = __driver_probe_device(drv, dev); __device_driver_unlock(dev, dev->parent); /* also return probe errors as normal negative errnos */ if (ret > 0) ret = -ret; if (ret == -EPROBE_DEFER) return -EAGAIN; return ret; } EXPORT_SYMBOL_GPL(device_driver_attach); static void __driver_attach_async_helper(void *_dev, async_cookie_t cookie) { struct device *dev = _dev; const struct device_driver *drv; int ret; __device_driver_lock(dev, dev->parent); drv = dev->p->async_driver; dev->p->async_driver = NULL; ret = driver_probe_device(drv, dev); __device_driver_unlock(dev, dev->parent); dev_dbg(dev, "driver %s async attach completed: %d\n", drv->name, ret); put_device(dev); } static int __driver_attach(struct device *dev, void *data) { const struct device_driver *drv = data; bool async = false; int ret; /* * Lock device and try to bind to it. We drop the error * here and always return 0, because we need to keep trying * to bind to devices and some drivers will return an error * simply if it didn't support the device. * * driver_probe_device() will spit a warning if there * is an error. */ ret = driver_match_device(drv, dev); if (ret == 0) { /* no match */ return 0; } else if (ret == -EPROBE_DEFER) { dev_dbg(dev, "Device match requests probe deferral\n"); dev->can_match = true; driver_deferred_probe_add(dev); /* * Driver could not match with device, but may match with * another device on the bus. */ return 0; } else if (ret < 0) { dev_dbg(dev, "Bus failed to match device: %d\n", ret); /* * Driver could not match with device, but may match with * another device on the bus. */ return 0; } /* ret > 0 means positive match */ if (driver_allows_async_probing(drv)) { /* * Instead of probing the device synchronously we will * probe it asynchronously to allow for more parallelism. * * We only take the device lock here in order to guarantee * that the dev->driver and async_driver fields are protected */ dev_dbg(dev, "probing driver %s asynchronously\n", drv->name); device_lock(dev); if (!dev->driver && !dev->p->async_driver) { get_device(dev); dev->p->async_driver = drv; async = true; } device_unlock(dev); if (async) async_schedule_dev(__driver_attach_async_helper, dev); return 0; } __device_driver_lock(dev, dev->parent); driver_probe_device(drv, dev); __device_driver_unlock(dev, dev->parent); return 0; } /** * driver_attach - try to bind driver to devices. * @drv: driver. * * Walk the list of devices that the bus has on it and try to * match the driver with each one. If driver_probe_device() * returns 0 and the @dev->driver is set, we've found a * compatible pair. */ int driver_attach(const struct device_driver *drv) { /* The (void *) will be put back to const * in __driver_attach() */ return bus_for_each_dev(drv->bus, NULL, (void *)drv, __driver_attach); } EXPORT_SYMBOL_GPL(driver_attach); /* * __device_release_driver() must be called with @dev lock held. * When called for a USB interface, @dev->parent lock must be held as well. */ static void __device_release_driver(struct device *dev, struct device *parent) { struct device_driver *drv; drv = dev->driver; if (drv) { pm_runtime_get_sync(dev); while (device_links_busy(dev)) { __device_driver_unlock(dev, parent); device_links_unbind_consumers(dev); __device_driver_lock(dev, parent); /* * A concurrent invocation of the same function might * have released the driver successfully while this one * was waiting, so check for that. */ if (dev->driver != drv) { pm_runtime_put(dev); return; } } driver_sysfs_remove(dev); bus_notify(dev, BUS_NOTIFY_UNBIND_DRIVER); pm_runtime_put_sync(dev); device_remove(dev); if (dev->bus && dev->bus->dma_cleanup) dev->bus->dma_cleanup(dev); device_unbind_cleanup(dev); device_links_driver_cleanup(dev); klist_remove(&dev->p->knode_driver); device_pm_check_callbacks(dev); bus_notify(dev, BUS_NOTIFY_UNBOUND_DRIVER); kobject_uevent(&dev->kobj, KOBJ_UNBIND); } } void device_release_driver_internal(struct device *dev, const struct device_driver *drv, struct device *parent) { __device_driver_lock(dev, parent); if (!drv || drv == dev->driver) __device_release_driver(dev, parent); __device_driver_unlock(dev, parent); } /** * device_release_driver - manually detach device from driver. * @dev: device. * * Manually detach device from driver. * When called for a USB interface, @dev->parent lock must be held. * * If this function is to be called with @dev->parent lock held, ensure that * the device's consumers are unbound in advance or that their locks can be * acquired under the @dev->parent lock. */ void device_release_driver(struct device *dev) { /* * If anyone calls device_release_driver() recursively from * within their ->remove callback for the same device, they * will deadlock right here. */ device_release_driver_internal(dev, NULL, NULL); } EXPORT_SYMBOL_GPL(device_release_driver); /** * device_driver_detach - detach driver from a specific device * @dev: device to detach driver from * * Detach driver from device. Will acquire both @dev lock and @dev->parent * lock if needed. */ void device_driver_detach(struct device *dev) { device_release_driver_internal(dev, NULL, dev->parent); } /** * driver_detach - detach driver from all devices it controls. * @drv: driver. */ void driver_detach(const struct device_driver *drv) { struct device_private *dev_prv; struct device *dev; if (driver_allows_async_probing(drv)) async_synchronize_full(); for (;;) { spin_lock(&drv->p->klist_devices.k_lock); if (list_empty(&drv->p->klist_devices.k_list)) { spin_unlock(&drv->p->klist_devices.k_lock); break; } dev_prv = list_last_entry(&drv->p->klist_devices.k_list, struct device_private, knode_driver.n_node); dev = dev_prv->device; get_device(dev); spin_unlock(&drv->p->klist_devices.k_lock); device_release_driver_internal(dev, drv, dev->parent); put_device(dev); } }
10 5 3 5 11239 11307 33 33 33 5 5 5 5 5 5 5 5 775 772 785 792 801 790 19 21 21 21 21 26 26 13 13 17 17 2 2 2 2 13 13 5 6 103 103 285 287 9 9 9 9 36 36 544 548 1913 1944 1262 1265 1276 608 612 649 653 643 1570 1584 124 22 143 144 135 139 3 3 2 2 4 4 5 5 137 137 136 112 112 9 9 6 6 5 5 5 244 247 4 4 320 323 86 86 1322 1324 499 8269 8312 21 21 22 22 5 5 2 2 28 28 473 483 391 394 23 23 547 556 496 505 100 102 111 112 10339 10418 923 937 35 36 21 22 1536 1562 2950 2993 87 89 7544 7596 1 1 8364 8405 652 654 652 660 405 415 15 16 662 666 54 55 37 37 52 53 21 22 1 1 1 1 1 1 10 10 10 20 12 12 4 4 22 23 9 9 35 36 167 168 14 14 3 3 86 86 7 7 1 1 24 24 12 12 2 2 19 19 5 5 182 183 279 281 178 179 6 6 3673 3717 36 36 694 696 35 35 1972 1978 1282 1283 45 45 3 3 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 // SPDX-License-Identifier: GPL-2.0-or-later /* * Security plug functions * * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> * Copyright (C) 2016 Mellanox Technologies * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com> */ #define pr_fmt(fmt) "LSM: " fmt #include <linux/bpf.h> #include <linux/capability.h> #include <linux/dcache.h> #include <linux/export.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/kernel_read_file.h> #include <linux/lsm_hooks.h> #include <linux/fsnotify.h> #include <linux/mman.h> #include <linux/mount.h> #include <linux/personality.h> #include <linux/backing-dev.h> #include <linux/string.h> #include <linux/xattr.h> #include <linux/msg.h> #include <linux/overflow.h> #include <linux/perf_event.h> #include <linux/fs.h> #include <net/flow.h> #include <net/sock.h> #define SECURITY_HOOK_ACTIVE_KEY(HOOK, IDX) security_hook_active_##HOOK##_##IDX /* * Identifier for the LSM static calls. * HOOK is an LSM hook as defined in linux/lsm_hookdefs.h * IDX is the index of the static call. 0 <= NUM < MAX_LSM_COUNT */ #define LSM_STATIC_CALL(HOOK, IDX) lsm_static_call_##HOOK##_##IDX /* * Call the macro M for each LSM hook MAX_LSM_COUNT times. */ #define LSM_LOOP_UNROLL(M, ...) \ do { \ UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__) \ } while (0) #define LSM_DEFINE_UNROLL(M, ...) UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__) /* * These are descriptions of the reasons that can be passed to the * security_locked_down() LSM hook. Placing this array here allows * all security modules to use the same descriptions for auditing * purposes. */ const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = { [LOCKDOWN_NONE] = "none", [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", [LOCKDOWN_KEXEC] = "kexec of unsigned images", [LOCKDOWN_HIBERNATION] = "hibernation", [LOCKDOWN_PCI_ACCESS] = "direct PCI access", [LOCKDOWN_IOPORT] = "raw io port access", [LOCKDOWN_MSR] = "raw MSR access", [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents", [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", [LOCKDOWN_MMIOTRACE] = "unsafe mmio", [LOCKDOWN_DEBUGFS] = "debugfs access", [LOCKDOWN_XMON_WR] = "xmon write access", [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection", [LOCKDOWN_INTEGRITY_MAX] = "integrity", [LOCKDOWN_KCORE] = "/proc/kcore access", [LOCKDOWN_KPROBES] = "use of kprobes", [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", [LOCKDOWN_PERF] = "unsafe use of perf", [LOCKDOWN_TRACEFS] = "use of tracefs", [LOCKDOWN_XMON_RW] = "xmon read and write access", [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", }; static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); static struct kmem_cache *lsm_file_cache; static struct kmem_cache *lsm_inode_cache; char *lsm_names; static struct lsm_blob_sizes blob_sizes __ro_after_init; /* Boot-time LSM user choice */ static __initdata const char *chosen_lsm_order; static __initdata const char *chosen_major_lsm; static __initconst const char *const builtin_lsm_order = CONFIG_LSM; /* Ordered list of LSMs to initialize. */ static __initdata struct lsm_info *ordered_lsms[MAX_LSM_COUNT + 1]; static __initdata struct lsm_info *exclusive; #ifdef CONFIG_HAVE_STATIC_CALL #define LSM_HOOK_TRAMP(NAME, NUM) \ &STATIC_CALL_TRAMP(LSM_STATIC_CALL(NAME, NUM)) #else #define LSM_HOOK_TRAMP(NAME, NUM) NULL #endif /* * Define static calls and static keys for each LSM hook. */ #define DEFINE_LSM_STATIC_CALL(NUM, NAME, RET, ...) \ DEFINE_STATIC_CALL_NULL(LSM_STATIC_CALL(NAME, NUM), \ *((RET(*)(__VA_ARGS__))NULL)); \ DEFINE_STATIC_KEY_FALSE(SECURITY_HOOK_ACTIVE_KEY(NAME, NUM)); #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ LSM_DEFINE_UNROLL(DEFINE_LSM_STATIC_CALL, NAME, RET, __VA_ARGS__) #include <linux/lsm_hook_defs.h> #undef LSM_HOOK #undef DEFINE_LSM_STATIC_CALL /* * Initialise a table of static calls for each LSM hook. * DEFINE_STATIC_CALL_NULL invocation above generates a key (STATIC_CALL_KEY) * and a trampoline (STATIC_CALL_TRAMP) which are used to call * __static_call_update when updating the static call. * * The static calls table is used by early LSMs, some architectures can fault on * unaligned accesses and the fault handling code may not be ready by then. * Thus, the static calls table should be aligned to avoid any unhandled faults * in early init. */ struct lsm_static_calls_table static_calls_table __ro_after_init __aligned(sizeof(u64)) = { #define INIT_LSM_STATIC_CALL(NUM, NAME) \ (struct lsm_static_call) { \ .key = &STATIC_CALL_KEY(LSM_STATIC_CALL(NAME, NUM)), \ .trampoline = LSM_HOOK_TRAMP(NAME, NUM), \ .active = &SECURITY_HOOK_ACTIVE_KEY(NAME, NUM), \ }, #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ .NAME = { \ LSM_DEFINE_UNROLL(INIT_LSM_STATIC_CALL, NAME) \ }, #include <linux/lsm_hook_defs.h> #undef LSM_HOOK #undef INIT_LSM_STATIC_CALL }; static __initdata bool debug; #define init_debug(...) \ do { \ if (debug) \ pr_info(__VA_ARGS__); \ } while (0) static bool __init is_enabled(struct lsm_info *lsm) { if (!lsm->enabled) return false; return *lsm->enabled; } /* Mark an LSM's enabled flag. */ static int lsm_enabled_true __initdata = 1; static int lsm_enabled_false __initdata = 0; static void __init set_enabled(struct lsm_info *lsm, bool enabled) { /* * When an LSM hasn't configured an enable variable, we can use * a hard-coded location for storing the default enabled state. */ if (!lsm->enabled) { if (enabled) lsm->enabled = &lsm_enabled_true; else lsm->enabled = &lsm_enabled_false; } else if (lsm->enabled == &lsm_enabled_true) { if (!enabled) lsm->enabled = &lsm_enabled_false; } else if (lsm->enabled == &lsm_enabled_false) { if (enabled) lsm->enabled = &lsm_enabled_true; } else { *lsm->enabled = enabled; } } /* Is an LSM already listed in the ordered LSMs list? */ static bool __init exists_ordered_lsm(struct lsm_info *lsm) { struct lsm_info **check; for (check = ordered_lsms; *check; check++) if (*check == lsm) return true; return false; } /* Append an LSM to the list of ordered LSMs to initialize. */ static int last_lsm __initdata; static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) { /* Ignore duplicate selections. */ if (exists_ordered_lsm(lsm)) return; if (WARN(last_lsm == MAX_LSM_COUNT, "%s: out of LSM static calls!?\n", from)) return; /* Enable this LSM, if it is not already set. */ if (!lsm->enabled) lsm->enabled = &lsm_enabled_true; ordered_lsms[last_lsm++] = lsm; init_debug("%s ordered: %s (%s)\n", from, lsm->name, is_enabled(lsm) ? "enabled" : "disabled"); } /* Is an LSM allowed to be initialized? */ static bool __init lsm_allowed(struct lsm_info *lsm) { /* Skip if the LSM is disabled. */ if (!is_enabled(lsm)) return false; /* Not allowed if another exclusive LSM already initialized. */ if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { init_debug("exclusive disabled: %s\n", lsm->name); return false; } return true; } static void __init lsm_set_blob_size(int *need, int *lbs) { int offset; if (*need <= 0) return; offset = ALIGN(*lbs, sizeof(void *)); *lbs = offset + *need; *need = offset; } static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) { if (!needed) return; lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); lsm_set_blob_size(&needed->lbs_ib, &blob_sizes.lbs_ib); /* * The inode blob gets an rcu_head in addition to * what the modules might need. */ if (needed->lbs_inode && blob_sizes.lbs_inode == 0) blob_sizes.lbs_inode = sizeof(struct rcu_head); lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); lsm_set_blob_size(&needed->lbs_key, &blob_sizes.lbs_key); lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); lsm_set_blob_size(&needed->lbs_perf_event, &blob_sizes.lbs_perf_event); lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock); lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); lsm_set_blob_size(&needed->lbs_tun_dev, &blob_sizes.lbs_tun_dev); lsm_set_blob_size(&needed->lbs_xattr_count, &blob_sizes.lbs_xattr_count); lsm_set_blob_size(&needed->lbs_bdev, &blob_sizes.lbs_bdev); } /* Prepare LSM for initialization. */ static void __init prepare_lsm(struct lsm_info *lsm) { int enabled = lsm_allowed(lsm); /* Record enablement (to handle any following exclusive LSMs). */ set_enabled(lsm, enabled); /* If enabled, do pre-initialization work. */ if (enabled) { if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { exclusive = lsm; init_debug("exclusive chosen: %s\n", lsm->name); } lsm_set_blob_sizes(lsm->blobs); } } /* Initialize a given LSM, if it is enabled. */ static void __init initialize_lsm(struct lsm_info *lsm) { if (is_enabled(lsm)) { int ret; init_debug("initializing %s\n", lsm->name); ret = lsm->init(); WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); } } /* * Current index to use while initializing the lsm id list. */ u32 lsm_active_cnt __ro_after_init; const struct lsm_id *lsm_idlist[MAX_LSM_COUNT]; /* Populate ordered LSMs list from comma-separated LSM name list. */ static void __init ordered_lsm_parse(const char *order, const char *origin) { struct lsm_info *lsm; char *sep, *name, *next; /* LSM_ORDER_FIRST is always first. */ for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { if (lsm->order == LSM_ORDER_FIRST) append_ordered_lsm(lsm, " first"); } /* Process "security=", if given. */ if (chosen_major_lsm) { struct lsm_info *major; /* * To match the original "security=" behavior, this * explicitly does NOT fallback to another Legacy Major * if the selected one was separately disabled: disable * all non-matching Legacy Major LSMs. */ for (major = __start_lsm_info; major < __end_lsm_info; major++) { if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && strcmp(major->name, chosen_major_lsm) != 0) { set_enabled(major, false); init_debug("security=%s disabled: %s (only one legacy major LSM)\n", chosen_major_lsm, major->name); } } } sep = kstrdup(order, GFP_KERNEL); next = sep; /* Walk the list, looking for matching LSMs. */ while ((name = strsep(&next, ",")) != NULL) { bool found = false; for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { if (strcmp(lsm->name, name) == 0) { if (lsm->order == LSM_ORDER_MUTABLE) append_ordered_lsm(lsm, origin); found = true; } } if (!found) init_debug("%s ignored: %s (not built into kernel)\n", origin, name); } /* Process "security=", if given. */ if (chosen_major_lsm) { for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { if (exists_ordered_lsm(lsm)) continue; if (strcmp(lsm->name, chosen_major_lsm) == 0) append_ordered_lsm(lsm, "security="); } } /* LSM_ORDER_LAST is always last. */ for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { if (lsm->order == LSM_ORDER_LAST) append_ordered_lsm(lsm, " last"); } /* Disable all LSMs not in the ordered list. */ for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { if (exists_ordered_lsm(lsm)) continue; set_enabled(lsm, false); init_debug("%s skipped: %s (not in requested order)\n", origin, lsm->name); } kfree(sep); } static void __init lsm_static_call_init(struct security_hook_list *hl) { struct lsm_static_call *scall = hl->scalls; int i; for (i = 0; i < MAX_LSM_COUNT; i++) { /* Update the first static call that is not used yet */ if (!scall->hl) { __static_call_update(scall->key, scall->trampoline, hl->hook.lsm_func_addr); scall->hl = hl; static_branch_enable(scall->active); return; } scall++; } panic("%s - Ran out of static slots.\n", __func__); } static void __init lsm_early_cred(struct cred *cred); static void __init lsm_early_task(struct task_struct *task); static int lsm_append(const char *new, char **result); static void __init report_lsm_order(void) { struct lsm_info **lsm, *early; int first = 0; pr_info("initializing lsm="); /* Report each enabled LSM name, comma separated. */ for (early = __start_early_lsm_info; early < __end_early_lsm_info; early++) if (is_enabled(early)) pr_cont("%s%s", first++ == 0 ? "" : ",", early->name); for (lsm = ordered_lsms; *lsm; lsm++) if (is_enabled(*lsm)) pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name); pr_cont("\n"); } static void __init ordered_lsm_init(void) { struct lsm_info **lsm; if (chosen_lsm_order) { if (chosen_major_lsm) { pr_warn("security=%s is ignored because it is superseded by lsm=%s\n", chosen_major_lsm, chosen_lsm_order); chosen_major_lsm = NULL; } ordered_lsm_parse(chosen_lsm_order, "cmdline"); } else ordered_lsm_parse(builtin_lsm_order, "builtin"); for (lsm = ordered_lsms; *lsm; lsm++) prepare_lsm(*lsm); report_lsm_order(); init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); init_debug("file blob size = %d\n", blob_sizes.lbs_file); init_debug("ib blob size = %d\n", blob_sizes.lbs_ib); init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); #ifdef CONFIG_KEYS init_debug("key blob size = %d\n", blob_sizes.lbs_key); #endif /* CONFIG_KEYS */ init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); init_debug("sock blob size = %d\n", blob_sizes.lbs_sock); init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); init_debug("perf event blob size = %d\n", blob_sizes.lbs_perf_event); init_debug("task blob size = %d\n", blob_sizes.lbs_task); init_debug("tun device blob size = %d\n", blob_sizes.lbs_tun_dev); init_debug("xattr slots = %d\n", blob_sizes.lbs_xattr_count); init_debug("bdev blob size = %d\n", blob_sizes.lbs_bdev); /* * Create any kmem_caches needed for blobs */ if (blob_sizes.lbs_file) lsm_file_cache = kmem_cache_create("lsm_file_cache", blob_sizes.lbs_file, 0, SLAB_PANIC, NULL); if (blob_sizes.lbs_inode) lsm_inode_cache = kmem_cache_create("lsm_inode_cache", blob_sizes.lbs_inode, 0, SLAB_PANIC, NULL); lsm_early_cred((struct cred *) current->cred); lsm_early_task(current); for (lsm = ordered_lsms; *lsm; lsm++) initialize_lsm(*lsm); } int __init early_security_init(void) { struct lsm_info *lsm; for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { if (!lsm->enabled) lsm->enabled = &lsm_enabled_true; prepare_lsm(lsm); initialize_lsm(lsm); } return 0; } /** * security_init - initializes the security framework * * This should be called early in the kernel initialization sequence. */ int __init security_init(void) { struct lsm_info *lsm; init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*"); init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order); init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*"); /* * Append the names of the early LSM modules now that kmalloc() is * available */ for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { init_debug(" early started: %s (%s)\n", lsm->name, is_enabled(lsm) ? "enabled" : "disabled"); if (lsm->enabled) lsm_append(lsm->name, &lsm_names); } /* Load LSMs in specified order. */ ordered_lsm_init(); return 0; } /* Save user chosen LSM */ static int __init choose_major_lsm(char *str) { chosen_major_lsm = str; return 1; } __setup("security=", choose_major_lsm); /* Explicitly choose LSM initialization order. */ static int __init choose_lsm_order(char *str) { chosen_lsm_order = str; return 1; } __setup("lsm=", choose_lsm_order); /* Enable LSM order debugging. */ static int __init enable_debug(char *str) { debug = true; return 1; } __setup("lsm.debug", enable_debug); static bool match_last_lsm(const char *list, const char *lsm) { const char *last; if (WARN_ON(!list || !lsm)) return false; last = strrchr(list, ','); if (last) /* Pass the comma, strcmp() will check for '\0' */ last++; else last = list; return !strcmp(last, lsm); } static int lsm_append(const char *new, char **result) { char *cp; if (*result == NULL) { *result = kstrdup(new, GFP_KERNEL); if (*result == NULL) return -ENOMEM; } else { /* Check if it is the last registered name */ if (match_last_lsm(*result, new)) return 0; cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); if (cp == NULL) return -ENOMEM; kfree(*result); *result = cp; } return 0; } /** * security_add_hooks - Add a modules hooks to the hook lists. * @hooks: the hooks to add * @count: the number of hooks to add * @lsmid: the identification information for the security module * * Each LSM has to register its hooks with the infrastructure. */ void __init security_add_hooks(struct security_hook_list *hooks, int count, const struct lsm_id *lsmid) { int i; /* * A security module may call security_add_hooks() more * than once during initialization, and LSM initialization * is serialized. Landlock is one such case. * Look at the previous entry, if there is one, for duplication. */ if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) { if (lsm_active_cnt >= MAX_LSM_COUNT) panic("%s Too many LSMs registered.\n", __func__); lsm_idlist[lsm_active_cnt++] = lsmid; } for (i = 0; i < count; i++) { hooks[i].lsmid = lsmid; lsm_static_call_init(&hooks[i]); } /* * Don't try to append during early_security_init(), we'll come back * and fix this up afterwards. */ if (slab_is_available()) { if (lsm_append(lsmid->name, &lsm_names) < 0) panic("%s - Cannot get early memory.\n", __func__); } } int call_blocking_lsm_notifier(enum lsm_event event, void *data) { return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, event, data); } EXPORT_SYMBOL(call_blocking_lsm_notifier); int register_blocking_lsm_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, nb); } EXPORT_SYMBOL(register_blocking_lsm_notifier); int unregister_blocking_lsm_notifier(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, nb); } EXPORT_SYMBOL(unregister_blocking_lsm_notifier); /** * lsm_blob_alloc - allocate a composite blob * @dest: the destination for the blob * @size: the size of the blob * @gfp: allocation type * * Allocate a blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp) { if (size == 0) { *dest = NULL; return 0; } *dest = kzalloc(size, gfp); if (*dest == NULL) return -ENOMEM; return 0; } /** * lsm_cred_alloc - allocate a composite cred blob * @cred: the cred that needs a blob * @gfp: allocation type * * Allocate the cred blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) { return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp); } /** * lsm_early_cred - during initialization allocate a composite cred blob * @cred: the cred that needs a blob * * Allocate the cred blob for all the modules */ static void __init lsm_early_cred(struct cred *cred) { int rc = lsm_cred_alloc(cred, GFP_KERNEL); if (rc) panic("%s: Early cred alloc failed.\n", __func__); } /** * lsm_file_alloc - allocate a composite file blob * @file: the file that needs a blob * * Allocate the file blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ static int lsm_file_alloc(struct file *file) { if (!lsm_file_cache) { file->f_security = NULL; return 0; } file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); if (file->f_security == NULL) return -ENOMEM; return 0; } /** * lsm_inode_alloc - allocate a composite inode blob * @inode: the inode that needs a blob * @gfp: allocation flags * * Allocate the inode blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ static int lsm_inode_alloc(struct inode *inode, gfp_t gfp) { if (!lsm_inode_cache) { inode->i_security = NULL; return 0; } inode->i_security = kmem_cache_zalloc(lsm_inode_cache, gfp); if (inode->i_security == NULL) return -ENOMEM; return 0; } /** * lsm_task_alloc - allocate a composite task blob * @task: the task that needs a blob * * Allocate the task blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ static int lsm_task_alloc(struct task_struct *task) { return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL); } /** * lsm_ipc_alloc - allocate a composite ipc blob * @kip: the ipc that needs a blob * * Allocate the ipc blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ static int lsm_ipc_alloc(struct kern_ipc_perm *kip) { return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL); } #ifdef CONFIG_KEYS /** * lsm_key_alloc - allocate a composite key blob * @key: the key that needs a blob * * Allocate the key blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ static int lsm_key_alloc(struct key *key) { return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL); } #endif /* CONFIG_KEYS */ /** * lsm_msg_msg_alloc - allocate a composite msg_msg blob * @mp: the msg_msg that needs a blob * * Allocate the ipc blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ static int lsm_msg_msg_alloc(struct msg_msg *mp) { return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg, GFP_KERNEL); } /** * lsm_bdev_alloc - allocate a composite block_device blob * @bdev: the block_device that needs a blob * * Allocate the block_device blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ static int lsm_bdev_alloc(struct block_device *bdev) { if (blob_sizes.lbs_bdev == 0) { bdev->bd_security = NULL; return 0; } bdev->bd_security = kzalloc(blob_sizes.lbs_bdev, GFP_KERNEL); if (!bdev->bd_security) return -ENOMEM; return 0; } /** * lsm_early_task - during initialization allocate a composite task blob * @task: the task that needs a blob * * Allocate the task blob for all the modules */ static void __init lsm_early_task(struct task_struct *task) { int rc = lsm_task_alloc(task); if (rc) panic("%s: Early task alloc failed.\n", __func__); } /** * lsm_superblock_alloc - allocate a composite superblock blob * @sb: the superblock that needs a blob * * Allocate the superblock blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ static int lsm_superblock_alloc(struct super_block *sb) { return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock, GFP_KERNEL); } /** * lsm_fill_user_ctx - Fill a user space lsm_ctx structure * @uctx: a userspace LSM context to be filled * @uctx_len: available uctx size (input), used uctx size (output) * @val: the new LSM context value * @val_len: the size of the new LSM context value * @id: LSM id * @flags: LSM defined flags * * Fill all of the fields in a userspace lsm_ctx structure. If @uctx is NULL * simply calculate the required size to output via @utc_len and return * success. * * Returns 0 on success, -E2BIG if userspace buffer is not large enough, * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated. */ int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len, void *val, size_t val_len, u64 id, u64 flags) { struct lsm_ctx *nctx = NULL; size_t nctx_len; int rc = 0; nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *)); if (nctx_len > *uctx_len) { rc = -E2BIG; goto out; } /* no buffer - return success/0 and set @uctx_len to the req size */ if (!uctx) goto out; nctx = kzalloc(nctx_len, GFP_KERNEL); if (nctx == NULL) { rc = -ENOMEM; goto out; } nctx->id = id; nctx->flags = flags; nctx->len = nctx_len; nctx->ctx_len = val_len; memcpy(nctx->ctx, val, val_len); if (copy_to_user(uctx, nctx, nctx_len)) rc = -EFAULT; out: kfree(nctx); *uctx_len = nctx_len; return rc; } /* * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and * can be accessed with: * * LSM_RET_DEFAULT(<hook_name>) * * The macros below define static constants for the default value of each * LSM hook. */ #define LSM_RET_DEFAULT(NAME) (NAME##_default) #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) #include <linux/lsm_hook_defs.h> #undef LSM_HOOK /* * Hook list operation macros. * * call_void_hook: * This is a hook that does not return a value. * * call_int_hook: * This is a hook that returns a value. */ #define __CALL_STATIC_VOID(NUM, HOOK, ...) \ do { \ if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) { \ static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__); \ } \ } while (0); #define call_void_hook(HOOK, ...) \ do { \ LSM_LOOP_UNROLL(__CALL_STATIC_VOID, HOOK, __VA_ARGS__); \ } while (0) #define __CALL_STATIC_INT(NUM, R, HOOK, LABEL, ...) \ do { \ if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) { \ R = static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__); \ if (R != LSM_RET_DEFAULT(HOOK)) \ goto LABEL; \ } \ } while (0); #define call_int_hook(HOOK, ...) \ ({ \ __label__ OUT; \ int RC = LSM_RET_DEFAULT(HOOK); \ \ LSM_LOOP_UNROLL(__CALL_STATIC_INT, RC, HOOK, OUT, __VA_ARGS__); \ OUT: \ RC; \ }) #define lsm_for_each_hook(scall, NAME) \ for (scall = static_calls_table.NAME; \ scall - static_calls_table.NAME < MAX_LSM_COUNT; scall++) \ if (static_key_enabled(&scall->active->key)) /* Security operations */ /** * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok * @mgr: task credentials of current binder process * * Check whether @mgr is allowed to be the binder context manager. * * Return: Return 0 if permission is granted. */ int security_binder_set_context_mgr(const struct cred *mgr) { return call_int_hook(binder_set_context_mgr, mgr); } /** * security_binder_transaction() - Check if a binder transaction is allowed * @from: sending process * @to: receiving process * * Check whether @from is allowed to invoke a binder transaction call to @to. * * Return: Returns 0 if permission is granted. */ int security_binder_transaction(const struct cred *from, const struct cred *to) { return call_int_hook(binder_transaction, from, to); } /** * security_binder_transfer_binder() - Check if a binder transfer is allowed * @from: sending process * @to: receiving process * * Check whether @from is allowed to transfer a binder reference to @to. * * Return: Returns 0 if permission is granted. */ int security_binder_transfer_binder(const struct cred *from, const struct cred *to) { return call_int_hook(binder_transfer_binder, from, to); } /** * security_binder_transfer_file() - Check if a binder file xfer is allowed * @from: sending process * @to: receiving process * @file: file being transferred * * Check whether @from is allowed to transfer @file to @to. * * Return: Returns 0 if permission is granted. */ int security_binder_transfer_file(const struct cred *from, const struct cred *to, const struct file *file) { return call_int_hook(binder_transfer_file, from, to, file); } /** * security_ptrace_access_check() - Check if tracing is allowed * @child: target process * @mode: PTRACE_MODE flags * * Check permission before allowing the current process to trace the @child * process. Security modules may also want to perform a process tracing check * during an execve in the set_security or apply_creds hooks of tracing check * during an execve in the bprm_set_creds hook of binprm_security_ops if the * process is being traced and its security attributes would be changed by the * execve. * * Return: Returns 0 if permission is granted. */ int security_ptrace_access_check(struct task_struct *child, unsigned int mode) { return call_int_hook(ptrace_access_check, child, mode); } /** * security_ptrace_traceme() - Check if tracing is allowed * @parent: tracing process * * Check that the @parent process has sufficient permission to trace the * current process before allowing the current process to present itself to the * @parent process for tracing. * * Return: Returns 0 if permission is granted. */ int security_ptrace_traceme(struct task_struct *parent) { return call_int_hook(ptrace_traceme, parent); } /** * security_capget() - Get the capability sets for a process * @target: target process * @effective: effective capability set * @inheritable: inheritable capability set * @permitted: permitted capability set * * Get the @effective, @inheritable, and @permitted capability sets for the * @target process. The hook may also perform permission checking to determine * if the current process is allowed to see the capability sets of the @target * process. * * Return: Returns 0 if the capability sets were successfully obtained. */ int security_capget(const struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted) { return call_int_hook(capget, target, effective, inheritable, permitted); } /** * security_capset() - Set the capability sets for a process * @new: new credentials for the target process * @old: current credentials of the target process * @effective: effective capability set * @inheritable: inheritable capability set * @permitted: permitted capability set * * Set the @effective, @inheritable, and @permitted capability sets for the * current process. * * Return: Returns 0 and update @new if permission is granted. */ int security_capset(struct cred *new, const struct cred *old, const kernel_cap_t *effective, const kernel_cap_t *inheritable, const kernel_cap_t *permitted) { return call_int_hook(capset, new, old, effective, inheritable, permitted); } /** * security_capable() - Check if a process has the necessary capability * @cred: credentials to examine * @ns: user namespace * @cap: capability requested * @opts: capability check options * * Check whether the @tsk process has the @cap capability in the indicated * credentials. @cap contains the capability <include/linux/capability.h>. * @opts contains options for the capable check <include/linux/security.h>. * * Return: Returns 0 if the capability is granted. */ int security_capable(const struct cred *cred, struct user_namespace *ns, int cap, unsigned int opts) { return call_int_hook(capable, cred, ns, cap, opts); } /** * security_quotactl() - Check if a quotactl() syscall is allowed for this fs * @cmds: commands * @type: type * @id: id * @sb: filesystem * * Check whether the quotactl syscall is allowed for this @sb. * * Return: Returns 0 if permission is granted. */ int security_quotactl(int cmds, int type, int id, const struct super_block *sb) { return call_int_hook(quotactl, cmds, type, id, sb); } /** * security_quota_on() - Check if QUOTAON is allowed for a dentry * @dentry: dentry * * Check whether QUOTAON is allowed for @dentry. * * Return: Returns 0 if permission is granted. */ int security_quota_on(struct dentry *dentry) { return call_int_hook(quota_on, dentry); } /** * security_syslog() - Check if accessing the kernel message ring is allowed * @type: SYSLOG_ACTION_* type * * Check permission before accessing the kernel message ring or changing * logging to the console. See the syslog(2) manual page for an explanation of * the @type values. * * Return: Return 0 if permission is granted. */ int security_syslog(int type) { return call_int_hook(syslog, type); } /** * security_settime64() - Check if changing the system time is allowed * @ts: new time * @tz: timezone * * Check permission to change the system time, struct timespec64 is defined in * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>. * * Return: Returns 0 if permission is granted. */ int security_settime64(const struct timespec64 *ts, const struct timezone *tz) { return call_int_hook(settime, ts, tz); } /** * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed * @mm: mm struct * @pages: number of pages * * Check permissions for allocating a new virtual mapping. If all LSMs return * a positive value, __vm_enough_memory() will be called with cap_sys_admin * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be * called with cap_sys_admin cleared. * * Return: Returns 0 if permission is granted by the LSM infrastructure to the * caller. */ int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) { struct lsm_static_call *scall; int cap_sys_admin = 1; int rc; /* * The module will respond with 0 if it thinks the __vm_enough_memory() * call should be made with the cap_sys_admin set. If all of the modules * agree that it should be set it will. If any module thinks it should * not be set it won't. */ lsm_for_each_hook(scall, vm_enough_memory) { rc = scall->hl->hook.vm_enough_memory(mm, pages); if (rc < 0) { cap_sys_admin = 0; break; } } return __vm_enough_memory(mm, pages, cap_sys_admin); } /** * security_bprm_creds_for_exec() - Prepare the credentials for exec() * @bprm: binary program information * * If the setup in prepare_exec_creds did not setup @bprm->cred->security * properly for executing @bprm->file, update the LSM's portion of * @bprm->cred->security to be what commit_creds needs to install for the new * program. This hook may also optionally check permissions (e.g. for * transitions between security domains). The hook must set @bprm->secureexec * to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm * contains the linux_binprm structure. * * Return: Returns 0 if the hook is successful and permission is granted. */ int security_bprm_creds_for_exec(struct linux_binprm *bprm) { return call_int_hook(bprm_creds_for_exec, bprm); } /** * security_bprm_creds_from_file() - Update linux_binprm creds based on file * @bprm: binary program information * @file: associated file * * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon * exec, update @bprm->cred to reflect that change. This is called after * finding the binary that will be executed without an interpreter. This * ensures that the credentials will not be derived from a script that the * binary will need to reopen, which when reopend may end up being a completely * different file. This hook may also optionally check permissions (e.g. for * transitions between security domains). The hook must set @bprm->secureexec * to 1 if AT_SECURE should be set to request libc enable secure mode. The * hook must add to @bprm->per_clear any personality flags that should be * cleared from current->personality. @bprm contains the linux_binprm * structure. * * Return: Returns 0 if the hook is successful and permission is granted. */ int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file) { return call_int_hook(bprm_creds_from_file, bprm, file); } /** * security_bprm_check() - Mediate binary handler search * @bprm: binary program information * * This hook mediates the point when a search for a binary handler will begin. * It allows a check against the @bprm->cred->security value which was set in * the preceding creds_for_exec call. The argv list and envp list are reliably * available in @bprm. This hook may be called multiple times during a single * execve. @bprm contains the linux_binprm structure. * * Return: Returns 0 if the hook is successful and permission is granted. */ int security_bprm_check(struct linux_binprm *bprm) { return call_int_hook(bprm_check_security, bprm); } /** * security_bprm_committing_creds() - Install creds for a process during exec() * @bprm: binary program information * * Prepare to install the new security attributes of a process being * transformed by an execve operation, based on the old credentials pointed to * by @current->cred and the information set in @bprm->cred by the * bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This * hook is a good place to perform state changes on the process such as closing * open file descriptors to which access will no longer be granted when the * attributes are changed. This is called immediately before commit_creds(). */ void security_bprm_committing_creds(const struct linux_binprm *bprm) { call_void_hook(bprm_committing_creds, bprm); } /** * security_bprm_committed_creds() - Tidy up after cred install during exec() * @bprm: binary program information * * Tidy up after the installation of the new security attributes of a process * being transformed by an execve operation. The new credentials have, by this * point, been set to @current->cred. @bprm points to the linux_binprm * structure. This hook is a good place to perform state changes on the * process such as clearing out non-inheritable signal state. This is called * immediately after commit_creds(). */ void security_bprm_committed_creds(const struct linux_binprm *bprm) { call_void_hook(bprm_committed_creds, bprm); } /** * security_fs_context_submount() - Initialise fc->security * @fc: new filesystem context * @reference: dentry reference for submount/remount * * Fill out the ->security field for a new fs_context. * * Return: Returns 0 on success or negative error code on failure. */ int security_fs_context_submount(struct fs_context *fc, struct super_block *reference) { return call_int_hook(fs_context_submount, fc, reference); } /** * security_fs_context_dup() - Duplicate a fs_context LSM blob * @fc: destination filesystem context * @src_fc: source filesystem context * * Allocate and attach a security structure to sc->security. This pointer is * initialised to NULL by the caller. @fc indicates the new filesystem context. * @src_fc indicates the original filesystem context. * * Return: Returns 0 on success or a negative error code on failure. */ int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) { return call_int_hook(fs_context_dup, fc, src_fc); } /** * security_fs_context_parse_param() - Configure a filesystem context * @fc: filesystem context * @param: filesystem parameter * * Userspace provided a parameter to configure a superblock. The LSM can * consume the parameter or return it to the caller for use elsewhere. * * Return: If the parameter is used by the LSM it should return 0, if it is * returned to the caller -ENOPARAM is returned, otherwise a negative * error code is returned. */ int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct lsm_static_call *scall; int trc; int rc = -ENOPARAM; lsm_for_each_hook(scall, fs_context_parse_param) { trc = scall->hl->hook.fs_context_parse_param(fc, param); if (trc == 0) rc = 0; else if (trc != -ENOPARAM) return trc; } return rc; } /** * security_sb_alloc() - Allocate a super_block LSM blob * @sb: filesystem superblock * * Allocate and attach a security structure to the sb->s_security field. The * s_security field is initialized to NULL when the structure is allocated. * @sb contains the super_block structure to be modified. * * Return: Returns 0 if operation was successful. */ int security_sb_alloc(struct super_block *sb) { int rc = lsm_superblock_alloc(sb); if (unlikely(rc)) return rc; rc = call_int_hook(sb_alloc_security, sb); if (unlikely(rc)) security_sb_free(sb); return rc; } /** * security_sb_delete() - Release super_block LSM associated objects * @sb: filesystem superblock * * Release objects tied to a superblock (e.g. inodes). @sb contains the * super_block structure being released. */ void security_sb_delete(struct super_block *sb) { call_void_hook(sb_delete, sb); } /** * security_sb_free() - Free a super_block LSM blob * @sb: filesystem superblock * * Deallocate and clear the sb->s_security field. @sb contains the super_block * structure to be modified. */ void security_sb_free(struct super_block *sb) { call_void_hook(sb_free_security, sb); kfree(sb->s_security); sb->s_security = NULL; } /** * security_free_mnt_opts() - Free memory associated with mount options * @mnt_opts: LSM processed mount options * * Free memory associated with @mnt_ops. */ void security_free_mnt_opts(void **mnt_opts) { if (!*mnt_opts) return; call_void_hook(sb_free_mnt_opts, *mnt_opts); *mnt_opts = NULL; } EXPORT_SYMBOL(security_free_mnt_opts); /** * security_sb_eat_lsm_opts() - Consume LSM mount options * @options: mount options * @mnt_opts: LSM processed mount options * * Eat (scan @options) and save them in @mnt_opts. * * Return: Returns 0 on success, negative values on failure. */ int security_sb_eat_lsm_opts(char *options, void **mnt_opts) { return call_int_hook(sb_eat_lsm_opts, options, mnt_opts); } EXPORT_SYMBOL(security_sb_eat_lsm_opts); /** * security_sb_mnt_opts_compat() - Check if new mount options are allowed * @sb: filesystem superblock * @mnt_opts: new mount options * * Determine if the new mount options in @mnt_opts are allowed given the * existing mounted filesystem at @sb. @sb superblock being compared. * * Return: Returns 0 if options are compatible. */ int security_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts) { return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts); } EXPORT_SYMBOL(security_sb_mnt_opts_compat); /** * security_sb_remount() - Verify no incompatible mount changes during remount * @sb: filesystem superblock * @mnt_opts: (re)mount options * * Extracts security system specific mount options and verifies no changes are * being made to those options. * * Return: Returns 0 if permission is granted. */ int security_sb_remount(struct super_block *sb, void *mnt_opts) { return call_int_hook(sb_remount, sb, mnt_opts); } EXPORT_SYMBOL(security_sb_remount); /** * security_sb_kern_mount() - Check if a kernel mount is allowed * @sb: filesystem superblock * * Mount this @sb if allowed by permissions. * * Return: Returns 0 if permission is granted. */ int security_sb_kern_mount(const struct super_block *sb) { return call_int_hook(sb_kern_mount, sb); } /** * security_sb_show_options() - Output the mount options for a superblock * @m: output file * @sb: filesystem superblock * * Show (print on @m) mount options for this @sb. * * Return: Returns 0 on success, negative values on failure. */ int security_sb_show_options(struct seq_file *m, struct super_block *sb) { return call_int_hook(sb_show_options, m, sb); } /** * security_sb_statfs() - Check if accessing fs stats is allowed * @dentry: superblock handle * * Check permission before obtaining filesystem statistics for the @mnt * mountpoint. @dentry is a handle on the superblock for the filesystem. * * Return: Returns 0 if permission is granted. */ int security_sb_statfs(struct dentry *dentry) { return call_int_hook(sb_statfs, dentry); } /** * security_sb_mount() - Check permission for mounting a filesystem * @dev_name: filesystem backing device * @path: mount point * @type: filesystem type * @flags: mount flags * @data: filesystem specific data * * Check permission before an object specified by @dev_name is mounted on the * mount point named by @nd. For an ordinary mount, @dev_name identifies a * device if the file system type requires a device. For a remount * (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount * (@flags & MS_BIND), @dev_name identifies the pathname of the object being * mounted. * * Return: Returns 0 if permission is granted. */ int security_sb_mount(const char *dev_name, const struct path *path, const char *type, unsigned long flags, void *data) { return call_int_hook(sb_mount, dev_name, path, type, flags, data); } /** * security_sb_umount() - Check permission for unmounting a filesystem * @mnt: mounted filesystem * @flags: unmount flags * * Check permission before the @mnt file system is unmounted. * * Return: Returns 0 if permission is granted. */ int security_sb_umount(struct vfsmount *mnt, int flags) { return call_int_hook(sb_umount, mnt, flags); } /** * security_sb_pivotroot() - Check permissions for pivoting the rootfs * @old_path: new location for current rootfs * @new_path: location of the new rootfs * * Check permission before pivoting the root filesystem. * * Return: Returns 0 if permission is granted. */ int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) { return call_int_hook(sb_pivotroot, old_path, new_path); } /** * security_sb_set_mnt_opts() - Set the mount options for a filesystem * @sb: filesystem superblock * @mnt_opts: binary mount options * @kern_flags: kernel flags (in) * @set_kern_flags: kernel flags (out) * * Set the security relevant mount options used for a superblock. * * Return: Returns 0 on success, error on failure. */ int security_sb_set_mnt_opts(struct super_block *sb, void *mnt_opts, unsigned long kern_flags, unsigned long *set_kern_flags) { struct lsm_static_call *scall; int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts); lsm_for_each_hook(scall, sb_set_mnt_opts) { rc = scall->hl->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags, set_kern_flags); if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts)) break; } return rc; } EXPORT_SYMBOL(security_sb_set_mnt_opts); /** * security_sb_clone_mnt_opts() - Duplicate superblock mount options * @oldsb: source superblock * @newsb: destination superblock * @kern_flags: kernel flags (in) * @set_kern_flags: kernel flags (out) * * Copy all security options from a given superblock to another. * * Return: Returns 0 on success, error on failure. */ int security_sb_clone_mnt_opts(const struct super_block *oldsb, struct super_block *newsb, unsigned long kern_flags, unsigned long *set_kern_flags) { return call_int_hook(sb_clone_mnt_opts, oldsb, newsb, kern_flags, set_kern_flags); } EXPORT_SYMBOL(security_sb_clone_mnt_opts); /** * security_move_mount() - Check permissions for moving a mount * @from_path: source mount point * @to_path: destination mount point * * Check permission before a mount is moved. * * Return: Returns 0 if permission is granted. */ int security_move_mount(const struct path *from_path, const struct path *to_path) { return call_int_hook(move_mount, from_path, to_path); } /** * security_path_notify() - Check if setting a watch is allowed * @path: file path * @mask: event mask * @obj_type: file path type * * Check permissions before setting a watch on events as defined by @mask, on * an object at @path, whose type is defined by @obj_type. * * Return: Returns 0 if permission is granted. */ int security_path_notify(const struct path *path, u64 mask, unsigned int obj_type) { return call_int_hook(path_notify, path, mask, obj_type); } /** * security_inode_alloc() - Allocate an inode LSM blob * @inode: the inode * @gfp: allocation flags * * Allocate and attach a security structure to @inode->i_security. The * i_security field is initialized to NULL when the inode structure is * allocated. * * Return: Return 0 if operation was successful. */ int security_inode_alloc(struct inode *inode, gfp_t gfp) { int rc = lsm_inode_alloc(inode, gfp); if (unlikely(rc)) return rc; rc = call_int_hook(inode_alloc_security, inode); if (unlikely(rc)) security_inode_free(inode); return rc; } static void inode_free_by_rcu(struct rcu_head *head) { /* The rcu head is at the start of the inode blob */ call_void_hook(inode_free_security_rcu, head); kmem_cache_free(lsm_inode_cache, head); } /** * security_inode_free() - Free an inode's LSM blob * @inode: the inode * * Release any LSM resources associated with @inode, although due to the * inode's RCU protections it is possible that the resources will not be * fully released until after the current RCU grace period has elapsed. * * It is important for LSMs to note that despite being present in a call to * security_inode_free(), @inode may still be referenced in a VFS path walk * and calls to security_inode_permission() may be made during, or after, * a call to security_inode_free(). For this reason the inode->i_security * field is released via a call_rcu() callback and any LSMs which need to * retain inode state for use in security_inode_permission() should only * release that state in the inode_free_security_rcu() LSM hook callback. */ void security_inode_free(struct inode *inode) { call_void_hook(inode_free_security, inode); if (!inode->i_security) return; call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu); } /** * security_dentry_init_security() - Perform dentry initialization * @dentry: the dentry to initialize * @mode: mode used to determine resource type * @name: name of the last path component * @xattr_name: name of the security/LSM xattr * @ctx: pointer to the resulting LSM context * @ctxlen: length of @ctx * * Compute a context for a dentry as the inode is not yet available since NFSv4 * has no label backed by an EA anyway. It is important to note that * @xattr_name does not need to be free'd by the caller, it is a static string. * * Return: Returns 0 on success, negative values on failure. */ int security_dentry_init_security(struct dentry *dentry, int mode, const struct qstr *name, const char **xattr_name, void **ctx, u32 *ctxlen) { return call_int_hook(dentry_init_security, dentry, mode, name, xattr_name, ctx, ctxlen); } EXPORT_SYMBOL(security_dentry_init_security); /** * security_dentry_create_files_as() - Perform dentry initialization * @dentry: the dentry to initialize * @mode: mode used to determine resource type * @name: name of the last path component * @old: creds to use for LSM context calculations * @new: creds to modify * * Compute a context for a dentry as the inode is not yet available and set * that context in passed in creds so that new files are created using that * context. Context is calculated using the passed in creds and not the creds * of the caller. * * Return: Returns 0 on success, error on failure. */ int security_dentry_create_files_as(struct dentry *dentry, int mode, struct qstr *name, const struct cred *old, struct cred *new) { return call_int_hook(dentry_create_files_as, dentry, mode, name, old, new); } EXPORT_SYMBOL(security_dentry_create_files_as); /** * security_inode_init_security() - Initialize an inode's LSM context * @inode: the inode * @dir: parent directory * @qstr: last component of the pathname * @initxattrs: callback function to write xattrs * @fs_data: filesystem specific data * * Obtain the security attribute name suffix and value to set on a newly * created inode and set up the incore security field for the new inode. This * hook is called by the fs code as part of the inode creation transaction and * provides for atomic labeling of the inode, unlike the post_create/mkdir/... * hooks called by the VFS. * * The hook function is expected to populate the xattrs array, by calling * lsm_get_xattr_slot() to retrieve the slots reserved by the security module * with the lbs_xattr_count field of the lsm_blob_sizes structure. For each * slot, the hook function should set ->name to the attribute name suffix * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it * to the attribute value, to set ->value_len to the length of the value. If * the security module does not use security attributes or does not wish to put * a security attribute on this particular inode, then it should return * -EOPNOTSUPP to skip this processing. * * Return: Returns 0 if the LSM successfully initialized all of the inode * security attributes that are required, negative values otherwise. */ int security_inode_init_security(struct inode *inode, struct inode *dir, const struct qstr *qstr, const initxattrs initxattrs, void *fs_data) { struct lsm_static_call *scall; struct xattr *new_xattrs = NULL; int ret = -EOPNOTSUPP, xattr_count = 0; if (unlikely(IS_PRIVATE(inode))) return 0; if (!blob_sizes.lbs_xattr_count) return 0; if (initxattrs) { /* Allocate +1 as terminator. */ new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1, sizeof(*new_xattrs), GFP_NOFS); if (!new_xattrs) return -ENOMEM; } lsm_for_each_hook(scall, inode_init_security) { ret = scall->hl->hook.inode_init_security(inode, dir, qstr, new_xattrs, &xattr_count); if (ret && ret != -EOPNOTSUPP) goto out; /* * As documented in lsm_hooks.h, -EOPNOTSUPP in this context * means that the LSM is not willing to provide an xattr, not * that it wants to signal an error. Thus, continue to invoke * the remaining LSMs. */ } /* If initxattrs() is NULL, xattr_count is zero, skip the call. */ if (!xattr_count) goto out; ret = initxattrs(inode, new_xattrs, fs_data); out: for (; xattr_count > 0; xattr_count--) kfree(new_xattrs[xattr_count - 1].value); kfree(new_xattrs); return (ret == -EOPNOTSUPP) ? 0 : ret; } EXPORT_SYMBOL(security_inode_init_security); /** * security_inode_init_security_anon() - Initialize an anonymous inode * @inode: the inode * @name: the anonymous inode class * @context_inode: an optional related inode * * Set up the incore security field for the new anonymous inode and return * whether the inode creation is permitted by the security module or not. * * Return: Returns 0 on success, -EACCES if the security module denies the * creation of this inode, or another -errno upon other errors. */ int security_inode_init_security_anon(struct inode *inode, const struct qstr *name, const struct inode *context_inode) { return call_int_hook(inode_init_security_anon, inode, name, context_inode); } #ifdef CONFIG_SECURITY_PATH /** * security_path_mknod() - Check if creating a special file is allowed * @dir: parent directory * @dentry: new file * @mode: new file mode * @dev: device number * * Check permissions when creating a file. Note that this hook is called even * if mknod operation is being done for a regular file. * * Return: Returns 0 if permission is granted. */ int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, unsigned int dev) { if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) return 0; return call_int_hook(path_mknod, dir, dentry, mode, dev); } EXPORT_SYMBOL(security_path_mknod); /** * security_path_post_mknod() - Update inode security after reg file creation * @idmap: idmap of the mount * @dentry: new file * * Update inode security field after a regular file has been created. */ void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return; call_void_hook(path_post_mknod, idmap, dentry); } /** * security_path_mkdir() - Check if creating a new directory is allowed * @dir: parent directory * @dentry: new directory * @mode: new directory mode * * Check permissions to create a new directory in the existing directory. * * Return: Returns 0 if permission is granted. */ int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) { if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) return 0; return call_int_hook(path_mkdir, dir, dentry, mode); } EXPORT_SYMBOL(security_path_mkdir); /** * security_path_rmdir() - Check if removing a directory is allowed * @dir: parent directory * @dentry: directory to remove * * Check the permission to remove a directory. * * Return: Returns 0 if permission is granted. */ int security_path_rmdir(const struct path *dir, struct dentry *dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) return 0; return call_int_hook(path_rmdir, dir, dentry); } /** * security_path_unlink() - Check if removing a hard link is allowed * @dir: parent directory * @dentry: file * * Check the permission to remove a hard link to a file. * * Return: Returns 0 if permission is granted. */ int security_path_unlink(const struct path *dir, struct dentry *dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) return 0; return call_int_hook(path_unlink, dir, dentry); } EXPORT_SYMBOL(security_path_unlink); /** * security_path_symlink() - Check if creating a symbolic link is allowed * @dir: parent directory * @dentry: symbolic link * @old_name: file pathname * * Check the permission to create a symbolic link to a file. * * Return: Returns 0 if permission is granted. */ int security_path_symlink(const struct path *dir, struct dentry *dentry, const char *old_name) { if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) return 0; return call_int_hook(path_symlink, dir, dentry, old_name); } /** * security_path_link - Check if creating a hard link is allowed * @old_dentry: existing file * @new_dir: new parent directory * @new_dentry: new link * * Check permission before creating a new hard link to a file. * * Return: Returns 0 if permission is granted. */ int security_path_link(struct dentry *old_dentry, const struct path *new_dir, struct dentry *new_dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) return 0; return call_int_hook(path_link, old_dentry, new_dir, new_dentry); } /** * security_path_rename() - Check if renaming a file is allowed * @old_dir: parent directory of the old file * @old_dentry: the old file * @new_dir: parent directory of the new file * @new_dentry: the new file * @flags: flags * * Check for permission to rename a file or directory. * * Return: Returns 0 if permission is granted. */ int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, const struct path *new_dir, struct dentry *new_dentry, unsigned int flags) { if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) return 0; return call_int_hook(path_rename, old_dir, old_dentry, new_dir, new_dentry, flags); } EXPORT_SYMBOL(security_path_rename); /** * security_path_truncate() - Check if truncating a file is allowed * @path: file * * Check permission before truncating the file indicated by path. Note that * truncation permissions may also be checked based on already opened files, * using the security_file_truncate() hook. * * Return: Returns 0 if permission is granted. */ int security_path_truncate(const struct path *path) { if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) return 0; return call_int_hook(path_truncate, path); } /** * security_path_chmod() - Check if changing the file's mode is allowed * @path: file * @mode: new mode * * Check for permission to change a mode of the file @path. The new mode is * specified in @mode which is a bitmask of constants from * <include/uapi/linux/stat.h>. * * Return: Returns 0 if permission is granted. */ int security_path_chmod(const struct path *path, umode_t mode) { if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) return 0; return call_int_hook(path_chmod, path, mode); } /** * security_path_chown() - Check if changing the file's owner/group is allowed * @path: file * @uid: file owner * @gid: file group * * Check for permission to change owner/group of a file or directory. * * Return: Returns 0 if permission is granted. */ int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) { if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) return 0; return call_int_hook(path_chown, path, uid, gid); } /** * security_path_chroot() - Check if changing the root directory is allowed * @path: directory * * Check for permission to change root directory. * * Return: Returns 0 if permission is granted. */ int security_path_chroot(const struct path *path) { return call_int_hook(path_chroot, path); } #endif /* CONFIG_SECURITY_PATH */ /** * security_inode_create() - Check if creating a file is allowed * @dir: the parent directory * @dentry: the file being created * @mode: requested file mode * * Check permission to create a regular file. * * Return: Returns 0 if permission is granted. */ int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) { if (unlikely(IS_PRIVATE(dir))) return 0; return call_int_hook(inode_create, dir, dentry, mode); } EXPORT_SYMBOL_GPL(security_inode_create); /** * security_inode_post_create_tmpfile() - Update inode security of new tmpfile * @idmap: idmap of the mount * @inode: inode of the new tmpfile * * Update inode security data after a tmpfile has been created. */ void security_inode_post_create_tmpfile(struct mnt_idmap *idmap, struct inode *inode) { if (unlikely(IS_PRIVATE(inode))) return; call_void_hook(inode_post_create_tmpfile, idmap, inode); } /** * security_inode_link() - Check if creating a hard link is allowed * @old_dentry: existing file * @dir: new parent directory * @new_dentry: new link * * Check permission before creating a new hard link to a file. * * Return: Returns 0 if permission is granted. */ int security_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) return 0; return call_int_hook(inode_link, old_dentry, dir, new_dentry); } /** * security_inode_unlink() - Check if removing a hard link is allowed * @dir: parent directory * @dentry: file * * Check the permission to remove a hard link to a file. * * Return: Returns 0 if permission is granted. */ int security_inode_unlink(struct inode *dir, struct dentry *dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; return call_int_hook(inode_unlink, dir, dentry); } /** * security_inode_symlink() - Check if creating a symbolic link is allowed * @dir: parent directory * @dentry: symbolic link * @old_name: existing filename * * Check the permission to create a symbolic link to a file. * * Return: Returns 0 if permission is granted. */ int security_inode_symlink(struct inode *dir, struct dentry *dentry, const char *old_name) { if (unlikely(IS_PRIVATE(dir))) return 0; return call_int_hook(inode_symlink, dir, dentry, old_name); } /** * security_inode_mkdir() - Check if creation a new director is allowed * @dir: parent directory * @dentry: new directory * @mode: new directory mode * * Check permissions to create a new directory in the existing directory * associated with inode structure @dir. * * Return: Returns 0 if permission is granted. */ int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) { if (unlikely(IS_PRIVATE(dir))) return 0; return call_int_hook(inode_mkdir, dir, dentry, mode); } EXPORT_SYMBOL_GPL(security_inode_mkdir); /** * security_inode_rmdir() - Check if removing a directory is allowed * @dir: parent directory * @dentry: directory to be removed * * Check the permission to remove a directory. * * Return: Returns 0 if permission is granted. */ int security_inode_rmdir(struct inode *dir, struct dentry *dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; return call_int_hook(inode_rmdir, dir, dentry); } /** * security_inode_mknod() - Check if creating a special file is allowed * @dir: parent directory * @dentry: new file * @mode: new file mode * @dev: device number * * Check permissions when creating a special file (or a socket or a fifo file * created via the mknod system call). Note that if mknod operation is being * done for a regular file, then the create hook will be called and not this * hook. * * Return: Returns 0 if permission is granted. */ int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) { if (unlikely(IS_PRIVATE(dir))) return 0; return call_int_hook(inode_mknod, dir, dentry, mode, dev); } /** * security_inode_rename() - Check if renaming a file is allowed * @old_dir: parent directory of the old file * @old_dentry: the old file * @new_dir: parent directory of the new file * @new_dentry: the new file * @flags: flags * * Check for permission to rename a file or directory. * * Return: Returns 0 if permission is granted. */ int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) { if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) return 0; if (flags & RENAME_EXCHANGE) { int err = call_int_hook(inode_rename, new_dir, new_dentry, old_dir, old_dentry); if (err) return err; } return call_int_hook(inode_rename, old_dir, old_dentry, new_dir, new_dentry); } /** * security_inode_readlink() - Check if reading a symbolic link is allowed * @dentry: link * * Check the permission to read the symbolic link. * * Return: Returns 0 if permission is granted. */ int security_inode_readlink(struct dentry *dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; return call_int_hook(inode_readlink, dentry); } /** * security_inode_follow_link() - Check if following a symbolic link is allowed * @dentry: link dentry * @inode: link inode * @rcu: true if in RCU-walk mode * * Check permission to follow a symbolic link when looking up a pathname. If * @rcu is true, @inode is not stable. * * Return: Returns 0 if permission is granted. */ int security_inode_follow_link(struct dentry *dentry, struct inode *inode, bool rcu) { if (unlikely(IS_PRIVATE(inode))) return 0; return call_int_hook(inode_follow_link, dentry, inode, rcu); } /** * security_inode_permission() - Check if accessing an inode is allowed * @inode: inode * @mask: access mask * * Check permission before accessing an inode. This hook is called by the * existing Linux permission function, so a security module can use it to * provide additional checking for existing Linux permission checks. Notice * that this hook is called when a file is opened (as well as many other * operations), whereas the file_security_ops permission hook is called when * the actual read/write operations are performed. * * Return: Returns 0 if permission is granted. */ int security_inode_permission(struct inode *inode, int mask) { if (unlikely(IS_PRIVATE(inode))) return 0; return call_int_hook(inode_permission, inode, mask); } /** * security_inode_setattr() - Check if setting file attributes is allowed * @idmap: idmap of the mount * @dentry: file * @attr: new attributes * * Check permission before setting file attributes. Note that the kernel call * to notify_change is performed from several locations, whenever file * attributes change (such as when a file is truncated, chown/chmod operations, * transferring disk quotas, etc). * * Return: Returns 0 if permission is granted. */ int security_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *attr) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; return call_int_hook(inode_setattr, idmap, dentry, attr); } EXPORT_SYMBOL_GPL(security_inode_setattr); /** * security_inode_post_setattr() - Update the inode after a setattr operation * @idmap: idmap of the mount * @dentry: file * @ia_valid: file attributes set * * Update inode security field after successful setting file attributes. */ void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry, int ia_valid) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return; call_void_hook(inode_post_setattr, idmap, dentry, ia_valid); } /** * security_inode_getattr() - Check if getting file attributes is allowed * @path: file * * Check permission before obtaining file attributes. * * Return: Returns 0 if permission is granted. */ int security_inode_getattr(const struct path *path) { if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) return 0; return call_int_hook(inode_getattr, path); } /** * security_inode_setxattr() - Check if setting file xattrs is allowed * @idmap: idmap of the mount * @dentry: file * @name: xattr name * @value: xattr value * @size: size of xattr value * @flags: flags * * This hook performs the desired permission checks before setting the extended * attributes (xattrs) on @dentry. It is important to note that we have some * additional logic before the main LSM implementation calls to detect if we * need to perform an additional capability check at the LSM layer. * * Normally we enforce a capability check prior to executing the various LSM * hook implementations, but if a LSM wants to avoid this capability check, * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for * xattrs that it wants to avoid the capability check, leaving the LSM fully * responsible for enforcing the access control for the specific xattr. If all * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook, * or return a 0 (the default return value), the capability check is still * performed. If no 'inode_xattr_skipcap' hooks are registered the capability * check is performed. * * Return: Returns 0 if permission is granted. */ int security_inode_setxattr(struct mnt_idmap *idmap, struct dentry *dentry, const char *name, const void *value, size_t size, int flags) { int rc; if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; /* enforce the capability checks at the lsm layer, if needed */ if (!call_int_hook(inode_xattr_skipcap, name)) { rc = cap_inode_setxattr(dentry, name, value, size, flags); if (rc) return rc; } return call_int_hook(inode_setxattr, idmap, dentry, name, value, size, flags); } /** * security_inode_set_acl() - Check if setting posix acls is allowed * @idmap: idmap of the mount * @dentry: file * @acl_name: acl name * @kacl: acl struct * * Check permission before setting posix acls, the posix acls in @kacl are * identified by @acl_name. * * Return: Returns 0 if permission is granted. */ int security_inode_set_acl(struct mnt_idmap *idmap, struct dentry *dentry, const char *acl_name, struct posix_acl *kacl) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl); } /** * security_inode_post_set_acl() - Update inode security from posix acls set * @dentry: file * @acl_name: acl name * @kacl: acl struct * * Update inode security data after successfully setting posix acls on @dentry. * The posix acls in @kacl are identified by @acl_name. */ void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name, struct posix_acl *kacl) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return; call_void_hook(inode_post_set_acl, dentry, acl_name, kacl); } /** * security_inode_get_acl() - Check if reading posix acls is allowed * @idmap: idmap of the mount * @dentry: file * @acl_name: acl name * * Check permission before getting osix acls, the posix acls are identified by * @acl_name. * * Return: Returns 0 if permission is granted. */ int security_inode_get_acl(struct mnt_idmap *idmap, struct dentry *dentry, const char *acl_name) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; return call_int_hook(inode_get_acl, idmap, dentry, acl_name); } /** * security_inode_remove_acl() - Check if removing a posix acl is allowed * @idmap: idmap of the mount * @dentry: file * @acl_name: acl name * * Check permission before removing posix acls, the posix acls are identified * by @acl_name. * * Return: Returns 0 if permission is granted. */ int security_inode_remove_acl(struct mnt_idmap *idmap, struct dentry *dentry, const char *acl_name) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; return call_int_hook(inode_remove_acl, idmap, dentry, acl_name); } /** * security_inode_post_remove_acl() - Update inode security after rm posix acls * @idmap: idmap of the mount * @dentry: file * @acl_name: acl name * * Update inode security data after successfully removing posix acls on * @dentry in @idmap. The posix acls are identified by @acl_name. */ void security_inode_post_remove_acl(struct mnt_idmap *idmap, struct dentry *dentry, const char *acl_name) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return; call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name); } /** * security_inode_post_setxattr() - Update the inode after a setxattr operation * @dentry: file * @name: xattr name * @value: xattr value * @size: xattr value size * @flags: flags * * Update inode security field after successful setxattr operation. */ void security_inode_post_setxattr(struct dentry *dentry, const char *name, const void *value, size_t size, int flags) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return; call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); } /** * security_inode_getxattr() - Check if xattr access is allowed * @dentry: file * @name: xattr name * * Check permission before obtaining the extended attributes identified by * @name for @dentry. * * Return: Returns 0 if permission is granted. */ int security_inode_getxattr(struct dentry *dentry, const char *name) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; return call_int_hook(inode_getxattr, dentry, name); } /** * security_inode_listxattr() - Check if listing xattrs is allowed * @dentry: file * * Check permission before obtaining the list of extended attribute names for * @dentry. * * Return: Returns 0 if permission is granted. */ int security_inode_listxattr(struct dentry *dentry) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; return call_int_hook(inode_listxattr, dentry); } /** * security_inode_removexattr() - Check if removing an xattr is allowed * @idmap: idmap of the mount * @dentry: file * @name: xattr name * * This hook performs the desired permission checks before setting the extended * attributes (xattrs) on @dentry. It is important to note that we have some * additional logic before the main LSM implementation calls to detect if we * need to perform an additional capability check at the LSM layer. * * Normally we enforce a capability check prior to executing the various LSM * hook implementations, but if a LSM wants to avoid this capability check, * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for * xattrs that it wants to avoid the capability check, leaving the LSM fully * responsible for enforcing the access control for the specific xattr. If all * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook, * or return a 0 (the default return value), the capability check is still * performed. If no 'inode_xattr_skipcap' hooks are registered the capability * check is performed. * * Return: Returns 0 if permission is granted. */ int security_inode_removexattr(struct mnt_idmap *idmap, struct dentry *dentry, const char *name) { int rc; if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return 0; /* enforce the capability checks at the lsm layer, if needed */ if (!call_int_hook(inode_xattr_skipcap, name)) { rc = cap_inode_removexattr(idmap, dentry, name); if (rc) return rc; } return call_int_hook(inode_removexattr, idmap, dentry, name); } /** * security_inode_post_removexattr() - Update the inode after a removexattr op * @dentry: file * @name: xattr name * * Update the inode after a successful removexattr operation. */ void security_inode_post_removexattr(struct dentry *dentry, const char *name) { if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) return; call_void_hook(inode_post_removexattr, dentry, name); } /** * security_inode_need_killpriv() - Check if security_inode_killpriv() required * @dentry: associated dentry * * Called when an inode has been changed to determine if * security_inode_killpriv() should be called. * * Return: Return <0 on error to abort the inode change operation, return 0 if * security_inode_killpriv() does not need to be called, return >0 if * security_inode_killpriv() does need to be called. */ int security_inode_need_killpriv(struct dentry *dentry) { return call_int_hook(inode_need_killpriv, dentry); } /** * security_inode_killpriv() - The setuid bit is removed, update LSM state * @idmap: idmap of the mount * @dentry: associated dentry * * The @dentry's setuid bit is being removed. Remove similar security labels. * Called with the dentry->d_inode->i_mutex held. * * Return: Return 0 on success. If error is returned, then the operation * causing setuid bit removal is failed. */ int security_inode_killpriv(struct mnt_idmap *idmap, struct dentry *dentry) { return call_int_hook(inode_killpriv, idmap, dentry); } /** * security_inode_getsecurity() - Get the xattr security label of an inode * @idmap: idmap of the mount * @inode: inode * @name: xattr name * @buffer: security label buffer * @alloc: allocation flag * * Retrieve a copy of the extended attribute representation of the security * label associated with @name for @inode via @buffer. Note that @name is the * remainder of the attribute name after the security prefix has been removed. * @alloc is used to specify if the call should return a value via the buffer * or just the value length. * * Return: Returns size of buffer on success. */ int security_inode_getsecurity(struct mnt_idmap *idmap, struct inode *inode, const char *name, void **buffer, bool alloc) { if (unlikely(IS_PRIVATE(inode))) return LSM_RET_DEFAULT(inode_getsecurity); return call_int_hook(inode_getsecurity, idmap, inode, name, buffer, alloc); } /** * security_inode_setsecurity() - Set the xattr security label of an inode * @inode: inode * @name: xattr name * @value: security label * @size: length of security label * @flags: flags * * Set the security label associated with @name for @inode from the extended * attribute value @value. @size indicates the size of the @value in bytes. * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the * remainder of the attribute name after the security. prefix has been removed. * * Return: Returns 0 on success. */ int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) { if (unlikely(IS_PRIVATE(inode))) return LSM_RET_DEFAULT(inode_setsecurity); return call_int_hook(inode_setsecurity, inode, name, value, size, flags); } /** * security_inode_listsecurity() - List the xattr security label names * @inode: inode * @buffer: buffer * @buffer_size: size of buffer * * Copy the extended attribute names for the security labels associated with * @inode into @buffer. The maximum size of @buffer is specified by * @buffer_size. @buffer may be NULL to request the size of the buffer * required. * * Return: Returns number of bytes used/required on success. */ int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) { if (unlikely(IS_PRIVATE(inode))) return 0; return call_int_hook(inode_listsecurity, inode, buffer, buffer_size); } EXPORT_SYMBOL(security_inode_listsecurity); /** * security_inode_getsecid() - Get an inode's secid * @inode: inode * @secid: secid to return * * Get the secid associated with the node. In case of failure, @secid will be * set to zero. */ void security_inode_getsecid(struct inode *inode, u32 *secid) { call_void_hook(inode_getsecid, inode, secid); } /** * security_inode_copy_up() - Create new creds for an overlayfs copy-up op * @src: union dentry of copy-up file * @new: newly created creds * * A file is about to be copied up from lower layer to upper layer of overlay * filesystem. Security module can prepare a set of new creds and modify as * need be and return new creds. Caller will switch to new creds temporarily to * create new file and release newly allocated creds. * * Return: Returns 0 on success or a negative error code on error. */ int security_inode_copy_up(struct dentry *src, struct cred **new) { return call_int_hook(inode_copy_up, src, new); } EXPORT_SYMBOL(security_inode_copy_up); /** * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op * @src: union dentry of copy-up file * @name: xattr name * * Filter the xattrs being copied up when a unioned file is copied up from a * lower layer to the union/overlay layer. The caller is responsible for * reading and writing the xattrs, this hook is merely a filter. * * Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr, * -EOPNOTSUPP if the security module does not know about attribute, * or a negative error code to abort the copy up. */ int security_inode_copy_up_xattr(struct dentry *src, const char *name) { int rc; rc = call_int_hook(inode_copy_up_xattr, src, name); if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) return rc; return LSM_RET_DEFAULT(inode_copy_up_xattr); } EXPORT_SYMBOL(security_inode_copy_up_xattr); /** * security_inode_setintegrity() - Set the inode's integrity data * @inode: inode * @type: type of integrity, e.g. hash digest, signature, etc * @value: the integrity value * @size: size of the integrity value * * Register a verified integrity measurement of a inode with LSMs. * LSMs should free the previously saved data if @value is NULL. * * Return: Returns 0 on success, negative values on failure. */ int security_inode_setintegrity(const struct inode *inode, enum lsm_integrity_type type, const void *value, size_t size) { return call_int_hook(inode_setintegrity, inode, type, value, size); } EXPORT_SYMBOL(security_inode_setintegrity); /** * security_kernfs_init_security() - Init LSM context for a kernfs node * @kn_dir: parent kernfs node * @kn: the kernfs node to initialize * * Initialize the security context of a newly created kernfs node based on its * own and its parent's attributes. * * Return: Returns 0 if permission is granted. */ int security_kernfs_init_security(struct kernfs_node *kn_dir, struct kernfs_node *kn) { return call_int_hook(kernfs_init_security, kn_dir, kn); } /** * security_file_permission() - Check file permissions * @file: file * @mask: requested permissions * * Check file permissions before accessing an open file. This hook is called * by various operations that read or write files. A security module can use * this hook to perform additional checking on these operations, e.g. to * revalidate permissions on use to support privilege bracketing or policy * changes. Notice that this hook is used when the actual read/write * operations are performed, whereas the inode_security_ops hook is called when * a file is opened (as well as many other operations). Although this hook can * be used to revalidate permissions for various system call operations that * read or write files, it does not address the revalidation of permissions for * memory-mapped files. Security modules must handle this separately if they * need such revalidation. * * Return: Returns 0 if permission is granted. */ int security_file_permission(struct file *file, int mask) { return call_int_hook(file_permission, file, mask); } /** * security_file_alloc() - Allocate and init a file's LSM blob * @file: the file * * Allocate and attach a security structure to the file->f_security field. The * security field is initialized to NULL when the structure is first created. * * Return: Return 0 if the hook is successful and permission is granted. */ int security_file_alloc(struct file *file) { int rc = lsm_file_alloc(file); if (rc) return rc; rc = call_int_hook(file_alloc_security, file); if (unlikely(rc)) security_file_free(file); return rc; } /** * security_file_release() - Perform actions before releasing the file ref * @file: the file * * Perform actions before releasing the last reference to a file. */ void security_file_release(struct file *file) { call_void_hook(file_release, file); } /** * security_file_free() - Free a file's LSM blob * @file: the file * * Deallocate and free any security structures stored in file->f_security. */ void security_file_free(struct file *file) { void *blob; call_void_hook(file_free_security, file); blob = file->f_security; if (blob) { file->f_security = NULL; kmem_cache_free(lsm_file_cache, blob); } } /** * security_file_ioctl() - Check if an ioctl is allowed * @file: associated file * @cmd: ioctl cmd * @arg: ioctl arguments * * Check permission for an ioctl operation on @file. Note that @arg sometimes * represents a user space pointer; in other cases, it may be a simple integer * value. When @arg represents a user space pointer, it should never be used * by the security module. * * Return: Returns 0 if permission is granted. */ int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { return call_int_hook(file_ioctl, file, cmd, arg); } EXPORT_SYMBOL_GPL(security_file_ioctl); /** * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode * @file: associated file * @cmd: ioctl cmd * @arg: ioctl arguments * * Compat version of security_file_ioctl() that correctly handles 32-bit * processes running on 64-bit kernels. * * Return: Returns 0 if permission is granted. */ int security_file_ioctl_compat(struct file *file, unsigned int cmd, unsigned long arg) { return call_int_hook(file_ioctl_compat, file, cmd, arg); } EXPORT_SYMBOL_GPL(security_file_ioctl_compat); static inline unsigned long mmap_prot(struct file *file, unsigned long prot) { /* * Does we have PROT_READ and does the application expect * it to imply PROT_EXEC? If not, nothing to talk about... */ if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) return prot; if (!(current->personality & READ_IMPLIES_EXEC)) return prot; /* * if that's an anonymous mapping, let it. */ if (!file) return prot | PROT_EXEC; /* * ditto if it's not on noexec mount, except that on !MMU we need * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case */ if (!path_noexec(&file->f_path)) { #ifndef CONFIG_MMU if (file->f_op->mmap_capabilities) { unsigned caps = file->f_op->mmap_capabilities(file); if (!(caps & NOMMU_MAP_EXEC)) return prot; } #endif return prot | PROT_EXEC; } /* anything on noexec mount won't get PROT_EXEC */ return prot; } /** * security_mmap_file() - Check if mmap'ing a file is allowed * @file: file * @prot: protection applied by the kernel * @flags: flags * * Check permissions for a mmap operation. The @file may be NULL, e.g. if * mapping anonymous memory. * * Return: Returns 0 if permission is granted. */ int security_mmap_file(struct file *file, unsigned long prot, unsigned long flags) { return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot), flags); } /** * security_mmap_addr() - Check if mmap'ing an address is allowed * @addr: address * * Check permissions for a mmap operation at @addr. * * Return: Returns 0 if permission is granted. */ int security_mmap_addr(unsigned long addr) { return call_int_hook(mmap_addr, addr); } /** * security_file_mprotect() - Check if changing memory protections is allowed * @vma: memory region * @reqprot: application requested protection * @prot: protection applied by the kernel * * Check permissions before changing memory access permissions. * * Return: Returns 0 if permission is granted. */ int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, unsigned long prot) { return call_int_hook(file_mprotect, vma, reqprot, prot); } /** * security_file_lock() - Check if a file lock is allowed * @file: file * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK) * * Check permission before performing file locking operations. Note the hook * mediates both flock and fcntl style locks. * * Return: Returns 0 if permission is granted. */ int security_file_lock(struct file *file, unsigned int cmd) { return call_int_hook(file_lock, file, cmd); } /** * security_file_fcntl() - Check if fcntl() op is allowed * @file: file * @cmd: fcntl command * @arg: command argument * * Check permission before allowing the file operation specified by @cmd from * being performed on the file @file. Note that @arg sometimes represents a * user space pointer; in other cases, it may be a simple integer value. When * @arg represents a user space pointer, it should never be used by the * security module. * * Return: Returns 0 if permission is granted. */ int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) { return call_int_hook(file_fcntl, file, cmd, arg); } /** * security_file_set_fowner() - Set the file owner info in the LSM blob * @file: the file * * Save owner security information (typically from current->security) in * file->f_security for later use by the send_sigiotask hook. * * This hook is called with file->f_owner.lock held. * * Return: Returns 0 on success. */ void security_file_set_fowner(struct file *file) { call_void_hook(file_set_fowner, file); } /** * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed * @tsk: target task * @fown: signal sender * @sig: signal to be sent, SIGIO is sent if 0 * * Check permission for the file owner @fown to send SIGIO or SIGURG to the * process @tsk. Note that this hook is sometimes called from interrupt. Note * that the fown_struct, @fown, is never outside the context of a struct file, * so the file structure (and associated security information) can always be * obtained: container_of(fown, struct file, f_owner). * * Return: Returns 0 if permission is granted. */ int security_file_send_sigiotask(struct task_struct *tsk, struct fown_struct *fown, int sig) { return call_int_hook(file_send_sigiotask, tsk, fown, sig); } /** * security_file_receive() - Check if receiving a file via IPC is allowed * @file: file being received * * This hook allows security modules to control the ability of a process to * receive an open file descriptor via socket IPC. * * Return: Returns 0 if permission is granted. */ int security_file_receive(struct file *file) { return call_int_hook(file_receive, file); } /** * security_file_open() - Save open() time state for late use by the LSM * @file: * * Save open-time permission checking state for later use upon file_permission, * and recheck access if anything has changed since inode_permission. * * Return: Returns 0 if permission is granted. */ int security_file_open(struct file *file) { int ret; ret = call_int_hook(file_open, file); if (ret) return ret; return fsnotify_open_perm(file); } /** * security_file_post_open() - Evaluate a file after it has been opened * @file: the file * @mask: access mask * * Evaluate an opened file and the access mask requested with open(). The hook * is useful for LSMs that require the file content to be available in order to * make decisions. * * Return: Returns 0 if permission is granted. */ int security_file_post_open(struct file *file, int mask) { return call_int_hook(file_post_open, file, mask); } EXPORT_SYMBOL_GPL(security_file_post_open); /** * security_file_truncate() - Check if truncating a file is allowed * @file: file * * Check permission before truncating a file, i.e. using ftruncate. Note that * truncation permission may also be checked based on the path, using the * @path_truncate hook. * * Return: Returns 0 if permission is granted. */ int security_file_truncate(struct file *file) { return call_int_hook(file_truncate, file); } /** * security_task_alloc() - Allocate a task's LSM blob * @task: the task * @clone_flags: flags indicating what is being shared * * Handle allocation of task-related resources. * * Return: Returns a zero on success, negative values on failure. */ int security_task_alloc(struct task_struct *task, unsigned long clone_flags) { int rc = lsm_task_alloc(task); if (rc) return rc; rc = call_int_hook(task_alloc, task, clone_flags); if (unlikely(rc)) security_task_free(task); return rc; } /** * security_task_free() - Free a task's LSM blob and related resources * @task: task * * Handle release of task-related resources. Note that this can be called from * interrupt context. */ void security_task_free(struct task_struct *task) { call_void_hook(task_free, task); kfree(task->security); task->security = NULL; } /** * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer * @cred: credentials * @gfp: gfp flags * * Only allocate sufficient memory and attach to @cred such that * cred_transfer() will not get ENOMEM. * * Return: Returns 0 on success, negative values on failure. */ int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) { int rc = lsm_cred_alloc(cred, gfp); if (rc) return rc; rc = call_int_hook(cred_alloc_blank, cred, gfp); if (unlikely(rc)) security_cred_free(cred); return rc; } /** * security_cred_free() - Free the cred's LSM blob and associated resources * @cred: credentials * * Deallocate and clear the cred->security field in a set of credentials. */ void security_cred_free(struct cred *cred) { /* * There is a failure case in prepare_creds() that * may result in a call here with ->security being NULL. */ if (unlikely(cred->security == NULL)) return; call_void_hook(cred_free, cred); kfree(cred->security); cred->security = NULL; } /** * security_prepare_creds() - Prepare a new set of credentials * @new: new credentials * @old: original credentials * @gfp: gfp flags * * Prepare a new set of credentials by copying the data from the old set. * * Return: Returns 0 on success, negative values on failure. */ int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) { int rc = lsm_cred_alloc(new, gfp); if (rc) return rc; rc = call_int_hook(cred_prepare, new, old, gfp); if (unlikely(rc)) security_cred_free(new); return rc; } /** * security_transfer_creds() - Transfer creds * @new: target credentials * @old: original credentials * * Transfer data from original creds to new creds. */ void security_transfer_creds(struct cred *new, const struct cred *old) { call_void_hook(cred_transfer, new, old); } /** * security_cred_getsecid() - Get the secid from a set of credentials * @c: credentials * @secid: secid value * * Retrieve the security identifier of the cred structure @c. In case of * failure, @secid will be set to zero. */ void security_cred_getsecid(const struct cred *c, u32 *secid) { *secid = 0; call_void_hook(cred_getsecid, c, secid); } EXPORT_SYMBOL(security_cred_getsecid); /** * security_kernel_act_as() - Set the kernel credentials to act as secid * @new: credentials * @secid: secid * * Set the credentials for a kernel service to act as (subjective context). * The current task must be the one that nominated @secid. * * Return: Returns 0 if successful. */ int security_kernel_act_as(struct cred *new, u32 secid) { return call_int_hook(kernel_act_as, new, secid); } /** * security_kernel_create_files_as() - Set file creation context using an inode * @new: target credentials * @inode: reference inode * * Set the file creation context in a set of credentials to be the same as the * objective context of the specified inode. The current task must be the one * that nominated @inode. * * Return: Returns 0 if successful. */ int security_kernel_create_files_as(struct cred *new, struct inode *inode) { return call_int_hook(kernel_create_files_as, new, inode); } /** * security_kernel_module_request() - Check if loading a module is allowed * @kmod_name: module name * * Ability to trigger the kernel to automatically upcall to userspace for * userspace to load a kernel module with the given name. * * Return: Returns 0 if successful. */ int security_kernel_module_request(char *kmod_name) { return call_int_hook(kernel_module_request, kmod_name); } /** * security_kernel_read_file() - Read a file specified by userspace * @file: file * @id: file identifier * @contents: trust if security_kernel_post_read_file() will be called * * Read a file specified by userspace. * * Return: Returns 0 if permission is granted. */ int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, bool contents) { return call_int_hook(kernel_read_file, file, id, contents); } EXPORT_SYMBOL_GPL(security_kernel_read_file); /** * security_kernel_post_read_file() - Read a file specified by userspace * @file: file * @buf: file contents * @size: size of file contents * @id: file identifier * * Read a file specified by userspace. This must be paired with a prior call * to security_kernel_read_file() call that indicated this hook would also be * called, see security_kernel_read_file() for more information. * * Return: Returns 0 if permission is granted. */ int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, enum kernel_read_file_id id) { return call_int_hook(kernel_post_read_file, file, buf, size, id); } EXPORT_SYMBOL_GPL(security_kernel_post_read_file); /** * security_kernel_load_data() - Load data provided by userspace * @id: data identifier * @contents: true if security_kernel_post_load_data() will be called * * Load data provided by userspace. * * Return: Returns 0 if permission is granted. */ int security_kernel_load_data(enum kernel_load_data_id id, bool contents) { return call_int_hook(kernel_load_data, id, contents); } EXPORT_SYMBOL_GPL(security_kernel_load_data); /** * security_kernel_post_load_data() - Load userspace data from a non-file source * @buf: data * @size: size of data * @id: data identifier * @description: text description of data, specific to the id value * * Load data provided by a non-file source (usually userspace buffer). This * must be paired with a prior security_kernel_load_data() call that indicated * this hook would also be called, see security_kernel_load_data() for more * information. * * Return: Returns 0 if permission is granted. */ int security_kernel_post_load_data(char *buf, loff_t size, enum kernel_load_data_id id, char *description) { return call_int_hook(kernel_post_load_data, buf, size, id, description); } EXPORT_SYMBOL_GPL(security_kernel_post_load_data); /** * security_task_fix_setuid() - Update LSM with new user id attributes * @new: updated credentials * @old: credentials being replaced * @flags: LSM_SETID_* flag values * * Update the module's state after setting one or more of the user identity * attributes of the current process. The @flags parameter indicates which of * the set*uid system calls invoked this hook. If @new is the set of * credentials that will be installed. Modifications should be made to this * rather than to @current->cred. * * Return: Returns 0 on success. */ int security_task_fix_setuid(struct cred *new, const struct cred *old, int flags) { return call_int_hook(task_fix_setuid, new, old, flags); } /** * security_task_fix_setgid() - Update LSM with new group id attributes * @new: updated credentials * @old: credentials being replaced * @flags: LSM_SETID_* flag value * * Update the module's state after setting one or more of the group identity * attributes of the current process. The @flags parameter indicates which of * the set*gid system calls invoked this hook. @new is the set of credentials * that will be installed. Modifications should be made to this rather than to * @current->cred. * * Return: Returns 0 on success. */ int security_task_fix_setgid(struct cred *new, const struct cred *old, int flags) { return call_int_hook(task_fix_setgid, new, old, flags); } /** * security_task_fix_setgroups() - Update LSM with new supplementary groups * @new: updated credentials * @old: credentials being replaced * * Update the module's state after setting the supplementary group identity * attributes of the current process. @new is the set of credentials that will * be installed. Modifications should be made to this rather than to * @current->cred. * * Return: Returns 0 on success. */ int security_task_fix_setgroups(struct cred *new, const struct cred *old) { return call_int_hook(task_fix_setgroups, new, old); } /** * security_task_setpgid() - Check if setting the pgid is allowed * @p: task being modified * @pgid: new pgid * * Check permission before setting the process group identifier of the process * @p to @pgid. * * Return: Returns 0 if permission is granted. */ int security_task_setpgid(struct task_struct *p, pid_t pgid) { return call_int_hook(task_setpgid, p, pgid); } /** * security_task_getpgid() - Check if getting the pgid is allowed * @p: task * * Check permission before getting the process group identifier of the process * @p. * * Return: Returns 0 if permission is granted. */ int security_task_getpgid(struct task_struct *p) { return call_int_hook(task_getpgid, p); } /** * security_task_getsid() - Check if getting the session id is allowed * @p: task * * Check permission before getting the session identifier of the process @p. * * Return: Returns 0 if permission is granted. */ int security_task_getsid(struct task_struct *p) { return call_int_hook(task_getsid, p); } /** * security_current_getsecid_subj() - Get the current task's subjective secid * @secid: secid value * * Retrieve the subjective security identifier of the current task and return * it in @secid. In case of failure, @secid will be set to zero. */ void security_current_getsecid_subj(u32 *secid) { *secid = 0; call_void_hook(current_getsecid_subj, secid); } EXPORT_SYMBOL(security_current_getsecid_subj); /** * security_task_getsecid_obj() - Get a task's objective secid * @p: target task * @secid: secid value * * Retrieve the objective security identifier of the task_struct in @p and * return it in @secid. In case of failure, @secid will be set to zero. */ void security_task_getsecid_obj(struct task_struct *p, u32 *secid) { *secid = 0; call_void_hook(task_getsecid_obj, p, secid); } EXPORT_SYMBOL(security_task_getsecid_obj); /** * security_task_setnice() - Check if setting a task's nice value is allowed * @p: target task * @nice: nice value * * Check permission before setting the nice value of @p to @nice. * * Return: Returns 0 if permission is granted. */ int security_task_setnice(struct task_struct *p, int nice) { return call_int_hook(task_setnice, p, nice); } /** * security_task_setioprio() - Check if setting a task's ioprio is allowed * @p: target task * @ioprio: ioprio value * * Check permission before setting the ioprio value of @p to @ioprio. * * Return: Returns 0 if permission is granted. */ int security_task_setioprio(struct task_struct *p, int ioprio) { return call_int_hook(task_setioprio, p, ioprio); } /** * security_task_getioprio() - Check if getting a task's ioprio is allowed * @p: task * * Check permission before getting the ioprio value of @p. * * Return: Returns 0 if permission is granted. */ int security_task_getioprio(struct task_struct *p) { return call_int_hook(task_getioprio, p); } /** * security_task_prlimit() - Check if get/setting resources limits is allowed * @cred: current task credentials * @tcred: target task credentials * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both * * Check permission before getting and/or setting the resource limits of * another task. * * Return: Returns 0 if permission is granted. */ int security_task_prlimit(const struct cred *cred, const struct cred *tcred, unsigned int flags) { return call_int_hook(task_prlimit, cred, tcred, flags); } /** * security_task_setrlimit() - Check if setting a new rlimit value is allowed * @p: target task's group leader * @resource: resource whose limit is being set * @new_rlim: new resource limit * * Check permission before setting the resource limits of process @p for * @resource to @new_rlim. The old resource limit values can be examined by * dereferencing (p->signal->rlim + resource). * * Return: Returns 0 if permission is granted. */ int security_task_setrlimit(struct task_struct *p, unsigned int resource, struct rlimit *new_rlim) { return call_int_hook(task_setrlimit, p, resource, new_rlim); } /** * security_task_setscheduler() - Check if setting sched policy/param is allowed * @p: target task * * Check permission before setting scheduling policy and/or parameters of * process @p. * * Return: Returns 0 if permission is granted. */ int security_task_setscheduler(struct task_struct *p) { return call_int_hook(task_setscheduler, p); } /** * security_task_getscheduler() - Check if getting scheduling info is allowed * @p: target task * * Check permission before obtaining scheduling information for process @p. * * Return: Returns 0 if permission is granted. */ int security_task_getscheduler(struct task_struct *p) { return call_int_hook(task_getscheduler, p); } /** * security_task_movememory() - Check if moving memory is allowed * @p: task * * Check permission before moving memory owned by process @p. * * Return: Returns 0 if permission is granted. */ int security_task_movememory(struct task_struct *p) { return call_int_hook(task_movememory, p); } /** * security_task_kill() - Check if sending a signal is allowed * @p: target process * @info: signal information * @sig: signal value * @cred: credentials of the signal sender, NULL if @current * * Check permission before sending signal @sig to @p. @info can be NULL, the * constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from * the kernel and should typically be permitted. SIGIO signals are handled * separately by the send_sigiotask hook in file_security_ops. * * Return: Returns 0 if permission is granted. */ int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, int sig, const struct cred *cred) { return call_int_hook(task_kill, p, info, sig, cred); } /** * security_task_prctl() - Check if a prctl op is allowed * @option: operation * @arg2: argument * @arg3: argument * @arg4: argument * @arg5: argument * * Check permission before performing a process control operation on the * current process. * * Return: Return -ENOSYS if no-one wanted to handle this op, any other value * to cause prctl() to return immediately with that value. */ int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5) { int thisrc; int rc = LSM_RET_DEFAULT(task_prctl); struct lsm_static_call *scall; lsm_for_each_hook(scall, task_prctl) { thisrc = scall->hl->hook.task_prctl(option, arg2, arg3, arg4, arg5); if (thisrc != LSM_RET_DEFAULT(task_prctl)) { rc = thisrc; if (thisrc != 0) break; } } return rc; } /** * security_task_to_inode() - Set the security attributes of a task's inode * @p: task * @inode: inode * * Set the security attributes for an inode based on an associated task's * security attributes, e.g. for /proc/pid inodes. */ void security_task_to_inode(struct task_struct *p, struct inode *inode) { call_void_hook(task_to_inode, p, inode); } /** * security_create_user_ns() - Check if creating a new userns is allowed * @cred: prepared creds * * Check permission prior to creating a new user namespace. * * Return: Returns 0 if successful, otherwise < 0 error code. */ int security_create_user_ns(const struct cred *cred) { return call_int_hook(userns_create, cred); } /** * security_ipc_permission() - Check if sysv ipc access is allowed * @ipcp: ipc permission structure * @flag: requested permissions * * Check permissions for access to IPC. * * Return: Returns 0 if permission is granted. */ int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) { return call_int_hook(ipc_permission, ipcp, flag); } /** * security_ipc_getsecid() - Get the sysv ipc object's secid * @ipcp: ipc permission structure * @secid: secid pointer * * Get the secid associated with the ipc object. In case of failure, @secid * will be set to zero. */ void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) { *secid = 0; call_void_hook(ipc_getsecid, ipcp, secid); } /** * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob * @msg: message structure * * Allocate and attach a security structure to the msg->security field. The * security field is initialized to NULL when the structure is first created. * * Return: Return 0 if operation was successful and permission is granted. */ int security_msg_msg_alloc(struct msg_msg *msg) { int rc = lsm_msg_msg_alloc(msg); if (unlikely(rc)) return rc; rc = call_int_hook(msg_msg_alloc_security, msg); if (unlikely(rc)) security_msg_msg_free(msg); return rc; } /** * security_msg_msg_free() - Free a sysv ipc message LSM blob * @msg: message structure * * Deallocate the security structure for this message. */ void security_msg_msg_free(struct msg_msg *msg) { call_void_hook(msg_msg_free_security, msg); kfree(msg->security); msg->security = NULL; } /** * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob * @msq: sysv ipc permission structure * * Allocate and attach a security structure to @msg. The security field is * initialized to NULL when the structure is first created. * * Return: Returns 0 if operation was successful and permission is granted. */ int security_msg_queue_alloc(struct kern_ipc_perm *msq) { int rc = lsm_ipc_alloc(msq); if (unlikely(rc)) return rc; rc = call_int_hook(msg_queue_alloc_security, msq); if (unlikely(rc)) security_msg_queue_free(msq); return rc; } /** * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob * @msq: sysv ipc permission structure * * Deallocate security field @perm->security for the message queue. */ void security_msg_queue_free(struct kern_ipc_perm *msq) { call_void_hook(msg_queue_free_security, msq); kfree(msq->security); msq->security = NULL; } /** * security_msg_queue_associate() - Check if a msg queue operation is allowed * @msq: sysv ipc permission structure * @msqflg: operation flags * * Check permission when a message queue is requested through the msgget system * call. This hook is only called when returning the message queue identifier * for an existing message queue, not when a new message queue is created. * * Return: Return 0 if permission is granted. */ int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) { return call_int_hook(msg_queue_associate, msq, msqflg); } /** * security_msg_queue_msgctl() - Check if a msg queue operation is allowed * @msq: sysv ipc permission structure * @cmd: operation * * Check permission when a message control operation specified by @cmd is to be * performed on the message queue with permissions. * * Return: Returns 0 if permission is granted. */ int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) { return call_int_hook(msg_queue_msgctl, msq, cmd); } /** * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed * @msq: sysv ipc permission structure * @msg: message * @msqflg: operation flags * * Check permission before a message, @msg, is enqueued on the message queue * with permissions specified in @msq. * * Return: Returns 0 if permission is granted. */ int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg) { return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg); } /** * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed * @msq: sysv ipc permission structure * @msg: message * @target: target task * @type: type of message requested * @mode: operation flags * * Check permission before a message, @msg, is removed from the message queue. * The @target task structure contains a pointer to the process that will be * receiving the message (not equal to the current process when inline receives * are being performed). * * Return: Returns 0 if permission is granted. */ int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, struct task_struct *target, long type, int mode) { return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode); } /** * security_shm_alloc() - Allocate a sysv shm LSM blob * @shp: sysv ipc permission structure * * Allocate and attach a security structure to the @shp security field. The * security field is initialized to NULL when the structure is first created. * * Return: Returns 0 if operation was successful and permission is granted. */ int security_shm_alloc(struct kern_ipc_perm *shp) { int rc = lsm_ipc_alloc(shp); if (unlikely(rc)) return rc; rc = call_int_hook(shm_alloc_security, shp); if (unlikely(rc)) security_shm_free(shp); return rc; } /** * security_shm_free() - Free a sysv shm LSM blob * @shp: sysv ipc permission structure * * Deallocate the security structure @perm->security for the memory segment. */ void security_shm_free(struct kern_ipc_perm *shp) { call_void_hook(shm_free_security, shp); kfree(shp->security); shp->security = NULL; } /** * security_shm_associate() - Check if a sysv shm operation is allowed * @shp: sysv ipc permission structure * @shmflg: operation flags * * Check permission when a shared memory region is requested through the shmget * system call. This hook is only called when returning the shared memory * region identifier for an existing region, not when a new shared memory * region is created. * * Return: Returns 0 if permission is granted. */ int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) { return call_int_hook(shm_associate, shp, shmflg); } /** * security_shm_shmctl() - Check if a sysv shm operation is allowed * @shp: sysv ipc permission structure * @cmd: operation * * Check permission when a shared memory control operation specified by @cmd is * to be performed on the shared memory region with permissions in @shp. * * Return: Return 0 if permission is granted. */ int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) { return call_int_hook(shm_shmctl, shp, cmd); } /** * security_shm_shmat() - Check if a sysv shm attach operation is allowed * @shp: sysv ipc permission structure * @shmaddr: address of memory region to attach * @shmflg: operation flags * * Check permissions prior to allowing the shmat system call to attach the * shared memory segment with permissions @shp to the data segment of the * calling process. The attaching address is specified by @shmaddr. * * Return: Returns 0 if permission is granted. */ int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) { return call_int_hook(shm_shmat, shp, shmaddr, shmflg); } /** * security_sem_alloc() - Allocate a sysv semaphore LSM blob * @sma: sysv ipc permission structure * * Allocate and attach a security structure to the @sma security field. The * security field is initialized to NULL when the structure is first created. * * Return: Returns 0 if operation was successful and permission is granted. */ int security_sem_alloc(struct kern_ipc_perm *sma) { int rc = lsm_ipc_alloc(sma); if (unlikely(rc)) return rc; rc = call_int_hook(sem_alloc_security, sma); if (unlikely(rc)) security_sem_free(sma); return rc; } /** * security_sem_free() - Free a sysv semaphore LSM blob * @sma: sysv ipc permission structure * * Deallocate security structure @sma->security for the semaphore. */ void security_sem_free(struct kern_ipc_perm *sma) { call_void_hook(sem_free_security, sma); kfree(sma->security); sma->security = NULL; } /** * security_sem_associate() - Check if a sysv semaphore operation is allowed * @sma: sysv ipc permission structure * @semflg: operation flags * * Check permission when a semaphore is requested through the semget system * call. This hook is only called when returning the semaphore identifier for * an existing semaphore, not when a new one must be created. * * Return: Returns 0 if permission is granted. */ int security_sem_associate(struct kern_ipc_perm *sma, int semflg) { return call_int_hook(sem_associate, sma, semflg); } /** * security_sem_semctl() - Check if a sysv semaphore operation is allowed * @sma: sysv ipc permission structure * @cmd: operation * * Check permission when a semaphore operation specified by @cmd is to be * performed on the semaphore. * * Return: Returns 0 if permission is granted. */ int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) { return call_int_hook(sem_semctl, sma, cmd); } /** * security_sem_semop() - Check if a sysv semaphore operation is allowed * @sma: sysv ipc permission structure * @sops: operations to perform * @nsops: number of operations * @alter: flag indicating changes will be made * * Check permissions before performing operations on members of the semaphore * set. If the @alter flag is nonzero, the semaphore set may be modified. * * Return: Returns 0 if permission is granted. */ int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, unsigned nsops, int alter) { return call_int_hook(sem_semop, sma, sops, nsops, alter); } /** * security_d_instantiate() - Populate an inode's LSM state based on a dentry * @dentry: dentry * @inode: inode * * Fill in @inode security information for a @dentry if allowed. */ void security_d_instantiate(struct dentry *dentry, struct inode *inode) { if (unlikely(inode && IS_PRIVATE(inode))) return; call_void_hook(d_instantiate, dentry, inode); } EXPORT_SYMBOL(security_d_instantiate); /* * Please keep this in sync with it's counterpart in security/lsm_syscalls.c */ /** * security_getselfattr - Read an LSM attribute of the current process. * @attr: which attribute to return * @uctx: the user-space destination for the information, or NULL * @size: pointer to the size of space available to receive the data * @flags: special handling options. LSM_FLAG_SINGLE indicates that only * attributes associated with the LSM identified in the passed @ctx be * reported. * * A NULL value for @uctx can be used to get both the number of attributes * and the size of the data. * * Returns the number of attributes found on success, negative value * on error. @size is reset to the total size of the data. * If @size is insufficient to contain the data -E2BIG is returned. */ int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx, u32 __user *size, u32 flags) { struct lsm_static_call *scall; struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, }; u8 __user *base = (u8 __user *)uctx; u32 entrysize; u32 total = 0; u32 left; bool toobig = false; bool single = false; int count = 0; int rc; if (attr == LSM_ATTR_UNDEF) return -EINVAL; if (size == NULL) return -EINVAL; if (get_user(left, size)) return -EFAULT; if (flags) { /* * Only flag supported is LSM_FLAG_SINGLE */ if (flags != LSM_FLAG_SINGLE || !uctx) return -EINVAL; if (copy_from_user(&lctx, uctx, sizeof(lctx))) return -EFAULT; /* * If the LSM ID isn't specified it is an error. */ if (lctx.id == LSM_ID_UNDEF) return -EINVAL; single = true; } /* * In the usual case gather all the data from the LSMs. * In the single case only get the data from the LSM specified. */ lsm_for_each_hook(scall, getselfattr) { if (single && lctx.id != scall->hl->lsmid->id) continue; entrysize = left; if (base) uctx = (struct lsm_ctx __user *)(base + total); rc = scall->hl->hook.getselfattr(attr, uctx, &entrysize, flags); if (rc == -EOPNOTSUPP) { rc = 0; continue; } if (rc == -E2BIG) { rc = 0; left = 0; toobig = true; } else if (rc < 0) return rc; else left -= entrysize; total += entrysize; count += rc; if (single) break; } if (put_user(total, size)) return -EFAULT; if (toobig) return -E2BIG; if (count == 0) return LSM_RET_DEFAULT(getselfattr); return count; } /* * Please keep this in sync with it's counterpart in security/lsm_syscalls.c */ /** * security_setselfattr - Set an LSM attribute on the current process. * @attr: which attribute to set * @uctx: the user-space source for the information * @size: the size of the data * @flags: reserved for future use, must be 0 * * Set an LSM attribute for the current process. The LSM, attribute * and new value are included in @uctx. * * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT * if the user buffer is inaccessible, E2BIG if size is too big, or an * LSM specific failure. */ int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx, u32 size, u32 flags) { struct lsm_static_call *scall; struct lsm_ctx *lctx; int rc = LSM_RET_DEFAULT(setselfattr); u64 required_len; if (flags) return -EINVAL; if (size < sizeof(*lctx)) return -EINVAL; if (size > PAGE_SIZE) return -E2BIG; lctx = memdup_user(uctx, size); if (IS_ERR(lctx)) return PTR_ERR(lctx); if (size < lctx->len || check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) || lctx->len < required_len) { rc = -EINVAL; goto free_out; } lsm_for_each_hook(scall, setselfattr) if ((scall->hl->lsmid->id) == lctx->id) { rc = scall->hl->hook.setselfattr(attr, lctx, size, flags); break; } free_out: kfree(lctx); return rc; } /** * security_getprocattr() - Read an attribute for a task * @p: the task * @lsmid: LSM identification * @name: attribute name * @value: attribute value * * Read attribute @name for task @p and store it into @value if allowed. * * Return: Returns the length of @value on success, a negative value otherwise. */ int security_getprocattr(struct task_struct *p, int lsmid, const char *name, char **value) { struct lsm_static_call *scall; lsm_for_each_hook(scall, getprocattr) { if (lsmid != 0 && lsmid != scall->hl->lsmid->id) continue; return scall->hl->hook.getprocattr(p, name, value); } return LSM_RET_DEFAULT(getprocattr); } /** * security_setprocattr() - Set an attribute for a task * @lsmid: LSM identification * @name: attribute name * @value: attribute value * @size: attribute value size * * Write (set) the current task's attribute @name to @value, size @size if * allowed. * * Return: Returns bytes written on success, a negative value otherwise. */ int security_setprocattr(int lsmid, const char *name, void *value, size_t size) { struct lsm_static_call *scall; lsm_for_each_hook(scall, setprocattr) { if (lsmid != 0 && lsmid != scall->hl->lsmid->id) continue; return scall->hl->hook.setprocattr(name, value, size); } return LSM_RET_DEFAULT(setprocattr); } /** * security_netlink_send() - Save info and check if netlink sending is allowed * @sk: sending socket * @skb: netlink message * * Save security information for a netlink message so that permission checking * can be performed when the message is processed. The security information * can be saved using the eff_cap field of the netlink_skb_parms structure. * Also may be used to provide fine grained control over message transmission. * * Return: Returns 0 if the information was successfully saved and message is * allowed to be transmitted. */ int security_netlink_send(struct sock *sk, struct sk_buff *skb) { return call_int_hook(netlink_send, sk, skb); } /** * security_ismaclabel() - Check if the named attribute is a MAC label * @name: full extended attribute name * * Check if the extended attribute specified by @name represents a MAC label. * * Return: Returns 1 if name is a MAC attribute otherwise returns 0. */ int security_ismaclabel(const char *name) { return call_int_hook(ismaclabel, name); } EXPORT_SYMBOL(security_ismaclabel); /** * security_secid_to_secctx() - Convert a secid to a secctx * @secid: secid * @secdata: secctx * @seclen: secctx length * * Convert secid to security context. If @secdata is NULL the length of the * result will be returned in @seclen, but no @secdata will be returned. This * does mean that the length could change between calls to check the length and * the next call which actually allocates and returns the @secdata. * * Return: Return 0 on success, error on failure. */ int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) { return call_int_hook(secid_to_secctx, secid, secdata, seclen); } EXPORT_SYMBOL(security_secid_to_secctx); /** * security_secctx_to_secid() - Convert a secctx to a secid * @secdata: secctx * @seclen: length of secctx * @secid: secid * * Convert security context to secid. * * Return: Returns 0 on success, error on failure. */ int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) { *secid = 0; return call_int_hook(secctx_to_secid, secdata, seclen, secid); } EXPORT_SYMBOL(security_secctx_to_secid); /** * security_release_secctx() - Free a secctx buffer * @secdata: secctx * @seclen: length of secctx * * Release the security context. */ void security_release_secctx(char *secdata, u32 seclen) { call_void_hook(release_secctx, secdata, seclen); } EXPORT_SYMBOL(security_release_secctx); /** * security_inode_invalidate_secctx() - Invalidate an inode's security label * @inode: inode * * Notify the security module that it must revalidate the security context of * an inode. */ void security_inode_invalidate_secctx(struct inode *inode) { call_void_hook(inode_invalidate_secctx, inode); } EXPORT_SYMBOL(security_inode_invalidate_secctx); /** * security_inode_notifysecctx() - Notify the LSM of an inode's security label * @inode: inode * @ctx: secctx * @ctxlen: length of secctx * * Notify the security module of what the security context of an inode should * be. Initializes the incore security context managed by the security module * for this inode. Example usage: NFS client invokes this hook to initialize * the security context in its incore inode to the value provided by the server * for the file when the server returned the file's attributes to the client. * Must be called with inode->i_mutex locked. * * Return: Returns 0 on success, error on failure. */ int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) { return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen); } EXPORT_SYMBOL(security_inode_notifysecctx); /** * security_inode_setsecctx() - Change the security label of an inode * @dentry: inode * @ctx: secctx * @ctxlen: length of secctx * * Change the security context of an inode. Updates the incore security * context managed by the security module and invokes the fs code as needed * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the * context. Example usage: NFS server invokes this hook to change the security * context in its incore inode and on the backing filesystem to a value * provided by the client on a SETATTR operation. Must be called with * inode->i_mutex locked. * * Return: Returns 0 on success, error on failure. */ int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) { return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen); } EXPORT_SYMBOL(security_inode_setsecctx); /** * security_inode_getsecctx() - Get the security label of an inode * @inode: inode * @ctx: secctx * @ctxlen: length of secctx * * On success, returns 0 and fills out @ctx and @ctxlen with the security * context for the given @inode. * * Return: Returns 0 on success, error on failure. */ int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) { return call_int_hook(inode_getsecctx, inode, ctx, ctxlen); } EXPORT_SYMBOL(security_inode_getsecctx); #ifdef CONFIG_WATCH_QUEUE /** * security_post_notification() - Check if a watch notification can be posted * @w_cred: credentials of the task that set the watch * @cred: credentials of the task which triggered the watch * @n: the notification * * Check to see if a watch notification can be posted to a particular queue. * * Return: Returns 0 if permission is granted. */ int security_post_notification(const struct cred *w_cred, const struct cred *cred, struct watch_notification *n) { return call_int_hook(post_notification, w_cred, cred, n); } #endif /* CONFIG_WATCH_QUEUE */ #ifdef CONFIG_KEY_NOTIFICATIONS /** * security_watch_key() - Check if a task is allowed to watch for key events * @key: the key to watch * * Check to see if a process is allowed to watch for event notifications from * a key or keyring. * * Return: Returns 0 if permission is granted. */ int security_watch_key(struct key *key) { return call_int_hook(watch_key, key); } #endif /* CONFIG_KEY_NOTIFICATIONS */ #ifdef CONFIG_SECURITY_NETWORK /** * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed * @sock: originating sock * @other: peer sock * @newsk: new sock * * Check permissions before establishing a Unix domain stream connection * between @sock and @other. * * The @unix_stream_connect and @unix_may_send hooks were necessary because * Linux provides an alternative to the conventional file name space for Unix * domain sockets. Whereas binding and connecting to sockets in the file name * space is mediated by the typical file permissions (and caught by the mknod * and permission hooks in inode_security_ops), binding and connecting to * sockets in the abstract name space is completely unmediated. Sufficient * control of Unix domain sockets in the abstract name space isn't possible * using only the socket layer hooks, since we need to know the actual target * socket, which is not looked up until we are inside the af_unix code. * * Return: Returns 0 if permission is granted. */ int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) { return call_int_hook(unix_stream_connect, sock, other, newsk); } EXPORT_SYMBOL(security_unix_stream_connect); /** * security_unix_may_send() - Check if AF_UNIX socket can send datagrams * @sock: originating sock * @other: peer sock * * Check permissions before connecting or sending datagrams from @sock to * @other. * * The @unix_stream_connect and @unix_may_send hooks were necessary because * Linux provides an alternative to the conventional file name space for Unix * domain sockets. Whereas binding and connecting to sockets in the file name * space is mediated by the typical file permissions (and caught by the mknod * and permission hooks in inode_security_ops), binding and connecting to * sockets in the abstract name space is completely unmediated. Sufficient * control of Unix domain sockets in the abstract name space isn't possible * using only the socket layer hooks, since we need to know the actual target * socket, which is not looked up until we are inside the af_unix code. * * Return: Returns 0 if permission is granted. */ int security_unix_may_send(struct socket *sock, struct socket *other) { return call_int_hook(unix_may_send, sock, other); } EXPORT_SYMBOL(security_unix_may_send); /** * security_socket_create() - Check if creating a new socket is allowed * @family: protocol family * @type: communications type * @protocol: requested protocol * @kern: set to 1 if a kernel socket is requested * * Check permissions prior to creating a new socket. * * Return: Returns 0 if permission is granted. */ int security_socket_create(int family, int type, int protocol, int kern) { return call_int_hook(socket_create, family, type, protocol, kern); } /** * security_socket_post_create() - Initialize a newly created socket * @sock: socket * @family: protocol family * @type: communications type * @protocol: requested protocol * @kern: set to 1 if a kernel socket is requested * * This hook allows a module to update or allocate a per-socket security * structure. Note that the security field was not added directly to the socket * structure, but rather, the socket security information is stored in the * associated inode. Typically, the inode alloc_security hook will allocate * and attach security information to SOCK_INODE(sock)->i_security. This hook * may be used to update the SOCK_INODE(sock)->i_security field with additional * information that wasn't available when the inode was allocated. * * Return: Returns 0 if permission is granted. */ int security_socket_post_create(struct socket *sock, int family, int type, int protocol, int kern) { return call_int_hook(socket_post_create, sock, family, type, protocol, kern); } /** * security_socket_socketpair() - Check if creating a socketpair is allowed * @socka: first socket * @sockb: second socket * * Check permissions before creating a fresh pair of sockets. * * Return: Returns 0 if permission is granted and the connection was * established. */ int security_socket_socketpair(struct socket *socka, struct socket *sockb) { return call_int_hook(socket_socketpair, socka, sockb); } EXPORT_SYMBOL(security_socket_socketpair); /** * security_socket_bind() - Check if a socket bind operation is allowed * @sock: socket * @address: requested bind address * @addrlen: length of address * * Check permission before socket protocol layer bind operation is performed * and the socket @sock is bound to the address specified in the @address * parameter. * * Return: Returns 0 if permission is granted. */ int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) { return call_int_hook(socket_bind, sock, address, addrlen); } /** * security_socket_connect() - Check if a socket connect operation is allowed * @sock: socket * @address: address of remote connection point * @addrlen: length of address * * Check permission before socket protocol layer connect operation attempts to * connect socket @sock to a remote address, @address. * * Return: Returns 0 if permission is granted. */ int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) { return call_int_hook(socket_connect, sock, address, addrlen); } /** * security_socket_listen() - Check if a socket is allowed to listen * @sock: socket * @backlog: connection queue size * * Check permission before socket protocol layer listen operation. * * Return: Returns 0 if permission is granted. */ int security_socket_listen(struct socket *sock, int backlog) { return call_int_hook(socket_listen, sock, backlog); } /** * security_socket_accept() - Check if a socket is allowed to accept connections * @sock: listening socket * @newsock: newly creation connection socket * * Check permission before accepting a new connection. Note that the new * socket, @newsock, has been created and some information copied to it, but * the accept operation has not actually been performed. * * Return: Returns 0 if permission is granted. */ int security_socket_accept(struct socket *sock, struct socket *newsock) { return call_int_hook(socket_accept, sock, newsock); } /** * security_socket_sendmsg() - Check if sending a message is allowed * @sock: sending socket * @msg: message to send * @size: size of message * * Check permission before transmitting a message to another socket. * * Return: Returns 0 if permission is granted. */ int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) { return call_int_hook(socket_sendmsg, sock, msg, size); } /** * security_socket_recvmsg() - Check if receiving a message is allowed * @sock: receiving socket * @msg: message to receive * @size: size of message * @flags: operational flags * * Check permission before receiving a message from a socket. * * Return: Returns 0 if permission is granted. */ int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, int size, int flags) { return call_int_hook(socket_recvmsg, sock, msg, size, flags); } /** * security_socket_getsockname() - Check if reading the socket addr is allowed * @sock: socket * * Check permission before reading the local address (name) of the socket * object. * * Return: Returns 0 if permission is granted. */ int security_socket_getsockname(struct socket *sock) { return call_int_hook(socket_getsockname, sock); } /** * security_socket_getpeername() - Check if reading the peer's addr is allowed * @sock: socket * * Check permission before the remote address (name) of a socket object. * * Return: Returns 0 if permission is granted. */ int security_socket_getpeername(struct socket *sock) { return call_int_hook(socket_getpeername, sock); } /** * security_socket_getsockopt() - Check if reading a socket option is allowed * @sock: socket * @level: option's protocol level * @optname: option name * * Check permissions before retrieving the options associated with socket * @sock. * * Return: Returns 0 if permission is granted. */ int security_socket_getsockopt(struct socket *sock, int level, int optname) { return call_int_hook(socket_getsockopt, sock, level, optname); } /** * security_socket_setsockopt() - Check if setting a socket option is allowed * @sock: socket * @level: option's protocol level * @optname: option name * * Check permissions before setting the options associated with socket @sock. * * Return: Returns 0 if permission is granted. */ int security_socket_setsockopt(struct socket *sock, int level, int optname) { return call_int_hook(socket_setsockopt, sock, level, optname); } /** * security_socket_shutdown() - Checks if shutting down the socket is allowed * @sock: socket * @how: flag indicating how sends and receives are handled * * Checks permission before all or part of a connection on the socket @sock is * shut down. * * Return: Returns 0 if permission is granted. */ int security_socket_shutdown(struct socket *sock, int how) { return call_int_hook(socket_shutdown, sock, how); } /** * security_sock_rcv_skb() - Check if an incoming network packet is allowed * @sk: destination sock * @skb: incoming packet * * Check permissions on incoming network packets. This hook is distinct from * Netfilter's IP input hooks since it is the first time that the incoming * sk_buff @skb has been associated with a particular socket, @sk. Must not * sleep inside this hook because some callers hold spinlocks. * * Return: Returns 0 if permission is granted. */ int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) { return call_int_hook(socket_sock_rcv_skb, sk, skb); } EXPORT_SYMBOL(security_sock_rcv_skb); /** * security_socket_getpeersec_stream() - Get the remote peer label * @sock: socket * @optval: destination buffer * @optlen: size of peer label copied into the buffer * @len: maximum size of the destination buffer * * This hook allows the security module to provide peer socket security state * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC. * For tcp sockets this can be meaningful if the socket is associated with an * ipsec SA. * * Return: Returns 0 if all is well, otherwise, typical getsockopt return * values. */ int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval, sockptr_t optlen, unsigned int len) { return call_int_hook(socket_getpeersec_stream, sock, optval, optlen, len); } /** * security_socket_getpeersec_dgram() - Get the remote peer label * @sock: socket * @skb: datagram packet * @secid: remote peer label secid * * This hook allows the security module to provide peer socket security state * for udp sockets on a per-packet basis to userspace via getsockopt * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC * option via getsockopt. It can then retrieve the security state returned by * this hook for a packet via the SCM_SECURITY ancillary message type. * * Return: Returns 0 on success, error on failure. */ int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) { return call_int_hook(socket_getpeersec_dgram, sock, skb, secid); } EXPORT_SYMBOL(security_socket_getpeersec_dgram); /** * lsm_sock_alloc - allocate a composite sock blob * @sock: the sock that needs a blob * @gfp: allocation mode * * Allocate the sock blob for all the modules * * Returns 0, or -ENOMEM if memory can't be allocated. */ static int lsm_sock_alloc(struct sock *sock, gfp_t gfp) { return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp); } /** * security_sk_alloc() - Allocate and initialize a sock's LSM blob * @sk: sock * @family: protocol family * @priority: gfp flags * * Allocate and attach a security structure to the sk->sk_security field, which * is used to copy security attributes between local stream sockets. * * Return: Returns 0 on success, error on failure. */ int security_sk_alloc(struct sock *sk, int family, gfp_t priority) { int rc = lsm_sock_alloc(sk, priority); if (unlikely(rc)) return rc; rc = call_int_hook(sk_alloc_security, sk, family, priority); if (unlikely(rc)) security_sk_free(sk); return rc; } /** * security_sk_free() - Free the sock's LSM blob * @sk: sock * * Deallocate security structure. */ void security_sk_free(struct sock *sk) { call_void_hook(sk_free_security, sk); kfree(sk->sk_security); sk->sk_security = NULL; } /** * security_sk_clone() - Clone a sock's LSM state * @sk: original sock * @newsk: target sock * * Clone/copy security structure. */ void security_sk_clone(const struct sock *sk, struct sock *newsk) { call_void_hook(sk_clone_security, sk, newsk); } EXPORT_SYMBOL(security_sk_clone); /** * security_sk_classify_flow() - Set a flow's secid based on socket * @sk: original socket * @flic: target flow * * Set the target flow's secid to socket's secid. */ void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic) { call_void_hook(sk_getsecid, sk, &flic->flowic_secid); } EXPORT_SYMBOL(security_sk_classify_flow); /** * security_req_classify_flow() - Set a flow's secid based on request_sock * @req: request_sock * @flic: target flow * * Sets @flic's secid to @req's secid. */ void security_req_classify_flow(const struct request_sock *req, struct flowi_common *flic) { call_void_hook(req_classify_flow, req, flic); } EXPORT_SYMBOL(security_req_classify_flow); /** * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket * @sk: sock being grafted * @parent: target parent socket * * Sets @parent's inode secid to @sk's secid and update @sk with any necessary * LSM state from @parent. */ void security_sock_graft(struct sock *sk, struct socket *parent) { call_void_hook(sock_graft, sk, parent); } EXPORT_SYMBOL(security_sock_graft); /** * security_inet_conn_request() - Set request_sock state using incoming connect * @sk: parent listening sock * @skb: incoming connection * @req: new request_sock * * Initialize the @req LSM state based on @sk and the incoming connect in @skb. * * Return: Returns 0 if permission is granted. */ int security_inet_conn_request(const struct sock *sk, struct sk_buff *skb, struct request_sock *req) { return call_int_hook(inet_conn_request, sk, skb, req); } EXPORT_SYMBOL(security_inet_conn_request); /** * security_inet_csk_clone() - Set new sock LSM state based on request_sock * @newsk: new sock * @req: connection request_sock * * Set that LSM state of @sock using the LSM state from @req. */ void security_inet_csk_clone(struct sock *newsk, const struct request_sock *req) { call_void_hook(inet_csk_clone, newsk, req); } /** * security_inet_conn_established() - Update sock's LSM state with connection * @sk: sock * @skb: connection packet * * Update @sock's LSM state to represent a new connection from @skb. */ void security_inet_conn_established(struct sock *sk, struct sk_buff *skb) { call_void_hook(inet_conn_established, sk, skb); } EXPORT_SYMBOL(security_inet_conn_established); /** * security_secmark_relabel_packet() - Check if setting a secmark is allowed * @secid: new secmark value * * Check if the process should be allowed to relabel packets to @secid. * * Return: Returns 0 if permission is granted. */ int security_secmark_relabel_packet(u32 secid) { return call_int_hook(secmark_relabel_packet, secid); } EXPORT_SYMBOL(security_secmark_relabel_packet); /** * security_secmark_refcount_inc() - Increment the secmark labeling rule count * * Tells the LSM to increment the number of secmark labeling rules loaded. */ void security_secmark_refcount_inc(void) { call_void_hook(secmark_refcount_inc); } EXPORT_SYMBOL(security_secmark_refcount_inc); /** * security_secmark_refcount_dec() - Decrement the secmark labeling rule count * * Tells the LSM to decrement the number of secmark labeling rules loaded. */ void security_secmark_refcount_dec(void) { call_void_hook(secmark_refcount_dec); } EXPORT_SYMBOL(security_secmark_refcount_dec); /** * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device * @security: pointer to the LSM blob * * This hook allows a module to allocate a security structure for a TUN device, * returning the pointer in @security. * * Return: Returns a zero on success, negative values on failure. */ int security_tun_dev_alloc_security(void **security) { int rc; rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL); if (rc) return rc; rc = call_int_hook(tun_dev_alloc_security, *security); if (rc) { kfree(*security); *security = NULL; } return rc; } EXPORT_SYMBOL(security_tun_dev_alloc_security); /** * security_tun_dev_free_security() - Free a TUN device LSM blob * @security: LSM blob * * This hook allows a module to free the security structure for a TUN device. */ void security_tun_dev_free_security(void *security) { kfree(security); } EXPORT_SYMBOL(security_tun_dev_free_security); /** * security_tun_dev_create() - Check if creating a TUN device is allowed * * Check permissions prior to creating a new TUN device. * * Return: Returns 0 if permission is granted. */ int security_tun_dev_create(void) { return call_int_hook(tun_dev_create); } EXPORT_SYMBOL(security_tun_dev_create); /** * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed * @security: TUN device LSM blob * * Check permissions prior to attaching to a TUN device queue. * * Return: Returns 0 if permission is granted. */ int security_tun_dev_attach_queue(void *security) { return call_int_hook(tun_dev_attach_queue, security); } EXPORT_SYMBOL(security_tun_dev_attach_queue); /** * security_tun_dev_attach() - Update TUN device LSM state on attach * @sk: associated sock * @security: TUN device LSM blob * * This hook can be used by the module to update any security state associated * with the TUN device's sock structure. * * Return: Returns 0 if permission is granted. */ int security_tun_dev_attach(struct sock *sk, void *security) { return call_int_hook(tun_dev_attach, sk, security); } EXPORT_SYMBOL(security_tun_dev_attach); /** * security_tun_dev_open() - Update TUN device LSM state on open * @security: TUN device LSM blob * * This hook can be used by the module to update any security state associated * with the TUN device's security structure. * * Return: Returns 0 if permission is granted. */ int security_tun_dev_open(void *security) { return call_int_hook(tun_dev_open, security); } EXPORT_SYMBOL(security_tun_dev_open); /** * security_sctp_assoc_request() - Update the LSM on a SCTP association req * @asoc: SCTP association * @skb: packet requesting the association * * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM. * * Return: Returns 0 on success, error on failure. */ int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb) { return call_int_hook(sctp_assoc_request, asoc, skb); } EXPORT_SYMBOL(security_sctp_assoc_request); /** * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option * @sk: socket * @optname: SCTP option to validate * @address: list of IP addresses to validate * @addrlen: length of the address list * * Validiate permissions required for each address associated with sock @sk. * Depending on @optname, the addresses will be treated as either a connect or * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6). * * Return: Returns 0 on success, error on failure. */ int security_sctp_bind_connect(struct sock *sk, int optname, struct sockaddr *address, int addrlen) { return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen); } EXPORT_SYMBOL(security_sctp_bind_connect); /** * security_sctp_sk_clone() - Clone a SCTP sock's LSM state * @asoc: SCTP association * @sk: original sock * @newsk: target sock * * Called whenever a new socket is created by accept(2) (i.e. a TCP style * socket) or when a socket is 'peeled off' e.g userspace calls * sctp_peeloff(3). */ void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, struct sock *newsk) { call_void_hook(sctp_sk_clone, asoc, sk, newsk); } EXPORT_SYMBOL(security_sctp_sk_clone); /** * security_sctp_assoc_established() - Update LSM state when assoc established * @asoc: SCTP association * @skb: packet establishing the association * * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the * security module. * * Return: Returns 0 if permission is granted. */ int security_sctp_assoc_established(struct sctp_association *asoc, struct sk_buff *skb) { return call_int_hook(sctp_assoc_established, asoc, skb); } EXPORT_SYMBOL(security_sctp_assoc_established); /** * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket * @sk: the owning MPTCP socket * @ssk: the new subflow * * Update the labeling for the given MPTCP subflow, to match the one of the * owning MPTCP socket. This hook has to be called after the socket creation and * initialization via the security_socket_create() and * security_socket_post_create() LSM hooks. * * Return: Returns 0 on success or a negative error code on failure. */ int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk) { return call_int_hook(mptcp_add_subflow, sk, ssk); } #endif /* CONFIG_SECURITY_NETWORK */ #ifdef CONFIG_SECURITY_INFINIBAND /** * security_ib_pkey_access() - Check if access to an IB pkey is allowed * @sec: LSM blob * @subnet_prefix: subnet prefix of the port * @pkey: IB pkey * * Check permission to access a pkey when modifying a QP. * * Return: Returns 0 if permission is granted. */ int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) { return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey); } EXPORT_SYMBOL(security_ib_pkey_access); /** * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed * @sec: LSM blob * @dev_name: IB device name * @port_num: port number * * Check permissions to send and receive SMPs on a end port. * * Return: Returns 0 if permission is granted. */ int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) { return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num); } EXPORT_SYMBOL(security_ib_endport_manage_subnet); /** * security_ib_alloc_security() - Allocate an Infiniband LSM blob * @sec: LSM blob * * Allocate a security structure for Infiniband objects. * * Return: Returns 0 on success, non-zero on failure. */ int security_ib_alloc_security(void **sec) { int rc; rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL); if (rc) return rc; rc = call_int_hook(ib_alloc_security, *sec); if (rc) { kfree(*sec); *sec = NULL; } return rc; } EXPORT_SYMBOL(security_ib_alloc_security); /** * security_ib_free_security() - Free an Infiniband LSM blob * @sec: LSM blob * * Deallocate an Infiniband security structure. */ void security_ib_free_security(void *sec) { kfree(sec); } EXPORT_SYMBOL(security_ib_free_security); #endif /* CONFIG_SECURITY_INFINIBAND */ #ifdef CONFIG_SECURITY_NETWORK_XFRM /** * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob * @ctxp: xfrm security context being added to the SPD * @sec_ctx: security label provided by userspace * @gfp: gfp flags * * Allocate a security structure to the xp->security field; the security field * is initialized to NULL when the xfrm_policy is allocated. * * Return: Return 0 if operation was successful. */ int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx, gfp_t gfp) { return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp); } EXPORT_SYMBOL(security_xfrm_policy_alloc); /** * security_xfrm_policy_clone() - Clone xfrm policy LSM state * @old_ctx: xfrm security context * @new_ctxp: target xfrm security context * * Allocate a security structure in new_ctxp that contains the information from * the old_ctx structure. * * Return: Return 0 if operation was successful. */ int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, struct xfrm_sec_ctx **new_ctxp) { return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp); } /** * security_xfrm_policy_free() - Free a xfrm security context * @ctx: xfrm security context * * Free LSM resources associated with @ctx. */ void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) { call_void_hook(xfrm_policy_free_security, ctx); } EXPORT_SYMBOL(security_xfrm_policy_free); /** * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed * @ctx: xfrm security context * * Authorize deletion of a SPD entry. * * Return: Returns 0 if permission is granted. */ int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) { return call_int_hook(xfrm_policy_delete_security, ctx); } /** * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob * @x: xfrm state being added to the SAD * @sec_ctx: security label provided by userspace * * Allocate a security structure to the @x->security field; the security field * is initialized to NULL when the xfrm_state is allocated. Set the context to * correspond to @sec_ctx. * * Return: Return 0 if operation was successful. */ int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) { return call_int_hook(xfrm_state_alloc, x, sec_ctx); } EXPORT_SYMBOL(security_xfrm_state_alloc); /** * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob * @x: xfrm state being added to the SAD * @polsec: associated policy's security context * @secid: secid from the flow * * Allocate a security structure to the x->security field; the security field * is initialized to NULL when the xfrm_state is allocated. Set the context to * correspond to secid. * * Return: Returns 0 if operation was successful. */ int security_xfrm_state_alloc_acquire(struct xfrm_state *x, struct xfrm_sec_ctx *polsec, u32 secid) { return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid); } /** * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed * @x: xfrm state * * Authorize deletion of x->security. * * Return: Returns 0 if permission is granted. */ int security_xfrm_state_delete(struct xfrm_state *x) { return call_int_hook(xfrm_state_delete_security, x); } EXPORT_SYMBOL(security_xfrm_state_delete); /** * security_xfrm_state_free() - Free a xfrm state * @x: xfrm state * * Deallocate x->security. */ void security_xfrm_state_free(struct xfrm_state *x) { call_void_hook(xfrm_state_free_security, x); } /** * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed * @ctx: target xfrm security context * @fl_secid: flow secid used to authorize access * * Check permission when a flow selects a xfrm_policy for processing XFRMs on a * packet. The hook is called when selecting either a per-socket policy or a * generic xfrm policy. * * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on * other errors. */ int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) { return call_int_hook(xfrm_policy_lookup, ctx, fl_secid); } /** * security_xfrm_state_pol_flow_match() - Check for a xfrm match * @x: xfrm state to match * @xp: xfrm policy to check for a match * @flic: flow to check for a match. * * Check @xp and @flic for a match with @x. * * Return: Returns 1 if there is a match. */ int security_xfrm_state_pol_flow_match(struct xfrm_state *x, struct xfrm_policy *xp, const struct flowi_common *flic) { struct lsm_static_call *scall; int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); /* * Since this function is expected to return 0 or 1, the judgment * becomes difficult if multiple LSMs supply this call. Fortunately, * we can use the first LSM's judgment because currently only SELinux * supplies this call. * * For speed optimization, we explicitly break the loop rather than * using the macro */ lsm_for_each_hook(scall, xfrm_state_pol_flow_match) { rc = scall->hl->hook.xfrm_state_pol_flow_match(x, xp, flic); break; } return rc; } /** * security_xfrm_decode_session() - Determine the xfrm secid for a packet * @skb: xfrm packet * @secid: secid * * Decode the packet in @skb and return the security label in @secid. * * Return: Return 0 if all xfrms used have the same secid. */ int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) { return call_int_hook(xfrm_decode_session, skb, secid, 1); } void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) { int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid, 0); BUG_ON(rc); } EXPORT_SYMBOL(security_skb_classify_flow); #endif /* CONFIG_SECURITY_NETWORK_XFRM */ #ifdef CONFIG_KEYS /** * security_key_alloc() - Allocate and initialize a kernel key LSM blob * @key: key * @cred: credentials * @flags: allocation flags * * Permit allocation of a key and assign security data. Note that key does not * have a serial number assigned at this point. * * Return: Return 0 if permission is granted, -ve error otherwise. */ int security_key_alloc(struct key *key, const struct cred *cred, unsigned long flags) { int rc = lsm_key_alloc(key); if (unlikely(rc)) return rc; rc = call_int_hook(key_alloc, key, cred, flags); if (unlikely(rc)) security_key_free(key); return rc; } /** * security_key_free() - Free a kernel key LSM blob * @key: key * * Notification of destruction; free security data. */ void security_key_free(struct key *key) { kfree(key->security); key->security = NULL; } /** * security_key_permission() - Check if a kernel key operation is allowed * @key_ref: key reference * @cred: credentials of actor requesting access * @need_perm: requested permissions * * See whether a specific operational right is granted to a process on a key. * * Return: Return 0 if permission is granted, -ve error otherwise. */ int security_key_permission(key_ref_t key_ref, const struct cred *cred, enum key_need_perm need_perm) { return call_int_hook(key_permission, key_ref, cred, need_perm); } /** * security_key_getsecurity() - Get the key's security label * @key: key * @buffer: security label buffer * * Get a textual representation of the security context attached to a key for * the purposes of honouring KEYCTL_GETSECURITY. This function allocates the * storage for the NUL-terminated string and the caller should free it. * * Return: Returns the length of @buffer (including terminating NUL) or -ve if * an error occurs. May also return 0 (and a NULL buffer pointer) if * there is no security label assigned to the key. */ int security_key_getsecurity(struct key *key, char **buffer) { *buffer = NULL; return call_int_hook(key_getsecurity, key, buffer); } /** * security_key_post_create_or_update() - Notification of key create or update * @keyring: keyring to which the key is linked to * @key: created or updated key * @payload: data used to instantiate or update the key * @payload_len: length of payload * @flags: key flags * @create: flag indicating whether the key was created or updated * * Notify the caller of a key creation or update. */ void security_key_post_create_or_update(struct key *keyring, struct key *key, const void *payload, size_t payload_len, unsigned long flags, bool create) { call_void_hook(key_post_create_or_update, keyring, key, payload, payload_len, flags, create); } #endif /* CONFIG_KEYS */ #ifdef CONFIG_AUDIT /** * security_audit_rule_init() - Allocate and init an LSM audit rule struct * @field: audit action * @op: rule operator * @rulestr: rule context * @lsmrule: receive buffer for audit rule struct * @gfp: GFP flag used for kmalloc * * Allocate and initialize an LSM audit rule structure. * * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of * an invalid rule. */ int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule, gfp_t gfp) { return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp); } /** * security_audit_rule_known() - Check if an audit rule contains LSM fields * @krule: audit rule * * Specifies whether given @krule contains any fields related to the current * LSM. * * Return: Returns 1 in case of relation found, 0 otherwise. */ int security_audit_rule_known(struct audit_krule *krule) { return call_int_hook(audit_rule_known, krule); } /** * security_audit_rule_free() - Free an LSM audit rule struct * @lsmrule: audit rule struct * * Deallocate the LSM audit rule structure previously allocated by * audit_rule_init(). */ void security_audit_rule_free(void *lsmrule) { call_void_hook(audit_rule_free, lsmrule); } /** * security_audit_rule_match() - Check if a label matches an audit rule * @secid: security label * @field: LSM audit field * @op: matching operator * @lsmrule: audit rule * * Determine if given @secid matches a rule previously approved by * security_audit_rule_known(). * * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on * failure. */ int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) { return call_int_hook(audit_rule_match, secid, field, op, lsmrule); } #endif /* CONFIG_AUDIT */ #ifdef CONFIG_BPF_SYSCALL /** * security_bpf() - Check if the bpf syscall operation is allowed * @cmd: command * @attr: bpf attribute * @size: size * * Do a initial check for all bpf syscalls after the attribute is copied into * the kernel. The actual security module can implement their own rules to * check the specific cmd they need. * * Return: Returns 0 if permission is granted. */ int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) { return call_int_hook(bpf, cmd, attr, size); } /** * security_bpf_map() - Check if access to a bpf map is allowed * @map: bpf map * @fmode: mode * * Do a check when the kernel generates and returns a file descriptor for eBPF * maps. * * Return: Returns 0 if permission is granted. */ int security_bpf_map(struct bpf_map *map, fmode_t fmode) { return call_int_hook(bpf_map, map, fmode); } /** * security_bpf_prog() - Check if access to a bpf program is allowed * @prog: bpf program * * Do a check when the kernel generates and returns a file descriptor for eBPF * programs. * * Return: Returns 0 if permission is granted. */ int security_bpf_prog(struct bpf_prog *prog) { return call_int_hook(bpf_prog, prog); } /** * security_bpf_map_create() - Check if BPF map creation is allowed * @map: BPF map object * @attr: BPF syscall attributes used to create BPF map * @token: BPF token used to grant user access * * Do a check when the kernel creates a new BPF map. This is also the * point where LSM blob is allocated for LSMs that need them. * * Return: Returns 0 on success, error on failure. */ int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr, struct bpf_token *token) { return call_int_hook(bpf_map_create, map, attr, token); } /** * security_bpf_prog_load() - Check if loading of BPF program is allowed * @prog: BPF program object * @attr: BPF syscall attributes used to create BPF program * @token: BPF token used to grant user access to BPF subsystem * * Perform an access control check when the kernel loads a BPF program and * allocates associated BPF program object. This hook is also responsible for * allocating any required LSM state for the BPF program. * * Return: Returns 0 on success, error on failure. */ int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr, struct bpf_token *token) { return call_int_hook(bpf_prog_load, prog, attr, token); } /** * security_bpf_token_create() - Check if creating of BPF token is allowed * @token: BPF token object * @attr: BPF syscall attributes used to create BPF token * @path: path pointing to BPF FS mount point from which BPF token is created * * Do a check when the kernel instantiates a new BPF token object from BPF FS * instance. This is also the point where LSM blob can be allocated for LSMs. * * Return: Returns 0 on success, error on failure. */ int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr, const struct path *path) { return call_int_hook(bpf_token_create, token, attr, path); } /** * security_bpf_token_cmd() - Check if BPF token is allowed to delegate * requested BPF syscall command * @token: BPF token object * @cmd: BPF syscall command requested to be delegated by BPF token * * Do a check when the kernel decides whether provided BPF token should allow * delegation of requested BPF syscall command. * * Return: Returns 0 on success, error on failure. */ int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd) { return call_int_hook(bpf_token_cmd, token, cmd); } /** * security_bpf_token_capable() - Check if BPF token is allowed to delegate * requested BPF-related capability * @token: BPF token object * @cap: capabilities requested to be delegated by BPF token * * Do a check when the kernel decides whether provided BPF token should allow * delegation of requested BPF-related capabilities. * * Return: Returns 0 on success, error on failure. */ int security_bpf_token_capable(const struct bpf_token *token, int cap) { return call_int_hook(bpf_token_capable, token, cap); } /** * security_bpf_map_free() - Free a bpf map's LSM blob * @map: bpf map * * Clean up the security information stored inside bpf map. */ void security_bpf_map_free(struct bpf_map *map) { call_void_hook(bpf_map_free, map); } /** * security_bpf_prog_free() - Free a BPF program's LSM blob * @prog: BPF program struct * * Clean up the security information stored inside BPF program. */ void security_bpf_prog_free(struct bpf_prog *prog) { call_void_hook(bpf_prog_free, prog); } /** * security_bpf_token_free() - Free a BPF token's LSM blob * @token: BPF token struct * * Clean up the security information stored inside BPF token. */ void security_bpf_token_free(struct bpf_token *token) { call_void_hook(bpf_token_free, token); } #endif /* CONFIG_BPF_SYSCALL */ /** * security_locked_down() - Check if a kernel feature is allowed * @what: requested kernel feature * * Determine whether a kernel feature that potentially enables arbitrary code * execution in kernel space should be permitted. * * Return: Returns 0 if permission is granted. */ int security_locked_down(enum lockdown_reason what) { return call_int_hook(locked_down, what); } EXPORT_SYMBOL(security_locked_down); /** * security_bdev_alloc() - Allocate a block device LSM blob * @bdev: block device * * Allocate and attach a security structure to @bdev->bd_security. The * security field is initialized to NULL when the bdev structure is * allocated. * * Return: Return 0 if operation was successful. */ int security_bdev_alloc(struct block_device *bdev) { int rc = 0; rc = lsm_bdev_alloc(bdev); if (unlikely(rc)) return rc; rc = call_int_hook(bdev_alloc_security, bdev); if (unlikely(rc)) security_bdev_free(bdev); return rc; } EXPORT_SYMBOL(security_bdev_alloc); /** * security_bdev_free() - Free a block device's LSM blob * @bdev: block device * * Deallocate the bdev security structure and set @bdev->bd_security to NULL. */ void security_bdev_free(struct block_device *bdev) { if (!bdev->bd_security) return; call_void_hook(bdev_free_security, bdev); kfree(bdev->bd_security); bdev->bd_security = NULL; } EXPORT_SYMBOL(security_bdev_free); /** * security_bdev_setintegrity() - Set the device's integrity data * @bdev: block device * @type: type of integrity, e.g. hash digest, signature, etc * @value: the integrity value * @size: size of the integrity value * * Register a verified integrity measurement of a bdev with LSMs. * LSMs should free the previously saved data if @value is NULL. * Please note that the new hook should be invoked every time the security * information is updated to keep these data current. For example, in dm-verity, * if the mapping table is reloaded and configured to use a different dm-verity * target with a new roothash and signing information, the previously stored * data in the LSM blob will become obsolete. It is crucial to re-invoke the * hook to refresh these data and ensure they are up to date. This necessity * arises from the design of device-mapper, where a device-mapper device is * first created, and then targets are subsequently loaded into it. These * targets can be modified multiple times during the device's lifetime. * Therefore, while the LSM blob is allocated during the creation of the block * device, its actual contents are not initialized at this stage and can change * substantially over time. This includes alterations from data that the LSMs * 'trusts' to those they do not, making it essential to handle these changes * correctly. Failure to address this dynamic aspect could potentially allow * for bypassing LSM checks. * * Return: Returns 0 on success, negative values on failure. */ int security_bdev_setintegrity(struct block_device *bdev, enum lsm_integrity_type type, const void *value, size_t size) { return call_int_hook(bdev_setintegrity, bdev, type, value, size); } EXPORT_SYMBOL(security_bdev_setintegrity); #ifdef CONFIG_PERF_EVENTS /** * security_perf_event_open() - Check if a perf event open is allowed * @attr: perf event attribute * @type: type of event * * Check whether the @type of perf_event_open syscall is allowed. * * Return: Returns 0 if permission is granted. */ int security_perf_event_open(struct perf_event_attr *attr, int type) { return call_int_hook(perf_event_open, attr, type); } /** * security_perf_event_alloc() - Allocate a perf event LSM blob * @event: perf event * * Allocate and save perf_event security info. * * Return: Returns 0 on success, error on failure. */ int security_perf_event_alloc(struct perf_event *event) { int rc; rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event, GFP_KERNEL); if (rc) return rc; rc = call_int_hook(perf_event_alloc, event); if (rc) { kfree(event->security); event->security = NULL; } return rc; } /** * security_perf_event_free() - Free a perf event LSM blob * @event: perf event * * Release (free) perf_event security info. */ void security_perf_event_free(struct perf_event *event) { kfree(event->security); event->security = NULL; } /** * security_perf_event_read() - Check if reading a perf event label is allowed * @event: perf event * * Read perf_event security info if allowed. * * Return: Returns 0 if permission is granted. */ int security_perf_event_read(struct perf_event *event) { return call_int_hook(perf_event_read, event); } /** * security_perf_event_write() - Check if writing a perf event label is allowed * @event: perf event * * Write perf_event security info if allowed. * * Return: Returns 0 if permission is granted. */ int security_perf_event_write(struct perf_event *event) { return call_int_hook(perf_event_write, event); } #endif /* CONFIG_PERF_EVENTS */ #ifdef CONFIG_IO_URING /** * security_uring_override_creds() - Check if overriding creds is allowed * @new: new credentials * * Check if the current task, executing an io_uring operation, is allowed to * override it's credentials with @new. * * Return: Returns 0 if permission is granted. */ int security_uring_override_creds(const struct cred *new) { return call_int_hook(uring_override_creds, new); } /** * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed * * Check whether the current task is allowed to spawn a io_uring polling thread * (IORING_SETUP_SQPOLL). * * Return: Returns 0 if permission is granted. */ int security_uring_sqpoll(void) { return call_int_hook(uring_sqpoll); } /** * security_uring_cmd() - Check if a io_uring passthrough command is allowed * @ioucmd: command * * Check whether the file_operations uring_cmd is allowed to run. * * Return: Returns 0 if permission is granted. */ int security_uring_cmd(struct io_uring_cmd *ioucmd) { return call_int_hook(uring_cmd, ioucmd); } #endif /* CONFIG_IO_URING */ /** * security_initramfs_populated() - Notify LSMs that initramfs has been loaded * * Tells the LSMs the initramfs has been unpacked into the rootfs. */ void security_initramfs_populated(void) { call_void_hook(initramfs_populated); }
2 2 1 1 1 2 1 1 2 2 2 2 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 // SPDX-License-Identifier: GPL-2.0-or-later /* * The AEGIS-128 Authenticated-Encryption Algorithm * Glue for AES-NI + SSE2 implementation * * Copyright (c) 2017-2018 Ondrej Mosnacek <omosnacek@gmail.com> * Copyright (C) 2017-2018 Red Hat, Inc. All rights reserved. */ #include <crypto/internal/aead.h> #include <crypto/internal/simd.h> #include <crypto/internal/skcipher.h> #include <crypto/scatterwalk.h> #include <linux/module.h> #include <asm/fpu/api.h> #include <asm/cpu_device_id.h> #define AEGIS128_BLOCK_ALIGN 16 #define AEGIS128_BLOCK_SIZE 16 #define AEGIS128_NONCE_SIZE 16 #define AEGIS128_STATE_BLOCKS 5 #define AEGIS128_KEY_SIZE 16 #define AEGIS128_MIN_AUTH_SIZE 8 #define AEGIS128_MAX_AUTH_SIZE 16 asmlinkage void crypto_aegis128_aesni_init(void *state, void *key, void *iv); asmlinkage void crypto_aegis128_aesni_ad( void *state, unsigned int length, const void *data); asmlinkage void crypto_aegis128_aesni_enc( void *state, unsigned int length, const void *src, void *dst); asmlinkage void crypto_aegis128_aesni_dec( void *state, unsigned int length, const void *src, void *dst); asmlinkage void crypto_aegis128_aesni_enc_tail( void *state, unsigned int length, const void *src, void *dst); asmlinkage void crypto_aegis128_aesni_dec_tail( void *state, unsigned int length, const void *src, void *dst); asmlinkage void crypto_aegis128_aesni_final( void *state, void *tag_xor, unsigned int cryptlen, unsigned int assoclen); struct aegis_block { u8 bytes[AEGIS128_BLOCK_SIZE] __aligned(AEGIS128_BLOCK_ALIGN); }; struct aegis_state { struct aegis_block blocks[AEGIS128_STATE_BLOCKS]; }; struct aegis_ctx { struct aegis_block key; }; struct aegis_crypt_ops { int (*skcipher_walk_init)(struct skcipher_walk *walk, struct aead_request *req, bool atomic); void (*crypt_blocks)(void *state, unsigned int length, const void *src, void *dst); void (*crypt_tail)(void *state, unsigned int length, const void *src, void *dst); }; static void crypto_aegis128_aesni_process_ad( struct aegis_state *state, struct scatterlist *sg_src, unsigned int assoclen) { struct scatter_walk walk; struct aegis_block buf; unsigned int pos = 0; scatterwalk_start(&walk, sg_src); while (assoclen != 0) { unsigned int size = scatterwalk_clamp(&walk, assoclen); unsigned int left = size; void *mapped = scatterwalk_map(&walk); const u8 *src = (const u8 *)mapped; if (pos + size >= AEGIS128_BLOCK_SIZE) { if (pos > 0) { unsigned int fill = AEGIS128_BLOCK_SIZE - pos; memcpy(buf.bytes + pos, src, fill); crypto_aegis128_aesni_ad(state, AEGIS128_BLOCK_SIZE, buf.bytes); pos = 0; left -= fill; src += fill; } crypto_aegis128_aesni_ad(state, left, src); src += left & ~(AEGIS128_BLOCK_SIZE - 1); left &= AEGIS128_BLOCK_SIZE - 1; } memcpy(buf.bytes + pos, src, left); pos += left; assoclen -= size; scatterwalk_unmap(mapped); scatterwalk_advance(&walk, size); scatterwalk_done(&walk, 0, assoclen); } if (pos > 0) { memset(buf.bytes + pos, 0, AEGIS128_BLOCK_SIZE - pos); crypto_aegis128_aesni_ad(state, AEGIS128_BLOCK_SIZE, buf.bytes); } } static void crypto_aegis128_aesni_process_crypt( struct aegis_state *state, struct skcipher_walk *walk, const struct aegis_crypt_ops *ops) { while (walk->nbytes >= AEGIS128_BLOCK_SIZE) { ops->crypt_blocks(state, round_down(walk->nbytes, AEGIS128_BLOCK_SIZE), walk->src.virt.addr, walk->dst.virt.addr); skcipher_walk_done(walk, walk->nbytes % AEGIS128_BLOCK_SIZE); } if (walk->nbytes) { ops->crypt_tail(state, walk->nbytes, walk->src.virt.addr, walk->dst.virt.addr); skcipher_walk_done(walk, 0); } } static struct aegis_ctx *crypto_aegis128_aesni_ctx(struct crypto_aead *aead) { u8 *ctx = crypto_aead_ctx(aead); ctx = PTR_ALIGN(ctx, __alignof__(struct aegis_ctx)); return (void *)ctx; } static int crypto_aegis128_aesni_setkey(struct crypto_aead *aead, const u8 *key, unsigned int keylen) { struct aegis_ctx *ctx = crypto_aegis128_aesni_ctx(aead); if (keylen != AEGIS128_KEY_SIZE) return -EINVAL; memcpy(ctx->key.bytes, key, AEGIS128_KEY_SIZE); return 0; } static int crypto_aegis128_aesni_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { if (authsize > AEGIS128_MAX_AUTH_SIZE) return -EINVAL; if (authsize < AEGIS128_MIN_AUTH_SIZE) return -EINVAL; return 0; } static void crypto_aegis128_aesni_crypt(struct aead_request *req, struct aegis_block *tag_xor, unsigned int cryptlen, const struct aegis_crypt_ops *ops) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct aegis_ctx *ctx = crypto_aegis128_aesni_ctx(tfm); struct skcipher_walk walk; struct aegis_state state; ops->skcipher_walk_init(&walk, req, true); kernel_fpu_begin(); crypto_aegis128_aesni_init(&state, ctx->key.bytes, req->iv); crypto_aegis128_aesni_process_ad(&state, req->src, req->assoclen); crypto_aegis128_aesni_process_crypt(&state, &walk, ops); crypto_aegis128_aesni_final(&state, tag_xor, req->assoclen, cryptlen); kernel_fpu_end(); } static int crypto_aegis128_aesni_encrypt(struct aead_request *req) { static const struct aegis_crypt_ops OPS = { .skcipher_walk_init = skcipher_walk_aead_encrypt, .crypt_blocks = crypto_aegis128_aesni_enc, .crypt_tail = crypto_aegis128_aesni_enc_tail, }; struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct aegis_block tag = {}; unsigned int authsize = crypto_aead_authsize(tfm); unsigned int cryptlen = req->cryptlen; crypto_aegis128_aesni_crypt(req, &tag, cryptlen, &OPS); scatterwalk_map_and_copy(tag.bytes, req->dst, req->assoclen + cryptlen, authsize, 1); return 0; } static int crypto_aegis128_aesni_decrypt(struct aead_request *req) { static const struct aegis_block zeros = {}; static const struct aegis_crypt_ops OPS = { .skcipher_walk_init = skcipher_walk_aead_decrypt, .crypt_blocks = crypto_aegis128_aesni_dec, .crypt_tail = crypto_aegis128_aesni_dec_tail, }; struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct aegis_block tag; unsigned int authsize = crypto_aead_authsize(tfm); unsigned int cryptlen = req->cryptlen - authsize; scatterwalk_map_and_copy(tag.bytes, req->src, req->assoclen + cryptlen, authsize, 0); crypto_aegis128_aesni_crypt(req, &tag, cryptlen, &OPS); return crypto_memneq(tag.bytes, zeros.bytes, authsize) ? -EBADMSG : 0; } static int crypto_aegis128_aesni_init_tfm(struct crypto_aead *aead) { return 0; } static void crypto_aegis128_aesni_exit_tfm(struct crypto_aead *aead) { } static struct aead_alg crypto_aegis128_aesni_alg = { .setkey = crypto_aegis128_aesni_setkey, .setauthsize = crypto_aegis128_aesni_setauthsize, .encrypt = crypto_aegis128_aesni_encrypt, .decrypt = crypto_aegis128_aesni_decrypt, .init = crypto_aegis128_aesni_init_tfm, .exit = crypto_aegis128_aesni_exit_tfm, .ivsize = AEGIS128_NONCE_SIZE, .maxauthsize = AEGIS128_MAX_AUTH_SIZE, .chunksize = AEGIS128_BLOCK_SIZE, .base = { .cra_flags = CRYPTO_ALG_INTERNAL, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct aegis_ctx) + __alignof__(struct aegis_ctx), .cra_alignmask = 0, .cra_priority = 400, .cra_name = "__aegis128", .cra_driver_name = "__aegis128-aesni", .cra_module = THIS_MODULE, } }; static struct simd_aead_alg *simd_alg; static int __init crypto_aegis128_aesni_module_init(void) { if (!boot_cpu_has(X86_FEATURE_XMM2) || !boot_cpu_has(X86_FEATURE_AES) || !cpu_has_xfeatures(XFEATURE_MASK_SSE, NULL)) return -ENODEV; return simd_register_aeads_compat(&crypto_aegis128_aesni_alg, 1, &simd_alg); } static void __exit crypto_aegis128_aesni_module_exit(void) { simd_unregister_aeads(&crypto_aegis128_aesni_alg, 1, &simd_alg); } module_init(crypto_aegis128_aesni_module_init); module_exit(crypto_aegis128_aesni_module_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Ondrej Mosnacek <omosnacek@gmail.com>"); MODULE_DESCRIPTION("AEGIS-128 AEAD algorithm -- AESNI+SSE2 implementation"); MODULE_ALIAS_CRYPTO("aegis128"); MODULE_ALIAS_CRYPTO("aegis128-aesni");
3 1 17 17 17 1 1 1 1 4 4 2 1 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 /* * net/tipc/monitor.c * * Copyright (c) 2016, Ericsson AB * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the names of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include <net/genetlink.h> #include "core.h" #include "addr.h" #include "monitor.h" #include "bearer.h" #define MAX_MON_DOMAIN 64 #define MON_TIMEOUT 120000 #define MAX_PEER_DOWN_EVENTS 4 /* struct tipc_mon_domain: domain record to be transferred between peers * @len: actual size of domain record * @gen: current generation of sender's domain * @ack_gen: most recent generation of self's domain acked by peer * @member_cnt: number of domain member nodes described in this record * @up_map: bit map indicating which of the members the sender considers up * @members: identity of the domain members */ struct tipc_mon_domain { u16 len; u16 gen; u16 ack_gen; u16 member_cnt; u64 up_map; u32 members[MAX_MON_DOMAIN]; }; /* struct tipc_peer: state of a peer node and its domain * @addr: tipc node identity of peer * @head_map: shows which other nodes currently consider peer 'up' * @domain: most recent domain record from peer * @hash: position in hashed lookup list * @list: position in linked list, in circular ascending order by 'addr' * @applied: number of reported domain members applied on this monitor list * @is_up: peer is up as seen from this node * @is_head: peer is assigned domain head as seen from this node * @is_local: peer is in local domain and should be continuously monitored * @down_cnt: - numbers of other peers which have reported this on lost */ struct tipc_peer { u32 addr; struct tipc_mon_domain *domain; struct hlist_node hash; struct list_head list; u8 applied; u8 down_cnt; bool is_up; bool is_head; bool is_local; }; struct tipc_monitor { struct hlist_head peers[NODE_HTABLE_SIZE]; int peer_cnt; struct tipc_peer *self; rwlock_t lock; struct tipc_mon_domain cache; u16 list_gen; u16 dom_gen; struct net *net; struct timer_list timer; unsigned long timer_intv; }; static struct tipc_monitor *tipc_monitor(struct net *net, int bearer_id) { return tipc_net(net)->monitors[bearer_id]; } const int tipc_max_domain_size = sizeof(struct tipc_mon_domain); static inline u16 mon_cpu_to_le16(u16 val) { return (__force __u16)htons(val); } static inline u32 mon_cpu_to_le32(u32 val) { return (__force __u32)htonl(val); } static inline u64 mon_cpu_to_le64(u64 val) { return (__force __u64)cpu_to_be64(val); } static inline u16 mon_le16_to_cpu(u16 val) { return ntohs((__force __be16)val); } static inline u32 mon_le32_to_cpu(u32 val) { return ntohl((__force __be32)val); } static inline u64 mon_le64_to_cpu(u64 val) { return be64_to_cpu((__force __be64)val); } /* dom_rec_len(): actual length of domain record for transport */ static int dom_rec_len(struct tipc_mon_domain *dom, u16 mcnt) { return (offsetof(struct tipc_mon_domain, members)) + (mcnt * sizeof(u32)); } /* dom_size() : calculate size of own domain based on number of peers */ static int dom_size(int peers) { int i = 0; while ((i * i) < peers) i++; return min(i, MAX_MON_DOMAIN); } static void map_set(u64 *up_map, int i, unsigned int v) { *up_map &= ~(1ULL << i); *up_map |= ((u64)v << i); } static int map_get(u64 up_map, int i) { return (up_map & (1ULL << i)) >> i; } static struct tipc_peer *peer_prev(struct tipc_peer *peer) { return list_last_entry(&peer->list, struct tipc_peer, list); } static struct tipc_peer *peer_nxt(struct tipc_peer *peer) { return list_first_entry(&peer->list, struct tipc_peer, list); } static struct tipc_peer *peer_head(struct tipc_peer *peer) { while (!peer->is_head) peer = peer_prev(peer); return peer; } static struct tipc_peer *get_peer(struct tipc_monitor *mon, u32 addr) { struct tipc_peer *peer; unsigned int thash = tipc_hashfn(addr); hlist_for_each_entry(peer, &mon->peers[thash], hash) { if (peer->addr == addr) return peer; } return NULL; } static struct tipc_peer *get_self(struct net *net, int bearer_id) { struct tipc_monitor *mon = tipc_monitor(net, bearer_id); return mon->self; } static inline bool tipc_mon_is_active(struct net *net, struct tipc_monitor *mon) { struct tipc_net *tn = tipc_net(net); return mon->peer_cnt > tn->mon_threshold; } /* mon_identify_lost_members() : - identify amd mark potentially lost members */ static void mon_identify_lost_members(struct tipc_peer *peer, struct tipc_mon_domain *dom_bef, int applied_bef) { struct tipc_peer *member = peer; struct tipc_mon_domain *dom_aft = peer->domain; int applied_aft = peer->applied; int i; for (i = 0; i < applied_bef; i++) { member = peer_nxt(member); /* Do nothing if self or peer already see member as down */ if (!member->is_up || !map_get(dom_bef->up_map, i)) continue; /* Loss of local node must be detected by active probing */ if (member->is_local) continue; /* Start probing if member was removed from applied domain */ if (!applied_aft || (applied_aft < i)) { member->down_cnt = 1; continue; } /* Member loss is confirmed if it is still in applied domain */ if (!map_get(dom_aft->up_map, i)) member->down_cnt++; } } /* mon_apply_domain() : match a peer's domain record against monitor list */ static void mon_apply_domain(struct tipc_monitor *mon, struct tipc_peer *peer) { struct tipc_mon_domain *dom = peer->domain; struct tipc_peer *member; u32 addr; int i; if (!dom || !peer->is_up) return; /* Scan across domain members and match against monitor list */ peer->applied = 0; member = peer_nxt(peer); for (i = 0; i < dom->member_cnt; i++) { addr = dom->members[i]; if (addr != member->addr) return; peer->applied++; member = peer_nxt(member); } } /* mon_update_local_domain() : update after peer addition/removal/up/down */ static void mon_update_local_domain(struct tipc_monitor *mon) { struct tipc_peer *self = mon->self; struct tipc_mon_domain *cache = &mon->cache; struct tipc_mon_domain *dom = self->domain; struct tipc_peer *peer = self; u64 prev_up_map = dom->up_map; u16 member_cnt, i; bool diff; /* Update local domain size based on current size of cluster */ member_cnt = dom_size(mon->peer_cnt) - 1; self->applied = member_cnt; /* Update native and cached outgoing local domain records */ dom->len = dom_rec_len(dom, member_cnt); diff = dom->member_cnt != member_cnt; dom->member_cnt = member_cnt; for (i = 0; i < member_cnt; i++) { peer = peer_nxt(peer); diff |= dom->members[i] != peer->addr; dom->members[i] = peer->addr; map_set(&dom->up_map, i, peer->is_up); cache->members[i] = mon_cpu_to_le32(peer->addr); } diff |= dom->up_map != prev_up_map; if (!diff) return; dom->gen = ++mon->dom_gen; cache->len = mon_cpu_to_le16(dom->len); cache->gen = mon_cpu_to_le16(dom->gen); cache->member_cnt = mon_cpu_to_le16(member_cnt); cache->up_map = mon_cpu_to_le64(dom->up_map); mon_apply_domain(mon, self); } /* mon_update_neighbors() : update preceding neighbors of added/removed peer */ static void mon_update_neighbors(struct tipc_monitor *mon, struct tipc_peer *peer) { int dz, i; dz = dom_size(mon->peer_cnt); for (i = 0; i < dz; i++) { mon_apply_domain(mon, peer); peer = peer_prev(peer); } } /* mon_assign_roles() : reassign peer roles after a network change * The monitor list is consistent at this stage; i.e., each peer is monitoring * a set of domain members as matched between domain record and the monitor list */ static void mon_assign_roles(struct tipc_monitor *mon, struct tipc_peer *head) { struct tipc_peer *peer = peer_nxt(head); struct tipc_peer *self = mon->self; int i = 0; for (; peer != self; peer = peer_nxt(peer)) { peer->is_local = false; /* Update domain member */ if (i++ < head->applied) { peer->is_head = false; if (head == self) peer->is_local = true; continue; } /* Assign next domain head */ if (!peer->is_up) continue; if (peer->is_head) break; head = peer; head->is_head = true; i = 0; } mon->list_gen++; } void tipc_mon_remove_peer(struct net *net, u32 addr, int bearer_id) { struct tipc_monitor *mon = tipc_monitor(net, bearer_id); struct tipc_peer *self; struct tipc_peer *peer, *prev, *head; if (!mon) return; self = get_self(net, bearer_id); write_lock_bh(&mon->lock); peer = get_peer(mon, addr); if (!peer) goto exit; prev = peer_prev(peer); list_del(&peer->list); hlist_del(&peer->hash); kfree(peer->domain); kfree(peer); mon->peer_cnt--; head = peer_head(prev); if (head == self) mon_update_local_domain(mon); mon_update_neighbors(mon, prev); /* Revert to full-mesh monitoring if we reach threshold */ if (!tipc_mon_is_active(net, mon)) { list_for_each_entry(peer, &self->list, list) { kfree(peer->domain); peer->domain = NULL; peer->applied = 0; } } mon_assign_roles(mon, head); exit: write_unlock_bh(&mon->lock); } static bool tipc_mon_add_peer(struct tipc_monitor *mon, u32 addr, struct tipc_peer **peer) { struct tipc_peer *self = mon->self; struct tipc_peer *cur, *prev, *p; p = kzalloc(sizeof(*p), GFP_ATOMIC); *peer = p; if (!p) return false; p->addr = addr; /* Add new peer to lookup list */ INIT_LIST_HEAD(&p->list); hlist_add_head(&p->hash, &mon->peers[tipc_hashfn(addr)]); /* Sort new peer into iterator list, in ascending circular order */ prev = self; list_for_each_entry(cur, &self->list, list) { if ((addr > prev->addr) && (addr < cur->addr)) break; if (((addr < cur->addr) || (addr > prev->addr)) && (prev->addr > cur->addr)) break; prev = cur; } list_add_tail(&p->list, &cur->list); mon->peer_cnt++; mon_update_neighbors(mon, p); return true; } void tipc_mon_peer_up(struct net *net, u32 addr, int bearer_id) { struct tipc_monitor *mon = tipc_monitor(net, bearer_id); struct tipc_peer *self = get_self(net, bearer_id); struct tipc_peer *peer, *head; write_lock_bh(&mon->lock); peer = get_peer(mon, addr); if (!peer && !tipc_mon_add_peer(mon, addr, &peer)) goto exit; peer->is_up = true; head = peer_head(peer); if (head == self) mon_update_local_domain(mon); mon_assign_roles(mon, head); exit: write_unlock_bh(&mon->lock); } void tipc_mon_peer_down(struct net *net, u32 addr, int bearer_id) { struct tipc_monitor *mon = tipc_monitor(net, bearer_id); struct tipc_peer *self; struct tipc_peer *peer, *head; struct tipc_mon_domain *dom; int applied; if (!mon) return; self = get_self(net, bearer_id); write_lock_bh(&mon->lock); peer = get_peer(mon, addr); if (!peer) { pr_warn("Mon: unknown link %x/%u DOWN\n", addr, bearer_id); goto exit; } applied = peer->applied; peer->applied = 0; dom = peer->domain; peer->domain = NULL; if (peer->is_head) mon_identify_lost_members(peer, dom, applied); kfree(dom); peer->is_up = false; peer->is_head = false; peer->is_local = false; peer->down_cnt = 0; head = peer_head(peer); if (head == self) mon_update_local_domain(mon); mon_assign_roles(mon, head); exit: write_unlock_bh(&mon->lock); } /* tipc_mon_rcv - process monitor domain event message */ void tipc_mon_rcv(struct net *net, void *data, u16 dlen, u32 addr, struct tipc_mon_state *state, int bearer_id) { struct tipc_monitor *mon = tipc_monitor(net, bearer_id); struct tipc_mon_domain *arrv_dom = data; struct tipc_mon_domain dom_bef; struct tipc_mon_domain *dom; struct tipc_peer *peer; u16 new_member_cnt = mon_le16_to_cpu(arrv_dom->member_cnt); int new_dlen = dom_rec_len(arrv_dom, new_member_cnt); u16 new_gen = mon_le16_to_cpu(arrv_dom->gen); u16 acked_gen = mon_le16_to_cpu(arrv_dom->ack_gen); u16 arrv_dlen = mon_le16_to_cpu(arrv_dom->len); bool probing = state->probing; int i, applied_bef; state->probing = false; /* Sanity check received domain record */ if (new_member_cnt > MAX_MON_DOMAIN) return; if (dlen < dom_rec_len(arrv_dom, 0)) return; if (dlen != dom_rec_len(arrv_dom, new_member_cnt)) return; if (dlen < new_dlen || arrv_dlen != new_dlen) return; /* Synch generation numbers with peer if link just came up */ if (!state->synched) { state->peer_gen = new_gen - 1; state->acked_gen = acked_gen; state->synched = true; } if (more(acked_gen, state->acked_gen)) state->acked_gen = acked_gen; /* Drop duplicate unless we are waiting for a probe response */ if (!more(new_gen, state->peer_gen) && !probing) return; write_lock_bh(&mon->lock); peer = get_peer(mon, addr); if (!peer || !peer->is_up) goto exit; /* Peer is confirmed, stop any ongoing probing */ peer->down_cnt = 0; /* Task is done for duplicate record */ if (!more(new_gen, state->peer_gen)) goto exit; state->peer_gen = new_gen; /* Cache current domain record for later use */ dom_bef.member_cnt = 0; dom = peer->domain; if (dom) memcpy(&dom_bef, dom, dom->len); /* Transform and store received domain record */ if (!dom || (dom->len < new_dlen)) { kfree(dom); dom = kmalloc(new_dlen, GFP_ATOMIC); peer->domain = dom; if (!dom) goto exit; } dom->len = new_dlen; dom->gen = new_gen; dom->member_cnt = new_member_cnt; dom->up_map = mon_le64_to_cpu(arrv_dom->up_map); for (i = 0; i < new_member_cnt; i++) dom->members[i] = mon_le32_to_cpu(arrv_dom->members[i]); /* Update peers affected by this domain record */ applied_bef = peer->applied; mon_apply_domain(mon, peer); mon_identify_lost_members(peer, &dom_bef, applied_bef); mon_assign_roles(mon, peer_head(peer)); exit: write_unlock_bh(&mon->lock); } void tipc_mon_prep(struct net *net, void *data, int *dlen, struct tipc_mon_state *state, int bearer_id) { struct tipc_monitor *mon = tipc_monitor(net, bearer_id); struct tipc_mon_domain *dom = data; u16 gen = mon->dom_gen; u16 len; /* Send invalid record if not active */ if (!tipc_mon_is_active(net, mon)) { dom->len = 0; return; } /* Send only a dummy record with ack if peer has acked our last sent */ if (likely(state->acked_gen == gen)) { len = dom_rec_len(dom, 0); *dlen = len; dom->len = mon_cpu_to_le16(len); dom->gen = mon_cpu_to_le16(gen); dom->ack_gen = mon_cpu_to_le16(state->peer_gen); dom->member_cnt = 0; return; } /* Send the full record */ read_lock_bh(&mon->lock); len = mon_le16_to_cpu(mon->cache.len); *dlen = len; memcpy(data, &mon->cache, len); read_unlock_bh(&mon->lock); dom->ack_gen = mon_cpu_to_le16(state->peer_gen); } void tipc_mon_get_state(struct net *net, u32 addr, struct tipc_mon_state *state, int bearer_id) { struct tipc_monitor *mon = tipc_monitor(net, bearer_id); struct tipc_peer *peer; if (!tipc_mon_is_active(net, mon)) { state->probing = false; state->monitoring = true; return; } /* Used cached state if table has not changed */ if (!state->probing && (state->list_gen == mon->list_gen) && (state->acked_gen == mon->dom_gen)) return; read_lock_bh(&mon->lock); peer = get_peer(mon, addr); if (peer) { state->probing = state->acked_gen != mon->dom_gen; state->probing |= peer->down_cnt; state->reset |= peer->down_cnt >= MAX_PEER_DOWN_EVENTS; state->monitoring = peer->is_local; state->monitoring |= peer->is_head; state->list_gen = mon->list_gen; } read_unlock_bh(&mon->lock); } static void mon_timeout(struct timer_list *t) { struct tipc_monitor *mon = from_timer(mon, t, timer); struct tipc_peer *self; int best_member_cnt = dom_size(mon->peer_cnt) - 1; write_lock_bh(&mon->lock); self = mon->self; if (self && (best_member_cnt != self->applied)) { mon_update_local_domain(mon); mon_assign_roles(mon, self); } write_unlock_bh(&mon->lock); mod_timer(&mon->timer, jiffies + mon->timer_intv); } int tipc_mon_create(struct net *net, int bearer_id) { struct tipc_net *tn = tipc_net(net); struct tipc_monitor *mon; struct tipc_peer *self; struct tipc_mon_domain *dom; if (tn->monitors[bearer_id]) return 0; mon = kzalloc(sizeof(*mon), GFP_ATOMIC); self = kzalloc(sizeof(*self), GFP_ATOMIC); dom = kzalloc(sizeof(*dom), GFP_ATOMIC); if (!mon || !self || !dom) { kfree(mon); kfree(self); kfree(dom); return -ENOMEM; } tn->monitors[bearer_id] = mon; rwlock_init(&mon->lock); mon->net = net; mon->peer_cnt = 1; mon->self = self; self->domain = dom; self->addr = tipc_own_addr(net); self->is_up = true; self->is_head = true; INIT_LIST_HEAD(&self->list); timer_setup(&mon->timer, mon_timeout, 0); mon->timer_intv = msecs_to_jiffies(MON_TIMEOUT + (tn->random & 0xffff)); mod_timer(&mon->timer, jiffies + mon->timer_intv); return 0; } void tipc_mon_delete(struct net *net, int bearer_id) { struct tipc_net *tn = tipc_net(net); struct tipc_monitor *mon = tipc_monitor(net, bearer_id); struct tipc_peer *self; struct tipc_peer *peer, *tmp; if (!mon) return; self = get_self(net, bearer_id); write_lock_bh(&mon->lock); tn->monitors[bearer_id] = NULL; list_for_each_entry_safe(peer, tmp, &self->list, list) { list_del(&peer->list); hlist_del(&peer->hash); kfree(peer->domain); kfree(peer); } mon->self = NULL; write_unlock_bh(&mon->lock); timer_shutdown_sync(&mon->timer); kfree(self->domain); kfree(self); kfree(mon); } void tipc_mon_reinit_self(struct net *net) { struct tipc_monitor *mon; int bearer_id; for (bearer_id = 0; bearer_id < MAX_BEARERS; bearer_id++) { mon = tipc_monitor(net, bearer_id); if (!mon) continue; write_lock_bh(&mon->lock); mon->self->addr = tipc_own_addr(net); write_unlock_bh(&mon->lock); } } int tipc_nl_monitor_set_threshold(struct net *net, u32 cluster_size) { struct tipc_net *tn = tipc_net(net); if (cluster_size > TIPC_CLUSTER_SIZE) return -EINVAL; tn->mon_threshold = cluster_size; return 0; } int tipc_nl_monitor_get_threshold(struct net *net) { struct tipc_net *tn = tipc_net(net); return tn->mon_threshold; } static int __tipc_nl_add_monitor_peer(struct tipc_peer *peer, struct tipc_nl_msg *msg) { struct tipc_mon_domain *dom = peer->domain; struct nlattr *attrs; void *hdr; hdr = genlmsg_put(msg->skb, msg->portid, msg->seq, &tipc_genl_family, NLM_F_MULTI, TIPC_NL_MON_PEER_GET); if (!hdr) return -EMSGSIZE; attrs = nla_nest_start_noflag(msg->skb, TIPC_NLA_MON_PEER); if (!attrs) goto msg_full; if (nla_put_u32(msg->skb, TIPC_NLA_MON_PEER_ADDR, peer->addr)) goto attr_msg_full; if (nla_put_u32(msg->skb, TIPC_NLA_MON_PEER_APPLIED, peer->applied)) goto attr_msg_full; if (peer->is_up) if (nla_put_flag(msg->skb, TIPC_NLA_MON_PEER_UP)) goto attr_msg_full; if (peer->is_local) if (nla_put_flag(msg->skb, TIPC_NLA_MON_PEER_LOCAL)) goto attr_msg_full; if (peer->is_head) if (nla_put_flag(msg->skb, TIPC_NLA_MON_PEER_HEAD)) goto attr_msg_full; if (dom) { if (nla_put_u32(msg->skb, TIPC_NLA_MON_PEER_DOMGEN, dom->gen)) goto attr_msg_full; if (nla_put_u64_64bit(msg->skb, TIPC_NLA_MON_PEER_UPMAP, dom->up_map, TIPC_NLA_MON_PEER_PAD)) goto attr_msg_full; if (nla_put(msg->skb, TIPC_NLA_MON_PEER_MEMBERS, dom->member_cnt * sizeof(u32), &dom->members)) goto attr_msg_full; } nla_nest_end(msg->skb, attrs); genlmsg_end(msg->skb, hdr); return 0; attr_msg_full: nla_nest_cancel(msg->skb, attrs); msg_full: genlmsg_cancel(msg->skb, hdr); return -EMSGSIZE; } int tipc_nl_add_monitor_peer(struct net *net, struct tipc_nl_msg *msg, u32 bearer_id, u32 *prev_node) { struct tipc_monitor *mon = tipc_monitor(net, bearer_id); struct tipc_peer *peer; if (!mon) return -EINVAL; read_lock_bh(&mon->lock); peer = mon->self; do { if (*prev_node) { if (peer->addr == *prev_node) *prev_node = 0; else continue; } if (__tipc_nl_add_monitor_peer(peer, msg)) { *prev_node = peer->addr; read_unlock_bh(&mon->lock); return -EMSGSIZE; } } while ((peer = peer_nxt(peer)) != mon->self); read_unlock_bh(&mon->lock); return 0; } int __tipc_nl_add_monitor(struct net *net, struct tipc_nl_msg *msg, u32 bearer_id) { struct tipc_monitor *mon = tipc_monitor(net, bearer_id); char bearer_name[TIPC_MAX_BEARER_NAME]; struct nlattr *attrs; void *hdr; int ret; ret = tipc_bearer_get_name(net, bearer_name, bearer_id); if (ret || !mon) return 0; hdr = genlmsg_put(msg->skb, msg->portid, msg->seq, &tipc_genl_family, NLM_F_MULTI, TIPC_NL_MON_GET); if (!hdr) return -EMSGSIZE; attrs = nla_nest_start_noflag(msg->skb, TIPC_NLA_MON); if (!attrs) goto msg_full; read_lock_bh(&mon->lock); if (nla_put_u32(msg->skb, TIPC_NLA_MON_REF, bearer_id)) goto attr_msg_full; if (tipc_mon_is_active(net, mon)) if (nla_put_flag(msg->skb, TIPC_NLA_MON_ACTIVE)) goto attr_msg_full; if (nla_put_string(msg->skb, TIPC_NLA_MON_BEARER_NAME, bearer_name)) goto attr_msg_full; if (nla_put_u32(msg->skb, TIPC_NLA_MON_PEERCNT, mon->peer_cnt)) goto attr_msg_full; if (nla_put_u32(msg->skb, TIPC_NLA_MON_LISTGEN, mon->list_gen)) goto attr_msg_full; read_unlock_bh(&mon->lock); nla_nest_end(msg->skb, attrs); genlmsg_end(msg->skb, hdr); return 0; attr_msg_full: read_unlock_bh(&mon->lock); nla_nest_cancel(msg->skb, attrs); msg_full: genlmsg_cancel(msg->skb, hdr); return -EMSGSIZE; }
409 410 404 407 1 1 2 2 32 29 5 11 12 11 1 2 10 1 1 2 5 5 5 5 5 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 // SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019 Facebook */ #include <linux/rculist.h> #include <linux/list.h> #include <linux/hash.h> #include <linux/types.h> #include <linux/spinlock.h> #include <linux/bpf.h> #include <linux/btf.h> #include <linux/btf_ids.h> #include <linux/bpf_local_storage.h> #include <net/bpf_sk_storage.h> #include <net/sock.h> #include <uapi/linux/sock_diag.h> #include <uapi/linux/btf.h> #include <linux/rcupdate_trace.h> DEFINE_BPF_STORAGE_CACHE(sk_cache); static struct bpf_local_storage_data * bpf_sk_storage_lookup(struct sock *sk, struct bpf_map *map, bool cacheit_lockit) { struct bpf_local_storage *sk_storage; struct bpf_local_storage_map *smap; sk_storage = rcu_dereference_check(sk->sk_bpf_storage, bpf_rcu_lock_held()); if (!sk_storage) return NULL; smap = (struct bpf_local_storage_map *)map; return bpf_local_storage_lookup(sk_storage, smap, cacheit_lockit); } static int bpf_sk_storage_del(struct sock *sk, struct bpf_map *map) { struct bpf_local_storage_data *sdata; sdata = bpf_sk_storage_lookup(sk, map, false); if (!sdata) return -ENOENT; bpf_selem_unlink(SELEM(sdata), false); return 0; } /* Called by __sk_destruct() & bpf_sk_storage_clone() */ void bpf_sk_storage_free(struct sock *sk) { struct bpf_local_storage *sk_storage; rcu_read_lock(); sk_storage = rcu_dereference(sk->sk_bpf_storage); if (!sk_storage) { rcu_read_unlock(); return; } bpf_local_storage_destroy(sk_storage); rcu_read_unlock(); } static void bpf_sk_storage_map_free(struct bpf_map *map) { bpf_local_storage_map_free(map, &sk_cache, NULL); } static struct bpf_map *bpf_sk_storage_map_alloc(union bpf_attr *attr) { return bpf_local_storage_map_alloc(attr, &sk_cache, false); } static int notsupp_get_next_key(struct bpf_map *map, void *key, void *next_key) { return -ENOTSUPP; } static void *bpf_fd_sk_storage_lookup_elem(struct bpf_map *map, void *key) { struct bpf_local_storage_data *sdata; struct socket *sock; int fd, err; fd = *(int *)key; sock = sockfd_lookup(fd, &err); if (sock) { sdata = bpf_sk_storage_lookup(sock->sk, map, true); sockfd_put(sock); return sdata ? sdata->data : NULL; } return ERR_PTR(err); } static long bpf_fd_sk_storage_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_local_storage_data *sdata; struct socket *sock; int fd, err; fd = *(int *)key; sock = sockfd_lookup(fd, &err); if (sock) { sdata = bpf_local_storage_update( sock->sk, (struct bpf_local_storage_map *)map, value, map_flags, GFP_ATOMIC); sockfd_put(sock); return PTR_ERR_OR_ZERO(sdata); } return err; } static long bpf_fd_sk_storage_delete_elem(struct bpf_map *map, void *key) { struct socket *sock; int fd, err; fd = *(int *)key; sock = sockfd_lookup(fd, &err); if (sock) { err = bpf_sk_storage_del(sock->sk, map); sockfd_put(sock); return err; } return err; } static struct bpf_local_storage_elem * bpf_sk_storage_clone_elem(struct sock *newsk, struct bpf_local_storage_map *smap, struct bpf_local_storage_elem *selem) { struct bpf_local_storage_elem *copy_selem; copy_selem = bpf_selem_alloc(smap, newsk, NULL, true, GFP_ATOMIC); if (!copy_selem) return NULL; if (btf_record_has_field(smap->map.record, BPF_SPIN_LOCK)) copy_map_value_locked(&smap->map, SDATA(copy_selem)->data, SDATA(selem)->data, true); else copy_map_value(&smap->map, SDATA(copy_selem)->data, SDATA(selem)->data); return copy_selem; } int bpf_sk_storage_clone(const struct sock *sk, struct sock *newsk) { struct bpf_local_storage *new_sk_storage = NULL; struct bpf_local_storage *sk_storage; struct bpf_local_storage_elem *selem; int ret = 0; RCU_INIT_POINTER(newsk->sk_bpf_storage, NULL); rcu_read_lock(); sk_storage = rcu_dereference(sk->sk_bpf_storage); if (!sk_storage || hlist_empty(&sk_storage->list)) goto out; hlist_for_each_entry_rcu(selem, &sk_storage->list, snode) { struct bpf_local_storage_elem *copy_selem; struct bpf_local_storage_map *smap; struct bpf_map *map; smap = rcu_dereference(SDATA(selem)->smap); if (!(smap->map.map_flags & BPF_F_CLONE)) continue; /* Note that for lockless listeners adding new element * here can race with cleanup in bpf_local_storage_map_free. * Try to grab map refcnt to make sure that it's still * alive and prevent concurrent removal. */ map = bpf_map_inc_not_zero(&smap->map); if (IS_ERR(map)) continue; copy_selem = bpf_sk_storage_clone_elem(newsk, smap, selem); if (!copy_selem) { ret = -ENOMEM; bpf_map_put(map); goto out; } if (new_sk_storage) { bpf_selem_link_map(smap, copy_selem); bpf_selem_link_storage_nolock(new_sk_storage, copy_selem); } else { ret = bpf_local_storage_alloc(newsk, smap, copy_selem, GFP_ATOMIC); if (ret) { bpf_selem_free(copy_selem, smap, true); atomic_sub(smap->elem_size, &newsk->sk_omem_alloc); bpf_map_put(map); goto out; } new_sk_storage = rcu_dereference(copy_selem->local_storage); } bpf_map_put(map); } out: rcu_read_unlock(); /* In case of an error, don't free anything explicitly here, the * caller is responsible to call bpf_sk_storage_free. */ return ret; } /* *gfp_flags* is a hidden argument provided by the verifier */ BPF_CALL_5(bpf_sk_storage_get, struct bpf_map *, map, struct sock *, sk, void *, value, u64, flags, gfp_t, gfp_flags) { struct bpf_local_storage_data *sdata; WARN_ON_ONCE(!bpf_rcu_lock_held()); if (!sk || !sk_fullsock(sk) || flags > BPF_SK_STORAGE_GET_F_CREATE) return (unsigned long)NULL; sdata = bpf_sk_storage_lookup(sk, map, true); if (sdata) return (unsigned long)sdata->data; if (flags == BPF_SK_STORAGE_GET_F_CREATE && /* Cannot add new elem to a going away sk. * Otherwise, the new elem may become a leak * (and also other memory issues during map * destruction). */ refcount_inc_not_zero(&sk->sk_refcnt)) { sdata = bpf_local_storage_update( sk, (struct bpf_local_storage_map *)map, value, BPF_NOEXIST, gfp_flags); /* sk must be a fullsock (guaranteed by verifier), * so sock_gen_put() is unnecessary. */ sock_put(sk); return IS_ERR(sdata) ? (unsigned long)NULL : (unsigned long)sdata->data; } return (unsigned long)NULL; } BPF_CALL_2(bpf_sk_storage_delete, struct bpf_map *, map, struct sock *, sk) { WARN_ON_ONCE(!bpf_rcu_lock_held()); if (!sk || !sk_fullsock(sk)) return -EINVAL; if (refcount_inc_not_zero(&sk->sk_refcnt)) { int err; err = bpf_sk_storage_del(sk, map); sock_put(sk); return err; } return -ENOENT; } static int bpf_sk_storage_charge(struct bpf_local_storage_map *smap, void *owner, u32 size) { struct sock *sk = (struct sock *)owner; int optmem_max; optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); /* same check as in sock_kmalloc() */ if (size <= optmem_max && atomic_read(&sk->sk_omem_alloc) + size < optmem_max) { atomic_add(size, &sk->sk_omem_alloc); return 0; } return -ENOMEM; } static void bpf_sk_storage_uncharge(struct bpf_local_storage_map *smap, void *owner, u32 size) { struct sock *sk = owner; atomic_sub(size, &sk->sk_omem_alloc); } static struct bpf_local_storage __rcu ** bpf_sk_storage_ptr(void *owner) { struct sock *sk = owner; return &sk->sk_bpf_storage; } const struct bpf_map_ops sk_storage_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc_check = bpf_local_storage_map_alloc_check, .map_alloc = bpf_sk_storage_map_alloc, .map_free = bpf_sk_storage_map_free, .map_get_next_key = notsupp_get_next_key, .map_lookup_elem = bpf_fd_sk_storage_lookup_elem, .map_update_elem = bpf_fd_sk_storage_update_elem, .map_delete_elem = bpf_fd_sk_storage_delete_elem, .map_check_btf = bpf_local_storage_map_check_btf, .map_btf_id = &bpf_local_storage_map_btf_id[0], .map_local_storage_charge = bpf_sk_storage_charge, .map_local_storage_uncharge = bpf_sk_storage_uncharge, .map_owner_storage_ptr = bpf_sk_storage_ptr, .map_mem_usage = bpf_local_storage_map_mem_usage, }; const struct bpf_func_proto bpf_sk_storage_get_proto = { .func = bpf_sk_storage_get, .gpl_only = false, .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .arg3_type = ARG_PTR_TO_MAP_VALUE_OR_NULL, .arg4_type = ARG_ANYTHING, }; const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto = { .func = bpf_sk_storage_get, .gpl_only = false, .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_CTX, /* context is 'struct sock' */ .arg3_type = ARG_PTR_TO_MAP_VALUE_OR_NULL, .arg4_type = ARG_ANYTHING, }; const struct bpf_func_proto bpf_sk_storage_delete_proto = { .func = bpf_sk_storage_delete, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, }; static bool bpf_sk_storage_tracing_allowed(const struct bpf_prog *prog) { const struct btf *btf_vmlinux; const struct btf_type *t; const char *tname; u32 btf_id; if (prog->aux->dst_prog) return false; /* Ensure the tracing program is not tracing * any bpf_sk_storage*() function and also * use the bpf_sk_storage_(get|delete) helper. */ switch (prog->expected_attach_type) { case BPF_TRACE_ITER: case BPF_TRACE_RAW_TP: /* bpf_sk_storage has no trace point */ return true; case BPF_TRACE_FENTRY: case BPF_TRACE_FEXIT: btf_vmlinux = bpf_get_btf_vmlinux(); if (IS_ERR_OR_NULL(btf_vmlinux)) return false; btf_id = prog->aux->attach_btf_id; t = btf_type_by_id(btf_vmlinux, btf_id); tname = btf_name_by_offset(btf_vmlinux, t->name_off); return !!strncmp(tname, "bpf_sk_storage", strlen("bpf_sk_storage")); default: return false; } return false; } /* *gfp_flags* is a hidden argument provided by the verifier */ BPF_CALL_5(bpf_sk_storage_get_tracing, struct bpf_map *, map, struct sock *, sk, void *, value, u64, flags, gfp_t, gfp_flags) { WARN_ON_ONCE(!bpf_rcu_lock_held()); if (in_hardirq() || in_nmi()) return (unsigned long)NULL; return (unsigned long)____bpf_sk_storage_get(map, sk, value, flags, gfp_flags); } BPF_CALL_2(bpf_sk_storage_delete_tracing, struct bpf_map *, map, struct sock *, sk) { WARN_ON_ONCE(!bpf_rcu_lock_held()); if (in_hardirq() || in_nmi()) return -EPERM; return ____bpf_sk_storage_delete(map, sk); } const struct bpf_func_proto bpf_sk_storage_get_tracing_proto = { .func = bpf_sk_storage_get_tracing, .gpl_only = false, .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL, .arg2_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], .arg3_type = ARG_PTR_TO_MAP_VALUE_OR_NULL, .arg4_type = ARG_ANYTHING, .allowed = bpf_sk_storage_tracing_allowed, }; const struct bpf_func_proto bpf_sk_storage_delete_tracing_proto = { .func = bpf_sk_storage_delete_tracing, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL, .arg2_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], .allowed = bpf_sk_storage_tracing_allowed, }; struct bpf_sk_storage_diag { u32 nr_maps; struct bpf_map *maps[]; }; /* The reply will be like: * INET_DIAG_BPF_SK_STORAGES (nla_nest) * SK_DIAG_BPF_STORAGE (nla_nest) * SK_DIAG_BPF_STORAGE_MAP_ID (nla_put_u32) * SK_DIAG_BPF_STORAGE_MAP_VALUE (nla_reserve_64bit) * SK_DIAG_BPF_STORAGE (nla_nest) * SK_DIAG_BPF_STORAGE_MAP_ID (nla_put_u32) * SK_DIAG_BPF_STORAGE_MAP_VALUE (nla_reserve_64bit) * .... */ static int nla_value_size(u32 value_size) { /* SK_DIAG_BPF_STORAGE (nla_nest) * SK_DIAG_BPF_STORAGE_MAP_ID (nla_put_u32) * SK_DIAG_BPF_STORAGE_MAP_VALUE (nla_reserve_64bit) */ return nla_total_size(0) + nla_total_size(sizeof(u32)) + nla_total_size_64bit(value_size); } void bpf_sk_storage_diag_free(struct bpf_sk_storage_diag *diag) { u32 i; if (!diag) return; for (i = 0; i < diag->nr_maps; i++) bpf_map_put(diag->maps[i]); kfree(diag); } EXPORT_SYMBOL_GPL(bpf_sk_storage_diag_free); static bool diag_check_dup(const struct bpf_sk_storage_diag *diag, const struct bpf_map *map) { u32 i; for (i = 0; i < diag->nr_maps; i++) { if (diag->maps[i] == map) return true; } return false; } struct bpf_sk_storage_diag * bpf_sk_storage_diag_alloc(const struct nlattr *nla_stgs) { struct bpf_sk_storage_diag *diag; struct nlattr *nla; u32 nr_maps = 0; int rem, err; /* bpf_local_storage_map is currently limited to CAP_SYS_ADMIN as * the map_alloc_check() side also does. */ if (!bpf_capable()) return ERR_PTR(-EPERM); nla_for_each_nested_type(nla, SK_DIAG_BPF_STORAGE_REQ_MAP_FD, nla_stgs, rem) { if (nla_len(nla) != sizeof(u32)) return ERR_PTR(-EINVAL); nr_maps++; } diag = kzalloc(struct_size(diag, maps, nr_maps), GFP_KERNEL); if (!diag) return ERR_PTR(-ENOMEM); nla_for_each_nested_type(nla, SK_DIAG_BPF_STORAGE_REQ_MAP_FD, nla_stgs, rem) { int map_fd = nla_get_u32(nla); struct bpf_map *map = bpf_map_get(map_fd); if (IS_ERR(map)) { err = PTR_ERR(map); goto err_free; } if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) { bpf_map_put(map); err = -EINVAL; goto err_free; } if (diag_check_dup(diag, map)) { bpf_map_put(map); err = -EEXIST; goto err_free; } diag->maps[diag->nr_maps++] = map; } return diag; err_free: bpf_sk_storage_diag_free(diag); return ERR_PTR(err); } EXPORT_SYMBOL_GPL(bpf_sk_storage_diag_alloc); static int diag_get(struct bpf_local_storage_data *sdata, struct sk_buff *skb) { struct nlattr *nla_stg, *nla_value; struct bpf_local_storage_map *smap; /* It cannot exceed max nlattr's payload */ BUILD_BUG_ON(U16_MAX - NLA_HDRLEN < BPF_LOCAL_STORAGE_MAX_VALUE_SIZE); nla_stg = nla_nest_start(skb, SK_DIAG_BPF_STORAGE); if (!nla_stg) return -EMSGSIZE; smap = rcu_dereference(sdata->smap); if (nla_put_u32(skb, SK_DIAG_BPF_STORAGE_MAP_ID, smap->map.id)) goto errout; nla_value = nla_reserve_64bit(skb, SK_DIAG_BPF_STORAGE_MAP_VALUE, smap->map.value_size, SK_DIAG_BPF_STORAGE_PAD); if (!nla_value) goto errout; if (btf_record_has_field(smap->map.record, BPF_SPIN_LOCK)) copy_map_value_locked(&smap->map, nla_data(nla_value), sdata->data, true); else copy_map_value(&smap->map, nla_data(nla_value), sdata->data); nla_nest_end(skb, nla_stg); return 0; errout: nla_nest_cancel(skb, nla_stg); return -EMSGSIZE; } static int bpf_sk_storage_diag_put_all(struct sock *sk, struct sk_buff *skb, int stg_array_type, unsigned int *res_diag_size) { /* stg_array_type (e.g. INET_DIAG_BPF_SK_STORAGES) */ unsigned int diag_size = nla_total_size(0); struct bpf_local_storage *sk_storage; struct bpf_local_storage_elem *selem; struct bpf_local_storage_map *smap; struct nlattr *nla_stgs; unsigned int saved_len; int err = 0; rcu_read_lock(); sk_storage = rcu_dereference(sk->sk_bpf_storage); if (!sk_storage || hlist_empty(&sk_storage->list)) { rcu_read_unlock(); return 0; } nla_stgs = nla_nest_start(skb, stg_array_type); if (!nla_stgs) /* Continue to learn diag_size */ err = -EMSGSIZE; saved_len = skb->len; hlist_for_each_entry_rcu(selem, &sk_storage->list, snode) { smap = rcu_dereference(SDATA(selem)->smap); diag_size += nla_value_size(smap->map.value_size); if (nla_stgs && diag_get(SDATA(selem), skb)) /* Continue to learn diag_size */ err = -EMSGSIZE; } rcu_read_unlock(); if (nla_stgs) { if (saved_len == skb->len) nla_nest_cancel(skb, nla_stgs); else nla_nest_end(skb, nla_stgs); } if (diag_size == nla_total_size(0)) { *res_diag_size = 0; return 0; } *res_diag_size = diag_size; return err; } int bpf_sk_storage_diag_put(struct bpf_sk_storage_diag *diag, struct sock *sk, struct sk_buff *skb, int stg_array_type, unsigned int *res_diag_size) { /* stg_array_type (e.g. INET_DIAG_BPF_SK_STORAGES) */ unsigned int diag_size = nla_total_size(0); struct bpf_local_storage *sk_storage; struct bpf_local_storage_data *sdata; struct nlattr *nla_stgs; unsigned int saved_len; int err = 0; u32 i; *res_diag_size = 0; /* No map has been specified. Dump all. */ if (!diag->nr_maps) return bpf_sk_storage_diag_put_all(sk, skb, stg_array_type, res_diag_size); rcu_read_lock(); sk_storage = rcu_dereference(sk->sk_bpf_storage); if (!sk_storage || hlist_empty(&sk_storage->list)) { rcu_read_unlock(); return 0; } nla_stgs = nla_nest_start(skb, stg_array_type); if (!nla_stgs) /* Continue to learn diag_size */ err = -EMSGSIZE; saved_len = skb->len; for (i = 0; i < diag->nr_maps; i++) { sdata = bpf_local_storage_lookup(sk_storage, (struct bpf_local_storage_map *)diag->maps[i], false); if (!sdata) continue; diag_size += nla_value_size(diag->maps[i]->value_size); if (nla_stgs && diag_get(sdata, skb)) /* Continue to learn diag_size */ err = -EMSGSIZE; } rcu_read_unlock(); if (nla_stgs) { if (saved_len == skb->len) nla_nest_cancel(skb, nla_stgs); else nla_nest_end(skb, nla_stgs); } if (diag_size == nla_total_size(0)) { *res_diag_size = 0; return 0; } *res_diag_size = diag_size; return err; } EXPORT_SYMBOL_GPL(bpf_sk_storage_diag_put); struct bpf_iter_seq_sk_storage_map_info { struct bpf_map *map; unsigned int bucket_id; unsigned skip_elems; }; static struct bpf_local_storage_elem * bpf_sk_storage_map_seq_find_next(struct bpf_iter_seq_sk_storage_map_info *info, struct bpf_local_storage_elem *prev_selem) __acquires(RCU) __releases(RCU) { struct bpf_local_storage *sk_storage; struct bpf_local_storage_elem *selem; u32 skip_elems = info->skip_elems; struct bpf_local_storage_map *smap; u32 bucket_id = info->bucket_id; u32 i, count, n_buckets; struct bpf_local_storage_map_bucket *b; smap = (struct bpf_local_storage_map *)info->map; n_buckets = 1U << smap->bucket_log; if (bucket_id >= n_buckets) return NULL; /* try to find next selem in the same bucket */ selem = prev_selem; count = 0; while (selem) { selem = hlist_entry_safe(rcu_dereference(hlist_next_rcu(&selem->map_node)), struct bpf_local_storage_elem, map_node); if (!selem) { /* not found, unlock and go to the next bucket */ b = &smap->buckets[bucket_id++]; rcu_read_unlock(); skip_elems = 0; break; } sk_storage = rcu_dereference(selem->local_storage); if (sk_storage) { info->skip_elems = skip_elems + count; return selem; } count++; } for (i = bucket_id; i < (1U << smap->bucket_log); i++) { b = &smap->buckets[i]; rcu_read_lock(); count = 0; hlist_for_each_entry_rcu(selem, &b->list, map_node) { sk_storage = rcu_dereference(selem->local_storage); if (sk_storage && count >= skip_elems) { info->bucket_id = i; info->skip_elems = count; return selem; } count++; } rcu_read_unlock(); skip_elems = 0; } info->bucket_id = i; info->skip_elems = 0; return NULL; } static void *bpf_sk_storage_map_seq_start(struct seq_file *seq, loff_t *pos) { struct bpf_local_storage_elem *selem; selem = bpf_sk_storage_map_seq_find_next(seq->private, NULL); if (!selem) return NULL; if (*pos == 0) ++*pos; return selem; } static void *bpf_sk_storage_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct bpf_iter_seq_sk_storage_map_info *info = seq->private; ++*pos; ++info->skip_elems; return bpf_sk_storage_map_seq_find_next(seq->private, v); } struct bpf_iter__bpf_sk_storage_map { __bpf_md_ptr(struct bpf_iter_meta *, meta); __bpf_md_ptr(struct bpf_map *, map); __bpf_md_ptr(struct sock *, sk); __bpf_md_ptr(void *, value); }; DEFINE_BPF_ITER_FUNC(bpf_sk_storage_map, struct bpf_iter_meta *meta, struct bpf_map *map, struct sock *sk, void *value) static int __bpf_sk_storage_map_seq_show(struct seq_file *seq, struct bpf_local_storage_elem *selem) { struct bpf_iter_seq_sk_storage_map_info *info = seq->private; struct bpf_iter__bpf_sk_storage_map ctx = {}; struct bpf_local_storage *sk_storage; struct bpf_iter_meta meta; struct bpf_prog *prog; int ret = 0; meta.seq = seq; prog = bpf_iter_get_info(&meta, selem == NULL); if (prog) { ctx.meta = &meta; ctx.map = info->map; if (selem) { sk_storage = rcu_dereference(selem->local_storage); ctx.sk = sk_storage->owner; ctx.value = SDATA(selem)->data; } ret = bpf_iter_run_prog(prog, &ctx); } return ret; } static int bpf_sk_storage_map_seq_show(struct seq_file *seq, void *v) { return __bpf_sk_storage_map_seq_show(seq, v); } static void bpf_sk_storage_map_seq_stop(struct seq_file *seq, void *v) __releases(RCU) { if (!v) (void)__bpf_sk_storage_map_seq_show(seq, v); else rcu_read_unlock(); } static int bpf_iter_init_sk_storage_map(void *priv_data, struct bpf_iter_aux_info *aux) { struct bpf_iter_seq_sk_storage_map_info *seq_info = priv_data; bpf_map_inc_with_uref(aux->map); seq_info->map = aux->map; return 0; } static void bpf_iter_fini_sk_storage_map(void *priv_data) { struct bpf_iter_seq_sk_storage_map_info *seq_info = priv_data; bpf_map_put_with_uref(seq_info->map); } static int bpf_iter_attach_map(struct bpf_prog *prog, union bpf_iter_link_info *linfo, struct bpf_iter_aux_info *aux) { struct bpf_map *map; int err = -EINVAL; if (!linfo->map.map_fd) return -EBADF; map = bpf_map_get_with_uref(linfo->map.map_fd); if (IS_ERR(map)) return PTR_ERR(map); if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) goto put_map; if (prog->aux->max_rdwr_access > map->value_size) { err = -EACCES; goto put_map; } aux->map = map; return 0; put_map: bpf_map_put_with_uref(map); return err; } static void bpf_iter_detach_map(struct bpf_iter_aux_info *aux) { bpf_map_put_with_uref(aux->map); } static const struct seq_operations bpf_sk_storage_map_seq_ops = { .start = bpf_sk_storage_map_seq_start, .next = bpf_sk_storage_map_seq_next, .stop = bpf_sk_storage_map_seq_stop, .show = bpf_sk_storage_map_seq_show, }; static const struct bpf_iter_seq_info iter_seq_info = { .seq_ops = &bpf_sk_storage_map_seq_ops, .init_seq_private = bpf_iter_init_sk_storage_map, .fini_seq_private = bpf_iter_fini_sk_storage_map, .seq_priv_size = sizeof(struct bpf_iter_seq_sk_storage_map_info), }; static struct bpf_iter_reg bpf_sk_storage_map_reg_info = { .target = "bpf_sk_storage_map", .attach_target = bpf_iter_attach_map, .detach_target = bpf_iter_detach_map, .show_fdinfo = bpf_iter_map_show_fdinfo, .fill_link_info = bpf_iter_map_fill_link_info, .ctx_arg_info_size = 2, .ctx_arg_info = { { offsetof(struct bpf_iter__bpf_sk_storage_map, sk), PTR_TO_BTF_ID_OR_NULL }, { offsetof(struct bpf_iter__bpf_sk_storage_map, value), PTR_TO_BUF | PTR_MAYBE_NULL }, }, .seq_info = &iter_seq_info, }; static int __init bpf_sk_storage_map_iter_init(void) { bpf_sk_storage_map_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK]; return bpf_iter_reg_target(&bpf_sk_storage_map_reg_info); } late_initcall(bpf_sk_storage_map_iter_init);
2 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 // SPDX-License-Identifier: GPL-2.0-only /* * ebt_nflog * * Author: * Peter Warasin <peter@endian.com> * * February, 2008 * * Based on: * xt_NFLOG.c, (C) 2006 by Patrick McHardy <kaber@trash.net> * ebt_ulog.c, (C) 2004 by Bart De Schuymer <bdschuym@pandora.be> * */ #include <linux/module.h> #include <linux/spinlock.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter_bridge/ebtables.h> #include <linux/netfilter_bridge/ebt_nflog.h> #include <net/netfilter/nf_log.h> static unsigned int ebt_nflog_tg(struct sk_buff *skb, const struct xt_action_param *par) { const struct ebt_nflog_info *info = par->targinfo; struct net *net = xt_net(par); struct nf_loginfo li; li.type = NF_LOG_TYPE_ULOG; li.u.ulog.copy_len = info->len; li.u.ulog.group = info->group; li.u.ulog.qthreshold = info->threshold; li.u.ulog.flags = 0; nf_log_packet(net, PF_BRIDGE, xt_hooknum(par), skb, xt_in(par), xt_out(par), &li, "%s", info->prefix); return EBT_CONTINUE; } static int ebt_nflog_tg_check(const struct xt_tgchk_param *par) { struct ebt_nflog_info *info = par->targinfo; if (info->flags & ~EBT_NFLOG_MASK) return -EINVAL; info->prefix[EBT_NFLOG_PREFIX_SIZE - 1] = '\0'; return 0; } static struct xt_target ebt_nflog_tg_reg __read_mostly = { .name = "nflog", .revision = 0, .family = NFPROTO_BRIDGE, .target = ebt_nflog_tg, .checkentry = ebt_nflog_tg_check, .targetsize = sizeof(struct ebt_nflog_info), .me = THIS_MODULE, }; static int __init ebt_nflog_init(void) { return xt_register_target(&ebt_nflog_tg_reg); } static void __exit ebt_nflog_fini(void) { xt_unregister_target(&ebt_nflog_tg_reg); } module_init(ebt_nflog_init); module_exit(ebt_nflog_fini); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Peter Warasin <peter@endian.com>"); MODULE_DESCRIPTION("ebtables NFLOG netfilter logging module");
3652 206 3654 100 102 22 9 24 23 106 101 106 107 107 34 33 1 1 19 20 8 20 20 8 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 // SPDX-License-Identifier: GPL-2.0 /* * Fast batching percpu counters. */ #include <linux/percpu_counter.h> #include <linux/mutex.h> #include <linux/init.h> #include <linux/cpu.h> #include <linux/module.h> #include <linux/debugobjects.h> #ifdef CONFIG_HOTPLUG_CPU static LIST_HEAD(percpu_counters); static DEFINE_SPINLOCK(percpu_counters_lock); #endif #ifdef CONFIG_DEBUG_OBJECTS_PERCPU_COUNTER static const struct debug_obj_descr percpu_counter_debug_descr; static bool percpu_counter_fixup_free(void *addr, enum debug_obj_state state) { struct percpu_counter *fbc = addr; switch (state) { case ODEBUG_STATE_ACTIVE: percpu_counter_destroy(fbc); debug_object_free(fbc, &percpu_counter_debug_descr); return true; default: return false; } } static const struct debug_obj_descr percpu_counter_debug_descr = { .name = "percpu_counter", .fixup_free = percpu_counter_fixup_free, }; static inline void debug_percpu_counter_activate(struct percpu_counter *fbc) { debug_object_init(fbc, &percpu_counter_debug_descr); debug_object_activate(fbc, &percpu_counter_debug_descr); } static inline void debug_percpu_counter_deactivate(struct percpu_counter *fbc) { debug_object_deactivate(fbc, &percpu_counter_debug_descr); debug_object_free(fbc, &percpu_counter_debug_descr); } #else /* CONFIG_DEBUG_OBJECTS_PERCPU_COUNTER */ static inline void debug_percpu_counter_activate(struct percpu_counter *fbc) { } static inline void debug_percpu_counter_deactivate(struct percpu_counter *fbc) { } #endif /* CONFIG_DEBUG_OBJECTS_PERCPU_COUNTER */ void percpu_counter_set(struct percpu_counter *fbc, s64 amount) { int cpu; unsigned long flags; raw_spin_lock_irqsave(&fbc->lock, flags); for_each_possible_cpu(cpu) { s32 *pcount = per_cpu_ptr(fbc->counters, cpu); *pcount = 0; } fbc->count = amount; raw_spin_unlock_irqrestore(&fbc->lock, flags); } EXPORT_SYMBOL(percpu_counter_set); /* * Add to a counter while respecting batch size. * * There are 2 implementations, both dealing with the following problem: * * The decision slow path/fast path and the actual update must be atomic. * Otherwise a call in process context could check the current values and * decide that the fast path can be used. If now an interrupt occurs before * the this_cpu_add(), and the interrupt updates this_cpu(*fbc->counters), * then the this_cpu_add() that is executed after the interrupt has completed * can produce values larger than "batch" or even overflows. */ #ifdef CONFIG_HAVE_CMPXCHG_LOCAL /* * Safety against interrupts is achieved in 2 ways: * 1. the fast path uses local cmpxchg (note: no lock prefix) * 2. the slow path operates with interrupts disabled */ void percpu_counter_add_batch(struct percpu_counter *fbc, s64 amount, s32 batch) { s64 count; unsigned long flags; count = this_cpu_read(*fbc->counters); do { if (unlikely(abs(count + amount) >= batch)) { raw_spin_lock_irqsave(&fbc->lock, flags); /* * Note: by now we might have migrated to another CPU * or the value might have changed. */ count = __this_cpu_read(*fbc->counters); fbc->count += count + amount; __this_cpu_sub(*fbc->counters, count); raw_spin_unlock_irqrestore(&fbc->lock, flags); return; } } while (!this_cpu_try_cmpxchg(*fbc->counters, &count, count + amount)); } #else /* * local_irq_save() is used to make the function irq safe: * - The slow path would be ok as protected by an irq-safe spinlock. * - this_cpu_add would be ok as it is irq-safe by definition. */ void percpu_counter_add_batch(struct percpu_counter *fbc, s64 amount, s32 batch) { s64 count; unsigned long flags; local_irq_save(flags); count = __this_cpu_read(*fbc->counters) + amount; if (abs(count) >= batch) { raw_spin_lock(&fbc->lock); fbc->count += count; __this_cpu_sub(*fbc->counters, count - amount); raw_spin_unlock(&fbc->lock); } else { this_cpu_add(*fbc->counters, amount); } local_irq_restore(flags); } #endif EXPORT_SYMBOL(percpu_counter_add_batch); /* * For percpu_counter with a big batch, the devication of its count could * be big, and there is requirement to reduce the deviation, like when the * counter's batch could be runtime decreased to get a better accuracy, * which can be achieved by running this sync function on each CPU. */ void percpu_counter_sync(struct percpu_counter *fbc) { unsigned long flags; s64 count; raw_spin_lock_irqsave(&fbc->lock, flags); count = __this_cpu_read(*fbc->counters); fbc->count += count; __this_cpu_sub(*fbc->counters, count); raw_spin_unlock_irqrestore(&fbc->lock, flags); } EXPORT_SYMBOL(percpu_counter_sync); /* * Add up all the per-cpu counts, return the result. This is a more accurate * but much slower version of percpu_counter_read_positive(). * * We use the cpu mask of (cpu_online_mask | cpu_dying_mask) to capture sums * from CPUs that are in the process of being taken offline. Dying cpus have * been removed from the online mask, but may not have had the hotplug dead * notifier called to fold the percpu count back into the global counter sum. * By including dying CPUs in the iteration mask, we avoid this race condition * so __percpu_counter_sum() just does the right thing when CPUs are being taken * offline. */ s64 __percpu_counter_sum(struct percpu_counter *fbc) { s64 ret; int cpu; unsigned long flags; raw_spin_lock_irqsave(&fbc->lock, flags); ret = fbc->count; for_each_cpu_or(cpu, cpu_online_mask, cpu_dying_mask) { s32 *pcount = per_cpu_ptr(fbc->counters, cpu); ret += *pcount; } raw_spin_unlock_irqrestore(&fbc->lock, flags); return ret; } EXPORT_SYMBOL(__percpu_counter_sum); int __percpu_counter_init_many(struct percpu_counter *fbc, s64 amount, gfp_t gfp, u32 nr_counters, struct lock_class_key *key) { unsigned long flags __maybe_unused; size_t counter_size; s32 __percpu *counters; u32 i; counter_size = ALIGN(sizeof(*counters), __alignof__(*counters)); counters = __alloc_percpu_gfp(nr_counters * counter_size, __alignof__(*counters), gfp); if (!counters) { fbc[0].counters = NULL; return -ENOMEM; } for (i = 0; i < nr_counters; i++) { raw_spin_lock_init(&fbc[i].lock); lockdep_set_class(&fbc[i].lock, key); #ifdef CONFIG_HOTPLUG_CPU INIT_LIST_HEAD(&fbc[i].list); #endif fbc[i].count = amount; fbc[i].counters = (void __percpu *)counters + i * counter_size; debug_percpu_counter_activate(&fbc[i]); } #ifdef CONFIG_HOTPLUG_CPU spin_lock_irqsave(&percpu_counters_lock, flags); for (i = 0; i < nr_counters; i++) list_add(&fbc[i].list, &percpu_counters); spin_unlock_irqrestore(&percpu_counters_lock, flags); #endif return 0; } EXPORT_SYMBOL(__percpu_counter_init_many); void percpu_counter_destroy_many(struct percpu_counter *fbc, u32 nr_counters) { unsigned long flags __maybe_unused; u32 i; if (WARN_ON_ONCE(!fbc)) return; if (!fbc[0].counters) return; for (i = 0; i < nr_counters; i++) debug_percpu_counter_deactivate(&fbc[i]); #ifdef CONFIG_HOTPLUG_CPU spin_lock_irqsave(&percpu_counters_lock, flags); for (i = 0; i < nr_counters; i++) list_del(&fbc[i].list); spin_unlock_irqrestore(&percpu_counters_lock, flags); #endif free_percpu(fbc[0].counters); for (i = 0; i < nr_counters; i++) fbc[i].counters = NULL; } EXPORT_SYMBOL(percpu_counter_destroy_many); int percpu_counter_batch __read_mostly = 32; EXPORT_SYMBOL(percpu_counter_batch); static int compute_batch_value(unsigned int cpu) { int nr = num_online_cpus(); percpu_counter_batch = max(32, nr*2); return 0; } static int percpu_counter_cpu_dead(unsigned int cpu) { #ifdef CONFIG_HOTPLUG_CPU struct percpu_counter *fbc; compute_batch_value(cpu); spin_lock_irq(&percpu_counters_lock); list_for_each_entry(fbc, &percpu_counters, list) { s32 *pcount; raw_spin_lock(&fbc->lock); pcount = per_cpu_ptr(fbc->counters, cpu); fbc->count += *pcount; *pcount = 0; raw_spin_unlock(&fbc->lock); } spin_unlock_irq(&percpu_counters_lock); #endif return 0; } /* * Compare counter against given value. * Return 1 if greater, 0 if equal and -1 if less */ int __percpu_counter_compare(struct percpu_counter *fbc, s64 rhs, s32 batch) { s64 count; count = percpu_counter_read(fbc); /* Check to see if rough count will be sufficient for comparison */ if (abs(count - rhs) > (batch * num_online_cpus())) { if (count > rhs) return 1; else return -1; } /* Need to use precise count */ count = percpu_counter_sum(fbc); if (count > rhs) return 1; else if (count < rhs) return -1; else return 0; } EXPORT_SYMBOL(__percpu_counter_compare); /* * Compare counter, and add amount if total is: less than or equal to limit if * amount is positive, or greater than or equal to limit if amount is negative. * Return true if amount is added, or false if total would be beyond the limit. * * Negative limit is allowed, but unusual. * When negative amounts (subs) are given to percpu_counter_limited_add(), * the limit would most naturally be 0 - but other limits are also allowed. * * Overflow beyond S64_MAX is not allowed for: counter, limit and amount * are all assumed to be sane (far from S64_MIN and S64_MAX). */ bool __percpu_counter_limited_add(struct percpu_counter *fbc, s64 limit, s64 amount, s32 batch) { s64 count; s64 unknown; unsigned long flags; bool good = false; if (amount == 0) return true; local_irq_save(flags); unknown = batch * num_online_cpus(); count = __this_cpu_read(*fbc->counters); /* Skip taking the lock when safe */ if (abs(count + amount) <= batch && ((amount > 0 && fbc->count + unknown <= limit) || (amount < 0 && fbc->count - unknown >= limit))) { this_cpu_add(*fbc->counters, amount); local_irq_restore(flags); return true; } raw_spin_lock(&fbc->lock); count = fbc->count + amount; /* Skip percpu_counter_sum() when safe */ if (amount > 0) { if (count - unknown > limit) goto out; if (count + unknown <= limit) good = true; } else { if (count + unknown < limit) goto out; if (count - unknown >= limit) good = true; } if (!good) { s32 *pcount; int cpu; for_each_cpu_or(cpu, cpu_online_mask, cpu_dying_mask) { pcount = per_cpu_ptr(fbc->counters, cpu); count += *pcount; } if (amount > 0) { if (count > limit) goto out; } else { if (count < limit) goto out; } good = true; } count = __this_cpu_read(*fbc->counters); fbc->count += count + amount; __this_cpu_sub(*fbc->counters, count); out: raw_spin_unlock(&fbc->lock); local_irq_restore(flags); return good; } static int __init percpu_counter_startup(void) { int ret; ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "lib/percpu_cnt:online", compute_batch_value, NULL); WARN_ON(ret < 0); ret = cpuhp_setup_state_nocalls(CPUHP_PERCPU_CNT_DEAD, "lib/percpu_cnt:dead", NULL, percpu_counter_cpu_dead); WARN_ON(ret < 0); return 0; } module_init(percpu_counter_startup);
5 1 1 1 2 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 // SPDX-License-Identifier: GPL-2.0-only /* IP tables module for matching IPsec policy * * Copyright (c) 2004,2005 Patrick McHardy, <kaber@trash.net> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/skbuff.h> #include <linux/init.h> #include <net/xfrm.h> #include <linux/netfilter.h> #include <linux/netfilter/xt_policy.h> #include <linux/netfilter/x_tables.h> MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>"); MODULE_DESCRIPTION("Xtables: IPsec policy match"); MODULE_LICENSE("GPL"); static inline bool xt_addr_cmp(const union nf_inet_addr *a1, const union nf_inet_addr *m, const union nf_inet_addr *a2, unsigned short family) { switch (family) { case NFPROTO_IPV4: return ((a1->ip ^ a2->ip) & m->ip) == 0; case NFPROTO_IPV6: return ipv6_masked_addr_cmp(&a1->in6, &m->in6, &a2->in6) == 0; } return false; } static bool match_xfrm_state(const struct xfrm_state *x, const struct xt_policy_elem *e, unsigned short family) { #define MATCH_ADDR(x,y,z) (!e->match.x || \ (xt_addr_cmp(&e->x, &e->y, (const union nf_inet_addr *)(z), family) \ ^ e->invert.x)) #define MATCH(x,y) (!e->match.x || ((e->x == (y)) ^ e->invert.x)) return MATCH_ADDR(saddr, smask, &x->props.saddr) && MATCH_ADDR(daddr, dmask, &x->id.daddr) && MATCH(proto, x->id.proto) && MATCH(mode, x->props.mode) && MATCH(spi, x->id.spi) && MATCH(reqid, x->props.reqid); } static int match_policy_in(const struct sk_buff *skb, const struct xt_policy_info *info, unsigned short family) { const struct xt_policy_elem *e; const struct sec_path *sp = skb_sec_path(skb); int strict = info->flags & XT_POLICY_MATCH_STRICT; int i, pos; if (sp == NULL) return -1; if (strict && info->len != sp->len) return 0; for (i = sp->len - 1; i >= 0; i--) { pos = strict ? i - sp->len + 1 : 0; if (pos >= info->len) return 0; e = &info->pol[pos]; if (match_xfrm_state(sp->xvec[i], e, family)) { if (!strict) return 1; } else if (strict) return 0; } return strict ? 1 : 0; } static int match_policy_out(const struct sk_buff *skb, const struct xt_policy_info *info, unsigned short family) { const struct xt_policy_elem *e; const struct dst_entry *dst = skb_dst(skb); int strict = info->flags & XT_POLICY_MATCH_STRICT; int i, pos; if (dst->xfrm == NULL) return -1; for (i = 0; dst && dst->xfrm; dst = ((struct xfrm_dst *)dst)->child, i++) { pos = strict ? i : 0; if (pos >= info->len) return 0; e = &info->pol[pos]; if (match_xfrm_state(dst->xfrm, e, family)) { if (!strict) return 1; } else if (strict) return 0; } return strict ? i == info->len : 0; } static bool policy_mt(const struct sk_buff *skb, struct xt_action_param *par) { const struct xt_policy_info *info = par->matchinfo; int ret; if (info->flags & XT_POLICY_MATCH_IN) ret = match_policy_in(skb, info, xt_family(par)); else ret = match_policy_out(skb, info, xt_family(par)); if (ret < 0) ret = info->flags & XT_POLICY_MATCH_NONE ? true : false; else if (info->flags & XT_POLICY_MATCH_NONE) ret = false; return ret; } static int policy_mt_check(const struct xt_mtchk_param *par) { const struct xt_policy_info *info = par->matchinfo; const char *errmsg = "neither incoming nor outgoing policy selected"; if (!(info->flags & (XT_POLICY_MATCH_IN|XT_POLICY_MATCH_OUT))) goto err; if (par->hook_mask & ((1 << NF_INET_PRE_ROUTING) | (1 << NF_INET_LOCAL_IN)) && info->flags & XT_POLICY_MATCH_OUT) { errmsg = "output policy not valid in PREROUTING and INPUT"; goto err; } if (par->hook_mask & ((1 << NF_INET_POST_ROUTING) | (1 << NF_INET_LOCAL_OUT)) && info->flags & XT_POLICY_MATCH_IN) { errmsg = "input policy not valid in POSTROUTING and OUTPUT"; goto err; } if (info->len > XT_POLICY_MAX_ELEM) { errmsg = "too many policy elements"; goto err; } return 0; err: pr_info_ratelimited("%s\n", errmsg); return -EINVAL; } static struct xt_match policy_mt_reg[] __read_mostly = { { .name = "policy", .family = NFPROTO_IPV4, .checkentry = policy_mt_check, .match = policy_mt, .matchsize = sizeof(struct xt_policy_info), .me = THIS_MODULE, }, { .name = "policy", .family = NFPROTO_IPV6, .checkentry = policy_mt_check, .match = policy_mt, .matchsize = sizeof(struct xt_policy_info), .me = THIS_MODULE, }, }; static int __init policy_mt_init(void) { return xt_register_matches(policy_mt_reg, ARRAY_SIZE(policy_mt_reg)); } static void __exit policy_mt_exit(void) { xt_unregister_matches(policy_mt_reg, ARRAY_SIZE(policy_mt_reg)); } module_init(policy_mt_init); module_exit(policy_mt_exit); MODULE_ALIAS("ipt_policy"); MODULE_ALIAS("ip6t_policy");
4 4 4 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 // SPDX-License-Identifier: GPL-2.0-or-later /* * cgroups support for the BFQ I/O scheduler. */ #include <linux/module.h> #include <linux/slab.h> #include <linux/blkdev.h> #include <linux/cgroup.h> #include <linux/ktime.h> #include <linux/rbtree.h> #include <linux/ioprio.h> #include <linux/sbitmap.h> #include <linux/delay.h> #include "elevator.h" #include "bfq-iosched.h" #ifdef CONFIG_BFQ_CGROUP_DEBUG static int bfq_stat_init(struct bfq_stat *stat, gfp_t gfp) { int ret; ret = percpu_counter_init(&stat->cpu_cnt, 0, gfp); if (ret) return ret; atomic64_set(&stat->aux_cnt, 0); return 0; } static void bfq_stat_exit(struct bfq_stat *stat) { percpu_counter_destroy(&stat->cpu_cnt); } /** * bfq_stat_add - add a value to a bfq_stat * @stat: target bfq_stat * @val: value to add * * Add @val to @stat. The caller must ensure that IRQ on the same CPU * don't re-enter this function for the same counter. */ static inline void bfq_stat_add(struct bfq_stat *stat, uint64_t val) { percpu_counter_add_batch(&stat->cpu_cnt, val, BLKG_STAT_CPU_BATCH); } /** * bfq_stat_read - read the current value of a bfq_stat * @stat: bfq_stat to read */ static inline uint64_t bfq_stat_read(struct bfq_stat *stat) { return percpu_counter_sum_positive(&stat->cpu_cnt); } /** * bfq_stat_reset - reset a bfq_stat * @stat: bfq_stat to reset */ static inline void bfq_stat_reset(struct bfq_stat *stat) { percpu_counter_set(&stat->cpu_cnt, 0); atomic64_set(&stat->aux_cnt, 0); } /** * bfq_stat_add_aux - add a bfq_stat into another's aux count * @to: the destination bfq_stat * @from: the source * * Add @from's count including the aux one to @to's aux count. */ static inline void bfq_stat_add_aux(struct bfq_stat *to, struct bfq_stat *from) { atomic64_add(bfq_stat_read(from) + atomic64_read(&from->aux_cnt), &to->aux_cnt); } /** * blkg_prfill_stat - prfill callback for bfq_stat * @sf: seq_file to print to * @pd: policy private data of interest * @off: offset to the bfq_stat in @pd * * prfill callback for printing a bfq_stat. */ static u64 blkg_prfill_stat(struct seq_file *sf, struct blkg_policy_data *pd, int off) { return __blkg_prfill_u64(sf, pd, bfq_stat_read((void *)pd + off)); } /* bfqg stats flags */ enum bfqg_stats_flags { BFQG_stats_waiting = 0, BFQG_stats_idling, BFQG_stats_empty, }; #define BFQG_FLAG_FNS(name) \ static void bfqg_stats_mark_##name(struct bfqg_stats *stats) \ { \ stats->flags |= (1 << BFQG_stats_##name); \ } \ static void bfqg_stats_clear_##name(struct bfqg_stats *stats) \ { \ stats->flags &= ~(1 << BFQG_stats_##name); \ } \ static int bfqg_stats_##name(struct bfqg_stats *stats) \ { \ return (stats->flags & (1 << BFQG_stats_##name)) != 0; \ } \ BFQG_FLAG_FNS(waiting) BFQG_FLAG_FNS(idling) BFQG_FLAG_FNS(empty) #undef BFQG_FLAG_FNS /* This should be called with the scheduler lock held. */ static void bfqg_stats_update_group_wait_time(struct bfqg_stats *stats) { u64 now; if (!bfqg_stats_waiting(stats)) return; now = blk_time_get_ns(); if (now > stats->start_group_wait_time) bfq_stat_add(&stats->group_wait_time, now - stats->start_group_wait_time); bfqg_stats_clear_waiting(stats); } /* This should be called with the scheduler lock held. */ static void bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg, struct bfq_group *curr_bfqg) { struct bfqg_stats *stats = &bfqg->stats; if (bfqg_stats_waiting(stats)) return; if (bfqg == curr_bfqg) return; stats->start_group_wait_time = blk_time_get_ns(); bfqg_stats_mark_waiting(stats); } /* This should be called with the scheduler lock held. */ static void bfqg_stats_end_empty_time(struct bfqg_stats *stats) { u64 now; if (!bfqg_stats_empty(stats)) return; now = blk_time_get_ns(); if (now > stats->start_empty_time) bfq_stat_add(&stats->empty_time, now - stats->start_empty_time); bfqg_stats_clear_empty(stats); } void bfqg_stats_update_dequeue(struct bfq_group *bfqg) { bfq_stat_add(&bfqg->stats.dequeue, 1); } void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg) { struct bfqg_stats *stats = &bfqg->stats; if (blkg_rwstat_total(&stats->queued)) return; /* * group is already marked empty. This can happen if bfqq got new * request in parent group and moved to this group while being added * to service tree. Just ignore the event and move on. */ if (bfqg_stats_empty(stats)) return; stats->start_empty_time = blk_time_get_ns(); bfqg_stats_mark_empty(stats); } void bfqg_stats_update_idle_time(struct bfq_group *bfqg) { struct bfqg_stats *stats = &bfqg->stats; if (bfqg_stats_idling(stats)) { u64 now = blk_time_get_ns(); if (now > stats->start_idle_time) bfq_stat_add(&stats->idle_time, now - stats->start_idle_time); bfqg_stats_clear_idling(stats); } } void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg) { struct bfqg_stats *stats = &bfqg->stats; stats->start_idle_time = blk_time_get_ns(); bfqg_stats_mark_idling(stats); } void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg) { struct bfqg_stats *stats = &bfqg->stats; bfq_stat_add(&stats->avg_queue_size_sum, blkg_rwstat_total(&stats->queued)); bfq_stat_add(&stats->avg_queue_size_samples, 1); bfqg_stats_update_group_wait_time(stats); } void bfqg_stats_update_io_add(struct bfq_group *bfqg, struct bfq_queue *bfqq, blk_opf_t opf) { blkg_rwstat_add(&bfqg->stats.queued, opf, 1); bfqg_stats_end_empty_time(&bfqg->stats); if (!(bfqq == bfqg->bfqd->in_service_queue)) bfqg_stats_set_start_group_wait_time(bfqg, bfqq_group(bfqq)); } void bfqg_stats_update_io_remove(struct bfq_group *bfqg, blk_opf_t opf) { blkg_rwstat_add(&bfqg->stats.queued, opf, -1); } void bfqg_stats_update_io_merged(struct bfq_group *bfqg, blk_opf_t opf) { blkg_rwstat_add(&bfqg->stats.merged, opf, 1); } void bfqg_stats_update_completion(struct bfq_group *bfqg, u64 start_time_ns, u64 io_start_time_ns, blk_opf_t opf) { struct bfqg_stats *stats = &bfqg->stats; u64 now = blk_time_get_ns(); if (now > io_start_time_ns) blkg_rwstat_add(&stats->service_time, opf, now - io_start_time_ns); if (io_start_time_ns > start_time_ns) blkg_rwstat_add(&stats->wait_time, opf, io_start_time_ns - start_time_ns); } #else /* CONFIG_BFQ_CGROUP_DEBUG */ void bfqg_stats_update_io_remove(struct bfq_group *bfqg, blk_opf_t opf) { } void bfqg_stats_update_io_merged(struct bfq_group *bfqg, blk_opf_t opf) { } void bfqg_stats_update_completion(struct bfq_group *bfqg, u64 start_time_ns, u64 io_start_time_ns, blk_opf_t opf) { } void bfqg_stats_update_dequeue(struct bfq_group *bfqg) { } void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg) { } #endif /* CONFIG_BFQ_CGROUP_DEBUG */ #ifdef CONFIG_BFQ_GROUP_IOSCHED /* * blk-cgroup policy-related handlers * The following functions help in converting between blk-cgroup * internal structures and BFQ-specific structures. */ static struct bfq_group *pd_to_bfqg(struct blkg_policy_data *pd) { return pd ? container_of(pd, struct bfq_group, pd) : NULL; } struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg) { return pd_to_blkg(&bfqg->pd); } static struct bfq_group *blkg_to_bfqg(struct blkcg_gq *blkg) { return pd_to_bfqg(blkg_to_pd(blkg, &blkcg_policy_bfq)); } /* * bfq_group handlers * The following functions help in navigating the bfq_group hierarchy * by allowing to find the parent of a bfq_group or the bfq_group * associated to a bfq_queue. */ static struct bfq_group *bfqg_parent(struct bfq_group *bfqg) { struct blkcg_gq *pblkg = bfqg_to_blkg(bfqg)->parent; return pblkg ? blkg_to_bfqg(pblkg) : NULL; } struct bfq_group *bfqq_group(struct bfq_queue *bfqq) { struct bfq_entity *group_entity = bfqq->entity.parent; return group_entity ? container_of(group_entity, struct bfq_group, entity) : bfqq->bfqd->root_group; } /* * The following two functions handle get and put of a bfq_group by * wrapping the related blk-cgroup hooks. */ static void bfqg_get(struct bfq_group *bfqg) { refcount_inc(&bfqg->ref); } static void bfqg_put(struct bfq_group *bfqg) { if (refcount_dec_and_test(&bfqg->ref)) kfree(bfqg); } static void bfqg_and_blkg_get(struct bfq_group *bfqg) { /* see comments in bfq_bic_update_cgroup for why refcounting bfqg */ bfqg_get(bfqg); blkg_get(bfqg_to_blkg(bfqg)); } void bfqg_and_blkg_put(struct bfq_group *bfqg) { blkg_put(bfqg_to_blkg(bfqg)); bfqg_put(bfqg); } void bfqg_stats_update_legacy_io(struct request_queue *q, struct request *rq) { struct bfq_group *bfqg = blkg_to_bfqg(rq->bio->bi_blkg); if (!bfqg) return; blkg_rwstat_add(&bfqg->stats.bytes, rq->cmd_flags, blk_rq_bytes(rq)); blkg_rwstat_add(&bfqg->stats.ios, rq->cmd_flags, 1); } /* @stats = 0 */ static void bfqg_stats_reset(struct bfqg_stats *stats) { #ifdef CONFIG_BFQ_CGROUP_DEBUG /* queued stats shouldn't be cleared */ blkg_rwstat_reset(&stats->merged); blkg_rwstat_reset(&stats->service_time); blkg_rwstat_reset(&stats->wait_time); bfq_stat_reset(&stats->time); bfq_stat_reset(&stats->avg_queue_size_sum); bfq_stat_reset(&stats->avg_queue_size_samples); bfq_stat_reset(&stats->dequeue); bfq_stat_reset(&stats->group_wait_time); bfq_stat_reset(&stats->idle_time); bfq_stat_reset(&stats->empty_time); #endif } /* @to += @from */ static void bfqg_stats_add_aux(struct bfqg_stats *to, struct bfqg_stats *from) { if (!to || !from) return; #ifdef CONFIG_BFQ_CGROUP_DEBUG /* queued stats shouldn't be cleared */ blkg_rwstat_add_aux(&to->merged, &from->merged); blkg_rwstat_add_aux(&to->service_time, &from->service_time); blkg_rwstat_add_aux(&to->wait_time, &from->wait_time); bfq_stat_add_aux(&from->time, &from->time); bfq_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum); bfq_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples); bfq_stat_add_aux(&to->dequeue, &from->dequeue); bfq_stat_add_aux(&to->group_wait_time, &from->group_wait_time); bfq_stat_add_aux(&to->idle_time, &from->idle_time); bfq_stat_add_aux(&to->empty_time, &from->empty_time); #endif } /* * Transfer @bfqg's stats to its parent's aux counts so that the ancestors' * recursive stats can still account for the amount used by this bfqg after * it's gone. */ static void bfqg_stats_xfer_dead(struct bfq_group *bfqg) { struct bfq_group *parent; if (!bfqg) /* root_group */ return; parent = bfqg_parent(bfqg); lockdep_assert_held(&bfqg_to_blkg(bfqg)->q->queue_lock); if (unlikely(!parent)) return; bfqg_stats_add_aux(&parent->stats, &bfqg->stats); bfqg_stats_reset(&bfqg->stats); } void bfq_init_entity(struct bfq_entity *entity, struct bfq_group *bfqg) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); entity->weight = entity->new_weight; entity->orig_weight = entity->new_weight; if (bfqq) { bfqq->ioprio = bfqq->new_ioprio; bfqq->ioprio_class = bfqq->new_ioprio_class; /* * Make sure that bfqg and its associated blkg do not * disappear before entity. */ bfqg_and_blkg_get(bfqg); } entity->parent = bfqg->my_entity; /* NULL for root group */ entity->sched_data = &bfqg->sched_data; } static void bfqg_stats_exit(struct bfqg_stats *stats) { blkg_rwstat_exit(&stats->bytes); blkg_rwstat_exit(&stats->ios); #ifdef CONFIG_BFQ_CGROUP_DEBUG blkg_rwstat_exit(&stats->merged); blkg_rwstat_exit(&stats->service_time); blkg_rwstat_exit(&stats->wait_time); blkg_rwstat_exit(&stats->queued); bfq_stat_exit(&stats->time); bfq_stat_exit(&stats->avg_queue_size_sum); bfq_stat_exit(&stats->avg_queue_size_samples); bfq_stat_exit(&stats->dequeue); bfq_stat_exit(&stats->group_wait_time); bfq_stat_exit(&stats->idle_time); bfq_stat_exit(&stats->empty_time); #endif } static int bfqg_stats_init(struct bfqg_stats *stats, gfp_t gfp) { if (blkg_rwstat_init(&stats->bytes, gfp) || blkg_rwstat_init(&stats->ios, gfp)) goto error; #ifdef CONFIG_BFQ_CGROUP_DEBUG if (blkg_rwstat_init(&stats->merged, gfp) || blkg_rwstat_init(&stats->service_time, gfp) || blkg_rwstat_init(&stats->wait_time, gfp) || blkg_rwstat_init(&stats->queued, gfp) || bfq_stat_init(&stats->time, gfp) || bfq_stat_init(&stats->avg_queue_size_sum, gfp) || bfq_stat_init(&stats->avg_queue_size_samples, gfp) || bfq_stat_init(&stats->dequeue, gfp) || bfq_stat_init(&stats->group_wait_time, gfp) || bfq_stat_init(&stats->idle_time, gfp) || bfq_stat_init(&stats->empty_time, gfp)) goto error; #endif return 0; error: bfqg_stats_exit(stats); return -ENOMEM; } static struct bfq_group_data *cpd_to_bfqgd(struct blkcg_policy_data *cpd) { return cpd ? container_of(cpd, struct bfq_group_data, pd) : NULL; } static struct bfq_group_data *blkcg_to_bfqgd(struct blkcg *blkcg) { return cpd_to_bfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_bfq)); } static struct blkcg_policy_data *bfq_cpd_alloc(gfp_t gfp) { struct bfq_group_data *bgd; bgd = kzalloc(sizeof(*bgd), gfp); if (!bgd) return NULL; bgd->weight = CGROUP_WEIGHT_DFL; return &bgd->pd; } static void bfq_cpd_free(struct blkcg_policy_data *cpd) { kfree(cpd_to_bfqgd(cpd)); } static struct blkg_policy_data *bfq_pd_alloc(struct gendisk *disk, struct blkcg *blkcg, gfp_t gfp) { struct bfq_group *bfqg; bfqg = kzalloc_node(sizeof(*bfqg), gfp, disk->node_id); if (!bfqg) return NULL; if (bfqg_stats_init(&bfqg->stats, gfp)) { kfree(bfqg); return NULL; } /* see comments in bfq_bic_update_cgroup for why refcounting */ refcount_set(&bfqg->ref, 1); return &bfqg->pd; } static void bfq_pd_init(struct blkg_policy_data *pd) { struct blkcg_gq *blkg = pd_to_blkg(pd); struct bfq_group *bfqg = blkg_to_bfqg(blkg); struct bfq_data *bfqd = blkg->q->elevator->elevator_data; struct bfq_entity *entity = &bfqg->entity; struct bfq_group_data *d = blkcg_to_bfqgd(blkg->blkcg); entity->orig_weight = entity->weight = entity->new_weight = d->weight; entity->my_sched_data = &bfqg->sched_data; entity->last_bfqq_created = NULL; bfqg->my_entity = entity; /* * the root_group's will be set to NULL * in bfq_init_queue() */ bfqg->bfqd = bfqd; bfqg->active_entities = 0; bfqg->num_queues_with_pending_reqs = 0; bfqg->rq_pos_tree = RB_ROOT; } static void bfq_pd_free(struct blkg_policy_data *pd) { struct bfq_group *bfqg = pd_to_bfqg(pd); bfqg_stats_exit(&bfqg->stats); bfqg_put(bfqg); } static void bfq_pd_reset_stats(struct blkg_policy_data *pd) { struct bfq_group *bfqg = pd_to_bfqg(pd); bfqg_stats_reset(&bfqg->stats); } static void bfq_group_set_parent(struct bfq_group *bfqg, struct bfq_group *parent) { struct bfq_entity *entity; entity = &bfqg->entity; entity->parent = parent->my_entity; entity->sched_data = &parent->sched_data; } static void bfq_link_bfqg(struct bfq_data *bfqd, struct bfq_group *bfqg) { struct bfq_group *parent; struct bfq_entity *entity; /* * Update chain of bfq_groups as we might be handling a leaf group * which, along with some of its relatives, has not been hooked yet * to the private hierarchy of BFQ. */ entity = &bfqg->entity; for_each_entity(entity) { struct bfq_group *curr_bfqg = container_of(entity, struct bfq_group, entity); if (curr_bfqg != bfqd->root_group) { parent = bfqg_parent(curr_bfqg); if (!parent) parent = bfqd->root_group; bfq_group_set_parent(curr_bfqg, parent); } } } struct bfq_group *bfq_bio_bfqg(struct bfq_data *bfqd, struct bio *bio) { struct blkcg_gq *blkg = bio->bi_blkg; struct bfq_group *bfqg; while (blkg) { if (!blkg->online) { blkg = blkg->parent; continue; } bfqg = blkg_to_bfqg(blkg); if (bfqg->pd.online) { bio_associate_blkg_from_css(bio, &blkg->blkcg->css); return bfqg; } blkg = blkg->parent; } bio_associate_blkg_from_css(bio, &bfqg_to_blkg(bfqd->root_group)->blkcg->css); return bfqd->root_group; } /** * bfq_bfqq_move - migrate @bfqq to @bfqg. * @bfqd: queue descriptor. * @bfqq: the queue to move. * @bfqg: the group to move to. * * Move @bfqq to @bfqg, deactivating it from its old group and reactivating * it on the new one. Avoid putting the entity on the old group idle tree. * * Must be called under the scheduler lock, to make sure that the blkg * owning @bfqg does not disappear (see comments in * bfq_bic_update_cgroup on guaranteeing the consistency of blkg * objects). */ void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq, struct bfq_group *bfqg) { struct bfq_entity *entity = &bfqq->entity; struct bfq_group *old_parent = bfqq_group(bfqq); bool has_pending_reqs = false; /* * No point to move bfqq to the same group, which can happen when * root group is offlined */ if (old_parent == bfqg) return; /* * oom_bfqq is not allowed to move, oom_bfqq will hold ref to root_group * until elevator exit. */ if (bfqq == &bfqd->oom_bfqq) return; /* * Get extra reference to prevent bfqq from being freed in * next possible expire or deactivate. */ bfqq->ref++; if (entity->in_groups_with_pending_reqs) { has_pending_reqs = true; bfq_del_bfqq_in_groups_with_pending_reqs(bfqq); } /* If bfqq is empty, then bfq_bfqq_expire also invokes * bfq_del_bfqq_busy, thereby removing bfqq and its entity * from data structures related to current group. Otherwise we * need to remove bfqq explicitly with bfq_deactivate_bfqq, as * we do below. */ if (bfqq == bfqd->in_service_queue) bfq_bfqq_expire(bfqd, bfqd->in_service_queue, false, BFQQE_PREEMPTED); if (bfq_bfqq_busy(bfqq)) bfq_deactivate_bfqq(bfqd, bfqq, false, false); else if (entity->on_st_or_in_serv) bfq_put_idle_entity(bfq_entity_service_tree(entity), entity); bfqg_and_blkg_put(old_parent); bfq_reassign_last_bfqq(bfqq, NULL); entity->parent = bfqg->my_entity; entity->sched_data = &bfqg->sched_data; /* pin down bfqg and its associated blkg */ bfqg_and_blkg_get(bfqg); if (has_pending_reqs) bfq_add_bfqq_in_groups_with_pending_reqs(bfqq); if (bfq_bfqq_busy(bfqq)) { if (unlikely(!bfqd->nonrot_with_queueing)) bfq_pos_tree_add_move(bfqd, bfqq); bfq_activate_bfqq(bfqd, bfqq); } if (!bfqd->in_service_queue && !bfqd->tot_rq_in_driver) bfq_schedule_dispatch(bfqd); /* release extra ref taken above, bfqq may happen to be freed now */ bfq_put_queue(bfqq); } static void bfq_sync_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *sync_bfqq, struct bfq_io_cq *bic, struct bfq_group *bfqg, unsigned int act_idx) { struct bfq_queue *bfqq; if (!sync_bfqq->new_bfqq && !bfq_bfqq_coop(sync_bfqq)) { /* We are the only user of this bfqq, just move it */ if (sync_bfqq->entity.sched_data != &bfqg->sched_data) bfq_bfqq_move(bfqd, sync_bfqq, bfqg); return; } /* * The queue was merged to a different queue. Check * that the merge chain still belongs to the same * cgroup. */ for (bfqq = sync_bfqq; bfqq; bfqq = bfqq->new_bfqq) if (bfqq->entity.sched_data != &bfqg->sched_data) break; if (bfqq) { /* * Some queue changed cgroup so the merge is not valid * anymore. We cannot easily just cancel the merge (by * clearing new_bfqq) as there may be other processes * using this queue and holding refs to all queues * below sync_bfqq->new_bfqq. Similarly if the merge * already happened, we need to detach from bfqq now * so that we cannot merge bio to a request from the * old cgroup. */ bfq_put_cooperator(sync_bfqq); bic_set_bfqq(bic, NULL, true, act_idx); } } /** * __bfq_bic_change_cgroup - move @bic to @bfqg. * @bfqd: the queue descriptor. * @bic: the bic to move. * @bfqg: the group to move to. * * Move bic to blkcg, assuming that bfqd->lock is held; which makes * sure that the reference to cgroup is valid across the call (see * comments in bfq_bic_update_cgroup on this issue) */ static void __bfq_bic_change_cgroup(struct bfq_data *bfqd, struct bfq_io_cq *bic, struct bfq_group *bfqg) { unsigned int act_idx; for (act_idx = 0; act_idx < bfqd->num_actuators; act_idx++) { struct bfq_queue *async_bfqq = bic_to_bfqq(bic, false, act_idx); struct bfq_queue *sync_bfqq = bic_to_bfqq(bic, true, act_idx); if (async_bfqq && async_bfqq->entity.sched_data != &bfqg->sched_data) { bic_set_bfqq(bic, NULL, false, act_idx); bfq_release_process_ref(bfqd, async_bfqq); } if (sync_bfqq) bfq_sync_bfqq_move(bfqd, sync_bfqq, bic, bfqg, act_idx); } } void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio) { struct bfq_data *bfqd = bic_to_bfqd(bic); struct bfq_group *bfqg = bfq_bio_bfqg(bfqd, bio); uint64_t serial_nr; serial_nr = bfqg_to_blkg(bfqg)->blkcg->css.serial_nr; /* * Check whether blkcg has changed. The condition may trigger * spuriously on a newly created cic but there's no harm. */ if (unlikely(!bfqd) || likely(bic->blkcg_serial_nr == serial_nr)) return; /* * New cgroup for this process. Make sure it is linked to bfq internal * cgroup hierarchy. */ bfq_link_bfqg(bfqd, bfqg); __bfq_bic_change_cgroup(bfqd, bic, bfqg); bic->blkcg_serial_nr = serial_nr; } /** * bfq_flush_idle_tree - deactivate any entity on the idle tree of @st. * @st: the service tree being flushed. */ static void bfq_flush_idle_tree(struct bfq_service_tree *st) { struct bfq_entity *entity = st->first_idle; for (; entity ; entity = st->first_idle) __bfq_deactivate_entity(entity, false); } /** * bfq_reparent_leaf_entity - move leaf entity to the root_group. * @bfqd: the device data structure with the root group. * @entity: the entity to move, if entity is a leaf; or the parent entity * of an active leaf entity to move, if entity is not a leaf. * @ioprio_class: I/O priority class to reparent. */ static void bfq_reparent_leaf_entity(struct bfq_data *bfqd, struct bfq_entity *entity, int ioprio_class) { struct bfq_queue *bfqq; struct bfq_entity *child_entity = entity; while (child_entity->my_sched_data) { /* leaf not reached yet */ struct bfq_sched_data *child_sd = child_entity->my_sched_data; struct bfq_service_tree *child_st = child_sd->service_tree + ioprio_class; struct rb_root *child_active = &child_st->active; child_entity = bfq_entity_of(rb_first(child_active)); if (!child_entity) child_entity = child_sd->in_service_entity; } bfqq = bfq_entity_to_bfqq(child_entity); bfq_bfqq_move(bfqd, bfqq, bfqd->root_group); } /** * bfq_reparent_active_queues - move to the root group all active queues. * @bfqd: the device data structure with the root group. * @bfqg: the group to move from. * @st: the service tree to start the search from. * @ioprio_class: I/O priority class to reparent. */ static void bfq_reparent_active_queues(struct bfq_data *bfqd, struct bfq_group *bfqg, struct bfq_service_tree *st, int ioprio_class) { struct rb_root *active = &st->active; struct bfq_entity *entity; while ((entity = bfq_entity_of(rb_first(active)))) bfq_reparent_leaf_entity(bfqd, entity, ioprio_class); if (bfqg->sched_data.in_service_entity) bfq_reparent_leaf_entity(bfqd, bfqg->sched_data.in_service_entity, ioprio_class); } /** * bfq_pd_offline - deactivate the entity associated with @pd, * and reparent its children entities. * @pd: descriptor of the policy going offline. * * blkio already grabs the queue_lock for us, so no need to use * RCU-based magic */ static void bfq_pd_offline(struct blkg_policy_data *pd) { struct bfq_service_tree *st; struct bfq_group *bfqg = pd_to_bfqg(pd); struct bfq_data *bfqd = bfqg->bfqd; struct bfq_entity *entity = bfqg->my_entity; unsigned long flags; int i; spin_lock_irqsave(&bfqd->lock, flags); if (!entity) /* root group */ goto put_async_queues; /* * Empty all service_trees belonging to this group before * deactivating the group itself. */ for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) { st = bfqg->sched_data.service_tree + i; /* * It may happen that some queues are still active * (busy) upon group destruction (if the corresponding * processes have been forced to terminate). We move * all the leaf entities corresponding to these queues * to the root_group. * Also, it may happen that the group has an entity * in service, which is disconnected from the active * tree: it must be moved, too. * There is no need to put the sync queues, as the * scheduler has taken no reference. */ bfq_reparent_active_queues(bfqd, bfqg, st, i); /* * The idle tree may still contain bfq_queues * belonging to exited task because they never * migrated to a different cgroup from the one being * destroyed now. In addition, even * bfq_reparent_active_queues() may happen to add some * entities to the idle tree. It happens if, in some * of the calls to bfq_bfqq_move() performed by * bfq_reparent_active_queues(), the queue to move is * empty and gets expired. */ bfq_flush_idle_tree(st); } __bfq_deactivate_entity(entity, false); put_async_queues: bfq_put_async_queues(bfqd, bfqg); spin_unlock_irqrestore(&bfqd->lock, flags); /* * @blkg is going offline and will be ignored by * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so * that they don't get lost. If IOs complete after this point, the * stats for them will be lost. Oh well... */ bfqg_stats_xfer_dead(bfqg); } void bfq_end_wr_async(struct bfq_data *bfqd) { struct blkcg_gq *blkg; list_for_each_entry(blkg, &bfqd->queue->blkg_list, q_node) { struct bfq_group *bfqg = blkg_to_bfqg(blkg); bfq_end_wr_async_queues(bfqd, bfqg); } bfq_end_wr_async_queues(bfqd, bfqd->root_group); } static int bfq_io_show_weight_legacy(struct seq_file *sf, void *v) { struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg); unsigned int val = 0; if (bfqgd) val = bfqgd->weight; seq_printf(sf, "%u\n", val); return 0; } static u64 bfqg_prfill_weight_device(struct seq_file *sf, struct blkg_policy_data *pd, int off) { struct bfq_group *bfqg = pd_to_bfqg(pd); if (!bfqg->entity.dev_weight) return 0; return __blkg_prfill_u64(sf, pd, bfqg->entity.dev_weight); } static int bfq_io_show_weight(struct seq_file *sf, void *v) { struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg); seq_printf(sf, "default %u\n", bfqgd->weight); blkcg_print_blkgs(sf, blkcg, bfqg_prfill_weight_device, &blkcg_policy_bfq, 0, false); return 0; } static void bfq_group_set_weight(struct bfq_group *bfqg, u64 weight, u64 dev_weight) { weight = dev_weight ?: weight; bfqg->entity.dev_weight = dev_weight; /* * Setting the prio_changed flag of the entity * to 1 with new_weight == weight would re-set * the value of the weight to its ioprio mapping. * Set the flag only if necessary. */ if ((unsigned short)weight != bfqg->entity.new_weight) { bfqg->entity.new_weight = (unsigned short)weight; /* * Make sure that the above new value has been * stored in bfqg->entity.new_weight before * setting the prio_changed flag. In fact, * this flag may be read asynchronously (in * critical sections protected by a different * lock than that held here), and finding this * flag set may cause the execution of the code * for updating parameters whose value may * depend also on bfqg->entity.new_weight (in * __bfq_entity_update_weight_prio). * This barrier makes sure that the new value * of bfqg->entity.new_weight is correctly * seen in that code. */ smp_wmb(); bfqg->entity.prio_changed = 1; } } static int bfq_io_set_weight_legacy(struct cgroup_subsys_state *css, struct cftype *cftype, u64 val) { struct blkcg *blkcg = css_to_blkcg(css); struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg); struct blkcg_gq *blkg; int ret = -ERANGE; if (val < BFQ_MIN_WEIGHT || val > BFQ_MAX_WEIGHT) return ret; ret = 0; spin_lock_irq(&blkcg->lock); bfqgd->weight = (unsigned short)val; hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { struct bfq_group *bfqg = blkg_to_bfqg(blkg); if (bfqg) bfq_group_set_weight(bfqg, val, 0); } spin_unlock_irq(&blkcg->lock); return ret; } static ssize_t bfq_io_set_device_weight(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { int ret; struct blkg_conf_ctx ctx; struct blkcg *blkcg = css_to_blkcg(of_css(of)); struct bfq_group *bfqg; u64 v; blkg_conf_init(&ctx, buf); ret = blkg_conf_prep(blkcg, &blkcg_policy_bfq, &ctx); if (ret) goto out; if (sscanf(ctx.body, "%llu", &v) == 1) { /* require "default" on dfl */ ret = -ERANGE; if (!v) goto out; } else if (!strcmp(strim(ctx.body), "default")) { v = 0; } else { ret = -EINVAL; goto out; } bfqg = blkg_to_bfqg(ctx.blkg); ret = -ERANGE; if (!v || (v >= BFQ_MIN_WEIGHT && v <= BFQ_MAX_WEIGHT)) { bfq_group_set_weight(bfqg, bfqg->entity.weight, v); ret = 0; } out: blkg_conf_exit(&ctx); return ret ?: nbytes; } static ssize_t bfq_io_set_weight(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { char *endp; int ret; u64 v; buf = strim(buf); /* "WEIGHT" or "default WEIGHT" sets the default weight */ v = simple_strtoull(buf, &endp, 0); if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) { ret = bfq_io_set_weight_legacy(of_css(of), NULL, v); return ret ?: nbytes; } return bfq_io_set_device_weight(of, buf, nbytes, off); } static int bfqg_print_rwstat(struct seq_file *sf, void *v) { blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat, &blkcg_policy_bfq, seq_cft(sf)->private, true); return 0; } static u64 bfqg_prfill_rwstat_recursive(struct seq_file *sf, struct blkg_policy_data *pd, int off) { struct blkg_rwstat_sample sum; blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_bfq, off, &sum); return __blkg_prfill_rwstat(sf, pd, &sum); } static int bfqg_print_rwstat_recursive(struct seq_file *sf, void *v) { blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), bfqg_prfill_rwstat_recursive, &blkcg_policy_bfq, seq_cft(sf)->private, true); return 0; } #ifdef CONFIG_BFQ_CGROUP_DEBUG static int bfqg_print_stat(struct seq_file *sf, void *v) { blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat, &blkcg_policy_bfq, seq_cft(sf)->private, false); return 0; } static u64 bfqg_prfill_stat_recursive(struct seq_file *sf, struct blkg_policy_data *pd, int off) { struct blkcg_gq *blkg = pd_to_blkg(pd); struct blkcg_gq *pos_blkg; struct cgroup_subsys_state *pos_css; u64 sum = 0; lockdep_assert_held(&blkg->q->queue_lock); rcu_read_lock(); blkg_for_each_descendant_pre(pos_blkg, pos_css, blkg) { struct bfq_stat *stat; if (!pos_blkg->online) continue; stat = (void *)blkg_to_pd(pos_blkg, &blkcg_policy_bfq) + off; sum += bfq_stat_read(stat) + atomic64_read(&stat->aux_cnt); } rcu_read_unlock(); return __blkg_prfill_u64(sf, pd, sum); } static int bfqg_print_stat_recursive(struct seq_file *sf, void *v) { blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), bfqg_prfill_stat_recursive, &blkcg_policy_bfq, seq_cft(sf)->private, false); return 0; } static u64 bfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd, int off) { struct bfq_group *bfqg = blkg_to_bfqg(pd->blkg); u64 sum = blkg_rwstat_total(&bfqg->stats.bytes); return __blkg_prfill_u64(sf, pd, sum >> 9); } static int bfqg_print_stat_sectors(struct seq_file *sf, void *v) { blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), bfqg_prfill_sectors, &blkcg_policy_bfq, 0, false); return 0; } static u64 bfqg_prfill_sectors_recursive(struct seq_file *sf, struct blkg_policy_data *pd, int off) { struct blkg_rwstat_sample tmp; blkg_rwstat_recursive_sum(pd->blkg, &blkcg_policy_bfq, offsetof(struct bfq_group, stats.bytes), &tmp); return __blkg_prfill_u64(sf, pd, (tmp.cnt[BLKG_RWSTAT_READ] + tmp.cnt[BLKG_RWSTAT_WRITE]) >> 9); } static int bfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v) { blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), bfqg_prfill_sectors_recursive, &blkcg_policy_bfq, 0, false); return 0; } static u64 bfqg_prfill_avg_queue_size(struct seq_file *sf, struct blkg_policy_data *pd, int off) { struct bfq_group *bfqg = pd_to_bfqg(pd); u64 samples = bfq_stat_read(&bfqg->stats.avg_queue_size_samples); u64 v = 0; if (samples) { v = bfq_stat_read(&bfqg->stats.avg_queue_size_sum); v = div64_u64(v, samples); } __blkg_prfill_u64(sf, pd, v); return 0; } /* print avg_queue_size */ static int bfqg_print_avg_queue_size(struct seq_file *sf, void *v) { blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), bfqg_prfill_avg_queue_size, &blkcg_policy_bfq, 0, false); return 0; } #endif /* CONFIG_BFQ_CGROUP_DEBUG */ struct bfq_group *bfq_create_group_hierarchy(struct bfq_data *bfqd, int node) { int ret; ret = blkcg_activate_policy(bfqd->queue->disk, &blkcg_policy_bfq); if (ret) return NULL; return blkg_to_bfqg(bfqd->queue->root_blkg); } struct blkcg_policy blkcg_policy_bfq = { .dfl_cftypes = bfq_blkg_files, .legacy_cftypes = bfq_blkcg_legacy_files, .cpd_alloc_fn = bfq_cpd_alloc, .cpd_free_fn = bfq_cpd_free, .pd_alloc_fn = bfq_pd_alloc, .pd_init_fn = bfq_pd_init, .pd_offline_fn = bfq_pd_offline, .pd_free_fn = bfq_pd_free, .pd_reset_stats_fn = bfq_pd_reset_stats, }; struct cftype bfq_blkcg_legacy_files[] = { { .name = "bfq.weight", .flags = CFTYPE_NOT_ON_ROOT, .seq_show = bfq_io_show_weight_legacy, .write_u64 = bfq_io_set_weight_legacy, }, { .name = "bfq.weight_device", .flags = CFTYPE_NOT_ON_ROOT, .seq_show = bfq_io_show_weight, .write = bfq_io_set_weight, }, /* statistics, covers only the tasks in the bfqg */ { .name = "bfq.io_service_bytes", .private = offsetof(struct bfq_group, stats.bytes), .seq_show = bfqg_print_rwstat, }, { .name = "bfq.io_serviced", .private = offsetof(struct bfq_group, stats.ios), .seq_show = bfqg_print_rwstat, }, #ifdef CONFIG_BFQ_CGROUP_DEBUG { .name = "bfq.time", .private = offsetof(struct bfq_group, stats.time), .seq_show = bfqg_print_stat, }, { .name = "bfq.sectors", .seq_show = bfqg_print_stat_sectors, }, { .name = "bfq.io_service_time", .private = offsetof(struct bfq_group, stats.service_time), .seq_show = bfqg_print_rwstat, }, { .name = "bfq.io_wait_time", .private = offsetof(struct bfq_group, stats.wait_time), .seq_show = bfqg_print_rwstat, }, { .name = "bfq.io_merged", .private = offsetof(struct bfq_group, stats.merged), .seq_show = bfqg_print_rwstat, }, { .name = "bfq.io_queued", .private = offsetof(struct bfq_group, stats.queued), .seq_show = bfqg_print_rwstat, }, #endif /* CONFIG_BFQ_CGROUP_DEBUG */ /* the same statistics which cover the bfqg and its descendants */ { .name = "bfq.io_service_bytes_recursive", .private = offsetof(struct bfq_group, stats.bytes), .seq_show = bfqg_print_rwstat_recursive, }, { .name = "bfq.io_serviced_recursive", .private = offsetof(struct bfq_group, stats.ios), .seq_show = bfqg_print_rwstat_recursive, }, #ifdef CONFIG_BFQ_CGROUP_DEBUG { .name = "bfq.time_recursive", .private = offsetof(struct bfq_group, stats.time), .seq_show = bfqg_print_stat_recursive, }, { .name = "bfq.sectors_recursive", .seq_show = bfqg_print_stat_sectors_recursive, }, { .name = "bfq.io_service_time_recursive", .private = offsetof(struct bfq_group, stats.service_time), .seq_show = bfqg_print_rwstat_recursive, }, { .name = "bfq.io_wait_time_recursive", .private = offsetof(struct bfq_group, stats.wait_time), .seq_show = bfqg_print_rwstat_recursive, }, { .name = "bfq.io_merged_recursive", .private = offsetof(struct bfq_group, stats.merged), .seq_show = bfqg_print_rwstat_recursive, }, { .name = "bfq.io_queued_recursive", .private = offsetof(struct bfq_group, stats.queued), .seq_show = bfqg_print_rwstat_recursive, }, { .name = "bfq.avg_queue_size", .seq_show = bfqg_print_avg_queue_size, }, { .name = "bfq.group_wait_time", .private = offsetof(struct bfq_group, stats.group_wait_time), .seq_show = bfqg_print_stat, }, { .name = "bfq.idle_time", .private = offsetof(struct bfq_group, stats.idle_time), .seq_show = bfqg_print_stat, }, { .name = "bfq.empty_time", .private = offsetof(struct bfq_group, stats.empty_time), .seq_show = bfqg_print_stat, }, { .name = "bfq.dequeue", .private = offsetof(struct bfq_group, stats.dequeue), .seq_show = bfqg_print_stat, }, #endif /* CONFIG_BFQ_CGROUP_DEBUG */ { } /* terminate */ }; struct cftype bfq_blkg_files[] = { { .name = "bfq.weight", .flags = CFTYPE_NOT_ON_ROOT, .seq_show = bfq_io_show_weight, .write = bfq_io_set_weight, }, {} /* terminate */ }; #else /* CONFIG_BFQ_GROUP_IOSCHED */ void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq, struct bfq_group *bfqg) {} void bfq_init_entity(struct bfq_entity *entity, struct bfq_group *bfqg) { struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); entity->weight = entity->new_weight; entity->orig_weight = entity->new_weight; if (bfqq) { bfqq->ioprio = bfqq->new_ioprio; bfqq->ioprio_class = bfqq->new_ioprio_class; } entity->sched_data = &bfqg->sched_data; } void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio) {} void bfq_end_wr_async(struct bfq_data *bfqd) { bfq_end_wr_async_queues(bfqd, bfqd->root_group); } struct bfq_group *bfq_bio_bfqg(struct bfq_data *bfqd, struct bio *bio) { return bfqd->root_group; } struct bfq_group *bfqq_group(struct bfq_queue *bfqq) { return bfqq->bfqd->root_group; } void bfqg_and_blkg_put(struct bfq_group *bfqg) {} struct bfq_group *bfq_create_group_hierarchy(struct bfq_data *bfqd, int node) { struct bfq_group *bfqg; int i; bfqg = kmalloc_node(sizeof(*bfqg), GFP_KERNEL | __GFP_ZERO, node); if (!bfqg) return NULL; for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) bfqg->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT; return bfqg; } #endif /* CONFIG_BFQ_GROUP_IOSCHED */
9999 10019 9999 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 // SPDX-License-Identifier: GPL-2.0-only /* * xsave/xrstor support. * * Author: Suresh Siddha <suresh.b.siddha@intel.com> */ #include <linux/bitops.h> #include <linux/compat.h> #include <linux/cpu.h> #include <linux/mman.h> #include <linux/nospec.h> #include <linux/pkeys.h> #include <linux/seq_file.h> #include <linux/proc_fs.h> #include <linux/vmalloc.h> #include <linux/coredump.h> #include <asm/fpu/api.h> #include <asm/fpu/regset.h> #include <asm/fpu/signal.h> #include <asm/fpu/xcr.h> #include <asm/tlbflush.h> #include <asm/prctl.h> #include <asm/elf.h> #include <uapi/asm/elf.h> #include "context.h" #include "internal.h" #include "legacy.h" #include "xstate.h" #define for_each_extended_xfeature(bit, mask) \ (bit) = FIRST_EXTENDED_XFEATURE; \ for_each_set_bit_from(bit, (unsigned long *)&(mask), 8 * sizeof(mask)) /* * Although we spell it out in here, the Processor Trace * xfeature is completely unused. We use other mechanisms * to save/restore PT state in Linux. */ static const char *xfeature_names[] = { "x87 floating point registers", "SSE registers", "AVX registers", "MPX bounds registers", "MPX CSR", "AVX-512 opmask", "AVX-512 Hi256", "AVX-512 ZMM_Hi256", "Processor Trace (unused)", "Protection Keys User registers", "PASID state", "Control-flow User registers", "Control-flow Kernel registers (unused)", "unknown xstate feature", "unknown xstate feature", "unknown xstate feature", "unknown xstate feature", "AMX Tile config", "AMX Tile data", "unknown xstate feature", }; static unsigned short xsave_cpuid_features[] __initdata = { [XFEATURE_FP] = X86_FEATURE_FPU, [XFEATURE_SSE] = X86_FEATURE_XMM, [XFEATURE_YMM] = X86_FEATURE_AVX, [XFEATURE_BNDREGS] = X86_FEATURE_MPX, [XFEATURE_BNDCSR] = X86_FEATURE_MPX, [XFEATURE_OPMASK] = X86_FEATURE_AVX512F, [XFEATURE_ZMM_Hi256] = X86_FEATURE_AVX512F, [XFEATURE_Hi16_ZMM] = X86_FEATURE_AVX512F, [XFEATURE_PT_UNIMPLEMENTED_SO_FAR] = X86_FEATURE_INTEL_PT, [XFEATURE_PKRU] = X86_FEATURE_OSPKE, [XFEATURE_PASID] = X86_FEATURE_ENQCMD, [XFEATURE_CET_USER] = X86_FEATURE_SHSTK, [XFEATURE_XTILE_CFG] = X86_FEATURE_AMX_TILE, [XFEATURE_XTILE_DATA] = X86_FEATURE_AMX_TILE, }; static unsigned int xstate_offsets[XFEATURE_MAX] __ro_after_init = { [ 0 ... XFEATURE_MAX - 1] = -1}; static unsigned int xstate_sizes[XFEATURE_MAX] __ro_after_init = { [ 0 ... XFEATURE_MAX - 1] = -1}; static unsigned int xstate_flags[XFEATURE_MAX] __ro_after_init; #define XSTATE_FLAG_SUPERVISOR BIT(0) #define XSTATE_FLAG_ALIGNED64 BIT(1) /* * Return whether the system supports a given xfeature. * * Also return the name of the (most advanced) feature that the caller requested: */ int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name) { u64 xfeatures_missing = xfeatures_needed & ~fpu_kernel_cfg.max_features; if (unlikely(feature_name)) { long xfeature_idx, max_idx; u64 xfeatures_print; /* * So we use FLS here to be able to print the most advanced * feature that was requested but is missing. So if a driver * asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the * missing AVX feature - this is the most informative message * to users: */ if (xfeatures_missing) xfeatures_print = xfeatures_missing; else xfeatures_print = xfeatures_needed; xfeature_idx = fls64(xfeatures_print)-1; max_idx = ARRAY_SIZE(xfeature_names)-1; xfeature_idx = min(xfeature_idx, max_idx); *feature_name = xfeature_names[xfeature_idx]; } if (xfeatures_missing) return 0; return 1; } EXPORT_SYMBOL_GPL(cpu_has_xfeatures); static bool xfeature_is_aligned64(int xfeature_nr) { return xstate_flags[xfeature_nr] & XSTATE_FLAG_ALIGNED64; } static bool xfeature_is_supervisor(int xfeature_nr) { return xstate_flags[xfeature_nr] & XSTATE_FLAG_SUPERVISOR; } static unsigned int xfeature_get_offset(u64 xcomp_bv, int xfeature) { unsigned int offs, i; /* * Non-compacted format and legacy features use the cached fixed * offsets. */ if (!cpu_feature_enabled(X86_FEATURE_XCOMPACTED) || xfeature <= XFEATURE_SSE) return xstate_offsets[xfeature]; /* * Compacted format offsets depend on the actual content of the * compacted xsave area which is determined by the xcomp_bv header * field. */ offs = FXSAVE_SIZE + XSAVE_HDR_SIZE; for_each_extended_xfeature(i, xcomp_bv) { if (xfeature_is_aligned64(i)) offs = ALIGN(offs, 64); if (i == xfeature) break; offs += xstate_sizes[i]; } return offs; } /* * Enable the extended processor state save/restore feature. * Called once per CPU onlining. */ void fpu__init_cpu_xstate(void) { if (!boot_cpu_has(X86_FEATURE_XSAVE) || !fpu_kernel_cfg.max_features) return; cr4_set_bits(X86_CR4_OSXSAVE); /* * Must happen after CR4 setup and before xsetbv() to allow KVM * lazy passthrough. Write independent of the dynamic state static * key as that does not work on the boot CPU. This also ensures * that any stale state is wiped out from XFD. Reset the per CPU * xfd cache too. */ if (cpu_feature_enabled(X86_FEATURE_XFD)) xfd_set_state(init_fpstate.xfd); /* * XCR_XFEATURE_ENABLED_MASK (aka. XCR0) sets user features * managed by XSAVE{C, OPT, S} and XRSTOR{S}. Only XSAVE user * states can be set here. */ xsetbv(XCR_XFEATURE_ENABLED_MASK, fpu_user_cfg.max_features); /* * MSR_IA32_XSS sets supervisor states managed by XSAVES. */ if (boot_cpu_has(X86_FEATURE_XSAVES)) { wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | xfeatures_mask_independent()); } } static bool xfeature_enabled(enum xfeature xfeature) { return fpu_kernel_cfg.max_features & BIT_ULL(xfeature); } /* * Record the offsets and sizes of various xstates contained * in the XSAVE state memory layout. */ static void __init setup_xstate_cache(void) { u32 eax, ebx, ecx, edx, i; /* start at the beginning of the "extended state" */ unsigned int last_good_offset = offsetof(struct xregs_state, extended_state_area); /* * The FP xstates and SSE xstates are legacy states. They are always * in the fixed offsets in the xsave area in either compacted form * or standard form. */ xstate_offsets[XFEATURE_FP] = 0; xstate_sizes[XFEATURE_FP] = offsetof(struct fxregs_state, xmm_space); xstate_offsets[XFEATURE_SSE] = xstate_sizes[XFEATURE_FP]; xstate_sizes[XFEATURE_SSE] = sizeof_field(struct fxregs_state, xmm_space); for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) { cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx); xstate_sizes[i] = eax; xstate_flags[i] = ecx; /* * If an xfeature is supervisor state, the offset in EBX is * invalid, leave it to -1. */ if (xfeature_is_supervisor(i)) continue; xstate_offsets[i] = ebx; /* * In our xstate size checks, we assume that the highest-numbered * xstate feature has the highest offset in the buffer. Ensure * it does. */ WARN_ONCE(last_good_offset > xstate_offsets[i], "x86/fpu: misordered xstate at %d\n", last_good_offset); last_good_offset = xstate_offsets[i]; } } static void __init print_xstate_feature(u64 xstate_mask) { const char *feature_name; if (cpu_has_xfeatures(xstate_mask, &feature_name)) pr_info("x86/fpu: Supporting XSAVE feature 0x%03Lx: '%s'\n", xstate_mask, feature_name); } /* * Print out all the supported xstate features: */ static void __init print_xstate_features(void) { print_xstate_feature(XFEATURE_MASK_FP); print_xstate_feature(XFEATURE_MASK_SSE); print_xstate_feature(XFEATURE_MASK_YMM); print_xstate_feature(XFEATURE_MASK_BNDREGS); print_xstate_feature(XFEATURE_MASK_BNDCSR); print_xstate_feature(XFEATURE_MASK_OPMASK); print_xstate_feature(XFEATURE_MASK_ZMM_Hi256); print_xstate_feature(XFEATURE_MASK_Hi16_ZMM); print_xstate_feature(XFEATURE_MASK_PKRU); print_xstate_feature(XFEATURE_MASK_PASID); print_xstate_feature(XFEATURE_MASK_CET_USER); print_xstate_feature(XFEATURE_MASK_XTILE_CFG); print_xstate_feature(XFEATURE_MASK_XTILE_DATA); } /* * This check is important because it is easy to get XSTATE_* * confused with XSTATE_BIT_*. */ #define CHECK_XFEATURE(nr) do { \ WARN_ON(nr < FIRST_EXTENDED_XFEATURE); \ WARN_ON(nr >= XFEATURE_MAX); \ } while (0) /* * Print out xstate component offsets and sizes */ static void __init print_xstate_offset_size(void) { int i; for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) { pr_info("x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n", i, xfeature_get_offset(fpu_kernel_cfg.max_features, i), i, xstate_sizes[i]); } } /* * This function is called only during boot time when x86 caps are not set * up and alternative can not be used yet. */ static __init void os_xrstor_booting(struct xregs_state *xstate) { u64 mask = fpu_kernel_cfg.max_features & XFEATURE_MASK_FPSTATE; u32 lmask = mask; u32 hmask = mask >> 32; int err; if (cpu_feature_enabled(X86_FEATURE_XSAVES)) XSTATE_OP(XRSTORS, xstate, lmask, hmask, err); else XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); /* * We should never fault when copying from a kernel buffer, and the FPU * state we set at boot time should be valid. */ WARN_ON_FPU(err); } /* * All supported features have either init state all zeros or are * handled in setup_init_fpu() individually. This is an explicit * feature list and does not use XFEATURE_MASK*SUPPORTED to catch * newly added supported features at build time and make people * actually look at the init state for the new feature. */ #define XFEATURES_INIT_FPSTATE_HANDLED \ (XFEATURE_MASK_FP | \ XFEATURE_MASK_SSE | \ XFEATURE_MASK_YMM | \ XFEATURE_MASK_OPMASK | \ XFEATURE_MASK_ZMM_Hi256 | \ XFEATURE_MASK_Hi16_ZMM | \ XFEATURE_MASK_PKRU | \ XFEATURE_MASK_BNDREGS | \ XFEATURE_MASK_BNDCSR | \ XFEATURE_MASK_PASID | \ XFEATURE_MASK_CET_USER | \ XFEATURE_MASK_XTILE) /* * setup the xstate image representing the init state */ static void __init setup_init_fpu_buf(void) { BUILD_BUG_ON((XFEATURE_MASK_USER_SUPPORTED | XFEATURE_MASK_SUPERVISOR_SUPPORTED) != XFEATURES_INIT_FPSTATE_HANDLED); if (!boot_cpu_has(X86_FEATURE_XSAVE)) return; print_xstate_features(); xstate_init_xcomp_bv(&init_fpstate.regs.xsave, init_fpstate.xfeatures); /* * Init all the features state with header.xfeatures being 0x0 */ os_xrstor_booting(&init_fpstate.regs.xsave); /* * All components are now in init state. Read the state back so * that init_fpstate contains all non-zero init state. This only * works with XSAVE, but not with XSAVEOPT and XSAVEC/S because * those use the init optimization which skips writing data for * components in init state. * * XSAVE could be used, but that would require to reshuffle the * data when XSAVEC/S is available because XSAVEC/S uses xstate * compaction. But doing so is a pointless exercise because most * components have an all zeros init state except for the legacy * ones (FP and SSE). Those can be saved with FXSAVE into the * legacy area. Adding new features requires to ensure that init * state is all zeroes or if not to add the necessary handling * here. */ fxsave(&init_fpstate.regs.fxsave); } int xfeature_size(int xfeature_nr) { u32 eax, ebx, ecx, edx; CHECK_XFEATURE(xfeature_nr); cpuid_count(XSTATE_CPUID, xfeature_nr, &eax, &ebx, &ecx, &edx); return eax; } /* Validate an xstate header supplied by userspace (ptrace or sigreturn) */ static int validate_user_xstate_header(const struct xstate_header *hdr, struct fpstate *fpstate) { /* No unknown or supervisor features may be set */ if (hdr->xfeatures & ~fpstate->user_xfeatures) return -EINVAL; /* Userspace must use the uncompacted format */ if (hdr->xcomp_bv) return -EINVAL; /* * If 'reserved' is shrunken to add a new field, make sure to validate * that new field here! */ BUILD_BUG_ON(sizeof(hdr->reserved) != 48); /* No reserved bits may be set */ if (memchr_inv(hdr->reserved, 0, sizeof(hdr->reserved))) return -EINVAL; return 0; } static void __init __xstate_dump_leaves(void) { int i; u32 eax, ebx, ecx, edx; static int should_dump = 1; if (!should_dump) return; should_dump = 0; /* * Dump out a few leaves past the ones that we support * just in case there are some goodies up there */ for (i = 0; i < XFEATURE_MAX + 10; i++) { cpuid_count(XSTATE_CPUID, i, &eax, &ebx, &ecx, &edx); pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n", XSTATE_CPUID, i, eax, ebx, ecx, edx); } } #define XSTATE_WARN_ON(x, fmt, ...) do { \ if (WARN_ONCE(x, "XSAVE consistency problem: " fmt, ##__VA_ARGS__)) { \ __xstate_dump_leaves(); \ } \ } while (0) #define XCHECK_SZ(sz, nr, __struct) ({ \ if (WARN_ONCE(sz != sizeof(__struct), \ "[%s]: struct is %zu bytes, cpu state %d bytes\n", \ xfeature_names[nr], sizeof(__struct), sz)) { \ __xstate_dump_leaves(); \ } \ true; \ }) /** * check_xtile_data_against_struct - Check tile data state size. * * Calculate the state size by multiplying the single tile size which is * recorded in a C struct, and the number of tiles that the CPU informs. * Compare the provided size with the calculation. * * @size: The tile data state size * * Returns: 0 on success, -EINVAL on mismatch. */ static int __init check_xtile_data_against_struct(int size) { u32 max_palid, palid, state_size; u32 eax, ebx, ecx, edx; u16 max_tile; /* * Check the maximum palette id: * eax: the highest numbered palette subleaf. */ cpuid_count(TILE_CPUID, 0, &max_palid, &ebx, &ecx, &edx); /* * Cross-check each tile size and find the maximum number of * supported tiles. */ for (palid = 1, max_tile = 0; palid <= max_palid; palid++) { u16 tile_size, max; /* * Check the tile size info: * eax[31:16]: bytes per title * ebx[31:16]: the max names (or max number of tiles) */ cpuid_count(TILE_CPUID, palid, &eax, &ebx, &edx, &edx); tile_size = eax >> 16; max = ebx >> 16; if (tile_size != sizeof(struct xtile_data)) { pr_err("%s: struct is %zu bytes, cpu xtile %d bytes\n", __stringify(XFEATURE_XTILE_DATA), sizeof(struct xtile_data), tile_size); __xstate_dump_leaves(); return -EINVAL; } if (max > max_tile) max_tile = max; } state_size = sizeof(struct xtile_data) * max_tile; if (size != state_size) { pr_err("%s: calculated size is %u bytes, cpu state %d bytes\n", __stringify(XFEATURE_XTILE_DATA), state_size, size); __xstate_dump_leaves(); return -EINVAL; } return 0; } /* * We have a C struct for each 'xstate'. We need to ensure * that our software representation matches what the CPU * tells us about the state's size. */ static bool __init check_xstate_against_struct(int nr) { /* * Ask the CPU for the size of the state. */ int sz = xfeature_size(nr); /* * Match each CPU state with the corresponding software * structure. */ switch (nr) { case XFEATURE_YMM: return XCHECK_SZ(sz, nr, struct ymmh_struct); case XFEATURE_BNDREGS: return XCHECK_SZ(sz, nr, struct mpx_bndreg_state); case XFEATURE_BNDCSR: return XCHECK_SZ(sz, nr, struct mpx_bndcsr_state); case XFEATURE_OPMASK: return XCHECK_SZ(sz, nr, struct avx_512_opmask_state); case XFEATURE_ZMM_Hi256: return XCHECK_SZ(sz, nr, struct avx_512_zmm_uppers_state); case XFEATURE_Hi16_ZMM: return XCHECK_SZ(sz, nr, struct avx_512_hi16_state); case XFEATURE_PKRU: return XCHECK_SZ(sz, nr, struct pkru_state); case XFEATURE_PASID: return XCHECK_SZ(sz, nr, struct ia32_pasid_state); case XFEATURE_XTILE_CFG: return XCHECK_SZ(sz, nr, struct xtile_cfg); case XFEATURE_CET_USER: return XCHECK_SZ(sz, nr, struct cet_user_state); case XFEATURE_XTILE_DATA: check_xtile_data_against_struct(sz); return true; default: XSTATE_WARN_ON(1, "No structure for xstate: %d\n", nr); return false; } return true; } static unsigned int xstate_calculate_size(u64 xfeatures, bool compacted) { unsigned int topmost = fls64(xfeatures) - 1; unsigned int offset = xstate_offsets[topmost]; if (topmost <= XFEATURE_SSE) return sizeof(struct xregs_state); if (compacted) offset = xfeature_get_offset(xfeatures, topmost); return offset + xstate_sizes[topmost]; } /* * This essentially double-checks what the cpu told us about * how large the XSAVE buffer needs to be. We are recalculating * it to be safe. * * Independent XSAVE features allocate their own buffers and are not * covered by these checks. Only the size of the buffer for task->fpu * is checked here. */ static bool __init paranoid_xstate_size_valid(unsigned int kernel_size) { bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED); bool xsaves = cpu_feature_enabled(X86_FEATURE_XSAVES); unsigned int size = FXSAVE_SIZE + XSAVE_HDR_SIZE; int i; for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) { if (!check_xstate_against_struct(i)) return false; /* * Supervisor state components can be managed only by * XSAVES. */ if (!xsaves && xfeature_is_supervisor(i)) { XSTATE_WARN_ON(1, "Got supervisor feature %d, but XSAVES not advertised\n", i); return false; } } size = xstate_calculate_size(fpu_kernel_cfg.max_features, compacted); XSTATE_WARN_ON(size != kernel_size, "size %u != kernel_size %u\n", size, kernel_size); return size == kernel_size; } /* * Get total size of enabled xstates in XCR0 | IA32_XSS. * * Note the SDM's wording here. "sub-function 0" only enumerates * the size of the *user* states. If we use it to size a buffer * that we use 'XSAVES' on, we could potentially overflow the * buffer because 'XSAVES' saves system states too. * * This also takes compaction into account. So this works for * XSAVEC as well. */ static unsigned int __init get_compacted_size(void) { unsigned int eax, ebx, ecx, edx; /* * - CPUID function 0DH, sub-function 1: * EBX enumerates the size (in bytes) required by * the XSAVES instruction for an XSAVE area * containing all the state components * corresponding to bits currently set in * XCR0 | IA32_XSS. * * When XSAVES is not available but XSAVEC is (virt), then there * are no supervisor states, but XSAVEC still uses compacted * format. */ cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx); return ebx; } /* * Get the total size of the enabled xstates without the independent supervisor * features. */ static unsigned int __init get_xsave_compacted_size(void) { u64 mask = xfeatures_mask_independent(); unsigned int size; if (!mask) return get_compacted_size(); /* Disable independent features. */ wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor()); /* * Ask the hardware what size is required of the buffer. * This is the size required for the task->fpu buffer. */ size = get_compacted_size(); /* Re-enable independent features so XSAVES will work on them again. */ wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | mask); return size; } static unsigned int __init get_xsave_size_user(void) { unsigned int eax, ebx, ecx, edx; /* * - CPUID function 0DH, sub-function 0: * EBX enumerates the size (in bytes) required by * the XSAVE instruction for an XSAVE area * containing all the *user* state components * corresponding to bits currently set in XCR0. */ cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx); return ebx; } static int __init init_xstate_size(void) { /* Recompute the context size for enabled features: */ unsigned int user_size, kernel_size, kernel_default_size; bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED); /* Uncompacted user space size */ user_size = get_xsave_size_user(); /* * XSAVES kernel size includes supervisor states and uses compacted * format. XSAVEC uses compacted format, but does not save * supervisor states. * * XSAVE[OPT] do not support supervisor states so kernel and user * size is identical. */ if (compacted) kernel_size = get_xsave_compacted_size(); else kernel_size = user_size; kernel_default_size = xstate_calculate_size(fpu_kernel_cfg.default_features, compacted); if (!paranoid_xstate_size_valid(kernel_size)) return -EINVAL; fpu_kernel_cfg.max_size = kernel_size; fpu_user_cfg.max_size = user_size; fpu_kernel_cfg.default_size = kernel_default_size; fpu_user_cfg.default_size = xstate_calculate_size(fpu_user_cfg.default_features, false); return 0; } /* * We enabled the XSAVE hardware, but something went wrong and * we can not use it. Disable it. */ static void __init fpu__init_disable_system_xstate(unsigned int legacy_size) { fpu_kernel_cfg.max_features = 0; cr4_clear_bits(X86_CR4_OSXSAVE); setup_clear_cpu_cap(X86_FEATURE_XSAVE); /* Restore the legacy size.*/ fpu_kernel_cfg.max_size = legacy_size; fpu_kernel_cfg.default_size = legacy_size; fpu_user_cfg.max_size = legacy_size; fpu_user_cfg.default_size = legacy_size; /* * Prevent enabling the static branch which enables writes to the * XFD MSR. */ init_fpstate.xfd = 0; fpstate_reset(&current->thread.fpu); } /* * Enable and initialize the xsave feature. * Called once per system bootup. */ void __init fpu__init_system_xstate(unsigned int legacy_size) { unsigned int eax, ebx, ecx, edx; u64 xfeatures; int err; int i; if (!boot_cpu_has(X86_FEATURE_FPU)) { pr_info("x86/fpu: No FPU detected\n"); return; } if (!boot_cpu_has(X86_FEATURE_XSAVE)) { pr_info("x86/fpu: x87 FPU will use %s\n", boot_cpu_has(X86_FEATURE_FXSR) ? "FXSAVE" : "FSAVE"); return; } if (boot_cpu_data.cpuid_level < XSTATE_CPUID) { WARN_ON_FPU(1); return; } /* * Find user xstates supported by the processor. */ cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx); fpu_kernel_cfg.max_features = eax + ((u64)edx << 32); /* * Find supervisor xstates supported by the processor. */ cpuid_count(XSTATE_CPUID, 1, &eax, &ebx, &ecx, &edx); fpu_kernel_cfg.max_features |= ecx + ((u64)edx << 32); if ((fpu_kernel_cfg.max_features & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) { /* * This indicates that something really unexpected happened * with the enumeration. Disable XSAVE and try to continue * booting without it. This is too early to BUG(). */ pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n", fpu_kernel_cfg.max_features); goto out_disable; } fpu_kernel_cfg.independent_features = fpu_kernel_cfg.max_features & XFEATURE_MASK_INDEPENDENT; /* * Clear XSAVE features that are disabled in the normal CPUID. */ for (i = 0; i < ARRAY_SIZE(xsave_cpuid_features); i++) { unsigned short cid = xsave_cpuid_features[i]; /* Careful: X86_FEATURE_FPU is 0! */ if ((i != XFEATURE_FP && !cid) || !boot_cpu_has(cid)) fpu_kernel_cfg.max_features &= ~BIT_ULL(i); } if (!cpu_feature_enabled(X86_FEATURE_XFD)) fpu_kernel_cfg.max_features &= ~XFEATURE_MASK_USER_DYNAMIC; if (!cpu_feature_enabled(X86_FEATURE_XSAVES)) fpu_kernel_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED; else fpu_kernel_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED | XFEATURE_MASK_SUPERVISOR_SUPPORTED; fpu_user_cfg.max_features = fpu_kernel_cfg.max_features; fpu_user_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED; /* Clean out dynamic features from default */ fpu_kernel_cfg.default_features = fpu_kernel_cfg.max_features; fpu_kernel_cfg.default_features &= ~XFEATURE_MASK_USER_DYNAMIC; fpu_user_cfg.default_features = fpu_user_cfg.max_features; fpu_user_cfg.default_features &= ~XFEATURE_MASK_USER_DYNAMIC; /* Store it for paranoia check at the end */ xfeatures = fpu_kernel_cfg.max_features; /* * Initialize the default XFD state in initfp_state and enable the * dynamic sizing mechanism if dynamic states are available. The * static key cannot be enabled here because this runs before * jump_label_init(). This is delayed to an initcall. */ init_fpstate.xfd = fpu_user_cfg.max_features & XFEATURE_MASK_USER_DYNAMIC; /* Set up compaction feature bit */ if (cpu_feature_enabled(X86_FEATURE_XSAVEC) || cpu_feature_enabled(X86_FEATURE_XSAVES)) setup_force_cpu_cap(X86_FEATURE_XCOMPACTED); /* Enable xstate instructions to be able to continue with initialization: */ fpu__init_cpu_xstate(); /* Cache size, offset and flags for initialization */ setup_xstate_cache(); err = init_xstate_size(); if (err) goto out_disable; /* Reset the state for the current task */ fpstate_reset(&current->thread.fpu); /* * Update info used for ptrace frames; use standard-format size and no * supervisor xstates: */ update_regset_xstate_info(fpu_user_cfg.max_size, fpu_user_cfg.max_features); /* * init_fpstate excludes dynamic states as they are large but init * state is zero. */ init_fpstate.size = fpu_kernel_cfg.default_size; init_fpstate.xfeatures = fpu_kernel_cfg.default_features; if (init_fpstate.size > sizeof(init_fpstate.regs)) { pr_warn("x86/fpu: init_fpstate buffer too small (%zu < %d), disabling XSAVE\n", sizeof(init_fpstate.regs), init_fpstate.size); goto out_disable; } setup_init_fpu_buf(); /* * Paranoia check whether something in the setup modified the * xfeatures mask. */ if (xfeatures != fpu_kernel_cfg.max_features) { pr_err("x86/fpu: xfeatures modified from 0x%016llx to 0x%016llx during init, disabling XSAVE\n", xfeatures, fpu_kernel_cfg.max_features); goto out_disable; } /* * CPU capabilities initialization runs before FPU init. So * X86_FEATURE_OSXSAVE is not set. Now that XSAVE is completely * functional, set the feature bit so depending code works. */ setup_force_cpu_cap(X86_FEATURE_OSXSAVE); print_xstate_offset_size(); pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n", fpu_kernel_cfg.max_features, fpu_kernel_cfg.max_size, boot_cpu_has(X86_FEATURE_XCOMPACTED) ? "compacted" : "standard"); return; out_disable: /* something went wrong, try to boot without any XSAVE support */ fpu__init_disable_system_xstate(legacy_size); } /* * Restore minimal FPU state after suspend: */ void fpu__resume_cpu(void) { /* * Restore XCR0 on xsave capable CPUs: */ if (cpu_feature_enabled(X86_FEATURE_XSAVE)) xsetbv(XCR_XFEATURE_ENABLED_MASK, fpu_user_cfg.max_features); /* * Restore IA32_XSS. The same CPUID bit enumerates support * of XSAVES and MSR_IA32_XSS. */ if (cpu_feature_enabled(X86_FEATURE_XSAVES)) { wrmsrl(MSR_IA32_XSS, xfeatures_mask_supervisor() | xfeatures_mask_independent()); } if (fpu_state_size_dynamic()) wrmsrl(MSR_IA32_XFD, current->thread.fpu.fpstate->xfd); } /* * Given an xstate feature nr, calculate where in the xsave * buffer the state is. Callers should ensure that the buffer * is valid. */ static void *__raw_xsave_addr(struct xregs_state *xsave, int xfeature_nr) { u64 xcomp_bv = xsave->header.xcomp_bv; if (WARN_ON_ONCE(!xfeature_enabled(xfeature_nr))) return NULL; if (cpu_feature_enabled(X86_FEATURE_XCOMPACTED)) { if (WARN_ON_ONCE(!(xcomp_bv & BIT_ULL(xfeature_nr)))) return NULL; } return (void *)xsave + xfeature_get_offset(xcomp_bv, xfeature_nr); } /* * Given the xsave area and a state inside, this function returns the * address of the state. * * This is the API that is called to get xstate address in either * standard format or compacted format of xsave area. * * Note that if there is no data for the field in the xsave buffer * this will return NULL. * * Inputs: * xstate: the thread's storage area for all FPU data * xfeature_nr: state which is defined in xsave.h (e.g. XFEATURE_FP, * XFEATURE_SSE, etc...) * Output: * address of the state in the xsave area, or NULL if the * field is not present in the xsave buffer. */ void *get_xsave_addr(struct xregs_state *xsave, int xfeature_nr) { /* * Do we even *have* xsave state? */ if (!boot_cpu_has(X86_FEATURE_XSAVE)) return NULL; /* * We should not ever be requesting features that we * have not enabled. */ if (WARN_ON_ONCE(!xfeature_enabled(xfeature_nr))) return NULL; /* * This assumes the last 'xsave*' instruction to * have requested that 'xfeature_nr' be saved. * If it did not, we might be seeing and old value * of the field in the buffer. * * This can happen because the last 'xsave' did not * request that this feature be saved (unlikely) * or because the "init optimization" caused it * to not be saved. */ if (!(xsave->header.xfeatures & BIT_ULL(xfeature_nr))) return NULL; return __raw_xsave_addr(xsave, xfeature_nr); } EXPORT_SYMBOL_GPL(get_xsave_addr); /* * Given an xstate feature nr, calculate where in the xsave buffer the state is. * The xsave buffer should be in standard format, not compacted (e.g. user mode * signal frames). */ void __user *get_xsave_addr_user(struct xregs_state __user *xsave, int xfeature_nr) { if (WARN_ON_ONCE(!xfeature_enabled(xfeature_nr))) return NULL; return (void __user *)xsave + xstate_offsets[xfeature_nr]; } #ifdef CONFIG_ARCH_HAS_PKEYS /* * This will go out and modify PKRU register to set the access * rights for @pkey to @init_val. */ int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, unsigned long init_val) { u32 old_pkru, new_pkru_bits = 0; int pkey_shift; /* * This check implies XSAVE support. OSPKE only gets * set if we enable XSAVE and we enable PKU in XCR0. */ if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) return -EINVAL; /* * This code should only be called with valid 'pkey' * values originating from in-kernel users. Complain * if a bad value is observed. */ if (WARN_ON_ONCE(pkey >= arch_max_pkey())) return -EINVAL; /* Set the bits we need in PKRU: */ if (init_val & PKEY_DISABLE_ACCESS) new_pkru_bits |= PKRU_AD_BIT; if (init_val & PKEY_DISABLE_WRITE) new_pkru_bits |= PKRU_WD_BIT; /* Shift the bits in to the correct place in PKRU for pkey: */ pkey_shift = pkey * PKRU_BITS_PER_PKEY; new_pkru_bits <<= pkey_shift; /* Get old PKRU and mask off any old bits in place: */ old_pkru = read_pkru(); old_pkru &= ~((PKRU_AD_BIT|PKRU_WD_BIT) << pkey_shift); /* Write old part along with new part: */ write_pkru(old_pkru | new_pkru_bits); return 0; } #endif /* ! CONFIG_ARCH_HAS_PKEYS */ static void copy_feature(bool from_xstate, struct membuf *to, void *xstate, void *init_xstate, unsigned int size) { membuf_write(to, from_xstate ? xstate : init_xstate, size); } /** * __copy_xstate_to_uabi_buf - Copy kernel saved xstate to a UABI buffer * @to: membuf descriptor * @fpstate: The fpstate buffer from which to copy * @xfeatures: The mask of xfeatures to save (XSAVE mode only) * @pkru_val: The PKRU value to store in the PKRU component * @copy_mode: The requested copy mode * * Converts from kernel XSAVE or XSAVES compacted format to UABI conforming * format, i.e. from the kernel internal hardware dependent storage format * to the requested @mode. UABI XSTATE is always uncompacted! * * It supports partial copy but @to.pos always starts from zero. */ void __copy_xstate_to_uabi_buf(struct membuf to, struct fpstate *fpstate, u64 xfeatures, u32 pkru_val, enum xstate_copy_mode copy_mode) { const unsigned int off_mxcsr = offsetof(struct fxregs_state, mxcsr); struct xregs_state *xinit = &init_fpstate.regs.xsave; struct xregs_state *xsave = &fpstate->regs.xsave; struct xstate_header header; unsigned int zerofrom; u64 mask; int i; memset(&header, 0, sizeof(header)); header.xfeatures = xsave->header.xfeatures; /* Mask out the feature bits depending on copy mode */ switch (copy_mode) { case XSTATE_COPY_FP: header.xfeatures &= XFEATURE_MASK_FP; break; case XSTATE_COPY_FX: header.xfeatures &= XFEATURE_MASK_FP | XFEATURE_MASK_SSE; break; case XSTATE_COPY_XSAVE: header.xfeatures &= fpstate->user_xfeatures & xfeatures; break; } /* Copy FP state up to MXCSR */ copy_feature(header.xfeatures & XFEATURE_MASK_FP, &to, &xsave->i387, &xinit->i387, off_mxcsr); /* Copy MXCSR when SSE or YMM are set in the feature mask */ copy_feature(header.xfeatures & (XFEATURE_MASK_SSE | XFEATURE_MASK_YMM), &to, &xsave->i387.mxcsr, &xinit->i387.mxcsr, MXCSR_AND_FLAGS_SIZE); /* Copy the remaining FP state */ copy_feature(header.xfeatures & XFEATURE_MASK_FP, &to, &xsave->i387.st_space, &xinit->i387.st_space, sizeof(xsave->i387.st_space)); /* Copy the SSE state - shared with YMM, but independently managed */ copy_feature(header.xfeatures & XFEATURE_MASK_SSE, &to, &xsave->i387.xmm_space, &xinit->i387.xmm_space, sizeof(xsave->i387.xmm_space)); if (copy_mode != XSTATE_COPY_XSAVE) goto out; /* Zero the padding area */ membuf_zero(&to, sizeof(xsave->i387.padding)); /* Copy xsave->i387.sw_reserved */ membuf_write(&to, xstate_fx_sw_bytes, sizeof(xsave->i387.sw_reserved)); /* Copy the user space relevant state of @xsave->header */ membuf_write(&to, &header, sizeof(header)); zerofrom = offsetof(struct xregs_state, extended_state_area); /* * This 'mask' indicates which states to copy from fpstate. * Those extended states that are not present in fpstate are * either disabled or initialized: * * In non-compacted format, disabled features still occupy * state space but there is no state to copy from in the * compacted init_fpstate. The gap tracking will zero these * states. * * The extended features have an all zeroes init state. Thus, * remove them from 'mask' to zero those features in the user * buffer instead of retrieving them from init_fpstate. */ mask = header.xfeatures; for_each_extended_xfeature(i, mask) { /* * If there was a feature or alignment gap, zero the space * in the destination buffer. */ if (zerofrom < xstate_offsets[i]) membuf_zero(&to, xstate_offsets[i] - zerofrom); if (i == XFEATURE_PKRU) { struct pkru_state pkru = {0}; /* * PKRU is not necessarily up to date in the * XSAVE buffer. Use the provided value. */ pkru.pkru = pkru_val; membuf_write(&to, &pkru, sizeof(pkru)); } else { membuf_write(&to, __raw_xsave_addr(xsave, i), xstate_sizes[i]); } /* * Keep track of the last copied state in the non-compacted * target buffer for gap zeroing. */ zerofrom = xstate_offsets[i] + xstate_sizes[i]; } out: if (to.left) membuf_zero(&to, to.left); } /** * copy_xstate_to_uabi_buf - Copy kernel saved xstate to a UABI buffer * @to: membuf descriptor * @tsk: The task from which to copy the saved xstate * @copy_mode: The requested copy mode * * Converts from kernel XSAVE or XSAVES compacted format to UABI conforming * format, i.e. from the kernel internal hardware dependent storage format * to the requested @mode. UABI XSTATE is always uncompacted! * * It supports partial copy but @to.pos always starts from zero. */ void copy_xstate_to_uabi_buf(struct membuf to, struct task_struct *tsk, enum xstate_copy_mode copy_mode) { __copy_xstate_to_uabi_buf(to, tsk->thread.fpu.fpstate, tsk->thread.fpu.fpstate->user_xfeatures, tsk->thread.pkru, copy_mode); } static int copy_from_buffer(void *dst, unsigned int offset, unsigned int size, const void *kbuf, const void __user *ubuf) { if (kbuf) { memcpy(dst, kbuf + offset, size); } else { if (copy_from_user(dst, ubuf + offset, size)) return -EFAULT; } return 0; } /** * copy_uabi_to_xstate - Copy a UABI format buffer to the kernel xstate * @fpstate: The fpstate buffer to copy to * @kbuf: The UABI format buffer, if it comes from the kernel * @ubuf: The UABI format buffer, if it comes from userspace * @pkru: The location to write the PKRU value to * * Converts from the UABI format into the kernel internal hardware * dependent format. * * This function ultimately has three different callers with distinct PKRU * behavior. * 1. When called from sigreturn the PKRU register will be restored from * @fpstate via an XRSTOR. Correctly copying the UABI format buffer to * @fpstate is sufficient to cover this case, but the caller will also * pass a pointer to the thread_struct's pkru field in @pkru and updating * it is harmless. * 2. When called from ptrace the PKRU register will be restored from the * thread_struct's pkru field. A pointer to that is passed in @pkru. * The kernel will restore it manually, so the XRSTOR behavior that resets * the PKRU register to the hardware init value (0) if the corresponding * xfeatures bit is not set is emulated here. * 3. When called from KVM the PKRU register will be restored from the vcpu's * pkru field. A pointer to that is passed in @pkru. KVM hasn't used * XRSTOR and hasn't had the PKRU resetting behavior described above. To * preserve that KVM behavior, it passes NULL for @pkru if the xfeatures * bit is not set. */ static int copy_uabi_to_xstate(struct fpstate *fpstate, const void *kbuf, const void __user *ubuf, u32 *pkru) { struct xregs_state *xsave = &fpstate->regs.xsave; unsigned int offset, size; struct xstate_header hdr; u64 mask; int i; offset = offsetof(struct xregs_state, header); if (copy_from_buffer(&hdr, offset, sizeof(hdr), kbuf, ubuf)) return -EFAULT; if (validate_user_xstate_header(&hdr, fpstate)) return -EINVAL; /* Validate MXCSR when any of the related features is in use */ mask = XFEATURE_MASK_FP | XFEATURE_MASK_SSE | XFEATURE_MASK_YMM; if (hdr.xfeatures & mask) { u32 mxcsr[2]; offset = offsetof(struct fxregs_state, mxcsr); if (copy_from_buffer(mxcsr, offset, sizeof(mxcsr), kbuf, ubuf)) return -EFAULT; /* Reserved bits in MXCSR must be zero. */ if (mxcsr[0] & ~mxcsr_feature_mask) return -EINVAL; /* SSE and YMM require MXCSR even when FP is not in use. */ if (!(hdr.xfeatures & XFEATURE_MASK_FP)) { xsave->i387.mxcsr = mxcsr[0]; xsave->i387.mxcsr_mask = mxcsr[1]; } } for (i = 0; i < XFEATURE_MAX; i++) { mask = BIT_ULL(i); if (hdr.xfeatures & mask) { void *dst = __raw_xsave_addr(xsave, i); offset = xstate_offsets[i]; size = xstate_sizes[i]; if (copy_from_buffer(dst, offset, size, kbuf, ubuf)) return -EFAULT; } } if (hdr.xfeatures & XFEATURE_MASK_PKRU) { struct pkru_state *xpkru; xpkru = __raw_xsave_addr(xsave, XFEATURE_PKRU); *pkru = xpkru->pkru; } else { /* * KVM may pass NULL here to indicate that it does not need * PKRU updated. */ if (pkru) *pkru = 0; } /* * The state that came in from userspace was user-state only. * Mask all the user states out of 'xfeatures': */ xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR_ALL; /* * Add back in the features that came in from userspace: */ xsave->header.xfeatures |= hdr.xfeatures; return 0; } /* * Convert from a ptrace standard-format kernel buffer to kernel XSAVE[S] * format and copy to the target thread. Used by ptrace and KVM. */ int copy_uabi_from_kernel_to_xstate(struct fpstate *fpstate, const void *kbuf, u32 *pkru) { return copy_uabi_to_xstate(fpstate, kbuf, NULL, pkru); } /* * Convert from a sigreturn standard-format user-space buffer to kernel * XSAVE[S] format and copy to the target thread. This is called from the * sigreturn() and rt_sigreturn() system calls. */ int copy_sigframe_from_user_to_xstate(struct task_struct *tsk, const void __user *ubuf) { return copy_uabi_to_xstate(tsk->thread.fpu.fpstate, NULL, ubuf, &tsk->thread.pkru); } static bool validate_independent_components(u64 mask) { u64 xchk; if (WARN_ON_FPU(!cpu_feature_enabled(X86_FEATURE_XSAVES))) return false; xchk = ~xfeatures_mask_independent(); if (WARN_ON_ONCE(!mask || mask & xchk)) return false; return true; } /** * xsaves - Save selected components to a kernel xstate buffer * @xstate: Pointer to the buffer * @mask: Feature mask to select the components to save * * The @xstate buffer must be 64 byte aligned and correctly initialized as * XSAVES does not write the full xstate header. Before first use the * buffer should be zeroed otherwise a consecutive XRSTORS from that buffer * can #GP. * * The feature mask must be a subset of the independent features. */ void xsaves(struct xregs_state *xstate, u64 mask) { int err; if (!validate_independent_components(mask)) return; XSTATE_OP(XSAVES, xstate, (u32)mask, (u32)(mask >> 32), err); WARN_ON_ONCE(err); } /** * xrstors - Restore selected components from a kernel xstate buffer * @xstate: Pointer to the buffer * @mask: Feature mask to select the components to restore * * The @xstate buffer must be 64 byte aligned and correctly initialized * otherwise XRSTORS from that buffer can #GP. * * Proper usage is to restore the state which was saved with * xsaves() into @xstate. * * The feature mask must be a subset of the independent features. */ void xrstors(struct xregs_state *xstate, u64 mask) { int err; if (!validate_independent_components(mask)) return; XSTATE_OP(XRSTORS, xstate, (u32)mask, (u32)(mask >> 32), err); WARN_ON_ONCE(err); } #if IS_ENABLED(CONFIG_KVM) void fpstate_clear_xstate_component(struct fpstate *fps, unsigned int xfeature) { void *addr = get_xsave_addr(&fps->regs.xsave, xfeature); if (addr) memset(addr, 0, xstate_sizes[xfeature]); } EXPORT_SYMBOL_GPL(fpstate_clear_xstate_component); #endif #ifdef CONFIG_X86_64 #ifdef CONFIG_X86_DEBUG_FPU /* * Ensure that a subsequent XSAVE* or XRSTOR* instruction with RFBM=@mask * can safely operate on the @fpstate buffer. */ static bool xstate_op_valid(struct fpstate *fpstate, u64 mask, bool rstor) { u64 xfd = __this_cpu_read(xfd_state); if (fpstate->xfd == xfd) return true; /* * The XFD MSR does not match fpstate->xfd. That's invalid when * the passed in fpstate is current's fpstate. */ if (fpstate->xfd == current->thread.fpu.fpstate->xfd) return false; /* * XRSTOR(S) from init_fpstate are always correct as it will just * bring all components into init state and not read from the * buffer. XSAVE(S) raises #PF after init. */ if (fpstate == &init_fpstate) return rstor; /* * XSAVE(S): clone(), fpu_swap_kvm_fpstate() * XRSTORS(S): fpu_swap_kvm_fpstate() */ /* * No XSAVE/XRSTOR instructions (except XSAVE itself) touch * the buffer area for XFD-disabled state components. */ mask &= ~xfd; /* * Remove features which are valid in fpstate. They * have space allocated in fpstate. */ mask &= ~fpstate->xfeatures; /* * Any remaining state components in 'mask' might be written * by XSAVE/XRSTOR. Fail validation it found. */ return !mask; } void xfd_validate_state(struct fpstate *fpstate, u64 mask, bool rstor) { WARN_ON_ONCE(!xstate_op_valid(fpstate, mask, rstor)); } #endif /* CONFIG_X86_DEBUG_FPU */ static int __init xfd_update_static_branch(void) { /* * If init_fpstate.xfd has bits set then dynamic features are * available and the dynamic sizing must be enabled. */ if (init_fpstate.xfd) static_branch_enable(&__fpu_state_size_dynamic); return 0; } arch_initcall(xfd_update_static_branch) void fpstate_free(struct fpu *fpu) { if (fpu->fpstate && fpu->fpstate != &fpu->__fpstate) vfree(fpu->fpstate); } /** * fpstate_realloc - Reallocate struct fpstate for the requested new features * * @xfeatures: A bitmap of xstate features which extend the enabled features * of that task * @ksize: The required size for the kernel buffer * @usize: The required size for user space buffers * @guest_fpu: Pointer to a guest FPU container. NULL for host allocations * * Note vs. vmalloc(): If the task with a vzalloc()-allocated buffer * terminates quickly, vfree()-induced IPIs may be a concern, but tasks * with large states are likely to live longer. * * Returns: 0 on success, -ENOMEM on allocation error. */ static int fpstate_realloc(u64 xfeatures, unsigned int ksize, unsigned int usize, struct fpu_guest *guest_fpu) { struct fpu *fpu = &current->thread.fpu; struct fpstate *curfps, *newfps = NULL; unsigned int fpsize; bool in_use; fpsize = ksize + ALIGN(offsetof(struct fpstate, regs), 64); newfps = vzalloc(fpsize); if (!newfps) return -ENOMEM; newfps->size = ksize; newfps->user_size = usize; newfps->is_valloc = true; /* * When a guest FPU is supplied, use @guest_fpu->fpstate * as reference independent whether it is in use or not. */ curfps = guest_fpu ? guest_fpu->fpstate : fpu->fpstate; /* Determine whether @curfps is the active fpstate */ in_use = fpu->fpstate == curfps; if (guest_fpu) { newfps->is_guest = true; newfps->is_confidential = curfps->is_confidential; newfps->in_use = curfps->in_use; guest_fpu->xfeatures |= xfeatures; guest_fpu->uabi_size = usize; } fpregs_lock(); /* * If @curfps is in use, ensure that the current state is in the * registers before swapping fpstate as that might invalidate it * due to layout changes. */ if (in_use && test_thread_flag(TIF_NEED_FPU_LOAD)) fpregs_restore_userregs(); newfps->xfeatures = curfps->xfeatures | xfeatures; newfps->user_xfeatures = curfps->user_xfeatures | xfeatures; newfps->xfd = curfps->xfd & ~xfeatures; /* Do the final updates within the locked region */ xstate_init_xcomp_bv(&newfps->regs.xsave, newfps->xfeatures); if (guest_fpu) { guest_fpu->fpstate = newfps; /* If curfps is active, update the FPU fpstate pointer */ if (in_use) fpu->fpstate = newfps; } else { fpu->fpstate = newfps; } if (in_use) xfd_update_state(fpu->fpstate); fpregs_unlock(); /* Only free valloc'ed state */ if (curfps && curfps->is_valloc) vfree(curfps); return 0; } static int validate_sigaltstack(unsigned int usize) { struct task_struct *thread, *leader = current->group_leader; unsigned long framesize = get_sigframe_size(); lockdep_assert_held(&current->sighand->siglock); /* get_sigframe_size() is based on fpu_user_cfg.max_size */ framesize -= fpu_user_cfg.max_size; framesize += usize; for_each_thread(leader, thread) { if (thread->sas_ss_size && thread->sas_ss_size < framesize) return -ENOSPC; } return 0; } static int __xstate_request_perm(u64 permitted, u64 requested, bool guest) { /* * This deliberately does not exclude !XSAVES as we still might * decide to optionally context switch XCR0 or talk the silicon * vendors into extending XFD for the pre AMX states, especially * AVX512. */ bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED); struct fpu *fpu = &current->group_leader->thread.fpu; struct fpu_state_perm *perm; unsigned int ksize, usize; u64 mask; int ret = 0; /* Check whether fully enabled */ if ((permitted & requested) == requested) return 0; /* Calculate the resulting kernel state size */ mask = permitted | requested; /* Take supervisor states into account on the host */ if (!guest) mask |= xfeatures_mask_supervisor(); ksize = xstate_calculate_size(mask, compacted); /* Calculate the resulting user state size */ mask &= XFEATURE_MASK_USER_SUPPORTED; usize = xstate_calculate_size(mask, false); if (!guest) { ret = validate_sigaltstack(usize); if (ret) return ret; } perm = guest ? &fpu->guest_perm : &fpu->perm; /* Pairs with the READ_ONCE() in xstate_get_group_perm() */ WRITE_ONCE(perm->__state_perm, mask); /* Protected by sighand lock */ perm->__state_size = ksize; perm->__user_state_size = usize; return ret; } /* * Permissions array to map facilities with more than one component */ static const u64 xstate_prctl_req[XFEATURE_MAX] = { [XFEATURE_XTILE_DATA] = XFEATURE_MASK_XTILE_DATA, }; static int xstate_request_perm(unsigned long idx, bool guest) { u64 permitted, requested; int ret; if (idx >= XFEATURE_MAX) return -EINVAL; /* * Look up the facility mask which can require more than * one xstate component. */ idx = array_index_nospec(idx, ARRAY_SIZE(xstate_prctl_req)); requested = xstate_prctl_req[idx]; if (!requested) return -EOPNOTSUPP; if ((fpu_user_cfg.max_features & requested) != requested) return -EOPNOTSUPP; /* Lockless quick check */ permitted = xstate_get_group_perm(guest); if ((permitted & requested) == requested) return 0; /* Protect against concurrent modifications */ spin_lock_irq(&current->sighand->siglock); permitted = xstate_get_group_perm(guest); /* First vCPU allocation locks the permissions. */ if (guest && (permitted & FPU_GUEST_PERM_LOCKED)) ret = -EBUSY; else ret = __xstate_request_perm(permitted, requested, guest); spin_unlock_irq(&current->sighand->siglock); return ret; } int __xfd_enable_feature(u64 xfd_err, struct fpu_guest *guest_fpu) { u64 xfd_event = xfd_err & XFEATURE_MASK_USER_DYNAMIC; struct fpu_state_perm *perm; unsigned int ksize, usize; struct fpu *fpu; if (!xfd_event) { if (!guest_fpu) pr_err_once("XFD: Invalid xfd error: %016llx\n", xfd_err); return 0; } /* Protect against concurrent modifications */ spin_lock_irq(&current->sighand->siglock); /* If not permitted let it die */ if ((xstate_get_group_perm(!!guest_fpu) & xfd_event) != xfd_event) { spin_unlock_irq(&current->sighand->siglock); return -EPERM; } fpu = &current->group_leader->thread.fpu; perm = guest_fpu ? &fpu->guest_perm : &fpu->perm; ksize = perm->__state_size; usize = perm->__user_state_size; /* * The feature is permitted. State size is sufficient. Dropping * the lock is safe here even if more features are added from * another task, the retrieved buffer sizes are valid for the * currently requested feature(s). */ spin_unlock_irq(&current->sighand->siglock); /* * Try to allocate a new fpstate. If that fails there is no way * out. */ if (fpstate_realloc(xfd_event, ksize, usize, guest_fpu)) return -EFAULT; return 0; } int xfd_enable_feature(u64 xfd_err) { return __xfd_enable_feature(xfd_err, NULL); } #else /* CONFIG_X86_64 */ static inline int xstate_request_perm(unsigned long idx, bool guest) { return -EPERM; } #endif /* !CONFIG_X86_64 */ u64 xstate_get_guest_group_perm(void) { return xstate_get_group_perm(true); } EXPORT_SYMBOL_GPL(xstate_get_guest_group_perm); /** * fpu_xstate_prctl - xstate permission operations * @option: A subfunction of arch_prctl() * @arg2: option argument * Return: 0 if successful; otherwise, an error code * * Option arguments: * * ARCH_GET_XCOMP_SUPP: Pointer to user space u64 to store the info * ARCH_GET_XCOMP_PERM: Pointer to user space u64 to store the info * ARCH_REQ_XCOMP_PERM: Facility number requested * * For facilities which require more than one XSTATE component, the request * must be the highest state component number related to that facility, * e.g. for AMX which requires XFEATURE_XTILE_CFG(17) and * XFEATURE_XTILE_DATA(18) this would be XFEATURE_XTILE_DATA(18). */ long fpu_xstate_prctl(int option, unsigned long arg2) { u64 __user *uptr = (u64 __user *)arg2; u64 permitted, supported; unsigned long idx = arg2; bool guest = false; switch (option) { case ARCH_GET_XCOMP_SUPP: supported = fpu_user_cfg.max_features | fpu_user_cfg.legacy_features; return put_user(supported, uptr); case ARCH_GET_XCOMP_PERM: /* * Lockless snapshot as it can also change right after the * dropping the lock. */ permitted = xstate_get_host_group_perm(); permitted &= XFEATURE_MASK_USER_SUPPORTED; return put_user(permitted, uptr); case ARCH_GET_XCOMP_GUEST_PERM: permitted = xstate_get_guest_group_perm(); permitted &= XFEATURE_MASK_USER_SUPPORTED; return put_user(permitted, uptr); case ARCH_REQ_XCOMP_GUEST_PERM: guest = true; fallthrough; case ARCH_REQ_XCOMP_PERM: if (!IS_ENABLED(CONFIG_X86_64)) return -EOPNOTSUPP; return xstate_request_perm(idx, guest); default: return -EINVAL; } } #ifdef CONFIG_PROC_PID_ARCH_STATUS /* * Report the amount of time elapsed in millisecond since last AVX512 * use in the task. */ static void avx512_status(struct seq_file *m, struct task_struct *task) { unsigned long timestamp = READ_ONCE(task->thread.fpu.avx512_timestamp); long delta; if (!timestamp) { /* * Report -1 if no AVX512 usage */ delta = -1; } else { delta = (long)(jiffies - timestamp); /* * Cap to LONG_MAX if time difference > LONG_MAX */ if (delta < 0) delta = LONG_MAX; delta = jiffies_to_msecs(delta); } seq_put_decimal_ll(m, "AVX512_elapsed_ms:\t", delta); seq_putc(m, '\n'); } /* * Report architecture specific information */ int proc_pid_arch_status(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *task) { /* * Report AVX512 state if the processor and build option supported. */ if (cpu_feature_enabled(X86_FEATURE_AVX512F)) avx512_status(m, task); return 0; } #endif /* CONFIG_PROC_PID_ARCH_STATUS */ #ifdef CONFIG_COREDUMP static const char owner_name[] = "LINUX"; /* * Dump type, size, offset and flag values for every xfeature that is present. */ static int dump_xsave_layout_desc(struct coredump_params *cprm) { int num_records = 0; int i; for_each_extended_xfeature(i, fpu_user_cfg.max_features) { struct x86_xfeat_component xc = { .type = i, .size = xstate_sizes[i], .offset = xstate_offsets[i], /* reserved for future use */ .flags = 0, }; if (!dump_emit(cprm, &xc, sizeof(xc))) return 0; num_records++; } return num_records; } static u32 get_xsave_desc_size(void) { u32 cnt = 0; u32 i; for_each_extended_xfeature(i, fpu_user_cfg.max_features) cnt++; return cnt * (sizeof(struct x86_xfeat_component)); } int elf_coredump_extra_notes_write(struct coredump_params *cprm) { int num_records = 0; struct elf_note en; if (!fpu_user_cfg.max_features) return 0; en.n_namesz = sizeof(owner_name); en.n_descsz = get_xsave_desc_size(); en.n_type = NT_X86_XSAVE_LAYOUT; if (!dump_emit(cprm, &en, sizeof(en))) return 1; if (!dump_emit(cprm, owner_name, en.n_namesz)) return 1; if (!dump_align(cprm, 4)) return 1; num_records = dump_xsave_layout_desc(cprm); if (!num_records) return 1; /* Total size should be equal to the number of records */ if ((sizeof(struct x86_xfeat_component) * num_records) != en.n_descsz) return 1; return 0; } int elf_coredump_extra_notes_size(void) { int size; if (!fpu_user_cfg.max_features) return 0; /* .note header */ size = sizeof(struct elf_note); /* Name plus alignment to 4 bytes */ size += roundup(sizeof(owner_name), 4); size += get_xsave_desc_size(); return size; } #endif /* CONFIG_COREDUMP */
15 1 1 1 10 1 1 3 2 1 3 2 1 1 1 7 1 1 6 6 6 6 1 1 3 3 2 1 3 3 3 6 6 1 1 3 1 1 1 3 1 6 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2014 Jiri Pirko <jiri@resnulli.us> */ #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <linux/if_vlan.h> #include <net/netlink.h> #include <net/pkt_sched.h> #include <net/pkt_cls.h> #include <net/tc_wrapper.h> #include <linux/tc_act/tc_vlan.h> #include <net/tc_act/tc_vlan.h> static struct tc_action_ops act_vlan_ops; TC_INDIRECT_SCOPE int tcf_vlan_act(struct sk_buff *skb, const struct tc_action *a, struct tcf_result *res) { struct tcf_vlan *v = to_vlan(a); struct tcf_vlan_params *p; int action; int err; u16 tci; tcf_lastuse_update(&v->tcf_tm); tcf_action_update_bstats(&v->common, skb); /* Ensure 'data' points at mac_header prior calling vlan manipulating * functions. */ if (skb_at_tc_ingress(skb)) skb_push_rcsum(skb, skb->mac_len); action = READ_ONCE(v->tcf_action); p = rcu_dereference_bh(v->vlan_p); switch (p->tcfv_action) { case TCA_VLAN_ACT_POP: err = skb_vlan_pop(skb); if (err) goto drop; break; case TCA_VLAN_ACT_PUSH: err = skb_vlan_push(skb, p->tcfv_push_proto, p->tcfv_push_vid | (p->tcfv_push_prio << VLAN_PRIO_SHIFT)); if (err) goto drop; break; case TCA_VLAN_ACT_MODIFY: /* No-op if no vlan tag (either hw-accel or in-payload) */ if (!skb_vlan_tagged(skb)) goto out; /* extract existing tag (and guarantee no hw-accel tag) */ if (skb_vlan_tag_present(skb)) { tci = skb_vlan_tag_get(skb); __vlan_hwaccel_clear_tag(skb); } else { /* in-payload vlan tag, pop it */ err = __skb_vlan_pop(skb, &tci); if (err) goto drop; } /* replace the vid */ tci = (tci & ~VLAN_VID_MASK) | p->tcfv_push_vid; /* replace prio bits, if tcfv_push_prio specified */ if (p->tcfv_push_prio_exists) { tci &= ~VLAN_PRIO_MASK; tci |= p->tcfv_push_prio << VLAN_PRIO_SHIFT; } /* put updated tci as hwaccel tag */ __vlan_hwaccel_put_tag(skb, p->tcfv_push_proto, tci); break; case TCA_VLAN_ACT_POP_ETH: err = skb_eth_pop(skb); if (err) goto drop; break; case TCA_VLAN_ACT_PUSH_ETH: err = skb_eth_push(skb, p->tcfv_push_dst, p->tcfv_push_src); if (err) goto drop; break; default: BUG(); } out: if (skb_at_tc_ingress(skb)) skb_pull_rcsum(skb, skb->mac_len); skb_reset_mac_len(skb); return action; drop: tcf_action_inc_drop_qstats(&v->common); return TC_ACT_SHOT; } static const struct nla_policy vlan_policy[TCA_VLAN_MAX + 1] = { [TCA_VLAN_UNSPEC] = { .strict_start_type = TCA_VLAN_PUSH_ETH_DST }, [TCA_VLAN_PARMS] = { .len = sizeof(struct tc_vlan) }, [TCA_VLAN_PUSH_VLAN_ID] = { .type = NLA_U16 }, [TCA_VLAN_PUSH_VLAN_PROTOCOL] = { .type = NLA_U16 }, [TCA_VLAN_PUSH_VLAN_PRIORITY] = { .type = NLA_U8 }, [TCA_VLAN_PUSH_ETH_DST] = NLA_POLICY_ETH_ADDR, [TCA_VLAN_PUSH_ETH_SRC] = NLA_POLICY_ETH_ADDR, }; static int tcf_vlan_init(struct net *net, struct nlattr *nla, struct nlattr *est, struct tc_action **a, struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack) { struct tc_action_net *tn = net_generic(net, act_vlan_ops.net_id); bool bind = flags & TCA_ACT_FLAGS_BIND; struct nlattr *tb[TCA_VLAN_MAX + 1]; struct tcf_chain *goto_ch = NULL; bool push_prio_exists = false; struct tcf_vlan_params *p; struct tc_vlan *parm; struct tcf_vlan *v; int action; u16 push_vid = 0; __be16 push_proto = 0; u8 push_prio = 0; bool exists = false; int ret = 0, err; u32 index; if (!nla) return -EINVAL; err = nla_parse_nested_deprecated(tb, TCA_VLAN_MAX, nla, vlan_policy, NULL); if (err < 0) return err; if (!tb[TCA_VLAN_PARMS]) return -EINVAL; parm = nla_data(tb[TCA_VLAN_PARMS]); index = parm->index; err = tcf_idr_check_alloc(tn, &index, a, bind); if (err < 0) return err; exists = err; if (exists && bind) return ACT_P_BOUND; switch (parm->v_action) { case TCA_VLAN_ACT_POP: break; case TCA_VLAN_ACT_PUSH: case TCA_VLAN_ACT_MODIFY: if (!tb[TCA_VLAN_PUSH_VLAN_ID]) { if (exists) tcf_idr_release(*a, bind); else tcf_idr_cleanup(tn, index); return -EINVAL; } push_vid = nla_get_u16(tb[TCA_VLAN_PUSH_VLAN_ID]); if (push_vid >= VLAN_VID_MASK) { if (exists) tcf_idr_release(*a, bind); else tcf_idr_cleanup(tn, index); return -ERANGE; } if (tb[TCA_VLAN_PUSH_VLAN_PROTOCOL]) { push_proto = nla_get_be16(tb[TCA_VLAN_PUSH_VLAN_PROTOCOL]); switch (push_proto) { case htons(ETH_P_8021Q): case htons(ETH_P_8021AD): break; default: if (exists) tcf_idr_release(*a, bind); else tcf_idr_cleanup(tn, index); return -EPROTONOSUPPORT; } } else { push_proto = htons(ETH_P_8021Q); } push_prio_exists = !!tb[TCA_VLAN_PUSH_VLAN_PRIORITY]; if (push_prio_exists) push_prio = nla_get_u8(tb[TCA_VLAN_PUSH_VLAN_PRIORITY]); break; case TCA_VLAN_ACT_POP_ETH: break; case TCA_VLAN_ACT_PUSH_ETH: if (!tb[TCA_VLAN_PUSH_ETH_DST] || !tb[TCA_VLAN_PUSH_ETH_SRC]) { if (exists) tcf_idr_release(*a, bind); else tcf_idr_cleanup(tn, index); return -EINVAL; } break; default: if (exists) tcf_idr_release(*a, bind); else tcf_idr_cleanup(tn, index); return -EINVAL; } action = parm->v_action; if (!exists) { ret = tcf_idr_create_from_flags(tn, index, est, a, &act_vlan_ops, bind, flags); if (ret) { tcf_idr_cleanup(tn, index); return ret; } ret = ACT_P_CREATED; } else if (!(flags & TCA_ACT_FLAGS_REPLACE)) { tcf_idr_release(*a, bind); return -EEXIST; } err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); if (err < 0) goto release_idr; v = to_vlan(*a); p = kzalloc(sizeof(*p), GFP_KERNEL); if (!p) { err = -ENOMEM; goto put_chain; } p->tcfv_action = action; p->tcfv_push_vid = push_vid; p->tcfv_push_prio = push_prio; p->tcfv_push_prio_exists = push_prio_exists || action == TCA_VLAN_ACT_PUSH; p->tcfv_push_proto = push_proto; if (action == TCA_VLAN_ACT_PUSH_ETH) { nla_memcpy(&p->tcfv_push_dst, tb[TCA_VLAN_PUSH_ETH_DST], ETH_ALEN); nla_memcpy(&p->tcfv_push_src, tb[TCA_VLAN_PUSH_ETH_SRC], ETH_ALEN); } spin_lock_bh(&v->tcf_lock); goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); p = rcu_replace_pointer(v->vlan_p, p, lockdep_is_held(&v->tcf_lock)); spin_unlock_bh(&v->tcf_lock); if (goto_ch) tcf_chain_put_by_act(goto_ch); if (p) kfree_rcu(p, rcu); return ret; put_chain: if (goto_ch) tcf_chain_put_by_act(goto_ch); release_idr: tcf_idr_release(*a, bind); return err; } static void tcf_vlan_cleanup(struct tc_action *a) { struct tcf_vlan *v = to_vlan(a); struct tcf_vlan_params *p; p = rcu_dereference_protected(v->vlan_p, 1); if (p) kfree_rcu(p, rcu); } static int tcf_vlan_dump(struct sk_buff *skb, struct tc_action *a, int bind, int ref) { unsigned char *b = skb_tail_pointer(skb); struct tcf_vlan *v = to_vlan(a); struct tcf_vlan_params *p; struct tc_vlan opt = { .index = v->tcf_index, .refcnt = refcount_read(&v->tcf_refcnt) - ref, .bindcnt = atomic_read(&v->tcf_bindcnt) - bind, }; struct tcf_t t; spin_lock_bh(&v->tcf_lock); opt.action = v->tcf_action; p = rcu_dereference_protected(v->vlan_p, lockdep_is_held(&v->tcf_lock)); opt.v_action = p->tcfv_action; if (nla_put(skb, TCA_VLAN_PARMS, sizeof(opt), &opt)) goto nla_put_failure; if ((p->tcfv_action == TCA_VLAN_ACT_PUSH || p->tcfv_action == TCA_VLAN_ACT_MODIFY) && (nla_put_u16(skb, TCA_VLAN_PUSH_VLAN_ID, p->tcfv_push_vid) || nla_put_be16(skb, TCA_VLAN_PUSH_VLAN_PROTOCOL, p->tcfv_push_proto) || (p->tcfv_push_prio_exists && nla_put_u8(skb, TCA_VLAN_PUSH_VLAN_PRIORITY, p->tcfv_push_prio)))) goto nla_put_failure; if (p->tcfv_action == TCA_VLAN_ACT_PUSH_ETH) { if (nla_put(skb, TCA_VLAN_PUSH_ETH_DST, ETH_ALEN, p->tcfv_push_dst)) goto nla_put_failure; if (nla_put(skb, TCA_VLAN_PUSH_ETH_SRC, ETH_ALEN, p->tcfv_push_src)) goto nla_put_failure; } tcf_tm_dump(&t, &v->tcf_tm); if (nla_put_64bit(skb, TCA_VLAN_TM, sizeof(t), &t, TCA_VLAN_PAD)) goto nla_put_failure; spin_unlock_bh(&v->tcf_lock); return skb->len; nla_put_failure: spin_unlock_bh(&v->tcf_lock); nlmsg_trim(skb, b); return -1; } static void tcf_vlan_stats_update(struct tc_action *a, u64 bytes, u64 packets, u64 drops, u64 lastuse, bool hw) { struct tcf_vlan *v = to_vlan(a); struct tcf_t *tm = &v->tcf_tm; tcf_action_update_stats(a, bytes, packets, drops, hw); tm->lastuse = max_t(u64, tm->lastuse, lastuse); } static size_t tcf_vlan_get_fill_size(const struct tc_action *act) { return nla_total_size(sizeof(struct tc_vlan)) + nla_total_size(sizeof(u16)) /* TCA_VLAN_PUSH_VLAN_ID */ + nla_total_size(sizeof(u16)) /* TCA_VLAN_PUSH_VLAN_PROTOCOL */ + nla_total_size(sizeof(u8)); /* TCA_VLAN_PUSH_VLAN_PRIORITY */ } static int tcf_vlan_offload_act_setup(struct tc_action *act, void *entry_data, u32 *index_inc, bool bind, struct netlink_ext_ack *extack) { if (bind) { struct flow_action_entry *entry = entry_data; switch (tcf_vlan_action(act)) { case TCA_VLAN_ACT_PUSH: entry->id = FLOW_ACTION_VLAN_PUSH; entry->vlan.vid = tcf_vlan_push_vid(act); entry->vlan.proto = tcf_vlan_push_proto(act); entry->vlan.prio = tcf_vlan_push_prio(act); break; case TCA_VLAN_ACT_POP: entry->id = FLOW_ACTION_VLAN_POP; break; case TCA_VLAN_ACT_MODIFY: entry->id = FLOW_ACTION_VLAN_MANGLE; entry->vlan.vid = tcf_vlan_push_vid(act); entry->vlan.proto = tcf_vlan_push_proto(act); entry->vlan.prio = tcf_vlan_push_prio(act); break; case TCA_VLAN_ACT_POP_ETH: entry->id = FLOW_ACTION_VLAN_POP_ETH; break; case TCA_VLAN_ACT_PUSH_ETH: entry->id = FLOW_ACTION_VLAN_PUSH_ETH; tcf_vlan_push_eth(entry->vlan_push_eth.src, entry->vlan_push_eth.dst, act); break; default: NL_SET_ERR_MSG_MOD(extack, "Unsupported vlan action mode offload"); return -EOPNOTSUPP; } *index_inc = 1; } else { struct flow_offload_action *fl_action = entry_data; switch (tcf_vlan_action(act)) { case TCA_VLAN_ACT_PUSH: fl_action->id = FLOW_ACTION_VLAN_PUSH; break; case TCA_VLAN_ACT_POP: fl_action->id = FLOW_ACTION_VLAN_POP; break; case TCA_VLAN_ACT_MODIFY: fl_action->id = FLOW_ACTION_VLAN_MANGLE; break; case TCA_VLAN_ACT_POP_ETH: fl_action->id = FLOW_ACTION_VLAN_POP_ETH; break; case TCA_VLAN_ACT_PUSH_ETH: fl_action->id = FLOW_ACTION_VLAN_PUSH_ETH; break; default: return -EOPNOTSUPP; } } return 0; } static struct tc_action_ops act_vlan_ops = { .kind = "vlan", .id = TCA_ID_VLAN, .owner = THIS_MODULE, .act = tcf_vlan_act, .dump = tcf_vlan_dump, .init = tcf_vlan_init, .cleanup = tcf_vlan_cleanup, .stats_update = tcf_vlan_stats_update, .get_fill_size = tcf_vlan_get_fill_size, .offload_act_setup = tcf_vlan_offload_act_setup, .size = sizeof(struct tcf_vlan), }; MODULE_ALIAS_NET_ACT("vlan"); static __net_init int vlan_init_net(struct net *net) { struct tc_action_net *tn = net_generic(net, act_vlan_ops.net_id); return tc_action_net_init(net, tn, &act_vlan_ops); } static void __net_exit vlan_exit_net(struct list_head *net_list) { tc_action_net_exit(net_list, act_vlan_ops.net_id); } static struct pernet_operations vlan_net_ops = { .init = vlan_init_net, .exit_batch = vlan_exit_net, .id = &act_vlan_ops.net_id, .size = sizeof(struct tc_action_net), }; static int __init vlan_init_module(void) { return tcf_register_action(&act_vlan_ops, &vlan_net_ops); } static void __exit vlan_cleanup_module(void) { tcf_unregister_action(&act_vlan_ops, &vlan_net_ops); } module_init(vlan_init_module); module_exit(vlan_cleanup_module); MODULE_AUTHOR("Jiri Pirko <jiri@resnulli.us>"); MODULE_DESCRIPTION("vlan manipulation actions"); MODULE_LICENSE("GPL v2");
9 1 2 2 3 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 // SPDX-License-Identifier: GPL-2.0-only #define pr_fmt(fmt) "IPsec: " fmt #include <crypto/hash.h> #include <crypto/utils.h> #include <linux/err.h> #include <linux/module.h> #include <linux/slab.h> #include <net/ip.h> #include <net/xfrm.h> #include <net/ah.h> #include <linux/crypto.h> #include <linux/pfkeyv2.h> #include <linux/scatterlist.h> #include <net/icmp.h> #include <net/protocol.h> struct ah_skb_cb { struct xfrm_skb_cb xfrm; void *tmp; }; #define AH_SKB_CB(__skb) ((struct ah_skb_cb *)&((__skb)->cb[0])) static void *ah_alloc_tmp(struct crypto_ahash *ahash, int nfrags, unsigned int size) { unsigned int len; len = size + crypto_ahash_digestsize(ahash); len = ALIGN(len, crypto_tfm_ctx_alignment()); len += sizeof(struct ahash_request) + crypto_ahash_reqsize(ahash); len = ALIGN(len, __alignof__(struct scatterlist)); len += sizeof(struct scatterlist) * nfrags; return kmalloc(len, GFP_ATOMIC); } static inline u8 *ah_tmp_auth(void *tmp, unsigned int offset) { return tmp + offset; } static inline u8 *ah_tmp_icv(void *tmp, unsigned int offset) { return tmp + offset; } static inline struct ahash_request *ah_tmp_req(struct crypto_ahash *ahash, u8 *icv) { struct ahash_request *req; req = (void *)PTR_ALIGN(icv + crypto_ahash_digestsize(ahash), crypto_tfm_ctx_alignment()); ahash_request_set_tfm(req, ahash); return req; } static inline struct scatterlist *ah_req_sg(struct crypto_ahash *ahash, struct ahash_request *req) { return (void *)ALIGN((unsigned long)(req + 1) + crypto_ahash_reqsize(ahash), __alignof__(struct scatterlist)); } /* Clear mutable options and find final destination to substitute * into IP header for icv calculation. Options are already checked * for validity, so paranoia is not required. */ static int ip_clear_mutable_options(const struct iphdr *iph, __be32 *daddr) { unsigned char *optptr = (unsigned char *)(iph+1); int l = iph->ihl*4 - sizeof(struct iphdr); int optlen; while (l > 0) { switch (*optptr) { case IPOPT_END: return 0; case IPOPT_NOOP: l--; optptr++; continue; } optlen = optptr[1]; if (optlen<2 || optlen>l) return -EINVAL; switch (*optptr) { case IPOPT_SEC: case 0x85: /* Some "Extended Security" crap. */ case IPOPT_CIPSO: case IPOPT_RA: case 0x80|21: /* RFC1770 */ break; case IPOPT_LSRR: case IPOPT_SSRR: if (optlen < 6) return -EINVAL; memcpy(daddr, optptr+optlen-4, 4); fallthrough; default: memset(optptr, 0, optlen); } l -= optlen; optptr += optlen; } return 0; } static void ah_output_done(void *data, int err) { u8 *icv; struct iphdr *iph; struct sk_buff *skb = data; struct xfrm_state *x = skb_dst(skb)->xfrm; struct ah_data *ahp = x->data; struct iphdr *top_iph = ip_hdr(skb); struct ip_auth_hdr *ah = ip_auth_hdr(skb); int ihl = ip_hdrlen(skb); iph = AH_SKB_CB(skb)->tmp; icv = ah_tmp_icv(iph, ihl); memcpy(ah->auth_data, icv, ahp->icv_trunc_len); top_iph->tos = iph->tos; top_iph->ttl = iph->ttl; top_iph->frag_off = iph->frag_off; if (top_iph->ihl != 5) { top_iph->daddr = iph->daddr; memcpy(top_iph+1, iph+1, top_iph->ihl*4 - sizeof(struct iphdr)); } kfree(AH_SKB_CB(skb)->tmp); xfrm_output_resume(skb->sk, skb, err); } static int ah_output(struct xfrm_state *x, struct sk_buff *skb) { int err; int nfrags; int ihl; u8 *icv; struct sk_buff *trailer; struct crypto_ahash *ahash; struct ahash_request *req; struct scatterlist *sg; struct iphdr *iph, *top_iph; struct ip_auth_hdr *ah; struct ah_data *ahp; int seqhi_len = 0; __be32 *seqhi; int sglists = 0; struct scatterlist *seqhisg; ahp = x->data; ahash = ahp->ahash; if ((err = skb_cow_data(skb, 0, &trailer)) < 0) goto out; nfrags = err; skb_push(skb, -skb_network_offset(skb)); ah = ip_auth_hdr(skb); ihl = ip_hdrlen(skb); if (x->props.flags & XFRM_STATE_ESN) { sglists = 1; seqhi_len = sizeof(*seqhi); } err = -ENOMEM; iph = ah_alloc_tmp(ahash, nfrags + sglists, ihl + seqhi_len); if (!iph) goto out; seqhi = (__be32 *)((char *)iph + ihl); icv = ah_tmp_icv(seqhi, seqhi_len); req = ah_tmp_req(ahash, icv); sg = ah_req_sg(ahash, req); seqhisg = sg + nfrags; memset(ah->auth_data, 0, ahp->icv_trunc_len); top_iph = ip_hdr(skb); iph->tos = top_iph->tos; iph->ttl = top_iph->ttl; iph->frag_off = top_iph->frag_off; if (top_iph->ihl != 5) { iph->daddr = top_iph->daddr; memcpy(iph+1, top_iph+1, top_iph->ihl*4 - sizeof(struct iphdr)); err = ip_clear_mutable_options(top_iph, &top_iph->daddr); if (err) goto out_free; } ah->nexthdr = *skb_mac_header(skb); *skb_mac_header(skb) = IPPROTO_AH; top_iph->tos = 0; top_iph->tot_len = htons(skb->len); top_iph->frag_off = 0; top_iph->ttl = 0; top_iph->check = 0; if (x->props.flags & XFRM_STATE_ALIGN4) ah->hdrlen = (XFRM_ALIGN4(sizeof(*ah) + ahp->icv_trunc_len) >> 2) - 2; else ah->hdrlen = (XFRM_ALIGN8(sizeof(*ah) + ahp->icv_trunc_len) >> 2) - 2; ah->reserved = 0; ah->spi = x->id.spi; ah->seq_no = htonl(XFRM_SKB_CB(skb)->seq.output.low); sg_init_table(sg, nfrags + sglists); err = skb_to_sgvec_nomark(skb, sg, 0, skb->len); if (unlikely(err < 0)) goto out_free; if (x->props.flags & XFRM_STATE_ESN) { /* Attach seqhi sg right after packet payload */ *seqhi = htonl(XFRM_SKB_CB(skb)->seq.output.hi); sg_set_buf(seqhisg, seqhi, seqhi_len); } ahash_request_set_crypt(req, sg, icv, skb->len + seqhi_len); ahash_request_set_callback(req, 0, ah_output_done, skb); AH_SKB_CB(skb)->tmp = iph; err = crypto_ahash_digest(req); if (err) { if (err == -EINPROGRESS) goto out; if (err == -ENOSPC) err = NET_XMIT_DROP; goto out_free; } memcpy(ah->auth_data, icv, ahp->icv_trunc_len); top_iph->tos = iph->tos; top_iph->ttl = iph->ttl; top_iph->frag_off = iph->frag_off; if (top_iph->ihl != 5) { top_iph->daddr = iph->daddr; memcpy(top_iph+1, iph+1, top_iph->ihl*4 - sizeof(struct iphdr)); } out_free: kfree(iph); out: return err; } static void ah_input_done(void *data, int err) { u8 *auth_data; u8 *icv; struct iphdr *work_iph; struct sk_buff *skb = data; struct xfrm_state *x = xfrm_input_state(skb); struct ah_data *ahp = x->data; struct ip_auth_hdr *ah = ip_auth_hdr(skb); int ihl = ip_hdrlen(skb); int ah_hlen = (ah->hdrlen + 2) << 2; if (err) goto out; work_iph = AH_SKB_CB(skb)->tmp; auth_data = ah_tmp_auth(work_iph, ihl); icv = ah_tmp_icv(auth_data, ahp->icv_trunc_len); err = crypto_memneq(icv, auth_data, ahp->icv_trunc_len) ? -EBADMSG : 0; if (err) goto out; err = ah->nexthdr; skb->network_header += ah_hlen; memcpy(skb_network_header(skb), work_iph, ihl); __skb_pull(skb, ah_hlen + ihl); if (x->props.mode == XFRM_MODE_TUNNEL) skb_reset_transport_header(skb); else skb_set_transport_header(skb, -ihl); out: kfree(AH_SKB_CB(skb)->tmp); xfrm_input_resume(skb, err); } static int ah_input(struct xfrm_state *x, struct sk_buff *skb) { int ah_hlen; int ihl; int nexthdr; int nfrags; u8 *auth_data; u8 *icv; struct sk_buff *trailer; struct crypto_ahash *ahash; struct ahash_request *req; struct scatterlist *sg; struct iphdr *iph, *work_iph; struct ip_auth_hdr *ah; struct ah_data *ahp; int err = -ENOMEM; int seqhi_len = 0; __be32 *seqhi; int sglists = 0; struct scatterlist *seqhisg; if (!pskb_may_pull(skb, sizeof(*ah))) goto out; ah = (struct ip_auth_hdr *)skb->data; ahp = x->data; ahash = ahp->ahash; nexthdr = ah->nexthdr; ah_hlen = (ah->hdrlen + 2) << 2; if (x->props.flags & XFRM_STATE_ALIGN4) { if (ah_hlen != XFRM_ALIGN4(sizeof(*ah) + ahp->icv_full_len) && ah_hlen != XFRM_ALIGN4(sizeof(*ah) + ahp->icv_trunc_len)) goto out; } else { if (ah_hlen != XFRM_ALIGN8(sizeof(*ah) + ahp->icv_full_len) && ah_hlen != XFRM_ALIGN8(sizeof(*ah) + ahp->icv_trunc_len)) goto out; } if (!pskb_may_pull(skb, ah_hlen)) goto out; /* We are going to _remove_ AH header to keep sockets happy, * so... Later this can change. */ if (skb_unclone(skb, GFP_ATOMIC)) goto out; skb->ip_summed = CHECKSUM_NONE; if ((err = skb_cow_data(skb, 0, &trailer)) < 0) goto out; nfrags = err; ah = (struct ip_auth_hdr *)skb->data; iph = ip_hdr(skb); ihl = ip_hdrlen(skb); if (x->props.flags & XFRM_STATE_ESN) { sglists = 1; seqhi_len = sizeof(*seqhi); } work_iph = ah_alloc_tmp(ahash, nfrags + sglists, ihl + ahp->icv_trunc_len + seqhi_len); if (!work_iph) { err = -ENOMEM; goto out; } seqhi = (__be32 *)((char *)work_iph + ihl); auth_data = ah_tmp_auth(seqhi, seqhi_len); icv = ah_tmp_icv(auth_data, ahp->icv_trunc_len); req = ah_tmp_req(ahash, icv); sg = ah_req_sg(ahash, req); seqhisg = sg + nfrags; memcpy(work_iph, iph, ihl); memcpy(auth_data, ah->auth_data, ahp->icv_trunc_len); memset(ah->auth_data, 0, ahp->icv_trunc_len); iph->ttl = 0; iph->tos = 0; iph->frag_off = 0; iph->check = 0; if (ihl > sizeof(*iph)) { __be32 dummy; err = ip_clear_mutable_options(iph, &dummy); if (err) goto out_free; } skb_push(skb, ihl); sg_init_table(sg, nfrags + sglists); err = skb_to_sgvec_nomark(skb, sg, 0, skb->len); if (unlikely(err < 0)) goto out_free; if (x->props.flags & XFRM_STATE_ESN) { /* Attach seqhi sg right after packet payload */ *seqhi = XFRM_SKB_CB(skb)->seq.input.hi; sg_set_buf(seqhisg, seqhi, seqhi_len); } ahash_request_set_crypt(req, sg, icv, skb->len + seqhi_len); ahash_request_set_callback(req, 0, ah_input_done, skb); AH_SKB_CB(skb)->tmp = work_iph; err = crypto_ahash_digest(req); if (err) { if (err == -EINPROGRESS) goto out; goto out_free; } err = crypto_memneq(icv, auth_data, ahp->icv_trunc_len) ? -EBADMSG : 0; if (err) goto out_free; skb->network_header += ah_hlen; memcpy(skb_network_header(skb), work_iph, ihl); __skb_pull(skb, ah_hlen + ihl); if (x->props.mode == XFRM_MODE_TUNNEL) skb_reset_transport_header(skb); else skb_set_transport_header(skb, -ihl); err = nexthdr; out_free: kfree (work_iph); out: return err; } static int ah4_err(struct sk_buff *skb, u32 info) { struct net *net = dev_net(skb->dev); const struct iphdr *iph = (const struct iphdr *)skb->data; struct ip_auth_hdr *ah = (struct ip_auth_hdr *)(skb->data+(iph->ihl<<2)); struct xfrm_state *x; switch (icmp_hdr(skb)->type) { case ICMP_DEST_UNREACH: if (icmp_hdr(skb)->code != ICMP_FRAG_NEEDED) return 0; break; case ICMP_REDIRECT: break; default: return 0; } x = xfrm_state_lookup(net, skb->mark, (const xfrm_address_t *)&iph->daddr, ah->spi, IPPROTO_AH, AF_INET); if (!x) return 0; if (icmp_hdr(skb)->type == ICMP_DEST_UNREACH) ipv4_update_pmtu(skb, net, info, 0, IPPROTO_AH); else ipv4_redirect(skb, net, 0, IPPROTO_AH); xfrm_state_put(x); return 0; } static int ah_init_state(struct xfrm_state *x, struct netlink_ext_ack *extack) { struct ah_data *ahp = NULL; struct xfrm_algo_desc *aalg_desc; struct crypto_ahash *ahash; if (!x->aalg) { NL_SET_ERR_MSG(extack, "AH requires a state with an AUTH algorithm"); goto error; } if (x->encap) { NL_SET_ERR_MSG(extack, "AH is not compatible with encapsulation"); goto error; } ahp = kzalloc(sizeof(*ahp), GFP_KERNEL); if (!ahp) return -ENOMEM; ahash = crypto_alloc_ahash(x->aalg->alg_name, 0, 0); if (IS_ERR(ahash)) { NL_SET_ERR_MSG(extack, "Kernel was unable to initialize cryptographic operations"); goto error; } ahp->ahash = ahash; if (crypto_ahash_setkey(ahash, x->aalg->alg_key, (x->aalg->alg_key_len + 7) / 8)) { NL_SET_ERR_MSG(extack, "Kernel was unable to initialize cryptographic operations"); goto error; } /* * Lookup the algorithm description maintained by xfrm_algo, * verify crypto transform properties, and store information * we need for AH processing. This lookup cannot fail here * after a successful crypto_alloc_ahash(). */ aalg_desc = xfrm_aalg_get_byname(x->aalg->alg_name, 0); BUG_ON(!aalg_desc); if (aalg_desc->uinfo.auth.icv_fullbits/8 != crypto_ahash_digestsize(ahash)) { NL_SET_ERR_MSG(extack, "Kernel was unable to initialize cryptographic operations"); goto error; } ahp->icv_full_len = aalg_desc->uinfo.auth.icv_fullbits/8; ahp->icv_trunc_len = x->aalg->alg_trunc_len/8; if (x->props.flags & XFRM_STATE_ALIGN4) x->props.header_len = XFRM_ALIGN4(sizeof(struct ip_auth_hdr) + ahp->icv_trunc_len); else x->props.header_len = XFRM_ALIGN8(sizeof(struct ip_auth_hdr) + ahp->icv_trunc_len); if (x->props.mode == XFRM_MODE_TUNNEL) x->props.header_len += sizeof(struct iphdr); x->data = ahp; return 0; error: if (ahp) { crypto_free_ahash(ahp->ahash); kfree(ahp); } return -EINVAL; } static void ah_destroy(struct xfrm_state *x) { struct ah_data *ahp = x->data; if (!ahp) return; crypto_free_ahash(ahp->ahash); kfree(ahp); } static int ah4_rcv_cb(struct sk_buff *skb, int err) { return 0; } static const struct xfrm_type ah_type = { .owner = THIS_MODULE, .proto = IPPROTO_AH, .flags = XFRM_TYPE_REPLAY_PROT, .init_state = ah_init_state, .destructor = ah_destroy, .input = ah_input, .output = ah_output }; static struct xfrm4_protocol ah4_protocol = { .handler = xfrm4_rcv, .input_handler = xfrm_input, .cb_handler = ah4_rcv_cb, .err_handler = ah4_err, .priority = 0, }; static int __init ah4_init(void) { if (xfrm_register_type(&ah_type, AF_INET) < 0) { pr_info("%s: can't add xfrm type\n", __func__); return -EAGAIN; } if (xfrm4_protocol_register(&ah4_protocol, IPPROTO_AH) < 0) { pr_info("%s: can't add protocol\n", __func__); xfrm_unregister_type(&ah_type, AF_INET); return -EAGAIN; } return 0; } static void __exit ah4_fini(void) { if (xfrm4_protocol_deregister(&ah4_protocol, IPPROTO_AH) < 0) pr_info("%s: can't remove protocol\n", __func__); xfrm_unregister_type(&ah_type, AF_INET); } module_init(ah4_init); module_exit(ah4_fini); MODULE_DESCRIPTION("IPv4 AH transformation library"); MODULE_LICENSE("GPL"); MODULE_ALIAS_XFRM_TYPE(AF_INET, XFRM_PROTO_AH);
2 2 2 2 2 2 2 2 2 2 28 28 28 28 28 28 28 28 28 2 2 2 28 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 // SPDX-License-Identifier: GPL-2.0-only /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Generic TIME_WAIT sockets functions * * From code orinally in TCP */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/module.h> #include <net/inet_hashtables.h> #include <net/inet_timewait_sock.h> #include <net/ip.h> /** * inet_twsk_bind_unhash - unhash a timewait socket from bind hash * @tw: timewait socket * @hashinfo: hashinfo pointer * * unhash a timewait socket from bind hash, if hashed. * bind hash lock must be held by caller. * Returns 1 if caller should call inet_twsk_put() after lock release. */ void inet_twsk_bind_unhash(struct inet_timewait_sock *tw, struct inet_hashinfo *hashinfo) { struct inet_bind2_bucket *tb2 = tw->tw_tb2; struct inet_bind_bucket *tb = tw->tw_tb; if (!tb) return; __sk_del_bind_node((struct sock *)tw); tw->tw_tb = NULL; tw->tw_tb2 = NULL; inet_bind2_bucket_destroy(hashinfo->bind2_bucket_cachep, tb2); inet_bind_bucket_destroy(hashinfo->bind_bucket_cachep, tb); __sock_put((struct sock *)tw); } /* Must be called with locally disabled BHs. */ static void inet_twsk_kill(struct inet_timewait_sock *tw) { struct inet_hashinfo *hashinfo = tw->tw_dr->hashinfo; spinlock_t *lock = inet_ehash_lockp(hashinfo, tw->tw_hash); struct inet_bind_hashbucket *bhead, *bhead2; spin_lock(lock); sk_nulls_del_node_init_rcu((struct sock *)tw); spin_unlock(lock); /* Disassociate with bind bucket. */ bhead = &hashinfo->bhash[inet_bhashfn(twsk_net(tw), tw->tw_num, hashinfo->bhash_size)]; bhead2 = inet_bhashfn_portaddr(hashinfo, (struct sock *)tw, twsk_net(tw), tw->tw_num); spin_lock(&bhead->lock); spin_lock(&bhead2->lock); inet_twsk_bind_unhash(tw, hashinfo); spin_unlock(&bhead2->lock); spin_unlock(&bhead->lock); refcount_dec(&tw->tw_dr->tw_refcount); inet_twsk_put(tw); } void inet_twsk_free(struct inet_timewait_sock *tw) { struct module *owner = tw->tw_prot->owner; twsk_destructor((struct sock *)tw); kmem_cache_free(tw->tw_prot->twsk_prot->twsk_slab, tw); module_put(owner); } void inet_twsk_put(struct inet_timewait_sock *tw) { if (refcount_dec_and_test(&tw->tw_refcnt)) inet_twsk_free(tw); } EXPORT_SYMBOL_GPL(inet_twsk_put); static void inet_twsk_add_node_rcu(struct inet_timewait_sock *tw, struct hlist_nulls_head *list) { hlist_nulls_add_head_rcu(&tw->tw_node, list); } static void inet_twsk_schedule(struct inet_timewait_sock *tw, int timeo) { __inet_twsk_schedule(tw, timeo, false); } /* * Enter the time wait state. * Essentially we whip up a timewait bucket, copy the relevant info into it * from the SK, and mess with hash chains and list linkage. * * The caller must not access @tw anymore after this function returns. */ void inet_twsk_hashdance_schedule(struct inet_timewait_sock *tw, struct sock *sk, struct inet_hashinfo *hashinfo, int timeo) { const struct inet_sock *inet = inet_sk(sk); const struct inet_connection_sock *icsk = inet_csk(sk); struct inet_ehash_bucket *ehead = inet_ehash_bucket(hashinfo, sk->sk_hash); spinlock_t *lock = inet_ehash_lockp(hashinfo, sk->sk_hash); struct inet_bind_hashbucket *bhead, *bhead2; /* Step 1: Put TW into bind hash. Original socket stays there too. Note, that any socket with inet->num != 0 MUST be bound in binding cache, even if it is closed. */ bhead = &hashinfo->bhash[inet_bhashfn(twsk_net(tw), inet->inet_num, hashinfo->bhash_size)]; bhead2 = inet_bhashfn_portaddr(hashinfo, sk, twsk_net(tw), inet->inet_num); local_bh_disable(); spin_lock(&bhead->lock); spin_lock(&bhead2->lock); tw->tw_tb = icsk->icsk_bind_hash; WARN_ON(!icsk->icsk_bind_hash); tw->tw_tb2 = icsk->icsk_bind2_hash; WARN_ON(!icsk->icsk_bind2_hash); sk_add_bind_node((struct sock *)tw, &tw->tw_tb2->owners); spin_unlock(&bhead2->lock); spin_unlock(&bhead->lock); spin_lock(lock); /* Step 2: Hash TW into tcp ehash chain */ inet_twsk_add_node_rcu(tw, &ehead->chain); /* Step 3: Remove SK from hash chain */ if (__sk_nulls_del_node_init_rcu(sk)) sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); /* Ensure above writes are committed into memory before updating the * refcount. * Provides ordering vs later refcount_inc(). */ smp_wmb(); /* tw_refcnt is set to 3 because we have : * - one reference for bhash chain. * - one reference for ehash chain. * - one reference for timer. * Also note that after this point, we lost our implicit reference * so we are not allowed to use tw anymore. */ refcount_set(&tw->tw_refcnt, 3); inet_twsk_schedule(tw, timeo); spin_unlock(lock); local_bh_enable(); } EXPORT_SYMBOL_GPL(inet_twsk_hashdance_schedule); static void tw_timer_handler(struct timer_list *t) { struct inet_timewait_sock *tw = from_timer(tw, t, tw_timer); inet_twsk_kill(tw); } struct inet_timewait_sock *inet_twsk_alloc(const struct sock *sk, struct inet_timewait_death_row *dr, const int state) { struct inet_timewait_sock *tw; if (refcount_read(&dr->tw_refcount) - 1 >= READ_ONCE(dr->sysctl_max_tw_buckets)) return NULL; tw = kmem_cache_alloc(sk->sk_prot_creator->twsk_prot->twsk_slab, GFP_ATOMIC); if (tw) { const struct inet_sock *inet = inet_sk(sk); tw->tw_dr = dr; /* Give us an identity. */ tw->tw_daddr = inet->inet_daddr; tw->tw_rcv_saddr = inet->inet_rcv_saddr; tw->tw_bound_dev_if = sk->sk_bound_dev_if; tw->tw_tos = inet->tos; tw->tw_num = inet->inet_num; tw->tw_state = TCP_TIME_WAIT; tw->tw_substate = state; tw->tw_sport = inet->inet_sport; tw->tw_dport = inet->inet_dport; tw->tw_family = sk->sk_family; tw->tw_reuse = sk->sk_reuse; tw->tw_reuseport = sk->sk_reuseport; tw->tw_hash = sk->sk_hash; tw->tw_ipv6only = 0; tw->tw_transparent = inet_test_bit(TRANSPARENT, sk); tw->tw_prot = sk->sk_prot_creator; atomic64_set(&tw->tw_cookie, atomic64_read(&sk->sk_cookie)); twsk_net_set(tw, sock_net(sk)); timer_setup(&tw->tw_timer, tw_timer_handler, 0); /* * Because we use RCU lookups, we should not set tw_refcnt * to a non null value before everything is setup for this * timewait socket. */ refcount_set(&tw->tw_refcnt, 0); __module_get(tw->tw_prot->owner); } return tw; } EXPORT_SYMBOL_GPL(inet_twsk_alloc); /* These are always called from BH context. See callers in * tcp_input.c to verify this. */ /* This is for handling early-kills of TIME_WAIT sockets. * Warning : consume reference. * Caller should not access tw anymore. */ void inet_twsk_deschedule_put(struct inet_timewait_sock *tw) { struct inet_hashinfo *hashinfo = tw->tw_dr->hashinfo; spinlock_t *lock = inet_ehash_lockp(hashinfo, tw->tw_hash); /* inet_twsk_purge() walks over all sockets, including tw ones, * and removes them via inet_twsk_deschedule_put() after a * refcount_inc_not_zero(). * * inet_twsk_hashdance_schedule() must (re)init the refcount before * arming the timer, i.e. inet_twsk_purge can obtain a reference to * a twsk that did not yet schedule the timer. * * The ehash lock synchronizes these two: * After acquiring the lock, the timer is always scheduled (else * timer_shutdown returns false), because hashdance_schedule releases * the ehash lock only after completing the timer initialization. * * Without grabbing the ehash lock, we get: * 1) cpu x sets twsk refcount to 3 * 2) cpu y bumps refcount to 4 * 3) cpu y calls inet_twsk_deschedule_put() and shuts timer down * 4) cpu x tries to start timer, but mod_timer is a noop post-shutdown * -> timer refcount is never decremented. */ spin_lock(lock); /* Makes sure hashdance_schedule() has completed */ spin_unlock(lock); if (timer_shutdown_sync(&tw->tw_timer)) inet_twsk_kill(tw); inet_twsk_put(tw); } EXPORT_SYMBOL(inet_twsk_deschedule_put); void __inet_twsk_schedule(struct inet_timewait_sock *tw, int timeo, bool rearm) { /* timeout := RTO * 3.5 * * 3.5 = 1+2+0.5 to wait for two retransmits. * * RATIONALE: if FIN arrived and we entered TIME-WAIT state, * our ACK acking that FIN can be lost. If N subsequent retransmitted * FINs (or previous seqments) are lost (probability of such event * is p^(N+1), where p is probability to lose single packet and * time to detect the loss is about RTO*(2^N - 1) with exponential * backoff). Normal timewait length is calculated so, that we * waited at least for one retransmitted FIN (maximal RTO is 120sec). * [ BTW Linux. following BSD, violates this requirement waiting * only for 60sec, we should wait at least for 240 secs. * Well, 240 consumes too much of resources 8) * ] * This interval is not reduced to catch old duplicate and * responces to our wandering segments living for two MSLs. * However, if we use PAWS to detect * old duplicates, we can reduce the interval to bounds required * by RTO, rather than MSL. So, if peer understands PAWS, we * kill tw bucket after 3.5*RTO (it is important that this number * is greater than TS tick!) and detect old duplicates with help * of PAWS. */ if (!rearm) { bool kill = timeo <= 4*HZ; __NET_INC_STATS(twsk_net(tw), kill ? LINUX_MIB_TIMEWAITKILLED : LINUX_MIB_TIMEWAITED); BUG_ON(mod_timer(&tw->tw_timer, jiffies + timeo)); refcount_inc(&tw->tw_dr->tw_refcount); } else { mod_timer_pending(&tw->tw_timer, jiffies + timeo); } } EXPORT_SYMBOL_GPL(__inet_twsk_schedule); /* Remove all non full sockets (TIME_WAIT and NEW_SYN_RECV) for dead netns */ void inet_twsk_purge(struct inet_hashinfo *hashinfo) { struct inet_ehash_bucket *head = &hashinfo->ehash[0]; unsigned int ehash_mask = hashinfo->ehash_mask; struct hlist_nulls_node *node; unsigned int slot; struct sock *sk; for (slot = 0; slot <= ehash_mask; slot++, head++) { if (hlist_nulls_empty(&head->chain)) continue; restart_rcu: cond_resched(); rcu_read_lock(); restart: sk_nulls_for_each_rcu(sk, node, &head->chain) { int state = inet_sk_state_load(sk); if ((1 << state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV)) continue; if (refcount_read(&sock_net(sk)->ns.count)) continue; if (unlikely(!refcount_inc_not_zero(&sk->sk_refcnt))) continue; if (refcount_read(&sock_net(sk)->ns.count)) { sock_gen_put(sk); goto restart; } rcu_read_unlock(); local_bh_disable(); if (state == TCP_TIME_WAIT) { inet_twsk_deschedule_put(inet_twsk(sk)); } else { struct request_sock *req = inet_reqsk(sk); inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req); } local_bh_enable(); goto restart_rcu; } /* If the nulls value we got at the end of this lookup is * not the expected one, we must restart lookup. * We probably met an item that was moved to another chain. */ if (get_nulls_value(node) != slot) goto restart; rcu_read_unlock(); } } EXPORT_SYMBOL_GPL(inet_twsk_purge);
178 180 1 178 2 178 2 13323 13320 13323 178 175 147 36 174 178 1 1 1 2 1 1 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 10 10 10 1 1 10748 10752 10748 10748 10752 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 // SPDX-License-Identifier: GPL-2.0-only #include "cgroup-internal.h" #include <linux/sched/cputime.h> #include <linux/bpf.h> #include <linux/btf.h> #include <linux/btf_ids.h> #include <trace/events/cgroup.h> static DEFINE_SPINLOCK(cgroup_rstat_lock); static DEFINE_PER_CPU(raw_spinlock_t, cgroup_rstat_cpu_lock); static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu); static struct cgroup_rstat_cpu *cgroup_rstat_cpu(struct cgroup *cgrp, int cpu) { return per_cpu_ptr(cgrp->rstat_cpu, cpu); } /* * Helper functions for rstat per CPU lock (cgroup_rstat_cpu_lock). * * This makes it easier to diagnose locking issues and contention in * production environments. The parameter @fast_path determine the * tracepoints being added, allowing us to diagnose "flush" related * operations without handling high-frequency fast-path "update" events. */ static __always_inline unsigned long _cgroup_rstat_cpu_lock(raw_spinlock_t *cpu_lock, int cpu, struct cgroup *cgrp, const bool fast_path) { unsigned long flags; bool contended; /* * The _irqsave() is needed because cgroup_rstat_lock is * spinlock_t which is a sleeping lock on PREEMPT_RT. Acquiring * this lock with the _irq() suffix only disables interrupts on * a non-PREEMPT_RT kernel. The raw_spinlock_t below disables * interrupts on both configurations. The _irqsave() ensures * that interrupts are always disabled and later restored. */ contended = !raw_spin_trylock_irqsave(cpu_lock, flags); if (contended) { if (fast_path) trace_cgroup_rstat_cpu_lock_contended_fastpath(cgrp, cpu, contended); else trace_cgroup_rstat_cpu_lock_contended(cgrp, cpu, contended); raw_spin_lock_irqsave(cpu_lock, flags); } if (fast_path) trace_cgroup_rstat_cpu_locked_fastpath(cgrp, cpu, contended); else trace_cgroup_rstat_cpu_locked(cgrp, cpu, contended); return flags; } static __always_inline void _cgroup_rstat_cpu_unlock(raw_spinlock_t *cpu_lock, int cpu, struct cgroup *cgrp, unsigned long flags, const bool fast_path) { if (fast_path) trace_cgroup_rstat_cpu_unlock_fastpath(cgrp, cpu, false); else trace_cgroup_rstat_cpu_unlock(cgrp, cpu, false); raw_spin_unlock_irqrestore(cpu_lock, flags); } /** * cgroup_rstat_updated - keep track of updated rstat_cpu * @cgrp: target cgroup * @cpu: cpu on which rstat_cpu was updated * * @cgrp's rstat_cpu on @cpu was updated. Put it on the parent's matching * rstat_cpu->updated_children list. See the comment on top of * cgroup_rstat_cpu definition for details. */ __bpf_kfunc void cgroup_rstat_updated(struct cgroup *cgrp, int cpu) { raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu); unsigned long flags; /* * Speculative already-on-list test. This may race leading to * temporary inaccuracies, which is fine. * * Because @parent's updated_children is terminated with @parent * instead of NULL, we can tell whether @cgrp is on the list by * testing the next pointer for NULL. */ if (data_race(cgroup_rstat_cpu(cgrp, cpu)->updated_next)) return; flags = _cgroup_rstat_cpu_lock(cpu_lock, cpu, cgrp, true); /* put @cgrp and all ancestors on the corresponding updated lists */ while (true) { struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); struct cgroup *parent = cgroup_parent(cgrp); struct cgroup_rstat_cpu *prstatc; /* * Both additions and removals are bottom-up. If a cgroup * is already in the tree, all ancestors are. */ if (rstatc->updated_next) break; /* Root has no parent to link it to, but mark it busy */ if (!parent) { rstatc->updated_next = cgrp; break; } prstatc = cgroup_rstat_cpu(parent, cpu); rstatc->updated_next = prstatc->updated_children; prstatc->updated_children = cgrp; cgrp = parent; } _cgroup_rstat_cpu_unlock(cpu_lock, cpu, cgrp, flags, true); } /** * cgroup_rstat_push_children - push children cgroups into the given list * @head: current head of the list (= subtree root) * @child: first child of the root * @cpu: target cpu * Return: A new singly linked list of cgroups to be flush * * Iteratively traverse down the cgroup_rstat_cpu updated tree level by * level and push all the parents first before their next level children * into a singly linked list built from the tail backward like "pushing" * cgroups into a stack. The root is pushed by the caller. */ static struct cgroup *cgroup_rstat_push_children(struct cgroup *head, struct cgroup *child, int cpu) { struct cgroup *chead = child; /* Head of child cgroup level */ struct cgroup *ghead = NULL; /* Head of grandchild cgroup level */ struct cgroup *parent, *grandchild; struct cgroup_rstat_cpu *crstatc; child->rstat_flush_next = NULL; next_level: while (chead) { child = chead; chead = child->rstat_flush_next; parent = cgroup_parent(child); /* updated_next is parent cgroup terminated */ while (child != parent) { child->rstat_flush_next = head; head = child; crstatc = cgroup_rstat_cpu(child, cpu); grandchild = crstatc->updated_children; if (grandchild != child) { /* Push the grand child to the next level */ crstatc->updated_children = child; grandchild->rstat_flush_next = ghead; ghead = grandchild; } child = crstatc->updated_next; crstatc->updated_next = NULL; } } if (ghead) { chead = ghead; ghead = NULL; goto next_level; } return head; } /** * cgroup_rstat_updated_list - return a list of updated cgroups to be flushed * @root: root of the cgroup subtree to traverse * @cpu: target cpu * Return: A singly linked list of cgroups to be flushed * * Walks the updated rstat_cpu tree on @cpu from @root. During traversal, * each returned cgroup is unlinked from the updated tree. * * The only ordering guarantee is that, for a parent and a child pair * covered by a given traversal, the child is before its parent in * the list. * * Note that updated_children is self terminated and points to a list of * child cgroups if not empty. Whereas updated_next is like a sibling link * within the children list and terminated by the parent cgroup. An exception * here is the cgroup root whose updated_next can be self terminated. */ static struct cgroup *cgroup_rstat_updated_list(struct cgroup *root, int cpu) { raw_spinlock_t *cpu_lock = per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu); struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(root, cpu); struct cgroup *head = NULL, *parent, *child; unsigned long flags; flags = _cgroup_rstat_cpu_lock(cpu_lock, cpu, root, false); /* Return NULL if this subtree is not on-list */ if (!rstatc->updated_next) goto unlock_ret; /* * Unlink @root from its parent. As the updated_children list is * singly linked, we have to walk it to find the removal point. */ parent = cgroup_parent(root); if (parent) { struct cgroup_rstat_cpu *prstatc; struct cgroup **nextp; prstatc = cgroup_rstat_cpu(parent, cpu); nextp = &prstatc->updated_children; while (*nextp != root) { struct cgroup_rstat_cpu *nrstatc; nrstatc = cgroup_rstat_cpu(*nextp, cpu); WARN_ON_ONCE(*nextp == parent); nextp = &nrstatc->updated_next; } *nextp = rstatc->updated_next; } rstatc->updated_next = NULL; /* Push @root to the list first before pushing the children */ head = root; root->rstat_flush_next = NULL; child = rstatc->updated_children; rstatc->updated_children = root; if (child != root) head = cgroup_rstat_push_children(head, child, cpu); unlock_ret: _cgroup_rstat_cpu_unlock(cpu_lock, cpu, root, flags, false); return head; } /* * A hook for bpf stat collectors to attach to and flush their stats. * Together with providing bpf kfuncs for cgroup_rstat_updated() and * cgroup_rstat_flush(), this enables a complete workflow where bpf progs that * collect cgroup stats can integrate with rstat for efficient flushing. * * A static noinline declaration here could cause the compiler to optimize away * the function. A global noinline declaration will keep the definition, but may * optimize away the callsite. Therefore, __weak is needed to ensure that the * call is still emitted, by telling the compiler that we don't know what the * function might eventually be. */ __bpf_hook_start(); __weak noinline void bpf_rstat_flush(struct cgroup *cgrp, struct cgroup *parent, int cpu) { } __bpf_hook_end(); /* * Helper functions for locking cgroup_rstat_lock. * * This makes it easier to diagnose locking issues and contention in * production environments. The parameter @cpu_in_loop indicate lock * was released and re-taken when collection data from the CPUs. The * value -1 is used when obtaining the main lock else this is the CPU * number processed last. */ static inline void __cgroup_rstat_lock(struct cgroup *cgrp, int cpu_in_loop) __acquires(&cgroup_rstat_lock) { bool contended; contended = !spin_trylock_irq(&cgroup_rstat_lock); if (contended) { trace_cgroup_rstat_lock_contended(cgrp, cpu_in_loop, contended); spin_lock_irq(&cgroup_rstat_lock); } trace_cgroup_rstat_locked(cgrp, cpu_in_loop, contended); } static inline void __cgroup_rstat_unlock(struct cgroup *cgrp, int cpu_in_loop) __releases(&cgroup_rstat_lock) { trace_cgroup_rstat_unlock(cgrp, cpu_in_loop, false); spin_unlock_irq(&cgroup_rstat_lock); } /* see cgroup_rstat_flush() */ static void cgroup_rstat_flush_locked(struct cgroup *cgrp) __releases(&cgroup_rstat_lock) __acquires(&cgroup_rstat_lock) { int cpu; lockdep_assert_held(&cgroup_rstat_lock); for_each_possible_cpu(cpu) { struct cgroup *pos = cgroup_rstat_updated_list(cgrp, cpu); for (; pos; pos = pos->rstat_flush_next) { struct cgroup_subsys_state *css; cgroup_base_stat_flush(pos, cpu); bpf_rstat_flush(pos, cgroup_parent(pos), cpu); rcu_read_lock(); list_for_each_entry_rcu(css, &pos->rstat_css_list, rstat_css_node) css->ss->css_rstat_flush(css, cpu); rcu_read_unlock(); } /* play nice and yield if necessary */ if (need_resched() || spin_needbreak(&cgroup_rstat_lock)) { __cgroup_rstat_unlock(cgrp, cpu); if (!cond_resched()) cpu_relax(); __cgroup_rstat_lock(cgrp, cpu); } } } /** * cgroup_rstat_flush - flush stats in @cgrp's subtree * @cgrp: target cgroup * * Collect all per-cpu stats in @cgrp's subtree into the global counters * and propagate them upwards. After this function returns, all cgroups in * the subtree have up-to-date ->stat. * * This also gets all cgroups in the subtree including @cgrp off the * ->updated_children lists. * * This function may block. */ __bpf_kfunc void cgroup_rstat_flush(struct cgroup *cgrp) { might_sleep(); __cgroup_rstat_lock(cgrp, -1); cgroup_rstat_flush_locked(cgrp); __cgroup_rstat_unlock(cgrp, -1); } /** * cgroup_rstat_flush_hold - flush stats in @cgrp's subtree and hold * @cgrp: target cgroup * * Flush stats in @cgrp's subtree and prevent further flushes. Must be * paired with cgroup_rstat_flush_release(). * * This function may block. */ void cgroup_rstat_flush_hold(struct cgroup *cgrp) __acquires(&cgroup_rstat_lock) { might_sleep(); __cgroup_rstat_lock(cgrp, -1); cgroup_rstat_flush_locked(cgrp); } /** * cgroup_rstat_flush_release - release cgroup_rstat_flush_hold() * @cgrp: cgroup used by tracepoint */ void cgroup_rstat_flush_release(struct cgroup *cgrp) __releases(&cgroup_rstat_lock) { __cgroup_rstat_unlock(cgrp, -1); } int cgroup_rstat_init(struct cgroup *cgrp) { int cpu; /* the root cgrp has rstat_cpu preallocated */ if (!cgrp->rstat_cpu) { cgrp->rstat_cpu = alloc_percpu(struct cgroup_rstat_cpu); if (!cgrp->rstat_cpu) return -ENOMEM; } /* ->updated_children list is self terminated */ for_each_possible_cpu(cpu) { struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); rstatc->updated_children = cgrp; u64_stats_init(&rstatc->bsync); } return 0; } void cgroup_rstat_exit(struct cgroup *cgrp) { int cpu; cgroup_rstat_flush(cgrp); /* sanity check */ for_each_possible_cpu(cpu) { struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); if (WARN_ON_ONCE(rstatc->updated_children != cgrp) || WARN_ON_ONCE(rstatc->updated_next)) return; } free_percpu(cgrp->rstat_cpu); cgrp->rstat_cpu = NULL; } void __init cgroup_rstat_boot(void) { int cpu; for_each_possible_cpu(cpu) raw_spin_lock_init(per_cpu_ptr(&cgroup_rstat_cpu_lock, cpu)); } /* * Functions for cgroup basic resource statistics implemented on top of * rstat. */ static void cgroup_base_stat_add(struct cgroup_base_stat *dst_bstat, struct cgroup_base_stat *src_bstat) { dst_bstat->cputime.utime += src_bstat->cputime.utime; dst_bstat->cputime.stime += src_bstat->cputime.stime; dst_bstat->cputime.sum_exec_runtime += src_bstat->cputime.sum_exec_runtime; #ifdef CONFIG_SCHED_CORE dst_bstat->forceidle_sum += src_bstat->forceidle_sum; #endif } static void cgroup_base_stat_sub(struct cgroup_base_stat *dst_bstat, struct cgroup_base_stat *src_bstat) { dst_bstat->cputime.utime -= src_bstat->cputime.utime; dst_bstat->cputime.stime -= src_bstat->cputime.stime; dst_bstat->cputime.sum_exec_runtime -= src_bstat->cputime.sum_exec_runtime; #ifdef CONFIG_SCHED_CORE dst_bstat->forceidle_sum -= src_bstat->forceidle_sum; #endif } static void cgroup_base_stat_flush(struct cgroup *cgrp, int cpu) { struct cgroup_rstat_cpu *rstatc = cgroup_rstat_cpu(cgrp, cpu); struct cgroup *parent = cgroup_parent(cgrp); struct cgroup_rstat_cpu *prstatc; struct cgroup_base_stat delta; unsigned seq; /* Root-level stats are sourced from system-wide CPU stats */ if (!parent) return; /* fetch the current per-cpu values */ do { seq = __u64_stats_fetch_begin(&rstatc->bsync); delta = rstatc->bstat; } while (__u64_stats_fetch_retry(&rstatc->bsync, seq)); /* propagate per-cpu delta to cgroup and per-cpu global statistics */ cgroup_base_stat_sub(&delta, &rstatc->last_bstat); cgroup_base_stat_add(&cgrp->bstat, &delta); cgroup_base_stat_add(&rstatc->last_bstat, &delta); cgroup_base_stat_add(&rstatc->subtree_bstat, &delta); /* propagate cgroup and per-cpu global delta to parent (unless that's root) */ if (cgroup_parent(parent)) { delta = cgrp->bstat; cgroup_base_stat_sub(&delta, &cgrp->last_bstat); cgroup_base_stat_add(&parent->bstat, &delta); cgroup_base_stat_add(&cgrp->last_bstat, &delta); delta = rstatc->subtree_bstat; prstatc = cgroup_rstat_cpu(parent, cpu); cgroup_base_stat_sub(&delta, &rstatc->last_subtree_bstat); cgroup_base_stat_add(&prstatc->subtree_bstat, &delta); cgroup_base_stat_add(&rstatc->last_subtree_bstat, &delta); } } static struct cgroup_rstat_cpu * cgroup_base_stat_cputime_account_begin(struct cgroup *cgrp, unsigned long *flags) { struct cgroup_rstat_cpu *rstatc; rstatc = get_cpu_ptr(cgrp->rstat_cpu); *flags = u64_stats_update_begin_irqsave(&rstatc->bsync); return rstatc; } static void cgroup_base_stat_cputime_account_end(struct cgroup *cgrp, struct cgroup_rstat_cpu *rstatc, unsigned long flags) { u64_stats_update_end_irqrestore(&rstatc->bsync, flags); cgroup_rstat_updated(cgrp, smp_processor_id()); put_cpu_ptr(rstatc); } void __cgroup_account_cputime(struct cgroup *cgrp, u64 delta_exec) { struct cgroup_rstat_cpu *rstatc; unsigned long flags; rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); rstatc->bstat.cputime.sum_exec_runtime += delta_exec; cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags); } void __cgroup_account_cputime_field(struct cgroup *cgrp, enum cpu_usage_stat index, u64 delta_exec) { struct cgroup_rstat_cpu *rstatc; unsigned long flags; rstatc = cgroup_base_stat_cputime_account_begin(cgrp, &flags); switch (index) { case CPUTIME_USER: case CPUTIME_NICE: rstatc->bstat.cputime.utime += delta_exec; break; case CPUTIME_SYSTEM: case CPUTIME_IRQ: case CPUTIME_SOFTIRQ: rstatc->bstat.cputime.stime += delta_exec; break; #ifdef CONFIG_SCHED_CORE case CPUTIME_FORCEIDLE: rstatc->bstat.forceidle_sum += delta_exec; break; #endif default: break; } cgroup_base_stat_cputime_account_end(cgrp, rstatc, flags); } /* * compute the cputime for the root cgroup by getting the per cpu data * at a global level, then categorizing the fields in a manner consistent * with how it is done by __cgroup_account_cputime_field for each bit of * cpu time attributed to a cgroup. */ static void root_cgroup_cputime(struct cgroup_base_stat *bstat) { struct task_cputime *cputime = &bstat->cputime; int i; memset(bstat, 0, sizeof(*bstat)); for_each_possible_cpu(i) { struct kernel_cpustat kcpustat; u64 *cpustat = kcpustat.cpustat; u64 user = 0; u64 sys = 0; kcpustat_cpu_fetch(&kcpustat, i); user += cpustat[CPUTIME_USER]; user += cpustat[CPUTIME_NICE]; cputime->utime += user; sys += cpustat[CPUTIME_SYSTEM]; sys += cpustat[CPUTIME_IRQ]; sys += cpustat[CPUTIME_SOFTIRQ]; cputime->stime += sys; cputime->sum_exec_runtime += user; cputime->sum_exec_runtime += sys; cputime->sum_exec_runtime += cpustat[CPUTIME_STEAL]; #ifdef CONFIG_SCHED_CORE bstat->forceidle_sum += cpustat[CPUTIME_FORCEIDLE]; #endif } } static void cgroup_force_idle_show(struct seq_file *seq, struct cgroup_base_stat *bstat) { #ifdef CONFIG_SCHED_CORE u64 forceidle_time = bstat->forceidle_sum; do_div(forceidle_time, NSEC_PER_USEC); seq_printf(seq, "core_sched.force_idle_usec %llu\n", forceidle_time); #endif } void cgroup_base_stat_cputime_show(struct seq_file *seq) { struct cgroup *cgrp = seq_css(seq)->cgroup; u64 usage, utime, stime; if (cgroup_parent(cgrp)) { cgroup_rstat_flush_hold(cgrp); usage = cgrp->bstat.cputime.sum_exec_runtime; cputime_adjust(&cgrp->bstat.cputime, &cgrp->prev_cputime, &utime, &stime); cgroup_rstat_flush_release(cgrp); } else { /* cgrp->bstat of root is not actually used, reuse it */ root_cgroup_cputime(&cgrp->bstat); usage = cgrp->bstat.cputime.sum_exec_runtime; utime = cgrp->bstat.cputime.utime; stime = cgrp->bstat.cputime.stime; } do_div(usage, NSEC_PER_USEC); do_div(utime, NSEC_PER_USEC); do_div(stime, NSEC_PER_USEC); seq_printf(seq, "usage_usec %llu\n" "user_usec %llu\n" "system_usec %llu\n", usage, utime, stime); cgroup_force_idle_show(seq, &cgrp->bstat); } /* Add bpf kfuncs for cgroup_rstat_updated() and cgroup_rstat_flush() */ BTF_KFUNCS_START(bpf_rstat_kfunc_ids) BTF_ID_FLAGS(func, cgroup_rstat_updated) BTF_ID_FLAGS(func, cgroup_rstat_flush, KF_SLEEPABLE) BTF_KFUNCS_END(bpf_rstat_kfunc_ids) static const struct btf_kfunc_id_set bpf_rstat_kfunc_set = { .owner = THIS_MODULE, .set = &bpf_rstat_kfunc_ids, }; static int __init bpf_rstat_kfunc_init(void) { return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_rstat_kfunc_set); } late_initcall(bpf_rstat_kfunc_init);
270 271 268 269 271 3 264 47 19 46 39 14 39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 // SPDX-License-Identifier: GPL-2.0-only /* (C) 1999-2001 Paul `Rusty' Russell * (C) 2002-2004 Netfilter Core Team <coreteam@netfilter.org> */ #include <linux/types.h> #include <linux/ipv6.h> #include <linux/in6.h> #include <linux/netfilter.h> #include <linux/module.h> #include <linux/skbuff.h> #include <linux/icmp.h> #include <linux/rcupdate.h> #include <linux/sysctl.h> #include <net/ipv6_frag.h> #include <linux/netfilter_ipv6.h> #include <linux/netfilter_bridge.h> #if IS_ENABLED(CONFIG_NF_CONNTRACK) #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_helper.h> #include <net/netfilter/nf_conntrack_l4proto.h> #include <net/netfilter/nf_conntrack_core.h> #include <net/netfilter/ipv6/nf_conntrack_ipv6.h> #endif #include <net/netfilter/nf_conntrack_zones.h> #include <net/netfilter/ipv6/nf_defrag_ipv6.h> static DEFINE_MUTEX(defrag6_mutex); static enum ip6_defrag_users nf_ct6_defrag_user(unsigned int hooknum, struct sk_buff *skb) { u16 zone_id = NF_CT_DEFAULT_ZONE_ID; #if IS_ENABLED(CONFIG_NF_CONNTRACK) if (skb_nfct(skb)) { enum ip_conntrack_info ctinfo; const struct nf_conn *ct = nf_ct_get(skb, &ctinfo); zone_id = nf_ct_zone_id(nf_ct_zone(ct), CTINFO2DIR(ctinfo)); } #endif if (nf_bridge_in_prerouting(skb)) return IP6_DEFRAG_CONNTRACK_BRIDGE_IN + zone_id; if (hooknum == NF_INET_PRE_ROUTING) return IP6_DEFRAG_CONNTRACK_IN + zone_id; else return IP6_DEFRAG_CONNTRACK_OUT + zone_id; } static unsigned int ipv6_defrag(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { int err; #if IS_ENABLED(CONFIG_NF_CONNTRACK) /* Previously seen (loopback)? */ if (skb_nfct(skb) && !nf_ct_is_template((struct nf_conn *)skb_nfct(skb))) return NF_ACCEPT; if (skb->_nfct == IP_CT_UNTRACKED) return NF_ACCEPT; #endif err = nf_ct_frag6_gather(state->net, skb, nf_ct6_defrag_user(state->hook, skb)); /* queued */ if (err == -EINPROGRESS) return NF_STOLEN; return err == 0 ? NF_ACCEPT : NF_DROP; } static const struct nf_hook_ops ipv6_defrag_ops[] = { { .hook = ipv6_defrag, .pf = NFPROTO_IPV6, .hooknum = NF_INET_PRE_ROUTING, .priority = NF_IP6_PRI_CONNTRACK_DEFRAG, }, { .hook = ipv6_defrag, .pf = NFPROTO_IPV6, .hooknum = NF_INET_LOCAL_OUT, .priority = NF_IP6_PRI_CONNTRACK_DEFRAG, }, }; static void __net_exit defrag6_net_exit(struct net *net) { if (net->nf.defrag_ipv6_users) { nf_unregister_net_hooks(net, ipv6_defrag_ops, ARRAY_SIZE(ipv6_defrag_ops)); net->nf.defrag_ipv6_users = 0; } } static const struct nf_defrag_hook defrag_hook = { .owner = THIS_MODULE, .enable = nf_defrag_ipv6_enable, .disable = nf_defrag_ipv6_disable, }; static struct pernet_operations defrag6_net_ops = { .exit = defrag6_net_exit, }; static int __init nf_defrag_init(void) { int ret = 0; ret = nf_ct_frag6_init(); if (ret < 0) { pr_err("nf_defrag_ipv6: can't initialize frag6.\n"); return ret; } ret = register_pernet_subsys(&defrag6_net_ops); if (ret < 0) { pr_err("nf_defrag_ipv6: can't register pernet ops\n"); goto cleanup_frag6; } rcu_assign_pointer(nf_defrag_v6_hook, &defrag_hook); return ret; cleanup_frag6: nf_ct_frag6_cleanup(); return ret; } static void __exit nf_defrag_fini(void) { rcu_assign_pointer(nf_defrag_v6_hook, NULL); unregister_pernet_subsys(&defrag6_net_ops); nf_ct_frag6_cleanup(); } int nf_defrag_ipv6_enable(struct net *net) { int err = 0; mutex_lock(&defrag6_mutex); if (net->nf.defrag_ipv6_users == UINT_MAX) { err = -EOVERFLOW; goto out_unlock; } if (net->nf.defrag_ipv6_users) { net->nf.defrag_ipv6_users++; goto out_unlock; } err = nf_register_net_hooks(net, ipv6_defrag_ops, ARRAY_SIZE(ipv6_defrag_ops)); if (err == 0) net->nf.defrag_ipv6_users = 1; out_unlock: mutex_unlock(&defrag6_mutex); return err; } EXPORT_SYMBOL_GPL(nf_defrag_ipv6_enable); void nf_defrag_ipv6_disable(struct net *net) { mutex_lock(&defrag6_mutex); if (net->nf.defrag_ipv6_users) { net->nf.defrag_ipv6_users--; if (net->nf.defrag_ipv6_users == 0) nf_unregister_net_hooks(net, ipv6_defrag_ops, ARRAY_SIZE(ipv6_defrag_ops)); } mutex_unlock(&defrag6_mutex); } EXPORT_SYMBOL_GPL(nf_defrag_ipv6_disable); module_init(nf_defrag_init); module_exit(nf_defrag_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("IPv6 defragmentation support");
5 1 5 2 2 5 5 2 2 2 5 2 2 5 5 2 4 1 4 1 1 1 1 1 4 1 5 5 2 5 4 2 5 10 12 12 1 1 6 6 1 2 5 2 5 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 // SPDX-License-Identifier: GPL-2.0 #include <linux/cgroup.h> #include <linux/sched.h> #include <linux/sched/task.h> #include <linux/sched/signal.h> #include "cgroup-internal.h" #include <trace/events/cgroup.h> /* * Propagate the cgroup frozen state upwards by the cgroup tree. */ static void cgroup_propagate_frozen(struct cgroup *cgrp, bool frozen) { int desc = 1; /* * If the new state is frozen, some freezing ancestor cgroups may change * their state too, depending on if all their descendants are frozen. * * Otherwise, all ancestor cgroups are forced into the non-frozen state. */ while ((cgrp = cgroup_parent(cgrp))) { if (frozen) { cgrp->freezer.nr_frozen_descendants += desc; if (!test_bit(CGRP_FROZEN, &cgrp->flags) && test_bit(CGRP_FREEZE, &cgrp->flags) && cgrp->freezer.nr_frozen_descendants == cgrp->nr_descendants) { set_bit(CGRP_FROZEN, &cgrp->flags); cgroup_file_notify(&cgrp->events_file); TRACE_CGROUP_PATH(notify_frozen, cgrp, 1); desc++; } } else { cgrp->freezer.nr_frozen_descendants -= desc; if (test_bit(CGRP_FROZEN, &cgrp->flags)) { clear_bit(CGRP_FROZEN, &cgrp->flags); cgroup_file_notify(&cgrp->events_file); TRACE_CGROUP_PATH(notify_frozen, cgrp, 0); desc++; } } } } /* * Revisit the cgroup frozen state. * Checks if the cgroup is really frozen and perform all state transitions. */ void cgroup_update_frozen(struct cgroup *cgrp) { bool frozen; lockdep_assert_held(&css_set_lock); /* * If the cgroup has to be frozen (CGRP_FREEZE bit set), * and all tasks are frozen and/or stopped, let's consider * the cgroup frozen. Otherwise it's not frozen. */ frozen = test_bit(CGRP_FREEZE, &cgrp->flags) && cgrp->freezer.nr_frozen_tasks == __cgroup_task_count(cgrp); if (frozen) { /* Already there? */ if (test_bit(CGRP_FROZEN, &cgrp->flags)) return; set_bit(CGRP_FROZEN, &cgrp->flags); } else { /* Already there? */ if (!test_bit(CGRP_FROZEN, &cgrp->flags)) return; clear_bit(CGRP_FROZEN, &cgrp->flags); } cgroup_file_notify(&cgrp->events_file); TRACE_CGROUP_PATH(notify_frozen, cgrp, frozen); /* Update the state of ancestor cgroups. */ cgroup_propagate_frozen(cgrp, frozen); } /* * Increment cgroup's nr_frozen_tasks. */ static void cgroup_inc_frozen_cnt(struct cgroup *cgrp) { cgrp->freezer.nr_frozen_tasks++; } /* * Decrement cgroup's nr_frozen_tasks. */ static void cgroup_dec_frozen_cnt(struct cgroup *cgrp) { cgrp->freezer.nr_frozen_tasks--; WARN_ON_ONCE(cgrp->freezer.nr_frozen_tasks < 0); } /* * Enter frozen/stopped state, if not yet there. Update cgroup's counters, * and revisit the state of the cgroup, if necessary. */ void cgroup_enter_frozen(void) { struct cgroup *cgrp; if (current->frozen) return; spin_lock_irq(&css_set_lock); current->frozen = true; cgrp = task_dfl_cgroup(current); cgroup_inc_frozen_cnt(cgrp); cgroup_update_frozen(cgrp); spin_unlock_irq(&css_set_lock); } /* * Conditionally leave frozen/stopped state. Update cgroup's counters, * and revisit the state of the cgroup, if necessary. * * If always_leave is not set, and the cgroup is freezing, * we're racing with the cgroup freezing. In this case, we don't * drop the frozen counter to avoid a transient switch to * the unfrozen state. */ void cgroup_leave_frozen(bool always_leave) { struct cgroup *cgrp; spin_lock_irq(&css_set_lock); cgrp = task_dfl_cgroup(current); if (always_leave || !test_bit(CGRP_FREEZE, &cgrp->flags)) { cgroup_dec_frozen_cnt(cgrp); cgroup_update_frozen(cgrp); WARN_ON_ONCE(!current->frozen); current->frozen = false; } else if (!(current->jobctl & JOBCTL_TRAP_FREEZE)) { spin_lock(&current->sighand->siglock); current->jobctl |= JOBCTL_TRAP_FREEZE; set_thread_flag(TIF_SIGPENDING); spin_unlock(&current->sighand->siglock); } spin_unlock_irq(&css_set_lock); } /* * Freeze or unfreeze the task by setting or clearing the JOBCTL_TRAP_FREEZE * jobctl bit. */ static void cgroup_freeze_task(struct task_struct *task, bool freeze) { unsigned long flags; /* If the task is about to die, don't bother with freezing it. */ if (!lock_task_sighand(task, &flags)) return; if (freeze) { task->jobctl |= JOBCTL_TRAP_FREEZE; signal_wake_up(task, false); } else { task->jobctl &= ~JOBCTL_TRAP_FREEZE; wake_up_process(task); } unlock_task_sighand(task, &flags); } /* * Freeze or unfreeze all tasks in the given cgroup. */ static void cgroup_do_freeze(struct cgroup *cgrp, bool freeze) { struct css_task_iter it; struct task_struct *task; lockdep_assert_held(&cgroup_mutex); spin_lock_irq(&css_set_lock); if (freeze) set_bit(CGRP_FREEZE, &cgrp->flags); else clear_bit(CGRP_FREEZE, &cgrp->flags); spin_unlock_irq(&css_set_lock); if (freeze) TRACE_CGROUP_PATH(freeze, cgrp); else TRACE_CGROUP_PATH(unfreeze, cgrp); css_task_iter_start(&cgrp->self, 0, &it); while ((task = css_task_iter_next(&it))) { /* * Ignore kernel threads here. Freezing cgroups containing * kthreads isn't supported. */ if (task->flags & PF_KTHREAD) continue; cgroup_freeze_task(task, freeze); } css_task_iter_end(&it); /* * Cgroup state should be revisited here to cover empty leaf cgroups * and cgroups which descendants are already in the desired state. */ spin_lock_irq(&css_set_lock); if (cgrp->nr_descendants == cgrp->freezer.nr_frozen_descendants) cgroup_update_frozen(cgrp); spin_unlock_irq(&css_set_lock); } /* * Adjust the task state (freeze or unfreeze) and revisit the state of * source and destination cgroups. */ void cgroup_freezer_migrate_task(struct task_struct *task, struct cgroup *src, struct cgroup *dst) { lockdep_assert_held(&css_set_lock); /* * Kernel threads are not supposed to be frozen at all. */ if (task->flags & PF_KTHREAD) return; /* * It's not necessary to do changes if both of the src and dst cgroups * are not freezing and task is not frozen. */ if (!test_bit(CGRP_FREEZE, &src->flags) && !test_bit(CGRP_FREEZE, &dst->flags) && !task->frozen) return; /* * Adjust counters of freezing and frozen tasks. * Note, that if the task is frozen, but the destination cgroup is not * frozen, we bump both counters to keep them balanced. */ if (task->frozen) { cgroup_inc_frozen_cnt(dst); cgroup_dec_frozen_cnt(src); } cgroup_update_frozen(dst); cgroup_update_frozen(src); /* * Force the task to the desired state. */ cgroup_freeze_task(task, test_bit(CGRP_FREEZE, &dst->flags)); } void cgroup_freeze(struct cgroup *cgrp, bool freeze) { struct cgroup_subsys_state *css; struct cgroup *dsct; bool applied = false; lockdep_assert_held(&cgroup_mutex); /* * Nothing changed? Just exit. */ if (cgrp->freezer.freeze == freeze) return; cgrp->freezer.freeze = freeze; /* * Propagate changes downwards the cgroup tree. */ css_for_each_descendant_pre(css, &cgrp->self) { dsct = css->cgroup; if (cgroup_is_dead(dsct)) continue; if (freeze) { dsct->freezer.e_freeze++; /* * Already frozen because of ancestor's settings? */ if (dsct->freezer.e_freeze > 1) continue; } else { dsct->freezer.e_freeze--; /* * Still frozen because of ancestor's settings? */ if (dsct->freezer.e_freeze > 0) continue; WARN_ON_ONCE(dsct->freezer.e_freeze < 0); } /* * Do change actual state: freeze or unfreeze. */ cgroup_do_freeze(dsct, freeze); applied = true; } /* * Even if the actual state hasn't changed, let's notify a user. * The state can be enforced by an ancestor cgroup: the cgroup * can already be in the desired state or it can be locked in the * opposite state, so that the transition will never happen. * In both cases it's better to notify a user, that there is * nothing to wait for. */ if (!applied) { TRACE_CGROUP_PATH(notify_frozen, cgrp, test_bit(CGRP_FROZEN, &cgrp->flags)); cgroup_file_notify(&cgrp->events_file); } }
988 995 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 // SPDX-License-Identifier: GPL-2.0-or-later /* * Derived from arch/ppc/mm/extable.c and arch/i386/mm/extable.c. * * Copyright (C) 2004 Paul Mackerras, IBM Corp. */ #include <linux/bsearch.h> #include <linux/module.h> #include <linux/init.h> #include <linux/sort.h> #include <linux/uaccess.h> #include <linux/extable.h> #ifndef ARCH_HAS_RELATIVE_EXTABLE #define ex_to_insn(x) ((x)->insn) #else static inline unsigned long ex_to_insn(const struct exception_table_entry *x) { return (unsigned long)&x->insn + x->insn; } #endif #ifndef ARCH_HAS_RELATIVE_EXTABLE #define swap_ex NULL #else static void swap_ex(void *a, void *b, int size) { struct exception_table_entry *x = a, *y = b, tmp; int delta = b - a; tmp = *x; x->insn = y->insn + delta; y->insn = tmp.insn - delta; #ifdef swap_ex_entry_fixup swap_ex_entry_fixup(x, y, tmp, delta); #else x->fixup = y->fixup + delta; y->fixup = tmp.fixup - delta; #endif } #endif /* ARCH_HAS_RELATIVE_EXTABLE */ /* * The exception table needs to be sorted so that the binary * search that we use to find entries in it works properly. * This is used both for the kernel exception table and for * the exception tables of modules that get loaded. */ static int cmp_ex_sort(const void *a, const void *b) { const struct exception_table_entry *x = a, *y = b; /* avoid overflow */ if (ex_to_insn(x) > ex_to_insn(y)) return 1; if (ex_to_insn(x) < ex_to_insn(y)) return -1; return 0; } void sort_extable(struct exception_table_entry *start, struct exception_table_entry *finish) { sort(start, finish - start, sizeof(struct exception_table_entry), cmp_ex_sort, swap_ex); } #ifdef CONFIG_MODULES /* * If the exception table is sorted, any referring to the module init * will be at the beginning or the end. */ void trim_init_extable(struct module *m) { /*trim the beginning*/ while (m->num_exentries && within_module_init(ex_to_insn(&m->extable[0]), m)) { m->extable++; m->num_exentries--; } /*trim the end*/ while (m->num_exentries && within_module_init(ex_to_insn(&m->extable[m->num_exentries - 1]), m)) m->num_exentries--; } #endif /* CONFIG_MODULES */ static int cmp_ex_search(const void *key, const void *elt) { const struct exception_table_entry *_elt = elt; unsigned long _key = *(unsigned long *)key; /* avoid overflow */ if (_key > ex_to_insn(_elt)) return 1; if (_key < ex_to_insn(_elt)) return -1; return 0; } /* * Search one exception table for an entry corresponding to the * given instruction address, and return the address of the entry, * or NULL if none is found. * We use a binary search, and thus we assume that the table is * already sorted. */ const struct exception_table_entry * search_extable(const struct exception_table_entry *base, const size_t num, unsigned long value) { return bsearch(&value, base, num, sizeof(struct exception_table_entry), cmp_ex_search); }
850 9 2 1 9 1 1 1 12 12 11 1 1 2 9 9 9 10 10 10 9 9 9 1 2 2 2 2 1 1 1 1 2 2 1 1 1 6 3 1 2 1 1 1 1 1 10 10 1 6 9 1 10 1 1 18 18 18 1 1 1 1 1 10 10 9 9 7 11 1 10 10 10 10 10 10 9 5 5 5 9 9 9 9 9 9 20 20 16 20 7 14 13 13 12 12 13 12 1 1 1 16 16 2 1 13 13 13 3 3 10 10 1 10 1 1 10 10 10 3 3 9 9 7 9 8 1 8 1 9 2 7 9 9 9 9 3 2 2 4 2 3 1 3 1 3 1 20 1 1 19 1 1 1 20 1 1 1 20 1 1 19 2 1 1 1 1 1 1 1 1 1 1 1 3 7 7 6 6 8 8 9 9 9 5 5 7 3 9 20 20 20 19 6 6 4 3 1 1 1 91 91 5 5 3 9 9 19 19 4 8 8 28 28 28 28 2 1 1 1 60 60 60 15 58 57 60 1 2 12 1 3 1 1 1 1 1 1 1 1 1 25 2 1 1 23 23 2 30 30 26 3 22 20 30 1 28 34 30 30 30 30 1 1 1 1 21 3 1 5 1 2 9 12 8 6 13 13 14 12 13 12 7 2 3 1 2 11 1 21 22 1 21 16 9 13 11 21 22 22 20 1 2 1 1 32 31 20 20 19 20 19 1 21 20 13 5 5 21 1 2 4 1 7 6 13 10 9 13 13 849 850 843 31 8 5 4 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 // SPDX-License-Identifier: GPL-2.0-or-later /* * drivers/net/team/team.c - Network team device driver * Copyright (c) 2011 Jiri Pirko <jpirko@redhat.com> */ #include <linux/ethtool.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/rcupdate.h> #include <linux/errno.h> #include <linux/ctype.h> #include <linux/notifier.h> #include <linux/netdevice.h> #include <linux/netpoll.h> #include <linux/if_vlan.h> #include <linux/if_arp.h> #include <linux/socket.h> #include <linux/etherdevice.h> #include <linux/rtnetlink.h> #include <net/rtnetlink.h> #include <net/genetlink.h> #include <net/netlink.h> #include <net/sch_generic.h> #include <linux/if_team.h> #include "team_nl.h" #define DRV_NAME "team" /********** * Helpers **********/ static struct team_port *team_port_get_rtnl(const struct net_device *dev) { struct team_port *port = rtnl_dereference(dev->rx_handler_data); return netif_is_team_port(dev) ? port : NULL; } /* * Since the ability to change device address for open port device is tested in * team_port_add, this function can be called without control of return value */ static int __set_port_dev_addr(struct net_device *port_dev, const unsigned char *dev_addr) { struct sockaddr_storage addr; memcpy(addr.__data, dev_addr, port_dev->addr_len); addr.ss_family = port_dev->type; return dev_set_mac_address(port_dev, (struct sockaddr *)&addr, NULL); } static int team_port_set_orig_dev_addr(struct team_port *port) { return __set_port_dev_addr(port->dev, port->orig.dev_addr); } static int team_port_set_team_dev_addr(struct team *team, struct team_port *port) { return __set_port_dev_addr(port->dev, team->dev->dev_addr); } int team_modeop_port_enter(struct team *team, struct team_port *port) { return team_port_set_team_dev_addr(team, port); } EXPORT_SYMBOL(team_modeop_port_enter); void team_modeop_port_change_dev_addr(struct team *team, struct team_port *port) { team_port_set_team_dev_addr(team, port); } EXPORT_SYMBOL(team_modeop_port_change_dev_addr); static void team_lower_state_changed(struct team_port *port) { struct netdev_lag_lower_state_info info; info.link_up = port->linkup; info.tx_enabled = team_port_enabled(port); netdev_lower_state_changed(port->dev, &info); } static void team_refresh_port_linkup(struct team_port *port) { bool new_linkup = port->user.linkup_enabled ? port->user.linkup : port->state.linkup; if (port->linkup != new_linkup) { port->linkup = new_linkup; team_lower_state_changed(port); } } /******************* * Options handling *******************/ struct team_option_inst { /* One for each option instance */ struct list_head list; struct list_head tmp_list; struct team_option *option; struct team_option_inst_info info; bool changed; bool removed; }; static struct team_option *__team_find_option(struct team *team, const char *opt_name) { struct team_option *option; list_for_each_entry(option, &team->option_list, list) { if (strcmp(option->name, opt_name) == 0) return option; } return NULL; } static void __team_option_inst_del(struct team_option_inst *opt_inst) { list_del(&opt_inst->list); kfree(opt_inst); } static void __team_option_inst_del_option(struct team *team, struct team_option *option) { struct team_option_inst *opt_inst, *tmp; list_for_each_entry_safe(opt_inst, tmp, &team->option_inst_list, list) { if (opt_inst->option == option) __team_option_inst_del(opt_inst); } } static int __team_option_inst_add(struct team *team, struct team_option *option, struct team_port *port) { struct team_option_inst *opt_inst; unsigned int array_size; unsigned int i; array_size = option->array_size; if (!array_size) array_size = 1; /* No array but still need one instance */ for (i = 0; i < array_size; i++) { opt_inst = kmalloc(sizeof(*opt_inst), GFP_KERNEL); if (!opt_inst) return -ENOMEM; opt_inst->option = option; opt_inst->info.port = port; opt_inst->info.array_index = i; opt_inst->changed = true; opt_inst->removed = false; list_add_tail(&opt_inst->list, &team->option_inst_list); if (option->init) option->init(team, &opt_inst->info); } return 0; } static int __team_option_inst_add_option(struct team *team, struct team_option *option) { int err; if (!option->per_port) { err = __team_option_inst_add(team, option, NULL); if (err) goto inst_del_option; } return 0; inst_del_option: __team_option_inst_del_option(team, option); return err; } static void __team_option_inst_mark_removed_option(struct team *team, struct team_option *option) { struct team_option_inst *opt_inst; list_for_each_entry(opt_inst, &team->option_inst_list, list) { if (opt_inst->option == option) { opt_inst->changed = true; opt_inst->removed = true; } } } static void __team_option_inst_del_port(struct team *team, struct team_port *port) { struct team_option_inst *opt_inst, *tmp; list_for_each_entry_safe(opt_inst, tmp, &team->option_inst_list, list) { if (opt_inst->option->per_port && opt_inst->info.port == port) __team_option_inst_del(opt_inst); } } static int __team_option_inst_add_port(struct team *team, struct team_port *port) { struct team_option *option; int err; list_for_each_entry(option, &team->option_list, list) { if (!option->per_port) continue; err = __team_option_inst_add(team, option, port); if (err) goto inst_del_port; } return 0; inst_del_port: __team_option_inst_del_port(team, port); return err; } static void __team_option_inst_mark_removed_port(struct team *team, struct team_port *port) { struct team_option_inst *opt_inst; list_for_each_entry(opt_inst, &team->option_inst_list, list) { if (opt_inst->info.port == port) { opt_inst->changed = true; opt_inst->removed = true; } } } static int __team_options_register(struct team *team, const struct team_option *option, size_t option_count) { int i; struct team_option **dst_opts; int err; dst_opts = kcalloc(option_count, sizeof(struct team_option *), GFP_KERNEL); if (!dst_opts) return -ENOMEM; for (i = 0; i < option_count; i++, option++) { if (__team_find_option(team, option->name)) { err = -EEXIST; goto alloc_rollback; } dst_opts[i] = kmemdup(option, sizeof(*option), GFP_KERNEL); if (!dst_opts[i]) { err = -ENOMEM; goto alloc_rollback; } } for (i = 0; i < option_count; i++) { err = __team_option_inst_add_option(team, dst_opts[i]); if (err) goto inst_rollback; list_add_tail(&dst_opts[i]->list, &team->option_list); } kfree(dst_opts); return 0; inst_rollback: for (i--; i >= 0; i--) { __team_option_inst_del_option(team, dst_opts[i]); list_del(&dst_opts[i]->list); } i = option_count; alloc_rollback: for (i--; i >= 0; i--) kfree(dst_opts[i]); kfree(dst_opts); return err; } static void __team_options_mark_removed(struct team *team, const struct team_option *option, size_t option_count) { int i; for (i = 0; i < option_count; i++, option++) { struct team_option *del_opt; del_opt = __team_find_option(team, option->name); if (del_opt) __team_option_inst_mark_removed_option(team, del_opt); } } static void __team_options_unregister(struct team *team, const struct team_option *option, size_t option_count) { int i; for (i = 0; i < option_count; i++, option++) { struct team_option *del_opt; del_opt = __team_find_option(team, option->name); if (del_opt) { __team_option_inst_del_option(team, del_opt); list_del(&del_opt->list); kfree(del_opt); } } } static void __team_options_change_check(struct team *team); int team_options_register(struct team *team, const struct team_option *option, size_t option_count) { int err; err = __team_options_register(team, option, option_count); if (err) return err; __team_options_change_check(team); return 0; } EXPORT_SYMBOL(team_options_register); void team_options_unregister(struct team *team, const struct team_option *option, size_t option_count) { __team_options_mark_removed(team, option, option_count); __team_options_change_check(team); __team_options_unregister(team, option, option_count); } EXPORT_SYMBOL(team_options_unregister); static int team_option_get(struct team *team, struct team_option_inst *opt_inst, struct team_gsetter_ctx *ctx) { if (!opt_inst->option->getter) return -EOPNOTSUPP; opt_inst->option->getter(team, ctx); return 0; } static int team_option_set(struct team *team, struct team_option_inst *opt_inst, struct team_gsetter_ctx *ctx) { if (!opt_inst->option->setter) return -EOPNOTSUPP; return opt_inst->option->setter(team, ctx); } void team_option_inst_set_change(struct team_option_inst_info *opt_inst_info) { struct team_option_inst *opt_inst; opt_inst = container_of(opt_inst_info, struct team_option_inst, info); opt_inst->changed = true; } EXPORT_SYMBOL(team_option_inst_set_change); void team_options_change_check(struct team *team) { __team_options_change_check(team); } EXPORT_SYMBOL(team_options_change_check); /**************** * Mode handling ****************/ static LIST_HEAD(mode_list); static DEFINE_SPINLOCK(mode_list_lock); struct team_mode_item { struct list_head list; const struct team_mode *mode; }; static struct team_mode_item *__find_mode(const char *kind) { struct team_mode_item *mitem; list_for_each_entry(mitem, &mode_list, list) { if (strcmp(mitem->mode->kind, kind) == 0) return mitem; } return NULL; } static bool is_good_mode_name(const char *name) { while (*name != '\0') { if (!isalpha(*name) && !isdigit(*name) && *name != '_') return false; name++; } return true; } int team_mode_register(const struct team_mode *mode) { int err = 0; struct team_mode_item *mitem; if (!is_good_mode_name(mode->kind) || mode->priv_size > TEAM_MODE_PRIV_SIZE) return -EINVAL; mitem = kmalloc(sizeof(*mitem), GFP_KERNEL); if (!mitem) return -ENOMEM; spin_lock(&mode_list_lock); if (__find_mode(mode->kind)) { err = -EEXIST; kfree(mitem); goto unlock; } mitem->mode = mode; list_add_tail(&mitem->list, &mode_list); unlock: spin_unlock(&mode_list_lock); return err; } EXPORT_SYMBOL(team_mode_register); void team_mode_unregister(const struct team_mode *mode) { struct team_mode_item *mitem; spin_lock(&mode_list_lock); mitem = __find_mode(mode->kind); if (mitem) { list_del_init(&mitem->list); kfree(mitem); } spin_unlock(&mode_list_lock); } EXPORT_SYMBOL(team_mode_unregister); static const struct team_mode *team_mode_get(const char *kind) { struct team_mode_item *mitem; const struct team_mode *mode = NULL; if (!try_module_get(THIS_MODULE)) return NULL; spin_lock(&mode_list_lock); mitem = __find_mode(kind); if (!mitem) { spin_unlock(&mode_list_lock); request_module("team-mode-%s", kind); spin_lock(&mode_list_lock); mitem = __find_mode(kind); } if (mitem) { mode = mitem->mode; if (!try_module_get(mode->owner)) mode = NULL; } spin_unlock(&mode_list_lock); module_put(THIS_MODULE); return mode; } static void team_mode_put(const struct team_mode *mode) { module_put(mode->owner); } static bool team_dummy_transmit(struct team *team, struct sk_buff *skb) { dev_kfree_skb_any(skb); return false; } static rx_handler_result_t team_dummy_receive(struct team *team, struct team_port *port, struct sk_buff *skb) { return RX_HANDLER_ANOTHER; } static const struct team_mode __team_no_mode = { .kind = "*NOMODE*", }; static bool team_is_mode_set(struct team *team) { return team->mode != &__team_no_mode; } static void team_set_no_mode(struct team *team) { team->user_carrier_enabled = false; team->mode = &__team_no_mode; } static void team_adjust_ops(struct team *team) { /* * To avoid checks in rx/tx skb paths, ensure here that non-null and * correct ops are always set. */ if (!team->en_port_count || !team_is_mode_set(team) || !team->mode->ops->transmit) team->ops.transmit = team_dummy_transmit; else team->ops.transmit = team->mode->ops->transmit; if (!team->en_port_count || !team_is_mode_set(team) || !team->mode->ops->receive) team->ops.receive = team_dummy_receive; else team->ops.receive = team->mode->ops->receive; } /* * We can benefit from the fact that it's ensured no port is present * at the time of mode change. Therefore no packets are in fly so there's no * need to set mode operations in any special way. */ static int __team_change_mode(struct team *team, const struct team_mode *new_mode) { /* Check if mode was previously set and do cleanup if so */ if (team_is_mode_set(team)) { void (*exit_op)(struct team *team) = team->ops.exit; /* Clear ops area so no callback is called any longer */ memset(&team->ops, 0, sizeof(struct team_mode_ops)); team_adjust_ops(team); if (exit_op) exit_op(team); team_mode_put(team->mode); team_set_no_mode(team); /* zero private data area */ memset(&team->mode_priv, 0, sizeof(struct team) - offsetof(struct team, mode_priv)); } if (!new_mode) return 0; if (new_mode->ops->init) { int err; err = new_mode->ops->init(team); if (err) return err; } team->mode = new_mode; memcpy(&team->ops, new_mode->ops, sizeof(struct team_mode_ops)); team_adjust_ops(team); return 0; } static int team_change_mode(struct team *team, const char *kind) { const struct team_mode *new_mode; struct net_device *dev = team->dev; int err; if (!list_empty(&team->port_list)) { netdev_err(dev, "No ports can be present during mode change\n"); return -EBUSY; } if (team_is_mode_set(team) && strcmp(team->mode->kind, kind) == 0) { netdev_err(dev, "Unable to change to the same mode the team is in\n"); return -EINVAL; } new_mode = team_mode_get(kind); if (!new_mode) { netdev_err(dev, "Mode \"%s\" not found\n", kind); return -EINVAL; } err = __team_change_mode(team, new_mode); if (err) { netdev_err(dev, "Failed to change to mode \"%s\"\n", kind); team_mode_put(new_mode); return err; } netdev_info(dev, "Mode changed to \"%s\"\n", kind); return 0; } /********************* * Peers notification *********************/ static void team_notify_peers_work(struct work_struct *work) { struct team *team; int val; team = container_of(work, struct team, notify_peers.dw.work); if (!rtnl_trylock()) { schedule_delayed_work(&team->notify_peers.dw, 0); return; } val = atomic_dec_if_positive(&team->notify_peers.count_pending); if (val < 0) { rtnl_unlock(); return; } call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, team->dev); rtnl_unlock(); if (val) schedule_delayed_work(&team->notify_peers.dw, msecs_to_jiffies(team->notify_peers.interval)); } static void team_notify_peers(struct team *team) { if (!team->notify_peers.count || !netif_running(team->dev)) return; atomic_add(team->notify_peers.count, &team->notify_peers.count_pending); schedule_delayed_work(&team->notify_peers.dw, 0); } static void team_notify_peers_init(struct team *team) { INIT_DELAYED_WORK(&team->notify_peers.dw, team_notify_peers_work); } static void team_notify_peers_fini(struct team *team) { cancel_delayed_work_sync(&team->notify_peers.dw); } /******************************* * Send multicast group rejoins *******************************/ static void team_mcast_rejoin_work(struct work_struct *work) { struct team *team; int val; team = container_of(work, struct team, mcast_rejoin.dw.work); if (!rtnl_trylock()) { schedule_delayed_work(&team->mcast_rejoin.dw, 0); return; } val = atomic_dec_if_positive(&team->mcast_rejoin.count_pending); if (val < 0) { rtnl_unlock(); return; } call_netdevice_notifiers(NETDEV_RESEND_IGMP, team->dev); rtnl_unlock(); if (val) schedule_delayed_work(&team->mcast_rejoin.dw, msecs_to_jiffies(team->mcast_rejoin.interval)); } static void team_mcast_rejoin(struct team *team) { if (!team->mcast_rejoin.count || !netif_running(team->dev)) return; atomic_add(team->mcast_rejoin.count, &team->mcast_rejoin.count_pending); schedule_delayed_work(&team->mcast_rejoin.dw, 0); } static void team_mcast_rejoin_init(struct team *team) { INIT_DELAYED_WORK(&team->mcast_rejoin.dw, team_mcast_rejoin_work); } static void team_mcast_rejoin_fini(struct team *team) { cancel_delayed_work_sync(&team->mcast_rejoin.dw); } /************************ * Rx path frame handler ************************/ /* note: already called with rcu_read_lock */ static rx_handler_result_t team_handle_frame(struct sk_buff **pskb) { struct sk_buff *skb = *pskb; struct team_port *port; struct team *team; rx_handler_result_t res; skb = skb_share_check(skb, GFP_ATOMIC); if (!skb) return RX_HANDLER_CONSUMED; *pskb = skb; port = team_port_get_rcu(skb->dev); team = port->team; if (!team_port_enabled(port)) { if (is_link_local_ether_addr(eth_hdr(skb)->h_dest)) /* link-local packets are mostly useful when stack receives them * with the link they arrive on. */ return RX_HANDLER_PASS; /* allow exact match delivery for disabled ports */ res = RX_HANDLER_EXACT; } else { res = team->ops.receive(team, port, skb); } if (res == RX_HANDLER_ANOTHER) { struct team_pcpu_stats *pcpu_stats; pcpu_stats = this_cpu_ptr(team->pcpu_stats); u64_stats_update_begin(&pcpu_stats->syncp); u64_stats_inc(&pcpu_stats->rx_packets); u64_stats_add(&pcpu_stats->rx_bytes, skb->len); if (skb->pkt_type == PACKET_MULTICAST) u64_stats_inc(&pcpu_stats->rx_multicast); u64_stats_update_end(&pcpu_stats->syncp); skb->dev = team->dev; } else if (res == RX_HANDLER_EXACT) { this_cpu_inc(team->pcpu_stats->rx_nohandler); } else { this_cpu_inc(team->pcpu_stats->rx_dropped); } return res; } /************************************* * Multiqueue Tx port select override *************************************/ static int team_queue_override_init(struct team *team) { struct list_head *listarr; unsigned int queue_cnt = team->dev->num_tx_queues - 1; unsigned int i; if (!queue_cnt) return 0; listarr = kmalloc_array(queue_cnt, sizeof(struct list_head), GFP_KERNEL); if (!listarr) return -ENOMEM; team->qom_lists = listarr; for (i = 0; i < queue_cnt; i++) INIT_LIST_HEAD(listarr++); return 0; } static void team_queue_override_fini(struct team *team) { kfree(team->qom_lists); } static struct list_head *__team_get_qom_list(struct team *team, u16 queue_id) { return &team->qom_lists[queue_id - 1]; } /* * note: already called with rcu_read_lock */ static bool team_queue_override_transmit(struct team *team, struct sk_buff *skb) { struct list_head *qom_list; struct team_port *port; if (!team->queue_override_enabled || !skb->queue_mapping) return false; qom_list = __team_get_qom_list(team, skb->queue_mapping); list_for_each_entry_rcu(port, qom_list, qom_list) { if (!team_dev_queue_xmit(team, port, skb)) return true; } return false; } static void __team_queue_override_port_del(struct team *team, struct team_port *port) { if (!port->queue_id) return; list_del_rcu(&port->qom_list); } static bool team_queue_override_port_has_gt_prio_than(struct team_port *port, struct team_port *cur) { if (port->priority < cur->priority) return true; if (port->priority > cur->priority) return false; if (port->index < cur->index) return true; return false; } static void __team_queue_override_port_add(struct team *team, struct team_port *port) { struct team_port *cur; struct list_head *qom_list; struct list_head *node; if (!port->queue_id) return; qom_list = __team_get_qom_list(team, port->queue_id); node = qom_list; list_for_each_entry(cur, qom_list, qom_list) { if (team_queue_override_port_has_gt_prio_than(port, cur)) break; node = &cur->qom_list; } list_add_tail_rcu(&port->qom_list, node); } static void __team_queue_override_enabled_check(struct team *team) { struct team_port *port; bool enabled = false; list_for_each_entry(port, &team->port_list, list) { if (port->queue_id) { enabled = true; break; } } if (enabled == team->queue_override_enabled) return; netdev_dbg(team->dev, "%s queue override\n", enabled ? "Enabling" : "Disabling"); team->queue_override_enabled = enabled; } static void team_queue_override_port_prio_changed(struct team *team, struct team_port *port) { if (!port->queue_id || team_port_enabled(port)) return; __team_queue_override_port_del(team, port); __team_queue_override_port_add(team, port); __team_queue_override_enabled_check(team); } static void team_queue_override_port_change_queue_id(struct team *team, struct team_port *port, u16 new_queue_id) { if (team_port_enabled(port)) { __team_queue_override_port_del(team, port); port->queue_id = new_queue_id; __team_queue_override_port_add(team, port); __team_queue_override_enabled_check(team); } else { port->queue_id = new_queue_id; } } static void team_queue_override_port_add(struct team *team, struct team_port *port) { __team_queue_override_port_add(team, port); __team_queue_override_enabled_check(team); } static void team_queue_override_port_del(struct team *team, struct team_port *port) { __team_queue_override_port_del(team, port); __team_queue_override_enabled_check(team); } /**************** * Port handling ****************/ static bool team_port_find(const struct team *team, const struct team_port *port) { struct team_port *cur; list_for_each_entry(cur, &team->port_list, list) if (cur == port) return true; return false; } /* * Enable/disable port by adding to enabled port hashlist and setting * port->index (Might be racy so reader could see incorrect ifindex when * processing a flying packet, but that is not a problem). Write guarded * by team->lock. */ static void team_port_enable(struct team *team, struct team_port *port) { if (team_port_enabled(port)) return; port->index = team->en_port_count++; hlist_add_head_rcu(&port->hlist, team_port_index_hash(team, port->index)); team_adjust_ops(team); team_queue_override_port_add(team, port); if (team->ops.port_enabled) team->ops.port_enabled(team, port); team_notify_peers(team); team_mcast_rejoin(team); team_lower_state_changed(port); } static void __reconstruct_port_hlist(struct team *team, int rm_index) { int i; struct team_port *port; for (i = rm_index + 1; i < team->en_port_count; i++) { port = team_get_port_by_index(team, i); hlist_del_rcu(&port->hlist); port->index--; hlist_add_head_rcu(&port->hlist, team_port_index_hash(team, port->index)); } } static void team_port_disable(struct team *team, struct team_port *port) { if (!team_port_enabled(port)) return; if (team->ops.port_disabled) team->ops.port_disabled(team, port); hlist_del_rcu(&port->hlist); __reconstruct_port_hlist(team, port->index); port->index = -1; team->en_port_count--; team_queue_override_port_del(team, port); team_adjust_ops(team); team_lower_state_changed(port); } #define TEAM_VLAN_FEATURES (NETIF_F_HW_CSUM | NETIF_F_SG | \ NETIF_F_FRAGLIST | NETIF_F_GSO_SOFTWARE | \ NETIF_F_HIGHDMA | NETIF_F_LRO) #define TEAM_ENC_FEATURES (NETIF_F_HW_CSUM | NETIF_F_SG | \ NETIF_F_RXCSUM | NETIF_F_GSO_SOFTWARE) static void __team_compute_features(struct team *team) { struct team_port *port; netdev_features_t vlan_features = TEAM_VLAN_FEATURES & NETIF_F_ALL_FOR_ALL; netdev_features_t enc_features = TEAM_ENC_FEATURES; unsigned short max_hard_header_len = ETH_HLEN; unsigned int dst_release_flag = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; rcu_read_lock(); list_for_each_entry_rcu(port, &team->port_list, list) { vlan_features = netdev_increment_features(vlan_features, port->dev->vlan_features, TEAM_VLAN_FEATURES); enc_features = netdev_increment_features(enc_features, port->dev->hw_enc_features, TEAM_ENC_FEATURES); dst_release_flag &= port->dev->priv_flags; if (port->dev->hard_header_len > max_hard_header_len) max_hard_header_len = port->dev->hard_header_len; } rcu_read_unlock(); team->dev->vlan_features = vlan_features; team->dev->hw_enc_features = enc_features | NETIF_F_GSO_ENCAP_ALL | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_STAG_TX; team->dev->hard_header_len = max_hard_header_len; team->dev->priv_flags &= ~IFF_XMIT_DST_RELEASE; if (dst_release_flag == (IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM)) team->dev->priv_flags |= IFF_XMIT_DST_RELEASE; } static void team_compute_features(struct team *team) { __team_compute_features(team); netdev_change_features(team->dev); } static int team_port_enter(struct team *team, struct team_port *port) { int err = 0; dev_hold(team->dev); if (team->ops.port_enter) { err = team->ops.port_enter(team, port); if (err) { netdev_err(team->dev, "Device %s failed to enter team mode\n", port->dev->name); goto err_port_enter; } } return 0; err_port_enter: dev_put(team->dev); return err; } static void team_port_leave(struct team *team, struct team_port *port) { if (team->ops.port_leave) team->ops.port_leave(team, port); dev_put(team->dev); } #ifdef CONFIG_NET_POLL_CONTROLLER static int __team_port_enable_netpoll(struct team_port *port) { struct netpoll *np; int err; np = kzalloc(sizeof(*np), GFP_KERNEL); if (!np) return -ENOMEM; err = __netpoll_setup(np, port->dev); if (err) { kfree(np); return err; } port->np = np; return err; } static int team_port_enable_netpoll(struct team_port *port) { if (!port->team->dev->npinfo) return 0; return __team_port_enable_netpoll(port); } static void team_port_disable_netpoll(struct team_port *port) { struct netpoll *np = port->np; if (!np) return; port->np = NULL; __netpoll_free(np); } #else static int team_port_enable_netpoll(struct team_port *port) { return 0; } static void team_port_disable_netpoll(struct team_port *port) { } #endif static int team_upper_dev_link(struct team *team, struct team_port *port, struct netlink_ext_ack *extack) { struct netdev_lag_upper_info lag_upper_info; int err; lag_upper_info.tx_type = team->mode->lag_tx_type; lag_upper_info.hash_type = NETDEV_LAG_HASH_UNKNOWN; err = netdev_master_upper_dev_link(port->dev, team->dev, NULL, &lag_upper_info, extack); if (err) return err; port->dev->priv_flags |= IFF_TEAM_PORT; return 0; } static void team_upper_dev_unlink(struct team *team, struct team_port *port) { netdev_upper_dev_unlink(port->dev, team->dev); port->dev->priv_flags &= ~IFF_TEAM_PORT; } static void __team_port_change_port_added(struct team_port *port, bool linkup); static int team_dev_type_check_change(struct net_device *dev, struct net_device *port_dev); static int team_port_add(struct team *team, struct net_device *port_dev, struct netlink_ext_ack *extack) { struct net_device *dev = team->dev; struct team_port *port; char *portname = port_dev->name; int err; if (port_dev->flags & IFF_LOOPBACK) { NL_SET_ERR_MSG(extack, "Loopback device can't be added as a team port"); netdev_err(dev, "Device %s is loopback device. Loopback devices can't be added as a team port\n", portname); return -EINVAL; } if (netif_is_team_port(port_dev)) { NL_SET_ERR_MSG(extack, "Device is already a port of a team device"); netdev_err(dev, "Device %s is already a port " "of a team device\n", portname); return -EBUSY; } if (dev == port_dev) { NL_SET_ERR_MSG(extack, "Cannot enslave team device to itself"); netdev_err(dev, "Cannot enslave team device to itself\n"); return -EINVAL; } if (netdev_has_upper_dev(dev, port_dev)) { NL_SET_ERR_MSG(extack, "Device is already an upper device of the team interface"); netdev_err(dev, "Device %s is already an upper device of the team interface\n", portname); return -EBUSY; } if (port_dev->features & NETIF_F_VLAN_CHALLENGED && vlan_uses_dev(dev)) { NL_SET_ERR_MSG(extack, "Device is VLAN challenged and team device has VLAN set up"); netdev_err(dev, "Device %s is VLAN challenged and team device has VLAN set up\n", portname); return -EPERM; } err = team_dev_type_check_change(dev, port_dev); if (err) return err; if (port_dev->flags & IFF_UP) { NL_SET_ERR_MSG(extack, "Device is up. Set it down before adding it as a team port"); netdev_err(dev, "Device %s is up. Set it down before adding it as a team port\n", portname); return -EBUSY; } port = kzalloc(sizeof(struct team_port) + team->mode->port_priv_size, GFP_KERNEL); if (!port) return -ENOMEM; port->dev = port_dev; port->team = team; INIT_LIST_HEAD(&port->qom_list); port->orig.mtu = port_dev->mtu; err = dev_set_mtu(port_dev, dev->mtu); if (err) { netdev_dbg(dev, "Error %d calling dev_set_mtu\n", err); goto err_set_mtu; } memcpy(port->orig.dev_addr, port_dev->dev_addr, port_dev->addr_len); err = team_port_enter(team, port); if (err) { netdev_err(dev, "Device %s failed to enter team mode\n", portname); goto err_port_enter; } err = dev_open(port_dev, extack); if (err) { netdev_dbg(dev, "Device %s opening failed\n", portname); goto err_dev_open; } err = vlan_vids_add_by_dev(port_dev, dev); if (err) { netdev_err(dev, "Failed to add vlan ids to device %s\n", portname); goto err_vids_add; } err = team_port_enable_netpoll(port); if (err) { netdev_err(dev, "Failed to enable netpoll on device %s\n", portname); goto err_enable_netpoll; } if (!(dev->features & NETIF_F_LRO)) dev_disable_lro(port_dev); err = netdev_rx_handler_register(port_dev, team_handle_frame, port); if (err) { netdev_err(dev, "Device %s failed to register rx_handler\n", portname); goto err_handler_register; } err = team_upper_dev_link(team, port, extack); if (err) { netdev_err(dev, "Device %s failed to set upper link\n", portname); goto err_set_upper_link; } err = __team_option_inst_add_port(team, port); if (err) { netdev_err(dev, "Device %s failed to add per-port options\n", portname); goto err_option_port_add; } /* set promiscuity level to new slave */ if (dev->flags & IFF_PROMISC) { err = dev_set_promiscuity(port_dev, 1); if (err) goto err_set_slave_promisc; } /* set allmulti level to new slave */ if (dev->flags & IFF_ALLMULTI) { err = dev_set_allmulti(port_dev, 1); if (err) { if (dev->flags & IFF_PROMISC) dev_set_promiscuity(port_dev, -1); goto err_set_slave_promisc; } } if (dev->flags & IFF_UP) { netif_addr_lock_bh(dev); dev_uc_sync_multiple(port_dev, dev); dev_mc_sync_multiple(port_dev, dev); netif_addr_unlock_bh(dev); } port->index = -1; list_add_tail_rcu(&port->list, &team->port_list); team_port_enable(team, port); __team_compute_features(team); __team_port_change_port_added(port, !!netif_oper_up(port_dev)); __team_options_change_check(team); netdev_info(dev, "Port device %s added\n", portname); return 0; err_set_slave_promisc: __team_option_inst_del_port(team, port); err_option_port_add: team_upper_dev_unlink(team, port); err_set_upper_link: netdev_rx_handler_unregister(port_dev); err_handler_register: team_port_disable_netpoll(port); err_enable_netpoll: vlan_vids_del_by_dev(port_dev, dev); err_vids_add: dev_close(port_dev); err_dev_open: team_port_leave(team, port); team_port_set_orig_dev_addr(port); err_port_enter: dev_set_mtu(port_dev, port->orig.mtu); err_set_mtu: kfree(port); return err; } static void __team_port_change_port_removed(struct team_port *port); static int team_port_del(struct team *team, struct net_device *port_dev) { struct net_device *dev = team->dev; struct team_port *port; char *portname = port_dev->name; port = team_port_get_rtnl(port_dev); if (!port || !team_port_find(team, port)) { netdev_err(dev, "Device %s does not act as a port of this team\n", portname); return -ENOENT; } team_port_disable(team, port); list_del_rcu(&port->list); if (dev->flags & IFF_PROMISC) dev_set_promiscuity(port_dev, -1); if (dev->flags & IFF_ALLMULTI) dev_set_allmulti(port_dev, -1); team_upper_dev_unlink(team, port); netdev_rx_handler_unregister(port_dev); team_port_disable_netpoll(port); vlan_vids_del_by_dev(port_dev, dev); if (dev->flags & IFF_UP) { dev_uc_unsync(port_dev, dev); dev_mc_unsync(port_dev, dev); } dev_close(port_dev); team_port_leave(team, port); __team_option_inst_mark_removed_port(team, port); __team_options_change_check(team); __team_option_inst_del_port(team, port); __team_port_change_port_removed(port); team_port_set_orig_dev_addr(port); dev_set_mtu(port_dev, port->orig.mtu); kfree_rcu(port, rcu); netdev_info(dev, "Port device %s removed\n", portname); __team_compute_features(team); return 0; } /***************** * Net device ops *****************/ static void team_mode_option_get(struct team *team, struct team_gsetter_ctx *ctx) { ctx->data.str_val = team->mode->kind; } static int team_mode_option_set(struct team *team, struct team_gsetter_ctx *ctx) { return team_change_mode(team, ctx->data.str_val); } static void team_notify_peers_count_get(struct team *team, struct team_gsetter_ctx *ctx) { ctx->data.u32_val = team->notify_peers.count; } static int team_notify_peers_count_set(struct team *team, struct team_gsetter_ctx *ctx) { team->notify_peers.count = ctx->data.u32_val; return 0; } static void team_notify_peers_interval_get(struct team *team, struct team_gsetter_ctx *ctx) { ctx->data.u32_val = team->notify_peers.interval; } static int team_notify_peers_interval_set(struct team *team, struct team_gsetter_ctx *ctx) { team->notify_peers.interval = ctx->data.u32_val; return 0; } static void team_mcast_rejoin_count_get(struct team *team, struct team_gsetter_ctx *ctx) { ctx->data.u32_val = team->mcast_rejoin.count; } static int team_mcast_rejoin_count_set(struct team *team, struct team_gsetter_ctx *ctx) { team->mcast_rejoin.count = ctx->data.u32_val; return 0; } static void team_mcast_rejoin_interval_get(struct team *team, struct team_gsetter_ctx *ctx) { ctx->data.u32_val = team->mcast_rejoin.interval; } static int team_mcast_rejoin_interval_set(struct team *team, struct team_gsetter_ctx *ctx) { team->mcast_rejoin.interval = ctx->data.u32_val; return 0; } static void team_port_en_option_get(struct team *team, struct team_gsetter_ctx *ctx) { struct team_port *port = ctx->info->port; ctx->data.bool_val = team_port_enabled(port); } static int team_port_en_option_set(struct team *team, struct team_gsetter_ctx *ctx) { struct team_port *port = ctx->info->port; if (ctx->data.bool_val) team_port_enable(team, port); else team_port_disable(team, port); return 0; } static void team_user_linkup_option_get(struct team *team, struct team_gsetter_ctx *ctx) { struct team_port *port = ctx->info->port; ctx->data.bool_val = port->user.linkup; } static void __team_carrier_check(struct team *team); static int team_user_linkup_option_set(struct team *team, struct team_gsetter_ctx *ctx) { struct team_port *port = ctx->info->port; port->user.linkup = ctx->data.bool_val; team_refresh_port_linkup(port); __team_carrier_check(port->team); return 0; } static void team_user_linkup_en_option_get(struct team *team, struct team_gsetter_ctx *ctx) { struct team_port *port = ctx->info->port; ctx->data.bool_val = port->user.linkup_enabled; } static int team_user_linkup_en_option_set(struct team *team, struct team_gsetter_ctx *ctx) { struct team_port *port = ctx->info->port; port->user.linkup_enabled = ctx->data.bool_val; team_refresh_port_linkup(port); __team_carrier_check(port->team); return 0; } static void team_priority_option_get(struct team *team, struct team_gsetter_ctx *ctx) { struct team_port *port = ctx->info->port; ctx->data.s32_val = port->priority; } static int team_priority_option_set(struct team *team, struct team_gsetter_ctx *ctx) { struct team_port *port = ctx->info->port; s32 priority = ctx->data.s32_val; if (port->priority == priority) return 0; port->priority = priority; team_queue_override_port_prio_changed(team, port); return 0; } static void team_queue_id_option_get(struct team *team, struct team_gsetter_ctx *ctx) { struct team_port *port = ctx->info->port; ctx->data.u32_val = port->queue_id; } static int team_queue_id_option_set(struct team *team, struct team_gsetter_ctx *ctx) { struct team_port *port = ctx->info->port; u16 new_queue_id = ctx->data.u32_val; if (port->queue_id == new_queue_id) return 0; if (new_queue_id >= team->dev->real_num_tx_queues) return -EINVAL; team_queue_override_port_change_queue_id(team, port, new_queue_id); return 0; } static const struct team_option team_options[] = { { .name = "mode", .type = TEAM_OPTION_TYPE_STRING, .getter = team_mode_option_get, .setter = team_mode_option_set, }, { .name = "notify_peers_count", .type = TEAM_OPTION_TYPE_U32, .getter = team_notify_peers_count_get, .setter = team_notify_peers_count_set, }, { .name = "notify_peers_interval", .type = TEAM_OPTION_TYPE_U32, .getter = team_notify_peers_interval_get, .setter = team_notify_peers_interval_set, }, { .name = "mcast_rejoin_count", .type = TEAM_OPTION_TYPE_U32, .getter = team_mcast_rejoin_count_get, .setter = team_mcast_rejoin_count_set, }, { .name = "mcast_rejoin_interval", .type = TEAM_OPTION_TYPE_U32, .getter = team_mcast_rejoin_interval_get, .setter = team_mcast_rejoin_interval_set, }, { .name = "enabled", .type = TEAM_OPTION_TYPE_BOOL, .per_port = true, .getter = team_port_en_option_get, .setter = team_port_en_option_set, }, { .name = "user_linkup", .type = TEAM_OPTION_TYPE_BOOL, .per_port = true, .getter = team_user_linkup_option_get, .setter = team_user_linkup_option_set, }, { .name = "user_linkup_enabled", .type = TEAM_OPTION_TYPE_BOOL, .per_port = true, .getter = team_user_linkup_en_option_get, .setter = team_user_linkup_en_option_set, }, { .name = "priority", .type = TEAM_OPTION_TYPE_S32, .per_port = true, .getter = team_priority_option_get, .setter = team_priority_option_set, }, { .name = "queue_id", .type = TEAM_OPTION_TYPE_U32, .per_port = true, .getter = team_queue_id_option_get, .setter = team_queue_id_option_set, }, }; static int team_init(struct net_device *dev) { struct team *team = netdev_priv(dev); int i; int err; team->dev = dev; team_set_no_mode(team); team->notifier_ctx = false; team->pcpu_stats = netdev_alloc_pcpu_stats(struct team_pcpu_stats); if (!team->pcpu_stats) return -ENOMEM; for (i = 0; i < TEAM_PORT_HASHENTRIES; i++) INIT_HLIST_HEAD(&team->en_port_hlist[i]); INIT_LIST_HEAD(&team->port_list); err = team_queue_override_init(team); if (err) goto err_team_queue_override_init; team_adjust_ops(team); INIT_LIST_HEAD(&team->option_list); INIT_LIST_HEAD(&team->option_inst_list); team_notify_peers_init(team); team_mcast_rejoin_init(team); err = team_options_register(team, team_options, ARRAY_SIZE(team_options)); if (err) goto err_options_register; netif_carrier_off(dev); lockdep_register_key(&team->team_lock_key); __mutex_init(&team->lock, "team->team_lock_key", &team->team_lock_key); netdev_lockdep_set_classes(dev); return 0; err_options_register: team_mcast_rejoin_fini(team); team_notify_peers_fini(team); team_queue_override_fini(team); err_team_queue_override_init: free_percpu(team->pcpu_stats); return err; } static void team_uninit(struct net_device *dev) { struct team *team = netdev_priv(dev); struct team_port *port; struct team_port *tmp; mutex_lock(&team->lock); list_for_each_entry_safe(port, tmp, &team->port_list, list) team_port_del(team, port->dev); __team_change_mode(team, NULL); /* cleanup */ __team_options_unregister(team, team_options, ARRAY_SIZE(team_options)); team_mcast_rejoin_fini(team); team_notify_peers_fini(team); team_queue_override_fini(team); mutex_unlock(&team->lock); netdev_change_features(dev); lockdep_unregister_key(&team->team_lock_key); } static void team_destructor(struct net_device *dev) { struct team *team = netdev_priv(dev); free_percpu(team->pcpu_stats); } static int team_open(struct net_device *dev) { return 0; } static int team_close(struct net_device *dev) { struct team *team = netdev_priv(dev); struct team_port *port; list_for_each_entry(port, &team->port_list, list) { dev_uc_unsync(port->dev, dev); dev_mc_unsync(port->dev, dev); } return 0; } /* * note: already called with rcu_read_lock */ static netdev_tx_t team_xmit(struct sk_buff *skb, struct net_device *dev) { struct team *team = netdev_priv(dev); bool tx_success; unsigned int len = skb->len; tx_success = team_queue_override_transmit(team, skb); if (!tx_success) tx_success = team->ops.transmit(team, skb); if (tx_success) { struct team_pcpu_stats *pcpu_stats; pcpu_stats = this_cpu_ptr(team->pcpu_stats); u64_stats_update_begin(&pcpu_stats->syncp); u64_stats_inc(&pcpu_stats->tx_packets); u64_stats_add(&pcpu_stats->tx_bytes, len); u64_stats_update_end(&pcpu_stats->syncp); } else { this_cpu_inc(team->pcpu_stats->tx_dropped); } return NETDEV_TX_OK; } static u16 team_select_queue(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev) { /* * This helper function exists to help dev_pick_tx get the correct * destination queue. Using a helper function skips a call to * skb_tx_hash and will put the skbs in the queue we expect on their * way down to the team driver. */ u16 txq = skb_rx_queue_recorded(skb) ? skb_get_rx_queue(skb) : 0; /* * Save the original txq to restore before passing to the driver */ qdisc_skb_cb(skb)->slave_dev_queue_mapping = skb->queue_mapping; if (unlikely(txq >= dev->real_num_tx_queues)) { do { txq -= dev->real_num_tx_queues; } while (txq >= dev->real_num_tx_queues); } return txq; } static void team_change_rx_flags(struct net_device *dev, int change) { struct team *team = netdev_priv(dev); struct team_port *port; int inc; rcu_read_lock(); list_for_each_entry_rcu(port, &team->port_list, list) { if (change & IFF_PROMISC) { inc = dev->flags & IFF_PROMISC ? 1 : -1; dev_set_promiscuity(port->dev, inc); } if (change & IFF_ALLMULTI) { inc = dev->flags & IFF_ALLMULTI ? 1 : -1; dev_set_allmulti(port->dev, inc); } } rcu_read_unlock(); } static void team_set_rx_mode(struct net_device *dev) { struct team *team = netdev_priv(dev); struct team_port *port; rcu_read_lock(); list_for_each_entry_rcu(port, &team->port_list, list) { dev_uc_sync_multiple(port->dev, dev); dev_mc_sync_multiple(port->dev, dev); } rcu_read_unlock(); } static int team_set_mac_address(struct net_device *dev, void *p) { struct sockaddr *addr = p; struct team *team = netdev_priv(dev); struct team_port *port; if (dev->type == ARPHRD_ETHER && !is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; dev_addr_set(dev, addr->sa_data); mutex_lock(&team->lock); list_for_each_entry(port, &team->port_list, list) if (team->ops.port_change_dev_addr) team->ops.port_change_dev_addr(team, port); mutex_unlock(&team->lock); return 0; } static int team_change_mtu(struct net_device *dev, int new_mtu) { struct team *team = netdev_priv(dev); struct team_port *port; int err; /* * Alhough this is reader, it's guarded by team lock. It's not possible * to traverse list in reverse under rcu_read_lock */ mutex_lock(&team->lock); team->port_mtu_change_allowed = true; list_for_each_entry(port, &team->port_list, list) { err = dev_set_mtu(port->dev, new_mtu); if (err) { netdev_err(dev, "Device %s failed to change mtu", port->dev->name); goto unwind; } } team->port_mtu_change_allowed = false; mutex_unlock(&team->lock); WRITE_ONCE(dev->mtu, new_mtu); return 0; unwind: list_for_each_entry_continue_reverse(port, &team->port_list, list) dev_set_mtu(port->dev, dev->mtu); team->port_mtu_change_allowed = false; mutex_unlock(&team->lock); return err; } static void team_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { struct team *team = netdev_priv(dev); struct team_pcpu_stats *p; u64 rx_packets, rx_bytes, rx_multicast, tx_packets, tx_bytes; u32 rx_dropped = 0, tx_dropped = 0, rx_nohandler = 0; unsigned int start; int i; for_each_possible_cpu(i) { p = per_cpu_ptr(team->pcpu_stats, i); do { start = u64_stats_fetch_begin(&p->syncp); rx_packets = u64_stats_read(&p->rx_packets); rx_bytes = u64_stats_read(&p->rx_bytes); rx_multicast = u64_stats_read(&p->rx_multicast); tx_packets = u64_stats_read(&p->tx_packets); tx_bytes = u64_stats_read(&p->tx_bytes); } while (u64_stats_fetch_retry(&p->syncp, start)); stats->rx_packets += rx_packets; stats->rx_bytes += rx_bytes; stats->multicast += rx_multicast; stats->tx_packets += tx_packets; stats->tx_bytes += tx_bytes; /* * rx_dropped, tx_dropped & rx_nohandler are u32, * updated without syncp protection. */ rx_dropped += READ_ONCE(p->rx_dropped); tx_dropped += READ_ONCE(p->tx_dropped); rx_nohandler += READ_ONCE(p->rx_nohandler); } stats->rx_dropped = rx_dropped; stats->tx_dropped = tx_dropped; stats->rx_nohandler = rx_nohandler; } static int team_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) { struct team *team = netdev_priv(dev); struct team_port *port; int err; /* * Alhough this is reader, it's guarded by team lock. It's not possible * to traverse list in reverse under rcu_read_lock */ mutex_lock(&team->lock); list_for_each_entry(port, &team->port_list, list) { err = vlan_vid_add(port->dev, proto, vid); if (err) goto unwind; } mutex_unlock(&team->lock); return 0; unwind: list_for_each_entry_continue_reverse(port, &team->port_list, list) vlan_vid_del(port->dev, proto, vid); mutex_unlock(&team->lock); return err; } static int team_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) { struct team *team = netdev_priv(dev); struct team_port *port; mutex_lock(&team->lock); list_for_each_entry(port, &team->port_list, list) vlan_vid_del(port->dev, proto, vid); mutex_unlock(&team->lock); return 0; } #ifdef CONFIG_NET_POLL_CONTROLLER static void team_poll_controller(struct net_device *dev) { } static void __team_netpoll_cleanup(struct team *team) { struct team_port *port; list_for_each_entry(port, &team->port_list, list) team_port_disable_netpoll(port); } static void team_netpoll_cleanup(struct net_device *dev) { struct team *team = netdev_priv(dev); mutex_lock(&team->lock); __team_netpoll_cleanup(team); mutex_unlock(&team->lock); } static int team_netpoll_setup(struct net_device *dev, struct netpoll_info *npifo) { struct team *team = netdev_priv(dev); struct team_port *port; int err = 0; mutex_lock(&team->lock); list_for_each_entry(port, &team->port_list, list) { err = __team_port_enable_netpoll(port); if (err) { __team_netpoll_cleanup(team); break; } } mutex_unlock(&team->lock); return err; } #endif static int team_add_slave(struct net_device *dev, struct net_device *port_dev, struct netlink_ext_ack *extack) { struct team *team = netdev_priv(dev); int err; mutex_lock(&team->lock); err = team_port_add(team, port_dev, extack); mutex_unlock(&team->lock); if (!err) netdev_change_features(dev); return err; } static int team_del_slave(struct net_device *dev, struct net_device *port_dev) { struct team *team = netdev_priv(dev); int err; mutex_lock(&team->lock); err = team_port_del(team, port_dev); mutex_unlock(&team->lock); if (err) return err; if (netif_is_team_master(port_dev)) { lockdep_unregister_key(&team->team_lock_key); lockdep_register_key(&team->team_lock_key); lockdep_set_class(&team->lock, &team->team_lock_key); } netdev_change_features(dev); return err; } static netdev_features_t team_fix_features(struct net_device *dev, netdev_features_t features) { struct team_port *port; struct team *team = netdev_priv(dev); netdev_features_t mask; mask = features; features &= ~NETIF_F_ONE_FOR_ALL; features |= NETIF_F_ALL_FOR_ALL; rcu_read_lock(); list_for_each_entry_rcu(port, &team->port_list, list) { features = netdev_increment_features(features, port->dev->features, mask); } rcu_read_unlock(); features = netdev_add_tso_features(features, mask); return features; } static int team_change_carrier(struct net_device *dev, bool new_carrier) { struct team *team = netdev_priv(dev); team->user_carrier_enabled = true; if (new_carrier) netif_carrier_on(dev); else netif_carrier_off(dev); return 0; } static const struct net_device_ops team_netdev_ops = { .ndo_init = team_init, .ndo_uninit = team_uninit, .ndo_open = team_open, .ndo_stop = team_close, .ndo_start_xmit = team_xmit, .ndo_select_queue = team_select_queue, .ndo_change_rx_flags = team_change_rx_flags, .ndo_set_rx_mode = team_set_rx_mode, .ndo_set_mac_address = team_set_mac_address, .ndo_change_mtu = team_change_mtu, .ndo_get_stats64 = team_get_stats64, .ndo_vlan_rx_add_vid = team_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = team_vlan_rx_kill_vid, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = team_poll_controller, .ndo_netpoll_setup = team_netpoll_setup, .ndo_netpoll_cleanup = team_netpoll_cleanup, #endif .ndo_add_slave = team_add_slave, .ndo_del_slave = team_del_slave, .ndo_fix_features = team_fix_features, .ndo_change_carrier = team_change_carrier, .ndo_features_check = passthru_features_check, }; /*********************** * ethtool interface ***********************/ static void team_ethtool_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *drvinfo) { strscpy(drvinfo->driver, DRV_NAME, sizeof(drvinfo->driver)); } static int team_ethtool_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct team *team= netdev_priv(dev); unsigned long speed = 0; struct team_port *port; cmd->base.duplex = DUPLEX_UNKNOWN; cmd->base.port = PORT_OTHER; rcu_read_lock(); list_for_each_entry_rcu(port, &team->port_list, list) { if (team_port_txable(port)) { if (port->state.speed != SPEED_UNKNOWN) speed += port->state.speed; if (cmd->base.duplex == DUPLEX_UNKNOWN && port->state.duplex != DUPLEX_UNKNOWN) cmd->base.duplex = port->state.duplex; } } rcu_read_unlock(); cmd->base.speed = speed ? : SPEED_UNKNOWN; return 0; } static const struct ethtool_ops team_ethtool_ops = { .get_drvinfo = team_ethtool_get_drvinfo, .get_link = ethtool_op_get_link, .get_link_ksettings = team_ethtool_get_link_ksettings, }; /*********************** * rt netlink interface ***********************/ static void team_setup_by_port(struct net_device *dev, struct net_device *port_dev) { struct team *team = netdev_priv(dev); if (port_dev->type == ARPHRD_ETHER) dev->header_ops = team->header_ops_cache; else dev->header_ops = port_dev->header_ops; dev->type = port_dev->type; dev->hard_header_len = port_dev->hard_header_len; dev->needed_headroom = port_dev->needed_headroom; dev->addr_len = port_dev->addr_len; dev->mtu = port_dev->mtu; memcpy(dev->broadcast, port_dev->broadcast, port_dev->addr_len); eth_hw_addr_inherit(dev, port_dev); if (port_dev->flags & IFF_POINTOPOINT) { dev->flags &= ~(IFF_BROADCAST | IFF_MULTICAST); dev->flags |= (IFF_POINTOPOINT | IFF_NOARP); } else if ((port_dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) == (IFF_BROADCAST | IFF_MULTICAST)) { dev->flags |= (IFF_BROADCAST | IFF_MULTICAST); dev->flags &= ~(IFF_POINTOPOINT | IFF_NOARP); } } static int team_dev_type_check_change(struct net_device *dev, struct net_device *port_dev) { struct team *team = netdev_priv(dev); char *portname = port_dev->name; int err; if (dev->type == port_dev->type) return 0; if (!list_empty(&team->port_list)) { netdev_err(dev, "Device %s is of different type\n", portname); return -EBUSY; } err = call_netdevice_notifiers(NETDEV_PRE_TYPE_CHANGE, dev); err = notifier_to_errno(err); if (err) { netdev_err(dev, "Refused to change device type\n"); return err; } dev_uc_flush(dev); dev_mc_flush(dev); team_setup_by_port(dev, port_dev); call_netdevice_notifiers(NETDEV_POST_TYPE_CHANGE, dev); return 0; } static void team_setup(struct net_device *dev) { struct team *team = netdev_priv(dev); ether_setup(dev); dev->max_mtu = ETH_MAX_MTU; team->header_ops_cache = dev->header_ops; dev->netdev_ops = &team_netdev_ops; dev->ethtool_ops = &team_ethtool_ops; dev->needs_free_netdev = true; dev->priv_destructor = team_destructor; dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_TX_SKB_SHARING); dev->priv_flags |= IFF_NO_QUEUE; dev->priv_flags |= IFF_TEAM; /* * Indicate we support unicast address filtering. That way core won't * bring us to promisc mode in case a unicast addr is added. * Let this up to underlay drivers. */ dev->priv_flags |= IFF_UNICAST_FLT | IFF_LIVE_ADDR_CHANGE; dev->lltx = true; /* Don't allow team devices to change network namespaces. */ dev->netns_local = true; dev->features |= NETIF_F_GRO; dev->hw_features = TEAM_VLAN_FEATURES | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_FILTER; dev->hw_features |= NETIF_F_GSO_ENCAP_ALL; dev->features |= dev->hw_features; dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_STAG_TX; } static int team_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { if (tb[IFLA_ADDRESS] == NULL) eth_hw_addr_random(dev); return register_netdevice(dev); } static int team_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { if (tb[IFLA_ADDRESS]) { if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) return -EINVAL; if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) return -EADDRNOTAVAIL; } return 0; } static unsigned int team_get_num_tx_queues(void) { return TEAM_DEFAULT_NUM_TX_QUEUES; } static unsigned int team_get_num_rx_queues(void) { return TEAM_DEFAULT_NUM_RX_QUEUES; } static struct rtnl_link_ops team_link_ops __read_mostly = { .kind = DRV_NAME, .priv_size = sizeof(struct team), .setup = team_setup, .newlink = team_newlink, .validate = team_validate, .get_num_tx_queues = team_get_num_tx_queues, .get_num_rx_queues = team_get_num_rx_queues, }; /*********************************** * Generic netlink custom interface ***********************************/ static struct genl_family team_nl_family; int team_nl_noop_doit(struct sk_buff *skb, struct genl_info *info) { struct sk_buff *msg; void *hdr; int err; msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!msg) return -ENOMEM; hdr = genlmsg_put(msg, info->snd_portid, info->snd_seq, &team_nl_family, 0, TEAM_CMD_NOOP); if (!hdr) { err = -EMSGSIZE; goto err_msg_put; } genlmsg_end(msg, hdr); return genlmsg_unicast(genl_info_net(info), msg, info->snd_portid); err_msg_put: nlmsg_free(msg); return err; } /* * Netlink cmd functions should be locked by following two functions. * Since dev gets held here, that ensures dev won't disappear in between. */ static struct team *team_nl_team_get(struct genl_info *info) { struct net *net = genl_info_net(info); int ifindex; struct net_device *dev; struct team *team; if (!info->attrs[TEAM_ATTR_TEAM_IFINDEX]) return NULL; ifindex = nla_get_u32(info->attrs[TEAM_ATTR_TEAM_IFINDEX]); dev = dev_get_by_index(net, ifindex); if (!dev || dev->netdev_ops != &team_netdev_ops) { dev_put(dev); return NULL; } team = netdev_priv(dev); mutex_lock(&team->lock); return team; } static void team_nl_team_put(struct team *team) { mutex_unlock(&team->lock); dev_put(team->dev); } typedef int team_nl_send_func_t(struct sk_buff *skb, struct team *team, u32 portid); static int team_nl_send_unicast(struct sk_buff *skb, struct team *team, u32 portid) { return genlmsg_unicast(dev_net(team->dev), skb, portid); } static int team_nl_fill_one_option_get(struct sk_buff *skb, struct team *team, struct team_option_inst *opt_inst) { struct nlattr *option_item; struct team_option *option = opt_inst->option; struct team_option_inst_info *opt_inst_info = &opt_inst->info; struct team_gsetter_ctx ctx; int err; ctx.info = opt_inst_info; err = team_option_get(team, opt_inst, &ctx); if (err) return err; option_item = nla_nest_start_noflag(skb, TEAM_ATTR_ITEM_OPTION); if (!option_item) return -EMSGSIZE; if (nla_put_string(skb, TEAM_ATTR_OPTION_NAME, option->name)) goto nest_cancel; if (opt_inst_info->port && nla_put_u32(skb, TEAM_ATTR_OPTION_PORT_IFINDEX, opt_inst_info->port->dev->ifindex)) goto nest_cancel; if (opt_inst->option->array_size && nla_put_u32(skb, TEAM_ATTR_OPTION_ARRAY_INDEX, opt_inst_info->array_index)) goto nest_cancel; switch (option->type) { case TEAM_OPTION_TYPE_U32: if (nla_put_u8(skb, TEAM_ATTR_OPTION_TYPE, NLA_U32)) goto nest_cancel; if (nla_put_u32(skb, TEAM_ATTR_OPTION_DATA, ctx.data.u32_val)) goto nest_cancel; break; case TEAM_OPTION_TYPE_STRING: if (nla_put_u8(skb, TEAM_ATTR_OPTION_TYPE, NLA_STRING)) goto nest_cancel; if (nla_put_string(skb, TEAM_ATTR_OPTION_DATA, ctx.data.str_val)) goto nest_cancel; break; case TEAM_OPTION_TYPE_BINARY: if (nla_put_u8(skb, TEAM_ATTR_OPTION_TYPE, NLA_BINARY)) goto nest_cancel; if (nla_put(skb, TEAM_ATTR_OPTION_DATA, ctx.data.bin_val.len, ctx.data.bin_val.ptr)) goto nest_cancel; break; case TEAM_OPTION_TYPE_BOOL: if (nla_put_u8(skb, TEAM_ATTR_OPTION_TYPE, NLA_FLAG)) goto nest_cancel; if (ctx.data.bool_val && nla_put_flag(skb, TEAM_ATTR_OPTION_DATA)) goto nest_cancel; break; case TEAM_OPTION_TYPE_S32: if (nla_put_u8(skb, TEAM_ATTR_OPTION_TYPE, NLA_S32)) goto nest_cancel; if (nla_put_s32(skb, TEAM_ATTR_OPTION_DATA, ctx.data.s32_val)) goto nest_cancel; break; default: BUG(); } if (opt_inst->removed && nla_put_flag(skb, TEAM_ATTR_OPTION_REMOVED)) goto nest_cancel; if (opt_inst->changed) { if (nla_put_flag(skb, TEAM_ATTR_OPTION_CHANGED)) goto nest_cancel; opt_inst->changed = false; } nla_nest_end(skb, option_item); return 0; nest_cancel: nla_nest_cancel(skb, option_item); return -EMSGSIZE; } static int __send_and_alloc_skb(struct sk_buff **pskb, struct team *team, u32 portid, team_nl_send_func_t *send_func) { int err; if (*pskb) { err = send_func(*pskb, team, portid); if (err) return err; } *pskb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!*pskb) return -ENOMEM; return 0; } static int team_nl_send_options_get(struct team *team, u32 portid, u32 seq, int flags, team_nl_send_func_t *send_func, struct list_head *sel_opt_inst_list) { struct nlattr *option_list; struct nlmsghdr *nlh; void *hdr; struct team_option_inst *opt_inst; int err; struct sk_buff *skb = NULL; bool incomplete; int i; opt_inst = list_first_entry(sel_opt_inst_list, struct team_option_inst, tmp_list); start_again: err = __send_and_alloc_skb(&skb, team, portid, send_func); if (err) return err; hdr = genlmsg_put(skb, portid, seq, &team_nl_family, flags | NLM_F_MULTI, TEAM_CMD_OPTIONS_GET); if (!hdr) { nlmsg_free(skb); return -EMSGSIZE; } if (nla_put_u32(skb, TEAM_ATTR_TEAM_IFINDEX, team->dev->ifindex)) goto nla_put_failure; option_list = nla_nest_start_noflag(skb, TEAM_ATTR_LIST_OPTION); if (!option_list) goto nla_put_failure; i = 0; incomplete = false; list_for_each_entry_from(opt_inst, sel_opt_inst_list, tmp_list) { err = team_nl_fill_one_option_get(skb, team, opt_inst); if (err) { if (err == -EMSGSIZE) { if (!i) goto errout; incomplete = true; break; } goto errout; } i++; } nla_nest_end(skb, option_list); genlmsg_end(skb, hdr); if (incomplete) goto start_again; send_done: nlh = nlmsg_put(skb, portid, seq, NLMSG_DONE, 0, flags | NLM_F_MULTI); if (!nlh) { err = __send_and_alloc_skb(&skb, team, portid, send_func); if (err) return err; goto send_done; } return send_func(skb, team, portid); nla_put_failure: err = -EMSGSIZE; errout: nlmsg_free(skb); return err; } int team_nl_options_get_doit(struct sk_buff *skb, struct genl_info *info) { struct team *team; struct team_option_inst *opt_inst; int err; LIST_HEAD(sel_opt_inst_list); team = team_nl_team_get(info); if (!team) return -EINVAL; list_for_each_entry(opt_inst, &team->option_inst_list, list) list_add_tail(&opt_inst->tmp_list, &sel_opt_inst_list); err = team_nl_send_options_get(team, info->snd_portid, info->snd_seq, NLM_F_ACK, team_nl_send_unicast, &sel_opt_inst_list); team_nl_team_put(team); return err; } static int team_nl_send_event_options_get(struct team *team, struct list_head *sel_opt_inst_list); int team_nl_options_set_doit(struct sk_buff *skb, struct genl_info *info) { struct team *team; int err = 0; int i; struct nlattr *nl_option; rtnl_lock(); team = team_nl_team_get(info); if (!team) { err = -EINVAL; goto rtnl_unlock; } err = -EINVAL; if (!info->attrs[TEAM_ATTR_LIST_OPTION]) { err = -EINVAL; goto team_put; } nla_for_each_nested(nl_option, info->attrs[TEAM_ATTR_LIST_OPTION], i) { struct nlattr *opt_attrs[TEAM_ATTR_OPTION_MAX + 1]; struct nlattr *attr; struct nlattr *attr_data; LIST_HEAD(opt_inst_list); enum team_option_type opt_type; int opt_port_ifindex = 0; /* != 0 for per-port options */ u32 opt_array_index = 0; bool opt_is_array = false; struct team_option_inst *opt_inst; char *opt_name; bool opt_found = false; if (nla_type(nl_option) != TEAM_ATTR_ITEM_OPTION) { err = -EINVAL; goto team_put; } err = nla_parse_nested_deprecated(opt_attrs, TEAM_ATTR_OPTION_MAX, nl_option, team_attr_option_nl_policy, info->extack); if (err) goto team_put; if (!opt_attrs[TEAM_ATTR_OPTION_NAME] || !opt_attrs[TEAM_ATTR_OPTION_TYPE]) { err = -EINVAL; goto team_put; } switch (nla_get_u8(opt_attrs[TEAM_ATTR_OPTION_TYPE])) { case NLA_U32: opt_type = TEAM_OPTION_TYPE_U32; break; case NLA_STRING: opt_type = TEAM_OPTION_TYPE_STRING; break; case NLA_BINARY: opt_type = TEAM_OPTION_TYPE_BINARY; break; case NLA_FLAG: opt_type = TEAM_OPTION_TYPE_BOOL; break; case NLA_S32: opt_type = TEAM_OPTION_TYPE_S32; break; default: goto team_put; } attr_data = opt_attrs[TEAM_ATTR_OPTION_DATA]; if (opt_type != TEAM_OPTION_TYPE_BOOL && !attr_data) { err = -EINVAL; goto team_put; } opt_name = nla_data(opt_attrs[TEAM_ATTR_OPTION_NAME]); attr = opt_attrs[TEAM_ATTR_OPTION_PORT_IFINDEX]; if (attr) opt_port_ifindex = nla_get_u32(attr); attr = opt_attrs[TEAM_ATTR_OPTION_ARRAY_INDEX]; if (attr) { opt_is_array = true; opt_array_index = nla_get_u32(attr); } list_for_each_entry(opt_inst, &team->option_inst_list, list) { struct team_option *option = opt_inst->option; struct team_gsetter_ctx ctx; struct team_option_inst_info *opt_inst_info; int tmp_ifindex; opt_inst_info = &opt_inst->info; tmp_ifindex = opt_inst_info->port ? opt_inst_info->port->dev->ifindex : 0; if (option->type != opt_type || strcmp(option->name, opt_name) || tmp_ifindex != opt_port_ifindex || (option->array_size && !opt_is_array) || opt_inst_info->array_index != opt_array_index) continue; opt_found = true; ctx.info = opt_inst_info; switch (opt_type) { case TEAM_OPTION_TYPE_U32: ctx.data.u32_val = nla_get_u32(attr_data); break; case TEAM_OPTION_TYPE_STRING: if (nla_len(attr_data) > TEAM_STRING_MAX_LEN) { err = -EINVAL; goto team_put; } ctx.data.str_val = nla_data(attr_data); break; case TEAM_OPTION_TYPE_BINARY: ctx.data.bin_val.len = nla_len(attr_data); ctx.data.bin_val.ptr = nla_data(attr_data); break; case TEAM_OPTION_TYPE_BOOL: ctx.data.bool_val = attr_data ? true : false; break; case TEAM_OPTION_TYPE_S32: ctx.data.s32_val = nla_get_s32(attr_data); break; default: BUG(); } err = team_option_set(team, opt_inst, &ctx); if (err) goto team_put; opt_inst->changed = true; list_add(&opt_inst->tmp_list, &opt_inst_list); } if (!opt_found) { err = -ENOENT; goto team_put; } err = team_nl_send_event_options_get(team, &opt_inst_list); if (err) break; } team_put: team_nl_team_put(team); rtnl_unlock: rtnl_unlock(); return err; } static int team_nl_fill_one_port_get(struct sk_buff *skb, struct team_port *port) { struct nlattr *port_item; port_item = nla_nest_start_noflag(skb, TEAM_ATTR_ITEM_PORT); if (!port_item) goto nest_cancel; if (nla_put_u32(skb, TEAM_ATTR_PORT_IFINDEX, port->dev->ifindex)) goto nest_cancel; if (port->changed) { if (nla_put_flag(skb, TEAM_ATTR_PORT_CHANGED)) goto nest_cancel; port->changed = false; } if ((port->removed && nla_put_flag(skb, TEAM_ATTR_PORT_REMOVED)) || (port->state.linkup && nla_put_flag(skb, TEAM_ATTR_PORT_LINKUP)) || nla_put_u32(skb, TEAM_ATTR_PORT_SPEED, port->state.speed) || nla_put_u8(skb, TEAM_ATTR_PORT_DUPLEX, port->state.duplex)) goto nest_cancel; nla_nest_end(skb, port_item); return 0; nest_cancel: nla_nest_cancel(skb, port_item); return -EMSGSIZE; } static int team_nl_send_port_list_get(struct team *team, u32 portid, u32 seq, int flags, team_nl_send_func_t *send_func, struct team_port *one_port) { struct nlattr *port_list; struct nlmsghdr *nlh; void *hdr; struct team_port *port; int err; struct sk_buff *skb = NULL; bool incomplete; int i; port = list_first_entry_or_null(&team->port_list, struct team_port, list); start_again: err = __send_and_alloc_skb(&skb, team, portid, send_func); if (err) return err; hdr = genlmsg_put(skb, portid, seq, &team_nl_family, flags | NLM_F_MULTI, TEAM_CMD_PORT_LIST_GET); if (!hdr) { nlmsg_free(skb); return -EMSGSIZE; } if (nla_put_u32(skb, TEAM_ATTR_TEAM_IFINDEX, team->dev->ifindex)) goto nla_put_failure; port_list = nla_nest_start_noflag(skb, TEAM_ATTR_LIST_PORT); if (!port_list) goto nla_put_failure; i = 0; incomplete = false; /* If one port is selected, called wants to send port list containing * only this port. Otherwise go through all listed ports and send all */ if (one_port) { err = team_nl_fill_one_port_get(skb, one_port); if (err) goto errout; } else if (port) { list_for_each_entry_from(port, &team->port_list, list) { err = team_nl_fill_one_port_get(skb, port); if (err) { if (err == -EMSGSIZE) { if (!i) goto errout; incomplete = true; break; } goto errout; } i++; } } nla_nest_end(skb, port_list); genlmsg_end(skb, hdr); if (incomplete) goto start_again; send_done: nlh = nlmsg_put(skb, portid, seq, NLMSG_DONE, 0, flags | NLM_F_MULTI); if (!nlh) { err = __send_and_alloc_skb(&skb, team, portid, send_func); if (err) return err; goto send_done; } return send_func(skb, team, portid); nla_put_failure: err = -EMSGSIZE; errout: nlmsg_free(skb); return err; } int team_nl_port_list_get_doit(struct sk_buff *skb, struct genl_info *info) { struct team *team; int err; team = team_nl_team_get(info); if (!team) return -EINVAL; err = team_nl_send_port_list_get(team, info->snd_portid, info->snd_seq, NLM_F_ACK, team_nl_send_unicast, NULL); team_nl_team_put(team); return err; } static const struct genl_multicast_group team_nl_mcgrps[] = { { .name = TEAM_GENL_CHANGE_EVENT_MC_GRP_NAME, }, }; static struct genl_family team_nl_family __ro_after_init = { .name = TEAM_GENL_NAME, .version = TEAM_GENL_VERSION, .maxattr = ARRAY_SIZE(team_nl_policy) - 1, .policy = team_nl_policy, .netnsok = true, .module = THIS_MODULE, .small_ops = team_nl_ops, .n_small_ops = ARRAY_SIZE(team_nl_ops), .resv_start_op = TEAM_CMD_PORT_LIST_GET + 1, .mcgrps = team_nl_mcgrps, .n_mcgrps = ARRAY_SIZE(team_nl_mcgrps), }; static int team_nl_send_multicast(struct sk_buff *skb, struct team *team, u32 portid) { return genlmsg_multicast_netns(&team_nl_family, dev_net(team->dev), skb, 0, 0, GFP_KERNEL); } static int team_nl_send_event_options_get(struct team *team, struct list_head *sel_opt_inst_list) { return team_nl_send_options_get(team, 0, 0, 0, team_nl_send_multicast, sel_opt_inst_list); } static int team_nl_send_event_port_get(struct team *team, struct team_port *port) { return team_nl_send_port_list_get(team, 0, 0, 0, team_nl_send_multicast, port); } static int __init team_nl_init(void) { return genl_register_family(&team_nl_family); } static void __exit team_nl_fini(void) { genl_unregister_family(&team_nl_family); } /****************** * Change checkers ******************/ static void __team_options_change_check(struct team *team) { int err; struct team_option_inst *opt_inst; LIST_HEAD(sel_opt_inst_list); list_for_each_entry(opt_inst, &team->option_inst_list, list) { if (opt_inst->changed) list_add_tail(&opt_inst->tmp_list, &sel_opt_inst_list); } err = team_nl_send_event_options_get(team, &sel_opt_inst_list); if (err && err != -ESRCH) netdev_warn(team->dev, "Failed to send options change via netlink (err %d)\n", err); } /* rtnl lock is held */ static void __team_port_change_send(struct team_port *port, bool linkup) { int err; port->changed = true; port->state.linkup = linkup; team_refresh_port_linkup(port); if (linkup) { struct ethtool_link_ksettings ecmd; err = __ethtool_get_link_ksettings(port->dev, &ecmd); if (!err) { port->state.speed = ecmd.base.speed; port->state.duplex = ecmd.base.duplex; goto send_event; } } port->state.speed = 0; port->state.duplex = 0; send_event: err = team_nl_send_event_port_get(port->team, port); if (err && err != -ESRCH) netdev_warn(port->team->dev, "Failed to send port change of device %s via netlink (err %d)\n", port->dev->name, err); } static void __team_carrier_check(struct team *team) { struct team_port *port; bool team_linkup; if (team->user_carrier_enabled) return; team_linkup = false; list_for_each_entry(port, &team->port_list, list) { if (port->linkup) { team_linkup = true; break; } } if (team_linkup) netif_carrier_on(team->dev); else netif_carrier_off(team->dev); } static void __team_port_change_check(struct team_port *port, bool linkup) { if (port->state.linkup != linkup) __team_port_change_send(port, linkup); __team_carrier_check(port->team); } static void __team_port_change_port_added(struct team_port *port, bool linkup) { __team_port_change_send(port, linkup); __team_carrier_check(port->team); } static void __team_port_change_port_removed(struct team_port *port) { port->removed = true; __team_port_change_send(port, false); __team_carrier_check(port->team); } static void team_port_change_check(struct team_port *port, bool linkup) { struct team *team = port->team; mutex_lock(&team->lock); __team_port_change_check(port, linkup); mutex_unlock(&team->lock); } /************************************ * Net device notifier event handler ************************************/ static int team_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct team_port *port; port = team_port_get_rtnl(dev); if (!port) return NOTIFY_DONE; switch (event) { case NETDEV_UP: if (netif_oper_up(dev)) team_port_change_check(port, true); break; case NETDEV_DOWN: team_port_change_check(port, false); break; case NETDEV_CHANGE: if (netif_running(port->dev)) team_port_change_check(port, !!netif_oper_up(port->dev)); break; case NETDEV_UNREGISTER: team_del_slave(port->team->dev, dev); break; case NETDEV_FEAT_CHANGE: if (!port->team->notifier_ctx) { port->team->notifier_ctx = true; team_compute_features(port->team); port->team->notifier_ctx = false; } break; case NETDEV_PRECHANGEMTU: /* Forbid to change mtu of underlaying device */ if (!port->team->port_mtu_change_allowed) return NOTIFY_BAD; break; case NETDEV_PRE_TYPE_CHANGE: /* Forbid to change type of underlaying device */ return NOTIFY_BAD; case NETDEV_RESEND_IGMP: /* Propagate to master device */ call_netdevice_notifiers(event, port->team->dev); break; } return NOTIFY_DONE; } static struct notifier_block team_notifier_block __read_mostly = { .notifier_call = team_device_event, }; /*********************** * Module init and exit ***********************/ static int __init team_module_init(void) { int err; register_netdevice_notifier(&team_notifier_block); err = rtnl_link_register(&team_link_ops); if (err) goto err_rtnl_reg; err = team_nl_init(); if (err) goto err_nl_init; return 0; err_nl_init: rtnl_link_unregister(&team_link_ops); err_rtnl_reg: unregister_netdevice_notifier(&team_notifier_block); return err; } static void __exit team_module_exit(void) { team_nl_fini(); rtnl_link_unregister(&team_link_ops); unregister_netdevice_notifier(&team_notifier_block); } module_init(team_module_init); module_exit(team_module_exit); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Jiri Pirko <jpirko@redhat.com>"); MODULE_DESCRIPTION("Ethernet team device driver"); MODULE_ALIAS_RTNL_LINK(DRV_NAME);
72 33 31 2 2 5 76 75 77 77 48 48 47 43 43 43 43 43 2 2 2 26 26 26 26 2 2 2 4 4 3 3 1 1 33 32 32 33 33 22 22 22 22 22 21 22 32 33 33 33 33 6 6 6 6 6 36 35 36 36 36 2 2 3 3 1 54 55 1 55 53 1 1 1 8 9 9 14 14 14 14 14 35 35 35 15 15 16 16 14 14 14 14 14 4 4 4 4 3 3 3 3 3 3 3 3 2 2 2 6 6 6 6 6 6 33 33 33 33 33 33 14 14 14 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 /* SPDX-License-Identifier: GPL-2.0 */ /* * Portions of this file * Copyright(c) 2016 Intel Deutschland GmbH * Copyright (C) 2018-2019, 2021-2024 Intel Corporation */ #ifndef __MAC80211_DRIVER_OPS #define __MAC80211_DRIVER_OPS #include <net/mac80211.h> #include "ieee80211_i.h" #include "trace.h" #define check_sdata_in_driver(sdata) ({ \ WARN_ONCE(!sdata->local->reconfig_failure && \ !(sdata->flags & IEEE80211_SDATA_IN_DRIVER), \ "%s: Failed check-sdata-in-driver check, flags: 0x%x\n", \ sdata->dev ? sdata->dev->name : sdata->name, sdata->flags); \ !!(sdata->flags & IEEE80211_SDATA_IN_DRIVER); \ }) static inline struct ieee80211_sub_if_data * get_bss_sdata(struct ieee80211_sub_if_data *sdata) { if (sdata && sdata->vif.type == NL80211_IFTYPE_AP_VLAN) sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); return sdata; } static inline void drv_tx(struct ieee80211_local *local, struct ieee80211_tx_control *control, struct sk_buff *skb) { local->ops->tx(&local->hw, control, skb); } static inline void drv_sync_rx_queues(struct ieee80211_local *local, struct sta_info *sta) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (local->ops->sync_rx_queues) { trace_drv_sync_rx_queues(local, sta->sdata, &sta->sta); local->ops->sync_rx_queues(&local->hw); trace_drv_return_void(local); } } static inline void drv_get_et_strings(struct ieee80211_sub_if_data *sdata, u32 sset, u8 *data) { struct ieee80211_local *local = sdata->local; if (local->ops->get_et_strings) { trace_drv_get_et_strings(local, sset); local->ops->get_et_strings(&local->hw, &sdata->vif, sset, data); trace_drv_return_void(local); } } static inline void drv_get_et_stats(struct ieee80211_sub_if_data *sdata, struct ethtool_stats *stats, u64 *data) { struct ieee80211_local *local = sdata->local; if (local->ops->get_et_stats) { trace_drv_get_et_stats(local); local->ops->get_et_stats(&local->hw, &sdata->vif, stats, data); trace_drv_return_void(local); } } static inline int drv_get_et_sset_count(struct ieee80211_sub_if_data *sdata, int sset) { struct ieee80211_local *local = sdata->local; int rv = 0; if (local->ops->get_et_sset_count) { trace_drv_get_et_sset_count(local, sset); rv = local->ops->get_et_sset_count(&local->hw, &sdata->vif, sset); trace_drv_return_int(local, rv); } return rv; } int drv_start(struct ieee80211_local *local); void drv_stop(struct ieee80211_local *local, bool suspend); #ifdef CONFIG_PM static inline int drv_suspend(struct ieee80211_local *local, struct cfg80211_wowlan *wowlan) { int ret; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); trace_drv_suspend(local); ret = local->ops->suspend(&local->hw, wowlan); trace_drv_return_int(local, ret); return ret; } static inline int drv_resume(struct ieee80211_local *local) { int ret; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); trace_drv_resume(local); ret = local->ops->resume(&local->hw); trace_drv_return_int(local, ret); return ret; } static inline void drv_set_wakeup(struct ieee80211_local *local, bool enabled) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!local->ops->set_wakeup) return; trace_drv_set_wakeup(local, enabled); local->ops->set_wakeup(&local->hw, enabled); trace_drv_return_void(local); } #endif int drv_add_interface(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); int drv_change_interface(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum nl80211_iftype type, bool p2p); void drv_remove_interface(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); static inline int drv_config(struct ieee80211_local *local, u32 changed) { int ret; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); trace_drv_config(local, changed); ret = local->ops->config(&local->hw, changed); trace_drv_return_int(local, ret); return ret; } static inline void drv_vif_cfg_changed(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u64 changed) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return; trace_drv_vif_cfg_changed(local, sdata, changed); if (local->ops->vif_cfg_changed) local->ops->vif_cfg_changed(&local->hw, &sdata->vif, changed); else if (local->ops->bss_info_changed) local->ops->bss_info_changed(&local->hw, &sdata->vif, &sdata->vif.bss_conf, changed); trace_drv_return_void(local); } void drv_link_info_changed(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *info, int link_id, u64 changed); static inline u64 drv_prepare_multicast(struct ieee80211_local *local, struct netdev_hw_addr_list *mc_list) { u64 ret = 0; trace_drv_prepare_multicast(local, mc_list->count); if (local->ops->prepare_multicast) ret = local->ops->prepare_multicast(&local->hw, mc_list); trace_drv_return_u64(local, ret); return ret; } static inline void drv_configure_filter(struct ieee80211_local *local, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); trace_drv_configure_filter(local, changed_flags, total_flags, multicast); local->ops->configure_filter(&local->hw, changed_flags, total_flags, multicast); trace_drv_return_void(local); } static inline void drv_config_iface_filter(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, unsigned int filter_flags, unsigned int changed_flags) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); trace_drv_config_iface_filter(local, sdata, filter_flags, changed_flags); if (local->ops->config_iface_filter) local->ops->config_iface_filter(&local->hw, &sdata->vif, filter_flags, changed_flags); trace_drv_return_void(local); } static inline int drv_set_tim(struct ieee80211_local *local, struct ieee80211_sta *sta, bool set) { int ret = 0; trace_drv_set_tim(local, sta, set); if (local->ops->set_tim) ret = local->ops->set_tim(&local->hw, sta, set); trace_drv_return_int(local, ret); return ret; } int drv_set_key(struct ieee80211_local *local, enum set_key_cmd cmd, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, struct ieee80211_key_conf *key); static inline void drv_update_tkip_key(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_key_conf *conf, struct sta_info *sta, u32 iv32, u16 *phase1key) { struct ieee80211_sta *ista = NULL; if (sta) ista = &sta->sta; sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; trace_drv_update_tkip_key(local, sdata, conf, ista, iv32); if (local->ops->update_tkip_key) local->ops->update_tkip_key(&local->hw, &sdata->vif, conf, ista, iv32, phase1key); trace_drv_return_void(local); } static inline int drv_hw_scan(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_scan_request *req) { int ret; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_hw_scan(local, sdata); ret = local->ops->hw_scan(&local->hw, &sdata->vif, req); trace_drv_return_int(local, ret); return ret; } static inline void drv_cancel_hw_scan(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return; trace_drv_cancel_hw_scan(local, sdata); local->ops->cancel_hw_scan(&local->hw, &sdata->vif); trace_drv_return_void(local); } static inline int drv_sched_scan_start(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_sched_scan_request *req, struct ieee80211_scan_ies *ies) { int ret; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_sched_scan_start(local, sdata); ret = local->ops->sched_scan_start(&local->hw, &sdata->vif, req, ies); trace_drv_return_int(local, ret); return ret; } static inline int drv_sched_scan_stop(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { int ret; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_sched_scan_stop(local, sdata); ret = local->ops->sched_scan_stop(&local->hw, &sdata->vif); trace_drv_return_int(local, ret); return ret; } static inline void drv_sw_scan_start(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, const u8 *mac_addr) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); trace_drv_sw_scan_start(local, sdata, mac_addr); if (local->ops->sw_scan_start) local->ops->sw_scan_start(&local->hw, &sdata->vif, mac_addr); trace_drv_return_void(local); } static inline void drv_sw_scan_complete(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); trace_drv_sw_scan_complete(local, sdata); if (local->ops->sw_scan_complete) local->ops->sw_scan_complete(&local->hw, &sdata->vif); trace_drv_return_void(local); } static inline int drv_get_stats(struct ieee80211_local *local, struct ieee80211_low_level_stats *stats) { int ret = -EOPNOTSUPP; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (local->ops->get_stats) ret = local->ops->get_stats(&local->hw, stats); trace_drv_get_stats(local, stats, ret); return ret; } static inline void drv_get_key_seq(struct ieee80211_local *local, struct ieee80211_key *key, struct ieee80211_key_seq *seq) { if (local->ops->get_key_seq) local->ops->get_key_seq(&local->hw, &key->conf, seq); trace_drv_get_key_seq(local, &key->conf); } static inline int drv_set_frag_threshold(struct ieee80211_local *local, u32 value) { int ret = 0; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); trace_drv_set_frag_threshold(local, value); if (local->ops->set_frag_threshold) ret = local->ops->set_frag_threshold(&local->hw, value); trace_drv_return_int(local, ret); return ret; } static inline int drv_set_rts_threshold(struct ieee80211_local *local, u32 value) { int ret = 0; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); trace_drv_set_rts_threshold(local, value); if (local->ops->set_rts_threshold) ret = local->ops->set_rts_threshold(&local->hw, value); trace_drv_return_int(local, ret); return ret; } static inline int drv_set_coverage_class(struct ieee80211_local *local, s16 value) { int ret = 0; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); trace_drv_set_coverage_class(local, value); if (local->ops->set_coverage_class) local->ops->set_coverage_class(&local->hw, value); else ret = -EOPNOTSUPP; trace_drv_return_int(local, ret); return ret; } static inline void drv_sta_notify(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, enum sta_notify_cmd cmd, struct ieee80211_sta *sta) { sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; trace_drv_sta_notify(local, sdata, cmd, sta); if (local->ops->sta_notify) local->ops->sta_notify(&local->hw, &sdata->vif, cmd, sta); trace_drv_return_void(local); } static inline int drv_sta_add(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta) { int ret = 0; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_sta_add(local, sdata, sta); if (local->ops->sta_add) ret = local->ops->sta_add(&local->hw, &sdata->vif, sta); trace_drv_return_int(local, ret); return ret; } static inline void drv_sta_remove(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; trace_drv_sta_remove(local, sdata, sta); if (local->ops->sta_remove) local->ops->sta_remove(&local->hw, &sdata->vif, sta); trace_drv_return_void(local); } #ifdef CONFIG_MAC80211_DEBUGFS static inline void drv_vif_add_debugfs(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { might_sleep(); if (sdata->vif.type == NL80211_IFTYPE_MONITOR || WARN_ON(!sdata->vif.debugfs_dir)) return; sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; if (local->ops->vif_add_debugfs) local->ops->vif_add_debugfs(&local->hw, &sdata->vif); } static inline void drv_link_add_debugfs(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *link_conf, struct dentry *dir) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; if (local->ops->link_add_debugfs) local->ops->link_add_debugfs(&local->hw, &sdata->vif, link_conf, dir); } static inline void drv_sta_add_debugfs(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, struct dentry *dir) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; if (local->ops->sta_add_debugfs) local->ops->sta_add_debugfs(&local->hw, &sdata->vif, sta, dir); } static inline void drv_link_sta_add_debugfs(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_link_sta *link_sta, struct dentry *dir) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; if (local->ops->link_sta_add_debugfs) local->ops->link_sta_add_debugfs(&local->hw, &sdata->vif, link_sta, dir); } #else static inline void drv_vif_add_debugfs(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { might_sleep(); } #endif static inline void drv_sta_pre_rcu_remove(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sta_info *sta) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; trace_drv_sta_pre_rcu_remove(local, sdata, &sta->sta); if (local->ops->sta_pre_rcu_remove) local->ops->sta_pre_rcu_remove(&local->hw, &sdata->vif, &sta->sta); trace_drv_return_void(local); } __must_check int drv_sta_state(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sta_info *sta, enum ieee80211_sta_state old_state, enum ieee80211_sta_state new_state); __must_check int drv_sta_set_txpwr(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sta_info *sta); void drv_sta_rc_update(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, u32 changed); static inline void drv_sta_rate_tbl_update(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta) { sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; trace_drv_sta_rate_tbl_update(local, sdata, sta); if (local->ops->sta_rate_tbl_update) local->ops->sta_rate_tbl_update(&local->hw, &sdata->vif, sta); trace_drv_return_void(local); } static inline void drv_sta_statistics(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, struct station_info *sinfo) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return; trace_drv_sta_statistics(local, sdata, sta); if (local->ops->sta_statistics) local->ops->sta_statistics(&local->hw, &sdata->vif, sta, sinfo); trace_drv_return_void(local); } int drv_conf_tx(struct ieee80211_local *local, struct ieee80211_link_data *link, u16 ac, const struct ieee80211_tx_queue_params *params); u64 drv_get_tsf(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); void drv_set_tsf(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u64 tsf); void drv_offset_tsf(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, s64 offset); void drv_reset_tsf(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata); static inline int drv_tx_last_beacon(struct ieee80211_local *local) { int ret = 0; /* default unsupported op for less congestion */ might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); trace_drv_tx_last_beacon(local); if (local->ops->tx_last_beacon) ret = local->ops->tx_last_beacon(&local->hw); trace_drv_return_int(local, ret); return ret; } int drv_ampdu_action(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_ampdu_params *params); static inline int drv_get_survey(struct ieee80211_local *local, int idx, struct survey_info *survey) { int ret = -EOPNOTSUPP; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); trace_drv_get_survey(local, idx, survey); if (local->ops->get_survey) ret = local->ops->get_survey(&local->hw, idx, survey); trace_drv_return_int(local, ret); return ret; } static inline void drv_rfkill_poll(struct ieee80211_local *local) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (local->ops->rfkill_poll) local->ops->rfkill_poll(&local->hw); } static inline void drv_flush(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u32 queues, bool drop) { struct ieee80211_vif *vif; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); sdata = get_bss_sdata(sdata); vif = sdata ? &sdata->vif : NULL; if (sdata && !check_sdata_in_driver(sdata)) return; trace_drv_flush(local, queues, drop); if (local->ops->flush) local->ops->flush(&local->hw, vif, queues, drop); trace_drv_return_void(local); } static inline void drv_flush_sta(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sta_info *sta) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); sdata = get_bss_sdata(sdata); if (sdata && !check_sdata_in_driver(sdata)) return; trace_drv_flush_sta(local, sdata, &sta->sta); if (local->ops->flush_sta) local->ops->flush_sta(&local->hw, &sdata->vif, &sta->sta); trace_drv_return_void(local); } static inline void drv_channel_switch(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_channel_switch *ch_switch) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); trace_drv_channel_switch(local, sdata, ch_switch); local->ops->channel_switch(&local->hw, &sdata->vif, ch_switch); trace_drv_return_void(local); } static inline int drv_set_antenna(struct ieee80211_local *local, u32 tx_ant, u32 rx_ant) { int ret = -EOPNOTSUPP; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (local->ops->set_antenna) ret = local->ops->set_antenna(&local->hw, tx_ant, rx_ant); trace_drv_set_antenna(local, tx_ant, rx_ant, ret); return ret; } static inline int drv_get_antenna(struct ieee80211_local *local, u32 *tx_ant, u32 *rx_ant) { int ret = -EOPNOTSUPP; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (local->ops->get_antenna) ret = local->ops->get_antenna(&local->hw, tx_ant, rx_ant); trace_drv_get_antenna(local, *tx_ant, *rx_ant, ret); return ret; } static inline int drv_remain_on_channel(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_channel *chan, unsigned int duration, enum ieee80211_roc_type type) { int ret; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); trace_drv_remain_on_channel(local, sdata, chan, duration, type); ret = local->ops->remain_on_channel(&local->hw, &sdata->vif, chan, duration, type); trace_drv_return_int(local, ret); return ret; } static inline int drv_cancel_remain_on_channel(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { int ret; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); trace_drv_cancel_remain_on_channel(local, sdata); ret = local->ops->cancel_remain_on_channel(&local->hw, &sdata->vif); trace_drv_return_int(local, ret); return ret; } static inline int drv_set_ringparam(struct ieee80211_local *local, u32 tx, u32 rx) { int ret = -EOPNOTSUPP; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); trace_drv_set_ringparam(local, tx, rx); if (local->ops->set_ringparam) ret = local->ops->set_ringparam(&local->hw, tx, rx); trace_drv_return_int(local, ret); return ret; } static inline void drv_get_ringparam(struct ieee80211_local *local, u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); trace_drv_get_ringparam(local, tx, tx_max, rx, rx_max); if (local->ops->get_ringparam) local->ops->get_ringparam(&local->hw, tx, tx_max, rx, rx_max); trace_drv_return_void(local); } static inline bool drv_tx_frames_pending(struct ieee80211_local *local) { bool ret = false; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); trace_drv_tx_frames_pending(local); if (local->ops->tx_frames_pending) ret = local->ops->tx_frames_pending(&local->hw); trace_drv_return_bool(local, ret); return ret; } static inline int drv_set_bitrate_mask(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, const struct cfg80211_bitrate_mask *mask) { int ret = -EOPNOTSUPP; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_set_bitrate_mask(local, sdata, mask); if (local->ops->set_bitrate_mask) ret = local->ops->set_bitrate_mask(&local->hw, &sdata->vif, mask); trace_drv_return_int(local, ret); return ret; } static inline void drv_set_rekey_data(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_gtk_rekey_data *data) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return; trace_drv_set_rekey_data(local, sdata, data); if (local->ops->set_rekey_data) local->ops->set_rekey_data(&local->hw, &sdata->vif, data); trace_drv_return_void(local); } static inline void drv_event_callback(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, const struct ieee80211_event *event) { trace_drv_event_callback(local, sdata, event); if (local->ops->event_callback) local->ops->event_callback(&local->hw, &sdata->vif, event); trace_drv_return_void(local); } static inline void drv_release_buffered_frames(struct ieee80211_local *local, struct sta_info *sta, u16 tids, int num_frames, enum ieee80211_frame_release_type reason, bool more_data) { trace_drv_release_buffered_frames(local, &sta->sta, tids, num_frames, reason, more_data); if (local->ops->release_buffered_frames) local->ops->release_buffered_frames(&local->hw, &sta->sta, tids, num_frames, reason, more_data); trace_drv_return_void(local); } static inline void drv_allow_buffered_frames(struct ieee80211_local *local, struct sta_info *sta, u16 tids, int num_frames, enum ieee80211_frame_release_type reason, bool more_data) { trace_drv_allow_buffered_frames(local, &sta->sta, tids, num_frames, reason, more_data); if (local->ops->allow_buffered_frames) local->ops->allow_buffered_frames(&local->hw, &sta->sta, tids, num_frames, reason, more_data); trace_drv_return_void(local); } static inline void drv_mgd_prepare_tx(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_prep_tx_info *info) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return; WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION); info->link_id = info->link_id < 0 ? 0 : info->link_id; trace_drv_mgd_prepare_tx(local, sdata, info->duration, info->subtype, info->success); if (local->ops->mgd_prepare_tx) local->ops->mgd_prepare_tx(&local->hw, &sdata->vif, info); trace_drv_return_void(local); } static inline void drv_mgd_complete_tx(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_prep_tx_info *info) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return; WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION); trace_drv_mgd_complete_tx(local, sdata, info->duration, info->subtype, info->success); if (local->ops->mgd_complete_tx) local->ops->mgd_complete_tx(&local->hw, &sdata->vif, info); trace_drv_return_void(local); } static inline void drv_mgd_protect_tdls_discover(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, int link_id) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return; WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION); link_id = link_id > 0 ? link_id : 0; trace_drv_mgd_protect_tdls_discover(local, sdata); if (local->ops->mgd_protect_tdls_discover) local->ops->mgd_protect_tdls_discover(&local->hw, &sdata->vif, link_id); trace_drv_return_void(local); } static inline int drv_add_chanctx(struct ieee80211_local *local, struct ieee80211_chanctx *ctx) { int ret = -EOPNOTSUPP; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); trace_drv_add_chanctx(local, ctx); if (local->ops->add_chanctx) ret = local->ops->add_chanctx(&local->hw, &ctx->conf); trace_drv_return_int(local, ret); if (!ret) ctx->driver_present = true; return ret; } static inline void drv_remove_chanctx(struct ieee80211_local *local, struct ieee80211_chanctx *ctx) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (WARN_ON(!ctx->driver_present)) return; trace_drv_remove_chanctx(local, ctx); if (local->ops->remove_chanctx) local->ops->remove_chanctx(&local->hw, &ctx->conf); trace_drv_return_void(local); ctx->driver_present = false; } static inline void drv_change_chanctx(struct ieee80211_local *local, struct ieee80211_chanctx *ctx, u32 changed) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); trace_drv_change_chanctx(local, ctx, changed); if (local->ops->change_chanctx) { WARN_ON_ONCE(!ctx->driver_present); local->ops->change_chanctx(&local->hw, &ctx->conf, changed); } trace_drv_return_void(local); } int drv_assign_vif_chanctx(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *link_conf, struct ieee80211_chanctx *ctx); void drv_unassign_vif_chanctx(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *link_conf, struct ieee80211_chanctx *ctx); int drv_switch_vif_chanctx(struct ieee80211_local *local, struct ieee80211_vif_chanctx_switch *vifs, int n_vifs, enum ieee80211_chanctx_switch_mode mode); static inline int drv_start_ap(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *link_conf) { int ret = 0; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_start_ap(local, sdata, link_conf); if (local->ops->start_ap) ret = local->ops->start_ap(&local->hw, &sdata->vif, link_conf); trace_drv_return_int(local, ret); return ret; } static inline void drv_stop_ap(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *link_conf) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return; trace_drv_stop_ap(local, sdata, link_conf); if (local->ops->stop_ap) local->ops->stop_ap(&local->hw, &sdata->vif, link_conf); trace_drv_return_void(local); } static inline void drv_reconfig_complete(struct ieee80211_local *local, enum ieee80211_reconfig_type reconfig_type) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); trace_drv_reconfig_complete(local, reconfig_type); if (local->ops->reconfig_complete) local->ops->reconfig_complete(&local->hw, reconfig_type); trace_drv_return_void(local); } static inline void drv_set_default_unicast_key(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, int key_idx) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return; WARN_ON_ONCE(key_idx < -1 || key_idx > 3); trace_drv_set_default_unicast_key(local, sdata, key_idx); if (local->ops->set_default_unicast_key) local->ops->set_default_unicast_key(&local->hw, &sdata->vif, key_idx); trace_drv_return_void(local); } #if IS_ENABLED(CONFIG_IPV6) static inline void drv_ipv6_addr_change(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct inet6_dev *idev) { trace_drv_ipv6_addr_change(local, sdata); if (local->ops->ipv6_addr_change) local->ops->ipv6_addr_change(&local->hw, &sdata->vif, idev); trace_drv_return_void(local); } #endif static inline void drv_channel_switch_beacon(struct ieee80211_sub_if_data *sdata, struct cfg80211_chan_def *chandef) { struct ieee80211_local *local = sdata->local; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (local->ops->channel_switch_beacon) { trace_drv_channel_switch_beacon(local, sdata, chandef); local->ops->channel_switch_beacon(&local->hw, &sdata->vif, chandef); } } static inline int drv_pre_channel_switch(struct ieee80211_sub_if_data *sdata, struct ieee80211_channel_switch *ch_switch) { struct ieee80211_local *local = sdata->local; int ret = 0; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return -EIO; if (!ieee80211_vif_link_active(&sdata->vif, ch_switch->link_id)) return 0; trace_drv_pre_channel_switch(local, sdata, ch_switch); if (local->ops->pre_channel_switch) ret = local->ops->pre_channel_switch(&local->hw, &sdata->vif, ch_switch); trace_drv_return_int(local, ret); return ret; } static inline int drv_post_channel_switch(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; int ret = 0; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return -EIO; if (!ieee80211_vif_link_active(&sdata->vif, link->link_id)) return 0; trace_drv_post_channel_switch(local, sdata); if (local->ops->post_channel_switch) ret = local->ops->post_channel_switch(&local->hw, &sdata->vif, link->conf); trace_drv_return_int(local, ret); return ret; } static inline void drv_abort_channel_switch(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return; if (!ieee80211_vif_link_active(&sdata->vif, link->link_id)) return; trace_drv_abort_channel_switch(local, sdata); if (local->ops->abort_channel_switch) local->ops->abort_channel_switch(&local->hw, &sdata->vif, link->conf); } static inline void drv_channel_switch_rx_beacon(struct ieee80211_sub_if_data *sdata, struct ieee80211_channel_switch *ch_switch) { struct ieee80211_local *local = sdata->local; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return; if (!ieee80211_vif_link_active(&sdata->vif, ch_switch->link_id)) return; trace_drv_channel_switch_rx_beacon(local, sdata, ch_switch); if (local->ops->channel_switch_rx_beacon) local->ops->channel_switch_rx_beacon(&local->hw, &sdata->vif, ch_switch); } static inline int drv_join_ibss(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { int ret = 0; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_join_ibss(local, sdata, &sdata->vif.bss_conf); if (local->ops->join_ibss) ret = local->ops->join_ibss(&local->hw, &sdata->vif); trace_drv_return_int(local, ret); return ret; } static inline void drv_leave_ibss(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return; trace_drv_leave_ibss(local, sdata); if (local->ops->leave_ibss) local->ops->leave_ibss(&local->hw, &sdata->vif); trace_drv_return_void(local); } static inline u32 drv_get_expected_throughput(struct ieee80211_local *local, struct sta_info *sta) { u32 ret = 0; trace_drv_get_expected_throughput(&sta->sta); if (local->ops->get_expected_throughput && sta->uploaded) ret = local->ops->get_expected_throughput(&local->hw, &sta->sta); trace_drv_return_u32(local, ret); return ret; } static inline int drv_get_txpower(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, int *dbm) { int ret; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!local->ops->get_txpower) return -EOPNOTSUPP; ret = local->ops->get_txpower(&local->hw, &sdata->vif, dbm); trace_drv_get_txpower(local, sdata, *dbm, ret); return ret; } static inline int drv_tdls_channel_switch(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, u8 oper_class, struct cfg80211_chan_def *chandef, struct sk_buff *tmpl_skb, u32 ch_sw_tm_ie) { int ret; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return -EIO; if (!local->ops->tdls_channel_switch) return -EOPNOTSUPP; trace_drv_tdls_channel_switch(local, sdata, sta, oper_class, chandef); ret = local->ops->tdls_channel_switch(&local->hw, &sdata->vif, sta, oper_class, chandef, tmpl_skb, ch_sw_tm_ie); trace_drv_return_int(local, ret); return ret; } static inline void drv_tdls_cancel_channel_switch(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return; if (!local->ops->tdls_cancel_channel_switch) return; trace_drv_tdls_cancel_channel_switch(local, sdata, sta); local->ops->tdls_cancel_channel_switch(&local->hw, &sdata->vif, sta); trace_drv_return_void(local); } static inline void drv_tdls_recv_channel_switch(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_tdls_ch_sw_params *params) { trace_drv_tdls_recv_channel_switch(local, sdata, params); if (local->ops->tdls_recv_channel_switch) local->ops->tdls_recv_channel_switch(&local->hw, &sdata->vif, params); trace_drv_return_void(local); } static inline void drv_wake_tx_queue(struct ieee80211_local *local, struct txq_info *txq) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->txq.vif); /* In reconfig don't transmit now, but mark for waking later */ if (local->in_reconfig) { set_bit(IEEE80211_TXQ_DIRTY, &txq->flags); return; } if (!check_sdata_in_driver(sdata)) return; trace_drv_wake_tx_queue(local, sdata, txq); local->ops->wake_tx_queue(&local->hw, &txq->txq); } static inline void schedule_and_wake_txq(struct ieee80211_local *local, struct txq_info *txqi) { ieee80211_schedule_txq(&local->hw, &txqi->txq); drv_wake_tx_queue(local, txqi); } static inline int drv_can_aggregate_in_amsdu(struct ieee80211_local *local, struct sk_buff *head, struct sk_buff *skb) { if (!local->ops->can_aggregate_in_amsdu) return true; return local->ops->can_aggregate_in_amsdu(&local->hw, head, skb); } static inline int drv_get_ftm_responder_stats(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_ftm_responder_stats *ftm_stats) { u32 ret = -EOPNOTSUPP; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return -EIO; if (local->ops->get_ftm_responder_stats) ret = local->ops->get_ftm_responder_stats(&local->hw, &sdata->vif, ftm_stats); trace_drv_get_ftm_responder_stats(local, sdata, ftm_stats); return ret; } static inline int drv_start_pmsr(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_pmsr_request *request) { int ret = -EOPNOTSUPP; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_start_pmsr(local, sdata); if (local->ops->start_pmsr) ret = local->ops->start_pmsr(&local->hw, &sdata->vif, request); trace_drv_return_int(local, ret); return ret; } static inline void drv_abort_pmsr(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_pmsr_request *request) { trace_drv_abort_pmsr(local, sdata); might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return; if (local->ops->abort_pmsr) local->ops->abort_pmsr(&local->hw, &sdata->vif, request); trace_drv_return_void(local); } static inline int drv_start_nan(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_nan_conf *conf) { int ret; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); check_sdata_in_driver(sdata); trace_drv_start_nan(local, sdata, conf); ret = local->ops->start_nan(&local->hw, &sdata->vif, conf); trace_drv_return_int(local, ret); return ret; } static inline void drv_stop_nan(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); check_sdata_in_driver(sdata); trace_drv_stop_nan(local, sdata); local->ops->stop_nan(&local->hw, &sdata->vif); trace_drv_return_void(local); } static inline int drv_nan_change_conf(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct cfg80211_nan_conf *conf, u32 changes) { int ret; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); check_sdata_in_driver(sdata); if (!local->ops->nan_change_conf) return -EOPNOTSUPP; trace_drv_nan_change_conf(local, sdata, conf, changes); ret = local->ops->nan_change_conf(&local->hw, &sdata->vif, conf, changes); trace_drv_return_int(local, ret); return ret; } static inline int drv_add_nan_func(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, const struct cfg80211_nan_func *nan_func) { int ret; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); check_sdata_in_driver(sdata); if (!local->ops->add_nan_func) return -EOPNOTSUPP; trace_drv_add_nan_func(local, sdata, nan_func); ret = local->ops->add_nan_func(&local->hw, &sdata->vif, nan_func); trace_drv_return_int(local, ret); return ret; } static inline void drv_del_nan_func(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u8 instance_id) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); check_sdata_in_driver(sdata); trace_drv_del_nan_func(local, sdata, instance_id); if (local->ops->del_nan_func) local->ops->del_nan_func(&local->hw, &sdata->vif, instance_id); trace_drv_return_void(local); } static inline int drv_set_tid_config(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, struct cfg80211_tid_config *tid_conf) { int ret; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); ret = local->ops->set_tid_config(&local->hw, &sdata->vif, sta, tid_conf); trace_drv_return_int(local, ret); return ret; } static inline int drv_reset_tid_config(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, u8 tids) { int ret; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); ret = local->ops->reset_tid_config(&local->hw, &sdata->vif, sta, tids); trace_drv_return_int(local, ret); return ret; } static inline void drv_update_vif_offload(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); check_sdata_in_driver(sdata); if (!local->ops->update_vif_offload) return; trace_drv_update_vif_offload(local, sdata); local->ops->update_vif_offload(&local->hw, &sdata->vif); trace_drv_return_void(local); } static inline void drv_sta_set_4addr(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, bool enabled) { sdata = get_bss_sdata(sdata); might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return; trace_drv_sta_set_4addr(local, sdata, sta, enabled); if (local->ops->sta_set_4addr) local->ops->sta_set_4addr(&local->hw, &sdata->vif, sta, enabled); trace_drv_return_void(local); } static inline void drv_sta_set_decap_offload(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, bool enabled) { sdata = get_bss_sdata(sdata); might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return; trace_drv_sta_set_decap_offload(local, sdata, sta, enabled); if (local->ops->sta_set_decap_offload) local->ops->sta_set_decap_offload(&local->hw, &sdata->vif, sta, enabled); trace_drv_return_void(local); } static inline void drv_add_twt_setup(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, struct ieee80211_twt_setup *twt) { struct ieee80211_twt_params *twt_agrt; might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return; twt_agrt = (void *)twt->params; trace_drv_add_twt_setup(local, sta, twt, twt_agrt); local->ops->add_twt_setup(&local->hw, sta, twt); trace_drv_return_void(local); } static inline void drv_twt_teardown_request(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, u8 flowid) { might_sleep(); lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return; if (!local->ops->twt_teardown_request) return; trace_drv_twt_teardown_request(local, sta, flowid); local->ops->twt_teardown_request(&local->hw, sta, flowid); trace_drv_return_void(local); } static inline int drv_net_fill_forward_path(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, struct net_device_path_ctx *ctx, struct net_device_path *path) { int ret = -EOPNOTSUPP; sdata = get_bss_sdata(sdata); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_net_fill_forward_path(local, sdata, sta); if (local->ops->net_fill_forward_path) ret = local->ops->net_fill_forward_path(&local->hw, &sdata->vif, sta, ctx, path); trace_drv_return_int(local, ret); return ret; } static inline int drv_net_setup_tc(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct net_device *dev, enum tc_setup_type type, void *type_data) { int ret = -EOPNOTSUPP; might_sleep(); sdata = get_bss_sdata(sdata); trace_drv_net_setup_tc(local, sdata, type); if (local->ops->net_setup_tc) ret = local->ops->net_setup_tc(&local->hw, &sdata->vif, dev, type, type_data); trace_drv_return_int(local, ret); return ret; } static inline bool drv_can_activate_links(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u16 active_links) { bool ret = true; lockdep_assert_wiphy(local->hw.wiphy); if (!check_sdata_in_driver(sdata)) return false; trace_drv_can_activate_links(local, sdata, active_links); if (local->ops->can_activate_links) ret = local->ops->can_activate_links(&local->hw, &sdata->vif, active_links); trace_drv_return_bool(local, ret); return ret; } int drv_change_vif_links(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, u16 old_links, u16 new_links, struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS]); int drv_change_sta_links(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_sta *sta, u16 old_links, u16 new_links); static inline enum ieee80211_neg_ttlm_res drv_can_neg_ttlm(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct ieee80211_neg_ttlm *neg_ttlm) { enum ieee80211_neg_ttlm_res res = NEG_TTLM_RES_REJECT; might_sleep(); if (!check_sdata_in_driver(sdata)) return -EIO; trace_drv_can_neg_ttlm(local, sdata, neg_ttlm); if (local->ops->can_neg_ttlm) res = local->ops->can_neg_ttlm(&local->hw, &sdata->vif, neg_ttlm); trace_drv_neg_ttlm_res(local, sdata, res, neg_ttlm); return res; } #endif /* __MAC80211_DRIVER_OPS */
62 62 55 51 50 5 3 4 1 53 54 54 53 4 4 4 2 6 6 3 3 3 3 3 6 3 3 1 2 3 3 1 1 1 2 2 2 1 12 10 5 5 1 1 11 11 7 2 1 2 1 1 5 5 1 1 3 26 26 1 2 8 8 5 3 5 3 5 3 10 2 15 14 2 16 2 2 4 1 1 2 8 1 7 26 2 2 2 2 1 22 22 5 1 1 15 3 10 3 5 11 11 10 1 11 4 12 2 2 13 13 4 4 1 8 13 3 10 8 7 2 1 8 10 4 9 8 1 5 5 1 1 1 2 1 2 1 1 1 2 1 1 1 3 4 4 4 4 4 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 // SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * "Ping" sockets * * Based on ipv4/udp.c code. * * Authors: Vasiliy Kulikov / Openwall (for Linux 2.6), * Pavel Kankovsky (for Linux 2.4.32) * * Pavel gave all rights to bugs to Vasiliy, * none of the bugs are Pavel's now. */ #include <linux/uaccess.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/in.h> #include <linux/errno.h> #include <linux/timer.h> #include <linux/mm.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <net/snmp.h> #include <net/ip.h> #include <net/icmp.h> #include <net/protocol.h> #include <linux/skbuff.h> #include <linux/proc_fs.h> #include <linux/export.h> #include <linux/bpf-cgroup.h> #include <net/sock.h> #include <net/ping.h> #include <net/udp.h> #include <net/route.h> #include <net/inet_common.h> #include <net/checksum.h> #if IS_ENABLED(CONFIG_IPV6) #include <linux/in6.h> #include <linux/icmpv6.h> #include <net/addrconf.h> #include <net/ipv6.h> #include <net/transp_v6.h> #endif struct ping_table { struct hlist_head hash[PING_HTABLE_SIZE]; spinlock_t lock; }; static struct ping_table ping_table; struct pingv6_ops pingv6_ops; EXPORT_SYMBOL_GPL(pingv6_ops); static u16 ping_port_rover; static inline u32 ping_hashfn(const struct net *net, u32 num, u32 mask) { u32 res = (num + net_hash_mix(net)) & mask; pr_debug("hash(%u) = %u\n", num, res); return res; } EXPORT_SYMBOL_GPL(ping_hash); static inline struct hlist_head *ping_hashslot(struct ping_table *table, struct net *net, unsigned int num) { return &table->hash[ping_hashfn(net, num, PING_HTABLE_MASK)]; } int ping_get_port(struct sock *sk, unsigned short ident) { struct inet_sock *isk, *isk2; struct hlist_head *hlist; struct sock *sk2 = NULL; isk = inet_sk(sk); spin_lock(&ping_table.lock); if (ident == 0) { u32 i; u16 result = ping_port_rover + 1; for (i = 0; i < (1L << 16); i++, result++) { if (!result) result++; /* avoid zero */ hlist = ping_hashslot(&ping_table, sock_net(sk), result); sk_for_each(sk2, hlist) { isk2 = inet_sk(sk2); if (isk2->inet_num == result) goto next_port; } /* found */ ping_port_rover = ident = result; break; next_port: ; } if (i >= (1L << 16)) goto fail; } else { hlist = ping_hashslot(&ping_table, sock_net(sk), ident); sk_for_each(sk2, hlist) { isk2 = inet_sk(sk2); /* BUG? Why is this reuse and not reuseaddr? ping.c * doesn't turn off SO_REUSEADDR, and it doesn't expect * that other ping processes can steal its packets. */ if ((isk2->inet_num == ident) && (sk2 != sk) && (!sk2->sk_reuse || !sk->sk_reuse)) goto fail; } } pr_debug("found port/ident = %d\n", ident); isk->inet_num = ident; if (sk_unhashed(sk)) { pr_debug("was not hashed\n"); sk_add_node_rcu(sk, hlist); sock_set_flag(sk, SOCK_RCU_FREE); sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); } spin_unlock(&ping_table.lock); return 0; fail: spin_unlock(&ping_table.lock); return -EADDRINUSE; } EXPORT_SYMBOL_GPL(ping_get_port); int ping_hash(struct sock *sk) { pr_debug("ping_hash(sk->port=%u)\n", inet_sk(sk)->inet_num); BUG(); /* "Please do not press this button again." */ return 0; } void ping_unhash(struct sock *sk) { struct inet_sock *isk = inet_sk(sk); pr_debug("ping_unhash(isk=%p,isk->num=%u)\n", isk, isk->inet_num); spin_lock(&ping_table.lock); if (sk_del_node_init_rcu(sk)) { isk->inet_num = 0; isk->inet_sport = 0; sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); } spin_unlock(&ping_table.lock); } EXPORT_SYMBOL_GPL(ping_unhash); /* Called under rcu_read_lock() */ static struct sock *ping_lookup(struct net *net, struct sk_buff *skb, u16 ident) { struct hlist_head *hslot = ping_hashslot(&ping_table, net, ident); struct sock *sk = NULL; struct inet_sock *isk; int dif, sdif; if (skb->protocol == htons(ETH_P_IP)) { dif = inet_iif(skb); sdif = inet_sdif(skb); pr_debug("try to find: num = %d, daddr = %pI4, dif = %d\n", (int)ident, &ip_hdr(skb)->daddr, dif); #if IS_ENABLED(CONFIG_IPV6) } else if (skb->protocol == htons(ETH_P_IPV6)) { dif = inet6_iif(skb); sdif = inet6_sdif(skb); pr_debug("try to find: num = %d, daddr = %pI6c, dif = %d\n", (int)ident, &ipv6_hdr(skb)->daddr, dif); #endif } else { return NULL; } sk_for_each_rcu(sk, hslot) { isk = inet_sk(sk); pr_debug("iterate\n"); if (isk->inet_num != ident) continue; if (skb->protocol == htons(ETH_P_IP) && sk->sk_family == AF_INET) { pr_debug("found: %p: num=%d, daddr=%pI4, dif=%d\n", sk, (int) isk->inet_num, &isk->inet_rcv_saddr, sk->sk_bound_dev_if); if (isk->inet_rcv_saddr && isk->inet_rcv_saddr != ip_hdr(skb)->daddr) continue; #if IS_ENABLED(CONFIG_IPV6) } else if (skb->protocol == htons(ETH_P_IPV6) && sk->sk_family == AF_INET6) { pr_debug("found: %p: num=%d, daddr=%pI6c, dif=%d\n", sk, (int) isk->inet_num, &sk->sk_v6_rcv_saddr, sk->sk_bound_dev_if); if (!ipv6_addr_any(&sk->sk_v6_rcv_saddr) && !ipv6_addr_equal(&sk->sk_v6_rcv_saddr, &ipv6_hdr(skb)->daddr)) continue; #endif } else { continue; } if (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif && sk->sk_bound_dev_if != sdif) continue; goto exit; } sk = NULL; exit: return sk; } static void inet_get_ping_group_range_net(struct net *net, kgid_t *low, kgid_t *high) { kgid_t *data = net->ipv4.ping_group_range.range; unsigned int seq; do { seq = read_seqbegin(&net->ipv4.ping_group_range.lock); *low = data[0]; *high = data[1]; } while (read_seqretry(&net->ipv4.ping_group_range.lock, seq)); } int ping_init_sock(struct sock *sk) { struct net *net = sock_net(sk); kgid_t group = current_egid(); struct group_info *group_info; int i; kgid_t low, high; int ret = 0; if (sk->sk_family == AF_INET6) sk->sk_ipv6only = 1; inet_get_ping_group_range_net(net, &low, &high); if (gid_lte(low, group) && gid_lte(group, high)) return 0; group_info = get_current_groups(); for (i = 0; i < group_info->ngroups; i++) { kgid_t gid = group_info->gid[i]; if (gid_lte(low, gid) && gid_lte(gid, high)) goto out_release_group; } ret = -EACCES; out_release_group: put_group_info(group_info); return ret; } EXPORT_SYMBOL_GPL(ping_init_sock); void ping_close(struct sock *sk, long timeout) { pr_debug("ping_close(sk=%p,sk->num=%u)\n", inet_sk(sk), inet_sk(sk)->inet_num); pr_debug("isk->refcnt = %d\n", refcount_read(&sk->sk_refcnt)); sk_common_release(sk); } EXPORT_SYMBOL_GPL(ping_close); static int ping_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) { /* This check is replicated from __ip4_datagram_connect() and * intended to prevent BPF program called below from accessing bytes * that are out of the bound specified by user in addr_len. */ if (addr_len < sizeof(struct sockaddr_in)) return -EINVAL; return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len); } /* Checks the bind address and possibly modifies sk->sk_bound_dev_if. */ static int ping_check_bind_addr(struct sock *sk, struct inet_sock *isk, struct sockaddr *uaddr, int addr_len) { struct net *net = sock_net(sk); if (sk->sk_family == AF_INET) { struct sockaddr_in *addr = (struct sockaddr_in *) uaddr; u32 tb_id = RT_TABLE_LOCAL; int chk_addr_ret; if (addr_len < sizeof(*addr)) return -EINVAL; if (addr->sin_family != AF_INET && !(addr->sin_family == AF_UNSPEC && addr->sin_addr.s_addr == htonl(INADDR_ANY))) return -EAFNOSUPPORT; pr_debug("ping_check_bind_addr(sk=%p,addr=%pI4,port=%d)\n", sk, &addr->sin_addr.s_addr, ntohs(addr->sin_port)); if (addr->sin_addr.s_addr == htonl(INADDR_ANY)) return 0; tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST || (chk_addr_ret != RTN_LOCAL && !inet_can_nonlocal_bind(net, isk))) return -EADDRNOTAVAIL; #if IS_ENABLED(CONFIG_IPV6) } else if (sk->sk_family == AF_INET6) { struct sockaddr_in6 *addr = (struct sockaddr_in6 *) uaddr; int addr_type, scoped, has_addr; struct net_device *dev = NULL; if (addr_len < sizeof(*addr)) return -EINVAL; if (addr->sin6_family != AF_INET6) return -EAFNOSUPPORT; pr_debug("ping_check_bind_addr(sk=%p,addr=%pI6c,port=%d)\n", sk, addr->sin6_addr.s6_addr, ntohs(addr->sin6_port)); addr_type = ipv6_addr_type(&addr->sin6_addr); scoped = __ipv6_addr_needs_scope_id(addr_type); if ((addr_type != IPV6_ADDR_ANY && !(addr_type & IPV6_ADDR_UNICAST)) || (scoped && !addr->sin6_scope_id)) return -EINVAL; rcu_read_lock(); if (addr->sin6_scope_id) { dev = dev_get_by_index_rcu(net, addr->sin6_scope_id); if (!dev) { rcu_read_unlock(); return -ENODEV; } } if (!dev && sk->sk_bound_dev_if) { dev = dev_get_by_index_rcu(net, sk->sk_bound_dev_if); if (!dev) { rcu_read_unlock(); return -ENODEV; } } has_addr = pingv6_ops.ipv6_chk_addr(net, &addr->sin6_addr, dev, scoped); rcu_read_unlock(); if (!(ipv6_can_nonlocal_bind(net, isk) || has_addr || addr_type == IPV6_ADDR_ANY)) return -EADDRNOTAVAIL; if (scoped) sk->sk_bound_dev_if = addr->sin6_scope_id; #endif } else { return -EAFNOSUPPORT; } return 0; } static void ping_set_saddr(struct sock *sk, struct sockaddr *saddr) { if (saddr->sa_family == AF_INET) { struct inet_sock *isk = inet_sk(sk); struct sockaddr_in *addr = (struct sockaddr_in *) saddr; isk->inet_rcv_saddr = isk->inet_saddr = addr->sin_addr.s_addr; #if IS_ENABLED(CONFIG_IPV6) } else if (saddr->sa_family == AF_INET6) { struct sockaddr_in6 *addr = (struct sockaddr_in6 *) saddr; struct ipv6_pinfo *np = inet6_sk(sk); sk->sk_v6_rcv_saddr = np->saddr = addr->sin6_addr; #endif } } /* * We need our own bind because there are no privileged id's == local ports. * Moreover, we don't allow binding to multi- and broadcast addresses. */ int ping_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len) { struct inet_sock *isk = inet_sk(sk); unsigned short snum; int err; int dif = sk->sk_bound_dev_if; err = ping_check_bind_addr(sk, isk, uaddr, addr_len); if (err) return err; lock_sock(sk); err = -EINVAL; if (isk->inet_num != 0) goto out; err = -EADDRINUSE; snum = ntohs(((struct sockaddr_in *)uaddr)->sin_port); if (ping_get_port(sk, snum) != 0) { /* Restore possibly modified sk->sk_bound_dev_if by ping_check_bind_addr(). */ sk->sk_bound_dev_if = dif; goto out; } ping_set_saddr(sk, uaddr); pr_debug("after bind(): num = %hu, dif = %d\n", isk->inet_num, sk->sk_bound_dev_if); err = 0; if (sk->sk_family == AF_INET && isk->inet_rcv_saddr) sk->sk_userlocks |= SOCK_BINDADDR_LOCK; #if IS_ENABLED(CONFIG_IPV6) if (sk->sk_family == AF_INET6 && !ipv6_addr_any(&sk->sk_v6_rcv_saddr)) sk->sk_userlocks |= SOCK_BINDADDR_LOCK; #endif if (snum) sk->sk_userlocks |= SOCK_BINDPORT_LOCK; isk->inet_sport = htons(isk->inet_num); isk->inet_daddr = 0; isk->inet_dport = 0; #if IS_ENABLED(CONFIG_IPV6) if (sk->sk_family == AF_INET6) memset(&sk->sk_v6_daddr, 0, sizeof(sk->sk_v6_daddr)); #endif sk_dst_reset(sk); out: release_sock(sk); pr_debug("ping_v4_bind -> %d\n", err); return err; } EXPORT_SYMBOL_GPL(ping_bind); /* * Is this a supported type of ICMP message? */ static inline int ping_supported(int family, int type, int code) { return (family == AF_INET && type == ICMP_ECHO && code == 0) || (family == AF_INET && type == ICMP_EXT_ECHO && code == 0) || (family == AF_INET6 && type == ICMPV6_ECHO_REQUEST && code == 0) || (family == AF_INET6 && type == ICMPV6_EXT_ECHO_REQUEST && code == 0); } /* * This routine is called by the ICMP module when it gets some * sort of error condition. */ void ping_err(struct sk_buff *skb, int offset, u32 info) { int family; struct icmphdr *icmph; struct inet_sock *inet_sock; int type; int code; struct net *net = dev_net(skb->dev); struct sock *sk; int harderr; int err; if (skb->protocol == htons(ETH_P_IP)) { family = AF_INET; type = icmp_hdr(skb)->type; code = icmp_hdr(skb)->code; icmph = (struct icmphdr *)(skb->data + offset); } else if (skb->protocol == htons(ETH_P_IPV6)) { family = AF_INET6; type = icmp6_hdr(skb)->icmp6_type; code = icmp6_hdr(skb)->icmp6_code; icmph = (struct icmphdr *) (skb->data + offset); } else { BUG(); } /* We assume the packet has already been checked by icmp_unreach */ if (!ping_supported(family, icmph->type, icmph->code)) return; pr_debug("ping_err(proto=0x%x,type=%d,code=%d,id=%04x,seq=%04x)\n", skb->protocol, type, code, ntohs(icmph->un.echo.id), ntohs(icmph->un.echo.sequence)); sk = ping_lookup(net, skb, ntohs(icmph->un.echo.id)); if (!sk) { pr_debug("no socket, dropping\n"); return; /* No socket for error */ } pr_debug("err on socket %p\n", sk); err = 0; harderr = 0; inet_sock = inet_sk(sk); if (skb->protocol == htons(ETH_P_IP)) { switch (type) { default: case ICMP_TIME_EXCEEDED: err = EHOSTUNREACH; break; case ICMP_SOURCE_QUENCH: /* This is not a real error but ping wants to see it. * Report it with some fake errno. */ err = EREMOTEIO; break; case ICMP_PARAMETERPROB: err = EPROTO; harderr = 1; break; case ICMP_DEST_UNREACH: if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ ipv4_sk_update_pmtu(skb, sk, info); if (READ_ONCE(inet_sock->pmtudisc) != IP_PMTUDISC_DONT) { err = EMSGSIZE; harderr = 1; break; } goto out; } err = EHOSTUNREACH; if (code <= NR_ICMP_UNREACH) { harderr = icmp_err_convert[code].fatal; err = icmp_err_convert[code].errno; } break; case ICMP_REDIRECT: /* See ICMP_SOURCE_QUENCH */ ipv4_sk_redirect(skb, sk); err = EREMOTEIO; break; } #if IS_ENABLED(CONFIG_IPV6) } else if (skb->protocol == htons(ETH_P_IPV6)) { harderr = pingv6_ops.icmpv6_err_convert(type, code, &err); #endif } /* * RFC1122: OK. Passes ICMP errors back to application, as per * 4.1.3.3. */ if ((family == AF_INET && !inet_test_bit(RECVERR, sk)) || (family == AF_INET6 && !inet6_test_bit(RECVERR6, sk))) { if (!harderr || sk->sk_state != TCP_ESTABLISHED) goto out; } else { if (family == AF_INET) { ip_icmp_error(sk, skb, err, 0 /* no remote port */, info, (u8 *)icmph); #if IS_ENABLED(CONFIG_IPV6) } else if (family == AF_INET6) { pingv6_ops.ipv6_icmp_error(sk, skb, err, 0, info, (u8 *)icmph); #endif } } sk->sk_err = err; sk_error_report(sk); out: return; } EXPORT_SYMBOL_GPL(ping_err); /* * Copy and checksum an ICMP Echo packet from user space into a buffer * starting from the payload. */ int ping_getfrag(void *from, char *to, int offset, int fraglen, int odd, struct sk_buff *skb) { struct pingfakehdr *pfh = from; if (!csum_and_copy_from_iter_full(to, fraglen, &pfh->wcheck, &pfh->msg->msg_iter)) return -EFAULT; #if IS_ENABLED(CONFIG_IPV6) /* For IPv6, checksum each skb as we go along, as expected by * icmpv6_push_pending_frames. For IPv4, accumulate the checksum in * wcheck, it will be finalized in ping_v4_push_pending_frames. */ if (pfh->family == AF_INET6) { skb->csum = csum_block_add(skb->csum, pfh->wcheck, odd); skb->ip_summed = CHECKSUM_NONE; pfh->wcheck = 0; } #endif return 0; } EXPORT_SYMBOL_GPL(ping_getfrag); static int ping_v4_push_pending_frames(struct sock *sk, struct pingfakehdr *pfh, struct flowi4 *fl4) { struct sk_buff *skb = skb_peek(&sk->sk_write_queue); if (!skb) return 0; pfh->wcheck = csum_partial((char *)&pfh->icmph, sizeof(struct icmphdr), pfh->wcheck); pfh->icmph.checksum = csum_fold(pfh->wcheck); memcpy(icmp_hdr(skb), &pfh->icmph, sizeof(struct icmphdr)); skb->ip_summed = CHECKSUM_NONE; return ip_push_pending_frames(sk, fl4); } int ping_common_sendmsg(int family, struct msghdr *msg, size_t len, void *user_icmph, size_t icmph_len) { u8 type, code; if (len > 0xFFFF) return -EMSGSIZE; /* Must have at least a full ICMP header. */ if (len < icmph_len) return -EINVAL; /* * Check the flags. */ /* Mirror BSD error message compatibility */ if (msg->msg_flags & MSG_OOB) return -EOPNOTSUPP; /* * Fetch the ICMP header provided by the userland. * iovec is modified! The ICMP header is consumed. */ if (memcpy_from_msg(user_icmph, msg, icmph_len)) return -EFAULT; if (family == AF_INET) { type = ((struct icmphdr *) user_icmph)->type; code = ((struct icmphdr *) user_icmph)->code; #if IS_ENABLED(CONFIG_IPV6) } else if (family == AF_INET6) { type = ((struct icmp6hdr *) user_icmph)->icmp6_type; code = ((struct icmp6hdr *) user_icmph)->icmp6_code; #endif } else { BUG(); } if (!ping_supported(family, type, code)) return -EINVAL; return 0; } EXPORT_SYMBOL_GPL(ping_common_sendmsg); static int ping_v4_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) { struct net *net = sock_net(sk); struct flowi4 fl4; struct inet_sock *inet = inet_sk(sk); struct ipcm_cookie ipc; struct icmphdr user_icmph; struct pingfakehdr pfh; struct rtable *rt = NULL; struct ip_options_data opt_copy; int free = 0; __be32 saddr, daddr, faddr; u8 tos, scope; int err; pr_debug("ping_v4_sendmsg(sk=%p,sk->num=%u)\n", inet, inet->inet_num); err = ping_common_sendmsg(AF_INET, msg, len, &user_icmph, sizeof(user_icmph)); if (err) return err; /* * Get and verify the address. */ if (msg->msg_name) { DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); if (msg->msg_namelen < sizeof(*usin)) return -EINVAL; if (usin->sin_family != AF_INET) return -EAFNOSUPPORT; daddr = usin->sin_addr.s_addr; /* no remote port */ } else { if (sk->sk_state != TCP_ESTABLISHED) return -EDESTADDRREQ; daddr = inet->inet_daddr; /* no remote port */ } ipcm_init_sk(&ipc, inet); if (msg->msg_controllen) { err = ip_cmsg_send(sk, msg, &ipc, false); if (unlikely(err)) { kfree(ipc.opt); return err; } if (ipc.opt) free = 1; } if (!ipc.opt) { struct ip_options_rcu *inet_opt; rcu_read_lock(); inet_opt = rcu_dereference(inet->inet_opt); if (inet_opt) { memcpy(&opt_copy, inet_opt, sizeof(*inet_opt) + inet_opt->opt.optlen); ipc.opt = &opt_copy.opt; } rcu_read_unlock(); } saddr = ipc.addr; ipc.addr = faddr = daddr; if (ipc.opt && ipc.opt->opt.srr) { if (!daddr) { err = -EINVAL; goto out_free; } faddr = ipc.opt->opt.faddr; } tos = get_rttos(&ipc, inet); scope = ip_sendmsg_scope(inet, &ipc, msg); if (ipv4_is_multicast(daddr)) { if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif)) ipc.oif = READ_ONCE(inet->mc_index); if (!saddr) saddr = READ_ONCE(inet->mc_addr); } else if (!ipc.oif) ipc.oif = READ_ONCE(inet->uc_index); flowi4_init_output(&fl4, ipc.oif, ipc.sockc.mark, tos, scope, sk->sk_protocol, inet_sk_flowi_flags(sk), faddr, saddr, 0, 0, sk->sk_uid); fl4.fl4_icmp_type = user_icmph.type; fl4.fl4_icmp_code = user_icmph.code; security_sk_classify_flow(sk, flowi4_to_flowi_common(&fl4)); rt = ip_route_output_flow(net, &fl4, sk); if (IS_ERR(rt)) { err = PTR_ERR(rt); rt = NULL; if (err == -ENETUNREACH) IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); goto out; } err = -EACCES; if ((rt->rt_flags & RTCF_BROADCAST) && !sock_flag(sk, SOCK_BROADCAST)) goto out; if (msg->msg_flags & MSG_CONFIRM) goto do_confirm; back_from_confirm: if (!ipc.addr) ipc.addr = fl4.daddr; lock_sock(sk); pfh.icmph.type = user_icmph.type; /* already checked */ pfh.icmph.code = user_icmph.code; /* ditto */ pfh.icmph.checksum = 0; pfh.icmph.un.echo.id = inet->inet_sport; pfh.icmph.un.echo.sequence = user_icmph.un.echo.sequence; pfh.msg = msg; pfh.wcheck = 0; pfh.family = AF_INET; err = ip_append_data(sk, &fl4, ping_getfrag, &pfh, len, sizeof(struct icmphdr), &ipc, &rt, msg->msg_flags); if (err) ip_flush_pending_frames(sk); else err = ping_v4_push_pending_frames(sk, &pfh, &fl4); release_sock(sk); out: ip_rt_put(rt); out_free: if (free) kfree(ipc.opt); if (!err) { icmp_out_count(sock_net(sk), user_icmph.type); return len; } return err; do_confirm: if (msg->msg_flags & MSG_PROBE) dst_confirm_neigh(&rt->dst, &fl4.daddr); if (!(msg->msg_flags & MSG_PROBE) || len) goto back_from_confirm; err = 0; goto out; } int ping_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, int *addr_len) { struct inet_sock *isk = inet_sk(sk); int family = sk->sk_family; struct sk_buff *skb; int copied, err; pr_debug("ping_recvmsg(sk=%p,sk->num=%u)\n", isk, isk->inet_num); err = -EOPNOTSUPP; if (flags & MSG_OOB) goto out; if (flags & MSG_ERRQUEUE) return inet_recv_error(sk, msg, len, addr_len); skb = skb_recv_datagram(sk, flags, &err); if (!skb) goto out; copied = skb->len; if (copied > len) { msg->msg_flags |= MSG_TRUNC; copied = len; } /* Don't bother checking the checksum */ err = skb_copy_datagram_msg(skb, 0, msg, copied); if (err) goto done; sock_recv_timestamp(msg, sk, skb); /* Copy the address and add cmsg data. */ if (family == AF_INET) { DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); if (sin) { sin->sin_family = AF_INET; sin->sin_port = 0 /* skb->h.uh->source */; sin->sin_addr.s_addr = ip_hdr(skb)->saddr; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); *addr_len = sizeof(*sin); } if (inet_cmsg_flags(isk)) ip_cmsg_recv(msg, skb); #if IS_ENABLED(CONFIG_IPV6) } else if (family == AF_INET6) { struct ipv6hdr *ip6 = ipv6_hdr(skb); DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name); if (sin6) { sin6->sin6_family = AF_INET6; sin6->sin6_port = 0; sin6->sin6_addr = ip6->saddr; sin6->sin6_flowinfo = 0; if (inet6_test_bit(SNDFLOW, sk)) sin6->sin6_flowinfo = ip6_flowinfo(ip6); sin6->sin6_scope_id = ipv6_iface_scope_id(&sin6->sin6_addr, inet6_iif(skb)); *addr_len = sizeof(*sin6); } if (inet6_sk(sk)->rxopt.all) pingv6_ops.ip6_datagram_recv_common_ctl(sk, msg, skb); if (skb->protocol == htons(ETH_P_IPV6) && inet6_sk(sk)->rxopt.all) pingv6_ops.ip6_datagram_recv_specific_ctl(sk, msg, skb); else if (skb->protocol == htons(ETH_P_IP) && inet_cmsg_flags(isk)) ip_cmsg_recv(msg, skb); #endif } else { BUG(); } err = copied; done: skb_free_datagram(sk, skb); out: pr_debug("ping_recvmsg -> %d\n", err); return err; } EXPORT_SYMBOL_GPL(ping_recvmsg); static enum skb_drop_reason __ping_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) { enum skb_drop_reason reason; pr_debug("ping_queue_rcv_skb(sk=%p,sk->num=%d,skb=%p)\n", inet_sk(sk), inet_sk(sk)->inet_num, skb); if (sock_queue_rcv_skb_reason(sk, skb, &reason) < 0) { sk_skb_reason_drop(sk, skb, reason); pr_debug("ping_queue_rcv_skb -> failed\n"); return reason; } return SKB_NOT_DROPPED_YET; } int ping_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) { return __ping_queue_rcv_skb(sk, skb) ? -1 : 0; } EXPORT_SYMBOL_GPL(ping_queue_rcv_skb); /* * All we need to do is get the socket. */ enum skb_drop_reason ping_rcv(struct sk_buff *skb) { enum skb_drop_reason reason = SKB_DROP_REASON_NO_SOCKET; struct sock *sk; struct net *net = dev_net(skb->dev); struct icmphdr *icmph = icmp_hdr(skb); /* We assume the packet has already been checked by icmp_rcv */ pr_debug("ping_rcv(skb=%p,id=%04x,seq=%04x)\n", skb, ntohs(icmph->un.echo.id), ntohs(icmph->un.echo.sequence)); /* Push ICMP header back */ skb_push(skb, skb->data - (u8 *)icmph); sk = ping_lookup(net, skb, ntohs(icmph->un.echo.id)); if (sk) { struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); pr_debug("rcv on socket %p\n", sk); if (skb2) reason = __ping_queue_rcv_skb(sk, skb2); else reason = SKB_DROP_REASON_NOMEM; } if (reason) pr_debug("no socket, dropping\n"); return reason; } EXPORT_SYMBOL_GPL(ping_rcv); struct proto ping_prot = { .name = "PING", .owner = THIS_MODULE, .init = ping_init_sock, .close = ping_close, .pre_connect = ping_pre_connect, .connect = ip4_datagram_connect, .disconnect = __udp_disconnect, .setsockopt = ip_setsockopt, .getsockopt = ip_getsockopt, .sendmsg = ping_v4_sendmsg, .recvmsg = ping_recvmsg, .bind = ping_bind, .backlog_rcv = ping_queue_rcv_skb, .release_cb = ip4_datagram_release_cb, .hash = ping_hash, .unhash = ping_unhash, .get_port = ping_get_port, .put_port = ping_unhash, .obj_size = sizeof(struct inet_sock), }; EXPORT_SYMBOL(ping_prot); #ifdef CONFIG_PROC_FS static struct sock *ping_get_first(struct seq_file *seq, int start) { struct sock *sk; struct ping_iter_state *state = seq->private; struct net *net = seq_file_net(seq); for (state->bucket = start; state->bucket < PING_HTABLE_SIZE; ++state->bucket) { struct hlist_head *hslot; hslot = &ping_table.hash[state->bucket]; if (hlist_empty(hslot)) continue; sk_for_each(sk, hslot) { if (net_eq(sock_net(sk), net) && sk->sk_family == state->family) goto found; } } sk = NULL; found: return sk; } static struct sock *ping_get_next(struct seq_file *seq, struct sock *sk) { struct ping_iter_state *state = seq->private; struct net *net = seq_file_net(seq); do { sk = sk_next(sk); } while (sk && (!net_eq(sock_net(sk), net))); if (!sk) return ping_get_first(seq, state->bucket + 1); return sk; } static struct sock *ping_get_idx(struct seq_file *seq, loff_t pos) { struct sock *sk = ping_get_first(seq, 0); if (sk) while (pos && (sk = ping_get_next(seq, sk)) != NULL) --pos; return pos ? NULL : sk; } void *ping_seq_start(struct seq_file *seq, loff_t *pos, sa_family_t family) __acquires(ping_table.lock) { struct ping_iter_state *state = seq->private; state->bucket = 0; state->family = family; spin_lock(&ping_table.lock); return *pos ? ping_get_idx(seq, *pos-1) : SEQ_START_TOKEN; } EXPORT_SYMBOL_GPL(ping_seq_start); static void *ping_v4_seq_start(struct seq_file *seq, loff_t *pos) { return ping_seq_start(seq, pos, AF_INET); } void *ping_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct sock *sk; if (v == SEQ_START_TOKEN) sk = ping_get_idx(seq, 0); else sk = ping_get_next(seq, v); ++*pos; return sk; } EXPORT_SYMBOL_GPL(ping_seq_next); void ping_seq_stop(struct seq_file *seq, void *v) __releases(ping_table.lock) { spin_unlock(&ping_table.lock); } EXPORT_SYMBOL_GPL(ping_seq_stop); static void ping_v4_format_sock(struct sock *sp, struct seq_file *f, int bucket) { struct inet_sock *inet = inet_sk(sp); __be32 dest = inet->inet_daddr; __be32 src = inet->inet_rcv_saddr; __u16 destp = ntohs(inet->inet_dport); __u16 srcp = ntohs(inet->inet_sport); seq_printf(f, "%5d: %08X:%04X %08X:%04X" " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", bucket, src, srcp, dest, destp, sp->sk_state, sk_wmem_alloc_get(sp), sk_rmem_alloc_get(sp), 0, 0L, 0, from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)), 0, sock_i_ino(sp), refcount_read(&sp->sk_refcnt), sp, atomic_read(&sp->sk_drops)); } static int ping_v4_seq_show(struct seq_file *seq, void *v) { seq_setwidth(seq, 127); if (v == SEQ_START_TOKEN) seq_puts(seq, " sl local_address rem_address st tx_queue " "rx_queue tr tm->when retrnsmt uid timeout " "inode ref pointer drops"); else { struct ping_iter_state *state = seq->private; ping_v4_format_sock(v, seq, state->bucket); } seq_pad(seq, '\n'); return 0; } static const struct seq_operations ping_v4_seq_ops = { .start = ping_v4_seq_start, .show = ping_v4_seq_show, .next = ping_seq_next, .stop = ping_seq_stop, }; static int __net_init ping_v4_proc_init_net(struct net *net) { if (!proc_create_net("icmp", 0444, net->proc_net, &ping_v4_seq_ops, sizeof(struct ping_iter_state))) return -ENOMEM; return 0; } static void __net_exit ping_v4_proc_exit_net(struct net *net) { remove_proc_entry("icmp", net->proc_net); } static struct pernet_operations ping_v4_net_ops = { .init = ping_v4_proc_init_net, .exit = ping_v4_proc_exit_net, }; int __init ping_proc_init(void) { return register_pernet_subsys(&ping_v4_net_ops); } void ping_proc_exit(void) { unregister_pernet_subsys(&ping_v4_net_ops); } #endif void __init ping_init(void) { int i; for (i = 0; i < PING_HTABLE_SIZE; i++) INIT_HLIST_HEAD(&ping_table.hash[i]); spin_lock_init(&ping_table.lock); }
6 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 // SPDX-License-Identifier: GPL-2.0 #include <linux/sysctl.h> #include <net/lwtunnel.h> #include <net/netfilter/nf_hooks_lwtunnel.h> #include <linux/netfilter.h> #include "nf_internals.h" static inline int nf_hooks_lwtunnel_get(void) { if (static_branch_unlikely(&nf_hooks_lwtunnel_enabled)) return 1; else return 0; } static inline int nf_hooks_lwtunnel_set(int enable) { if (static_branch_unlikely(&nf_hooks_lwtunnel_enabled)) { if (!enable) return -EBUSY; } else if (enable) { static_branch_enable(&nf_hooks_lwtunnel_enabled); } return 0; } #ifdef CONFIG_SYSCTL int nf_hooks_lwtunnel_sysctl_handler(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int proc_nf_hooks_lwtunnel_enabled = 0; struct ctl_table tmp = { .procname = table->procname, .data = &proc_nf_hooks_lwtunnel_enabled, .maxlen = sizeof(int), .mode = table->mode, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }; int ret; if (!write) proc_nf_hooks_lwtunnel_enabled = nf_hooks_lwtunnel_get(); ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); if (write && ret == 0) ret = nf_hooks_lwtunnel_set(proc_nf_hooks_lwtunnel_enabled); return ret; } EXPORT_SYMBOL_GPL(nf_hooks_lwtunnel_sysctl_handler); static struct ctl_table nf_lwtunnel_sysctl_table[] = { { .procname = "nf_hooks_lwtunnel", .data = NULL, .maxlen = sizeof(int), .mode = 0644, .proc_handler = nf_hooks_lwtunnel_sysctl_handler, }, }; static int __net_init nf_lwtunnel_net_init(struct net *net) { struct ctl_table_header *hdr; struct ctl_table *table; table = nf_lwtunnel_sysctl_table; if (!net_eq(net, &init_net)) { table = kmemdup(nf_lwtunnel_sysctl_table, sizeof(nf_lwtunnel_sysctl_table), GFP_KERNEL); if (!table) goto err_alloc; } hdr = register_net_sysctl_sz(net, "net/netfilter", table, ARRAY_SIZE(nf_lwtunnel_sysctl_table)); if (!hdr) goto err_reg; net->nf.nf_lwtnl_dir_header = hdr; return 0; err_reg: if (!net_eq(net, &init_net)) kfree(table); err_alloc: return -ENOMEM; } static void __net_exit nf_lwtunnel_net_exit(struct net *net) { const struct ctl_table *table; table = net->nf.nf_lwtnl_dir_header->ctl_table_arg; unregister_net_sysctl_table(net->nf.nf_lwtnl_dir_header); if (!net_eq(net, &init_net)) kfree(table); } static struct pernet_operations nf_lwtunnel_net_ops = { .init = nf_lwtunnel_net_init, .exit = nf_lwtunnel_net_exit, }; int __init netfilter_lwtunnel_init(void) { return register_pernet_subsys(&nf_lwtunnel_net_ops); } void netfilter_lwtunnel_fini(void) { unregister_pernet_subsys(&nf_lwtunnel_net_ops); } #else int __init netfilter_lwtunnel_init(void) { return 0; } void netfilter_lwtunnel_fini(void) {} #endif /* CONFIG_SYSCTL */
957 956 115 115 1032 1034 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PERCPU_RWSEM_H #define _LINUX_PERCPU_RWSEM_H #include <linux/atomic.h> #include <linux/percpu.h> #include <linux/rcuwait.h> #include <linux/wait.h> #include <linux/rcu_sync.h> #include <linux/lockdep.h> struct percpu_rw_semaphore { struct rcu_sync rss; unsigned int __percpu *read_count; struct rcuwait writer; wait_queue_head_t waiters; atomic_t block; #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif }; #ifdef CONFIG_DEBUG_LOCK_ALLOC #define __PERCPU_RWSEM_DEP_MAP_INIT(lockname) .dep_map = { .name = #lockname }, #else #define __PERCPU_RWSEM_DEP_MAP_INIT(lockname) #endif #define __DEFINE_PERCPU_RWSEM(name, is_static) \ static DEFINE_PER_CPU(unsigned int, __percpu_rwsem_rc_##name); \ is_static struct percpu_rw_semaphore name = { \ .rss = __RCU_SYNC_INITIALIZER(name.rss), \ .read_count = &__percpu_rwsem_rc_##name, \ .writer = __RCUWAIT_INITIALIZER(name.writer), \ .waiters = __WAIT_QUEUE_HEAD_INITIALIZER(name.waiters), \ .block = ATOMIC_INIT(0), \ __PERCPU_RWSEM_DEP_MAP_INIT(name) \ } #define DEFINE_PERCPU_RWSEM(name) \ __DEFINE_PERCPU_RWSEM(name, /* not static */) #define DEFINE_STATIC_PERCPU_RWSEM(name) \ __DEFINE_PERCPU_RWSEM(name, static) extern bool __percpu_down_read(struct percpu_rw_semaphore *, bool); static inline void percpu_down_read(struct percpu_rw_semaphore *sem) { might_sleep(); rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); preempt_disable(); /* * We are in an RCU-sched read-side critical section, so the writer * cannot both change sem->state from readers_fast and start checking * counters while we are here. So if we see !sem->state, we know that * the writer won't be checking until we're past the preempt_enable() * and that once the synchronize_rcu() is done, the writer will see * anything we did within this RCU-sched read-size critical section. */ if (likely(rcu_sync_is_idle(&sem->rss))) this_cpu_inc(*sem->read_count); else __percpu_down_read(sem, false); /* Unconditional memory barrier */ /* * The preempt_enable() prevents the compiler from * bleeding the critical section out. */ preempt_enable(); } static inline bool percpu_down_read_trylock(struct percpu_rw_semaphore *sem) { bool ret = true; preempt_disable(); /* * Same as in percpu_down_read(). */ if (likely(rcu_sync_is_idle(&sem->rss))) this_cpu_inc(*sem->read_count); else ret = __percpu_down_read(sem, true); /* Unconditional memory barrier */ preempt_enable(); /* * The barrier() from preempt_enable() prevents the compiler from * bleeding the critical section out. */ if (ret) rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_); return ret; } static inline void percpu_up_read(struct percpu_rw_semaphore *sem) { rwsem_release(&sem->dep_map, _RET_IP_); preempt_disable(); /* * Same as in percpu_down_read(). */ if (likely(rcu_sync_is_idle(&sem->rss))) { this_cpu_dec(*sem->read_count); } else { /* * slowpath; reader will only ever wake a single blocked * writer. */ smp_mb(); /* B matches C */ /* * In other words, if they see our decrement (presumably to * aggregate zero, as that is the only time it matters) they * will also see our critical section. */ this_cpu_dec(*sem->read_count); rcuwait_wake_up(&sem->writer); } preempt_enable(); } extern bool percpu_is_read_locked(struct percpu_rw_semaphore *); extern void percpu_down_write(struct percpu_rw_semaphore *); extern void percpu_up_write(struct percpu_rw_semaphore *); static inline bool percpu_is_write_locked(struct percpu_rw_semaphore *sem) { return atomic_read(&sem->block); } extern int __percpu_init_rwsem(struct percpu_rw_semaphore *, const char *, struct lock_class_key *); extern void percpu_free_rwsem(struct percpu_rw_semaphore *); #define percpu_init_rwsem(sem) \ ({ \ static struct lock_class_key rwsem_key; \ __percpu_init_rwsem(sem, #sem, &rwsem_key); \ }) #define percpu_rwsem_is_held(sem) lockdep_is_held(sem) #define percpu_rwsem_assert_held(sem) lockdep_assert_held(sem) static inline void percpu_rwsem_release(struct percpu_rw_semaphore *sem, unsigned long ip) { lock_release(&sem->dep_map, ip); } static inline void percpu_rwsem_acquire(struct percpu_rw_semaphore *sem, bool read, unsigned long ip) { lock_acquire(&sem->dep_map, 0, 1, read, 1, NULL, ip); } #endif
4 3 3 3 3 3 4 4 4 4 4 4 4 3 3 3 3 3 3 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 // SPDX-License-Identifier: GPL-2.0 /* * buffered writeback throttling. loosely based on CoDel. We can't drop * packets for IO scheduling, so the logic is something like this: * * - Monitor latencies in a defined window of time. * - If the minimum latency in the above window exceeds some target, increment * scaling step and scale down queue depth by a factor of 2x. The monitoring * window is then shrunk to 100 / sqrt(scaling step + 1). * - For any window where we don't have solid data on what the latencies * look like, retain status quo. * - If latencies look good, decrement scaling step. * - If we're only doing writes, allow the scaling step to go negative. This * will temporarily boost write performance, snapping back to a stable * scaling step of 0 if reads show up or the heavy writers finish. Unlike * positive scaling steps where we shrink the monitoring window, a negative * scaling step retains the default step==0 window size. * * Copyright (C) 2016 Jens Axboe * */ #include <linux/kernel.h> #include <linux/blk_types.h> #include <linux/slab.h> #include <linux/backing-dev.h> #include <linux/swap.h> #include "blk-stat.h" #include "blk-wbt.h" #include "blk-rq-qos.h" #include "elevator.h" #include "blk.h" #define CREATE_TRACE_POINTS #include <trace/events/wbt.h> enum wbt_flags { WBT_TRACKED = 1, /* write, tracked for throttling */ WBT_READ = 2, /* read */ WBT_SWAP = 4, /* write, from swap_writepage() */ WBT_DISCARD = 8, /* discard */ WBT_NR_BITS = 4, /* number of bits */ }; enum { WBT_RWQ_BG = 0, WBT_RWQ_SWAP, WBT_RWQ_DISCARD, WBT_NUM_RWQ, }; /* * If current state is WBT_STATE_ON/OFF_DEFAULT, it can be covered to any other * state, if current state is WBT_STATE_ON/OFF_MANUAL, it can only be covered * to WBT_STATE_OFF/ON_MANUAL. */ enum { WBT_STATE_ON_DEFAULT = 1, /* on by default */ WBT_STATE_ON_MANUAL = 2, /* on manually by sysfs */ WBT_STATE_OFF_DEFAULT = 3, /* off by default */ WBT_STATE_OFF_MANUAL = 4, /* off manually by sysfs */ }; struct rq_wb { /* * Settings that govern how we throttle */ unsigned int wb_background; /* background writeback */ unsigned int wb_normal; /* normal writeback */ short enable_state; /* WBT_STATE_* */ /* * Number of consecutive periods where we don't have enough * information to make a firm scale up/down decision. */ unsigned int unknown_cnt; u64 win_nsec; /* default window size */ u64 cur_win_nsec; /* current window size */ struct blk_stat_callback *cb; u64 sync_issue; void *sync_cookie; unsigned long last_issue; /* last non-throttled issue */ unsigned long last_comp; /* last non-throttled comp */ unsigned long min_lat_nsec; struct rq_qos rqos; struct rq_wait rq_wait[WBT_NUM_RWQ]; struct rq_depth rq_depth; }; static inline struct rq_wb *RQWB(struct rq_qos *rqos) { return container_of(rqos, struct rq_wb, rqos); } static inline void wbt_clear_state(struct request *rq) { rq->wbt_flags = 0; } static inline enum wbt_flags wbt_flags(struct request *rq) { return rq->wbt_flags; } static inline bool wbt_is_tracked(struct request *rq) { return rq->wbt_flags & WBT_TRACKED; } static inline bool wbt_is_read(struct request *rq) { return rq->wbt_flags & WBT_READ; } enum { /* * Default setting, we'll scale up (to 75% of QD max) or down (min 1) * from here depending on device stats */ RWB_DEF_DEPTH = 16, /* * 100msec window */ RWB_WINDOW_NSEC = 100 * 1000 * 1000ULL, /* * Disregard stats, if we don't meet this minimum */ RWB_MIN_WRITE_SAMPLES = 3, /* * If we have this number of consecutive windows with not enough * information to scale up or down, scale up. */ RWB_UNKNOWN_BUMP = 5, }; static inline bool rwb_enabled(struct rq_wb *rwb) { return rwb && rwb->enable_state != WBT_STATE_OFF_DEFAULT && rwb->enable_state != WBT_STATE_OFF_MANUAL; } static void wb_timestamp(struct rq_wb *rwb, unsigned long *var) { if (rwb_enabled(rwb)) { const unsigned long cur = jiffies; if (cur != *var) *var = cur; } } /* * If a task was rate throttled in balance_dirty_pages() within the last * second or so, use that to indicate a higher cleaning rate. */ static bool wb_recent_wait(struct rq_wb *rwb) { struct backing_dev_info *bdi = rwb->rqos.disk->bdi; return time_before(jiffies, bdi->last_bdp_sleep + HZ); } static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb, enum wbt_flags wb_acct) { if (wb_acct & WBT_SWAP) return &rwb->rq_wait[WBT_RWQ_SWAP]; else if (wb_acct & WBT_DISCARD) return &rwb->rq_wait[WBT_RWQ_DISCARD]; return &rwb->rq_wait[WBT_RWQ_BG]; } static void rwb_wake_all(struct rq_wb *rwb) { int i; for (i = 0; i < WBT_NUM_RWQ; i++) { struct rq_wait *rqw = &rwb->rq_wait[i]; if (wq_has_sleeper(&rqw->wait)) wake_up_all(&rqw->wait); } } static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw, enum wbt_flags wb_acct) { int inflight, limit; inflight = atomic_dec_return(&rqw->inflight); /* * For discards, our limit is always the background. For writes, if * the device does write back caching, drop further down before we * wake people up. */ if (wb_acct & WBT_DISCARD) limit = rwb->wb_background; else if (blk_queue_write_cache(rwb->rqos.disk->queue) && !wb_recent_wait(rwb)) limit = 0; else limit = rwb->wb_normal; /* * Don't wake anyone up if we are above the normal limit. */ if (inflight && inflight >= limit) return; if (wq_has_sleeper(&rqw->wait)) { int diff = limit - inflight; if (!inflight || diff >= rwb->wb_background / 2) wake_up_all(&rqw->wait); } } static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct) { struct rq_wb *rwb = RQWB(rqos); struct rq_wait *rqw; if (!(wb_acct & WBT_TRACKED)) return; rqw = get_rq_wait(rwb, wb_acct); wbt_rqw_done(rwb, rqw, wb_acct); } /* * Called on completion of a request. Note that it's also called when * a request is merged, when the request gets freed. */ static void wbt_done(struct rq_qos *rqos, struct request *rq) { struct rq_wb *rwb = RQWB(rqos); if (!wbt_is_tracked(rq)) { if (rwb->sync_cookie == rq) { rwb->sync_issue = 0; rwb->sync_cookie = NULL; } if (wbt_is_read(rq)) wb_timestamp(rwb, &rwb->last_comp); } else { WARN_ON_ONCE(rq == rwb->sync_cookie); __wbt_done(rqos, wbt_flags(rq)); } wbt_clear_state(rq); } static inline bool stat_sample_valid(struct blk_rq_stat *stat) { /* * We need at least one read sample, and a minimum of * RWB_MIN_WRITE_SAMPLES. We require some write samples to know * that it's writes impacting us, and not just some sole read on * a device that is in a lower power state. */ return (stat[READ].nr_samples >= 1 && stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES); } static u64 rwb_sync_issue_lat(struct rq_wb *rwb) { u64 issue = READ_ONCE(rwb->sync_issue); if (!issue || !rwb->sync_cookie) return 0; return blk_time_get_ns() - issue; } static inline unsigned int wbt_inflight(struct rq_wb *rwb) { unsigned int i, ret = 0; for (i = 0; i < WBT_NUM_RWQ; i++) ret += atomic_read(&rwb->rq_wait[i].inflight); return ret; } enum { LAT_OK = 1, LAT_UNKNOWN, LAT_UNKNOWN_WRITES, LAT_EXCEEDED, }; static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat) { struct backing_dev_info *bdi = rwb->rqos.disk->bdi; struct rq_depth *rqd = &rwb->rq_depth; u64 thislat; /* * If our stored sync issue exceeds the window size, or it * exceeds our min target AND we haven't logged any entries, * flag the latency as exceeded. wbt works off completion latencies, * but for a flooded device, a single sync IO can take a long time * to complete after being issued. If this time exceeds our * monitoring window AND we didn't see any other completions in that * window, then count that sync IO as a violation of the latency. */ thislat = rwb_sync_issue_lat(rwb); if (thislat > rwb->cur_win_nsec || (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) { trace_wbt_lat(bdi, thislat); return LAT_EXCEEDED; } /* * No read/write mix, if stat isn't valid */ if (!stat_sample_valid(stat)) { /* * If we had writes in this stat window and the window is * current, we're only doing writes. If a task recently * waited or still has writes in flights, consider us doing * just writes as well. */ if (stat[WRITE].nr_samples || wb_recent_wait(rwb) || wbt_inflight(rwb)) return LAT_UNKNOWN_WRITES; return LAT_UNKNOWN; } /* * If the 'min' latency exceeds our target, step down. */ if (stat[READ].min > rwb->min_lat_nsec) { trace_wbt_lat(bdi, stat[READ].min); trace_wbt_stat(bdi, stat); return LAT_EXCEEDED; } if (rqd->scale_step) trace_wbt_stat(bdi, stat); return LAT_OK; } static void rwb_trace_step(struct rq_wb *rwb, const char *msg) { struct backing_dev_info *bdi = rwb->rqos.disk->bdi; struct rq_depth *rqd = &rwb->rq_depth; trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec, rwb->wb_background, rwb->wb_normal, rqd->max_depth); } static void calc_wb_limits(struct rq_wb *rwb) { if (rwb->min_lat_nsec == 0) { rwb->wb_normal = rwb->wb_background = 0; } else if (rwb->rq_depth.max_depth <= 2) { rwb->wb_normal = rwb->rq_depth.max_depth; rwb->wb_background = 1; } else { rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2; rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4; } } static void scale_up(struct rq_wb *rwb) { if (!rq_depth_scale_up(&rwb->rq_depth)) return; calc_wb_limits(rwb); rwb->unknown_cnt = 0; rwb_wake_all(rwb); rwb_trace_step(rwb, tracepoint_string("scale up")); } static void scale_down(struct rq_wb *rwb, bool hard_throttle) { if (!rq_depth_scale_down(&rwb->rq_depth, hard_throttle)) return; calc_wb_limits(rwb); rwb->unknown_cnt = 0; rwb_trace_step(rwb, tracepoint_string("scale down")); } static void rwb_arm_timer(struct rq_wb *rwb) { struct rq_depth *rqd = &rwb->rq_depth; if (rqd->scale_step > 0) { /* * We should speed this up, using some variant of a fast * integer inverse square root calculation. Since we only do * this for every window expiration, it's not a huge deal, * though. */ rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4, int_sqrt((rqd->scale_step + 1) << 8)); } else { /* * For step < 0, we don't want to increase/decrease the * window size. */ rwb->cur_win_nsec = rwb->win_nsec; } blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec); } static void wb_timer_fn(struct blk_stat_callback *cb) { struct rq_wb *rwb = cb->data; struct rq_depth *rqd = &rwb->rq_depth; unsigned int inflight = wbt_inflight(rwb); int status; if (!rwb->rqos.disk) return; status = latency_exceeded(rwb, cb->stat); trace_wbt_timer(rwb->rqos.disk->bdi, status, rqd->scale_step, inflight); /* * If we exceeded the latency target, step down. If we did not, * step one level up. If we don't know enough to say either exceeded * or ok, then don't do anything. */ switch (status) { case LAT_EXCEEDED: scale_down(rwb, true); break; case LAT_OK: scale_up(rwb); break; case LAT_UNKNOWN_WRITES: /* * We started a the center step, but don't have a valid * read/write sample, but we do have writes going on. * Allow step to go negative, to increase write perf. */ scale_up(rwb); break; case LAT_UNKNOWN: if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP) break; /* * We get here when previously scaled reduced depth, and we * currently don't have a valid read/write sample. For that * case, slowly return to center state (step == 0). */ if (rqd->scale_step > 0) scale_up(rwb); else if (rqd->scale_step < 0) scale_down(rwb, false); break; default: break; } /* * Re-arm timer, if we have IO in flight */ if (rqd->scale_step || inflight) rwb_arm_timer(rwb); } static void wbt_update_limits(struct rq_wb *rwb) { struct rq_depth *rqd = &rwb->rq_depth; rqd->scale_step = 0; rqd->scaled_max = false; rq_depth_calc_max_depth(rqd); calc_wb_limits(rwb); rwb_wake_all(rwb); } bool wbt_disabled(struct request_queue *q) { struct rq_qos *rqos = wbt_rq_qos(q); return !rqos || !rwb_enabled(RQWB(rqos)); } u64 wbt_get_min_lat(struct request_queue *q) { struct rq_qos *rqos = wbt_rq_qos(q); if (!rqos) return 0; return RQWB(rqos)->min_lat_nsec; } void wbt_set_min_lat(struct request_queue *q, u64 val) { struct rq_qos *rqos = wbt_rq_qos(q); if (!rqos) return; RQWB(rqos)->min_lat_nsec = val; if (val) RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL; else RQWB(rqos)->enable_state = WBT_STATE_OFF_MANUAL; wbt_update_limits(RQWB(rqos)); } static bool close_io(struct rq_wb *rwb) { const unsigned long now = jiffies; return time_before(now, rwb->last_issue + HZ / 10) || time_before(now, rwb->last_comp + HZ / 10); } #define REQ_HIPRIO (REQ_SYNC | REQ_META | REQ_PRIO | REQ_SWAP) static inline unsigned int get_limit(struct rq_wb *rwb, blk_opf_t opf) { unsigned int limit; if ((opf & REQ_OP_MASK) == REQ_OP_DISCARD) return rwb->wb_background; /* * At this point we know it's a buffered write. If this is * swap trying to free memory, or REQ_SYNC is set, then * it's WB_SYNC_ALL writeback, and we'll use the max limit for * that. If the write is marked as a background write, then use * the idle limit, or go to normal if we haven't had competing * IO for a bit. */ if ((opf & REQ_HIPRIO) || wb_recent_wait(rwb)) limit = rwb->rq_depth.max_depth; else if ((opf & REQ_BACKGROUND) || close_io(rwb)) { /* * If less than 100ms since we completed unrelated IO, * limit us to half the depth for background writeback. */ limit = rwb->wb_background; } else limit = rwb->wb_normal; return limit; } struct wbt_wait_data { struct rq_wb *rwb; enum wbt_flags wb_acct; blk_opf_t opf; }; static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data) { struct wbt_wait_data *data = private_data; return rq_wait_inc_below(rqw, get_limit(data->rwb, data->opf)); } static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data) { struct wbt_wait_data *data = private_data; wbt_rqw_done(data->rwb, rqw, data->wb_acct); } /* * Block if we will exceed our limit, or if we are currently waiting for * the timer to kick off queuing again. */ static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct, blk_opf_t opf) { struct rq_wait *rqw = get_rq_wait(rwb, wb_acct); struct wbt_wait_data data = { .rwb = rwb, .wb_acct = wb_acct, .opf = opf, }; rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb); } static inline bool wbt_should_throttle(struct bio *bio) { switch (bio_op(bio)) { case REQ_OP_WRITE: /* * Don't throttle WRITE_ODIRECT */ if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) == (REQ_SYNC | REQ_IDLE)) return false; fallthrough; case REQ_OP_DISCARD: return true; default: return false; } } static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio) { enum wbt_flags flags = 0; if (!rwb_enabled(rwb)) return 0; if (bio_op(bio) == REQ_OP_READ) { flags = WBT_READ; } else if (wbt_should_throttle(bio)) { if (bio->bi_opf & REQ_SWAP) flags |= WBT_SWAP; if (bio_op(bio) == REQ_OP_DISCARD) flags |= WBT_DISCARD; flags |= WBT_TRACKED; } return flags; } static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio) { struct rq_wb *rwb = RQWB(rqos); enum wbt_flags flags = bio_to_wbt_flags(rwb, bio); __wbt_done(rqos, flags); } /* * May sleep, if we have exceeded the writeback limits. Caller can pass * in an irq held spinlock, if it holds one when calling this function. * If we do sleep, we'll release and re-grab it. */ static void wbt_wait(struct rq_qos *rqos, struct bio *bio) { struct rq_wb *rwb = RQWB(rqos); enum wbt_flags flags; flags = bio_to_wbt_flags(rwb, bio); if (!(flags & WBT_TRACKED)) { if (flags & WBT_READ) wb_timestamp(rwb, &rwb->last_issue); return; } __wbt_wait(rwb, flags, bio->bi_opf); if (!blk_stat_is_active(rwb->cb)) rwb_arm_timer(rwb); } static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio) { struct rq_wb *rwb = RQWB(rqos); rq->wbt_flags |= bio_to_wbt_flags(rwb, bio); } static void wbt_issue(struct rq_qos *rqos, struct request *rq) { struct rq_wb *rwb = RQWB(rqos); if (!rwb_enabled(rwb)) return; /* * Track sync issue, in case it takes a long time to complete. Allows us * to react quicker, if a sync IO takes a long time to complete. Note * that this is just a hint. The request can go away when it completes, * so it's important we never dereference it. We only use the address to * compare with, which is why we store the sync_issue time locally. */ if (wbt_is_read(rq) && !rwb->sync_issue) { rwb->sync_cookie = rq; rwb->sync_issue = rq->io_start_time_ns; } } static void wbt_requeue(struct rq_qos *rqos, struct request *rq) { struct rq_wb *rwb = RQWB(rqos); if (!rwb_enabled(rwb)) return; if (rq == rwb->sync_cookie) { rwb->sync_issue = 0; rwb->sync_cookie = NULL; } } /* * Enable wbt if defaults are configured that way */ void wbt_enable_default(struct gendisk *disk) { struct request_queue *q = disk->queue; struct rq_qos *rqos; bool enable = IS_ENABLED(CONFIG_BLK_WBT_MQ); if (q->elevator && test_bit(ELEVATOR_FLAG_DISABLE_WBT, &q->elevator->flags)) enable = false; /* Throttling already enabled? */ rqos = wbt_rq_qos(q); if (rqos) { if (enable && RQWB(rqos)->enable_state == WBT_STATE_OFF_DEFAULT) RQWB(rqos)->enable_state = WBT_STATE_ON_DEFAULT; return; } /* Queue not registered? Maybe shutting down... */ if (!blk_queue_registered(q)) return; if (queue_is_mq(q) && enable) wbt_init(disk); } EXPORT_SYMBOL_GPL(wbt_enable_default); u64 wbt_default_latency_nsec(struct request_queue *q) { /* * We default to 2msec for non-rotational storage, and 75msec * for rotational storage. */ if (blk_queue_nonrot(q)) return 2000000ULL; else return 75000000ULL; } static int wbt_data_dir(const struct request *rq) { const enum req_op op = req_op(rq); if (op == REQ_OP_READ) return READ; else if (op_is_write(op)) return WRITE; /* don't account */ return -1; } static void wbt_queue_depth_changed(struct rq_qos *rqos) { RQWB(rqos)->rq_depth.queue_depth = blk_queue_depth(rqos->disk->queue); wbt_update_limits(RQWB(rqos)); } static void wbt_exit(struct rq_qos *rqos) { struct rq_wb *rwb = RQWB(rqos); blk_stat_remove_callback(rqos->disk->queue, rwb->cb); blk_stat_free_callback(rwb->cb); kfree(rwb); } /* * Disable wbt, if enabled by default. */ void wbt_disable_default(struct gendisk *disk) { struct rq_qos *rqos = wbt_rq_qos(disk->queue); struct rq_wb *rwb; if (!rqos) return; rwb = RQWB(rqos); if (rwb->enable_state == WBT_STATE_ON_DEFAULT) { blk_stat_deactivate(rwb->cb); rwb->enable_state = WBT_STATE_OFF_DEFAULT; } } EXPORT_SYMBOL_GPL(wbt_disable_default); #ifdef CONFIG_BLK_DEBUG_FS static int wbt_curr_win_nsec_show(void *data, struct seq_file *m) { struct rq_qos *rqos = data; struct rq_wb *rwb = RQWB(rqos); seq_printf(m, "%llu\n", rwb->cur_win_nsec); return 0; } static int wbt_enabled_show(void *data, struct seq_file *m) { struct rq_qos *rqos = data; struct rq_wb *rwb = RQWB(rqos); seq_printf(m, "%d\n", rwb->enable_state); return 0; } static int wbt_id_show(void *data, struct seq_file *m) { struct rq_qos *rqos = data; seq_printf(m, "%u\n", rqos->id); return 0; } static int wbt_inflight_show(void *data, struct seq_file *m) { struct rq_qos *rqos = data; struct rq_wb *rwb = RQWB(rqos); int i; for (i = 0; i < WBT_NUM_RWQ; i++) seq_printf(m, "%d: inflight %d\n", i, atomic_read(&rwb->rq_wait[i].inflight)); return 0; } static int wbt_min_lat_nsec_show(void *data, struct seq_file *m) { struct rq_qos *rqos = data; struct rq_wb *rwb = RQWB(rqos); seq_printf(m, "%lu\n", rwb->min_lat_nsec); return 0; } static int wbt_unknown_cnt_show(void *data, struct seq_file *m) { struct rq_qos *rqos = data; struct rq_wb *rwb = RQWB(rqos); seq_printf(m, "%u\n", rwb->unknown_cnt); return 0; } static int wbt_normal_show(void *data, struct seq_file *m) { struct rq_qos *rqos = data; struct rq_wb *rwb = RQWB(rqos); seq_printf(m, "%u\n", rwb->wb_normal); return 0; } static int wbt_background_show(void *data, struct seq_file *m) { struct rq_qos *rqos = data; struct rq_wb *rwb = RQWB(rqos); seq_printf(m, "%u\n", rwb->wb_background); return 0; } static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = { {"curr_win_nsec", 0400, wbt_curr_win_nsec_show}, {"enabled", 0400, wbt_enabled_show}, {"id", 0400, wbt_id_show}, {"inflight", 0400, wbt_inflight_show}, {"min_lat_nsec", 0400, wbt_min_lat_nsec_show}, {"unknown_cnt", 0400, wbt_unknown_cnt_show}, {"wb_normal", 0400, wbt_normal_show}, {"wb_background", 0400, wbt_background_show}, {}, }; #endif static const struct rq_qos_ops wbt_rqos_ops = { .throttle = wbt_wait, .issue = wbt_issue, .track = wbt_track, .requeue = wbt_requeue, .done = wbt_done, .cleanup = wbt_cleanup, .queue_depth_changed = wbt_queue_depth_changed, .exit = wbt_exit, #ifdef CONFIG_BLK_DEBUG_FS .debugfs_attrs = wbt_debugfs_attrs, #endif }; int wbt_init(struct gendisk *disk) { struct request_queue *q = disk->queue; struct rq_wb *rwb; int i; int ret; rwb = kzalloc(sizeof(*rwb), GFP_KERNEL); if (!rwb) return -ENOMEM; rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb); if (!rwb->cb) { kfree(rwb); return -ENOMEM; } for (i = 0; i < WBT_NUM_RWQ; i++) rq_wait_init(&rwb->rq_wait[i]); rwb->last_comp = rwb->last_issue = jiffies; rwb->win_nsec = RWB_WINDOW_NSEC; rwb->enable_state = WBT_STATE_ON_DEFAULT; rwb->rq_depth.default_depth = RWB_DEF_DEPTH; rwb->min_lat_nsec = wbt_default_latency_nsec(q); rwb->rq_depth.queue_depth = blk_queue_depth(q); wbt_update_limits(rwb); /* * Assign rwb and add the stats callback. */ mutex_lock(&q->rq_qos_mutex); ret = rq_qos_add(&rwb->rqos, disk, RQ_QOS_WBT, &wbt_rqos_ops); mutex_unlock(&q->rq_qos_mutex); if (ret) goto err_free; blk_stat_add_callback(q, rwb->cb); return 0; err_free: blk_stat_free_callback(rwb->cb); kfree(rwb); return ret; }
8 4 1 1 2 3 2 1 2 2 2 2 113 2 6 6 2 2 2 2 32 32 32 32 32 32 31 37 37 16 16 16 16 16 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 // SPDX-License-Identifier: GPL-2.0-only /* * net/sched/sch_drr.c Deficit Round Robin scheduler * * Copyright (c) 2008 Patrick McHardy <kaber@trash.net> */ #include <linux/module.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/netdevice.h> #include <linux/pkt_sched.h> #include <net/sch_generic.h> #include <net/pkt_sched.h> #include <net/pkt_cls.h> struct drr_class { struct Qdisc_class_common common; struct gnet_stats_basic_sync bstats; struct gnet_stats_queue qstats; struct net_rate_estimator __rcu *rate_est; struct list_head alist; struct Qdisc *qdisc; u32 quantum; u32 deficit; }; struct drr_sched { struct list_head active; struct tcf_proto __rcu *filter_list; struct tcf_block *block; struct Qdisc_class_hash clhash; }; static struct drr_class *drr_find_class(struct Qdisc *sch, u32 classid) { struct drr_sched *q = qdisc_priv(sch); struct Qdisc_class_common *clc; clc = qdisc_class_find(&q->clhash, classid); if (clc == NULL) return NULL; return container_of(clc, struct drr_class, common); } static const struct nla_policy drr_policy[TCA_DRR_MAX + 1] = { [TCA_DRR_QUANTUM] = { .type = NLA_U32 }, }; static int drr_change_class(struct Qdisc *sch, u32 classid, u32 parentid, struct nlattr **tca, unsigned long *arg, struct netlink_ext_ack *extack) { struct drr_sched *q = qdisc_priv(sch); struct drr_class *cl = (struct drr_class *)*arg; struct nlattr *opt = tca[TCA_OPTIONS]; struct nlattr *tb[TCA_DRR_MAX + 1]; u32 quantum; int err; if (!opt) { NL_SET_ERR_MSG(extack, "DRR options are required for this operation"); return -EINVAL; } err = nla_parse_nested_deprecated(tb, TCA_DRR_MAX, opt, drr_policy, extack); if (err < 0) return err; if (tb[TCA_DRR_QUANTUM]) { quantum = nla_get_u32(tb[TCA_DRR_QUANTUM]); if (quantum == 0) { NL_SET_ERR_MSG(extack, "Specified DRR quantum cannot be zero"); return -EINVAL; } } else quantum = psched_mtu(qdisc_dev(sch)); if (cl != NULL) { if (tca[TCA_RATE]) { err = gen_replace_estimator(&cl->bstats, NULL, &cl->rate_est, NULL, true, tca[TCA_RATE]); if (err) { NL_SET_ERR_MSG(extack, "Failed to replace estimator"); return err; } } sch_tree_lock(sch); if (tb[TCA_DRR_QUANTUM]) cl->quantum = quantum; sch_tree_unlock(sch); return 0; } cl = kzalloc(sizeof(struct drr_class), GFP_KERNEL); if (cl == NULL) return -ENOBUFS; gnet_stats_basic_sync_init(&cl->bstats); cl->common.classid = classid; cl->quantum = quantum; cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, classid, NULL); if (cl->qdisc == NULL) cl->qdisc = &noop_qdisc; else qdisc_hash_add(cl->qdisc, true); if (tca[TCA_RATE]) { err = gen_replace_estimator(&cl->bstats, NULL, &cl->rate_est, NULL, true, tca[TCA_RATE]); if (err) { NL_SET_ERR_MSG(extack, "Failed to replace estimator"); qdisc_put(cl->qdisc); kfree(cl); return err; } } sch_tree_lock(sch); qdisc_class_hash_insert(&q->clhash, &cl->common); sch_tree_unlock(sch); qdisc_class_hash_grow(sch, &q->clhash); *arg = (unsigned long)cl; return 0; } static void drr_destroy_class(struct Qdisc *sch, struct drr_class *cl) { gen_kill_estimator(&cl->rate_est); qdisc_put(cl->qdisc); kfree(cl); } static int drr_delete_class(struct Qdisc *sch, unsigned long arg, struct netlink_ext_ack *extack) { struct drr_sched *q = qdisc_priv(sch); struct drr_class *cl = (struct drr_class *)arg; if (qdisc_class_in_use(&cl->common)) { NL_SET_ERR_MSG(extack, "DRR class is in use"); return -EBUSY; } sch_tree_lock(sch); qdisc_purge_queue(cl->qdisc); qdisc_class_hash_remove(&q->clhash, &cl->common); sch_tree_unlock(sch); drr_destroy_class(sch, cl); return 0; } static unsigned long drr_search_class(struct Qdisc *sch, u32 classid) { return (unsigned long)drr_find_class(sch, classid); } static struct tcf_block *drr_tcf_block(struct Qdisc *sch, unsigned long cl, struct netlink_ext_ack *extack) { struct drr_sched *q = qdisc_priv(sch); if (cl) { NL_SET_ERR_MSG(extack, "DRR classid must be zero"); return NULL; } return q->block; } static unsigned long drr_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid) { struct drr_class *cl = drr_find_class(sch, classid); if (cl) qdisc_class_get(&cl->common); return (unsigned long)cl; } static void drr_unbind_tcf(struct Qdisc *sch, unsigned long arg) { struct drr_class *cl = (struct drr_class *)arg; qdisc_class_put(&cl->common); } static int drr_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, struct Qdisc **old, struct netlink_ext_ack *extack) { struct drr_class *cl = (struct drr_class *)arg; if (new == NULL) { new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, cl->common.classid, NULL); if (new == NULL) new = &noop_qdisc; } *old = qdisc_replace(sch, new, &cl->qdisc); return 0; } static struct Qdisc *drr_class_leaf(struct Qdisc *sch, unsigned long arg) { struct drr_class *cl = (struct drr_class *)arg; return cl->qdisc; } static void drr_qlen_notify(struct Qdisc *csh, unsigned long arg) { struct drr_class *cl = (struct drr_class *)arg; list_del(&cl->alist); } static int drr_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb, struct tcmsg *tcm) { struct drr_class *cl = (struct drr_class *)arg; struct nlattr *nest; tcm->tcm_parent = TC_H_ROOT; tcm->tcm_handle = cl->common.classid; tcm->tcm_info = cl->qdisc->handle; nest = nla_nest_start_noflag(skb, TCA_OPTIONS); if (nest == NULL) goto nla_put_failure; if (nla_put_u32(skb, TCA_DRR_QUANTUM, cl->quantum)) goto nla_put_failure; return nla_nest_end(skb, nest); nla_put_failure: nla_nest_cancel(skb, nest); return -EMSGSIZE; } static int drr_dump_class_stats(struct Qdisc *sch, unsigned long arg, struct gnet_dump *d) { struct drr_class *cl = (struct drr_class *)arg; __u32 qlen = qdisc_qlen_sum(cl->qdisc); struct Qdisc *cl_q = cl->qdisc; struct tc_drr_stats xstats; memset(&xstats, 0, sizeof(xstats)); if (qlen) xstats.deficit = cl->deficit; if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 || gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 || gnet_stats_copy_queue(d, cl_q->cpu_qstats, &cl_q->qstats, qlen) < 0) return -1; return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); } static void drr_walk(struct Qdisc *sch, struct qdisc_walker *arg) { struct drr_sched *q = qdisc_priv(sch); struct drr_class *cl; unsigned int i; if (arg->stop) return; for (i = 0; i < q->clhash.hashsize; i++) { hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg)) return; } } } static struct drr_class *drr_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr) { struct drr_sched *q = qdisc_priv(sch); struct drr_class *cl; struct tcf_result res; struct tcf_proto *fl; int result; if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) { cl = drr_find_class(sch, skb->priority); if (cl != NULL) return cl; } *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; fl = rcu_dereference_bh(q->filter_list); result = tcf_classify(skb, NULL, fl, &res, false); if (result >= 0) { #ifdef CONFIG_NET_CLS_ACT switch (result) { case TC_ACT_QUEUED: case TC_ACT_STOLEN: case TC_ACT_TRAP: *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; fallthrough; case TC_ACT_SHOT: return NULL; } #endif cl = (struct drr_class *)res.class; if (cl == NULL) cl = drr_find_class(sch, res.classid); return cl; } return NULL; } static int drr_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { unsigned int len = qdisc_pkt_len(skb); struct drr_sched *q = qdisc_priv(sch); struct drr_class *cl; int err = 0; bool first; cl = drr_classify(skb, sch, &err); if (cl == NULL) { if (err & __NET_XMIT_BYPASS) qdisc_qstats_drop(sch); __qdisc_drop(skb, to_free); return err; } first = !cl->qdisc->q.qlen; err = qdisc_enqueue(skb, cl->qdisc, to_free); if (unlikely(err != NET_XMIT_SUCCESS)) { if (net_xmit_drop_count(err)) { cl->qstats.drops++; qdisc_qstats_drop(sch); } return err; } if (first) { list_add_tail(&cl->alist, &q->active); cl->deficit = cl->quantum; } sch->qstats.backlog += len; sch->q.qlen++; return err; } static struct sk_buff *drr_dequeue(struct Qdisc *sch) { struct drr_sched *q = qdisc_priv(sch); struct drr_class *cl; struct sk_buff *skb; unsigned int len; if (list_empty(&q->active)) goto out; while (1) { cl = list_first_entry(&q->active, struct drr_class, alist); skb = cl->qdisc->ops->peek(cl->qdisc); if (skb == NULL) { qdisc_warn_nonwc(__func__, cl->qdisc); goto out; } len = qdisc_pkt_len(skb); if (len <= cl->deficit) { cl->deficit -= len; skb = qdisc_dequeue_peeked(cl->qdisc); if (unlikely(skb == NULL)) goto out; if (cl->qdisc->q.qlen == 0) list_del(&cl->alist); bstats_update(&cl->bstats, skb); qdisc_bstats_update(sch, skb); qdisc_qstats_backlog_dec(sch, skb); sch->q.qlen--; return skb; } cl->deficit += cl->quantum; list_move_tail(&cl->alist, &q->active); } out: return NULL; } static int drr_init_qdisc(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct drr_sched *q = qdisc_priv(sch); int err; err = tcf_block_get(&q->block, &q->filter_list, sch, extack); if (err) return err; err = qdisc_class_hash_init(&q->clhash); if (err < 0) return err; INIT_LIST_HEAD(&q->active); return 0; } static void drr_reset_qdisc(struct Qdisc *sch) { struct drr_sched *q = qdisc_priv(sch); struct drr_class *cl; unsigned int i; for (i = 0; i < q->clhash.hashsize; i++) { hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { if (cl->qdisc->q.qlen) list_del(&cl->alist); qdisc_reset(cl->qdisc); } } } static void drr_destroy_qdisc(struct Qdisc *sch) { struct drr_sched *q = qdisc_priv(sch); struct drr_class *cl; struct hlist_node *next; unsigned int i; tcf_block_put(q->block); for (i = 0; i < q->clhash.hashsize; i++) { hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i], common.hnode) drr_destroy_class(sch, cl); } qdisc_class_hash_destroy(&q->clhash); } static const struct Qdisc_class_ops drr_class_ops = { .change = drr_change_class, .delete = drr_delete_class, .find = drr_search_class, .tcf_block = drr_tcf_block, .bind_tcf = drr_bind_tcf, .unbind_tcf = drr_unbind_tcf, .graft = drr_graft_class, .leaf = drr_class_leaf, .qlen_notify = drr_qlen_notify, .dump = drr_dump_class, .dump_stats = drr_dump_class_stats, .walk = drr_walk, }; static struct Qdisc_ops drr_qdisc_ops __read_mostly = { .cl_ops = &drr_class_ops, .id = "drr", .priv_size = sizeof(struct drr_sched), .enqueue = drr_enqueue, .dequeue = drr_dequeue, .peek = qdisc_peek_dequeued, .init = drr_init_qdisc, .reset = drr_reset_qdisc, .destroy = drr_destroy_qdisc, .owner = THIS_MODULE, }; MODULE_ALIAS_NET_SCH("drr"); static int __init drr_init(void) { return register_qdisc(&drr_qdisc_ops); } static void __exit drr_exit(void) { unregister_qdisc(&drr_qdisc_ops); } module_init(drr_init); module_exit(drr_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Deficit Round Robin scheduler");
2 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 // SPDX-License-Identifier: GPL-2.0-or-later /* Kernel module to match IPComp parameters for IPv4 and IPv6 * * Copyright (C) 2013 WindRiver * * Author: * Fan Du <fan.du@windriver.com> * * Based on: * net/netfilter/xt_esp.c */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/in.h> #include <linux/module.h> #include <linux/skbuff.h> #include <linux/ip.h> #include <linux/netfilter/xt_ipcomp.h> #include <linux/netfilter/x_tables.h> MODULE_LICENSE("GPL"); MODULE_AUTHOR("Fan Du <fan.du@windriver.com>"); MODULE_DESCRIPTION("Xtables: IPv4/6 IPsec-IPComp SPI match"); MODULE_ALIAS("ipt_ipcomp"); MODULE_ALIAS("ip6t_ipcomp"); /* Returns 1 if the spi is matched by the range, 0 otherwise */ static inline bool spi_match(u_int32_t min, u_int32_t max, u_int32_t spi, bool invert) { bool r; pr_debug("spi_match:%c 0x%x <= 0x%x <= 0x%x\n", invert ? '!' : ' ', min, spi, max); r = (spi >= min && spi <= max) ^ invert; pr_debug(" result %s\n", r ? "PASS" : "FAILED"); return r; } static bool comp_mt(const struct sk_buff *skb, struct xt_action_param *par) { struct ip_comp_hdr _comphdr; const struct ip_comp_hdr *chdr; const struct xt_ipcomp *compinfo = par->matchinfo; /* Must not be a fragment. */ if (par->fragoff != 0) return false; chdr = skb_header_pointer(skb, par->thoff, sizeof(_comphdr), &_comphdr); if (chdr == NULL) { /* We've been asked to examine this packet, and we * can't. Hence, no choice but to drop. */ pr_debug("Dropping evil IPComp tinygram.\n"); par->hotdrop = true; return false; } return spi_match(compinfo->spis[0], compinfo->spis[1], ntohs(chdr->cpi), !!(compinfo->invflags & XT_IPCOMP_INV_SPI)); } static int comp_mt_check(const struct xt_mtchk_param *par) { const struct xt_ipcomp *compinfo = par->matchinfo; /* Must specify no unknown invflags */ if (compinfo->invflags & ~XT_IPCOMP_INV_MASK) { pr_info_ratelimited("unknown flags %X\n", compinfo->invflags); return -EINVAL; } return 0; } static struct xt_match comp_mt_reg[] __read_mostly = { { .name = "ipcomp", .family = NFPROTO_IPV4, .match = comp_mt, .matchsize = sizeof(struct xt_ipcomp), .proto = IPPROTO_COMP, .checkentry = comp_mt_check, .me = THIS_MODULE, }, { .name = "ipcomp", .family = NFPROTO_IPV6, .match = comp_mt, .matchsize = sizeof(struct xt_ipcomp), .proto = IPPROTO_COMP, .checkentry = comp_mt_check, .me = THIS_MODULE, }, }; static int __init comp_mt_init(void) { return xt_register_matches(comp_mt_reg, ARRAY_SIZE(comp_mt_reg)); } static void __exit comp_mt_exit(void) { xt_unregister_matches(comp_mt_reg, ARRAY_SIZE(comp_mt_reg)); } module_init(comp_mt_init); module_exit(comp_mt_exit);
5 2 2 1 15 3 1 2 4 3 2 2 2 14 14 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 // SPDX-License-Identifier: GPL-2.0-only /* * * Generic part shared by ipv4 and ipv6 backends. */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/netlink.h> #include <linux/netfilter.h> #include <linux/netfilter/nf_tables.h> #include <net/netfilter/nf_tables_core.h> #include <net/netfilter/nf_tables.h> #include <net/netfilter/nft_fib.h> #define NFTA_FIB_F_ALL (NFTA_FIB_F_SADDR | NFTA_FIB_F_DADDR | \ NFTA_FIB_F_MARK | NFTA_FIB_F_IIF | NFTA_FIB_F_OIF | \ NFTA_FIB_F_PRESENT) const struct nla_policy nft_fib_policy[NFTA_FIB_MAX + 1] = { [NFTA_FIB_DREG] = { .type = NLA_U32 }, [NFTA_FIB_RESULT] = { .type = NLA_U32 }, [NFTA_FIB_FLAGS] = NLA_POLICY_MASK(NLA_BE32, NFTA_FIB_F_ALL), }; EXPORT_SYMBOL(nft_fib_policy); int nft_fib_validate(const struct nft_ctx *ctx, const struct nft_expr *expr) { const struct nft_fib *priv = nft_expr_priv(expr); unsigned int hooks; switch (priv->result) { case NFT_FIB_RESULT_OIF: case NFT_FIB_RESULT_OIFNAME: hooks = (1 << NF_INET_PRE_ROUTING) | (1 << NF_INET_LOCAL_IN) | (1 << NF_INET_FORWARD); break; case NFT_FIB_RESULT_ADDRTYPE: if (priv->flags & NFTA_FIB_F_IIF) hooks = (1 << NF_INET_PRE_ROUTING) | (1 << NF_INET_LOCAL_IN) | (1 << NF_INET_FORWARD); else if (priv->flags & NFTA_FIB_F_OIF) hooks = (1 << NF_INET_LOCAL_OUT) | (1 << NF_INET_POST_ROUTING) | (1 << NF_INET_FORWARD); else hooks = (1 << NF_INET_LOCAL_IN) | (1 << NF_INET_LOCAL_OUT) | (1 << NF_INET_FORWARD) | (1 << NF_INET_PRE_ROUTING) | (1 << NF_INET_POST_ROUTING); break; default: return -EINVAL; } return nft_chain_validate_hooks(ctx->chain, hooks); } EXPORT_SYMBOL_GPL(nft_fib_validate); int nft_fib_init(const struct nft_ctx *ctx, const struct nft_expr *expr, const struct nlattr * const tb[]) { struct nft_fib *priv = nft_expr_priv(expr); unsigned int len; int err; if (!tb[NFTA_FIB_DREG] || !tb[NFTA_FIB_RESULT] || !tb[NFTA_FIB_FLAGS]) return -EINVAL; priv->flags = ntohl(nla_get_be32(tb[NFTA_FIB_FLAGS])); if (priv->flags == 0) return -EINVAL; if ((priv->flags & (NFTA_FIB_F_SADDR | NFTA_FIB_F_DADDR)) == (NFTA_FIB_F_SADDR | NFTA_FIB_F_DADDR)) return -EINVAL; if ((priv->flags & (NFTA_FIB_F_IIF | NFTA_FIB_F_OIF)) == (NFTA_FIB_F_IIF | NFTA_FIB_F_OIF)) return -EINVAL; if ((priv->flags & (NFTA_FIB_F_SADDR | NFTA_FIB_F_DADDR)) == 0) return -EINVAL; priv->result = ntohl(nla_get_be32(tb[NFTA_FIB_RESULT])); switch (priv->result) { case NFT_FIB_RESULT_OIF: if (priv->flags & NFTA_FIB_F_OIF) return -EINVAL; len = sizeof(int); break; case NFT_FIB_RESULT_OIFNAME: if (priv->flags & NFTA_FIB_F_OIF) return -EINVAL; len = IFNAMSIZ; break; case NFT_FIB_RESULT_ADDRTYPE: len = sizeof(u32); break; default: return -EINVAL; } err = nft_parse_register_store(ctx, tb[NFTA_FIB_DREG], &priv->dreg, NULL, NFT_DATA_VALUE, len); if (err < 0) return err; return 0; } EXPORT_SYMBOL_GPL(nft_fib_init); int nft_fib_dump(struct sk_buff *skb, const struct nft_expr *expr, bool reset) { const struct nft_fib *priv = nft_expr_priv(expr); if (nft_dump_register(skb, NFTA_FIB_DREG, priv->dreg)) return -1; if (nla_put_be32(skb, NFTA_FIB_RESULT, htonl(priv->result))) return -1; if (nla_put_be32(skb, NFTA_FIB_FLAGS, htonl(priv->flags))) return -1; return 0; } EXPORT_SYMBOL_GPL(nft_fib_dump); void nft_fib_store_result(void *reg, const struct nft_fib *priv, const struct net_device *dev) { u32 *dreg = reg; int index; switch (priv->result) { case NFT_FIB_RESULT_OIF: index = dev ? dev->ifindex : 0; if (priv->flags & NFTA_FIB_F_PRESENT) nft_reg_store8(dreg, !!index); else *dreg = index; break; case NFT_FIB_RESULT_OIFNAME: if (priv->flags & NFTA_FIB_F_PRESENT) nft_reg_store8(dreg, !!dev); else strscpy_pad(reg, dev ? dev->name : "", IFNAMSIZ); break; default: WARN_ON_ONCE(1); *dreg = 0; break; } } EXPORT_SYMBOL_GPL(nft_fib_store_result); bool nft_fib_reduce(struct nft_regs_track *track, const struct nft_expr *expr) { const struct nft_fib *priv = nft_expr_priv(expr); unsigned int len = NFT_REG32_SIZE; const struct nft_fib *fib; switch (priv->result) { case NFT_FIB_RESULT_OIF: break; case NFT_FIB_RESULT_OIFNAME: if (priv->flags & NFTA_FIB_F_PRESENT) len = NFT_REG32_SIZE; else len = IFNAMSIZ; break; case NFT_FIB_RESULT_ADDRTYPE: break; default: WARN_ON_ONCE(1); break; } if (!nft_reg_track_cmp(track, expr, priv->dreg)) { nft_reg_track_update(track, expr, priv->dreg, len); return false; } fib = nft_expr_priv(track->regs[priv->dreg].selector); if (priv->result != fib->result || priv->flags != fib->flags) { nft_reg_track_update(track, expr, priv->dreg, len); return false; } if (!track->regs[priv->dreg].bitwise) return true; return false; } EXPORT_SYMBOL_GPL(nft_fib_reduce); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Query routing table from nftables"); MODULE_AUTHOR("Florian Westphal <fw@strlen.de>");
5 5 2 2 2 2 2 2 1 1 2 1 1 2 1 3 1 1 2 8 1 1 2 1 3 1 10 1 5 4 1 1 1 1 1 1 1 1 9 1 1 1 1 2 2 1 1 4 5 1 1 1 2 2 2 1 1 2 2 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 // SPDX-License-Identifier: GPL-2.0-only /* * File: pep.c * * Phonet pipe protocol end point socket * * Copyright (C) 2008 Nokia Corporation. * * Author: Rémi Denis-Courmont */ #include <linux/kernel.h> #include <linux/sched/signal.h> #include <linux/slab.h> #include <linux/socket.h> #include <net/sock.h> #include <net/tcp_states.h> #include <asm/ioctls.h> #include <linux/phonet.h> #include <linux/module.h> #include <net/phonet/phonet.h> #include <net/phonet/pep.h> #include <net/phonet/gprs.h> /* sk_state values: * TCP_CLOSE sock not in use yet * TCP_CLOSE_WAIT disconnected pipe * TCP_LISTEN listening pipe endpoint * TCP_SYN_RECV connected pipe in disabled state * TCP_ESTABLISHED connected pipe in enabled state * * pep_sock locking: * - sk_state, hlist: sock lock needed * - listener: read only * - pipe_handle: read only */ #define CREDITS_MAX 10 #define CREDITS_THR 7 #define pep_sb_size(s) (((s) + 5) & ~3) /* 2-bytes head, 32-bits aligned */ /* Get the next TLV sub-block. */ static unsigned char *pep_get_sb(struct sk_buff *skb, u8 *ptype, u8 *plen, void *buf) { void *data = NULL; struct { u8 sb_type; u8 sb_len; } *ph, h; int buflen = *plen; ph = skb_header_pointer(skb, 0, 2, &h); if (ph == NULL || ph->sb_len < 2 || !pskb_may_pull(skb, ph->sb_len)) return NULL; ph->sb_len -= 2; *ptype = ph->sb_type; *plen = ph->sb_len; if (buflen > ph->sb_len) buflen = ph->sb_len; data = skb_header_pointer(skb, 2, buflen, buf); __skb_pull(skb, 2 + ph->sb_len); return data; } static struct sk_buff *pep_alloc_skb(struct sock *sk, const void *payload, int len, gfp_t priority) { struct sk_buff *skb = alloc_skb(MAX_PNPIPE_HEADER + len, priority); if (!skb) return NULL; skb_set_owner_w(skb, sk); skb_reserve(skb, MAX_PNPIPE_HEADER); __skb_put(skb, len); skb_copy_to_linear_data(skb, payload, len); __skb_push(skb, sizeof(struct pnpipehdr)); skb_reset_transport_header(skb); return skb; } static int pep_reply(struct sock *sk, struct sk_buff *oskb, u8 code, const void *data, int len, gfp_t priority) { const struct pnpipehdr *oph = pnp_hdr(oskb); struct pnpipehdr *ph; struct sk_buff *skb; struct sockaddr_pn peer; skb = pep_alloc_skb(sk, data, len, priority); if (!skb) return -ENOMEM; ph = pnp_hdr(skb); ph->utid = oph->utid; ph->message_id = oph->message_id + 1; /* REQ -> RESP */ ph->pipe_handle = oph->pipe_handle; ph->error_code = code; pn_skb_get_src_sockaddr(oskb, &peer); return pn_skb_send(sk, skb, &peer); } static int pep_indicate(struct sock *sk, u8 id, u8 code, const void *data, int len, gfp_t priority) { struct pep_sock *pn = pep_sk(sk); struct pnpipehdr *ph; struct sk_buff *skb; skb = pep_alloc_skb(sk, data, len, priority); if (!skb) return -ENOMEM; ph = pnp_hdr(skb); ph->utid = 0; ph->message_id = id; ph->pipe_handle = pn->pipe_handle; ph->error_code = code; return pn_skb_send(sk, skb, NULL); } #define PAD 0x00 static int pipe_handler_request(struct sock *sk, u8 id, u8 code, const void *data, int len) { struct pep_sock *pn = pep_sk(sk); struct pnpipehdr *ph; struct sk_buff *skb; skb = pep_alloc_skb(sk, data, len, GFP_KERNEL); if (!skb) return -ENOMEM; ph = pnp_hdr(skb); ph->utid = id; /* whatever */ ph->message_id = id; ph->pipe_handle = pn->pipe_handle; ph->error_code = code; return pn_skb_send(sk, skb, NULL); } static int pipe_handler_send_created_ind(struct sock *sk) { struct pep_sock *pn = pep_sk(sk); u8 data[4] = { PN_PIPE_SB_NEGOTIATED_FC, pep_sb_size(2), pn->tx_fc, pn->rx_fc, }; return pep_indicate(sk, PNS_PIPE_CREATED_IND, 1 /* sub-blocks */, data, 4, GFP_ATOMIC); } static int pep_accept_conn(struct sock *sk, struct sk_buff *skb) { static const u8 data[20] = { PAD, PAD, PAD, 2 /* sub-blocks */, PN_PIPE_SB_REQUIRED_FC_TX, pep_sb_size(5), 3, PAD, PN_MULTI_CREDIT_FLOW_CONTROL, PN_ONE_CREDIT_FLOW_CONTROL, PN_LEGACY_FLOW_CONTROL, PAD, PN_PIPE_SB_PREFERRED_FC_RX, pep_sb_size(5), 3, PAD, PN_MULTI_CREDIT_FLOW_CONTROL, PN_ONE_CREDIT_FLOW_CONTROL, PN_LEGACY_FLOW_CONTROL, PAD, }; might_sleep(); return pep_reply(sk, skb, PN_PIPE_NO_ERROR, data, sizeof(data), GFP_KERNEL); } static int pep_reject_conn(struct sock *sk, struct sk_buff *skb, u8 code, gfp_t priority) { static const u8 data[4] = { PAD, PAD, PAD, 0 /* sub-blocks */ }; WARN_ON(code == PN_PIPE_NO_ERROR); return pep_reply(sk, skb, code, data, sizeof(data), priority); } /* Control requests are not sent by the pipe service and have a specific * message format. */ static int pep_ctrlreq_error(struct sock *sk, struct sk_buff *oskb, u8 code, gfp_t priority) { const struct pnpipehdr *oph = pnp_hdr(oskb); struct sk_buff *skb; struct pnpipehdr *ph; struct sockaddr_pn dst; u8 data[4] = { oph->pep_type, /* PEP type */ code, /* error code, at an unusual offset */ PAD, PAD, }; skb = pep_alloc_skb(sk, data, 4, priority); if (!skb) return -ENOMEM; ph = pnp_hdr(skb); ph->utid = oph->utid; ph->message_id = PNS_PEP_CTRL_RESP; ph->pipe_handle = oph->pipe_handle; ph->data0 = oph->data[0]; /* CTRL id */ pn_skb_get_src_sockaddr(oskb, &dst); return pn_skb_send(sk, skb, &dst); } static int pipe_snd_status(struct sock *sk, u8 type, u8 status, gfp_t priority) { u8 data[4] = { type, PAD, PAD, status }; return pep_indicate(sk, PNS_PEP_STATUS_IND, PN_PEP_TYPE_COMMON, data, 4, priority); } /* Send our RX flow control information to the sender. * Socket must be locked. */ static void pipe_grant_credits(struct sock *sk, gfp_t priority) { struct pep_sock *pn = pep_sk(sk); BUG_ON(sk->sk_state != TCP_ESTABLISHED); switch (pn->rx_fc) { case PN_LEGACY_FLOW_CONTROL: /* TODO */ break; case PN_ONE_CREDIT_FLOW_CONTROL: if (pipe_snd_status(sk, PN_PEP_IND_FLOW_CONTROL, PEP_IND_READY, priority) == 0) pn->rx_credits = 1; break; case PN_MULTI_CREDIT_FLOW_CONTROL: if ((pn->rx_credits + CREDITS_THR) > CREDITS_MAX) break; if (pipe_snd_status(sk, PN_PEP_IND_ID_MCFC_GRANT_CREDITS, CREDITS_MAX - pn->rx_credits, priority) == 0) pn->rx_credits = CREDITS_MAX; break; } } static int pipe_rcv_status(struct sock *sk, struct sk_buff *skb) { struct pep_sock *pn = pep_sk(sk); struct pnpipehdr *hdr; int wake = 0; if (!pskb_may_pull(skb, sizeof(*hdr) + 4)) return -EINVAL; hdr = pnp_hdr(skb); if (hdr->pep_type != PN_PEP_TYPE_COMMON) { net_dbg_ratelimited("Phonet unknown PEP type: %u\n", (unsigned int)hdr->pep_type); return -EOPNOTSUPP; } switch (hdr->data[0]) { case PN_PEP_IND_FLOW_CONTROL: switch (pn->tx_fc) { case PN_LEGACY_FLOW_CONTROL: switch (hdr->data[3]) { case PEP_IND_BUSY: atomic_set(&pn->tx_credits, 0); break; case PEP_IND_READY: atomic_set(&pn->tx_credits, wake = 1); break; } break; case PN_ONE_CREDIT_FLOW_CONTROL: if (hdr->data[3] == PEP_IND_READY) atomic_set(&pn->tx_credits, wake = 1); break; } break; case PN_PEP_IND_ID_MCFC_GRANT_CREDITS: if (pn->tx_fc != PN_MULTI_CREDIT_FLOW_CONTROL) break; atomic_add(wake = hdr->data[3], &pn->tx_credits); break; default: net_dbg_ratelimited("Phonet unknown PEP indication: %u\n", (unsigned int)hdr->data[0]); return -EOPNOTSUPP; } if (wake) sk->sk_write_space(sk); return 0; } static int pipe_rcv_created(struct sock *sk, struct sk_buff *skb) { struct pep_sock *pn = pep_sk(sk); struct pnpipehdr *hdr = pnp_hdr(skb); u8 n_sb = hdr->data0; pn->rx_fc = pn->tx_fc = PN_LEGACY_FLOW_CONTROL; __skb_pull(skb, sizeof(*hdr)); while (n_sb > 0) { u8 type, buf[2], len = sizeof(buf); u8 *data = pep_get_sb(skb, &type, &len, buf); if (data == NULL) return -EINVAL; switch (type) { case PN_PIPE_SB_NEGOTIATED_FC: if (len < 2 || (data[0] | data[1]) > 3) break; pn->tx_fc = data[0] & 3; pn->rx_fc = data[1] & 3; break; } n_sb--; } return 0; } /* Queue an skb to a connected sock. * Socket lock must be held. */ static int pipe_do_rcv(struct sock *sk, struct sk_buff *skb) { struct pep_sock *pn = pep_sk(sk); struct pnpipehdr *hdr = pnp_hdr(skb); struct sk_buff_head *queue; int err = 0; BUG_ON(sk->sk_state == TCP_CLOSE_WAIT); switch (hdr->message_id) { case PNS_PEP_CONNECT_REQ: pep_reject_conn(sk, skb, PN_PIPE_ERR_PEP_IN_USE, GFP_ATOMIC); break; case PNS_PEP_DISCONNECT_REQ: pep_reply(sk, skb, PN_PIPE_NO_ERROR, NULL, 0, GFP_ATOMIC); sk->sk_state = TCP_CLOSE_WAIT; if (!sock_flag(sk, SOCK_DEAD)) sk->sk_state_change(sk); break; case PNS_PEP_ENABLE_REQ: /* Wait for PNS_PIPE_(ENABLED|REDIRECTED)_IND */ pep_reply(sk, skb, PN_PIPE_NO_ERROR, NULL, 0, GFP_ATOMIC); break; case PNS_PEP_RESET_REQ: switch (hdr->state_after_reset) { case PN_PIPE_DISABLE: pn->init_enable = 0; break; case PN_PIPE_ENABLE: pn->init_enable = 1; break; default: /* not allowed to send an error here!? */ err = -EINVAL; goto out; } fallthrough; case PNS_PEP_DISABLE_REQ: atomic_set(&pn->tx_credits, 0); pep_reply(sk, skb, PN_PIPE_NO_ERROR, NULL, 0, GFP_ATOMIC); break; case PNS_PEP_CTRL_REQ: if (skb_queue_len(&pn->ctrlreq_queue) >= PNPIPE_CTRLREQ_MAX) { atomic_inc(&sk->sk_drops); break; } __skb_pull(skb, 4); queue = &pn->ctrlreq_queue; goto queue; case PNS_PIPE_ALIGNED_DATA: __skb_pull(skb, 1); fallthrough; case PNS_PIPE_DATA: __skb_pull(skb, 3); /* Pipe data header */ if (!pn_flow_safe(pn->rx_fc)) { err = sock_queue_rcv_skb(sk, skb); if (!err) return NET_RX_SUCCESS; err = -ENOBUFS; break; } if (pn->rx_credits == 0) { atomic_inc(&sk->sk_drops); err = -ENOBUFS; break; } pn->rx_credits--; queue = &sk->sk_receive_queue; goto queue; case PNS_PEP_STATUS_IND: pipe_rcv_status(sk, skb); break; case PNS_PIPE_REDIRECTED_IND: err = pipe_rcv_created(sk, skb); break; case PNS_PIPE_CREATED_IND: err = pipe_rcv_created(sk, skb); if (err) break; fallthrough; case PNS_PIPE_RESET_IND: if (!pn->init_enable) break; fallthrough; case PNS_PIPE_ENABLED_IND: if (!pn_flow_safe(pn->tx_fc)) { atomic_set(&pn->tx_credits, 1); sk->sk_write_space(sk); } if (sk->sk_state == TCP_ESTABLISHED) break; /* Nothing to do */ sk->sk_state = TCP_ESTABLISHED; pipe_grant_credits(sk, GFP_ATOMIC); break; case PNS_PIPE_DISABLED_IND: sk->sk_state = TCP_SYN_RECV; pn->rx_credits = 0; break; default: net_dbg_ratelimited("Phonet unknown PEP message: %u\n", hdr->message_id); err = -EINVAL; } out: kfree_skb(skb); return (err == -ENOBUFS) ? NET_RX_DROP : NET_RX_SUCCESS; queue: skb->dev = NULL; skb_set_owner_r(skb, sk); skb_queue_tail(queue, skb); if (!sock_flag(sk, SOCK_DEAD)) sk->sk_data_ready(sk); return NET_RX_SUCCESS; } /* Destroy connected sock. */ static void pipe_destruct(struct sock *sk) { struct pep_sock *pn = pep_sk(sk); skb_queue_purge(&sk->sk_receive_queue); skb_queue_purge(&pn->ctrlreq_queue); } static u8 pipe_negotiate_fc(const u8 *fcs, unsigned int n) { unsigned int i; u8 final_fc = PN_NO_FLOW_CONTROL; for (i = 0; i < n; i++) { u8 fc = fcs[i]; if (fc > final_fc && fc < PN_MAX_FLOW_CONTROL) final_fc = fc; } return final_fc; } static int pep_connresp_rcv(struct sock *sk, struct sk_buff *skb) { struct pep_sock *pn = pep_sk(sk); struct pnpipehdr *hdr; u8 n_sb; if (!pskb_pull(skb, sizeof(*hdr) + 4)) return -EINVAL; hdr = pnp_hdr(skb); if (hdr->error_code != PN_PIPE_NO_ERROR) return -ECONNREFUSED; /* Parse sub-blocks */ n_sb = hdr->data[3]; while (n_sb > 0) { u8 type, buf[6], len = sizeof(buf); const u8 *data = pep_get_sb(skb, &type, &len, buf); if (data == NULL) return -EINVAL; switch (type) { case PN_PIPE_SB_REQUIRED_FC_TX: if (len < 2 || len < data[0]) break; pn->tx_fc = pipe_negotiate_fc(data + 2, len - 2); break; case PN_PIPE_SB_PREFERRED_FC_RX: if (len < 2 || len < data[0]) break; pn->rx_fc = pipe_negotiate_fc(data + 2, len - 2); break; } n_sb--; } return pipe_handler_send_created_ind(sk); } static int pep_enableresp_rcv(struct sock *sk, struct sk_buff *skb) { struct pnpipehdr *hdr = pnp_hdr(skb); if (hdr->error_code != PN_PIPE_NO_ERROR) return -ECONNREFUSED; return pep_indicate(sk, PNS_PIPE_ENABLED_IND, 0 /* sub-blocks */, NULL, 0, GFP_ATOMIC); } static void pipe_start_flow_control(struct sock *sk) { struct pep_sock *pn = pep_sk(sk); if (!pn_flow_safe(pn->tx_fc)) { atomic_set(&pn->tx_credits, 1); sk->sk_write_space(sk); } pipe_grant_credits(sk, GFP_ATOMIC); } /* Queue an skb to an actively connected sock. * Socket lock must be held. */ static int pipe_handler_do_rcv(struct sock *sk, struct sk_buff *skb) { struct pep_sock *pn = pep_sk(sk); struct pnpipehdr *hdr = pnp_hdr(skb); int err = NET_RX_SUCCESS; switch (hdr->message_id) { case PNS_PIPE_ALIGNED_DATA: __skb_pull(skb, 1); fallthrough; case PNS_PIPE_DATA: __skb_pull(skb, 3); /* Pipe data header */ if (!pn_flow_safe(pn->rx_fc)) { err = sock_queue_rcv_skb(sk, skb); if (!err) return NET_RX_SUCCESS; err = NET_RX_DROP; break; } if (pn->rx_credits == 0) { atomic_inc(&sk->sk_drops); err = NET_RX_DROP; break; } pn->rx_credits--; skb->dev = NULL; skb_set_owner_r(skb, sk); skb_queue_tail(&sk->sk_receive_queue, skb); if (!sock_flag(sk, SOCK_DEAD)) sk->sk_data_ready(sk); return NET_RX_SUCCESS; case PNS_PEP_CONNECT_RESP: if (sk->sk_state != TCP_SYN_SENT) break; if (!sock_flag(sk, SOCK_DEAD)) sk->sk_state_change(sk); if (pep_connresp_rcv(sk, skb)) { sk->sk_state = TCP_CLOSE_WAIT; break; } if (pn->init_enable == PN_PIPE_DISABLE) sk->sk_state = TCP_SYN_RECV; else { sk->sk_state = TCP_ESTABLISHED; pipe_start_flow_control(sk); } break; case PNS_PEP_ENABLE_RESP: if (sk->sk_state != TCP_SYN_SENT) break; if (pep_enableresp_rcv(sk, skb)) { sk->sk_state = TCP_CLOSE_WAIT; break; } sk->sk_state = TCP_ESTABLISHED; pipe_start_flow_control(sk); break; case PNS_PEP_DISCONNECT_RESP: /* sock should already be dead, nothing to do */ break; case PNS_PEP_STATUS_IND: pipe_rcv_status(sk, skb); break; } kfree_skb(skb); return err; } /* Listening sock must be locked */ static struct sock *pep_find_pipe(const struct hlist_head *hlist, const struct sockaddr_pn *dst, u8 pipe_handle) { struct sock *sknode; u16 dobj = pn_sockaddr_get_object(dst); sk_for_each(sknode, hlist) { struct pep_sock *pnnode = pep_sk(sknode); /* Ports match, but addresses might not: */ if (pnnode->pn_sk.sobject != dobj) continue; if (pnnode->pipe_handle != pipe_handle) continue; if (sknode->sk_state == TCP_CLOSE_WAIT) continue; sock_hold(sknode); return sknode; } return NULL; } /* * Deliver an skb to a listening sock. * Socket lock must be held. * We then queue the skb to the right connected sock (if any). */ static int pep_do_rcv(struct sock *sk, struct sk_buff *skb) { struct pep_sock *pn = pep_sk(sk); struct sock *sknode; struct pnpipehdr *hdr; struct sockaddr_pn dst; u8 pipe_handle; if (!pskb_may_pull(skb, sizeof(*hdr))) goto drop; hdr = pnp_hdr(skb); pipe_handle = hdr->pipe_handle; if (pipe_handle == PN_PIPE_INVALID_HANDLE) goto drop; pn_skb_get_dst_sockaddr(skb, &dst); /* Look for an existing pipe handle */ sknode = pep_find_pipe(&pn->hlist, &dst, pipe_handle); if (sknode) return sk_receive_skb(sknode, skb, 1); switch (hdr->message_id) { case PNS_PEP_CONNECT_REQ: if (sk->sk_state != TCP_LISTEN || sk_acceptq_is_full(sk)) { pep_reject_conn(sk, skb, PN_PIPE_ERR_PEP_IN_USE, GFP_ATOMIC); break; } skb_queue_head(&sk->sk_receive_queue, skb); sk_acceptq_added(sk); if (!sock_flag(sk, SOCK_DEAD)) sk->sk_data_ready(sk); return NET_RX_SUCCESS; case PNS_PEP_DISCONNECT_REQ: pep_reply(sk, skb, PN_PIPE_NO_ERROR, NULL, 0, GFP_ATOMIC); break; case PNS_PEP_CTRL_REQ: pep_ctrlreq_error(sk, skb, PN_PIPE_INVALID_HANDLE, GFP_ATOMIC); break; case PNS_PEP_RESET_REQ: case PNS_PEP_ENABLE_REQ: case PNS_PEP_DISABLE_REQ: /* invalid handle is not even allowed here! */ break; default: if ((1 << sk->sk_state) & ~(TCPF_CLOSE|TCPF_LISTEN|TCPF_CLOSE_WAIT)) /* actively connected socket */ return pipe_handler_do_rcv(sk, skb); } drop: kfree_skb(skb); return NET_RX_SUCCESS; } static int pipe_do_remove(struct sock *sk) { struct pep_sock *pn = pep_sk(sk); struct pnpipehdr *ph; struct sk_buff *skb; skb = pep_alloc_skb(sk, NULL, 0, GFP_KERNEL); if (!skb) return -ENOMEM; ph = pnp_hdr(skb); ph->utid = 0; ph->message_id = PNS_PIPE_REMOVE_REQ; ph->pipe_handle = pn->pipe_handle; ph->data0 = PAD; return pn_skb_send(sk, skb, NULL); } /* associated socket ceases to exist */ static void pep_sock_close(struct sock *sk, long timeout) { struct pep_sock *pn = pep_sk(sk); int ifindex = 0; sock_hold(sk); /* keep a reference after sk_common_release() */ sk_common_release(sk); lock_sock(sk); if ((1 << sk->sk_state) & (TCPF_SYN_RECV|TCPF_ESTABLISHED)) { if (sk->sk_backlog_rcv == pipe_do_rcv) /* Forcefully remove dangling Phonet pipe */ pipe_do_remove(sk); else pipe_handler_request(sk, PNS_PEP_DISCONNECT_REQ, PAD, NULL, 0); } sk->sk_state = TCP_CLOSE; ifindex = pn->ifindex; pn->ifindex = 0; release_sock(sk); if (ifindex) gprs_detach(sk); sock_put(sk); } static struct sock *pep_sock_accept(struct sock *sk, struct proto_accept_arg *arg) { struct pep_sock *pn = pep_sk(sk), *newpn; struct sock *newsk = NULL; struct sk_buff *skb; struct pnpipehdr *hdr; struct sockaddr_pn dst, src; int err; u16 peer_type; u8 pipe_handle, enabled, n_sb; u8 aligned = 0; skb = skb_recv_datagram(sk, (arg->flags & O_NONBLOCK) ? MSG_DONTWAIT : 0, &arg->err); if (!skb) return NULL; lock_sock(sk); if (sk->sk_state != TCP_LISTEN) { err = -EINVAL; goto drop; } sk_acceptq_removed(sk); err = -EPROTO; if (!pskb_may_pull(skb, sizeof(*hdr) + 4)) goto drop; hdr = pnp_hdr(skb); pipe_handle = hdr->pipe_handle; switch (hdr->state_after_connect) { case PN_PIPE_DISABLE: enabled = 0; break; case PN_PIPE_ENABLE: enabled = 1; break; default: pep_reject_conn(sk, skb, PN_PIPE_ERR_INVALID_PARAM, GFP_KERNEL); goto drop; } peer_type = hdr->other_pep_type << 8; /* Parse sub-blocks (options) */ n_sb = hdr->data[3]; while (n_sb > 0) { u8 type, buf[1], len = sizeof(buf); const u8 *data = pep_get_sb(skb, &type, &len, buf); if (data == NULL) goto drop; switch (type) { case PN_PIPE_SB_CONNECT_REQ_PEP_SUB_TYPE: if (len < 1) goto drop; peer_type = (peer_type & 0xff00) | data[0]; break; case PN_PIPE_SB_ALIGNED_DATA: aligned = data[0] != 0; break; } n_sb--; } /* Check for duplicate pipe handle */ newsk = pep_find_pipe(&pn->hlist, &dst, pipe_handle); if (unlikely(newsk)) { __sock_put(newsk); newsk = NULL; pep_reject_conn(sk, skb, PN_PIPE_ERR_PEP_IN_USE, GFP_KERNEL); goto drop; } /* Create a new to-be-accepted sock */ newsk = sk_alloc(sock_net(sk), PF_PHONET, GFP_KERNEL, sk->sk_prot, arg->kern); if (!newsk) { pep_reject_conn(sk, skb, PN_PIPE_ERR_OVERLOAD, GFP_KERNEL); err = -ENOBUFS; goto drop; } sock_init_data(NULL, newsk); newsk->sk_state = TCP_SYN_RECV; newsk->sk_backlog_rcv = pipe_do_rcv; newsk->sk_protocol = sk->sk_protocol; newsk->sk_destruct = pipe_destruct; newpn = pep_sk(newsk); pn_skb_get_dst_sockaddr(skb, &dst); pn_skb_get_src_sockaddr(skb, &src); newpn->pn_sk.sobject = pn_sockaddr_get_object(&dst); newpn->pn_sk.dobject = pn_sockaddr_get_object(&src); newpn->pn_sk.resource = pn_sockaddr_get_resource(&dst); sock_hold(sk); newpn->listener = sk; skb_queue_head_init(&newpn->ctrlreq_queue); newpn->pipe_handle = pipe_handle; atomic_set(&newpn->tx_credits, 0); newpn->ifindex = 0; newpn->peer_type = peer_type; newpn->rx_credits = 0; newpn->rx_fc = newpn->tx_fc = PN_LEGACY_FLOW_CONTROL; newpn->init_enable = enabled; newpn->aligned = aligned; err = pep_accept_conn(newsk, skb); if (err) { __sock_put(sk); sock_put(newsk); newsk = NULL; goto drop; } sk_add_node(newsk, &pn->hlist); drop: release_sock(sk); kfree_skb(skb); arg->err = err; return newsk; } static int pep_sock_connect(struct sock *sk, struct sockaddr *addr, int len) { struct pep_sock *pn = pep_sk(sk); int err; u8 data[4] = { 0 /* sub-blocks */, PAD, PAD, PAD }; if (pn->pipe_handle == PN_PIPE_INVALID_HANDLE) pn->pipe_handle = 1; /* anything but INVALID_HANDLE */ err = pipe_handler_request(sk, PNS_PEP_CONNECT_REQ, pn->init_enable, data, 4); if (err) { pn->pipe_handle = PN_PIPE_INVALID_HANDLE; return err; } sk->sk_state = TCP_SYN_SENT; return 0; } static int pep_sock_enable(struct sock *sk, struct sockaddr *addr, int len) { int err; err = pipe_handler_request(sk, PNS_PEP_ENABLE_REQ, PAD, NULL, 0); if (err) return err; sk->sk_state = TCP_SYN_SENT; return 0; } static unsigned int pep_first_packet_length(struct sock *sk) { struct pep_sock *pn = pep_sk(sk); struct sk_buff_head *q; struct sk_buff *skb; unsigned int len = 0; bool found = false; if (sock_flag(sk, SOCK_URGINLINE)) { q = &pn->ctrlreq_queue; spin_lock_bh(&q->lock); skb = skb_peek(q); if (skb) { len = skb->len; found = true; } spin_unlock_bh(&q->lock); } if (likely(!found)) { q = &sk->sk_receive_queue; spin_lock_bh(&q->lock); skb = skb_peek(q); if (skb) len = skb->len; spin_unlock_bh(&q->lock); } return len; } static int pep_ioctl(struct sock *sk, int cmd, int *karg) { struct pep_sock *pn = pep_sk(sk); int ret = -ENOIOCTLCMD; switch (cmd) { case SIOCINQ: if (sk->sk_state == TCP_LISTEN) { ret = -EINVAL; break; } *karg = pep_first_packet_length(sk); ret = 0; break; case SIOCPNENABLEPIPE: lock_sock(sk); if (sk->sk_state == TCP_SYN_SENT) ret = -EBUSY; else if (sk->sk_state == TCP_ESTABLISHED) ret = -EISCONN; else if (!pn->pn_sk.sobject) ret = -EADDRNOTAVAIL; else ret = pep_sock_enable(sk, NULL, 0); release_sock(sk); break; } return ret; } static int pep_init(struct sock *sk) { struct pep_sock *pn = pep_sk(sk); sk->sk_destruct = pipe_destruct; INIT_HLIST_HEAD(&pn->hlist); pn->listener = NULL; skb_queue_head_init(&pn->ctrlreq_queue); atomic_set(&pn->tx_credits, 0); pn->ifindex = 0; pn->peer_type = 0; pn->pipe_handle = PN_PIPE_INVALID_HANDLE; pn->rx_credits = 0; pn->rx_fc = pn->tx_fc = PN_LEGACY_FLOW_CONTROL; pn->init_enable = 1; pn->aligned = 0; return 0; } static int pep_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { struct pep_sock *pn = pep_sk(sk); int val = 0, err = 0; if (level != SOL_PNPIPE) return -ENOPROTOOPT; if (optlen >= sizeof(int)) { if (copy_from_sockptr(&val, optval, sizeof(int))) return -EFAULT; } lock_sock(sk); switch (optname) { case PNPIPE_ENCAP: if (val && val != PNPIPE_ENCAP_IP) { err = -EINVAL; break; } if (!pn->ifindex == !val) break; /* Nothing to do! */ if (!capable(CAP_NET_ADMIN)) { err = -EPERM; break; } if (val) { release_sock(sk); err = gprs_attach(sk); if (err > 0) { pn->ifindex = err; err = 0; } } else { pn->ifindex = 0; release_sock(sk); gprs_detach(sk); err = 0; } goto out_norel; case PNPIPE_HANDLE: if ((sk->sk_state == TCP_CLOSE) && (val >= 0) && (val < PN_PIPE_INVALID_HANDLE)) pn->pipe_handle = val; else err = -EINVAL; break; case PNPIPE_INITSTATE: pn->init_enable = !!val; break; default: err = -ENOPROTOOPT; } release_sock(sk); out_norel: return err; } static int pep_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { struct pep_sock *pn = pep_sk(sk); int len, val; if (level != SOL_PNPIPE) return -ENOPROTOOPT; if (get_user(len, optlen)) return -EFAULT; switch (optname) { case PNPIPE_ENCAP: val = pn->ifindex ? PNPIPE_ENCAP_IP : PNPIPE_ENCAP_NONE; break; case PNPIPE_IFINDEX: val = pn->ifindex; break; case PNPIPE_HANDLE: val = pn->pipe_handle; if (val == PN_PIPE_INVALID_HANDLE) return -EINVAL; break; case PNPIPE_INITSTATE: val = pn->init_enable; break; default: return -ENOPROTOOPT; } len = min_t(unsigned int, sizeof(int), len); if (put_user(len, optlen)) return -EFAULT; if (put_user(val, (int __user *) optval)) return -EFAULT; return 0; } static int pipe_skb_send(struct sock *sk, struct sk_buff *skb) { struct pep_sock *pn = pep_sk(sk); struct pnpipehdr *ph; int err; if (pn_flow_safe(pn->tx_fc) && !atomic_add_unless(&pn->tx_credits, -1, 0)) { kfree_skb(skb); return -ENOBUFS; } skb_push(skb, 3 + pn->aligned); skb_reset_transport_header(skb); ph = pnp_hdr(skb); ph->utid = 0; if (pn->aligned) { ph->message_id = PNS_PIPE_ALIGNED_DATA; ph->data0 = 0; /* padding */ } else ph->message_id = PNS_PIPE_DATA; ph->pipe_handle = pn->pipe_handle; err = pn_skb_send(sk, skb, NULL); if (err && pn_flow_safe(pn->tx_fc)) atomic_inc(&pn->tx_credits); return err; } static int pep_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) { struct pep_sock *pn = pep_sk(sk); struct sk_buff *skb; long timeo; int flags = msg->msg_flags; int err, done; if (len > USHRT_MAX) return -EMSGSIZE; if ((msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_NOSIGNAL| MSG_CMSG_COMPAT)) || !(msg->msg_flags & MSG_EOR)) return -EOPNOTSUPP; skb = sock_alloc_send_skb(sk, MAX_PNPIPE_HEADER + len, flags & MSG_DONTWAIT, &err); if (!skb) return err; skb_reserve(skb, MAX_PHONET_HEADER + 3 + pn->aligned); err = memcpy_from_msg(skb_put(skb, len), msg, len); if (err < 0) goto outfree; lock_sock(sk); timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); if ((1 << sk->sk_state) & (TCPF_LISTEN|TCPF_CLOSE)) { err = -ENOTCONN; goto out; } if (sk->sk_state != TCP_ESTABLISHED) { /* Wait until the pipe gets to enabled state */ disabled: err = sk_stream_wait_connect(sk, &timeo); if (err) goto out; if (sk->sk_state == TCP_CLOSE_WAIT) { err = -ECONNRESET; goto out; } } BUG_ON(sk->sk_state != TCP_ESTABLISHED); /* Wait until flow control allows TX */ done = atomic_read(&pn->tx_credits); while (!done) { DEFINE_WAIT_FUNC(wait, woken_wake_function); if (!timeo) { err = -EAGAIN; goto out; } if (signal_pending(current)) { err = sock_intr_errno(timeo); goto out; } add_wait_queue(sk_sleep(sk), &wait); done = sk_wait_event(sk, &timeo, atomic_read(&pn->tx_credits), &wait); remove_wait_queue(sk_sleep(sk), &wait); if (sk->sk_state != TCP_ESTABLISHED) goto disabled; } err = pipe_skb_send(sk, skb); if (err >= 0) err = len; /* success! */ skb = NULL; out: release_sock(sk); outfree: kfree_skb(skb); return err; } int pep_writeable(struct sock *sk) { struct pep_sock *pn = pep_sk(sk); return atomic_read(&pn->tx_credits); } int pep_write(struct sock *sk, struct sk_buff *skb) { struct sk_buff *rskb, *fs; int flen = 0; if (pep_sk(sk)->aligned) return pipe_skb_send(sk, skb); rskb = alloc_skb(MAX_PNPIPE_HEADER, GFP_ATOMIC); if (!rskb) { kfree_skb(skb); return -ENOMEM; } skb_shinfo(rskb)->frag_list = skb; rskb->len += skb->len; rskb->data_len += rskb->len; rskb->truesize += rskb->len; /* Avoid nested fragments */ skb_walk_frags(skb, fs) flen += fs->len; skb->next = skb_shinfo(skb)->frag_list; skb_frag_list_init(skb); skb->len -= flen; skb->data_len -= flen; skb->truesize -= flen; skb_reserve(rskb, MAX_PHONET_HEADER + 3); return pipe_skb_send(sk, rskb); } struct sk_buff *pep_read(struct sock *sk) { struct sk_buff *skb = skb_dequeue(&sk->sk_receive_queue); if (sk->sk_state == TCP_ESTABLISHED) pipe_grant_credits(sk, GFP_ATOMIC); return skb; } static int pep_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, int *addr_len) { struct sk_buff *skb; int err; if (flags & ~(MSG_OOB|MSG_PEEK|MSG_TRUNC|MSG_DONTWAIT|MSG_WAITALL| MSG_NOSIGNAL|MSG_CMSG_COMPAT)) return -EOPNOTSUPP; if (unlikely(1 << sk->sk_state & (TCPF_LISTEN | TCPF_CLOSE))) return -ENOTCONN; if ((flags & MSG_OOB) || sock_flag(sk, SOCK_URGINLINE)) { /* Dequeue and acknowledge control request */ struct pep_sock *pn = pep_sk(sk); if (flags & MSG_PEEK) return -EOPNOTSUPP; skb = skb_dequeue(&pn->ctrlreq_queue); if (skb) { pep_ctrlreq_error(sk, skb, PN_PIPE_NO_ERROR, GFP_KERNEL); msg->msg_flags |= MSG_OOB; goto copy; } if (flags & MSG_OOB) return -EINVAL; } skb = skb_recv_datagram(sk, flags, &err); lock_sock(sk); if (skb == NULL) { if (err == -ENOTCONN && sk->sk_state == TCP_CLOSE_WAIT) err = -ECONNRESET; release_sock(sk); return err; } if (sk->sk_state == TCP_ESTABLISHED) pipe_grant_credits(sk, GFP_KERNEL); release_sock(sk); copy: msg->msg_flags |= MSG_EOR; if (skb->len > len) msg->msg_flags |= MSG_TRUNC; else len = skb->len; err = skb_copy_datagram_msg(skb, 0, msg, len); if (!err) err = (flags & MSG_TRUNC) ? skb->len : len; skb_free_datagram(sk, skb); return err; } static void pep_sock_unhash(struct sock *sk) { struct pep_sock *pn = pep_sk(sk); struct sock *skparent = NULL; lock_sock(sk); if (pn->listener != NULL) { skparent = pn->listener; pn->listener = NULL; release_sock(sk); pn = pep_sk(skparent); lock_sock(skparent); sk_del_node_init(sk); sk = skparent; } /* Unhash a listening sock only when it is closed * and all of its active connected pipes are closed. */ if (hlist_empty(&pn->hlist)) pn_sock_unhash(&pn->pn_sk.sk); release_sock(sk); if (skparent) sock_put(skparent); } static struct proto pep_proto = { .close = pep_sock_close, .accept = pep_sock_accept, .connect = pep_sock_connect, .ioctl = pep_ioctl, .init = pep_init, .setsockopt = pep_setsockopt, .getsockopt = pep_getsockopt, .sendmsg = pep_sendmsg, .recvmsg = pep_recvmsg, .backlog_rcv = pep_do_rcv, .hash = pn_sock_hash, .unhash = pep_sock_unhash, .get_port = pn_sock_get_port, .obj_size = sizeof(struct pep_sock), .owner = THIS_MODULE, .name = "PNPIPE", }; static const struct phonet_protocol pep_pn_proto = { .ops = &phonet_stream_ops, .prot = &pep_proto, .sock_type = SOCK_SEQPACKET, }; static int __init pep_register(void) { return phonet_proto_register(PN_PROTO_PIPE, &pep_pn_proto); } static void __exit pep_unregister(void) { phonet_proto_unregister(PN_PROTO_PIPE, &pep_pn_proto); } module_init(pep_register); module_exit(pep_unregister); MODULE_AUTHOR("Remi Denis-Courmont, Nokia"); MODULE_DESCRIPTION("Phonet pipe protocol"); MODULE_LICENSE("GPL"); MODULE_ALIAS_NET_PF_PROTO(PF_PHONET, PN_PROTO_PIPE);
1 1028 9 207 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_RTNETLINK_H #define __LINUX_RTNETLINK_H #include <linux/mutex.h> #include <linux/netdevice.h> #include <linux/wait.h> #include <linux/refcount.h> #include <linux/cleanup.h> #include <uapi/linux/rtnetlink.h> extern int rtnetlink_send(struct sk_buff *skb, struct net *net, u32 pid, u32 group, int echo); static inline int rtnetlink_maybe_send(struct sk_buff *skb, struct net *net, u32 pid, u32 group, int echo) { return !skb ? 0 : rtnetlink_send(skb, net, pid, group, echo); } extern int rtnl_unicast(struct sk_buff *skb, struct net *net, u32 pid); extern void rtnl_notify(struct sk_buff *skb, struct net *net, u32 pid, u32 group, const struct nlmsghdr *nlh, gfp_t flags); extern void rtnl_set_sk_err(struct net *net, u32 group, int error); extern int rtnetlink_put_metrics(struct sk_buff *skb, u32 *metrics); extern int rtnl_put_cacheinfo(struct sk_buff *skb, struct dst_entry *dst, u32 id, long expires, u32 error); void rtmsg_ifinfo(int type, struct net_device *dev, unsigned int change, gfp_t flags, u32 portid, const struct nlmsghdr *nlh); void rtmsg_ifinfo_newnet(int type, struct net_device *dev, unsigned int change, gfp_t flags, int *new_nsid, int new_ifindex); struct sk_buff *rtmsg_ifinfo_build_skb(int type, struct net_device *dev, unsigned change, u32 event, gfp_t flags, int *new_nsid, int new_ifindex, u32 portid, const struct nlmsghdr *nlh); void rtmsg_ifinfo_send(struct sk_buff *skb, struct net_device *dev, gfp_t flags, u32 portid, const struct nlmsghdr *nlh); /* RTNL is used as a global lock for all changes to network configuration */ extern void rtnl_lock(void); extern void rtnl_unlock(void); extern int rtnl_trylock(void); extern int rtnl_is_locked(void); extern int rtnl_lock_killable(void); extern bool refcount_dec_and_rtnl_lock(refcount_t *r); DEFINE_LOCK_GUARD_0(rtnl, rtnl_lock(), rtnl_unlock()) extern wait_queue_head_t netdev_unregistering_wq; extern atomic_t dev_unreg_count; extern struct rw_semaphore pernet_ops_rwsem; extern struct rw_semaphore net_rwsem; #ifdef CONFIG_PROVE_LOCKING extern bool lockdep_rtnl_is_held(void); #else static inline bool lockdep_rtnl_is_held(void) { return true; } #endif /* #ifdef CONFIG_PROVE_LOCKING */ /** * rcu_dereference_rtnl - rcu_dereference with debug checking * @p: The pointer to read, prior to dereferencing * * Do an rcu_dereference(p), but check caller either holds rcu_read_lock() * or RTNL. Note : Please prefer rtnl_dereference() or rcu_dereference() */ #define rcu_dereference_rtnl(p) \ rcu_dereference_check(p, lockdep_rtnl_is_held()) /** * rtnl_dereference - fetch RCU pointer when updates are prevented by RTNL * @p: The pointer to read, prior to dereferencing * * Return the value of the specified RCU-protected pointer, but omit * the READ_ONCE(), because caller holds RTNL. */ #define rtnl_dereference(p) \ rcu_dereference_protected(p, lockdep_rtnl_is_held()) /** * rcu_replace_pointer_rtnl - replace an RCU pointer under rtnl_lock, returning * its old value * @rp: RCU pointer, whose value is returned * @p: regular pointer * * Perform a replacement under rtnl_lock, where @rp is an RCU-annotated * pointer. The old value of @rp is returned, and @rp is set to @p */ #define rcu_replace_pointer_rtnl(rp, p) \ rcu_replace_pointer(rp, p, lockdep_rtnl_is_held()) static inline struct netdev_queue *dev_ingress_queue(struct net_device *dev) { return rtnl_dereference(dev->ingress_queue); } static inline struct netdev_queue *dev_ingress_queue_rcu(struct net_device *dev) { return rcu_dereference(dev->ingress_queue); } struct netdev_queue *dev_ingress_queue_create(struct net_device *dev); #ifdef CONFIG_NET_INGRESS void net_inc_ingress_queue(void); void net_dec_ingress_queue(void); #endif #ifdef CONFIG_NET_EGRESS void net_inc_egress_queue(void); void net_dec_egress_queue(void); void netdev_xmit_skip_txqueue(bool skip); #endif void rtnetlink_init(void); void __rtnl_unlock(void); void rtnl_kfree_skbs(struct sk_buff *head, struct sk_buff *tail); #define ASSERT_RTNL() \ WARN_ONCE(!rtnl_is_locked(), \ "RTNL: assertion failed at %s (%d)\n", __FILE__, __LINE__) extern int ndo_dflt_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb, struct net_device *dev, struct net_device *filter_dev, int *idx); extern int ndo_dflt_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid, u16 flags); extern int ndo_dflt_fdb_del(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid); extern int ndo_dflt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, struct net_device *dev, u16 mode, u32 flags, u32 mask, int nlflags, u32 filter_mask, int (*vlan_fill)(struct sk_buff *skb, struct net_device *dev, u32 filter_mask)); extern void rtnl_offload_xstats_notify(struct net_device *dev); static inline int rtnl_has_listeners(const struct net *net, u32 group) { struct sock *rtnl = net->rtnl; return netlink_has_listeners(rtnl, group); } /** * rtnl_notify_needed - check if notification is needed * @net: Pointer to the net namespace * @nlflags: netlink ingress message flags * @group: rtnl group * * Based on the ingress message flags and rtnl group, returns true * if a notification is needed, false otherwise. */ static inline bool rtnl_notify_needed(const struct net *net, u16 nlflags, u32 group) { return (nlflags & NLM_F_ECHO) || rtnl_has_listeners(net, group); } void netdev_set_operstate(struct net_device *dev, int newstate); #endif /* __LINUX_RTNETLINK_H */
8 5 2 2 2 2 4 5 4 1 1 2 8 1 2 5 2 3 4 1 8 8 5 5 2 3 5 5 6 18 18 18 1 1 1 1 1 1 1 1 3 3 1 1 8 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 // SPDX-License-Identifier: GPL-2.0 /* Copyright (C) B.A.T.M.A.N. contributors: * * Linus Lüssing */ #include "multicast.h" #include "main.h" #include <linux/atomic.h> #include <linux/bitops.h> #include <linux/bug.h> #include <linux/byteorder/generic.h> #include <linux/container_of.h> #include <linux/errno.h> #include <linux/etherdevice.h> #include <linux/gfp.h> #include <linux/icmpv6.h> #include <linux/if_bridge.h> #include <linux/if_ether.h> #include <linux/igmp.h> #include <linux/in.h> #include <linux/in6.h> #include <linux/inetdevice.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/jiffies.h> #include <linux/list.h> #include <linux/lockdep.h> #include <linux/netdevice.h> #include <linux/netlink.h> #include <linux/printk.h> #include <linux/rculist.h> #include <linux/rcupdate.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/sprintf.h> #include <linux/stddef.h> #include <linux/string.h> #include <linux/types.h> #include <linux/workqueue.h> #include <net/addrconf.h> #include <net/genetlink.h> #include <net/if_inet6.h> #include <net/ip.h> #include <net/ipv6.h> #include <net/netlink.h> #include <net/sock.h> #include <uapi/linux/batadv_packet.h> #include <uapi/linux/batman_adv.h> #include "bridge_loop_avoidance.h" #include "hard-interface.h" #include "hash.h" #include "log.h" #include "netlink.h" #include "send.h" #include "soft-interface.h" #include "translation-table.h" #include "tvlv.h" static void batadv_mcast_mla_update(struct work_struct *work); /** * batadv_mcast_start_timer() - schedule the multicast periodic worker * @bat_priv: the bat priv with all the soft interface information */ static void batadv_mcast_start_timer(struct batadv_priv *bat_priv) { queue_delayed_work(batadv_event_workqueue, &bat_priv->mcast.work, msecs_to_jiffies(BATADV_MCAST_WORK_PERIOD)); } /** * batadv_mcast_get_bridge() - get the bridge on top of the softif if it exists * @soft_iface: netdev struct of the mesh interface * * If the given soft interface has a bridge on top then the refcount * of the according net device is increased. * * Return: NULL if no such bridge exists. Otherwise the net device of the * bridge. */ static struct net_device *batadv_mcast_get_bridge(struct net_device *soft_iface) { struct net_device *upper = soft_iface; rcu_read_lock(); do { upper = netdev_master_upper_dev_get_rcu(upper); } while (upper && !netif_is_bridge_master(upper)); dev_hold(upper); rcu_read_unlock(); return upper; } /** * batadv_mcast_mla_rtr_flags_softif_get_ipv4() - get mcast router flags from * node for IPv4 * @dev: the interface to check * * Checks the presence of an IPv4 multicast router on this node. * * Caller needs to hold rcu read lock. * * Return: BATADV_NO_FLAGS if present, BATADV_MCAST_WANT_NO_RTR4 otherwise. */ static u8 batadv_mcast_mla_rtr_flags_softif_get_ipv4(struct net_device *dev) { struct in_device *in_dev = __in_dev_get_rcu(dev); if (in_dev && IN_DEV_MFORWARD(in_dev)) return BATADV_NO_FLAGS; else return BATADV_MCAST_WANT_NO_RTR4; } /** * batadv_mcast_mla_rtr_flags_softif_get_ipv6() - get mcast router flags from * node for IPv6 * @dev: the interface to check * * Checks the presence of an IPv6 multicast router on this node. * * Caller needs to hold rcu read lock. * * Return: BATADV_NO_FLAGS if present, BATADV_MCAST_WANT_NO_RTR6 otherwise. */ #if IS_ENABLED(CONFIG_IPV6_MROUTE) static u8 batadv_mcast_mla_rtr_flags_softif_get_ipv6(struct net_device *dev) { struct inet6_dev *in6_dev = __in6_dev_get(dev); if (in6_dev && atomic_read(&in6_dev->cnf.mc_forwarding)) return BATADV_NO_FLAGS; else return BATADV_MCAST_WANT_NO_RTR6; } #else static inline u8 batadv_mcast_mla_rtr_flags_softif_get_ipv6(struct net_device *dev) { return BATADV_MCAST_WANT_NO_RTR6; } #endif /** * batadv_mcast_mla_rtr_flags_softif_get() - get mcast router flags from node * @bat_priv: the bat priv with all the soft interface information * @bridge: bridge interface on top of the soft_iface if present, * otherwise pass NULL * * Checks the presence of IPv4 and IPv6 multicast routers on this * node. * * Return: * BATADV_NO_FLAGS: Both an IPv4 and IPv6 multicast router is present * BATADV_MCAST_WANT_NO_RTR4: No IPv4 multicast router is present * BATADV_MCAST_WANT_NO_RTR6: No IPv6 multicast router is present * The former two OR'd: no multicast router is present */ static u8 batadv_mcast_mla_rtr_flags_softif_get(struct batadv_priv *bat_priv, struct net_device *bridge) { struct net_device *dev = bridge ? bridge : bat_priv->soft_iface; u8 flags = BATADV_NO_FLAGS; rcu_read_lock(); flags |= batadv_mcast_mla_rtr_flags_softif_get_ipv4(dev); flags |= batadv_mcast_mla_rtr_flags_softif_get_ipv6(dev); rcu_read_unlock(); return flags; } /** * batadv_mcast_mla_rtr_flags_bridge_get() - get mcast router flags from bridge * @bat_priv: the bat priv with all the soft interface information * @bridge: bridge interface on top of the soft_iface if present, * otherwise pass NULL * * Checks the presence of IPv4 and IPv6 multicast routers behind a bridge. * * Return: * BATADV_NO_FLAGS: Both an IPv4 and IPv6 multicast router is present * BATADV_MCAST_WANT_NO_RTR4: No IPv4 multicast router is present * BATADV_MCAST_WANT_NO_RTR6: No IPv6 multicast router is present * The former two OR'd: no multicast router is present */ static u8 batadv_mcast_mla_rtr_flags_bridge_get(struct batadv_priv *bat_priv, struct net_device *bridge) { struct net_device *dev = bat_priv->soft_iface; u8 flags = BATADV_NO_FLAGS; if (!bridge) return BATADV_MCAST_WANT_NO_RTR4 | BATADV_MCAST_WANT_NO_RTR6; if (!br_multicast_has_router_adjacent(dev, ETH_P_IP)) flags |= BATADV_MCAST_WANT_NO_RTR4; if (!br_multicast_has_router_adjacent(dev, ETH_P_IPV6)) flags |= BATADV_MCAST_WANT_NO_RTR6; return flags; } /** * batadv_mcast_mla_rtr_flags_get() - get multicast router flags * @bat_priv: the bat priv with all the soft interface information * @bridge: bridge interface on top of the soft_iface if present, * otherwise pass NULL * * Checks the presence of IPv4 and IPv6 multicast routers on this * node or behind its bridge. * * Return: * BATADV_NO_FLAGS: Both an IPv4 and IPv6 multicast router is present * BATADV_MCAST_WANT_NO_RTR4: No IPv4 multicast router is present * BATADV_MCAST_WANT_NO_RTR6: No IPv6 multicast router is present * The former two OR'd: no multicast router is present */ static u8 batadv_mcast_mla_rtr_flags_get(struct batadv_priv *bat_priv, struct net_device *bridge) { u8 flags = BATADV_MCAST_WANT_NO_RTR4 | BATADV_MCAST_WANT_NO_RTR6; flags &= batadv_mcast_mla_rtr_flags_softif_get(bat_priv, bridge); flags &= batadv_mcast_mla_rtr_flags_bridge_get(bat_priv, bridge); return flags; } /** * batadv_mcast_mla_forw_flags_get() - get multicast forwarding flags * @bat_priv: the bat priv with all the soft interface information * * Checks if all active hard interfaces have an MTU larger or equal to 1280 * bytes (IPv6 minimum MTU). * * Return: BATADV_MCAST_HAVE_MC_PTYPE_CAPA if yes, BATADV_NO_FLAGS otherwise. */ static u8 batadv_mcast_mla_forw_flags_get(struct batadv_priv *bat_priv) { const struct batadv_hard_iface *hard_iface; rcu_read_lock(); list_for_each_entry_rcu(hard_iface, &batadv_hardif_list, list) { if (hard_iface->if_status != BATADV_IF_ACTIVE) continue; if (hard_iface->soft_iface != bat_priv->soft_iface) continue; if (hard_iface->net_dev->mtu < IPV6_MIN_MTU) { rcu_read_unlock(); return BATADV_NO_FLAGS; } } rcu_read_unlock(); return BATADV_MCAST_HAVE_MC_PTYPE_CAPA; } /** * batadv_mcast_mla_flags_get() - get the new multicast flags * @bat_priv: the bat priv with all the soft interface information * * Return: A set of flags for the current/next TVLV, querier and * bridge state. */ static struct batadv_mcast_mla_flags batadv_mcast_mla_flags_get(struct batadv_priv *bat_priv) { struct net_device *dev = bat_priv->soft_iface; struct batadv_mcast_querier_state *qr4, *qr6; struct batadv_mcast_mla_flags mla_flags; struct net_device *bridge; bridge = batadv_mcast_get_bridge(dev); memset(&mla_flags, 0, sizeof(mla_flags)); mla_flags.enabled = 1; mla_flags.tvlv_flags |= batadv_mcast_mla_rtr_flags_get(bat_priv, bridge); mla_flags.tvlv_flags |= batadv_mcast_mla_forw_flags_get(bat_priv); if (!bridge) return mla_flags; dev_put(bridge); mla_flags.bridged = 1; qr4 = &mla_flags.querier_ipv4; qr6 = &mla_flags.querier_ipv6; if (!IS_ENABLED(CONFIG_BRIDGE_IGMP_SNOOPING)) pr_warn_once("No bridge IGMP snooping compiled - multicast optimizations disabled\n"); qr4->exists = br_multicast_has_querier_anywhere(dev, ETH_P_IP); qr4->shadowing = br_multicast_has_querier_adjacent(dev, ETH_P_IP); qr6->exists = br_multicast_has_querier_anywhere(dev, ETH_P_IPV6); qr6->shadowing = br_multicast_has_querier_adjacent(dev, ETH_P_IPV6); mla_flags.tvlv_flags |= BATADV_MCAST_WANT_ALL_UNSNOOPABLES; /* 1) If no querier exists at all, then multicast listeners on * our local TT clients behind the bridge will keep silent. * 2) If the selected querier is on one of our local TT clients, * behind the bridge, then this querier might shadow multicast * listeners on our local TT clients, behind this bridge. * * In both cases, we will signalize other batman nodes that * we need all multicast traffic of the according protocol. */ if (!qr4->exists || qr4->shadowing) { mla_flags.tvlv_flags |= BATADV_MCAST_WANT_ALL_IPV4; mla_flags.tvlv_flags &= ~BATADV_MCAST_WANT_NO_RTR4; } if (!qr6->exists || qr6->shadowing) { mla_flags.tvlv_flags |= BATADV_MCAST_WANT_ALL_IPV6; mla_flags.tvlv_flags &= ~BATADV_MCAST_WANT_NO_RTR6; } return mla_flags; } /** * batadv_mcast_mla_is_duplicate() - check whether an address is in a list * @mcast_addr: the multicast address to check * @mcast_list: the list with multicast addresses to search in * * Return: true if the given address is already in the given list. * Otherwise returns false. */ static bool batadv_mcast_mla_is_duplicate(u8 *mcast_addr, struct hlist_head *mcast_list) { struct batadv_hw_addr *mcast_entry; hlist_for_each_entry(mcast_entry, mcast_list, list) if (batadv_compare_eth(mcast_entry->addr, mcast_addr)) return true; return false; } /** * batadv_mcast_mla_softif_get_ipv4() - get softif IPv4 multicast listeners * @dev: the device to collect multicast addresses from * @mcast_list: a list to put found addresses into * @flags: flags indicating the new multicast state * * Collects multicast addresses of IPv4 multicast listeners residing * on this kernel on the given soft interface, dev, in * the given mcast_list. In general, multicast listeners provided by * your multicast receiving applications run directly on this node. * * Return: -ENOMEM on memory allocation error or the number of * items added to the mcast_list otherwise. */ static int batadv_mcast_mla_softif_get_ipv4(struct net_device *dev, struct hlist_head *mcast_list, struct batadv_mcast_mla_flags *flags) { struct batadv_hw_addr *new; struct in_device *in_dev; u8 mcast_addr[ETH_ALEN]; struct ip_mc_list *pmc; int ret = 0; if (flags->tvlv_flags & BATADV_MCAST_WANT_ALL_IPV4) return 0; rcu_read_lock(); in_dev = __in_dev_get_rcu(dev); if (!in_dev) { rcu_read_unlock(); return 0; } for (pmc = rcu_dereference(in_dev->mc_list); pmc; pmc = rcu_dereference(pmc->next_rcu)) { if (flags->tvlv_flags & BATADV_MCAST_WANT_ALL_UNSNOOPABLES && ipv4_is_local_multicast(pmc->multiaddr)) continue; if (!(flags->tvlv_flags & BATADV_MCAST_WANT_NO_RTR4) && !ipv4_is_local_multicast(pmc->multiaddr)) continue; ip_eth_mc_map(pmc->multiaddr, mcast_addr); if (batadv_mcast_mla_is_duplicate(mcast_addr, mcast_list)) continue; new = kmalloc(sizeof(*new), GFP_ATOMIC); if (!new) { ret = -ENOMEM; break; } ether_addr_copy(new->addr, mcast_addr); hlist_add_head(&new->list, mcast_list); ret++; } rcu_read_unlock(); return ret; } /** * batadv_mcast_mla_softif_get_ipv6() - get softif IPv6 multicast listeners * @dev: the device to collect multicast addresses from * @mcast_list: a list to put found addresses into * @flags: flags indicating the new multicast state * * Collects multicast addresses of IPv6 multicast listeners residing * on this kernel on the given soft interface, dev, in * the given mcast_list. In general, multicast listeners provided by * your multicast receiving applications run directly on this node. * * Return: -ENOMEM on memory allocation error or the number of * items added to the mcast_list otherwise. */ #if IS_ENABLED(CONFIG_IPV6) static int batadv_mcast_mla_softif_get_ipv6(struct net_device *dev, struct hlist_head *mcast_list, struct batadv_mcast_mla_flags *flags) { struct batadv_hw_addr *new; struct inet6_dev *in6_dev; u8 mcast_addr[ETH_ALEN]; struct ifmcaddr6 *pmc6; int ret = 0; if (flags->tvlv_flags & BATADV_MCAST_WANT_ALL_IPV6) return 0; rcu_read_lock(); in6_dev = __in6_dev_get(dev); if (!in6_dev) { rcu_read_unlock(); return 0; } for (pmc6 = rcu_dereference(in6_dev->mc_list); pmc6; pmc6 = rcu_dereference(pmc6->next)) { if (IPV6_ADDR_MC_SCOPE(&pmc6->mca_addr) < IPV6_ADDR_SCOPE_LINKLOCAL) continue; if (flags->tvlv_flags & BATADV_MCAST_WANT_ALL_UNSNOOPABLES && ipv6_addr_is_ll_all_nodes(&pmc6->mca_addr)) continue; if (!(flags->tvlv_flags & BATADV_MCAST_WANT_NO_RTR6) && IPV6_ADDR_MC_SCOPE(&pmc6->mca_addr) > IPV6_ADDR_SCOPE_LINKLOCAL) continue; ipv6_eth_mc_map(&pmc6->mca_addr, mcast_addr); if (batadv_mcast_mla_is_duplicate(mcast_addr, mcast_list)) continue; new = kmalloc(sizeof(*new), GFP_ATOMIC); if (!new) { ret = -ENOMEM; break; } ether_addr_copy(new->addr, mcast_addr); hlist_add_head(&new->list, mcast_list); ret++; } rcu_read_unlock(); return ret; } #else static inline int batadv_mcast_mla_softif_get_ipv6(struct net_device *dev, struct hlist_head *mcast_list, struct batadv_mcast_mla_flags *flags) { return 0; } #endif /** * batadv_mcast_mla_softif_get() - get softif multicast listeners * @dev: the device to collect multicast addresses from * @mcast_list: a list to put found addresses into * @flags: flags indicating the new multicast state * * Collects multicast addresses of multicast listeners residing * on this kernel on the given soft interface, dev, in * the given mcast_list. In general, multicast listeners provided by * your multicast receiving applications run directly on this node. * * If there is a bridge interface on top of dev, collect from that one * instead. Just like with IP addresses and routes, multicast listeners * will(/should) register to the bridge interface instead of an * enslaved bat0. * * Return: -ENOMEM on memory allocation error or the number of * items added to the mcast_list otherwise. */ static int batadv_mcast_mla_softif_get(struct net_device *dev, struct hlist_head *mcast_list, struct batadv_mcast_mla_flags *flags) { struct net_device *bridge = batadv_mcast_get_bridge(dev); int ret4, ret6 = 0; if (bridge) dev = bridge; ret4 = batadv_mcast_mla_softif_get_ipv4(dev, mcast_list, flags); if (ret4 < 0) goto out; ret6 = batadv_mcast_mla_softif_get_ipv6(dev, mcast_list, flags); if (ret6 < 0) { ret4 = 0; goto out; } out: dev_put(bridge); return ret4 + ret6; } /** * batadv_mcast_mla_br_addr_cpy() - copy a bridge multicast address * @dst: destination to write to - a multicast MAC address * @src: source to read from - a multicast IP address * * Converts a given multicast IPv4/IPv6 address from a bridge * to its matching multicast MAC address and copies it into the given * destination buffer. * * Caller needs to make sure the destination buffer can hold * at least ETH_ALEN bytes. */ static void batadv_mcast_mla_br_addr_cpy(char *dst, const struct br_ip *src) { if (src->proto == htons(ETH_P_IP)) ip_eth_mc_map(src->dst.ip4, dst); #if IS_ENABLED(CONFIG_IPV6) else if (src->proto == htons(ETH_P_IPV6)) ipv6_eth_mc_map(&src->dst.ip6, dst); #endif else eth_zero_addr(dst); } /** * batadv_mcast_mla_bridge_get() - get bridged-in multicast listeners * @dev: a bridge slave whose bridge to collect multicast addresses from * @mcast_list: a list to put found addresses into * @flags: flags indicating the new multicast state * * Collects multicast addresses of multicast listeners residing * on foreign, non-mesh devices which we gave access to our mesh via * a bridge on top of the given soft interface, dev, in the given * mcast_list. * * Return: -ENOMEM on memory allocation error or the number of * items added to the mcast_list otherwise. */ static int batadv_mcast_mla_bridge_get(struct net_device *dev, struct hlist_head *mcast_list, struct batadv_mcast_mla_flags *flags) { struct list_head bridge_mcast_list = LIST_HEAD_INIT(bridge_mcast_list); struct br_ip_list *br_ip_entry, *tmp; u8 tvlv_flags = flags->tvlv_flags; struct batadv_hw_addr *new; u8 mcast_addr[ETH_ALEN]; int ret; /* we don't need to detect these devices/listeners, the IGMP/MLD * snooping code of the Linux bridge already does that for us */ ret = br_multicast_list_adjacent(dev, &bridge_mcast_list); if (ret < 0) goto out; list_for_each_entry(br_ip_entry, &bridge_mcast_list, list) { if (br_ip_entry->addr.proto == htons(ETH_P_IP)) { if (tvlv_flags & BATADV_MCAST_WANT_ALL_IPV4) continue; if (tvlv_flags & BATADV_MCAST_WANT_ALL_UNSNOOPABLES && ipv4_is_local_multicast(br_ip_entry->addr.dst.ip4)) continue; if (!(tvlv_flags & BATADV_MCAST_WANT_NO_RTR4) && !ipv4_is_local_multicast(br_ip_entry->addr.dst.ip4)) continue; } #if IS_ENABLED(CONFIG_IPV6) if (br_ip_entry->addr.proto == htons(ETH_P_IPV6)) { if (tvlv_flags & BATADV_MCAST_WANT_ALL_IPV6) continue; if (tvlv_flags & BATADV_MCAST_WANT_ALL_UNSNOOPABLES && ipv6_addr_is_ll_all_nodes(&br_ip_entry->addr.dst.ip6)) continue; if (!(tvlv_flags & BATADV_MCAST_WANT_NO_RTR6) && IPV6_ADDR_MC_SCOPE(&br_ip_entry->addr.dst.ip6) > IPV6_ADDR_SCOPE_LINKLOCAL) continue; } #endif batadv_mcast_mla_br_addr_cpy(mcast_addr, &br_ip_entry->addr); if (batadv_mcast_mla_is_duplicate(mcast_addr, mcast_list)) continue; new = kmalloc(sizeof(*new), GFP_ATOMIC); if (!new) { ret = -ENOMEM; break; } ether_addr_copy(new->addr, mcast_addr); hlist_add_head(&new->list, mcast_list); } out: list_for_each_entry_safe(br_ip_entry, tmp, &bridge_mcast_list, list) { list_del(&br_ip_entry->list); kfree(br_ip_entry); } return ret; } /** * batadv_mcast_mla_list_free() - free a list of multicast addresses * @mcast_list: the list to free * * Removes and frees all items in the given mcast_list. */ static void batadv_mcast_mla_list_free(struct hlist_head *mcast_list) { struct batadv_hw_addr *mcast_entry; struct hlist_node *tmp; hlist_for_each_entry_safe(mcast_entry, tmp, mcast_list, list) { hlist_del(&mcast_entry->list); kfree(mcast_entry); } } /** * batadv_mcast_mla_tt_retract() - clean up multicast listener announcements * @bat_priv: the bat priv with all the soft interface information * @mcast_list: a list of addresses which should _not_ be removed * * Retracts the announcement of any multicast listener from the * translation table except the ones listed in the given mcast_list. * * If mcast_list is NULL then all are retracted. */ static void batadv_mcast_mla_tt_retract(struct batadv_priv *bat_priv, struct hlist_head *mcast_list) { struct batadv_hw_addr *mcast_entry; struct hlist_node *tmp; hlist_for_each_entry_safe(mcast_entry, tmp, &bat_priv->mcast.mla_list, list) { if (mcast_list && batadv_mcast_mla_is_duplicate(mcast_entry->addr, mcast_list)) continue; batadv_tt_local_remove(bat_priv, mcast_entry->addr, BATADV_NO_FLAGS, "mcast TT outdated", false); hlist_del(&mcast_entry->list); kfree(mcast_entry); } } /** * batadv_mcast_mla_tt_add() - add multicast listener announcements * @bat_priv: the bat priv with all the soft interface information * @mcast_list: a list of addresses which are going to get added * * Adds multicast listener announcements from the given mcast_list to the * translation table if they have not been added yet. */ static void batadv_mcast_mla_tt_add(struct batadv_priv *bat_priv, struct hlist_head *mcast_list) { struct batadv_hw_addr *mcast_entry; struct hlist_node *tmp; if (!mcast_list) return; hlist_for_each_entry_safe(mcast_entry, tmp, mcast_list, list) { if (batadv_mcast_mla_is_duplicate(mcast_entry->addr, &bat_priv->mcast.mla_list)) continue; if (!batadv_tt_local_add(bat_priv->soft_iface, mcast_entry->addr, BATADV_NO_FLAGS, BATADV_NULL_IFINDEX, BATADV_NO_MARK)) continue; hlist_del(&mcast_entry->list); hlist_add_head(&mcast_entry->list, &bat_priv->mcast.mla_list); } } /** * batadv_mcast_querier_log() - debug output regarding the querier status on * link * @bat_priv: the bat priv with all the soft interface information * @str_proto: a string for the querier protocol (e.g. "IGMP" or "MLD") * @old_state: the previous querier state on our link * @new_state: the new querier state on our link * * Outputs debug messages to the logging facility with log level 'mcast' * regarding changes to the querier status on the link which are relevant * to our multicast optimizations. * * Usually this is about whether a querier appeared or vanished in * our mesh or whether the querier is in the suboptimal position of being * behind our local bridge segment: Snooping switches will directly * forward listener reports to the querier, therefore batman-adv and * the bridge will potentially not see these listeners - the querier is * potentially shadowing listeners from us then. * * This is only interesting for nodes with a bridge on top of their * soft interface. */ static void batadv_mcast_querier_log(struct batadv_priv *bat_priv, char *str_proto, struct batadv_mcast_querier_state *old_state, struct batadv_mcast_querier_state *new_state) { if (!old_state->exists && new_state->exists) batadv_info(bat_priv->soft_iface, "%s Querier appeared\n", str_proto); else if (old_state->exists && !new_state->exists) batadv_info(bat_priv->soft_iface, "%s Querier disappeared - multicast optimizations disabled\n", str_proto); else if (!bat_priv->mcast.mla_flags.bridged && !new_state->exists) batadv_info(bat_priv->soft_iface, "No %s Querier present - multicast optimizations disabled\n", str_proto); if (new_state->exists) { if ((!old_state->shadowing && new_state->shadowing) || (!old_state->exists && new_state->shadowing)) batadv_dbg(BATADV_DBG_MCAST, bat_priv, "%s Querier is behind our bridged segment: Might shadow listeners\n", str_proto); else if (old_state->shadowing && !new_state->shadowing) batadv_dbg(BATADV_DBG_MCAST, bat_priv, "%s Querier is not behind our bridged segment\n", str_proto); } } /** * batadv_mcast_bridge_log() - debug output for topology changes in bridged * setups * @bat_priv: the bat priv with all the soft interface information * @new_flags: flags indicating the new multicast state * * If no bridges are ever used on this node, then this function does nothing. * * Otherwise this function outputs debug information to the 'mcast' log level * which might be relevant to our multicast optimizations. * * More precisely, it outputs information when a bridge interface is added or * removed from a soft interface. And when a bridge is present, it further * outputs information about the querier state which is relevant for the * multicast flags this node is going to set. */ static void batadv_mcast_bridge_log(struct batadv_priv *bat_priv, struct batadv_mcast_mla_flags *new_flags) { struct batadv_mcast_mla_flags *old_flags = &bat_priv->mcast.mla_flags; if (!old_flags->bridged && new_flags->bridged) batadv_dbg(BATADV_DBG_MCAST, bat_priv, "Bridge added: Setting Unsnoopables(U)-flag\n"); else if (old_flags->bridged && !new_flags->bridged) batadv_dbg(BATADV_DBG_MCAST, bat_priv, "Bridge removed: Unsetting Unsnoopables(U)-flag\n"); if (new_flags->bridged) { batadv_mcast_querier_log(bat_priv, "IGMP", &old_flags->querier_ipv4, &new_flags->querier_ipv4); batadv_mcast_querier_log(bat_priv, "MLD", &old_flags->querier_ipv6, &new_flags->querier_ipv6); } } /** * batadv_mcast_flags_log() - output debug information about mcast flag changes * @bat_priv: the bat priv with all the soft interface information * @flags: TVLV flags indicating the new multicast state * * Whenever the multicast TVLV flags this node announces change, this function * should be used to notify userspace about the change. */ static void batadv_mcast_flags_log(struct batadv_priv *bat_priv, u8 flags) { bool old_enabled = bat_priv->mcast.mla_flags.enabled; u8 old_flags = bat_priv->mcast.mla_flags.tvlv_flags; char str_old_flags[] = "[.... . .]"; sprintf(str_old_flags, "[%c%c%c%s%s%c]", (old_flags & BATADV_MCAST_WANT_ALL_UNSNOOPABLES) ? 'U' : '.', (old_flags & BATADV_MCAST_WANT_ALL_IPV4) ? '4' : '.', (old_flags & BATADV_MCAST_WANT_ALL_IPV6) ? '6' : '.', !(old_flags & BATADV_MCAST_WANT_NO_RTR4) ? "R4" : ". ", !(old_flags & BATADV_MCAST_WANT_NO_RTR6) ? "R6" : ". ", !(old_flags & BATADV_MCAST_HAVE_MC_PTYPE_CAPA) ? 'P' : '.'); batadv_dbg(BATADV_DBG_MCAST, bat_priv, "Changing multicast flags from '%s' to '[%c%c%c%s%s%c]'\n", old_enabled ? str_old_flags : "<undefined>", (flags & BATADV_MCAST_WANT_ALL_UNSNOOPABLES) ? 'U' : '.', (flags & BATADV_MCAST_WANT_ALL_IPV4) ? '4' : '.', (flags & BATADV_MCAST_WANT_ALL_IPV6) ? '6' : '.', !(flags & BATADV_MCAST_WANT_NO_RTR4) ? "R4" : ". ", !(flags & BATADV_MCAST_WANT_NO_RTR6) ? "R6" : ". ", !(flags & BATADV_MCAST_HAVE_MC_PTYPE_CAPA) ? 'P' : '.'); } /** * batadv_mcast_mla_flags_update() - update multicast flags * @bat_priv: the bat priv with all the soft interface information * @flags: flags indicating the new multicast state * * Updates the own multicast tvlv with our current multicast related settings, * capabilities and inabilities. */ static void batadv_mcast_mla_flags_update(struct batadv_priv *bat_priv, struct batadv_mcast_mla_flags *flags) { struct batadv_tvlv_mcast_data mcast_data; if (!memcmp(flags, &bat_priv->mcast.mla_flags, sizeof(*flags))) return; batadv_mcast_bridge_log(bat_priv, flags); batadv_mcast_flags_log(bat_priv, flags->tvlv_flags); mcast_data.flags = flags->tvlv_flags; memset(mcast_data.reserved, 0, sizeof(mcast_data.reserved)); batadv_tvlv_container_register(bat_priv, BATADV_TVLV_MCAST, 2, &mcast_data, sizeof(mcast_data)); bat_priv->mcast.mla_flags = *flags; } /** * __batadv_mcast_mla_update() - update the own MLAs * @bat_priv: the bat priv with all the soft interface information * * Updates the own multicast listener announcements in the translation * table as well as the own, announced multicast tvlv container. * * Note that non-conflicting reads and writes to bat_priv->mcast.mla_list * in batadv_mcast_mla_tt_retract() and batadv_mcast_mla_tt_add() are * ensured by the non-parallel execution of the worker this function * belongs to. */ static void __batadv_mcast_mla_update(struct batadv_priv *bat_priv) { struct net_device *soft_iface = bat_priv->soft_iface; struct hlist_head mcast_list = HLIST_HEAD_INIT; struct batadv_mcast_mla_flags flags; int ret; flags = batadv_mcast_mla_flags_get(bat_priv); ret = batadv_mcast_mla_softif_get(soft_iface, &mcast_list, &flags); if (ret < 0) goto out; ret = batadv_mcast_mla_bridge_get(soft_iface, &mcast_list, &flags); if (ret < 0) goto out; spin_lock(&bat_priv->mcast.mla_lock); batadv_mcast_mla_tt_retract(bat_priv, &mcast_list); batadv_mcast_mla_tt_add(bat_priv, &mcast_list); batadv_mcast_mla_flags_update(bat_priv, &flags); spin_unlock(&bat_priv->mcast.mla_lock); out: batadv_mcast_mla_list_free(&mcast_list); } /** * batadv_mcast_mla_update() - update the own MLAs * @work: kernel work struct * * Updates the own multicast listener announcements in the translation * table as well as the own, announced multicast tvlv container. * * In the end, reschedules the work timer. */ static void batadv_mcast_mla_update(struct work_struct *work) { struct delayed_work *delayed_work; struct batadv_priv_mcast *priv_mcast; struct batadv_priv *bat_priv; delayed_work = to_delayed_work(work); priv_mcast = container_of(delayed_work, struct batadv_priv_mcast, work); bat_priv = container_of(priv_mcast, struct batadv_priv, mcast); __batadv_mcast_mla_update(bat_priv); batadv_mcast_start_timer(bat_priv); } /** * batadv_mcast_is_report_ipv4() - check for IGMP reports * @skb: the ethernet frame destined for the mesh * * This call might reallocate skb data. * * Checks whether the given frame is a valid IGMP report. * * Return: If so then true, otherwise false. */ static bool batadv_mcast_is_report_ipv4(struct sk_buff *skb) { if (ip_mc_check_igmp(skb) < 0) return false; switch (igmp_hdr(skb)->type) { case IGMP_HOST_MEMBERSHIP_REPORT: case IGMPV2_HOST_MEMBERSHIP_REPORT: case IGMPV3_HOST_MEMBERSHIP_REPORT: return true; } return false; } /** * batadv_mcast_forw_mode_check_ipv4() - check for optimized forwarding * potential * @bat_priv: the bat priv with all the soft interface information * @skb: the IPv4 packet to check * @is_unsnoopable: stores whether the destination is snoopable * @is_routable: stores whether the destination is routable * * Checks whether the given IPv4 packet has the potential to be forwarded with a * mode more optimal than classic flooding. * * Return: If so then 0. Otherwise -EINVAL or -ENOMEM in case of memory * allocation failure. */ static int batadv_mcast_forw_mode_check_ipv4(struct batadv_priv *bat_priv, struct sk_buff *skb, bool *is_unsnoopable, int *is_routable) { struct iphdr *iphdr; /* We might fail due to out-of-memory -> drop it */ if (!pskb_may_pull(skb, sizeof(struct ethhdr) + sizeof(*iphdr))) return -ENOMEM; if (batadv_mcast_is_report_ipv4(skb)) return -EINVAL; iphdr = ip_hdr(skb); /* link-local multicast listeners behind a bridge are * not snoopable (see RFC4541, section 2.1.2.2) */ if (ipv4_is_local_multicast(iphdr->daddr)) *is_unsnoopable = true; else *is_routable = ETH_P_IP; return 0; } /** * batadv_mcast_is_report_ipv6() - check for MLD reports * @skb: the ethernet frame destined for the mesh * * This call might reallocate skb data. * * Checks whether the given frame is a valid MLD report. * * Return: If so then true, otherwise false. */ static bool batadv_mcast_is_report_ipv6(struct sk_buff *skb) { if (ipv6_mc_check_mld(skb) < 0) return false; switch (icmp6_hdr(skb)->icmp6_type) { case ICMPV6_MGM_REPORT: case ICMPV6_MLD2_REPORT: return true; } return false; } /** * batadv_mcast_forw_mode_check_ipv6() - check for optimized forwarding * potential * @bat_priv: the bat priv with all the soft interface information * @skb: the IPv6 packet to check * @is_unsnoopable: stores whether the destination is snoopable * @is_routable: stores whether the destination is routable * * Checks whether the given IPv6 packet has the potential to be forwarded with a * mode more optimal than classic flooding. * * Return: If so then 0. Otherwise -EINVAL is or -ENOMEM if we are out of memory */ static int batadv_mcast_forw_mode_check_ipv6(struct batadv_priv *bat_priv, struct sk_buff *skb, bool *is_unsnoopable, int *is_routable) { struct ipv6hdr *ip6hdr; /* We might fail due to out-of-memory -> drop it */ if (!pskb_may_pull(skb, sizeof(struct ethhdr) + sizeof(*ip6hdr))) return -ENOMEM; if (batadv_mcast_is_report_ipv6(skb)) return -EINVAL; ip6hdr = ipv6_hdr(skb); if (IPV6_ADDR_MC_SCOPE(&ip6hdr->daddr) < IPV6_ADDR_SCOPE_LINKLOCAL) return -EINVAL; /* link-local-all-nodes multicast listeners behind a bridge are * not snoopable (see RFC4541, section 3, paragraph 3) */ if (ipv6_addr_is_ll_all_nodes(&ip6hdr->daddr)) *is_unsnoopable = true; else if (IPV6_ADDR_MC_SCOPE(&ip6hdr->daddr) > IPV6_ADDR_SCOPE_LINKLOCAL) *is_routable = ETH_P_IPV6; return 0; } /** * batadv_mcast_forw_mode_check() - check for optimized forwarding potential * @bat_priv: the bat priv with all the soft interface information * @skb: the multicast frame to check * @is_unsnoopable: stores whether the destination is snoopable * @is_routable: stores whether the destination is routable * * Checks whether the given multicast ethernet frame has the potential to be * forwarded with a mode more optimal than classic flooding. * * Return: If so then 0. Otherwise -EINVAL is or -ENOMEM if we are out of memory */ static int batadv_mcast_forw_mode_check(struct batadv_priv *bat_priv, struct sk_buff *skb, bool *is_unsnoopable, int *is_routable) { struct ethhdr *ethhdr = eth_hdr(skb); if (!atomic_read(&bat_priv->multicast_mode)) return -EINVAL; switch (ntohs(ethhdr->h_proto)) { case ETH_P_IP: return batadv_mcast_forw_mode_check_ipv4(bat_priv, skb, is_unsnoopable, is_routable); case ETH_P_IPV6: if (!IS_ENABLED(CONFIG_IPV6)) return -EINVAL; return batadv_mcast_forw_mode_check_ipv6(bat_priv, skb, is_unsnoopable, is_routable); default: return -EINVAL; } } /** * batadv_mcast_forw_want_all_ip_count() - count nodes with unspecific mcast * interest * @bat_priv: the bat priv with all the soft interface information * @ethhdr: ethernet header of a packet * * Return: the number of nodes which want all IPv4 multicast traffic if the * given ethhdr is from an IPv4 packet or the number of nodes which want all * IPv6 traffic if it matches an IPv6 packet. */ static int batadv_mcast_forw_want_all_ip_count(struct batadv_priv *bat_priv, struct ethhdr *ethhdr) { switch (ntohs(ethhdr->h_proto)) { case ETH_P_IP: return atomic_read(&bat_priv->mcast.num_want_all_ipv4); case ETH_P_IPV6: return atomic_read(&bat_priv->mcast.num_want_all_ipv6); default: /* we shouldn't be here... */ return 0; } } /** * batadv_mcast_forw_rtr_count() - count nodes with a multicast router * @bat_priv: the bat priv with all the soft interface information * @protocol: the ethernet protocol type to count multicast routers for * * Return: the number of nodes which want all routable IPv4 multicast traffic * if the protocol is ETH_P_IP or the number of nodes which want all routable * IPv6 traffic if the protocol is ETH_P_IPV6. Otherwise returns 0. */ static int batadv_mcast_forw_rtr_count(struct batadv_priv *bat_priv, int protocol) { switch (protocol) { case ETH_P_IP: return atomic_read(&bat_priv->mcast.num_want_all_rtr4); case ETH_P_IPV6: return atomic_read(&bat_priv->mcast.num_want_all_rtr6); default: return 0; } } /** * batadv_mcast_forw_mode_by_count() - get forwarding mode by count * @bat_priv: the bat priv with all the soft interface information * @skb: the multicast packet to check * @vid: the vlan identifier * @is_routable: stores whether the destination is routable * @count: the number of originators the multicast packet need to be sent to * * For a multicast packet with multiple destination originators, checks which * mode to use. For BATADV_FORW_MCAST it also encapsulates the packet with a * complete batman-adv multicast header. * * Return: * BATADV_FORW_MCAST: If all nodes have multicast packet routing * capabilities and an MTU >= 1280 on all hard interfaces (including us) * and the encapsulated multicast packet with all destination addresses * would still fit into an 1280 bytes batman-adv multicast packet * (excluding the outer ethernet frame) and we could successfully push * the full batman-adv multicast packet header. * BATADV_FORW_UCASTS: If the packet cannot be sent in a batman-adv * multicast packet and the amount of batman-adv unicast packets needed * is smaller or equal to the configured multicast fanout. * BATADV_FORW_BCAST: Otherwise. */ static enum batadv_forw_mode batadv_mcast_forw_mode_by_count(struct batadv_priv *bat_priv, struct sk_buff *skb, unsigned short vid, int is_routable, int count) { unsigned int mcast_hdrlen = batadv_mcast_forw_packet_hdrlen(count); u8 own_tvlv_flags = bat_priv->mcast.mla_flags.tvlv_flags; if (!atomic_read(&bat_priv->mcast.num_no_mc_ptype_capa) && own_tvlv_flags & BATADV_MCAST_HAVE_MC_PTYPE_CAPA && skb->len + mcast_hdrlen <= IPV6_MIN_MTU && batadv_mcast_forw_push(bat_priv, skb, vid, is_routable, count)) return BATADV_FORW_MCAST; if (count <= atomic_read(&bat_priv->multicast_fanout)) return BATADV_FORW_UCASTS; return BATADV_FORW_BCAST; } /** * batadv_mcast_forw_mode() - check on how to forward a multicast packet * @bat_priv: the bat priv with all the soft interface information * @skb: the multicast packet to check * @vid: the vlan identifier * @is_routable: stores whether the destination is routable * * Return: The forwarding mode as enum batadv_forw_mode. */ enum batadv_forw_mode batadv_mcast_forw_mode(struct batadv_priv *bat_priv, struct sk_buff *skb, unsigned short vid, int *is_routable) { int ret, tt_count, ip_count, unsnoop_count, total_count; bool is_unsnoopable = false; struct ethhdr *ethhdr; int rtr_count = 0; ret = batadv_mcast_forw_mode_check(bat_priv, skb, &is_unsnoopable, is_routable); if (ret == -ENOMEM) return BATADV_FORW_NONE; else if (ret < 0) return BATADV_FORW_BCAST; ethhdr = eth_hdr(skb); tt_count = batadv_tt_global_hash_count(bat_priv, ethhdr->h_dest, BATADV_NO_FLAGS); ip_count = batadv_mcast_forw_want_all_ip_count(bat_priv, ethhdr); unsnoop_count = !is_unsnoopable ? 0 : atomic_read(&bat_priv->mcast.num_want_all_unsnoopables); rtr_count = batadv_mcast_forw_rtr_count(bat_priv, *is_routable); total_count = tt_count + ip_count + unsnoop_count + rtr_count; if (!total_count) return BATADV_FORW_NONE; else if (unsnoop_count) return BATADV_FORW_BCAST; return batadv_mcast_forw_mode_by_count(bat_priv, skb, vid, *is_routable, total_count); } /** * batadv_mcast_forw_send_orig() - send a multicast packet to an originator * @bat_priv: the bat priv with all the soft interface information * @skb: the multicast packet to send * @vid: the vlan identifier * @orig_node: the originator to send the packet to * * Return: NET_XMIT_DROP in case of error or NET_XMIT_SUCCESS otherwise. */ static int batadv_mcast_forw_send_orig(struct batadv_priv *bat_priv, struct sk_buff *skb, unsigned short vid, struct batadv_orig_node *orig_node) { /* Avoid sending multicast-in-unicast packets to other BLA * gateways - they already got the frame from the LAN side * we share with them. * TODO: Refactor to take BLA into account earlier, to avoid * reducing the mcast_fanout count. */ if (batadv_bla_is_backbone_gw_orig(bat_priv, orig_node->orig, vid)) { dev_kfree_skb(skb); return NET_XMIT_SUCCESS; } return batadv_send_skb_unicast(bat_priv, skb, BATADV_UNICAST, 0, orig_node, vid); } /** * batadv_mcast_forw_tt() - forwards a packet to multicast listeners * @bat_priv: the bat priv with all the soft interface information * @skb: the multicast packet to transmit * @vid: the vlan identifier * * Sends copies of a frame with multicast destination to any multicast * listener registered in the translation table. A transmission is performed * via a batman-adv unicast packet for each such destination node. * * Return: NET_XMIT_DROP on memory allocation failure, NET_XMIT_SUCCESS * otherwise. */ static int batadv_mcast_forw_tt(struct batadv_priv *bat_priv, struct sk_buff *skb, unsigned short vid) { int ret = NET_XMIT_SUCCESS; struct sk_buff *newskb; struct batadv_tt_orig_list_entry *orig_entry; struct batadv_tt_global_entry *tt_global; const u8 *addr = eth_hdr(skb)->h_dest; tt_global = batadv_tt_global_hash_find(bat_priv, addr, vid); if (!tt_global) goto out; rcu_read_lock(); hlist_for_each_entry_rcu(orig_entry, &tt_global->orig_list, list) { newskb = skb_copy(skb, GFP_ATOMIC); if (!newskb) { ret = NET_XMIT_DROP; break; } batadv_mcast_forw_send_orig(bat_priv, newskb, vid, orig_entry->orig_node); } rcu_read_unlock(); batadv_tt_global_entry_put(tt_global); out: return ret; } /** * batadv_mcast_forw_want_all_ipv4() - forward to nodes with want-all-ipv4 * @bat_priv: the bat priv with all the soft interface information * @skb: the multicast packet to transmit * @vid: the vlan identifier * * Sends copies of a frame with multicast destination to any node with a * BATADV_MCAST_WANT_ALL_IPV4 flag set. A transmission is performed via a * batman-adv unicast packet for each such destination node. * * Return: NET_XMIT_DROP on memory allocation failure, NET_XMIT_SUCCESS * otherwise. */ static int batadv_mcast_forw_want_all_ipv4(struct batadv_priv *bat_priv, struct sk_buff *skb, unsigned short vid) { struct batadv_orig_node *orig_node; int ret = NET_XMIT_SUCCESS; struct sk_buff *newskb; rcu_read_lock(); hlist_for_each_entry_rcu(orig_node, &bat_priv->mcast.want_all_ipv4_list, mcast_want_all_ipv4_node) { newskb = skb_copy(skb, GFP_ATOMIC); if (!newskb) { ret = NET_XMIT_DROP; break; } batadv_mcast_forw_send_orig(bat_priv, newskb, vid, orig_node); } rcu_read_unlock(); return ret; } /** * batadv_mcast_forw_want_all_ipv6() - forward to nodes with want-all-ipv6 * @bat_priv: the bat priv with all the soft interface information * @skb: The multicast packet to transmit * @vid: the vlan identifier * * Sends copies of a frame with multicast destination to any node with a * BATADV_MCAST_WANT_ALL_IPV6 flag set. A transmission is performed via a * batman-adv unicast packet for each such destination node. * * Return: NET_XMIT_DROP on memory allocation failure, NET_XMIT_SUCCESS * otherwise. */ static int batadv_mcast_forw_want_all_ipv6(struct batadv_priv *bat_priv, struct sk_buff *skb, unsigned short vid) { struct batadv_orig_node *orig_node; int ret = NET_XMIT_SUCCESS; struct sk_buff *newskb; rcu_read_lock(); hlist_for_each_entry_rcu(orig_node, &bat_priv->mcast.want_all_ipv6_list, mcast_want_all_ipv6_node) { newskb = skb_copy(skb, GFP_ATOMIC); if (!newskb) { ret = NET_XMIT_DROP; break; } batadv_mcast_forw_send_orig(bat_priv, newskb, vid, orig_node); } rcu_read_unlock(); return ret; } /** * batadv_mcast_forw_want_all() - forward packet to nodes in a want-all list * @bat_priv: the bat priv with all the soft interface information * @skb: the multicast packet to transmit * @vid: the vlan identifier * * Sends copies of a frame with multicast destination to any node with a * BATADV_MCAST_WANT_ALL_IPV4 or BATADV_MCAST_WANT_ALL_IPV6 flag set. A * transmission is performed via a batman-adv unicast packet for each such * destination node. * * Return: NET_XMIT_DROP on memory allocation failure or if the protocol family * is neither IPv4 nor IPv6. NET_XMIT_SUCCESS otherwise. */ static int batadv_mcast_forw_want_all(struct batadv_priv *bat_priv, struct sk_buff *skb, unsigned short vid) { switch (ntohs(eth_hdr(skb)->h_proto)) { case ETH_P_IP: return batadv_mcast_forw_want_all_ipv4(bat_priv, skb, vid); case ETH_P_IPV6: return batadv_mcast_forw_want_all_ipv6(bat_priv, skb, vid); default: /* we shouldn't be here... */ return NET_XMIT_DROP; } } /** * batadv_mcast_forw_want_all_rtr4() - forward to nodes with want-all-rtr4 * @bat_priv: the bat priv with all the soft interface information * @skb: the multicast packet to transmit * @vid: the vlan identifier * * Sends copies of a frame with multicast destination to any node with a * BATADV_MCAST_WANT_NO_RTR4 flag unset. A transmission is performed via a * batman-adv unicast packet for each such destination node. * * Return: NET_XMIT_DROP on memory allocation failure, NET_XMIT_SUCCESS * otherwise. */ static int batadv_mcast_forw_want_all_rtr4(struct batadv_priv *bat_priv, struct sk_buff *skb, unsigned short vid) { struct batadv_orig_node *orig_node; int ret = NET_XMIT_SUCCESS; struct sk_buff *newskb; rcu_read_lock(); hlist_for_each_entry_rcu(orig_node, &bat_priv->mcast.want_all_rtr4_list, mcast_want_all_rtr4_node) { newskb = skb_copy(skb, GFP_ATOMIC); if (!newskb) { ret = NET_XMIT_DROP; break; } batadv_mcast_forw_send_orig(bat_priv, newskb, vid, orig_node); } rcu_read_unlock(); return ret; } /** * batadv_mcast_forw_want_all_rtr6() - forward to nodes with want-all-rtr6 * @bat_priv: the bat priv with all the soft interface information * @skb: The multicast packet to transmit * @vid: the vlan identifier * * Sends copies of a frame with multicast destination to any node with a * BATADV_MCAST_WANT_NO_RTR6 flag unset. A transmission is performed via a * batman-adv unicast packet for each such destination node. * * Return: NET_XMIT_DROP on memory allocation failure, NET_XMIT_SUCCESS * otherwise. */ static int batadv_mcast_forw_want_all_rtr6(struct batadv_priv *bat_priv, struct sk_buff *skb, unsigned short vid) { struct batadv_orig_node *orig_node; int ret = NET_XMIT_SUCCESS; struct sk_buff *newskb; rcu_read_lock(); hlist_for_each_entry_rcu(orig_node, &bat_priv->mcast.want_all_rtr6_list, mcast_want_all_rtr6_node) { newskb = skb_copy(skb, GFP_ATOMIC); if (!newskb) { ret = NET_XMIT_DROP; break; } batadv_mcast_forw_send_orig(bat_priv, newskb, vid, orig_node); } rcu_read_unlock(); return ret; } /** * batadv_mcast_forw_want_rtr() - forward packet to nodes in a want-all-rtr list * @bat_priv: the bat priv with all the soft interface information * @skb: the multicast packet to transmit * @vid: the vlan identifier * * Sends copies of a frame with multicast destination to any node with a * BATADV_MCAST_WANT_NO_RTR4 or BATADV_MCAST_WANT_NO_RTR6 flag unset. A * transmission is performed via a batman-adv unicast packet for each such * destination node. * * Return: NET_XMIT_DROP on memory allocation failure or if the protocol family * is neither IPv4 nor IPv6. NET_XMIT_SUCCESS otherwise. */ static int batadv_mcast_forw_want_rtr(struct batadv_priv *bat_priv, struct sk_buff *skb, unsigned short vid) { switch (ntohs(eth_hdr(skb)->h_proto)) { case ETH_P_IP: return batadv_mcast_forw_want_all_rtr4(bat_priv, skb, vid); case ETH_P_IPV6: return batadv_mcast_forw_want_all_rtr6(bat_priv, skb, vid); default: /* we shouldn't be here... */ return NET_XMIT_DROP; } } /** * batadv_mcast_forw_send() - send packet to any detected multicast recipient * @bat_priv: the bat priv with all the soft interface information * @skb: the multicast packet to transmit * @vid: the vlan identifier * @is_routable: stores whether the destination is routable * * Sends copies of a frame with multicast destination to any node that signaled * interest in it, that is either via the translation table or the according * want-all flags. A transmission is performed via a batman-adv unicast packet * for each such destination node. * * The given skb is consumed/freed. * * Return: NET_XMIT_DROP on memory allocation failure or if the protocol family * is neither IPv4 nor IPv6. NET_XMIT_SUCCESS otherwise. */ int batadv_mcast_forw_send(struct batadv_priv *bat_priv, struct sk_buff *skb, unsigned short vid, int is_routable) { int ret; ret = batadv_mcast_forw_tt(bat_priv, skb, vid); if (ret != NET_XMIT_SUCCESS) { kfree_skb(skb); return ret; } ret = batadv_mcast_forw_want_all(bat_priv, skb, vid); if (ret != NET_XMIT_SUCCESS) { kfree_skb(skb); return ret; } if (!is_routable) goto skip_mc_router; ret = batadv_mcast_forw_want_rtr(bat_priv, skb, vid); if (ret != NET_XMIT_SUCCESS) { kfree_skb(skb); return ret; } skip_mc_router: consume_skb(skb); return ret; } /** * batadv_mcast_want_unsnoop_update() - update unsnoop counter and list * @bat_priv: the bat priv with all the soft interface information * @orig: the orig_node which multicast state might have changed of * @mcast_flags: flags indicating the new multicast state * * If the BATADV_MCAST_WANT_ALL_UNSNOOPABLES flag of this originator, * orig, has toggled then this method updates the counter and the list * accordingly. * * Caller needs to hold orig->mcast_handler_lock. */ static void batadv_mcast_want_unsnoop_update(struct batadv_priv *bat_priv, struct batadv_orig_node *orig, u8 mcast_flags) { struct hlist_node *node = &orig->mcast_want_all_unsnoopables_node; struct hlist_head *head = &bat_priv->mcast.want_all_unsnoopables_list; lockdep_assert_held(&orig->mcast_handler_lock); /* switched from flag unset to set */ if (mcast_flags & BATADV_MCAST_WANT_ALL_UNSNOOPABLES && !(orig->mcast_flags & BATADV_MCAST_WANT_ALL_UNSNOOPABLES)) { atomic_inc(&bat_priv->mcast.num_want_all_unsnoopables); spin_lock_bh(&bat_priv->mcast.want_lists_lock); /* flag checks above + mcast_handler_lock prevents this */ WARN_ON(!hlist_unhashed(node)); hlist_add_head_rcu(node, head); spin_unlock_bh(&bat_priv->mcast.want_lists_lock); /* switched from flag set to unset */ } else if (!(mcast_flags & BATADV_MCAST_WANT_ALL_UNSNOOPABLES) && orig->mcast_flags & BATADV_MCAST_WANT_ALL_UNSNOOPABLES) { atomic_dec(&bat_priv->mcast.num_want_all_unsnoopables); spin_lock_bh(&bat_priv->mcast.want_lists_lock); /* flag checks above + mcast_handler_lock prevents this */ WARN_ON(hlist_unhashed(node)); hlist_del_init_rcu(node); spin_unlock_bh(&bat_priv->mcast.want_lists_lock); } } /** * batadv_mcast_want_ipv4_update() - update want-all-ipv4 counter and list * @bat_priv: the bat priv with all the soft interface information * @orig: the orig_node which multicast state might have changed of * @mcast_flags: flags indicating the new multicast state * * If the BATADV_MCAST_WANT_ALL_IPV4 flag of this originator, orig, has * toggled then this method updates the counter and the list accordingly. * * Caller needs to hold orig->mcast_handler_lock. */ static void batadv_mcast_want_ipv4_update(struct batadv_priv *bat_priv, struct batadv_orig_node *orig, u8 mcast_flags) { struct hlist_node *node = &orig->mcast_want_all_ipv4_node; struct hlist_head *head = &bat_priv->mcast.want_all_ipv4_list; lockdep_assert_held(&orig->mcast_handler_lock); /* switched from flag unset to set */ if (mcast_flags & BATADV_MCAST_WANT_ALL_IPV4 && !(orig->mcast_flags & BATADV_MCAST_WANT_ALL_IPV4)) { atomic_inc(&bat_priv->mcast.num_want_all_ipv4); spin_lock_bh(&bat_priv->mcast.want_lists_lock); /* flag checks above + mcast_handler_lock prevents this */ WARN_ON(!hlist_unhashed(node)); hlist_add_head_rcu(node, head); spin_unlock_bh(&bat_priv->mcast.want_lists_lock); /* switched from flag set to unset */ } else if (!(mcast_flags & BATADV_MCAST_WANT_ALL_IPV4) && orig->mcast_flags & BATADV_MCAST_WANT_ALL_IPV4) { atomic_dec(&bat_priv->mcast.num_want_all_ipv4); spin_lock_bh(&bat_priv->mcast.want_lists_lock); /* flag checks above + mcast_handler_lock prevents this */ WARN_ON(hlist_unhashed(node)); hlist_del_init_rcu(node); spin_unlock_bh(&bat_priv->mcast.want_lists_lock); } } /** * batadv_mcast_want_ipv6_update() - update want-all-ipv6 counter and list * @bat_priv: the bat priv with all the soft interface information * @orig: the orig_node which multicast state might have changed of * @mcast_flags: flags indicating the new multicast state * * If the BATADV_MCAST_WANT_ALL_IPV6 flag of this originator, orig, has * toggled then this method updates the counter and the list accordingly. * * Caller needs to hold orig->mcast_handler_lock. */ static void batadv_mcast_want_ipv6_update(struct batadv_priv *bat_priv, struct batadv_orig_node *orig, u8 mcast_flags) { struct hlist_node *node = &orig->mcast_want_all_ipv6_node; struct hlist_head *head = &bat_priv->mcast.want_all_ipv6_list; lockdep_assert_held(&orig->mcast_handler_lock); /* switched from flag unset to set */ if (mcast_flags & BATADV_MCAST_WANT_ALL_IPV6 && !(orig->mcast_flags & BATADV_MCAST_WANT_ALL_IPV6)) { atomic_inc(&bat_priv->mcast.num_want_all_ipv6); spin_lock_bh(&bat_priv->mcast.want_lists_lock); /* flag checks above + mcast_handler_lock prevents this */ WARN_ON(!hlist_unhashed(node)); hlist_add_head_rcu(node, head); spin_unlock_bh(&bat_priv->mcast.want_lists_lock); /* switched from flag set to unset */ } else if (!(mcast_flags & BATADV_MCAST_WANT_ALL_IPV6) && orig->mcast_flags & BATADV_MCAST_WANT_ALL_IPV6) { atomic_dec(&bat_priv->mcast.num_want_all_ipv6); spin_lock_bh(&bat_priv->mcast.want_lists_lock); /* flag checks above + mcast_handler_lock prevents this */ WARN_ON(hlist_unhashed(node)); hlist_del_init_rcu(node); spin_unlock_bh(&bat_priv->mcast.want_lists_lock); } } /** * batadv_mcast_want_rtr4_update() - update want-all-rtr4 counter and list * @bat_priv: the bat priv with all the soft interface information * @orig: the orig_node which multicast state might have changed of * @mcast_flags: flags indicating the new multicast state * * If the BATADV_MCAST_WANT_NO_RTR4 flag of this originator, orig, has * toggled then this method updates the counter and the list accordingly. * * Caller needs to hold orig->mcast_handler_lock. */ static void batadv_mcast_want_rtr4_update(struct batadv_priv *bat_priv, struct batadv_orig_node *orig, u8 mcast_flags) { struct hlist_node *node = &orig->mcast_want_all_rtr4_node; struct hlist_head *head = &bat_priv->mcast.want_all_rtr4_list; lockdep_assert_held(&orig->mcast_handler_lock); /* switched from flag set to unset */ if (!(mcast_flags & BATADV_MCAST_WANT_NO_RTR4) && orig->mcast_flags & BATADV_MCAST_WANT_NO_RTR4) { atomic_inc(&bat_priv->mcast.num_want_all_rtr4); spin_lock_bh(&bat_priv->mcast.want_lists_lock); /* flag checks above + mcast_handler_lock prevents this */ WARN_ON(!hlist_unhashed(node)); hlist_add_head_rcu(node, head); spin_unlock_bh(&bat_priv->mcast.want_lists_lock); /* switched from flag unset to set */ } else if (mcast_flags & BATADV_MCAST_WANT_NO_RTR4 && !(orig->mcast_flags & BATADV_MCAST_WANT_NO_RTR4)) { atomic_dec(&bat_priv->mcast.num_want_all_rtr4); spin_lock_bh(&bat_priv->mcast.want_lists_lock); /* flag checks above + mcast_handler_lock prevents this */ WARN_ON(hlist_unhashed(node)); hlist_del_init_rcu(node); spin_unlock_bh(&bat_priv->mcast.want_lists_lock); } } /** * batadv_mcast_want_rtr6_update() - update want-all-rtr6 counter and list * @bat_priv: the bat priv with all the soft interface information * @orig: the orig_node which multicast state might have changed of * @mcast_flags: flags indicating the new multicast state * * If the BATADV_MCAST_WANT_NO_RTR6 flag of this originator, orig, has * toggled then this method updates the counter and the list accordingly. * * Caller needs to hold orig->mcast_handler_lock. */ static void batadv_mcast_want_rtr6_update(struct batadv_priv *bat_priv, struct batadv_orig_node *orig, u8 mcast_flags) { struct hlist_node *node = &orig->mcast_want_all_rtr6_node; struct hlist_head *head = &bat_priv->mcast.want_all_rtr6_list; lockdep_assert_held(&orig->mcast_handler_lock); /* switched from flag set to unset */ if (!(mcast_flags & BATADV_MCAST_WANT_NO_RTR6) && orig->mcast_flags & BATADV_MCAST_WANT_NO_RTR6) { atomic_inc(&bat_priv->mcast.num_want_all_rtr6); spin_lock_bh(&bat_priv->mcast.want_lists_lock); /* flag checks above + mcast_handler_lock prevents this */ WARN_ON(!hlist_unhashed(node)); hlist_add_head_rcu(node, head); spin_unlock_bh(&bat_priv->mcast.want_lists_lock); /* switched from flag unset to set */ } else if (mcast_flags & BATADV_MCAST_WANT_NO_RTR6 && !(orig->mcast_flags & BATADV_MCAST_WANT_NO_RTR6)) { atomic_dec(&bat_priv->mcast.num_want_all_rtr6); spin_lock_bh(&bat_priv->mcast.want_lists_lock); /* flag checks above + mcast_handler_lock prevents this */ WARN_ON(hlist_unhashed(node)); hlist_del_init_rcu(node); spin_unlock_bh(&bat_priv->mcast.want_lists_lock); } } /** * batadv_mcast_have_mc_ptype_update() - update multicast packet type counter * @bat_priv: the bat priv with all the soft interface information * @orig: the orig_node which multicast state might have changed of * @mcast_flags: flags indicating the new multicast state * * If the BATADV_MCAST_HAVE_MC_PTYPE_CAPA flag of this originator, orig, has * toggled then this method updates the counter accordingly. */ static void batadv_mcast_have_mc_ptype_update(struct batadv_priv *bat_priv, struct batadv_orig_node *orig, u8 mcast_flags) { lockdep_assert_held(&orig->mcast_handler_lock); /* switched from flag set to unset */ if (!(mcast_flags & BATADV_MCAST_HAVE_MC_PTYPE_CAPA) && orig->mcast_flags & BATADV_MCAST_HAVE_MC_PTYPE_CAPA) atomic_inc(&bat_priv->mcast.num_no_mc_ptype_capa); /* switched from flag unset to set */ else if (mcast_flags & BATADV_MCAST_HAVE_MC_PTYPE_CAPA && !(orig->mcast_flags & BATADV_MCAST_HAVE_MC_PTYPE_CAPA)) atomic_dec(&bat_priv->mcast.num_no_mc_ptype_capa); } /** * batadv_mcast_tvlv_flags_get() - get multicast flags from an OGM TVLV * @enabled: whether the originator has multicast TVLV support enabled * @tvlv_value: tvlv buffer containing the multicast flags * @tvlv_value_len: tvlv buffer length * * Return: multicast flags for the given tvlv buffer */ static u8 batadv_mcast_tvlv_flags_get(bool enabled, void *tvlv_value, u16 tvlv_value_len) { u8 mcast_flags = BATADV_NO_FLAGS; if (enabled && tvlv_value && tvlv_value_len >= sizeof(mcast_flags)) mcast_flags = *(u8 *)tvlv_value; if (!enabled) { mcast_flags |= BATADV_MCAST_WANT_ALL_IPV4; mcast_flags |= BATADV_MCAST_WANT_ALL_IPV6; } /* remove redundant flags to avoid sending duplicate packets later */ if (mcast_flags & BATADV_MCAST_WANT_ALL_IPV4) mcast_flags |= BATADV_MCAST_WANT_NO_RTR4; if (mcast_flags & BATADV_MCAST_WANT_ALL_IPV6) mcast_flags |= BATADV_MCAST_WANT_NO_RTR6; return mcast_flags; } /** * batadv_mcast_tvlv_ogm_handler() - process incoming multicast tvlv container * @bat_priv: the bat priv with all the soft interface information * @orig: the orig_node of the ogm * @flags: flags indicating the tvlv state (see batadv_tvlv_handler_flags) * @tvlv_value: tvlv buffer containing the multicast data * @tvlv_value_len: tvlv buffer length */ static void batadv_mcast_tvlv_ogm_handler(struct batadv_priv *bat_priv, struct batadv_orig_node *orig, u8 flags, void *tvlv_value, u16 tvlv_value_len) { bool orig_mcast_enabled = !(flags & BATADV_TVLV_HANDLER_OGM_CIFNOTFND); u8 mcast_flags; mcast_flags = batadv_mcast_tvlv_flags_get(orig_mcast_enabled, tvlv_value, tvlv_value_len); spin_lock_bh(&orig->mcast_handler_lock); if (orig_mcast_enabled && !test_bit(BATADV_ORIG_CAPA_HAS_MCAST, &orig->capabilities)) { set_bit(BATADV_ORIG_CAPA_HAS_MCAST, &orig->capabilities); } else if (!orig_mcast_enabled && test_bit(BATADV_ORIG_CAPA_HAS_MCAST, &orig->capabilities)) { clear_bit(BATADV_ORIG_CAPA_HAS_MCAST, &orig->capabilities); } set_bit(BATADV_ORIG_CAPA_HAS_MCAST, &orig->capa_initialized); batadv_mcast_want_unsnoop_update(bat_priv, orig, mcast_flags); batadv_mcast_want_ipv4_update(bat_priv, orig, mcast_flags); batadv_mcast_want_ipv6_update(bat_priv, orig, mcast_flags); batadv_mcast_want_rtr4_update(bat_priv, orig, mcast_flags); batadv_mcast_want_rtr6_update(bat_priv, orig, mcast_flags); batadv_mcast_have_mc_ptype_update(bat_priv, orig, mcast_flags); orig->mcast_flags = mcast_flags; spin_unlock_bh(&orig->mcast_handler_lock); } /** * batadv_mcast_init() - initialize the multicast optimizations structures * @bat_priv: the bat priv with all the soft interface information */ void batadv_mcast_init(struct batadv_priv *bat_priv) { batadv_tvlv_handler_register(bat_priv, batadv_mcast_tvlv_ogm_handler, NULL, NULL, BATADV_TVLV_MCAST, 2, BATADV_TVLV_HANDLER_OGM_CIFNOTFND); batadv_tvlv_handler_register(bat_priv, NULL, NULL, batadv_mcast_forw_tracker_tvlv_handler, BATADV_TVLV_MCAST_TRACKER, 1, BATADV_TVLV_HANDLER_OGM_CIFNOTFND); INIT_DELAYED_WORK(&bat_priv->mcast.work, batadv_mcast_mla_update); batadv_mcast_start_timer(bat_priv); } /** * batadv_mcast_mesh_info_put() - put multicast info into a netlink message * @msg: buffer for the message * @bat_priv: the bat priv with all the soft interface information * * Return: 0 or error code. */ int batadv_mcast_mesh_info_put(struct sk_buff *msg, struct batadv_priv *bat_priv) { u32 flags = bat_priv->mcast.mla_flags.tvlv_flags; u32 flags_priv = BATADV_NO_FLAGS; if (bat_priv->mcast.mla_flags.bridged) { flags_priv |= BATADV_MCAST_FLAGS_BRIDGED; if (bat_priv->mcast.mla_flags.querier_ipv4.exists) flags_priv |= BATADV_MCAST_FLAGS_QUERIER_IPV4_EXISTS; if (bat_priv->mcast.mla_flags.querier_ipv6.exists) flags_priv |= BATADV_MCAST_FLAGS_QUERIER_IPV6_EXISTS; if (bat_priv->mcast.mla_flags.querier_ipv4.shadowing) flags_priv |= BATADV_MCAST_FLAGS_QUERIER_IPV4_SHADOWING; if (bat_priv->mcast.mla_flags.querier_ipv6.shadowing) flags_priv |= BATADV_MCAST_FLAGS_QUERIER_IPV6_SHADOWING; } if (nla_put_u32(msg, BATADV_ATTR_MCAST_FLAGS, flags) || nla_put_u32(msg, BATADV_ATTR_MCAST_FLAGS_PRIV, flags_priv)) return -EMSGSIZE; return 0; } /** * batadv_mcast_flags_dump_entry() - dump one entry of the multicast flags table * to a netlink socket * @msg: buffer for the message * @portid: netlink port * @cb: Control block containing additional options * @orig_node: originator to dump the multicast flags of * * Return: 0 or error code. */ static int batadv_mcast_flags_dump_entry(struct sk_buff *msg, u32 portid, struct netlink_callback *cb, struct batadv_orig_node *orig_node) { void *hdr; hdr = genlmsg_put(msg, portid, cb->nlh->nlmsg_seq, &batadv_netlink_family, NLM_F_MULTI, BATADV_CMD_GET_MCAST_FLAGS); if (!hdr) return -ENOBUFS; genl_dump_check_consistent(cb, hdr); if (nla_put(msg, BATADV_ATTR_ORIG_ADDRESS, ETH_ALEN, orig_node->orig)) { genlmsg_cancel(msg, hdr); return -EMSGSIZE; } if (test_bit(BATADV_ORIG_CAPA_HAS_MCAST, &orig_node->capabilities)) { if (nla_put_u32(msg, BATADV_ATTR_MCAST_FLAGS, orig_node->mcast_flags)) { genlmsg_cancel(msg, hdr); return -EMSGSIZE; } } genlmsg_end(msg, hdr); return 0; } /** * batadv_mcast_flags_dump_bucket() - dump one bucket of the multicast flags * table to a netlink socket * @msg: buffer for the message * @portid: netlink port * @cb: Control block containing additional options * @hash: hash to dump * @bucket: bucket index to dump * @idx_skip: How many entries to skip * * Return: 0 or error code. */ static int batadv_mcast_flags_dump_bucket(struct sk_buff *msg, u32 portid, struct netlink_callback *cb, struct batadv_hashtable *hash, unsigned int bucket, long *idx_skip) { struct batadv_orig_node *orig_node; long idx = 0; spin_lock_bh(&hash->list_locks[bucket]); cb->seq = atomic_read(&hash->generation) << 1 | 1; hlist_for_each_entry(orig_node, &hash->table[bucket], hash_entry) { if (!test_bit(BATADV_ORIG_CAPA_HAS_MCAST, &orig_node->capa_initialized)) continue; if (idx < *idx_skip) goto skip; if (batadv_mcast_flags_dump_entry(msg, portid, cb, orig_node)) { spin_unlock_bh(&hash->list_locks[bucket]); *idx_skip = idx; return -EMSGSIZE; } skip: idx++; } spin_unlock_bh(&hash->list_locks[bucket]); return 0; } /** * __batadv_mcast_flags_dump() - dump multicast flags table to a netlink socket * @msg: buffer for the message * @portid: netlink port * @cb: Control block containing additional options * @bat_priv: the bat priv with all the soft interface information * @bucket: current bucket to dump * @idx: index in current bucket to the next entry to dump * * Return: 0 or error code. */ static int __batadv_mcast_flags_dump(struct sk_buff *msg, u32 portid, struct netlink_callback *cb, struct batadv_priv *bat_priv, long *bucket, long *idx) { struct batadv_hashtable *hash = bat_priv->orig_hash; long bucket_tmp = *bucket; long idx_tmp = *idx; while (bucket_tmp < hash->size) { if (batadv_mcast_flags_dump_bucket(msg, portid, cb, hash, bucket_tmp, &idx_tmp)) break; bucket_tmp++; idx_tmp = 0; } *bucket = bucket_tmp; *idx = idx_tmp; return msg->len; } /** * batadv_mcast_netlink_get_primary() - get primary interface from netlink * callback * @cb: netlink callback structure * @primary_if: the primary interface pointer to return the result in * * Return: 0 or error code. */ static int batadv_mcast_netlink_get_primary(struct netlink_callback *cb, struct batadv_hard_iface **primary_if) { struct batadv_hard_iface *hard_iface = NULL; struct net *net = sock_net(cb->skb->sk); struct net_device *soft_iface; struct batadv_priv *bat_priv; int ifindex; int ret = 0; ifindex = batadv_netlink_get_ifindex(cb->nlh, BATADV_ATTR_MESH_IFINDEX); if (!ifindex) return -EINVAL; soft_iface = dev_get_by_index(net, ifindex); if (!soft_iface || !batadv_softif_is_valid(soft_iface)) { ret = -ENODEV; goto out; } bat_priv = netdev_priv(soft_iface); hard_iface = batadv_primary_if_get_selected(bat_priv); if (!hard_iface || hard_iface->if_status != BATADV_IF_ACTIVE) { ret = -ENOENT; goto out; } out: dev_put(soft_iface); if (!ret && primary_if) *primary_if = hard_iface; else batadv_hardif_put(hard_iface); return ret; } /** * batadv_mcast_flags_dump() - dump multicast flags table to a netlink socket * @msg: buffer for the message * @cb: callback structure containing arguments * * Return: message length. */ int batadv_mcast_flags_dump(struct sk_buff *msg, struct netlink_callback *cb) { struct batadv_hard_iface *primary_if = NULL; int portid = NETLINK_CB(cb->skb).portid; struct batadv_priv *bat_priv; long *bucket = &cb->args[0]; long *idx = &cb->args[1]; int ret; ret = batadv_mcast_netlink_get_primary(cb, &primary_if); if (ret) return ret; bat_priv = netdev_priv(primary_if->soft_iface); ret = __batadv_mcast_flags_dump(msg, portid, cb, bat_priv, bucket, idx); batadv_hardif_put(primary_if); return ret; } /** * batadv_mcast_free() - free the multicast optimizations structures * @bat_priv: the bat priv with all the soft interface information */ void batadv_mcast_free(struct batadv_priv *bat_priv) { cancel_delayed_work_sync(&bat_priv->mcast.work); batadv_tvlv_container_unregister(bat_priv, BATADV_TVLV_MCAST, 2); batadv_tvlv_handler_unregister(bat_priv, BATADV_TVLV_MCAST_TRACKER, 1); batadv_tvlv_handler_unregister(bat_priv, BATADV_TVLV_MCAST, 2); /* safely calling outside of worker, as worker was canceled above */ batadv_mcast_mla_tt_retract(bat_priv, NULL); } /** * batadv_mcast_purge_orig() - reset originator global mcast state modifications * @orig: the originator which is going to get purged */ void batadv_mcast_purge_orig(struct batadv_orig_node *orig) { struct batadv_priv *bat_priv = orig->bat_priv; spin_lock_bh(&orig->mcast_handler_lock); batadv_mcast_want_unsnoop_update(bat_priv, orig, BATADV_NO_FLAGS); batadv_mcast_want_ipv4_update(bat_priv, orig, BATADV_NO_FLAGS); batadv_mcast_want_ipv6_update(bat_priv, orig, BATADV_NO_FLAGS); batadv_mcast_want_rtr4_update(bat_priv, orig, BATADV_MCAST_WANT_NO_RTR4); batadv_mcast_want_rtr6_update(bat_priv, orig, BATADV_MCAST_WANT_NO_RTR6); batadv_mcast_have_mc_ptype_update(bat_priv, orig, BATADV_MCAST_HAVE_MC_PTYPE_CAPA); spin_unlock_bh(&orig->mcast_handler_lock); }
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_PATH_H #define _LINUX_PATH_H struct dentry; struct vfsmount; struct path { struct vfsmount *mnt; struct dentry *dentry; } __randomize_layout; extern void path_get(const struct path *); extern void path_put(const struct path *); static inline int path_equal(const struct path *path1, const struct path *path2) { return path1->mnt == path2->mnt && path1->dentry == path2->dentry; } /* * Cleanup macro for use with __free(path_put). Avoids dereference and * copying @path unlike DEFINE_FREE(). path_put() will handle the empty * path correctly just ensure @path is initialized: * * struct path path __free(path_put) = {}; */ #define __free_path_put path_put #endif /* _LINUX_PATH_H */
36 14 37 1 1 9 3 37 11 48 2 36 10 47 50 48 49 45 3 48 47 19 20 3 3 3 11 1 10 3 3 8 1 1 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 // SPDX-License-Identifier: GPL-2.0-or-later /* Local endpoint object management * * Copyright (C) 2016 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/net.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/udp.h> #include <linux/ip.h> #include <linux/hashtable.h> #include <net/sock.h> #include <net/udp.h> #include <net/udp_tunnel.h> #include <net/af_rxrpc.h> #include "ar-internal.h" static void rxrpc_local_rcu(struct rcu_head *); /* * Handle an ICMP/ICMP6 error turning up at the tunnel. Push it through the * usual mechanism so that it gets parsed and presented through the UDP * socket's error_report(). */ static void rxrpc_encap_err_rcv(struct sock *sk, struct sk_buff *skb, int err, __be16 port, u32 info, u8 *payload) { if (ip_hdr(skb)->version == IPVERSION) return ip_icmp_error(sk, skb, err, port, info, payload); if (IS_ENABLED(CONFIG_AF_RXRPC_IPV6)) return ipv6_icmp_error(sk, skb, err, port, info, payload); } /* * Set or clear the Don't Fragment flag on a socket. */ void rxrpc_local_dont_fragment(const struct rxrpc_local *local, bool set) { if (set) ip_sock_set_mtu_discover(local->socket->sk, IP_PMTUDISC_DO); else ip_sock_set_mtu_discover(local->socket->sk, IP_PMTUDISC_DONT); } /* * Compare a local to an address. Return -ve, 0 or +ve to indicate less than, * same or greater than. * * We explicitly don't compare the RxRPC service ID as we want to reject * conflicting uses by differing services. Further, we don't want to share * addresses with different options (IPv6), so we don't compare those bits * either. */ static long rxrpc_local_cmp_key(const struct rxrpc_local *local, const struct sockaddr_rxrpc *srx) { long diff; diff = ((local->srx.transport_type - srx->transport_type) ?: (local->srx.transport_len - srx->transport_len) ?: (local->srx.transport.family - srx->transport.family)); if (diff != 0) return diff; switch (srx->transport.family) { case AF_INET: /* If the choice of UDP port is left up to the transport, then * the endpoint record doesn't match. */ return ((u16 __force)local->srx.transport.sin.sin_port - (u16 __force)srx->transport.sin.sin_port) ?: memcmp(&local->srx.transport.sin.sin_addr, &srx->transport.sin.sin_addr, sizeof(struct in_addr)); #ifdef CONFIG_AF_RXRPC_IPV6 case AF_INET6: /* If the choice of UDP6 port is left up to the transport, then * the endpoint record doesn't match. */ return ((u16 __force)local->srx.transport.sin6.sin6_port - (u16 __force)srx->transport.sin6.sin6_port) ?: memcmp(&local->srx.transport.sin6.sin6_addr, &srx->transport.sin6.sin6_addr, sizeof(struct in6_addr)); #endif default: BUG(); } } static void rxrpc_client_conn_reap_timeout(struct timer_list *timer) { struct rxrpc_local *local = container_of(timer, struct rxrpc_local, client_conn_reap_timer); if (!local->kill_all_client_conns && test_and_set_bit(RXRPC_CLIENT_CONN_REAP_TIMER, &local->client_conn_flags)) rxrpc_wake_up_io_thread(local); } /* * Allocate a new local endpoint. */ static struct rxrpc_local *rxrpc_alloc_local(struct net *net, const struct sockaddr_rxrpc *srx) { struct rxrpc_local *local; u32 tmp; local = kzalloc(sizeof(struct rxrpc_local), GFP_KERNEL); if (local) { refcount_set(&local->ref, 1); atomic_set(&local->active_users, 1); local->net = net; local->rxnet = rxrpc_net(net); INIT_HLIST_NODE(&local->link); init_completion(&local->io_thread_ready); #ifdef CONFIG_AF_RXRPC_INJECT_RX_DELAY skb_queue_head_init(&local->rx_delay_queue); #endif skb_queue_head_init(&local->rx_queue); INIT_LIST_HEAD(&local->conn_attend_q); INIT_LIST_HEAD(&local->call_attend_q); local->client_bundles = RB_ROOT; spin_lock_init(&local->client_bundles_lock); local->kill_all_client_conns = false; INIT_LIST_HEAD(&local->idle_client_conns); timer_setup(&local->client_conn_reap_timer, rxrpc_client_conn_reap_timeout, 0); spin_lock_init(&local->lock); rwlock_init(&local->services_lock); local->debug_id = atomic_inc_return(&rxrpc_debug_id); memcpy(&local->srx, srx, sizeof(*srx)); local->srx.srx_service = 0; idr_init(&local->conn_ids); get_random_bytes(&tmp, sizeof(tmp)); tmp &= 0x3fffffff; if (tmp == 0) tmp = 1; idr_set_cursor(&local->conn_ids, tmp); INIT_LIST_HEAD(&local->new_client_calls); spin_lock_init(&local->client_call_lock); trace_rxrpc_local(local->debug_id, rxrpc_local_new, 1, 1); } _leave(" = %p", local); return local; } /* * create the local socket * - must be called with rxrpc_local_mutex locked */ static int rxrpc_open_socket(struct rxrpc_local *local, struct net *net) { struct udp_tunnel_sock_cfg tuncfg = {NULL}; struct sockaddr_rxrpc *srx = &local->srx; struct udp_port_cfg udp_conf = {0}; struct task_struct *io_thread; struct sock *usk; int ret; _enter("%p{%d,%d}", local, srx->transport_type, srx->transport.family); udp_conf.family = srx->transport.family; udp_conf.use_udp_checksums = true; if (udp_conf.family == AF_INET) { udp_conf.local_ip = srx->transport.sin.sin_addr; udp_conf.local_udp_port = srx->transport.sin.sin_port; #if IS_ENABLED(CONFIG_AF_RXRPC_IPV6) } else { udp_conf.local_ip6 = srx->transport.sin6.sin6_addr; udp_conf.local_udp_port = srx->transport.sin6.sin6_port; udp_conf.use_udp6_tx_checksums = true; udp_conf.use_udp6_rx_checksums = true; #endif } ret = udp_sock_create(net, &udp_conf, &local->socket); if (ret < 0) { _leave(" = %d [socket]", ret); return ret; } tuncfg.encap_type = UDP_ENCAP_RXRPC; tuncfg.encap_rcv = rxrpc_encap_rcv; tuncfg.encap_err_rcv = rxrpc_encap_err_rcv; tuncfg.sk_user_data = local; setup_udp_tunnel_sock(net, local->socket, &tuncfg); /* set the socket up */ usk = local->socket->sk; usk->sk_error_report = rxrpc_error_report; switch (srx->transport.family) { case AF_INET6: /* we want to receive ICMPv6 errors */ ip6_sock_set_recverr(usk); /* Fall through and set IPv4 options too otherwise we don't get * errors from IPv4 packets sent through the IPv6 socket. */ fallthrough; case AF_INET: /* we want to receive ICMP errors */ ip_sock_set_recverr(usk); /* we want to set the don't fragment bit */ rxrpc_local_dont_fragment(local, true); /* We want receive timestamps. */ sock_enable_timestamps(usk); break; default: BUG(); } io_thread = kthread_run(rxrpc_io_thread, local, "krxrpcio/%u", ntohs(udp_conf.local_udp_port)); if (IS_ERR(io_thread)) { ret = PTR_ERR(io_thread); goto error_sock; } wait_for_completion(&local->io_thread_ready); WRITE_ONCE(local->io_thread, io_thread); _leave(" = 0"); return 0; error_sock: kernel_sock_shutdown(local->socket, SHUT_RDWR); local->socket->sk->sk_user_data = NULL; sock_release(local->socket); local->socket = NULL; return ret; } /* * Look up or create a new local endpoint using the specified local address. */ struct rxrpc_local *rxrpc_lookup_local(struct net *net, const struct sockaddr_rxrpc *srx) { struct rxrpc_local *local; struct rxrpc_net *rxnet = rxrpc_net(net); struct hlist_node *cursor; long diff; int ret; _enter("{%d,%d,%pISp}", srx->transport_type, srx->transport.family, &srx->transport); mutex_lock(&rxnet->local_mutex); hlist_for_each(cursor, &rxnet->local_endpoints) { local = hlist_entry(cursor, struct rxrpc_local, link); diff = rxrpc_local_cmp_key(local, srx); if (diff != 0) continue; /* Services aren't allowed to share transport sockets, so * reject that here. It is possible that the object is dying - * but it may also still have the local transport address that * we want bound. */ if (srx->srx_service) { local = NULL; goto addr_in_use; } /* Found a match. We want to replace a dying object. * Attempting to bind the transport socket may still fail if * we're attempting to use a local address that the dying * object is still using. */ if (!rxrpc_use_local(local, rxrpc_local_use_lookup)) break; goto found; } local = rxrpc_alloc_local(net, srx); if (!local) goto nomem; ret = rxrpc_open_socket(local, net); if (ret < 0) goto sock_error; if (cursor) { hlist_replace_rcu(cursor, &local->link); cursor->pprev = NULL; } else { hlist_add_head_rcu(&local->link, &rxnet->local_endpoints); } found: mutex_unlock(&rxnet->local_mutex); _leave(" = %p", local); return local; nomem: ret = -ENOMEM; sock_error: mutex_unlock(&rxnet->local_mutex); if (local) call_rcu(&local->rcu, rxrpc_local_rcu); _leave(" = %d", ret); return ERR_PTR(ret); addr_in_use: mutex_unlock(&rxnet->local_mutex); _leave(" = -EADDRINUSE"); return ERR_PTR(-EADDRINUSE); } /* * Get a ref on a local endpoint. */ struct rxrpc_local *rxrpc_get_local(struct rxrpc_local *local, enum rxrpc_local_trace why) { int r, u; u = atomic_read(&local->active_users); __refcount_inc(&local->ref, &r); trace_rxrpc_local(local->debug_id, why, r + 1, u); return local; } /* * Get a ref on a local endpoint unless its usage has already reached 0. */ struct rxrpc_local *rxrpc_get_local_maybe(struct rxrpc_local *local, enum rxrpc_local_trace why) { int r, u; if (local && __refcount_inc_not_zero(&local->ref, &r)) { u = atomic_read(&local->active_users); trace_rxrpc_local(local->debug_id, why, r + 1, u); return local; } return NULL; } /* * Drop a ref on a local endpoint. */ void rxrpc_put_local(struct rxrpc_local *local, enum rxrpc_local_trace why) { unsigned int debug_id; bool dead; int r, u; if (local) { debug_id = local->debug_id; u = atomic_read(&local->active_users); dead = __refcount_dec_and_test(&local->ref, &r); trace_rxrpc_local(debug_id, why, r, u); if (dead) call_rcu(&local->rcu, rxrpc_local_rcu); } } /* * Start using a local endpoint. */ struct rxrpc_local *rxrpc_use_local(struct rxrpc_local *local, enum rxrpc_local_trace why) { local = rxrpc_get_local_maybe(local, rxrpc_local_get_for_use); if (!local) return NULL; if (!__rxrpc_use_local(local, why)) { rxrpc_put_local(local, rxrpc_local_put_for_use); return NULL; } return local; } /* * Cease using a local endpoint. Once the number of active users reaches 0, we * start the closure of the transport in the I/O thread.. */ void rxrpc_unuse_local(struct rxrpc_local *local, enum rxrpc_local_trace why) { unsigned int debug_id; int r, u; if (local) { debug_id = local->debug_id; r = refcount_read(&local->ref); u = atomic_dec_return(&local->active_users); trace_rxrpc_local(debug_id, why, r, u); if (u == 0) kthread_stop(local->io_thread); } } /* * Destroy a local endpoint's socket and then hand the record to RCU to dispose * of. * * Closing the socket cannot be done from bottom half context or RCU callback * context because it might sleep. */ void rxrpc_destroy_local(struct rxrpc_local *local) { struct socket *socket = local->socket; struct rxrpc_net *rxnet = local->rxnet; _enter("%d", local->debug_id); local->dead = true; mutex_lock(&rxnet->local_mutex); hlist_del_init_rcu(&local->link); mutex_unlock(&rxnet->local_mutex); rxrpc_clean_up_local_conns(local); rxrpc_service_connection_reaper(&rxnet->service_conn_reaper); ASSERT(!local->service); if (socket) { local->socket = NULL; kernel_sock_shutdown(socket, SHUT_RDWR); socket->sk->sk_user_data = NULL; sock_release(socket); } /* At this point, there should be no more packets coming in to the * local endpoint. */ #ifdef CONFIG_AF_RXRPC_INJECT_RX_DELAY rxrpc_purge_queue(&local->rx_delay_queue); #endif rxrpc_purge_queue(&local->rx_queue); rxrpc_purge_client_connections(local); if (local->tx_alloc.va) __page_frag_cache_drain(virt_to_page(local->tx_alloc.va), local->tx_alloc.pagecnt_bias); } /* * Destroy a local endpoint after the RCU grace period expires. */ static void rxrpc_local_rcu(struct rcu_head *rcu) { struct rxrpc_local *local = container_of(rcu, struct rxrpc_local, rcu); rxrpc_see_local(local, rxrpc_local_free); kfree(local); } /* * Verify the local endpoint list is empty by this point. */ void rxrpc_destroy_all_locals(struct rxrpc_net *rxnet) { struct rxrpc_local *local; _enter(""); flush_workqueue(rxrpc_workqueue); if (!hlist_empty(&rxnet->local_endpoints)) { mutex_lock(&rxnet->local_mutex); hlist_for_each_entry(local, &rxnet->local_endpoints, link) { pr_err("AF_RXRPC: Leaked local %p {%d}\n", local, refcount_read(&local->ref)); } mutex_unlock(&rxnet->local_mutex); BUG(); } }
5 4 1 3 1 1 1 3 1 1 1 1 3 1 1 1 1 2 1 1 1 4 1 1 1 1 2 1 1 4 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright Samuel Mendoza-Jonas, IBM Corporation 2018. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/if_arp.h> #include <linux/rtnetlink.h> #include <linux/etherdevice.h> #include <net/genetlink.h> #include <net/ncsi.h> #include <linux/skbuff.h> #include <net/sock.h> #include <uapi/linux/ncsi.h> #include "internal.h" #include "ncsi-pkt.h" #include "ncsi-netlink.h" static struct genl_family ncsi_genl_family; static const struct nla_policy ncsi_genl_policy[NCSI_ATTR_MAX + 1] = { [NCSI_ATTR_IFINDEX] = { .type = NLA_U32 }, [NCSI_ATTR_PACKAGE_LIST] = { .type = NLA_NESTED }, [NCSI_ATTR_PACKAGE_ID] = { .type = NLA_U32 }, [NCSI_ATTR_CHANNEL_ID] = { .type = NLA_U32 }, [NCSI_ATTR_DATA] = { .type = NLA_BINARY, .len = 2048 }, [NCSI_ATTR_MULTI_FLAG] = { .type = NLA_FLAG }, [NCSI_ATTR_PACKAGE_MASK] = { .type = NLA_U32 }, [NCSI_ATTR_CHANNEL_MASK] = { .type = NLA_U32 }, }; static struct ncsi_dev_priv *ndp_from_ifindex(struct net *net, u32 ifindex) { struct ncsi_dev_priv *ndp; struct net_device *dev; struct ncsi_dev *nd; struct ncsi_dev; if (!net) return NULL; dev = dev_get_by_index(net, ifindex); if (!dev) { pr_err("NCSI netlink: No device for ifindex %u\n", ifindex); return NULL; } nd = ncsi_find_dev(dev); ndp = nd ? TO_NCSI_DEV_PRIV(nd) : NULL; dev_put(dev); return ndp; } static int ncsi_write_channel_info(struct sk_buff *skb, struct ncsi_dev_priv *ndp, struct ncsi_channel *nc) { struct ncsi_channel_vlan_filter *ncf; struct ncsi_channel_mode *m; struct nlattr *vid_nest; int i; nla_put_u32(skb, NCSI_CHANNEL_ATTR_ID, nc->id); m = &nc->modes[NCSI_MODE_LINK]; nla_put_u32(skb, NCSI_CHANNEL_ATTR_LINK_STATE, m->data[2]); if (nc->state == NCSI_CHANNEL_ACTIVE) nla_put_flag(skb, NCSI_CHANNEL_ATTR_ACTIVE); if (nc == nc->package->preferred_channel) nla_put_flag(skb, NCSI_CHANNEL_ATTR_FORCED); nla_put_u32(skb, NCSI_CHANNEL_ATTR_VERSION_MAJOR, nc->version.major); nla_put_u32(skb, NCSI_CHANNEL_ATTR_VERSION_MINOR, nc->version.minor); nla_put_string(skb, NCSI_CHANNEL_ATTR_VERSION_STR, nc->version.fw_name); vid_nest = nla_nest_start_noflag(skb, NCSI_CHANNEL_ATTR_VLAN_LIST); if (!vid_nest) return -ENOMEM; ncf = &nc->vlan_filter; i = -1; while ((i = find_next_bit((void *)&ncf->bitmap, ncf->n_vids, i + 1)) < ncf->n_vids) { if (ncf->vids[i]) nla_put_u16(skb, NCSI_CHANNEL_ATTR_VLAN_ID, ncf->vids[i]); } nla_nest_end(skb, vid_nest); return 0; } static int ncsi_write_package_info(struct sk_buff *skb, struct ncsi_dev_priv *ndp, unsigned int id) { struct nlattr *pnest, *cnest, *nest; struct ncsi_package *np; struct ncsi_channel *nc; bool found; int rc; if (id > ndp->package_num - 1) { netdev_info(ndp->ndev.dev, "NCSI: No package with id %u\n", id); return -ENODEV; } found = false; NCSI_FOR_EACH_PACKAGE(ndp, np) { if (np->id != id) continue; pnest = nla_nest_start_noflag(skb, NCSI_PKG_ATTR); if (!pnest) return -ENOMEM; rc = nla_put_u32(skb, NCSI_PKG_ATTR_ID, np->id); if (rc) { nla_nest_cancel(skb, pnest); return rc; } if ((0x1 << np->id) == ndp->package_whitelist) nla_put_flag(skb, NCSI_PKG_ATTR_FORCED); cnest = nla_nest_start_noflag(skb, NCSI_PKG_ATTR_CHANNEL_LIST); if (!cnest) { nla_nest_cancel(skb, pnest); return -ENOMEM; } NCSI_FOR_EACH_CHANNEL(np, nc) { nest = nla_nest_start_noflag(skb, NCSI_CHANNEL_ATTR); if (!nest) { nla_nest_cancel(skb, cnest); nla_nest_cancel(skb, pnest); return -ENOMEM; } rc = ncsi_write_channel_info(skb, ndp, nc); if (rc) { nla_nest_cancel(skb, nest); nla_nest_cancel(skb, cnest); nla_nest_cancel(skb, pnest); return rc; } nla_nest_end(skb, nest); } nla_nest_end(skb, cnest); nla_nest_end(skb, pnest); found = true; } if (!found) return -ENODEV; return 0; } static int ncsi_pkg_info_nl(struct sk_buff *msg, struct genl_info *info) { struct ncsi_dev_priv *ndp; unsigned int package_id; struct sk_buff *skb; struct nlattr *attr; void *hdr; int rc; if (!info || !info->attrs) return -EINVAL; if (!info->attrs[NCSI_ATTR_IFINDEX]) return -EINVAL; if (!info->attrs[NCSI_ATTR_PACKAGE_ID]) return -EINVAL; ndp = ndp_from_ifindex(genl_info_net(info), nla_get_u32(info->attrs[NCSI_ATTR_IFINDEX])); if (!ndp) return -ENODEV; skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); if (!skb) return -ENOMEM; hdr = genlmsg_put(skb, info->snd_portid, info->snd_seq, &ncsi_genl_family, 0, NCSI_CMD_PKG_INFO); if (!hdr) { kfree_skb(skb); return -EMSGSIZE; } package_id = nla_get_u32(info->attrs[NCSI_ATTR_PACKAGE_ID]); attr = nla_nest_start_noflag(skb, NCSI_ATTR_PACKAGE_LIST); if (!attr) { kfree_skb(skb); return -EMSGSIZE; } rc = ncsi_write_package_info(skb, ndp, package_id); if (rc) { nla_nest_cancel(skb, attr); goto err; } nla_nest_end(skb, attr); genlmsg_end(skb, hdr); return genlmsg_reply(skb, info); err: kfree_skb(skb); return rc; } static int ncsi_pkg_info_all_nl(struct sk_buff *skb, struct netlink_callback *cb) { struct nlattr *attrs[NCSI_ATTR_MAX + 1]; struct ncsi_package *np, *package; struct ncsi_dev_priv *ndp; unsigned int package_id; struct nlattr *attr; void *hdr; int rc; rc = genlmsg_parse_deprecated(cb->nlh, &ncsi_genl_family, attrs, NCSI_ATTR_MAX, ncsi_genl_policy, NULL); if (rc) return rc; if (!attrs[NCSI_ATTR_IFINDEX]) return -EINVAL; ndp = ndp_from_ifindex(get_net(sock_net(skb->sk)), nla_get_u32(attrs[NCSI_ATTR_IFINDEX])); if (!ndp) return -ENODEV; package_id = cb->args[0]; package = NULL; NCSI_FOR_EACH_PACKAGE(ndp, np) if (np->id == package_id) package = np; if (!package) return 0; /* done */ hdr = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, &ncsi_genl_family, NLM_F_MULTI, NCSI_CMD_PKG_INFO); if (!hdr) { rc = -EMSGSIZE; goto err; } attr = nla_nest_start_noflag(skb, NCSI_ATTR_PACKAGE_LIST); if (!attr) { rc = -EMSGSIZE; goto err; } rc = ncsi_write_package_info(skb, ndp, package->id); if (rc) { nla_nest_cancel(skb, attr); goto err; } nla_nest_end(skb, attr); genlmsg_end(skb, hdr); cb->args[0] = package_id + 1; return skb->len; err: genlmsg_cancel(skb, hdr); return rc; } static int ncsi_set_interface_nl(struct sk_buff *msg, struct genl_info *info) { struct ncsi_package *np, *package; struct ncsi_channel *nc, *channel; u32 package_id, channel_id; struct ncsi_dev_priv *ndp; unsigned long flags; if (!info || !info->attrs) return -EINVAL; if (!info->attrs[NCSI_ATTR_IFINDEX]) return -EINVAL; if (!info->attrs[NCSI_ATTR_PACKAGE_ID]) return -EINVAL; ndp = ndp_from_ifindex(get_net(sock_net(msg->sk)), nla_get_u32(info->attrs[NCSI_ATTR_IFINDEX])); if (!ndp) return -ENODEV; package_id = nla_get_u32(info->attrs[NCSI_ATTR_PACKAGE_ID]); package = NULL; NCSI_FOR_EACH_PACKAGE(ndp, np) if (np->id == package_id) package = np; if (!package) { /* The user has set a package that does not exist */ return -ERANGE; } channel = NULL; if (info->attrs[NCSI_ATTR_CHANNEL_ID]) { channel_id = nla_get_u32(info->attrs[NCSI_ATTR_CHANNEL_ID]); NCSI_FOR_EACH_CHANNEL(package, nc) if (nc->id == channel_id) { channel = nc; break; } if (!channel) { netdev_info(ndp->ndev.dev, "NCSI: Channel %u does not exist!\n", channel_id); return -ERANGE; } } spin_lock_irqsave(&ndp->lock, flags); ndp->package_whitelist = 0x1 << package->id; ndp->multi_package = false; spin_unlock_irqrestore(&ndp->lock, flags); spin_lock_irqsave(&package->lock, flags); package->multi_channel = false; if (channel) { package->channel_whitelist = 0x1 << channel->id; package->preferred_channel = channel; } else { /* Allow any channel */ package->channel_whitelist = UINT_MAX; package->preferred_channel = NULL; } spin_unlock_irqrestore(&package->lock, flags); if (channel) netdev_info(ndp->ndev.dev, "Set package 0x%x, channel 0x%x as preferred\n", package_id, channel_id); else netdev_info(ndp->ndev.dev, "Set package 0x%x as preferred\n", package_id); /* Update channel configuration */ if (!(ndp->flags & NCSI_DEV_RESET)) ncsi_reset_dev(&ndp->ndev); return 0; } static int ncsi_clear_interface_nl(struct sk_buff *msg, struct genl_info *info) { struct ncsi_dev_priv *ndp; struct ncsi_package *np; unsigned long flags; if (!info || !info->attrs) return -EINVAL; if (!info->attrs[NCSI_ATTR_IFINDEX]) return -EINVAL; ndp = ndp_from_ifindex(get_net(sock_net(msg->sk)), nla_get_u32(info->attrs[NCSI_ATTR_IFINDEX])); if (!ndp) return -ENODEV; /* Reset any whitelists and disable multi mode */ spin_lock_irqsave(&ndp->lock, flags); ndp->package_whitelist = UINT_MAX; ndp->multi_package = false; spin_unlock_irqrestore(&ndp->lock, flags); NCSI_FOR_EACH_PACKAGE(ndp, np) { spin_lock_irqsave(&np->lock, flags); np->multi_channel = false; np->channel_whitelist = UINT_MAX; np->preferred_channel = NULL; spin_unlock_irqrestore(&np->lock, flags); } netdev_info(ndp->ndev.dev, "NCSI: Cleared preferred package/channel\n"); /* Update channel configuration */ if (!(ndp->flags & NCSI_DEV_RESET)) ncsi_reset_dev(&ndp->ndev); return 0; } static int ncsi_send_cmd_nl(struct sk_buff *msg, struct genl_info *info) { struct ncsi_dev_priv *ndp; struct ncsi_pkt_hdr *hdr; struct ncsi_cmd_arg nca; unsigned char *data; u32 package_id; u32 channel_id; int len, ret; if (!info || !info->attrs) { ret = -EINVAL; goto out; } if (!info->attrs[NCSI_ATTR_IFINDEX]) { ret = -EINVAL; goto out; } if (!info->attrs[NCSI_ATTR_PACKAGE_ID]) { ret = -EINVAL; goto out; } if (!info->attrs[NCSI_ATTR_CHANNEL_ID]) { ret = -EINVAL; goto out; } if (!info->attrs[NCSI_ATTR_DATA]) { ret = -EINVAL; goto out; } ndp = ndp_from_ifindex(get_net(sock_net(msg->sk)), nla_get_u32(info->attrs[NCSI_ATTR_IFINDEX])); if (!ndp) { ret = -ENODEV; goto out; } package_id = nla_get_u32(info->attrs[NCSI_ATTR_PACKAGE_ID]); channel_id = nla_get_u32(info->attrs[NCSI_ATTR_CHANNEL_ID]); if (package_id >= NCSI_MAX_PACKAGE || channel_id >= NCSI_MAX_CHANNEL) { ret = -ERANGE; goto out_netlink; } len = nla_len(info->attrs[NCSI_ATTR_DATA]); if (len < sizeof(struct ncsi_pkt_hdr)) { netdev_info(ndp->ndev.dev, "NCSI: no command to send %u\n", package_id); ret = -EINVAL; goto out_netlink; } else { data = (unsigned char *)nla_data(info->attrs[NCSI_ATTR_DATA]); } hdr = (struct ncsi_pkt_hdr *)data; nca.ndp = ndp; nca.package = (unsigned char)package_id; nca.channel = (unsigned char)channel_id; nca.type = hdr->type; nca.req_flags = NCSI_REQ_FLAG_NETLINK_DRIVEN; nca.info = info; nca.payload = ntohs(hdr->length); nca.data = data + sizeof(*hdr); ret = ncsi_xmit_cmd(&nca); out_netlink: if (ret != 0) { netdev_err(ndp->ndev.dev, "NCSI: Error %d sending command\n", ret); ncsi_send_netlink_err(ndp->ndev.dev, info->snd_seq, info->snd_portid, info->nlhdr, ret); } out: return ret; } int ncsi_send_netlink_rsp(struct ncsi_request *nr, struct ncsi_package *np, struct ncsi_channel *nc) { struct sk_buff *skb; struct net *net; void *hdr; int rc; net = dev_net(nr->rsp->dev); skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC); if (!skb) return -ENOMEM; hdr = genlmsg_put(skb, nr->snd_portid, nr->snd_seq, &ncsi_genl_family, 0, NCSI_CMD_SEND_CMD); if (!hdr) { kfree_skb(skb); return -EMSGSIZE; } nla_put_u32(skb, NCSI_ATTR_IFINDEX, nr->rsp->dev->ifindex); if (np) nla_put_u32(skb, NCSI_ATTR_PACKAGE_ID, np->id); if (nc) nla_put_u32(skb, NCSI_ATTR_CHANNEL_ID, nc->id); else nla_put_u32(skb, NCSI_ATTR_CHANNEL_ID, NCSI_RESERVED_CHANNEL); rc = nla_put(skb, NCSI_ATTR_DATA, nr->rsp->len, (void *)nr->rsp->data); if (rc) goto err; genlmsg_end(skb, hdr); return genlmsg_unicast(net, skb, nr->snd_portid); err: kfree_skb(skb); return rc; } int ncsi_send_netlink_timeout(struct ncsi_request *nr, struct ncsi_package *np, struct ncsi_channel *nc) { struct sk_buff *skb; struct net *net; void *hdr; skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC); if (!skb) return -ENOMEM; hdr = genlmsg_put(skb, nr->snd_portid, nr->snd_seq, &ncsi_genl_family, 0, NCSI_CMD_SEND_CMD); if (!hdr) { kfree_skb(skb); return -EMSGSIZE; } net = dev_net(nr->cmd->dev); nla_put_u32(skb, NCSI_ATTR_IFINDEX, nr->cmd->dev->ifindex); if (np) nla_put_u32(skb, NCSI_ATTR_PACKAGE_ID, np->id); else nla_put_u32(skb, NCSI_ATTR_PACKAGE_ID, NCSI_PACKAGE_INDEX((((struct ncsi_pkt_hdr *) nr->cmd->data)->channel))); if (nc) nla_put_u32(skb, NCSI_ATTR_CHANNEL_ID, nc->id); else nla_put_u32(skb, NCSI_ATTR_CHANNEL_ID, NCSI_RESERVED_CHANNEL); genlmsg_end(skb, hdr); return genlmsg_unicast(net, skb, nr->snd_portid); } int ncsi_send_netlink_err(struct net_device *dev, u32 snd_seq, u32 snd_portid, const struct nlmsghdr *nlhdr, int err) { struct nlmsghdr *nlh; struct nlmsgerr *nle; struct sk_buff *skb; struct net *net; skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC); if (!skb) return -ENOMEM; net = dev_net(dev); nlh = nlmsg_put(skb, snd_portid, snd_seq, NLMSG_ERROR, sizeof(*nle), 0); nle = (struct nlmsgerr *)nlmsg_data(nlh); nle->error = err; memcpy(&nle->msg, nlhdr, sizeof(*nlh)); nlmsg_end(skb, nlh); return nlmsg_unicast(net->genl_sock, skb, snd_portid); } static int ncsi_set_package_mask_nl(struct sk_buff *msg, struct genl_info *info) { struct ncsi_dev_priv *ndp; unsigned long flags; int rc; if (!info || !info->attrs) return -EINVAL; if (!info->attrs[NCSI_ATTR_IFINDEX]) return -EINVAL; if (!info->attrs[NCSI_ATTR_PACKAGE_MASK]) return -EINVAL; ndp = ndp_from_ifindex(get_net(sock_net(msg->sk)), nla_get_u32(info->attrs[NCSI_ATTR_IFINDEX])); if (!ndp) return -ENODEV; spin_lock_irqsave(&ndp->lock, flags); if (nla_get_flag(info->attrs[NCSI_ATTR_MULTI_FLAG])) { if (ndp->flags & NCSI_DEV_HWA) { ndp->multi_package = true; rc = 0; } else { netdev_err(ndp->ndev.dev, "NCSI: Can't use multiple packages without HWA\n"); rc = -EPERM; } } else { ndp->multi_package = false; rc = 0; } if (!rc) ndp->package_whitelist = nla_get_u32(info->attrs[NCSI_ATTR_PACKAGE_MASK]); spin_unlock_irqrestore(&ndp->lock, flags); if (!rc) { /* Update channel configuration */ if (!(ndp->flags & NCSI_DEV_RESET)) ncsi_reset_dev(&ndp->ndev); } return rc; } static int ncsi_set_channel_mask_nl(struct sk_buff *msg, struct genl_info *info) { struct ncsi_package *np, *package; struct ncsi_channel *nc, *channel; u32 package_id, channel_id; struct ncsi_dev_priv *ndp; unsigned long flags; if (!info || !info->attrs) return -EINVAL; if (!info->attrs[NCSI_ATTR_IFINDEX]) return -EINVAL; if (!info->attrs[NCSI_ATTR_PACKAGE_ID]) return -EINVAL; if (!info->attrs[NCSI_ATTR_CHANNEL_MASK]) return -EINVAL; ndp = ndp_from_ifindex(get_net(sock_net(msg->sk)), nla_get_u32(info->attrs[NCSI_ATTR_IFINDEX])); if (!ndp) return -ENODEV; package_id = nla_get_u32(info->attrs[NCSI_ATTR_PACKAGE_ID]); package = NULL; NCSI_FOR_EACH_PACKAGE(ndp, np) if (np->id == package_id) { package = np; break; } if (!package) return -ERANGE; spin_lock_irqsave(&package->lock, flags); channel = NULL; if (info->attrs[NCSI_ATTR_CHANNEL_ID]) { channel_id = nla_get_u32(info->attrs[NCSI_ATTR_CHANNEL_ID]); NCSI_FOR_EACH_CHANNEL(np, nc) if (nc->id == channel_id) { channel = nc; break; } if (!channel) { spin_unlock_irqrestore(&package->lock, flags); return -ERANGE; } netdev_dbg(ndp->ndev.dev, "NCSI: Channel %u set as preferred channel\n", channel->id); } package->channel_whitelist = nla_get_u32(info->attrs[NCSI_ATTR_CHANNEL_MASK]); if (package->channel_whitelist == 0) netdev_dbg(ndp->ndev.dev, "NCSI: Package %u set to all channels disabled\n", package->id); package->preferred_channel = channel; if (nla_get_flag(info->attrs[NCSI_ATTR_MULTI_FLAG])) { package->multi_channel = true; netdev_info(ndp->ndev.dev, "NCSI: Multi-channel enabled on package %u\n", package_id); } else { package->multi_channel = false; } spin_unlock_irqrestore(&package->lock, flags); /* Update channel configuration */ if (!(ndp->flags & NCSI_DEV_RESET)) ncsi_reset_dev(&ndp->ndev); return 0; } static const struct genl_small_ops ncsi_ops[] = { { .cmd = NCSI_CMD_PKG_INFO, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ncsi_pkg_info_nl, .dumpit = ncsi_pkg_info_all_nl, .flags = 0, }, { .cmd = NCSI_CMD_SET_INTERFACE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ncsi_set_interface_nl, .flags = GENL_ADMIN_PERM, }, { .cmd = NCSI_CMD_CLEAR_INTERFACE, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ncsi_clear_interface_nl, .flags = GENL_ADMIN_PERM, }, { .cmd = NCSI_CMD_SEND_CMD, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ncsi_send_cmd_nl, .flags = GENL_ADMIN_PERM, }, { .cmd = NCSI_CMD_SET_PACKAGE_MASK, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ncsi_set_package_mask_nl, .flags = GENL_ADMIN_PERM, }, { .cmd = NCSI_CMD_SET_CHANNEL_MASK, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .doit = ncsi_set_channel_mask_nl, .flags = GENL_ADMIN_PERM, }, }; static struct genl_family ncsi_genl_family __ro_after_init = { .name = "NCSI", .version = 0, .maxattr = NCSI_ATTR_MAX, .policy = ncsi_genl_policy, .module = THIS_MODULE, .small_ops = ncsi_ops, .n_small_ops = ARRAY_SIZE(ncsi_ops), .resv_start_op = NCSI_CMD_SET_CHANNEL_MASK + 1, }; static int __init ncsi_init_netlink(void) { return genl_register_family(&ncsi_genl_family); } subsys_initcall(ncsi_init_netlink);
14 14 26 1 1 20 4 4 6 14 14 14 14 14 14 15 15 8 8 8 5 5 1 3 5 1 2 5 5 9 1 9 9 9 9 2 2 5 3 2 1 7 7 1 6 2 3 2 3 25 25 21 1 1 1 1 26 26 9 2 1 1 18 18 18 15 1 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 /* BlueZ - Bluetooth protocol stack for Linux Copyright (C) 2000-2001 Qualcomm Incorporated Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ /* Bluetooth address family and sockets. */ #include <linux/module.h> #include <linux/debugfs.h> #include <linux/stringify.h> #include <linux/sched/signal.h> #include <asm/ioctls.h> #include <net/bluetooth/bluetooth.h> #include <linux/proc_fs.h> #include "leds.h" #include "selftest.h" /* Bluetooth sockets */ #define BT_MAX_PROTO (BTPROTO_LAST + 1) static const struct net_proto_family *bt_proto[BT_MAX_PROTO]; static DEFINE_RWLOCK(bt_proto_lock); static struct lock_class_key bt_lock_key[BT_MAX_PROTO]; static const char *const bt_key_strings[BT_MAX_PROTO] = { "sk_lock-AF_BLUETOOTH-BTPROTO_L2CAP", "sk_lock-AF_BLUETOOTH-BTPROTO_HCI", "sk_lock-AF_BLUETOOTH-BTPROTO_SCO", "sk_lock-AF_BLUETOOTH-BTPROTO_RFCOMM", "sk_lock-AF_BLUETOOTH-BTPROTO_BNEP", "sk_lock-AF_BLUETOOTH-BTPROTO_CMTP", "sk_lock-AF_BLUETOOTH-BTPROTO_HIDP", "sk_lock-AF_BLUETOOTH-BTPROTO_AVDTP", "sk_lock-AF_BLUETOOTH-BTPROTO_ISO", }; static struct lock_class_key bt_slock_key[BT_MAX_PROTO]; static const char *const bt_slock_key_strings[BT_MAX_PROTO] = { "slock-AF_BLUETOOTH-BTPROTO_L2CAP", "slock-AF_BLUETOOTH-BTPROTO_HCI", "slock-AF_BLUETOOTH-BTPROTO_SCO", "slock-AF_BLUETOOTH-BTPROTO_RFCOMM", "slock-AF_BLUETOOTH-BTPROTO_BNEP", "slock-AF_BLUETOOTH-BTPROTO_CMTP", "slock-AF_BLUETOOTH-BTPROTO_HIDP", "slock-AF_BLUETOOTH-BTPROTO_AVDTP", "slock-AF_BLUETOOTH-BTPROTO_ISO", }; void bt_sock_reclassify_lock(struct sock *sk, int proto) { BUG_ON(!sk); BUG_ON(!sock_allow_reclassification(sk)); sock_lock_init_class_and_name(sk, bt_slock_key_strings[proto], &bt_slock_key[proto], bt_key_strings[proto], &bt_lock_key[proto]); } EXPORT_SYMBOL(bt_sock_reclassify_lock); int bt_sock_register(int proto, const struct net_proto_family *ops) { int err = 0; if (proto < 0 || proto >= BT_MAX_PROTO) return -EINVAL; write_lock(&bt_proto_lock); if (bt_proto[proto]) err = -EEXIST; else bt_proto[proto] = ops; write_unlock(&bt_proto_lock); return err; } EXPORT_SYMBOL(bt_sock_register); void bt_sock_unregister(int proto) { if (proto < 0 || proto >= BT_MAX_PROTO) return; write_lock(&bt_proto_lock); bt_proto[proto] = NULL; write_unlock(&bt_proto_lock); } EXPORT_SYMBOL(bt_sock_unregister); static int bt_sock_create(struct net *net, struct socket *sock, int proto, int kern) { int err; if (net != &init_net) return -EAFNOSUPPORT; if (proto < 0 || proto >= BT_MAX_PROTO) return -EINVAL; if (!bt_proto[proto]) request_module("bt-proto-%d", proto); err = -EPROTONOSUPPORT; read_lock(&bt_proto_lock); if (bt_proto[proto] && try_module_get(bt_proto[proto]->owner)) { err = bt_proto[proto]->create(net, sock, proto, kern); if (!err) bt_sock_reclassify_lock(sock->sk, proto); module_put(bt_proto[proto]->owner); } read_unlock(&bt_proto_lock); return err; } struct sock *bt_sock_alloc(struct net *net, struct socket *sock, struct proto *prot, int proto, gfp_t prio, int kern) { struct sock *sk; sk = sk_alloc(net, PF_BLUETOOTH, prio, prot, kern); if (!sk) return NULL; sock_init_data(sock, sk); INIT_LIST_HEAD(&bt_sk(sk)->accept_q); sock_reset_flag(sk, SOCK_ZAPPED); sk->sk_protocol = proto; sk->sk_state = BT_OPEN; /* Init peer information so it can be properly monitored */ if (!kern) { spin_lock(&sk->sk_peer_lock); sk->sk_peer_pid = get_pid(task_tgid(current)); sk->sk_peer_cred = get_current_cred(); spin_unlock(&sk->sk_peer_lock); } return sk; } EXPORT_SYMBOL(bt_sock_alloc); void bt_sock_link(struct bt_sock_list *l, struct sock *sk) { write_lock(&l->lock); sk_add_node(sk, &l->head); write_unlock(&l->lock); } EXPORT_SYMBOL(bt_sock_link); void bt_sock_unlink(struct bt_sock_list *l, struct sock *sk) { write_lock(&l->lock); sk_del_node_init(sk); write_unlock(&l->lock); } EXPORT_SYMBOL(bt_sock_unlink); void bt_accept_enqueue(struct sock *parent, struct sock *sk, bool bh) { const struct cred *old_cred; struct pid *old_pid; BT_DBG("parent %p, sk %p", parent, sk); sock_hold(sk); if (bh) bh_lock_sock_nested(sk); else lock_sock_nested(sk, SINGLE_DEPTH_NESTING); list_add_tail(&bt_sk(sk)->accept_q, &bt_sk(parent)->accept_q); bt_sk(sk)->parent = parent; /* Copy credentials from parent since for incoming connections the * socket is allocated by the kernel. */ spin_lock(&sk->sk_peer_lock); old_pid = sk->sk_peer_pid; old_cred = sk->sk_peer_cred; sk->sk_peer_pid = get_pid(parent->sk_peer_pid); sk->sk_peer_cred = get_cred(parent->sk_peer_cred); spin_unlock(&sk->sk_peer_lock); put_pid(old_pid); put_cred(old_cred); if (bh) bh_unlock_sock(sk); else release_sock(sk); sk_acceptq_added(parent); } EXPORT_SYMBOL(bt_accept_enqueue); /* Calling function must hold the sk lock. * bt_sk(sk)->parent must be non-NULL meaning sk is in the parent list. */ void bt_accept_unlink(struct sock *sk) { BT_DBG("sk %p state %d", sk, sk->sk_state); list_del_init(&bt_sk(sk)->accept_q); sk_acceptq_removed(bt_sk(sk)->parent); bt_sk(sk)->parent = NULL; sock_put(sk); } EXPORT_SYMBOL(bt_accept_unlink); struct sock *bt_accept_dequeue(struct sock *parent, struct socket *newsock) { struct bt_sock *s, *n; struct sock *sk; BT_DBG("parent %p", parent); restart: list_for_each_entry_safe(s, n, &bt_sk(parent)->accept_q, accept_q) { sk = (struct sock *)s; /* Prevent early freeing of sk due to unlink and sock_kill */ sock_hold(sk); lock_sock(sk); /* Check sk has not already been unlinked via * bt_accept_unlink() due to serialisation caused by sk locking */ if (!bt_sk(sk)->parent) { BT_DBG("sk %p, already unlinked", sk); release_sock(sk); sock_put(sk); /* Restart the loop as sk is no longer in the list * and also avoid a potential infinite loop because * list_for_each_entry_safe() is not thread safe. */ goto restart; } /* sk is safely in the parent list so reduce reference count */ sock_put(sk); /* FIXME: Is this check still needed */ if (sk->sk_state == BT_CLOSED) { bt_accept_unlink(sk); release_sock(sk); continue; } if (sk->sk_state == BT_CONNECTED || !newsock || test_bit(BT_SK_DEFER_SETUP, &bt_sk(parent)->flags)) { bt_accept_unlink(sk); if (newsock) sock_graft(sk, newsock); release_sock(sk); return sk; } release_sock(sk); } return NULL; } EXPORT_SYMBOL(bt_accept_dequeue); int bt_sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags) { struct sock *sk = sock->sk; struct sk_buff *skb; size_t copied; size_t skblen; int err; BT_DBG("sock %p sk %p len %zu", sock, sk, len); if (flags & MSG_OOB) return -EOPNOTSUPP; skb = skb_recv_datagram(sk, flags, &err); if (!skb) { if (sk->sk_shutdown & RCV_SHUTDOWN) err = 0; return err; } skblen = skb->len; copied = skb->len; if (len < copied) { msg->msg_flags |= MSG_TRUNC; copied = len; } skb_reset_transport_header(skb); err = skb_copy_datagram_msg(skb, 0, msg, copied); if (err == 0) { sock_recv_cmsgs(msg, sk, skb); if (msg->msg_name && bt_sk(sk)->skb_msg_name) bt_sk(sk)->skb_msg_name(skb, msg->msg_name, &msg->msg_namelen); if (test_bit(BT_SK_PKT_STATUS, &bt_sk(sk)->flags)) { u8 pkt_status = hci_skb_pkt_status(skb); put_cmsg(msg, SOL_BLUETOOTH, BT_SCM_PKT_STATUS, sizeof(pkt_status), &pkt_status); } } skb_free_datagram(sk, skb); if (flags & MSG_TRUNC) copied = skblen; return err ? : copied; } EXPORT_SYMBOL(bt_sock_recvmsg); static long bt_sock_data_wait(struct sock *sk, long timeo) { DECLARE_WAITQUEUE(wait, current); add_wait_queue(sk_sleep(sk), &wait); for (;;) { set_current_state(TASK_INTERRUPTIBLE); if (!skb_queue_empty(&sk->sk_receive_queue)) break; if (sk->sk_err || (sk->sk_shutdown & RCV_SHUTDOWN)) break; if (signal_pending(current) || !timeo) break; sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); release_sock(sk); timeo = schedule_timeout(timeo); lock_sock(sk); sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); } __set_current_state(TASK_RUNNING); remove_wait_queue(sk_sleep(sk), &wait); return timeo; } int bt_sock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; int err = 0; size_t target, copied = 0; long timeo; if (flags & MSG_OOB) return -EOPNOTSUPP; BT_DBG("sk %p size %zu", sk, size); lock_sock(sk); target = sock_rcvlowat(sk, flags & MSG_WAITALL, size); timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); do { struct sk_buff *skb; int chunk; skb = skb_dequeue(&sk->sk_receive_queue); if (!skb) { if (copied >= target) break; err = sock_error(sk); if (err) break; if (sk->sk_shutdown & RCV_SHUTDOWN) break; err = -EAGAIN; if (!timeo) break; timeo = bt_sock_data_wait(sk, timeo); if (signal_pending(current)) { err = sock_intr_errno(timeo); goto out; } continue; } chunk = min_t(unsigned int, skb->len, size); if (skb_copy_datagram_msg(skb, 0, msg, chunk)) { skb_queue_head(&sk->sk_receive_queue, skb); if (!copied) copied = -EFAULT; break; } copied += chunk; size -= chunk; sock_recv_cmsgs(msg, sk, skb); if (!(flags & MSG_PEEK)) { int skb_len = skb_headlen(skb); if (chunk <= skb_len) { __skb_pull(skb, chunk); } else { struct sk_buff *frag; __skb_pull(skb, skb_len); chunk -= skb_len; skb_walk_frags(skb, frag) { if (chunk <= frag->len) { /* Pulling partial data */ skb->len -= chunk; skb->data_len -= chunk; __skb_pull(frag, chunk); break; } else if (frag->len) { /* Pulling all frag data */ chunk -= frag->len; skb->len -= frag->len; skb->data_len -= frag->len; __skb_pull(frag, frag->len); } } } if (skb->len) { skb_queue_head(&sk->sk_receive_queue, skb); break; } kfree_skb(skb); } else { /* put message back and return */ skb_queue_head(&sk->sk_receive_queue, skb); break; } } while (size); out: release_sock(sk); return copied ? : err; } EXPORT_SYMBOL(bt_sock_stream_recvmsg); static inline __poll_t bt_accept_poll(struct sock *parent) { struct bt_sock *s, *n; struct sock *sk; list_for_each_entry_safe(s, n, &bt_sk(parent)->accept_q, accept_q) { sk = (struct sock *)s; if (sk->sk_state == BT_CONNECTED || (test_bit(BT_SK_DEFER_SETUP, &bt_sk(parent)->flags) && sk->sk_state == BT_CONNECT2)) return EPOLLIN | EPOLLRDNORM; } return 0; } __poll_t bt_sock_poll(struct file *file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; __poll_t mask = 0; poll_wait(file, sk_sleep(sk), wait); if (sk->sk_state == BT_LISTEN) return bt_accept_poll(sk); if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) mask |= EPOLLERR | (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); if (sk->sk_shutdown & RCV_SHUTDOWN) mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; if (sk->sk_shutdown == SHUTDOWN_MASK) mask |= EPOLLHUP; if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) mask |= EPOLLIN | EPOLLRDNORM; if (sk->sk_state == BT_CLOSED) mask |= EPOLLHUP; if (sk->sk_state == BT_CONNECT || sk->sk_state == BT_CONNECT2 || sk->sk_state == BT_CONFIG) return mask; if (!test_bit(BT_SK_SUSPEND, &bt_sk(sk)->flags) && sock_writeable(sk)) mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; else sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); return mask; } EXPORT_SYMBOL(bt_sock_poll); int bt_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk = sock->sk; struct sk_buff *skb; long amount; int err; BT_DBG("sk %p cmd %x arg %lx", sk, cmd, arg); switch (cmd) { case TIOCOUTQ: if (sk->sk_state == BT_LISTEN) return -EINVAL; amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk); if (amount < 0) amount = 0; err = put_user(amount, (int __user *)arg); break; case TIOCINQ: if (sk->sk_state == BT_LISTEN) return -EINVAL; spin_lock(&sk->sk_receive_queue.lock); skb = skb_peek(&sk->sk_receive_queue); amount = skb ? skb->len : 0; spin_unlock(&sk->sk_receive_queue.lock); err = put_user(amount, (int __user *)arg); break; default: err = -ENOIOCTLCMD; break; } return err; } EXPORT_SYMBOL(bt_sock_ioctl); /* This function expects the sk lock to be held when called */ int bt_sock_wait_state(struct sock *sk, int state, unsigned long timeo) { DECLARE_WAITQUEUE(wait, current); int err = 0; BT_DBG("sk %p", sk); add_wait_queue(sk_sleep(sk), &wait); set_current_state(TASK_INTERRUPTIBLE); while (sk->sk_state != state) { if (!timeo) { err = -EINPROGRESS; break; } if (signal_pending(current)) { err = sock_intr_errno(timeo); break; } release_sock(sk); timeo = schedule_timeout(timeo); lock_sock(sk); set_current_state(TASK_INTERRUPTIBLE); err = sock_error(sk); if (err) break; } __set_current_state(TASK_RUNNING); remove_wait_queue(sk_sleep(sk), &wait); return err; } EXPORT_SYMBOL(bt_sock_wait_state); /* This function expects the sk lock to be held when called */ int bt_sock_wait_ready(struct sock *sk, unsigned int msg_flags) { DECLARE_WAITQUEUE(wait, current); unsigned long timeo; int err = 0; BT_DBG("sk %p", sk); timeo = sock_sndtimeo(sk, !!(msg_flags & MSG_DONTWAIT)); add_wait_queue(sk_sleep(sk), &wait); set_current_state(TASK_INTERRUPTIBLE); while (test_bit(BT_SK_SUSPEND, &bt_sk(sk)->flags)) { if (!timeo) { err = -EAGAIN; break; } if (signal_pending(current)) { err = sock_intr_errno(timeo); break; } release_sock(sk); timeo = schedule_timeout(timeo); lock_sock(sk); set_current_state(TASK_INTERRUPTIBLE); err = sock_error(sk); if (err) break; } __set_current_state(TASK_RUNNING); remove_wait_queue(sk_sleep(sk), &wait); return err; } EXPORT_SYMBOL(bt_sock_wait_ready); #ifdef CONFIG_PROC_FS static void *bt_seq_start(struct seq_file *seq, loff_t *pos) __acquires(seq->private->l->lock) { struct bt_sock_list *l = pde_data(file_inode(seq->file)); read_lock(&l->lock); return seq_hlist_start_head(&l->head, *pos); } static void *bt_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct bt_sock_list *l = pde_data(file_inode(seq->file)); return seq_hlist_next(v, &l->head, pos); } static void bt_seq_stop(struct seq_file *seq, void *v) __releases(seq->private->l->lock) { struct bt_sock_list *l = pde_data(file_inode(seq->file)); read_unlock(&l->lock); } static int bt_seq_show(struct seq_file *seq, void *v) { struct bt_sock_list *l = pde_data(file_inode(seq->file)); if (v == SEQ_START_TOKEN) { seq_puts(seq, "sk RefCnt Rmem Wmem User Inode Parent"); if (l->custom_seq_show) { seq_putc(seq, ' '); l->custom_seq_show(seq, v); } seq_putc(seq, '\n'); } else { struct sock *sk = sk_entry(v); struct bt_sock *bt = bt_sk(sk); seq_printf(seq, "%pK %-6d %-6u %-6u %-6u %-6lu %-6lu", sk, refcount_read(&sk->sk_refcnt), sk_rmem_alloc_get(sk), sk_wmem_alloc_get(sk), from_kuid(seq_user_ns(seq), sock_i_uid(sk)), sock_i_ino(sk), bt->parent ? sock_i_ino(bt->parent) : 0LU); if (l->custom_seq_show) { seq_putc(seq, ' '); l->custom_seq_show(seq, v); } seq_putc(seq, '\n'); } return 0; } static const struct seq_operations bt_seq_ops = { .start = bt_seq_start, .next = bt_seq_next, .stop = bt_seq_stop, .show = bt_seq_show, }; int bt_procfs_init(struct net *net, const char *name, struct bt_sock_list *sk_list, int (*seq_show)(struct seq_file *, void *)) { sk_list->custom_seq_show = seq_show; if (!proc_create_seq_data(name, 0, net->proc_net, &bt_seq_ops, sk_list)) return -ENOMEM; return 0; } void bt_procfs_cleanup(struct net *net, const char *name) { remove_proc_entry(name, net->proc_net); } #else int bt_procfs_init(struct net *net, const char *name, struct bt_sock_list *sk_list, int (*seq_show)(struct seq_file *, void *)) { return 0; } void bt_procfs_cleanup(struct net *net, const char *name) { } #endif EXPORT_SYMBOL(bt_procfs_init); EXPORT_SYMBOL(bt_procfs_cleanup); static const struct net_proto_family bt_sock_family_ops = { .owner = THIS_MODULE, .family = PF_BLUETOOTH, .create = bt_sock_create, }; struct dentry *bt_debugfs; EXPORT_SYMBOL_GPL(bt_debugfs); #define VERSION __stringify(BT_SUBSYS_VERSION) "." \ __stringify(BT_SUBSYS_REVISION) static int __init bt_init(void) { int err; sock_skb_cb_check_size(sizeof(struct bt_skb_cb)); BT_INFO("Core ver %s", VERSION); err = bt_selftest(); if (err < 0) return err; bt_debugfs = debugfs_create_dir("bluetooth", NULL); bt_leds_init(); err = bt_sysfs_init(); if (err < 0) goto cleanup_led; err = sock_register(&bt_sock_family_ops); if (err) goto cleanup_sysfs; BT_INFO("HCI device and connection manager initialized"); err = hci_sock_init(); if (err) goto unregister_socket; err = l2cap_init(); if (err) goto cleanup_socket; err = sco_init(); if (err) goto cleanup_cap; err = mgmt_init(); if (err) goto cleanup_sco; return 0; cleanup_sco: sco_exit(); cleanup_cap: l2cap_exit(); cleanup_socket: hci_sock_cleanup(); unregister_socket: sock_unregister(PF_BLUETOOTH); cleanup_sysfs: bt_sysfs_cleanup(); cleanup_led: bt_leds_cleanup(); return err; } static void __exit bt_exit(void) { mgmt_exit(); sco_exit(); l2cap_exit(); hci_sock_cleanup(); sock_unregister(PF_BLUETOOTH); bt_sysfs_cleanup(); bt_leds_cleanup(); debugfs_remove_recursive(bt_debugfs); } subsys_initcall(bt_init); module_exit(bt_exit); MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>"); MODULE_DESCRIPTION("Bluetooth Core ver " VERSION); MODULE_VERSION(VERSION); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_BLUETOOTH);
1 1 1 1 1 4 7 7 1 6 5 1 1 1 1 1 1 8 8 4 1 2 1 1 1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 // SPDX-License-Identifier: GPL-2.0 /* Copyright (C) B.A.T.M.A.N. contributors: * * Marek Lindner */ #include "gateway_client.h" #include "main.h" #include <linux/atomic.h> #include <linux/byteorder/generic.h> #include <linux/container_of.h> #include <linux/errno.h> #include <linux/etherdevice.h> #include <linux/gfp.h> #include <linux/if_ether.h> #include <linux/if_vlan.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/kref.h> #include <linux/list.h> #include <linux/lockdep.h> #include <linux/netdevice.h> #include <linux/netlink.h> #include <linux/rculist.h> #include <linux/rcupdate.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/sprintf.h> #include <linux/stddef.h> #include <linux/udp.h> #include <net/sock.h> #include <uapi/linux/batadv_packet.h> #include <uapi/linux/batman_adv.h> #include "hard-interface.h" #include "log.h" #include "netlink.h" #include "originator.h" #include "routing.h" #include "soft-interface.h" #include "translation-table.h" /* These are the offsets of the "hw type" and "hw address length" in the dhcp * packet starting at the beginning of the dhcp header */ #define BATADV_DHCP_HTYPE_OFFSET 1 #define BATADV_DHCP_HLEN_OFFSET 2 /* Value of htype representing Ethernet */ #define BATADV_DHCP_HTYPE_ETHERNET 0x01 /* This is the offset of the "chaddr" field in the dhcp packet starting at the * beginning of the dhcp header */ #define BATADV_DHCP_CHADDR_OFFSET 28 /** * batadv_gw_node_release() - release gw_node from lists and queue for free * after rcu grace period * @ref: kref pointer of the gw_node */ void batadv_gw_node_release(struct kref *ref) { struct batadv_gw_node *gw_node; gw_node = container_of(ref, struct batadv_gw_node, refcount); batadv_orig_node_put(gw_node->orig_node); kfree_rcu(gw_node, rcu); } /** * batadv_gw_get_selected_gw_node() - Get currently selected gateway * @bat_priv: the bat priv with all the soft interface information * * Return: selected gateway (with increased refcnt), NULL on errors */ struct batadv_gw_node * batadv_gw_get_selected_gw_node(struct batadv_priv *bat_priv) { struct batadv_gw_node *gw_node; rcu_read_lock(); gw_node = rcu_dereference(bat_priv->gw.curr_gw); if (!gw_node) goto out; if (!kref_get_unless_zero(&gw_node->refcount)) gw_node = NULL; out: rcu_read_unlock(); return gw_node; } /** * batadv_gw_get_selected_orig() - Get originator of currently selected gateway * @bat_priv: the bat priv with all the soft interface information * * Return: orig_node of selected gateway (with increased refcnt), NULL on errors */ struct batadv_orig_node * batadv_gw_get_selected_orig(struct batadv_priv *bat_priv) { struct batadv_gw_node *gw_node; struct batadv_orig_node *orig_node = NULL; gw_node = batadv_gw_get_selected_gw_node(bat_priv); if (!gw_node) goto out; rcu_read_lock(); orig_node = gw_node->orig_node; if (!orig_node) goto unlock; if (!kref_get_unless_zero(&orig_node->refcount)) orig_node = NULL; unlock: rcu_read_unlock(); out: batadv_gw_node_put(gw_node); return orig_node; } static void batadv_gw_select(struct batadv_priv *bat_priv, struct batadv_gw_node *new_gw_node) { struct batadv_gw_node *curr_gw_node; spin_lock_bh(&bat_priv->gw.list_lock); if (new_gw_node) kref_get(&new_gw_node->refcount); curr_gw_node = rcu_replace_pointer(bat_priv->gw.curr_gw, new_gw_node, true); batadv_gw_node_put(curr_gw_node); spin_unlock_bh(&bat_priv->gw.list_lock); } /** * batadv_gw_reselect() - force a gateway reselection * @bat_priv: the bat priv with all the soft interface information * * Set a flag to remind the GW component to perform a new gateway reselection. * However this function does not ensure that the current gateway is going to be * deselected. The reselection mechanism may elect the same gateway once again. * * This means that invoking batadv_gw_reselect() does not guarantee a gateway * change and therefore a uevent is not necessarily expected. */ void batadv_gw_reselect(struct batadv_priv *bat_priv) { atomic_set(&bat_priv->gw.reselect, 1); } /** * batadv_gw_check_client_stop() - check if client mode has been switched off * @bat_priv: the bat priv with all the soft interface information * * This function assumes the caller has checked that the gw state *is actually * changing*. This function is not supposed to be called when there is no state * change. */ void batadv_gw_check_client_stop(struct batadv_priv *bat_priv) { struct batadv_gw_node *curr_gw; if (atomic_read(&bat_priv->gw.mode) != BATADV_GW_MODE_CLIENT) return; curr_gw = batadv_gw_get_selected_gw_node(bat_priv); if (!curr_gw) return; /* deselect the current gateway so that next time that client mode is * enabled a proper GW_ADD event can be sent */ batadv_gw_select(bat_priv, NULL); /* if batman-adv is switching the gw client mode off and a gateway was * already selected, send a DEL uevent */ batadv_throw_uevent(bat_priv, BATADV_UEV_GW, BATADV_UEV_DEL, NULL); batadv_gw_node_put(curr_gw); } /** * batadv_gw_election() - Elect the best gateway * @bat_priv: the bat priv with all the soft interface information */ void batadv_gw_election(struct batadv_priv *bat_priv) { struct batadv_gw_node *curr_gw = NULL; struct batadv_gw_node *next_gw = NULL; struct batadv_neigh_node *router = NULL; struct batadv_neigh_ifinfo *router_ifinfo = NULL; char gw_addr[18] = { '\0' }; if (atomic_read(&bat_priv->gw.mode) != BATADV_GW_MODE_CLIENT) goto out; if (!bat_priv->algo_ops->gw.get_best_gw_node) goto out; curr_gw = batadv_gw_get_selected_gw_node(bat_priv); if (!batadv_atomic_dec_not_zero(&bat_priv->gw.reselect) && curr_gw) goto out; /* if gw.reselect is set to 1 it means that a previous call to * gw.is_eligible() said that we have a new best GW, therefore it can * now be picked from the list and selected */ next_gw = bat_priv->algo_ops->gw.get_best_gw_node(bat_priv); if (curr_gw == next_gw) goto out; if (next_gw) { sprintf(gw_addr, "%pM", next_gw->orig_node->orig); router = batadv_orig_router_get(next_gw->orig_node, BATADV_IF_DEFAULT); if (!router) { batadv_gw_reselect(bat_priv); goto out; } router_ifinfo = batadv_neigh_ifinfo_get(router, BATADV_IF_DEFAULT); if (!router_ifinfo) { batadv_gw_reselect(bat_priv); goto out; } } if (curr_gw && !next_gw) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Removing selected gateway - no gateway in range\n"); batadv_throw_uevent(bat_priv, BATADV_UEV_GW, BATADV_UEV_DEL, NULL); } else if (!curr_gw && next_gw) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Adding route to gateway %pM (bandwidth: %u.%u/%u.%u MBit, tq: %i)\n", next_gw->orig_node->orig, next_gw->bandwidth_down / 10, next_gw->bandwidth_down % 10, next_gw->bandwidth_up / 10, next_gw->bandwidth_up % 10, router_ifinfo->bat_iv.tq_avg); batadv_throw_uevent(bat_priv, BATADV_UEV_GW, BATADV_UEV_ADD, gw_addr); } else { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Changing route to gateway %pM (bandwidth: %u.%u/%u.%u MBit, tq: %i)\n", next_gw->orig_node->orig, next_gw->bandwidth_down / 10, next_gw->bandwidth_down % 10, next_gw->bandwidth_up / 10, next_gw->bandwidth_up % 10, router_ifinfo->bat_iv.tq_avg); batadv_throw_uevent(bat_priv, BATADV_UEV_GW, BATADV_UEV_CHANGE, gw_addr); } batadv_gw_select(bat_priv, next_gw); out: batadv_gw_node_put(curr_gw); batadv_gw_node_put(next_gw); batadv_neigh_node_put(router); batadv_neigh_ifinfo_put(router_ifinfo); } /** * batadv_gw_check_election() - Elect orig node as best gateway when eligible * @bat_priv: the bat priv with all the soft interface information * @orig_node: orig node which is to be checked */ void batadv_gw_check_election(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node) { struct batadv_orig_node *curr_gw_orig; /* abort immediately if the routing algorithm does not support gateway * election */ if (!bat_priv->algo_ops->gw.is_eligible) return; curr_gw_orig = batadv_gw_get_selected_orig(bat_priv); if (!curr_gw_orig) goto reselect; /* this node already is the gateway */ if (curr_gw_orig == orig_node) goto out; if (!bat_priv->algo_ops->gw.is_eligible(bat_priv, curr_gw_orig, orig_node)) goto out; reselect: batadv_gw_reselect(bat_priv); out: batadv_orig_node_put(curr_gw_orig); } /** * batadv_gw_node_add() - add gateway node to list of available gateways * @bat_priv: the bat priv with all the soft interface information * @orig_node: originator announcing gateway capabilities * @gateway: announced bandwidth information * * Has to be called with the appropriate locks being acquired * (gw.list_lock). */ static void batadv_gw_node_add(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node, struct batadv_tvlv_gateway_data *gateway) { struct batadv_gw_node *gw_node; lockdep_assert_held(&bat_priv->gw.list_lock); if (gateway->bandwidth_down == 0) return; gw_node = kzalloc(sizeof(*gw_node), GFP_ATOMIC); if (!gw_node) return; kref_init(&gw_node->refcount); INIT_HLIST_NODE(&gw_node->list); kref_get(&orig_node->refcount); gw_node->orig_node = orig_node; gw_node->bandwidth_down = ntohl(gateway->bandwidth_down); gw_node->bandwidth_up = ntohl(gateway->bandwidth_up); kref_get(&gw_node->refcount); hlist_add_head_rcu(&gw_node->list, &bat_priv->gw.gateway_list); bat_priv->gw.generation++; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Found new gateway %pM -> gw bandwidth: %u.%u/%u.%u MBit\n", orig_node->orig, ntohl(gateway->bandwidth_down) / 10, ntohl(gateway->bandwidth_down) % 10, ntohl(gateway->bandwidth_up) / 10, ntohl(gateway->bandwidth_up) % 10); /* don't return reference to new gw_node */ batadv_gw_node_put(gw_node); } /** * batadv_gw_node_get() - retrieve gateway node from list of available gateways * @bat_priv: the bat priv with all the soft interface information * @orig_node: originator announcing gateway capabilities * * Return: gateway node if found or NULL otherwise. */ struct batadv_gw_node *batadv_gw_node_get(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node) { struct batadv_gw_node *gw_node_tmp, *gw_node = NULL; rcu_read_lock(); hlist_for_each_entry_rcu(gw_node_tmp, &bat_priv->gw.gateway_list, list) { if (gw_node_tmp->orig_node != orig_node) continue; if (!kref_get_unless_zero(&gw_node_tmp->refcount)) continue; gw_node = gw_node_tmp; break; } rcu_read_unlock(); return gw_node; } /** * batadv_gw_node_update() - update list of available gateways with changed * bandwidth information * @bat_priv: the bat priv with all the soft interface information * @orig_node: originator announcing gateway capabilities * @gateway: announced bandwidth information */ void batadv_gw_node_update(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node, struct batadv_tvlv_gateway_data *gateway) { struct batadv_gw_node *gw_node, *curr_gw = NULL; spin_lock_bh(&bat_priv->gw.list_lock); gw_node = batadv_gw_node_get(bat_priv, orig_node); if (!gw_node) { batadv_gw_node_add(bat_priv, orig_node, gateway); spin_unlock_bh(&bat_priv->gw.list_lock); goto out; } spin_unlock_bh(&bat_priv->gw.list_lock); if (gw_node->bandwidth_down == ntohl(gateway->bandwidth_down) && gw_node->bandwidth_up == ntohl(gateway->bandwidth_up)) goto out; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Gateway bandwidth of originator %pM changed from %u.%u/%u.%u MBit to %u.%u/%u.%u MBit\n", orig_node->orig, gw_node->bandwidth_down / 10, gw_node->bandwidth_down % 10, gw_node->bandwidth_up / 10, gw_node->bandwidth_up % 10, ntohl(gateway->bandwidth_down) / 10, ntohl(gateway->bandwidth_down) % 10, ntohl(gateway->bandwidth_up) / 10, ntohl(gateway->bandwidth_up) % 10); gw_node->bandwidth_down = ntohl(gateway->bandwidth_down); gw_node->bandwidth_up = ntohl(gateway->bandwidth_up); if (ntohl(gateway->bandwidth_down) == 0) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Gateway %pM removed from gateway list\n", orig_node->orig); /* Note: We don't need a NULL check here, since curr_gw never * gets dereferenced. */ spin_lock_bh(&bat_priv->gw.list_lock); if (!hlist_unhashed(&gw_node->list)) { hlist_del_init_rcu(&gw_node->list); batadv_gw_node_put(gw_node); bat_priv->gw.generation++; } spin_unlock_bh(&bat_priv->gw.list_lock); curr_gw = batadv_gw_get_selected_gw_node(bat_priv); if (gw_node == curr_gw) batadv_gw_reselect(bat_priv); batadv_gw_node_put(curr_gw); } out: batadv_gw_node_put(gw_node); } /** * batadv_gw_node_delete() - Remove orig_node from gateway list * @bat_priv: the bat priv with all the soft interface information * @orig_node: orig node which is currently in process of being removed */ void batadv_gw_node_delete(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node) { struct batadv_tvlv_gateway_data gateway; gateway.bandwidth_down = 0; gateway.bandwidth_up = 0; batadv_gw_node_update(bat_priv, orig_node, &gateway); } /** * batadv_gw_node_free() - Free gateway information from soft interface * @bat_priv: the bat priv with all the soft interface information */ void batadv_gw_node_free(struct batadv_priv *bat_priv) { struct batadv_gw_node *gw_node; struct hlist_node *node_tmp; spin_lock_bh(&bat_priv->gw.list_lock); hlist_for_each_entry_safe(gw_node, node_tmp, &bat_priv->gw.gateway_list, list) { hlist_del_init_rcu(&gw_node->list); batadv_gw_node_put(gw_node); bat_priv->gw.generation++; } spin_unlock_bh(&bat_priv->gw.list_lock); } /** * batadv_gw_dump() - Dump gateways into a message * @msg: Netlink message to dump into * @cb: Control block containing additional options * * Return: Error code, or length of message */ int batadv_gw_dump(struct sk_buff *msg, struct netlink_callback *cb) { struct batadv_hard_iface *primary_if = NULL; struct net *net = sock_net(cb->skb->sk); struct net_device *soft_iface; struct batadv_priv *bat_priv; int ifindex; int ret; ifindex = batadv_netlink_get_ifindex(cb->nlh, BATADV_ATTR_MESH_IFINDEX); if (!ifindex) return -EINVAL; soft_iface = dev_get_by_index(net, ifindex); if (!soft_iface || !batadv_softif_is_valid(soft_iface)) { ret = -ENODEV; goto out; } bat_priv = netdev_priv(soft_iface); primary_if = batadv_primary_if_get_selected(bat_priv); if (!primary_if || primary_if->if_status != BATADV_IF_ACTIVE) { ret = -ENOENT; goto out; } if (!bat_priv->algo_ops->gw.dump) { ret = -EOPNOTSUPP; goto out; } bat_priv->algo_ops->gw.dump(msg, cb, bat_priv); ret = msg->len; out: batadv_hardif_put(primary_if); dev_put(soft_iface); return ret; } /** * batadv_gw_dhcp_recipient_get() - check if a packet is a DHCP message * @skb: the packet to check * @header_len: a pointer to the batman-adv header size * @chaddr: buffer where the client address will be stored. Valid * only if the function returns BATADV_DHCP_TO_CLIENT * * This function may re-allocate the data buffer of the skb passed as argument. * * Return: * - BATADV_DHCP_NO if the packet is not a dhcp message or if there was an error * while parsing it * - BATADV_DHCP_TO_SERVER if this is a message going to the DHCP server * - BATADV_DHCP_TO_CLIENT if this is a message going to a DHCP client */ enum batadv_dhcp_recipient batadv_gw_dhcp_recipient_get(struct sk_buff *skb, unsigned int *header_len, u8 *chaddr) { enum batadv_dhcp_recipient ret = BATADV_DHCP_NO; struct ethhdr *ethhdr; struct iphdr *iphdr; struct ipv6hdr *ipv6hdr; struct udphdr *udphdr; struct vlan_ethhdr *vhdr; int chaddr_offset; __be16 proto; u8 *p; /* check for ethernet header */ if (!pskb_may_pull(skb, *header_len + ETH_HLEN)) return BATADV_DHCP_NO; ethhdr = eth_hdr(skb); proto = ethhdr->h_proto; *header_len += ETH_HLEN; /* check for initial vlan header */ if (proto == htons(ETH_P_8021Q)) { if (!pskb_may_pull(skb, *header_len + VLAN_HLEN)) return BATADV_DHCP_NO; vhdr = vlan_eth_hdr(skb); proto = vhdr->h_vlan_encapsulated_proto; *header_len += VLAN_HLEN; } /* check for ip header */ switch (proto) { case htons(ETH_P_IP): if (!pskb_may_pull(skb, *header_len + sizeof(*iphdr))) return BATADV_DHCP_NO; iphdr = (struct iphdr *)(skb->data + *header_len); *header_len += iphdr->ihl * 4; /* check for udp header */ if (iphdr->protocol != IPPROTO_UDP) return BATADV_DHCP_NO; break; case htons(ETH_P_IPV6): if (!pskb_may_pull(skb, *header_len + sizeof(*ipv6hdr))) return BATADV_DHCP_NO; ipv6hdr = (struct ipv6hdr *)(skb->data + *header_len); *header_len += sizeof(*ipv6hdr); /* check for udp header */ if (ipv6hdr->nexthdr != IPPROTO_UDP) return BATADV_DHCP_NO; break; default: return BATADV_DHCP_NO; } if (!pskb_may_pull(skb, *header_len + sizeof(*udphdr))) return BATADV_DHCP_NO; udphdr = (struct udphdr *)(skb->data + *header_len); *header_len += sizeof(*udphdr); /* check for bootp port */ switch (proto) { case htons(ETH_P_IP): if (udphdr->dest == htons(67)) ret = BATADV_DHCP_TO_SERVER; else if (udphdr->source == htons(67)) ret = BATADV_DHCP_TO_CLIENT; break; case htons(ETH_P_IPV6): if (udphdr->dest == htons(547)) ret = BATADV_DHCP_TO_SERVER; else if (udphdr->source == htons(547)) ret = BATADV_DHCP_TO_CLIENT; break; } chaddr_offset = *header_len + BATADV_DHCP_CHADDR_OFFSET; /* store the client address if the message is going to a client */ if (ret == BATADV_DHCP_TO_CLIENT) { if (!pskb_may_pull(skb, chaddr_offset + ETH_ALEN)) return BATADV_DHCP_NO; /* check if the DHCP packet carries an Ethernet DHCP */ p = skb->data + *header_len + BATADV_DHCP_HTYPE_OFFSET; if (*p != BATADV_DHCP_HTYPE_ETHERNET) return BATADV_DHCP_NO; /* check if the DHCP packet carries a valid Ethernet address */ p = skb->data + *header_len + BATADV_DHCP_HLEN_OFFSET; if (*p != ETH_ALEN) return BATADV_DHCP_NO; ether_addr_copy(chaddr, skb->data + chaddr_offset); } return ret; } /** * batadv_gw_out_of_range() - check if the dhcp request destination is the best * gateway * @bat_priv: the bat priv with all the soft interface information * @skb: the outgoing packet * * Check if the skb is a DHCP request and if it is sent to the current best GW * server. Due to topology changes it may be the case that the GW server * previously selected is not the best one anymore. * * This call might reallocate skb data. * Must be invoked only when the DHCP packet is going TO a DHCP SERVER. * * Return: true if the packet destination is unicast and it is not the best gw, * false otherwise. */ bool batadv_gw_out_of_range(struct batadv_priv *bat_priv, struct sk_buff *skb) { struct batadv_neigh_node *neigh_curr = NULL; struct batadv_neigh_node *neigh_old = NULL; struct batadv_orig_node *orig_dst_node = NULL; struct batadv_gw_node *gw_node = NULL; struct batadv_gw_node *curr_gw = NULL; struct batadv_neigh_ifinfo *curr_ifinfo, *old_ifinfo; struct ethhdr *ethhdr = (struct ethhdr *)skb->data; bool out_of_range = false; u8 curr_tq_avg; unsigned short vid; vid = batadv_get_vid(skb, 0); if (is_multicast_ether_addr(ethhdr->h_dest)) goto out; orig_dst_node = batadv_transtable_search(bat_priv, ethhdr->h_source, ethhdr->h_dest, vid); if (!orig_dst_node) goto out; gw_node = batadv_gw_node_get(bat_priv, orig_dst_node); if (!gw_node) goto out; switch (atomic_read(&bat_priv->gw.mode)) { case BATADV_GW_MODE_SERVER: /* If we are a GW then we are our best GW. We can artificially * set the tq towards ourself as the maximum value */ curr_tq_avg = BATADV_TQ_MAX_VALUE; break; case BATADV_GW_MODE_CLIENT: curr_gw = batadv_gw_get_selected_gw_node(bat_priv); if (!curr_gw) goto out; /* packet is going to our gateway */ if (curr_gw->orig_node == orig_dst_node) goto out; /* If the dhcp packet has been sent to a different gw, * we have to evaluate whether the old gw is still * reliable enough */ neigh_curr = batadv_find_router(bat_priv, curr_gw->orig_node, NULL); if (!neigh_curr) goto out; curr_ifinfo = batadv_neigh_ifinfo_get(neigh_curr, BATADV_IF_DEFAULT); if (!curr_ifinfo) goto out; curr_tq_avg = curr_ifinfo->bat_iv.tq_avg; batadv_neigh_ifinfo_put(curr_ifinfo); break; case BATADV_GW_MODE_OFF: default: goto out; } neigh_old = batadv_find_router(bat_priv, orig_dst_node, NULL); if (!neigh_old) goto out; old_ifinfo = batadv_neigh_ifinfo_get(neigh_old, BATADV_IF_DEFAULT); if (!old_ifinfo) goto out; if ((curr_tq_avg - old_ifinfo->bat_iv.tq_avg) > BATADV_GW_THRESHOLD) out_of_range = true; batadv_neigh_ifinfo_put(old_ifinfo); out: batadv_orig_node_put(orig_dst_node); batadv_gw_node_put(curr_gw); batadv_gw_node_put(gw_node); batadv_neigh_node_put(neigh_old); batadv_neigh_node_put(neigh_curr); return out_of_range; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 /* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef __DSA_TAG_H #define __DSA_TAG_H #include <linux/if_vlan.h> #include <linux/list.h> #include <linux/types.h> #include <net/dsa.h> #include "port.h" #include "user.h" struct dsa_tag_driver { const struct dsa_device_ops *ops; struct list_head list; struct module *owner; }; extern struct packet_type dsa_pack_type; const struct dsa_device_ops *dsa_tag_driver_get_by_id(int tag_protocol); const struct dsa_device_ops *dsa_tag_driver_get_by_name(const char *name); void dsa_tag_driver_put(const struct dsa_device_ops *ops); const char *dsa_tag_protocol_to_str(const struct dsa_device_ops *ops); static inline int dsa_tag_protocol_overhead(const struct dsa_device_ops *ops) { return ops->needed_headroom + ops->needed_tailroom; } static inline struct net_device *dsa_conduit_find_user(struct net_device *dev, int device, int port) { struct dsa_port *cpu_dp = dev->dsa_ptr; struct dsa_switch_tree *dst = cpu_dp->dst; struct dsa_port *dp; list_for_each_entry(dp, &dst->ports, list) if (dp->ds->index == device && dp->index == port && dp->type == DSA_PORT_TYPE_USER) return dp->user; return NULL; } /** * dsa_software_untag_vlan_aware_bridge: Software untagging for VLAN-aware bridge * @skb: Pointer to received socket buffer (packet) * @br: Pointer to bridge upper interface of ingress port * @vid: Parsed VID from packet * * The bridge can process tagged packets. Software like STP/PTP may not. The * bridge can also process untagged packets, to the same effect as if they were * tagged with the PVID of the ingress port. So packets tagged with the PVID of * the bridge port must be software-untagged, to support both use cases. */ static inline void dsa_software_untag_vlan_aware_bridge(struct sk_buff *skb, struct net_device *br, u16 vid) { u16 pvid, proto; int err; err = br_vlan_get_proto(br, &proto); if (err) return; err = br_vlan_get_pvid_rcu(skb->dev, &pvid); if (err) return; if (vid == pvid && skb->vlan_proto == htons(proto)) __vlan_hwaccel_clear_tag(skb); } /** * dsa_software_untag_vlan_unaware_bridge: Software untagging for VLAN-unaware bridge * @skb: Pointer to received socket buffer (packet) * @br: Pointer to bridge upper interface of ingress port * @vid: Parsed VID from packet * * The bridge ignores all VLAN tags. Software like STP/PTP may not (it may run * on the plain port, or on a VLAN upper interface). Maybe packets are coming * to software as tagged with a driver-defined VID which is NOT equal to the * PVID of the bridge port (since the bridge is VLAN-unaware, its configuration * should NOT be committed to hardware). DSA needs a method for this private * VID to be communicated by software to it, and if packets are tagged with it, * software-untag them. Note: the private VID may be different per bridge, to * support the FDB isolation use case. * * FIXME: this is currently implemented based on the broken assumption that * the "private VID" used by the driver in VLAN-unaware mode is equal to the * bridge PVID. It should not be, except for a coincidence; the bridge PVID is * irrelevant to the data path in the VLAN-unaware mode. Thus, the VID that * this function removes is wrong. * * All users of ds->untag_bridge_pvid should fix their drivers, if necessary, * to make the two independent. Only then, if there still remains a need to * strip the private VID from packets, then a new ds->ops->get_private_vid() * API shall be introduced to communicate to DSA what this VID is, which needs * to be stripped here. */ static inline void dsa_software_untag_vlan_unaware_bridge(struct sk_buff *skb, struct net_device *br, u16 vid) { struct net_device *upper_dev; u16 pvid, proto; int err; err = br_vlan_get_proto(br, &proto); if (err) return; err = br_vlan_get_pvid_rcu(skb->dev, &pvid); if (err) return; if (vid != pvid || skb->vlan_proto != htons(proto)) return; /* The sad part about attempting to untag from DSA is that we * don't know, unless we check, if the skb will end up in * the bridge's data path - br_allowed_ingress() - or not. * For example, there might be an 8021q upper for the * default_pvid of the bridge, which will steal VLAN-tagged traffic * from the bridge's data path. This is a configuration that DSA * supports because vlan_filtering is 0. In that case, we should * definitely keep the tag, to make sure it keeps working. */ upper_dev = __vlan_find_dev_deep_rcu(br, htons(proto), vid); if (!upper_dev) __vlan_hwaccel_clear_tag(skb); } /** * dsa_software_vlan_untag: Software VLAN untagging in DSA receive path * @skb: Pointer to socket buffer (packet) * * Receive path method for switches which cannot avoid tagging all packets * towards the CPU port. Called when ds->untag_bridge_pvid (legacy) or * ds->untag_vlan_aware_bridge_pvid is set to true. * * As a side effect of this method, any VLAN tag from the skb head is moved * to hwaccel. */ static inline struct sk_buff *dsa_software_vlan_untag(struct sk_buff *skb) { struct dsa_port *dp = dsa_user_to_port(skb->dev); struct net_device *br = dsa_port_bridge_dev_get(dp); u16 vid; /* software untagging for standalone ports not yet necessary */ if (!br) return skb; /* Move VLAN tag from data to hwaccel */ if (!skb_vlan_tag_present(skb)) { skb = skb_vlan_untag(skb); if (!skb) return NULL; } if (!skb_vlan_tag_present(skb)) return skb; vid = skb_vlan_tag_get_id(skb); if (br_vlan_enabled(br)) { if (dp->ds->untag_vlan_aware_bridge_pvid) dsa_software_untag_vlan_aware_bridge(skb, br, vid); } else { if (dp->ds->untag_bridge_pvid) dsa_software_untag_vlan_unaware_bridge(skb, br, vid); } return skb; } /* For switches without hardware support for DSA tagging to be able * to support termination through the bridge. */ static inline struct net_device * dsa_find_designated_bridge_port_by_vid(struct net_device *conduit, u16 vid) { struct dsa_port *cpu_dp = conduit->dsa_ptr; struct dsa_switch_tree *dst = cpu_dp->dst; struct bridge_vlan_info vinfo; struct net_device *user; struct dsa_port *dp; int err; list_for_each_entry(dp, &dst->ports, list) { if (dp->type != DSA_PORT_TYPE_USER) continue; if (!dp->bridge) continue; if (dp->stp_state != BR_STATE_LEARNING && dp->stp_state != BR_STATE_FORWARDING) continue; /* Since the bridge might learn this packet, keep the CPU port * affinity with the port that will be used for the reply on * xmit. */ if (dp->cpu_dp != cpu_dp) continue; user = dp->user; err = br_vlan_get_info_rcu(user, vid, &vinfo); if (err) continue; return user; } return NULL; } /* If the ingress port offloads the bridge, we mark the frame as autonomously * forwarded by hardware, so the software bridge doesn't forward in twice, back * to us, because we already did. However, if we're in fallback mode and we do * software bridging, we are not offloading it, therefore the dp->bridge * pointer is not populated, and flooding needs to be done by software (we are * effectively operating in standalone ports mode). */ static inline void dsa_default_offload_fwd_mark(struct sk_buff *skb) { struct dsa_port *dp = dsa_user_to_port(skb->dev); skb->offload_fwd_mark = !!(dp->bridge); } /* Helper for removing DSA header tags from packets in the RX path. * Must not be called before skb_pull(len). * skb->data * | * v * | | | | | | | | | | | | | | | | | | | * +-----------------------+-----------------------+---------------+-------+ * | Destination MAC | Source MAC | DSA header | EType | * +-----------------------+-----------------------+---------------+-------+ * | | * <----- len -----> <----- len -----> * | * >>>>>>> v * >>>>>>> | | | | | | | | | | | | | | | * >>>>>>> +-----------------------+-----------------------+-------+ * >>>>>>> | Destination MAC | Source MAC | EType | * +-----------------------+-----------------------+-------+ * ^ * | * skb->data */ static inline void dsa_strip_etype_header(struct sk_buff *skb, int len) { memmove(skb->data - ETH_HLEN, skb->data - ETH_HLEN - len, 2 * ETH_ALEN); } /* Helper for creating space for DSA header tags in TX path packets. * Must not be called before skb_push(len). * * Before: * * <<<<<<< | | | | | | | | | | | | | | | * ^ <<<<<<< +-----------------------+-----------------------+-------+ * | <<<<<<< | Destination MAC | Source MAC | EType | * | +-----------------------+-----------------------+-------+ * <----- len -----> * | * | * skb->data * * After: * * | | | | | | | | | | | | | | | | | | | * +-----------------------+-----------------------+---------------+-------+ * | Destination MAC | Source MAC | DSA header | EType | * +-----------------------+-----------------------+---------------+-------+ * ^ | | * | <----- len -----> * skb->data */ static inline void dsa_alloc_etype_header(struct sk_buff *skb, int len) { memmove(skb->data, skb->data + len, 2 * ETH_ALEN); } /* On RX, eth_type_trans() on the DSA conduit pulls ETH_HLEN bytes starting from * skb_mac_header(skb), which leaves skb->data pointing at the first byte after * what the DSA conduit perceives as the EtherType (the beginning of the L3 * protocol). Since DSA EtherType header taggers treat the EtherType as part of * the DSA tag itself, and the EtherType is 2 bytes in length, the DSA header * is located 2 bytes behind skb->data. Note that EtherType in this context * means the first 2 bytes of the DSA header, not the encapsulated EtherType * that will become visible after the DSA header is stripped. */ static inline void *dsa_etype_header_pos_rx(struct sk_buff *skb) { return skb->data - 2; } /* On TX, skb->data points to the MAC header, which means that EtherType * header taggers start exactly where the EtherType is (the EtherType is * treated as part of the DSA header). */ static inline void *dsa_etype_header_pos_tx(struct sk_buff *skb) { return skb->data + 2 * ETH_ALEN; } /* Create 2 modaliases per tagging protocol, one to auto-load the module * given the ID reported by get_tag_protocol(), and the other by name. */ #define DSA_TAG_DRIVER_ALIAS "dsa_tag:" #define MODULE_ALIAS_DSA_TAG_DRIVER(__proto, __name) \ MODULE_ALIAS(DSA_TAG_DRIVER_ALIAS __name); \ MODULE_ALIAS(DSA_TAG_DRIVER_ALIAS "id-" \ __stringify(__proto##_VALUE)) void dsa_tag_drivers_register(struct dsa_tag_driver *dsa_tag_driver_array[], unsigned int count, struct module *owner); void dsa_tag_drivers_unregister(struct dsa_tag_driver *dsa_tag_driver_array[], unsigned int count); #define dsa_tag_driver_module_drivers(__dsa_tag_drivers_array, __count) \ static int __init dsa_tag_driver_module_init(void) \ { \ dsa_tag_drivers_register(__dsa_tag_drivers_array, __count, \ THIS_MODULE); \ return 0; \ } \ module_init(dsa_tag_driver_module_init); \ \ static void __exit dsa_tag_driver_module_exit(void) \ { \ dsa_tag_drivers_unregister(__dsa_tag_drivers_array, __count); \ } \ module_exit(dsa_tag_driver_module_exit) /** * module_dsa_tag_drivers() - Helper macro for registering DSA tag * drivers * @__ops_array: Array of tag driver structures * * Helper macro for DSA tag drivers which do not do anything special * in module init/exit. Each module may only use this macro once, and * calling it replaces module_init() and module_exit(). */ #define module_dsa_tag_drivers(__ops_array) \ dsa_tag_driver_module_drivers(__ops_array, ARRAY_SIZE(__ops_array)) #define DSA_TAG_DRIVER_NAME(__ops) dsa_tag_driver ## _ ## __ops /* Create a static structure we can build a linked list of dsa_tag * drivers */ #define DSA_TAG_DRIVER(__ops) \ static struct dsa_tag_driver DSA_TAG_DRIVER_NAME(__ops) = { \ .ops = &__ops, \ } /** * module_dsa_tag_driver() - Helper macro for registering a single DSA tag * driver * @__ops: Single tag driver structures * * Helper macro for DSA tag drivers which do not do anything special * in module init/exit. Each module may only use this macro once, and * calling it replaces module_init() and module_exit(). */ #define module_dsa_tag_driver(__ops) \ DSA_TAG_DRIVER(__ops); \ \ static struct dsa_tag_driver *dsa_tag_driver_array[] = { \ &DSA_TAG_DRIVER_NAME(__ops) \ }; \ module_dsa_tag_drivers(dsa_tag_driver_array) #endif
10 1 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 /* SPDX-License-Identifier: GPL-2.0-only */ /* * File: af_phonet.h * * Phonet sockets kernel definitions * * Copyright (C) 2008 Nokia Corporation. */ #ifndef AF_PHONET_H #define AF_PHONET_H #include <linux/phonet.h> #include <linux/skbuff.h> #include <net/sock.h> /* * The lower layers may not require more space, ever. Make sure it's * enough. */ #define MAX_PHONET_HEADER (8 + MAX_HEADER) /* * Every Phonet* socket has this structure first in its * protocol-specific structure under name c. */ struct pn_sock { struct sock sk; u16 sobject; u16 dobject; u8 resource; }; static inline struct pn_sock *pn_sk(struct sock *sk) { return (struct pn_sock *)sk; } extern const struct proto_ops phonet_dgram_ops; void pn_sock_init(void); struct sock *pn_find_sock_by_sa(struct net *net, const struct sockaddr_pn *sa); void pn_deliver_sock_broadcast(struct net *net, struct sk_buff *skb); void phonet_get_local_port_range(int *min, int *max); int pn_sock_hash(struct sock *sk); void pn_sock_unhash(struct sock *sk); int pn_sock_get_port(struct sock *sk, unsigned short sport); struct sock *pn_find_sock_by_res(struct net *net, u8 res); int pn_sock_bind_res(struct sock *sock, u8 res); int pn_sock_unbind_res(struct sock *sk, u8 res); void pn_sock_unbind_all_res(struct sock *sk); int pn_skb_send(struct sock *sk, struct sk_buff *skb, const struct sockaddr_pn *target); static inline struct phonethdr *pn_hdr(struct sk_buff *skb) { return (struct phonethdr *)skb_network_header(skb); } static inline struct phonetmsg *pn_msg(struct sk_buff *skb) { return (struct phonetmsg *)skb_transport_header(skb); } /* * Get the other party's sockaddr from received skb. The skb begins * with a Phonet header. */ static inline void pn_skb_get_src_sockaddr(struct sk_buff *skb, struct sockaddr_pn *sa) { struct phonethdr *ph = pn_hdr(skb); u16 obj = pn_object(ph->pn_sdev, ph->pn_sobj); sa->spn_family = AF_PHONET; pn_sockaddr_set_object(sa, obj); pn_sockaddr_set_resource(sa, ph->pn_res); memset(sa->spn_zero, 0, sizeof(sa->spn_zero)); } static inline void pn_skb_get_dst_sockaddr(struct sk_buff *skb, struct sockaddr_pn *sa) { struct phonethdr *ph = pn_hdr(skb); u16 obj = pn_object(ph->pn_rdev, ph->pn_robj); sa->spn_family = AF_PHONET; pn_sockaddr_set_object(sa, obj); pn_sockaddr_set_resource(sa, ph->pn_res); memset(sa->spn_zero, 0, sizeof(sa->spn_zero)); } /* Protocols in Phonet protocol family. */ struct phonet_protocol { const struct proto_ops *ops; struct proto *prot; int sock_type; }; int phonet_proto_register(unsigned int protocol, const struct phonet_protocol *pp); void phonet_proto_unregister(unsigned int protocol, const struct phonet_protocol *pp); int phonet_sysctl_init(void); void phonet_sysctl_exit(void); int isi_register(void); void isi_unregister(void); static inline bool sk_is_phonet(struct sock *sk) { return sk->sk_family == PF_PHONET; } static inline int phonet_sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) { int karg; switch (cmd) { case SIOCPNADDRESOURCE: case SIOCPNDELRESOURCE: if (get_user(karg, (int __user *)arg)) return -EFAULT; return sk->sk_prot->ioctl(sk, cmd, &karg); } /* A positive return value means that the ioctl was not processed */ return 1; } #endif
22 2 1 1 3 1 12 9 5 12 3 2 1 1 1 3 1 5 4 7 83 6 5 4 4 112 1 113 1 1 77 21 86 1 77 15 1 16 16 1 2 10 11 6 2 2 10 1 1 1 5 1 2 1 1 1 6 1 1 3 6 5 1 3 2 25 24 1 1 1 21 1 1 19 1 12 7 4 38 9 1 11 7 10 1 7 18 1 3 3 2 1 1 3 4 6 2 1 3 17 18 22 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 // SPDX-License-Identifier: GPL-2.0-only #include <linux/ethtool_netlink.h> #include <linux/bitmap.h> #include "netlink.h" #include "bitset.h" /* Some bitmaps are internally represented as an array of unsigned long, some * as an array of u32 (some even as single u32 for now). To avoid the need of * wrappers on caller side, we provide two set of functions: those with "32" * suffix in their names expect u32 based bitmaps, those without it expect * unsigned long bitmaps. */ static u32 ethnl_lower_bits(unsigned int n) { return ~(u32)0 >> (32 - n % 32); } static u32 ethnl_upper_bits(unsigned int n) { return ~(u32)0 << (n % 32); } /** * ethnl_bitmap32_clear() - Clear u32 based bitmap * @dst: bitmap to clear * @start: beginning of the interval * @end: end of the interval * @mod: set if bitmap was modified * * Clear @nbits bits of a bitmap with indices @start <= i < @end */ static void ethnl_bitmap32_clear(u32 *dst, unsigned int start, unsigned int end, bool *mod) { unsigned int start_word = start / 32; unsigned int end_word = end / 32; unsigned int i; u32 mask; if (end <= start) return; if (start % 32) { mask = ethnl_upper_bits(start); if (end_word == start_word) { mask &= ethnl_lower_bits(end); if (dst[start_word] & mask) { dst[start_word] &= ~mask; *mod = true; } return; } if (dst[start_word] & mask) { dst[start_word] &= ~mask; *mod = true; } start_word++; } for (i = start_word; i < end_word; i++) { if (dst[i]) { dst[i] = 0; *mod = true; } } if (end % 32) { mask = ethnl_lower_bits(end); if (dst[end_word] & mask) { dst[end_word] &= ~mask; *mod = true; } } } /** * ethnl_bitmap32_not_zero() - Check if any bit is set in an interval * @map: bitmap to test * @start: beginning of the interval * @end: end of the interval * * Return: true if there is non-zero bit with index @start <= i < @end, * false if the whole interval is zero */ static bool ethnl_bitmap32_not_zero(const u32 *map, unsigned int start, unsigned int end) { unsigned int start_word = start / 32; unsigned int end_word = end / 32; u32 mask; if (end <= start) return true; if (start % 32) { mask = ethnl_upper_bits(start); if (end_word == start_word) { mask &= ethnl_lower_bits(end); return map[start_word] & mask; } if (map[start_word] & mask) return true; start_word++; } if (!memchr_inv(map + start_word, '\0', (end_word - start_word) * sizeof(u32))) return true; if (end % 32 == 0) return true; return map[end_word] & ethnl_lower_bits(end); } /** * ethnl_bitmap32_update() - Modify u32 based bitmap according to value/mask * pair * @dst: bitmap to update * @nbits: bit size of the bitmap * @value: values to set * @mask: mask of bits to set * @mod: set to true if bitmap is modified, preserve if not * * Set bits in @dst bitmap which are set in @mask to values from @value, leave * the rest untouched. If destination bitmap was modified, set @mod to true, * leave as it is if not. */ static void ethnl_bitmap32_update(u32 *dst, unsigned int nbits, const u32 *value, const u32 *mask, bool *mod) { while (nbits > 0) { u32 real_mask = mask ? *mask : ~(u32)0; u32 new_value; if (nbits < 32) real_mask &= ethnl_lower_bits(nbits); new_value = (*dst & ~real_mask) | (*value & real_mask); if (new_value != *dst) { *dst = new_value; *mod = true; } if (nbits <= 32) break; dst++; nbits -= 32; value++; if (mask) mask++; } } static bool ethnl_bitmap32_test_bit(const u32 *map, unsigned int index) { return map[index / 32] & (1U << (index % 32)); } /** * ethnl_bitset32_size() - Calculate size of bitset nested attribute * @val: value bitmap (u32 based) * @mask: mask bitmap (u32 based, optional) * @nbits: bit length of the bitset * @names: array of bit names (optional) * @compact: assume compact format for output * * Estimate length of netlink attribute composed by a later call to * ethnl_put_bitset32() call with the same arguments. * * Return: negative error code or attribute length estimate */ int ethnl_bitset32_size(const u32 *val, const u32 *mask, unsigned int nbits, ethnl_string_array_t names, bool compact) { unsigned int len = 0; /* list flag */ if (!mask) len += nla_total_size(sizeof(u32)); /* size */ len += nla_total_size(sizeof(u32)); if (compact) { unsigned int nwords = DIV_ROUND_UP(nbits, 32); /* value, mask */ len += (mask ? 2 : 1) * nla_total_size(nwords * sizeof(u32)); } else { unsigned int bits_len = 0; unsigned int bit_len, i; for (i = 0; i < nbits; i++) { const char *name = names ? names[i] : NULL; if (!ethnl_bitmap32_test_bit(mask ?: val, i)) continue; /* index */ bit_len = nla_total_size(sizeof(u32)); /* name */ if (name) bit_len += ethnl_strz_size(name); /* value */ if (mask && ethnl_bitmap32_test_bit(val, i)) bit_len += nla_total_size(0); /* bit nest */ bits_len += nla_total_size(bit_len); } /* bits nest */ len += nla_total_size(bits_len); } /* outermost nest */ return nla_total_size(len); } /** * ethnl_put_bitset32() - Put a bitset nest into a message * @skb: skb with the message * @attrtype: attribute type for the bitset nest * @val: value bitmap (u32 based) * @mask: mask bitmap (u32 based, optional) * @nbits: bit length of the bitset * @names: array of bit names (optional) * @compact: use compact format for the output * * Compose a nested attribute representing a bitset. If @mask is null, simple * bitmap (bit list) is created, if @mask is provided, represent a value/mask * pair. Bit names are only used in verbose mode and when provided by calller. * * Return: 0 on success, negative error value on error */ int ethnl_put_bitset32(struct sk_buff *skb, int attrtype, const u32 *val, const u32 *mask, unsigned int nbits, ethnl_string_array_t names, bool compact) { struct nlattr *nest; struct nlattr *attr; nest = nla_nest_start(skb, attrtype); if (!nest) return -EMSGSIZE; if (!mask && nla_put_flag(skb, ETHTOOL_A_BITSET_NOMASK)) goto nla_put_failure; if (nla_put_u32(skb, ETHTOOL_A_BITSET_SIZE, nbits)) goto nla_put_failure; if (compact) { unsigned int nwords = DIV_ROUND_UP(nbits, 32); unsigned int nbytes = nwords * sizeof(u32); u32 *dst; attr = nla_reserve(skb, ETHTOOL_A_BITSET_VALUE, nbytes); if (!attr) goto nla_put_failure; dst = nla_data(attr); memcpy(dst, val, nbytes); if (nbits % 32) dst[nwords - 1] &= ethnl_lower_bits(nbits); if (mask) { attr = nla_reserve(skb, ETHTOOL_A_BITSET_MASK, nbytes); if (!attr) goto nla_put_failure; dst = nla_data(attr); memcpy(dst, mask, nbytes); if (nbits % 32) dst[nwords - 1] &= ethnl_lower_bits(nbits); } } else { struct nlattr *bits; unsigned int i; bits = nla_nest_start(skb, ETHTOOL_A_BITSET_BITS); if (!bits) goto nla_put_failure; for (i = 0; i < nbits; i++) { const char *name = names ? names[i] : NULL; if (!ethnl_bitmap32_test_bit(mask ?: val, i)) continue; attr = nla_nest_start(skb, ETHTOOL_A_BITSET_BITS_BIT); if (!attr) goto nla_put_failure; if (nla_put_u32(skb, ETHTOOL_A_BITSET_BIT_INDEX, i)) goto nla_put_failure; if (name && ethnl_put_strz(skb, ETHTOOL_A_BITSET_BIT_NAME, name)) goto nla_put_failure; if (mask && ethnl_bitmap32_test_bit(val, i) && nla_put_flag(skb, ETHTOOL_A_BITSET_BIT_VALUE)) goto nla_put_failure; nla_nest_end(skb, attr); } nla_nest_end(skb, bits); } nla_nest_end(skb, nest); return 0; nla_put_failure: nla_nest_cancel(skb, nest); return -EMSGSIZE; } static const struct nla_policy bitset_policy[] = { [ETHTOOL_A_BITSET_NOMASK] = { .type = NLA_FLAG }, [ETHTOOL_A_BITSET_SIZE] = NLA_POLICY_MAX(NLA_U32, ETHNL_MAX_BITSET_SIZE), [ETHTOOL_A_BITSET_BITS] = { .type = NLA_NESTED }, [ETHTOOL_A_BITSET_VALUE] = { .type = NLA_BINARY }, [ETHTOOL_A_BITSET_MASK] = { .type = NLA_BINARY }, }; static const struct nla_policy bit_policy[] = { [ETHTOOL_A_BITSET_BIT_INDEX] = { .type = NLA_U32 }, [ETHTOOL_A_BITSET_BIT_NAME] = { .type = NLA_NUL_STRING }, [ETHTOOL_A_BITSET_BIT_VALUE] = { .type = NLA_FLAG }, }; /** * ethnl_bitset_is_compact() - check if bitset attribute represents a compact * bitset * @bitset: nested attribute representing a bitset * @compact: pointer for return value * * Return: 0 on success, negative error code on failure */ int ethnl_bitset_is_compact(const struct nlattr *bitset, bool *compact) { struct nlattr *tb[ARRAY_SIZE(bitset_policy)]; int ret; ret = nla_parse_nested(tb, ARRAY_SIZE(bitset_policy) - 1, bitset, bitset_policy, NULL); if (ret < 0) return ret; if (tb[ETHTOOL_A_BITSET_BITS]) { if (tb[ETHTOOL_A_BITSET_VALUE] || tb[ETHTOOL_A_BITSET_MASK]) return -EINVAL; *compact = false; return 0; } if (!tb[ETHTOOL_A_BITSET_SIZE] || !tb[ETHTOOL_A_BITSET_VALUE]) return -EINVAL; *compact = true; return 0; } /** * ethnl_name_to_idx() - look up string index for a name * @names: array of ETH_GSTRING_LEN sized strings * @n_names: number of strings in the array * @name: name to look up * * Return: index of the string if found, -ENOENT if not found */ static int ethnl_name_to_idx(ethnl_string_array_t names, unsigned int n_names, const char *name) { unsigned int i; if (!names) return -ENOENT; for (i = 0; i < n_names; i++) { /* names[i] may not be null terminated */ if (!strncmp(names[i], name, ETH_GSTRING_LEN) && strlen(name) <= ETH_GSTRING_LEN) return i; } return -ENOENT; } static int ethnl_parse_bit(unsigned int *index, bool *val, unsigned int nbits, const struct nlattr *bit_attr, bool no_mask, ethnl_string_array_t names, struct netlink_ext_ack *extack) { struct nlattr *tb[ARRAY_SIZE(bit_policy)]; int ret, idx; ret = nla_parse_nested(tb, ARRAY_SIZE(bit_policy) - 1, bit_attr, bit_policy, extack); if (ret < 0) return ret; if (tb[ETHTOOL_A_BITSET_BIT_INDEX]) { const char *name; idx = nla_get_u32(tb[ETHTOOL_A_BITSET_BIT_INDEX]); if (idx >= nbits) { NL_SET_ERR_MSG_ATTR(extack, tb[ETHTOOL_A_BITSET_BIT_INDEX], "bit index too high"); return -EOPNOTSUPP; } name = names ? names[idx] : NULL; if (tb[ETHTOOL_A_BITSET_BIT_NAME] && name && strncmp(nla_data(tb[ETHTOOL_A_BITSET_BIT_NAME]), name, nla_len(tb[ETHTOOL_A_BITSET_BIT_NAME]))) { NL_SET_ERR_MSG_ATTR(extack, bit_attr, "bit index and name mismatch"); return -EINVAL; } } else if (tb[ETHTOOL_A_BITSET_BIT_NAME]) { idx = ethnl_name_to_idx(names, nbits, nla_data(tb[ETHTOOL_A_BITSET_BIT_NAME])); if (idx < 0) { NL_SET_ERR_MSG_ATTR(extack, tb[ETHTOOL_A_BITSET_BIT_NAME], "bit name not found"); return -EOPNOTSUPP; } } else { NL_SET_ERR_MSG_ATTR(extack, bit_attr, "neither bit index nor name specified"); return -EINVAL; } *index = idx; *val = no_mask || tb[ETHTOOL_A_BITSET_BIT_VALUE]; return 0; } static int ethnl_update_bitset32_verbose(u32 *bitmap, unsigned int nbits, const struct nlattr *attr, struct nlattr **tb, ethnl_string_array_t names, struct netlink_ext_ack *extack, bool *mod) { struct nlattr *bit_attr; bool no_mask; int rem; int ret; if (tb[ETHTOOL_A_BITSET_VALUE]) { NL_SET_ERR_MSG_ATTR(extack, tb[ETHTOOL_A_BITSET_VALUE], "value only allowed in compact bitset"); return -EINVAL; } if (tb[ETHTOOL_A_BITSET_MASK]) { NL_SET_ERR_MSG_ATTR(extack, tb[ETHTOOL_A_BITSET_MASK], "mask only allowed in compact bitset"); return -EINVAL; } no_mask = tb[ETHTOOL_A_BITSET_NOMASK]; if (no_mask) ethnl_bitmap32_clear(bitmap, 0, nbits, mod); nla_for_each_nested(bit_attr, tb[ETHTOOL_A_BITSET_BITS], rem) { bool old_val, new_val; unsigned int idx; if (nla_type(bit_attr) != ETHTOOL_A_BITSET_BITS_BIT) { NL_SET_ERR_MSG_ATTR(extack, bit_attr, "only ETHTOOL_A_BITSET_BITS_BIT allowed in ETHTOOL_A_BITSET_BITS"); return -EINVAL; } ret = ethnl_parse_bit(&idx, &new_val, nbits, bit_attr, no_mask, names, extack); if (ret < 0) return ret; old_val = bitmap[idx / 32] & ((u32)1 << (idx % 32)); if (new_val != old_val) { if (new_val) bitmap[idx / 32] |= ((u32)1 << (idx % 32)); else bitmap[idx / 32] &= ~((u32)1 << (idx % 32)); *mod = true; } } return 0; } static int ethnl_compact_sanity_checks(unsigned int nbits, const struct nlattr *nest, struct nlattr **tb, struct netlink_ext_ack *extack) { bool no_mask = tb[ETHTOOL_A_BITSET_NOMASK]; unsigned int attr_nbits, attr_nwords; const struct nlattr *test_attr; if (no_mask && tb[ETHTOOL_A_BITSET_MASK]) { NL_SET_ERR_MSG_ATTR(extack, tb[ETHTOOL_A_BITSET_MASK], "mask not allowed in list bitset"); return -EINVAL; } if (!tb[ETHTOOL_A_BITSET_SIZE]) { NL_SET_ERR_MSG_ATTR(extack, nest, "missing size in compact bitset"); return -EINVAL; } if (!tb[ETHTOOL_A_BITSET_VALUE]) { NL_SET_ERR_MSG_ATTR(extack, nest, "missing value in compact bitset"); return -EINVAL; } if (!no_mask && !tb[ETHTOOL_A_BITSET_MASK]) { NL_SET_ERR_MSG_ATTR(extack, nest, "missing mask in compact nonlist bitset"); return -EINVAL; } attr_nbits = nla_get_u32(tb[ETHTOOL_A_BITSET_SIZE]); attr_nwords = DIV_ROUND_UP(attr_nbits, 32); if (nla_len(tb[ETHTOOL_A_BITSET_VALUE]) != attr_nwords * sizeof(u32)) { NL_SET_ERR_MSG_ATTR(extack, tb[ETHTOOL_A_BITSET_VALUE], "bitset value length does not match size"); return -EINVAL; } if (tb[ETHTOOL_A_BITSET_MASK] && nla_len(tb[ETHTOOL_A_BITSET_MASK]) != attr_nwords * sizeof(u32)) { NL_SET_ERR_MSG_ATTR(extack, tb[ETHTOOL_A_BITSET_MASK], "bitset mask length does not match size"); return -EINVAL; } if (attr_nbits <= nbits) return 0; test_attr = no_mask ? tb[ETHTOOL_A_BITSET_VALUE] : tb[ETHTOOL_A_BITSET_MASK]; if (ethnl_bitmap32_not_zero(nla_data(test_attr), nbits, attr_nbits)) { NL_SET_ERR_MSG_ATTR(extack, test_attr, "cannot modify bits past kernel bitset size"); return -EINVAL; } return 0; } /** * ethnl_update_bitset32() - Apply a bitset nest to a u32 based bitmap * @bitmap: bitmap to update * @nbits: size of the updated bitmap in bits * @attr: nest attribute to parse and apply * @names: array of bit names; may be null for compact format * @extack: extack for error reporting * @mod: set this to true if bitmap is modified, leave as it is if not * * Apply bitset netsted attribute to a bitmap. If the attribute represents * a bit list, @bitmap is set to its contents; otherwise, bits in mask are * set to values from value. Bitmaps in the attribute may be longer than * @nbits but the message must not request modifying any bits past @nbits. * * Return: negative error code on failure, 0 on success */ int ethnl_update_bitset32(u32 *bitmap, unsigned int nbits, const struct nlattr *attr, ethnl_string_array_t names, struct netlink_ext_ack *extack, bool *mod) { struct nlattr *tb[ARRAY_SIZE(bitset_policy)]; unsigned int change_bits; bool no_mask; int ret; if (!attr) return 0; ret = nla_parse_nested(tb, ARRAY_SIZE(bitset_policy) - 1, attr, bitset_policy, extack); if (ret < 0) return ret; if (tb[ETHTOOL_A_BITSET_BITS]) return ethnl_update_bitset32_verbose(bitmap, nbits, attr, tb, names, extack, mod); ret = ethnl_compact_sanity_checks(nbits, attr, tb, extack); if (ret < 0) return ret; no_mask = tb[ETHTOOL_A_BITSET_NOMASK]; change_bits = min_t(unsigned int, nla_get_u32(tb[ETHTOOL_A_BITSET_SIZE]), nbits); ethnl_bitmap32_update(bitmap, change_bits, nla_data(tb[ETHTOOL_A_BITSET_VALUE]), no_mask ? NULL : nla_data(tb[ETHTOOL_A_BITSET_MASK]), mod); if (no_mask && change_bits < nbits) ethnl_bitmap32_clear(bitmap, change_bits, nbits, mod); return 0; } /** * ethnl_parse_bitset() - Compute effective value and mask from bitset nest * @val: unsigned long based bitmap to put value into * @mask: unsigned long based bitmap to put mask into * @nbits: size of @val and @mask bitmaps * @attr: nest attribute to parse and apply * @names: array of bit names; may be null for compact format * @extack: extack for error reporting * * Provide @nbits size long bitmaps for value and mask so that * x = (val & mask) | (x & ~mask) would modify any @nbits sized bitmap x * the same way ethnl_update_bitset() with the same bitset attribute would. * * Return: negative error code on failure, 0 on success */ int ethnl_parse_bitset(unsigned long *val, unsigned long *mask, unsigned int nbits, const struct nlattr *attr, ethnl_string_array_t names, struct netlink_ext_ack *extack) { struct nlattr *tb[ARRAY_SIZE(bitset_policy)]; const struct nlattr *bit_attr; bool no_mask; int rem; int ret; if (!attr) return 0; ret = nla_parse_nested(tb, ARRAY_SIZE(bitset_policy) - 1, attr, bitset_policy, extack); if (ret < 0) return ret; no_mask = tb[ETHTOOL_A_BITSET_NOMASK]; if (!tb[ETHTOOL_A_BITSET_BITS]) { unsigned int change_bits; ret = ethnl_compact_sanity_checks(nbits, attr, tb, extack); if (ret < 0) return ret; change_bits = nla_get_u32(tb[ETHTOOL_A_BITSET_SIZE]); if (change_bits > nbits) change_bits = nbits; bitmap_from_arr32(val, nla_data(tb[ETHTOOL_A_BITSET_VALUE]), change_bits); if (change_bits < nbits) bitmap_clear(val, change_bits, nbits - change_bits); if (no_mask) { bitmap_fill(mask, nbits); } else { bitmap_from_arr32(mask, nla_data(tb[ETHTOOL_A_BITSET_MASK]), change_bits); if (change_bits < nbits) bitmap_clear(mask, change_bits, nbits - change_bits); } return 0; } if (tb[ETHTOOL_A_BITSET_VALUE]) { NL_SET_ERR_MSG_ATTR(extack, tb[ETHTOOL_A_BITSET_VALUE], "value only allowed in compact bitset"); return -EINVAL; } if (tb[ETHTOOL_A_BITSET_MASK]) { NL_SET_ERR_MSG_ATTR(extack, tb[ETHTOOL_A_BITSET_MASK], "mask only allowed in compact bitset"); return -EINVAL; } bitmap_zero(val, nbits); if (no_mask) bitmap_fill(mask, nbits); else bitmap_zero(mask, nbits); nla_for_each_nested(bit_attr, tb[ETHTOOL_A_BITSET_BITS], rem) { unsigned int idx; bool bit_val; ret = ethnl_parse_bit(&idx, &bit_val, nbits, bit_attr, no_mask, names, extack); if (ret < 0) return ret; if (bit_val) __set_bit(idx, val); if (!no_mask) __set_bit(idx, mask); } return 0; } #if BITS_PER_LONG == 64 && defined(__BIG_ENDIAN) /* 64-bit big endian architectures are the only case when u32 based bitmaps * and unsigned long based bitmaps have different memory layout so that we * cannot simply cast the latter to the former and need actual wrappers * converting the latter to the former. * * To reduce the number of slab allocations, the wrappers use fixed size local * variables for bitmaps up to ETHNL_SMALL_BITMAP_BITS bits which is the * majority of bitmaps used by ethtool. */ #define ETHNL_SMALL_BITMAP_BITS 128 #define ETHNL_SMALL_BITMAP_WORDS DIV_ROUND_UP(ETHNL_SMALL_BITMAP_BITS, 32) int ethnl_bitset_size(const unsigned long *val, const unsigned long *mask, unsigned int nbits, ethnl_string_array_t names, bool compact) { u32 small_mask32[ETHNL_SMALL_BITMAP_WORDS]; u32 small_val32[ETHNL_SMALL_BITMAP_WORDS]; u32 *mask32; u32 *val32; int ret; if (nbits > ETHNL_SMALL_BITMAP_BITS) { unsigned int nwords = DIV_ROUND_UP(nbits, 32); val32 = kmalloc_array(2 * nwords, sizeof(u32), GFP_KERNEL); if (!val32) return -ENOMEM; mask32 = val32 + nwords; } else { val32 = small_val32; mask32 = small_mask32; } bitmap_to_arr32(val32, val, nbits); if (mask) bitmap_to_arr32(mask32, mask, nbits); else mask32 = NULL; ret = ethnl_bitset32_size(val32, mask32, nbits, names, compact); if (nbits > ETHNL_SMALL_BITMAP_BITS) kfree(val32); return ret; } int ethnl_put_bitset(struct sk_buff *skb, int attrtype, const unsigned long *val, const unsigned long *mask, unsigned int nbits, ethnl_string_array_t names, bool compact) { u32 small_mask32[ETHNL_SMALL_BITMAP_WORDS]; u32 small_val32[ETHNL_SMALL_BITMAP_WORDS]; u32 *mask32; u32 *val32; int ret; if (nbits > ETHNL_SMALL_BITMAP_BITS) { unsigned int nwords = DIV_ROUND_UP(nbits, 32); val32 = kmalloc_array(2 * nwords, sizeof(u32), GFP_KERNEL); if (!val32) return -ENOMEM; mask32 = val32 + nwords; } else { val32 = small_val32; mask32 = small_mask32; } bitmap_to_arr32(val32, val, nbits); if (mask) bitmap_to_arr32(mask32, mask, nbits); else mask32 = NULL; ret = ethnl_put_bitset32(skb, attrtype, val32, mask32, nbits, names, compact); if (nbits > ETHNL_SMALL_BITMAP_BITS) kfree(val32); return ret; } int ethnl_update_bitset(unsigned long *bitmap, unsigned int nbits, const struct nlattr *attr, ethnl_string_array_t names, struct netlink_ext_ack *extack, bool *mod) { u32 small_bitmap32[ETHNL_SMALL_BITMAP_WORDS]; u32 *bitmap32 = small_bitmap32; bool u32_mod = false; int ret; if (nbits > ETHNL_SMALL_BITMAP_BITS) { unsigned int dst_words = DIV_ROUND_UP(nbits, 32); bitmap32 = kmalloc_array(dst_words, sizeof(u32), GFP_KERNEL); if (!bitmap32) return -ENOMEM; } bitmap_to_arr32(bitmap32, bitmap, nbits); ret = ethnl_update_bitset32(bitmap32, nbits, attr, names, extack, &u32_mod); if (u32_mod) { bitmap_from_arr32(bitmap, bitmap32, nbits); *mod = true; } if (nbits > ETHNL_SMALL_BITMAP_BITS) kfree(bitmap32); return ret; } #else /* On little endian 64-bit and all 32-bit architectures, an unsigned long * based bitmap can be interpreted as u32 based one using a simple cast. */ int ethnl_bitset_size(const unsigned long *val, const unsigned long *mask, unsigned int nbits, ethnl_string_array_t names, bool compact) { return ethnl_bitset32_size((const u32 *)val, (const u32 *)mask, nbits, names, compact); } int ethnl_put_bitset(struct sk_buff *skb, int attrtype, const unsigned long *val, const unsigned long *mask, unsigned int nbits, ethnl_string_array_t names, bool compact) { return ethnl_put_bitset32(skb, attrtype, (const u32 *)val, (const u32 *)mask, nbits, names, compact); } int ethnl_update_bitset(unsigned long *bitmap, unsigned int nbits, const struct nlattr *attr, ethnl_string_array_t names, struct netlink_ext_ack *extack, bool *mod) { return ethnl_update_bitset32((u32 *)bitmap, nbits, attr, names, extack, mod); } #endif /* BITS_PER_LONG == 64 && defined(__BIG_ENDIAN) */
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 // SPDX-License-Identifier: GPL-2.0 /* * Multipath support for RPC * * Copyright (c) 2015, 2016, Primary Data, Inc. All rights reserved. * * Trond Myklebust <trond.myklebust@primarydata.com> * */ #include <linux/atomic.h> #include <linux/types.h> #include <linux/kref.h> #include <linux/list.h> #include <linux/rcupdate.h> #include <linux/rculist.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/sunrpc/xprt.h> #include <linux/sunrpc/addr.h> #include <linux/sunrpc/xprtmultipath.h> #include "sysfs.h" typedef struct rpc_xprt *(*xprt_switch_find_xprt_t)(struct rpc_xprt_switch *xps, const struct rpc_xprt *cur); static const struct rpc_xprt_iter_ops rpc_xprt_iter_singular; static const struct rpc_xprt_iter_ops rpc_xprt_iter_roundrobin; static const struct rpc_xprt_iter_ops rpc_xprt_iter_listall; static const struct rpc_xprt_iter_ops rpc_xprt_iter_listoffline; static void xprt_switch_add_xprt_locked(struct rpc_xprt_switch *xps, struct rpc_xprt *xprt) { if (unlikely(xprt_get(xprt) == NULL)) return; list_add_tail_rcu(&xprt->xprt_switch, &xps->xps_xprt_list); smp_wmb(); if (xps->xps_nxprts == 0) xps->xps_net = xprt->xprt_net; xps->xps_nxprts++; xps->xps_nactive++; } /** * rpc_xprt_switch_add_xprt - Add a new rpc_xprt to an rpc_xprt_switch * @xps: pointer to struct rpc_xprt_switch * @xprt: pointer to struct rpc_xprt * * Adds xprt to the end of the list of struct rpc_xprt in xps. */ void rpc_xprt_switch_add_xprt(struct rpc_xprt_switch *xps, struct rpc_xprt *xprt) { if (xprt == NULL) return; spin_lock(&xps->xps_lock); if (xps->xps_net == xprt->xprt_net || xps->xps_net == NULL) xprt_switch_add_xprt_locked(xps, xprt); spin_unlock(&xps->xps_lock); rpc_sysfs_xprt_setup(xps, xprt, GFP_KERNEL); } static void xprt_switch_remove_xprt_locked(struct rpc_xprt_switch *xps, struct rpc_xprt *xprt, bool offline) { if (unlikely(xprt == NULL)) return; if (!test_bit(XPRT_OFFLINE, &xprt->state) && offline) xps->xps_nactive--; xps->xps_nxprts--; if (xps->xps_nxprts == 0) xps->xps_net = NULL; smp_wmb(); list_del_rcu(&xprt->xprt_switch); } /** * rpc_xprt_switch_remove_xprt - Removes an rpc_xprt from a rpc_xprt_switch * @xps: pointer to struct rpc_xprt_switch * @xprt: pointer to struct rpc_xprt * @offline: indicates if the xprt that's being removed is in an offline state * * Removes xprt from the list of struct rpc_xprt in xps. */ void rpc_xprt_switch_remove_xprt(struct rpc_xprt_switch *xps, struct rpc_xprt *xprt, bool offline) { spin_lock(&xps->xps_lock); xprt_switch_remove_xprt_locked(xps, xprt, offline); spin_unlock(&xps->xps_lock); xprt_put(xprt); } static DEFINE_IDA(rpc_xprtswitch_ids); void xprt_multipath_cleanup_ids(void) { ida_destroy(&rpc_xprtswitch_ids); } static int xprt_switch_alloc_id(struct rpc_xprt_switch *xps, gfp_t gfp_flags) { int id; id = ida_alloc(&rpc_xprtswitch_ids, gfp_flags); if (id < 0) return id; xps->xps_id = id; return 0; } static void xprt_switch_free_id(struct rpc_xprt_switch *xps) { ida_free(&rpc_xprtswitch_ids, xps->xps_id); } /** * xprt_switch_alloc - Allocate a new struct rpc_xprt_switch * @xprt: pointer to struct rpc_xprt * @gfp_flags: allocation flags * * On success, returns an initialised struct rpc_xprt_switch, containing * the entry xprt. Returns NULL on failure. */ struct rpc_xprt_switch *xprt_switch_alloc(struct rpc_xprt *xprt, gfp_t gfp_flags) { struct rpc_xprt_switch *xps; xps = kmalloc(sizeof(*xps), gfp_flags); if (xps != NULL) { spin_lock_init(&xps->xps_lock); kref_init(&xps->xps_kref); xprt_switch_alloc_id(xps, gfp_flags); xps->xps_nxprts = xps->xps_nactive = 0; atomic_long_set(&xps->xps_queuelen, 0); xps->xps_net = NULL; INIT_LIST_HEAD(&xps->xps_xprt_list); xps->xps_iter_ops = &rpc_xprt_iter_singular; rpc_sysfs_xprt_switch_setup(xps, xprt, gfp_flags); xprt_switch_add_xprt_locked(xps, xprt); xps->xps_nunique_destaddr_xprts = 1; rpc_sysfs_xprt_setup(xps, xprt, gfp_flags); } return xps; } static void xprt_switch_free_entries(struct rpc_xprt_switch *xps) { spin_lock(&xps->xps_lock); while (!list_empty(&xps->xps_xprt_list)) { struct rpc_xprt *xprt; xprt = list_first_entry(&xps->xps_xprt_list, struct rpc_xprt, xprt_switch); xprt_switch_remove_xprt_locked(xps, xprt, true); spin_unlock(&xps->xps_lock); xprt_put(xprt); spin_lock(&xps->xps_lock); } spin_unlock(&xps->xps_lock); } static void xprt_switch_free(struct kref *kref) { struct rpc_xprt_switch *xps = container_of(kref, struct rpc_xprt_switch, xps_kref); xprt_switch_free_entries(xps); rpc_sysfs_xprt_switch_destroy(xps); xprt_switch_free_id(xps); kfree_rcu(xps, xps_rcu); } /** * xprt_switch_get - Return a reference to a rpc_xprt_switch * @xps: pointer to struct rpc_xprt_switch * * Returns a reference to xps unless the refcount is already zero. */ struct rpc_xprt_switch *xprt_switch_get(struct rpc_xprt_switch *xps) { if (xps != NULL && kref_get_unless_zero(&xps->xps_kref)) return xps; return NULL; } /** * xprt_switch_put - Release a reference to a rpc_xprt_switch * @xps: pointer to struct rpc_xprt_switch * * Release the reference to xps, and free it once the refcount is zero. */ void xprt_switch_put(struct rpc_xprt_switch *xps) { if (xps != NULL) kref_put(&xps->xps_kref, xprt_switch_free); } /** * rpc_xprt_switch_set_roundrobin - Set a round-robin policy on rpc_xprt_switch * @xps: pointer to struct rpc_xprt_switch * * Sets a round-robin default policy for iterators acting on xps. */ void rpc_xprt_switch_set_roundrobin(struct rpc_xprt_switch *xps) { if (READ_ONCE(xps->xps_iter_ops) != &rpc_xprt_iter_roundrobin) WRITE_ONCE(xps->xps_iter_ops, &rpc_xprt_iter_roundrobin); } static const struct rpc_xprt_iter_ops *xprt_iter_ops(const struct rpc_xprt_iter *xpi) { if (xpi->xpi_ops != NULL) return xpi->xpi_ops; return rcu_dereference(xpi->xpi_xpswitch)->xps_iter_ops; } static void xprt_iter_no_rewind(struct rpc_xprt_iter *xpi) { } static void xprt_iter_default_rewind(struct rpc_xprt_iter *xpi) { WRITE_ONCE(xpi->xpi_cursor, NULL); } static bool xprt_is_active(const struct rpc_xprt *xprt) { return (kref_read(&xprt->kref) != 0 && !test_bit(XPRT_OFFLINE, &xprt->state)); } static struct rpc_xprt *xprt_switch_find_first_entry(struct list_head *head) { struct rpc_xprt *pos; list_for_each_entry_rcu(pos, head, xprt_switch) { if (xprt_is_active(pos)) return pos; } return NULL; } static struct rpc_xprt *xprt_switch_find_first_entry_offline(struct list_head *head) { struct rpc_xprt *pos; list_for_each_entry_rcu(pos, head, xprt_switch) { if (!xprt_is_active(pos)) return pos; } return NULL; } static struct rpc_xprt *xprt_iter_first_entry(struct rpc_xprt_iter *xpi) { struct rpc_xprt_switch *xps = rcu_dereference(xpi->xpi_xpswitch); if (xps == NULL) return NULL; return xprt_switch_find_first_entry(&xps->xps_xprt_list); } static struct rpc_xprt *_xprt_switch_find_current_entry(struct list_head *head, const struct rpc_xprt *cur, bool find_active) { struct rpc_xprt *pos; bool found = false; list_for_each_entry_rcu(pos, head, xprt_switch) { if (cur == pos) found = true; if (found && ((find_active && xprt_is_active(pos)) || (!find_active && !xprt_is_active(pos)))) return pos; } return NULL; } static struct rpc_xprt *xprt_switch_find_current_entry(struct list_head *head, const struct rpc_xprt *cur) { return _xprt_switch_find_current_entry(head, cur, true); } static struct rpc_xprt * _xprt_iter_current_entry(struct rpc_xprt_iter *xpi, struct rpc_xprt *first_entry(struct list_head *head), struct rpc_xprt *current_entry(struct list_head *head, const struct rpc_xprt *cur)) { struct rpc_xprt_switch *xps = rcu_dereference(xpi->xpi_xpswitch); struct list_head *head; if (xps == NULL) return NULL; head = &xps->xps_xprt_list; if (xpi->xpi_cursor == NULL || xps->xps_nxprts < 2) return first_entry(head); return current_entry(head, xpi->xpi_cursor); } static struct rpc_xprt *xprt_iter_current_entry(struct rpc_xprt_iter *xpi) { return _xprt_iter_current_entry(xpi, xprt_switch_find_first_entry, xprt_switch_find_current_entry); } static struct rpc_xprt *xprt_switch_find_current_entry_offline(struct list_head *head, const struct rpc_xprt *cur) { return _xprt_switch_find_current_entry(head, cur, false); } static struct rpc_xprt *xprt_iter_current_entry_offline(struct rpc_xprt_iter *xpi) { return _xprt_iter_current_entry(xpi, xprt_switch_find_first_entry_offline, xprt_switch_find_current_entry_offline); } static bool __rpc_xprt_switch_has_addr(struct rpc_xprt_switch *xps, const struct sockaddr *sap) { struct list_head *head; struct rpc_xprt *pos; if (xps == NULL || sap == NULL) return false; head = &xps->xps_xprt_list; list_for_each_entry_rcu(pos, head, xprt_switch) { if (rpc_cmp_addr_port(sap, (struct sockaddr *)&pos->addr)) { pr_info("RPC: addr %s already in xprt switch\n", pos->address_strings[RPC_DISPLAY_ADDR]); return true; } } return false; } bool rpc_xprt_switch_has_addr(struct rpc_xprt_switch *xps, const struct sockaddr *sap) { bool res; rcu_read_lock(); res = __rpc_xprt_switch_has_addr(xps, sap); rcu_read_unlock(); return res; } static struct rpc_xprt *xprt_switch_find_next_entry(struct list_head *head, const struct rpc_xprt *cur, bool check_active) { struct rpc_xprt *pos, *prev = NULL; bool found = false; list_for_each_entry_rcu(pos, head, xprt_switch) { if (cur == prev) found = true; /* for request to return active transports return only * active, for request to return offline transports * return only offline */ if (found && ((check_active && xprt_is_active(pos)) || (!check_active && !xprt_is_active(pos)))) return pos; prev = pos; } return NULL; } static struct rpc_xprt *xprt_switch_set_next_cursor(struct rpc_xprt_switch *xps, struct rpc_xprt **cursor, xprt_switch_find_xprt_t find_next) { struct rpc_xprt *pos, *old; old = smp_load_acquire(cursor); pos = find_next(xps, old); smp_store_release(cursor, pos); return pos; } static struct rpc_xprt *xprt_iter_next_entry_multiple(struct rpc_xprt_iter *xpi, xprt_switch_find_xprt_t find_next) { struct rpc_xprt_switch *xps = rcu_dereference(xpi->xpi_xpswitch); if (xps == NULL) return NULL; return xprt_switch_set_next_cursor(xps, &xpi->xpi_cursor, find_next); } static struct rpc_xprt *__xprt_switch_find_next_entry_roundrobin(struct list_head *head, const struct rpc_xprt *cur) { struct rpc_xprt *ret; ret = xprt_switch_find_next_entry(head, cur, true); if (ret != NULL) return ret; return xprt_switch_find_first_entry(head); } static struct rpc_xprt *xprt_switch_find_next_entry_roundrobin(struct rpc_xprt_switch *xps, const struct rpc_xprt *cur) { struct list_head *head = &xps->xps_xprt_list; struct rpc_xprt *xprt; unsigned int nactive; for (;;) { unsigned long xprt_queuelen, xps_queuelen; xprt = __xprt_switch_find_next_entry_roundrobin(head, cur); if (!xprt) break; xprt_queuelen = atomic_long_read(&xprt->queuelen); xps_queuelen = atomic_long_read(&xps->xps_queuelen); nactive = READ_ONCE(xps->xps_nactive); /* Exit loop if xprt_queuelen <= average queue length */ if (xprt_queuelen * nactive <= xps_queuelen) break; cur = xprt; } return xprt; } static struct rpc_xprt *xprt_iter_next_entry_roundrobin(struct rpc_xprt_iter *xpi) { return xprt_iter_next_entry_multiple(xpi, xprt_switch_find_next_entry_roundrobin); } static struct rpc_xprt *xprt_switch_find_next_entry_all(struct rpc_xprt_switch *xps, const struct rpc_xprt *cur) { return xprt_switch_find_next_entry(&xps->xps_xprt_list, cur, true); } static struct rpc_xprt *xprt_switch_find_next_entry_offline(struct rpc_xprt_switch *xps, const struct rpc_xprt *cur) { return xprt_switch_find_next_entry(&xps->xps_xprt_list, cur, false); } static struct rpc_xprt *xprt_iter_next_entry_all(struct rpc_xprt_iter *xpi) { return xprt_iter_next_entry_multiple(xpi, xprt_switch_find_next_entry_all); } static struct rpc_xprt *xprt_iter_next_entry_offline(struct rpc_xprt_iter *xpi) { return xprt_iter_next_entry_multiple(xpi, xprt_switch_find_next_entry_offline); } /* * xprt_iter_rewind - Resets the xprt iterator * @xpi: pointer to rpc_xprt_iter * * Resets xpi to ensure that it points to the first entry in the list * of transports. */ void xprt_iter_rewind(struct rpc_xprt_iter *xpi) { rcu_read_lock(); xprt_iter_ops(xpi)->xpi_rewind(xpi); rcu_read_unlock(); } static void __xprt_iter_init(struct rpc_xprt_iter *xpi, struct rpc_xprt_switch *xps, const struct rpc_xprt_iter_ops *ops) { rcu_assign_pointer(xpi->xpi_xpswitch, xprt_switch_get(xps)); xpi->xpi_cursor = NULL; xpi->xpi_ops = ops; } /** * xprt_iter_init - Initialise an xprt iterator * @xpi: pointer to rpc_xprt_iter * @xps: pointer to rpc_xprt_switch * * Initialises the iterator to use the default iterator ops * as set in xps. This function is mainly intended for internal * use in the rpc_client. */ void xprt_iter_init(struct rpc_xprt_iter *xpi, struct rpc_xprt_switch *xps) { __xprt_iter_init(xpi, xps, NULL); } /** * xprt_iter_init_listall - Initialise an xprt iterator * @xpi: pointer to rpc_xprt_iter * @xps: pointer to rpc_xprt_switch * * Initialises the iterator to iterate once through the entire list * of entries in xps. */ void xprt_iter_init_listall(struct rpc_xprt_iter *xpi, struct rpc_xprt_switch *xps) { __xprt_iter_init(xpi, xps, &rpc_xprt_iter_listall); } void xprt_iter_init_listoffline(struct rpc_xprt_iter *xpi, struct rpc_xprt_switch *xps) { __xprt_iter_init(xpi, xps, &rpc_xprt_iter_listoffline); } /** * xprt_iter_xchg_switch - Atomically swap out the rpc_xprt_switch * @xpi: pointer to rpc_xprt_iter * @newswitch: pointer to a new rpc_xprt_switch or NULL * * Swaps out the existing xpi->xpi_xpswitch with a new value. */ struct rpc_xprt_switch *xprt_iter_xchg_switch(struct rpc_xprt_iter *xpi, struct rpc_xprt_switch *newswitch) { struct rpc_xprt_switch __rcu *oldswitch; /* Atomically swap out the old xpswitch */ oldswitch = xchg(&xpi->xpi_xpswitch, RCU_INITIALIZER(newswitch)); if (newswitch != NULL) xprt_iter_rewind(xpi); return rcu_dereference_protected(oldswitch, true); } /** * xprt_iter_destroy - Destroys the xprt iterator * @xpi: pointer to rpc_xprt_iter */ void xprt_iter_destroy(struct rpc_xprt_iter *xpi) { xprt_switch_put(xprt_iter_xchg_switch(xpi, NULL)); } /** * xprt_iter_xprt - Returns the rpc_xprt pointed to by the cursor * @xpi: pointer to rpc_xprt_iter * * Returns a pointer to the struct rpc_xprt that is currently * pointed to by the cursor. * Caller must be holding rcu_read_lock(). */ struct rpc_xprt *xprt_iter_xprt(struct rpc_xprt_iter *xpi) { WARN_ON_ONCE(!rcu_read_lock_held()); return xprt_iter_ops(xpi)->xpi_xprt(xpi); } static struct rpc_xprt *xprt_iter_get_helper(struct rpc_xprt_iter *xpi, struct rpc_xprt *(*fn)(struct rpc_xprt_iter *)) { struct rpc_xprt *ret; do { ret = fn(xpi); if (ret == NULL) break; ret = xprt_get(ret); } while (ret == NULL); return ret; } /** * xprt_iter_get_xprt - Returns the rpc_xprt pointed to by the cursor * @xpi: pointer to rpc_xprt_iter * * Returns a reference to the struct rpc_xprt that is currently * pointed to by the cursor. */ struct rpc_xprt *xprt_iter_get_xprt(struct rpc_xprt_iter *xpi) { struct rpc_xprt *xprt; rcu_read_lock(); xprt = xprt_iter_get_helper(xpi, xprt_iter_ops(xpi)->xpi_xprt); rcu_read_unlock(); return xprt; } /** * xprt_iter_get_next - Returns the next rpc_xprt following the cursor * @xpi: pointer to rpc_xprt_iter * * Returns a reference to the struct rpc_xprt that immediately follows the * entry pointed to by the cursor. */ struct rpc_xprt *xprt_iter_get_next(struct rpc_xprt_iter *xpi) { struct rpc_xprt *xprt; rcu_read_lock(); xprt = xprt_iter_get_helper(xpi, xprt_iter_ops(xpi)->xpi_next); rcu_read_unlock(); return xprt; } /* Policy for always returning the first entry in the rpc_xprt_switch */ static const struct rpc_xprt_iter_ops rpc_xprt_iter_singular = { .xpi_rewind = xprt_iter_no_rewind, .xpi_xprt = xprt_iter_first_entry, .xpi_next = xprt_iter_first_entry, }; /* Policy for round-robin iteration of entries in the rpc_xprt_switch */ static const struct rpc_xprt_iter_ops rpc_xprt_iter_roundrobin = { .xpi_rewind = xprt_iter_default_rewind, .xpi_xprt = xprt_iter_current_entry, .xpi_next = xprt_iter_next_entry_roundrobin, }; /* Policy for once-through iteration of entries in the rpc_xprt_switch */ static const struct rpc_xprt_iter_ops rpc_xprt_iter_listall = { .xpi_rewind = xprt_iter_default_rewind, .xpi_xprt = xprt_iter_current_entry, .xpi_next = xprt_iter_next_entry_all, }; static const struct rpc_xprt_iter_ops rpc_xprt_iter_listoffline = { .xpi_rewind = xprt_iter_default_rewind, .xpi_xprt = xprt_iter_current_entry_offline, .xpi_next = xprt_iter_next_entry_offline, };
5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 // SPDX-License-Identifier: GPL-2.0-or-later /* Provide a way to create a superblock configuration context within the kernel * that allows a superblock to be set up prior to mounting. * * Copyright (C) 2017 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/fs_context.h> #include <linux/fs_parser.h> #include <linux/fs.h> #include <linux/mount.h> #include <linux/nsproxy.h> #include <linux/slab.h> #include <linux/magic.h> #include <linux/security.h> #include <linux/mnt_namespace.h> #include <linux/pid_namespace.h> #include <linux/user_namespace.h> #include <net/net_namespace.h> #include <asm/sections.h> #include "mount.h" #include "internal.h" enum legacy_fs_param { LEGACY_FS_UNSET_PARAMS, LEGACY_FS_MONOLITHIC_PARAMS, LEGACY_FS_INDIVIDUAL_PARAMS, }; struct legacy_fs_context { char *legacy_data; /* Data page for legacy filesystems */ size_t data_size; enum legacy_fs_param param_type; }; static int legacy_init_fs_context(struct fs_context *fc); static const struct constant_table common_set_sb_flag[] = { { "dirsync", SB_DIRSYNC }, { "lazytime", SB_LAZYTIME }, { "mand", SB_MANDLOCK }, { "ro", SB_RDONLY }, { "sync", SB_SYNCHRONOUS }, { }, }; static const struct constant_table common_clear_sb_flag[] = { { "async", SB_SYNCHRONOUS }, { "nolazytime", SB_LAZYTIME }, { "nomand", SB_MANDLOCK }, { "rw", SB_RDONLY }, { }, }; /* * Check for a common mount option that manipulates s_flags. */ static int vfs_parse_sb_flag(struct fs_context *fc, const char *key) { unsigned int token; token = lookup_constant(common_set_sb_flag, key, 0); if (token) { fc->sb_flags |= token; fc->sb_flags_mask |= token; return 0; } token = lookup_constant(common_clear_sb_flag, key, 0); if (token) { fc->sb_flags &= ~token; fc->sb_flags_mask |= token; return 0; } return -ENOPARAM; } /** * vfs_parse_fs_param_source - Handle setting "source" via parameter * @fc: The filesystem context to modify * @param: The parameter * * This is a simple helper for filesystems to verify that the "source" they * accept is sane. * * Returns 0 on success, -ENOPARAM if this is not "source" parameter, and * -EINVAL otherwise. In the event of failure, supplementary error information * is logged. */ int vfs_parse_fs_param_source(struct fs_context *fc, struct fs_parameter *param) { if (strcmp(param->key, "source") != 0) return -ENOPARAM; if (param->type != fs_value_is_string) return invalf(fc, "Non-string source"); if (fc->source) return invalf(fc, "Multiple sources"); fc->source = param->string; param->string = NULL; return 0; } EXPORT_SYMBOL(vfs_parse_fs_param_source); /** * vfs_parse_fs_param - Add a single parameter to a superblock config * @fc: The filesystem context to modify * @param: The parameter * * A single mount option in string form is applied to the filesystem context * being set up. Certain standard options (for example "ro") are translated * into flag bits without going to the filesystem. The active security module * is allowed to observe and poach options. Any other options are passed over * to the filesystem to parse. * * This may be called multiple times for a context. * * Returns 0 on success and a negative error code on failure. In the event of * failure, supplementary error information may have been set. */ int vfs_parse_fs_param(struct fs_context *fc, struct fs_parameter *param) { int ret; if (!param->key) return invalf(fc, "Unnamed parameter\n"); ret = vfs_parse_sb_flag(fc, param->key); if (ret != -ENOPARAM) return ret; ret = security_fs_context_parse_param(fc, param); if (ret != -ENOPARAM) /* Param belongs to the LSM or is disallowed by the LSM; so * don't pass to the FS. */ return ret; if (fc->ops->parse_param) { ret = fc->ops->parse_param(fc, param); if (ret != -ENOPARAM) return ret; } /* If the filesystem doesn't take any arguments, give it the * default handling of source. */ ret = vfs_parse_fs_param_source(fc, param); if (ret != -ENOPARAM) return ret; return invalf(fc, "%s: Unknown parameter '%s'", fc->fs_type->name, param->key); } EXPORT_SYMBOL(vfs_parse_fs_param); /** * vfs_parse_fs_string - Convenience function to just parse a string. * @fc: Filesystem context. * @key: Parameter name. * @value: Default value. * @v_size: Maximum number of bytes in the value. */ int vfs_parse_fs_string(struct fs_context *fc, const char *key, const char *value, size_t v_size) { int ret; struct fs_parameter param = { .key = key, .type = fs_value_is_flag, .size = v_size, }; if (value) { param.string = kmemdup_nul(value, v_size, GFP_KERNEL); if (!param.string) return -ENOMEM; param.type = fs_value_is_string; } ret = vfs_parse_fs_param(fc, &param); kfree(param.string); return ret; } EXPORT_SYMBOL(vfs_parse_fs_string); /** * vfs_parse_monolithic_sep - Parse key[=val][,key[=val]]* mount data * @fc: The superblock configuration to fill in. * @data: The data to parse * @sep: callback for separating next option * * Parse a blob of data that's in key[=val][,key[=val]]* form with a custom * option separator callback. * * Returns 0 on success or the error returned by the ->parse_option() fs_context * operation on failure. */ int vfs_parse_monolithic_sep(struct fs_context *fc, void *data, char *(*sep)(char **)) { char *options = data, *key; int ret = 0; if (!options) return 0; ret = security_sb_eat_lsm_opts(options, &fc->security); if (ret) return ret; while ((key = sep(&options)) != NULL) { if (*key) { size_t v_len = 0; char *value = strchr(key, '='); if (value) { if (value == key) continue; *value++ = 0; v_len = strlen(value); } ret = vfs_parse_fs_string(fc, key, value, v_len); if (ret < 0) break; } } return ret; } EXPORT_SYMBOL(vfs_parse_monolithic_sep); static char *vfs_parse_comma_sep(char **s) { return strsep(s, ","); } /** * generic_parse_monolithic - Parse key[=val][,key[=val]]* mount data * @fc: The superblock configuration to fill in. * @data: The data to parse * * Parse a blob of data that's in key[=val][,key[=val]]* form. This can be * called from the ->monolithic_mount_data() fs_context operation. * * Returns 0 on success or the error returned by the ->parse_option() fs_context * operation on failure. */ int generic_parse_monolithic(struct fs_context *fc, void *data) { return vfs_parse_monolithic_sep(fc, data, vfs_parse_comma_sep); } EXPORT_SYMBOL(generic_parse_monolithic); /** * alloc_fs_context - Create a filesystem context. * @fs_type: The filesystem type. * @reference: The dentry from which this one derives (or NULL) * @sb_flags: Filesystem/superblock flags (SB_*) * @sb_flags_mask: Applicable members of @sb_flags * @purpose: The purpose that this configuration shall be used for. * * Open a filesystem and create a mount context. The mount context is * initialised with the supplied flags and, if a submount/automount from * another superblock (referred to by @reference) is supplied, may have * parameters such as namespaces copied across from that superblock. */ static struct fs_context *alloc_fs_context(struct file_system_type *fs_type, struct dentry *reference, unsigned int sb_flags, unsigned int sb_flags_mask, enum fs_context_purpose purpose) { int (*init_fs_context)(struct fs_context *); struct fs_context *fc; int ret = -ENOMEM; fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL_ACCOUNT); if (!fc) return ERR_PTR(-ENOMEM); fc->purpose = purpose; fc->sb_flags = sb_flags; fc->sb_flags_mask = sb_flags_mask; fc->fs_type = get_filesystem(fs_type); fc->cred = get_current_cred(); fc->net_ns = get_net(current->nsproxy->net_ns); fc->log.prefix = fs_type->name; mutex_init(&fc->uapi_mutex); switch (purpose) { case FS_CONTEXT_FOR_MOUNT: fc->user_ns = get_user_ns(fc->cred->user_ns); break; case FS_CONTEXT_FOR_SUBMOUNT: fc->user_ns = get_user_ns(reference->d_sb->s_user_ns); break; case FS_CONTEXT_FOR_RECONFIGURE: atomic_inc(&reference->d_sb->s_active); fc->user_ns = get_user_ns(reference->d_sb->s_user_ns); fc->root = dget(reference); break; } /* TODO: Make all filesystems support this unconditionally */ init_fs_context = fc->fs_type->init_fs_context; if (!init_fs_context) init_fs_context = legacy_init_fs_context; ret = init_fs_context(fc); if (ret < 0) goto err_fc; fc->need_free = true; return fc; err_fc: put_fs_context(fc); return ERR_PTR(ret); } struct fs_context *fs_context_for_mount(struct file_system_type *fs_type, unsigned int sb_flags) { return alloc_fs_context(fs_type, NULL, sb_flags, 0, FS_CONTEXT_FOR_MOUNT); } EXPORT_SYMBOL(fs_context_for_mount); struct fs_context *fs_context_for_reconfigure(struct dentry *dentry, unsigned int sb_flags, unsigned int sb_flags_mask) { return alloc_fs_context(dentry->d_sb->s_type, dentry, sb_flags, sb_flags_mask, FS_CONTEXT_FOR_RECONFIGURE); } EXPORT_SYMBOL(fs_context_for_reconfigure); /** * fs_context_for_submount: allocate a new fs_context for a submount * @type: file_system_type of the new context * @reference: reference dentry from which to copy relevant info * * Allocate a new fs_context suitable for a submount. This also ensures that * the fc->security object is inherited from @reference (if needed). */ struct fs_context *fs_context_for_submount(struct file_system_type *type, struct dentry *reference) { struct fs_context *fc; int ret; fc = alloc_fs_context(type, reference, 0, 0, FS_CONTEXT_FOR_SUBMOUNT); if (IS_ERR(fc)) return fc; ret = security_fs_context_submount(fc, reference->d_sb); if (ret) { put_fs_context(fc); return ERR_PTR(ret); } return fc; } EXPORT_SYMBOL(fs_context_for_submount); void fc_drop_locked(struct fs_context *fc) { struct super_block *sb = fc->root->d_sb; dput(fc->root); fc->root = NULL; deactivate_locked_super(sb); } static void legacy_fs_context_free(struct fs_context *fc); /** * vfs_dup_fs_context - Duplicate a filesystem context. * @src_fc: The context to copy. */ struct fs_context *vfs_dup_fs_context(struct fs_context *src_fc) { struct fs_context *fc; int ret; if (!src_fc->ops->dup) return ERR_PTR(-EOPNOTSUPP); fc = kmemdup(src_fc, sizeof(struct fs_context), GFP_KERNEL); if (!fc) return ERR_PTR(-ENOMEM); mutex_init(&fc->uapi_mutex); fc->fs_private = NULL; fc->s_fs_info = NULL; fc->source = NULL; fc->security = NULL; get_filesystem(fc->fs_type); get_net(fc->net_ns); get_user_ns(fc->user_ns); get_cred(fc->cred); if (fc->log.log) refcount_inc(&fc->log.log->usage); /* Can't call put until we've called ->dup */ ret = fc->ops->dup(fc, src_fc); if (ret < 0) goto err_fc; ret = security_fs_context_dup(fc, src_fc); if (ret < 0) goto err_fc; return fc; err_fc: put_fs_context(fc); return ERR_PTR(ret); } EXPORT_SYMBOL(vfs_dup_fs_context); /** * logfc - Log a message to a filesystem context * @log: The filesystem context to log to, or NULL to use printk. * @prefix: A string to prefix the output with, or NULL. * @level: 'w' for a warning, 'e' for an error. Anything else is a notice. * @fmt: The format of the buffer. */ void logfc(struct fc_log *log, const char *prefix, char level, const char *fmt, ...) { va_list va; struct va_format vaf = {.fmt = fmt, .va = &va}; va_start(va, fmt); if (!log) { switch (level) { case 'w': printk(KERN_WARNING "%s%s%pV\n", prefix ? prefix : "", prefix ? ": " : "", &vaf); break; case 'e': printk(KERN_ERR "%s%s%pV\n", prefix ? prefix : "", prefix ? ": " : "", &vaf); break; default: printk(KERN_NOTICE "%s%s%pV\n", prefix ? prefix : "", prefix ? ": " : "", &vaf); break; } } else { unsigned int logsize = ARRAY_SIZE(log->buffer); u8 index; char *q = kasprintf(GFP_KERNEL, "%c %s%s%pV\n", level, prefix ? prefix : "", prefix ? ": " : "", &vaf); index = log->head & (logsize - 1); BUILD_BUG_ON(sizeof(log->head) != sizeof(u8) || sizeof(log->tail) != sizeof(u8)); if ((u8)(log->head - log->tail) == logsize) { /* The buffer is full, discard the oldest message */ if (log->need_free & (1 << index)) kfree(log->buffer[index]); log->tail++; } log->buffer[index] = q ? q : "OOM: Can't store error string"; if (q) log->need_free |= 1 << index; else log->need_free &= ~(1 << index); log->head++; } va_end(va); } EXPORT_SYMBOL(logfc); /* * Free a logging structure. */ static void put_fc_log(struct fs_context *fc) { struct fc_log *log = fc->log.log; int i; if (log) { if (refcount_dec_and_test(&log->usage)) { fc->log.log = NULL; for (i = 0; i <= 7; i++) if (log->need_free & (1 << i)) kfree(log->buffer[i]); kfree(log); } } } /** * put_fs_context - Dispose of a superblock configuration context. * @fc: The context to dispose of. */ void put_fs_context(struct fs_context *fc) { struct super_block *sb; if (fc->root) { sb = fc->root->d_sb; dput(fc->root); fc->root = NULL; deactivate_super(sb); } if (fc->need_free && fc->ops && fc->ops->free) fc->ops->free(fc); security_free_mnt_opts(&fc->security); put_net(fc->net_ns); put_user_ns(fc->user_ns); put_cred(fc->cred); put_fc_log(fc); put_filesystem(fc->fs_type); kfree(fc->source); kfree(fc); } EXPORT_SYMBOL(put_fs_context); /* * Free the config for a filesystem that doesn't support fs_context. */ static void legacy_fs_context_free(struct fs_context *fc) { struct legacy_fs_context *ctx = fc->fs_private; if (ctx) { if (ctx->param_type == LEGACY_FS_INDIVIDUAL_PARAMS) kfree(ctx->legacy_data); kfree(ctx); } } /* * Duplicate a legacy config. */ static int legacy_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) { struct legacy_fs_context *ctx; struct legacy_fs_context *src_ctx = src_fc->fs_private; ctx = kmemdup(src_ctx, sizeof(*src_ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; if (ctx->param_type == LEGACY_FS_INDIVIDUAL_PARAMS) { ctx->legacy_data = kmemdup(src_ctx->legacy_data, src_ctx->data_size, GFP_KERNEL); if (!ctx->legacy_data) { kfree(ctx); return -ENOMEM; } } fc->fs_private = ctx; return 0; } /* * Add a parameter to a legacy config. We build up a comma-separated list of * options. */ static int legacy_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct legacy_fs_context *ctx = fc->fs_private; unsigned int size = ctx->data_size; size_t len = 0; int ret; ret = vfs_parse_fs_param_source(fc, param); if (ret != -ENOPARAM) return ret; if (ctx->param_type == LEGACY_FS_MONOLITHIC_PARAMS) return invalf(fc, "VFS: Legacy: Can't mix monolithic and individual options"); switch (param->type) { case fs_value_is_string: len = 1 + param->size; fallthrough; case fs_value_is_flag: len += strlen(param->key); break; default: return invalf(fc, "VFS: Legacy: Parameter type for '%s' not supported", param->key); } if (size + len + 2 > PAGE_SIZE) return invalf(fc, "VFS: Legacy: Cumulative options too large"); if (strchr(param->key, ',') || (param->type == fs_value_is_string && memchr(param->string, ',', param->size))) return invalf(fc, "VFS: Legacy: Option '%s' contained comma", param->key); if (!ctx->legacy_data) { ctx->legacy_data = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!ctx->legacy_data) return -ENOMEM; } if (size) ctx->legacy_data[size++] = ','; len = strlen(param->key); memcpy(ctx->legacy_data + size, param->key, len); size += len; if (param->type == fs_value_is_string) { ctx->legacy_data[size++] = '='; memcpy(ctx->legacy_data + size, param->string, param->size); size += param->size; } ctx->legacy_data[size] = '\0'; ctx->data_size = size; ctx->param_type = LEGACY_FS_INDIVIDUAL_PARAMS; return 0; } /* * Add monolithic mount data. */ static int legacy_parse_monolithic(struct fs_context *fc, void *data) { struct legacy_fs_context *ctx = fc->fs_private; if (ctx->param_type != LEGACY_FS_UNSET_PARAMS) { pr_warn("VFS: Can't mix monolithic and individual options\n"); return -EINVAL; } ctx->legacy_data = data; ctx->param_type = LEGACY_FS_MONOLITHIC_PARAMS; if (!ctx->legacy_data) return 0; if (fc->fs_type->fs_flags & FS_BINARY_MOUNTDATA) return 0; return security_sb_eat_lsm_opts(ctx->legacy_data, &fc->security); } /* * Get a mountable root with the legacy mount command. */ static int legacy_get_tree(struct fs_context *fc) { struct legacy_fs_context *ctx = fc->fs_private; struct super_block *sb; struct dentry *root; root = fc->fs_type->mount(fc->fs_type, fc->sb_flags, fc->source, ctx->legacy_data); if (IS_ERR(root)) return PTR_ERR(root); sb = root->d_sb; BUG_ON(!sb); fc->root = root; return 0; } /* * Handle remount. */ static int legacy_reconfigure(struct fs_context *fc) { struct legacy_fs_context *ctx = fc->fs_private; struct super_block *sb = fc->root->d_sb; if (!sb->s_op->remount_fs) return 0; return sb->s_op->remount_fs(sb, &fc->sb_flags, ctx ? ctx->legacy_data : NULL); } const struct fs_context_operations legacy_fs_context_ops = { .free = legacy_fs_context_free, .dup = legacy_fs_context_dup, .parse_param = legacy_parse_param, .parse_monolithic = legacy_parse_monolithic, .get_tree = legacy_get_tree, .reconfigure = legacy_reconfigure, }; /* * Initialise a legacy context for a filesystem that doesn't support * fs_context. */ static int legacy_init_fs_context(struct fs_context *fc) { fc->fs_private = kzalloc(sizeof(struct legacy_fs_context), GFP_KERNEL_ACCOUNT); if (!fc->fs_private) return -ENOMEM; fc->ops = &legacy_fs_context_ops; return 0; } int parse_monolithic_mount_data(struct fs_context *fc, void *data) { int (*monolithic_mount_data)(struct fs_context *, void *); monolithic_mount_data = fc->ops->parse_monolithic; if (!monolithic_mount_data) monolithic_mount_data = generic_parse_monolithic; return monolithic_mount_data(fc, data); } /* * Clean up a context after performing an action on it and put it into a state * from where it can be used to reconfigure a superblock. * * Note that here we do only the parts that can't fail; the rest is in * finish_clean_context() below and in between those fs_context is marked * FS_CONTEXT_AWAITING_RECONF. The reason for splitup is that after * successful mount or remount we need to report success to userland. * Trying to do full reinit (for the sake of possible subsequent remount) * and failing to allocate memory would've put us into a nasty situation. * So here we only discard the old state and reinitialization is left * until we actually try to reconfigure. */ void vfs_clean_context(struct fs_context *fc) { if (fc->need_free && fc->ops && fc->ops->free) fc->ops->free(fc); fc->need_free = false; fc->fs_private = NULL; fc->s_fs_info = NULL; fc->sb_flags = 0; security_free_mnt_opts(&fc->security); kfree(fc->source); fc->source = NULL; fc->exclusive = false; fc->purpose = FS_CONTEXT_FOR_RECONFIGURE; fc->phase = FS_CONTEXT_AWAITING_RECONF; } int finish_clean_context(struct fs_context *fc) { int error; if (fc->phase != FS_CONTEXT_AWAITING_RECONF) return 0; if (fc->fs_type->init_fs_context) error = fc->fs_type->init_fs_context(fc); else error = legacy_init_fs_context(fc); if (unlikely(error)) { fc->phase = FS_CONTEXT_FAILED; return error; } fc->need_free = true; fc->phase = FS_CONTEXT_RECONF_PARAMS; return 0; }
3 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_WAIT_BIT_H #define _LINUX_WAIT_BIT_H /* * Linux wait-bit related types and methods: */ #include <linux/wait.h> struct wait_bit_key { void *flags; int bit_nr; unsigned long timeout; }; struct wait_bit_queue_entry { struct wait_bit_key key; struct wait_queue_entry wq_entry; }; #define __WAIT_BIT_KEY_INITIALIZER(word, bit) \ { .flags = word, .bit_nr = bit, } typedef int wait_bit_action_f(struct wait_bit_key *key, int mode); void __wake_up_bit(struct wait_queue_head *wq_head, void *word, int bit); int __wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode); int __wait_on_bit_lock(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode); void wake_up_bit(void *word, int bit); int out_of_line_wait_on_bit(void *word, int, wait_bit_action_f *action, unsigned int mode); int out_of_line_wait_on_bit_timeout(void *word, int, wait_bit_action_f *action, unsigned int mode, unsigned long timeout); int out_of_line_wait_on_bit_lock(void *word, int, wait_bit_action_f *action, unsigned int mode); struct wait_queue_head *bit_waitqueue(void *word, int bit); extern void __init wait_bit_init(void); int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key); #define DEFINE_WAIT_BIT(name, word, bit) \ struct wait_bit_queue_entry name = { \ .key = __WAIT_BIT_KEY_INITIALIZER(word, bit), \ .wq_entry = { \ .private = current, \ .func = wake_bit_function, \ .entry = \ LIST_HEAD_INIT((name).wq_entry.entry), \ }, \ } extern int bit_wait(struct wait_bit_key *key, int mode); extern int bit_wait_io(struct wait_bit_key *key, int mode); extern int bit_wait_timeout(struct wait_bit_key *key, int mode); extern int bit_wait_io_timeout(struct wait_bit_key *key, int mode); /** * wait_on_bit - wait for a bit to be cleared * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * * There is a standard hashed waitqueue table for generic use. This * is the part of the hashtable's accessor API that waits on a bit. * For instance, if one were to have waiters on a bitflag, one would * call wait_on_bit() in threads waiting for the bit to clear. * One uses wait_on_bit() where one is waiting for the bit to clear, * but has no intention of setting it. * Returned value will be zero if the bit was cleared, or non-zero * if the process received a signal and the mode permitted wakeup * on that signal. */ static inline int wait_on_bit(unsigned long *word, int bit, unsigned mode) { might_sleep(); if (!test_bit_acquire(bit, word)) return 0; return out_of_line_wait_on_bit(word, bit, bit_wait, mode); } /** * wait_on_bit_io - wait for a bit to be cleared * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * * Use the standard hashed waitqueue table to wait for a bit * to be cleared. This is similar to wait_on_bit(), but calls * io_schedule() instead of schedule() for the actual waiting. * * Returned value will be zero if the bit was cleared, or non-zero * if the process received a signal and the mode permitted wakeup * on that signal. */ static inline int wait_on_bit_io(unsigned long *word, int bit, unsigned mode) { might_sleep(); if (!test_bit_acquire(bit, word)) return 0; return out_of_line_wait_on_bit(word, bit, bit_wait_io, mode); } /** * wait_on_bit_timeout - wait for a bit to be cleared or a timeout elapses * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * @timeout: timeout, in jiffies * * Use the standard hashed waitqueue table to wait for a bit * to be cleared. This is similar to wait_on_bit(), except also takes a * timeout parameter. * * Returned value will be zero if the bit was cleared before the * @timeout elapsed, or non-zero if the @timeout elapsed or process * received a signal and the mode permitted wakeup on that signal. */ static inline int wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode, unsigned long timeout) { might_sleep(); if (!test_bit_acquire(bit, word)) return 0; return out_of_line_wait_on_bit_timeout(word, bit, bit_wait_timeout, mode, timeout); } /** * wait_on_bit_action - wait for a bit to be cleared * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @action: the function used to sleep, which may take special actions * @mode: the task state to sleep in * * Use the standard hashed waitqueue table to wait for a bit * to be cleared, and allow the waiting action to be specified. * This is like wait_on_bit() but allows fine control of how the waiting * is done. * * Returned value will be zero if the bit was cleared, or non-zero * if the process received a signal and the mode permitted wakeup * on that signal. */ static inline int wait_on_bit_action(unsigned long *word, int bit, wait_bit_action_f *action, unsigned mode) { might_sleep(); if (!test_bit_acquire(bit, word)) return 0; return out_of_line_wait_on_bit(word, bit, action, mode); } /** * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * * There is a standard hashed waitqueue table for generic use. This * is the part of the hashtable's accessor API that waits on a bit * when one intends to set it, for instance, trying to lock bitflags. * For instance, if one were to have waiters trying to set bitflag * and waiting for it to clear before setting it, one would call * wait_on_bit() in threads waiting to be able to set the bit. * One uses wait_on_bit_lock() where one is waiting for the bit to * clear with the intention of setting it, and when done, clearing it. * * Returns zero if the bit was (eventually) found to be clear and was * set. Returns non-zero if a signal was delivered to the process and * the @mode allows that signal to wake the process. */ static inline int wait_on_bit_lock(unsigned long *word, int bit, unsigned mode) { might_sleep(); if (!test_and_set_bit(bit, word)) return 0; return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode); } /** * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @mode: the task state to sleep in * * Use the standard hashed waitqueue table to wait for a bit * to be cleared and then to atomically set it. This is similar * to wait_on_bit(), but calls io_schedule() instead of schedule() * for the actual waiting. * * Returns zero if the bit was (eventually) found to be clear and was * set. Returns non-zero if a signal was delivered to the process and * the @mode allows that signal to wake the process. */ static inline int wait_on_bit_lock_io(unsigned long *word, int bit, unsigned mode) { might_sleep(); if (!test_and_set_bit(bit, word)) return 0; return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode); } /** * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it * @word: the word being waited on, a kernel virtual address * @bit: the bit of the word being waited on * @action: the function used to sleep, which may take special actions * @mode: the task state to sleep in * * Use the standard hashed waitqueue table to wait for a bit * to be cleared and then to set it, and allow the waiting action * to be specified. * This is like wait_on_bit() but allows fine control of how the waiting * is done. * * Returns zero if the bit was (eventually) found to be clear and was * set. Returns non-zero if a signal was delivered to the process and * the @mode allows that signal to wake the process. */ static inline int wait_on_bit_lock_action(unsigned long *word, int bit, wait_bit_action_f *action, unsigned mode) { might_sleep(); if (!test_and_set_bit(bit, word)) return 0; return out_of_line_wait_on_bit_lock(word, bit, action, mode); } extern void init_wait_var_entry(struct wait_bit_queue_entry *wbq_entry, void *var, int flags); extern void wake_up_var(void *var); extern wait_queue_head_t *__var_waitqueue(void *p); #define ___wait_var_event(var, condition, state, exclusive, ret, cmd) \ ({ \ __label__ __out; \ struct wait_queue_head *__wq_head = __var_waitqueue(var); \ struct wait_bit_queue_entry __wbq_entry; \ long __ret = ret; /* explicit shadow */ \ \ init_wait_var_entry(&__wbq_entry, var, \ exclusive ? WQ_FLAG_EXCLUSIVE : 0); \ for (;;) { \ long __int = prepare_to_wait_event(__wq_head, \ &__wbq_entry.wq_entry, \ state); \ if (condition) \ break; \ \ if (___wait_is_interruptible(state) && __int) { \ __ret = __int; \ goto __out; \ } \ \ cmd; \ } \ finish_wait(__wq_head, &__wbq_entry.wq_entry); \ __out: __ret; \ }) #define __wait_var_event(var, condition) \ ___wait_var_event(var, condition, TASK_UNINTERRUPTIBLE, 0, 0, \ schedule()) #define wait_var_event(var, condition) \ do { \ might_sleep(); \ if (condition) \ break; \ __wait_var_event(var, condition); \ } while (0) #define __wait_var_event_killable(var, condition) \ ___wait_var_event(var, condition, TASK_KILLABLE, 0, 0, \ schedule()) #define wait_var_event_killable(var, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_var_event_killable(var, condition); \ __ret; \ }) #define __wait_var_event_timeout(var, condition, timeout) \ ___wait_var_event(var, ___wait_cond_timeout(condition), \ TASK_UNINTERRUPTIBLE, 0, timeout, \ __ret = schedule_timeout(__ret)) #define wait_var_event_timeout(var, condition, timeout) \ ({ \ long __ret = timeout; \ might_sleep(); \ if (!___wait_cond_timeout(condition)) \ __ret = __wait_var_event_timeout(var, condition, timeout); \ __ret; \ }) #define __wait_var_event_interruptible(var, condition) \ ___wait_var_event(var, condition, TASK_INTERRUPTIBLE, 0, 0, \ schedule()) #define wait_var_event_interruptible(var, condition) \ ({ \ int __ret = 0; \ might_sleep(); \ if (!(condition)) \ __ret = __wait_var_event_interruptible(var, condition); \ __ret; \ }) /** * clear_and_wake_up_bit - clear a bit and wake up anyone waiting on that bit * * @bit: the bit of the word being waited on * @word: the word being waited on, a kernel virtual address * * You can use this helper if bitflags are manipulated atomically rather than * non-atomically under a lock. */ static inline void clear_and_wake_up_bit(int bit, void *word) { clear_bit_unlock(bit, word); /* See wake_up_bit() for which memory barrier you need to use. */ smp_mb__after_atomic(); wake_up_bit(word, bit); } #endif /* _LINUX_WAIT_BIT_H */
41 42 42 42 42 99 99 99 98 98 99 98 9 99 99 99 99 97 98 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 // SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Support for INET6 connection oriented protocols. * * Authors: See the TCPv6 sources */ #include <linux/module.h> #include <linux/in6.h> #include <linux/ipv6.h> #include <linux/jhash.h> #include <linux/slab.h> #include <net/addrconf.h> #include <net/inet_connection_sock.h> #include <net/inet_ecn.h> #include <net/inet_hashtables.h> #include <net/ip6_route.h> #include <net/sock.h> #include <net/inet6_connection_sock.h> #include <net/sock_reuseport.h> struct dst_entry *inet6_csk_route_req(const struct sock *sk, struct flowi6 *fl6, const struct request_sock *req, u8 proto) { struct inet_request_sock *ireq = inet_rsk(req); const struct ipv6_pinfo *np = inet6_sk(sk); struct in6_addr *final_p, final; struct dst_entry *dst; memset(fl6, 0, sizeof(*fl6)); fl6->flowi6_proto = proto; fl6->daddr = ireq->ir_v6_rmt_addr; rcu_read_lock(); final_p = fl6_update_dst(fl6, rcu_dereference(np->opt), &final); rcu_read_unlock(); fl6->saddr = ireq->ir_v6_loc_addr; fl6->flowi6_oif = ireq->ir_iif; fl6->flowi6_mark = ireq->ir_mark; fl6->fl6_dport = ireq->ir_rmt_port; fl6->fl6_sport = htons(ireq->ir_num); fl6->flowi6_uid = sk->sk_uid; security_req_classify_flow(req, flowi6_to_flowi_common(fl6)); dst = ip6_dst_lookup_flow(sock_net(sk), sk, fl6, final_p); if (IS_ERR(dst)) return NULL; return dst; } EXPORT_SYMBOL(inet6_csk_route_req); void inet6_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) uaddr; sin6->sin6_family = AF_INET6; sin6->sin6_addr = sk->sk_v6_daddr; sin6->sin6_port = inet_sk(sk)->inet_dport; /* We do not store received flowlabel for TCP */ sin6->sin6_flowinfo = 0; sin6->sin6_scope_id = ipv6_iface_scope_id(&sin6->sin6_addr, sk->sk_bound_dev_if); } EXPORT_SYMBOL_GPL(inet6_csk_addr2sockaddr); static inline struct dst_entry *__inet6_csk_dst_check(struct sock *sk, u32 cookie) { return __sk_dst_check(sk, cookie); } static struct dst_entry *inet6_csk_route_socket(struct sock *sk, struct flowi6 *fl6) { struct inet_sock *inet = inet_sk(sk); struct ipv6_pinfo *np = inet6_sk(sk); struct in6_addr *final_p, final; struct dst_entry *dst; memset(fl6, 0, sizeof(*fl6)); fl6->flowi6_proto = sk->sk_protocol; fl6->daddr = sk->sk_v6_daddr; fl6->saddr = np->saddr; fl6->flowlabel = np->flow_label; IP6_ECN_flow_xmit(sk, fl6->flowlabel); fl6->flowi6_oif = sk->sk_bound_dev_if; fl6->flowi6_mark = sk->sk_mark; fl6->fl6_sport = inet->inet_sport; fl6->fl6_dport = inet->inet_dport; fl6->flowi6_uid = sk->sk_uid; security_sk_classify_flow(sk, flowi6_to_flowi_common(fl6)); rcu_read_lock(); final_p = fl6_update_dst(fl6, rcu_dereference(np->opt), &final); rcu_read_unlock(); dst = __inet6_csk_dst_check(sk, np->dst_cookie); if (!dst) { dst = ip6_dst_lookup_flow(sock_net(sk), sk, fl6, final_p); if (!IS_ERR(dst)) ip6_dst_store(sk, dst, NULL, NULL); } return dst; } int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl_unused) { struct ipv6_pinfo *np = inet6_sk(sk); struct flowi6 fl6; struct dst_entry *dst; int res; dst = inet6_csk_route_socket(sk, &fl6); if (IS_ERR(dst)) { WRITE_ONCE(sk->sk_err_soft, -PTR_ERR(dst)); sk->sk_route_caps = 0; kfree_skb(skb); return PTR_ERR(dst); } rcu_read_lock(); skb_dst_set_noref(skb, dst); /* Restore final destination back after routing done */ fl6.daddr = sk->sk_v6_daddr; res = ip6_xmit(sk, skb, &fl6, sk->sk_mark, rcu_dereference(np->opt), np->tclass, READ_ONCE(sk->sk_priority)); rcu_read_unlock(); return res; } EXPORT_SYMBOL_GPL(inet6_csk_xmit); struct dst_entry *inet6_csk_update_pmtu(struct sock *sk, u32 mtu) { struct flowi6 fl6; struct dst_entry *dst = inet6_csk_route_socket(sk, &fl6); if (IS_ERR(dst)) return NULL; dst->ops->update_pmtu(dst, sk, NULL, mtu, true); dst = inet6_csk_route_socket(sk, &fl6); return IS_ERR(dst) ? NULL : dst; } EXPORT_SYMBOL_GPL(inet6_csk_update_pmtu);
1 1 2 2 2<