1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _DELAYED_CALL_H #define _DELAYED_CALL_H /* * Poor man's closures; I wish we could've done them sanely polymorphic, * but... */ struct delayed_call { void (*fn)(void *); void *arg; }; #define DEFINE_DELAYED_CALL(name) struct delayed_call name = {NULL, NULL} /* I really wish we had closures with sane typechecking... */ static inline void set_delayed_call(struct delayed_call *call, void (*fn)(void *), void *arg) { call->fn = fn; call->arg = arg; } static inline void do_delayed_call(struct delayed_call *call) { if (call->fn) call->fn(call->arg); } static inline void clear_delayed_call(struct delayed_call *call) { call->fn = NULL; } #endif
2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2006, Johannes Berg <johannes@sipsolutions.net> */ /* just for IFNAMSIZ */ #include <linux/if.h> #include <linux/slab.h> #include <linux/export.h> #include "led.h" void ieee80211_led_assoc(struct ieee80211_local *local, bool associated) { if (!atomic_read(&local->assoc_led_active)) return; if (associated) led_trigger_event(&local->assoc_led, LED_FULL); else led_trigger_event(&local->assoc_led, LED_OFF); } void ieee80211_led_radio(struct ieee80211_local *local, bool enabled) { if (!atomic_read(&local->radio_led_active)) return; if (enabled) led_trigger_event(&local->radio_led, LED_FULL); else led_trigger_event(&local->radio_led, LED_OFF); } void ieee80211_alloc_led_names(struct ieee80211_local *local) { local->rx_led.name = kasprintf(GFP_KERNEL, "%srx", wiphy_name(local->hw.wiphy)); local->tx_led.name = kasprintf(GFP_KERNEL, "%stx", wiphy_name(local->hw.wiphy)); local->assoc_led.name = kasprintf(GFP_KERNEL, "%sassoc", wiphy_name(local->hw.wiphy)); local->radio_led.name = kasprintf(GFP_KERNEL, "%sradio", wiphy_name(local->hw.wiphy)); } void ieee80211_free_led_names(struct ieee80211_local *local) { kfree(local->rx_led.name); kfree(local->tx_led.name); kfree(local->assoc_led.name); kfree(local->radio_led.name); } static int ieee80211_tx_led_activate(struct led_classdev *led_cdev) { struct ieee80211_local *local = container_of(led_cdev->trigger, struct ieee80211_local, tx_led); atomic_inc(&local->tx_led_active); return 0; } static void ieee80211_tx_led_deactivate(struct led_classdev *led_cdev) { struct ieee80211_local *local = container_of(led_cdev->trigger, struct ieee80211_local, tx_led); atomic_dec(&local->tx_led_active); } static int ieee80211_rx_led_activate(struct led_classdev *led_cdev) { struct ieee80211_local *local = container_of(led_cdev->trigger, struct ieee80211_local, rx_led); atomic_inc(&local->rx_led_active); return 0; } static void ieee80211_rx_led_deactivate(struct led_classdev *led_cdev) { struct ieee80211_local *local = container_of(led_cdev->trigger, struct ieee80211_local, rx_led); atomic_dec(&local->rx_led_active); } static int ieee80211_assoc_led_activate(struct led_classdev *led_cdev) { struct ieee80211_local *local = container_of(led_cdev->trigger, struct ieee80211_local, assoc_led); atomic_inc(&local->assoc_led_active); return 0; } static void ieee80211_assoc_led_deactivate(struct led_classdev *led_cdev) { struct ieee80211_local *local = container_of(led_cdev->trigger, struct ieee80211_local, assoc_led); atomic_dec(&local->assoc_led_active); } static int ieee80211_radio_led_activate(struct led_classdev *led_cdev) { struct ieee80211_local *local = container_of(led_cdev->trigger, struct ieee80211_local, radio_led); atomic_inc(&local->radio_led_active); return 0; } static void ieee80211_radio_led_deactivate(struct led_classdev *led_cdev) { struct ieee80211_local *local = container_of(led_cdev->trigger, struct ieee80211_local, radio_led); atomic_dec(&local->radio_led_active); } static int ieee80211_tpt_led_activate(struct led_classdev *led_cdev) { struct ieee80211_local *local = container_of(led_cdev->trigger, struct ieee80211_local, tpt_led); atomic_inc(&local->tpt_led_active); return 0; } static void ieee80211_tpt_led_deactivate(struct led_classdev *led_cdev) { struct ieee80211_local *local = container_of(led_cdev->trigger, struct ieee80211_local, tpt_led); atomic_dec(&local->tpt_led_active); } void ieee80211_led_init(struct ieee80211_local *local) { atomic_set(&local->rx_led_active, 0); local->rx_led.activate = ieee80211_rx_led_activate; local->rx_led.deactivate = ieee80211_rx_led_deactivate; if (local->rx_led.name && led_trigger_register(&local->rx_led)) { kfree(local->rx_led.name); local->rx_led.name = NULL; } atomic_set(&local->tx_led_active, 0); local->tx_led.activate = ieee80211_tx_led_activate; local->tx_led.deactivate = ieee80211_tx_led_deactivate; if (local->tx_led.name && led_trigger_register(&local->tx_led)) { kfree(local->tx_led.name); local->tx_led.name = NULL; } atomic_set(&local->assoc_led_active, 0); local->assoc_led.activate = ieee80211_assoc_led_activate; local->assoc_led.deactivate = ieee80211_assoc_led_deactivate; if (local->assoc_led.name && led_trigger_register(&local->assoc_led)) { kfree(local->assoc_led.name); local->assoc_led.name = NULL; } atomic_set(&local->radio_led_active, 0); local->radio_led.activate = ieee80211_radio_led_activate; local->radio_led.deactivate = ieee80211_radio_led_deactivate; if (local->radio_led.name && led_trigger_register(&local->radio_led)) { kfree(local->radio_led.name); local->radio_led.name = NULL; } atomic_set(&local->tpt_led_active, 0); if (local->tpt_led_trigger) { local->tpt_led.activate = ieee80211_tpt_led_activate; local->tpt_led.deactivate = ieee80211_tpt_led_deactivate; if (led_trigger_register(&local->tpt_led)) { kfree(local->tpt_led_trigger); local->tpt_led_trigger = NULL; } } } void ieee80211_led_exit(struct ieee80211_local *local) { if (local->radio_led.name) led_trigger_unregister(&local->radio_led); if (local->assoc_led.name) led_trigger_unregister(&local->assoc_led); if (local->tx_led.name) led_trigger_unregister(&local->tx_led); if (local->rx_led.name) led_trigger_unregister(&local->rx_led); if (local->tpt_led_trigger) { led_trigger_unregister(&local->tpt_led); kfree(local->tpt_led_trigger); } } const char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); return local->radio_led.name; } EXPORT_SYMBOL(__ieee80211_get_radio_led_name); const char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); return local->assoc_led.name; } EXPORT_SYMBOL(__ieee80211_get_assoc_led_name); const char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); return local->tx_led.name; } EXPORT_SYMBOL(__ieee80211_get_tx_led_name); const char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw) { struct ieee80211_local *local = hw_to_local(hw); return local->rx_led.name; } EXPORT_SYMBOL(__ieee80211_get_rx_led_name); static unsigned long tpt_trig_traffic(struct ieee80211_local *local, struct tpt_led_trigger *tpt_trig) { unsigned long traffic, delta; traffic = tpt_trig->tx_bytes + tpt_trig->rx_bytes; delta = traffic - tpt_trig->prev_traffic; tpt_trig->prev_traffic = traffic; return DIV_ROUND_UP(delta, 1024 / 8); } static void tpt_trig_timer(struct timer_list *t) { struct tpt_led_trigger *tpt_trig = from_timer(tpt_trig, t, timer); struct ieee80211_local *local = tpt_trig->local; unsigned long on, off, tpt; int i; if (!tpt_trig->running) return; mod_timer(&tpt_trig->timer, round_jiffies(jiffies + HZ)); tpt = tpt_trig_traffic(local, tpt_trig); /* default to just solid on */ on = 1; off = 0; for (i = tpt_trig->blink_table_len - 1; i >= 0; i--) { if (tpt_trig->blink_table[i].throughput < 0 || tpt > tpt_trig->blink_table[i].throughput) { off = tpt_trig->blink_table[i].blink_time / 2; on = tpt_trig->blink_table[i].blink_time - off; break; } } led_trigger_blink(&local->tpt_led, on, off); } const char * __ieee80211_create_tpt_led_trigger(struct ieee80211_hw *hw, unsigned int flags, const struct ieee80211_tpt_blink *blink_table, unsigned int blink_table_len) { struct ieee80211_local *local = hw_to_local(hw); struct tpt_led_trigger *tpt_trig; if (WARN_ON(local->tpt_led_trigger)) return NULL; tpt_trig = kzalloc(sizeof(struct tpt_led_trigger), GFP_KERNEL); if (!tpt_trig) return NULL; snprintf(tpt_trig->name, sizeof(tpt_trig->name), "%stpt", wiphy_name(local->hw.wiphy)); local->tpt_led.name = tpt_trig->name; tpt_trig->blink_table = blink_table; tpt_trig->blink_table_len = blink_table_len; tpt_trig->want = flags; tpt_trig->local = local; timer_setup(&tpt_trig->timer, tpt_trig_timer, 0); local->tpt_led_trigger = tpt_trig; return tpt_trig->name; } EXPORT_SYMBOL(__ieee80211_create_tpt_led_trigger); static void ieee80211_start_tpt_led_trig(struct ieee80211_local *local) { struct tpt_led_trigger *tpt_trig = local->tpt_led_trigger; if (tpt_trig->running) return; /* reset traffic */ tpt_trig_traffic(local, tpt_trig); tpt_trig->running = true; tpt_trig_timer(&tpt_trig->timer); mod_timer(&tpt_trig->timer, round_jiffies(jiffies + HZ)); } static void ieee80211_stop_tpt_led_trig(struct ieee80211_local *local) { struct tpt_led_trigger *tpt_trig = local->tpt_led_trigger; if (!tpt_trig->running) return; tpt_trig->running = false; del_timer_sync(&tpt_trig->timer); led_trigger_event(&local->tpt_led, LED_OFF); } void ieee80211_mod_tpt_led_trig(struct ieee80211_local *local, unsigned int types_on, unsigned int types_off) { struct tpt_led_trigger *tpt_trig = local->tpt_led_trigger; bool allowed; WARN_ON(types_on & types_off); if (!tpt_trig) return; tpt_trig->active &= ~types_off; tpt_trig->active |= types_on; /* * Regardless of wanted state, we shouldn't blink when * the radio is disabled -- this can happen due to some * code ordering issues with __ieee80211_recalc_idle() * being called before the radio is started. */ allowed = tpt_trig->active & IEEE80211_TPT_LEDTRIG_FL_RADIO; if (!allowed || !(tpt_trig->active & tpt_trig->want)) ieee80211_stop_tpt_led_trig(local); else ieee80211_start_tpt_led_trig(local); }
4 30 30 4 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 // SPDX-License-Identifier: GPL-2.0 /* * media.c - Media Controller specific ALSA driver code * * Copyright (c) 2019 Shuah Khan <shuah@kernel.org> * */ /* * This file adds Media Controller support to the ALSA driver * to use the Media Controller API to share the tuner with DVB * and V4L2 drivers that control the media device. * * The media device is created based on the existing quirks framework. * Using this approach, the media controller API usage can be added for * a specific device. */ #include <linux/init.h> #include <linux/list.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/usb.h> #include <sound/pcm.h> #include <sound/core.h> #include "usbaudio.h" #include "card.h" #include "mixer.h" #include "media.h" int snd_media_stream_init(struct snd_usb_substream *subs, struct snd_pcm *pcm, int stream) { struct media_device *mdev; struct media_ctl *mctl; struct device *pcm_dev = pcm->streams[stream].dev; u32 intf_type; int ret = 0; u16 mixer_pad; struct media_entity *entity; mdev = subs->stream->chip->media_dev; if (!mdev) return 0; if (subs->media_ctl) return 0; /* allocate media_ctl */ mctl = kzalloc(sizeof(*mctl), GFP_KERNEL); if (!mctl) return -ENOMEM; mctl->media_dev = mdev; if (stream == SNDRV_PCM_STREAM_PLAYBACK) { intf_type = MEDIA_INTF_T_ALSA_PCM_PLAYBACK; mctl->media_entity.function = MEDIA_ENT_F_AUDIO_PLAYBACK; mctl->media_pad.flags = MEDIA_PAD_FL_SOURCE; mixer_pad = 1; } else { intf_type = MEDIA_INTF_T_ALSA_PCM_CAPTURE; mctl->media_entity.function = MEDIA_ENT_F_AUDIO_CAPTURE; mctl->media_pad.flags = MEDIA_PAD_FL_SINK; mixer_pad = 2; } mctl->media_entity.name = pcm->name; media_entity_pads_init(&mctl->media_entity, 1, &mctl->media_pad); ret = media_device_register_entity(mctl->media_dev, &mctl->media_entity); if (ret) goto free_mctl; mctl->intf_devnode = media_devnode_create(mdev, intf_type, 0, MAJOR(pcm_dev->devt), MINOR(pcm_dev->devt)); if (!mctl->intf_devnode) { ret = -ENOMEM; goto unregister_entity; } mctl->intf_link = media_create_intf_link(&mctl->media_entity, &mctl->intf_devnode->intf, MEDIA_LNK_FL_ENABLED); if (!mctl->intf_link) { ret = -ENOMEM; goto devnode_remove; } /* create link between mixer and audio */ media_device_for_each_entity(entity, mdev) { switch (entity->function) { case MEDIA_ENT_F_AUDIO_MIXER: ret = media_create_pad_link(entity, mixer_pad, &mctl->media_entity, 0, MEDIA_LNK_FL_ENABLED); if (ret) goto remove_intf_link; break; } } subs->media_ctl = mctl; return 0; remove_intf_link: media_remove_intf_link(mctl->intf_link); devnode_remove: media_devnode_remove(mctl->intf_devnode); unregister_entity: media_device_unregister_entity(&mctl->media_entity); free_mctl: kfree(mctl); return ret; } void snd_media_stream_delete(struct snd_usb_substream *subs) { struct media_ctl *mctl = subs->media_ctl; if (mctl) { struct media_device *mdev; mdev = mctl->media_dev; if (mdev && media_devnode_is_registered(mdev->devnode)) { media_devnode_remove(mctl->intf_devnode); media_device_unregister_entity(&mctl->media_entity); media_entity_cleanup(&mctl->media_entity); } kfree(mctl); subs->media_ctl = NULL; } } int snd_media_start_pipeline(struct snd_usb_substream *subs) { struct media_ctl *mctl = subs->media_ctl; int ret = 0; if (!mctl) return 0; mutex_lock(&mctl->media_dev->graph_mutex); if (mctl->media_dev->enable_source) ret = mctl->media_dev->enable_source(&mctl->media_entity, &mctl->media_pipe); mutex_unlock(&mctl->media_dev->graph_mutex); return ret; } void snd_media_stop_pipeline(struct snd_usb_substream *subs) { struct media_ctl *mctl = subs->media_ctl; if (!mctl) return; mutex_lock(&mctl->media_dev->graph_mutex); if (mctl->media_dev->disable_source) mctl->media_dev->disable_source(&mctl->media_entity); mutex_unlock(&mctl->media_dev->graph_mutex); } static int snd_media_mixer_init(struct snd_usb_audio *chip) { struct device *ctl_dev = chip->card->ctl_dev; struct media_intf_devnode *ctl_intf; struct usb_mixer_interface *mixer; struct media_device *mdev = chip->media_dev; struct media_mixer_ctl *mctl; u32 intf_type = MEDIA_INTF_T_ALSA_CONTROL; int ret; if (!mdev) return -ENODEV; ctl_intf = chip->ctl_intf_media_devnode; if (!ctl_intf) { ctl_intf = media_devnode_create(mdev, intf_type, 0, MAJOR(ctl_dev->devt), MINOR(ctl_dev->devt)); if (!ctl_intf) return -ENOMEM; chip->ctl_intf_media_devnode = ctl_intf; } list_for_each_entry(mixer, &chip->mixer_list, list) { if (mixer->media_mixer_ctl) continue; /* allocate media_mixer_ctl */ mctl = kzalloc(sizeof(*mctl), GFP_KERNEL); if (!mctl) return -ENOMEM; mctl->media_dev = mdev; mctl->media_entity.function = MEDIA_ENT_F_AUDIO_MIXER; mctl->media_entity.name = chip->card->mixername; mctl->media_pad[0].flags = MEDIA_PAD_FL_SINK; mctl->media_pad[1].flags = MEDIA_PAD_FL_SOURCE; mctl->media_pad[2].flags = MEDIA_PAD_FL_SOURCE; media_entity_pads_init(&mctl->media_entity, MEDIA_MIXER_PAD_MAX, mctl->media_pad); ret = media_device_register_entity(mctl->media_dev, &mctl->media_entity); if (ret) { kfree(mctl); return ret; } mctl->intf_link = media_create_intf_link(&mctl->media_entity, &ctl_intf->intf, MEDIA_LNK_FL_ENABLED); if (!mctl->intf_link) { media_device_unregister_entity(&mctl->media_entity); media_entity_cleanup(&mctl->media_entity); kfree(mctl); return -ENOMEM; } mctl->intf_devnode = ctl_intf; mixer->media_mixer_ctl = mctl; } return 0; } static void snd_media_mixer_delete(struct snd_usb_audio *chip) { struct usb_mixer_interface *mixer; struct media_device *mdev = chip->media_dev; if (!mdev) return; list_for_each_entry(mixer, &chip->mixer_list, list) { struct media_mixer_ctl *mctl; mctl = mixer->media_mixer_ctl; if (!mixer->media_mixer_ctl) continue; if (media_devnode_is_registered(mdev->devnode)) { media_device_unregister_entity(&mctl->media_entity); media_entity_cleanup(&mctl->media_entity); } kfree(mctl); mixer->media_mixer_ctl = NULL; } if (media_devnode_is_registered(mdev->devnode)) media_devnode_remove(chip->ctl_intf_media_devnode); chip->ctl_intf_media_devnode = NULL; } int snd_media_device_create(struct snd_usb_audio *chip, struct usb_interface *iface) { struct media_device *mdev; struct usb_device *usbdev = interface_to_usbdev(iface); int ret = 0; /* usb-audio driver is probed for each usb interface, and * there are multiple interfaces per device. Avoid calling * media_device_usb_allocate() each time usb_audio_probe() * is called. Do it only once. */ if (chip->media_dev) { mdev = chip->media_dev; goto snd_mixer_init; } mdev = media_device_usb_allocate(usbdev, KBUILD_MODNAME, THIS_MODULE); if (IS_ERR(mdev)) return -ENOMEM; /* save media device - avoid lookups */ chip->media_dev = mdev; snd_mixer_init: /* Create media entities for mixer and control dev */ ret = snd_media_mixer_init(chip); /* media_device might be registered, print error and continue */ if (ret) dev_err(&usbdev->dev, "Couldn't create media mixer entities. Error: %d\n", ret); if (!media_devnode_is_registered(mdev->devnode)) { /* don't register if snd_media_mixer_init() failed */ if (ret) goto create_fail; /* register media_device */ ret = media_device_register(mdev); create_fail: if (ret) { snd_media_mixer_delete(chip); media_device_delete(mdev, KBUILD_MODNAME, THIS_MODULE); /* clear saved media_dev */ chip->media_dev = NULL; dev_err(&usbdev->dev, "Couldn't register media device. Error: %d\n", ret); return ret; } } return ret; } void snd_media_device_delete(struct snd_usb_audio *chip) { struct media_device *mdev = chip->media_dev; struct snd_usb_stream *stream; /* release resources */ list_for_each_entry(stream, &chip->pcm_list, list) { snd_media_stream_delete(&stream->substream[0]); snd_media_stream_delete(&stream->substream[1]); } snd_media_mixer_delete(chip); if (mdev) { media_device_delete(mdev, KBUILD_MODNAME, THIS_MODULE); chip->media_dev = NULL; } }
4 23 13 13 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_SCHED_H #define _LINUX_SCHED_H /* * Define 'struct task_struct' and provide the main scheduler * APIs (schedule(), wakeup variants, etc.) */ #include <uapi/linux/sched.h> #include <asm/current.h> #include <linux/pid.h> #include <linux/sem.h> #include <linux/shm.h> #include <linux/kmsan_types.h> #include <linux/mutex.h> #include <linux/plist.h> #include <linux/hrtimer.h> #include <linux/irqflags.h> #include <linux/seccomp.h> #include <linux/nodemask.h> #include <linux/rcupdate.h> #include <linux/refcount.h> #include <linux/resource.h> #include <linux/latencytop.h> #include <linux/sched/prio.h> #include <linux/sched/types.h> #include <linux/signal_types.h> #include <linux/syscall_user_dispatch.h> #include <linux/mm_types_task.h> #include <linux/task_io_accounting.h> #include <linux/posix-timers.h> #include <linux/rseq.h> #include <linux/seqlock.h> #include <linux/kcsan.h> #include <linux/rv.h> #include <linux/livepatch_sched.h> #include <asm/kmap_size.h> /* task_struct member predeclarations (sorted alphabetically): */ struct audit_context; struct bio_list; struct blk_plug; struct bpf_local_storage; struct bpf_run_ctx; struct capture_control; struct cfs_rq; struct fs_struct; struct futex_pi_state; struct io_context; struct io_uring_task; struct mempolicy; struct nameidata; struct nsproxy; struct perf_event_context; struct pid_namespace; struct pipe_inode_info; struct rcu_node; struct reclaim_state; struct robust_list_head; struct root_domain; struct rq; struct sched_attr; struct seq_file; struct sighand_struct; struct signal_struct; struct task_delay_info; struct task_group; struct user_event_mm; /* * Task state bitmask. NOTE! These bits are also * encoded in fs/proc/array.c: get_task_state(). * * We have two separate sets of flags: task->__state * is about runnability, while task->exit_state are * about the task exiting. Confusing, but this way * modifying one set can't modify the other one by * mistake. */ /* Used in tsk->__state: */ #define TASK_RUNNING 0x00000000 #define TASK_INTERRUPTIBLE 0x00000001 #define TASK_UNINTERRUPTIBLE 0x00000002 #define __TASK_STOPPED 0x00000004 #define __TASK_TRACED 0x00000008 /* Used in tsk->exit_state: */ #define EXIT_DEAD 0x00000010 #define EXIT_ZOMBIE 0x00000020 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) /* Used in tsk->__state again: */ #define TASK_PARKED 0x00000040 #define TASK_DEAD 0x00000080 #define TASK_WAKEKILL 0x00000100 #define TASK_WAKING 0x00000200 #define TASK_NOLOAD 0x00000400 #define TASK_NEW 0x00000800 #define TASK_RTLOCK_WAIT 0x00001000 #define TASK_FREEZABLE 0x00002000 #define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP)) #define TASK_FROZEN 0x00008000 #define TASK_STATE_MAX 0x00010000 #define TASK_ANY (TASK_STATE_MAX-1) /* * DO NOT ADD ANY NEW USERS ! */ #define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE) /* Convenience macros for the sake of set_current_state: */ #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) #define TASK_TRACED __TASK_TRACED #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) /* Convenience macros for the sake of wake_up(): */ #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) /* get_task_state(): */ #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ TASK_PARKED) #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING) #define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0) #define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0) #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0) /* * Special states are those that do not use the normal wait-loop pattern. See * the comment with set_special_state(). */ #define is_special_task_state(state) \ ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) #ifdef CONFIG_DEBUG_ATOMIC_SLEEP # define debug_normal_state_change(state_value) \ do { \ WARN_ON_ONCE(is_special_task_state(state_value)); \ current->task_state_change = _THIS_IP_; \ } while (0) # define debug_special_state_change(state_value) \ do { \ WARN_ON_ONCE(!is_special_task_state(state_value)); \ current->task_state_change = _THIS_IP_; \ } while (0) # define debug_rtlock_wait_set_state() \ do { \ current->saved_state_change = current->task_state_change;\ current->task_state_change = _THIS_IP_; \ } while (0) # define debug_rtlock_wait_restore_state() \ do { \ current->task_state_change = current->saved_state_change;\ } while (0) #else # define debug_normal_state_change(cond) do { } while (0) # define debug_special_state_change(cond) do { } while (0) # define debug_rtlock_wait_set_state() do { } while (0) # define debug_rtlock_wait_restore_state() do { } while (0) #endif /* * set_current_state() includes a barrier so that the write of current->__state * is correctly serialised wrt the caller's subsequent test of whether to * actually sleep: * * for (;;) { * set_current_state(TASK_UNINTERRUPTIBLE); * if (CONDITION) * break; * * schedule(); * } * __set_current_state(TASK_RUNNING); * * If the caller does not need such serialisation (because, for instance, the * CONDITION test and condition change and wakeup are under the same lock) then * use __set_current_state(). * * The above is typically ordered against the wakeup, which does: * * CONDITION = 1; * wake_up_state(p, TASK_UNINTERRUPTIBLE); * * where wake_up_state()/try_to_wake_up() executes a full memory barrier before * accessing p->__state. * * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is, * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). * * However, with slightly different timing the wakeup TASK_RUNNING store can * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not * a problem either because that will result in one extra go around the loop * and our @cond test will save the day. * * Also see the comments of try_to_wake_up(). */ #define __set_current_state(state_value) \ do { \ debug_normal_state_change((state_value)); \ WRITE_ONCE(current->__state, (state_value)); \ } while (0) #define set_current_state(state_value) \ do { \ debug_normal_state_change((state_value)); \ smp_store_mb(current->__state, (state_value)); \ } while (0) /* * set_special_state() should be used for those states when the blocking task * can not use the regular condition based wait-loop. In that case we must * serialize against wakeups such that any possible in-flight TASK_RUNNING * stores will not collide with our state change. */ #define set_special_state(state_value) \ do { \ unsigned long flags; /* may shadow */ \ \ raw_spin_lock_irqsave(&current->pi_lock, flags); \ debug_special_state_change((state_value)); \ WRITE_ONCE(current->__state, (state_value)); \ raw_spin_unlock_irqrestore(&current->pi_lock, flags); \ } while (0) /* * PREEMPT_RT specific variants for "sleeping" spin/rwlocks * * RT's spin/rwlock substitutions are state preserving. The state of the * task when blocking on the lock is saved in task_struct::saved_state and * restored after the lock has been acquired. These operations are * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT * lock related wakeups while the task is blocked on the lock are * redirected to operate on task_struct::saved_state to ensure that these * are not dropped. On restore task_struct::saved_state is set to * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail. * * The lock operation looks like this: * * current_save_and_set_rtlock_wait_state(); * for (;;) { * if (try_lock()) * break; * raw_spin_unlock_irq(&lock->wait_lock); * schedule_rtlock(); * raw_spin_lock_irq(&lock->wait_lock); * set_current_state(TASK_RTLOCK_WAIT); * } * current_restore_rtlock_saved_state(); */ #define current_save_and_set_rtlock_wait_state() \ do { \ lockdep_assert_irqs_disabled(); \ raw_spin_lock(&current->pi_lock); \ current->saved_state = current->__state; \ debug_rtlock_wait_set_state(); \ WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \ raw_spin_unlock(&current->pi_lock); \ } while (0); #define current_restore_rtlock_saved_state() \ do { \ lockdep_assert_irqs_disabled(); \ raw_spin_lock(&current->pi_lock); \ debug_rtlock_wait_restore_state(); \ WRITE_ONCE(current->__state, current->saved_state); \ current->saved_state = TASK_RUNNING; \ raw_spin_unlock(&current->pi_lock); \ } while (0); #define get_current_state() READ_ONCE(current->__state) /* * Define the task command name length as enum, then it can be visible to * BPF programs. */ enum { TASK_COMM_LEN = 16, }; extern void scheduler_tick(void); #define MAX_SCHEDULE_TIMEOUT LONG_MAX extern long schedule_timeout(long timeout); extern long schedule_timeout_interruptible(long timeout); extern long schedule_timeout_killable(long timeout); extern long schedule_timeout_uninterruptible(long timeout); extern long schedule_timeout_idle(long timeout); asmlinkage void schedule(void); extern void schedule_preempt_disabled(void); asmlinkage void preempt_schedule_irq(void); #ifdef CONFIG_PREEMPT_RT extern void schedule_rtlock(void); #endif extern int __must_check io_schedule_prepare(void); extern void io_schedule_finish(int token); extern long io_schedule_timeout(long timeout); extern void io_schedule(void); /** * struct prev_cputime - snapshot of system and user cputime * @utime: time spent in user mode * @stime: time spent in system mode * @lock: protects the above two fields * * Stores previous user/system time values such that we can guarantee * monotonicity. */ struct prev_cputime { #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE u64 utime; u64 stime; raw_spinlock_t lock; #endif }; enum vtime_state { /* Task is sleeping or running in a CPU with VTIME inactive: */ VTIME_INACTIVE = 0, /* Task is idle */ VTIME_IDLE, /* Task runs in kernelspace in a CPU with VTIME active: */ VTIME_SYS, /* Task runs in userspace in a CPU with VTIME active: */ VTIME_USER, /* Task runs as guests in a CPU with VTIME active: */ VTIME_GUEST, }; struct vtime { seqcount_t seqcount; unsigned long long starttime; enum vtime_state state; unsigned int cpu; u64 utime; u64 stime; u64 gtime; }; /* * Utilization clamp constraints. * @UCLAMP_MIN: Minimum utilization * @UCLAMP_MAX: Maximum utilization * @UCLAMP_CNT: Utilization clamp constraints count */ enum uclamp_id { UCLAMP_MIN = 0, UCLAMP_MAX, UCLAMP_CNT }; #ifdef CONFIG_SMP extern struct root_domain def_root_domain; extern struct mutex sched_domains_mutex; #endif struct sched_param { int sched_priority; }; struct sched_info { #ifdef CONFIG_SCHED_INFO /* Cumulative counters: */ /* # of times we have run on this CPU: */ unsigned long pcount; /* Time spent waiting on a runqueue: */ unsigned long long run_delay; /* Timestamps: */ /* When did we last run on a CPU? */ unsigned long long last_arrival; /* When were we last queued to run? */ unsigned long long last_queued; #endif /* CONFIG_SCHED_INFO */ }; /* * Integer metrics need fixed point arithmetic, e.g., sched/fair * has a few: load, load_avg, util_avg, freq, and capacity. * * We define a basic fixed point arithmetic range, and then formalize * all these metrics based on that basic range. */ # define SCHED_FIXEDPOINT_SHIFT 10 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) /* Increase resolution of cpu_capacity calculations */ # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) struct load_weight { unsigned long weight; u32 inv_weight; }; /** * struct util_est - Estimation utilization of FAIR tasks * @enqueued: instantaneous estimated utilization of a task/cpu * @ewma: the Exponential Weighted Moving Average (EWMA) * utilization of a task * * Support data structure to track an Exponential Weighted Moving Average * (EWMA) of a FAIR task's utilization. New samples are added to the moving * average each time a task completes an activation. Sample's weight is chosen * so that the EWMA will be relatively insensitive to transient changes to the * task's workload. * * The enqueued attribute has a slightly different meaning for tasks and cpus: * - task: the task's util_avg at last task dequeue time * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU * Thus, the util_est.enqueued of a task represents the contribution on the * estimated utilization of the CPU where that task is currently enqueued. * * Only for tasks we track a moving average of the past instantaneous * estimated utilization. This allows to absorb sporadic drops in utilization * of an otherwise almost periodic task. * * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg * updates. When a task is dequeued, its util_est should not be updated if its * util_avg has not been updated in the meantime. * This information is mapped into the MSB bit of util_est.enqueued at dequeue * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg * for a task) it is safe to use MSB. */ struct util_est { unsigned int enqueued; unsigned int ewma; #define UTIL_EST_WEIGHT_SHIFT 2 #define UTIL_AVG_UNCHANGED 0x80000000 } __attribute__((__aligned__(sizeof(u64)))); /* * The load/runnable/util_avg accumulates an infinite geometric series * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c). * * [load_avg definition] * * load_avg = runnable% * scale_load_down(load) * * [runnable_avg definition] * * runnable_avg = runnable% * SCHED_CAPACITY_SCALE * * [util_avg definition] * * util_avg = running% * SCHED_CAPACITY_SCALE * * where runnable% is the time ratio that a sched_entity is runnable and * running% the time ratio that a sched_entity is running. * * For cfs_rq, they are the aggregated values of all runnable and blocked * sched_entities. * * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU * capacity scaling. The scaling is done through the rq_clock_pelt that is used * for computing those signals (see update_rq_clock_pelt()) * * N.B., the above ratios (runnable% and running%) themselves are in the * range of [0, 1]. To do fixed point arithmetics, we therefore scale them * to as large a range as necessary. This is for example reflected by * util_avg's SCHED_CAPACITY_SCALE. * * [Overflow issue] * * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities * with the highest load (=88761), always runnable on a single cfs_rq, * and should not overflow as the number already hits PID_MAX_LIMIT. * * For all other cases (including 32-bit kernels), struct load_weight's * weight will overflow first before we do, because: * * Max(load_avg) <= Max(load.weight) * * Then it is the load_weight's responsibility to consider overflow * issues. */ struct sched_avg { u64 last_update_time; u64 load_sum; u64 runnable_sum; u32 util_sum; u32 period_contrib; unsigned long load_avg; unsigned long runnable_avg; unsigned long util_avg; struct util_est util_est; } ____cacheline_aligned; struct sched_statistics { #ifdef CONFIG_SCHEDSTATS u64 wait_start; u64 wait_max; u64 wait_count; u64 wait_sum; u64 iowait_count; u64 iowait_sum; u64 sleep_start; u64 sleep_max; s64 sum_sleep_runtime; u64 block_start; u64 block_max; s64 sum_block_runtime; u64 exec_max; u64 slice_max; u64 nr_migrations_cold; u64 nr_failed_migrations_affine; u64 nr_failed_migrations_running; u64 nr_failed_migrations_hot; u64 nr_forced_migrations; u64 nr_wakeups; u64 nr_wakeups_sync; u64 nr_wakeups_migrate; u64 nr_wakeups_local; u64 nr_wakeups_remote; u64 nr_wakeups_affine; u64 nr_wakeups_affine_attempts; u64 nr_wakeups_passive; u64 nr_wakeups_idle; #ifdef CONFIG_SCHED_CORE u64 core_forceidle_sum; #endif #endif /* CONFIG_SCHEDSTATS */ } ____cacheline_aligned; struct sched_entity { /* For load-balancing: */ struct load_weight load; struct rb_node run_node; u64 deadline; u64 min_deadline; struct list_head group_node; unsigned int on_rq; u64 exec_start; u64 sum_exec_runtime; u64 prev_sum_exec_runtime; u64 vruntime; s64 vlag; u64 slice; u64 nr_migrations; #ifdef CONFIG_FAIR_GROUP_SCHED int depth; struct sched_entity *parent; /* rq on which this entity is (to be) queued: */ struct cfs_rq *cfs_rq; /* rq "owned" by this entity/group: */ struct cfs_rq *my_q; /* cached value of my_q->h_nr_running */ unsigned long runnable_weight; #endif #ifdef CONFIG_SMP /* * Per entity load average tracking. * * Put into separate cache line so it does not * collide with read-mostly values above. */ struct sched_avg avg; #endif }; struct sched_rt_entity { struct list_head run_list; unsigned long timeout; unsigned long watchdog_stamp; unsigned int time_slice; unsigned short on_rq; unsigned short on_list; struct sched_rt_entity *back; #ifdef CONFIG_RT_GROUP_SCHED struct sched_rt_entity *parent; /* rq on which this entity is (to be) queued: */ struct rt_rq *rt_rq; /* rq "owned" by this entity/group: */ struct rt_rq *my_q; #endif } __randomize_layout; struct sched_dl_entity { struct rb_node rb_node; /* * Original scheduling parameters. Copied here from sched_attr * during sched_setattr(), they will remain the same until * the next sched_setattr(). */ u64 dl_runtime; /* Maximum runtime for each instance */ u64 dl_deadline; /* Relative deadline of each instance */ u64 dl_period; /* Separation of two instances (period) */ u64 dl_bw; /* dl_runtime / dl_period */ u64 dl_density; /* dl_runtime / dl_deadline */ /* * Actual scheduling parameters. Initialized with the values above, * they are continuously updated during task execution. Note that * the remaining runtime could be < 0 in case we are in overrun. */ s64 runtime; /* Remaining runtime for this instance */ u64 deadline; /* Absolute deadline for this instance */ unsigned int flags; /* Specifying the scheduler behaviour */ /* * Some bool flags: * * @dl_throttled tells if we exhausted the runtime. If so, the * task has to wait for a replenishment to be performed at the * next firing of dl_timer. * * @dl_yielded tells if task gave up the CPU before consuming * all its available runtime during the last job. * * @dl_non_contending tells if the task is inactive while still * contributing to the active utilization. In other words, it * indicates if the inactive timer has been armed and its handler * has not been executed yet. This flag is useful to avoid race * conditions between the inactive timer handler and the wakeup * code. * * @dl_overrun tells if the task asked to be informed about runtime * overruns. */ unsigned int dl_throttled : 1; unsigned int dl_yielded : 1; unsigned int dl_non_contending : 1; unsigned int dl_overrun : 1; /* * Bandwidth enforcement timer. Each -deadline task has its * own bandwidth to be enforced, thus we need one timer per task. */ struct hrtimer dl_timer; /* * Inactive timer, responsible for decreasing the active utilization * at the "0-lag time". When a -deadline task blocks, it contributes * to GRUB's active utilization until the "0-lag time", hence a * timer is needed to decrease the active utilization at the correct * time. */ struct hrtimer inactive_timer; #ifdef CONFIG_RT_MUTEXES /* * Priority Inheritance. When a DEADLINE scheduling entity is boosted * pi_se points to the donor, otherwise points to the dl_se it belongs * to (the original one/itself). */ struct sched_dl_entity *pi_se; #endif }; #ifdef CONFIG_UCLAMP_TASK /* Number of utilization clamp buckets (shorter alias) */ #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT /* * Utilization clamp for a scheduling entity * @value: clamp value "assigned" to a se * @bucket_id: bucket index corresponding to the "assigned" value * @active: the se is currently refcounted in a rq's bucket * @user_defined: the requested clamp value comes from user-space * * The bucket_id is the index of the clamp bucket matching the clamp value * which is pre-computed and stored to avoid expensive integer divisions from * the fast path. * * The active bit is set whenever a task has got an "effective" value assigned, * which can be different from the clamp value "requested" from user-space. * This allows to know a task is refcounted in the rq's bucket corresponding * to the "effective" bucket_id. * * The user_defined bit is set whenever a task has got a task-specific clamp * value requested from userspace, i.e. the system defaults apply to this task * just as a restriction. This allows to relax default clamps when a less * restrictive task-specific value has been requested, thus allowing to * implement a "nice" semantic. For example, a task running with a 20% * default boost can still drop its own boosting to 0%. */ struct uclamp_se { unsigned int value : bits_per(SCHED_CAPACITY_SCALE); unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); unsigned int active : 1; unsigned int user_defined : 1; }; #endif /* CONFIG_UCLAMP_TASK */ union rcu_special { struct { u8 blocked; u8 need_qs; u8 exp_hint; /* Hint for performance. */ u8 need_mb; /* Readers need smp_mb(). */ } b; /* Bits. */ u32 s; /* Set of bits. */ }; enum perf_event_task_context { perf_invalid_context = -1, perf_hw_context = 0, perf_sw_context, perf_nr_task_contexts, }; struct wake_q_node { struct wake_q_node *next; }; struct kmap_ctrl { #ifdef CONFIG_KMAP_LOCAL int idx; pte_t pteval[KM_MAX_IDX]; #endif }; struct task_struct { #ifdef CONFIG_THREAD_INFO_IN_TASK /* * For reasons of header soup (see current_thread_info()), this * must be the first element of task_struct. */ struct thread_info thread_info; #endif unsigned int __state; /* saved state for "spinlock sleepers" */ unsigned int saved_state; /* * This begins the randomizable portion of task_struct. Only * scheduling-critical items should be added above here. */ randomized_struct_fields_start void *stack; refcount_t usage; /* Per task flags (PF_*), defined further below: */ unsigned int flags; unsigned int ptrace; #ifdef CONFIG_SMP int on_cpu; struct __call_single_node wake_entry; unsigned int wakee_flips; unsigned long wakee_flip_decay_ts; struct task_struct *last_wakee; /* * recent_used_cpu is initially set as the last CPU used by a task * that wakes affine another task. Waker/wakee relationships can * push tasks around a CPU where each wakeup moves to the next one. * Tracking a recently used CPU allows a quick search for a recently * used CPU that may be idle. */ int recent_used_cpu; int wake_cpu; #endif int on_rq; int prio; int static_prio; int normal_prio; unsigned int rt_priority; struct sched_entity se; struct sched_rt_entity rt; struct sched_dl_entity dl; const struct sched_class *sched_class; #ifdef CONFIG_SCHED_CORE struct rb_node core_node; unsigned long core_cookie; unsigned int core_occupation; #endif #ifdef CONFIG_CGROUP_SCHED struct task_group *sched_task_group; #endif #ifdef CONFIG_UCLAMP_TASK /* * Clamp values requested for a scheduling entity. * Must be updated with task_rq_lock() held. */ struct uclamp_se uclamp_req[UCLAMP_CNT]; /* * Effective clamp values used for a scheduling entity. * Must be updated with task_rq_lock() held. */ struct uclamp_se uclamp[UCLAMP_CNT]; #endif struct sched_statistics stats; #ifdef CONFIG_PREEMPT_NOTIFIERS /* List of struct preempt_notifier: */ struct hlist_head preempt_notifiers; #endif #ifdef CONFIG_BLK_DEV_IO_TRACE unsigned int btrace_seq; #endif unsigned int policy; int nr_cpus_allowed; const cpumask_t *cpus_ptr; cpumask_t *user_cpus_ptr; cpumask_t cpus_mask; void *migration_pending; #ifdef CONFIG_SMP unsigned short migration_disabled; #endif unsigned short migration_flags; #ifdef CONFIG_PREEMPT_RCU int rcu_read_lock_nesting; union rcu_special rcu_read_unlock_special; struct list_head rcu_node_entry; struct rcu_node *rcu_blocked_node; #endif /* #ifdef CONFIG_PREEMPT_RCU */ #ifdef CONFIG_TASKS_RCU unsigned long rcu_tasks_nvcsw; u8 rcu_tasks_holdout; u8 rcu_tasks_idx; int rcu_tasks_idle_cpu; struct list_head rcu_tasks_holdout_list; #endif /* #ifdef CONFIG_TASKS_RCU */ #ifdef CONFIG_TASKS_TRACE_RCU int trc_reader_nesting; int trc_ipi_to_cpu; union rcu_special trc_reader_special; struct list_head trc_holdout_list; struct list_head trc_blkd_node; int trc_blkd_cpu; #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ struct sched_info sched_info; struct list_head tasks; #ifdef CONFIG_SMP struct plist_node pushable_tasks; struct rb_node pushable_dl_tasks; #endif struct mm_struct *mm; struct mm_struct *active_mm; struct address_space *faults_disabled_mapping; int exit_state; int exit_code; int exit_signal; /* The signal sent when the parent dies: */ int pdeath_signal; /* JOBCTL_*, siglock protected: */ unsigned long jobctl; /* Used for emulating ABI behavior of previous Linux versions: */ unsigned int personality; /* Scheduler bits, serialized by scheduler locks: */ unsigned sched_reset_on_fork:1; unsigned sched_contributes_to_load:1; unsigned sched_migrated:1; /* Force alignment to the next boundary: */ unsigned :0; /* Unserialized, strictly 'current' */ /* * This field must not be in the scheduler word above due to wakelist * queueing no longer being serialized by p->on_cpu. However: * * p->XXX = X; ttwu() * schedule() if (p->on_rq && ..) // false * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true * deactivate_task() ttwu_queue_wakelist()) * p->on_rq = 0; p->sched_remote_wakeup = Y; * * guarantees all stores of 'current' are visible before * ->sched_remote_wakeup gets used, so it can be in this word. */ unsigned sched_remote_wakeup:1; #ifdef CONFIG_RT_MUTEXES unsigned sched_rt_mutex:1; #endif /* Bit to tell LSMs we're in execve(): */ unsigned in_execve:1; unsigned in_iowait:1; #ifndef TIF_RESTORE_SIGMASK unsigned restore_sigmask:1; #endif #ifdef CONFIG_MEMCG unsigned in_user_fault:1; #endif #ifdef CONFIG_LRU_GEN /* whether the LRU algorithm may apply to this access */ unsigned in_lru_fault:1; #endif #ifdef CONFIG_COMPAT_BRK unsigned brk_randomized:1; #endif #ifdef CONFIG_CGROUPS /* disallow userland-initiated cgroup migration */ unsigned no_cgroup_migration:1; /* task is frozen/stopped (used by the cgroup freezer) */ unsigned frozen:1; #endif #ifdef CONFIG_BLK_CGROUP unsigned use_memdelay:1; #endif #ifdef CONFIG_PSI /* Stalled due to lack of memory */ unsigned in_memstall:1; #endif #ifdef CONFIG_PAGE_OWNER /* Used by page_owner=on to detect recursion in page tracking. */ unsigned in_page_owner:1; #endif #ifdef CONFIG_EVENTFD /* Recursion prevention for eventfd_signal() */ unsigned in_eventfd:1; #endif #ifdef CONFIG_IOMMU_SVA unsigned pasid_activated:1; #endif #ifdef CONFIG_CPU_SUP_INTEL unsigned reported_split_lock:1; #endif #ifdef CONFIG_TASK_DELAY_ACCT /* delay due to memory thrashing */ unsigned in_thrashing:1; #endif unsigned long atomic_flags; /* Flags requiring atomic access. */ struct restart_block restart_block; pid_t pid; pid_t tgid; #ifdef CONFIG_STACKPROTECTOR /* Canary value for the -fstack-protector GCC feature: */ unsigned long stack_canary; #endif /* * Pointers to the (original) parent process, youngest child, younger sibling, * older sibling, respectively. (p->father can be replaced with * p->real_parent->pid) */ /* Real parent process: */ struct task_struct __rcu *real_parent; /* Recipient of SIGCHLD, wait4() reports: */ struct task_struct __rcu *parent; /* * Children/sibling form the list of natural children: */ struct list_head children; struct list_head sibling; struct task_struct *group_leader; /* * 'ptraced' is the list of tasks this task is using ptrace() on. * * This includes both natural children and PTRACE_ATTACH targets. * 'ptrace_entry' is this task's link on the p->parent->ptraced list. */ struct list_head ptraced; struct list_head ptrace_entry; /* PID/PID hash table linkage. */ struct pid *thread_pid; struct hlist_node pid_links[PIDTYPE_MAX]; struct list_head thread_node; struct completion *vfork_done; /* CLONE_CHILD_SETTID: */ int __user *set_child_tid; /* CLONE_CHILD_CLEARTID: */ int __user *clear_child_tid; /* PF_KTHREAD | PF_IO_WORKER */ void *worker_private; u64 utime; u64 stime; #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME u64 utimescaled; u64 stimescaled; #endif u64 gtime; struct prev_cputime prev_cputime; #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN struct vtime vtime; #endif #ifdef CONFIG_NO_HZ_FULL atomic_t tick_dep_mask; #endif /* Context switch counts: */ unsigned long nvcsw; unsigned long nivcsw; /* Monotonic time in nsecs: */ u64 start_time; /* Boot based time in nsecs: */ u64 start_boottime; /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ unsigned long min_flt; unsigned long maj_flt; /* Empty if CONFIG_POSIX_CPUTIMERS=n */ struct posix_cputimers posix_cputimers; #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK struct posix_cputimers_work posix_cputimers_work; #endif /* Process credentials: */ /* Tracer's credentials at attach: */ const struct cred __rcu *ptracer_cred; /* Objective and real subjective task credentials (COW): */ const struct cred __rcu *real_cred; /* Effective (overridable) subjective task credentials (COW): */ const struct cred __rcu *cred; #ifdef CONFIG_KEYS /* Cached requested key. */ struct key *cached_requested_key; #endif /* * executable name, excluding path. * * - normally initialized setup_new_exec() * - access it with [gs]et_task_comm() * - lock it with task_lock() */ char comm[TASK_COMM_LEN]; struct nameidata *nameidata; #ifdef CONFIG_SYSVIPC struct sysv_sem sysvsem; struct sysv_shm sysvshm; #endif #ifdef CONFIG_DETECT_HUNG_TASK unsigned long last_switch_count; unsigned long last_switch_time; #endif /* Filesystem information: */ struct fs_struct *fs; /* Open file information: */ struct files_struct *files; #ifdef CONFIG_IO_URING struct io_uring_task *io_uring; #endif /* Namespaces: */ struct nsproxy *nsproxy; /* Signal handlers: */ struct signal_struct *signal; struct sighand_struct __rcu *sighand; sigset_t blocked; sigset_t real_blocked; /* Restored if set_restore_sigmask() was used: */ sigset_t saved_sigmask; struct sigpending pending; unsigned long sas_ss_sp; size_t sas_ss_size; unsigned int sas_ss_flags; struct callback_head *task_works; #ifdef CONFIG_AUDIT #ifdef CONFIG_AUDITSYSCALL struct audit_context *audit_context; #endif kuid_t loginuid; unsigned int sessionid; #endif struct seccomp seccomp; struct syscall_user_dispatch syscall_dispatch; /* Thread group tracking: */ u64 parent_exec_id; u64 self_exec_id; /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ spinlock_t alloc_lock; /* Protection of the PI data structures: */ raw_spinlock_t pi_lock; struct wake_q_node wake_q; #ifdef CONFIG_RT_MUTEXES /* PI waiters blocked on a rt_mutex held by this task: */ struct rb_root_cached pi_waiters; /* Updated under owner's pi_lock and rq lock */ struct task_struct *pi_top_task; /* Deadlock detection and priority inheritance handling: */ struct rt_mutex_waiter *pi_blocked_on; #endif #ifdef CONFIG_DEBUG_MUTEXES /* Mutex deadlock detection: */ struct mutex_waiter *blocked_on; #endif #ifdef CONFIG_DEBUG_ATOMIC_SLEEP int non_block_count; #endif #ifdef CONFIG_TRACE_IRQFLAGS struct irqtrace_events irqtrace; unsigned int hardirq_threaded; u64 hardirq_chain_key; int softirqs_enabled; int softirq_context; int irq_config; #endif #ifdef CONFIG_PREEMPT_RT int softirq_disable_cnt; #endif #ifdef CONFIG_LOCKDEP # define MAX_LOCK_DEPTH 48UL u64 curr_chain_key; int lockdep_depth; unsigned int lockdep_recursion; struct held_lock held_locks[MAX_LOCK_DEPTH]; #endif #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP) unsigned int in_ubsan; #endif /* Journalling filesystem info: */ void *journal_info; /* Stacked block device info: */ struct bio_list *bio_list; /* Stack plugging: */ struct blk_plug *plug; /* VM state: */ struct reclaim_state *reclaim_state; struct io_context *io_context; #ifdef CONFIG_COMPACTION struct capture_control *capture_control; #endif /* Ptrace state: */ unsigned long ptrace_message; kernel_siginfo_t *last_siginfo; struct task_io_accounting ioac; #ifdef CONFIG_PSI /* Pressure stall state */ unsigned int psi_flags; #endif #ifdef CONFIG_TASK_XACCT /* Accumulated RSS usage: */ u64 acct_rss_mem1; /* Accumulated virtual memory usage: */ u64 acct_vm_mem1; /* stime + utime since last update: */ u64 acct_timexpd; #endif #ifdef CONFIG_CPUSETS /* Protected by ->alloc_lock: */ nodemask_t mems_allowed; /* Sequence number to catch updates: */ seqcount_spinlock_t mems_allowed_seq; int cpuset_mem_spread_rotor; int cpuset_slab_spread_rotor; #endif #ifdef CONFIG_CGROUPS /* Control Group info protected by css_set_lock: */ struct css_set __rcu *cgroups; /* cg_list protected by css_set_lock and tsk->alloc_lock: */ struct list_head cg_list; #endif #ifdef CONFIG_X86_CPU_RESCTRL u32 closid; u32 rmid; #endif #ifdef CONFIG_FUTEX struct robust_list_head __user *robust_list; #ifdef CONFIG_COMPAT struct compat_robust_list_head __user *compat_robust_list; #endif struct list_head pi_state_list; struct futex_pi_state *pi_state_cache; struct mutex futex_exit_mutex; unsigned int futex_state; #endif #ifdef CONFIG_PERF_EVENTS struct perf_event_context *perf_event_ctxp; struct mutex perf_event_mutex; struct list_head perf_event_list; #endif #ifdef CONFIG_DEBUG_PREEMPT unsigned long preempt_disable_ip; #endif #ifdef CONFIG_NUMA /* Protected by alloc_lock: */ struct mempolicy *mempolicy; short il_prev; short pref_node_fork; #endif #ifdef CONFIG_NUMA_BALANCING int numa_scan_seq; unsigned int numa_scan_period; unsigned int numa_scan_period_max; int numa_preferred_nid; unsigned long numa_migrate_retry; /* Migration stamp: */ u64 node_stamp; u64 last_task_numa_placement; u64 last_sum_exec_runtime; struct callback_head numa_work; /* * This pointer is only modified for current in syscall and * pagefault context (and for tasks being destroyed), so it can be read * from any of the following contexts: * - RCU read-side critical section * - current->numa_group from everywhere * - task's runqueue locked, task not running */ struct numa_group __rcu *numa_group; /* * numa_faults is an array split into four regions: * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer * in this precise order. * * faults_memory: Exponential decaying average of faults on a per-node * basis. Scheduling placement decisions are made based on these * counts. The values remain static for the duration of a PTE scan. * faults_cpu: Track the nodes the process was running on when a NUMA * hinting fault was incurred. * faults_memory_buffer and faults_cpu_buffer: Record faults per node * during the current scan window. When the scan completes, the counts * in faults_memory and faults_cpu decay and these values are copied. */ unsigned long *numa_faults; unsigned long total_numa_faults; /* * numa_faults_locality tracks if faults recorded during the last * scan window were remote/local or failed to migrate. The task scan * period is adapted based on the locality of the faults with different * weights depending on whether they were shared or private faults */ unsigned long numa_faults_locality[3]; unsigned long numa_pages_migrated; #endif /* CONFIG_NUMA_BALANCING */ #ifdef CONFIG_RSEQ struct rseq __user *rseq; u32 rseq_len; u32 rseq_sig; /* * RmW on rseq_event_mask must be performed atomically * with respect to preemption. */ unsigned long rseq_event_mask; #endif #ifdef CONFIG_SCHED_MM_CID int mm_cid; /* Current cid in mm */ int last_mm_cid; /* Most recent cid in mm */ int migrate_from_cpu; int mm_cid_active; /* Whether cid bitmap is active */ struct callback_head cid_work; #endif struct tlbflush_unmap_batch tlb_ubc; /* Cache last used pipe for splice(): */ struct pipe_inode_info *splice_pipe; struct page_frag task_frag; #ifdef CONFIG_TASK_DELAY_ACCT struct task_delay_info *delays; #endif #ifdef CONFIG_FAULT_INJECTION int make_it_fail; unsigned int fail_nth; #endif /* * When (nr_dirtied >= nr_dirtied_pause), it's time to call * balance_dirty_pages() for a dirty throttling pause: */ int nr_dirtied; int nr_dirtied_pause; /* Start of a write-and-pause period: */ unsigned long dirty_paused_when; #ifdef CONFIG_LATENCYTOP int latency_record_count; struct latency_record latency_record[LT_SAVECOUNT]; #endif /* * Time slack values; these are used to round up poll() and * select() etc timeout values. These are in nanoseconds. */ u64 timer_slack_ns; u64 default_timer_slack_ns; #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) unsigned int kasan_depth; #endif #ifdef CONFIG_KCSAN struct kcsan_ctx kcsan_ctx; #ifdef CONFIG_TRACE_IRQFLAGS struct irqtrace_events kcsan_save_irqtrace; #endif #ifdef CONFIG_KCSAN_WEAK_MEMORY int kcsan_stack_depth; #endif #endif #ifdef CONFIG_KMSAN struct kmsan_ctx kmsan_ctx; #endif #if IS_ENABLED(CONFIG_KUNIT) struct kunit *kunit_test; #endif #ifdef CONFIG_FUNCTION_GRAPH_TRACER /* Index of current stored address in ret_stack: */ int curr_ret_stack; int curr_ret_depth; /* Stack of return addresses for return function tracing: */ struct ftrace_ret_stack *ret_stack; /* Timestamp for last schedule: */ unsigned long long ftrace_timestamp; /* * Number of functions that haven't been traced * because of depth overrun: */ atomic_t trace_overrun; /* Pause tracing: */ atomic_t tracing_graph_pause; #endif #ifdef CONFIG_TRACING /* Bitmask and counter of trace recursion: */ unsigned long trace_recursion; #endif /* CONFIG_TRACING */ #ifdef CONFIG_KCOV /* See kernel/kcov.c for more details. */ /* Coverage collection mode enabled for this task (0 if disabled): */ unsigned int kcov_mode; /* Size of the kcov_area: */ unsigned int kcov_size; /* Buffer for coverage collection: */ void *kcov_area; /* KCOV descriptor wired with this task or NULL: */ struct kcov *kcov; /* KCOV common handle for remote coverage collection: */ u64 kcov_handle; /* KCOV sequence number: */ int kcov_sequence; /* Collect coverage from softirq context: */ unsigned int kcov_softirq; #endif #ifdef CONFIG_MEMCG struct mem_cgroup *memcg_in_oom; gfp_t memcg_oom_gfp_mask; int memcg_oom_order; /* Number of pages to reclaim on returning to userland: */ unsigned int memcg_nr_pages_over_high; /* Used by memcontrol for targeted memcg charge: */ struct mem_cgroup *active_memcg; #endif #ifdef CONFIG_MEMCG_KMEM struct obj_cgroup *objcg; #endif #ifdef CONFIG_BLK_CGROUP struct gendisk *throttle_disk; #endif #ifdef CONFIG_UPROBES struct uprobe_task *utask; #endif #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) unsigned int sequential_io; unsigned int sequential_io_avg; #endif struct kmap_ctrl kmap_ctrl; #ifdef CONFIG_DEBUG_ATOMIC_SLEEP unsigned long task_state_change; # ifdef CONFIG_PREEMPT_RT unsigned long saved_state_change; # endif #endif struct rcu_head rcu; refcount_t rcu_users; int pagefault_disabled; #ifdef CONFIG_MMU struct task_struct *oom_reaper_list; struct timer_list oom_reaper_timer; #endif #ifdef CONFIG_VMAP_STACK struct vm_struct *stack_vm_area; #endif #ifdef CONFIG_THREAD_INFO_IN_TASK /* A live task holds one reference: */ refcount_t stack_refcount; #endif #ifdef CONFIG_LIVEPATCH int patch_state; #endif #ifdef CONFIG_SECURITY /* Used by LSM modules for access restriction: */ void *security; #endif #ifdef CONFIG_BPF_SYSCALL /* Used by BPF task local storage */ struct bpf_local_storage __rcu *bpf_storage; /* Used for BPF run context */ struct bpf_run_ctx *bpf_ctx; #endif #ifdef CONFIG_GCC_PLUGIN_STACKLEAK unsigned long lowest_stack; unsigned long prev_lowest_stack; #endif #ifdef CONFIG_X86_MCE void __user *mce_vaddr; __u64 mce_kflags; u64 mce_addr; __u64 mce_ripv : 1, mce_whole_page : 1, __mce_reserved : 62; struct callback_head mce_kill_me; int mce_count; #endif #ifdef CONFIG_KRETPROBES struct llist_head kretprobe_instances; #endif #ifdef CONFIG_RETHOOK struct llist_head rethooks; #endif #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH /* * If L1D flush is supported on mm context switch * then we use this callback head to queue kill work * to kill tasks that are not running on SMT disabled * cores */ struct callback_head l1d_flush_kill; #endif #ifdef CONFIG_RV /* * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS. * If we find justification for more monitors, we can think * about adding more or developing a dynamic method. So far, * none of these are justified. */ union rv_task_monitor rv[RV_PER_TASK_MONITORS]; #endif #ifdef CONFIG_USER_EVENTS struct user_event_mm *user_event_mm; #endif /* * New fields for task_struct should be added above here, so that * they are included in the randomized portion of task_struct. */ randomized_struct_fields_end /* CPU-specific state of this task: */ struct thread_struct thread; /* * WARNING: on x86, 'thread_struct' contains a variable-sized * structure. It *MUST* be at the end of 'task_struct'. * * Do not put anything below here! */ }; static inline struct pid *task_pid(struct task_struct *task) { return task->thread_pid; } /* * the helpers to get the task's different pids as they are seen * from various namespaces * * task_xid_nr() : global id, i.e. the id seen from the init namespace; * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of * current. * task_xid_nr_ns() : id seen from the ns specified; * * see also pid_nr() etc in include/linux/pid.h */ pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); static inline pid_t task_pid_nr(struct task_struct *tsk) { return tsk->pid; } static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) { return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); } static inline pid_t task_pid_vnr(struct task_struct *tsk) { return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); } static inline pid_t task_tgid_nr(struct task_struct *tsk) { return tsk->tgid; } /** * pid_alive - check that a task structure is not stale * @p: Task structure to be checked. * * Test if a process is not yet dead (at most zombie state) * If pid_alive fails, then pointers within the task structure * can be stale and must not be dereferenced. * * Return: 1 if the process is alive. 0 otherwise. */ static inline int pid_alive(const struct task_struct *p) { return p->thread_pid != NULL; } static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) { return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); } static inline pid_t task_pgrp_vnr(struct task_struct *tsk) { return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); } static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) { return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); } static inline pid_t task_session_vnr(struct task_struct *tsk) { return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); } static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) { return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); } static inline pid_t task_tgid_vnr(struct task_struct *tsk) { return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); } static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) { pid_t pid = 0; rcu_read_lock(); if (pid_alive(tsk)) pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); rcu_read_unlock(); return pid; } static inline pid_t task_ppid_nr(const struct task_struct *tsk) { return task_ppid_nr_ns(tsk, &init_pid_ns); } /* Obsolete, do not use: */ static inline pid_t task_pgrp_nr(struct task_struct *tsk) { return task_pgrp_nr_ns(tsk, &init_pid_ns); } #define TASK_REPORT_IDLE (TASK_REPORT + 1) #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) static inline unsigned int __task_state_index(unsigned int tsk_state, unsigned int tsk_exit_state) { unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT; BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); if ((tsk_state & TASK_IDLE) == TASK_IDLE) state = TASK_REPORT_IDLE; /* * We're lying here, but rather than expose a completely new task state * to userspace, we can make this appear as if the task has gone through * a regular rt_mutex_lock() call. */ if (tsk_state & TASK_RTLOCK_WAIT) state = TASK_UNINTERRUPTIBLE; return fls(state); } static inline unsigned int task_state_index(struct task_struct *tsk) { return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state); } static inline char task_index_to_char(unsigned int state) { static const char state_char[] = "RSDTtXZPI"; BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); return state_char[state]; } static inline char task_state_to_char(struct task_struct *tsk) { return task_index_to_char(task_state_index(tsk)); } /** * is_global_init - check if a task structure is init. Since init * is free to have sub-threads we need to check tgid. * @tsk: Task structure to be checked. * * Check if a task structure is the first user space task the kernel created. * * Return: 1 if the task structure is init. 0 otherwise. */ static inline int is_global_init(struct task_struct *tsk) { return task_tgid_nr(tsk) == 1; } extern struct pid *cad_pid; /* * Per process flags */ #define PF_VCPU 0x00000001 /* I'm a virtual CPU */ #define PF_IDLE 0x00000002 /* I am an IDLE thread */ #define PF_EXITING 0x00000004 /* Getting shut down */ #define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */ #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */ #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ #define PF_DUMPCORE 0x00000200 /* Dumped core */ #define PF_SIGNALED 0x00000400 /* Killed by a signal */ #define PF_MEMALLOC 0x00000800 /* Allocating memory */ #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ #define PF_USER_WORKER 0x00004000 /* Kernel thread cloned from userspace thread */ #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ #define PF__HOLE__00010000 0x00010000 #define PF_KSWAPD 0x00020000 /* I am kswapd */ #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to, * I am cleaning dirty pages from some other bdi. */ #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ #define PF__HOLE__00800000 0x00800000 #define PF__HOLE__01000000 0x01000000 #define PF__HOLE__02000000 0x02000000 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */ #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ #define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */ #define PF__HOLE__20000000 0x20000000 #define PF__HOLE__40000000 0x40000000 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ /* * Only the _current_ task can read/write to tsk->flags, but other * tasks can access tsk->flags in readonly mode for example * with tsk_used_math (like during threaded core dumping). * There is however an exception to this rule during ptrace * or during fork: the ptracer task is allowed to write to the * child->flags of its traced child (same goes for fork, the parent * can write to the child->flags), because we're guaranteed the * child is not running and in turn not changing child->flags * at the same time the parent does it. */ #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) #define clear_used_math() clear_stopped_child_used_math(current) #define set_used_math() set_stopped_child_used_math(current) #define conditional_stopped_child_used_math(condition, child) \ do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) #define copy_to_stopped_child_used_math(child) \ do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) #define used_math() tsk_used_math(current) static __always_inline bool is_percpu_thread(void) { #ifdef CONFIG_SMP return (current->flags & PF_NO_SETAFFINITY) && (current->nr_cpus_allowed == 1); #else return true; #endif } /* Per-process atomic flags. */ #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ #define TASK_PFA_TEST(name, func) \ static inline bool task_##func(struct task_struct *p) \ { return test_bit(PFA_##name, &p->atomic_flags); } #define TASK_PFA_SET(name, func) \ static inline void task_set_##func(struct task_struct *p) \ { set_bit(PFA_##name, &p->atomic_flags); } #define TASK_PFA_CLEAR(name, func) \ static inline void task_clear_##func(struct task_struct *p) \ { clear_bit(PFA_##name, &p->atomic_flags); } TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) TASK_PFA_TEST(SPREAD_PAGE, spread_page) TASK_PFA_SET(SPREAD_PAGE, spread_page) TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) TASK_PFA_TEST(SPREAD_SLAB, spread_slab) TASK_PFA_SET(SPREAD_SLAB, spread_slab) TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) static inline void current_restore_flags(unsigned long orig_flags, unsigned long flags) { current->flags &= ~flags; current->flags |= orig_flags & flags; } extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); extern int task_can_attach(struct task_struct *p); extern int dl_bw_alloc(int cpu, u64 dl_bw); extern void dl_bw_free(int cpu, u64 dl_bw); #ifdef CONFIG_SMP /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */ extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); /** * set_cpus_allowed_ptr - set CPU affinity mask of a task * @p: the task * @new_mask: CPU affinity mask * * Return: zero if successful, or a negative error code */ extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node); extern void release_user_cpus_ptr(struct task_struct *p); extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask); extern void force_compatible_cpus_allowed_ptr(struct task_struct *p); extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p); #else static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) { } static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) { if (!cpumask_test_cpu(0, new_mask)) return -EINVAL; return 0; } static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node) { if (src->user_cpus_ptr) return -EINVAL; return 0; } static inline void release_user_cpus_ptr(struct task_struct *p) { WARN_ON(p->user_cpus_ptr); } static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) { return 0; } #endif extern int yield_to(struct task_struct *p, bool preempt); extern void set_user_nice(struct task_struct *p, long nice); extern int task_prio(const struct task_struct *p); /** * task_nice - return the nice value of a given task. * @p: the task in question. * * Return: The nice value [ -20 ... 0 ... 19 ]. */ static inline int task_nice(const struct task_struct *p) { return PRIO_TO_NICE((p)->static_prio); } extern int can_nice(const struct task_struct *p, const int nice); extern int task_curr(const struct task_struct *p); extern int idle_cpu(int cpu); extern int available_idle_cpu(int cpu); extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); extern void sched_set_fifo(struct task_struct *p); extern void sched_set_fifo_low(struct task_struct *p); extern void sched_set_normal(struct task_struct *p, int nice); extern int sched_setattr(struct task_struct *, const struct sched_attr *); extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); extern struct task_struct *idle_task(int cpu); /** * is_idle_task - is the specified task an idle task? * @p: the task in question. * * Return: 1 if @p is an idle task. 0 otherwise. */ static __always_inline bool is_idle_task(const struct task_struct *p) { return !!(p->flags & PF_IDLE); } extern struct task_struct *curr_task(int cpu); extern void ia64_set_curr_task(int cpu, struct task_struct *p); void yield(void); union thread_union { #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK struct task_struct task; #endif #ifndef CONFIG_THREAD_INFO_IN_TASK struct thread_info thread_info; #endif unsigned long stack[THREAD_SIZE/sizeof(long)]; }; #ifndef CONFIG_THREAD_INFO_IN_TASK extern struct thread_info init_thread_info; #endif extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; #ifdef CONFIG_THREAD_INFO_IN_TASK # define task_thread_info(task) (&(task)->thread_info) #elif !defined(__HAVE_THREAD_FUNCTIONS) # define task_thread_info(task) ((struct thread_info *)(task)->stack) #endif /* * find a task by one of its numerical ids * * find_task_by_pid_ns(): * finds a task by its pid in the specified namespace * find_task_by_vpid(): * finds a task by its virtual pid * * see also find_vpid() etc in include/linux/pid.h */ extern struct task_struct *find_task_by_vpid(pid_t nr); extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); /* * find a task by its virtual pid and get the task struct */ extern struct task_struct *find_get_task_by_vpid(pid_t nr); extern int wake_up_state(struct task_struct *tsk, unsigned int state); extern int wake_up_process(struct task_struct *tsk); extern void wake_up_new_task(struct task_struct *tsk); #ifdef CONFIG_SMP extern void kick_process(struct task_struct *tsk); #else static inline void kick_process(struct task_struct *tsk) { } #endif extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); static inline void set_task_comm(struct task_struct *tsk, const char *from) { __set_task_comm(tsk, from, false); } extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); #define get_task_comm(buf, tsk) ({ \ BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ __get_task_comm(buf, sizeof(buf), tsk); \ }) #ifdef CONFIG_SMP static __always_inline void scheduler_ipi(void) { /* * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting * TIF_NEED_RESCHED remotely (for the first time) will also send * this IPI. */ preempt_fold_need_resched(); } #else static inline void scheduler_ipi(void) { } #endif extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state); /* * Set thread flags in other task's structures. * See asm/thread_info.h for TIF_xxxx flags available: */ static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) { set_ti_thread_flag(task_thread_info(tsk), flag); } static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) { clear_ti_thread_flag(task_thread_info(tsk), flag); } static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, bool value) { update_ti_thread_flag(task_thread_info(tsk), flag, value); } static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) { return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); } static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) { return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); } static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) { return test_ti_thread_flag(task_thread_info(tsk), flag); } static inline void set_tsk_need_resched(struct task_struct *tsk) { set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); } static inline void clear_tsk_need_resched(struct task_struct *tsk) { clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); } static inline int test_tsk_need_resched(struct task_struct *tsk) { return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); } /* * cond_resched() and cond_resched_lock(): latency reduction via * explicit rescheduling in places that are safe. The return * value indicates whether a reschedule was done in fact. * cond_resched_lock() will drop the spinlock before scheduling, */ #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) extern int __cond_resched(void); #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) void sched_dynamic_klp_enable(void); void sched_dynamic_klp_disable(void); DECLARE_STATIC_CALL(cond_resched, __cond_resched); static __always_inline int _cond_resched(void) { return static_call_mod(cond_resched)(); } #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) extern int dynamic_cond_resched(void); static __always_inline int _cond_resched(void) { return dynamic_cond_resched(); } #else /* !CONFIG_PREEMPTION */ static inline int _cond_resched(void) { klp_sched_try_switch(); return __cond_resched(); } #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */ static inline int _cond_resched(void) { klp_sched_try_switch(); return 0; } #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */ #define cond_resched() ({ \ __might_resched(__FILE__, __LINE__, 0); \ _cond_resched(); \ }) extern int __cond_resched_lock(spinlock_t *lock); extern int __cond_resched_rwlock_read(rwlock_t *lock); extern int __cond_resched_rwlock_write(rwlock_t *lock); #define MIGHT_RESCHED_RCU_SHIFT 8 #define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1) #ifndef CONFIG_PREEMPT_RT /* * Non RT kernels have an elevated preempt count due to the held lock, * but are not allowed to be inside a RCU read side critical section */ # define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET #else /* * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in * cond_resched*lock() has to take that into account because it checks for * preempt_count() and rcu_preempt_depth(). */ # define PREEMPT_LOCK_RESCHED_OFFSETS \ (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT)) #endif #define cond_resched_lock(lock) ({ \ __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \ __cond_resched_lock(lock); \ }) #define cond_resched_rwlock_read(lock) ({ \ __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \ __cond_resched_rwlock_read(lock); \ }) #define cond_resched_rwlock_write(lock) ({ \ __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \ __cond_resched_rwlock_write(lock); \ }) static inline void cond_resched_rcu(void) { #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) rcu_read_unlock(); cond_resched(); rcu_read_lock(); #endif } #ifdef CONFIG_PREEMPT_DYNAMIC extern bool preempt_model_none(void); extern bool preempt_model_voluntary(void); extern bool preempt_model_full(void); #else static inline bool preempt_model_none(void) { return IS_ENABLED(CONFIG_PREEMPT_NONE); } static inline bool preempt_model_voluntary(void) { return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY); } static inline bool preempt_model_full(void) { return IS_ENABLED(CONFIG_PREEMPT); } #endif static inline bool preempt_model_rt(void) { return IS_ENABLED(CONFIG_PREEMPT_RT); } /* * Does the preemption model allow non-cooperative preemption? * * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the * PREEMPT_NONE model. */ static inline bool preempt_model_preemptible(void) { return preempt_model_full() || preempt_model_rt(); } /* * Does a critical section need to be broken due to another * task waiting?: (technically does not depend on CONFIG_PREEMPTION, * but a general need for low latency) */ static inline int spin_needbreak(spinlock_t *lock) { #ifdef CONFIG_PREEMPTION return spin_is_contended(lock); #else return 0; #endif } /* * Check if a rwlock is contended. * Returns non-zero if there is another task waiting on the rwlock. * Returns zero if the lock is not contended or the system / underlying * rwlock implementation does not support contention detection. * Technically does not depend on CONFIG_PREEMPTION, but a general need * for low latency. */ static inline int rwlock_needbreak(rwlock_t *lock) { #ifdef CONFIG_PREEMPTION return rwlock_is_contended(lock); #else return 0; #endif } static __always_inline bool need_resched(void) { return unlikely(tif_need_resched()); } /* * Wrappers for p->thread_info->cpu access. No-op on UP. */ #ifdef CONFIG_SMP static inline unsigned int task_cpu(const struct task_struct *p) { return READ_ONCE(task_thread_info(p)->cpu); } extern void set_task_cpu(struct task_struct *p, unsigned int cpu); #else static inline unsigned int task_cpu(const struct task_struct *p) { return 0; } static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) { } #endif /* CONFIG_SMP */ extern bool sched_task_on_rq(struct task_struct *p); extern unsigned long get_wchan(struct task_struct *p); extern struct task_struct *cpu_curr_snapshot(int cpu); /* * In order to reduce various lock holder preemption latencies provide an * interface to see if a vCPU is currently running or not. * * This allows us to terminate optimistic spin loops and block, analogous to * the native optimistic spin heuristic of testing if the lock owner task is * running or not. */ #ifndef vcpu_is_preempted static inline bool vcpu_is_preempted(int cpu) { return false; } #endif extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); extern long sched_getaffinity(pid_t pid, struct cpumask *mask); #ifndef TASK_SIZE_OF #define TASK_SIZE_OF(tsk) TASK_SIZE #endif #ifdef CONFIG_SMP static inline bool owner_on_cpu(struct task_struct *owner) { /* * As lock holder preemption issue, we both skip spinning if * task is not on cpu or its cpu is preempted */ return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner)); } /* Returns effective CPU energy utilization, as seen by the scheduler */ unsigned long sched_cpu_util(int cpu); #endif /* CONFIG_SMP */ #ifdef CONFIG_RSEQ /* * Map the event mask on the user-space ABI enum rseq_cs_flags * for direct mask checks. */ enum rseq_event_mask_bits { RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, }; enum rseq_event_mask { RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), }; static inline void rseq_set_notify_resume(struct task_struct *t) { if (t->rseq) set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); } void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); static inline void rseq_handle_notify_resume(struct ksignal *ksig, struct pt_regs *regs) { if (current->rseq) __rseq_handle_notify_resume(ksig, regs); } static inline void rseq_signal_deliver(struct ksignal *ksig, struct pt_regs *regs) { preempt_disable(); __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask); preempt_enable(); rseq_handle_notify_resume(ksig, regs); } /* rseq_preempt() requires preemption to be disabled. */ static inline void rseq_preempt(struct task_struct *t) { __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); rseq_set_notify_resume(t); } /* rseq_migrate() requires preemption to be disabled. */ static inline void rseq_migrate(struct task_struct *t) { __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); rseq_set_notify_resume(t); } /* * If parent process has a registered restartable sequences area, the * child inherits. Unregister rseq for a clone with CLONE_VM set. */ static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) { if (clone_flags & CLONE_VM) { t->rseq = NULL; t->rseq_len = 0; t->rseq_sig = 0; t->rseq_event_mask = 0; } else { t->rseq = current->rseq; t->rseq_len = current->rseq_len; t->rseq_sig = current->rseq_sig; t->rseq_event_mask = current->rseq_event_mask; } } static inline void rseq_execve(struct task_struct *t) { t->rseq = NULL; t->rseq_len = 0; t->rseq_sig = 0; t->rseq_event_mask = 0; } #else static inline void rseq_set_notify_resume(struct task_struct *t) { } static inline void rseq_handle_notify_resume(struct ksignal *ksig, struct pt_regs *regs) { } static inline void rseq_signal_deliver(struct ksignal *ksig, struct pt_regs *regs) { } static inline void rseq_preempt(struct task_struct *t) { } static inline void rseq_migrate(struct task_struct *t) { } static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) { } static inline void rseq_execve(struct task_struct *t) { } #endif #ifdef CONFIG_DEBUG_RSEQ void rseq_syscall(struct pt_regs *regs); #else static inline void rseq_syscall(struct pt_regs *regs) { } #endif #ifdef CONFIG_SCHED_CORE extern void sched_core_free(struct task_struct *tsk); extern void sched_core_fork(struct task_struct *p); extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type, unsigned long uaddr); extern int sched_core_idle_cpu(int cpu); #else static inline void sched_core_free(struct task_struct *tsk) { } static inline void sched_core_fork(struct task_struct *p) { } static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); } #endif extern void sched_set_stop_task(int cpu, struct task_struct *stop); #endif
27 27 27 27 27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 /* SPDX-License-Identifier: GPL-2.0 */ /* Copyright (c) 2023 Isovalent */ #ifndef __NET_TCX_H #define __NET_TCX_H #include <linux/bpf.h> #include <linux/bpf_mprog.h> #include <net/sch_generic.h> struct mini_Qdisc; struct tcx_entry { struct mini_Qdisc __rcu *miniq; struct bpf_mprog_bundle bundle; bool miniq_active; struct rcu_head rcu; }; struct tcx_link { struct bpf_link link; struct net_device *dev; u32 location; }; static inline void tcx_set_ingress(struct sk_buff *skb, bool ingress) { #ifdef CONFIG_NET_XGRESS skb->tc_at_ingress = ingress; #endif } #ifdef CONFIG_NET_XGRESS static inline struct tcx_entry *tcx_entry(struct bpf_mprog_entry *entry) { struct bpf_mprog_bundle *bundle = entry->parent; return container_of(bundle, struct tcx_entry, bundle); } static inline struct tcx_link *tcx_link(const struct bpf_link *link) { return container_of(link, struct tcx_link, link); } void tcx_inc(void); void tcx_dec(void); static inline void tcx_entry_sync(void) { /* bpf_mprog_entry got a/b swapped, therefore ensure that * there are no inflight users on the old one anymore. */ synchronize_rcu(); } static inline void tcx_entry_update(struct net_device *dev, struct bpf_mprog_entry *entry, bool ingress) { ASSERT_RTNL(); if (ingress) rcu_assign_pointer(dev->tcx_ingress, entry); else rcu_assign_pointer(dev->tcx_egress, entry); } static inline struct bpf_mprog_entry * tcx_entry_fetch(struct net_device *dev, bool ingress) { ASSERT_RTNL(); if (ingress) return rcu_dereference_rtnl(dev->tcx_ingress); else return rcu_dereference_rtnl(dev->tcx_egress); } static inline struct bpf_mprog_entry *tcx_entry_create(void) { struct tcx_entry *tcx = kzalloc(sizeof(*tcx), GFP_KERNEL); if (tcx) { bpf_mprog_bundle_init(&tcx->bundle); return &tcx->bundle.a; } return NULL; } static inline void tcx_entry_free(struct bpf_mprog_entry *entry) { kfree_rcu(tcx_entry(entry), rcu); } static inline struct bpf_mprog_entry * tcx_entry_fetch_or_create(struct net_device *dev, bool ingress, bool *created) { struct bpf_mprog_entry *entry = tcx_entry_fetch(dev, ingress); *created = false; if (!entry) { entry = tcx_entry_create(); if (!entry) return NULL; *created = true; } return entry; } static inline void tcx_skeys_inc(bool ingress) { tcx_inc(); if (ingress) net_inc_ingress_queue(); else net_inc_egress_queue(); } static inline void tcx_skeys_dec(bool ingress) { if (ingress) net_dec_ingress_queue(); else net_dec_egress_queue(); tcx_dec(); } static inline void tcx_miniq_set_active(struct bpf_mprog_entry *entry, const bool active) { ASSERT_RTNL(); tcx_entry(entry)->miniq_active = active; } static inline bool tcx_entry_is_active(struct bpf_mprog_entry *entry) { ASSERT_RTNL(); return bpf_mprog_total(entry) || tcx_entry(entry)->miniq_active; } static inline enum tcx_action_base tcx_action_code(struct sk_buff *skb, int code) { switch (code) { case TCX_PASS: skb->tc_index = qdisc_skb_cb(skb)->tc_classid; fallthrough; case TCX_DROP: case TCX_REDIRECT: return code; case TCX_NEXT: default: return TCX_NEXT; } } #endif /* CONFIG_NET_XGRESS */ #if defined(CONFIG_NET_XGRESS) && defined(CONFIG_BPF_SYSCALL) int tcx_prog_attach(const union bpf_attr *attr, struct bpf_prog *prog); int tcx_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); int tcx_prog_detach(const union bpf_attr *attr, struct bpf_prog *prog); void tcx_uninstall(struct net_device *dev, bool ingress); int tcx_prog_query(const union bpf_attr *attr, union bpf_attr __user *uattr); static inline void dev_tcx_uninstall(struct net_device *dev) { ASSERT_RTNL(); tcx_uninstall(dev, true); tcx_uninstall(dev, false); } #else static inline int tcx_prog_attach(const union bpf_attr *attr, struct bpf_prog *prog) { return -EINVAL; } static inline int tcx_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) { return -EINVAL; } static inline int tcx_prog_detach(const union bpf_attr *attr, struct bpf_prog *prog) { return -EINVAL; } static inline int tcx_prog_query(const union bpf_attr *attr, union bpf_attr __user *uattr) { return -EINVAL; } static inline void dev_tcx_uninstall(struct net_device *dev) { } #endif /* CONFIG_NET_XGRESS && CONFIG_BPF_SYSCALL */ #endif /* __NET_TCX_H */
24 24 12 27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 // SPDX-License-Identifier: GPL-2.0-or-later /* * Neighbour Discovery for IPv6 * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * Mike Shaver <shaver@ingenia.com> */ /* * Changes: * * Alexey I. Froloff : RFC6106 (DNSSL) support * Pierre Ynard : export userland ND options * through netlink (RDNSS support) * Lars Fenneberg : fixed MTU setting on receipt * of an RA. * Janos Farkas : kmalloc failure checks * Alexey Kuznetsov : state machine reworked * and moved to net/core. * Pekka Savola : RFC2461 validation * YOSHIFUJI Hideaki @USAGI : Verify ND options properly */ #define pr_fmt(fmt) "ICMPv6: " fmt #include <linux/module.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/sched.h> #include <linux/net.h> #include <linux/in6.h> #include <linux/route.h> #include <linux/init.h> #include <linux/rcupdate.h> #include <linux/slab.h> #ifdef CONFIG_SYSCTL #include <linux/sysctl.h> #endif #include <linux/if_addr.h> #include <linux/if_ether.h> #include <linux/if_arp.h> #include <linux/ipv6.h> #include <linux/icmpv6.h> #include <linux/jhash.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ipv6.h> #include <net/protocol.h> #include <net/ndisc.h> #include <net/ip6_route.h> #include <net/addrconf.h> #include <net/icmp.h> #include <net/netlink.h> #include <linux/rtnetlink.h> #include <net/flow.h> #include <net/ip6_checksum.h> #include <net/inet_common.h> #include <linux/proc_fs.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv6.h> static u32 ndisc_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd); static bool ndisc_key_eq(const struct neighbour *neigh, const void *pkey); static bool ndisc_allow_add(const struct net_device *dev, struct netlink_ext_ack *extack); static int ndisc_constructor(struct neighbour *neigh); static void ndisc_solicit(struct neighbour *neigh, struct sk_buff *skb); static void ndisc_error_report(struct neighbour *neigh, struct sk_buff *skb); static int pndisc_constructor(struct pneigh_entry *n); static void pndisc_destructor(struct pneigh_entry *n); static void pndisc_redo(struct sk_buff *skb); static int ndisc_is_multicast(const void *pkey); static const struct neigh_ops ndisc_generic_ops = { .family = AF_INET6, .solicit = ndisc_solicit, .error_report = ndisc_error_report, .output = neigh_resolve_output, .connected_output = neigh_connected_output, }; static const struct neigh_ops ndisc_hh_ops = { .family = AF_INET6, .solicit = ndisc_solicit, .error_report = ndisc_error_report, .output = neigh_resolve_output, .connected_output = neigh_resolve_output, }; static const struct neigh_ops ndisc_direct_ops = { .family = AF_INET6, .output = neigh_direct_output, .connected_output = neigh_direct_output, }; struct neigh_table nd_tbl = { .family = AF_INET6, .key_len = sizeof(struct in6_addr), .protocol = cpu_to_be16(ETH_P_IPV6), .hash = ndisc_hash, .key_eq = ndisc_key_eq, .constructor = ndisc_constructor, .pconstructor = pndisc_constructor, .pdestructor = pndisc_destructor, .proxy_redo = pndisc_redo, .is_multicast = ndisc_is_multicast, .allow_add = ndisc_allow_add, .id = "ndisc_cache", .parms = { .tbl = &nd_tbl, .reachable_time = ND_REACHABLE_TIME, .data = { [NEIGH_VAR_MCAST_PROBES] = 3, [NEIGH_VAR_UCAST_PROBES] = 3, [NEIGH_VAR_RETRANS_TIME] = ND_RETRANS_TIMER, [NEIGH_VAR_BASE_REACHABLE_TIME] = ND_REACHABLE_TIME, [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ, [NEIGH_VAR_INTERVAL_PROBE_TIME_MS] = 5 * HZ, [NEIGH_VAR_GC_STALETIME] = 60 * HZ, [NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX, [NEIGH_VAR_PROXY_QLEN] = 64, [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ, [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10, }, }, .gc_interval = 30 * HZ, .gc_thresh1 = 128, .gc_thresh2 = 512, .gc_thresh3 = 1024, }; EXPORT_SYMBOL_GPL(nd_tbl); void __ndisc_fill_addr_option(struct sk_buff *skb, int type, const void *data, int data_len, int pad) { int space = __ndisc_opt_addr_space(data_len, pad); u8 *opt = skb_put(skb, space); opt[0] = type; opt[1] = space>>3; memset(opt + 2, 0, pad); opt += pad; space -= pad; memcpy(opt+2, data, data_len); data_len += 2; opt += data_len; space -= data_len; if (space > 0) memset(opt, 0, space); } EXPORT_SYMBOL_GPL(__ndisc_fill_addr_option); static inline void ndisc_fill_addr_option(struct sk_buff *skb, int type, const void *data, u8 icmp6_type) { __ndisc_fill_addr_option(skb, type, data, skb->dev->addr_len, ndisc_addr_option_pad(skb->dev->type)); ndisc_ops_fill_addr_option(skb->dev, skb, icmp6_type); } static inline void ndisc_fill_redirect_addr_option(struct sk_buff *skb, void *ha, const u8 *ops_data) { ndisc_fill_addr_option(skb, ND_OPT_TARGET_LL_ADDR, ha, NDISC_REDIRECT); ndisc_ops_fill_redirect_addr_option(skb->dev, skb, ops_data); } static struct nd_opt_hdr *ndisc_next_option(struct nd_opt_hdr *cur, struct nd_opt_hdr *end) { int type; if (!cur || !end || cur >= end) return NULL; type = cur->nd_opt_type; do { cur = ((void *)cur) + (cur->nd_opt_len << 3); } while (cur < end && cur->nd_opt_type != type); return cur <= end && cur->nd_opt_type == type ? cur : NULL; } static inline int ndisc_is_useropt(const struct net_device *dev, struct nd_opt_hdr *opt) { return opt->nd_opt_type == ND_OPT_PREFIX_INFO || opt->nd_opt_type == ND_OPT_RDNSS || opt->nd_opt_type == ND_OPT_DNSSL || opt->nd_opt_type == ND_OPT_CAPTIVE_PORTAL || opt->nd_opt_type == ND_OPT_PREF64 || ndisc_ops_is_useropt(dev, opt->nd_opt_type); } static struct nd_opt_hdr *ndisc_next_useropt(const struct net_device *dev, struct nd_opt_hdr *cur, struct nd_opt_hdr *end) { if (!cur || !end || cur >= end) return NULL; do { cur = ((void *)cur) + (cur->nd_opt_len << 3); } while (cur < end && !ndisc_is_useropt(dev, cur)); return cur <= end && ndisc_is_useropt(dev, cur) ? cur : NULL; } struct ndisc_options *ndisc_parse_options(const struct net_device *dev, u8 *opt, int opt_len, struct ndisc_options *ndopts) { struct nd_opt_hdr *nd_opt = (struct nd_opt_hdr *)opt; if (!nd_opt || opt_len < 0 || !ndopts) return NULL; memset(ndopts, 0, sizeof(*ndopts)); while (opt_len) { int l; if (opt_len < sizeof(struct nd_opt_hdr)) return NULL; l = nd_opt->nd_opt_len << 3; if (opt_len < l || l == 0) return NULL; if (ndisc_ops_parse_options(dev, nd_opt, ndopts)) goto next_opt; switch (nd_opt->nd_opt_type) { case ND_OPT_SOURCE_LL_ADDR: case ND_OPT_TARGET_LL_ADDR: case ND_OPT_MTU: case ND_OPT_NONCE: case ND_OPT_REDIRECT_HDR: if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { ND_PRINTK(2, warn, "%s: duplicated ND6 option found: type=%d\n", __func__, nd_opt->nd_opt_type); } else { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } break; case ND_OPT_PREFIX_INFO: ndopts->nd_opts_pi_end = nd_opt; if (!ndopts->nd_opt_array[nd_opt->nd_opt_type]) ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; break; #ifdef CONFIG_IPV6_ROUTE_INFO case ND_OPT_ROUTE_INFO: ndopts->nd_opts_ri_end = nd_opt; if (!ndopts->nd_opts_ri) ndopts->nd_opts_ri = nd_opt; break; #endif default: if (ndisc_is_useropt(dev, nd_opt)) { ndopts->nd_useropts_end = nd_opt; if (!ndopts->nd_useropts) ndopts->nd_useropts = nd_opt; } else { /* * Unknown options must be silently ignored, * to accommodate future extension to the * protocol. */ ND_PRINTK(2, notice, "%s: ignored unsupported option; type=%d, len=%d\n", __func__, nd_opt->nd_opt_type, nd_opt->nd_opt_len); } } next_opt: opt_len -= l; nd_opt = ((void *)nd_opt) + l; } return ndopts; } int ndisc_mc_map(const struct in6_addr *addr, char *buf, struct net_device *dev, int dir) { switch (dev->type) { case ARPHRD_ETHER: case ARPHRD_IEEE802: /* Not sure. Check it later. --ANK */ case ARPHRD_FDDI: ipv6_eth_mc_map(addr, buf); return 0; case ARPHRD_ARCNET: ipv6_arcnet_mc_map(addr, buf); return 0; case ARPHRD_INFINIBAND: ipv6_ib_mc_map(addr, dev->broadcast, buf); return 0; case ARPHRD_IPGRE: return ipv6_ipgre_mc_map(addr, dev->broadcast, buf); default: if (dir) { memcpy(buf, dev->broadcast, dev->addr_len); return 0; } } return -EINVAL; } EXPORT_SYMBOL(ndisc_mc_map); static u32 ndisc_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd) { return ndisc_hashfn(pkey, dev, hash_rnd); } static bool ndisc_key_eq(const struct neighbour *n, const void *pkey) { return neigh_key_eq128(n, pkey); } static int ndisc_constructor(struct neighbour *neigh) { struct in6_addr *addr = (struct in6_addr *)&neigh->primary_key; struct net_device *dev = neigh->dev; struct inet6_dev *in6_dev; struct neigh_parms *parms; bool is_multicast = ipv6_addr_is_multicast(addr); in6_dev = in6_dev_get(dev); if (!in6_dev) { return -EINVAL; } parms = in6_dev->nd_parms; __neigh_parms_put(neigh->parms); neigh->parms = neigh_parms_clone(parms); neigh->type = is_multicast ? RTN_MULTICAST : RTN_UNICAST; if (!dev->header_ops) { neigh->nud_state = NUD_NOARP; neigh->ops = &ndisc_direct_ops; neigh->output = neigh_direct_output; } else { if (is_multicast) { neigh->nud_state = NUD_NOARP; ndisc_mc_map(addr, neigh->ha, dev, 1); } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) { neigh->nud_state = NUD_NOARP; memcpy(neigh->ha, dev->dev_addr, dev->addr_len); if (dev->flags&IFF_LOOPBACK) neigh->type = RTN_LOCAL; } else if (dev->flags&IFF_POINTOPOINT) { neigh->nud_state = NUD_NOARP; memcpy(neigh->ha, dev->broadcast, dev->addr_len); } if (dev->header_ops->cache) neigh->ops = &ndisc_hh_ops; else neigh->ops = &ndisc_generic_ops; if (neigh->nud_state&NUD_VALID) neigh->output = neigh->ops->connected_output; else neigh->output = neigh->ops->output; } in6_dev_put(in6_dev); return 0; } static int pndisc_constructor(struct pneigh_entry *n) { struct in6_addr *addr = (struct in6_addr *)&n->key; struct in6_addr maddr; struct net_device *dev = n->dev; if (!dev || !__in6_dev_get(dev)) return -EINVAL; addrconf_addr_solict_mult(addr, &maddr); ipv6_dev_mc_inc(dev, &maddr); return 0; } static void pndisc_destructor(struct pneigh_entry *n) { struct in6_addr *addr = (struct in6_addr *)&n->key; struct in6_addr maddr; struct net_device *dev = n->dev; if (!dev || !__in6_dev_get(dev)) return; addrconf_addr_solict_mult(addr, &maddr); ipv6_dev_mc_dec(dev, &maddr); } /* called with rtnl held */ static bool ndisc_allow_add(const struct net_device *dev, struct netlink_ext_ack *extack) { struct inet6_dev *idev = __in6_dev_get(dev); if (!idev || idev->cnf.disable_ipv6) { NL_SET_ERR_MSG(extack, "IPv6 is disabled on this device"); return false; } return true; } static struct sk_buff *ndisc_alloc_skb(struct net_device *dev, int len) { int hlen = LL_RESERVED_SPACE(dev); int tlen = dev->needed_tailroom; struct sock *sk = dev_net(dev)->ipv6.ndisc_sk; struct sk_buff *skb; skb = alloc_skb(hlen + sizeof(struct ipv6hdr) + len + tlen, GFP_ATOMIC); if (!skb) { ND_PRINTK(0, err, "ndisc: %s failed to allocate an skb\n", __func__); return NULL; } skb->protocol = htons(ETH_P_IPV6); skb->dev = dev; skb_reserve(skb, hlen + sizeof(struct ipv6hdr)); skb_reset_transport_header(skb); /* Manually assign socket ownership as we avoid calling * sock_alloc_send_pskb() to bypass wmem buffer limits */ skb_set_owner_w(skb, sk); return skb; } static void ip6_nd_hdr(struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr, int hop_limit, int len) { struct ipv6hdr *hdr; struct inet6_dev *idev; unsigned tclass; rcu_read_lock(); idev = __in6_dev_get(skb->dev); tclass = idev ? idev->cnf.ndisc_tclass : 0; rcu_read_unlock(); skb_push(skb, sizeof(*hdr)); skb_reset_network_header(skb); hdr = ipv6_hdr(skb); ip6_flow_hdr(hdr, tclass, 0); hdr->payload_len = htons(len); hdr->nexthdr = IPPROTO_ICMPV6; hdr->hop_limit = hop_limit; hdr->saddr = *saddr; hdr->daddr = *daddr; } void ndisc_send_skb(struct sk_buff *skb, const struct in6_addr *daddr, const struct in6_addr *saddr) { struct dst_entry *dst = skb_dst(skb); struct net *net = dev_net(skb->dev); struct sock *sk = net->ipv6.ndisc_sk; struct inet6_dev *idev; int err; struct icmp6hdr *icmp6h = icmp6_hdr(skb); u8 type; type = icmp6h->icmp6_type; if (!dst) { struct flowi6 fl6; int oif = skb->dev->ifindex; icmpv6_flow_init(sk, &fl6, type, saddr, daddr, oif); dst = icmp6_dst_alloc(skb->dev, &fl6); if (IS_ERR(dst)) { kfree_skb(skb); return; } skb_dst_set(skb, dst); } icmp6h->icmp6_cksum = csum_ipv6_magic(saddr, daddr, skb->len, IPPROTO_ICMPV6, csum_partial(icmp6h, skb->len, 0)); ip6_nd_hdr(skb, saddr, daddr, READ_ONCE(inet6_sk(sk)->hop_limit), skb->len); rcu_read_lock(); idev = __in6_dev_get(dst->dev); IP6_INC_STATS(net, idev, IPSTATS_MIB_OUTREQUESTS); err = NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, skb, NULL, dst->dev, dst_output); if (!err) { ICMP6MSGOUT_INC_STATS(net, idev, type); ICMP6_INC_STATS(net, idev, ICMP6_MIB_OUTMSGS); } rcu_read_unlock(); } EXPORT_SYMBOL(ndisc_send_skb); void ndisc_send_na(struct net_device *dev, const struct in6_addr *daddr, const struct in6_addr *solicited_addr, bool router, bool solicited, bool override, bool inc_opt) { struct sk_buff *skb; struct in6_addr tmpaddr; struct inet6_ifaddr *ifp; const struct in6_addr *src_addr; struct nd_msg *msg; int optlen = 0; /* for anycast or proxy, solicited_addr != src_addr */ ifp = ipv6_get_ifaddr(dev_net(dev), solicited_addr, dev, 1); if (ifp) { src_addr = solicited_addr; if (ifp->flags & IFA_F_OPTIMISTIC) override = false; inc_opt |= ifp->idev->cnf.force_tllao; in6_ifa_put(ifp); } else { if (ipv6_dev_get_saddr(dev_net(dev), dev, daddr, inet6_sk(dev_net(dev)->ipv6.ndisc_sk)->srcprefs, &tmpaddr)) return; src_addr = &tmpaddr; } if (!dev->addr_len) inc_opt = false; if (inc_opt) optlen += ndisc_opt_addr_space(dev, NDISC_NEIGHBOUR_ADVERTISEMENT); skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!skb) return; msg = skb_put(skb, sizeof(*msg)); *msg = (struct nd_msg) { .icmph = { .icmp6_type = NDISC_NEIGHBOUR_ADVERTISEMENT, .icmp6_router = router, .icmp6_solicited = solicited, .icmp6_override = override, }, .target = *solicited_addr, }; if (inc_opt) ndisc_fill_addr_option(skb, ND_OPT_TARGET_LL_ADDR, dev->dev_addr, NDISC_NEIGHBOUR_ADVERTISEMENT); ndisc_send_skb(skb, daddr, src_addr); } static void ndisc_send_unsol_na(struct net_device *dev) { struct inet6_dev *idev; struct inet6_ifaddr *ifa; idev = in6_dev_get(dev); if (!idev) return; read_lock_bh(&idev->lock); list_for_each_entry(ifa, &idev->addr_list, if_list) { /* skip tentative addresses until dad completes */ if (ifa->flags & IFA_F_TENTATIVE && !(ifa->flags & IFA_F_OPTIMISTIC)) continue; ndisc_send_na(dev, &in6addr_linklocal_allnodes, &ifa->addr, /*router=*/ !!idev->cnf.forwarding, /*solicited=*/ false, /*override=*/ true, /*inc_opt=*/ true); } read_unlock_bh(&idev->lock); in6_dev_put(idev); } struct sk_buff *ndisc_ns_create(struct net_device *dev, const struct in6_addr *solicit, const struct in6_addr *saddr, u64 nonce) { int inc_opt = dev->addr_len; struct sk_buff *skb; struct nd_msg *msg; int optlen = 0; if (!saddr) return NULL; if (ipv6_addr_any(saddr)) inc_opt = false; if (inc_opt) optlen += ndisc_opt_addr_space(dev, NDISC_NEIGHBOUR_SOLICITATION); if (nonce != 0) optlen += 8; skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!skb) return NULL; msg = skb_put(skb, sizeof(*msg)); *msg = (struct nd_msg) { .icmph = { .icmp6_type = NDISC_NEIGHBOUR_SOLICITATION, }, .target = *solicit, }; if (inc_opt) ndisc_fill_addr_option(skb, ND_OPT_SOURCE_LL_ADDR, dev->dev_addr, NDISC_NEIGHBOUR_SOLICITATION); if (nonce != 0) { u8 *opt = skb_put(skb, 8); opt[0] = ND_OPT_NONCE; opt[1] = 8 >> 3; memcpy(opt + 2, &nonce, 6); } return skb; } EXPORT_SYMBOL(ndisc_ns_create); void ndisc_send_ns(struct net_device *dev, const struct in6_addr *solicit, const struct in6_addr *daddr, const struct in6_addr *saddr, u64 nonce) { struct in6_addr addr_buf; struct sk_buff *skb; if (!saddr) { if (ipv6_get_lladdr(dev, &addr_buf, (IFA_F_TENTATIVE | IFA_F_OPTIMISTIC))) return; saddr = &addr_buf; } skb = ndisc_ns_create(dev, solicit, saddr, nonce); if (skb) ndisc_send_skb(skb, daddr, saddr); } void ndisc_send_rs(struct net_device *dev, const struct in6_addr *saddr, const struct in6_addr *daddr) { struct sk_buff *skb; struct rs_msg *msg; int send_sllao = dev->addr_len; int optlen = 0; #ifdef CONFIG_IPV6_OPTIMISTIC_DAD /* * According to section 2.2 of RFC 4429, we must not * send router solicitations with a sllao from * optimistic addresses, but we may send the solicitation * if we don't include the sllao. So here we check * if our address is optimistic, and if so, we * suppress the inclusion of the sllao. */ if (send_sllao) { struct inet6_ifaddr *ifp = ipv6_get_ifaddr(dev_net(dev), saddr, dev, 1); if (ifp) { if (ifp->flags & IFA_F_OPTIMISTIC) { send_sllao = 0; } in6_ifa_put(ifp); } else { send_sllao = 0; } } #endif if (send_sllao) optlen += ndisc_opt_addr_space(dev, NDISC_ROUTER_SOLICITATION); skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!skb) return; msg = skb_put(skb, sizeof(*msg)); *msg = (struct rs_msg) { .icmph = { .icmp6_type = NDISC_ROUTER_SOLICITATION, }, }; if (send_sllao) ndisc_fill_addr_option(skb, ND_OPT_SOURCE_LL_ADDR, dev->dev_addr, NDISC_ROUTER_SOLICITATION); ndisc_send_skb(skb, daddr, saddr); } static void ndisc_error_report(struct neighbour *neigh, struct sk_buff *skb) { /* * "The sender MUST return an ICMP * destination unreachable" */ dst_link_failure(skb); kfree_skb(skb); } /* Called with locked neigh: either read or both */ static void ndisc_solicit(struct neighbour *neigh, struct sk_buff *skb) { struct in6_addr *saddr = NULL; struct in6_addr mcaddr; struct net_device *dev = neigh->dev; struct in6_addr *target = (struct in6_addr *)&neigh->primary_key; int probes = atomic_read(&neigh->probes); if (skb && ipv6_chk_addr_and_flags(dev_net(dev), &ipv6_hdr(skb)->saddr, dev, false, 1, IFA_F_TENTATIVE|IFA_F_OPTIMISTIC)) saddr = &ipv6_hdr(skb)->saddr; probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES); if (probes < 0) { if (!(READ_ONCE(neigh->nud_state) & NUD_VALID)) { ND_PRINTK(1, dbg, "%s: trying to ucast probe in NUD_INVALID: %pI6\n", __func__, target); } ndisc_send_ns(dev, target, target, saddr, 0); } else if ((probes -= NEIGH_VAR(neigh->parms, APP_PROBES)) < 0) { neigh_app_ns(neigh); } else { addrconf_addr_solict_mult(target, &mcaddr); ndisc_send_ns(dev, target, &mcaddr, saddr, 0); } } static int pndisc_is_router(const void *pkey, struct net_device *dev) { struct pneigh_entry *n; int ret = -1; read_lock_bh(&nd_tbl.lock); n = __pneigh_lookup(&nd_tbl, dev_net(dev), pkey, dev); if (n) ret = !!(n->flags & NTF_ROUTER); read_unlock_bh(&nd_tbl.lock); return ret; } void ndisc_update(const struct net_device *dev, struct neighbour *neigh, const u8 *lladdr, u8 new, u32 flags, u8 icmp6_type, struct ndisc_options *ndopts) { neigh_update(neigh, lladdr, new, flags, 0); /* report ndisc ops about neighbour update */ ndisc_ops_update(dev, neigh, flags, icmp6_type, ndopts); } static enum skb_drop_reason ndisc_recv_ns(struct sk_buff *skb) { struct nd_msg *msg = (struct nd_msg *)skb_transport_header(skb); const struct in6_addr *saddr = &ipv6_hdr(skb)->saddr; const struct in6_addr *daddr = &ipv6_hdr(skb)->daddr; u8 *lladdr = NULL; u32 ndoptlen = skb_tail_pointer(skb) - (skb_transport_header(skb) + offsetof(struct nd_msg, opt)); struct ndisc_options ndopts; struct net_device *dev = skb->dev; struct inet6_ifaddr *ifp; struct inet6_dev *idev = NULL; struct neighbour *neigh; int dad = ipv6_addr_any(saddr); int is_router = -1; SKB_DR(reason); u64 nonce = 0; bool inc; if (skb->len < sizeof(struct nd_msg)) return SKB_DROP_REASON_PKT_TOO_SMALL; if (ipv6_addr_is_multicast(&msg->target)) { ND_PRINTK(2, warn, "NS: multicast target address\n"); return reason; } /* * RFC2461 7.1.1: * DAD has to be destined for solicited node multicast address. */ if (dad && !ipv6_addr_is_solict_mult(daddr)) { ND_PRINTK(2, warn, "NS: bad DAD packet (wrong destination)\n"); return reason; } if (!ndisc_parse_options(dev, msg->opt, ndoptlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (ndopts.nd_opts_src_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, dev); if (!lladdr) { ND_PRINTK(2, warn, "NS: invalid link-layer address length\n"); return reason; } /* RFC2461 7.1.1: * If the IP source address is the unspecified address, * there MUST NOT be source link-layer address option * in the message. */ if (dad) { ND_PRINTK(2, warn, "NS: bad DAD packet (link-layer address option)\n"); return reason; } } if (ndopts.nd_opts_nonce && ndopts.nd_opts_nonce->nd_opt_len == 1) memcpy(&nonce, (u8 *)(ndopts.nd_opts_nonce + 1), 6); inc = ipv6_addr_is_multicast(daddr); ifp = ipv6_get_ifaddr(dev_net(dev), &msg->target, dev, 1); if (ifp) { have_ifp: if (ifp->flags & (IFA_F_TENTATIVE|IFA_F_OPTIMISTIC)) { if (dad) { if (nonce != 0 && ifp->dad_nonce == nonce) { u8 *np = (u8 *)&nonce; /* Matching nonce if looped back */ ND_PRINTK(2, notice, "%s: IPv6 DAD loopback for address %pI6c nonce %pM ignored\n", ifp->idev->dev->name, &ifp->addr, np); goto out; } /* * We are colliding with another node * who is doing DAD * so fail our DAD process */ addrconf_dad_failure(skb, ifp); return reason; } else { /* * This is not a dad solicitation. * If we are an optimistic node, * we should respond. * Otherwise, we should ignore it. */ if (!(ifp->flags & IFA_F_OPTIMISTIC)) goto out; } } idev = ifp->idev; } else { struct net *net = dev_net(dev); /* perhaps an address on the master device */ if (netif_is_l3_slave(dev)) { struct net_device *mdev; mdev = netdev_master_upper_dev_get_rcu(dev); if (mdev) { ifp = ipv6_get_ifaddr(net, &msg->target, mdev, 1); if (ifp) goto have_ifp; } } idev = in6_dev_get(dev); if (!idev) { /* XXX: count this drop? */ return reason; } if (ipv6_chk_acast_addr(net, dev, &msg->target) || (idev->cnf.forwarding && (net->ipv6.devconf_all->proxy_ndp || idev->cnf.proxy_ndp) && (is_router = pndisc_is_router(&msg->target, dev)) >= 0)) { if (!(NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED) && skb->pkt_type != PACKET_HOST && inc && NEIGH_VAR(idev->nd_parms, PROXY_DELAY) != 0) { /* * for anycast or proxy, * sender should delay its response * by a random time between 0 and * MAX_ANYCAST_DELAY_TIME seconds. * (RFC2461) -- yoshfuji */ struct sk_buff *n = skb_clone(skb, GFP_ATOMIC); if (n) pneigh_enqueue(&nd_tbl, idev->nd_parms, n); goto out; } } else { SKB_DR_SET(reason, IPV6_NDISC_NS_OTHERHOST); goto out; } } if (is_router < 0) is_router = idev->cnf.forwarding; if (dad) { ndisc_send_na(dev, &in6addr_linklocal_allnodes, &msg->target, !!is_router, false, (ifp != NULL), true); goto out; } if (inc) NEIGH_CACHE_STAT_INC(&nd_tbl, rcv_probes_mcast); else NEIGH_CACHE_STAT_INC(&nd_tbl, rcv_probes_ucast); /* * update / create cache entry * for the source address */ neigh = __neigh_lookup(&nd_tbl, saddr, dev, !inc || lladdr || !dev->addr_len); if (neigh) ndisc_update(dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE, NDISC_NEIGHBOUR_SOLICITATION, &ndopts); if (neigh || !dev->header_ops) { ndisc_send_na(dev, saddr, &msg->target, !!is_router, true, (ifp != NULL && inc), inc); if (neigh) neigh_release(neigh); reason = SKB_CONSUMED; } out: if (ifp) in6_ifa_put(ifp); else in6_dev_put(idev); return reason; } static int accept_untracked_na(struct net_device *dev, struct in6_addr *saddr) { struct inet6_dev *idev = __in6_dev_get(dev); switch (idev->cnf.accept_untracked_na) { case 0: /* Don't accept untracked na (absent in neighbor cache) */ return 0; case 1: /* Create new entries from na if currently untracked */ return 1; case 2: /* Create new entries from untracked na only if saddr is in the * same subnet as an address configured on the interface that * received the na */ return !!ipv6_chk_prefix(saddr, dev); default: return 0; } } static enum skb_drop_reason ndisc_recv_na(struct sk_buff *skb) { struct nd_msg *msg = (struct nd_msg *)skb_transport_header(skb); struct in6_addr *saddr = &ipv6_hdr(skb)->saddr; const struct in6_addr *daddr = &ipv6_hdr(skb)->daddr; u8 *lladdr = NULL; u32 ndoptlen = skb_tail_pointer(skb) - (skb_transport_header(skb) + offsetof(struct nd_msg, opt)); struct ndisc_options ndopts; struct net_device *dev = skb->dev; struct inet6_dev *idev = __in6_dev_get(dev); struct inet6_ifaddr *ifp; struct neighbour *neigh; SKB_DR(reason); u8 new_state; if (skb->len < sizeof(struct nd_msg)) return SKB_DROP_REASON_PKT_TOO_SMALL; if (ipv6_addr_is_multicast(&msg->target)) { ND_PRINTK(2, warn, "NA: target address is multicast\n"); return reason; } if (ipv6_addr_is_multicast(daddr) && msg->icmph.icmp6_solicited) { ND_PRINTK(2, warn, "NA: solicited NA is multicasted\n"); return reason; } /* For some 802.11 wireless deployments (and possibly other networks), * there will be a NA proxy and unsolicitd packets are attacks * and thus should not be accepted. * drop_unsolicited_na takes precedence over accept_untracked_na */ if (!msg->icmph.icmp6_solicited && idev && idev->cnf.drop_unsolicited_na) return reason; if (!ndisc_parse_options(dev, msg->opt, ndoptlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (ndopts.nd_opts_tgt_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr, dev); if (!lladdr) { ND_PRINTK(2, warn, "NA: invalid link-layer address length\n"); return reason; } } ifp = ipv6_get_ifaddr(dev_net(dev), &msg->target, dev, 1); if (ifp) { if (skb->pkt_type != PACKET_LOOPBACK && (ifp->flags & IFA_F_TENTATIVE)) { addrconf_dad_failure(skb, ifp); return reason; } /* What should we make now? The advertisement is invalid, but ndisc specs say nothing about it. It could be misconfiguration, or an smart proxy agent tries to help us :-) We should not print the error if NA has been received from loopback - it is just our own unsolicited advertisement. */ if (skb->pkt_type != PACKET_LOOPBACK) ND_PRINTK(1, warn, "NA: %pM advertised our address %pI6c on %s!\n", eth_hdr(skb)->h_source, &ifp->addr, ifp->idev->dev->name); in6_ifa_put(ifp); return reason; } neigh = neigh_lookup(&nd_tbl, &msg->target, dev); /* RFC 9131 updates original Neighbour Discovery RFC 4861. * NAs with Target LL Address option without a corresponding * entry in the neighbour cache can now create a STALE neighbour * cache entry on routers. * * entry accept fwding solicited behaviour * ------- ------ ------ --------- ---------------------- * present X X 0 Set state to STALE * present X X 1 Set state to REACHABLE * absent 0 X X Do nothing * absent 1 0 X Do nothing * absent 1 1 X Add a new STALE entry * * Note that we don't do a (daddr == all-routers-mcast) check. */ new_state = msg->icmph.icmp6_solicited ? NUD_REACHABLE : NUD_STALE; if (!neigh && lladdr && idev && idev->cnf.forwarding) { if (accept_untracked_na(dev, saddr)) { neigh = neigh_create(&nd_tbl, &msg->target, dev); new_state = NUD_STALE; } } if (neigh && !IS_ERR(neigh)) { u8 old_flags = neigh->flags; struct net *net = dev_net(dev); if (READ_ONCE(neigh->nud_state) & NUD_FAILED) goto out; /* * Don't update the neighbor cache entry on a proxy NA from * ourselves because either the proxied node is off link or it * has already sent a NA to us. */ if (lladdr && !memcmp(lladdr, dev->dev_addr, dev->addr_len) && net->ipv6.devconf_all->forwarding && net->ipv6.devconf_all->proxy_ndp && pneigh_lookup(&nd_tbl, net, &msg->target, dev, 0)) { /* XXX: idev->cnf.proxy_ndp */ goto out; } ndisc_update(dev, neigh, lladdr, new_state, NEIGH_UPDATE_F_WEAK_OVERRIDE| (msg->icmph.icmp6_override ? NEIGH_UPDATE_F_OVERRIDE : 0)| NEIGH_UPDATE_F_OVERRIDE_ISROUTER| (msg->icmph.icmp6_router ? NEIGH_UPDATE_F_ISROUTER : 0), NDISC_NEIGHBOUR_ADVERTISEMENT, &ndopts); if ((old_flags & ~neigh->flags) & NTF_ROUTER) { /* * Change: router to host */ rt6_clean_tohost(dev_net(dev), saddr); } reason = SKB_CONSUMED; out: neigh_release(neigh); } return reason; } static enum skb_drop_reason ndisc_recv_rs(struct sk_buff *skb) { struct rs_msg *rs_msg = (struct rs_msg *)skb_transport_header(skb); unsigned long ndoptlen = skb->len - sizeof(*rs_msg); struct neighbour *neigh; struct inet6_dev *idev; const struct in6_addr *saddr = &ipv6_hdr(skb)->saddr; struct ndisc_options ndopts; u8 *lladdr = NULL; SKB_DR(reason); if (skb->len < sizeof(*rs_msg)) return SKB_DROP_REASON_PKT_TOO_SMALL; idev = __in6_dev_get(skb->dev); if (!idev) { ND_PRINTK(1, err, "RS: can't find in6 device\n"); return reason; } /* Don't accept RS if we're not in router mode */ if (!idev->cnf.forwarding) goto out; /* * Don't update NCE if src = ::; * this implies that the source node has no ip address assigned yet. */ if (ipv6_addr_any(saddr)) goto out; /* Parse ND options */ if (!ndisc_parse_options(skb->dev, rs_msg->opt, ndoptlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (ndopts.nd_opts_src_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, skb->dev); if (!lladdr) goto out; } neigh = __neigh_lookup(&nd_tbl, saddr, skb->dev, 1); if (neigh) { ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE_ISROUTER, NDISC_ROUTER_SOLICITATION, &ndopts); neigh_release(neigh); reason = SKB_CONSUMED; } out: return reason; } static void ndisc_ra_useropt(struct sk_buff *ra, struct nd_opt_hdr *opt) { struct icmp6hdr *icmp6h = (struct icmp6hdr *)skb_transport_header(ra); struct sk_buff *skb; struct nlmsghdr *nlh; struct nduseroptmsg *ndmsg; struct net *net = dev_net(ra->dev); int err; int base_size = NLMSG_ALIGN(sizeof(struct nduseroptmsg) + (opt->nd_opt_len << 3)); size_t msg_size = base_size + nla_total_size(sizeof(struct in6_addr)); skb = nlmsg_new(msg_size, GFP_ATOMIC); if (!skb) { err = -ENOBUFS; goto errout; } nlh = nlmsg_put(skb, 0, 0, RTM_NEWNDUSEROPT, base_size, 0); if (!nlh) { goto nla_put_failure; } ndmsg = nlmsg_data(nlh); ndmsg->nduseropt_family = AF_INET6; ndmsg->nduseropt_ifindex = ra->dev->ifindex; ndmsg->nduseropt_icmp_type = icmp6h->icmp6_type; ndmsg->nduseropt_icmp_code = icmp6h->icmp6_code; ndmsg->nduseropt_opts_len = opt->nd_opt_len << 3; memcpy(ndmsg + 1, opt, opt->nd_opt_len << 3); if (nla_put_in6_addr(skb, NDUSEROPT_SRCADDR, &ipv6_hdr(ra)->saddr)) goto nla_put_failure; nlmsg_end(skb, nlh); rtnl_notify(skb, net, 0, RTNLGRP_ND_USEROPT, NULL, GFP_ATOMIC); return; nla_put_failure: nlmsg_free(skb); err = -EMSGSIZE; errout: rtnl_set_sk_err(net, RTNLGRP_ND_USEROPT, err); } static enum skb_drop_reason ndisc_router_discovery(struct sk_buff *skb) { struct ra_msg *ra_msg = (struct ra_msg *)skb_transport_header(skb); bool send_ifinfo_notify = false; struct neighbour *neigh = NULL; struct ndisc_options ndopts; struct fib6_info *rt = NULL; struct inet6_dev *in6_dev; u32 defrtr_usr_metric; unsigned int pref = 0; __u32 old_if_flags; struct net *net; SKB_DR(reason); int lifetime; int optlen; __u8 *opt = (__u8 *)(ra_msg + 1); optlen = (skb_tail_pointer(skb) - skb_transport_header(skb)) - sizeof(struct ra_msg); ND_PRINTK(2, info, "RA: %s, dev: %s\n", __func__, skb->dev->name); if (!(ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)) { ND_PRINTK(2, warn, "RA: source address is not link-local\n"); return reason; } if (optlen < 0) return SKB_DROP_REASON_PKT_TOO_SMALL; #ifdef CONFIG_IPV6_NDISC_NODETYPE if (skb->ndisc_nodetype == NDISC_NODETYPE_HOST) { ND_PRINTK(2, warn, "RA: from host or unauthorized router\n"); return reason; } #endif in6_dev = __in6_dev_get(skb->dev); if (!in6_dev) { ND_PRINTK(0, err, "RA: can't find inet6 device for %s\n", skb->dev->name); return reason; } if (!ndisc_parse_options(skb->dev, opt, optlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (!ipv6_accept_ra(in6_dev)) { ND_PRINTK(2, info, "RA: %s, did not accept ra for dev: %s\n", __func__, skb->dev->name); goto skip_linkparms; } #ifdef CONFIG_IPV6_NDISC_NODETYPE /* skip link-specific parameters from interior routers */ if (skb->ndisc_nodetype == NDISC_NODETYPE_NODEFAULT) { ND_PRINTK(2, info, "RA: %s, nodetype is NODEFAULT, dev: %s\n", __func__, skb->dev->name); goto skip_linkparms; } #endif if (in6_dev->if_flags & IF_RS_SENT) { /* * flag that an RA was received after an RS was sent * out on this interface. */ in6_dev->if_flags |= IF_RA_RCVD; } /* * Remember the managed/otherconf flags from most recently * received RA message (RFC 2462) -- yoshfuji */ old_if_flags = in6_dev->if_flags; in6_dev->if_flags = (in6_dev->if_flags & ~(IF_RA_MANAGED | IF_RA_OTHERCONF)) | (ra_msg->icmph.icmp6_addrconf_managed ? IF_RA_MANAGED : 0) | (ra_msg->icmph.icmp6_addrconf_other ? IF_RA_OTHERCONF : 0); if (old_if_flags != in6_dev->if_flags) send_ifinfo_notify = true; if (!in6_dev->cnf.accept_ra_defrtr) { ND_PRINTK(2, info, "RA: %s, defrtr is false for dev: %s\n", __func__, skb->dev->name); goto skip_defrtr; } lifetime = ntohs(ra_msg->icmph.icmp6_rt_lifetime); if (lifetime != 0 && lifetime < in6_dev->cnf.accept_ra_min_lft) { ND_PRINTK(2, info, "RA: router lifetime (%ds) is too short: %s\n", lifetime, skb->dev->name); goto skip_defrtr; } /* Do not accept RA with source-addr found on local machine unless * accept_ra_from_local is set to true. */ net = dev_net(in6_dev->dev); if (!in6_dev->cnf.accept_ra_from_local && ipv6_chk_addr(net, &ipv6_hdr(skb)->saddr, in6_dev->dev, 0)) { ND_PRINTK(2, info, "RA from local address detected on dev: %s: default router ignored\n", skb->dev->name); goto skip_defrtr; } #ifdef CONFIG_IPV6_ROUTER_PREF pref = ra_msg->icmph.icmp6_router_pref; /* 10b is handled as if it were 00b (medium) */ if (pref == ICMPV6_ROUTER_PREF_INVALID || !in6_dev->cnf.accept_ra_rtr_pref) pref = ICMPV6_ROUTER_PREF_MEDIUM; #endif /* routes added from RAs do not use nexthop objects */ rt = rt6_get_dflt_router(net, &ipv6_hdr(skb)->saddr, skb->dev); if (rt) { neigh = ip6_neigh_lookup(&rt->fib6_nh->fib_nh_gw6, rt->fib6_nh->fib_nh_dev, NULL, &ipv6_hdr(skb)->saddr); if (!neigh) { ND_PRINTK(0, err, "RA: %s got default router without neighbour\n", __func__); fib6_info_release(rt); return reason; } } /* Set default route metric as specified by user */ defrtr_usr_metric = in6_dev->cnf.ra_defrtr_metric; /* delete the route if lifetime is 0 or if metric needs change */ if (rt && (lifetime == 0 || rt->fib6_metric != defrtr_usr_metric)) { ip6_del_rt(net, rt, false); rt = NULL; } ND_PRINTK(3, info, "RA: rt: %p lifetime: %d, metric: %d, for dev: %s\n", rt, lifetime, defrtr_usr_metric, skb->dev->name); if (!rt && lifetime) { ND_PRINTK(3, info, "RA: adding default router\n"); if (neigh) neigh_release(neigh); rt = rt6_add_dflt_router(net, &ipv6_hdr(skb)->saddr, skb->dev, pref, defrtr_usr_metric); if (!rt) { ND_PRINTK(0, err, "RA: %s failed to add default route\n", __func__); return reason; } neigh = ip6_neigh_lookup(&rt->fib6_nh->fib_nh_gw6, rt->fib6_nh->fib_nh_dev, NULL, &ipv6_hdr(skb)->saddr); if (!neigh) { ND_PRINTK(0, err, "RA: %s got default router without neighbour\n", __func__); fib6_info_release(rt); return reason; } neigh->flags |= NTF_ROUTER; } else if (rt && IPV6_EXTRACT_PREF(rt->fib6_flags) != pref) { struct nl_info nlinfo = { .nl_net = net, }; rt->fib6_flags = (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref); inet6_rt_notify(RTM_NEWROUTE, rt, &nlinfo, NLM_F_REPLACE); } if (rt) fib6_set_expires(rt, jiffies + (HZ * lifetime)); if (in6_dev->cnf.accept_ra_min_hop_limit < 256 && ra_msg->icmph.icmp6_hop_limit) { if (in6_dev->cnf.accept_ra_min_hop_limit <= ra_msg->icmph.icmp6_hop_limit) { in6_dev->cnf.hop_limit = ra_msg->icmph.icmp6_hop_limit; fib6_metric_set(rt, RTAX_HOPLIMIT, ra_msg->icmph.icmp6_hop_limit); } else { ND_PRINTK(2, warn, "RA: Got route advertisement with lower hop_limit than minimum\n"); } } skip_defrtr: /* * Update Reachable Time and Retrans Timer */ if (in6_dev->nd_parms) { unsigned long rtime = ntohl(ra_msg->retrans_timer); if (rtime && rtime/1000 < MAX_SCHEDULE_TIMEOUT/HZ) { rtime = (rtime*HZ)/1000; if (rtime < HZ/100) rtime = HZ/100; NEIGH_VAR_SET(in6_dev->nd_parms, RETRANS_TIME, rtime); in6_dev->tstamp = jiffies; send_ifinfo_notify = true; } rtime = ntohl(ra_msg->reachable_time); if (rtime && rtime/1000 < MAX_SCHEDULE_TIMEOUT/(3*HZ)) { rtime = (rtime*HZ)/1000; if (rtime < HZ/10) rtime = HZ/10; if (rtime != NEIGH_VAR(in6_dev->nd_parms, BASE_REACHABLE_TIME)) { NEIGH_VAR_SET(in6_dev->nd_parms, BASE_REACHABLE_TIME, rtime); NEIGH_VAR_SET(in6_dev->nd_parms, GC_STALETIME, 3 * rtime); in6_dev->nd_parms->reachable_time = neigh_rand_reach_time(rtime); in6_dev->tstamp = jiffies; send_ifinfo_notify = true; } } } skip_linkparms: /* * Process options. */ if (!neigh) neigh = __neigh_lookup(&nd_tbl, &ipv6_hdr(skb)->saddr, skb->dev, 1); if (neigh) { u8 *lladdr = NULL; if (ndopts.nd_opts_src_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, skb->dev); if (!lladdr) { ND_PRINTK(2, warn, "RA: invalid link-layer address length\n"); goto out; } } ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE_ISROUTER| NEIGH_UPDATE_F_ISROUTER, NDISC_ROUTER_ADVERTISEMENT, &ndopts); reason = SKB_CONSUMED; } if (!ipv6_accept_ra(in6_dev)) { ND_PRINTK(2, info, "RA: %s, accept_ra is false for dev: %s\n", __func__, skb->dev->name); goto out; } #ifdef CONFIG_IPV6_ROUTE_INFO if (!in6_dev->cnf.accept_ra_from_local && ipv6_chk_addr(dev_net(in6_dev->dev), &ipv6_hdr(skb)->saddr, in6_dev->dev, 0)) { ND_PRINTK(2, info, "RA from local address detected on dev: %s: router info ignored.\n", skb->dev->name); goto skip_routeinfo; } if (in6_dev->cnf.accept_ra_rtr_pref && ndopts.nd_opts_ri) { struct nd_opt_hdr *p; for (p = ndopts.nd_opts_ri; p; p = ndisc_next_option(p, ndopts.nd_opts_ri_end)) { struct route_info *ri = (struct route_info *)p; #ifdef CONFIG_IPV6_NDISC_NODETYPE if (skb->ndisc_nodetype == NDISC_NODETYPE_NODEFAULT && ri->prefix_len == 0) continue; #endif if (ri->prefix_len == 0 && !in6_dev->cnf.accept_ra_defrtr) continue; if (ri->lifetime != 0 && ntohl(ri->lifetime) < in6_dev->cnf.accept_ra_min_lft) continue; if (ri->prefix_len < in6_dev->cnf.accept_ra_rt_info_min_plen) continue; if (ri->prefix_len > in6_dev->cnf.accept_ra_rt_info_max_plen) continue; rt6_route_rcv(skb->dev, (u8 *)p, (p->nd_opt_len) << 3, &ipv6_hdr(skb)->saddr); } } skip_routeinfo: #endif #ifdef CONFIG_IPV6_NDISC_NODETYPE /* skip link-specific ndopts from interior routers */ if (skb->ndisc_nodetype == NDISC_NODETYPE_NODEFAULT) { ND_PRINTK(2, info, "RA: %s, nodetype is NODEFAULT (interior routes), dev: %s\n", __func__, skb->dev->name); goto out; } #endif if (in6_dev->cnf.accept_ra_pinfo && ndopts.nd_opts_pi) { struct nd_opt_hdr *p; for (p = ndopts.nd_opts_pi; p; p = ndisc_next_option(p, ndopts.nd_opts_pi_end)) { addrconf_prefix_rcv(skb->dev, (u8 *)p, (p->nd_opt_len) << 3, ndopts.nd_opts_src_lladdr != NULL); } } if (ndopts.nd_opts_mtu && in6_dev->cnf.accept_ra_mtu) { __be32 n; u32 mtu; memcpy(&n, ((u8 *)(ndopts.nd_opts_mtu+1))+2, sizeof(mtu)); mtu = ntohl(n); if (in6_dev->ra_mtu != mtu) { in6_dev->ra_mtu = mtu; send_ifinfo_notify = true; } if (mtu < IPV6_MIN_MTU || mtu > skb->dev->mtu) { ND_PRINTK(2, warn, "RA: invalid mtu: %d\n", mtu); } else if (in6_dev->cnf.mtu6 != mtu) { in6_dev->cnf.mtu6 = mtu; fib6_metric_set(rt, RTAX_MTU, mtu); rt6_mtu_change(skb->dev, mtu); } } if (ndopts.nd_useropts) { struct nd_opt_hdr *p; for (p = ndopts.nd_useropts; p; p = ndisc_next_useropt(skb->dev, p, ndopts.nd_useropts_end)) { ndisc_ra_useropt(skb, p); } } if (ndopts.nd_opts_tgt_lladdr || ndopts.nd_opts_rh) { ND_PRINTK(2, warn, "RA: invalid RA options\n"); } out: /* Send a notify if RA changed managed/otherconf flags or * timer settings or ra_mtu value */ if (send_ifinfo_notify) inet6_ifinfo_notify(RTM_NEWLINK, in6_dev); fib6_info_release(rt); if (neigh) neigh_release(neigh); return reason; } static enum skb_drop_reason ndisc_redirect_rcv(struct sk_buff *skb) { struct rd_msg *msg = (struct rd_msg *)skb_transport_header(skb); u32 ndoptlen = skb_tail_pointer(skb) - (skb_transport_header(skb) + offsetof(struct rd_msg, opt)); struct ndisc_options ndopts; SKB_DR(reason); u8 *hdr; #ifdef CONFIG_IPV6_NDISC_NODETYPE switch (skb->ndisc_nodetype) { case NDISC_NODETYPE_HOST: case NDISC_NODETYPE_NODEFAULT: ND_PRINTK(2, warn, "Redirect: from host or unauthorized router\n"); return reason; } #endif if (!(ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)) { ND_PRINTK(2, warn, "Redirect: source address is not link-local\n"); return reason; } if (!ndisc_parse_options(skb->dev, msg->opt, ndoptlen, &ndopts)) return SKB_DROP_REASON_IPV6_NDISC_BAD_OPTIONS; if (!ndopts.nd_opts_rh) { ip6_redirect_no_header(skb, dev_net(skb->dev), skb->dev->ifindex); return reason; } hdr = (u8 *)ndopts.nd_opts_rh; hdr += 8; if (!pskb_pull(skb, hdr - skb_transport_header(skb))) return SKB_DROP_REASON_PKT_TOO_SMALL; return icmpv6_notify(skb, NDISC_REDIRECT, 0, 0); } static void ndisc_fill_redirect_hdr_option(struct sk_buff *skb, struct sk_buff *orig_skb, int rd_len) { u8 *opt = skb_put(skb, rd_len); memset(opt, 0, 8); *(opt++) = ND_OPT_REDIRECT_HDR; *(opt++) = (rd_len >> 3); opt += 6; skb_copy_bits(orig_skb, skb_network_offset(orig_skb), opt, rd_len - 8); } void ndisc_send_redirect(struct sk_buff *skb, const struct in6_addr *target) { struct net_device *dev = skb->dev; struct net *net = dev_net(dev); struct sock *sk = net->ipv6.ndisc_sk; int optlen = 0; struct inet_peer *peer; struct sk_buff *buff; struct rd_msg *msg; struct in6_addr saddr_buf; struct rt6_info *rt; struct dst_entry *dst; struct flowi6 fl6; int rd_len; u8 ha_buf[MAX_ADDR_LEN], *ha = NULL, ops_data_buf[NDISC_OPS_REDIRECT_DATA_SPACE], *ops_data = NULL; bool ret; if (netif_is_l3_master(skb->dev)) { dev = __dev_get_by_index(dev_net(skb->dev), IPCB(skb)->iif); if (!dev) return; } if (ipv6_get_lladdr(dev, &saddr_buf, IFA_F_TENTATIVE)) { ND_PRINTK(2, warn, "Redirect: no link-local address on %s\n", dev->name); return; } if (!ipv6_addr_equal(&ipv6_hdr(skb)->daddr, target) && ipv6_addr_type(target) != (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) { ND_PRINTK(2, warn, "Redirect: target address is not link-local unicast\n"); return; } icmpv6_flow_init(sk, &fl6, NDISC_REDIRECT, &saddr_buf, &ipv6_hdr(skb)->saddr, dev->ifindex); dst = ip6_route_output(net, NULL, &fl6); if (dst->error) { dst_release(dst); return; } dst = xfrm_lookup(net, dst, flowi6_to_flowi(&fl6), NULL, 0); if (IS_ERR(dst)) return; rt = (struct rt6_info *) dst; if (rt->rt6i_flags & RTF_GATEWAY) { ND_PRINTK(2, warn, "Redirect: destination is not a neighbour\n"); goto release; } peer = inet_getpeer_v6(net->ipv6.peers, &ipv6_hdr(skb)->saddr, 1); ret = inet_peer_xrlim_allow(peer, 1*HZ); if (peer) inet_putpeer(peer); if (!ret) goto release; if (dev->addr_len) { struct neighbour *neigh = dst_neigh_lookup(skb_dst(skb), target); if (!neigh) { ND_PRINTK(2, warn, "Redirect: no neigh for target address\n"); goto release; } read_lock_bh(&neigh->lock); if (neigh->nud_state & NUD_VALID) { memcpy(ha_buf, neigh->ha, dev->addr_len); read_unlock_bh(&neigh->lock); ha = ha_buf; optlen += ndisc_redirect_opt_addr_space(dev, neigh, ops_data_buf, &ops_data); } else read_unlock_bh(&neigh->lock); neigh_release(neigh); } rd_len = min_t(unsigned int, IPV6_MIN_MTU - sizeof(struct ipv6hdr) - sizeof(*msg) - optlen, skb->len + 8); rd_len &= ~0x7; optlen += rd_len; buff = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!buff) goto release; msg = skb_put(buff, sizeof(*msg)); *msg = (struct rd_msg) { .icmph = { .icmp6_type = NDISC_REDIRECT, }, .target = *target, .dest = ipv6_hdr(skb)->daddr, }; /* * include target_address option */ if (ha) ndisc_fill_redirect_addr_option(buff, ha, ops_data); /* * build redirect option and copy skb over to the new packet. */ if (rd_len) ndisc_fill_redirect_hdr_option(buff, skb, rd_len); skb_dst_set(buff, dst); ndisc_send_skb(buff, &ipv6_hdr(skb)->saddr, &saddr_buf); return; release: dst_release(dst); } static void pndisc_redo(struct sk_buff *skb) { enum skb_drop_reason reason = ndisc_recv_ns(skb); kfree_skb_reason(skb, reason); } static int ndisc_is_multicast(const void *pkey) { return ipv6_addr_is_multicast((struct in6_addr *)pkey); } static bool ndisc_suppress_frag_ndisc(struct sk_buff *skb) { struct inet6_dev *idev = __in6_dev_get(skb->dev); if (!idev) return true; if (IP6CB(skb)->flags & IP6SKB_FRAGMENTED && idev->cnf.suppress_frag_ndisc) { net_warn_ratelimited("Received fragmented ndisc packet. Carefully consider disabling suppress_frag_ndisc.\n"); return true; } return false; } enum skb_drop_reason ndisc_rcv(struct sk_buff *skb) { struct nd_msg *msg; SKB_DR(reason); if (ndisc_suppress_frag_ndisc(skb)) return SKB_DROP_REASON_IPV6_NDISC_FRAG; if (skb_linearize(skb)) return SKB_DROP_REASON_NOMEM; msg = (struct nd_msg *)skb_transport_header(skb); __skb_push(skb, skb->data - skb_transport_header(skb)); if (ipv6_hdr(skb)->hop_limit != 255) { ND_PRINTK(2, warn, "NDISC: invalid hop-limit: %d\n", ipv6_hdr(skb)->hop_limit); return SKB_DROP_REASON_IPV6_NDISC_HOP_LIMIT; } if (msg->icmph.icmp6_code != 0) { ND_PRINTK(2, warn, "NDISC: invalid ICMPv6 code: %d\n", msg->icmph.icmp6_code); return SKB_DROP_REASON_IPV6_NDISC_BAD_CODE; } switch (msg->icmph.icmp6_type) { case NDISC_NEIGHBOUR_SOLICITATION: memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb)); reason = ndisc_recv_ns(skb); break; case NDISC_NEIGHBOUR_ADVERTISEMENT: reason = ndisc_recv_na(skb); break; case NDISC_ROUTER_SOLICITATION: reason = ndisc_recv_rs(skb); break; case NDISC_ROUTER_ADVERTISEMENT: reason = ndisc_router_discovery(skb); break; case NDISC_REDIRECT: reason = ndisc_redirect_rcv(skb); break; } return reason; } static int ndisc_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct netdev_notifier_change_info *change_info; struct net *net = dev_net(dev); struct inet6_dev *idev; bool evict_nocarrier; switch (event) { case NETDEV_CHANGEADDR: neigh_changeaddr(&nd_tbl, dev); fib6_run_gc(0, net, false); fallthrough; case NETDEV_UP: idev = in6_dev_get(dev); if (!idev) break; if (idev->cnf.ndisc_notify || net->ipv6.devconf_all->ndisc_notify) ndisc_send_unsol_na(dev); in6_dev_put(idev); break; case NETDEV_CHANGE: idev = in6_dev_get(dev); if (!idev) evict_nocarrier = true; else { evict_nocarrier = idev->cnf.ndisc_evict_nocarrier && net->ipv6.devconf_all->ndisc_evict_nocarrier; in6_dev_put(idev); } change_info = ptr; if (change_info->flags_changed & IFF_NOARP) neigh_changeaddr(&nd_tbl, dev); if (evict_nocarrier && !netif_carrier_ok(dev)) neigh_carrier_down(&nd_tbl, dev); break; case NETDEV_DOWN: neigh_ifdown(&nd_tbl, dev); fib6_run_gc(0, net, false); break; case NETDEV_NOTIFY_PEERS: ndisc_send_unsol_na(dev); break; default: break; } return NOTIFY_DONE; } static struct notifier_block ndisc_netdev_notifier = { .notifier_call = ndisc_netdev_event, .priority = ADDRCONF_NOTIFY_PRIORITY - 5, }; #ifdef CONFIG_SYSCTL static void ndisc_warn_deprecated_sysctl(struct ctl_table *ctl, const char *func, const char *dev_name) { static char warncomm[TASK_COMM_LEN]; static int warned; if (strcmp(warncomm, current->comm) && warned < 5) { strcpy(warncomm, current->comm); pr_warn("process `%s' is using deprecated sysctl (%s) net.ipv6.neigh.%s.%s - use net.ipv6.neigh.%s.%s_ms instead\n", warncomm, func, dev_name, ctl->procname, dev_name, ctl->procname); warned++; } } int ndisc_ifinfo_sysctl_change(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct net_device *dev = ctl->extra1; struct inet6_dev *idev; int ret; if ((strcmp(ctl->procname, "retrans_time") == 0) || (strcmp(ctl->procname, "base_reachable_time") == 0)) ndisc_warn_deprecated_sysctl(ctl, "syscall", dev ? dev->name : "default"); if (strcmp(ctl->procname, "retrans_time") == 0) ret = neigh_proc_dointvec(ctl, write, buffer, lenp, ppos); else if (strcmp(ctl->procname, "base_reachable_time") == 0) ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); else if ((strcmp(ctl->procname, "retrans_time_ms") == 0) || (strcmp(ctl->procname, "base_reachable_time_ms") == 0)) ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); else ret = -1; if (write && ret == 0 && dev && (idev = in6_dev_get(dev)) != NULL) { if (ctl->data == &NEIGH_VAR(idev->nd_parms, BASE_REACHABLE_TIME)) idev->nd_parms->reachable_time = neigh_rand_reach_time(NEIGH_VAR(idev->nd_parms, BASE_REACHABLE_TIME)); idev->tstamp = jiffies; inet6_ifinfo_notify(RTM_NEWLINK, idev); in6_dev_put(idev); } return ret; } #endif static int __net_init ndisc_net_init(struct net *net) { struct ipv6_pinfo *np; struct sock *sk; int err; err = inet_ctl_sock_create(&sk, PF_INET6, SOCK_RAW, IPPROTO_ICMPV6, net); if (err < 0) { ND_PRINTK(0, err, "NDISC: Failed to initialize the control socket (err %d)\n", err); return err; } net->ipv6.ndisc_sk = sk; np = inet6_sk(sk); np->hop_limit = 255; /* Do not loopback ndisc messages */ inet6_clear_bit(MC6_LOOP, sk); return 0; } static void __net_exit ndisc_net_exit(struct net *net) { inet_ctl_sock_destroy(net->ipv6.ndisc_sk); } static struct pernet_operations ndisc_net_ops = { .init = ndisc_net_init, .exit = ndisc_net_exit, }; int __init ndisc_init(void) { int err; err = register_pernet_subsys(&ndisc_net_ops); if (err) return err; /* * Initialize the neighbour table */ neigh_table_init(NEIGH_ND_TABLE, &nd_tbl); #ifdef CONFIG_SYSCTL err = neigh_sysctl_register(NULL, &nd_tbl.parms, ndisc_ifinfo_sysctl_change); if (err) goto out_unregister_pernet; out: #endif return err; #ifdef CONFIG_SYSCTL out_unregister_pernet: unregister_pernet_subsys(&ndisc_net_ops); goto out; #endif } int __init ndisc_late_init(void) { return register_netdevice_notifier(&ndisc_netdev_notifier); } void ndisc_late_cleanup(void) { unregister_netdevice_notifier(&ndisc_netdev_notifier); } void ndisc_cleanup(void) { #ifdef CONFIG_SYSCTL neigh_sysctl_unregister(&nd_tbl.parms); #endif neigh_table_clear(NEIGH_ND_TABLE, &nd_tbl); unregister_pernet_subsys(&ndisc_net_ops); }
298 297 299 300 300 301 298 301 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 // SPDX-License-Identifier: GPL-2.0 /* * This file contains functions which manage clock event devices. * * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner */ #include <linux/clockchips.h> #include <linux/hrtimer.h> #include <linux/init.h> #include <linux/module.h> #include <linux/smp.h> #include <linux/device.h> #include "tick-internal.h" /* The registered clock event devices */ static LIST_HEAD(clockevent_devices); static LIST_HEAD(clockevents_released); /* Protection for the above */ static DEFINE_RAW_SPINLOCK(clockevents_lock); /* Protection for unbind operations */ static DEFINE_MUTEX(clockevents_mutex); struct ce_unbind { struct clock_event_device *ce; int res; }; static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt, bool ismax) { u64 clc = (u64) latch << evt->shift; u64 rnd; if (WARN_ON(!evt->mult)) evt->mult = 1; rnd = (u64) evt->mult - 1; /* * Upper bound sanity check. If the backwards conversion is * not equal latch, we know that the above shift overflowed. */ if ((clc >> evt->shift) != (u64)latch) clc = ~0ULL; /* * Scaled math oddities: * * For mult <= (1 << shift) we can safely add mult - 1 to * prevent integer rounding loss. So the backwards conversion * from nsec to device ticks will be correct. * * For mult > (1 << shift), i.e. device frequency is > 1GHz we * need to be careful. Adding mult - 1 will result in a value * which when converted back to device ticks can be larger * than latch by up to (mult - 1) >> shift. For the min_delta * calculation we still want to apply this in order to stay * above the minimum device ticks limit. For the upper limit * we would end up with a latch value larger than the upper * limit of the device, so we omit the add to stay below the * device upper boundary. * * Also omit the add if it would overflow the u64 boundary. */ if ((~0ULL - clc > rnd) && (!ismax || evt->mult <= (1ULL << evt->shift))) clc += rnd; do_div(clc, evt->mult); /* Deltas less than 1usec are pointless noise */ return clc > 1000 ? clc : 1000; } /** * clockevent_delta2ns - Convert a latch value (device ticks) to nanoseconds * @latch: value to convert * @evt: pointer to clock event device descriptor * * Math helper, returns latch value converted to nanoseconds (bound checked) */ u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt) { return cev_delta2ns(latch, evt, false); } EXPORT_SYMBOL_GPL(clockevent_delta2ns); static int __clockevents_switch_state(struct clock_event_device *dev, enum clock_event_state state) { if (dev->features & CLOCK_EVT_FEAT_DUMMY) return 0; /* Transition with new state-specific callbacks */ switch (state) { case CLOCK_EVT_STATE_DETACHED: /* The clockevent device is getting replaced. Shut it down. */ case CLOCK_EVT_STATE_SHUTDOWN: if (dev->set_state_shutdown) return dev->set_state_shutdown(dev); return 0; case CLOCK_EVT_STATE_PERIODIC: /* Core internal bug */ if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC)) return -ENOSYS; if (dev->set_state_periodic) return dev->set_state_periodic(dev); return 0; case CLOCK_EVT_STATE_ONESHOT: /* Core internal bug */ if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT)) return -ENOSYS; if (dev->set_state_oneshot) return dev->set_state_oneshot(dev); return 0; case CLOCK_EVT_STATE_ONESHOT_STOPPED: /* Core internal bug */ if (WARN_ONCE(!clockevent_state_oneshot(dev), "Current state: %d\n", clockevent_get_state(dev))) return -EINVAL; if (dev->set_state_oneshot_stopped) return dev->set_state_oneshot_stopped(dev); else return -ENOSYS; default: return -ENOSYS; } } /** * clockevents_switch_state - set the operating state of a clock event device * @dev: device to modify * @state: new state * * Must be called with interrupts disabled ! */ void clockevents_switch_state(struct clock_event_device *dev, enum clock_event_state state) { if (clockevent_get_state(dev) != state) { if (__clockevents_switch_state(dev, state)) return; clockevent_set_state(dev, state); /* * A nsec2cyc multiplicator of 0 is invalid and we'd crash * on it, so fix it up and emit a warning: */ if (clockevent_state_oneshot(dev)) { if (WARN_ON(!dev->mult)) dev->mult = 1; } } } /** * clockevents_shutdown - shutdown the device and clear next_event * @dev: device to shutdown */ void clockevents_shutdown(struct clock_event_device *dev) { clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN); dev->next_event = KTIME_MAX; } /** * clockevents_tick_resume - Resume the tick device before using it again * @dev: device to resume */ int clockevents_tick_resume(struct clock_event_device *dev) { int ret = 0; if (dev->tick_resume) ret = dev->tick_resume(dev); return ret; } #ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST /* Limit min_delta to a jiffie */ #define MIN_DELTA_LIMIT (NSEC_PER_SEC / HZ) /** * clockevents_increase_min_delta - raise minimum delta of a clock event device * @dev: device to increase the minimum delta * * Returns 0 on success, -ETIME when the minimum delta reached the limit. */ static int clockevents_increase_min_delta(struct clock_event_device *dev) { /* Nothing to do if we already reached the limit */ if (dev->min_delta_ns >= MIN_DELTA_LIMIT) { printk_deferred(KERN_WARNING "CE: Reprogramming failure. Giving up\n"); dev->next_event = KTIME_MAX; return -ETIME; } if (dev->min_delta_ns < 5000) dev->min_delta_ns = 5000; else dev->min_delta_ns += dev->min_delta_ns >> 1; if (dev->min_delta_ns > MIN_DELTA_LIMIT) dev->min_delta_ns = MIN_DELTA_LIMIT; printk_deferred(KERN_WARNING "CE: %s increased min_delta_ns to %llu nsec\n", dev->name ? dev->name : "?", (unsigned long long) dev->min_delta_ns); return 0; } /** * clockevents_program_min_delta - Set clock event device to the minimum delay. * @dev: device to program * * Returns 0 on success, -ETIME when the retry loop failed. */ static int clockevents_program_min_delta(struct clock_event_device *dev) { unsigned long long clc; int64_t delta; int i; for (i = 0;;) { delta = dev->min_delta_ns; dev->next_event = ktime_add_ns(ktime_get(), delta); if (clockevent_state_shutdown(dev)) return 0; dev->retries++; clc = ((unsigned long long) delta * dev->mult) >> dev->shift; if (dev->set_next_event((unsigned long) clc, dev) == 0) return 0; if (++i > 2) { /* * We tried 3 times to program the device with the * given min_delta_ns. Try to increase the minimum * delta, if that fails as well get out of here. */ if (clockevents_increase_min_delta(dev)) return -ETIME; i = 0; } } } #else /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */ /** * clockevents_program_min_delta - Set clock event device to the minimum delay. * @dev: device to program * * Returns 0 on success, -ETIME when the retry loop failed. */ static int clockevents_program_min_delta(struct clock_event_device *dev) { unsigned long long clc; int64_t delta = 0; int i; for (i = 0; i < 10; i++) { delta += dev->min_delta_ns; dev->next_event = ktime_add_ns(ktime_get(), delta); if (clockevent_state_shutdown(dev)) return 0; dev->retries++; clc = ((unsigned long long) delta * dev->mult) >> dev->shift; if (dev->set_next_event((unsigned long) clc, dev) == 0) return 0; } return -ETIME; } #endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */ /** * clockevents_program_event - Reprogram the clock event device. * @dev: device to program * @expires: absolute expiry time (monotonic clock) * @force: program minimum delay if expires can not be set * * Returns 0 on success, -ETIME when the event is in the past. */ int clockevents_program_event(struct clock_event_device *dev, ktime_t expires, bool force) { unsigned long long clc; int64_t delta; int rc; if (WARN_ON_ONCE(expires < 0)) return -ETIME; dev->next_event = expires; if (clockevent_state_shutdown(dev)) return 0; /* We must be in ONESHOT state here */ WARN_ONCE(!clockevent_state_oneshot(dev), "Current state: %d\n", clockevent_get_state(dev)); /* Shortcut for clockevent devices that can deal with ktime. */ if (dev->features & CLOCK_EVT_FEAT_KTIME) return dev->set_next_ktime(expires, dev); delta = ktime_to_ns(ktime_sub(expires, ktime_get())); if (delta <= 0) return force ? clockevents_program_min_delta(dev) : -ETIME; delta = min(delta, (int64_t) dev->max_delta_ns); delta = max(delta, (int64_t) dev->min_delta_ns); clc = ((unsigned long long) delta * dev->mult) >> dev->shift; rc = dev->set_next_event((unsigned long) clc, dev); return (rc && force) ? clockevents_program_min_delta(dev) : rc; } /* * Called after a notify add to make devices available which were * released from the notifier call. */ static void clockevents_notify_released(void) { struct clock_event_device *dev; while (!list_empty(&clockevents_released)) { dev = list_entry(clockevents_released.next, struct clock_event_device, list); list_move(&dev->list, &clockevent_devices); tick_check_new_device(dev); } } /* * Try to install a replacement clock event device */ static int clockevents_replace(struct clock_event_device *ced) { struct clock_event_device *dev, *newdev = NULL; list_for_each_entry(dev, &clockevent_devices, list) { if (dev == ced || !clockevent_state_detached(dev)) continue; if (!tick_check_replacement(newdev, dev)) continue; if (!try_module_get(dev->owner)) continue; if (newdev) module_put(newdev->owner); newdev = dev; } if (newdev) { tick_install_replacement(newdev); list_del_init(&ced->list); } return newdev ? 0 : -EBUSY; } /* * Called with clockevents_mutex and clockevents_lock held */ static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu) { /* Fast track. Device is unused */ if (clockevent_state_detached(ced)) { list_del_init(&ced->list); return 0; } return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY; } /* * SMP function call to unbind a device */ static void __clockevents_unbind(void *arg) { struct ce_unbind *cu = arg; int res; raw_spin_lock(&clockevents_lock); res = __clockevents_try_unbind(cu->ce, smp_processor_id()); if (res == -EAGAIN) res = clockevents_replace(cu->ce); cu->res = res; raw_spin_unlock(&clockevents_lock); } /* * Issues smp function call to unbind a per cpu device. Called with * clockevents_mutex held. */ static int clockevents_unbind(struct clock_event_device *ced, int cpu) { struct ce_unbind cu = { .ce = ced, .res = -ENODEV }; smp_call_function_single(cpu, __clockevents_unbind, &cu, 1); return cu.res; } /* * Unbind a clockevents device. */ int clockevents_unbind_device(struct clock_event_device *ced, int cpu) { int ret; mutex_lock(&clockevents_mutex); ret = clockevents_unbind(ced, cpu); mutex_unlock(&clockevents_mutex); return ret; } EXPORT_SYMBOL_GPL(clockevents_unbind_device); /** * clockevents_register_device - register a clock event device * @dev: device to register */ void clockevents_register_device(struct clock_event_device *dev) { unsigned long flags; /* Initialize state to DETACHED */ clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED); if (!dev->cpumask) { WARN_ON(num_possible_cpus() > 1); dev->cpumask = cpumask_of(smp_processor_id()); } if (dev->cpumask == cpu_all_mask) { WARN(1, "%s cpumask == cpu_all_mask, using cpu_possible_mask instead\n", dev->name); dev->cpumask = cpu_possible_mask; } raw_spin_lock_irqsave(&clockevents_lock, flags); list_add(&dev->list, &clockevent_devices); tick_check_new_device(dev); clockevents_notify_released(); raw_spin_unlock_irqrestore(&clockevents_lock, flags); } EXPORT_SYMBOL_GPL(clockevents_register_device); static void clockevents_config(struct clock_event_device *dev, u32 freq) { u64 sec; if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT)) return; /* * Calculate the maximum number of seconds we can sleep. Limit * to 10 minutes for hardware which can program more than * 32bit ticks so we still get reasonable conversion values. */ sec = dev->max_delta_ticks; do_div(sec, freq); if (!sec) sec = 1; else if (sec > 600 && dev->max_delta_ticks > UINT_MAX) sec = 600; clockevents_calc_mult_shift(dev, freq, sec); dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false); dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true); } /** * clockevents_config_and_register - Configure and register a clock event device * @dev: device to register * @freq: The clock frequency * @min_delta: The minimum clock ticks to program in oneshot mode * @max_delta: The maximum clock ticks to program in oneshot mode * * min/max_delta can be 0 for devices which do not support oneshot mode. */ void clockevents_config_and_register(struct clock_event_device *dev, u32 freq, unsigned long min_delta, unsigned long max_delta) { dev->min_delta_ticks = min_delta; dev->max_delta_ticks = max_delta; clockevents_config(dev, freq); clockevents_register_device(dev); } EXPORT_SYMBOL_GPL(clockevents_config_and_register); int __clockevents_update_freq(struct clock_event_device *dev, u32 freq) { clockevents_config(dev, freq); if (clockevent_state_oneshot(dev)) return clockevents_program_event(dev, dev->next_event, false); if (clockevent_state_periodic(dev)) return __clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC); return 0; } /** * clockevents_update_freq - Update frequency and reprogram a clock event device. * @dev: device to modify * @freq: new device frequency * * Reconfigure and reprogram a clock event device in oneshot * mode. Must be called on the cpu for which the device delivers per * cpu timer events. If called for the broadcast device the core takes * care of serialization. * * Returns 0 on success, -ETIME when the event is in the past. */ int clockevents_update_freq(struct clock_event_device *dev, u32 freq) { unsigned long flags; int ret; local_irq_save(flags); ret = tick_broadcast_update_freq(dev, freq); if (ret == -ENODEV) ret = __clockevents_update_freq(dev, freq); local_irq_restore(flags); return ret; } /* * Noop handler when we shut down an event device */ void clockevents_handle_noop(struct clock_event_device *dev) { } /** * clockevents_exchange_device - release and request clock devices * @old: device to release (can be NULL) * @new: device to request (can be NULL) * * Called from various tick functions with clockevents_lock held and * interrupts disabled. */ void clockevents_exchange_device(struct clock_event_device *old, struct clock_event_device *new) { /* * Caller releases a clock event device. We queue it into the * released list and do a notify add later. */ if (old) { module_put(old->owner); clockevents_switch_state(old, CLOCK_EVT_STATE_DETACHED); list_move(&old->list, &clockevents_released); } if (new) { BUG_ON(!clockevent_state_detached(new)); clockevents_shutdown(new); } } /** * clockevents_suspend - suspend clock devices */ void clockevents_suspend(void) { struct clock_event_device *dev; list_for_each_entry_reverse(dev, &clockevent_devices, list) if (dev->suspend && !clockevent_state_detached(dev)) dev->suspend(dev); } /** * clockevents_resume - resume clock devices */ void clockevents_resume(void) { struct clock_event_device *dev; list_for_each_entry(dev, &clockevent_devices, list) if (dev->resume && !clockevent_state_detached(dev)) dev->resume(dev); } #ifdef CONFIG_HOTPLUG_CPU # ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST /** * tick_offline_cpu - Take CPU out of the broadcast mechanism * @cpu: The outgoing CPU * * Called on the outgoing CPU after it took itself offline. */ void tick_offline_cpu(unsigned int cpu) { raw_spin_lock(&clockevents_lock); tick_broadcast_offline(cpu); raw_spin_unlock(&clockevents_lock); } # endif /** * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu * @cpu: The dead CPU */ void tick_cleanup_dead_cpu(int cpu) { struct clock_event_device *dev, *tmp; unsigned long flags; raw_spin_lock_irqsave(&clockevents_lock, flags); tick_shutdown(cpu); /* * Unregister the clock event devices which were * released from the users in the notify chain. */ list_for_each_entry_safe(dev, tmp, &clockevents_released, list) list_del(&dev->list); /* * Now check whether the CPU has left unused per cpu devices */ list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) { if (cpumask_test_cpu(cpu, dev->cpumask) && cpumask_weight(dev->cpumask) == 1 && !tick_is_broadcast_device(dev)) { BUG_ON(!clockevent_state_detached(dev)); list_del(&dev->list); } } raw_spin_unlock_irqrestore(&clockevents_lock, flags); } #endif #ifdef CONFIG_SYSFS static struct bus_type clockevents_subsys = { .name = "clockevents", .dev_name = "clockevent", }; static DEFINE_PER_CPU(struct device, tick_percpu_dev); static struct tick_device *tick_get_tick_dev(struct device *dev); static ssize_t current_device_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tick_device *td; ssize_t count = 0; raw_spin_lock_irq(&clockevents_lock); td = tick_get_tick_dev(dev); if (td && td->evtdev) count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name); raw_spin_unlock_irq(&clockevents_lock); return count; } static DEVICE_ATTR_RO(current_device); /* We don't support the abomination of removable broadcast devices */ static ssize_t unbind_device_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { char name[CS_NAME_LEN]; ssize_t ret = sysfs_get_uname(buf, name, count); struct clock_event_device *ce = NULL, *iter; if (ret < 0) return ret; ret = -ENODEV; mutex_lock(&clockevents_mutex); raw_spin_lock_irq(&clockevents_lock); list_for_each_entry(iter, &clockevent_devices, list) { if (!strcmp(iter->name, name)) { ret = __clockevents_try_unbind(iter, dev->id); ce = iter; break; } } raw_spin_unlock_irq(&clockevents_lock); /* * We hold clockevents_mutex, so ce can't go away */ if (ret == -EAGAIN) ret = clockevents_unbind(ce, dev->id); mutex_unlock(&clockevents_mutex); return ret ? ret : count; } static DEVICE_ATTR_WO(unbind_device); #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST static struct device tick_bc_dev = { .init_name = "broadcast", .id = 0, .bus = &clockevents_subsys, }; static struct tick_device *tick_get_tick_dev(struct device *dev) { return dev == &tick_bc_dev