3 1787 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __KERNEL_PRINTK__ #define __KERNEL_PRINTK__ #include <linux/stdarg.h> #include <linux/init.h> #include <linux/kern_levels.h> #include <linux/linkage.h> #include <linux/cache.h> #include <linux/ratelimit_types.h> #include <linux/once_lite.h> extern const char linux_banner[]; extern const char linux_proc_banner[]; extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ #define PRINTK_MAX_SINGLE_HEADER_LEN 2 static inline int printk_get_level(const char *buffer) { if (buffer[0] == KERN_SOH_ASCII && buffer[1]) { switch (buffer[1]) { case '0' ... '7': case 'c': /* KERN_CONT */ return buffer[1]; } } return 0; } static inline const char *printk_skip_level(const char *buffer) { if (printk_get_level(buffer)) return buffer + 2; return buffer; } static inline const char *printk_skip_headers(const char *buffer) { while (printk_get_level(buffer)) buffer = printk_skip_level(buffer); return buffer; } #define CONSOLE_EXT_LOG_MAX 8192 /* printk's without a loglevel use this.. */ #define MESSAGE_LOGLEVEL_DEFAULT CONFIG_MESSAGE_LOGLEVEL_DEFAULT /* We show everything that is MORE important than this.. */ #define CONSOLE_LOGLEVEL_SILENT 0 /* Mum's the word */ #define CONSOLE_LOGLEVEL_MIN 1 /* Minimum loglevel we let people use */ #define CONSOLE_LOGLEVEL_DEBUG 10 /* issue debug messages */ #define CONSOLE_LOGLEVEL_MOTORMOUTH 15 /* You can't shut this one up */ /* * Default used to be hard-coded at 7, quiet used to be hardcoded at 4, * we're now allowing both to be set from kernel config. */ #define CONSOLE_LOGLEVEL_DEFAULT CONFIG_CONSOLE_LOGLEVEL_DEFAULT #define CONSOLE_LOGLEVEL_QUIET CONFIG_CONSOLE_LOGLEVEL_QUIET extern int console_printk[]; #define console_loglevel (console_printk[0]) #define default_message_loglevel (console_printk[1]) #define minimum_console_loglevel (console_printk[2]) #define default_console_loglevel (console_printk[3]) extern void console_verbose(void); /* strlen("ratelimit") + 1 */ #define DEVKMSG_STR_MAX_SIZE 10 extern char devkmsg_log_str[]; struct ctl_table; extern int suppress_printk; struct va_format { const char *fmt; va_list *va; }; /* * FW_BUG * Add this to a message where you are sure the firmware is buggy or behaves * really stupid or out of spec. Be aware that the responsible BIOS developer * should be able to fix this issue or at least get a concrete idea of the * problem by reading your message without the need of looking at the kernel * code. * * Use it for definite and high priority BIOS bugs. * * FW_WARN * Use it for not that clear (e.g. could the kernel messed up things already?) * and medium priority BIOS bugs. * * FW_INFO * Use this one if you want to tell the user or vendor about something * suspicious, but generally harmless related to the firmware. * * Use it for information or very low priority BIOS bugs. */ #define FW_BUG "[Firmware Bug]: " #define FW_WARN "[Firmware Warn]: " #define FW_INFO "[Firmware Info]: " /* * HW_ERR * Add this to a message for hardware errors, so that user can report * it to hardware vendor instead of LKML or software vendor. */ #define HW_ERR "[Hardware Error]: " /* * DEPRECATED * Add this to a message whenever you want to warn user space about the use * of a deprecated aspect of an API so they can stop using it */ #define DEPRECATED "[Deprecated]: " /* * Dummy printk for disabled debugging statements to use whilst maintaining * gcc's format checking. */ #define no_printk(fmt, ...) \ ({ \ if (0) \ _printk(fmt, ##__VA_ARGS__); \ 0; \ }) #ifdef CONFIG_EARLY_PRINTK extern asmlinkage __printf(1, 2) void early_printk(const char *fmt, ...); #else static inline __printf(1, 2) __cold void early_printk(const char *s, ...) { } #endif struct dev_printk_info; #ifdef CONFIG_PRINTK asmlinkage __printf(4, 0) int vprintk_emit(int facility, int level, const struct dev_printk_info *dev_info, const char *fmt, va_list args); asmlinkage __printf(1, 0) int vprintk(const char *fmt, va_list args); asmlinkage __printf(1, 2) __cold int _printk(const char *fmt, ...); /* * Special printk facility for scheduler/timekeeping use only, _DO_NOT_USE_ ! */ __printf(1, 2) __cold int _printk_deferred(const char *fmt, ...); extern void __printk_safe_enter(void); extern void __printk_safe_exit(void); /* * The printk_deferred_enter/exit macros are available only as a hack for * some code paths that need to defer all printk console printing. Interrupts * must be disabled for the deferred duration. */ #define printk_deferred_enter __printk_safe_enter #define printk_deferred_exit __printk_safe_exit /* * Please don't use printk_ratelimit(), because it shares ratelimiting state * with all other unrelated printk_ratelimit() callsites. Instead use * printk_ratelimited() or plain old __ratelimit(). */ extern int __printk_ratelimit(const char *func); #define printk_ratelimit() __printk_ratelimit(__func__) extern bool printk_timed_ratelimit(unsigned long *caller_jiffies, unsigned int interval_msec); extern int printk_delay_msec; extern int dmesg_restrict; extern int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, void *buf, size_t *lenp, loff_t *ppos); extern void wake_up_klogd(void); char *log_buf_addr_get(void); u32 log_buf_len_get(void); void log_buf_vmcoreinfo_setup(void); void __init setup_log_buf(int early); __printf(1, 2) void dump_stack_set_arch_desc(const char *fmt, ...); void dump_stack_print_info(const char *log_lvl); void show_regs_print_info(const char *log_lvl); extern asmlinkage void dump_stack_lvl(const char *log_lvl) __cold; extern asmlinkage void dump_stack(void) __cold; void printk_trigger_flush(void); #else static inline __printf(1, 0) int vprintk(const char *s, va_list args) { return 0; } static inline __printf(1, 2) __cold int _printk(const char *s, ...) { return 0; } static inline __printf(1, 2) __cold int _printk_deferred(const char *s, ...) { return 0; } static inline void printk_deferred_enter(void) { } static inline void printk_deferred_exit(void) { } static inline int printk_ratelimit(void) { return 0; } static inline bool printk_timed_ratelimit(unsigned long *caller_jiffies, unsigned int interval_msec) { return false; } static inline void wake_up_klogd(void) { } static inline char *log_buf_addr_get(void) { return NULL; } static inline u32 log_buf_len_get(void) { return 0; } static inline void log_buf_vmcoreinfo_setup(void) { } static inline void setup_log_buf(int early) { } static inline __printf(1, 2) void dump_stack_set_arch_desc(const char *fmt, ...) { } static inline void dump_stack_print_info(const char *log_lvl) { } static inline void show_regs_print_info(const char *log_lvl) { } static inline void dump_stack_lvl(const char *log_lvl) { } static inline void dump_stack(void) { } static inline void printk_trigger_flush(void) { } #endif #ifdef CONFIG_SMP extern int __printk_cpu_trylock(void); extern void __printk_wait_on_cpu_lock(void); extern void __printk_cpu_unlock(void); /** * printk_cpu_lock_irqsave() - Acquire the printk cpu-reentrant spinning * lock and disable interrupts. * @flags: Stack-allocated storage for saving local interrupt state, * to be passed to printk_cpu_unlock_irqrestore(). * * If the lock is owned by another CPU, spin until it becomes available. * Interrupts are restored while spinning. */ #define printk_cpu_lock_irqsave(flags) \ for (;;) { \ local_irq_save(flags); \ if (__printk_cpu_trylock()) \ break; \ local_irq_restore(flags); \ __printk_wait_on_cpu_lock(); \ } /** * printk_cpu_unlock_irqrestore() - Release the printk cpu-reentrant spinning * lock and restore interrupts. * @flags: Caller's saved interrupt state, from printk_cpu_lock_irqsave(). */ #define printk_cpu_unlock_irqrestore(flags) \ do { \ __printk_cpu_unlock(); \ local_irq_restore(flags); \ } while (0) \ #else #define printk_cpu_lock_irqsave(flags) ((void)flags) #define printk_cpu_unlock_irqrestore(flags) ((void)flags) #endif /* CONFIG_SMP */ extern int kptr_restrict; /** * pr_fmt - used by the pr_*() macros to generate the printk format string * @fmt: format string passed from a pr_*() macro * * This macro can be used to generate a unified format string for pr_*() * macros. A common use is to prefix all pr_*() messages in a file with a common * string. For example, defining this at the top of a source file: * * #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt * * would prefix all pr_info, pr_emerg... messages in the file with the module * name. */ #ifndef pr_fmt #define pr_fmt(fmt) fmt #endif struct module; #ifdef CONFIG_PRINTK_INDEX struct pi_entry { const char *fmt; const char *func; const char *file; unsigned int line; /* * While printk and pr_* have the level stored in the string at compile * time, some subsystems dynamically add it at runtime through the * format string. For these dynamic cases, we allow the subsystem to * tell us the level at compile time. * * NULL indicates that the level, if any, is stored in fmt. */ const char *level; /* * The format string used by various subsystem specific printk() * wrappers to prefix the message. * * Note that the static prefix defined by the pr_fmt() macro is stored * directly in the message format (@fmt), not here. */ const char *subsys_fmt_prefix; } __packed; #define __printk_index_emit(_fmt, _level, _subsys_fmt_prefix) \ do { \ if (__builtin_constant_p(_fmt) && __builtin_constant_p(_level)) { \ /* * We check __builtin_constant_p multiple times here * for the same input because GCC will produce an error * if we try to assign a static variable to fmt if it * is not a constant, even with the outer if statement. */ \ static const struct pi_entry _entry \ __used = { \ .fmt = __builtin_constant_p(_fmt) ? (_fmt) : NULL, \ .func = __func__, \ .file = __FILE__, \ .line = __LINE__, \ .level = __builtin_constant_p(_level) ? (_level) : NULL, \ .subsys_fmt_prefix = _subsys_fmt_prefix,\ }; \ static const struct pi_entry *_entry_ptr \ __used __section(".printk_index") = &_entry; \ } \ } while (0) #else /* !CONFIG_PRINTK_INDEX */ #define __printk_index_emit(...) do {} while (0) #endif /* CONFIG_PRINTK_INDEX */ /* * Some subsystems have their own custom printk that applies a va_format to a * generic format, for example, to include a device number or other metadata * alongside the format supplied by the caller. * * In order to store these in the way they would be emitted by the printk * infrastructure, the subsystem provides us with the start, fixed string, and * any subsequent text in the format string. * * We take a variable argument list as pr_fmt/dev_fmt/etc are sometimes passed * as multiple arguments (eg: `"%s: ", "blah"`), and we must only take the * first one. * * subsys_fmt_prefix must be known at compile time, or compilation will fail * (since this is a mistake). If fmt or level is not known at compile time, no * index entry will be made (since this can legitimately happen). */ #define printk_index_subsys_emit(subsys_fmt_prefix, level, fmt, ...) \ __printk_index_emit(fmt, level, subsys_fmt_prefix) #define printk_index_wrap(_p_func, _fmt, ...) \ ({ \ __printk_index_emit(_fmt, NULL, NULL); \ _p_func(_fmt, ##__VA_ARGS__); \ }) /** * printk - print a kernel message * @fmt: format string * * This is printk(). It can be called from any context. We want it to work. * * If printk indexing is enabled, _printk() is called from printk_index_wrap. * Otherwise, printk is simply #defined to _printk. * * We try to grab the console_lock. If we succeed, it's easy - we log the * output and call the console drivers. If we fail to get the semaphore, we * place the output into the log buffer and return. The current holder of * the console_sem will notice the new output in console_unlock(); and will * send it to the consoles before releasing the lock. * * One effect of this deferred printing is that code which calls printk() and * then changes console_loglevel may break. This is because console_loglevel * is inspected when the actual printing occurs. * * See also: * printf(3) * * See the vsnprintf() documentation for format string extensions over C99. */ #define printk(fmt, ...) printk_index_wrap(_printk, fmt, ##__VA_ARGS__) #define printk_deferred(fmt, ...) \ printk_index_wrap(_printk_deferred, fmt, ##__VA_ARGS__) /** * pr_emerg - Print an emergency-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_EMERG loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_emerg(fmt, ...) \ printk(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__) /** * pr_alert - Print an alert-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_ALERT loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_alert(fmt, ...) \ printk(KERN_ALERT pr_fmt(fmt), ##__VA_ARGS__) /** * pr_crit - Print a critical-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_CRIT loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_crit(fmt, ...) \ printk(KERN_CRIT pr_fmt(fmt), ##__VA_ARGS__) /** * pr_err - Print an error-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_ERR loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_err(fmt, ...) \ printk(KERN_ERR pr_fmt(fmt), ##__VA_ARGS__) /** * pr_warn - Print a warning-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_WARNING loglevel. It uses pr_fmt() * to generate the format string. */ #define pr_warn(fmt, ...) \ printk(KERN_WARNING pr_fmt(fmt), ##__VA_ARGS__) /** * pr_notice - Print a notice-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_NOTICE loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_notice(fmt, ...) \ printk(KERN_NOTICE pr_fmt(fmt), ##__VA_ARGS__) /** * pr_info - Print an info-level message * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_INFO loglevel. It uses pr_fmt() to * generate the format string. */ #define pr_info(fmt, ...) \ printk(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__) /** * pr_cont - Continues a previous log message in the same line. * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_CONT loglevel. It should only be * used when continuing a log message with no newline ('\n') enclosed. Otherwise * it defaults back to KERN_DEFAULT loglevel. */ #define pr_cont(fmt, ...) \ printk(KERN_CONT fmt, ##__VA_ARGS__) /** * pr_devel - Print a debug-level message conditionally * @fmt: format string * @...: arguments for the format string * * This macro expands to a printk with KERN_DEBUG loglevel if DEBUG is * defined. Otherwise it does nothing. * * It uses pr_fmt() to generate the format string. */ #ifdef DEBUG #define pr_devel(fmt, ...) \ printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_devel(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* If you are writing a driver, please use dev_dbg instead */ #if defined(CONFIG_DYNAMIC_DEBUG) || \ (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) #include <linux/dynamic_debug.h> /** * pr_debug - Print a debug-level message conditionally * @fmt: format string * @...: arguments for the format string * * This macro expands to dynamic_pr_debug() if CONFIG_DYNAMIC_DEBUG is * set. Otherwise, if DEBUG is defined, it's equivalent to a printk with * KERN_DEBUG loglevel. If DEBUG is not defined it does nothing. * * It uses pr_fmt() to generate the format string (dynamic_pr_debug() uses * pr_fmt() internally). */ #define pr_debug(fmt, ...) \ dynamic_pr_debug(fmt, ##__VA_ARGS__) #elif defined(DEBUG) #define pr_debug(fmt, ...) \ printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_debug(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* * Print a one-time message (analogous to WARN_ONCE() et al): */ #ifdef CONFIG_PRINTK #define printk_once(fmt, ...) \ DO_ONCE_LITE(printk, fmt, ##__VA_ARGS__) #define printk_deferred_once(fmt, ...) \ DO_ONCE_LITE(printk_deferred, fmt, ##__VA_ARGS__) #else #define printk_once(fmt, ...) \ no_printk(fmt, ##__VA_ARGS__) #define printk_deferred_once(fmt, ...) \ no_printk(fmt, ##__VA_ARGS__) #endif #define pr_emerg_once(fmt, ...) \ printk_once(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__) #define pr_alert_once(fmt, ...) \ printk_once(KERN_ALERT pr_fmt(fmt), ##__VA_ARGS__) #define pr_crit_once(fmt, ...) \ printk_once(KERN_CRIT pr_fmt(fmt), ##__VA_ARGS__) #define pr_err_once(fmt, ...) \ printk_once(KERN_ERR pr_fmt(fmt), ##__VA_ARGS__) #define pr_warn_once(fmt, ...) \ printk_once(KERN_WARNING pr_fmt(fmt), ##__VA_ARGS__) #define pr_notice_once(fmt, ...) \ printk_once(KERN_NOTICE pr_fmt(fmt), ##__VA_ARGS__) #define pr_info_once(fmt, ...) \ printk_once(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__) /* no pr_cont_once, don't do that... */ #if defined(DEBUG) #define pr_devel_once(fmt, ...) \ printk_once(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_devel_once(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* If you are writing a driver, please use dev_dbg instead */ #if defined(DEBUG) #define pr_debug_once(fmt, ...) \ printk_once(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_debug_once(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* * ratelimited messages with local ratelimit_state, * no local ratelimit_state used in the !PRINTK case */ #ifdef CONFIG_PRINTK #define printk_ratelimited(fmt, ...) \ ({ \ static DEFINE_RATELIMIT_STATE(_rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ \ if (__ratelimit(&_rs)) \ printk(fmt, ##__VA_ARGS__); \ }) #else #define printk_ratelimited(fmt, ...) \ no_printk(fmt, ##__VA_ARGS__) #endif #define pr_emerg_ratelimited(fmt, ...) \ printk_ratelimited(KERN_EMERG pr_fmt(fmt), ##__VA_ARGS__) #define pr_alert_ratelimited(fmt, ...) \ printk_ratelimited(KERN_ALERT pr_fmt(fmt), ##__VA_ARGS__) #define pr_crit_ratelimited(fmt, ...) \ printk_ratelimited(KERN_CRIT pr_fmt(fmt), ##__VA_ARGS__) #define pr_err_ratelimited(fmt, ...) \ printk_ratelimited(KERN_ERR pr_fmt(fmt), ##__VA_ARGS__) #define pr_warn_ratelimited(fmt, ...) \ printk_ratelimited(KERN_WARNING pr_fmt(fmt), ##__VA_ARGS__) #define pr_notice_ratelimited(fmt, ...) \ printk_ratelimited(KERN_NOTICE pr_fmt(fmt), ##__VA_ARGS__) #define pr_info_ratelimited(fmt, ...) \ printk_ratelimited(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__) /* no pr_cont_ratelimited, don't do that... */ #if defined(DEBUG) #define pr_devel_ratelimited(fmt, ...) \ printk_ratelimited(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_devel_ratelimited(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif /* If you are writing a driver, please use dev_dbg instead */ #if defined(CONFIG_DYNAMIC_DEBUG) || \ (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) /* descriptor check is first to prevent flooding with "callbacks suppressed" */ #define pr_debug_ratelimited(fmt, ...) \ do { \ static DEFINE_RATELIMIT_STATE(_rs, \ DEFAULT_RATELIMIT_INTERVAL, \ DEFAULT_RATELIMIT_BURST); \ DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, pr_fmt(fmt)); \ if (DYNAMIC_DEBUG_BRANCH(descriptor) && \ __ratelimit(&_rs)) \ __dynamic_pr_debug(&descriptor, pr_fmt(fmt), ##__VA_ARGS__); \ } while (0) #elif defined(DEBUG) #define pr_debug_ratelimited(fmt, ...) \ printk_ratelimited(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #else #define pr_debug_ratelimited(fmt, ...) \ no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__) #endif extern const struct file_operations kmsg_fops; enum { DUMP_PREFIX_NONE, DUMP_PREFIX_ADDRESS, DUMP_PREFIX_OFFSET }; extern int hex_dump_to_buffer(const void *buf, size_t len, int rowsize, int groupsize, char *linebuf, size_t linebuflen, bool ascii); #ifdef CONFIG_PRINTK extern void print_hex_dump(const char *level, const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii); #else static inline void print_hex_dump(const char *level, const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii) { } static inline void print_hex_dump_bytes(const char *prefix_str, int prefix_type, const void *buf, size_t len) { } #endif #if defined(CONFIG_DYNAMIC_DEBUG) || \ (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) #define print_hex_dump_debug(prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) \ dynamic_hex_dump(prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) #elif defined(DEBUG) #define print_hex_dump_debug(prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) \ print_hex_dump(KERN_DEBUG, prefix_str, prefix_type, rowsize, \ groupsize, buf, len, ascii) #else static inline void print_hex_dump_debug(const char *prefix_str, int prefix_type, int rowsize, int groupsize, const void *buf, size_t len, bool ascii) { } #endif /** * print_hex_dump_bytes - shorthand form of print_hex_dump() with default params * @prefix_str: string to prefix each line with; * caller supplies trailing spaces for alignment if desired * @prefix_type: controls whether prefix of an offset, address, or none * is printed (%DUMP_PREFIX_OFFSET, %DUMP_PREFIX_ADDRESS, %DUMP_PREFIX_NONE) * @buf: data blob to dump * @len: number of bytes in the @buf * * Calls print_hex_dump(), with log level of KERN_DEBUG, * rowsize of 16, groupsize of 1, and ASCII output included. */ #define print_hex_dump_bytes(prefix_str, prefix_type, buf, len) \ print_hex_dump_debug(prefix_str, prefix_type, 16, 1, buf, len, true) #endif |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_SPINLOCK_H #define __LINUX_SPINLOCK_H /* * include/linux/spinlock.h - generic spinlock/rwlock declarations * * here's the role of the various spinlock/rwlock related include files: * * on SMP builds: * * asm/spinlock_types.h: contains the arch_spinlock_t/arch_rwlock_t and the * initializers * * linux/spinlock_types_raw: * The raw types and initializers * linux/spinlock_types.h: * defines the generic type and initializers * * asm/spinlock.h: contains the arch_spin_*()/etc. lowlevel * implementations, mostly inline assembly code * * (also included on UP-debug builds:) * * linux/spinlock_api_smp.h: * contains the prototypes for the _spin_*() APIs. * * linux/spinlock.h: builds the final spin_*() APIs. * * on UP builds: * * linux/spinlock_type_up.h: * contains the generic, simplified UP spinlock type. * (which is an empty structure on non-debug builds) * * linux/spinlock_types_raw: * The raw RT types and initializers * linux/spinlock_types.h: * defines the generic type and initializers * * linux/spinlock_up.h: * contains the arch_spin_*()/etc. version of UP * builds. (which are NOPs on non-debug, non-preempt * builds) * * (included on UP-non-debug builds:) * * linux/spinlock_api_up.h: * builds the _spin_*() APIs. * * linux/spinlock.h: builds the final spin_*() APIs. */ #include <linux/typecheck.h> #include <linux/preempt.h> #include <linux/linkage.h> #include <linux/compiler.h> #include <linux/irqflags.h> #include <linux/thread_info.h> #include <linux/kernel.h> #include <linux/stringify.h> #include <linux/bottom_half.h> #include <linux/lockdep.h> #include <asm/barrier.h> #include <asm/mmiowb.h> /* * Must define these before including other files, inline functions need them */ #define LOCK_SECTION_NAME ".text..lock."KBUILD_BASENAME #define LOCK_SECTION_START(extra) \ ".subsection 1\n\t" \ extra \ ".ifndef " LOCK_SECTION_NAME "\n\t" \ LOCK_SECTION_NAME ":\n\t" \ ".endif\n" #define LOCK_SECTION_END \ ".previous\n\t" #define __lockfunc __section(".spinlock.text") /* * Pull the arch_spinlock_t and arch_rwlock_t definitions: */ #include <linux/spinlock_types.h> /* * Pull the arch_spin*() functions/declarations (UP-nondebug doesn't need them): */ #ifdef CONFIG_SMP # include <asm/spinlock.h> #else # include <linux/spinlock_up.h> #endif #ifdef CONFIG_DEBUG_SPINLOCK extern void __raw_spin_lock_init(raw_spinlock_t *lock, const char *name, struct lock_class_key *key, short inner); # define raw_spin_lock_init(lock) \ do { \ static struct lock_class_key __key; \ \ __raw_spin_lock_init((lock), #lock, &__key, LD_WAIT_SPIN); \ } while (0) #else # define raw_spin_lock_init(lock) \ do { *(lock) = __RAW_SPIN_LOCK_UNLOCKED(lock); } while (0) #endif #define raw_spin_is_locked(lock) arch_spin_is_locked(&(lock)->raw_lock) #ifdef arch_spin_is_contended #define raw_spin_is_contended(lock) arch_spin_is_contended(&(lock)->raw_lock) #else #define raw_spin_is_contended(lock) (((void)(lock), 0)) #endif /*arch_spin_is_contended*/ /* * smp_mb__after_spinlock() provides the equivalent of a full memory barrier * between program-order earlier lock acquisitions and program-order later * memory accesses. * * This guarantees that the following two properties hold: * * 1) Given the snippet: * * { X = 0; Y = 0; } * * CPU0 CPU1 * * WRITE_ONCE(X, 1); WRITE_ONCE(Y, 1); * spin_lock(S); smp_mb(); * smp_mb__after_spinlock(); r1 = READ_ONCE(X); * r0 = READ_ONCE(Y); * spin_unlock(S); * * it is forbidden that CPU0 does not observe CPU1's store to Y (r0 = 0) * and CPU1 does not observe CPU0's store to X (r1 = 0); see the comments * preceding the call to smp_mb__after_spinlock() in __schedule() and in * try_to_wake_up(). * * 2) Given the snippet: * * { X = 0; Y = 0; } * * CPU0 CPU1 CPU2 * * spin_lock(S); spin_lock(S); r1 = READ_ONCE(Y); * WRITE_ONCE(X, 1); smp_mb__after_spinlock(); smp_rmb(); * spin_unlock(S); r0 = READ_ONCE(X); r2 = READ_ONCE(X); * WRITE_ONCE(Y, 1); * spin_unlock(S); * * it is forbidden that CPU0's critical section executes before CPU1's * critical section (r0 = 1), CPU2 observes CPU1's store to Y (r1 = 1) * and CPU2 does not observe CPU0's store to X (r2 = 0); see the comments * preceding the calls to smp_rmb() in try_to_wake_up() for similar * snippets but "projected" onto two CPUs. * * Property (2) upgrades the lock to an RCsc lock. * * Since most load-store architectures implement ACQUIRE with an smp_mb() after * the LL/SC loop, they need no further barriers. Similarly all our TSO * architectures imply an smp_mb() for each atomic instruction and equally don't * need more. * * Architectures that can implement ACQUIRE better need to take care. */ #ifndef smp_mb__after_spinlock #define smp_mb__after_spinlock() do { } while (0) #endif #ifdef CONFIG_DEBUG_SPINLOCK extern void do_raw_spin_lock(raw_spinlock_t *lock) __acquires(lock); #define do_raw_spin_lock_flags(lock, flags) do_raw_spin_lock(lock) extern int do_raw_spin_trylock(raw_spinlock_t *lock); extern void do_raw_spin_unlock(raw_spinlock_t *lock) __releases(lock); #else static inline void do_raw_spin_lock(raw_spinlock_t *lock) __acquires(lock) { __acquire(lock); arch_spin_lock(&lock->raw_lock); mmiowb_spin_lock(); } #ifndef arch_spin_lock_flags #define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock) #endif static inline void do_raw_spin_lock_flags(raw_spinlock_t *lock, unsigned long *flags) __acquires(lock) { __acquire(lock); arch_spin_lock_flags(&lock->raw_lock, *flags); mmiowb_spin_lock(); } static inline int do_raw_spin_trylock(raw_spinlock_t *lock) { int ret = arch_spin_trylock(&(lock)->raw_lock); if (ret) mmiowb_spin_lock(); return ret; } static inline void do_raw_spin_unlock(raw_spinlock_t *lock) __releases(lock) { mmiowb_spin_unlock(); arch_spin_unlock(&lock->raw_lock); __release(lock); } #endif /* * Define the various spin_lock methods. Note we define these * regardless of whether CONFIG_SMP or CONFIG_PREEMPTION are set. The * various methods are defined as nops in the case they are not * required. */ #define raw_spin_trylock(lock) __cond_lock(lock, _raw_spin_trylock(lock)) #define raw_spin_lock(lock) _raw_spin_lock(lock) #ifdef CONFIG_DEBUG_LOCK_ALLOC # define raw_spin_lock_nested(lock, subclass) \ _raw_spin_lock_nested(lock, subclass) # define raw_spin_lock_nest_lock(lock, nest_lock) \ do { \ typecheck(struct lockdep_map *, &(nest_lock)->dep_map);\ _raw_spin_lock_nest_lock(lock, &(nest_lock)->dep_map); \ } while (0) #else /* * Always evaluate the 'subclass' argument to avoid that the compiler * warns about set-but-not-used variables when building with * CONFIG_DEBUG_LOCK_ALLOC=n and with W=1. */ # define raw_spin_lock_nested(lock, subclass) \ _raw_spin_lock(((void)(subclass), (lock))) # define raw_spin_lock_nest_lock(lock, nest_lock) _raw_spin_lock(lock) #endif #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) #define raw_spin_lock_irqsave(lock, flags) \ do { \ typecheck(unsigned long, flags); \ flags = _raw_spin_lock_irqsave(lock); \ } while (0) #ifdef CONFIG_DEBUG_LOCK_ALLOC #define raw_spin_lock_irqsave_nested(lock, flags, subclass) \ do { \ typecheck(unsigned long, flags); \ flags = _raw_spin_lock_irqsave_nested(lock, subclass); \ } while (0) #else #define raw_spin_lock_irqsave_nested(lock, flags, subclass) \ do { \ typecheck(unsigned long, flags); \ flags = _raw_spin_lock_irqsave(lock); \ } while (0) #endif #else #define raw_spin_lock_irqsave(lock, flags) \ do { \ typecheck(unsigned long, flags); \ _raw_spin_lock_irqsave(lock, flags); \ } while (0) #define raw_spin_lock_irqsave_nested(lock, flags, subclass) \ raw_spin_lock_irqsave(lock, flags) #endif #define raw_spin_lock_irq(lock) _raw_spin_lock_irq(lock) #define raw_spin_lock_bh(lock) _raw_spin_lock_bh(lock) #define raw_spin_unlock(lock) _raw_spin_unlock(lock) #define raw_spin_unlock_irq(lock) _raw_spin_unlock_irq(lock) #define raw_spin_unlock_irqrestore(lock, flags) \ do { \ typecheck(unsigned long, flags); \ _raw_spin_unlock_irqrestore(lock, flags); \ } while (0) #define raw_spin_unlock_bh(lock) _raw_spin_unlock_bh(lock) #define raw_spin_trylock_bh(lock) \ __cond_lock(lock, _raw_spin_trylock_bh(lock)) #define raw_spin_trylock_irq(lock) \ ({ \ local_irq_disable(); \ raw_spin_trylock(lock) ? \ 1 : ({ local_irq_enable(); 0; }); \ }) #define raw_spin_trylock_irqsave(lock, flags) \ ({ \ local_irq_save(flags); \ raw_spin_trylock(lock) ? \ 1 : ({ local_irq_restore(flags); 0; }); \ }) #ifndef CONFIG_PREEMPT_RT /* Include rwlock functions for !RT */ #include <linux/rwlock.h> #endif /* * Pull the _spin_*()/_read_*()/_write_*() functions/declarations: */ #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) # include <linux/spinlock_api_smp.h> #else # include <linux/spinlock_api_up.h> #endif /* Non PREEMPT_RT kernel, map to raw spinlocks: */ #ifndef CONFIG_PREEMPT_RT /* * Map the spin_lock functions to the raw variants for PREEMPT_RT=n */ static __always_inline raw_spinlock_t *spinlock_check(spinlock_t *lock) { return &lock->rlock; } #ifdef CONFIG_DEBUG_SPINLOCK # define spin_lock_init(lock) \ do { \ static struct lock_class_key __key; \ \ __raw_spin_lock_init(spinlock_check(lock), \ #lock, &__key, LD_WAIT_CONFIG); \ } while (0) #else # define spin_lock_init(_lock) \ do { \ spinlock_check(_lock); \ *(_lock) = __SPIN_LOCK_UNLOCKED(_lock); \ } while (0) #endif static __always_inline void spin_lock(spinlock_t *lock) { raw_spin_lock(&lock->rlock); } static __always_inline void spin_lock_bh(spinlock_t *lock) { raw_spin_lock_bh(&lock->rlock); } static __always_inline int spin_trylock(spinlock_t *lock) { return raw_spin_trylock(&lock->rlock); } #define spin_lock_nested(lock, subclass) \ do { \ raw_spin_lock_nested(spinlock_check(lock), subclass); \ } while (0) #define spin_lock_nest_lock(lock, nest_lock) \ do { \ raw_spin_lock_nest_lock(spinlock_check(lock), nest_lock); \ } while (0) static __always_inline void spin_lock_irq(spinlock_t *lock) { raw_spin_lock_irq(&lock->rlock); } #define spin_lock_irqsave(lock, flags) \ do { \ raw_spin_lock_irqsave(spinlock_check(lock), flags); \ } while (0) #define spin_lock_irqsave_nested(lock, flags, subclass) \ do { \ raw_spin_lock_irqsave_nested(spinlock_check(lock), flags, subclass); \ } while (0) static __always_inline void spin_unlock(spinlock_t *lock) { raw_spin_unlock(&lock->rlock); } static __always_inline void spin_unlock_bh(spinlock_t *lock) { raw_spin_unlock_bh(&lock->rlock); } static __always_inline void spin_unlock_irq(spinlock_t *lock) { raw_spin_unlock_irq(&lock->rlock); } static __always_inline void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags) { raw_spin_unlock_irqrestore(&lock->rlock, flags); } static __always_inline int spin_trylock_bh(spinlock_t *lock) { return raw_spin_trylock_bh(&lock->rlock); } static __always_inline int spin_trylock_irq(spinlock_t *lock) { return raw_spin_trylock_irq(&lock->rlock); } #define spin_trylock_irqsave(lock, flags) \ ({ \ raw_spin_trylock_irqsave(spinlock_check(lock), flags); \ }) /** * spin_is_locked() - Check whether a spinlock is locked. * @lock: Pointer to the spinlock. * * This function is NOT required to provide any memory ordering * guarantees; it could be used for debugging purposes or, when * additional synchronization is needed, accompanied with other * constructs (memory barriers) enforcing the synchronization. * * Returns: 1 if @lock is locked, 0 otherwise. * * Note that the function only tells you that the spinlock is * seen to be locked, not that it is locked on your CPU. * * Further, on CONFIG_SMP=n builds with CONFIG_DEBUG_SPINLOCK=n, * the return value is always 0 (see include/linux/spinlock_up.h). * Therefore you should not rely heavily on the return value. */ static __always_inline int spin_is_locked(spinlock_t *lock) { return raw_spin_is_locked(&lock->rlock); } static __always_inline int spin_is_contended(spinlock_t *lock) { return raw_spin_is_contended(&lock->rlock); } #define assert_spin_locked(lock) assert_raw_spin_locked(&(lock)->rlock) #else /* !CONFIG_PREEMPT_RT */ # include <linux/spinlock_rt.h> #endif /* CONFIG_PREEMPT_RT */ /* * Pull the atomic_t declaration: * (asm-mips/atomic.h needs above definitions) */ #include <linux/atomic.h> /** * atomic_dec_and_lock - lock on reaching reference count zero * @atomic: the atomic counter * @lock: the spinlock in question * * Decrements @atomic by 1. If the result is 0, returns true and locks * @lock. Returns false for all other cases. */ extern int _atomic_dec_and_lock(atomic_t *atomic, spinlock_t *lock); #define atomic_dec_and_lock(atomic, lock) \ __cond_lock(lock, _atomic_dec_and_lock(atomic, lock)) extern int _atomic_dec_and_lock_irqsave(atomic_t *atomic, spinlock_t *lock, unsigned long *flags); #define atomic_dec_and_lock_irqsave(atomic, lock, flags) \ __cond_lock(lock, _atomic_dec_and_lock_irqsave(atomic, lock, &(flags))) int __alloc_bucket_spinlocks(spinlock_t **locks, unsigned int *lock_mask, size_t max_size, unsigned int cpu_mult, gfp_t gfp, const char *name, struct lock_class_key *key); #define alloc_bucket_spinlocks(locks, lock_mask, max_size, cpu_mult, gfp) \ ({ \ static struct lock_class_key key; \ int ret; \ \ ret = __alloc_bucket_spinlocks(locks, lock_mask, max_size, \ cpu_mult, gfp, #locks, &key); \ ret; \ }) void free_bucket_spinlocks(spinlock_t *locks); #endif /* __LINUX_SPINLOCK_H */ |
6 6 6 6 6 2 1 1 11 11 3 2 2 2 4 6 6 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 | /* * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/slab.h> #include <net/sock.h> #include <linux/in.h> #include <linux/export.h> #include <linux/time.h> #include <linux/rds.h> #include "rds.h" void rds_inc_init(struct rds_incoming *inc, struct rds_connection *conn, struct in6_addr *saddr) { refcount_set(&inc->i_refcount, 1); INIT_LIST_HEAD(&inc->i_item); inc->i_conn = conn; inc->i_saddr = *saddr; inc->i_usercopy.rdma_cookie = 0; inc->i_usercopy.rx_tstamp = ktime_set(0, 0); memset(inc->i_rx_lat_trace, 0, sizeof(inc->i_rx_lat_trace)); } EXPORT_SYMBOL_GPL(rds_inc_init); void rds_inc_path_init(struct rds_incoming *inc, struct rds_conn_path *cp, struct in6_addr *saddr) { refcount_set(&inc->i_refcount, 1); INIT_LIST_HEAD(&inc->i_item); inc->i_conn = cp->cp_conn; inc->i_conn_path = cp; inc->i_saddr = *saddr; inc->i_usercopy.rdma_cookie = 0; inc->i_usercopy.rx_tstamp = ktime_set(0, 0); } EXPORT_SYMBOL_GPL(rds_inc_path_init); static void rds_inc_addref(struct rds_incoming *inc) { rdsdebug("addref inc %p ref %d\n", inc, refcount_read(&inc->i_refcount)); refcount_inc(&inc->i_refcount); } void rds_inc_put(struct rds_incoming *inc) { rdsdebug("put inc %p ref %d\n", inc, refcount_read(&inc->i_refcount)); if (refcount_dec_and_test(&inc->i_refcount)) { BUG_ON(!list_empty(&inc->i_item)); inc->i_conn->c_trans->inc_free(inc); } } EXPORT_SYMBOL_GPL(rds_inc_put); static void rds_recv_rcvbuf_delta(struct rds_sock *rs, struct sock *sk, struct rds_cong_map *map, int delta, __be16 port) { int now_congested; if (delta == 0) return; rs->rs_rcv_bytes += delta; if (delta > 0) rds_stats_add(s_recv_bytes_added_to_socket, delta); else rds_stats_add(s_recv_bytes_removed_from_socket, -delta); /* loop transport doesn't send/recv congestion updates */ if (rs->rs_transport->t_type == RDS_TRANS_LOOP) return; now_congested = rs->rs_rcv_bytes > rds_sk_rcvbuf(rs); rdsdebug("rs %p (%pI6c:%u) recv bytes %d buf %d " "now_cong %d delta %d\n", rs, &rs->rs_bound_addr, ntohs(rs->rs_bound_port), rs->rs_rcv_bytes, rds_sk_rcvbuf(rs), now_congested, delta); /* wasn't -> am congested */ if (!rs->rs_congested && now_congested) { rs->rs_congested = 1; rds_cong_set_bit(map, port); rds_cong_queue_updates(map); } /* was -> aren't congested */ /* Require more free space before reporting uncongested to prevent bouncing cong/uncong state too often */ else if (rs->rs_congested && (rs->rs_rcv_bytes < (rds_sk_rcvbuf(rs)/2))) { rs->rs_congested = 0; rds_cong_clear_bit(map, port); rds_cong_queue_updates(map); } /* do nothing if no change in cong state */ } static void rds_conn_peer_gen_update(struct rds_connection *conn, u32 peer_gen_num) { int i; struct rds_message *rm, *tmp; unsigned long flags; WARN_ON(conn->c_trans->t_type != RDS_TRANS_TCP); if (peer_gen_num != 0) { if (conn->c_peer_gen_num != 0 && peer_gen_num != conn->c_peer_gen_num) { for (i = 0; i < RDS_MPATH_WORKERS; i++) { struct rds_conn_path *cp; cp = &conn->c_path[i]; spin_lock_irqsave(&cp->cp_lock, flags); cp->cp_next_tx_seq = 1; cp->cp_next_rx_seq = 0; list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) { set_bit(RDS_MSG_FLUSH, &rm->m_flags); } spin_unlock_irqrestore(&cp->cp_lock, flags); } } conn->c_peer_gen_num = peer_gen_num; } } /* * Process all extension headers that come with this message. */ static void rds_recv_incoming_exthdrs(struct rds_incoming *inc, struct rds_sock *rs) { struct rds_header *hdr = &inc->i_hdr; unsigned int pos = 0, type, len; union { struct rds_ext_header_version version; struct rds_ext_header_rdma rdma; struct rds_ext_header_rdma_dest rdma_dest; } buffer; while (1) { len = sizeof(buffer); type = rds_message_next_extension(hdr, &pos, &buffer, &len); if (type == RDS_EXTHDR_NONE) break; /* Process extension header here */ switch (type) { case RDS_EXTHDR_RDMA: rds_rdma_unuse(rs, be32_to_cpu(buffer.rdma.h_rdma_rkey), 0); break; case RDS_EXTHDR_RDMA_DEST: /* We ignore the size for now. We could stash it * somewhere and use it for error checking. */ inc->i_usercopy.rdma_cookie = rds_rdma_make_cookie( be32_to_cpu(buffer.rdma_dest.h_rdma_rkey), be32_to_cpu(buffer.rdma_dest.h_rdma_offset)); break; } } } static void rds_recv_hs_exthdrs(struct rds_header *hdr, struct rds_connection *conn) { unsigned int pos = 0, type, len; union { struct rds_ext_header_version version; u16 rds_npaths; u32 rds_gen_num; } buffer; u32 new_peer_gen_num = 0; while (1) { len = sizeof(buffer); type = rds_message_next_extension(hdr, &pos, &buffer, &len); if (type == RDS_EXTHDR_NONE) break; /* Process extension header here */ switch (type) { case RDS_EXTHDR_NPATHS: conn->c_npaths = min_t(int, RDS_MPATH_WORKERS, be16_to_cpu(buffer.rds_npaths)); break; case RDS_EXTHDR_GEN_NUM: new_peer_gen_num = be32_to_cpu(buffer.rds_gen_num); break; default: pr_warn_ratelimited("ignoring unknown exthdr type " "0x%x\n", type); } } /* if RDS_EXTHDR_NPATHS was not found, default to a single-path */ conn->c_npaths = max_t(int, conn->c_npaths, 1); conn->c_ping_triggered = 0; rds_conn_peer_gen_update(conn, new_peer_gen_num); } /* rds_start_mprds() will synchronously start multiple paths when appropriate. * The scheme is based on the following rules: * * 1. rds_sendmsg on first connect attempt sends the probe ping, with the * sender's npaths (s_npaths) * 2. rcvr of probe-ping knows the mprds_paths = min(s_npaths, r_npaths). It * sends back a probe-pong with r_npaths. After that, if rcvr is the * smaller ip addr, it starts rds_conn_path_connect_if_down on all * mprds_paths. * 3. sender gets woken up, and can move to rds_conn_path_connect_if_down. * If it is the smaller ipaddr, rds_conn_path_connect_if_down can be * called after reception of the probe-pong on all mprds_paths. * Otherwise (sender of probe-ping is not the smaller ip addr): just call * rds_conn_path_connect_if_down on the hashed path. (see rule 4) * 4. rds_connect_worker must only trigger a connection if laddr < faddr. * 5. sender may end up queuing the packet on the cp. will get sent out later. * when connection is completed. */ static void rds_start_mprds(struct rds_connection *conn) { int i; struct rds_conn_path *cp; if (conn->c_npaths > 1 && rds_addr_cmp(&conn->c_laddr, &conn->c_faddr) < 0) { for (i = 0; i < conn->c_npaths; i++) { cp = &conn->c_path[i]; rds_conn_path_connect_if_down(cp); } } } /* * The transport must make sure that this is serialized against other * rx and conn reset on this specific conn. * * We currently assert that only one fragmented message will be sent * down a connection at a time. This lets us reassemble in the conn * instead of per-flow which means that we don't have to go digging through * flows to tear down partial reassembly progress on conn failure and * we save flow lookup and locking for each frag arrival. It does mean * that small messages will wait behind large ones. Fragmenting at all * is only to reduce the memory consumption of pre-posted buffers. * * The caller passes in saddr and daddr instead of us getting it from the * conn. This lets loopback, who only has one conn for both directions, * tell us which roles the addrs in the conn are playing for this message. */ void rds_recv_incoming(struct rds_connection *conn, struct in6_addr *saddr, struct in6_addr *daddr, struct rds_incoming *inc, gfp_t gfp) { struct rds_sock *rs = NULL; struct sock *sk; unsigned long flags; struct rds_conn_path *cp; inc->i_conn = conn; inc->i_rx_jiffies = jiffies; if (conn->c_trans->t_mp_capable) cp = inc->i_conn_path; else cp = &conn->c_path[0]; rdsdebug("conn %p next %llu inc %p seq %llu len %u sport %u dport %u " "flags 0x%x rx_jiffies %lu\n", conn, (unsigned long long)cp->cp_next_rx_seq, inc, (unsigned long long)be64_to_cpu(inc->i_hdr.h_sequence), be32_to_cpu(inc->i_hdr.h_len), be16_to_cpu(inc->i_hdr.h_sport), be16_to_cpu(inc->i_hdr.h_dport), inc->i_hdr.h_flags, inc->i_rx_jiffies); /* * Sequence numbers should only increase. Messages get their * sequence number as they're queued in a sending conn. They * can be dropped, though, if the sending socket is closed before * they hit the wire. So sequence numbers can skip forward * under normal operation. They can also drop back in the conn * failover case as previously sent messages are resent down the * new instance of a conn. We drop those, otherwise we have * to assume that the next valid seq does not come after a * hole in the fragment stream. * * The headers don't give us a way to realize if fragments of * a message have been dropped. We assume that frags that arrive * to a flow are part of the current message on the flow that is * being reassembled. This means that senders can't drop messages * from the sending conn until all their frags are sent. * * XXX we could spend more on the wire to get more robust failure * detection, arguably worth it to avoid data corruption. */ if (be64_to_cpu(inc->i_hdr.h_sequence) < cp->cp_next_rx_seq && (inc->i_hdr.h_flags & RDS_FLAG_RETRANSMITTED)) { rds_stats_inc(s_recv_drop_old_seq); goto out; } cp->cp_next_rx_seq = be64_to_cpu(inc->i_hdr.h_sequence) + 1; if (rds_sysctl_ping_enable && inc->i_hdr.h_dport == 0) { if (inc->i_hdr.h_sport == 0) { rdsdebug("ignore ping with 0 sport from %pI6c\n", saddr); goto out; } rds_stats_inc(s_recv_ping); rds_send_pong(cp, inc->i_hdr.h_sport); /* if this is a handshake ping, start multipath if necessary */ if (RDS_HS_PROBE(be16_to_cpu(inc->i_hdr.h_sport), be16_to_cpu(inc->i_hdr.h_dport))) { rds_recv_hs_exthdrs(&inc->i_hdr, cp->cp_conn); rds_start_mprds(cp->cp_conn); } goto out; } if (be16_to_cpu(inc->i_hdr.h_dport) == RDS_FLAG_PROBE_PORT && inc->i_hdr.h_sport == 0) { rds_recv_hs_exthdrs(&inc->i_hdr, cp->cp_conn); /* if this is a handshake pong, start multipath if necessary */ rds_start_mprds(cp->cp_conn); wake_up(&cp->cp_conn->c_hs_waitq); goto out; } rs = rds_find_bound(daddr, inc->i_hdr.h_dport, conn->c_bound_if); if (!rs) { rds_stats_inc(s_recv_drop_no_sock); goto out; } /* Process extension headers */ rds_recv_incoming_exthdrs(inc, rs); /* We can be racing with rds_release() which marks the socket dead. */ sk = rds_rs_to_sk(rs); /* serialize with rds_release -> sock_orphan */ write_lock_irqsave(&rs->rs_recv_lock, flags); if (!sock_flag(sk, SOCK_DEAD)) { rdsdebug("adding inc %p to rs %p's recv queue\n", inc, rs); rds_stats_inc(s_recv_queued); rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong, be32_to_cpu(inc->i_hdr.h_len), inc->i_hdr.h_dport); if (sock_flag(sk, SOCK_RCVTSTAMP)) inc->i_usercopy.rx_tstamp = ktime_get_real(); rds_inc_addref(inc); inc->i_rx_lat_trace[RDS_MSG_RX_END] = local_clock(); list_add_tail(&inc->i_item, &rs->rs_recv_queue); __rds_wake_sk_sleep(sk); } else { rds_stats_inc(s_recv_drop_dead_sock); } write_unlock_irqrestore(&rs->rs_recv_lock, flags); out: if (rs) rds_sock_put(rs); } EXPORT_SYMBOL_GPL(rds_recv_incoming); /* * be very careful here. This is being called as the condition in * wait_event_*() needs to cope with being called many times. */ static int rds_next_incoming(struct rds_sock *rs, struct rds_incoming **inc) { unsigned long flags; if (!*inc) { read_lock_irqsave(&rs->rs_recv_lock, flags); if (!list_empty(&rs->rs_recv_queue)) { *inc = list_entry(rs->rs_recv_queue.next, struct rds_incoming, i_item); rds_inc_addref(*inc); } read_unlock_irqrestore(&rs->rs_recv_lock, flags); } return *inc != NULL; } static int rds_still_queued(struct rds_sock *rs, struct rds_incoming *inc, int drop) { struct sock *sk = rds_rs_to_sk(rs); int ret = 0; unsigned long flags; struct rds_incoming *to_drop = NULL; write_lock_irqsave(&rs->rs_recv_lock, flags); if (!list_empty(&inc->i_item)) { ret = 1; if (drop) { /* XXX make sure this i_conn is reliable */ rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong, -be32_to_cpu(inc->i_hdr.h_len), inc->i_hdr.h_dport); list_del_init(&inc->i_item); to_drop = inc; } } write_unlock_irqrestore(&rs->rs_recv_lock, flags); if (to_drop) rds_inc_put(to_drop); rdsdebug("inc %p rs %p still %d dropped %d\n", inc, rs, ret, drop); return ret; } /* * Pull errors off the error queue. * If msghdr is NULL, we will just purge the error queue. */ int rds_notify_queue_get(struct rds_sock *rs, struct msghdr *msghdr) { struct rds_notifier *notifier; struct rds_rdma_notify cmsg; unsigned int count = 0, max_messages = ~0U; unsigned long flags; LIST_HEAD(copy); int err = 0; memset(&cmsg, 0, sizeof(cmsg)); /* fill holes with zero */ /* put_cmsg copies to user space and thus may sleep. We can't do this * with rs_lock held, so first grab as many notifications as we can stuff * in the user provided cmsg buffer. We don't try to copy more, to avoid * losing notifications - except when the buffer is so small that it wouldn't * even hold a single notification. Then we give him as much of this single * msg as we can squeeze in, and set MSG_CTRUNC. */ if (msghdr) { max_messages = msghdr->msg_controllen / CMSG_SPACE(sizeof(cmsg)); if (!max_messages) max_messages = 1; } spin_lock_irqsave(&rs->rs_lock, flags); while (!list_empty(&rs->rs_notify_queue) && count < max_messages) { notifier = list_entry(rs->rs_notify_queue.next, struct rds_notifier, n_list); list_move(¬ifier->n_list, ©); count++; } spin_unlock_irqrestore(&rs->rs_lock, flags); if (!count) return 0; while (!list_empty(©)) { notifier = list_entry(copy.next, struct rds_notifier, n_list); if (msghdr) { cmsg.user_token = notifier->n_user_token; cmsg.status = notifier->n_status; err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_RDMA_STATUS, sizeof(cmsg), &cmsg); if (err) break; } list_del_init(¬ifier->n_list); kfree(notifier); } /* If we bailed out because of an error in put_cmsg, * we may be left with one or more notifications that we * didn't process. Return them to the head of the list. */ if (!list_empty(©)) { spin_lock_irqsave(&rs->rs_lock, flags); list_splice(©, &rs->rs_notify_queue); spin_unlock_irqrestore(&rs->rs_lock, flags); } return err; } /* * Queue a congestion notification */ static int rds_notify_cong(struct rds_sock *rs, struct msghdr *msghdr) { uint64_t notify = rs->rs_cong_notify; unsigned long flags; int err; err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_CONG_UPDATE, sizeof(notify), ¬ify); if (err) return err; spin_lock_irqsave(&rs->rs_lock, flags); rs->rs_cong_notify &= ~notify; spin_unlock_irqrestore(&rs->rs_lock, flags); return 0; } /* * Receive any control messages. */ static int rds_cmsg_recv(struct rds_incoming *inc, struct msghdr *msg, struct rds_sock *rs) { int ret = 0; if (inc->i_usercopy.rdma_cookie) { ret = put_cmsg(msg, SOL_RDS, RDS_CMSG_RDMA_DEST, sizeof(inc->i_usercopy.rdma_cookie), &inc->i_usercopy.rdma_cookie); if (ret) goto out; } if ((inc->i_usercopy.rx_tstamp != 0) && sock_flag(rds_rs_to_sk(rs), SOCK_RCVTSTAMP)) { struct __kernel_old_timeval tv = ns_to_kernel_old_timeval(inc->i_usercopy.rx_tstamp); if (!sock_flag(rds_rs_to_sk(rs), SOCK_TSTAMP_NEW)) { ret = put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, sizeof(tv), &tv); } else { struct __kernel_sock_timeval sk_tv; sk_tv.tv_sec = tv.tv_sec; sk_tv.tv_usec = tv.tv_usec; ret = put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, sizeof(sk_tv), &sk_tv); } if (ret) goto out; } if (rs->rs_rx_traces) { struct rds_cmsg_rx_trace t; int i, j; memset(&t, 0, sizeof(t)); inc->i_rx_lat_trace[RDS_MSG_RX_CMSG] = local_clock(); t.rx_traces = rs->rs_rx_traces; for (i = 0; i < rs->rs_rx_traces; i++) { j = rs->rs_rx_trace[i]; t.rx_trace_pos[i] = j; t.rx_trace[i] = inc->i_rx_lat_trace[j + 1] - inc->i_rx_lat_trace[j]; } ret = put_cmsg(msg, SOL_RDS, RDS_CMSG_RXPATH_LATENCY, sizeof(t), &t); if (ret) goto out; } out: return ret; } static bool rds_recvmsg_zcookie(struct rds_sock *rs, struct msghdr *msg) { struct rds_msg_zcopy_queue *q = &rs->rs_zcookie_queue; struct rds_msg_zcopy_info *info = NULL; struct rds_zcopy_cookies *done; unsigned long flags; if (!msg->msg_control) return false; if (!sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY) || msg->msg_controllen < CMSG_SPACE(sizeof(*done))) return false; spin_lock_irqsave(&q->lock, flags); if (!list_empty(&q->zcookie_head)) { info = list_entry(q->zcookie_head.next, struct rds_msg_zcopy_info, rs_zcookie_next); list_del(&info->rs_zcookie_next); } spin_unlock_irqrestore(&q->lock, flags); if (!info) return false; done = &info->zcookies; if (put_cmsg(msg, SOL_RDS, RDS_CMSG_ZCOPY_COMPLETION, sizeof(*done), done)) { spin_lock_irqsave(&q->lock, flags); list_add(&info->rs_zcookie_next, &q->zcookie_head); spin_unlock_irqrestore(&q->lock, flags); return false; } kfree(info); return true; } int rds_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int msg_flags) { struct sock *sk = sock->sk; struct rds_sock *rs = rds_sk_to_rs(sk); long timeo; int ret = 0, nonblock = msg_flags & MSG_DONTWAIT; DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name); DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); struct rds_incoming *inc = NULL; /* udp_recvmsg()->sock_recvtimeo() gets away without locking too.. */ timeo = sock_rcvtimeo(sk, nonblock); rdsdebug("size %zu flags 0x%x timeo %ld\n", size, msg_flags, timeo); if (msg_flags & MSG_OOB) goto out; if (msg_flags & MSG_ERRQUEUE) return sock_recv_errqueue(sk, msg, size, SOL_IP, IP_RECVERR); while (1) { /* If there are pending notifications, do those - and nothing else */ if (!list_empty(&rs->rs_notify_queue)) { ret = rds_notify_queue_get(rs, msg); break; } if (rs->rs_cong_notify) { ret = rds_notify_cong(rs, msg); break; } if (!rds_next_incoming(rs, &inc)) { if (nonblock) { bool reaped = rds_recvmsg_zcookie(rs, msg); ret = reaped ? 0 : -EAGAIN; break; } timeo = wait_event_interruptible_timeout(*sk_sleep(sk), (!list_empty(&rs->rs_notify_queue) || rs->rs_cong_notify || rds_next_incoming(rs, &inc)), timeo); rdsdebug("recvmsg woke inc %p timeo %ld\n", inc, timeo); if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT) continue; ret = timeo; if (ret == 0) ret = -ETIMEDOUT; break; } rdsdebug("copying inc %p from %pI6c:%u to user\n", inc, &inc->i_conn->c_faddr, ntohs(inc->i_hdr.h_sport)); ret = inc->i_conn->c_trans->inc_copy_to_user(inc, &msg->msg_iter); if (ret < 0) break; /* * if the message we just copied isn't at the head of the * recv queue then someone else raced us to return it, try * to get the next message. */ if (!rds_still_queued(rs, inc, !(msg_flags & MSG_PEEK))) { rds_inc_put(inc); inc = NULL; rds_stats_inc(s_recv_deliver_raced); iov_iter_revert(&msg->msg_iter, ret); continue; } if (ret < be32_to_cpu(inc->i_hdr.h_len)) { if (msg_flags & MSG_TRUNC) ret = be32_to_cpu(inc->i_hdr.h_len); msg->msg_flags |= MSG_TRUNC; } if (rds_cmsg_recv(inc, msg, rs)) { ret = -EFAULT; break; } rds_recvmsg_zcookie(rs, msg); rds_stats_inc(s_recv_delivered); if (msg->msg_name) { if (ipv6_addr_v4mapped(&inc->i_saddr)) { sin->sin_family = AF_INET; sin->sin_port = inc->i_hdr.h_sport; sin->sin_addr.s_addr = inc->i_saddr.s6_addr32[3]; memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); msg->msg_namelen = sizeof(*sin); } else { sin6->sin6_family = AF_INET6; sin6->sin6_port = inc->i_hdr.h_sport; sin6->sin6_addr = inc->i_saddr; sin6->sin6_flowinfo = 0; sin6->sin6_scope_id = rs->rs_bound_scope_id; msg->msg_namelen = sizeof(*sin6); } } break; } if (inc) rds_inc_put(inc); out: return ret; } /* * The socket is being shut down and we're asked to drop messages that were * queued for recvmsg. The caller has unbound the socket so the receive path * won't queue any more incoming fragments or messages on the socket. */ void rds_clear_recv_queue(struct rds_sock *rs) { struct sock *sk = rds_rs_to_sk(rs); struct rds_incoming *inc, *tmp; unsigned long flags; LIST_HEAD(to_drop); write_lock_irqsave(&rs->rs_recv_lock, flags); list_for_each_entry_safe(inc, tmp, &rs->rs_recv_queue, i_item) { rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong, -be32_to_cpu(inc->i_hdr.h_len), inc->i_hdr.h_dport); list_move(&inc->i_item, &to_drop); } write_unlock_irqrestore(&rs->rs_recv_lock, flags); list_for_each_entry_safe(inc, tmp, &to_drop, i_item) { list_del_init(&inc->i_item); rds_inc_put(inc); } } /* * inc->i_saddr isn't used here because it is only set in the receive * path. */ void rds_inc_info_copy(struct rds_incoming *inc, struct rds_info_iterator *iter, __be32 saddr, __be32 daddr, int flip) { struct rds_info_message minfo; minfo.seq = be64_to_cpu(inc->i_hdr.h_sequence); minfo.len = be32_to_cpu(inc->i_hdr.h_len); minfo.tos = inc->i_conn->c_tos; if (flip) { minfo.laddr = daddr; minfo.faddr = saddr; minfo.lport = inc->i_hdr.h_dport; minfo.fport = inc->i_hdr.h_sport; } else { minfo.laddr = saddr; minfo.faddr = daddr; minfo.lport = inc->i_hdr.h_sport; minfo.fport = inc->i_hdr.h_dport; } minfo.flags = 0; rds_info_copy(iter, &minfo, sizeof(minfo)); } #if IS_ENABLED(CONFIG_IPV6) void rds6_inc_info_copy(struct rds_incoming *inc, struct rds_info_iterator *iter, struct in6_addr *saddr, struct in6_addr *daddr, int flip) { struct rds6_info_message minfo6; minfo6.seq = be64_to_cpu(inc->i_hdr.h_sequence); minfo6.len = be32_to_cpu(inc->i_hdr.h_len); minfo6.tos = inc->i_conn->c_tos; if (flip) { minfo6.laddr = *daddr; minfo6.faddr = *saddr; minfo6.lport = inc->i_hdr.h_dport; minfo6.fport = inc->i_hdr.h_sport; } else { minfo6.laddr = *saddr; minfo6.faddr = *daddr; minfo6.lport = inc->i_hdr.h_sport; minfo6.fport = inc->i_hdr.h_dport; } minfo6.flags = 0; rds_info_copy(iter, &minfo6, sizeof(minfo6)); } #endif |
3 3 3 515 517 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 | // SPDX-License-Identifier: GPL-2.0 /* * Shared Memory Communications over RDMA (SMC-R) and RoCE * * IB infrastructure: * Establish SMC-R as an Infiniband Client to be notified about added and * removed IB devices of type RDMA. * Determine device and port characteristics for these IB devices. * * Copyright IBM Corp. 2016 * * Author(s): Ursula Braun <ubraun@linux.vnet.ibm.com> */ #include <linux/random.h> #include <linux/workqueue.h> #include <linux/scatterlist.h> #include <linux/wait.h> #include <linux/mutex.h> #include <rdma/ib_verbs.h> #include <rdma/ib_cache.h> #include "smc_pnet.h" #include "smc_ib.h" #include "smc_core.h" #include "smc_wr.h" #include "smc.h" #include "smc_netlink.h" #define SMC_MAX_CQE 32766 /* max. # of completion queue elements */ #define SMC_QP_MIN_RNR_TIMER 5 #define SMC_QP_TIMEOUT 15 /* 4096 * 2 ** timeout usec */ #define SMC_QP_RETRY_CNT 7 /* 7: infinite */ #define SMC_QP_RNR_RETRY 7 /* 7: infinite */ struct smc_ib_devices smc_ib_devices = { /* smc-registered ib devices */ .mutex = __MUTEX_INITIALIZER(smc_ib_devices.mutex), .list = LIST_HEAD_INIT(smc_ib_devices.list), }; u8 local_systemid[SMC_SYSTEMID_LEN]; /* unique system identifier */ static int smc_ib_modify_qp_init(struct smc_link *lnk) { struct ib_qp_attr qp_attr; memset(&qp_attr, 0, sizeof(qp_attr)); qp_attr.qp_state = IB_QPS_INIT; qp_attr.pkey_index = 0; qp_attr.port_num = lnk->ibport; qp_attr.qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE; return ib_modify_qp(lnk->roce_qp, &qp_attr, IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_ACCESS_FLAGS | IB_QP_PORT); } static int smc_ib_modify_qp_rtr(struct smc_link *lnk) { enum ib_qp_attr_mask qp_attr_mask = IB_QP_STATE | IB_QP_AV | IB_QP_PATH_MTU | IB_QP_DEST_QPN | IB_QP_RQ_PSN | IB_QP_MAX_DEST_RD_ATOMIC | IB_QP_MIN_RNR_TIMER; struct ib_qp_attr qp_attr; memset(&qp_attr, 0, sizeof(qp_attr)); qp_attr.qp_state = IB_QPS_RTR; qp_attr.path_mtu = min(lnk->path_mtu, lnk->peer_mtu); qp_attr.ah_attr.type = RDMA_AH_ATTR_TYPE_ROCE; rdma_ah_set_port_num(&qp_attr.ah_attr, lnk->ibport); rdma_ah_set_grh(&qp_attr.ah_attr, NULL, 0, lnk->sgid_index, 1, 0); rdma_ah_set_dgid_raw(&qp_attr.ah_attr, lnk->peer_gid); memcpy(&qp_attr.ah_attr.roce.dmac, lnk->peer_mac, sizeof(lnk->peer_mac)); qp_attr.dest_qp_num = lnk->peer_qpn; qp_attr.rq_psn = lnk->peer_psn; /* starting receive packet seq # */ qp_attr.max_dest_rd_atomic = 1; /* max # of resources for incoming * requests */ qp_attr.min_rnr_timer = SMC_QP_MIN_RNR_TIMER; return ib_modify_qp(lnk->roce_qp, &qp_attr, qp_attr_mask); } int smc_ib_modify_qp_rts(struct smc_link *lnk) { struct ib_qp_attr qp_attr; memset(&qp_attr, 0, sizeof(qp_attr)); qp_attr.qp_state = IB_QPS_RTS; qp_attr.timeout = SMC_QP_TIMEOUT; /* local ack timeout */ qp_attr.retry_cnt = SMC_QP_RETRY_CNT; /* retry count */ qp_attr.rnr_retry = SMC_QP_RNR_RETRY; /* RNR retries, 7=infinite */ qp_attr.sq_psn = lnk->psn_initial; /* starting send packet seq # */ qp_attr.max_rd_atomic = 1; /* # of outstanding RDMA reads and * atomic ops allowed */ return ib_modify_qp(lnk->roce_qp, &qp_attr, IB_QP_STATE | IB_QP_TIMEOUT | IB_QP_RETRY_CNT | IB_QP_SQ_PSN | IB_QP_RNR_RETRY | IB_QP_MAX_QP_RD_ATOMIC); } int smc_ib_modify_qp_error(struct smc_link *lnk) { struct ib_qp_attr qp_attr; memset(&qp_attr, 0, sizeof(qp_attr)); qp_attr.qp_state = IB_QPS_ERR; return ib_modify_qp(lnk->roce_qp, &qp_attr, IB_QP_STATE); } int smc_ib_ready_link(struct smc_link *lnk) { struct smc_link_group *lgr = smc_get_lgr(lnk); int rc = 0; rc = smc_ib_modify_qp_init(lnk); if (rc) goto out; rc = smc_ib_modify_qp_rtr(lnk); if (rc) goto out; smc_wr_remember_qp_attr(lnk); rc = ib_req_notify_cq(lnk->smcibdev->roce_cq_recv, IB_CQ_SOLICITED_MASK); if (rc) goto out; rc = smc_wr_rx_post_init(lnk); if (rc) goto out; smc_wr_remember_qp_attr(lnk); if (lgr->role == SMC_SERV) { rc = smc_ib_modify_qp_rts(lnk); if (rc) goto out; smc_wr_remember_qp_attr(lnk); } out: return rc; } static int smc_ib_fill_mac(struct smc_ib_device *smcibdev, u8 ibport) { const struct ib_gid_attr *attr; int rc; attr = rdma_get_gid_attr(smcibdev->ibdev, ibport, 0); if (IS_ERR(attr)) return -ENODEV; rc = rdma_read_gid_l2_fields(attr, NULL, smcibdev->mac[ibport - 1]); rdma_put_gid_attr(attr); return rc; } /* Create an identifier unique for this instance of SMC-R. * The MAC-address of the first active registered IB device * plus a random 2-byte number is used to create this identifier. * This name is delivered to the peer during connection initialization. */ static inline void smc_ib_define_local_systemid(struct smc_ib_device *smcibdev, u8 ibport) { memcpy(&local_systemid[2], &smcibdev->mac[ibport - 1], sizeof(smcibdev->mac[ibport - 1])); } bool smc_ib_is_valid_local_systemid(void) { return !is_zero_ether_addr(&local_systemid[2]); } static void smc_ib_init_local_systemid(void) { get_random_bytes(&local_systemid[0], 2); } bool smc_ib_port_active(struct smc_ib_device *smcibdev, u8 ibport) { return smcibdev->pattr[ibport - 1].state == IB_PORT_ACTIVE; } /* determine the gid for an ib-device port and vlan id */ int smc_ib_determine_gid(struct smc_ib_device *smcibdev, u8 ibport, unsigned short vlan_id, u8 gid[], u8 *sgid_index) { const struct ib_gid_attr *attr; const struct net_device *ndev; int i; for (i = 0; i < smcibdev->pattr[ibport - 1].gid_tbl_len; i++) { attr = rdma_get_gid_attr(smcibdev->ibdev, ibport, i); if (IS_ERR(attr)) continue; rcu_read_lock(); ndev = rdma_read_gid_attr_ndev_rcu(attr); if (!IS_ERR(ndev) && ((!vlan_id && !is_vlan_dev(ndev)) || (vlan_id && is_vlan_dev(ndev) && vlan_dev_vlan_id(ndev) == vlan_id)) && attr->gid_type == IB_GID_TYPE_ROCE) { rcu_read_unlock(); if (gid) memcpy(gid, &attr->gid, SMC_GID_SIZE); if (sgid_index) *sgid_index = attr->index; rdma_put_gid_attr(attr); return 0; } rcu_read_unlock(); rdma_put_gid_attr(attr); } return -ENODEV; } static int smc_ib_remember_port_attr(struct smc_ib_device *smcibdev, u8 ibport) { int rc; memset(&smcibdev->pattr[ibport - 1], 0, sizeof(smcibdev->pattr[ibport - 1])); rc = ib_query_port(smcibdev->ibdev, ibport, &smcibdev->pattr[ibport - 1]); if (rc) goto out; /* the SMC protocol requires specification of the RoCE MAC address */ rc = smc_ib_fill_mac(smcibdev, ibport); if (rc) goto out; if (!smc_ib_is_valid_local_systemid() && smc_ib_port_active(smcibdev, ibport)) /* create unique system identifier */ smc_ib_define_local_systemid(smcibdev, ibport); out: return rc; } /* process context wrapper for might_sleep smc_ib_remember_port_attr */ static void smc_ib_port_event_work(struct work_struct *work) { struct smc_ib_device *smcibdev = container_of( work, struct smc_ib_device, port_event_work); u8 port_idx; for_each_set_bit(port_idx, &smcibdev->port_event_mask, SMC_MAX_PORTS) { smc_ib_remember_port_attr(smcibdev, port_idx + 1); clear_bit(port_idx, &smcibdev->port_event_mask); if (!smc_ib_port_active(smcibdev, port_idx + 1)) { set_bit(port_idx, smcibdev->ports_going_away); smcr_port_err(smcibdev, port_idx + 1); } else { clear_bit(port_idx, smcibdev->ports_going_away); smcr_port_add(smcibdev, port_idx + 1); } } } /* can be called in IRQ context */ static void smc_ib_global_event_handler(struct ib_event_handler *handler, struct ib_event *ibevent) { struct smc_ib_device *smcibdev; bool schedule = false; u8 port_idx; smcibdev = container_of(handler, struct smc_ib_device, event_handler); switch (ibevent->event) { case IB_EVENT_DEVICE_FATAL: /* terminate all ports on device */ for (port_idx = 0; port_idx < SMC_MAX_PORTS; port_idx++) { set_bit(port_idx, &smcibdev->port_event_mask); if (!test_and_set_bit(port_idx, smcibdev->ports_going_away)) schedule = true; } if (schedule) schedule_work(&smcibdev->port_event_work); break; case IB_EVENT_PORT_ACTIVE: port_idx = ibevent->element.port_num - 1; if (port_idx >= SMC_MAX_PORTS) break; set_bit(port_idx, &smcibdev->port_event_mask); if (test_and_clear_bit(port_idx, smcibdev->ports_going_away)) schedule_work(&smcibdev->port_event_work); break; case IB_EVENT_PORT_ERR: port_idx = ibevent->element.port_num - 1; if (port_idx >= SMC_MAX_PORTS) break; set_bit(port_idx, &smcibdev->port_event_mask); if (!test_and_set_bit(port_idx, smcibdev->ports_going_away)) schedule_work(&smcibdev->port_event_work); break; case IB_EVENT_GID_CHANGE: port_idx = ibevent->element.port_num - 1; if (port_idx >= SMC_MAX_PORTS) break; set_bit(port_idx, &smcibdev->port_event_mask); schedule_work(&smcibdev->port_event_work); break; default: break; } } void smc_ib_dealloc_protection_domain(struct smc_link *lnk) { if (lnk->roce_pd) ib_dealloc_pd(lnk->roce_pd); lnk->roce_pd = NULL; } int smc_ib_create_protection_domain(struct smc_link *lnk) { int rc; lnk->roce_pd = ib_alloc_pd(lnk->smcibdev->ibdev, 0); rc = PTR_ERR_OR_ZERO(lnk->roce_pd); if (IS_ERR(lnk->roce_pd)) lnk->roce_pd = NULL; return rc; } static bool smcr_diag_is_dev_critical(struct smc_lgr_list *smc_lgr, struct smc_ib_device *smcibdev) { struct smc_link_group *lgr; bool rc = false; int i; spin_lock_bh(&smc_lgr->lock); list_for_each_entry(lgr, &smc_lgr->list, list) { if (lgr->is_smcd) continue; for (i = 0; i < SMC_LINKS_PER_LGR_MAX; i++) { if (lgr->lnk[i].state == SMC_LNK_UNUSED || lgr->lnk[i].smcibdev != smcibdev) continue; if (lgr->type == SMC_LGR_SINGLE || lgr->type == SMC_LGR_ASYMMETRIC_LOCAL) { rc = true; goto out; } } } out: spin_unlock_bh(&smc_lgr->lock); return rc; } static int smc_nl_handle_dev_port(struct sk_buff *skb, struct ib_device *ibdev, struct smc_ib_device *smcibdev, int port) { char smc_pnet[SMC_MAX_PNETID_LEN + 1]; struct nlattr *port_attrs; unsigned char port_state; int lnk_count = 0; port_attrs = nla_nest_start(skb, SMC_NLA_DEV_PORT + port); if (!port_attrs) goto errout; if (nla_put_u8(skb, SMC_NLA_DEV_PORT_PNET_USR, smcibdev->pnetid_by_user[port])) goto errattr; memcpy(smc_pnet, &smcibdev->pnetid[port], SMC_MAX_PNETID_LEN); smc_pnet[SMC_MAX_PNETID_LEN] = 0; if (nla_put_string(skb, SMC_NLA_DEV_PORT_PNETID, smc_pnet)) goto errattr; if (nla_put_u32(skb, SMC_NLA_DEV_PORT_NETDEV, smcibdev->ndev_ifidx[port])) goto errattr; if (nla_put_u8(skb, SMC_NLA_DEV_PORT_VALID, 1)) goto errattr; port_state = smc_ib_port_active(smcibdev, port + 1); if (nla_put_u8(skb, SMC_NLA_DEV_PORT_STATE, port_state)) goto errattr; lnk_count = atomic_read(&smcibdev->lnk_cnt_by_port[port]); if (nla_put_u32(skb, SMC_NLA_DEV_PORT_LNK_CNT, lnk_count)) goto errattr; nla_nest_end(skb, port_attrs); return 0; errattr: nla_nest_cancel(skb, port_attrs); errout: return -EMSGSIZE; } static bool smc_nl_handle_pci_values(const struct smc_pci_dev *smc_pci_dev, struct sk_buff *skb) { if (nla_put_u32(skb, SMC_NLA_DEV_PCI_FID, smc_pci_dev->pci_fid)) return false; if (nla_put_u16(skb, SMC_NLA_DEV_PCI_CHID, smc_pci_dev->pci_pchid)) return false; if (nla_put_u16(skb, SMC_NLA_DEV_PCI_VENDOR, smc_pci_dev->pci_vendor)) return false; if (nla_put_u16(skb, SMC_NLA_DEV_PCI_DEVICE, smc_pci_dev->pci_device)) return false; if (nla_put_string(skb, SMC_NLA_DEV_PCI_ID, smc_pci_dev->pci_id)) return false; return true; } static int smc_nl_handle_smcr_dev(struct smc_ib_device *smcibdev, struct sk_buff *skb, struct netlink_callback *cb) { char smc_ibname[IB_DEVICE_NAME_MAX]; struct smc_pci_dev smc_pci_dev; struct pci_dev *pci_dev; unsigned char is_crit; struct nlattr *attrs; void *nlh; int i; nlh = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, &smc_gen_nl_family, NLM_F_MULTI, SMC_NETLINK_GET_DEV_SMCR); if (!nlh) goto errmsg; attrs = nla_nest_start(skb, SMC_GEN_DEV_SMCR); if (!attrs) goto errout; is_crit = smcr_diag_is_dev_critical(&smc_lgr_list, smcibdev); if (nla_put_u8(skb, SMC_NLA_DEV_IS_CRIT, is_crit)) goto errattr; if (smcibdev->ibdev->dev.parent) { memset(&smc_pci_dev, 0, sizeof(smc_pci_dev)); pci_dev = to_pci_dev(smcibdev->ibdev->dev.parent); smc_set_pci_values(pci_dev, &smc_pci_dev); if (!smc_nl_handle_pci_values(&smc_pci_dev, skb)) goto errattr; } snprintf(smc_ibname, sizeof(smc_ibname), "%s", smcibdev->ibdev->name); if (nla_put_string(skb, SMC_NLA_DEV_IB_NAME, smc_ibname)) goto errattr; for (i = 1; i <= SMC_MAX_PORTS; i++) { if (!rdma_is_port_valid(smcibdev->ibdev, i)) continue; if (smc_nl_handle_dev_port(skb, smcibdev->ibdev, smcibdev, i - 1)) goto errattr; } nla_nest_end(skb, attrs); genlmsg_end(skb, nlh); return 0; errattr: nla_nest_cancel(skb, attrs); errout: genlmsg_cancel(skb, nlh); errmsg: return -EMSGSIZE; } static void smc_nl_prep_smcr_dev(struct smc_ib_devices *dev_list, struct sk_buff *skb, struct netlink_callback *cb) { struct smc_nl_dmp_ctx *cb_ctx = smc_nl_dmp_ctx(cb); struct smc_ib_device *smcibdev; int snum = cb_ctx->pos[0]; int num = 0; mutex_lock(&dev_list->mutex); list_for_each_entry(smcibdev, &dev_list->list, list) { if (num < snum) goto next; if (smc_nl_handle_smcr_dev(smcibdev, skb, cb)) goto errout; next: num++; } errout: mutex_unlock(&dev_list->mutex); cb_ctx->pos[0] = num; } int smcr_nl_get_device(struct sk_buff *skb, struct netlink_callback *cb) { smc_nl_prep_smcr_dev(&smc_ib_devices, skb, cb); return skb->len; } static void smc_ib_qp_event_handler(struct ib_event *ibevent, void *priv) { struct smc_link *lnk = (struct smc_link *)priv; struct smc_ib_device *smcibdev = lnk->smcibdev; u8 port_idx; switch (ibevent->event) { case IB_EVENT_QP_FATAL: case IB_EVENT_QP_ACCESS_ERR: port_idx = ibevent->element.qp->port - 1; if (port_idx >= SMC_MAX_PORTS) break; set_bit(port_idx, &smcibdev->port_event_mask); if (!test_and_set_bit(port_idx, smcibdev->ports_going_away)) schedule_work(&smcibdev->port_event_work); break; default: break; } } void smc_ib_destroy_queue_pair(struct smc_link *lnk) { if (lnk->roce_qp) ib_destroy_qp(lnk->roce_qp); lnk->roce_qp = NULL; } /* create a queue pair within the protection domain for a link */ int smc_ib_create_queue_pair(struct smc_link *lnk) { struct ib_qp_init_attr qp_attr = { .event_handler = smc_ib_qp_event_handler, .qp_context = lnk, .send_cq = lnk->smcibdev->roce_cq_send, .recv_cq = lnk->smcibdev->roce_cq_recv, .srq = NULL, .cap = { /* include unsolicited rdma_writes as well, * there are max. 2 RDMA_WRITE per 1 WR_SEND */ .max_send_wr = SMC_WR_BUF_CNT * 3, .max_recv_wr = SMC_WR_BUF_CNT * 3, .max_send_sge = SMC_IB_MAX_SEND_SGE, .max_recv_sge = 1, }, .sq_sig_type = IB_SIGNAL_REQ_WR, .qp_type = IB_QPT_RC, }; int rc; lnk->roce_qp = ib_create_qp(lnk->roce_pd, &qp_attr); rc = PTR_ERR_OR_ZERO(lnk->roce_qp); if (IS_ERR(lnk->roce_qp)) lnk->roce_qp = NULL; else smc_wr_remember_qp_attr(lnk); return rc; } void smc_ib_put_memory_region(struct ib_mr *mr) { ib_dereg_mr(mr); } static int smc_ib_map_mr_sg(struct smc_buf_desc *buf_slot, u8 link_idx) { unsigned int offset = 0; int sg_num; /* map the largest prefix of a dma mapped SG list */ sg_num = ib_map_mr_sg(buf_slot->mr_rx[link_idx], buf_slot->sgt[link_idx].sgl, buf_slot->sgt[link_idx].orig_nents, &offset, PAGE_SIZE); return sg_num; } /* Allocate a memory region and map the dma mapped SG list of buf_slot */ int smc_ib_get_memory_region(struct ib_pd *pd, int access_flags, struct smc_buf_desc *buf_slot, u8 link_idx) { if (buf_slot->mr_rx[link_idx]) return 0; /* already done */ buf_slot->mr_rx[link_idx] = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG, 1 << buf_slot->order); if (IS_ERR(buf_slot->mr_rx[link_idx])) { int rc; rc = PTR_ERR(buf_slot->mr_rx[link_idx]); buf_slot->mr_rx[link_idx] = NULL; return rc; } if (smc_ib_map_mr_sg(buf_slot, link_idx) != 1) return -EINVAL; return 0; } /* synchronize buffer usage for cpu access */ void smc_ib_sync_sg_for_cpu(struct smc_link *lnk, struct smc_buf_desc *buf_slot, enum dma_data_direction data_direction) { struct scatterlist *sg; unsigned int i; /* for now there is just one DMA address */ for_each_sg(buf_slot->sgt[lnk->link_idx].sgl, sg, buf_slot->sgt[lnk->link_idx].nents, i) { if (!sg_dma_len(sg)) break; ib_dma_sync_single_for_cpu(lnk->smcibdev->ibdev, sg_dma_address(sg), sg_dma_len(sg), data_direction); } } /* synchronize buffer usage for device access */ void smc_ib_sync_sg_for_device(struct smc_link *lnk, struct smc_buf_desc *buf_slot, enum dma_data_direction data_direction) { struct scatterlist *sg; unsigned int i; /* for now there is just one DMA address */ for_each_sg(buf_slot->sgt[lnk->link_idx].sgl, sg, buf_slot->sgt[lnk->link_idx].nents, i) { if (!sg_dma_len(sg)) break; ib_dma_sync_single_for_device(lnk->smcibdev->ibdev, sg_dma_address(sg), sg_dma_len(sg), data_direction); } } /* Map a new TX or RX buffer SG-table to DMA */ int smc_ib_buf_map_sg(struct smc_link *lnk, struct smc_buf_desc *buf_slot, enum dma_data_direction data_direction) { int mapped_nents; mapped_nents = ib_dma_map_sg(lnk->smcibdev->ibdev, buf_slot->sgt[lnk->link_idx].sgl, buf_slot->sgt[lnk->link_idx].orig_nents, data_direction); if (!mapped_nents) return -ENOMEM; return mapped_nents; } void smc_ib_buf_unmap_sg(struct smc_link *lnk, struct smc_buf_desc *buf_slot, enum dma_data_direction data_direction) { if (!buf_slot->sgt[lnk->link_idx].sgl->dma_address) return; /* already unmapped */ ib_dma_unmap_sg(lnk->smcibdev->ibdev, buf_slot->sgt[lnk->link_idx].sgl, buf_slot->sgt[lnk->link_idx].orig_nents, data_direction); buf_slot->sgt[lnk->link_idx].sgl->dma_address = 0; } long smc_ib_setup_per_ibdev(struct smc_ib_device *smcibdev) { struct ib_cq_init_attr cqattr = { .cqe = SMC_MAX_CQE, .comp_vector = 0 }; int cqe_size_order, smc_order; long rc; mutex_lock(&smcibdev->mutex); rc = 0; if (smcibdev->initialized) goto out; /* the calculated number of cq entries fits to mlx5 cq allocation */ cqe_size_order = cache_line_size() == 128 ? 7 : 6; smc_order = MAX_ORDER - cqe_size_order - 1; if (SMC_MAX_CQE + 2 > (0x00000001 << smc_order) * PAGE_SIZE) cqattr.cqe = (0x00000001 << smc_order) * PAGE_SIZE - 2; smcibdev->roce_cq_send = ib_create_cq(smcibdev->ibdev, smc_wr_tx_cq_handler, NULL, smcibdev, &cqattr); rc = PTR_ERR_OR_ZERO(smcibdev->roce_cq_send); if (IS_ERR(smcibdev->roce_cq_send)) { smcibdev->roce_cq_send = NULL; goto out; } smcibdev->roce_cq_recv = ib_create_cq(smcibdev->ibdev, smc_wr_rx_cq_handler, NULL, smcibdev, &cqattr); rc = PTR_ERR_OR_ZERO(smcibdev->roce_cq_recv); if (IS_ERR(smcibdev->roce_cq_recv)) { smcibdev->roce_cq_recv = NULL; goto err; } smc_wr_add_dev(smcibdev); smcibdev->initialized = 1; goto out; err: ib_destroy_cq(smcibdev->roce_cq_send); out: mutex_unlock(&smcibdev->mutex); return rc; } static void smc_ib_cleanup_per_ibdev(struct smc_ib_device *smcibdev) { mutex_lock(&smcibdev->mutex); if (!smcibdev->initialized) goto out; smcibdev->initialized = 0; ib_destroy_cq(smcibdev->roce_cq_recv); ib_destroy_cq(smcibdev->roce_cq_send); smc_wr_remove_dev(smcibdev); out: mutex_unlock(&smcibdev->mutex); } static struct ib_client smc_ib_client; static void smc_copy_netdev_ifindex(struct smc_ib_device *smcibdev, int port) { struct ib_device *ibdev = smcibdev->ibdev; struct net_device *ndev; if (!ibdev->ops.get_netdev) return; ndev = ibdev->ops.get_netdev(ibdev, port + 1); if (ndev) { smcibdev->ndev_ifidx[port] = ndev->ifindex; dev_put(ndev); } } void smc_ib_ndev_change(struct net_device *ndev, unsigned long event) { struct smc_ib_device *smcibdev; struct ib_device *libdev; struct net_device *lndev; u8 port_cnt; int i; mutex_lock(&smc_ib_devices.mutex); list_for_each_entry(smcibdev, &smc_ib_devices.list, list) { port_cnt = smcibdev->ibdev->phys_port_cnt; for (i = 0; i < min_t(size_t, port_cnt, SMC_MAX_PORTS); i++) { libdev = smcibdev->ibdev; if (!libdev->ops.get_netdev) continue; lndev = libdev->ops.get_netdev(libdev, i + 1); dev_put(lndev); if (lndev != ndev) continue; if (event == NETDEV_REGISTER) smcibdev->ndev_ifidx[i] = ndev->ifindex; if (event == NETDEV_UNREGISTER) smcibdev->ndev_ifidx[i] = 0; } } mutex_unlock(&smc_ib_devices.mutex); } /* callback function for ib_register_client() */ static int smc_ib_add_dev(struct ib_device *ibdev) { struct smc_ib_device *smcibdev; u8 port_cnt; int i; if (ibdev->node_type != RDMA_NODE_IB_CA) return -EOPNOTSUPP; smcibdev = kzalloc(sizeof(*smcibdev), GFP_KERNEL); if (!smcibdev) return -ENOMEM; smcibdev->ibdev = ibdev; INIT_WORK(&smcibdev->port_event_work, smc_ib_port_event_work); atomic_set(&smcibdev->lnk_cnt, 0); init_waitqueue_head(&smcibdev->lnks_deleted); mutex_init(&smcibdev->mutex); mutex_lock(&smc_ib_devices.mutex); list_add_tail(&smcibdev->list, &smc_ib_devices.list); mutex_unlock(&smc_ib_devices.mutex); ib_set_client_data(ibdev, &smc_ib_client, smcibdev); INIT_IB_EVENT_HANDLER(&smcibdev->event_handler, smcibdev->ibdev, smc_ib_global_event_handler); ib_register_event_handler(&smcibdev->event_handler); /* trigger reading of the port attributes */ port_cnt = smcibdev->ibdev->phys_port_cnt; pr_warn_ratelimited("smc: adding ib device %s with port count %d\n", smcibdev->ibdev->name, port_cnt); for (i = 0; i < min_t(size_t, port_cnt, SMC_MAX_PORTS); i++) { set_bit(i, &smcibdev->port_event_mask); /* determine pnetids of the port */ if (smc_pnetid_by_dev_port(ibdev->dev.parent, i, smcibdev->pnetid[i])) smc_pnetid_by_table_ib(smcibdev, i + 1); smc_copy_netdev_ifindex(smcibdev, i); pr_warn_ratelimited("smc: ib device %s port %d has pnetid " "%.16s%s\n", smcibdev->ibdev->name, i + 1, smcibdev->pnetid[i], smcibdev->pnetid_by_user[i] ? " (user defined)" : ""); } schedule_work(&smcibdev->port_event_work); return 0; } /* callback function for ib_unregister_client() */ static void smc_ib_remove_dev(struct ib_device *ibdev, void *client_data) { struct smc_ib_device *smcibdev = client_data; mutex_lock(&smc_ib_devices.mutex); list_del_init(&smcibdev->list); /* remove from smc_ib_devices */ mutex_unlock(&smc_ib_devices.mutex); pr_warn_ratelimited("smc: removing ib device %s\n", smcibdev->ibdev->name); smc_smcr_terminate_all(smcibdev); smc_ib_cleanup_per_ibdev(smcibdev); ib_unregister_event_handler(&smcibdev->event_handler); cancel_work_sync(&smcibdev->port_event_work); kfree(smcibdev); } static struct ib_client smc_ib_client = { .name = "smc_ib", .add = smc_ib_add_dev, .remove = smc_ib_remove_dev, }; int __init smc_ib_register_client(void) { smc_ib_init_local_systemid(); return ib_register_client(&smc_ib_client); } void smc_ib_unregister_client(void) { ib_unregister_client(&smc_ib_client); } |
10406 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_CPUFEATURE_H #define _ASM_X86_CPUFEATURE_H #include <asm/processor.h> #if defined(__KERNEL__) && !defined(__ASSEMBLY__) #include <asm/asm.h> #include <linux/bitops.h> #include <asm/alternative.h> enum cpuid_leafs { CPUID_1_EDX = 0, CPUID_8000_0001_EDX, CPUID_8086_0001_EDX, CPUID_LNX_1, CPUID_1_ECX, CPUID_C000_0001_EDX, CPUID_8000_0001_ECX, CPUID_LNX_2, CPUID_LNX_3, CPUID_7_0_EBX, CPUID_D_1_EAX, CPUID_LNX_4, CPUID_7_1_EAX, CPUID_8000_0008_EBX, CPUID_6_EAX, CPUID_8000_000A_EDX, CPUID_7_ECX, CPUID_8000_0007_EBX, CPUID_7_EDX, CPUID_8000_001F_EAX, CPUID_8000_0021_EAX, CPUID_LNX_5, NR_CPUID_WORDS, }; #ifdef CONFIG_X86_FEATURE_NAMES extern const char * const x86_cap_flags[NCAPINTS*32]; extern const char * const x86_power_flags[32]; #define X86_CAP_FMT "%s" #define x86_cap_flag(flag) x86_cap_flags[flag] #else #define X86_CAP_FMT "%d:%d" #define x86_cap_flag(flag) ((flag) >> 5), ((flag) & 31) #endif /* * In order to save room, we index into this array by doing * X86_BUG_<name> - NCAPINTS*32. */ extern const char * const x86_bug_flags[NBUGINTS*32]; #define test_cpu_cap(c, bit) \ arch_test_bit(bit, (unsigned long *)((c)->x86_capability)) /* * There are 32 bits/features in each mask word. The high bits * (selected with (bit>>5) give us the word number and the low 5 * bits give us the bit/feature number inside the word. * (1UL<<((bit)&31) gives us a mask for the feature_bit so we can * see if it is set in the mask word. */ #define CHECK_BIT_IN_MASK_WORD(maskname, word, bit) \ (((bit)>>5)==(word) && (1UL<<((bit)&31) & maskname##word )) /* * {REQUIRED,DISABLED}_MASK_CHECK below may seem duplicated with the * following BUILD_BUG_ON_ZERO() check but when NCAPINTS gets changed, all * header macros which use NCAPINTS need to be changed. The duplicated macro * use causes the compiler to issue errors for all headers so that all usage * sites can be corrected. */ #define REQUIRED_MASK_BIT_SET(feature_bit) \ ( CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 0, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 1, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 2, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 3, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 4, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 5, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 6, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 7, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 8, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 9, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 10, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 11, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 12, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 13, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 14, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 15, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 16, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 17, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 18, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 19, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 20, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(REQUIRED_MASK, 21, feature_bit) || \ REQUIRED_MASK_CHECK || \ BUILD_BUG_ON_ZERO(NCAPINTS != 22)) #define DISABLED_MASK_BIT_SET(feature_bit) \ ( CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 0, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 1, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 2, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 3, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 4, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 5, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 6, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 7, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 8, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 9, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 10, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 11, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 12, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 13, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 14, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 15, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 16, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 17, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 18, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 19, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 20, feature_bit) || \ CHECK_BIT_IN_MASK_WORD(DISABLED_MASK, 21, feature_bit) || \ DISABLED_MASK_CHECK || \ BUILD_BUG_ON_ZERO(NCAPINTS != 22)) #define cpu_has(c, bit) \ (__builtin_constant_p(bit) && REQUIRED_MASK_BIT_SET(bit) ? 1 : \ test_cpu_cap(c, bit)) #define this_cpu_has(bit) \ (__builtin_constant_p(bit) && REQUIRED_MASK_BIT_SET(bit) ? 1 : \ x86_this_cpu_test_bit(bit, \ (unsigned long __percpu *)&cpu_info.x86_capability)) /* * This macro is for detection of features which need kernel * infrastructure to be used. It may *not* directly test the CPU * itself. Use the cpu_has() family if you want true runtime * testing of CPU features, like in hypervisor code where you are * supporting a possible guest feature where host support for it * is not relevant. */ #define cpu_feature_enabled(bit) \ (__builtin_constant_p(bit) && DISABLED_MASK_BIT_SET(bit) ? 0 : static_cpu_has(bit)) #define boot_cpu_has(bit) cpu_has(&boot_cpu_data, bit) #define set_cpu_cap(c, bit) set_bit(bit, (unsigned long *)((c)->x86_capability)) extern void setup_clear_cpu_cap(unsigned int bit); extern void clear_cpu_cap(struct cpuinfo_x86 *c, unsigned int bit); #define setup_force_cpu_cap(bit) do { \ set_cpu_cap(&boot_cpu_data, bit); \ set_bit(bit, (unsigned long *)cpu_caps_set); \ } while (0) #define setup_force_cpu_bug(bit) setup_force_cpu_cap(bit) #if defined(__clang__) && !defined(CONFIG_CC_HAS_ASM_GOTO) /* * Workaround for the sake of BPF compilation which utilizes kernel * headers, but clang does not support ASM GOTO and fails the build. */ #ifndef __BPF_TRACING__ #warning "Compiler lacks ASM_GOTO support. Add -D __BPF_TRACING__ to your compiler arguments" #endif #define static_cpu_has(bit) boot_cpu_has(bit) #else /* * Static testing of CPU features. Used the same as boot_cpu_has(). It * statically patches the target code for additional performance. Use * static_cpu_has() only in fast paths, where every cycle counts. Which * means that the boot_cpu_has() variant is already fast enough for the * majority of cases and you should stick to using it as it is generally * only two instructions: a RIP-relative MOV and a TEST. */ static __always_inline bool _static_cpu_has(u16 bit) { asm_volatile_goto( ALTERNATIVE_TERNARY("jmp 6f", %P[feature], "", "jmp %l[t_no]") ".section .altinstr_aux,\"ax\"\n" "6:\n" " testb %[bitnum],%[cap_byte]\n" " jnz %l[t_yes]\n" " jmp %l[t_no]\n" ".previous\n" : : [feature] "i" (bit), [bitnum] "i" (1 << (bit & 7)), [cap_byte] "m" (((const char *)boot_cpu_data.x86_capability)[bit >> 3]) : : t_yes, t_no); t_yes: return true; t_no: return false; } #define static_cpu_has(bit) \ ( \ __builtin_constant_p(boot_cpu_has(bit)) ? \ boot_cpu_has(bit) : \ _static_cpu_has(bit) \ ) #endif #define cpu_has_bug(c, bit) cpu_has(c, (bit)) #define set_cpu_bug(c, bit) set_cpu_cap(c, (bit)) #define clear_cpu_bug(c, bit) clear_cpu_cap(c, (bit)) #define static_cpu_has_bug(bit) static_cpu_has((bit)) #define boot_cpu_has_bug(bit) cpu_has_bug(&boot_cpu_data, (bit)) #define boot_cpu_set_bug(bit) set_cpu_cap(&boot_cpu_data, (bit)) #define MAX_CPU_FEATURES (NCAPINTS * 32) #define cpu_have_feature boot_cpu_has #define CPU_FEATURE_TYPEFMT "x86,ven%04Xfam%04Xmod%04X" #define CPU_FEATURE_TYPEVAL boot_cpu_data.x86_vendor, boot_cpu_data.x86, \ boot_cpu_data.x86_model #endif /* defined(__KERNEL__) && !defined(__ASSEMBLY__) */ #endif /* _ASM_X86_CPUFEATURE_H */ |
181 182 411 268 182 182 139 139 406 27 988 948 411 138 406 27 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 | // SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018, Intel Corporation. */ /* A common module to handle registrations and notifications for paravirtual * drivers to enable accelerated datapath and support VF live migration. * * The notifier and event handling code is based on netvsc driver. */ #include <linux/module.h> #include <linux/etherdevice.h> #include <uapi/linux/if_arp.h> #include <linux/rtnetlink.h> #include <linux/if_vlan.h> #include <net/failover.h> static LIST_HEAD(failover_list); static DEFINE_SPINLOCK(failover_lock); static struct net_device *failover_get_bymac(u8 *mac, struct failover_ops **ops) { struct net_device *failover_dev; struct failover *failover; spin_lock(&failover_lock); list_for_each_entry(failover, &failover_list, list) { failover_dev = rtnl_dereference(failover->failover_dev); if (ether_addr_equal(failover_dev->perm_addr, mac)) { *ops = rtnl_dereference(failover->ops); spin_unlock(&failover_lock); return failover_dev; } } spin_unlock(&failover_lock); return NULL; } /** * failover_slave_register - Register a slave netdev * * @slave_dev: slave netdev that is being registered * * Registers a slave device to a failover instance. Only ethernet devices * are supported. */ static int failover_slave_register(struct net_device *slave_dev) { struct netdev_lag_upper_info lag_upper_info; struct net_device *failover_dev; struct failover_ops *fops; int err; if (slave_dev->type != ARPHRD_ETHER) goto done; ASSERT_RTNL(); failover_dev = failover_get_bymac(slave_dev->perm_addr, &fops); if (!failover_dev) goto done; if (fops && fops->slave_pre_register && fops->slave_pre_register(slave_dev, failover_dev)) goto done; err = netdev_rx_handler_register(slave_dev, fops->slave_handle_frame, failover_dev); if (err) { netdev_err(slave_dev, "can not register failover rx handler (err = %d)\n", err); goto done; } lag_upper_info.tx_type = NETDEV_LAG_TX_TYPE_ACTIVEBACKUP; err = netdev_master_upper_dev_link(slave_dev, failover_dev, NULL, &lag_upper_info, NULL); if (err) { netdev_err(slave_dev, "can not set failover device %s (err = %d)\n", failover_dev->name, err); goto err_upper_link; } slave_dev->priv_flags |= (IFF_FAILOVER_SLAVE | IFF_LIVE_RENAME_OK); if (fops && fops->slave_register && !fops->slave_register(slave_dev, failover_dev)) return NOTIFY_OK; netdev_upper_dev_unlink(slave_dev, failover_dev); slave_dev->priv_flags &= ~(IFF_FAILOVER_SLAVE | IFF_LIVE_RENAME_OK); err_upper_link: netdev_rx_handler_unregister(slave_dev); done: return NOTIFY_DONE; } /** * failover_slave_unregister - Unregister a slave netdev * * @slave_dev: slave netdev that is being unregistered * * Unregisters a slave device from a failover instance. */ int failover_slave_unregister(struct net_device *slave_dev) { struct net_device *failover_dev; struct failover_ops *fops; if (!netif_is_failover_slave(slave_dev)) goto done; ASSERT_RTNL(); failover_dev = failover_get_bymac(slave_dev->perm_addr, &fops); if (!failover_dev) goto done; if (fops && fops->slave_pre_unregister && fops->slave_pre_unregister(slave_dev, failover_dev)) goto done; netdev_rx_handler_unregister(slave_dev); netdev_upper_dev_unlink(slave_dev, failover_dev); slave_dev->priv_flags &= ~(IFF_FAILOVER_SLAVE | IFF_LIVE_RENAME_OK); if (fops && fops->slave_unregister && !fops->slave_unregister(slave_dev, failover_dev)) return NOTIFY_OK; done: return NOTIFY_DONE; } EXPORT_SYMBOL_GPL(failover_slave_unregister); static int failover_slave_link_change(struct net_device *slave_dev) { struct net_device *failover_dev; struct failover_ops *fops; if (!netif_is_failover_slave(slave_dev)) goto done; ASSERT_RTNL(); failover_dev = failover_get_bymac(slave_dev->perm_addr, &fops); if (!failover_dev) goto done; if (!netif_running(failover_dev)) goto done; if (fops && fops->slave_link_change && !fops->slave_link_change(slave_dev, failover_dev)) return NOTIFY_OK; done: return NOTIFY_DONE; } static int failover_slave_name_change(struct net_device *slave_dev) { struct net_device *failover_dev; struct failover_ops *fops; if (!netif_is_failover_slave(slave_dev)) goto done; ASSERT_RTNL(); failover_dev = failover_get_bymac(slave_dev->perm_addr, &fops); if (!failover_dev) goto done; if (!netif_running(failover_dev)) goto done; if (fops && fops->slave_name_change && !fops->slave_name_change(slave_dev, failover_dev)) return NOTIFY_OK; done: return NOTIFY_DONE; } static int failover_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); /* Skip parent events */ if (netif_is_failover(event_dev)) return NOTIFY_DONE; switch (event) { case NETDEV_REGISTER: return failover_slave_register(event_dev); case NETDEV_UNREGISTER: return failover_slave_unregister(event_dev); case NETDEV_UP: case NETDEV_DOWN: case NETDEV_CHANGE: return failover_slave_link_change(event_dev); case NETDEV_CHANGENAME: return failover_slave_name_change(event_dev); default: return NOTIFY_DONE; } } static struct notifier_block failover_notifier = { .notifier_call = failover_event, }; static void failover_existing_slave_register(struct net_device *failover_dev) { struct net *net = dev_net(failover_dev); struct net_device *dev; rtnl_lock(); for_each_netdev(net, dev) { if (netif_is_failover(dev)) continue; if (ether_addr_equal(failover_dev->perm_addr, dev->perm_addr)) failover_slave_register(dev); } rtnl_unlock(); } /** * failover_register - Register a failover instance * * @dev: failover netdev * @ops: failover ops * * Allocate and register a failover instance for a failover netdev. ops * provides handlers for slave device register/unregister/link change/ * name change events. * * Return: pointer to failover instance */ struct failover *failover_register(struct net_device *dev, struct failover_ops *ops) { struct failover *failover; if (dev->type != ARPHRD_ETHER) return ERR_PTR(-EINVAL); failover = kzalloc(sizeof(*failover), GFP_KERNEL); if (!failover) return ERR_PTR(-ENOMEM); rcu_assign_pointer(failover->ops, ops); dev_hold(dev); dev->priv_flags |= IFF_FAILOVER; rcu_assign_pointer(failover->failover_dev, dev); spin_lock(&failover_lock); list_add_tail(&failover->list, &failover_list); spin_unlock(&failover_lock); netdev_info(dev, "failover master:%s registered\n", dev->name); failover_existing_slave_register(dev); return failover; } EXPORT_SYMBOL_GPL(failover_register); /** * failover_unregister - Unregister a failover instance * * @failover: pointer to failover instance * * Unregisters and frees a failover instance. */ void failover_unregister(struct failover *failover) { struct net_device *failover_dev; failover_dev = rcu_dereference(failover->failover_dev); netdev_info(failover_dev, "failover master:%s unregistered\n", failover_dev->name); failover_dev->priv_flags &= ~IFF_FAILOVER; dev_put(failover_dev); spin_lock(&failover_lock); list_del(&failover->list); spin_unlock(&failover_lock); kfree(failover); } EXPORT_SYMBOL_GPL(failover_unregister); static __init int failover_init(void) { register_netdevice_notifier(&failover_notifier); return 0; } module_init(failover_init); static __exit void failover_exit(void) { unregister_netdevice_notifier(&failover_notifier); } module_exit(failover_exit); MODULE_DESCRIPTION("Generic failover infrastructure/interface"); MODULE_LICENSE("GPL v2"); |
1878 1883 489 75 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_VMSTAT_H #define _LINUX_VMSTAT_H #include <linux/types.h> #include <linux/percpu.h> #include <linux/mmzone.h> #include <linux/vm_event_item.h> #include <linux/atomic.h> #include <linux/static_key.h> #include <linux/mmdebug.h> extern int sysctl_stat_interval; #ifdef CONFIG_NUMA #define ENABLE_NUMA_STAT 1 #define DISABLE_NUMA_STAT 0 extern int sysctl_vm_numa_stat; DECLARE_STATIC_KEY_TRUE(vm_numa_stat_key); int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write, void *buffer, size_t *length, loff_t *ppos); #endif struct reclaim_stat { unsigned nr_dirty; unsigned nr_unqueued_dirty; unsigned nr_congested; unsigned nr_writeback; unsigned nr_immediate; unsigned nr_pageout; unsigned nr_activate[ANON_AND_FILE]; unsigned nr_ref_keep; unsigned nr_unmap_fail; unsigned nr_lazyfree_fail; }; enum writeback_stat_item { NR_DIRTY_THRESHOLD, NR_DIRTY_BG_THRESHOLD, NR_VM_WRITEBACK_STAT_ITEMS, }; #ifdef CONFIG_VM_EVENT_COUNTERS /* * Light weight per cpu counter implementation. * * Counters should only be incremented and no critical kernel component * should rely on the counter values. * * Counters are handled completely inline. On many platforms the code * generated will simply be the increment of a global address. */ struct vm_event_state { unsigned long event[NR_VM_EVENT_ITEMS]; }; DECLARE_PER_CPU(struct vm_event_state, vm_event_states); /* * vm counters are allowed to be racy. Use raw_cpu_ops to avoid the * local_irq_disable overhead. */ static inline void __count_vm_event(enum vm_event_item item) { raw_cpu_inc(vm_event_states.event[item]); } static inline void count_vm_event(enum vm_event_item item) { this_cpu_inc(vm_event_states.event[item]); } static inline void __count_vm_events(enum vm_event_item item, long delta) { raw_cpu_add(vm_event_states.event[item], delta); } static inline void count_vm_events(enum vm_event_item item, long delta) { this_cpu_add(vm_event_states.event[item], delta); } extern void all_vm_events(unsigned long *); extern void vm_events_fold_cpu(int cpu); #else /* Disable counters */ static inline void count_vm_event(enum vm_event_item item) { } static inline void count_vm_events(enum vm_event_item item, long delta) { } static inline void __count_vm_event(enum vm_event_item item) { } static inline void __count_vm_events(enum vm_event_item item, long delta) { } static inline void all_vm_events(unsigned long *ret) { } static inline void vm_events_fold_cpu(int cpu) { } #endif /* CONFIG_VM_EVENT_COUNTERS */ #ifdef CONFIG_NUMA_BALANCING #define count_vm_numa_event(x) count_vm_event(x) #define count_vm_numa_events(x, y) count_vm_events(x, y) #else #define count_vm_numa_event(x) do {} while (0) #define count_vm_numa_events(x, y) do { (void)(y); } while (0) #endif /* CONFIG_NUMA_BALANCING */ #ifdef CONFIG_DEBUG_TLBFLUSH #define count_vm_tlb_event(x) count_vm_event(x) #define count_vm_tlb_events(x, y) count_vm_events(x, y) #else #define count_vm_tlb_event(x) do {} while (0) #define count_vm_tlb_events(x, y) do { (void)(y); } while (0) #endif #ifdef CONFIG_DEBUG_VM_VMACACHE #define count_vm_vmacache_event(x) count_vm_event(x) #else #define count_vm_vmacache_event(x) do {} while (0) #endif #define __count_zid_vm_events(item, zid, delta) \ __count_vm_events(item##_NORMAL - ZONE_NORMAL + zid, delta) /* * Zone and node-based page accounting with per cpu differentials. */ extern atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS]; extern atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS]; extern atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; #ifdef CONFIG_NUMA static inline void zone_numa_event_add(long x, struct zone *zone, enum numa_stat_item item) { atomic_long_add(x, &zone->vm_numa_event[item]); atomic_long_add(x, &vm_numa_event[item]); } static inline unsigned long zone_numa_event_state(struct zone *zone, enum numa_stat_item item) { return atomic_long_read(&zone->vm_numa_event[item]); } static inline unsigned long global_numa_event_state(enum numa_stat_item item) { return atomic_long_read(&vm_numa_event[item]); } #endif /* CONFIG_NUMA */ static inline void zone_page_state_add(long x, struct zone *zone, enum zone_stat_item item) { atomic_long_add(x, &zone->vm_stat[item]); atomic_long_add(x, &vm_zone_stat[item]); } static inline void node_page_state_add(long x, struct pglist_data *pgdat, enum node_stat_item item) { atomic_long_add(x, &pgdat->vm_stat[item]); atomic_long_add(x, &vm_node_stat[item]); } static inline unsigned long global_zone_page_state(enum zone_stat_item item) { long x = atomic_long_read(&vm_zone_stat[item]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } static inline unsigned long global_node_page_state_pages(enum node_stat_item item) { long x = atomic_long_read(&vm_node_stat[item]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } static inline unsigned long global_node_page_state(enum node_stat_item item) { VM_WARN_ON_ONCE(vmstat_item_in_bytes(item)); return global_node_page_state_pages(item); } static inline unsigned long zone_page_state(struct zone *zone, enum zone_stat_item item) { long x = atomic_long_read(&zone->vm_stat[item]); #ifdef CONFIG_SMP if (x < 0) x = 0; #endif return x; } /* * More accurate version that also considers the currently pending * deltas. For that we need to loop over all cpus to find the current * deltas. There is no synchronization so the result cannot be * exactly accurate either. */ static inline unsigned long zone_page_state_snapshot(struct zone *zone, enum zone_stat_item item) { long x = atomic_long_read(&zone->vm_stat[item]); #ifdef CONFIG_SMP int cpu; for_each_online_cpu(cpu) x += per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_stat_diff[item]; if (x < 0) x = 0; #endif return x; } #ifdef CONFIG_NUMA /* See __count_vm_event comment on why raw_cpu_inc is used. */ static inline void __count_numa_event(struct zone *zone, enum numa_stat_item item) { struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats; raw_cpu_inc(pzstats->vm_numa_event[item]); } static inline void __count_numa_events(struct zone *zone, enum numa_stat_item item, long delta) { struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats; raw_cpu_add(pzstats->vm_numa_event[item], delta); } extern unsigned long sum_zone_node_page_state(int node, enum zone_stat_item item); extern unsigned long sum_zone_numa_event_state(int node, enum numa_stat_item item); extern unsigned long node_page_state(struct pglist_data *pgdat, enum node_stat_item item); extern unsigned long node_page_state_pages(struct pglist_data *pgdat, enum node_stat_item item); extern void fold_vm_numa_events(void); #else #define sum_zone_node_page_state(node, item) global_zone_page_state(item) #define node_page_state(node, item) global_node_page_state(item) #define node_page_state_pages(node, item) global_node_page_state_pages(item) static inline void fold_vm_numa_events(void) { } #endif /* CONFIG_NUMA */ #ifdef CONFIG_SMP void __mod_zone_page_state(struct zone *, enum zone_stat_item item, long); void __inc_zone_page_state(struct page *, enum zone_stat_item); void __dec_zone_page_state(struct page *, enum zone_stat_item); void __mod_node_page_state(struct pglist_data *, enum node_stat_item item, long); void __inc_node_page_state(struct page *, enum node_stat_item); void __dec_node_page_state(struct page *, enum node_stat_item); void mod_zone_page_state(struct zone *, enum zone_stat_item, long); void inc_zone_page_state(struct page *, enum zone_stat_item); void dec_zone_page_state(struct page *, enum zone_stat_item); void mod_node_page_state(struct pglist_data *, enum node_stat_item, long); void inc_node_page_state(struct page *, enum node_stat_item); void dec_node_page_state(struct page *, enum node_stat_item); extern void inc_node_state(struct pglist_data *, enum node_stat_item); extern void __inc_zone_state(struct zone *, enum zone_stat_item); extern void __inc_node_state(struct pglist_data *, enum node_stat_item); extern void dec_zone_state(struct zone *, enum zone_stat_item); extern void __dec_zone_state(struct zone *, enum zone_stat_item); extern void __dec_node_state(struct pglist_data *, enum node_stat_item); void quiet_vmstat(void); void cpu_vm_stats_fold(int cpu); void refresh_zone_stat_thresholds(void); struct ctl_table; int vmstat_refresh(struct ctl_table *, int write, void *buffer, size_t *lenp, loff_t *ppos); void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *); int calculate_pressure_threshold(struct zone *zone); int calculate_normal_threshold(struct zone *zone); void set_pgdat_percpu_threshold(pg_data_t *pgdat, int (*calculate_pressure)(struct zone *)); #else /* CONFIG_SMP */ /* * We do not maintain differentials in a single processor configuration. * The functions directly modify the zone and global counters. */ static inline void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, long delta) { zone_page_state_add(delta, zone, item); } static inline void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, int delta) { if (vmstat_item_in_bytes(item)) { /* * Only cgroups use subpage accounting right now; at * the global level, these items still change in * multiples of whole pages. Store them as pages * internally to keep the per-cpu counters compact. */ VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); delta >>= PAGE_SHIFT; } node_page_state_add(delta, pgdat, item); } static inline void __inc_zone_state(struct zone *zone, enum zone_stat_item item) { atomic_long_inc(&zone->vm_stat[item]); atomic_long_inc(&vm_zone_stat[item]); } static inline void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item) { atomic_long_inc(&pgdat->vm_stat[item]); atomic_long_inc(&vm_node_stat[item]); } static inline void __dec_zone_state(struct zone *zone, enum zone_stat_item item) { atomic_long_dec(&zone->vm_stat[item]); atomic_long_dec(&vm_zone_stat[item]); } static inline void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item) { atomic_long_dec(&pgdat->vm_stat[item]); atomic_long_dec(&vm_node_stat[item]); } static inline void __inc_zone_page_state(struct page *page, enum zone_stat_item item) { __inc_zone_state(page_zone(page), item); } static inline void __inc_node_page_state(struct page *page, enum node_stat_item item) { __inc_node_state(page_pgdat(page), item); } static inline void __dec_zone_page_state(struct page *page, enum zone_stat_item item) { __dec_zone_state(page_zone(page), item); } static inline void __dec_node_page_state(struct page *page, enum node_stat_item item) { __dec_node_state(page_pgdat(page), item); } /* * We only use atomic operations to update counters. So there is no need to * disable interrupts. */ #define inc_zone_page_state __inc_zone_page_state #define dec_zone_page_state __dec_zone_page_state #define mod_zone_page_state __mod_zone_page_state #define inc_node_page_state __inc_node_page_state #define dec_node_page_state __dec_node_page_state #define mod_node_page_state __mod_node_page_state #define inc_zone_state __inc_zone_state #define inc_node_state __inc_node_state #define dec_zone_state __dec_zone_state #define set_pgdat_percpu_threshold(pgdat, callback) { } static inline void refresh_zone_stat_thresholds(void) { } static inline void cpu_vm_stats_fold(int cpu) { } static inline void quiet_vmstat(void) { } static inline void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats) { } #endif /* CONFIG_SMP */ static inline void __mod_zone_freepage_state(struct zone *zone, int nr_pages, int migratetype) { __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); if (is_migrate_cma(migratetype)) __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); } extern const char * const vmstat_text[]; static inline const char *zone_stat_name(enum zone_stat_item item) { return vmstat_text[item]; } #ifdef CONFIG_NUMA static inline const char *numa_stat_name(enum numa_stat_item item) { return vmstat_text[NR_VM_ZONE_STAT_ITEMS + item]; } #endif /* CONFIG_NUMA */ static inline const char *node_stat_name(enum node_stat_item item) { return vmstat_text[NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + item]; } static inline const char *lru_list_name(enum lru_list lru) { return node_stat_name(NR_LRU_BASE + (enum node_stat_item)lru) + 3; // skip "nr_" } static inline const char *writeback_stat_name(enum writeback_stat_item item) { return vmstat_text[NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + NR_VM_NODE_STAT_ITEMS + item]; } #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG) static inline const char *vm_event_name(enum vm_event_item item) { return vmstat_text[NR_VM_ZONE_STAT_ITEMS + NR_VM_NUMA_EVENT_ITEMS + NR_VM_NODE_STAT_ITEMS + NR_VM_WRITEBACK_STAT_ITEMS + item]; } #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */ #ifdef CONFIG_MEMCG void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val); static inline void mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_lruvec_state(lruvec, idx, val); local_irq_restore(flags); } void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val); static inline void mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val) { unsigned long flags; local_irq_save(flags); __mod_lruvec_page_state(page, idx, val); local_irq_restore(flags); } #else static inline void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); } static inline void mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, int val) { mod_node_page_state(lruvec_pgdat(lruvec), idx, val); } static inline void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val) { __mod_node_page_state(page_pgdat(page), idx, val); } static inline void mod_lruvec_page_state(struct page *page, enum node_stat_item idx, int val) { mod_node_page_state(page_pgdat(page), idx, val); } #endif /* CONFIG_MEMCG */ static inline void inc_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx) { mod_lruvec_state(lruvec, idx, 1); } static inline void __inc_lruvec_page_state(struct page *page, enum node_stat_item idx) { __mod_lruvec_page_state(page, idx, 1); } static inline void __dec_lruvec_page_state(struct page *page, enum node_stat_item idx) { __mod_lruvec_page_state(page, idx, -1); } static inline void inc_lruvec_page_state(struct page *page, enum node_stat_item idx) { mod_lruvec_page_state(page, idx, 1); } static inline void dec_lruvec_page_state(struct page *page, enum node_stat_item idx) { mod_lruvec_page_state(page, idx, -1); } #endif /* _LINUX_VMSTAT_H */ |
253 254 70 70 243 245 7797 7841 7804 7808 326 326 326 34 34 34 16 16 292 16 123 122 173 173 34 434 435 434 435 3515 3512 908 912 1608 1617 40 1570 420 421 1833 1832 1831 1129 1127 1127 927 930 925 800 226 225 225 675 38 800 801 803 5322 5310 5313 5332 5313 4762 815 1573 1573 1577 1565 1570 2658 2658 2964 717 427 428 297 298 38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 | // SPDX-License-Identifier: GPL-2.0-only /* * AppArmor security module * * This file contains AppArmor LSM hooks. * * Copyright (C) 1998-2008 Novell/SUSE * Copyright 2009-2010 Canonical Ltd. */ #include <linux/lsm_hooks.h> #include <linux/moduleparam.h> #include <linux/mm.h> #include <linux/mman.h> #include <linux/mount.h> #include <linux/namei.h> #include <linux/ptrace.h> #include <linux/ctype.h> #include <linux/sysctl.h> #include <linux/audit.h> #include <linux/user_namespace.h> #include <linux/netfilter_ipv4.h> #include <linux/netfilter_ipv6.h> #include <linux/zlib.h> #include <net/sock.h> #include <uapi/linux/mount.h> #include "include/apparmor.h" #include "include/apparmorfs.h" #include "include/audit.h" #include "include/capability.h" #include "include/cred.h" #include "include/file.h" #include "include/ipc.h" #include "include/net.h" #include "include/path.h" #include "include/label.h" #include "include/policy.h" #include "include/policy_ns.h" #include "include/procattr.h" #include "include/mount.h" #include "include/secid.h" /* Flag indicating whether initialization completed */ int apparmor_initialized; union aa_buffer { struct list_head list; char buffer[1]; }; #define RESERVE_COUNT 2 static int reserve_count = RESERVE_COUNT; static int buffer_count; static LIST_HEAD(aa_global_buffers); static DEFINE_SPINLOCK(aa_buffers_lock); /* * LSM hook functions */ /* * put the associated labels */ static void apparmor_cred_free(struct cred *cred) { aa_put_label(cred_label(cred)); set_cred_label(cred, NULL); } /* * allocate the apparmor part of blank credentials */ static int apparmor_cred_alloc_blank(struct cred *cred, gfp_t gfp) { set_cred_label(cred, NULL); return 0; } /* * prepare new cred label for modification by prepare_cred block */ static int apparmor_cred_prepare(struct cred *new, const struct cred *old, gfp_t gfp) { set_cred_label(new, aa_get_newest_label(cred_label(old))); return 0; } /* * transfer the apparmor data to a blank set of creds */ static void apparmor_cred_transfer(struct cred *new, const struct cred *old) { set_cred_label(new, aa_get_newest_label(cred_label(old))); } static void apparmor_task_free(struct task_struct *task) { aa_free_task_ctx(task_ctx(task)); } static int apparmor_task_alloc(struct task_struct *task, unsigned long clone_flags) { struct aa_task_ctx *new = task_ctx(task); aa_dup_task_ctx(new, task_ctx(current)); return 0; } static int apparmor_ptrace_access_check(struct task_struct *child, unsigned int mode) { struct aa_label *tracer, *tracee; int error; tracer = __begin_current_label_crit_section(); tracee = aa_get_task_label(child); error = aa_may_ptrace(tracer, tracee, (mode & PTRACE_MODE_READ) ? AA_PTRACE_READ : AA_PTRACE_TRACE); aa_put_label(tracee); __end_current_label_crit_section(tracer); return error; } static int apparmor_ptrace_traceme(struct task_struct *parent) { struct aa_label *tracer, *tracee; int error; tracee = __begin_current_label_crit_section(); tracer = aa_get_task_label(parent); error = aa_may_ptrace(tracer, tracee, AA_PTRACE_TRACE); aa_put_label(tracer); __end_current_label_crit_section(tracee); return error; } /* Derived from security/commoncap.c:cap_capget */ static int apparmor_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted) { struct aa_label *label; const struct cred *cred; rcu_read_lock(); cred = __task_cred(target); label = aa_get_newest_cred_label(cred); /* * cap_capget is stacked ahead of this and will * initialize effective and permitted. */ if (!unconfined(label)) { struct aa_profile *profile; struct label_it i; label_for_each_confined(i, label, profile) { if (COMPLAIN_MODE(profile)) continue; *effective = cap_intersect(*effective, profile->caps.allow); *permitted = cap_intersect(*permitted, profile->caps.allow); } } rcu_read_unlock(); aa_put_label(label); return 0; } static int apparmor_capable(const struct cred *cred, struct user_namespace *ns, int cap, unsigned int opts) { struct aa_label *label; int error = 0; label = aa_get_newest_cred_label(cred); if (!unconfined(label)) error = aa_capable(label, cap, opts); aa_put_label(label); return error; } /** * common_perm - basic common permission check wrapper fn for paths * @op: operation being checked * @path: path to check permission of (NOT NULL) * @mask: requested permissions mask * @cond: conditional info for the permission request (NOT NULL) * * Returns: %0 else error code if error or permission denied */ static int common_perm(const char *op, const struct path *path, u32 mask, struct path_cond *cond) { struct aa_label *label; int error = 0; label = __begin_current_label_crit_section(); if (!unconfined(label)) error = aa_path_perm(op, label, path, 0, mask, cond); __end_current_label_crit_section(label); return error; } /** * common_perm_cond - common permission wrapper around inode cond * @op: operation being checked * @path: location to check (NOT NULL) * @mask: requested permissions mask * * Returns: %0 else error code if error or permission denied */ static int common_perm_cond(const char *op, const struct path *path, u32 mask) { struct user_namespace *mnt_userns = mnt_user_ns(path->mnt); struct path_cond cond = { i_uid_into_mnt(mnt_userns, d_backing_inode(path->dentry)), d_backing_inode(path->dentry)->i_mode }; if (!path_mediated_fs(path->dentry)) return 0; return common_perm(op, path, mask, &cond); } /** * common_perm_dir_dentry - common permission wrapper when path is dir, dentry * @op: operation being checked * @dir: directory of the dentry (NOT NULL) * @dentry: dentry to check (NOT NULL) * @mask: requested permissions mask * @cond: conditional info for the permission request (NOT NULL) * * Returns: %0 else error code if error or permission denied */ static int common_perm_dir_dentry(const char *op, const struct path *dir, struct dentry *dentry, u32 mask, struct path_cond *cond) { struct path path = { .mnt = dir->mnt, .dentry = dentry }; return common_perm(op, &path, mask, cond); } /** * common_perm_rm - common permission wrapper for operations doing rm * @op: operation being checked * @dir: directory that the dentry is in (NOT NULL) * @dentry: dentry being rm'd (NOT NULL) * @mask: requested permission mask * * Returns: %0 else error code if error or permission denied */ static int common_perm_rm(const char *op, const struct path *dir, struct dentry *dentry, u32 mask) { struct inode *inode = d_backing_inode(dentry); struct user_namespace *mnt_userns = mnt_user_ns(dir->mnt); struct path_cond cond = { }; if (!inode || !path_mediated_fs(dentry)) return 0; cond.uid = i_uid_into_mnt(mnt_userns, inode); cond.mode = inode->i_mode; return common_perm_dir_dentry(op, dir, dentry, mask, &cond); } /** * common_perm_create - common permission wrapper for operations doing create * @op: operation being checked * @dir: directory that dentry will be created in (NOT NULL) * @dentry: dentry to create (NOT NULL) * @mask: request permission mask * @mode: created file mode * * Returns: %0 else error code if error or permission denied */ static int common_perm_create(const char *op, const struct path *dir, struct dentry *dentry, u32 mask, umode_t mode) { struct path_cond cond = { current_fsuid(), mode }; if (!path_mediated_fs(dir->dentry)) return 0; return common_perm_dir_dentry(op, dir, dentry, mask, &cond); } static int apparmor_path_unlink(const struct path *dir, struct dentry *dentry) { return common_perm_rm(OP_UNLINK, dir, dentry, AA_MAY_DELETE); } static int apparmor_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) { return common_perm_create(OP_MKDIR, dir, dentry, AA_MAY_CREATE, S_IFDIR); } static int apparmor_path_rmdir(const struct path *dir, struct dentry *dentry) { return common_perm_rm(OP_RMDIR, dir, dentry, AA_MAY_DELETE); } static int apparmor_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, unsigned int dev) { return common_perm_create(OP_MKNOD, dir, dentry, AA_MAY_CREATE, mode); } static int apparmor_path_truncate(const struct path *path) { return common_perm_cond(OP_TRUNC, path, MAY_WRITE | AA_MAY_SETATTR); } static int apparmor_path_symlink(const struct path *dir, struct dentry *dentry, const char *old_name) { return common_perm_create(OP_SYMLINK, dir, dentry, AA_MAY_CREATE, S_IFLNK); } static int apparmor_path_link(struct dentry *old_dentry, const struct path *new_dir, struct dentry *new_dentry) { struct aa_label *label; int error = 0; if (!path_mediated_fs(old_dentry)) return 0; label = begin_current_label_crit_section(); if (!unconfined(label)) error = aa_path_link(label, old_dentry, new_dir, new_dentry); end_current_label_crit_section(label); return error; } static int apparmor_path_rename(const struct path *old_dir, struct dentry *old_dentry, const struct path *new_dir, struct dentry *new_dentry) { struct aa_label *label; int error = 0; if (!path_mediated_fs(old_dentry)) return 0; label = begin_current_label_crit_section(); if (!unconfined(label)) { struct user_namespace *mnt_userns = mnt_user_ns(old_dir->mnt); struct path old_path = { .mnt = old_dir->mnt, .dentry = old_dentry }; struct path new_path = { .mnt = new_dir->mnt, .dentry = new_dentry }; struct path_cond cond = { i_uid_into_mnt(mnt_userns, d_backing_inode(old_dentry)), d_backing_inode(old_dentry)->i_mode }; error = aa_path_perm(OP_RENAME_SRC, label, &old_path, 0, MAY_READ | AA_MAY_GETATTR | MAY_WRITE | AA_MAY_SETATTR | AA_MAY_DELETE, &cond); if (!error) error = aa_path_perm(OP_RENAME_DEST, label, &new_path, 0, MAY_WRITE | AA_MAY_SETATTR | AA_MAY_CREATE, &cond); } end_current_label_crit_section(label); return error; } static int apparmor_path_chmod(const struct path *path, umode_t mode) { return common_perm_cond(OP_CHMOD, path, AA_MAY_CHMOD); } static int apparmor_path_chown(const struct path *path, kuid_t uid, kgid_t gid) { return common_perm_cond(OP_CHOWN, path, AA_MAY_CHOWN); } static int apparmor_inode_getattr(const struct path *path) { return common_perm_cond(OP_GETATTR, path, AA_MAY_GETATTR); } static int apparmor_file_open(struct file *file) { struct aa_file_ctx *fctx = file_ctx(file); struct aa_label *label; int error = 0; if (!path_mediated_fs(file->f_path.dentry)) return 0; /* If in exec, permission is handled by bprm hooks. * Cache permissions granted by the previous exec check, with * implicit read and executable mmap which are required to * actually execute the image. */ if (current->in_execve) { fctx->allow = MAY_EXEC | MAY_READ | AA_EXEC_MMAP; return 0; } label = aa_get_newest_cred_label(file->f_cred); if (!unconfined(label)) { struct user_namespace *mnt_userns = file_mnt_user_ns(file); struct inode *inode = file_inode(file); struct path_cond cond = { i_uid_into_mnt(mnt_userns, inode), inode->i_mode }; error = aa_path_perm(OP_OPEN, label, &file->f_path, 0, aa_map_file_to_perms(file), &cond); /* todo cache full allowed permissions set and state */ fctx->allow = aa_map_file_to_perms(file); } aa_put_label(label); return error; } static int apparmor_file_alloc_security(struct file *file) { struct aa_file_ctx *ctx = file_ctx(file); struct aa_label *label = begin_current_label_crit_section(); spin_lock_init(&ctx->lock); rcu_assign_pointer(ctx->label, aa_get_label(label)); end_current_label_crit_section(label); return 0; } static void apparmor_file_free_security(struct file *file) { struct aa_file_ctx *ctx = file_ctx(file); if (ctx) aa_put_label(rcu_access_pointer(ctx->label)); } static int common_file_perm(const char *op, struct file *file, u32 mask, bool in_atomic) { struct aa_label *label; int error = 0; /* don't reaudit files closed during inheritance */ if (file->f_path.dentry == aa_null.dentry) return -EACCES; label = __begin_current_label_crit_section(); error = aa_file_perm(op, label, file, mask, in_atomic); __end_current_label_crit_section(label); return error; } static int apparmor_file_receive(struct file *file) { return common_file_perm(OP_FRECEIVE, file, aa_map_file_to_perms(file), false); } static int apparmor_file_permission(struct file *file, int mask) { return common_file_perm(OP_FPERM, file, mask, false); } static int apparmor_file_lock(struct file *file, unsigned int cmd) { u32 mask = AA_MAY_LOCK; if (cmd == F_WRLCK) mask |= MAY_WRITE; return common_file_perm(OP_FLOCK, file, mask, false); } static int common_mmap(const char *op, struct file *file, unsigned long prot, unsigned long flags, bool in_atomic) { int mask = 0; if (!file || !file_ctx(file)) return 0; if (prot & PROT_READ) mask |= MAY_READ; /* * Private mappings don't require write perms since they don't * write back to the files */ if ((prot & PROT_WRITE) && !(flags & MAP_PRIVATE)) mask |= MAY_WRITE; if (prot & PROT_EXEC) mask |= AA_EXEC_MMAP; return common_file_perm(op, file, mask, in_atomic); } static int apparmor_mmap_file(struct file *file, unsigned long reqprot, unsigned long prot, unsigned long flags) { return common_mmap(OP_FMMAP, file, prot, flags, GFP_ATOMIC); } static int apparmor_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, unsigned long prot) { return common_mmap(OP_FMPROT, vma->vm_file, prot, !(vma->vm_flags & VM_SHARED) ? MAP_PRIVATE : 0, false); } static int apparmor_sb_mount(const char *dev_name, const struct path *path, const char *type, unsigned long flags, void *data) { struct aa_label *label; int error = 0; /* Discard magic */ if ((flags & MS_MGC_MSK) == MS_MGC_VAL) flags &= ~MS_MGC_MSK; flags &= ~AA_MS_IGNORE_MASK; label = __begin_current_label_crit_section(); if (!unconfined(label)) { if (flags & MS_REMOUNT) error = aa_remount(label, path, flags, data); else if (flags & MS_BIND) error = aa_bind_mount(label, path, dev_name, flags); else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) error = aa_mount_change_type(label, path, flags); else if (flags & MS_MOVE) error = aa_move_mount(label, path, dev_name); else error = aa_new_mount(label, dev_name, path, type, flags, data); } __end_current_label_crit_section(label); return error; } static int apparmor_sb_umount(struct vfsmount *mnt, int flags) { struct aa_label *label; int error = 0; label = __begin_current_label_crit_section(); if (!unconfined(label)) error = aa_umount(label, mnt, flags); __end_current_label_crit_section(label); return error; } static int apparmor_sb_pivotroot(const struct path *old_path, const struct path *new_path) { struct aa_label *label; int error = 0; label = aa_get_current_label(); if (!unconfined(label)) error = aa_pivotroot(label, old_path, new_path); aa_put_label(label); return error; } static int apparmor_getprocattr(struct task_struct *task, char *name, char **value) { int error = -ENOENT; /* released below */ const struct cred *cred = get_task_cred(task); struct aa_task_ctx *ctx = task_ctx(current); struct aa_label *label = NULL; if (strcmp(name, "current") == 0) label = aa_get_newest_label(cred_label(cred)); else if (strcmp(name, "prev") == 0 && ctx->previous) label = aa_get_newest_label(ctx->previous); else if (strcmp(name, "exec") == 0 && ctx->onexec) label = aa_get_newest_label(ctx->onexec); else error = -EINVAL; if (label) error = aa_getprocattr(label, value); aa_put_label(label); put_cred(cred); return error; } static int apparmor_setprocattr(const char *name, void *value, size_t size) { char *command, *largs = NULL, *args = value; size_t arg_size; int error; DEFINE_AUDIT_DATA(sa, LSM_AUDIT_DATA_NONE, OP_SETPROCATTR); if (size == 0) return -EINVAL; /* AppArmor requires that the buffer must be null terminated atm */ if (args[size - 1] != '\0') { /* null terminate */ largs = args = kmalloc(size + 1, GFP_KERNEL); if (!args) return -ENOMEM; memcpy(args, value, size); args[size] = '\0'; } error = -EINVAL; args = strim(args); command = strsep(&args, " "); if (!args) goto out; args = skip_spaces(args); if (!*args) goto out; arg_size = size - (args - (largs ? largs : (char *) value)); if (strcmp(name, "current") == 0) { if (strcmp(command, "changehat") == 0) { error = aa_setprocattr_changehat(args, arg_size, AA_CHANGE_NOFLAGS); } else if (strcmp(command, "permhat") == 0) { error = aa_setprocattr_changehat(args, arg_size, AA_CHANGE_TEST); } else if (strcmp(command, "changeprofile") == 0) { error = aa_change_profile(args, AA_CHANGE_NOFLAGS); } else if (strcmp(command, "permprofile") == 0) { error = aa_change_profile(args, AA_CHANGE_TEST); } else if (strcmp(command, "stack") == 0) { error = aa_change_profile(args, AA_CHANGE_STACK); } else goto fail; } else if (strcmp(name, "exec") == 0) { if (strcmp(command, "exec") == 0) error = aa_change_profile(args, AA_CHANGE_ONEXEC); else if (strcmp(command, "stack") == 0) error = aa_change_profile(args, (AA_CHANGE_ONEXEC | AA_CHANGE_STACK)); else goto fail; } else /* only support the "current" and "exec" process attributes */ goto fail; if (!error) error = size; out: kfree(largs); return error; fail: aad(&sa)->label = begin_current_label_crit_section(); aad(&sa)->info = name; aad(&sa)->error = error = -EINVAL; aa_audit_msg(AUDIT_APPARMOR_DENIED, &sa, NULL); end_current_label_crit_section(aad(&sa)->label); goto out; } /** * apparmor_bprm_committing_creds - do task cleanup on committing new creds * @bprm: binprm for the exec (NOT NULL) */ static void apparmor_bprm_committing_creds(struct linux_binprm *bprm) { struct aa_label *label = aa_current_raw_label(); struct aa_label *new_label = cred_label(bprm->cred); /* bail out if unconfined or not changing profile */ if ((new_label->proxy == label->proxy) || (unconfined(new_label))) return; aa_inherit_files(bprm->cred, current->files); current->pdeath_signal = 0; /* reset soft limits and set hard limits for the new label */ __aa_transition_rlimits(label, new_label); } /** * apparmor_bprm_committed_cred - do cleanup after new creds committed * @bprm: binprm for the exec (NOT NULL) */ static void apparmor_bprm_committed_creds(struct linux_binprm *bprm) { /* clear out temporary/transitional state from the context */ aa_clear_task_ctx_trans(task_ctx(current)); return; } static void apparmor_task_getsecid(struct task_struct *p, u32 *secid) { struct aa_label *label = aa_get_task_label(p); *secid = label->secid; aa_put_label(label); } static int apparmor_task_setrlimit(struct task_struct *task, unsigned int resource, struct rlimit *new_rlim) { struct aa_label *label = __begin_current_label_crit_section(); int error = 0; if (!unconfined(label)) error = aa_task_setrlimit(label, task, resource, new_rlim); __end_current_label_crit_section(label); return error; } static int apparmor_task_kill(struct task_struct *target, struct kernel_siginfo *info, int sig, const struct cred *cred) { struct aa_label *cl, *tl; int error; if (cred) { /* * Dealing with USB IO specific behavior */ cl = aa_get_newest_cred_label(cred); tl = aa_get_task_label(target); error = aa_may_signal(cl, tl, sig); aa_put_label(cl); aa_put_label(tl); return error; } cl = __begin_current_label_crit_section(); tl = aa_get_task_label(target); error = aa_may_signal(cl, tl, sig); aa_put_label(tl); __end_current_label_crit_section(cl); return error; } /** * apparmor_sk_alloc_security - allocate and attach the sk_security field */ static int apparmor_sk_alloc_security(struct sock *sk, int family, gfp_t flags) { struct aa_sk_ctx *ctx; ctx = kzalloc(sizeof(*ctx), flags); if (!ctx) return -ENOMEM; SK_CTX(sk) = ctx; return 0; } /** * apparmor_sk_free_security - free the sk_security field */ static void apparmor_sk_free_security(struct sock *sk) { struct aa_sk_ctx *ctx = SK_CTX(sk); SK_CTX(sk) = NULL; aa_put_label(ctx->label); aa_put_label(ctx->peer); kfree(ctx); } /** * apparmor_clone_security - clone the sk_security field */ static void apparmor_sk_clone_security(const struct sock *sk, struct sock *newsk) { struct aa_sk_ctx *ctx = SK_CTX(sk); struct aa_sk_ctx *new = SK_CTX(newsk); if (new->label) aa_put_label(new->label); new->label = aa_get_label(ctx->label); if (new->peer) aa_put_label(new->peer); new->peer = aa_get_label(ctx->peer); } /** * apparmor_socket_create - check perms before creating a new socket */ static int apparmor_socket_create(int family, int type, int protocol, int kern) { struct aa_label *label; int error = 0; AA_BUG(in_interrupt()); label = begin_current_label_crit_section(); if (!(kern || unconfined(label))) error = af_select(family, create_perm(label, family, type, protocol), aa_af_perm(label, OP_CREATE, AA_MAY_CREATE, family, type, protocol)); end_current_label_crit_section(label); return error; } /** * apparmor_socket_post_create - setup the per-socket security struct * * Note: * - kernel sockets currently labeled unconfined but we may want to * move to a special kernel label * - socket may not have sk here if created with sock_create_lite or * sock_alloc. These should be accept cases which will be handled in * sock_graft. */ static int apparmor_socket_post_create(struct socket *sock, int family, int type, int protocol, int kern) { struct aa_label *label; if (kern) { struct aa_ns *ns = aa_get_current_ns(); label = aa_get_label(ns_unconfined(ns)); aa_put_ns(ns); } else label = aa_get_current_label(); if (sock->sk) { struct aa_sk_ctx *ctx = SK_CTX(sock->sk); aa_put_label(ctx->label); ctx->label = aa_get_label(label); } aa_put_label(label); return 0; } /** * apparmor_socket_bind - check perms before bind addr to socket */ static int apparmor_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) { AA_BUG(!sock); AA_BUG(!sock->sk); AA_BUG(!address); AA_BUG(in_interrupt()); return af_select(sock->sk->sk_family, bind_perm(sock, address, addrlen), aa_sk_perm(OP_BIND, AA_MAY_BIND, sock->sk)); } /** * apparmor_socket_connect - check perms before connecting @sock to @address */ static int apparmor_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) { AA_BUG(!sock); AA_BUG(!sock->sk); AA_BUG(!address); AA_BUG(in_interrupt()); return af_select(sock->sk->sk_family, connect_perm(sock, address, addrlen), aa_sk_perm(OP_CONNECT, AA_MAY_CONNECT, sock->sk)); } /** * apparmor_socket_list - check perms before allowing listen */ static int apparmor_socket_listen(struct socket *sock, int backlog) { AA_BUG(!sock); AA_BUG(!sock->sk); AA_BUG(in_interrupt()); return af_select(sock->sk->sk_family, listen_perm(sock, backlog), aa_sk_perm(OP_LISTEN, AA_MAY_LISTEN, sock->sk)); } /** * apparmor_socket_accept - check perms before accepting a new connection. * * Note: while @newsock is created and has some information, the accept * has not been done. */ static int apparmor_socket_accept(struct socket *sock, struct socket *newsock) { AA_BUG(!sock); AA_BUG(!sock->sk); AA_BUG(!newsock); AA_BUG(in_interrupt()); return af_select(sock->sk->sk_family, accept_perm(sock, newsock), aa_sk_perm(OP_ACCEPT, AA_MAY_ACCEPT, sock->sk)); } static int aa_sock_msg_perm(const char *op, u32 request, struct socket *sock, struct msghdr *msg, int size) { AA_BUG(!sock); AA_BUG(!sock->sk); AA_BUG(!msg); AA_BUG(in_interrupt()); return af_select(sock->sk->sk_family, msg_perm(op, request, sock, msg, size), aa_sk_perm(op, request, sock->sk)); } /** * apparmor_socket_sendmsg - check perms before sending msg to another socket */ static int apparmor_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) { return aa_sock_msg_perm(OP_SENDMSG, AA_MAY_SEND, sock, msg, size); } /** * apparmor_socket_recvmsg - check perms before receiving a message */ static int apparmor_socket_recvmsg(struct socket *sock, struct msghdr *msg, int size, int flags) { return aa_sock_msg_perm(OP_RECVMSG, AA_MAY_RECEIVE, sock, msg, size); } /* revaliation, get/set attr, shutdown */ static int aa_sock_perm(const char *op, u32 request, struct socket *sock) { AA_BUG(!sock); AA_BUG(!sock->sk); AA_BUG(in_interrupt()); return af_select(sock->sk->sk_family, sock_perm(op, request, sock), aa_sk_perm(op, request, sock->sk)); } /** * apparmor_socket_getsockname - check perms before getting the local address */ static int apparmor_socket_getsockname(struct socket *sock) { return aa_sock_perm(OP_GETSOCKNAME, AA_MAY_GETATTR, sock); } /** * apparmor_socket_getpeername - check perms before getting remote address */ static int apparmor_socket_getpeername(struct socket *sock) { return aa_sock_perm(OP_GETPEERNAME, AA_MAY_GETATTR, sock); } /* revaliation, get/set attr, opt */ static int aa_sock_opt_perm(const char *op, u32 request, struct socket *sock, int level, int optname) { AA_BUG(!sock); AA_BUG(!sock->sk); AA_BUG(in_interrupt()); return af_select(sock->sk->sk_family, opt_perm(op, request, sock, level, optname), aa_sk_perm(op, request, sock->sk)); } /** * apparmor_getsockopt - check perms before getting socket options */ static int apparmor_socket_getsockopt(struct socket *sock, int level, int optname) { return aa_sock_opt_perm(OP_GETSOCKOPT, AA_MAY_GETOPT, sock, level, optname); } /** * apparmor_setsockopt - check perms before setting socket options */ static int apparmor_socket_setsockopt(struct socket *sock, int level, int optname) { return aa_sock_opt_perm(OP_SETSOCKOPT, AA_MAY_SETOPT, sock, level, optname); } /** * apparmor_socket_shutdown - check perms before shutting down @sock conn */ static int apparmor_socket_shutdown(struct socket *sock, int how) { return aa_sock_perm(OP_SHUTDOWN, AA_MAY_SHUTDOWN, sock); } #ifdef CONFIG_NETWORK_SECMARK /** * apparmor_socket_sock_recv_skb - check perms before associating skb to sk * * Note: can not sleep may be called with locks held * * dont want protocol specific in __skb_recv_datagram() * to deny an incoming connection socket_sock_rcv_skb() */ static int apparmor_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) { struct aa_sk_ctx *ctx = SK_CTX(sk); if (!skb->secmark) return 0; /* * If reach here before socket_post_create hook is called, in which * case label is null, drop the packet. */ if (!ctx->label) return -EACCES; return apparmor_secmark_check(ctx->label, OP_RECVMSG, AA_MAY_RECEIVE, skb->secmark, sk); } #endif static struct aa_label *sk_peer_label(struct sock *sk) { struct aa_sk_ctx *ctx = SK_CTX(sk); if (ctx->peer) return ctx->peer; return ERR_PTR(-ENOPROTOOPT); } /** * apparmor_socket_getpeersec_stream - get security context of peer * * Note: for tcp only valid if using ipsec or cipso on lan */ static int apparmor_socket_getpeersec_stream(struct socket *sock, char __user *optval, int __user *optlen, unsigned int len) { char *name; int slen, error = 0; struct aa_label *label; struct aa_label *peer; label = begin_current_label_crit_section(); peer = sk_peer_label(sock->sk); if (IS_ERR(peer)) { error = PTR_ERR(peer); goto done; } slen = aa_label_asxprint(&name, labels_ns(label), peer, FLAG_SHOW_MODE | FLAG_VIEW_SUBNS | FLAG_HIDDEN_UNCONFINED, GFP_KERNEL); /* don't include terminating \0 in slen, it breaks some apps */ if (slen < 0) { error = -ENOMEM; } else { if (slen > len) { error = -ERANGE; } else if (copy_to_user(optval, name, slen)) { error = -EFAULT; goto out; } if (put_user(slen, optlen)) error = -EFAULT; out: kfree(name); } done: end_current_label_crit_section(label); return error; } /** * apparmor_socket_getpeersec_dgram - get security label of packet * @sock: the peer socket * @skb: packet data * @secid: pointer to where to put the secid of the packet * * Sets the netlabel socket state on sk from parent */ static int apparmor_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) { /* TODO: requires secid support */ return -ENOPROTOOPT; } /** * apparmor_sock_graft - Initialize newly created socket * @sk: child sock * @parent: parent socket * * Note: could set off of SOCK_CTX(parent) but need to track inode and we can * just set sk security information off of current creating process label * Labeling of sk for accept case - probably should be sock based * instead of task, because of the case where an implicitly labeled * socket is shared by different tasks. */ static void apparmor_sock_graft(struct sock *sk, struct socket *parent) { struct aa_sk_ctx *ctx = SK_CTX(sk); if (!ctx->label) ctx->label = aa_get_current_label(); } #ifdef CONFIG_NETWORK_SECMARK static int apparmor_inet_conn_request(const struct sock *sk, struct sk_buff *skb, struct request_sock *req) { struct aa_sk_ctx *ctx = SK_CTX(sk); if (!skb->secmark) return 0; return apparmor_secmark_check(ctx->label, OP_CONNECT, AA_MAY_CONNECT, skb->secmark, sk); } #endif /* * The cred blob is a pointer to, not an instance of, an aa_label. */ struct lsm_blob_sizes apparmor_blob_sizes __lsm_ro_after_init = { .lbs_cred = sizeof(struct aa_label *), .lbs_file = sizeof(struct aa_file_ctx), .lbs_task = sizeof(struct aa_task_ctx), }; static struct security_hook_list apparmor_hooks[] __lsm_ro_after_init = { LSM_HOOK_INIT(ptrace_access_check, apparmor_ptrace_access_check), LSM_HOOK_INIT(ptrace_traceme, apparmor_ptrace_traceme), LSM_HOOK_INIT(capget, apparmor_capget), LSM_HOOK_INIT(capable, apparmor_capable), LSM_HOOK_INIT(sb_mount, apparmor_sb_mount), LSM_HOOK_INIT(sb_umount, apparmor_sb_umount), LSM_HOOK_INIT(sb_pivotroot, apparmor_sb_pivotroot), LSM_HOOK_INIT(path_link, apparmor_path_link), LSM_HOOK_INIT(path_unlink, apparmor_path_unlink), LSM_HOOK_INIT(path_symlink, apparmor_path_symlink), LSM_HOOK_INIT(path_mkdir, apparmor_path_mkdir), LSM_HOOK_INIT(path_rmdir, apparmor_path_rmdir), LSM_HOOK_INIT(path_mknod, apparmor_path_mknod), LSM_HOOK_INIT(path_rename, apparmor_path_rename), LSM_HOOK_INIT(path_chmod, apparmor_path_chmod), LSM_HOOK_INIT(path_chown, apparmor_path_chown), LSM_HOOK_INIT(path_truncate, apparmor_path_truncate), LSM_HOOK_INIT(inode_getattr, apparmor_inode_getattr), LSM_HOOK_INIT(file_open, apparmor_file_open), LSM_HOOK_INIT(file_receive, apparmor_file_receive), LSM_HOOK_INIT(file_permission, apparmor_file_permission), LSM_HOOK_INIT(file_alloc_security, apparmor_file_alloc_security), LSM_HOOK_INIT(file_free_security, apparmor_file_free_security), LSM_HOOK_INIT(mmap_file, apparmor_mmap_file), LSM_HOOK_INIT(file_mprotect, apparmor_file_mprotect), LSM_HOOK_INIT(file_lock, apparmor_file_lock), LSM_HOOK_INIT(getprocattr, apparmor_getprocattr), LSM_HOOK_INIT(setprocattr, apparmor_setprocattr), LSM_HOOK_INIT(sk_alloc_security, apparmor_sk_alloc_security), LSM_HOOK_INIT(sk_free_security, apparmor_sk_free_security), LSM_HOOK_INIT(sk_clone_security, apparmor_sk_clone_security), LSM_HOOK_INIT(socket_create, apparmor_socket_create), LSM_HOOK_INIT(socket_post_create, apparmor_socket_post_create), LSM_HOOK_INIT(socket_bind, apparmor_socket_bind), LSM_HOOK_INIT(socket_connect, apparmor_socket_connect), LSM_HOOK_INIT(socket_listen, apparmor_socket_listen), LSM_HOOK_INIT(socket_accept, apparmor_socket_accept), LSM_HOOK_INIT(socket_sendmsg, apparmor_socket_sendmsg), LSM_HOOK_INIT(socket_recvmsg, apparmor_socket_recvmsg), LSM_HOOK_INIT(socket_getsockname, apparmor_socket_getsockname), LSM_HOOK_INIT(socket_getpeername, apparmor_socket_getpeername), LSM_HOOK_INIT(socket_getsockopt, apparmor_socket_getsockopt), LSM_HOOK_INIT(socket_setsockopt, apparmor_socket_setsockopt), LSM_HOOK_INIT(socket_shutdown, apparmor_socket_shutdown), #ifdef CONFIG_NETWORK_SECMARK LSM_HOOK_INIT(socket_sock_rcv_skb, apparmor_socket_sock_rcv_skb), #endif LSM_HOOK_INIT(socket_getpeersec_stream, apparmor_socket_getpeersec_stream), LSM_HOOK_INIT(socket_getpeersec_dgram, apparmor_socket_getpeersec_dgram), LSM_HOOK_INIT(sock_graft, apparmor_sock_graft), #ifdef CONFIG_NETWORK_SECMARK LSM_HOOK_INIT(inet_conn_request, apparmor_inet_conn_request), #endif LSM_HOOK_INIT(cred_alloc_blank, apparmor_cred_alloc_blank), LSM_HOOK_INIT(cred_free, apparmor_cred_free), LSM_HOOK_INIT(cred_prepare, apparmor_cred_prepare), LSM_HOOK_INIT(cred_transfer, apparmor_cred_transfer), LSM_HOOK_INIT(bprm_creds_for_exec, apparmor_bprm_creds_for_exec), LSM_HOOK_INIT(bprm_committing_creds, apparmor_bprm_committing_creds), LSM_HOOK_INIT(bprm_committed_creds, apparmor_bprm_committed_creds), LSM_HOOK_INIT(task_free, apparmor_task_free), LSM_HOOK_INIT(task_alloc, apparmor_task_alloc), LSM_HOOK_INIT(task_getsecid_subj, apparmor_task_getsecid), LSM_HOOK_INIT(task_getsecid_obj, apparmor_task_getsecid), LSM_HOOK_INIT(task_setrlimit, apparmor_task_setrlimit), LSM_HOOK_INIT(task_kill, apparmor_task_kill), #ifdef CONFIG_AUDIT LSM_HOOK_INIT(audit_rule_init, aa_audit_rule_init), LSM_HOOK_INIT(audit_rule_known, aa_audit_rule_known), LSM_HOOK_INIT(audit_rule_match, aa_audit_rule_match), LSM_HOOK_INIT(audit_rule_free, aa_audit_rule_free), #endif LSM_HOOK_INIT(secid_to_secctx, apparmor_secid_to_secctx), LSM_HOOK_INIT(secctx_to_secid, apparmor_secctx_to_secid), LSM_HOOK_INIT(release_secctx, apparmor_release_secctx), }; /* * AppArmor sysfs module parameters */ static int param_set_aabool(const char *val, const struct kernel_param *kp); static int param_get_aabool(char *buffer, const struct kernel_param *kp); #define param_check_aabool param_check_bool static const struct kernel_param_ops param_ops_aabool = { .flags = KERNEL_PARAM_OPS_FL_NOARG, .set = param_set_aabool, .get = param_get_aabool }; static int param_set_aauint(const char *val, const struct kernel_param *kp); static int param_get_aauint(char *buffer, const struct kernel_param *kp); #define param_check_aauint param_check_uint static const struct kernel_param_ops param_ops_aauint = { .set = param_set_aauint, .get = param_get_aauint }; static int param_set_aacompressionlevel(const char *val, const struct kernel_param *kp); static int param_get_aacompressionlevel(char *buffer, const struct kernel_param *kp); #define param_check_aacompressionlevel param_check_int static const struct kernel_param_ops param_ops_aacompressionlevel = { .set = param_set_aacompressionlevel, .get = param_get_aacompressionlevel }; static int param_set_aalockpolicy(const char *val, const struct kernel_param *kp); static int param_get_aalockpolicy(char *buffer, const struct kernel_param *kp); #define param_check_aalockpolicy param_check_bool static const struct kernel_param_ops param_ops_aalockpolicy = { .flags = KERNEL_PARAM_OPS_FL_NOARG, .set = param_set_aalockpolicy, .get = param_get_aalockpolicy }; static int param_set_audit(const char *val, const struct kernel_param *kp); static int param_get_audit(char *buffer, const struct kernel_param *kp); static int param_set_mode(const char *val, const struct kernel_param *kp); static int param_get_mode(char *buffer, const struct kernel_param *kp); /* Flag values, also controllable via /sys/module/apparmor/parameters * We define special types as we want to do additional mediation. */ /* AppArmor global enforcement switch - complain, enforce, kill */ enum profile_mode aa_g_profile_mode = APPARMOR_ENFORCE; module_param_call(mode, param_set_mode, param_get_mode, &aa_g_profile_mode, S_IRUSR | S_IWUSR); /* whether policy verification hashing is enabled */ bool aa_g_hash_policy = IS_ENABLED(CONFIG_SECURITY_APPARMOR_HASH_DEFAULT); #ifdef CONFIG_SECURITY_APPARMOR_HASH module_param_named(hash_policy, aa_g_hash_policy, aabool, S_IRUSR | S_IWUSR); #endif /* policy loaddata compression level */ int aa_g_rawdata_compression_level = Z_DEFAULT_COMPRESSION; module_param_named(rawdata_compression_level, aa_g_rawdata_compression_level, aacompressionlevel, 0400); /* Debug mode */ bool aa_g_debug = IS_ENABLED(CONFIG_SECURITY_APPARMOR_DEBUG_MESSAGES); module_param_named(debug, aa_g_debug, aabool, S_IRUSR | S_IWUSR); /* Audit mode */ enum audit_mode aa_g_audit; module_param_call(audit, param_set_audit, param_get_audit, &aa_g_audit, S_IRUSR | S_IWUSR); /* Determines if audit header is included in audited messages. This * provides more context if the audit daemon is not running */ bool aa_g_audit_header = true; module_param_named(audit_header, aa_g_audit_header, aabool, S_IRUSR | S_IWUSR); /* lock out loading/removal of policy * TODO: add in at boot loading of policy, which is the only way to * load policy, if lock_policy is set */ bool aa_g_lock_policy; module_param_named(lock_policy, aa_g_lock_policy, aalockpolicy, S_IRUSR | S_IWUSR); /* Syscall logging mode */ bool aa_g_logsyscall; module_param_named(logsyscall, aa_g_logsyscall, aabool, S_IRUSR | S_IWUSR); /* Maximum pathname length before accesses will start getting rejected */ unsigned int aa_g_path_max = 2 * PATH_MAX; module_param_named(path_max, aa_g_path_max, aauint, S_IRUSR); /* Determines how paranoid loading of policy is and how much verification * on the loaded policy is done. * DEPRECATED: read only as strict checking of load is always done now * that none root users (user namespaces) can load policy. */ bool aa_g_paranoid_load = true; module_param_named(paranoid_load, aa_g_paranoid_load, aabool, S_IRUGO); static int param_get_aaintbool(char *buffer, const struct kernel_param *kp); static int param_set_aaintbool(const char *val, const struct kernel_param *kp); #define param_check_aaintbool param_check_int static const struct kernel_param_ops param_ops_aaintbool = { .set = param_set_aaintbool, .get = param_get_aaintbool }; /* Boot time disable flag */ static int apparmor_enabled __lsm_ro_after_init = 1; module_param_named(enabled, apparmor_enabled, aaintbool, 0444); static int __init apparmor_enabled_setup(char *str) { unsigned long enabled; int error = kstrtoul(str, 0, &enabled); if (!error) apparmor_enabled = enabled ? 1 : 0; return 1; } __setup("apparmor=", apparmor_enabled_setup); /* set global flag turning off the ability to load policy */ static int param_set_aalockpolicy(const char *val, const struct kernel_param *kp) { if (!apparmor_enabled) return -EINVAL; if (apparmor_initialized && !policy_admin_capable(NULL)) return -EPERM; return param_set_bool(val, kp); } static int param_get_aalockpolicy(char *buffer, const struct kernel_param *kp) { if (!apparmor_enabled) return -EINVAL; if (apparmor_initialized && !policy_view_capable(NULL)) return -EPERM; return param_get_bool(buffer, kp); } static int param_set_aabool(const char *val, const struct kernel_param *kp) { if (!apparmor_enabled) return -EINVAL; if (apparmor_initialized && !policy_admin_capable(NULL)) return -EPERM; return param_set_bool(val, kp); } static int param_get_aabool(char *buffer, const struct kernel_param *kp) { if (!apparmor_enabled) return -EINVAL; if (apparmor_initialized && !policy_view_capable(NULL)) return -EPERM; return param_get_bool(buffer, kp); } static int param_set_aauint(const char *val, const struct kernel_param *kp) { int error; if (!apparmor_enabled) return -EINVAL; /* file is ro but enforce 2nd line check */ if (apparmor_initialized) return -EPERM; error = param_set_uint(val, kp); aa_g_path_max = max_t(uint32_t, aa_g_path_max, sizeof(union aa_buffer)); pr_info("AppArmor: buffer size set to %d bytes\n", aa_g_path_max); return error; } static int param_get_aauint(char *buffer, const struct kernel_param *kp) { if (!apparmor_enabled) return -EINVAL; if (apparmor_initialized && !policy_view_capable(NULL)) return -EPERM; return param_get_uint(buffer, kp); } /* Can only be set before AppArmor is initialized (i.e. on boot cmdline). */ static int param_set_aaintbool(const char *val, const struct kernel_param *kp) { struct kernel_param kp_local; bool value; int error; if (apparmor_initialized) return -EPERM; /* Create local copy, with arg pointing to bool type. */ value = !!*((int *)kp->arg); memcpy(&kp_local, kp, sizeof(kp_local)); kp_local.arg = &value; error = param_set_bool(val, &kp_local); if (!error) *((int *)kp->arg) = *((bool *)kp_local.arg); return error; } /* * To avoid changing /sys/module/apparmor/parameters/enabled from Y/N to * 1/0, this converts the "int that is actually bool" back to bool for * display in the /sys filesystem, while keeping it "int" for the LSM * infrastructure. */ static int param_get_aaintbool(char *buffer, const struct kernel_param *kp) { struct kernel_param kp_local; bool value; /* Create local copy, with arg pointing to bool type. */ value = !!*((int *)kp->arg); memcpy(&kp_local, kp, sizeof(kp_local)); kp_local.arg = &value; return param_get_bool(buffer, &kp_local); } static int param_set_aacompressionlevel(const char *val, const struct kernel_param *kp) { int error; if (!apparmor_enabled) return -EINVAL; if (apparmor_initialized) return -EPERM; error = param_set_int(val, kp); aa_g_rawdata_compression_level = clamp(aa_g_rawdata_compression_level, Z_NO_COMPRESSION, Z_BEST_COMPRESSION); pr_info("AppArmor: policy rawdata compression level set to %u\n", aa_g_rawdata_compression_level); return error; } static int param_get_aacompressionlevel(char *buffer, const struct kernel_param *kp) { if (!apparmor_enabled) return -EINVAL; if (apparmor_initialized && !policy_view_capable(NULL)) return -EPERM; return param_get_int(buffer, kp); } static int param_get_audit(char *buffer, const struct kernel_param *kp) { if (!apparmor_enabled) return -EINVAL; if (apparmor_initialized && !policy_view_capable(NULL)) return -EPERM; return sprintf(buffer, "%s", audit_mode_names[aa_g_audit]); } static int param_set_audit(const char *val, const struct kernel_param *kp) { int i; if (!apparmor_enabled) return -EINVAL; if (!val) return -EINVAL; if (apparmor_initialized && !policy_admin_capable(NULL)) return -EPERM; i = match_string(audit_mode_names, AUDIT_MAX_INDEX, val); if (i < 0) return -EINVAL; aa_g_audit = i; return 0; } static int param_get_mode(char *buffer, const struct kernel_param *kp) { if (!apparmor_enabled) return -EINVAL; if (apparmor_initialized && !policy_view_capable(NULL)) return -EPERM; return sprintf(buffer, "%s", aa_profile_mode_names[aa_g_profile_mode]); } static int param_set_mode(const char *val, const struct kernel_param *kp) { int i; if (!apparmor_enabled) return -EINVAL; if (!val) return -EINVAL; if (apparmor_initialized && !policy_admin_capable(NULL)) return -EPERM; i = match_string(aa_profile_mode_names, APPARMOR_MODE_NAMES_MAX_INDEX, val); if (i < 0) return -EINVAL; aa_g_profile_mode = i; return 0; } char *aa_get_buffer(bool in_atomic) { union aa_buffer *aa_buf; bool try_again = true; gfp_t flags = (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); retry: spin_lock(&aa_buffers_lock); if (buffer_count > reserve_count || (in_atomic && !list_empty(&aa_global_buffers))) { aa_buf = list_first_entry(&aa_global_buffers, union aa_buffer, list); list_del(&aa_buf->list); buffer_count--; spin_unlock(&aa_buffers_lock); return &aa_buf->buffer[0]; } if (in_atomic) { /* * out of reserve buffers and in atomic context so increase * how many buffers to keep in reserve */ reserve_count++; flags = GFP_ATOMIC; } spin_unlock(&aa_buffers_lock); if (!in_atomic) might_sleep(); aa_buf = kmalloc(aa_g_path_max, flags); if (!aa_buf) { if (try_again) { try_again = false; goto retry; } pr_warn_once("AppArmor: Failed to allocate a memory buffer.\n"); return NULL; } return &aa_buf->buffer[0]; } void aa_put_buffer(char *buf) { union aa_buffer *aa_buf; if (!buf) return; aa_buf = container_of(buf, union aa_buffer, buffer[0]); spin_lock(&aa_buffers_lock); list_add(&aa_buf->list, &aa_global_buffers); buffer_count++; spin_unlock(&aa_buffers_lock); } /* * AppArmor init functions */ /** * set_init_ctx - set a task context and profile on the first task. * * TODO: allow setting an alternate profile than unconfined */ static int __init set_init_ctx(void) { struct cred *cred = (__force struct cred *)current->real_cred; set_cred_label(cred, aa_get_label(ns_unconfined(root_ns))); return 0; } static void destroy_buffers(void) { union aa_buffer *aa_buf; spin_lock(&aa_buffers_lock); while (!list_empty(&aa_global_buffers)) { aa_buf = list_first_entry(&aa_global_buffers, union aa_buffer, list); list_del(&aa_buf->list); spin_unlock(&aa_buffers_lock); kfree(aa_buf); spin_lock(&aa_buffers_lock); } spin_unlock(&aa_buffers_lock); } static int __init alloc_buffers(void) { union aa_buffer *aa_buf; int i, num; /* * A function may require two buffers at once. Usually the buffers are * used for a short period of time and are shared. On UP kernel buffers * two should be enough, with more CPUs it is possible that more * buffers will be used simultaneously. The preallocated pool may grow. * This preallocation has also the side-effect that AppArmor will be * disabled early at boot if aa_g_path_max is extremly high. */ if (num_online_cpus() > 1) num = 4 + RESERVE_COUNT; else num = 2 + RESERVE_COUNT; for (i = 0; i < num; i++) { aa_buf = kmalloc(aa_g_path_max, GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); if (!aa_buf) { destroy_buffers(); return -ENOMEM; } aa_put_buffer(&aa_buf->buffer[0]); } return 0; } #ifdef CONFIG_SYSCTL static int apparmor_dointvec(struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { if (!policy_admin_capable(NULL)) return -EPERM; if (!apparmor_enabled) return -EINVAL; return proc_dointvec(table, write, buffer, lenp, ppos); } static struct ctl_path apparmor_sysctl_path[] = { { .procname = "kernel", }, { } }; static struct ctl_table apparmor_sysctl_table[] = { { .procname = "unprivileged_userns_apparmor_policy", .data = &unprivileged_userns_apparmor_policy, .maxlen = sizeof(int), .mode = 0600, .proc_handler = apparmor_dointvec, }, { } }; static int __init apparmor_init_sysctl(void) { return register_sysctl_paths(apparmor_sysctl_path, apparmor_sysctl_table) ? 0 : -ENOMEM; } #else static inline int apparmor_init_sysctl(void) { return 0; } #endif /* CONFIG_SYSCTL */ #if defined(CONFIG_NETFILTER) && defined(CONFIG_NETWORK_SECMARK) static unsigned int apparmor_ip_postroute(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct aa_sk_ctx *ctx; struct sock *sk; if (!skb->secmark) return NF_ACCEPT; sk = skb_to_full_sk(skb); if (sk == NULL) return NF_ACCEPT; ctx = SK_CTX(sk); if (!apparmor_secmark_check(ctx->label, OP_SENDMSG, AA_MAY_SEND, skb->secmark, sk)) return NF_ACCEPT; return NF_DROP_ERR(-ECONNREFUSED); } static unsigned int apparmor_ipv4_postroute(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { return apparmor_ip_postroute(priv, skb, state); } #if IS_ENABLED(CONFIG_IPV6) static unsigned int apparmor_ipv6_postroute(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { return apparmor_ip_postroute(priv, skb, state); } #endif static const struct nf_hook_ops apparmor_nf_ops[] = { { .hook = apparmor_ipv4_postroute, .pf = NFPROTO_IPV4, .hooknum = NF_INET_POST_ROUTING, .priority = NF_IP_PRI_SELINUX_FIRST, }, #if IS_ENABLED(CONFIG_IPV6) { .hook = apparmor_ipv6_postroute, .pf = NFPROTO_IPV6, .hooknum = NF_INET_POST_ROUTING, .priority = NF_IP6_PRI_SELINUX_FIRST, }, #endif }; static int __net_init apparmor_nf_register(struct net *net) { int ret; ret = nf_register_net_hooks(net, apparmor_nf_ops, ARRAY_SIZE(apparmor_nf_ops)); return ret; } static void __net_exit apparmor_nf_unregister(struct net *net) { nf_unregister_net_hooks(net, apparmor_nf_ops, ARRAY_SIZE(apparmor_nf_ops)); } static struct pernet_operations apparmor_net_ops = { .init = apparmor_nf_register, .exit = apparmor_nf_unregister, }; static int __init apparmor_nf_ip_init(void) { int err; if (!apparmor_enabled) return 0; err = register_pernet_subsys(&apparmor_net_ops); if (err) panic("Apparmor: register_pernet_subsys: error %d\n", err); return 0; } __initcall(apparmor_nf_ip_init); #endif static int __init apparmor_init(void) { int error; aa_secids_init(); error = aa_setup_dfa_engine(); if (error) { AA_ERROR("Unable to setup dfa engine\n"); goto alloc_out; } error = aa_alloc_root_ns(); if (error) { AA_ERROR("Unable to allocate default profile namespace\n"); goto alloc_out; } error = apparmor_init_sysctl(); if (error) { AA_ERROR("Unable to register sysctls\n"); goto alloc_out; } error = alloc_buffers(); if (error) { AA_ERROR("Unable to allocate work buffers\n"); goto alloc_out; } error = set_init_ctx(); if (error) { AA_ERROR("Failed to set context on init task\n"); aa_free_root_ns(); goto buffers_out; } security_add_hooks(apparmor_hooks, ARRAY_SIZE(apparmor_hooks), "apparmor"); /* Report that AppArmor successfully initialized */ apparmor_initialized = 1; if (aa_g_profile_mode == APPARMOR_COMPLAIN) aa_info_message("AppArmor initialized: complain mode enabled"); else if (aa_g_profile_mode == APPARMOR_KILL) aa_info_message("AppArmor initialized: kill mode enabled"); else aa_info_message("AppArmor initialized"); return error; buffers_out: destroy_buffers(); alloc_out: aa_destroy_aafs(); aa_teardown_dfa_engine(); apparmor_enabled = false; return error; } DEFINE_LSM(apparmor) = { .name = "apparmor", .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE, .enabled = &apparmor_enabled, .blobs = &apparmor_blob_sizes, .init = apparmor_init, }; |
307 309 309 7 306 4 5 4 4 1 24 4 56 56 56 56 56 56 52 56 53 56 15 53 43 166 167 166 166 4 167 472 18 321 320 320 401 405 404 404 405 253 253 250 251 252 403 153 321 321 318 319 15 310 17 108 430 56 488 28 28 28 28 28 28 28 28 27 28 133 134 133 7 132 487 490 490 486 485 4 486 487 488 488 28 487 488 336 339 9 13 465 463 17 478 4 7 11 461 16 9 16 16 16 16 10 6 4 4 2 321 321 7 318 2 5 7 319 319 319 320 316 319 319 319 1 1 1 3 155 157 178 158 74 2 2 3 174 173 74 158 178 7 2 5 27 27 27 3 3 1 2 3 1 2 4 14 3 1 9 9 4 17 2 18 5 16 14 2 8 6 2 7 14 8 6 5 14 1 4 1 1 1 1 1 3 17 19 9 8 21 27 230 340 342 11 230 240 240 290 294 255 10 422 421 422 422 421 160 160 159 37 13 13 1 1 4 7 10 1 4 2 2 57 57 3 1 6 1 46 51 2 38 10 6 8 2 1 31 2 7 21 26 4 7 20 7 24 3 22 1 22 22 1 2 1 1 10 1 1 1 1 1 1 3 22 19 1 22 22 22 22 4 5 1 21 22 21 9 1 1 2 5 5 4 23 23 12 3 23 22 22 22 20 22 337 2 1 30 1 335 339 1 3 3 3 8 6 14 11 11 11 11 11 11 11 11 11 9 11 11 8 8 8 3 3 3 3 19 4 13 8 13 19 2 16 19 6 19 17 19 12 15 8 11 19 1 4 4 1 2 5 2 3 13 13 1 1 1 2 328 330 446 446 436 443 445 436 445 188 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Generic address resolution entity * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> * * Fixes: * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. * Harald Welte Add neighbour cache statistics like rtstat */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/slab.h> #include <linux/kmemleak.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/socket.h> #include <linux/netdevice.h> #include <linux/proc_fs.h> #ifdef CONFIG_SYSCTL #include <linux/sysctl.h> #endif #include <linux/times.h> #include <net/net_namespace.h> #include <net/neighbour.h> #include <net/arp.h> #include <net/dst.h> #include <net/sock.h> #include <net/netevent.h> #include <net/netlink.h> #include <linux/rtnetlink.h> #include <linux/random.h> #include <linux/string.h> #include <linux/log2.h> #include <linux/inetdevice.h> #include <net/addrconf.h> #include <trace/events/neigh.h> #define NEIGH_DEBUG 1 #define neigh_dbg(level, fmt, ...) \ do { \ if (level <= NEIGH_DEBUG) \ pr_debug(fmt, ##__VA_ARGS__); \ } while (0) #define PNEIGH_HASHMASK 0xF static void neigh_timer_handler(struct timer_list *t); static void __neigh_notify(struct neighbour *n, int type, int flags, u32 pid); static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid); static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, struct net_device *dev); #ifdef CONFIG_PROC_FS static const struct seq_operations neigh_stat_seq_ops; #endif /* Neighbour hash table buckets are protected with rwlock tbl->lock. - All the scans/updates to hash buckets MUST be made under this lock. - NOTHING clever should be made under this lock: no callbacks to protocol backends, no attempts to send something to network. It will result in deadlocks, if backend/driver wants to use neighbour cache. - If the entry requires some non-trivial actions, increase its reference count and release table lock. Neighbour entries are protected: - with reference count. - with rwlock neigh->lock Reference count prevents destruction. neigh->lock mainly serializes ll address data and its validity state. However, the same lock is used to protect another entry fields: - timer - resolution queue Again, nothing clever shall be made under neigh->lock, the most complicated procedure, which we allow is dev->hard_header. It is supposed, that dev->hard_header is simplistic and does not make callbacks to neighbour tables. */ static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb) { kfree_skb(skb); return -ENETDOWN; } static void neigh_cleanup_and_release(struct neighbour *neigh) { trace_neigh_cleanup_and_release(neigh, 0); __neigh_notify(neigh, RTM_DELNEIGH, 0, 0); call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); neigh_release(neigh); } /* * It is random distribution in the interval (1/2)*base...(3/2)*base. * It corresponds to default IPv6 settings and is not overridable, * because it is really reasonable choice. */ unsigned long neigh_rand_reach_time(unsigned long base) { return base ? (prandom_u32() % base) + (base >> 1) : 0; } EXPORT_SYMBOL(neigh_rand_reach_time); static void neigh_mark_dead(struct neighbour *n) { n->dead = 1; if (!list_empty(&n->gc_list)) { list_del_init(&n->gc_list); atomic_dec(&n->tbl->gc_entries); } } static void neigh_update_gc_list(struct neighbour *n) { bool on_gc_list, exempt_from_gc; write_lock_bh(&n->tbl->lock); write_lock(&n->lock); if (n->dead) goto out; /* remove from the gc list if new state is permanent or if neighbor * is externally learned; otherwise entry should be on the gc list */ exempt_from_gc = n->nud_state & NUD_PERMANENT || n->flags & NTF_EXT_LEARNED; on_gc_list = !list_empty(&n->gc_list); if (exempt_from_gc && on_gc_list) { list_del_init(&n->gc_list); atomic_dec(&n->tbl->gc_entries); } else if (!exempt_from_gc && !on_gc_list) { /* add entries to the tail; cleaning removes from the front */ list_add_tail(&n->gc_list, &n->tbl->gc_list); atomic_inc(&n->tbl->gc_entries); } out: write_unlock(&n->lock); write_unlock_bh(&n->tbl->lock); } static bool neigh_update_ext_learned(struct neighbour *neigh, u32 flags, int *notify) { bool rc = false; u8 ndm_flags; if (!(flags & NEIGH_UPDATE_F_ADMIN)) return rc; ndm_flags = (flags & NEIGH_UPDATE_F_EXT_LEARNED) ? NTF_EXT_LEARNED : 0; if ((neigh->flags ^ ndm_flags) & NTF_EXT_LEARNED) { if (ndm_flags & NTF_EXT_LEARNED) neigh->flags |= NTF_EXT_LEARNED; else neigh->flags &= ~NTF_EXT_LEARNED; rc = true; *notify = 1; } return rc; } static bool neigh_del(struct neighbour *n, struct neighbour __rcu **np, struct neigh_table *tbl) { bool retval = false; write_lock(&n->lock); if (refcount_read(&n->refcnt) == 1) { struct neighbour *neigh; neigh = rcu_dereference_protected(n->next, lockdep_is_held(&tbl->lock)); rcu_assign_pointer(*np, neigh); neigh_mark_dead(n); retval = true; } write_unlock(&n->lock); if (retval) neigh_cleanup_and_release(n); return retval; } bool neigh_remove_one(struct neighbour *ndel, struct neigh_table *tbl) { struct neigh_hash_table *nht; void *pkey = ndel->primary_key; u32 hash_val; struct neighbour *n; struct neighbour __rcu **np; nht = rcu_dereference_protected(tbl->nht, lockdep_is_held(&tbl->lock)); hash_val = tbl->hash(pkey, ndel->dev, nht->hash_rnd); hash_val = hash_val >> (32 - nht->hash_shift); np = &nht->hash_buckets[hash_val]; while ((n = rcu_dereference_protected(*np, lockdep_is_held(&tbl->lock)))) { if (n == ndel) return neigh_del(n, np, tbl); np = &n->next; } return false; } static int neigh_forced_gc(struct neigh_table *tbl) { int max_clean = atomic_read(&tbl->gc_entries) - READ_ONCE(tbl->gc_thresh2); u64 tmax = ktime_get_ns() + NSEC_PER_MSEC; unsigned long tref = jiffies - 5 * HZ; struct neighbour *n, *tmp; int shrunk = 0; int loop = 0; NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); write_lock_bh(&tbl->lock); list_for_each_entry_safe(n, tmp, &tbl->gc_list, gc_list) { if (refcount_read(&n->refcnt) == 1) { bool remove = false; write_lock(&n->lock); if ((n->nud_state == NUD_FAILED) || (n->nud_state == NUD_NOARP) || (tbl->is_multicast && tbl->is_multicast(n->primary_key)) || !time_in_range(n->updated, tref, jiffies)) remove = true; write_unlock(&n->lock); if (remove && neigh_remove_one(n, tbl)) shrunk++; if (shrunk >= max_clean) break; if (++loop == 16) { if (ktime_get_ns() > tmax) goto unlock; loop = 0; } } } WRITE_ONCE(tbl->last_flush, jiffies); unlock: write_unlock_bh(&tbl->lock); return shrunk; } static void neigh_add_timer(struct neighbour *n, unsigned long when) { /* Use safe distance from the jiffies - LONG_MAX point while timer * is running in DELAY/PROBE state but still show to user space * large times in the past. */ unsigned long mint = jiffies - (LONG_MAX - 86400 * HZ); neigh_hold(n); if (!time_in_range(n->confirmed, mint, jiffies)) n->confirmed = mint; if (time_before(n->used, n->confirmed)) n->used = n->confirmed; if (unlikely(mod_timer(&n->timer, when))) { printk("NEIGH: BUG, double timer add, state is %x\n", n->nud_state); dump_stack(); } } static int neigh_del_timer(struct neighbour *n) { if ((n->nud_state & NUD_IN_TIMER) && del_timer(&n->timer)) { neigh_release(n); return 1; } return 0; } static void pneigh_queue_purge(struct sk_buff_head *list, struct net *net) { struct sk_buff_head tmp; unsigned long flags; struct sk_buff *skb; skb_queue_head_init(&tmp); spin_lock_irqsave(&list->lock, flags); skb = skb_peek(list); while (skb != NULL) { struct sk_buff *skb_next = skb_peek_next(skb, list); if (net == NULL || net_eq(dev_net(skb->dev), net)) { __skb_unlink(skb, list); __skb_queue_tail(&tmp, skb); } skb = skb_next; } spin_unlock_irqrestore(&list->lock, flags); while ((skb = __skb_dequeue(&tmp))) { dev_put(skb->dev); kfree_skb(skb); } } static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev, bool skip_perm) { int i; struct neigh_hash_table *nht; nht = rcu_dereference_protected(tbl->nht, lockdep_is_held(&tbl->lock)); for (i = 0; i < (1 << nht->hash_shift); i++) { struct neighbour *n; struct neighbour __rcu **np = &nht->hash_buckets[i]; while ((n = rcu_dereference_protected(*np, lockdep_is_held(&tbl->lock))) != NULL) { if (dev && n->dev != dev) { np = &n->next; continue; } if (skip_perm && n->nud_state & NUD_PERMANENT) { np = &n->next; continue; } rcu_assign_pointer(*np, rcu_dereference_protected(n->next, lockdep_is_held(&tbl->lock))); write_lock(&n->lock); neigh_del_timer(n); neigh_mark_dead(n); if (refcount_read(&n->refcnt) != 1) { /* The most unpleasant situation. We must destroy neighbour entry, but someone still uses it. The destroy will be delayed until the last user releases us, but we must kill timers etc. and move it to safe state. */ __skb_queue_purge(&n->arp_queue); n->arp_queue_len_bytes = 0; n->output = neigh_blackhole; if (n->nud_state & NUD_VALID) n->nud_state = NUD_NOARP; else n->nud_state = NUD_NONE; neigh_dbg(2, "neigh %p is stray\n", n); } write_unlock(&n->lock); neigh_cleanup_and_release(n); } } } void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) { write_lock_bh(&tbl->lock); neigh_flush_dev(tbl, dev, false); write_unlock_bh(&tbl->lock); } EXPORT_SYMBOL(neigh_changeaddr); static int __neigh_ifdown(struct neigh_table *tbl, struct net_device *dev, bool skip_perm) { write_lock_bh(&tbl->lock); neigh_flush_dev(tbl, dev, skip_perm); pneigh_ifdown_and_unlock(tbl, dev); pneigh_queue_purge(&tbl->proxy_queue, dev ? dev_net(dev) : NULL); if (skb_queue_empty_lockless(&tbl->proxy_queue)) del_timer_sync(&tbl->proxy_timer); return 0; } int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev) { __neigh_ifdown(tbl, dev, true); return 0; } EXPORT_SYMBOL(neigh_carrier_down); int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) { __neigh_ifdown(tbl, dev, false); return 0; } EXPORT_SYMBOL(neigh_ifdown); static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev, u8 flags, bool exempt_from_gc) { struct neighbour *n = NULL; unsigned long now = jiffies; int entries, gc_thresh3; if (exempt_from_gc) goto do_alloc; entries = atomic_inc_return(&tbl->gc_entries) - 1; gc_thresh3 = READ_ONCE(tbl->gc_thresh3); if (entries >= gc_thresh3 || (entries >= READ_ONCE(tbl->gc_thresh2) && time_after(now, READ_ONCE(tbl->last_flush) + 5 * HZ))) { if (!neigh_forced_gc(tbl) && entries >= gc_thresh3) { net_info_ratelimited("%s: neighbor table overflow!\n", tbl->id); NEIGH_CACHE_STAT_INC(tbl, table_fulls); goto out_entries; } } do_alloc: n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC); if (!n) goto out_entries; __skb_queue_head_init(&n->arp_queue); rwlock_init(&n->lock); seqlock_init(&n->ha_lock); n->updated = n->used = now; n->nud_state = NUD_NONE; n->output = neigh_blackhole; n->flags = flags; seqlock_init(&n->hh.hh_lock); n->parms = neigh_parms_clone(&tbl->parms); timer_setup(&n->timer, neigh_timer_handler, 0); NEIGH_CACHE_STAT_INC(tbl, allocs); n->tbl = tbl; refcount_set(&n->refcnt, 1); n->dead = 1; INIT_LIST_HEAD(&n->gc_list); atomic_inc(&tbl->entries); out: return n; out_entries: if (!exempt_from_gc) atomic_dec(&tbl->gc_entries); goto out; } static void neigh_get_hash_rnd(u32 *x) { *x = get_random_u32() | 1; } static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift) { size_t size = (1 << shift) * sizeof(struct neighbour *); struct neigh_hash_table *ret; struct neighbour __rcu **buckets; int i; ret = kmalloc(sizeof(*ret), GFP_ATOMIC); if (!ret) return NULL; if (size <= PAGE_SIZE) { buckets = kzalloc(size, GFP_ATOMIC); } else { buckets = (struct neighbour __rcu **) __get_free_pages(GFP_ATOMIC | __GFP_ZERO, get_order(size)); kmemleak_alloc(buckets, size, 1, GFP_ATOMIC); } if (!buckets) { kfree(ret); return NULL; } ret->hash_buckets = buckets; ret->hash_shift = shift; for (i = 0; i < NEIGH_NUM_HASH_RND; i++) neigh_get_hash_rnd(&ret->hash_rnd[i]); return ret; } static void neigh_hash_free_rcu(struct rcu_head *head) { struct neigh_hash_table *nht = container_of(head, struct neigh_hash_table, rcu); size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *); struct neighbour __rcu **buckets = nht->hash_buckets; if (size <= PAGE_SIZE) { kfree(buckets); } else { kmemleak_free(buckets); free_pages((unsigned long)buckets, get_order(size)); } kfree(nht); } static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl, unsigned long new_shift) { unsigned int i, hash; struct neigh_hash_table *new_nht, *old_nht; NEIGH_CACHE_STAT_INC(tbl, hash_grows); old_nht = rcu_dereference_protected(tbl->nht, lockdep_is_held(&tbl->lock)); new_nht = neigh_hash_alloc(new_shift); if (!new_nht) return old_nht; for (i = 0; i < (1 << old_nht->hash_shift); i++) { struct neighbour *n, *next; for (n = rcu_dereference_protected(old_nht->hash_buckets[i], lockdep_is_held(&tbl->lock)); n != NULL; n = next) { hash = tbl->hash(n->primary_key, n->dev, new_nht->hash_rnd); hash >>= (32 - new_nht->hash_shift); next = rcu_dereference_protected(n->next, lockdep_is_held(&tbl->lock)); rcu_assign_pointer(n->next, rcu_dereference_protected( new_nht->hash_buckets[hash], lockdep_is_held(&tbl->lock))); rcu_assign_pointer(new_nht->hash_buckets[hash], n); } } rcu_assign_pointer(tbl->nht, new_nht); call_rcu(&old_nht->rcu, neigh_hash_free_rcu); return new_nht; } struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, struct net_device *dev) { struct neighbour *n; NEIGH_CACHE_STAT_INC(tbl, lookups); rcu_read_lock_bh(); n = __neigh_lookup_noref(tbl, pkey, dev); if (n) { if (!refcount_inc_not_zero(&n->refcnt)) n = NULL; NEIGH_CACHE_STAT_INC(tbl, hits); } rcu_read_unlock_bh(); return n; } EXPORT_SYMBOL(neigh_lookup); static struct neighbour * ___neigh_create(struct neigh_table *tbl, const void *pkey, struct net_device *dev, u8 flags, bool exempt_from_gc, bool want_ref) { u32 hash_val, key_len = tbl->key_len; struct neighbour *n1, *rc, *n; struct neigh_hash_table *nht; int error; n = neigh_alloc(tbl, dev, flags, exempt_from_gc); trace_neigh_create(tbl, dev, pkey, n, exempt_from_gc); if (!n) { rc = ERR_PTR(-ENOBUFS); goto out; } memcpy(n->primary_key, pkey, key_len); n->dev = dev; dev_hold(dev); /* Protocol specific setup. */ if (tbl->constructor && (error = tbl->constructor(n)) < 0) { rc = ERR_PTR(error); goto out_neigh_release; } if (dev->netdev_ops->ndo_neigh_construct) { error = dev->netdev_ops->ndo_neigh_construct(dev, n); if (error < 0) { rc = ERR_PTR(error); goto out_neigh_release; } } /* Device specific setup. */ if (n->parms->neigh_setup && (error = n->parms->neigh_setup(n)) < 0) { rc = ERR_PTR(error); goto out_neigh_release; } n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1); write_lock_bh(&tbl->lock); nht = rcu_dereference_protected(tbl->nht, lockdep_is_held(&tbl->lock)); if (atomic_read(&tbl->entries) > (1 << nht->hash_shift)) nht = neigh_hash_grow(tbl, nht->hash_shift + 1); hash_val = tbl->hash(n->primary_key, dev, nht->hash_rnd) >> (32 - nht->hash_shift); if (n->parms->dead) { rc = ERR_PTR(-EINVAL); goto out_tbl_unlock; } for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val], lockdep_is_held(&tbl->lock)); n1 != NULL; n1 = rcu_dereference_protected(n1->next, lockdep_is_held(&tbl->lock))) { if (dev == n1->dev && !memcmp(n1->primary_key, n->primary_key, key_len)) { if (want_ref) neigh_hold(n1); rc = n1; goto out_tbl_unlock; } } n->dead = 0; if (!exempt_from_gc) list_add_tail(&n->gc_list, &n->tbl->gc_list); if (want_ref) neigh_hold(n); rcu_assign_pointer(n->next, rcu_dereference_protected(nht->hash_buckets[hash_val], lockdep_is_held(&tbl->lock))); rcu_assign_pointer(nht->hash_buckets[hash_val], n); write_unlock_bh(&tbl->lock); neigh_dbg(2, "neigh %p is created\n", n); rc = n; out: return rc; out_tbl_unlock: write_unlock_bh(&tbl->lock); out_neigh_release: if (!exempt_from_gc) atomic_dec(&tbl->gc_entries); neigh_release(n); goto out; } struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey, struct net_device *dev, bool want_ref) { return ___neigh_create(tbl, pkey, dev, 0, false, want_ref); } EXPORT_SYMBOL(__neigh_create); static u32 pneigh_hash(const void *pkey, unsigned int key_len) { u32 hash_val = *(u32 *)(pkey + key_len - 4); hash_val ^= (hash_val >> 16); hash_val ^= hash_val >> 8; hash_val ^= hash_val >> 4; hash_val &= PNEIGH_HASHMASK; return hash_val; } static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n, struct net *net, const void *pkey, unsigned int key_len, struct net_device *dev) { while (n) { if (!memcmp(n->key, pkey, key_len) && net_eq(pneigh_net(n), net) && (n->dev == dev || !n->dev)) return n; n = n->next; } return NULL; } struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, struct net *net, const void *pkey, struct net_device *dev) { unsigned int key_len = tbl->key_len; u32 hash_val = pneigh_hash(pkey, key_len); return __pneigh_lookup_1(tbl->phash_buckets[hash_val], net, pkey, key_len, dev); } EXPORT_SYMBOL_GPL(__pneigh_lookup); struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, struct net *net, const void *pkey, struct net_device *dev, int creat) { struct pneigh_entry *n; unsigned int key_len = tbl->key_len; u32 hash_val = pneigh_hash(pkey, key_len); read_lock_bh(&tbl->lock); n = __pneigh_lookup_1(tbl->phash_buckets[hash_val], net, pkey, key_len, dev); read_unlock_bh(&tbl->lock); if (n || !creat) goto out; ASSERT_RTNL(); n = kzalloc(sizeof(*n) + key_len, GFP_KERNEL); if (!n) goto out; write_pnet(&n->net, net); memcpy(n->key, pkey, key_len); n->dev = dev; dev_hold(dev); if (tbl->pconstructor && tbl->pconstructor(n)) { dev_put(dev); kfree(n); n = NULL; goto out; } write_lock_bh(&tbl->lock); n->next = tbl->phash_buckets[hash_val]; tbl->phash_buckets[hash_val] = n; write_unlock_bh(&tbl->lock); out: return n; } EXPORT_SYMBOL(pneigh_lookup); int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, struct net_device *dev) { struct pneigh_entry *n, **np; unsigned int key_len = tbl->key_len; u32 hash_val = pneigh_hash(pkey, key_len); write_lock_bh(&tbl->lock); for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; np = &n->next) { if (!memcmp(n->key, pkey, key_len) && n->dev == dev && net_eq(pneigh_net(n), net)) { *np = n->next; write_unlock_bh(&tbl->lock); if (tbl->pdestructor) tbl->pdestructor(n); dev_put(n->dev); kfree(n); return 0; } } write_unlock_bh(&tbl->lock); return -ENOENT; } static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, struct net_device *dev) { struct pneigh_entry *n, **np, *freelist = NULL; u32 h; for (h = 0; h <= PNEIGH_HASHMASK; h++) { np = &tbl->phash_buckets[h]; while ((n = *np) != NULL) { if (!dev || n->dev == dev) { *np = n->next; n->next = freelist; freelist = n; continue; } np = &n->next; } } write_unlock_bh(&tbl->lock); while ((n = freelist)) { freelist = n->next; n->next = NULL; if (tbl->pdestructor) tbl->pdestructor(n); dev_put(n->dev); kfree(n); } return -ENOENT; } static void neigh_parms_destroy(struct neigh_parms *parms); static inline void neigh_parms_put(struct neigh_parms *parms) { if (refcount_dec_and_test(&parms->refcnt)) neigh_parms_destroy(parms); } /* * neighbour must already be out of the table; * */ void neigh_destroy(struct neighbour *neigh) { struct net_device *dev = neigh->dev; NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); if (!neigh->dead) { pr_warn("Destroying alive neighbour %p\n", neigh); dump_stack(); return; } if (neigh_del_timer(neigh)) pr_warn("Impossible event\n"); write_lock_bh(&neigh->lock); __skb_queue_purge(&neigh->arp_queue); write_unlock_bh(&neigh->lock); neigh->arp_queue_len_bytes = 0; if (dev->netdev_ops->ndo_neigh_destroy) dev->netdev_ops->ndo_neigh_destroy(dev, neigh); dev_put(dev); neigh_parms_put(neigh->parms); neigh_dbg(2, "neigh %p is destroyed\n", neigh); atomic_dec(&neigh->tbl->entries); kfree_rcu(neigh, rcu); } EXPORT_SYMBOL(neigh_destroy); /* Neighbour state is suspicious; disable fast path. Called with write_locked neigh. */ static void neigh_suspect(struct neighbour *neigh) { neigh_dbg(2, "neigh %p is suspected\n", neigh); neigh->output = neigh->ops->output; } /* Neighbour state is OK; enable fast path. Called with write_locked neigh. */ static void neigh_connect(struct neighbour *neigh) { neigh_dbg(2, "neigh %p is connected\n", neigh); neigh->output = neigh->ops->connected_output; } static void neigh_periodic_work(struct work_struct *work) { struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work); struct neighbour *n; struct neighbour __rcu **np; unsigned int i; struct neigh_hash_table *nht; NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); write_lock_bh(&tbl->lock); nht = rcu_dereference_protected(tbl->nht, lockdep_is_held(&tbl->lock)); /* * periodically recompute ReachableTime from random function */ if (time_after(jiffies, tbl->last_rand + 300 * HZ)) { struct neigh_parms *p; WRITE_ONCE(tbl->last_rand, jiffies); list_for_each_entry(p, &tbl->parms_list, list) p->reachable_time = neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); } if (atomic_read(&tbl->entries) < READ_ONCE(tbl->gc_thresh1)) goto out; for (i = 0 ; i < (1 << nht->hash_shift); i++) { np = &nht->hash_buckets[i]; while ((n = rcu_dereference_protected(*np, lockdep_is_held(&tbl->lock))) != NULL) { unsigned int state; write_lock(&n->lock); state = n->nud_state; if ((state & (NUD_PERMANENT | NUD_IN_TIMER)) || (n->flags & NTF_EXT_LEARNED)) { write_unlock(&n->lock); goto next_elt; } if (time_before(n->used, n->confirmed) && time_is_before_eq_jiffies(n->confirmed)) n->used = n->confirmed; if (refcount_read(&n->refcnt) == 1 && (state == NUD_FAILED || !time_in_range_open(jiffies, n->used, n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) { rcu_assign_pointer(*np, rcu_dereference_protected(n->next, lockdep_is_held(&tbl->lock))); neigh_mark_dead(n); write_unlock(&n->lock); neigh_cleanup_and_release(n); continue; } write_unlock(&n->lock); next_elt: np = &n->next; } /* * It's fine to release lock here, even if hash table * grows while we are preempted. */ write_unlock_bh(&tbl->lock); cond_resched(); write_lock_bh(&tbl->lock); nht = rcu_dereference_protected(tbl->nht, lockdep_is_held(&tbl->lock)); } out: /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks. * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2 * BASE_REACHABLE_TIME. */ queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1); write_unlock_bh(&tbl->lock); } static __inline__ int neigh_max_probes(struct neighbour *n) { struct neigh_parms *p = n->parms; return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) + (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) : NEIGH_VAR(p, MCAST_PROBES)); } static void neigh_invalidate(struct neighbour *neigh) __releases(neigh->lock) __acquires(neigh->lock) { struct sk_buff *skb; NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); neigh_dbg(2, "neigh %p is failed\n", neigh); neigh->updated = jiffies; /* It is very thin place. report_unreachable is very complicated routine. Particularly, it can hit the same neighbour entry! So that, we try to be accurate and avoid dead loop. --ANK */ while (neigh->nud_state == NUD_FAILED && (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { write_unlock(&neigh->lock); neigh->ops->error_report(neigh, skb); write_lock(&neigh->lock); } __skb_queue_purge(&neigh->arp_queue); neigh->arp_queue_len_bytes = 0; } static void neigh_probe(struct neighbour *neigh) __releases(neigh->lock) { struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue); /* keep skb alive even if arp_queue overflows */ if (skb) skb = skb_clone(skb, GFP_ATOMIC); write_unlock(&neigh->lock); if (neigh->ops->solicit) neigh->ops->solicit(neigh, skb); atomic_inc(&neigh->probes); consume_skb(skb); } /* Called when a timer expires for a neighbour entry. */ static void neigh_timer_handler(struct timer_list *t) { unsigned long now, next; struct neighbour *neigh = from_timer(neigh, t, timer); unsigned int state; int notify = 0; write_lock(&neigh->lock); state = neigh->nud_state; now = jiffies; next = now + HZ; if (!(state & NUD_IN_TIMER)) goto out; if (state & NUD_REACHABLE) { if (time_before_eq(now, neigh->confirmed + neigh->parms->reachable_time)) { neigh_dbg(2, "neigh %p is still alive\n", neigh); next = neigh->confirmed + neigh->parms->reachable_time; } else if (time_before_eq(now, neigh->used + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { neigh_dbg(2, "neigh %p is delayed\n", neigh); neigh->nud_state = NUD_DELAY; neigh->updated = jiffies; neigh_suspect(neigh); next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME); } else { neigh_dbg(2, "neigh %p is suspected\n", neigh); neigh->nud_state = NUD_STALE; neigh->updated = jiffies; neigh_suspect(neigh); notify = 1; } } else if (state & NUD_DELAY) { if (time_before_eq(now, neigh->confirmed + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { neigh_dbg(2, "neigh %p is now reachable\n", neigh); neigh->nud_state = NUD_REACHABLE; neigh->updated = jiffies; neigh_connect(neigh); notify = 1; next = neigh->confirmed + neigh->parms->reachable_time; } else { neigh_dbg(2, "neigh %p is probed\n", neigh); neigh->nud_state = NUD_PROBE; neigh->updated = jiffies; atomic_set(&neigh->probes, 0); notify = 1; next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100); } } else { /* NUD_PROBE|NUD_INCOMPLETE */ next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100); } if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { neigh->nud_state = NUD_FAILED; notify = 1; neigh_invalidate(neigh); goto out; } if (neigh->nud_state & NUD_IN_TIMER) { if (time_before(next, jiffies + HZ/100)) next = jiffies + HZ/100; if (!mod_timer(&neigh->timer, next)) neigh_hold(neigh); } if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { neigh_probe(neigh); } else { out: write_unlock(&neigh->lock); } if (notify) neigh_update_notify(neigh, 0); trace_neigh_timer_handler(neigh, 0); neigh_release(neigh); } int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) { int rc; bool immediate_probe = false; write_lock_bh(&neigh->lock); rc = 0; if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) goto out_unlock_bh; if (neigh->dead) goto out_dead; if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { if (NEIGH_VAR(neigh->parms, MCAST_PROBES) + NEIGH_VAR(neigh->parms, APP_PROBES)) { unsigned long next, now = jiffies; atomic_set(&neigh->probes, NEIGH_VAR(neigh->parms, UCAST_PROBES)); neigh_del_timer(neigh); neigh->nud_state = NUD_INCOMPLETE; neigh->updated = now; next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100); neigh_add_timer(neigh, next); immediate_probe = true; } else { neigh->nud_state = NUD_FAILED; neigh->updated = jiffies; write_unlock_bh(&neigh->lock); kfree_skb(skb); return 1; } } else if (neigh->nud_state & NUD_STALE) { neigh_dbg(2, "neigh %p is delayed\n", neigh); neigh_del_timer(neigh); neigh->nud_state = NUD_DELAY; neigh->updated = jiffies; neigh_add_timer(neigh, jiffies + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME)); } if (neigh->nud_state == NUD_INCOMPLETE) { if (skb) { while (neigh->arp_queue_len_bytes + skb->truesize > NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) { struct sk_buff *buff; buff = __skb_dequeue(&neigh->arp_queue); if (!buff) break; neigh->arp_queue_len_bytes -= buff->truesize; kfree_skb(buff); NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards); } skb_dst_force(skb); __skb_queue_tail(&neigh->arp_queue, skb); neigh->arp_queue_len_bytes += skb->truesize; } rc = 1; } out_unlock_bh: if (immediate_probe) neigh_probe(neigh); else write_unlock(&neigh->lock); local_bh_enable(); trace_neigh_event_send_done(neigh, rc); return rc; out_dead: if (neigh->nud_state & NUD_STALE) goto out_unlock_bh; write_unlock_bh(&neigh->lock); kfree_skb(skb); trace_neigh_event_send_dead(neigh, 1); return 1; } EXPORT_SYMBOL(__neigh_event_send); static void neigh_update_hhs(struct neighbour *neigh) { struct hh_cache *hh; void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) = NULL; if (neigh->dev->header_ops) update = neigh->dev->header_ops->cache_update; if (update) { hh = &neigh->hh; if (READ_ONCE(hh->hh_len)) { write_seqlock_bh(&hh->hh_lock); update(hh, neigh->dev, neigh->ha); write_sequnlock_bh(&hh->hh_lock); } } } /* Generic update routine. -- lladdr is new lladdr or NULL, if it is not supplied. -- new is new state. -- flags NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, if it is different. NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" lladdr instead of overriding it if it is different. NEIGH_UPDATE_F_ADMIN means that the change is administrative. NEIGH_UPDATE_F_USE means that the entry is user triggered. NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing NTF_ROUTER flag. NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as a router. Caller MUST hold reference count on the entry. */ static int __neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, u32 flags, u32 nlmsg_pid, struct netlink_ext_ack *extack) { bool ext_learn_change = false; u8 old; int err; int notify = 0; struct net_device *dev; int update_isrouter = 0; trace_neigh_update(neigh, lladdr, new, flags, nlmsg_pid); write_lock_bh(&neigh->lock); dev = neigh->dev; old = neigh->nud_state; err = -EPERM; if (neigh->dead) { NL_SET_ERR_MSG(extack, "Neighbor entry is now dead"); new = old; goto out; } if (!(flags & NEIGH_UPDATE_F_ADMIN) && (old & (NUD_NOARP | NUD_PERMANENT))) goto out; ext_learn_change = neigh_update_ext_learned(neigh, flags, ¬ify); if (flags & NEIGH_UPDATE_F_USE) { new = old & ~NUD_PERMANENT; neigh->nud_state = new; err = 0; goto out; } if (!(new & NUD_VALID)) { neigh_del_timer(neigh); if (old & NUD_CONNECTED) neigh_suspect(neigh); neigh->nud_state = new; err = 0; notify = old & NUD_VALID; if ((old & (NUD_INCOMPLETE | NUD_PROBE)) && (new & NUD_FAILED)) { neigh_invalidate(neigh); notify = 1; } goto out; } /* Compare new lladdr with cached one */ if (!dev->addr_len) { /* First case: device needs no address. */ lladdr = neigh->ha; } else if (lladdr) { /* The second case: if something is already cached and a new address is proposed: - compare new & old - if they are different, check override flag */ if ((old & NUD_VALID) && !memcmp(lladdr, neigh->ha, dev->addr_len)) lladdr = neigh->ha; } else { /* No address is supplied; if we know something, use it, otherwise discard the request. */ err = -EINVAL; if (!(old & NUD_VALID)) { NL_SET_ERR_MSG(extack, "No link layer address given"); goto out; } lladdr = neigh->ha; } /* Update confirmed timestamp for neighbour entry after we * received ARP packet even if it doesn't change IP to MAC binding. */ if (new & NUD_CONNECTED) neigh->confirmed = jiffies; /* If entry was valid and address is not changed, do not change entry state, if new one is STALE. */ err = 0; update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; if (old & NUD_VALID) { if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { update_isrouter = 0; if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && (old & NUD_CONNECTED)) { lladdr = neigh->ha; new = NUD_STALE; } else goto out; } else { if (lladdr == neigh->ha && new == NUD_STALE && !(flags & NEIGH_UPDATE_F_ADMIN)) new = old; } } /* Update timestamp only once we know we will make a change to the * neighbour entry. Otherwise we risk to move the locktime window with * noop updates and ignore relevant ARP updates. */ if (new != old || lladdr != neigh->ha) neigh->updated = jiffies; if (new != old) { neigh_del_timer(neigh); if (new & NUD_PROBE) atomic_set(&neigh->probes, 0); if (new & NUD_IN_TIMER) neigh_add_timer(neigh, (jiffies + ((new & NUD_REACHABLE) ? neigh->parms->reachable_time : 0))); neigh->nud_state = new; notify = 1; } if (lladdr != neigh->ha) { write_seqlock(&neigh->ha_lock); memcpy(&neigh->ha, lladdr, dev->addr_len); write_sequnlock(&neigh->ha_lock); neigh_update_hhs(neigh); if (!(new & NUD_CONNECTED)) neigh->confirmed = jiffies - (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1); notify = 1; } if (new == old) goto out; if (new & NUD_CONNECTED) neigh_connect(neigh); else neigh_suspect(neigh); if (!(old & NUD_VALID)) { struct sk_buff *skb; /* Again: avoid dead loop if something went wrong */ while (neigh->nud_state & NUD_VALID && (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { struct dst_entry *dst = skb_dst(skb); struct neighbour *n2, *n1 = neigh; write_unlock_bh(&neigh->lock); rcu_read_lock(); /* Why not just use 'neigh' as-is? The problem is that * things such as shaper, eql, and sch_teql can end up * using alternative, different, neigh objects to output * the packet in the output path. So what we need to do * here is re-lookup the top-level neigh in the path so * we can reinject the packet there. */ n2 = NULL; if (dst && dst->obsolete != DST_OBSOLETE_DEAD) { n2 = dst_neigh_lookup_skb(dst, skb); if (n2) n1 = n2; } n1->output(n1, skb); if (n2) neigh_release(n2); rcu_read_unlock(); write_lock_bh(&neigh->lock); } __skb_queue_purge(&neigh->arp_queue); neigh->arp_queue_len_bytes = 0; } out: if (update_isrouter) neigh_update_is_router(neigh, flags, ¬ify); write_unlock_bh(&neigh->lock); if (((new ^ old) & NUD_PERMANENT) || ext_learn_change) neigh_update_gc_list(neigh); if (notify) neigh_update_notify(neigh, nlmsg_pid); trace_neigh_update_done(neigh, err); return err; } int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, u32 flags, u32 nlmsg_pid) { return __neigh_update(neigh, lladdr, new, flags, nlmsg_pid, NULL); } EXPORT_SYMBOL(neigh_update); /* Update the neigh to listen temporarily for probe responses, even if it is * in a NUD_FAILED state. The caller has to hold neigh->lock for writing. */ void __neigh_set_probe_once(struct neighbour *neigh) { if (neigh->dead) return; neigh->updated = jiffies; if (!(neigh->nud_state & NUD_FAILED)) return; neigh->nud_state = NUD_INCOMPLETE; atomic_set(&neigh->probes, neigh_max_probes(neigh)); neigh_add_timer(neigh, jiffies + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100)); } EXPORT_SYMBOL(__neigh_set_probe_once); struct neighbour *neigh_event_ns(struct neigh_table *tbl, u8 *lladdr, void *saddr, struct net_device *dev) { struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, lladdr || !dev->addr_len); if (neigh) neigh_update(neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_OVERRIDE, 0); return neigh; } EXPORT_SYMBOL(neigh_event_ns); /* called with read_lock_bh(&n->lock); */ static void neigh_hh_init(struct neighbour *n) { struct net_device *dev = n->dev; __be16 prot = n->tbl->protocol; struct hh_cache *hh = &n->hh; write_lock_bh(&n->lock); /* Only one thread can come in here and initialize the * hh_cache entry. */ if (!hh->hh_len) dev->header_ops->cache(n, hh, prot); write_unlock_bh(&n->lock); } /* Slow and careful. */ int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb) { int rc = 0; if (!neigh_event_send(neigh, skb)) { int err; struct net_device *dev = neigh->dev; unsigned int seq; if (dev->header_ops->cache && !READ_ONCE(neigh->hh.hh_len)) neigh_hh_init(neigh); do { __skb_pull(skb, skb_network_offset(skb)); seq = read_seqbegin(&neigh->ha_lock); err = dev_hard_header(skb, dev, ntohs(skb->protocol), neigh->ha, NULL, skb->len); } while (read_seqretry(&neigh->ha_lock, seq)); if (err >= 0) rc = dev_queue_xmit(skb); else goto out_kfree_skb; } out: return rc; out_kfree_skb: rc = -EINVAL; kfree_skb(skb); goto out; } EXPORT_SYMBOL(neigh_resolve_output); /* As fast as possible without hh cache */ int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb) { struct net_device *dev = neigh->dev; unsigned int seq; int err; do { __skb_pull(skb, skb_network_offset(skb)); seq = read_seqbegin(&neigh->ha_lock); err = dev_hard_header(skb, dev, ntohs(skb->protocol), neigh->ha, NULL, skb->len); } while (read_seqretry(&neigh->ha_lock, seq)); if (err >= 0) err = dev_queue_xmit(skb); else { err = -EINVAL; kfree_skb(skb); } return err; } EXPORT_SYMBOL(neigh_connected_output); int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb) { return dev_queue_xmit(skb); } EXPORT_SYMBOL(neigh_direct_output); static void neigh_proxy_process(struct timer_list *t) { struct neigh_table *tbl = from_timer(tbl, t, proxy_timer); long sched_next = 0; unsigned long now = jiffies; struct sk_buff *skb, *n; spin_lock(&tbl->proxy_queue.lock); skb_queue_walk_safe(&tbl->proxy_queue, skb, n) { long tdif = NEIGH_CB(skb)->sched_next - now; if (tdif <= 0) { struct net_device *dev = skb->dev; __skb_unlink(skb, &tbl->proxy_queue); if (tbl->proxy_redo && netif_running(dev)) { rcu_read_lock(); tbl->proxy_redo(skb); rcu_read_unlock(); } else { kfree_skb(skb); } dev_put(dev); } else if (!sched_next || tdif < sched_next) sched_next = tdif; } del_timer(&tbl->proxy_timer); if (sched_next) mod_timer(&tbl->proxy_timer, jiffies + sched_next); spin_unlock(&tbl->proxy_queue.lock); } void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, struct sk_buff *skb) { unsigned long sched_next = jiffies + prandom_u32_max(NEIGH_VAR(p, PROXY_DELAY)); if (tbl->proxy_queue.qlen > NEIGH_VAR(p, PROXY_QLEN)) { kfree_skb(skb); return; } NEIGH_CB(skb)->sched_next = sched_next; NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; spin_lock(&tbl->proxy_queue.lock); if (del_timer(&tbl->proxy_timer)) { if (time_before(tbl->proxy_timer.expires, sched_next)) sched_next = tbl->proxy_timer.expires; } skb_dst_drop(skb); dev_hold(skb->dev); __skb_queue_tail(&tbl->proxy_queue, skb); mod_timer(&tbl->proxy_timer, sched_next); spin_unlock(&tbl->proxy_queue.lock); } EXPORT_SYMBOL(pneigh_enqueue); static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl, struct net *net, int ifindex) { struct neigh_parms *p; list_for_each_entry(p, &tbl->parms_list, list) { if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) || (!p->dev && !ifindex && net_eq(net, &init_net))) return p; } return NULL; } struct neigh_parms *neigh_parms_alloc(struct net_device *dev, struct neigh_table *tbl) { struct neigh_parms *p; struct net *net = dev_net(dev); const struct net_device_ops *ops = dev->netdev_ops; p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL); if (p) { p->tbl = tbl; refcount_set(&p->refcnt, 1); p->reachable_time = neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); dev_hold(dev); p->dev = dev; write_pnet(&p->net, net); p->sysctl_table = NULL; if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) { dev_put(dev); kfree(p); return NULL; } write_lock_bh(&tbl->lock); list_add(&p->list, &tbl->parms.list); write_unlock_bh(&tbl->lock); neigh_parms_data_state_cleanall(p); } return p; } EXPORT_SYMBOL(neigh_parms_alloc); static void neigh_rcu_free_parms(struct rcu_head *head) { struct neigh_parms *parms = container_of(head, struct neigh_parms, rcu_head); neigh_parms_put(parms); } void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) { if (!parms || parms == &tbl->parms) return; write_lock_bh(&tbl->lock); list_del(&parms->list); parms->dead = 1; write_unlock_bh(&tbl->lock); dev_put(parms->dev); call_rcu(&parms->rcu_head, neigh_rcu_free_parms); } EXPORT_SYMBOL(neigh_parms_release); static void neigh_parms_destroy(struct neigh_parms *parms) { kfree(parms); } static struct lock_class_key neigh_table_proxy_queue_class; static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly; void neigh_table_init(int index, struct neigh_table *tbl) { unsigned long now = jiffies; unsigned long phsize; INIT_LIST_HEAD(&tbl->parms_list); INIT_LIST_HEAD(&tbl->gc_list); list_add(&tbl->parms.list, &tbl->parms_list); write_pnet(&tbl->parms.net, &init_net); refcount_set(&tbl->parms.refcnt, 1); tbl->parms.reachable_time = neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME)); tbl->stats = alloc_percpu(struct neigh_statistics); if (!tbl->stats) panic("cannot create neighbour cache statistics"); #ifdef CONFIG_PROC_FS if (!proc_create_seq_data(tbl->id, 0, init_net.proc_net_stat, &neigh_stat_seq_ops, tbl)) panic("cannot create neighbour proc dir entry"); #endif RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3)); phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); if (!tbl->nht || !tbl->phash_buckets) panic("cannot allocate neighbour cache hashes"); if (!tbl->entry_size) tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) + tbl->key_len, NEIGH_PRIV_ALIGN); else WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN); rwlock_init(&tbl->lock); INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work); queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, tbl->parms.reachable_time); timer_setup(&tbl->proxy_timer, neigh_proxy_process, 0); skb_queue_head_init_class(&tbl->proxy_queue, &neigh_table_proxy_queue_class); tbl->last_flush = now; tbl->last_rand = now + tbl->parms.reachable_time * 20; neigh_tables[index] = tbl; } EXPORT_SYMBOL(neigh_table_init); int neigh_table_clear(int index, struct neigh_table *tbl) { neigh_tables[index] = NULL; /* It is not clean... Fix it to unload IPv6 module safely */ cancel_delayed_work_sync(&tbl->gc_work); del_timer_sync(&tbl->proxy_timer); pneigh_queue_purge(&tbl->proxy_queue, NULL); neigh_ifdown(tbl, NULL); if (atomic_read(&tbl->entries)) pr_crit("neighbour leakage\n"); call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu, neigh_hash_free_rcu); tbl->nht = NULL; kfree(tbl->phash_buckets); tbl->phash_buckets = NULL; remove_proc_entry(tbl->id, init_net.proc_net_stat); free_percpu(tbl->stats); tbl->stats = NULL; return 0; } EXPORT_SYMBOL(neigh_table_clear); static struct neigh_table *neigh_find_table(int family) { struct neigh_table *tbl = NULL; switch (family) { case AF_INET: tbl = neigh_tables[NEIGH_ARP_TABLE]; break; case AF_INET6: tbl = neigh_tables[NEIGH_ND_TABLE]; break; } return tbl; } const struct nla_policy nda_policy[NDA_MAX+1] = { [NDA_UNSPEC] = { .strict_start_type = NDA_NH_ID }, [NDA_DST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, [NDA_LLADDR] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, [NDA_CACHEINFO] = { .len = sizeof(struct nda_cacheinfo) }, [NDA_PROBES] = { .type = NLA_U32 }, [NDA_VLAN] = { .type = NLA_U16 }, [NDA_PORT] = { .type = NLA_U16 }, [NDA_VNI] = { .type = NLA_U32 }, [NDA_IFINDEX] = { .type = NLA_U32 }, [NDA_MASTER] = { .type = NLA_U32 }, [NDA_PROTOCOL] = { .type = NLA_U8 }, [NDA_NH_ID] = { .type = NLA_U32 }, [NDA_FDB_EXT_ATTRS] = { .type = NLA_NESTED }, }; static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); struct ndmsg *ndm; struct nlattr *dst_attr; struct neigh_table *tbl; struct neighbour *neigh; struct net_device *dev = NULL; int err = -EINVAL; ASSERT_RTNL(); if (nlmsg_len(nlh) < sizeof(*ndm)) goto out; dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); if (!dst_attr) { NL_SET_ERR_MSG(extack, "Network address not specified"); goto out; } ndm = nlmsg_data(nlh); if (ndm->ndm_ifindex) { dev = __dev_get_by_index(net, ndm->ndm_ifindex); if (dev == NULL) { err = -ENODEV; goto out; } } tbl = neigh_find_table(ndm->ndm_family); if (tbl == NULL) return -EAFNOSUPPORT; if (nla_len(dst_attr) < (int)tbl->key_len) { NL_SET_ERR_MSG(extack, "Invalid network address"); goto out; } if (ndm->ndm_flags & NTF_PROXY) { err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); goto out; } if (dev == NULL) goto out; neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); if (neigh == NULL) { err = -ENOENT; goto out; } err = __neigh_update(neigh, NULL, NUD_FAILED, NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_ADMIN, NETLINK_CB(skb).portid, extack); write_lock_bh(&tbl->lock); neigh_release(neigh); neigh_remove_one(neigh, tbl); write_unlock_bh(&tbl->lock); out: return err; } static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_OVERRIDE_ISROUTER; struct net *net = sock_net(skb->sk); struct ndmsg *ndm; struct nlattr *tb[NDA_MAX+1]; struct neigh_table *tbl; struct net_device *dev = NULL; struct neighbour *neigh; void *dst, *lladdr; u8 protocol = 0; int err; ASSERT_RTNL(); err = nlmsg_parse_deprecated(nlh, sizeof(*ndm), tb, NDA_MAX, nda_policy, extack); if (err < 0) goto out; err = -EINVAL; if (!tb[NDA_DST]) { NL_SET_ERR_MSG(extack, "Network address not specified"); goto out; } ndm = nlmsg_data(nlh); if (ndm->ndm_ifindex) { dev = __dev_get_by_index(net, ndm->ndm_ifindex); if (dev == NULL) { err = -ENODEV; goto out; } if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) { NL_SET_ERR_MSG(extack, "Invalid link address"); goto out; } } tbl = neigh_find_table(ndm->ndm_family); if (tbl == NULL) return -EAFNOSUPPORT; if (nla_len(tb[NDA_DST]) < (int)tbl->key_len) { NL_SET_ERR_MSG(extack, "Invalid network address"); goto out; } dst = nla_data(tb[NDA_DST]); lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; if (tb[NDA_PROTOCOL]) protocol = nla_get_u8(tb[NDA_PROTOCOL]); if (ndm->ndm_flags & NTF_PROXY) { struct pneigh_entry *pn; err = -ENOBUFS; pn = pneigh_lookup(tbl, net, dst, dev, 1); if (pn) { pn->flags = ndm->ndm_flags; if (protocol) pn->protocol = protocol; err = 0; } goto out; } if (!dev) { NL_SET_ERR_MSG(extack, "Device not specified"); goto out; } if (tbl->allow_add && !tbl->allow_add(dev, extack)) { err = -EINVAL; goto out; } neigh = neigh_lookup(tbl, dst, dev); if (neigh == NULL) { bool exempt_from_gc; if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { err = -ENOENT; goto out; } exempt_from_gc = ndm->ndm_state & NUD_PERMANENT || ndm->ndm_flags & NTF_EXT_LEARNED; neigh = ___neigh_create(tbl, dst, dev, ndm->ndm_flags & NTF_EXT_LEARNED, exempt_from_gc, true); if (IS_ERR(neigh)) { err = PTR_ERR(neigh); goto out; } } else { if (nlh->nlmsg_flags & NLM_F_EXCL) { err = -EEXIST; neigh_release(neigh); goto out; } if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) flags &= ~(NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_OVERRIDE_ISROUTER); } if (protocol) neigh->protocol = protocol; if (ndm->ndm_flags & NTF_EXT_LEARNED) flags |= NEIGH_UPDATE_F_EXT_LEARNED; if (ndm->ndm_flags & NTF_ROUTER) flags |= NEIGH_UPDATE_F_ISROUTER; if (ndm->ndm_flags & NTF_USE) flags |= NEIGH_UPDATE_F_USE; err = __neigh_update(neigh, lladdr, ndm->ndm_state, flags, NETLINK_CB(skb).portid, extack); if (!err && ndm->ndm_flags & NTF_USE) { neigh_event_send(neigh, NULL); err = 0; } neigh_release(neigh); out: return err; } static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) { struct nlattr *nest; nest = nla_nest_start_noflag(skb, NDTA_PARMS); if (nest == NULL) return -ENOBUFS; if ((parms->dev && nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) || nla_put_u32(skb, NDTPA_REFCNT, refcount_read(&parms->refcnt)) || nla_put_u32(skb, NDTPA_QUEUE_LENBYTES, NEIGH_VAR(parms, QUEUE_LEN_BYTES)) || /* approximative value for deprecated QUEUE_LEN (in packets) */ nla_put_u32(skb, NDTPA_QUEUE_LEN, NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) || nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) || nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) || nla_put_u32(skb, NDTPA_UCAST_PROBES, NEIGH_VAR(parms, UCAST_PROBES)) || nla_put_u32(skb, NDTPA_MCAST_PROBES, NEIGH_VAR(parms, MCAST_PROBES)) || nla_put_u32(skb, NDTPA_MCAST_REPROBES, NEIGH_VAR(parms, MCAST_REPROBES)) || nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time, NDTPA_PAD) || nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME, NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) || nla_put_msecs(skb, NDTPA_GC_STALETIME, NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) || nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME, NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) || nla_put_msecs(skb, NDTPA_RETRANS_TIME, NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) || nla_put_msecs(skb, NDTPA_ANYCAST_DELAY, NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) || nla_put_msecs(skb, NDTPA_PROXY_DELAY, NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) || nla_put_msecs(skb, NDTPA_LOCKTIME, NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD)) goto nla_put_failure; return nla_nest_end(skb, nest); nla_put_failure: nla_nest_cancel(skb, nest); return -EMSGSIZE; } static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, u32 pid, u32 seq, int type, int flags) { struct nlmsghdr *nlh; struct ndtmsg *ndtmsg; nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); if (nlh == NULL) return -EMSGSIZE; ndtmsg = nlmsg_data(nlh); read_lock_bh(&tbl->lock); ndtmsg->ndtm_family = tbl->family; ndtmsg->ndtm_pad1 = 0; ndtmsg->ndtm_pad2 = 0; if (nla_put_string(skb, NDTA_NAME, tbl->id) || nla_put_msecs(skb, NDTA_GC_INTERVAL, READ_ONCE(tbl->gc_interval), NDTA_PAD) || nla_put_u32(skb, NDTA_THRESH1, READ_ONCE(tbl->gc_thresh1)) || nla_put_u32(skb, NDTA_THRESH2, READ_ONCE(tbl->gc_thresh2)) || nla_put_u32(skb, NDTA_THRESH3, READ_ONCE(tbl->gc_thresh3))) goto nla_put_failure; { unsigned long now = jiffies; long flush_delta = now - READ_ONCE(tbl->last_flush); long rand_delta = now - READ_ONCE(tbl->last_rand); struct neigh_hash_table *nht; struct ndt_config ndc = { .ndtc_key_len = tbl->key_len, .ndtc_entry_size = tbl->entry_size, .ndtc_entries = atomic_read(&tbl->entries), .ndtc_last_flush = jiffies_to_msecs(flush_delta), .ndtc_last_rand = jiffies_to_msecs(rand_delta), .ndtc_proxy_qlen = READ_ONCE(tbl->proxy_queue.qlen), }; rcu_read_lock_bh(); nht = rcu_dereference_bh(tbl->nht); ndc.ndtc_hash_rnd = nht->hash_rnd[0]; ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1); rcu_read_unlock_bh(); if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc)) goto nla_put_failure; } { int cpu; struct ndt_stats ndst; memset(&ndst, 0, sizeof(ndst)); for_each_possible_cpu(cpu) { struct neigh_statistics *st; st = per_cpu_ptr(tbl->stats, cpu); ndst.ndts_allocs += READ_ONCE(st->allocs); ndst.ndts_destroys += READ_ONCE(st->destroys); ndst.ndts_hash_grows += READ_ONCE(st->hash_grows); ndst.ndts_res_failed += READ_ONCE(st->res_failed); ndst.ndts_lookups += READ_ONCE(st->lookups); ndst.ndts_hits += READ_ONCE(st->hits); ndst.ndts_rcv_probes_mcast += READ_ONCE(st->rcv_probes_mcast); ndst.ndts_rcv_probes_ucast += READ_ONCE(st->rcv_probes_ucast); ndst.ndts_periodic_gc_runs += READ_ONCE(st->periodic_gc_runs); ndst.ndts_forced_gc_runs += READ_ONCE(st->forced_gc_runs); ndst.ndts_table_fulls += READ_ONCE(st->table_fulls); } if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst, NDTA_PAD)) goto nla_put_failure; } BUG_ON(tbl->parms.dev); if (neightbl_fill_parms(skb, &tbl->parms) < 0) goto nla_put_failure; read_unlock_bh(&tbl->lock); nlmsg_end(skb, nlh); return 0; nla_put_failure: read_unlock_bh(&tbl->lock); nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static int neightbl_fill_param_info(struct sk_buff *skb, struct neigh_table *tbl, struct neigh_parms *parms, u32 pid, u32 seq, int type, unsigned int flags) { struct ndtmsg *ndtmsg; struct nlmsghdr *nlh; nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); if (nlh == NULL) return -EMSGSIZE; ndtmsg = nlmsg_data(nlh); read_lock_bh(&tbl->lock); ndtmsg->ndtm_family = tbl->family; ndtmsg->ndtm_pad1 = 0; ndtmsg->ndtm_pad2 = 0; if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || neightbl_fill_parms(skb, parms) < 0) goto errout; read_unlock_bh(&tbl->lock); nlmsg_end(skb, nlh); return 0; errout: read_unlock_bh(&tbl->lock); nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { [NDTA_NAME] = { .type = NLA_STRING }, [NDTA_THRESH1] = { .type = NLA_U32 }, [NDTA_THRESH2] = { .type = NLA_U32 }, [NDTA_THRESH3] = { .type = NLA_U32 }, [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, [NDTA_PARMS] = { .type = NLA_NESTED }, }; static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { [NDTPA_IFINDEX] = { .type = NLA_U32 }, [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, [NDTPA_APP_PROBES] = { .type = NLA_U32 }, [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, [NDTPA_MCAST_REPROBES] = { .type = NLA_U32 }, [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, [NDTPA_LOCKTIME] = { .type = NLA_U64 }, }; static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); struct neigh_table *tbl; struct ndtmsg *ndtmsg; struct nlattr *tb[NDTA_MAX+1]; bool found = false; int err, tidx; err = nlmsg_parse_deprecated(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, nl_neightbl_policy, extack); if (err < 0) goto errout; if (tb[NDTA_NAME] == NULL) { err = -EINVAL; goto errout; } ndtmsg = nlmsg_data(nlh); for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { tbl = neigh_tables[tidx]; if (!tbl) continue; if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) continue; if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) { found = true; break; } } if (!found) return -ENOENT; /* * We acquire tbl->lock to be nice to the periodic timers and * make sure they always see a consistent set of values. */ write_lock_bh(&tbl->lock); if (tb[NDTA_PARMS]) { struct nlattr *tbp[NDTPA_MAX+1]; struct neigh_parms *p; int i, ifindex = 0; err = nla_parse_nested_deprecated(tbp, NDTPA_MAX, tb[NDTA_PARMS], nl_ntbl_parm_policy, extack); if (err < 0) goto errout_tbl_lock; if (tbp[NDTPA_IFINDEX]) ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); p = lookup_neigh_parms(tbl, net, ifindex); if (p == NULL) { err = -ENOENT; goto errout_tbl_lock; } for (i = 1; i <= NDTPA_MAX; i++) { if (tbp[i] == NULL) continue; switch (i) { case NDTPA_QUEUE_LEN: NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, nla_get_u32(tbp[i]) * SKB_TRUESIZE(ETH_FRAME_LEN)); break; case NDTPA_QUEUE_LENBYTES: NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, nla_get_u32(tbp[i])); break; case NDTPA_PROXY_QLEN: NEIGH_VAR_SET(p, PROXY_QLEN, nla_get_u32(tbp[i])); break; case NDTPA_APP_PROBES: NEIGH_VAR_SET(p, APP_PROBES, nla_get_u32(tbp[i])); break; case NDTPA_UCAST_PROBES: NEIGH_VAR_SET(p, UCAST_PROBES, nla_get_u32(tbp[i])); break; case NDTPA_MCAST_PROBES: NEIGH_VAR_SET(p, MCAST_PROBES, nla_get_u32(tbp[i])); break; case NDTPA_MCAST_REPROBES: NEIGH_VAR_SET(p, MCAST_REPROBES, nla_get_u32(tbp[i])); break; case NDTPA_BASE_REACHABLE_TIME: NEIGH_VAR_SET(p, BASE_REACHABLE_TIME, nla_get_msecs(tbp[i])); /* update reachable_time as well, otherwise, the change will * only be effective after the next time neigh_periodic_work * decides to recompute it (can be multiple minutes) */ p->reachable_time = neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); break; case NDTPA_GC_STALETIME: NEIGH_VAR_SET(p, GC_STALETIME, nla_get_msecs(tbp[i])); break; case NDTPA_DELAY_PROBE_TIME: NEIGH_VAR_SET(p, DELAY_PROBE_TIME, nla_get_msecs(tbp[i])); call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); break; case NDTPA_RETRANS_TIME: NEIGH_VAR_SET(p, RETRANS_TIME, nla_get_msecs(tbp[i])); break; case NDTPA_ANYCAST_DELAY: NEIGH_VAR_SET(p, ANYCAST_DELAY, nla_get_msecs(tbp[i])); break; case NDTPA_PROXY_DELAY: NEIGH_VAR_SET(p, PROXY_DELAY, nla_get_msecs(tbp[i])); break; case NDTPA_LOCKTIME: NEIGH_VAR_SET(p, LOCKTIME, nla_get_msecs(tbp[i])); break; } } } err = -ENOENT; if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] || tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) && !net_eq(net, &init_net)) goto errout_tbl_lock; if (tb[NDTA_THRESH1]) WRITE_ONCE(tbl->gc_thresh1, nla_get_u32(tb[NDTA_THRESH1])); if (tb[NDTA_THRESH2]) WRITE_ONCE(tbl->gc_thresh2, nla_get_u32(tb[NDTA_THRESH2])); if (tb[NDTA_THRESH3]) WRITE_ONCE(tbl->gc_thresh3, nla_get_u32(tb[NDTA_THRESH3])); if (tb[NDTA_GC_INTERVAL]) WRITE_ONCE(tbl->gc_interval, nla_get_msecs(tb[NDTA_GC_INTERVAL])); err = 0; errout_tbl_lock: write_unlock_bh(&tbl->lock); errout: return err; } static int neightbl_valid_dump_info(const struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct ndtmsg *ndtm; if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndtm))) { NL_SET_ERR_MSG(extack, "Invalid header for neighbor table dump request"); return -EINVAL; } ndtm = nlmsg_data(nlh); if (ndtm->ndtm_pad1 || ndtm->ndtm_pad2) { NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor table dump request"); return -EINVAL; } if (nlmsg_attrlen(nlh, sizeof(*ndtm))) { NL_SET_ERR_MSG(extack, "Invalid data after header in neighbor table dump request"); return -EINVAL; } return 0; } static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) { const struct nlmsghdr *nlh = cb->nlh; struct net *net = sock_net(skb->sk); int family, tidx, nidx = 0; int tbl_skip = cb->args[0]; int neigh_skip = cb->args[1]; struct neigh_table *tbl; if (cb->strict_check) { int err = neightbl_valid_dump_info(nlh, cb->extack); if (err < 0) return err; } family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { struct neigh_parms *p; tbl = neigh_tables[tidx]; if (!tbl) continue; if (tidx < tbl_skip || (family && tbl->family != family)) continue; if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid, nlh->nlmsg_seq, RTM_NEWNEIGHTBL, NLM_F_MULTI) < 0) break; nidx = 0; p = list_next_entry(&tbl->parms, list); list_for_each_entry_from(p, &tbl->parms_list, list) { if (!net_eq(neigh_parms_net(p), net)) continue; if (nidx < neigh_skip) goto next; if (neightbl_fill_param_info(skb, tbl, p, NETLINK_CB(cb->skb).portid, nlh->nlmsg_seq, RTM_NEWNEIGHTBL, NLM_F_MULTI) < 0) goto out; next: nidx++; } neigh_skip = 0; } out: cb->args[0] = tidx; cb->args[1] = nidx; return skb->len; } static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, u32 pid, u32 seq, int type, unsigned int flags) { unsigned long now = jiffies; struct nda_cacheinfo ci; struct nlmsghdr *nlh; struct ndmsg *ndm; nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); if (nlh == NULL) return -EMSGSIZE; ndm = nlmsg_data(nlh); ndm->ndm_family = neigh->ops->family; ndm->ndm_pad1 = 0; ndm->ndm_pad2 = 0; ndm->ndm_flags = neigh->flags; ndm->ndm_type = neigh->type; ndm->ndm_ifindex = neigh->dev->ifindex; if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key)) goto nla_put_failure; read_lock_bh(&neigh->lock); ndm->ndm_state = neigh->nud_state; if (neigh->nud_state & NUD_VALID) { char haddr[MAX_ADDR_LEN]; neigh_ha_snapshot(haddr, neigh, neigh->dev); if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) { read_unlock_bh(&neigh->lock); goto nla_put_failure; } } ci.ndm_used = jiffies_to_clock_t(now - neigh->used); ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed); ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated); ci.ndm_refcnt = refcount_read(&neigh->refcnt) - 1; read_unlock_bh(&neigh->lock); if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) || nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci)) goto nla_put_failure; if (neigh->protocol && nla_put_u8(skb, NDA_PROTOCOL, neigh->protocol)) goto nla_put_failure; nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn, u32 pid, u32 seq, int type, unsigned int flags, struct neigh_table *tbl) { struct nlmsghdr *nlh; struct ndmsg *ndm; nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); if (nlh == NULL) return -EMSGSIZE; ndm = nlmsg_data(nlh); ndm->ndm_family = tbl->family; ndm->ndm_pad1 = 0; ndm->ndm_pad2 = 0; ndm->ndm_flags = pn->flags | NTF_PROXY; ndm->ndm_type = RTN_UNICAST; ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0; ndm->ndm_state = NUD_NONE; if (nla_put(skb, NDA_DST, tbl->key_len, pn->key)) goto nla_put_failure; if (pn->protocol && nla_put_u8(skb, NDA_PROTOCOL, pn->protocol)) goto nla_put_failure; nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid) { call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); __neigh_notify(neigh, RTM_NEWNEIGH, 0, nlmsg_pid); } static bool neigh_master_filtered(struct net_device *dev, int master_idx) { struct net_device *master; if (!master_idx) return false; master = dev ? netdev_master_upper_dev_get(dev) : NULL; /* 0 is already used to denote NDA_MASTER wasn't passed, therefore need another * invalid value for ifindex to denote "no master". */ if (master_idx == -1) return !!master; if (!master || master->ifindex != master_idx) return true; return false; } static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx) { if (filter_idx && (!dev || dev->ifindex != filter_idx)) return true; return false; } struct neigh_dump_filter { int master_idx; int dev_idx; }; static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, struct netlink_callback *cb, struct neigh_dump_filter *filter) { struct net *net = sock_net(skb->sk); struct neighbour *n; int rc, h, s_h = cb->args[1]; int idx, s_idx = idx = cb->args[2]; struct neigh_hash_table *nht; unsigned int flags = NLM_F_MULTI; if (filter->dev_idx || filter->master_idx) flags |= NLM_F_DUMP_FILTERED; rcu_read_lock_bh(); nht = rcu_dereference_bh(tbl->nht); for (h = s_h; h < (1 << nht->hash_shift); h++) { if (h > s_h) s_idx = 0; for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0; n != NULL; n = rcu_dereference_bh(n->next)) { if (idx < s_idx || !net_eq(dev_net(n->dev), net)) goto next; if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || neigh_master_filtered(n->dev, filter->master_idx)) goto next; if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, RTM_NEWNEIGH, flags) < 0) { rc = -1; goto out; } next: idx++; } } rc = skb->len; out: rcu_read_unlock_bh(); cb->args[1] = h; cb->args[2] = idx; return rc; } static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, struct netlink_callback *cb, struct neigh_dump_filter *filter) { struct pneigh_entry *n; struct net *net = sock_net(skb->sk); int rc, h, s_h = cb->args[3]; int idx, s_idx = idx = cb->args[4]; unsigned int flags = NLM_F_MULTI; if (filter->dev_idx || filter->master_idx) flags |= NLM_F_DUMP_FILTERED; read_lock_bh(&tbl->lock); for (h = s_h; h <= PNEIGH_HASHMASK; h++) { if (h > s_h) s_idx = 0; for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) { if (idx < s_idx || pneigh_net(n) != net) goto next; if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || neigh_master_filtered(n->dev, filter->master_idx)) goto next; if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, RTM_NEWNEIGH, flags, tbl) < 0) { read_unlock_bh(&tbl->lock); rc = -1; goto out; } next: idx++; } } read_unlock_bh(&tbl->lock); rc = skb->len; out: cb->args[3] = h; cb->args[4] = idx; return rc; } static int neigh_valid_dump_req(const struct nlmsghdr *nlh, bool strict_check, struct neigh_dump_filter *filter, struct netlink_ext_ack *extack) { struct nlattr *tb[NDA_MAX + 1]; int err, i; if (strict_check) { struct ndmsg *ndm; if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { NL_SET_ERR_MSG(extack, "Invalid header for neighbor dump request"); return -EINVAL; } ndm = nlmsg_data(nlh); if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_ifindex || ndm->ndm_state || ndm->ndm_type) { NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor dump request"); return -EINVAL; } if (ndm->ndm_flags & ~NTF_PROXY) { NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor dump request"); return -EINVAL; } err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), tb, NDA_MAX, nda_policy, extack); } else { err = nlmsg_parse_deprecated(nlh, sizeof(struct ndmsg), tb, NDA_MAX, nda_policy, extack); } if (err < 0) return err; for (i = 0; i <= NDA_MAX; ++i) { if (!tb[i]) continue; /* all new attributes should require strict_check */ switch (i) { case NDA_IFINDEX: filter->dev_idx = nla_get_u32(tb[i]); break; case NDA_MASTER: filter->master_idx = nla_get_u32(tb[i]); break; default: if (strict_check) { NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor dump request"); return -EINVAL; } } } return 0; } static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) { const struct nlmsghdr *nlh = cb->nlh; struct neigh_dump_filter filter = {}; struct neigh_table *tbl; int t, family, s_t; int proxy = 0; int err; family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; /* check for full ndmsg structure presence, family member is * the same for both structures */ if (nlmsg_len(nlh) >= sizeof(struct ndmsg) && ((struct ndmsg *)nlmsg_data(nlh))->ndm_flags == NTF_PROXY) proxy = 1; err = neigh_valid_dump_req(nlh, cb->strict_check, &filter, cb->extack); if (err < 0 && cb->strict_check) return err; err = 0; s_t = cb->args[0]; for (t = 0; t < NEIGH_NR_TABLES; t++) { tbl = neigh_tables[t]; if (!tbl) continue; if (t < s_t || (family && tbl->family != family)) continue; if (t > s_t) memset(&cb->args[1], 0, sizeof(cb->args) - sizeof(cb->args[0])); if (proxy) err = pneigh_dump_table(tbl, skb, cb, &filter); else err = neigh_dump_table(tbl, skb, cb, &filter); if (err < 0) break; } cb->args[0] = t; return skb->len; } static int neigh_valid_get_req(const struct nlmsghdr *nlh, struct neigh_table **tbl, void **dst, int *dev_idx, u8 *ndm_flags, struct netlink_ext_ack *extack) { struct nlattr *tb[NDA_MAX + 1]; struct ndmsg *ndm; int err, i; if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { NL_SET_ERR_MSG(extack, "Invalid header for neighbor get request"); return -EINVAL; } ndm = nlmsg_data(nlh); if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_state || ndm->ndm_type) { NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor get request"); return -EINVAL; } if (ndm->ndm_flags & ~NTF_PROXY) { NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor get request"); return -EINVAL; } err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), tb, NDA_MAX, nda_policy, extack); if (err < 0) return err; *ndm_flags = ndm->ndm_flags; *dev_idx = ndm->ndm_ifindex; *tbl = neigh_find_table(ndm->ndm_family); if (*tbl == NULL) { NL_SET_ERR_MSG(extack, "Unsupported family in header for neighbor get request"); return -EAFNOSUPPORT; } for (i = 0; i <= NDA_MAX; ++i) { if (!tb[i]) continue; switch (i) { case NDA_DST: if (nla_len(tb[i]) != (int)(*tbl)->key_len) { NL_SET_ERR_MSG(extack, "Invalid network address in neighbor get request"); return -EINVAL; } *dst = nla_data(tb[i]); break; default: NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor get request"); return -EINVAL; } } return 0; } static inline size_t neigh_nlmsg_size(void) { return NLMSG_ALIGN(sizeof(struct ndmsg)) + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ + nla_total_size(sizeof(struct nda_cacheinfo)) + nla_total_size(4) /* NDA_PROBES */ + nla_total_size(1); /* NDA_PROTOCOL */ } static int neigh_get_reply(struct net *net, struct neighbour *neigh, u32 pid, u32 seq) { struct sk_buff *skb; int err = 0; skb = nlmsg_new(neigh_nlmsg_size(), GFP_KERNEL); if (!skb) return -ENOBUFS; err = neigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0); if (err) { kfree_skb(skb); goto errout; } err = rtnl_unicast(skb, net, pid); errout: return err; } static inline size_t pneigh_nlmsg_size(void) { return NLMSG_ALIGN(sizeof(struct ndmsg)) + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ + nla_total_size(1); /* NDA_PROTOCOL */ } static int pneigh_get_reply(struct net *net, struct pneigh_entry *neigh, u32 pid, u32 seq, struct neigh_table *tbl) { struct sk_buff *skb; int err = 0; skb = nlmsg_new(pneigh_nlmsg_size(), GFP_KERNEL); if (!skb) return -ENOBUFS; err = pneigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0, tbl); if (err) { kfree_skb(skb); goto errout; } err = rtnl_unicast(skb, net, pid); errout: return err; } static int neigh_get(struct sk_buff *in_skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(in_skb->sk); struct net_device *dev = NULL; struct neigh_table *tbl = NULL; struct neighbour *neigh; void *dst = NULL; u8 ndm_flags = 0; int dev_idx = 0; int err; err = neigh_valid_get_req(nlh, &tbl, &dst, &dev_idx, &ndm_flags, extack); if (err < 0) return err; if (dev_idx) { dev = __dev_get_by_index(net, dev_idx); if (!dev) { NL_SET_ERR_MSG(extack, "Unknown device ifindex"); return -ENODEV; } } if (!dst) { NL_SET_ERR_MSG(extack, "Network address not specified"); return -EINVAL; } if (ndm_flags & NTF_PROXY) { struct pneigh_entry *pn; pn = pneigh_lookup(tbl, net, dst, dev, 0); if (!pn) { NL_SET_ERR_MSG(extack, "Proxy neighbour entry not found"); return -ENOENT; } return pneigh_get_reply(net, pn, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, tbl); } if (!dev) { NL_SET_ERR_MSG(extack, "No device specified"); return -EINVAL; } neigh = neigh_lookup(tbl, dst, dev); if (!neigh) { NL_SET_ERR_MSG(extack, "Neighbour entry not found"); return -ENOENT; } err = neigh_get_reply(net, neigh, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq); neigh_release(neigh); return err; } void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) { int chain; struct neigh_hash_table *nht; rcu_read_lock_bh(); nht = rcu_dereference_bh(tbl->nht); read_lock(&tbl->lock); /* avoid resizes */ for (chain = 0; chain < (1 << nht->hash_shift); chain++) { struct neighbour *n; for (n = rcu_dereference_bh(nht->hash_buckets[chain]); n != NULL; n = rcu_dereference_bh(n->next)) cb(n, cookie); } read_unlock(&tbl->lock); rcu_read_unlock_bh(); } EXPORT_SYMBOL(neigh_for_each); /* The tbl->lock must be held as a writer and BH disabled. */ void __neigh_for_each_release(struct neigh_table *tbl, int (*cb)(struct neighbour *)) { int chain; struct neigh_hash_table *nht; nht = rcu_dereference_protected(tbl->nht, lockdep_is_held(&tbl->lock)); for (chain = 0; chain < (1 << nht->hash_shift); chain++) { struct neighbour *n; struct neighbour __rcu **np; np = &nht->hash_buckets[chain]; while ((n = rcu_dereference_protected(*np, lockdep_is_held(&tbl->lock))) != NULL) { int release; write_lock(&n->lock); release = cb(n); if (release) { rcu_assign_pointer(*np, rcu_dereference_protected(n->next, lockdep_is_held(&tbl->lock))); neigh_mark_dead(n); } else np = &n->next; write_unlock(&n->lock); if (release) neigh_cleanup_and_release(n); } } } EXPORT_SYMBOL(__neigh_for_each_release); int neigh_xmit(int index, struct net_device *dev, const void *addr, struct sk_buff *skb) { int err = -EAFNOSUPPORT; if (likely(index < NEIGH_NR_TABLES)) { struct neigh_table *tbl; struct neighbour *neigh; tbl = neigh_tables[index]; if (!tbl) goto out; rcu_read_lock_bh(); if (index == NEIGH_ARP_TABLE) { u32 key = *((u32 *)addr); neigh = __ipv4_neigh_lookup_noref(dev, key); } else { neigh = __neigh_lookup_noref(tbl, addr, dev); } if (!neigh) neigh = __neigh_create(tbl, addr, dev, false); err = PTR_ERR(neigh); if (IS_ERR(neigh)) { rcu_read_unlock_bh(); goto out_kfree_skb; } err = neigh->output(neigh, skb); rcu_read_unlock_bh(); } else if (index == NEIGH_LINK_TABLE) { err = dev_hard_header(skb, dev, ntohs(skb->protocol), addr, NULL, skb->len); if (err < 0) goto out_kfree_skb; err = dev_queue_xmit(skb); } out: return err; out_kfree_skb: kfree_skb(skb); goto out; } EXPORT_SYMBOL(neigh_xmit); #ifdef CONFIG_PROC_FS static struct neighbour *neigh_get_first(struct seq_file *seq) { struct neigh_seq_state *state = seq->private; struct net *net = seq_file_net(seq); struct neigh_hash_table *nht = state->nht; struct neighbour *n = NULL; int bucket; state->flags &= ~NEIGH_SEQ_IS_PNEIGH; for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) { n = rcu_dereference_bh(nht->hash_buckets[bucket]); while (n) { if (!net_eq(dev_net(n->dev), net)) goto next; if (state->neigh_sub_iter) { loff_t fakep = 0; void *v; v = state->neigh_sub_iter(state, n, &fakep); if (!v) goto next; } if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) break; if (n->nud_state & ~NUD_NOARP) break; next: n = rcu_dereference_bh(n->next); } if (n) break; } state->bucket = bucket; return n; } static struct neighbour *neigh_get_next(struct seq_file *seq, struct neighbour *n, loff_t *pos) { struct neigh_seq_state *state = seq->private; struct net *net = seq_file_net(seq); struct neigh_hash_table *nht = state->nht; if (state->neigh_sub_iter) { void *v = state->neigh_sub_iter(state, n, pos); if (v) return n; } n = rcu_dereference_bh(n->next); while (1) { while (n) { if (!net_eq(dev_net(n->dev), net)) goto next; if (state->neigh_sub_iter) { void *v = state->neigh_sub_iter(state, n, pos); if (v) return n; goto next; } if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) break; if (n->nud_state & ~NUD_NOARP) break; next: n = rcu_dereference_bh(n->next); } if (n) break; if (++state->bucket >= (1 << nht->hash_shift)) break; n = rcu_dereference_bh(nht->hash_buckets[state->bucket]); } if (n && pos) --(*pos); return n; } static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) { struct neighbour *n = neigh_get_first(seq); if (n) { --(*pos); while (*pos) { n = neigh_get_next(seq, n, pos); if (!n) break; } } return *pos ? NULL : n; } static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) { struct neigh_seq_state *state = seq->private; struct net *net = seq_file_net(seq); struct neigh_table *tbl = state->tbl; struct pneigh_entry *pn = NULL; int bucket; state->flags |= NEIGH_SEQ_IS_PNEIGH; for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { pn = tbl->phash_buckets[bucket]; while (pn && !net_eq(pneigh_net(pn), net)) pn = pn->next; if (pn) break; } state->bucket = bucket; return pn; } static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, struct pneigh_entry *pn, loff_t *pos) { struct neigh_seq_state *state = seq->private; struct net *net = seq_file_net(seq); struct neigh_table *tbl = state->tbl; do { pn = pn->next; } while (pn && !net_eq(pneigh_net(pn), net)); while (!pn) { if (++state->bucket > PNEIGH_HASHMASK) break; pn = tbl->phash_buckets[state->bucket]; while (pn && !net_eq(pneigh_net(pn), net)) pn = pn->next; if (pn) break; } if (pn && pos) --(*pos); return pn; } static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) { struct pneigh_entry *pn = pneigh_get_first(seq); if (pn) { --(*pos); while (*pos) { pn = pneigh_get_next(seq, pn, pos); if (!pn) break; } } return *pos ? NULL : pn; } static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) { struct neigh_seq_state *state = seq->private; void *rc; loff_t idxpos = *pos; rc = neigh_get_idx(seq, &idxpos); if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) rc = pneigh_get_idx(seq, &idxpos); return rc; } void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) __acquires(tbl->lock) __acquires(rcu_bh) { struct neigh_seq_state *state = seq->private; state->tbl = tbl; state->bucket = 0; state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); rcu_read_lock_bh(); state->nht = rcu_dereference_bh(tbl->nht); read_lock(&tbl->lock); return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN; } EXPORT_SYMBOL(neigh_seq_start); void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct neigh_seq_state *state; void *rc; if (v == SEQ_START_TOKEN) { rc = neigh_get_first(seq); goto out; } state = seq->private; if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { rc = neigh_get_next(seq, v, NULL); if (rc) goto out; if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) rc = pneigh_get_first(seq); } else { BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); rc = pneigh_get_next(seq, v, NULL); } out: ++(*pos); return rc; } EXPORT_SYMBOL(neigh_seq_next); void neigh_seq_stop(struct seq_file *seq, void *v) __releases(tbl->lock) __releases(rcu_bh) { struct neigh_seq_state *state = seq->private; struct neigh_table *tbl = state->tbl; read_unlock(&tbl->lock); rcu_read_unlock_bh(); } EXPORT_SYMBOL(neigh_seq_stop); /* statistics via seq_file */ static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) { struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); int cpu; if (*pos == 0) return SEQ_START_TOKEN; for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) { if (!cpu_possible(cpu)) continue; *pos = cpu+1; return per_cpu_ptr(tbl->stats, cpu); } return NULL; } static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); int cpu; for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { if (!cpu_possible(cpu)) continue; *pos = cpu+1; return per_cpu_ptr(tbl->stats, cpu); } (*pos)++; return NULL; } static void neigh_stat_seq_stop(struct seq_file *seq, void *v) { } static int neigh_stat_seq_show(struct seq_file *seq, void *v) { struct neigh_table *tbl = PDE_DATA(file_inode(seq->file)); struct neigh_statistics *st = v; if (v == SEQ_START_TOKEN) { seq_puts(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n"); return 0; } seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " "%08lx %08lx %08lx " "%08lx %08lx %08lx\n", atomic_read(&tbl->entries), st->allocs, st->destroys, st->hash_grows, st->lookups, st->hits, st->res_failed, st->rcv_probes_mcast, st->rcv_probes_ucast, st->periodic_gc_runs, st->forced_gc_runs, st->unres_discards, st->table_fulls ); return 0; } static const struct seq_operations neigh_stat_seq_ops = { .start = neigh_stat_seq_start, .next = neigh_stat_seq_next, .stop = neigh_stat_seq_stop, .show = neigh_stat_seq_show, }; #endif /* CONFIG_PROC_FS */ static void __neigh_notify(struct neighbour *n, int type, int flags, u32 pid) { struct net *net = dev_net(n->dev); struct sk_buff *skb; int err = -ENOBUFS; skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); if (skb == NULL) goto errout; err = neigh_fill_info(skb, n, pid, 0, type, flags); if (err < 0) { /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ WARN_ON(err == -EMSGSIZE); kfree_skb(skb); goto errout; } rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); return; errout: if (err < 0) rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); } void neigh_app_ns(struct neighbour *n) { __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST, 0); } EXPORT_SYMBOL(neigh_app_ns); #ifdef CONFIG_SYSCTL static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN); static int proc_unres_qlen(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { int size, ret; struct ctl_table tmp = *ctl; tmp.extra1 = SYSCTL_ZERO; tmp.extra2 = &unres_qlen_max; tmp.data = &size; size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN); ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); if (write && !ret) *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN); return ret; } static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev, int family) { switch (family) { case AF_INET: return __in_dev_arp_parms_get_rcu(dev); case AF_INET6: return __in6_dev_nd_parms_get_rcu(dev); } return NULL; } static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p, int index) { struct net_device *dev; int family = neigh_parms_family(p); rcu_read_lock(); for_each_netdev_rcu(net, dev) { struct neigh_parms *dst_p = neigh_get_dev_parms_rcu(dev, family); if (dst_p && !test_bit(index, dst_p->data_state)) dst_p->data[index] = p->data[index]; } rcu_read_unlock(); } static void neigh_proc_update(struct ctl_table *ctl, int write) { struct net_device *dev = ctl->extra1; struct neigh_parms *p = ctl->extra2; struct net *net = neigh_parms_net(p); int index = (int *) ctl->data - p->data; if (!write) return; set_bit(index, p->data_state); if (index == NEIGH_VAR_DELAY_PROBE_TIME) call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); if (!dev) /* NULL dev means this is default value */ neigh_copy_dflt_parms(net, p, index); } static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct ctl_table tmp = *ctl; int ret; tmp.extra1 = SYSCTL_ZERO; tmp.extra2 = SYSCTL_INT_MAX; ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); neigh_proc_update(ctl, write); return ret; } int neigh_proc_dointvec(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret = proc_dointvec(ctl, write, buffer, lenp, ppos); neigh_proc_update(ctl, write); return ret; } EXPORT_SYMBOL(neigh_proc_dointvec); int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); neigh_proc_update(ctl, write); return ret; } EXPORT_SYMBOL(neigh_proc_dointvec_jiffies); static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos); neigh_proc_update(ctl, write); return ret; } int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); neigh_proc_update(ctl, write); return ret; } EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies); static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos); neigh_proc_update(ctl, write); return ret; } static int neigh_proc_base_reachable_time(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct neigh_parms *p = ctl->extra2; int ret; if (strcmp(ctl->procname, "base_reachable_time") == 0) ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0) ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); else ret = -1; if (write && ret == 0) { /* update reachable_time as well, otherwise, the change will * only be effective after the next time neigh_periodic_work * decides to recompute it */ p->reachable_time = neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); } return ret; } #define NEIGH_PARMS_DATA_OFFSET(index) \ (&((struct neigh_parms *) 0)->data[index]) #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \ [NEIGH_VAR_ ## attr] = { \ .procname = name, \ .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \ .maxlen = sizeof(int), \ .mode = mval, \ .proc_handler = proc, \ } #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \ NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax) #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \ NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies) #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \ NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies) #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \ NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies) #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \ NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen) static struct neigh_sysctl_table { struct ctl_table_header *sysctl_header; struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1]; } neigh_sysctl_template __read_mostly = { .neigh_vars = { NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"), NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"), NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"), NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"), NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"), NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"), NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"), NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"), NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"), NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"), NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"), NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"), NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"), NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"), NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"), NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"), [NEIGH_VAR_GC_INTERVAL] = { .procname = "gc_interval", .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, [NEIGH_VAR_GC_THRESH1] = { .procname = "gc_thresh1", .maxlen = sizeof(int), .mode = 0644, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_INT_MAX, .proc_handler = proc_dointvec_minmax, }, [NEIGH_VAR_GC_THRESH2] = { .procname = "gc_thresh2", .maxlen = sizeof(int), .mode = 0644, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_INT_MAX, .proc_handler = proc_dointvec_minmax, }, [NEIGH_VAR_GC_THRESH3] = { .procname = "gc_thresh3", .maxlen = sizeof(int), .mode = 0644, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_INT_MAX, .proc_handler = proc_dointvec_minmax, }, {}, }, }; int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, proc_handler *handler) { int i; struct neigh_sysctl_table *t; const char *dev_name_source; char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ]; char *p_name; t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL); if (!t) goto err; for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) { t->neigh_vars[i].data += (long) p; t->neigh_vars[i].extra1 = dev; t->neigh_vars[i].extra2 = p; } if (dev) { dev_name_source = dev->name; /* Terminate the table early */ memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0, sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL])); } else { struct neigh_table *tbl = p->tbl; dev_name_source = "default"; t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval; t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1; t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2; t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3; } if (handler) { /* RetransTime */ t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler; /* ReachableTime */ t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler; /* RetransTime (in milliseconds)*/ t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler; /* ReachableTime (in milliseconds) */ t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler; } else { /* Those handlers will update p->reachable_time after * base_reachable_time(_ms) is set to ensure the new timer starts being * applied after the next neighbour update instead of waiting for * neigh_periodic_work to update its value (can be multiple minutes) * So any handler that replaces them should do this as well */ /* ReachableTime */ t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = neigh_proc_base_reachable_time; /* ReachableTime (in milliseconds) */ t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = neigh_proc_base_reachable_time; } /* Don't export sysctls to unprivileged users */ if (neigh_parms_net(p)->user_ns != &init_user_ns) t->neigh_vars[0].procname = NULL; switch (neigh_parms_family(p)) { case AF_INET: p_name = "ipv4"; break; case AF_INET6: p_name = "ipv6"; break; default: BUG(); } snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s", p_name, dev_name_source); t->sysctl_header = register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars); if (!t->sysctl_header) goto free; p->sysctl_table = t; return 0; free: kfree(t); err: return -ENOBUFS; } EXPORT_SYMBOL(neigh_sysctl_register); void neigh_sysctl_unregister(struct neigh_parms *p) { if (p->sysctl_table) { struct neigh_sysctl_table *t = p->sysctl_table; p->sysctl_table = NULL; unregister_net_sysctl_table(t->sysctl_header); kfree(t); } } EXPORT_SYMBOL(neigh_sysctl_unregister); #endif /* CONFIG_SYSCTL */ static int __init neigh_init(void) { rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, 0); rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, 0); rtnl_register(PF_UNSPEC, RTM_GETNEIGH, neigh_get, neigh_dump_info, 0); rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info, 0); rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, 0); return 0; } subsys_initcall(neigh_init); |
2 1 4 4 3 82 5 57 28 28 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the UDP module. * * Version: @(#)udp.h 1.0.2 05/07/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * * Fixes: * Alan Cox : Turned on udp checksums. I don't want to * chase 'memory corruption' bugs that aren't! */ #ifndef _UDP_H #define _UDP_H #include <linux/list.h> #include <linux/bug.h> #include <net/inet_sock.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ip.h> #include <linux/ipv6.h> #include <linux/seq_file.h> #include <linux/poll.h> #include <linux/indirect_call_wrapper.h> /** * struct udp_skb_cb - UDP(-Lite) private variables * * @header: private variables used by IPv4/IPv6 * @cscov: checksum coverage length (UDP-Lite only) * @partial_cov: if set indicates partial csum coverage */ struct udp_skb_cb { union { struct inet_skb_parm h4; #if IS_ENABLED(CONFIG_IPV6) struct inet6_skb_parm h6; #endif } header; __u16 cscov; __u8 partial_cov; }; #define UDP_SKB_CB(__skb) ((struct udp_skb_cb *)((__skb)->cb)) /** * struct udp_hslot - UDP hash slot * * @head: head of list of sockets * @count: number of sockets in 'head' list * @lock: spinlock protecting changes to head/count */ struct udp_hslot { struct hlist_head head; int count; spinlock_t lock; } __attribute__((aligned(2 * sizeof(long)))); /** * struct udp_table - UDP table * * @hash: hash table, sockets are hashed on (local port) * @hash2: hash table, sockets are hashed on (local port, local address) * @mask: number of slots in hash tables, minus 1 * @log: log2(number of slots in hash table) */ struct udp_table { struct udp_hslot *hash; struct udp_hslot *hash2; unsigned int mask; unsigned int log; }; extern struct udp_table udp_table; void udp_table_init(struct udp_table *, const char *); static inline struct udp_hslot *udp_hashslot(struct udp_table *table, struct net *net, unsigned int num) { return &table->hash[udp_hashfn(net, num, table->mask)]; } /* * For secondary hash, net_hash_mix() is performed before calling * udp_hashslot2(), this explains difference with udp_hashslot() */ static inline struct udp_hslot *udp_hashslot2(struct udp_table *table, unsigned int hash) { return &table->hash2[hash & table->mask]; } extern struct proto udp_prot; extern atomic_long_t udp_memory_allocated; /* sysctl variables for udp */ extern long sysctl_udp_mem[3]; extern int sysctl_udp_rmem_min; extern int sysctl_udp_wmem_min; struct sk_buff; /* * Generic checksumming routines for UDP(-Lite) v4 and v6 */ static inline __sum16 __udp_lib_checksum_complete(struct sk_buff *skb) { return (UDP_SKB_CB(skb)->cscov == skb->len ? __skb_checksum_complete(skb) : __skb_checksum_complete_head(skb, UDP_SKB_CB(skb)->cscov)); } static inline int udp_lib_checksum_complete(struct sk_buff *skb) { return !skb_csum_unnecessary(skb) && __udp_lib_checksum_complete(skb); } /** * udp_csum_outgoing - compute UDPv4/v6 checksum over fragments * @sk: socket we are writing to * @skb: sk_buff containing the filled-in UDP header * (checksum field must be zeroed out) */ static inline __wsum udp_csum_outgoing(struct sock *sk, struct sk_buff *skb) { __wsum csum = csum_partial(skb_transport_header(skb), sizeof(struct udphdr), 0); skb_queue_walk(&sk->sk_write_queue, skb) { csum = csum_add(csum, skb->csum); } return csum; } static inline __wsum udp_csum(struct sk_buff *skb) { __wsum csum = csum_partial(skb_transport_header(skb), sizeof(struct udphdr), skb->csum); for (skb = skb_shinfo(skb)->frag_list; skb; skb = skb->next) { csum = csum_add(csum, skb->csum); } return csum; } static inline __sum16 udp_v4_check(int len, __be32 saddr, __be32 daddr, __wsum base) { return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_UDP, base); } void udp_set_csum(bool nocheck, struct sk_buff *skb, __be32 saddr, __be32 daddr, int len); static inline void udp_csum_pull_header(struct sk_buff *skb) { if (!skb->csum_valid && skb->ip_summed == CHECKSUM_NONE) skb->csum = csum_partial(skb->data, sizeof(struct udphdr), skb->csum); skb_pull_rcsum(skb, sizeof(struct udphdr)); UDP_SKB_CB(skb)->cscov -= sizeof(struct udphdr); } typedef struct sock *(*udp_lookup_t)(const struct sk_buff *skb, __be16 sport, __be16 dport); INDIRECT_CALLABLE_DECLARE(struct sk_buff *udp4_gro_receive(struct list_head *, struct sk_buff *)); INDIRECT_CALLABLE_DECLARE(int udp4_gro_complete(struct sk_buff *, int)); INDIRECT_CALLABLE_DECLARE(struct sk_buff *udp6_gro_receive(struct list_head *, struct sk_buff *)); INDIRECT_CALLABLE_DECLARE(int udp6_gro_complete(struct sk_buff *, int)); void udp_v6_early_demux(struct sk_buff *skb); INDIRECT_CALLABLE_DECLARE(int udpv6_rcv(struct sk_buff *)); struct sk_buff *udp_gro_receive(struct list_head *head, struct sk_buff *skb, struct udphdr *uh, struct sock *sk); int udp_gro_complete(struct sk_buff *skb, int nhoff, udp_lookup_t lookup); struct sk_buff *__udp_gso_segment(struct sk_buff *gso_skb, netdev_features_t features, bool is_ipv6); static inline struct udphdr *udp_gro_udphdr(struct sk_buff *skb) { struct udphdr *uh; unsigned int hlen, off; off = skb_gro_offset(skb); hlen = off + sizeof(*uh); uh = skb_gro_header_fast(skb, off); if (skb_gro_header_hard(skb, hlen)) uh = skb_gro_header_slow(skb, hlen, off); return uh; } /* hash routines shared between UDPv4/6 and UDP-Litev4/6 */ static inline int udp_lib_hash(struct sock *sk) { BUG(); return 0; } void udp_lib_unhash(struct sock *sk); void udp_lib_rehash(struct sock *sk, u16 new_hash); static inline void udp_lib_close(struct sock *sk, long timeout) { sk_common_release(sk); } int udp_lib_get_port(struct sock *sk, unsigned short snum, unsigned int hash2_nulladdr); u32 udp_flow_hashrnd(void); static inline __be16 udp_flow_src_port(struct net *net, struct sk_buff *skb, int min, int max, bool use_eth) { u32 hash; if (min >= max) { /* Use default range */ inet_get_local_port_range(net, &min, &max); } hash = skb_get_hash(skb); if (unlikely(!hash)) { if (use_eth) { /* Can't find a normal hash, caller has indicated an * Ethernet packet so use that to compute a hash. */ hash = jhash(skb->data, 2 * ETH_ALEN, (__force u32) skb->protocol); } else { /* Can't derive any sort of hash for the packet, set * to some consistent random value. */ hash = udp_flow_hashrnd(); } } /* Since this is being sent on the wire obfuscate hash a bit * to minimize possbility that any useful information to an * attacker is leaked. Only upper 16 bits are relevant in the * computation for 16 bit port value. */ hash ^= hash << 16; return htons((((u64) hash * (max - min)) >> 32) + min); } static inline int udp_rqueue_get(struct sock *sk) { return sk_rmem_alloc_get(sk) - READ_ONCE(udp_sk(sk)->forward_deficit); } static inline bool udp_sk_bound_dev_eq(struct net *net, int bound_dev_if, int dif, int sdif) { #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) return inet_bound_dev_eq(!!READ_ONCE(net->ipv4.sysctl_udp_l3mdev_accept), bound_dev_if, dif, sdif); #else return inet_bound_dev_eq(true, bound_dev_if, dif, sdif); #endif } /* net/ipv4/udp.c */ void udp_destruct_common(struct sock *sk); void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len); int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb); void udp_skb_destructor(struct sock *sk, struct sk_buff *skb); struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, int noblock, int *off, int *err); static inline struct sk_buff *skb_recv_udp(struct sock *sk, unsigned int flags, int noblock, int *err) { int off = 0; return __skb_recv_udp(sk, flags, noblock, &off, err); } int udp_v4_early_demux(struct sk_buff *skb); bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst); int udp_get_port(struct sock *sk, unsigned short snum, int (*saddr_cmp)(const struct sock *, const struct sock *)); int udp_err(struct sk_buff *, u32); int udp_abort(struct sock *sk, int err); int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len); int udp_push_pending_frames(struct sock *sk); void udp_flush_pending_frames(struct sock *sk); int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size); void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst); int udp_rcv(struct sk_buff *skb); int udp_ioctl(struct sock *sk, int cmd, unsigned long arg); int udp_init_sock(struct sock *sk); int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); int __udp_disconnect(struct sock *sk, int flags); int udp_disconnect(struct sock *sk, int flags); __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait); struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb, netdev_features_t features, bool is_ipv6); int udp_lib_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen); int udp_lib_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen, int (*push_pending_frames)(struct sock *)); struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, __be32 daddr, __be16 dport, int dif); struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, __be32 daddr, __be16 dport, int dif, int sdif, struct udp_table *tbl, struct sk_buff *skb); struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, __be16 sport, __be16 dport); struct sock *udp6_lib_lookup(struct net *net, const struct in6_addr *saddr, __be16 sport, const struct in6_addr *daddr, __be16 dport, int dif); struct sock *__udp6_lib_lookup(struct net *net, const struct in6_addr *saddr, __be16 sport, const struct in6_addr *daddr, __be16 dport, int dif, int sdif, struct udp_table *tbl, struct sk_buff *skb); struct sock *udp6_lib_lookup_skb(const struct sk_buff *skb, __be16 sport, __be16 dport); int udp_read_sock(struct sock *sk, read_descriptor_t *desc, sk_read_actor_t recv_actor); /* UDP uses skb->dev_scratch to cache as much information as possible and avoid * possibly multiple cache miss on dequeue() */ struct udp_dev_scratch { /* skb->truesize and the stateless bit are embedded in a single field; * do not use a bitfield since the compiler emits better/smaller code * this way */ u32 _tsize_state; #if BITS_PER_LONG == 64 /* len and the bit needed to compute skb_csum_unnecessary * will be on cold cache lines at recvmsg time. * skb->len can be stored on 16 bits since the udp header has been * already validated and pulled. */ u16 len; bool is_linear; bool csum_unnecessary; #endif }; static inline struct udp_dev_scratch *udp_skb_scratch(struct sk_buff *skb) { return (struct udp_dev_scratch *)&skb->dev_scratch; } #if BITS_PER_LONG == 64 static inline unsigned int udp_skb_len(struct sk_buff *skb) { return udp_skb_scratch(skb)->len; } static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb) { return udp_skb_scratch(skb)->csum_unnecessary; } static inline bool udp_skb_is_linear(struct sk_buff *skb) { return udp_skb_scratch(skb)->is_linear; } #else static inline unsigned int udp_skb_len(struct sk_buff *skb) { return skb->len; } static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb) { return skb_csum_unnecessary(skb); } static inline bool udp_skb_is_linear(struct sk_buff *skb) { return !skb_is_nonlinear(skb); } #endif static inline int copy_linear_skb(struct sk_buff *skb, int len, int off, struct iov_iter *to) { int n; n = copy_to_iter(skb->data + off, len, to); if (n == len) return 0; iov_iter_revert(to, n); return -EFAULT; } /* * SNMP statistics for UDP and UDP-Lite */ #define UDP_INC_STATS(net, field, is_udplite) do { \ if (is_udplite) SNMP_INC_STATS((net)->mib.udplite_statistics, field); \ else SNMP_INC_STATS((net)->mib.udp_statistics, field); } while(0) #define __UDP_INC_STATS(net, field, is_udplite) do { \ if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_statistics, field); \ else __SNMP_INC_STATS((net)->mib.udp_statistics, field); } while(0) #define __UDP6_INC_STATS(net, field, is_udplite) do { \ if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_stats_in6, field);\ else __SNMP_INC_STATS((net)->mib.udp_stats_in6, field); \ } while(0) #define UDP6_INC_STATS(net, field, __lite) do { \ if (__lite) SNMP_INC_STATS((net)->mib.udplite_stats_in6, field); \ else SNMP_INC_STATS((net)->mib.udp_stats_in6, field); \ } while(0) #if IS_ENABLED(CONFIG_IPV6) #define __UDPX_MIB(sk, ipv4) \ ({ \ ipv4 ? (IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics : \ sock_net(sk)->mib.udp_statistics) : \ (IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_stats_in6 : \ sock_net(sk)->mib.udp_stats_in6); \ }) #else #define __UDPX_MIB(sk, ipv4) \ ({ \ IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics : \ sock_net(sk)->mib.udp_statistics; \ }) #endif #define __UDPX_INC_STATS(sk, field) \ __SNMP_INC_STATS(__UDPX_MIB(sk, (sk)->sk_family == AF_INET), field) #ifdef CONFIG_PROC_FS struct udp_seq_afinfo { sa_family_t family; struct udp_table *udp_table; }; struct udp_iter_state { struct seq_net_private p; int bucket; struct udp_seq_afinfo *bpf_seq_afinfo; }; void *udp_seq_start(struct seq_file *seq, loff_t *pos); void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos); void udp_seq_stop(struct seq_file *seq, void *v); extern const struct seq_operations udp_seq_ops; extern const struct seq_operations udp6_seq_ops; int udp4_proc_init(void); void udp4_proc_exit(void); #endif /* CONFIG_PROC_FS */ int udpv4_offload_init(void); void udp_init(void); DECLARE_STATIC_KEY_FALSE(udp_encap_needed_key); void udp_encap_enable(void); void udp_encap_disable(void); #if IS_ENABLED(CONFIG_IPV6) DECLARE_STATIC_KEY_FALSE(udpv6_encap_needed_key); void udpv6_encap_enable(void); #endif static inline struct sk_buff *udp_rcv_segment(struct sock *sk, struct sk_buff *skb, bool ipv4) { netdev_features_t features = NETIF_F_SG; struct sk_buff *segs; /* Avoid csum recalculation by skb_segment unless userspace explicitly * asks for the final checksum values */ if (!inet_get_convert_csum(sk)) features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; /* UDP segmentation expects packets of type CHECKSUM_PARTIAL or * CHECKSUM_NONE in __udp_gso_segment. UDP GRO indeed builds partial * packets in udp_gro_complete_segment. As does UDP GSO, verified by * udp_send_skb. But when those packets are looped in dev_loopback_xmit * their ip_summed CHECKSUM_NONE is changed to CHECKSUM_UNNECESSARY. * Reset in this specific case, where PARTIAL is both correct and * required. */ if (skb->pkt_type == PACKET_LOOPBACK) skb->ip_summed = CHECKSUM_PARTIAL; /* the GSO CB lays after the UDP one, no need to save and restore any * CB fragment */ segs = __skb_gso_segment(skb, features, false); if (IS_ERR_OR_NULL(segs)) { int segs_nr = skb_shinfo(skb)->gso_segs; atomic_add(segs_nr, &sk->sk_drops); SNMP_ADD_STATS(__UDPX_MIB(sk, ipv4), UDP_MIB_INERRORS, segs_nr); kfree_skb(skb); return NULL; } consume_skb(skb); return segs; } static inline void udp_post_segment_fix_csum(struct sk_buff *skb) { /* UDP-lite can't land here - no GRO */ WARN_ON_ONCE(UDP_SKB_CB(skb)->partial_cov); /* UDP packets generated with UDP_SEGMENT and traversing: * * UDP tunnel(xmit) -> veth (segmentation) -> veth (gro) -> UDP tunnel (rx) * * can reach an UDP socket with CHECKSUM_NONE, because * __iptunnel_pull_header() converts CHECKSUM_PARTIAL into NONE. * SKB_GSO_UDP_L4 or SKB_GSO_FRAGLIST packets with no UDP tunnel will * have a valid checksum, as the GRO engine validates the UDP csum * before the aggregation and nobody strips such info in between. * Instead of adding another check in the tunnel fastpath, we can force * a valid csum after the segmentation. * Additionally fixup the UDP CB. */ UDP_SKB_CB(skb)->cscov = skb->len; if (skb->ip_summed == CHECKSUM_NONE && !skb->csum_valid) skb->csum_valid = 1; } #ifdef CONFIG_BPF_SYSCALL struct sk_psock; struct proto *udp_bpf_get_proto(struct sock *sk, struct sk_psock *psock); int udp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); #endif #endif /* _UDP_H */ |
15 15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | // SPDX-License-Identifier: GPL-2.0 #include <linux/bitops.h> #include <linux/bug.h> #include <linux/export.h> #include <linux/limits.h> #include <linux/math.h> #include <linux/minmax.h> #include <linux/types.h> #include <linux/reciprocal_div.h> /* * For a description of the algorithm please have a look at * include/linux/reciprocal_div.h */ struct reciprocal_value reciprocal_value(u32 d) { struct reciprocal_value R; u64 m; int l; l = fls(d - 1); m = ((1ULL << 32) * ((1ULL << l) - d)); do_div(m, d); ++m; R.m = (u32)m; R.sh1 = min(l, 1); R.sh2 = max(l - 1, 0); return R; } EXPORT_SYMBOL(reciprocal_value); struct reciprocal_value_adv reciprocal_value_adv(u32 d, u8 prec) { struct reciprocal_value_adv R; u32 l, post_shift; u64 mhigh, mlow; /* ceil(log2(d)) */ l = fls(d - 1); /* NOTE: mlow/mhigh could overflow u64 when l == 32. This case needs to * be handled before calling "reciprocal_value_adv", please see the * comment at include/linux/reciprocal_div.h. */ WARN(l == 32, "ceil(log2(0x%08x)) == 32, %s doesn't support such divisor", d, __func__); post_shift = l; mlow = 1ULL << (32 + l); do_div(mlow, d); mhigh = (1ULL << (32 + l)) + (1ULL << (32 + l - prec)); do_div(mhigh, d); for (; post_shift > 0; post_shift--) { u64 lo = mlow >> 1, hi = mhigh >> 1; if (lo >= hi) break; mlow = lo; mhigh = hi; } R.m = (u32)mhigh; R.sh = post_shift; R.exp = l; R.is_wide_m = mhigh > U32_MAX; return R; } EXPORT_SYMBOL(reciprocal_value_adv); |
4 4 4 4 4 4 4 4 4 4 10 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 | // SPDX-License-Identifier: GPL-2.0 /* * ext4.h * * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card (card@masi.ibp.fr) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * * from * * linux/include/linux/minix_fs.h * * Copyright (C) 1991, 1992 Linus Torvalds */ #ifndef _EXT4_H #define _EXT4_H #include <linux/types.h> #include <linux/blkdev.h> #include <linux/magic.h> #include <linux/jbd2.h> #include <linux/quota.h> #include <linux/rwsem.h> #include <linux/rbtree.h> #include <linux/seqlock.h> #include <linux/mutex.h> #include <linux/timer.h> #include <linux/wait.h> #include <linux/sched/signal.h> #include <linux/blockgroup_lock.h> #include <linux/percpu_counter.h> #include <linux/ratelimit.h> #include <crypto/hash.h> #include <linux/falloc.h> #include <linux/percpu-rwsem.h> #include <linux/fiemap.h> #ifdef __KERNEL__ #include <linux/compat.h> #endif #include <linux/fscrypt.h> #include <linux/fsverity.h> #include <linux/compiler.h> /* * The fourth extended filesystem constants/structures */ /* * with AGGRESSIVE_CHECK allocator runs consistency checks over * structures. these checks slow things down a lot */ #define AGGRESSIVE_CHECK__ /* * with DOUBLE_CHECK defined mballoc creates persistent in-core * bitmaps, maintains and uses them to check for double allocations */ #define DOUBLE_CHECK__ /* * Define EXT4FS_DEBUG to produce debug messages */ #undef EXT4FS_DEBUG /* * Debug code */ #ifdef EXT4FS_DEBUG #define ext4_debug(f, a...) \ do { \ printk(KERN_DEBUG "EXT4-fs DEBUG (%s, %d): %s:", \ __FILE__, __LINE__, __func__); \ printk(KERN_DEBUG f, ## a); \ } while (0) #else #define ext4_debug(fmt, ...) no_printk(fmt, ##__VA_ARGS__) #endif /* * Turn on EXT_DEBUG to enable ext4_ext_show_path/leaf/move in extents.c */ #define EXT_DEBUG__ /* * Dynamic printk for controlled extents debugging. */ #ifdef CONFIG_EXT4_DEBUG #define ext_debug(ino, fmt, ...) \ pr_debug("[%s/%d] EXT4-fs (%s): ino %lu: (%s, %d): %s:" fmt, \ current->comm, task_pid_nr(current), \ ino->i_sb->s_id, ino->i_ino, __FILE__, __LINE__, \ __func__, ##__VA_ARGS__) #else #define ext_debug(ino, fmt, ...) no_printk(fmt, ##__VA_ARGS__) #endif #define ASSERT(assert) \ do { \ if (unlikely(!(assert))) { \ printk(KERN_EMERG \ "Assertion failure in %s() at %s:%d: '%s'\n", \ __func__, __FILE__, __LINE__, #assert); \ BUG(); \ } \ } while (0) /* data type for block offset of block group */ typedef int ext4_grpblk_t; /* data type for filesystem-wide blocks number */ typedef unsigned long long ext4_fsblk_t; /* data type for file logical block number */ typedef __u32 ext4_lblk_t; /* data type for block group number */ typedef unsigned int ext4_group_t; enum SHIFT_DIRECTION { SHIFT_LEFT = 0, SHIFT_RIGHT, }; /* * Flags used in mballoc's allocation_context flags field. * * Also used to show what's going on for debugging purposes when the * flag field is exported via the traceport interface */ /* prefer goal again. length */ #define EXT4_MB_HINT_MERGE 0x0001 /* blocks already reserved */ #define EXT4_MB_HINT_RESERVED 0x0002 /* metadata is being allocated */ #define EXT4_MB_HINT_METADATA 0x0004 /* first blocks in the file */ #define EXT4_MB_HINT_FIRST 0x0008 /* search for the best chunk */ #define EXT4_MB_HINT_BEST 0x0010 /* data is being allocated */ #define EXT4_MB_HINT_DATA 0x0020 /* don't preallocate (for tails) */ #define EXT4_MB_HINT_NOPREALLOC 0x0040 /* allocate for locality group */ #define EXT4_MB_HINT_GROUP_ALLOC 0x0080 /* allocate goal blocks or none */ #define EXT4_MB_HINT_GOAL_ONLY 0x0100 /* goal is meaningful */ #define EXT4_MB_HINT_TRY_GOAL 0x0200 /* blocks already pre-reserved by delayed allocation */ #define EXT4_MB_DELALLOC_RESERVED 0x0400 /* We are doing stream allocation */ #define EXT4_MB_STREAM_ALLOC 0x0800 /* Use reserved root blocks if needed */ #define EXT4_MB_USE_ROOT_BLOCKS 0x1000 /* Use blocks from reserved pool */ #define EXT4_MB_USE_RESERVED 0x2000 /* Do strict check for free blocks while retrying block allocation */ #define EXT4_MB_STRICT_CHECK 0x4000 /* Large fragment size list lookup succeeded at least once for cr = 0 */ #define EXT4_MB_CR0_OPTIMIZED 0x8000 /* Avg fragment size rb tree lookup succeeded at least once for cr = 1 */ #define EXT4_MB_CR1_OPTIMIZED 0x00010000 /* Perform linear traversal for one group */ #define EXT4_MB_SEARCH_NEXT_LINEAR 0x00020000 struct ext4_allocation_request { /* target inode for block we're allocating */ struct inode *inode; /* how many blocks we want to allocate */ unsigned int len; /* logical block in target inode */ ext4_lblk_t logical; /* the closest logical allocated block to the left */ ext4_lblk_t lleft; /* the closest logical allocated block to the right */ ext4_lblk_t lright; /* phys. target (a hint) */ ext4_fsblk_t goal; /* phys. block for the closest logical allocated block to the left */ ext4_fsblk_t pleft; /* phys. block for the closest logical allocated block to the right */ ext4_fsblk_t pright; /* flags. see above EXT4_MB_HINT_* */ unsigned int flags; }; /* * Logical to physical block mapping, used by ext4_map_blocks() * * This structure is used to pass requests into ext4_map_blocks() as * well as to store the information returned by ext4_map_blocks(). It * takes less room on the stack than a struct buffer_head. */ #define EXT4_MAP_NEW BIT(BH_New) #define EXT4_MAP_MAPPED BIT(BH_Mapped) #define EXT4_MAP_UNWRITTEN BIT(BH_Unwritten) #define EXT4_MAP_BOUNDARY BIT(BH_Boundary) #define EXT4_MAP_FLAGS (EXT4_MAP_NEW | EXT4_MAP_MAPPED |\ EXT4_MAP_UNWRITTEN | EXT4_MAP_BOUNDARY) struct ext4_map_blocks { ext4_fsblk_t m_pblk; ext4_lblk_t m_lblk; unsigned int m_len; unsigned int m_flags; }; /* * Block validity checking, system zone rbtree. */ struct ext4_system_blocks { struct rb_root root; struct rcu_head rcu; }; /* * Flags for ext4_io_end->flags */ #define EXT4_IO_END_UNWRITTEN 0x0001 struct ext4_io_end_vec { struct list_head list; /* list of io_end_vec */ loff_t offset; /* offset in the file */ ssize_t size; /* size of the extent */ }; /* * For converting unwritten extents on a work queue. 'handle' is used for * buffered writeback. */ typedef struct ext4_io_end { struct list_head list; /* per-file finished IO list */ handle_t *handle; /* handle reserved for extent * conversion */ struct inode *inode; /* file being written to */ struct bio *bio; /* Linked list of completed * bios covering the extent */ unsigned int flag; /* unwritten or not */ atomic_t count; /* reference counter */ struct list_head list_vec; /* list of ext4_io_end_vec */ } ext4_io_end_t; struct ext4_io_submit { struct writeback_control *io_wbc; struct bio *io_bio; ext4_io_end_t *io_end; sector_t io_next_block; }; /* * Special inodes numbers */ #define EXT4_BAD_INO 1 /* Bad blocks inode */ #define EXT4_ROOT_INO 2 /* Root inode */ #define EXT4_USR_QUOTA_INO 3 /* User quota inode */ #define EXT4_GRP_QUOTA_INO 4 /* Group quota inode */ #define EXT4_BOOT_LOADER_INO 5 /* Boot loader inode */ #define EXT4_UNDEL_DIR_INO 6 /* Undelete directory inode */ #define EXT4_RESIZE_INO 7 /* Reserved group descriptors inode */ #define EXT4_JOURNAL_INO 8 /* Journal inode */ /* First non-reserved inode for old ext4 filesystems */ #define EXT4_GOOD_OLD_FIRST_INO 11 /* * Maximal count of links to a file */ #define EXT4_LINK_MAX 65000 /* * Macro-instructions used to manage several block sizes */ #define EXT4_MIN_BLOCK_SIZE 1024 #define EXT4_MAX_BLOCK_SIZE 65536 #define EXT4_MIN_BLOCK_LOG_SIZE 10 #define EXT4_MAX_BLOCK_LOG_SIZE 16 #define EXT4_MAX_CLUSTER_LOG_SIZE 30 #ifdef __KERNEL__ # define EXT4_BLOCK_SIZE(s) ((s)->s_blocksize) #else # define EXT4_BLOCK_SIZE(s) (EXT4_MIN_BLOCK_SIZE << (s)->s_log_block_size) #endif #define EXT4_ADDR_PER_BLOCK(s) (EXT4_BLOCK_SIZE(s) / sizeof(__u32)) #define EXT4_CLUSTER_SIZE(s) (EXT4_BLOCK_SIZE(s) << \ EXT4_SB(s)->s_cluster_bits) #ifdef __KERNEL__ # define EXT4_BLOCK_SIZE_BITS(s) ((s)->s_blocksize_bits) # define EXT4_CLUSTER_BITS(s) (EXT4_SB(s)->s_cluster_bits) #else # define EXT4_BLOCK_SIZE_BITS(s) ((s)->s_log_block_size + 10) #endif #ifdef __KERNEL__ #define EXT4_ADDR_PER_BLOCK_BITS(s) (EXT4_SB(s)->s_addr_per_block_bits) #define EXT4_INODE_SIZE(s) (EXT4_SB(s)->s_inode_size) #define EXT4_FIRST_INO(s) (EXT4_SB(s)->s_first_ino) #else #define EXT4_INODE_SIZE(s) (((s)->s_rev_level == EXT4_GOOD_OLD_REV) ? \ EXT4_GOOD_OLD_INODE_SIZE : \ (s)->s_inode_size) #define EXT4_FIRST_INO(s) (((s)->s_rev_level == EXT4_GOOD_OLD_REV) ? \ EXT4_GOOD_OLD_FIRST_INO : \ (s)->s_first_ino) #endif #define EXT4_BLOCK_ALIGN(size, blkbits) ALIGN((size), (1 << (blkbits))) #define EXT4_MAX_BLOCKS(size, offset, blkbits) \ ((EXT4_BLOCK_ALIGN(size + offset, blkbits) >> blkbits) - (offset >> \ blkbits)) /* Translate a block number to a cluster number */ #define EXT4_B2C(sbi, blk) ((blk) >> (sbi)->s_cluster_bits) /* Translate a cluster number to a block number */ #define EXT4_C2B(sbi, cluster) ((cluster) << (sbi)->s_cluster_bits) /* Translate # of blks to # of clusters */ #define EXT4_NUM_B2C(sbi, blks) (((blks) + (sbi)->s_cluster_ratio - 1) >> \ (sbi)->s_cluster_bits) /* Mask out the low bits to get the starting block of the cluster */ #define EXT4_PBLK_CMASK(s, pblk) ((pblk) & \ ~((ext4_fsblk_t) (s)->s_cluster_ratio - 1)) #define EXT4_LBLK_CMASK(s, lblk) ((lblk) & \ ~((ext4_lblk_t) (s)->s_cluster_ratio - 1)) /* Fill in the low bits to get the last block of the cluster */ #define EXT4_LBLK_CFILL(sbi, lblk) ((lblk) | \ ((ext4_lblk_t) (sbi)->s_cluster_ratio - 1)) /* Get the cluster offset */ #define EXT4_PBLK_COFF(s, pblk) ((pblk) & \ ((ext4_fsblk_t) (s)->s_cluster_ratio - 1)) #define EXT4_LBLK_COFF(s, lblk) ((lblk) & \ ((ext4_lblk_t) (s)->s_cluster_ratio - 1)) /* * Structure of a blocks group descriptor */ struct ext4_group_desc { __le32 bg_block_bitmap_lo; /* Blocks bitmap block */ __le32 bg_inode_bitmap_lo; /* Inodes bitmap block */ __le32 bg_inode_table_lo; /* Inodes table block */ __le16 bg_free_blocks_count_lo;/* Free blocks count */ __le16 bg_free_inodes_count_lo;/* Free inodes count */ __le16 bg_used_dirs_count_lo; /* Directories count */ __le16 bg_flags; /* EXT4_BG_flags (INODE_UNINIT, etc) */ __le32 bg_exclude_bitmap_lo; /* Exclude bitmap for snapshots */ __le16 bg_block_bitmap_csum_lo;/* crc32c(s_uuid+grp_num+bbitmap) LE */ __le16 bg_inode_bitmap_csum_lo;/* crc32c(s_uuid+grp_num+ibitmap) LE */ __le16 bg_itable_unused_lo; /* Unused inodes count */ __le16 bg_checksum; /* crc16(sb_uuid+group+desc) */ __le32 bg_block_bitmap_hi; /* Blocks bitmap block MSB */ __le32 bg_inode_bitmap_hi; /* Inodes bitmap block MSB */ __le32 bg_inode_table_hi; /* Inodes table block MSB */ __le16 bg_free_blocks_count_hi;/* Free blocks count MSB */ __le16 bg_free_inodes_count_hi;/* Free inodes count MSB */ __le16 bg_used_dirs_count_hi; /* Directories count MSB */ __le16 bg_itable_unused_hi; /* Unused inodes count MSB */ __le32 bg_exclude_bitmap_hi; /* Exclude bitmap block MSB */ __le16 bg_block_bitmap_csum_hi;/* crc32c(s_uuid+grp_num+bbitmap) BE */ __le16 bg_inode_bitmap_csum_hi;/* crc32c(s_uuid+grp_num+ibitmap) BE */ __u32 bg_reserved; }; #define EXT4_BG_INODE_BITMAP_CSUM_HI_END \ (offsetof(struct ext4_group_desc, bg_inode_bitmap_csum_hi) + \ sizeof(__le16)) #define EXT4_BG_BLOCK_BITMAP_CSUM_HI_END \ (offsetof(struct ext4_group_desc, bg_block_bitmap_csum_hi) + \ sizeof(__le16)) /* * Structure of a flex block group info */ struct flex_groups { atomic64_t free_clusters; atomic_t free_inodes; atomic_t used_dirs; }; #define EXT4_BG_INODE_UNINIT 0x0001 /* Inode table/bitmap not in use */ #define EXT4_BG_BLOCK_UNINIT 0x0002 /* Block bitmap not in use */ #define EXT4_BG_INODE_ZEROED 0x0004 /* On-disk itable initialized to zero */ /* * Macro-instructions used to manage group descriptors */ #define EXT4_MIN_DESC_SIZE 32 #define EXT4_MIN_DESC_SIZE_64BIT 64 #define EXT4_MAX_DESC_SIZE EXT4_MIN_BLOCK_SIZE #define EXT4_DESC_SIZE(s) (EXT4_SB(s)->s_desc_size) #ifdef __KERNEL__ # define EXT4_BLOCKS_PER_GROUP(s) (EXT4_SB(s)->s_blocks_per_group) # define EXT4_CLUSTERS_PER_GROUP(s) (EXT4_SB(s)->s_clusters_per_group) # define EXT4_DESC_PER_BLOCK(s) (EXT4_SB(s)->s_desc_per_block) # define EXT4_INODES_PER_GROUP(s) (EXT4_SB(s)->s_inodes_per_group) # define EXT4_DESC_PER_BLOCK_BITS(s) (EXT4_SB(s)->s_desc_per_block_bits) #else # define EXT4_BLOCKS_PER_GROUP(s) ((s)->s_blocks_per_group) # define EXT4_DESC_PER_BLOCK(s) (EXT4_BLOCK_SIZE(s) / EXT4_DESC_SIZE(s)) # define EXT4_INODES_PER_GROUP(s) ((s)->s_inodes_per_group) #endif /* * Constants relative to the data blocks */ #define EXT4_NDIR_BLOCKS 12 #define EXT4_IND_BLOCK EXT4_NDIR_BLOCKS #define EXT4_DIND_BLOCK (EXT4_IND_BLOCK + 1) #define EXT4_TIND_BLOCK (EXT4_DIND_BLOCK + 1) #define EXT4_N_BLOCKS (EXT4_TIND_BLOCK + 1) /* * Inode flags */ #define EXT4_SECRM_FL 0x00000001 /* Secure deletion */ #define EXT4_UNRM_FL 0x00000002 /* Undelete */ #define EXT4_COMPR_FL 0x00000004 /* Compress file */ #define EXT4_SYNC_FL 0x00000008 /* Synchronous updates */ #define EXT4_IMMUTABLE_FL 0x00000010 /* Immutable file */ #define EXT4_APPEND_FL 0x00000020 /* writes to file may only append */ #define EXT4_NODUMP_FL 0x00000040 /* do not dump file */ #define EXT4_NOATIME_FL 0x00000080 /* do not update atime */ /* Reserved for compression usage... */ #define EXT4_DIRTY_FL 0x00000100 #define EXT4_COMPRBLK_FL 0x00000200 /* One or more compressed clusters */ #define EXT4_NOCOMPR_FL 0x00000400 /* Don't compress */ /* nb: was previously EXT2_ECOMPR_FL */ #define EXT4_ENCRYPT_FL 0x00000800 /* encrypted file */ /* End compression flags --- maybe not all used */ #define EXT4_INDEX_FL 0x00001000 /* hash-indexed directory */ #define EXT4_IMAGIC_FL 0x00002000 /* AFS directory */ #define EXT4_JOURNAL_DATA_FL 0x00004000 /* file data should be journaled */ #define EXT4_NOTAIL_FL 0x00008000 /* file tail should not be merged */ #define EXT4_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ #define EXT4_TOPDIR_FL 0x00020000 /* Top of directory hierarchies*/ #define EXT4_HUGE_FILE_FL 0x00040000 /* Set to each huge file */ #define EXT4_EXTENTS_FL 0x00080000 /* Inode uses extents */ #define EXT4_VERITY_FL 0x00100000 /* Verity protected inode */ #define EXT4_EA_INODE_FL 0x00200000 /* Inode used for large EA */ /* 0x00400000 was formerly EXT4_EOFBLOCKS_FL */ #define EXT4_DAX_FL 0x02000000 /* Inode is DAX */ #define EXT4_INLINE_DATA_FL 0x10000000 /* Inode has inline data. */ #define EXT4_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ #define EXT4_CASEFOLD_FL 0x40000000 /* Casefolded directory */ #define EXT4_RESERVED_FL 0x80000000 /* reserved for ext4 lib */ /* User modifiable flags */ #define EXT4_FL_USER_MODIFIABLE (EXT4_SECRM_FL | \ EXT4_UNRM_FL | \ EXT4_COMPR_FL | \ EXT4_SYNC_FL | \ EXT4_IMMUTABLE_FL | \ EXT4_APPEND_FL | \ EXT4_NODUMP_FL | \ EXT4_NOATIME_FL | \ EXT4_JOURNAL_DATA_FL | \ EXT4_NOTAIL_FL | \ EXT4_DIRSYNC_FL | \ EXT4_TOPDIR_FL | \ EXT4_EXTENTS_FL | \ 0x00400000 /* EXT4_EOFBLOCKS_FL */ | \ EXT4_DAX_FL | \ EXT4_PROJINHERIT_FL | \ EXT4_CASEFOLD_FL) /* User visible flags */ #define EXT4_FL_USER_VISIBLE (EXT4_FL_USER_MODIFIABLE | \ EXT4_DIRTY_FL | \ EXT4_COMPRBLK_FL | \ EXT4_NOCOMPR_FL | \ EXT4_ENCRYPT_FL | \ EXT4_INDEX_FL | \ EXT4_VERITY_FL | \ EXT4_INLINE_DATA_FL) /* Flags that should be inherited by new inodes from their parent. */ #define EXT4_FL_INHERITED (EXT4_SECRM_FL | EXT4_UNRM_FL | EXT4_COMPR_FL |\ EXT4_SYNC_FL | EXT4_NODUMP_FL | EXT4_NOATIME_FL |\ EXT4_NOCOMPR_FL | EXT4_JOURNAL_DATA_FL |\ EXT4_NOTAIL_FL | EXT4_DIRSYNC_FL |\ EXT4_PROJINHERIT_FL | EXT4_CASEFOLD_FL |\ EXT4_DAX_FL) /* Flags that are appropriate for regular files (all but dir-specific ones). */ #define EXT4_REG_FLMASK (~(EXT4_DIRSYNC_FL | EXT4_TOPDIR_FL | EXT4_CASEFOLD_FL |\ EXT4_PROJINHERIT_FL)) /* Flags that are appropriate for non-directories/regular files. */ #define EXT4_OTHER_FLMASK (EXT4_NODUMP_FL | EXT4_NOATIME_FL) /* The only flags that should be swapped */ #define EXT4_FL_SHOULD_SWAP (EXT4_HUGE_FILE_FL | EXT4_EXTENTS_FL) /* Flags which are mutually exclusive to DAX */ #define EXT4_DAX_MUT_EXCL (EXT4_VERITY_FL | EXT4_ENCRYPT_FL |\ EXT4_JOURNAL_DATA_FL | EXT4_INLINE_DATA_FL) /* Mask out flags that are inappropriate for the given type of inode. */ static inline __u32 ext4_mask_flags(umode_t mode, __u32 flags) { if (S_ISDIR(mode)) return flags; else if (S_ISREG(mode)) return flags & EXT4_REG_FLMASK; else return flags & EXT4_OTHER_FLMASK; } /* * Inode flags used for atomic set/get */ enum { EXT4_INODE_SECRM = 0, /* Secure deletion */ EXT4_INODE_UNRM = 1, /* Undelete */ EXT4_INODE_COMPR = 2, /* Compress file */ EXT4_INODE_SYNC = 3, /* Synchronous updates */ EXT4_INODE_IMMUTABLE = 4, /* Immutable file */ EXT4_INODE_APPEND = 5, /* writes to file may only append */ EXT4_INODE_NODUMP = 6, /* do not dump file */ EXT4_INODE_NOATIME = 7, /* do not update atime */ /* Reserved for compression usage... */ EXT4_INODE_DIRTY = 8, EXT4_INODE_COMPRBLK = 9, /* One or more compressed clusters */ EXT4_INODE_NOCOMPR = 10, /* Don't compress */ EXT4_INODE_ENCRYPT = 11, /* Encrypted file */ /* End compression flags --- maybe not all used */ EXT4_INODE_INDEX = 12, /* hash-indexed directory */ EXT4_INODE_IMAGIC = 13, /* AFS directory */ EXT4_INODE_JOURNAL_DATA = 14, /* file data should be journaled */ EXT4_INODE_NOTAIL = 15, /* file tail should not be merged */ EXT4_INODE_DIRSYNC = 16, /* dirsync behaviour (directories only) */ EXT4_INODE_TOPDIR = 17, /* Top of directory hierarchies*/ EXT4_INODE_HUGE_FILE = 18, /* Set to each huge file */ EXT4_INODE_EXTENTS = 19, /* Inode uses extents */ EXT4_INODE_VERITY = 20, /* Verity protected inode */ EXT4_INODE_EA_INODE = 21, /* Inode used for large EA */ /* 22 was formerly EXT4_INODE_EOFBLOCKS */ EXT4_INODE_DAX = 25, /* Inode is DAX */ EXT4_INODE_INLINE_DATA = 28, /* Data in inode. */ EXT4_INODE_PROJINHERIT = 29, /* Create with parents projid */ EXT4_INODE_CASEFOLD = 30, /* Casefolded directory */ EXT4_INODE_RESERVED = 31, /* reserved for ext4 lib */ }; /* * Since it's pretty easy to mix up bit numbers and hex values, we use a * build-time check to make sure that EXT4_XXX_FL is consistent with respect to * EXT4_INODE_XXX. If all is well, the macros will be dropped, so, it won't cost * any extra space in the compiled kernel image, otherwise, the build will fail. * It's important that these values are the same, since we are using * EXT4_INODE_XXX to test for flag values, but EXT4_XXX_FL must be consistent * with the values of FS_XXX_FL defined in include/linux/fs.h and the on-disk * values found in ext2, ext3 and ext4 filesystems, and of course the values * defined in e2fsprogs. * * It's not paranoia if the Murphy's Law really *is* out to get you. :-) */ #define TEST_FLAG_VALUE(FLAG) (EXT4_##FLAG##_FL == (1U << EXT4_INODE_##FLAG)) #define CHECK_FLAG_VALUE(FLAG) BUILD_BUG_ON(!TEST_FLAG_VALUE(FLAG)) static inline void ext4_check_flag_values(void) { CHECK_FLAG_VALUE(SECRM); CHECK_FLAG_VALUE(UNRM); CHECK_FLAG_VALUE(COMPR); CHECK_FLAG_VALUE(SYNC); CHECK_FLAG_VALUE(IMMUTABLE); CHECK_FLAG_VALUE(APPEND); CHECK_FLAG_VALUE(NODUMP); CHECK_FLAG_VALUE(NOATIME); CHECK_FLAG_VALUE(DIRTY); CHECK_FLAG_VALUE(COMPRBLK); CHECK_FLAG_VALUE(NOCOMPR); CHECK_FLAG_VALUE(ENCRYPT); CHECK_FLAG_VALUE(INDEX); CHECK_FLAG_VALUE(IMAGIC); CHECK_FLAG_VALUE(JOURNAL_DATA); CHECK_FLAG_VALUE(NOTAIL); CHECK_FLAG_VALUE(DIRSYNC); CHECK_FLAG_VALUE(TOPDIR); CHECK_FLAG_VALUE(HUGE_FILE); CHECK_FLAG_VALUE(EXTENTS); CHECK_FLAG_VALUE(VERITY); CHECK_FLAG_VALUE(EA_INODE); CHECK_FLAG_VALUE(INLINE_DATA); CHECK_FLAG_VALUE(PROJINHERIT); CHECK_FLAG_VALUE(CASEFOLD); CHECK_FLAG_VALUE(RESERVED); } /* Used to pass group descriptor data when online resize is done */ struct ext4_new_group_input { __u32 group; /* Group number for this data */ __u64 block_bitmap; /* Absolute block number of block bitmap */ __u64 inode_bitmap; /* Absolute block number of inode bitmap */ __u64 inode_table; /* Absolute block number of inode table start */ __u32 blocks_count; /* Total number of blocks in this group */ __u16 reserved_blocks; /* Number of reserved blocks in this group */ __u16 unused; }; #if defined(__KERNEL__) && defined(CONFIG_COMPAT) struct compat_ext4_new_group_input { u32 group; compat_u64 block_bitmap; compat_u64 inode_bitmap; compat_u64 inode_table; u32 blocks_count; u16 reserved_blocks; u16 unused; }; #endif /* The struct ext4_new_group_input in kernel space, with free_blocks_count */ struct ext4_new_group_data { __u32 group; __u64 block_bitmap; __u64 inode_bitmap; __u64 inode_table; __u32 blocks_count; __u16 reserved_blocks; __u16 mdata_blocks; __u32 free_clusters_count; }; /* Indexes used to index group tables in ext4_new_group_data */ enum { BLOCK_BITMAP = 0, /* block bitmap */ INODE_BITMAP, /* inode bitmap */ INODE_TABLE, /* inode tables */ GROUP_TABLE_COUNT, }; /* * Flags used by ext4_map_blocks() */ /* Allocate any needed blocks and/or convert an unwritten extent to be an initialized ext4 */ #define EXT4_GET_BLOCKS_CREATE 0x0001 /* Request the creation of an unwritten extent */ #define EXT4_GET_BLOCKS_UNWRIT_EXT 0x0002 #define EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT (EXT4_GET_BLOCKS_UNWRIT_EXT|\ EXT4_GET_BLOCKS_CREATE) /* Caller is from the delayed allocation writeout path * finally doing the actual allocation of delayed blocks */ #define EXT4_GET_BLOCKS_DELALLOC_RESERVE 0x0004 /* caller is from the direct IO path, request to creation of an unwritten extents if not allocated, split the unwritten extent if blocks has been preallocated already*/ #define EXT4_GET_BLOCKS_PRE_IO 0x0008 #define EXT4_GET_BLOCKS_CONVERT 0x0010 #define EXT4_GET_BLOCKS_IO_CREATE_EXT (EXT4_GET_BLOCKS_PRE_IO|\ EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT) /* Convert extent to initialized after IO complete */ #define EXT4_GET_BLOCKS_IO_CONVERT_EXT (EXT4_GET_BLOCKS_CONVERT|\ EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT) /* Eventual metadata allocation (due to growing extent tree) * should not fail, so try to use reserved blocks for that.*/ #define EXT4_GET_BLOCKS_METADATA_NOFAIL 0x0020 /* Don't normalize allocation size (used for fallocate) */ #define EXT4_GET_BLOCKS_NO_NORMALIZE 0x0040 /* Convert written extents to unwritten */ #define EXT4_GET_BLOCKS_CONVERT_UNWRITTEN 0x0100 /* Write zeros to newly created written extents */ #define EXT4_GET_BLOCKS_ZERO 0x0200 #define EXT4_GET_BLOCKS_CREATE_ZERO (EXT4_GET_BLOCKS_CREATE |\ EXT4_GET_BLOCKS_ZERO) /* Caller will submit data before dropping transaction handle. This * allows jbd2 to avoid submitting data before commit. */ #define EXT4_GET_BLOCKS_IO_SUBMIT 0x0400 /* * The bit position of these flags must not overlap with any of the * EXT4_GET_BLOCKS_*. They are used by ext4_find_extent(), * read_extent_tree_block(), ext4_split_extent_at(), * ext4_ext_insert_extent(), and ext4_ext_create_new_leaf(). * EXT4_EX_NOCACHE is used to indicate that the we shouldn't be * caching the extents when reading from the extent tree while a * truncate or punch hole operation is in progress. */ #define EXT4_EX_NOCACHE 0x40000000 #define EXT4_EX_FORCE_CACHE 0x20000000 #define EXT4_EX_NOFAIL 0x10000000 /* * Flags used by ext4_free_blocks */ #define EXT4_FREE_BLOCKS_METADATA 0x0001 #define EXT4_FREE_BLOCKS_FORGET 0x0002 #define EXT4_FREE_BLOCKS_VALIDATED 0x0004 #define EXT4_FREE_BLOCKS_NO_QUOT_UPDATE 0x0008 #define EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER 0x0010 #define EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER 0x0020 #define EXT4_FREE_BLOCKS_RERESERVE_CLUSTER 0x0040 /* * ioctl commands */ #define EXT4_IOC_GETVERSION _IOR('f', 3, long) #define EXT4_IOC_SETVERSION _IOW('f', 4, long) #define EXT4_IOC_GETVERSION_OLD FS_IOC_GETVERSION #define EXT4_IOC_SETVERSION_OLD FS_IOC_SETVERSION #define EXT4_IOC_GETRSVSZ _IOR('f', 5, long) #define EXT4_IOC_SETRSVSZ _IOW('f', 6, long) #define EXT4_IOC_GROUP_EXTEND _IOW('f', 7, unsigned long) #define EXT4_IOC_GROUP_ADD _IOW('f', 8, struct ext4_new_group_input) #define EXT4_IOC_MIGRATE _IO('f', 9) /* note ioctl 10 reserved for an early version of the FIEMAP ioctl */ /* note ioctl 11 reserved for filesystem-independent FIEMAP ioctl */ #define EXT4_IOC_ALLOC_DA_BLKS _IO('f', 12) #define EXT4_IOC_MOVE_EXT _IOWR('f', 15, struct move_extent) #define EXT4_IOC_RESIZE_FS _IOW('f', 16, __u64) #define EXT4_IOC_SWAP_BOOT _IO('f', 17) #define EXT4_IOC_PRECACHE_EXTENTS _IO('f', 18) /* ioctl codes 19--39 are reserved for fscrypt */ #define EXT4_IOC_CLEAR_ES_CACHE _IO('f', 40) #define EXT4_IOC_GETSTATE _IOW('f', 41, __u32) #define EXT4_IOC_GET_ES_CACHE _IOWR('f', 42, struct fiemap) #define EXT4_IOC_CHECKPOINT _IOW('f', 43, __u32) #define EXT4_IOC_SHUTDOWN _IOR ('X', 125, __u32) /* * Flags for going down operation */ #define EXT4_GOING_FLAGS_DEFAULT 0x0 /* going down */ #define EXT4_GOING_FLAGS_LOGFLUSH 0x1 /* flush log but not data */ #define EXT4_GOING_FLAGS_NOLOGFLUSH 0x2 /* don't flush log nor data */ /* * Flags returned by EXT4_IOC_GETSTATE * * We only expose to userspace a subset of the state flags in * i_state_flags */ #define EXT4_STATE_FLAG_EXT_PRECACHED 0x00000001 #define EXT4_STATE_FLAG_NEW 0x00000002 #define EXT4_STATE_FLAG_NEWENTRY 0x00000004 #define EXT4_STATE_FLAG_DA_ALLOC_CLOSE 0x00000008 /* flags for ioctl EXT4_IOC_CHECKPOINT */ #define EXT4_IOC_CHECKPOINT_FLAG_DISCARD 0x1 #define EXT4_IOC_CHECKPOINT_FLAG_ZEROOUT 0x2 #define EXT4_IOC_CHECKPOINT_FLAG_DRY_RUN 0x4 #define EXT4_IOC_CHECKPOINT_FLAG_VALID (EXT4_IOC_CHECKPOINT_FLAG_DISCARD | \ EXT4_IOC_CHECKPOINT_FLAG_ZEROOUT | \ EXT4_IOC_CHECKPOINT_FLAG_DRY_RUN) #if defined(__KERNEL__) && defined(CONFIG_COMPAT) /* * ioctl commands in 32 bit emulation */ #define EXT4_IOC32_GETVERSION _IOR('f', 3, int) #define EXT4_IOC32_SETVERSION _IOW('f', 4, int) #define EXT4_IOC32_GETRSVSZ _IOR('f', 5, int) #define EXT4_IOC32_SETRSVSZ _IOW('f', 6, int) #define EXT4_IOC32_GROUP_EXTEND _IOW('f', 7, unsigned int) #define EXT4_IOC32_GROUP_ADD _IOW('f', 8, struct compat_ext4_new_group_input) #define EXT4_IOC32_GETVERSION_OLD FS_IOC32_GETVERSION #define EXT4_IOC32_SETVERSION_OLD FS_IOC32_SETVERSION #endif /* * Returned by EXT4_IOC_GET_ES_CACHE as an additional possible flag. * It indicates that the entry in extent status cache is for a hole. */ #define EXT4_FIEMAP_EXTENT_HOLE 0x08000000 /* Max physical block we can address w/o extents */ #define EXT4_MAX_BLOCK_FILE_PHYS 0xFFFFFFFF /* Max logical block we can support */ #define EXT4_MAX_LOGICAL_BLOCK 0xFFFFFFFE /* * Structure of an inode on the disk */ struct ext4_inode { __le16 i_mode; /* File mode */ __le16 i_uid; /* Low 16 bits of Owner Uid */ __le32 i_size_lo; /* Size in bytes */ __le32 i_atime; /* Access time */ __le32 i_ctime; /* Inode Change time */ __le32 i_mtime; /* Modification time */ __le32 i_dtime; /* Deletion Time */ __le16 i_gid; /* Low 16 bits of Group Id */ __le16 i_links_count; /* Links count */ __le32 i_blocks_lo; /* Blocks count */ __le32 i_flags; /* File flags */ union { struct { __le32 l_i_version; } linux1; struct { __u32 h_i_translator; } hurd1; struct { __u32 m_i_reserved1; } masix1; } osd1; /* OS dependent 1 */ __le32 i_block[EXT4_N_BLOCKS];/* Pointers to blocks */ __le32 i_generation; /* File version (for NFS) */ __le32 i_file_acl_lo; /* File ACL */ __le32 i_size_high; __le32 i_obso_faddr; /* Obsoleted fragment address */ union { struct { __le16 l_i_blocks_high; /* were l_i_reserved1 */ __le16 l_i_file_acl_high; __le16 l_i_uid_high; /* these 2 fields */ __le16 l_i_gid_high; /* were reserved2[0] */ __le16 l_i_checksum_lo;/* crc32c(uuid+inum+inode) LE */ __le16 l_i_reserved; } linux2; struct { __le16 h_i_reserved1; /* Obsoleted fragment number/size which are removed in ext4 */ __u16 h_i_mode_high; __u16 h_i_uid_high; __u16 h_i_gid_high; __u32 h_i_author; } hurd2; struct { __le16 h_i_reserved1; /* Obsoleted fragment number/size which are removed in ext4 */ __le16 m_i_file_acl_high; __u32 m_i_reserved2[2]; } masix2; } osd2; /* OS dependent 2 */ __le16 i_extra_isize; __le16 i_checksum_hi; /* crc32c(uuid+inum+inode) BE */ __le32 i_ctime_extra; /* extra Change time (nsec << 2 | epoch) */ __le32 i_mtime_extra; /* extra Modification time(nsec << 2 | epoch) */ __le32 i_atime_extra; /* extra Access time (nsec << 2 | epoch) */ __le32 i_crtime; /* File Creation time */ __le32 i_crtime_extra; /* extra FileCreationtime (nsec << 2 | epoch) */ __le32 i_version_hi; /* high 32 bits for 64-bit version */ __le32 i_projid; /* Project ID */ }; struct move_extent { __u32 reserved; /* should be zero */ __u32 donor_fd; /* donor file descriptor */ __u64 orig_start; /* logical start offset in block for orig */ __u64 donor_start; /* logical start offset in block for donor */ __u64 len; /* block length to be moved */ __u64 moved_len; /* moved block length */ }; #define EXT4_EPOCH_BITS 2 #define EXT4_EPOCH_MASK ((1 << EXT4_EPOCH_BITS) - 1) #define EXT4_NSEC_MASK (~0UL << EXT4_EPOCH_BITS) /* * Extended fields will fit into an inode if the filesystem was formatted * with large inodes (-I 256 or larger) and there are not currently any EAs * consuming all of the available space. For new inodes we always reserve * enough space for the kernel's known extended fields, but for inodes * created with an old kernel this might not have been the case. None of * the extended inode fields is critical for correct filesystem operation. * This macro checks if a certain field fits in the inode. Note that * inode-size = GOOD_OLD_INODE_SIZE + i_extra_isize */ #define EXT4_FITS_IN_INODE(ext4_inode, einode, field) \ ((offsetof(typeof(*ext4_inode), field) + \ sizeof((ext4_inode)->field)) \ <= (EXT4_GOOD_OLD_INODE_SIZE + \ (einode)->i_extra_isize)) \ /* * We use an encoding that preserves the times for extra epoch "00": * * extra msb of adjust for signed * epoch 32-bit 32-bit tv_sec to * bits time decoded 64-bit tv_sec 64-bit tv_sec valid time range * 0 0 1 -0x80000000..-0x00000001 0x000000000 1901-12-13..1969-12-31 * 0 0 0 0x000000000..0x07fffffff 0x000000000 1970-01-01..2038-01-19 * 0 1 1 0x080000000..0x0ffffffff 0x100000000 2038-01-19..2106-02-07 * 0 1 0 0x100000000..0x17fffffff 0x100000000 2106-02-07..2174-02-25 * 1 0 1 0x180000000..0x1ffffffff 0x200000000 2174-02-25..2242-03-16 * 1 0 0 0x200000000..0x27fffffff 0x200000000 2242-03-16..2310-04-04 * 1 1 1 0x280000000..0x2ffffffff 0x300000000 2310-04-04..2378-04-22 * 1 1 0 0x300000000..0x37fffffff 0x300000000 2378-04-22..2446-05-10 * * Note that previous versions of the kernel on 64-bit systems would * incorrectly use extra epoch bits 1,1 for dates between 1901 and * 1970. e2fsck will correct this, assuming that it is run on the * affected filesystem before 2242. */ static inline __le32 ext4_encode_extra_time(struct timespec64 *time) { u32 extra =((time->tv_sec - (s32)time->tv_sec) >> 32) & EXT4_EPOCH_MASK; return cpu_to_le32(extra | (time->tv_nsec << EXT4_EPOCH_BITS)); } static inline void ext4_decode_extra_time(struct timespec64 *time, __le32 extra) { if (unlikely(extra & cpu_to_le32(EXT4_EPOCH_MASK))) time->tv_sec += (u64)(le32_to_cpu(extra) & EXT4_EPOCH_MASK) << 32; time->tv_nsec = (le32_to_cpu(extra) & EXT4_NSEC_MASK) >> EXT4_EPOCH_BITS; } #define EXT4_INODE_SET_XTIME(xtime, inode, raw_inode) \ do { \ if (EXT4_FITS_IN_INODE(raw_inode, EXT4_I(inode), xtime ## _extra)) {\ (raw_inode)->xtime = cpu_to_le32((inode)->xtime.tv_sec); \ (raw_inode)->xtime ## _extra = \ ext4_encode_extra_time(&(inode)->xtime); \ } \ else \ (raw_inode)->xtime = cpu_to_le32(clamp_t(int32_t, (inode)->xtime.tv_sec, S32_MIN, S32_MAX)); \ } while (0) #define EXT4_EINODE_SET_XTIME(xtime, einode, raw_inode) \ do { \ if (EXT4_FITS_IN_INODE(raw_inode, einode, xtime)) \ (raw_inode)->xtime = cpu_to_le32((einode)->xtime.tv_sec); \ if (EXT4_FITS_IN_INODE(raw_inode, einode, xtime ## _extra)) \ (raw_inode)->xtime ## _extra = \ ext4_encode_extra_time(&(einode)->xtime); \ } while (0) #define EXT4_INODE_GET_XTIME(xtime, inode, raw_inode) \ do { \ (inode)->xtime.tv_sec = (signed)le32_to_cpu((raw_inode)->xtime); \ if (EXT4_FITS_IN_INODE(raw_inode, EXT4_I(inode), xtime ## _extra)) { \ ext4_decode_extra_time(&(inode)->xtime, \ raw_inode->xtime ## _extra); \ } \ else \ (inode)->xtime.tv_nsec = 0; \ } while (0) #define EXT4_EINODE_GET_XTIME(xtime, einode, raw_inode) \ do { \ if (EXT4_FITS_IN_INODE(raw_inode, einode, xtime)) \ (einode)->xtime.tv_sec = \ (signed)le32_to_cpu((raw_inode)->xtime); \ else \ (einode)->xtime.tv_sec = 0; \ if (EXT4_FITS_IN_INODE(raw_inode, einode, xtime ## _extra)) \ ext4_decode_extra_time(&(einode)->xtime, \ raw_inode->xtime ## _extra); \ else \ (einode)->xtime.tv_nsec = 0; \ } while (0) #define i_disk_version osd1.linux1.l_i_version #if defined(__KERNEL__) || defined(__linux__) #define i_reserved1 osd1.linux1.l_i_reserved1 #define i_file_acl_high osd2.linux2.l_i_file_acl_high #define i_blocks_high osd2.linux2.l_i_blocks_high #define i_uid_low i_uid #define i_gid_low i_gid #define i_uid_high osd2.linux2.l_i_uid_high #define i_gid_high osd2.linux2.l_i_gid_high #define i_checksum_lo osd2.linux2.l_i_checksum_lo #elif defined(__GNU__) #define i_translator osd1.hurd1.h_i_translator #define i_uid_high osd2.hurd2.h_i_uid_high #define i_gid_high osd2.hurd2.h_i_gid_high #define i_author osd2.hurd2.h_i_author #elif defined(__masix__) #define i_reserved1 osd1.masix1.m_i_reserved1 #define i_file_acl_high osd2.masix2.m_i_file_acl_high #define i_reserved2 osd2.masix2.m_i_reserved2 #endif /* defined(__KERNEL__) || defined(__linux__) */ #include "extents_status.h" #include "fast_commit.h" /* * Lock subclasses for i_data_sem in the ext4_inode_info structure. * * These are needed to avoid lockdep false positives when we need to * allocate blocks to the quota inode during ext4_map_blocks(), while * holding i_data_sem for a normal (non-quota) inode. Since we don't * do quota tracking for the quota inode, this avoids deadlock (as * well as infinite recursion, since it isn't turtles all the way * down...) * * I_DATA_SEM_NORMAL - Used for most inodes * I_DATA_SEM_OTHER - Used by move_inode.c for the second normal inode * where the second inode has larger inode number * than the first * I_DATA_SEM_QUOTA - Used for quota inodes only * I_DATA_SEM_EA - Used for ea_inodes only */ enum { I_DATA_SEM_NORMAL = 0, I_DATA_SEM_OTHER, I_DATA_SEM_QUOTA, I_DATA_SEM_EA }; /* * fourth extended file system inode data in memory */ struct ext4_inode_info { __le32 i_data[15]; /* unconverted */ __u32 i_dtime; ext4_fsblk_t i_file_acl; /* * i_block_group is the number of the block group which contains * this file's inode. Constant across the lifetime of the inode, * it is used for making block allocation decisions - we try to * place a file's data blocks near its inode block, and new inodes * near to their parent directory's inode. */ ext4_group_t i_block_group; ext4_lblk_t i_dir_start_lookup; #if (BITS_PER_LONG < 64) unsigned long i_state_flags; /* Dynamic state flags */ #endif unsigned long i_flags; /* * Extended attributes can be read independently of the main file * data. Taking i_mutex even when reading would cause contention * between readers of EAs and writers of regular file data, so * instead we synchronize on xattr_sem when reading or changing * EAs. */ struct rw_semaphore xattr_sem; /* * Inodes with EXT4_STATE_ORPHAN_FILE use i_orphan_idx. Otherwise * i_orphan is used. */ union { struct list_head i_orphan; /* unlinked but open inodes */ unsigned int i_orphan_idx; /* Index in orphan file */ }; /* Fast commit related info */ struct list_head i_fc_list; /* * inodes that need fast commit * protected by sbi->s_fc_lock. */ /* Start of lblk range that needs to be committed in this fast commit */ ext4_lblk_t i_fc_lblk_start; /* End of lblk range that needs to be committed in this fast commit */ ext4_lblk_t i_fc_lblk_len; /* Number of ongoing updates on this inode */ atomic_t i_fc_updates; /* Fast commit wait queue for this inode */ wait_queue_head_t i_fc_wait; /* Protect concurrent accesses on i_fc_lblk_start, i_fc_lblk_len */ struct mutex i_fc_lock; /* * i_disksize keeps track of what the inode size is ON DISK, not * in memory. During truncate, i_size is set to the new size by * the VFS prior to calling ext4_truncate(), but the filesystem won't * set i_disksize to 0 until the truncate is actually under way. * * The intent is that i_disksize always represents the blocks which * are used by this file. This allows recovery to restart truncate * on orphans if we crash during truncate. We actually write i_disksize * into the on-disk inode when writing inodes out, instead of i_size. * * The only time when i_disksize and i_size may be different is when * a truncate is in progress. The only things which change i_disksize * are ext4_get_block (growth) and ext4_truncate (shrinkth). */ loff_t i_disksize; /* * i_data_sem is for serialising ext4_truncate() against * ext4_getblock(). In the 2.4 ext2 design, great chunks of inode's * data tree are chopped off during truncate. We can't do that in * ext4 because whenever we perform intermediate commits during * truncate, the inode and all the metadata blocks *must* be in a * consistent state which allows truncation of the orphans to restart * during recovery. Hence we must fix the get_block-vs-truncate race * by other means, so we have i_data_sem. */ struct rw_semaphore i_data_sem; struct inode vfs_inode; struct jbd2_inode *jinode; spinlock_t i_raw_lock; /* protects updates to the raw inode */ /* * File creation time. Its function is same as that of * struct timespec64 i_{a,c,m}time in the generic inode. */ struct timespec64 i_crtime; /* mballoc */ atomic_t i_prealloc_active; struct list_head i_prealloc_list; spinlock_t i_prealloc_lock; /* extents status tree */ struct ext4_es_tree i_es_tree; rwlock_t i_es_lock; struct list_head i_es_list; unsigned int i_es_all_nr; /* protected by i_es_lock */ unsigned int i_es_shk_nr; /* protected by i_es_lock */ ext4_lblk_t i_es_shrink_lblk; /* Offset where we start searching for extents to shrink. Protected by i_es_lock */ /* ialloc */ ext4_group_t i_last_alloc_group; /* allocation reservation info for delalloc */ /* In case of bigalloc, this refer to clusters rather than blocks */ unsigned int i_reserved_data_blocks; /* pending cluster reservations for bigalloc file systems */ struct ext4_pending_tree i_pending_tree; /* on-disk additional length */ __u16 i_extra_isize; /* Indicate the inline data space. */ u16 i_inline_off; u16 i_inline_size; #ifdef CONFIG_QUOTA /* quota space reservation, managed internally by quota code */ qsize_t i_reserved_quota; #endif /* Lock protecting lists below */ spinlock_t i_completed_io_lock; /* * Completed IOs that need unwritten extents handling and have * transaction reserved */ struct list_head i_rsv_conversion_list; struct work_struct i_rsv_conversion_work; atomic_t i_unwritten; /* Nr. of inflight conversions pending */ spinlock_t i_block_reservation_lock; /* * Transactions that contain inode's metadata needed to complete * fsync and fdatasync, respectively. */ tid_t i_sync_tid; tid_t i_datasync_tid; #ifdef CONFIG_QUOTA struct dquot *i_dquot[MAXQUOTAS]; #endif /* Precomputed uuid+inum+igen checksum for seeding inode checksums */ __u32 i_csum_seed; kprojid_t i_projid; }; /* * File system states */ #define EXT4_VALID_FS 0x0001 /* Unmounted cleanly */ #define EXT4_ERROR_FS 0x0002 /* Errors detected */ #define EXT4_ORPHAN_FS 0x0004 /* Orphans being recovered */ #define EXT4_FC_REPLAY 0x0020 /* Fast commit replay ongoing */ /* * Misc. filesystem flags */ #define EXT2_FLAGS_SIGNED_HASH 0x0001 /* Signed dirhash in use */ #define EXT2_FLAGS_UNSIGNED_HASH 0x0002 /* Unsigned dirhash in use */ #define EXT2_FLAGS_TEST_FILESYS 0x0004 /* to test development code */ /* * Mount flags set via mount options or defaults */ #define EXT4_MOUNT_NO_MBCACHE 0x00001 /* Do not use mbcache */ #define EXT4_MOUNT_GRPID 0x00004 /* Create files with directory's group */ #define EXT4_MOUNT_DEBUG 0x00008 /* Some debugging messages */ #define EXT4_MOUNT_ERRORS_CONT 0x00010 /* Continue on errors */ #define EXT4_MOUNT_ERRORS_RO 0x00020 /* Remount fs ro on errors */ #define EXT4_MOUNT_ERRORS_PANIC 0x00040 /* Panic on errors */ #define EXT4_MOUNT_ERRORS_MASK 0x00070 #define EXT4_MOUNT_MINIX_DF 0x00080 /* Mimics the Minix statfs */ #define EXT4_MOUNT_NOLOAD 0x00100 /* Don't use existing journal*/ #ifdef CONFIG_FS_DAX #define EXT4_MOUNT_DAX_ALWAYS 0x00200 /* Direct Access */ #else #define EXT4_MOUNT_DAX_ALWAYS 0 #endif #define EXT4_MOUNT_DATA_FLAGS 0x00C00 /* Mode for data writes: */ #define EXT4_MOUNT_JOURNAL_DATA 0x00400 /* Write data to journal */ #define EXT4_MOUNT_ORDERED_DATA 0x00800 /* Flush data before commit */ #define EXT4_MOUNT_WRITEBACK_DATA 0x00C00 /* No data ordering */ #define EXT4_MOUNT_UPDATE_JOURNAL 0x01000 /* Update the journal format */ #define EXT4_MOUNT_NO_UID32 0x02000 /* Disable 32-bit UIDs */ #define EXT4_MOUNT_XATTR_USER 0x04000 /* Extended user attributes */ #define EXT4_MOUNT_POSIX_ACL 0x08000 /* POSIX Access Control Lists */ #define EXT4_MOUNT_NO_AUTO_DA_ALLOC 0x10000 /* No auto delalloc mapping */ #define EXT4_MOUNT_BARRIER 0x20000 /* Use block barriers */ #define EXT4_MOUNT_QUOTA 0x40000 /* Some quota option set */ #define EXT4_MOUNT_USRQUOTA 0x80000 /* "old" user quota, * enable enforcement for hidden * quota files */ #define EXT4_MOUNT_GRPQUOTA 0x100000 /* "old" group quota, enable * enforcement for hidden quota * files */ #define EXT4_MOUNT_PRJQUOTA 0x200000 /* Enable project quota * enforcement */ #define EXT4_MOUNT_DIOREAD_NOLOCK 0x400000 /* Enable support for dio read nolocking */ #define EXT4_MOUNT_JOURNAL_CHECKSUM 0x800000 /* Journal checksums */ #define EXT4_MOUNT_JOURNAL_ASYNC_COMMIT 0x1000000 /* Journal Async Commit */ #define EXT4_MOUNT_WARN_ON_ERROR 0x2000000 /* Trigger WARN_ON on error */ #define EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS 0x4000000 #define EXT4_MOUNT_DELALLOC 0x8000000 /* Delalloc support */ #define EXT4_MOUNT_DATA_ERR_ABORT 0x10000000 /* Abort on file data write */ #define EXT4_MOUNT_BLOCK_VALIDITY 0x20000000 /* Block validity checking */ #define EXT4_MOUNT_DISCARD 0x40000000 /* Issue DISCARD requests */ #define EXT4_MOUNT_INIT_INODE_TABLE 0x80000000 /* Initialize uninitialized itables */ /* * Mount flags set either automatically (could not be set by mount option) * based on per file system feature or property or in special cases such as * distinguishing between explicit mount option definition and default. */ #define EXT4_MOUNT2_EXPLICIT_DELALLOC 0x00000001 /* User explicitly specified delalloc */ #define EXT4_MOUNT2_STD_GROUP_SIZE 0x00000002 /* We have standard group size of blocksize * 8 blocks */ #define EXT4_MOUNT2_HURD_COMPAT 0x00000004 /* Support HURD-castrated file systems */ #define EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM 0x00000008 /* User explicitly specified journal checksum */ #define EXT4_MOUNT2_JOURNAL_FAST_COMMIT 0x00000010 /* Journal fast commit */ #define EXT4_MOUNT2_DAX_NEVER 0x00000020 /* Do not allow Direct Access */ #define EXT4_MOUNT2_DAX_INODE 0x00000040 /* For printing options only */ #define EXT4_MOUNT2_MB_OPTIMIZE_SCAN 0x00000080 /* Optimize group * scanning in mballoc */ #define clear_opt(sb, opt) EXT4_SB(sb)->s_mount_opt &= \ ~EXT4_MOUNT_##opt #define set_opt(sb, opt) EXT4_SB(sb)->s_mount_opt |= \ EXT4_MOUNT_##opt #define test_opt(sb, opt) (EXT4_SB(sb)->s_mount_opt & \ EXT4_MOUNT_##opt) #define clear_opt2(sb, opt) EXT4_SB(sb)->s_mount_opt2 &= \ ~EXT4_MOUNT2_##opt #define set_opt2(sb, opt) EXT4_SB(sb)->s_mount_opt2 |= \ EXT4_MOUNT2_##opt #define test_opt2(sb, opt) (EXT4_SB(sb)->s_mount_opt2 & \ EXT4_MOUNT2_##opt) #define ext4_test_and_set_bit __test_and_set_bit_le #define ext4_set_bit __set_bit_le #define ext4_set_bit_atomic ext2_set_bit_atomic #define ext4_test_and_clear_bit __test_and_clear_bit_le #define ext4_clear_bit __clear_bit_le #define ext4_clear_bit_atomic ext2_clear_bit_atomic #define ext4_test_bit test_bit_le #define ext4_find_next_zero_bit find_next_zero_bit_le #define ext4_find_next_bit find_next_bit_le extern void ext4_set_bits(void *bm, int cur, int len); /* * Maximal mount counts between two filesystem checks */ #define EXT4_DFL_MAX_MNT_COUNT 20 /* Allow 20 mounts */ #define EXT4_DFL_CHECKINTERVAL 0 /* Don't use interval check */ /* * Behaviour when detecting errors */ #define EXT4_ERRORS_CONTINUE 1 /* Continue execution */ #define EXT4_ERRORS_RO 2 /* Remount fs read-only */ #define EXT4_ERRORS_PANIC 3 /* Panic */ #define EXT4_ERRORS_DEFAULT EXT4_ERRORS_CONTINUE /* Metadata checksum algorithm codes */ #define EXT4_CRC32C_CHKSUM 1 /* * Structure of the super block */ struct ext4_super_block { /*00*/ __le32 s_inodes_count; /* Inodes count */ __le32 s_blocks_count_lo; /* Blocks count */ __le32 s_r_blocks_count_lo; /* Reserved blocks count */ __le32 s_free_blocks_count_lo; /* Free blocks count */ /*10*/ __le32 s_free_inodes_count; /* Free inodes count */ __le32 s_first_data_block; /* First Data Block */ __le32 s_log_block_size; /* Block size */ __le32 s_log_cluster_size; /* Allocation cluster size */ /*20*/ __le32 s_blocks_per_group; /* # Blocks per group */ __le32 s_clusters_per_group; /* # Clusters per group */ __le32 s_inodes_per_group; /* # Inodes per group */ __le32 s_mtime; /* Mount time */ /*30*/ __le32 s_wtime; /* Write time */ __le16 s_mnt_count; /* Mount count */ __le16 s_max_mnt_count; /* Maximal mount count */ __le16 s_magic; /* Magic signature */ __le16 s_state; /* File system state */ __le16 s_errors; /* Behaviour when detecting errors */ __le16 s_minor_rev_level; /* minor revision level */ /*40*/ __le32 s_lastcheck; /* time of last check */ __le32 s_checkinterval; /* max. time between checks */ __le32 s_creator_os; /* OS */ __le32 s_rev_level; /* Revision level */ /*50*/ __le16 s_def_resuid; /* Default uid for reserved blocks */ __le16 s_def_resgid; /* Default gid for reserved blocks */ /* * These fields are for EXT4_DYNAMIC_REV superblocks only. * * Note: the difference between the compatible feature set and * the incompatible feature set is that if there is a bit set * in the incompatible feature set that the kernel doesn't * know about, it should refuse to mount the filesystem. * * e2fsck's requirements are more strict; if it doesn't know * about a feature in either the compatible or incompatible * feature set, it must abort and not try to meddle with * things it doesn't understand... */ __le32 s_first_ino; /* First non-reserved inode */ __le16 s_inode_size; /* size of inode structure */ __le16 s_block_group_nr; /* block group # of this superblock */ __le32 s_feature_compat; /* compatible feature set */ /*60*/ __le32 s_feature_incompat; /* incompatible feature set */ __le32 s_feature_ro_compat; /* readonly-compatible feature set */ /*68*/ __u8 s_uuid[16]; /* 128-bit uuid for volume */ /*78*/ char s_volume_name[16]; /* volume name */ /*88*/ char s_last_mounted[64] __nonstring; /* directory where last mounted */ /*C8*/ __le32 s_algorithm_usage_bitmap; /* For compression */ /* * Performance hints. Directory preallocation should only * happen if the EXT4_FEATURE_COMPAT_DIR_PREALLOC flag is on. */ __u8 s_prealloc_blocks; /* Nr of blocks to try to preallocate*/ __u8 s_prealloc_dir_blocks; /* Nr to preallocate for dirs */ __le16 s_reserved_gdt_blocks; /* Per group desc for online growth */ /* * Journaling support valid if EXT4_FEATURE_COMPAT_HAS_JOURNAL set. */ /*D0*/ __u8 s_journal_uuid[16]; /* uuid of journal superblock */ /*E0*/ __le32 s_journal_inum; /* inode number of journal file */ __le32 s_journal_dev; /* device number of journal file */ __le32 s_last_orphan; /* start of list of inodes to delete */ __le32 s_hash_seed[4]; /* HTREE hash seed */ __u8 s_def_hash_version; /* Default hash version to use */ __u8 s_jnl_backup_type; __le16 s_desc_size; /* size of group descriptor */ /*100*/ __le32 s_default_mount_opts; __le32 s_first_meta_bg; /* First metablock block group */ __le32 s_mkfs_time; /* When the filesystem was created */ __le32 s_jnl_blocks[17]; /* Backup of the journal inode */ /* 64bit support valid if EXT4_FEATURE_COMPAT_64BIT */ /*150*/ __le32 s_blocks_count_hi; /* Blocks count */ __le32 s_r_blocks_count_hi; /* Reserved blocks count */ __le32 s_free_blocks_count_hi; /* Free blocks count */ __le16 s_min_extra_isize; /* All inodes have at least # bytes */ __le16 s_want_extra_isize; /* New inodes should reserve # bytes */ __le32 s_flags; /* Miscellaneous flags */ __le16 s_raid_stride; /* RAID stride */ __le16 s_mmp_update_interval; /* # seconds to wait in MMP checking */ __le64 s_mmp_block; /* Block for multi-mount protection */ __le32 s_raid_stripe_width; /* blocks on all data disks (N*stride)*/ __u8 s_log_groups_per_flex; /* FLEX_BG group size */ __u8 s_checksum_type; /* metadata checksum algorithm used */ __u8 s_encryption_level; /* versioning level for encryption */ __u8 s_reserved_pad; /* Padding to next 32bits */ __le64 s_kbytes_written; /* nr of lifetime kilobytes written */ __le32 s_snapshot_inum; /* Inode number of active snapshot */ __le32 s_snapshot_id; /* sequential ID of active snapshot */ __le64 s_snapshot_r_blocks_count; /* reserved blocks for active snapshot's future use */ __le32 s_snapshot_list; /* inode number of the head of the on-disk snapshot list */ #define EXT4_S_ERR_START offsetof(struct ext4_super_block, s_error_count) __le32 s_error_count; /* number of fs errors */ __le32 s_first_error_time; /* first time an error happened */ __le32 s_first_error_ino; /* inode involved in first error */ __le64 s_first_error_block; /* block involved of first error */ __u8 s_first_error_func[32] __nonstring; /* function where the error happened */ __le32 s_first_error_line; /* line number where error happened */ __le32 s_last_error_time; /* most recent time of an error */ __le32 s_last_error_ino; /* inode involved in last error */ __le32 s_last_error_line; /* line number where error happened */ __le64 s_last_error_block; /* block involved of last error */ __u8 s_last_error_func[32] __nonstring; /* function where the error happened */ #define EXT4_S_ERR_END offsetof(struct ext4_super_block, s_mount_opts) __u8 s_mount_opts[64]; __le32 s_usr_quota_inum; /* inode for tracking user quota */ __le32 s_grp_quota_inum; /* inode for tracking group quota */ __le32 s_overhead_clusters; /* overhead blocks/clusters in fs */ __le32 s_backup_bgs[2]; /* groups with sparse_super2 SBs */ __u8 s_encrypt_algos[4]; /* Encryption algorithms in use */ __u8 s_encrypt_pw_salt[16]; /* Salt used for string2key algorithm */ __le32 s_lpf_ino; /* Location of the lost+found inode */ __le32 s_prj_quota_inum; /* inode for tracking project quota */ __le32 s_checksum_seed; /* crc32c(uuid) if csum_seed set */ __u8 s_wtime_hi; __u8 s_mtime_hi; __u8 s_mkfs_time_hi; __u8 s_lastcheck_hi; __u8 s_first_error_time_hi; __u8 s_last_error_time_hi; __u8 s_first_error_errcode; __u8 s_last_error_errcode; __le16 s_encoding; /* Filename charset encoding */ __le16 s_encoding_flags; /* Filename charset encoding flags */ __le32 s_orphan_file_inum; /* Inode for tracking orphan inodes */ __le32 s_reserved[94]; /* Padding to the end of the block */ __le32 s_checksum; /* crc32c(superblock) */ }; #define EXT4_S_ERR_LEN (EXT4_S_ERR_END - EXT4_S_ERR_START) #ifdef __KERNEL__ /* Number of quota types we support */ #define EXT4_MAXQUOTAS 3 #define EXT4_ENC_UTF8_12_1 1 /* Types of ext4 journal triggers */ enum ext4_journal_trigger_type { EXT4_JTR_ORPHAN_FILE, EXT4_JTR_NONE /* This must be the last entry for indexing to work! */ }; #define EXT4_JOURNAL_TRIGGER_COUNT EXT4_JTR_NONE struct ext4_journal_trigger { struct jbd2_buffer_trigger_type tr_triggers; struct super_block *sb; }; static inline struct ext4_journal_trigger *EXT4_TRIGGER( struct jbd2_buffer_trigger_type *trigger) { return container_of(trigger, struct ext4_journal_trigger, tr_triggers); } #define EXT4_ORPHAN_BLOCK_MAGIC 0x0b10ca04 /* Structure at the tail of orphan block */ struct ext4_orphan_block_tail { __le32 ob_magic; __le32 ob_checksum; }; static inline int ext4_inodes_per_orphan_block(struct super_block *sb) { return (sb->s_blocksize - sizeof(struct ext4_orphan_block_tail)) / sizeof(u32); } struct ext4_orphan_block { atomic_t ob_free_entries; /* Number of free orphan entries in block */ struct buffer_head *ob_bh; /* Buffer for orphan block */ }; /* * Info about orphan file. */ struct ext4_orphan_info { int of_blocks; /* Number of orphan blocks in a file */ __u32 of_csum_seed; /* Checksum seed for orphan file */ struct ext4_orphan_block *of_binfo; /* Array with info about orphan * file blocks */ }; /* * fourth extended-fs super-block data in memory */ struct ext4_sb_info { unsigned long s_desc_size; /* Size of a group descriptor in bytes */ unsigned long s_inodes_per_block;/* Number of inodes per block */ unsigned long s_blocks_per_group;/* Number of blocks in a group */ unsigned long s_clusters_per_group; /* Number of clusters in a group */ unsigned long s_inodes_per_group;/* Number of inodes in a group */ unsigned long s_itb_per_group; /* Number of inode table blocks per group */ unsigned long s_gdb_count; /* Number of group descriptor blocks */ unsigned long s_desc_per_block; /* Number of group descriptors per block */ ext4_group_t s_groups_count; /* Number of groups in the fs */ ext4_group_t s_blockfile_groups;/* Groups acceptable for non-extent files */ unsigned long s_overhead; /* # of fs overhead clusters */ unsigned int s_cluster_ratio; /* Number of blocks per cluster */ unsigned int s_cluster_bits; /* log2 of s_cluster_ratio */ loff_t s_bitmap_maxbytes; /* max bytes for bitmap files */ struct buffer_head * s_sbh; /* Buffer containing the super block */ struct ext4_super_block *s_es; /* Pointer to the super block in the buffer */ struct buffer_head * __rcu *s_group_desc; unsigned int s_mount_opt; unsigned int s_mount_opt2; unsigned long s_mount_flags; unsigned int s_def_mount_opt; ext4_fsblk_t s_sb_block; atomic64_t s_resv_clusters; kuid_t s_resuid; kgid_t s_resgid; unsigned short s_mount_state; unsigned short s_pad; int s_addr_per_block_bits; int s_desc_per_block_bits; int s_inode_size; int s_first_ino; unsigned int s_inode_readahead_blks; unsigned int s_inode_goal; u32 s_hash_seed[4]; int s_def_hash_version; int s_hash_unsigned; /* 3 if hash should be unsigned, 0 if not */ struct percpu_counter s_freeclusters_counter; struct percpu_counter s_freeinodes_counter; struct percpu_counter s_dirs_counter; struct percpu_counter s_dirtyclusters_counter; struct percpu_counter s_sra_exceeded_retry_limit; struct blockgroup_lock *s_blockgroup_lock; struct proc_dir_entry *s_proc; struct kobject s_kobj; struct completion s_kobj_unregister; struct super_block *s_sb; struct buffer_head *s_mmp_bh; /* Journaling */ struct journal_s *s_journal; unsigned long s_ext4_flags; /* Ext4 superblock flags */ struct mutex s_orphan_lock; /* Protects on disk list changes */ struct list_head s_orphan; /* List of orphaned inodes in on disk list */ struct ext4_orphan_info s_orphan_info; unsigned long s_commit_interval; u32 s_max_batch_time; u32 s_min_batch_time; struct block_device *s_journal_bdev; #ifdef CONFIG_QUOTA /* Names of quota files with journalled quota */ char __rcu *s_qf_names[EXT4_MAXQUOTAS]; int s_jquota_fmt; /* Format of quota to use */ #endif unsigned int s_want_extra_isize; /* New inodes should reserve # bytes */ struct ext4_system_blocks __rcu *s_system_blks; #ifdef EXTENTS_STATS /* ext4 extents stats */ unsigned long s_ext_min; unsigned long s_ext_max; unsigned long s_depth_max; spinlock_t s_ext_stats_lock; unsigned long s_ext_blocks; unsigned long s_ext_extents; #endif /* for buddy allocator */ struct ext4_group_info ** __rcu *s_group_info; struct inode *s_buddy_cache; spinlock_t s_md_lock; unsigned short *s_mb_offsets; unsigned int *s_mb_maxs; unsigned int s_group_info_size; unsigned int s_mb_free_pending; struct list_head s_freed_data_list; /* List of blocks to be freed after commit completed */ struct list_head s_discard_list; struct work_struct s_discard_work; atomic_t s_retry_alloc_pending; struct rb_root s_mb_avg_fragment_size_root; rwlock_t s_mb_rb_lock; struct list_head *s_mb_largest_free_orders; rwlock_t *s_mb_largest_free_orders_locks; /* tunables */ unsigned long s_stripe; unsigned int s_mb_max_linear_groups; unsigned int s_mb_stream_request; unsigned int s_mb_max_to_scan; unsigned int s_mb_min_to_scan; unsigned int s_mb_stats; unsigned int s_mb_order2_reqs; unsigned int s_mb_group_prealloc; unsigned int s_mb_max_inode_prealloc; unsigned int s_max_dir_size_kb; /* where last allocation was done - for stream allocation */ unsigned long s_mb_last_group; unsigned long s_mb_last_start; unsigned int s_mb_prefetch; unsigned int s_mb_prefetch_limit; /* stats for buddy allocator */ atomic_t s_bal_reqs; /* number of reqs with len > 1 */ atomic_t s_bal_success; /* we found long enough chunks */ atomic_t s_bal_allocated; /* in blocks */ atomic_t s_bal_ex_scanned; /* total extents scanned */ atomic_t s_bal_groups_scanned; /* number of groups scanned */ atomic_t s_bal_goals; /* goal hits */ atomic_t s_bal_breaks; /* too long searches */ atomic_t s_bal_2orders; /* 2^order hits */ atomic_t s_bal_cr0_bad_suggestions; atomic_t s_bal_cr1_bad_suggestions; atomic64_t s_bal_cX_groups_considered[4]; atomic64_t s_bal_cX_hits[4]; atomic64_t s_bal_cX_failed[4]; /* cX loop didn't find blocks */ atomic_t s_mb_buddies_generated; /* number of buddies generated */ atomic64_t s_mb_generation_time; atomic_t s_mb_lost_chunks; atomic_t s_mb_preallocated; atomic_t s_mb_discarded; atomic_t s_lock_busy; /* locality groups */ struct ext4_locality_group __percpu *s_locality_groups; /* for write statistics */ unsigned long s_sectors_written_start; u64 s_kbytes_written; /* the size of zero-out chunk */ unsigned int s_extent_max_zeroout_kb; unsigned int s_log_groups_per_flex; struct flex_groups * __rcu *s_flex_groups; ext4_group_t s_flex_groups_allocated; /* workqueue for reserved extent conversions (buffered io) */ struct workqueue_struct *rsv_conversion_wq; /* timer for periodic error stats printing */ struct timer_list s_err_report; /* Lazy inode table initialization info */ struct ext4_li_request *s_li_request; /* Wait multiplier for lazy initialization thread */ unsigned int s_li_wait_mult; /* Kernel thread for multiple mount protection */ struct task_struct *s_mmp_tsk; /* record the last minlen when FITRIM is called. */ unsigned long s_last_trim_minblks; /* Reference to checksum algorithm driver via cryptoapi */ struct crypto_shash *s_chksum_driver; /* Precomputed FS UUID checksum for seeding other checksums */ __u32 s_csum_seed; /* Reclaim extents from extent status tree */ struct shrinker s_es_shrinker; struct list_head s_es_list; /* List of inodes with reclaimable extents */ long s_es_nr_inode; struct ext4_es_stats s_es_stats; struct mb_cache *s_ea_block_cache; struct mb_cache *s_ea_inode_cache; spinlock_t s_es_lock ____cacheline_aligned_in_smp; /* Journal triggers for checksum computation */ struct ext4_journal_trigger s_journal_triggers[EXT4_JOURNAL_TRIGGER_COUNT]; /* Ratelimit ext4 messages. */ struct ratelimit_state s_err_ratelimit_state; struct ratelimit_state s_warning_ratelimit_state; struct ratelimit_state s_msg_ratelimit_state; atomic_t s_warning_count; atomic_t s_msg_count; /* Encryption policy for '-o test_dummy_encryption' */ struct fscrypt_dummy_policy s_dummy_enc_policy; /* * Barrier between writepages ops and changing any inode's JOURNAL_DATA * or EXTENTS flag. */ struct percpu_rw_semaphore s_writepages_rwsem; struct dax_device *s_daxdev; #ifdef CONFIG_EXT4_DEBUG unsigned long s_simulate_fail; #endif /* Record the errseq of the backing block device */ errseq_t s_bdev_wb_err; spinlock_t s_bdev_wb_lock; /* Information about errors that happened during this mount */ spinlock_t s_error_lock; int s_add_error_count; int s_first_error_code; __u32 s_first_error_line; __u32 s_first_error_ino; __u64 s_first_error_block; const char *s_first_error_func; time64_t s_first_error_time; int s_last_error_code; __u32 s_last_error_line; __u32 s_last_error_ino; __u64 s_last_error_block; const char *s_last_error_func; time64_t s_last_error_time; /* * If we are in a context where we cannot update error information in * the on-disk superblock, we queue this work to do it. */ struct work_struct s_error_work; /* Ext4 fast commit sub transaction ID */ atomic_t s_fc_subtid; /* * After commit starts, the main queue gets locked, and the further * updates get added in the staging queue. */ #define FC_Q_MAIN 0 #define FC_Q_STAGING 1 struct list_head s_fc_q[2]; /* Inodes staged for fast commit * that have data changes in them. */ struct list_head s_fc_dentry_q[2]; /* directory entry updates */ unsigned int s_fc_bytes; /* * Main fast commit lock. This lock protects accesses to the * following fields: * ei->i_fc_list, s_fc_dentry_q, s_fc_q, s_fc_bytes, s_fc_bh. */ spinlock_t s_fc_lock; struct buffer_head *s_fc_bh; struct ext4_fc_stats s_fc_stats; tid_t s_fc_ineligible_tid; #ifdef CONFIG_EXT4_DEBUG int s_fc_debug_max_replay; #endif struct ext4_fc_replay_state s_fc_replay_state; }; static inline struct ext4_sb_info *EXT4_SB(struct super_block *sb) { return sb->s_fs_info; } static inline struct ext4_inode_info *EXT4_I(struct inode *inode) { return container_of(inode, struct ext4_inode_info, vfs_inode); } static inline int ext4_valid_inum(struct super_block *sb, unsigned long ino) { return ino == EXT4_ROOT_INO || (ino >= EXT4_FIRST_INO(sb) && ino <= le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)); } /* * Returns: sbi->field[index] * Used to access an array element from the following sbi fields which require * rcu protection to avoid dereferencing an invalid pointer due to reassignment * - s_group_desc * - s_group_info * - s_flex_group */ #define sbi_array_rcu_deref(sbi, field, index) \ ({ \ typeof(*((sbi)->field)) _v; \ rcu_read_lock(); \ _v = ((typeof(_v)*)rcu_dereference((sbi)->field))[index]; \ rcu_read_unlock(); \ _v; \ }) /* * run-time mount flags */ enum { EXT4_MF_MNTDIR_SAMPLED, EXT4_MF_FS_ABORTED, /* Fatal error detected */ EXT4_MF_FC_INELIGIBLE /* Fast commit ineligible */ }; static inline void ext4_set_mount_flag(struct super_block *sb, int bit) { set_bit(bit, &EXT4_SB(sb)->s_mount_flags); } static inline void ext4_clear_mount_flag(struct super_block *sb, int bit) { clear_bit(bit, &EXT4_SB(sb)->s_mount_flags); } static inline int ext4_test_mount_flag(struct super_block *sb, int bit) { return test_bit(bit, &EXT4_SB(sb)->s_mount_flags); } /* * Simulate_fail codes */ #define EXT4_SIM_BBITMAP_EIO 1 #define EXT4_SIM_BBITMAP_CRC 2 #define EXT4_SIM_IBITMAP_EIO 3 #define EXT4_SIM_IBITMAP_CRC 4 #define EXT4_SIM_INODE_EIO 5 #define EXT4_SIM_INODE_CRC 6 #define EXT4_SIM_DIRBLOCK_EIO 7 #define EXT4_SIM_DIRBLOCK_CRC 8 static inline bool ext4_simulate_fail(struct super_block *sb, unsigned long code) { #ifdef CONFIG_EXT4_DEBUG struct ext4_sb_info *sbi = EXT4_SB(sb); if (unlikely(sbi->s_simulate_fail == code)) { sbi->s_simulate_fail = 0; return true; } #endif return false; } static inline void ext4_simulate_fail_bh(struct super_block *sb, struct buffer_head *bh, unsigned long code) { if (!IS_ERR(bh) && ext4_simulate_fail(sb, code)) clear_buffer_uptodate(bh); } /* * Error number codes for s_{first,last}_error_errno * * Linux errno numbers are architecture specific, so we need to translate * them into something which is architecture independent. We don't define * codes for all errno's; just the ones which are most likely to be the cause * of an ext4_error() call. */ #define EXT4_ERR_UNKNOWN 1 #define EXT4_ERR_EIO 2 #define EXT4_ERR_ENOMEM 3 #define EXT4_ERR_EFSBADCRC 4 #define EXT4_ERR_EFSCORRUPTED 5 #define EXT4_ERR_ENOSPC 6 #define EXT4_ERR_ENOKEY 7 #define EXT4_ERR_EROFS 8 #define EXT4_ERR_EFBIG 9 #define EXT4_ERR_EEXIST 10 #define EXT4_ERR_ERANGE 11 #define EXT4_ERR_EOVERFLOW 12 #define EXT4_ERR_EBUSY 13 #define EXT4_ERR_ENOTDIR 14 #define EXT4_ERR_ENOTEMPTY 15 #define EXT4_ERR_ESHUTDOWN 16 #define EXT4_ERR_EFAULT 17 /* * Inode dynamic state flags */ enum { EXT4_STATE_JDATA, /* journaled data exists */ EXT4_STATE_NEW, /* inode is newly created */ EXT4_STATE_XATTR, /* has in-inode xattrs */ EXT4_STATE_NO_EXPAND, /* No space for expansion */ EXT4_STATE_DA_ALLOC_CLOSE, /* Alloc DA blks on close */ EXT4_STATE_EXT_MIGRATE, /* Inode is migrating */ EXT4_STATE_NEWENTRY, /* File just added to dir */ EXT4_STATE_MAY_INLINE_DATA, /* may have in-inode data */ EXT4_STATE_EXT_PRECACHED, /* extents have been precached */ EXT4_STATE_LUSTRE_EA_INODE, /* Lustre-style ea_inode */ EXT4_STATE_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ EXT4_STATE_FC_COMMITTING, /* Fast commit ongoing */ EXT4_STATE_ORPHAN_FILE, /* Inode orphaned in orphan file */ }; #define EXT4_INODE_BIT_FNS(name, field, offset) \ static inline int ext4_test_inode_##name(struct inode *inode, int bit) \ { \ return test_bit(bit + (offset), &EXT4_I(inode)->i_##field); \ } \ static inline void ext4_set_inode_##name(struct inode *inode, int bit) \ { \ set_bit(bit + (offset), &EXT4_I(inode)->i_##field); \ } \ static inline void ext4_clear_inode_##name(struct inode *inode, int bit) \ { \ clear_bit(bit + (offset), &EXT4_I(inode)->i_##field); \ } /* Add these declarations here only so that these functions can be * found by name. Otherwise, they are very hard to locate. */ static inline int ext4_test_inode_flag(struct inode *inode, int bit); static inline void ext4_set_inode_flag(struct inode *inode, int bit); static inline void ext4_clear_inode_flag(struct inode *inode, int bit); EXT4_INODE_BIT_FNS(flag, flags, 0) /* Add these declarations here only so that these functions can be * found by name. Otherwise, they are very hard to locate. */ static inline int ext4_test_inode_state(struct inode *inode, int bit); static inline void ext4_set_inode_state(struct inode *inode, int bit); static inline void ext4_clear_inode_state(struct inode *inode, int bit); #if (BITS_PER_LONG < 64) EXT4_INODE_BIT_FNS(state, state_flags, 0) static inline void ext4_clear_state_flags(struct ext4_inode_info *ei) { (ei)->i_state_flags = 0; } #else EXT4_INODE_BIT_FNS(state, flags, 32) static inline void ext4_clear_state_flags(struct ext4_inode_info *ei) { /* We depend on the fact that callers will set i_flags */ } #endif #else /* Assume that user mode programs are passing in an ext4fs superblock, not * a kernel struct super_block. This will allow us to call the feature-test * macros from user land. */ #define EXT4_SB(sb) (sb) #endif static inline bool ext4_verity_in_progress(struct inode *inode) { return IS_ENABLED(CONFIG_FS_VERITY) && ext4_test_inode_state(inode, EXT4_STATE_VERITY_IN_PROGRESS); } #define NEXT_ORPHAN(inode) EXT4_I(inode)->i_dtime /* * Codes for operating systems */ #define EXT4_OS_LINUX 0 #define EXT4_OS_HURD 1 #define EXT4_OS_MASIX 2 #define EXT4_OS_FREEBSD 3 #define EXT4_OS_LITES 4 /* * Revision levels */ #define EXT4_GOOD_OLD_REV 0 /* The good old (original) format */ #define EXT4_DYNAMIC_REV 1 /* V2 format w/ dynamic inode sizes */ #define EXT4_MAX_SUPP_REV EXT4_DYNAMIC_REV #define EXT4_GOOD_OLD_INODE_SIZE 128 #define EXT4_EXTRA_TIMESTAMP_MAX (((s64)1 << 34) - 1 + S32_MIN) #define EXT4_NON_EXTRA_TIMESTAMP_MAX S32_MAX #define EXT4_TIMESTAMP_MIN S32_MIN /* * Feature set definitions */ #define EXT4_FEATURE_COMPAT_DIR_PREALLOC 0x0001 #define EXT4_FEATURE_COMPAT_IMAGIC_INODES 0x0002 #define EXT4_FEATURE_COMPAT_HAS_JOURNAL 0x0004 #define EXT4_FEATURE_COMPAT_EXT_ATTR 0x0008 #define EXT4_FEATURE_COMPAT_RESIZE_INODE 0x0010 #define EXT4_FEATURE_COMPAT_DIR_INDEX 0x0020 #define EXT4_FEATURE_COMPAT_SPARSE_SUPER2 0x0200 /* * The reason why "FAST_COMMIT" is a compat feature is that, FS becomes * incompatible only if fast commit blocks are present in the FS. Since we * clear the journal (and thus the fast commit blocks), we don't mark FS as * incompatible. We also have a JBD2 incompat feature, which gets set when * there are fast commit blocks present in the journal. */ #define EXT4_FEATURE_COMPAT_FAST_COMMIT 0x0400 #define EXT4_FEATURE_COMPAT_STABLE_INODES 0x0800 #define EXT4_FEATURE_COMPAT_ORPHAN_FILE 0x1000 /* Orphan file exists */ #define EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER 0x0001 #define EXT4_FEATURE_RO_COMPAT_LARGE_FILE 0x0002 #define EXT4_FEATURE_RO_COMPAT_BTREE_DIR 0x0004 #define EXT4_FEATURE_RO_COMPAT_HUGE_FILE 0x0008 #define EXT4_FEATURE_RO_COMPAT_GDT_CSUM 0x0010 #define EXT4_FEATURE_RO_COMPAT_DIR_NLINK 0x0020 #define EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE 0x0040 #define EXT4_FEATURE_RO_COMPAT_QUOTA 0x0100 #define EXT4_FEATURE_RO_COMPAT_BIGALLOC 0x0200 /* * METADATA_CSUM also enables group descriptor checksums (GDT_CSUM). When * METADATA_CSUM is set, group descriptor checksums use the same algorithm as * all other data structures' checksums. However, the METADATA_CSUM and * GDT_CSUM bits are mutually exclusive. */ #define EXT4_FEATURE_RO_COMPAT_METADATA_CSUM 0x0400 #define EXT4_FEATURE_RO_COMPAT_READONLY 0x1000 #define EXT4_FEATURE_RO_COMPAT_PROJECT 0x2000 #define EXT4_FEATURE_RO_COMPAT_VERITY 0x8000 #define EXT4_FEATURE_RO_COMPAT_ORPHAN_PRESENT 0x10000 /* Orphan file may be non-empty */ #define EXT4_FEATURE_INCOMPAT_COMPRESSION 0x0001 #define EXT4_FEATURE_INCOMPAT_FILETYPE 0x0002 #define EXT4_FEATURE_INCOMPAT_RECOVER 0x0004 /* Needs recovery */ #define EXT4_FEATURE_INCOMPAT_JOURNAL_DEV 0x0008 /* Journal device */ #define EXT4_FEATURE_INCOMPAT_META_BG 0x0010 #define EXT4_FEATURE_INCOMPAT_EXTENTS 0x0040 /* extents support */ #define EXT4_FEATURE_INCOMPAT_64BIT 0x0080 #define EXT4_FEATURE_INCOMPAT_MMP 0x0100 #define EXT4_FEATURE_INCOMPAT_FLEX_BG 0x0200 #define EXT4_FEATURE_INCOMPAT_EA_INODE 0x0400 /* EA in inode */ #define EXT4_FEATURE_INCOMPAT_DIRDATA 0x1000 /* data in dirent */ #define EXT4_FEATURE_INCOMPAT_CSUM_SEED 0x2000 #define EXT4_FEATURE_INCOMPAT_LARGEDIR 0x4000 /* >2GB or 3-lvl htree */ #define EXT4_FEATURE_INCOMPAT_INLINE_DATA 0x8000 /* data in inode */ #define EXT4_FEATURE_INCOMPAT_ENCRYPT 0x10000 #define EXT4_FEATURE_INCOMPAT_CASEFOLD 0x20000 extern void ext4_update_dynamic_rev(struct super_block *sb); #define EXT4_FEATURE_COMPAT_FUNCS(name, flagname) \ static inline bool ext4_has_feature_##name(struct super_block *sb) \ { \ return ((EXT4_SB(sb)->s_es->s_feature_compat & \ cpu_to_le32(EXT4_FEATURE_COMPAT_##flagname)) != 0); \ } \ static inline void ext4_set_feature_##name(struct super_block *sb) \ { \ ext4_update_dynamic_rev(sb); \ EXT4_SB(sb)->s_es->s_feature_compat |= \ cpu_to_le32(EXT4_FEATURE_COMPAT_##flagname); \ } \ static inline void ext4_clear_feature_##name(struct super_block *sb) \ { \ EXT4_SB(sb)->s_es->s_feature_compat &= \ ~cpu_to_le32(EXT4_FEATURE_COMPAT_##flagname); \ } #define EXT4_FEATURE_RO_COMPAT_FUNCS(name, flagname) \ static inline bool ext4_has_feature_##name(struct super_block *sb) \ { \ return ((EXT4_SB(sb)->s_es->s_feature_ro_compat & \ cpu_to_le32(EXT4_FEATURE_RO_COMPAT_##flagname)) != 0); \ } \ static inline void ext4_set_feature_##name(struct super_block *sb) \ { \ ext4_update_dynamic_rev(sb); \ EXT4_SB(sb)->s_es->s_feature_ro_compat |= \ cpu_to_le32(EXT4_FEATURE_RO_COMPAT_##flagname); \ } \ static inline void ext4_clear_feature_##name(struct super_block *sb) \ { \ EXT4_SB(sb)->s_es->s_feature_ro_compat &= \ ~cpu_to_le32(EXT4_FEATURE_RO_COMPAT_##flagname); \ } #define EXT4_FEATURE_INCOMPAT_FUNCS(name, flagname) \ static inline bool ext4_has_feature_##name(struct super_block *sb) \ { \ return ((EXT4_SB(sb)->s_es->s_feature_incompat & \ cpu_to_le32(EXT4_FEATURE_INCOMPAT_##flagname)) != 0); \ } \ static inline void ext4_set_feature_##name(struct super_block *sb) \ { \ ext4_update_dynamic_rev(sb); \ EXT4_SB(sb)->s_es->s_feature_incompat |= \ cpu_to_le32(EXT4_FEATURE_INCOMPAT_##flagname); \ } \ static inline void ext4_clear_feature_##name(struct super_block *sb) \ { \ EXT4_SB(sb)->s_es->s_feature_incompat &= \ ~cpu_to_le32(EXT4_FEATURE_INCOMPAT_##flagname); \ } EXT4_FEATURE_COMPAT_FUNCS(dir_prealloc, DIR_PREALLOC) EXT4_FEATURE_COMPAT_FUNCS(imagic_inodes, IMAGIC_INODES) EXT4_FEATURE_COMPAT_FUNCS(journal, HAS_JOURNAL) EXT4_FEATURE_COMPAT_FUNCS(xattr, EXT_ATTR) EXT4_FEATURE_COMPAT_FUNCS(resize_inode, RESIZE_INODE) EXT4_FEATURE_COMPAT_FUNCS(dir_index, DIR_INDEX) EXT4_FEATURE_COMPAT_FUNCS(sparse_super2, SPARSE_SUPER2) EXT4_FEATURE_COMPAT_FUNCS(fast_commit, FAST_COMMIT) EXT4_FEATURE_COMPAT_FUNCS(stable_inodes, STABLE_INODES) EXT4_FEATURE_COMPAT_FUNCS(orphan_file, ORPHAN_FILE) EXT4_FEATURE_RO_COMPAT_FUNCS(sparse_super, SPARSE_SUPER) EXT4_FEATURE_RO_COMPAT_FUNCS(large_file, LARGE_FILE) EXT4_FEATURE_RO_COMPAT_FUNCS(btree_dir, BTREE_DIR) EXT4_FEATURE_RO_COMPAT_FUNCS(huge_file, HUGE_FILE) EXT4_FEATURE_RO_COMPAT_FUNCS(gdt_csum, GDT_CSUM) EXT4_FEATURE_RO_COMPAT_FUNCS(dir_nlink, DIR_NLINK) EXT4_FEATURE_RO_COMPAT_FUNCS(extra_isize, EXTRA_ISIZE) EXT4_FEATURE_RO_COMPAT_FUNCS(quota, QUOTA) EXT4_FEATURE_RO_COMPAT_FUNCS(bigalloc, BIGALLOC) EXT4_FEATURE_RO_COMPAT_FUNCS(metadata_csum, METADATA_CSUM) EXT4_FEATURE_RO_COMPAT_FUNCS(readonly, READONLY) EXT4_FEATURE_RO_COMPAT_FUNCS(project, PROJECT) EXT4_FEATURE_RO_COMPAT_FUNCS(verity, VERITY) EXT4_FEATURE_RO_COMPAT_FUNCS(orphan_present, ORPHAN_PRESENT) EXT4_FEATURE_INCOMPAT_FUNCS(compression, COMPRESSION) EXT4_FEATURE_INCOMPAT_FUNCS(filetype, FILETYPE) EXT4_FEATURE_INCOMPAT_FUNCS(journal_needs_recovery, RECOVER) EXT4_FEATURE_INCOMPAT_FUNCS(journal_dev, JOURNAL_DEV) EXT4_FEATURE_INCOMPAT_FUNCS(meta_bg, META_BG) EXT4_FEATURE_INCOMPAT_FUNCS(extents, EXTENTS) EXT4_FEATURE_INCOMPAT_FUNCS(64bit, 64BIT) EXT4_FEATURE_INCOMPAT_FUNCS(mmp, MMP) EXT4_FEATURE_INCOMPAT_FUNCS(flex_bg, FLEX_BG) EXT4_FEATURE_INCOMPAT_FUNCS(ea_inode, EA_INODE) EXT4_FEATURE_INCOMPAT_FUNCS(dirdata, DIRDATA) EXT4_FEATURE_INCOMPAT_FUNCS(csum_seed, CSUM_SEED) EXT4_FEATURE_INCOMPAT_FUNCS(largedir, LARGEDIR) EXT4_FEATURE_INCOMPAT_FUNCS(inline_data, INLINE_DATA) EXT4_FEATURE_INCOMPAT_FUNCS(encrypt, ENCRYPT) EXT4_FEATURE_INCOMPAT_FUNCS(casefold, CASEFOLD) #define EXT2_FEATURE_COMPAT_SUPP EXT4_FEATURE_COMPAT_EXT_ATTR #define EXT2_FEATURE_INCOMPAT_SUPP (EXT4_FEATURE_INCOMPAT_FILETYPE| \ EXT4_FEATURE_INCOMPAT_META_BG) #define EXT2_FEATURE_RO_COMPAT_SUPP (EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER| \ EXT4_FEATURE_RO_COMPAT_LARGE_FILE| \ EXT4_FEATURE_RO_COMPAT_BTREE_DIR) #define EXT3_FEATURE_COMPAT_SUPP EXT4_FEATURE_COMPAT_EXT_ATTR #define EXT3_FEATURE_INCOMPAT_SUPP (EXT4_FEATURE_INCOMPAT_FILETYPE| \ EXT4_FEATURE_INCOMPAT_RECOVER| \ EXT4_FEATURE_INCOMPAT_META_BG) #define EXT3_FEATURE_RO_COMPAT_SUPP (EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER| \ EXT4_FEATURE_RO_COMPAT_LARGE_FILE| \ EXT4_FEATURE_RO_COMPAT_BTREE_DIR) #define EXT4_FEATURE_COMPAT_SUPP (EXT4_FEATURE_COMPAT_EXT_ATTR| \ EXT4_FEATURE_COMPAT_ORPHAN_FILE) #define EXT4_FEATURE_INCOMPAT_SUPP (EXT4_FEATURE_INCOMPAT_FILETYPE| \ EXT4_FEATURE_INCOMPAT_RECOVER| \ EXT4_FEATURE_INCOMPAT_META_BG| \ EXT4_FEATURE_INCOMPAT_EXTENTS| \ EXT4_FEATURE_INCOMPAT_64BIT| \ EXT4_FEATURE_INCOMPAT_FLEX_BG| \ EXT4_FEATURE_INCOMPAT_EA_INODE| \ EXT4_FEATURE_INCOMPAT_MMP | \ EXT4_FEATURE_INCOMPAT_INLINE_DATA | \ EXT4_FEATURE_INCOMPAT_ENCRYPT | \ EXT4_FEATURE_INCOMPAT_CASEFOLD | \ EXT4_FEATURE_INCOMPAT_CSUM_SEED | \ EXT4_FEATURE_INCOMPAT_LARGEDIR) #define EXT4_FEATURE_RO_COMPAT_SUPP (EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER| \ EXT4_FEATURE_RO_COMPAT_LARGE_FILE| \ EXT4_FEATURE_RO_COMPAT_GDT_CSUM| \ EXT4_FEATURE_RO_COMPAT_DIR_NLINK | \ EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE | \ EXT4_FEATURE_RO_COMPAT_BTREE_DIR |\ EXT4_FEATURE_RO_COMPAT_HUGE_FILE |\ EXT4_FEATURE_RO_COMPAT_BIGALLOC |\ EXT4_FEATURE_RO_COMPAT_METADATA_CSUM|\ EXT4_FEATURE_RO_COMPAT_QUOTA |\ EXT4_FEATURE_RO_COMPAT_PROJECT |\ EXT4_FEATURE_RO_COMPAT_VERITY |\ EXT4_FEATURE_RO_COMPAT_ORPHAN_PRESENT) #define EXTN_FEATURE_FUNCS(ver) \ static inline bool ext4_has_unknown_ext##ver##_compat_features(struct super_block *sb) \ { \ return ((EXT4_SB(sb)->s_es->s_feature_compat & \ cpu_to_le32(~EXT##ver##_FEATURE_COMPAT_SUPP)) != 0); \ } \ static inline bool ext4_has_unknown_ext##ver##_ro_compat_features(struct super_block *sb) \ { \ return ((EXT4_SB(sb)->s_es->s_feature_ro_compat & \ cpu_to_le32(~EXT##ver##_FEATURE_RO_COMPAT_SUPP)) != 0); \ } \ static inline bool ext4_has_unknown_ext##ver##_incompat_features(struct super_block *sb) \ { \ return ((EXT4_SB(sb)->s_es->s_feature_incompat & \ cpu_to_le32(~EXT##ver##_FEATURE_INCOMPAT_SUPP)) != 0); \ } EXTN_FEATURE_FUNCS(2) EXTN_FEATURE_FUNCS(3) EXTN_FEATURE_FUNCS(4) static inline bool ext4_has_compat_features(struct super_block *sb) { return (EXT4_SB(sb)->s_es->s_feature_compat != 0); } static inline bool ext4_has_ro_compat_features(struct super_block *sb) { return (EXT4_SB(sb)->s_es->s_feature_ro_compat != 0); } static inline bool ext4_has_incompat_features(struct super_block *sb) { return (EXT4_SB(sb)->s_es->s_feature_incompat != 0); } extern int ext4_feature_set_ok(struct super_block *sb, int readonly); /* * Superblock flags */ #define EXT4_FLAGS_RESIZING 0 #define EXT4_FLAGS_SHUTDOWN 1 #define EXT4_FLAGS_BDEV_IS_DAX 2 static inline int ext4_forced_shutdown(struct ext4_sb_info *sbi) { return test_bit(EXT4_FLAGS_SHUTDOWN, &sbi->s_ext4_flags); } /* * Default values for user and/or group using reserved blocks */ #define EXT4_DEF_RESUID 0 #define EXT4_DEF_RESGID 0 /* * Default project ID */ #define EXT4_DEF_PROJID 0 #define EXT4_DEF_INODE_READAHEAD_BLKS 32 /* * Default mount options */ #define EXT4_DEFM_DEBUG 0x0001 #define EXT4_DEFM_BSDGROUPS 0x0002 #define EXT4_DEFM_XATTR_USER 0x0004 #define EXT4_DEFM_ACL 0x0008 #define EXT4_DEFM_UID16 0x0010 #define EXT4_DEFM_JMODE 0x0060 #define EXT4_DEFM_JMODE_DATA 0x0020 #define EXT4_DEFM_JMODE_ORDERED 0x0040 #define EXT4_DEFM_JMODE_WBACK 0x0060 #define EXT4_DEFM_NOBARRIER 0x0100 #define EXT4_DEFM_BLOCK_VALIDITY 0x0200 #define EXT4_DEFM_DISCARD 0x0400 #define EXT4_DEFM_NODELALLOC 0x0800 /* * Default journal batch times */ #define EXT4_DEF_MIN_BATCH_TIME 0 #define EXT4_DEF_MAX_BATCH_TIME 15000 /* 15ms */ /* * Minimum number of groups in a flexgroup before we separate out * directories into the first block group of a flexgroup */ #define EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME 4 /* * Structure of a directory entry */ #define EXT4_NAME_LEN 255 /* * Base length of the ext4 directory entry excluding the name length */ #define EXT4_BASE_DIR_LEN (sizeof(struct ext4_dir_entry_2) - EXT4_NAME_LEN) struct ext4_dir_entry { __le32 inode; /* Inode number */ __le16 rec_len; /* Directory entry length */ __le16 name_len; /* Name length */ char name[EXT4_NAME_LEN]; /* File name */ }; /* * Encrypted Casefolded entries require saving the hash on disk. This structure * followed ext4_dir_entry_2's name[name_len] at the next 4 byte aligned * boundary. */ struct ext4_dir_entry_hash { __le32 hash; __le32 minor_hash; }; /* * The new version of the directory entry. Since EXT4 structures are * stored in intel byte order, and the name_len field could never be * bigger than 255 chars, it's safe to reclaim the extra byte for the * file_type field. */ struct ext4_dir_entry_2 { __le32 inode; /* Inode number */ __le16 rec_len; /* Directory entry length */ __u8 name_len; /* Name length */ __u8 file_type; /* See file type macros EXT4_FT_* below */ char name[EXT4_NAME_LEN]; /* File name */ }; /* * Access the hashes at the end of ext4_dir_entry_2 */ #define EXT4_DIRENT_HASHES(entry) \ ((struct ext4_dir_entry_hash *) \ (((void *)(entry)) + \ ((8 + (entry)->name_len + EXT4_DIR_ROUND) & ~EXT4_DIR_ROUND))) #define EXT4_DIRENT_HASH(entry) le32_to_cpu(EXT4_DIRENT_HASHES(de)->hash) #define EXT4_DIRENT_MINOR_HASH(entry) \ le32_to_cpu(EXT4_DIRENT_HASHES(de)->minor_hash) static inline bool ext4_hash_in_dirent(const struct inode *inode) { return IS_CASEFOLDED(inode) && IS_ENCRYPTED(inode); } /* * This is a bogus directory entry at the end of each leaf block that * records checksums. */ struct ext4_dir_entry_tail { __le32 det_reserved_zero1; /* Pretend to be unused */ __le16 det_rec_len; /* 12 */ __u8 det_reserved_zero2; /* Zero name length */ __u8 det_reserved_ft; /* 0xDE, fake file type */ __le32 det_checksum; /* crc32c(uuid+inum+dirblock) */ }; #define EXT4_DIRENT_TAIL(block, blocksize) \ ((struct ext4_dir_entry_tail *)(((void *)(block)) + \ ((blocksize) - \ sizeof(struct ext4_dir_entry_tail)))) /* * Ext4 directory file types. Only the low 3 bits are used. The * other bits are reserved for now. */ #define EXT4_FT_UNKNOWN 0 #define EXT4_FT_REG_FILE 1 #define EXT4_FT_DIR 2 #define EXT4_FT_CHRDEV 3 #define EXT4_FT_BLKDEV 4 #define EXT4_FT_FIFO 5 #define EXT4_FT_SOCK 6 #define EXT4_FT_SYMLINK 7 #define EXT4_FT_MAX 8 #define EXT4_FT_DIR_CSUM 0xDE /* * EXT4_DIR_PAD defines the directory entries boundaries * * NOTE: It must be a multiple of 4 */ #define EXT4_DIR_PAD 4 #define EXT4_DIR_ROUND (EXT4_DIR_PAD - 1) #define EXT4_MAX_REC_LEN ((1<<16)-1) /* * The rec_len is dependent on the type of directory. Directories that are * casefolded and encrypted need to store the hash as well, so we add room for * ext4_extended_dir_entry_2. For all entries related to '.' or '..' you should * pass NULL for dir, as those entries do not use the extra fields. */ static inline unsigned int ext4_dir_rec_len(__u8 name_len, const struct inode *dir) { int rec_len = (name_len + 8 + EXT4_DIR_ROUND); if (dir && ext4_hash_in_dirent(dir)) rec_len += sizeof(struct ext4_dir_entry_hash); return (rec_len & ~EXT4_DIR_ROUND); } /* * If we ever get support for fs block sizes > page_size, we'll need * to remove the #if statements in the next two functions... */ static inline unsigned int ext4_rec_len_from_disk(__le16 dlen, unsigned blocksize) { unsigned len = le16_to_cpu(dlen); #if (PAGE_SIZE >= 65536) if (len == EXT4_MAX_REC_LEN || len == 0) return blocksize; return (len & 65532) | ((len & 3) << 16); #else return len; #endif } static inline __le16 ext4_rec_len_to_disk(unsigned len, unsigned blocksize) { if ((len > blocksize) || (blocksize > (1 << 18)) || (len & 3)) BUG(); #if (PAGE_SIZE >= 65536) if (len < 65536) return cpu_to_le16(len); if (len == blocksize) { if (blocksize == 65536) return cpu_to_le16(EXT4_MAX_REC_LEN); else return cpu_to_le16(0); } return cpu_to_le16((len & 65532) | ((len >> 16) & 3)); #else return cpu_to_le16(len); #endif } /* * Hash Tree Directory indexing * (c) Daniel Phillips, 2001 */ #define is_dx(dir) (ext4_has_feature_dir_index((dir)->i_sb) && \ ext4_test_inode_flag((dir), EXT4_INODE_INDEX)) #define EXT4_DIR_LINK_MAX(dir) unlikely((dir)->i_nlink >= EXT4_LINK_MAX && \ !(ext4_has_feature_dir_nlink((dir)->i_sb) && is_dx(dir))) #define EXT4_DIR_LINK_EMPTY(dir) ((dir)->i_nlink == 2 || (dir)->i_nlink == 1) /* Legal values for the dx_root hash_version field: */ #define DX_HASH_LEGACY 0 #define DX_HASH_HALF_MD4 1 #define DX_HASH_TEA 2 #define DX_HASH_LEGACY_UNSIGNED 3 #define DX_HASH_HALF_MD4_UNSIGNED 4 #define DX_HASH_TEA_UNSIGNED 5 #define DX_HASH_SIPHASH 6 static inline u32 ext4_chksum(struct ext4_sb_info *sbi, u32 crc, const void *address, unsigned int length) { struct { struct shash_desc shash; char ctx[4]; } desc; BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver)!=sizeof(desc.ctx)); desc.shash.tfm = sbi->s_chksum_driver; *(u32 *)desc.ctx = crc; BUG_ON(crypto_shash_update(&desc.shash, address, length)); return *(u32 *)desc.ctx; } #ifdef __KERNEL__ /* hash info structure used by the directory hash */ struct dx_hash_info { u32 hash; u32 minor_hash; int hash_version; u32 *seed; }; /* 32 and 64 bit signed EOF for dx directories */ #define EXT4_HTREE_EOF_32BIT ((1UL << (32 - 1)) - 1) #define EXT4_HTREE_EOF_64BIT ((1ULL << (64 - 1)) - 1) /* * Control parameters used by ext4_htree_next_block */ #define HASH_NB_ALWAYS 1 struct ext4_filename { const struct qstr *usr_fname; struct fscrypt_str disk_name; struct dx_hash_info hinfo; #ifdef CONFIG_FS_ENCRYPTION struct fscrypt_str crypto_buf; #endif #ifdef CONFIG_UNICODE struct fscrypt_str cf_name; #endif }; #define fname_name(p) ((p)->disk_name.name) #define fname_usr_name(p) ((p)->usr_fname->name) #define fname_len(p) ((p)->disk_name.len) /* * Describe an inode's exact location on disk and in memory */ struct ext4_iloc { struct buffer_head *bh; unsigned long offset; ext4_group_t block_group; }; static inline struct ext4_inode *ext4_raw_inode(struct ext4_iloc *iloc) { return (struct ext4_inode *) (iloc->bh->b_data + iloc->offset); } static inline bool ext4_is_quota_file(struct inode *inode) { return IS_NOQUOTA(inode) && !(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL); } /* * This structure is stuffed into the struct file's private_data field * for directories. It is where we put information so that we can do * readdir operations in hash tree order. */ struct dir_private_info { struct rb_root root; struct rb_node *curr_node; struct fname *extra_fname; loff_t last_pos; __u32 curr_hash; __u32 curr_minor_hash; __u32 next_hash; }; /* calculate the first block number of the group */ static inline ext4_fsblk_t ext4_group_first_block_no(struct super_block *sb, ext4_group_t group_no) { return group_no * (ext4_fsblk_t)EXT4_BLOCKS_PER_GROUP(sb) + le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); } /* * Special error return code only used by dx_probe() and its callers. */ #define ERR_BAD_DX_DIR (-(MAX_ERRNO - 1)) /* htree levels for ext4 */ #define EXT4_HTREE_LEVEL_COMPAT 2 #define EXT4_HTREE_LEVEL 3 static inline int ext4_dir_htree_level(struct super_block *sb) { return ext4_has_feature_largedir(sb) ? EXT4_HTREE_LEVEL : EXT4_HTREE_LEVEL_COMPAT; } /* * Timeout and state flag for lazy initialization inode thread. */ #define EXT4_DEF_LI_WAIT_MULT 10 #define EXT4_DEF_LI_MAX_START_DELAY 5 #define EXT4_LAZYINIT_QUIT 0x0001 #define EXT4_LAZYINIT_RUNNING 0x0002 /* * Lazy inode table initialization info */ struct ext4_lazy_init { unsigned long li_state; struct list_head li_request_list; struct mutex li_list_mtx; }; enum ext4_li_mode { EXT4_LI_MODE_PREFETCH_BBITMAP, EXT4_LI_MODE_ITABLE, }; struct ext4_li_request { struct super_block *lr_super; enum ext4_li_mode lr_mode; ext4_group_t lr_first_not_zeroed; ext4_group_t lr_next_group; struct list_head lr_request; unsigned long lr_next_sched; unsigned long lr_timeout; }; struct ext4_features { struct kobject f_kobj; struct completion f_kobj_unregister; }; /* * This structure will be used for multiple mount protection. It will be * written into the block number saved in the s_mmp_block field in the * superblock. Programs that check MMP should assume that if * SEQ_FSCK (or any unknown code above SEQ_MAX) is present then it is NOT safe * to use the filesystem, regardless of how old the timestamp is. */ #define EXT4_MMP_MAGIC 0x004D4D50U /* ASCII for MMP */ #define EXT4_MMP_SEQ_CLEAN 0xFF4D4D50U /* mmp_seq value for clean unmount */ #define EXT4_MMP_SEQ_FSCK 0xE24D4D50U /* mmp_seq value when being fscked */ #define EXT4_MMP_SEQ_MAX 0xE24D4D4FU /* maximum valid mmp_seq value */ struct mmp_struct { __le32 mmp_magic; /* Magic number for MMP */ __le32 mmp_seq; /* Sequence no. updated periodically */ /* * mmp_time, mmp_nodename & mmp_bdevname are only used for information * purposes and do not affect the correctness of the algorithm */ __le64 mmp_time; /* Time last updated */ char mmp_nodename[64]; /* Node which last updated MMP block */ char mmp_bdevname[32]; /* Bdev which last updated MMP block */ /* * mmp_check_interval is used to verify if the MMP block has been * updated on the block device. The value is updated based on the * maximum time to write the MMP block during an update cycle. */ __le16 mmp_check_interval; __le16 mmp_pad1; __le32 mmp_pad2[226]; __le32 mmp_checksum; /* crc32c(uuid+mmp_block) */ }; /* arguments passed to the mmp thread */ struct mmpd_data { struct buffer_head *bh; /* bh from initial read_mmp_block() */ struct super_block *sb; /* super block of the fs */ }; /* * Check interval multiplier * The MMP block is written every update interval and initially checked every * update interval x the multiplier (the value is then adapted based on the * write latency). The reason is that writes can be delayed under load and we * don't want readers to incorrectly assume that the filesystem is no longer * in use. */ #define EXT4_MMP_CHECK_MULT 2UL /* * Minimum interval for MMP checking in seconds. */ #define EXT4_MMP_MIN_CHECK_INTERVAL 5UL /* * Maximum interval for MMP checking in seconds. */ #define EXT4_MMP_MAX_CHECK_INTERVAL 300UL /* * Function prototypes */ /* * Ok, these declarations are also in <linux/kernel.h> but none of the * ext4 source programs needs to include it so they are duplicated here. */ # define NORET_TYPE /**/ # define ATTRIB_NORET __attribute__((noreturn)) # define NORET_AND noreturn, /* bitmap.c */ extern unsigned int ext4_count_free(char *bitmap, unsigned numchars); void ext4_inode_bitmap_csum_set(struct super_block *sb, ext4_group_t group, struct ext4_group_desc *gdp, struct buffer_head *bh, int sz); int ext4_inode_bitmap_csum_verify(struct super_block *sb, ext4_group_t group, struct ext4_group_desc *gdp, struct buffer_head *bh, int sz); void ext4_block_bitmap_csum_set(struct super_block *sb, ext4_group_t group, struct ext4_group_desc *gdp, struct buffer_head *bh); int ext4_block_bitmap_csum_verify(struct super_block *sb, ext4_group_t group, struct ext4_group_desc *gdp, struct buffer_head *bh); /* balloc.c */ extern void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr, ext4_group_t *blockgrpp, ext4_grpblk_t *offsetp); extern ext4_group_t ext4_get_group_number(struct super_block *sb, ext4_fsblk_t block); extern unsigned int ext4_block_group(struct super_block *sb, ext4_fsblk_t blocknr); extern ext4_grpblk_t ext4_block_group_offset(struct super_block *sb, ext4_fsblk_t blocknr); extern int ext4_bg_has_super(struct super_block *sb, ext4_group_t group); extern unsigned long ext4_bg_num_gdb(struct super_block *sb, ext4_group_t group); extern ext4_fsblk_t ext4_new_meta_blocks(handle_t *handle, struct inode *inode, ext4_fsblk_t goal, unsigned int flags, unsigned long *count, int *errp); extern int ext4_claim_free_clusters(struct ext4_sb_info *sbi, s64 nclusters, unsigned int flags); extern ext4_fsblk_t ext4_count_free_clusters(struct super_block *); extern void ext4_check_blocks_bitmap(struct super_block *); extern struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb, ext4_group_t block_group, struct buffer_head ** bh); extern struct ext4_group_info *ext4_get_group_info(struct super_block *sb, ext4_group_t group); extern int ext4_should_retry_alloc(struct super_block *sb, int *retries); extern struct buffer_head *ext4_read_block_bitmap_nowait(struct super_block *sb, ext4_group_t block_group, bool ignore_locked); extern int ext4_wait_block_bitmap(struct super_block *sb, ext4_group_t block_group, struct buffer_head *bh); extern struct buffer_head *ext4_read_block_bitmap(struct super_block *sb, ext4_group_t block_group); extern unsigned ext4_free_clusters_after_init(struct super_block *sb, ext4_group_t block_group, struct ext4_group_desc *gdp); ext4_fsblk_t ext4_inode_to_goal_block(struct inode *); #ifdef CONFIG_UNICODE extern int ext4_fname_setup_ci_filename(struct inode *dir, const struct qstr *iname, struct ext4_filename *fname); #endif #ifdef CONFIG_FS_ENCRYPTION static inline void ext4_fname_from_fscrypt_name(struct ext4_filename *dst, const struct fscrypt_name *src) { memset(dst, 0, sizeof(*dst)); dst->usr_fname = src->usr_fname; dst->disk_name = src->disk_name; dst->hinfo.hash = src->hash; dst->hinfo.minor_hash = src->minor_hash; dst->crypto_buf = src->crypto_buf; } static inline int ext4_fname_setup_filename(struct inode *dir, const struct qstr *iname, int lookup, struct ext4_filename *fname) { struct fscrypt_name name; int err; err = fscrypt_setup_filename(dir, iname, lookup, &name); if (err) return err; ext4_fname_from_fscrypt_name(fname, &name); #ifdef CONFIG_UNICODE err = ext4_fname_setup_ci_filename(dir, iname, fname); #endif return err; } static inline int ext4_fname_prepare_lookup(struct inode *dir, struct dentry *dentry, struct ext4_filename *fname) { struct fscrypt_name name; int err; err = fscrypt_prepare_lookup(dir, dentry, &name); if (err) return err; ext4_fname_from_fscrypt_name(fname, &name); #ifdef CONFIG_UNICODE err = ext4_fname_setup_ci_filename(dir, &dentry->d_name, fname); #endif return err; } static inline void ext4_fname_free_filename(struct ext4_filename *fname) { struct fscrypt_name name; name.crypto_buf = fname->crypto_buf; fscrypt_free_filename(&name); fname->crypto_buf.name = NULL; fname->usr_fname = NULL; fname->disk_name.name = NULL; #ifdef CONFIG_UNICODE kfree(fname->cf_name.name); fname->cf_name.name = NULL; #endif } #else /* !CONFIG_FS_ENCRYPTION */ static inline int ext4_fname_setup_filename(struct inode *dir, const struct qstr *iname, int lookup, struct ext4_filename *fname) { int err = 0; fname->usr_fname = iname; fname->disk_name.name = (unsigned char *) iname->name; fname->disk_name.len = iname->len; #ifdef CONFIG_UNICODE err = ext4_fname_setup_ci_filename(dir, iname, fname); #endif return err; } static inline int ext4_fname_prepare_lookup(struct inode *dir, struct dentry *dentry, struct ext4_filename *fname) { return ext4_fname_setup_filename(dir, &dentry->d_name, 1, fname); } static inline void ext4_fname_free_filename(struct ext4_filename *fname) { #ifdef CONFIG_UNICODE kfree(fname->cf_name.name); fname->cf_name.name = NULL; #endif } #endif /* !CONFIG_FS_ENCRYPTION */ /* dir.c */ extern int __ext4_check_dir_entry(const char *, unsigned int, struct inode *, struct file *, struct ext4_dir_entry_2 *, struct buffer_head *, char *, int, unsigned int); #define ext4_check_dir_entry(dir, filp, de, bh, buf, size, offset) \ unlikely(__ext4_check_dir_entry(__func__, __LINE__, (dir), (filp), \ (de), (bh), (buf), (size), (offset))) extern int ext4_htree_store_dirent(struct file *dir_file, __u32 hash, __u32 minor_hash, struct ext4_dir_entry_2 *dirent, struct fscrypt_str *ent_name); extern void ext4_htree_free_dir_info(struct dir_private_info *p); extern int ext4_find_dest_de(struct inode *dir, struct inode *inode, struct buffer_head *bh, void *buf, int buf_size, struct ext4_filename *fname, struct ext4_dir_entry_2 **dest_de); void ext4_insert_dentry(struct inode *dir, struct inode *inode, struct ext4_dir_entry_2 *de, int buf_size, struct ext4_filename *fname); static inline void ext4_update_dx_flag(struct inode *inode) { if (!ext4_has_feature_dir_index(inode->i_sb) && ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { /* ext4_iget() should have caught this... */ WARN_ON_ONCE(ext4_has_feature_metadata_csum(inode->i_sb)); ext4_clear_inode_flag(inode, EXT4_INODE_INDEX); } } static const unsigned char ext4_filetype_table[] = { DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK }; static inline unsigned char get_dtype(struct super_block *sb, int filetype) { if (!ext4_has_feature_filetype(sb) || filetype >= EXT4_FT_MAX) return DT_UNKNOWN; return ext4_filetype_table[filetype]; } extern int ext4_check_all_de(struct inode *dir, struct buffer_head *bh, void *buf, int buf_size); /* fsync.c */ extern int ext4_sync_file(struct file *, loff_t, loff_t, int); /* hash.c */ extern int ext4fs_dirhash(const struct inode *dir, const char *name, int len, struct dx_hash_info *hinfo); /* ialloc.c */ extern int ext4_mark_inode_used(struct super_block *sb, int ino); extern struct inode *__ext4_new_inode(struct user_namespace *, handle_t *, struct inode *, umode_t, const struct qstr *qstr, __u32 goal, uid_t *owner, __u32 i_flags, int handle_type, unsigned int line_no, int nblocks); #define ext4_new_inode(handle, dir, mode, qstr, goal, owner, i_flags) \ __ext4_new_inode(&init_user_ns, (handle), (dir), (mode), (qstr), \ (goal), (owner), i_flags, 0, 0, 0) #define ext4_new_inode_start_handle(mnt_userns, dir, mode, qstr, goal, owner, \ type, nblocks) \ __ext4_new_inode((mnt_userns), NULL, (dir), (mode), (qstr), (goal), (owner), \ 0, (type), __LINE__, (nblocks)) extern void ext4_free_inode(handle_t *, struct inode *); extern struct inode * ext4_orphan_get(struct super_block *, unsigned long); extern unsigned long ext4_count_free_inodes(struct super_block *); extern unsigned long ext4_count_dirs(struct super_block *); extern void ext4_check_inodes_bitmap(struct super_block *); extern void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap); extern int ext4_init_inode_table(struct super_block *sb, ext4_group_t group, int barrier); extern void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate); /* fast_commit.c */ int ext4_fc_info_show(struct seq_file *seq, void *v); void ext4_fc_init(struct super_block *sb, journal_t *journal); void ext4_fc_init_inode(struct inode *inode); void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start, ext4_lblk_t end); void __ext4_fc_track_unlink(handle_t *handle, struct inode *inode, struct dentry *dentry); void __ext4_fc_track_link(handle_t *handle, struct inode *inode, struct dentry *dentry); void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry); void ext4_fc_track_link(handle_t *handle, struct dentry *dentry); void __ext4_fc_track_create(handle_t *handle, struct inode *inode, struct dentry *dentry); void ext4_fc_track_create(handle_t *handle, struct dentry *dentry); void ext4_fc_track_inode(handle_t *handle, struct inode *inode); void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle); void ext4_fc_start_update(struct inode *inode); void ext4_fc_stop_update(struct inode *inode); void ext4_fc_del(struct inode *inode); bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t block); void ext4_fc_replay_cleanup(struct super_block *sb); int ext4_fc_commit(journal_t *journal, tid_t commit_tid); int __init ext4_fc_init_dentry_cache(void); void ext4_fc_destroy_dentry_cache(void); int ext4_fc_record_regions(struct super_block *sb, int ino, ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay); /* mballoc.c */ extern const struct seq_operations ext4_mb_seq_groups_ops; extern const struct seq_operations ext4_mb_seq_structs_summary_ops; extern long ext4_mb_stats; extern long ext4_mb_max_to_scan; extern int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset); extern int ext4_mb_init(struct super_block *); extern int ext4_mb_release(struct super_block *); extern ext4_fsblk_t ext4_mb_new_blocks(handle_t *, struct ext4_allocation_request *, int *); extern int ext4_mb_reserve_blocks(struct super_block *, int); extern void ext4_discard_preallocations(struct inode *, unsigned int); extern int __init ext4_init_mballoc(void); extern void ext4_exit_mballoc(void); extern ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, unsigned int nr, int *cnt); extern void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, unsigned int nr); extern void ext4_free_blocks(handle_t *handle, struct inode *inode, struct buffer_head *bh, ext4_fsblk_t block, unsigned long count, int flags); extern int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups); extern int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t i, struct ext4_group_desc *desc); extern int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, ext4_fsblk_t block, unsigned long count); extern int ext4_trim_fs(struct super_block *, struct fstrim_range *); extern void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid); extern void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, int len, int state); /* inode.c */ void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, struct ext4_inode_info *ei); int ext4_inode_is_fast_symlink(struct inode *inode); struct buffer_head *ext4_getblk(handle_t *, struct inode *, ext4_lblk_t, int); struct buffer_head *ext4_bread(handle_t *, struct inode *, ext4_lblk_t, int); int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, bool wait, struct buffer_head **bhs); int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create); int ext4_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create); int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, struct buffer_head *bh, int create); int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, struct buffer_head *head, unsigned from, unsigned to, int *partial, int (*fn)(handle_t *handle, struct inode *inode, struct buffer_head *bh)); int do_journal_get_write_access(handle_t *handle, struct inode *inode, struct buffer_head *bh); #define FALL_BACK_TO_NONDELALLOC 1 #define CONVERT_INLINE_DATA 2 typedef enum { EXT4_IGET_NORMAL = 0, EXT4_IGET_SPECIAL = 0x0001, /* OK to iget a system inode */ EXT4_IGET_HANDLE = 0x0002, /* Inode # is from a handle */ EXT4_IGET_BAD = 0x0004, /* Allow to iget a bad inode */ EXT4_IGET_EA_INODE = 0x0008 /* Inode should contain an EA value */ } ext4_iget_flags; extern struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, ext4_iget_flags flags, const char *function, unsigned int line); #define ext4_iget(sb, ino, flags) \ __ext4_iget((sb), (ino), (flags), __func__, __LINE__) extern int ext4_write_inode(struct inode *, struct writeback_control *); extern int ext4_setattr(struct user_namespace *, struct dentry *, struct iattr *); extern int ext4_getattr(struct user_namespace *, const struct path *, struct kstat *, u32, unsigned int); extern void ext4_evict_inode(struct inode *); extern void ext4_clear_inode(struct inode *); extern int ext4_file_getattr(struct user_namespace *, const struct path *, struct kstat *, u32, unsigned int); extern int ext4_sync_inode(handle_t *, struct inode *); extern void ext4_dirty_inode(struct inode *, int); extern int ext4_change_inode_journal_flag(struct inode *, int); extern int ext4_get_inode_loc(struct inode *, struct ext4_iloc *); extern int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, struct ext4_iloc *iloc); extern int ext4_inode_attach_jinode(struct inode *inode); extern int ext4_can_truncate(struct inode *inode); extern int ext4_truncate(struct inode *); extern int ext4_break_layouts(struct inode *); extern int ext4_punch_hole(struct file *file, loff_t offset, loff_t length); extern void ext4_set_inode_flags(struct inode *, bool init); extern int ext4_alloc_da_blocks(struct inode *inode); extern void ext4_set_aops(struct inode *inode); extern int ext4_writepage_trans_blocks(struct inode *); extern int ext4_chunk_trans_blocks(struct inode *, int nrblocks); extern int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, loff_t lstart, loff_t lend); extern vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf); extern qsize_t *ext4_get_reserved_space(struct inode *inode); extern int ext4_get_projid(struct inode *inode, kprojid_t *projid); extern void ext4_da_release_space(struct inode *inode, int to_free); extern void ext4_da_update_reserve_space(struct inode *inode, int used, int quota_claim); extern int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, ext4_lblk_t len); /* indirect.c */ extern int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, struct ext4_map_blocks *map, int flags); extern int ext4_ind_trans_blocks(struct inode *inode, int nrblocks); extern void ext4_ind_truncate(handle_t *, struct inode *inode); extern int ext4_ind_remove_space(handle_t *handle, struct inode *inode, ext4_lblk_t start, ext4_lblk_t end); /* ioctl.c */ extern long ext4_ioctl(struct file *, unsigned int, unsigned long); extern long ext4_compat_ioctl(struct file *, unsigned int, unsigned long); int ext4_fileattr_set(struct user_namespace *mnt_userns, struct dentry *dentry, struct fileattr *fa); int ext4_fileattr_get(struct dentry *dentry, struct fileattr *fa); extern void ext4_reset_inode_seed(struct inode *inode); /* migrate.c */ extern int ext4_ext_migrate(struct inode *); extern int ext4_ind_migrate(struct inode *inode); /* namei.c */ extern int ext4_init_new_dir(handle_t *handle, struct inode *dir, struct inode *inode); extern int ext4_dirblock_csum_verify(struct inode *inode, struct buffer_head *bh); extern int ext4_htree_fill_tree(struct file *dir_file, __u32 start_hash, __u32 start_minor_hash, __u32 *next_hash); extern int ext4_search_dir(struct buffer_head *bh, char *search_buf, int buf_size, struct inode *dir, struct ext4_filename *fname, unsigned int offset, struct ext4_dir_entry_2 **res_dir); extern int ext4_generic_delete_entry(struct inode *dir, struct ext4_dir_entry_2 *de_del, struct buffer_head *bh, void *entry_buf, int buf_size, int csum_size); extern bool ext4_empty_dir(struct inode *inode); /* resize.c */ extern void ext4_kvfree_array_rcu(void *to_free); extern int ext4_group_add(struct super_block *sb, struct ext4_new_group_data *input); extern int ext4_group_extend(struct super_block *sb, struct ext4_super_block *es, ext4_fsblk_t n_blocks_count); extern int ext4_resize_fs(struct super_block *sb, ext4_fsblk_t n_blocks_count); /* super.c */ extern struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags); extern struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, sector_t block); extern void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io); extern int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io); extern int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait); extern void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block); extern int ext4_seq_options_show(struct seq_file *seq, void *offset); extern int ext4_calculate_overhead(struct super_block *sb); extern void ext4_superblock_csum_set(struct super_block *sb); extern int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup); extern const char *ext4_decode_error(struct super_block *sb, int errno, char nbuf[16]); extern void ext4_mark_group_bitmap_corrupted(struct super_block *sb, ext4_group_t block_group, unsigned int flags); extern unsigned int ext4_num_base_meta_blocks(struct super_block *sb, ext4_group_t block_group); extern __printf(7, 8) void __ext4_error(struct super_block *, const char *, unsigned int, bool, int, __u64, const char *, ...); extern __printf(6, 7) void __ext4_error_inode(struct inode *, const char *, unsigned int, ext4_fsblk_t, int, const char *, ...); extern __printf(5, 6) void __ext4_error_file(struct file *, const char *, unsigned int, ext4_fsblk_t, const char *, ...); extern void __ext4_std_error(struct super_block *, const char *, unsigned int, int); extern __printf(4, 5) void __ext4_warning(struct super_block *, const char *, unsigned int, const char *, ...); extern __printf(4, 5) void __ext4_warning_inode(const struct inode *inode, const char *function, unsigned int line, const char *fmt, ...); extern __printf(3, 4) void __ext4_msg(struct super_block *, const char *, const char *, ...); extern void __dump_mmp_msg(struct super_block *, struct mmp_struct *mmp, const char *, unsigned int, const char *); extern __printf(7, 8) void __ext4_grp_locked_error(const char *, unsigned int, struct super_block *, ext4_group_t, unsigned long, ext4_fsblk_t, const char *, ...); #define EXT4_ERROR_INODE(inode, fmt, a...) \ ext4_error_inode((inode), __func__, __LINE__, 0, (fmt), ## a) #define EXT4_ERROR_INODE_ERR(inode, err, fmt, a...) \ __ext4_error_inode((inode), __func__, __LINE__, 0, (err), (fmt), ## a) #define ext4_error_inode_block(inode, block, err, fmt, a...) \ __ext4_error_inode((inode), __func__, __LINE__, (block), (err), \ (fmt), ## a) #define EXT4_ERROR_FILE(file, block, fmt, a...) \ ext4_error_file((file), __func__, __LINE__, (block), (fmt), ## a) #define ext4_abort(sb, err, fmt, a...) \ __ext4_error((sb), __func__, __LINE__, true, (err), 0, (fmt), ## a) #ifdef CONFIG_PRINTK #define ext4_error_inode(inode, func, line, block, fmt, ...) \ __ext4_error_inode(inode, func, line, block, 0, fmt, ##__VA_ARGS__) #define ext4_error_inode_err(inode, func, line, block, err, fmt, ...) \ __ext4_error_inode((inode), (func), (line), (block), \ (err), (fmt), ##__VA_ARGS__) #define ext4_error_file(file, func, line, block, fmt, ...) \ __ext4_error_file(file, func, line, block, fmt, ##__VA_ARGS__) #define ext4_error(sb, fmt, ...) \ __ext4_error((sb), __func__, __LINE__, false, 0, 0, (fmt), \ ##__VA_ARGS__) #define ext4_error_err(sb, err, fmt, ...) \ __ext4_error((sb), __func__, __LINE__, false, (err), 0, (fmt), \ ##__VA_ARGS__) #define ext4_warning(sb, fmt, ...) \ __ext4_warning(sb, __func__, __LINE__, fmt, ##__VA_ARGS__) #define ext4_warning_inode(inode, fmt, ...) \ __ext4_warning_inode(inode, __func__, __LINE__, fmt, ##__VA_ARGS__) #define ext4_msg(sb, level, fmt, ...) \ __ext4_msg(sb, level, fmt, ##__VA_ARGS__) #define dump_mmp_msg(sb, mmp, msg) \ __dump_mmp_msg(sb, mmp, __func__, __LINE__, msg) #define ext4_grp_locked_error(sb, grp, ino, block, fmt, ...) \ __ext4_grp_locked_error(__func__, __LINE__, sb, grp, ino, block, \ fmt, ##__VA_ARGS__) #else #define ext4_error_inode(inode, func, line, block, fmt, ...) \ do { \ no_printk(fmt, ##__VA_ARGS__); \ __ext4_error_inode(inode, "", 0, block, 0, " "); \ } while (0) #define ext4_error_inode_err(inode, func, line, block, err, fmt, ...) \ do { \ no_printk(fmt, ##__VA_ARGS__); \ __ext4_error_inode(inode, "", 0, block, err, " "); \ } while (0) #define ext4_error_file(file, func, line, block, fmt, ...) \ do { \ no_printk(fmt, ##__VA_ARGS__); \ __ext4_error_file(file, "", 0, block, " "); \ } while (0) #define ext4_error(sb, fmt, ...) \ do { \ no_printk(fmt, ##__VA_ARGS__); \ __ext4_error(sb, "", 0, false, 0, 0, " "); \ } while (0) #define ext4_error_err(sb, err, fmt, ...) \ do { \ no_printk(fmt, ##__VA_ARGS__); \ __ext4_error(sb, "", 0, false, err, 0, " "); \ } while (0) #define ext4_warning(sb, fmt, ...) \ do { \ no_printk(fmt, ##__VA_ARGS__); \ __ext4_warning(sb, "", 0, " "); \ } while (0) #define ext4_warning_inode(inode, fmt, ...) \ do { \ no_printk(fmt, ##__VA_ARGS__); \ __ext4_warning_inode(inode, "", 0, " "); \ } while (0) #define ext4_msg(sb, level, fmt, ...) \ do { \ no_printk(fmt, ##__VA_ARGS__); \ __ext4_msg(sb, "", " "); \ } while (0) #define dump_mmp_msg(sb, mmp, msg) \ __dump_mmp_msg(sb, mmp, "", 0, "") #define ext4_grp_locked_error(sb, grp, ino, block, fmt, ...) \ do { \ no_printk(fmt, ##__VA_ARGS__); \ __ext4_grp_locked_error("", 0, sb, grp, ino, block, " "); \ } while (0) #endif extern ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, struct ext4_group_desc *bg); extern ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, struct ext4_group_desc *bg); extern ext4_fsblk_t ext4_inode_table(struct super_block *sb, struct ext4_group_desc *bg); extern __u32 ext4_free_group_clusters(struct super_block *sb, struct ext4_group_desc *bg); extern __u32 ext4_free_inodes_count(struct super_block *sb, struct ext4_group_desc *bg); extern __u32 ext4_used_dirs_count(struct super_block *sb, struct ext4_group_desc *bg); extern __u32 ext4_itable_unused_count(struct super_block *sb, struct ext4_group_desc *bg); extern void ext4_block_bitmap_set(struct super_block *sb, struct ext4_group_desc *bg, ext4_fsblk_t blk); extern void ext4_inode_bitmap_set(struct super_block *sb, struct ext4_group_desc *bg, ext4_fsblk_t blk); extern void ext4_inode_table_set(struct super_block *sb, struct ext4_group_desc *bg, ext4_fsblk_t blk); extern void ext4_free_group_clusters_set(struct super_block *sb, struct ext4_group_desc *bg, __u32 count); extern void ext4_free_inodes_set(struct super_block *sb, struct ext4_group_desc *bg, __u32 count); extern void ext4_used_dirs_set(struct super_block *sb, struct ext4_group_desc *bg, __u32 count); extern void ext4_itable_unused_set(struct super_block *sb, struct ext4_group_desc *bg, __u32 count); extern int ext4_group_desc_csum_verify(struct super_block *sb, __u32 group, struct ext4_group_desc *gdp); extern void ext4_group_desc_csum_set(struct super_block *sb, __u32 group, struct ext4_group_desc *gdp); extern int ext4_register_li_request(struct super_block *sb, ext4_group_t first_not_zeroed); static inline int ext4_has_metadata_csum(struct super_block *sb) { WARN_ON_ONCE(ext4_has_feature_metadata_csum(sb) && !EXT4_SB(sb)->s_chksum_driver); return ext4_has_feature_metadata_csum(sb) && (EXT4_SB(sb)->s_chksum_driver != NULL); } static inline int ext4_has_group_desc_csum(struct super_block *sb) { return ext4_has_feature_gdt_csum(sb) || ext4_has_metadata_csum(sb); } #define ext4_read_incompat_64bit_val(es, name) \ (((es)->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT) \ ? (ext4_fsblk_t)le32_to_cpu(es->name##_hi) << 32 : 0) | \ le32_to_cpu(es->name##_lo)) static inline ext4_fsblk_t ext4_blocks_count(struct ext4_super_block *es) { return ext4_read_incompat_64bit_val(es, s_blocks_count); } static inline ext4_fsblk_t ext4_r_blocks_count(struct ext4_super_block *es) { return ext4_read_incompat_64bit_val(es, s_r_blocks_count); } static inline ext4_fsblk_t ext4_free_blocks_count(struct ext4_super_block *es) { return ext4_read_incompat_64bit_val(es, s_free_blocks_count); } static inline void ext4_blocks_count_set(struct ext4_super_block *es, ext4_fsblk_t blk) { es->s_blocks_count_lo = cpu_to_le32((u32)blk); es->s_blocks_count_hi = cpu_to_le32(blk >> 32); } static inline void ext4_free_blocks_count_set(struct ext4_super_block *es, ext4_fsblk_t blk) { es->s_free_blocks_count_lo = cpu_to_le32((u32)blk); es->s_free_blocks_count_hi = cpu_to_le32(blk >> 32); } static inline void ext4_r_blocks_count_set(struct ext4_super_block *es, ext4_fsblk_t blk) { es->s_r_blocks_count_lo = cpu_to_le32((u32)blk); es->s_r_blocks_count_hi = cpu_to_le32(blk >> 32); } static inline loff_t ext4_isize(struct super_block *sb, struct ext4_inode *raw_inode) { if (ext4_has_feature_largedir(sb) || S_ISREG(le16_to_cpu(raw_inode->i_mode))) return ((loff_t)le32_to_cpu(raw_inode->i_size_high) << 32) | le32_to_cpu(raw_inode->i_size_lo); return (loff_t) le32_to_cpu(raw_inode->i_size_lo); } static inline void ext4_isize_set(struct ext4_inode *raw_inode, loff_t i_size) { raw_inode->i_size_lo = cpu_to_le32(i_size); raw_inode->i_size_high = cpu_to_le32(i_size >> 32); } /* * Reading s_groups_count requires using smp_rmb() afterwards. See * the locking protocol documented in the comments of ext4_group_add() * in resize.c */ static inline ext4_group_t ext4_get_groups_count(struct super_block *sb) { ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; smp_rmb(); return ngroups; } static inline ext4_group_t ext4_flex_group(struct ext4_sb_info *sbi, ext4_group_t block_group) { return block_group >> sbi->s_log_groups_per_flex; } static inline unsigned int ext4_flex_bg_size(struct ext4_sb_info *sbi) { return 1 << sbi->s_log_groups_per_flex; } #define ext4_std_error(sb, errno) \ do { \ if ((errno)) \ __ext4_std_error((sb), __func__, __LINE__, (errno)); \ } while (0) #ifdef CONFIG_SMP /* Each CPU can accumulate percpu_counter_batch clusters in their local * counters. So we need to make sure we have free clusters more * than percpu_counter_batch * nr_cpu_ids. Also add a window of 4 times. */ #define EXT4_FREECLUSTERS_WATERMARK (4 * (percpu_counter_batch * nr_cpu_ids)) #else #define EXT4_FREECLUSTERS_WATERMARK 0 #endif /* Update i_disksize. Requires i_mutex to avoid races with truncate */ static inline void ext4_update_i_disksize(struct inode *inode, loff_t newsize) { WARN_ON_ONCE(S_ISREG(inode->i_mode) && !inode_is_locked(inode)); down_write(&EXT4_I(inode)->i_data_sem); if (newsize > EXT4_I(inode)->i_disksize) WRITE_ONCE(EXT4_I(inode)->i_disksize, newsize); up_write(&EXT4_I(inode)->i_data_sem); } /* Update i_size, i_disksize. Requires i_mutex to avoid races with truncate */ static inline int ext4_update_inode_size(struct inode *inode, loff_t newsize) { int changed = 0; if (newsize > inode->i_size) { i_size_write(inode, newsize); changed = 1; } if (newsize > EXT4_I(inode)->i_disksize) { ext4_update_i_disksize(inode, newsize); changed |= 2; } return changed; } int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, loff_t len); struct ext4_group_info { unsigned long bb_state; #ifdef AGGRESSIVE_CHECK unsigned long bb_check_counter; #endif struct rb_root bb_free_root; ext4_grpblk_t bb_first_free; /* first free block */ ext4_grpblk_t bb_free; /* total free blocks */ ext4_grpblk_t bb_fragments; /* nr of freespace fragments */ ext4_grpblk_t bb_largest_free_order;/* order of largest frag in BG */ ext4_group_t bb_group; /* Group number */ struct list_head bb_prealloc_list; #ifdef DOUBLE_CHECK void *bb_bitmap; #endif struct rw_semaphore alloc_sem; struct rb_node bb_avg_fragment_size_rb; struct list_head bb_largest_free_order_node; ext4_grpblk_t bb_counters[]; /* Nr of free power-of-two-block * regions, index is order. * bb_counters[3] = 5 means * 5 free 8-block regions. */ }; #define EXT4_GROUP_INFO_NEED_INIT_BIT 0 #define EXT4_GROUP_INFO_WAS_TRIMMED_BIT 1 #define EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT 2 #define EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT 3 #define EXT4_GROUP_INFO_BBITMAP_CORRUPT \ (1 << EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT) #define EXT4_GROUP_INFO_IBITMAP_CORRUPT \ (1 << EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT) #define EXT4_GROUP_INFO_BBITMAP_READ_BIT 4 #define EXT4_MB_GRP_NEED_INIT(grp) \ (test_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &((grp)->bb_state))) #define EXT4_MB_GRP_BBITMAP_CORRUPT(grp) \ (test_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &((grp)->bb_state))) #define EXT4_MB_GRP_IBITMAP_CORRUPT(grp) \ (test_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &((grp)->bb_state))) #define EXT4_MB_GRP_WAS_TRIMMED(grp) \ (test_bit(EXT4_GROUP_INFO_WAS_TRIMMED_BIT, &((grp)->bb_state))) #define EXT4_MB_GRP_SET_TRIMMED(grp) \ (set_bit(EXT4_GROUP_INFO_WAS_TRIMMED_BIT, &((grp)->bb_state))) #define EXT4_MB_GRP_CLEAR_TRIMMED(grp) \ (clear_bit(EXT4_GROUP_INFO_WAS_TRIMMED_BIT, &((grp)->bb_state))) #define EXT4_MB_GRP_TEST_AND_SET_READ(grp) \ (test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_READ_BIT, &((grp)->bb_state))) #define EXT4_MAX_CONTENTION 8 #define EXT4_CONTENTION_THRESHOLD 2 static inline spinlock_t *ext4_group_lock_ptr(struct super_block *sb, ext4_group_t group) { return bgl_lock_ptr(EXT4_SB(sb)->s_blockgroup_lock, group); } /* * Returns true if the filesystem is busy enough that attempts to * access the block group locks has run into contention. */ static inline int ext4_fs_is_busy(struct ext4_sb_info *sbi) { return (atomic_read(&sbi->s_lock_busy) > EXT4_CONTENTION_THRESHOLD); } static inline void ext4_lock_group(struct super_block *sb, ext4_group_t group) { spinlock_t *lock = ext4_group_lock_ptr(sb, group); if (spin_trylock(lock)) /* * We're able to grab the lock right away, so drop the * lock contention counter. */ atomic_add_unless(&EXT4_SB(sb)->s_lock_busy, -1, 0); else { /* * The lock is busy, so bump the contention counter, * and then wait on the spin lock. */ atomic_add_unless(&EXT4_SB(sb)->s_lock_busy, 1, EXT4_MAX_CONTENTION); spin_lock(lock); } } static inline void ext4_unlock_group(struct super_block *sb, ext4_group_t group) { spin_unlock(ext4_group_lock_ptr(sb, group)); } #ifdef CONFIG_QUOTA static inline bool ext4_quota_capable(struct super_block *sb) { return (test_opt(sb, QUOTA) || ext4_has_feature_quota(sb)); } static inline bool ext4_is_quota_journalled(struct super_block *sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); return (ext4_has_feature_quota(sb) || sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]); } int ext4_enable_quotas(struct super_block *sb); #endif /* * Block validity checking */ #define ext4_check_indirect_blockref(inode, bh) \ ext4_check_blockref(__func__, __LINE__, inode, \ (__le32 *)(bh)->b_data, \ EXT4_ADDR_PER_BLOCK((inode)->i_sb)) #define ext4_ind_check_inode(inode) \ ext4_check_blockref(__func__, __LINE__, inode, \ EXT4_I(inode)->i_data, \ EXT4_NDIR_BLOCKS) /* * Inodes and files operations */ /* dir.c */ extern const struct file_operations ext4_dir_operations; /* file.c */ extern const struct inode_operations ext4_file_inode_operations; extern const struct file_operations ext4_file_operations; extern loff_t ext4_llseek(struct file *file, loff_t offset, int origin); /* inline.c */ extern int ext4_get_max_inline_size(struct inode *inode); extern int ext4_find_inline_data_nolock(struct inode *inode); extern int ext4_init_inline_data(handle_t *handle, struct inode *inode, unsigned int len); extern int ext4_destroy_inline_data(handle_t *handle, struct inode *inode); extern int ext4_readpage_inline(struct inode *inode, struct page *page); extern int ext4_try_to_write_inline_data(struct address_space *mapping, struct inode *inode, loff_t pos, unsigned len, unsigned flags, struct page **pagep); extern int ext4_write_inline_data_end(struct inode *inode, loff_t pos, unsigned len, unsigned copied, struct page *page); extern struct buffer_head * ext4_journalled_write_inline_data(struct inode *inode, unsigned len, struct page *page); extern int ext4_da_write_inline_data_begin(struct address_space *mapping, struct inode *inode, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata); extern int ext4_try_add_inline_entry(handle_t *handle, struct ext4_filename *fname, struct inode *dir, struct inode *inode); extern int ext4_try_create_inline_dir(handle_t *handle, struct inode *parent, struct inode *inode); extern int ext4_read_inline_dir(struct file *filp, struct dir_context *ctx, int *has_inline_data); extern int ext4_inlinedir_to_tree(struct file *dir_file, struct inode *dir, ext4_lblk_t block, struct dx_hash_info *hinfo, __u32 start_hash, __u32 start_minor_hash, int *has_inline_data); extern struct buffer_head *ext4_find_inline_entry(struct inode *dir, struct ext4_filename *fname, struct ext4_dir_entry_2 **res_dir, int *has_inline_data); extern int ext4_delete_inline_entry(handle_t *handle, struct inode *dir, struct ext4_dir_entry_2 *de_del, struct buffer_head *bh, int *has_inline_data); extern bool empty_inline_dir(struct inode *dir, int *has_inline_data); extern struct buffer_head *ext4_get_first_inline_block(struct inode *inode, struct ext4_dir_entry_2 **parent_de, int *retval); extern int ext4_inline_data_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, int *has_inline, __u64 start, __u64 len); struct iomap; extern int ext4_inline_data_iomap(struct inode *inode, struct iomap *iomap); extern int ext4_inline_data_truncate(struct inode *inode, int *has_inline); extern int ext4_convert_inline_data(struct inode *inode); static inline int ext4_has_inline_data(struct inode *inode) { return ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA) && EXT4_I(inode)->i_inline_off; } /* namei.c */ extern const struct inode_operations ext4_dir_inode_operations; extern const struct inode_operations ext4_special_inode_operations; extern struct dentry *ext4_get_parent(struct dentry *child); extern struct ext4_dir_entry_2 *ext4_init_dot_dotdot(struct inode *inode, struct ext4_dir_entry_2 *de, int blocksize, int csum_size, unsigned int parent_ino, int dotdot_real_len); extern void ext4_initialize_dirent_tail(struct buffer_head *bh, unsigned int blocksize); extern int ext4_handle_dirty_dirblock(handle_t *handle, struct inode *inode, struct buffer_head *bh); extern int __ext4_unlink(struct inode *dir, const struct qstr *d_name, struct inode *inode, struct dentry *dentry); extern int __ext4_link(struct inode *dir, struct inode *inode, struct dentry *dentry); #define S_SHIFT 12 static const unsigned char ext4_type_by_mode[(S_IFMT >> S_SHIFT) + 1] = { [S_IFREG >> S_SHIFT] = EXT4_FT_REG_FILE, [S_IFDIR >> S_SHIFT] = EXT4_FT_DIR, [S_IFCHR >> S_SHIFT] = EXT4_FT_CHRDEV, [S_IFBLK >> S_SHIFT] = EXT4_FT_BLKDEV, [S_IFIFO >> S_SHIFT] = EXT4_FT_FIFO, [S_IFSOCK >> S_SHIFT] = EXT4_FT_SOCK, [S_IFLNK >> S_SHIFT] = EXT4_FT_SYMLINK, }; static inline void ext4_set_de_type(struct super_block *sb, struct ext4_dir_entry_2 *de, umode_t mode) { if (ext4_has_feature_filetype(sb)) de->file_type = ext4_type_by_mode[(mode & S_IFMT)>>S_SHIFT]; } /* readpages.c */ extern int ext4_mpage_readpages(struct inode *inode, struct readahead_control *rac, struct page *page); extern int __init ext4_init_post_read_processing(void); extern void ext4_exit_post_read_processing(void); /* symlink.c */ extern const struct inode_operations ext4_encrypted_symlink_inode_operations; extern const struct inode_operations ext4_symlink_inode_operations; extern const struct inode_operations ext4_fast_symlink_inode_operations; /* sysfs.c */ extern void ext4_notify_error_sysfs(struct ext4_sb_info *sbi); extern int ext4_register_sysfs(struct super_block *sb); extern void ext4_unregister_sysfs(struct super_block *sb); extern int __init ext4_init_sysfs(void); extern void ext4_exit_sysfs(void); /* block_validity */ extern void ext4_release_system_zone(struct super_block *sb); extern int ext4_setup_system_zone(struct super_block *sb); extern int __init ext4_init_system_zone(void); extern void ext4_exit_system_zone(void); extern int ext4_inode_block_valid(struct inode *inode, ext4_fsblk_t start_blk, unsigned int count); extern int ext4_check_blockref(const char *, unsigned int, struct inode *, __le32 *, unsigned int); extern int ext4_sb_block_valid(struct super_block *sb, struct inode *inode, ext4_fsblk_t start_blk, unsigned int count); /* extents.c */ struct ext4_ext_path; struct ext4_extent; /* * Maximum number of logical blocks in a file; ext4_extent's ee_block is * __le32. */ #define EXT_MAX_BLOCKS 0xffffffff extern void ext4_ext_tree_init(handle_t *handle, struct inode *inode); extern int ext4_ext_index_trans_blocks(struct inode *inode, int extents); extern int ext4_ext_map_blocks(handle_t *handle, struct inode *inode, struct ext4_map_blocks *map, int flags); extern int ext4_ext_truncate(handle_t *, struct inode *); extern int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start, ext4_lblk_t end); extern void ext4_ext_init(struct super_block *); extern void ext4_ext_release(struct super_block *); extern long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len); extern int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode, loff_t offset, ssize_t len); extern int ext4_convert_unwritten_io_end_vec(handle_t *handle, ext4_io_end_t *io_end); extern int ext4_map_blocks(handle_t *handle, struct inode *inode, struct ext4_map_blocks *map, int flags); extern int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int num, struct ext4_ext_path *path); extern int ext4_ext_insert_extent(handle_t *, struct inode *, struct ext4_ext_path **, struct ext4_extent *, int); extern struct ext4_ext_path *ext4_find_extent(struct inode *, ext4_lblk_t, struct ext4_ext_path **, int flags); extern void ext4_ext_drop_refs(struct ext4_ext_path *); extern int ext4_ext_check_inode(struct inode *inode); extern ext4_lblk_t ext4_ext_next_allocated_block(struct ext4_ext_path *path); extern int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, __u64 start, __u64 len); extern int ext4_get_es_cache(struct inode *inode, struct fiemap_extent_info *fieinfo, __u64 start, __u64 len); extern int ext4_ext_precache(struct inode *inode); extern int ext4_swap_extents(handle_t *handle, struct inode *inode1, struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2, ext4_lblk_t count, int mark_unwritten,int *err); extern int ext4_clu_mapped(struct inode *inode, ext4_lblk_t lclu); extern int ext4_datasem_ensure_credits(handle_t *handle, struct inode *inode, int check_cred, int restart_cred, int revoke_cred); extern void ext4_ext_replay_shrink_inode(struct inode *inode, ext4_lblk_t end); extern int ext4_ext_replay_set_iblocks(struct inode *inode); extern int ext4_ext_replay_update_ex(struct inode *inode, ext4_lblk_t start, int len, int unwritten, ext4_fsblk_t pblk); extern int ext4_ext_clear_bb(struct inode *inode); /* move_extent.c */ extern void ext4_double_down_write_data_sem(struct inode *first, struct inode *second); extern void ext4_double_up_write_data_sem(struct inode *orig_inode, struct inode *donor_inode); extern int ext4_move_extents(struct file *o_filp, struct file *d_filp, __u64 start_orig, __u64 start_donor, __u64 len, __u64 *moved_len); /* page-io.c */ extern int __init ext4_init_pageio(void); extern void ext4_exit_pageio(void); extern ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags); extern ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end); extern int ext4_put_io_end(ext4_io_end_t *io_end); extern void ext4_put_io_end_defer(ext4_io_end_t *io_end); extern void ext4_io_submit_init(struct ext4_io_submit *io, struct writeback_control *wbc); extern void ext4_end_io_rsv_work(struct work_struct *work); extern void ext4_io_submit(struct ext4_io_submit *io); extern int ext4_bio_write_page(struct ext4_io_submit *io, struct page *page, int len, bool keep_towrite); extern struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end); extern struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end); /* mmp.c */ extern int ext4_multi_mount_protect(struct super_block *, ext4_fsblk_t); /* mmp.c */ extern void ext4_stop_mmpd(struct ext4_sb_info *sbi); /* verity.c */ extern const struct fsverity_operations ext4_verityops; /* orphan.c */ extern int ext4_orphan_add(handle_t *, struct inode *); extern int ext4_orphan_del(handle_t *, struct inode *); extern void ext4_orphan_cleanup(struct super_block *sb, struct ext4_super_block *es); extern void ext4_release_orphan_info(struct super_block *sb); extern int ext4_init_orphan_info(struct super_block *sb); extern int ext4_orphan_file_empty(struct super_block *sb); extern void ext4_orphan_file_block_trigger( struct jbd2_buffer_trigger_type *triggers, struct buffer_head *bh, void *data, size_t size); /* * Add new method to test whether block and inode bitmaps are properly * initialized. With uninit_bg reading the block from disk is not enough * to mark the bitmap uptodate. We need to also zero-out the bitmap */ #define BH_BITMAP_UPTODATE BH_JBDPrivateStart static inline int bitmap_uptodate(struct buffer_head *bh) { return (buffer_uptodate(bh) && test_bit(BH_BITMAP_UPTODATE, &(bh)->b_state)); } static inline void set_bitmap_uptodate(struct buffer_head *bh) { set_bit(BH_BITMAP_UPTODATE, &(bh)->b_state); } #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1) /* For ioend & aio unwritten conversion wait queues */ #define EXT4_WQ_HASH_SZ 37 #define ext4_ioend_wq(v) (&ext4__ioend_wq[((unsigned long)(v)) %\ EXT4_WQ_HASH_SZ]) extern wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; extern int ext4_resize_begin(struct super_block *sb); extern void ext4_resize_end(struct super_block *sb); static inline void ext4_set_io_unwritten_flag(struct inode *inode, struct ext4_io_end *io_end) { if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { io_end->flag |= EXT4_IO_END_UNWRITTEN; atomic_inc(&EXT4_I(inode)->i_unwritten); } } static inline void ext4_clear_io_unwritten_flag(ext4_io_end_t *io_end) { struct inode *inode = io_end->inode; if (io_end->flag & EXT4_IO_END_UNWRITTEN) { io_end->flag &= ~EXT4_IO_END_UNWRITTEN; /* Wake up anyone waiting on unwritten extent conversion */ if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten)) wake_up_all(ext4_ioend_wq(inode)); } } extern const struct iomap_ops ext4_iomap_ops; extern const struct iomap_ops ext4_iomap_overwrite_ops; extern const struct iomap_ops ext4_iomap_report_ops; static inline int ext4_buffer_uptodate(struct buffer_head *bh) { /* * If the buffer has the write error flag, we have failed * to write out data in the block. In this case, we don't * have to read the block because we may read the old data * successfully. */ if (buffer_write_io_error(bh)) set_buffer_uptodate(bh); return buffer_uptodate(bh); } #endif /* __KERNEL__ */ #define EFSBADCRC EBADMSG /* Bad CRC detected */ #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ #endif /* _EXT4_H */ |
244 245 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 | /* auditsc.c -- System-call auditing support * Handles all system-call specific auditing features. * * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. * Copyright 2005 Hewlett-Packard Development Company, L.P. * Copyright (C) 2005, 2006 IBM Corporation * All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Written by Rickard E. (Rik) Faith <faith@redhat.com> * * Many of the ideas implemented here are from Stephen C. Tweedie, * especially the idea of avoiding a copy by using getname. * * The method for actual interception of syscall entry and exit (not in * this file -- see entry.S) is based on a GPL'd patch written by * okir@suse.de and Copyright 2003 SuSE Linux AG. * * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, * 2006. * * The support of additional filter rules compares (>, <, >=, <=) was * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. * * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional * filesystem information. * * Subject and object context labeling support added by <danjones@us.ibm.com> * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/init.h> #include <asm/types.h> #include <linux/atomic.h> #include <linux/fs.h> #include <linux/namei.h> #include <linux/mm.h> #include <linux/export.h> #include <linux/slab.h> #include <linux/mount.h> #include <linux/socket.h> #include <linux/mqueue.h> #include <linux/audit.h> #include <linux/personality.h> #include <linux/time.h> #include <linux/netlink.h> #include <linux/compiler.h> #include <asm/unistd.h> #include <linux/security.h> #include <linux/list.h> #include <linux/binfmts.h> #include <linux/highmem.h> #include <linux/syscalls.h> #include <asm/syscall.h> #include <linux/capability.h> #include <linux/fs_struct.h> #include <linux/compat.h> #include <linux/ctype.h> #include <linux/string.h> #include <linux/uaccess.h> #include <linux/fsnotify_backend.h> #include <uapi/linux/limits.h> #include <uapi/linux/netfilter/nf_tables.h> #include "audit.h" /* flags stating the success for a syscall */ #define AUDITSC_INVALID 0 #define AUDITSC_SUCCESS 1 #define AUDITSC_FAILURE 2 /* no execve audit message should be longer than this (userspace limits), * see the note near the top of audit_log_execve_info() about this value */ #define MAX_EXECVE_AUDIT_LEN 7500 /* max length to print of cmdline/proctitle value during audit */ #define MAX_PROCTITLE_AUDIT_LEN 128 /* number of audit rules */ int audit_n_rules; /* determines whether we collect data for signals sent */ int audit_signals; struct audit_aux_data { struct audit_aux_data *next; int type; }; /* Number of target pids per aux struct. */ #define AUDIT_AUX_PIDS 16 struct audit_aux_data_pids { struct audit_aux_data d; pid_t target_pid[AUDIT_AUX_PIDS]; kuid_t target_auid[AUDIT_AUX_PIDS]; kuid_t target_uid[AUDIT_AUX_PIDS]; unsigned int target_sessionid[AUDIT_AUX_PIDS]; u32 target_sid[AUDIT_AUX_PIDS]; char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; int pid_count; }; struct audit_aux_data_bprm_fcaps { struct audit_aux_data d; struct audit_cap_data fcap; unsigned int fcap_ver; struct audit_cap_data old_pcap; struct audit_cap_data new_pcap; }; struct audit_tree_refs { struct audit_tree_refs *next; struct audit_chunk *c[31]; }; struct audit_nfcfgop_tab { enum audit_nfcfgop op; const char *s; }; static const struct audit_nfcfgop_tab audit_nfcfgs[] = { { AUDIT_XT_OP_REGISTER, "xt_register" }, { AUDIT_XT_OP_REPLACE, "xt_replace" }, { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, { AUDIT_NFT_OP_INVALID, "nft_invalid" }, }; static int audit_match_perm(struct audit_context *ctx, int mask) { unsigned n; if (unlikely(!ctx)) return 0; n = ctx->major; switch (audit_classify_syscall(ctx->arch, n)) { case 0: /* native */ if ((mask & AUDIT_PERM_WRITE) && audit_match_class(AUDIT_CLASS_WRITE, n)) return 1; if ((mask & AUDIT_PERM_READ) && audit_match_class(AUDIT_CLASS_READ, n)) return 1; if ((mask & AUDIT_PERM_ATTR) && audit_match_class(AUDIT_CLASS_CHATTR, n)) return 1; return 0; case 1: /* 32bit on biarch */ if ((mask & AUDIT_PERM_WRITE) && audit_match_class(AUDIT_CLASS_WRITE_32, n)) return 1; if ((mask & AUDIT_PERM_READ) && audit_match_class(AUDIT_CLASS_READ_32, n)) return 1; if ((mask & AUDIT_PERM_ATTR) && audit_match_class(AUDIT_CLASS_CHATTR_32, n)) return 1; return 0; case 2: /* open */ return mask & ACC_MODE(ctx->argv[1]); case 3: /* openat */ return mask & ACC_MODE(ctx->argv[2]); case 4: /* socketcall */ return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); case 5: /* execve */ return mask & AUDIT_PERM_EXEC; default: return 0; } } static int audit_match_filetype(struct audit_context *ctx, int val) { struct audit_names *n; umode_t mode = (umode_t)val; if (unlikely(!ctx)) return 0; list_for_each_entry(n, &ctx->names_list, list) { if ((n->ino != AUDIT_INO_UNSET) && ((n->mode & S_IFMT) == mode)) return 1; } return 0; } /* * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; * ->first_trees points to its beginning, ->trees - to the current end of data. * ->tree_count is the number of free entries in array pointed to by ->trees. * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, * it's going to remain 1-element for almost any setup) until we free context itself. * References in it _are_ dropped - at the same time we free/drop aux stuff. */ static void audit_set_auditable(struct audit_context *ctx) { if (!ctx->prio) { ctx->prio = 1; ctx->current_state = AUDIT_STATE_RECORD; } } static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) { struct audit_tree_refs *p = ctx->trees; int left = ctx->tree_count; if (likely(left)) { p->c[--left] = chunk; ctx->tree_count = left; return 1; } if (!p) return 0; p = p->next; if (p) { p->c[30] = chunk; ctx->trees = p; ctx->tree_count = 30; return 1; } return 0; } static int grow_tree_refs(struct audit_context *ctx) { struct audit_tree_refs *p = ctx->trees; ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); if (!ctx->trees) { ctx->trees = p; return 0; } if (p) p->next = ctx->trees; else ctx->first_trees = ctx->trees; ctx->tree_count = 31; return 1; } static void unroll_tree_refs(struct audit_context *ctx, struct audit_tree_refs *p, int count) { struct audit_tree_refs *q; int n; if (!p) { /* we started with empty chain */ p = ctx->first_trees; count = 31; /* if the very first allocation has failed, nothing to do */ if (!p) return; } n = count; for (q = p; q != ctx->trees; q = q->next, n = 31) { while (n--) { audit_put_chunk(q->c[n]); q->c[n] = NULL; } } while (n-- > ctx->tree_count) { audit_put_chunk(q->c[n]); q->c[n] = NULL; } ctx->trees = p; ctx->tree_count = count; } static void free_tree_refs(struct audit_context *ctx) { struct audit_tree_refs *p, *q; for (p = ctx->first_trees; p; p = q) { q = p->next; kfree(p); } } static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) { struct audit_tree_refs *p; int n; if (!tree) return 0; /* full ones */ for (p = ctx->first_trees; p != ctx->trees; p = p->next) { for (n = 0; n < 31; n++) if (audit_tree_match(p->c[n], tree)) return 1; } /* partial */ if (p) { for (n = ctx->tree_count; n < 31; n++) if (audit_tree_match(p->c[n], tree)) return 1; } return 0; } static int audit_compare_uid(kuid_t uid, struct audit_names *name, struct audit_field *f, struct audit_context *ctx) { struct audit_names *n; int rc; if (name) { rc = audit_uid_comparator(uid, f->op, name->uid); if (rc) return rc; } if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { rc = audit_uid_comparator(uid, f->op, n->uid); if (rc) return rc; } } return 0; } static int audit_compare_gid(kgid_t gid, struct audit_names *name, struct audit_field *f, struct audit_context *ctx) { struct audit_names *n; int rc; if (name) { rc = audit_gid_comparator(gid, f->op, name->gid); if (rc) return rc; } if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { rc = audit_gid_comparator(gid, f->op, n->gid); if (rc) return rc; } } return 0; } static int audit_field_compare(struct task_struct *tsk, const struct cred *cred, struct audit_field *f, struct audit_context *ctx, struct audit_names *name) { switch (f->val) { /* process to file object comparisons */ case AUDIT_COMPARE_UID_TO_OBJ_UID: return audit_compare_uid(cred->uid, name, f, ctx); case AUDIT_COMPARE_GID_TO_OBJ_GID: return audit_compare_gid(cred->gid, name, f, ctx); case AUDIT_COMPARE_EUID_TO_OBJ_UID: return audit_compare_uid(cred->euid, name, f, ctx); case AUDIT_COMPARE_EGID_TO_OBJ_GID: return audit_compare_gid(cred->egid, name, f, ctx); case AUDIT_COMPARE_AUID_TO_OBJ_UID: return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); case AUDIT_COMPARE_SUID_TO_OBJ_UID: return audit_compare_uid(cred->suid, name, f, ctx); case AUDIT_COMPARE_SGID_TO_OBJ_GID: return audit_compare_gid(cred->sgid, name, f, ctx); case AUDIT_COMPARE_FSUID_TO_OBJ_UID: return audit_compare_uid(cred->fsuid, name, f, ctx); case AUDIT_COMPARE_FSGID_TO_OBJ_GID: return audit_compare_gid(cred->fsgid, name, f, ctx); /* uid comparisons */ case AUDIT_COMPARE_UID_TO_AUID: return audit_uid_comparator(cred->uid, f->op, audit_get_loginuid(tsk)); case AUDIT_COMPARE_UID_TO_EUID: return audit_uid_comparator(cred->uid, f->op, cred->euid); case AUDIT_COMPARE_UID_TO_SUID: return audit_uid_comparator(cred->uid, f->op, cred->suid); case AUDIT_COMPARE_UID_TO_FSUID: return audit_uid_comparator(cred->uid, f->op, cred->fsuid); /* auid comparisons */ case AUDIT_COMPARE_AUID_TO_EUID: return audit_uid_comparator(audit_get_loginuid(tsk), f->op, cred->euid); case AUDIT_COMPARE_AUID_TO_SUID: return audit_uid_comparator(audit_get_loginuid(tsk), f->op, cred->suid); case AUDIT_COMPARE_AUID_TO_FSUID: return audit_uid_comparator(audit_get_loginuid(tsk), f->op, cred->fsuid); /* euid comparisons */ case AUDIT_COMPARE_EUID_TO_SUID: return audit_uid_comparator(cred->euid, f->op, cred->suid); case AUDIT_COMPARE_EUID_TO_FSUID: return audit_uid_comparator(cred->euid, f->op, cred->fsuid); /* suid comparisons */ case AUDIT_COMPARE_SUID_TO_FSUID: return audit_uid_comparator(cred->suid, f->op, cred->fsuid); /* gid comparisons */ case AUDIT_COMPARE_GID_TO_EGID: return audit_gid_comparator(cred->gid, f->op, cred->egid); case AUDIT_COMPARE_GID_TO_SGID: return audit_gid_comparator(cred->gid, f->op, cred->sgid); case AUDIT_COMPARE_GID_TO_FSGID: return audit_gid_comparator(cred->gid, f->op, cred->fsgid); /* egid comparisons */ case AUDIT_COMPARE_EGID_TO_SGID: return audit_gid_comparator(cred->egid, f->op, cred->sgid); case AUDIT_COMPARE_EGID_TO_FSGID: return audit_gid_comparator(cred->egid, f->op, cred->fsgid); /* sgid comparison */ case AUDIT_COMPARE_SGID_TO_FSGID: return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); default: WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); return 0; } return 0; } /* Determine if any context name data matches a rule's watch data */ /* Compare a task_struct with an audit_rule. Return 1 on match, 0 * otherwise. * * If task_creation is true, this is an explicit indication that we are * filtering a task rule at task creation time. This and tsk == current are * the only situations where tsk->cred may be accessed without an rcu read lock. */ static int audit_filter_rules(struct task_struct *tsk, struct audit_krule *rule, struct audit_context *ctx, struct audit_names *name, enum audit_state *state, bool task_creation) { const struct cred *cred; int i, need_sid = 1; u32 sid; unsigned int sessionid; cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); for (i = 0; i < rule->field_count; i++) { struct audit_field *f = &rule->fields[i]; struct audit_names *n; int result = 0; pid_t pid; switch (f->type) { case AUDIT_PID: pid = task_tgid_nr(tsk); result = audit_comparator(pid, f->op, f->val); break; case AUDIT_PPID: if (ctx) { if (!ctx->ppid) ctx->ppid = task_ppid_nr(tsk); result = audit_comparator(ctx->ppid, f->op, f->val); } break; case AUDIT_EXE: result = audit_exe_compare(tsk, rule->exe); if (f->op == Audit_not_equal) result = !result; break; case AUDIT_UID: result = audit_uid_comparator(cred->uid, f->op, f->uid); break; case AUDIT_EUID: result = audit_uid_comparator(cred->euid, f->op, f->uid); break; case AUDIT_SUID: result = audit_uid_comparator(cred->suid, f->op, f->uid); break; case AUDIT_FSUID: result = audit_uid_comparator(cred->fsuid, f->op, f->uid); break; case AUDIT_GID: result = audit_gid_comparator(cred->gid, f->op, f->gid); if (f->op == Audit_equal) { if (!result) result = groups_search(cred->group_info, f->gid); } else if (f->op == Audit_not_equal) { if (result) result = !groups_search(cred->group_info, f->gid); } break; case AUDIT_EGID: result = audit_gid_comparator(cred->egid, f->op, f->gid); if (f->op == Audit_equal) { if (!result) result = groups_search(cred->group_info, f->gid); } else if (f->op == Audit_not_equal) { if (result) result = !groups_search(cred->group_info, f->gid); } break; case AUDIT_SGID: result = audit_gid_comparator(cred->sgid, f->op, f->gid); break; case AUDIT_FSGID: result = audit_gid_comparator(cred->fsgid, f->op, f->gid); break; case AUDIT_SESSIONID: sessionid = audit_get_sessionid(tsk); result = audit_comparator(sessionid, f->op, f->val); break; case AUDIT_PERS: result = audit_comparator(tsk->personality, f->op, f->val); break; case AUDIT_ARCH: if (ctx) result = audit_comparator(ctx->arch, f->op, f->val); break; case AUDIT_EXIT: if (ctx && ctx->return_valid != AUDITSC_INVALID) result = audit_comparator(ctx->return_code, f->op, f->val); break; case AUDIT_SUCCESS: if (ctx && ctx->return_valid != AUDITSC_INVALID) { if (f->val) result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); else result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); } break; case AUDIT_DEVMAJOR: if (name) { if (audit_comparator(MAJOR(name->dev), f->op, f->val) || audit_comparator(MAJOR(name->rdev), f->op, f->val)) ++result; } else if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { if (audit_comparator(MAJOR(n->dev), f->op, f->val) || audit_comparator(MAJOR(n->rdev), f->op, f->val)) { ++result; break; } } } break; case AUDIT_DEVMINOR: if (name) { if (audit_comparator(MINOR(name->dev), f->op, f->val) || audit_comparator(MINOR(name->rdev), f->op, f->val)) ++result; } else if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { if (audit_comparator(MINOR(n->dev), f->op, f->val) || audit_comparator(MINOR(n->rdev), f->op, f->val)) { ++result; break; } } } break; case AUDIT_INODE: if (name) result = audit_comparator(name->ino, f->op, f->val); else if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { if (audit_comparator(n->ino, f->op, f->val)) { ++result; break; } } } break; case AUDIT_OBJ_UID: if (name) { result = audit_uid_comparator(name->uid, f->op, f->uid); } else if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { if (audit_uid_comparator(n->uid, f->op, f->uid)) { ++result; break; } } } break; case AUDIT_OBJ_GID: if (name) { result = audit_gid_comparator(name->gid, f->op, f->gid); } else if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { if (audit_gid_comparator(n->gid, f->op, f->gid)) { ++result; break; } } } break; case AUDIT_WATCH: if (name) { result = audit_watch_compare(rule->watch, name->ino, name->dev); if (f->op == Audit_not_equal) result = !result; } break; case AUDIT_DIR: if (ctx) { result = match_tree_refs(ctx, rule->tree); if (f->op == Audit_not_equal) result = !result; } break; case AUDIT_LOGINUID: result = audit_uid_comparator(audit_get_loginuid(tsk), f->op, f->uid); break; case AUDIT_LOGINUID_SET: result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); break; case AUDIT_SADDR_FAM: if (ctx && ctx->sockaddr) result = audit_comparator(ctx->sockaddr->ss_family, f->op, f->val); break; case AUDIT_SUBJ_USER: case AUDIT_SUBJ_ROLE: case AUDIT_SUBJ_TYPE: case AUDIT_SUBJ_SEN: case AUDIT_SUBJ_CLR: /* NOTE: this may return negative values indicating a temporary error. We simply treat this as a match for now to avoid losing information that may be wanted. An error message will also be logged upon error */ if (f->lsm_rule) { if (need_sid) { security_task_getsecid_subj(tsk, &sid); need_sid = 0; } result = security_audit_rule_match(sid, f->type, f->op, f->lsm_rule); } break; case AUDIT_OBJ_USER: case AUDIT_OBJ_ROLE: case AUDIT_OBJ_TYPE: case AUDIT_OBJ_LEV_LOW: case AUDIT_OBJ_LEV_HIGH: /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR also applies here */ if (f->lsm_rule) { /* Find files that match */ if (name) { result = security_audit_rule_match( name->osid, f->type, f->op, f->lsm_rule); } else if (ctx) { list_for_each_entry(n, &ctx->names_list, list) { if (security_audit_rule_match( n->osid, f->type, f->op, f->lsm_rule)) { ++result; break; } } } /* Find ipc objects that match */ if (!ctx || ctx->type != AUDIT_IPC) break; if (security_audit_rule_match(ctx->ipc.osid, f->type, f->op, f->lsm_rule)) ++result; } break; case AUDIT_ARG0: case AUDIT_ARG1: case AUDIT_ARG2: case AUDIT_ARG3: if (ctx) result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); break; case AUDIT_FILTERKEY: /* ignore this field for filtering */ result = 1; break; case AUDIT_PERM: result = audit_match_perm(ctx, f->val); if (f->op == Audit_not_equal) result = !result; break; case AUDIT_FILETYPE: result = audit_match_filetype(ctx, f->val); if (f->op == Audit_not_equal) result = !result; break; case AUDIT_FIELD_COMPARE: result = audit_field_compare(tsk, cred, f, ctx, name); break; } if (!result) return 0; } if (ctx) { if (rule->prio <= ctx->prio) return 0; if (rule->filterkey) { kfree(ctx->filterkey); ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); } ctx->prio = rule->prio; } switch (rule->action) { case AUDIT_NEVER: *state = AUDIT_STATE_DISABLED; break; case AUDIT_ALWAYS: *state = AUDIT_STATE_RECORD; break; } return 1; } /* At process creation time, we can determine if system-call auditing is * completely disabled for this task. Since we only have the task * structure at this point, we can only check uid and gid. */ static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) { struct audit_entry *e; enum audit_state state; rcu_read_lock(); list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state, true)) { if (state == AUDIT_STATE_RECORD) *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); rcu_read_unlock(); return state; } } rcu_read_unlock(); return AUDIT_STATE_BUILD; } static int audit_in_mask(const struct audit_krule *rule, unsigned long val) { int word, bit; if (val > 0xffffffff) return false; word = AUDIT_WORD(val); if (word >= AUDIT_BITMASK_SIZE) return false; bit = AUDIT_BIT(val); return rule->mask[word] & bit; } /* At syscall exit time, this filter is called if the audit_state is * not low enough that auditing cannot take place, but is also not * high enough that we already know we have to write an audit record * (i.e., the state is AUDIT_STATE_BUILD). */ static void audit_filter_syscall(struct task_struct *tsk, struct audit_context *ctx) { struct audit_entry *e; enum audit_state state; if (auditd_test_task(tsk)) return; rcu_read_lock(); list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) { if (audit_in_mask(&e->rule, ctx->major) && audit_filter_rules(tsk, &e->rule, ctx, NULL, &state, false)) { rcu_read_unlock(); ctx->current_state = state; return; } } rcu_read_unlock(); return; } /* * Given an audit_name check the inode hash table to see if they match. * Called holding the rcu read lock to protect the use of audit_inode_hash */ static int audit_filter_inode_name(struct task_struct *tsk, struct audit_names *n, struct audit_context *ctx) { int h = audit_hash_ino((u32)n->ino); struct list_head *list = &audit_inode_hash[h]; struct audit_entry *e; enum audit_state state; list_for_each_entry_rcu(e, list, list) { if (audit_in_mask(&e->rule, ctx->major) && audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { ctx->current_state = state; return 1; } } return 0; } /* At syscall exit time, this filter is called if any audit_names have been * collected during syscall processing. We only check rules in sublists at hash * buckets applicable to the inode numbers in audit_names. * Regarding audit_state, same rules apply as for audit_filter_syscall(). */ void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) { struct audit_names *n; if (auditd_test_task(tsk)) return; rcu_read_lock(); list_for_each_entry(n, &ctx->names_list, list) { if (audit_filter_inode_name(tsk, n, ctx)) break; } rcu_read_unlock(); } static inline void audit_proctitle_free(struct audit_context *context) { kfree(context->proctitle.value); context->proctitle.value = NULL; context->proctitle.len = 0; } static inline void audit_free_module(struct audit_context *context) { if (context->type == AUDIT_KERN_MODULE) { kfree(context->module.name); context->module.name = NULL; } } static inline void audit_free_names(struct audit_context *context) { struct audit_names *n, *next; list_for_each_entry_safe(n, next, &context->names_list, list) { list_del(&n->list); if (n->name) putname(n->name); if (n->should_free) kfree(n); } context->name_count = 0; path_put(&context->pwd); context->pwd.dentry = NULL; context->pwd.mnt = NULL; } static inline void audit_free_aux(struct audit_context *context) { struct audit_aux_data *aux; while ((aux = context->aux)) { context->aux = aux->next; kfree(aux); } while ((aux = context->aux_pids)) { context->aux_pids = aux->next; kfree(aux); } } static inline struct audit_context *audit_alloc_context(enum audit_state state) { struct audit_context *context; context = kzalloc(sizeof(*context), GFP_KERNEL); if (!context) return NULL; context->state = state; context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0; INIT_LIST_HEAD(&context->killed_trees); INIT_LIST_HEAD(&context->names_list); context->fds[0] = -1; context->return_valid = AUDITSC_INVALID; return context; } /** * audit_alloc - allocate an audit context block for a task * @tsk: task * * Filter on the task information and allocate a per-task audit context * if necessary. Doing so turns on system call auditing for the * specified task. This is called from copy_process, so no lock is * needed. */ int audit_alloc(struct task_struct *tsk) { struct audit_context *context; enum audit_state state; char *key = NULL; if (likely(!audit_ever_enabled)) return 0; /* Return if not auditing. */ state = audit_filter_task(tsk, &key); if (state == AUDIT_STATE_DISABLED) { clear_task_syscall_work(tsk, SYSCALL_AUDIT); return 0; } if (!(context = audit_alloc_context(state))) { kfree(key); audit_log_lost("out of memory in audit_alloc"); return -ENOMEM; } context->filterkey = key; audit_set_context(tsk, context); set_task_syscall_work(tsk, SYSCALL_AUDIT); return 0; } static inline void audit_free_context(struct audit_context *context) { audit_free_module(context); audit_free_names(context); unroll_tree_refs(context, NULL, 0); free_tree_refs(context); audit_free_aux(context); kfree(context->filterkey); kfree(context->sockaddr); audit_proctitle_free(context); kfree(context); } static int audit_log_pid_context(struct audit_context *context, pid_t pid, kuid_t auid, kuid_t uid, unsigned int sessionid, u32 sid, char *comm) { struct audit_buffer *ab; char *ctx = NULL; u32 len; int rc = 0; ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); if (!ab) return rc; audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, from_kuid(&init_user_ns, auid), from_kuid(&init_user_ns, uid), sessionid); if (sid) { if (security_secid_to_secctx(sid, &ctx, &len)) { audit_log_format(ab, " obj=(none)"); rc = 1; } else { audit_log_format(ab, " obj=%s", ctx); security_release_secctx(ctx, len); } } audit_log_format(ab, " ocomm="); audit_log_untrustedstring(ab, comm); audit_log_end(ab); return rc; } static void audit_log_execve_info(struct audit_context *context, struct audit_buffer **ab) { long len_max; long len_rem; long len_full; long len_buf; long len_abuf = 0; long len_tmp; bool require_data; bool encode; unsigned int iter; unsigned int arg; char *buf_head; char *buf; const char __user *p = (const char __user *)current->mm->arg_start; /* NOTE: this buffer needs to be large enough to hold all the non-arg * data we put in the audit record for this argument (see the * code below) ... at this point in time 96 is plenty */ char abuf[96]; /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the * current value of 7500 is not as important as the fact that it * is less than 8k, a setting of 7500 gives us plenty of wiggle * room if we go over a little bit in the logging below */ WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); len_max = MAX_EXECVE_AUDIT_LEN; /* scratch buffer to hold the userspace args */ buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); if (!buf_head) { audit_panic("out of memory for argv string"); return; } buf = buf_head; audit_log_format(*ab, "argc=%d", context->execve.argc); len_rem = len_max; len_buf = 0; len_full = 0; require_data = true; encode = false; iter = 0; arg = 0; do { /* NOTE: we don't ever want to trust this value for anything * serious, but the audit record format insists we * provide an argument length for really long arguments, * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but * to use strncpy_from_user() to obtain this value for * recording in the log, although we don't use it * anywhere here to avoid a double-fetch problem */ if (len_full == 0) len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; /* read more data from userspace */ if (require_data) { /* can we make more room in the buffer? */ if (buf != buf_head) { memmove(buf_head, buf, len_buf); buf = buf_head; } /* fetch as much as we can of the argument */ len_tmp = strncpy_from_user(&buf_head[len_buf], p, len_max - len_buf); if (len_tmp == -EFAULT) { /* unable to copy from userspace */ send_sig(SIGKILL, current, 0); goto out; } else if (len_tmp == (len_max - len_buf)) { /* buffer is not large enough */ require_data = true; /* NOTE: if we are going to span multiple * buffers force the encoding so we stand * a chance at a sane len_full value and * consistent record encoding */ encode = true; len_full = len_full * 2; p += len_tmp; } else { require_data = false; if (!encode) encode = audit_string_contains_control( buf, len_tmp); /* try to use a trusted value for len_full */ if (len_full < len_max) len_full = (encode ? len_tmp * 2 : len_tmp); p += len_tmp + 1; } len_buf += len_tmp; buf_head[len_buf] = '\0'; /* length of the buffer in the audit record? */ len_abuf = (encode ? len_buf * 2 : len_buf + 2); } /* write as much as we can to the audit log */ if (len_buf >= 0) { /* NOTE: some magic numbers here - basically if we * can't fit a reasonable amount of data into the * existing audit buffer, flush it and start with * a new buffer */ if ((sizeof(abuf) + 8) > len_rem) { len_rem = len_max; audit_log_end(*ab); *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE); if (!*ab) goto out; } /* create the non-arg portion of the arg record */ len_tmp = 0; if (require_data || (iter > 0) || ((len_abuf + sizeof(abuf)) > len_rem)) { if (iter == 0) { len_tmp += snprintf(&abuf[len_tmp], sizeof(abuf) - len_tmp, " a%d_len=%lu", arg, len_full); } len_tmp += snprintf(&abuf[len_tmp], sizeof(abuf) - len_tmp, " a%d[%d]=", arg, iter++); } else len_tmp += snprintf(&abuf[len_tmp], sizeof(abuf) - len_tmp, " a%d=", arg); WARN_ON(len_tmp >= sizeof(abuf)); abuf[sizeof(abuf) - 1] = '\0'; /* log the arg in the audit record */ audit_log_format(*ab, "%s", abuf); len_rem -= len_tmp; len_tmp = len_buf; if (encode) { if (len_abuf > len_rem) len_tmp = len_rem / 2; /* encoding */ audit_log_n_hex(*ab, buf, len_tmp); len_rem -= len_tmp * 2; len_abuf -= len_tmp * 2; } else { if (len_abuf > len_rem) len_tmp = len_rem - 2; /* quotes */ audit_log_n_string(*ab, buf, len_tmp); len_rem -= len_tmp + 2; /* don't subtract the "2" because we still need * to add quotes to the remaining string */ len_abuf -= len_tmp; } len_buf -= len_tmp; buf += len_tmp; } /* ready to move to the next argument? */ if ((len_buf == 0) && !require_data) { arg++; iter = 0; len_full = 0; require_data = true; encode = false; } } while (arg < context->execve.argc); /* NOTE: the caller handles the final audit_log_end() call */ out: kfree(buf_head); } static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) { int i; if (cap_isclear(*cap)) { audit_log_format(ab, " %s=0", prefix); return; } audit_log_format(ab, " %s=", prefix); CAP_FOR_EACH_U32(i) audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]); } static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) { if (name->fcap_ver == -1) { audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); return; } audit_log_cap(ab, "cap_fp", &name->fcap.permitted); audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", name->fcap.fE, name->fcap_ver, from_kuid(&init_user_ns, name->fcap.rootid)); } static void audit_log_time(struct audit_context *context, struct audit_buffer **ab) { const struct audit_ntp_data *ntp = &context->time.ntp_data; const struct timespec64 *tk = &context->time.tk_injoffset; static const char * const ntp_name[] = { "offset", "freq", "status", "tai", "tick", "adjust", }; int type; if (context->type == AUDIT_TIME_ADJNTPVAL) { for (type = 0; type < AUDIT_NTP_NVALS; type++) { if (ntp->vals[type].newval != ntp->vals[type].oldval) { if (!*ab) { *ab = audit_log_start(context, GFP_KERNEL, AUDIT_TIME_ADJNTPVAL); if (!*ab) return; } audit_log_format(*ab, "op=%s old=%lli new=%lli", ntp_name[type], ntp->vals[type].oldval, ntp->vals[type].newval); audit_log_end(*ab); *ab = NULL; } } } if (tk->tv_sec != 0 || tk->tv_nsec != 0) { if (!*ab) { *ab = audit_log_start(context, GFP_KERNEL, AUDIT_TIME_INJOFFSET); if (!*ab) return; } audit_log_format(*ab, "sec=%lli nsec=%li", (long long)tk->tv_sec, tk->tv_nsec); audit_log_end(*ab); *ab = NULL; } } static void show_special(struct audit_context *context, int *call_panic) { struct audit_buffer *ab; int i; ab = audit_log_start(context, GFP_KERNEL, context->type); if (!ab) return; switch (context->type) { case AUDIT_SOCKETCALL: { int nargs = context->socketcall.nargs; audit_log_format(ab, "nargs=%d", nargs); for (i = 0; i < nargs; i++) audit_log_format(ab, " a%d=%lx", i, context->socketcall.args[i]); break; } case AUDIT_IPC: { u32 osid = context->ipc.osid; audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", from_kuid(&init_user_ns, context->ipc.uid), from_kgid(&init_user_ns, context->ipc.gid), context->ipc.mode); if (osid) { char *ctx = NULL; u32 len; if (security_secid_to_secctx(osid, &ctx, &len)) { audit_log_format(ab, " osid=%u", osid); *call_panic = 1; } else { audit_log_format(ab, " obj=%s", ctx); security_release_secctx(ctx, len); } } if (context->ipc.has_perm) { audit_log_end(ab); ab = audit_log_start(context, GFP_KERNEL, AUDIT_IPC_SET_PERM); if (unlikely(!ab)) return; audit_log_format(ab, "qbytes=%lx ouid=%u ogid=%u mode=%#ho", context->ipc.qbytes, context->ipc.perm_uid, context->ipc.perm_gid, context->ipc.perm_mode); } break; } case AUDIT_MQ_OPEN: audit_log_format(ab, "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " "mq_msgsize=%ld mq_curmsgs=%ld", context->mq_open.oflag, context->mq_open.mode, context->mq_open.attr.mq_flags, context->mq_open.attr.mq_maxmsg, context->mq_open.attr.mq_msgsize, context->mq_open.attr.mq_curmsgs); break; case AUDIT_MQ_SENDRECV: audit_log_format(ab, "mqdes=%d msg_len=%zd msg_prio=%u " "abs_timeout_sec=%lld abs_timeout_nsec=%ld", context->mq_sendrecv.mqdes, context->mq_sendrecv.msg_len, context->mq_sendrecv.msg_prio, (long long) context->mq_sendrecv.abs_timeout.tv_sec, context->mq_sendrecv.abs_timeout.tv_nsec); break; case AUDIT_MQ_NOTIFY: audit_log_format(ab, "mqdes=%d sigev_signo=%d", context->mq_notify.mqdes, context->mq_notify.sigev_signo); break; case AUDIT_MQ_GETSETATTR: { struct mq_attr *attr = &context->mq_getsetattr.mqstat; audit_log_format(ab, "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " "mq_curmsgs=%ld ", context->mq_getsetattr.mqdes, attr->mq_flags, attr->mq_maxmsg, attr->mq_msgsize, attr->mq_curmsgs); break; } case AUDIT_CAPSET: audit_log_format(ab, "pid=%d", context->capset.pid); audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); break; case AUDIT_MMAP: audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, context->mmap.flags); break; case AUDIT_EXECVE: audit_log_execve_info(context, &ab); break; case AUDIT_KERN_MODULE: audit_log_format(ab, "name="); if (context->module.name) { audit_log_untrustedstring(ab, context->module.name); } else audit_log_format(ab, "(null)"); break; case AUDIT_TIME_ADJNTPVAL: case AUDIT_TIME_INJOFFSET: /* this call deviates from the rest, eating the buffer */ audit_log_time(context, &ab); break; } audit_log_end(ab); } static inline int audit_proctitle_rtrim(char *proctitle, int len) { char *end = proctitle + len - 1; while (end > proctitle && !isprint(*end)) end--; /* catch the case where proctitle is only 1 non-print character */ len = end - proctitle + 1; len -= isprint(proctitle[len-1]) == 0; return len; } /* * audit_log_name - produce AUDIT_PATH record from struct audit_names * @context: audit_context for the task * @n: audit_names structure with reportable details * @path: optional path to report instead of audit_names->name * @record_num: record number to report when handling a list of names * @call_panic: optional pointer to int that will be updated if secid fails */ static void audit_log_name(struct audit_context *context, struct audit_names *n, const struct path *path, int record_num, int *call_panic) { struct audit_buffer *ab; ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); if (!ab) return; audit_log_format(ab, "item=%d", record_num); if (path) audit_log_d_path(ab, " name=", path); else if (n->name) { switch (n->name_len) { case AUDIT_NAME_FULL: /* log the full path */ audit_log_format(ab, " name="); audit_log_untrustedstring(ab, n->name->name); break; case 0: /* name was specified as a relative path and the * directory component is the cwd */ if (context->pwd.dentry && context->pwd.mnt) audit_log_d_path(ab, " name=", &context->pwd); else audit_log_format(ab, " name=(null)"); break; default: /* log the name's directory component */ audit_log_format(ab, " name="); audit_log_n_untrustedstring(ab, n->name->name, n->name_len); } } else audit_log_format(ab, " name=(null)"); if (n->ino != AUDIT_INO_UNSET) audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", n->ino, MAJOR(n->dev), MINOR(n->dev), n->mode, from_kuid(&init_user_ns, n->uid), from_kgid(&init_user_ns, n->gid), MAJOR(n->rdev), MINOR(n->rdev)); if (n->osid != 0) { char *ctx = NULL; u32 len; if (security_secid_to_secctx( n->osid, &ctx, &len)) { audit_log_format(ab, " osid=%u", n->osid); if (call_panic) *call_panic = 2; } else { audit_log_format(ab, " obj=%s", ctx); security_release_secctx(ctx, len); } } /* log the audit_names record type */ switch (n->type) { case AUDIT_TYPE_NORMAL: audit_log_format(ab, " nametype=NORMAL"); break; case AUDIT_TYPE_PARENT: audit_log_format(ab, " nametype=PARENT"); break; case AUDIT_TYPE_CHILD_DELETE: audit_log_format(ab, " nametype=DELETE"); break; case AUDIT_TYPE_CHILD_CREATE: audit_log_format(ab, " nametype=CREATE"); break; default: audit_log_format(ab, " nametype=UNKNOWN"); break; } audit_log_fcaps(ab, n); audit_log_end(ab); } static void audit_log_proctitle(void) { int res; char *buf; char *msg = "(null)"; int len = strlen(msg); struct audit_context *context = audit_context(); struct audit_buffer *ab; ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); if (!ab) return; /* audit_panic or being filtered */ audit_log_format(ab, "proctitle="); /* Not cached */ if (!context->proctitle.value) { buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); if (!buf) goto out; /* Historically called this from procfs naming */ res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); if (res == 0) { kfree(buf); goto out; } res = audit_proctitle_rtrim(buf, res); if (res == 0) { kfree(buf); goto out; } context->proctitle.value = buf; context->proctitle.len = res; } msg = context->proctitle.value; len = context->proctitle.len; out: audit_log_n_untrustedstring(ab, msg, len); audit_log_end(ab); } static void audit_log_exit(void) { int i, call_panic = 0; struct audit_context *context = audit_context(); struct audit_buffer *ab; struct audit_aux_data *aux; struct audit_names *n; context->personality = current->personality; ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); if (!ab) return; /* audit_panic has been called */ audit_log_format(ab, "arch=%x syscall=%d", context->arch, context->major); if (context->personality != PER_LINUX) audit_log_format(ab, " per=%lx", context->personality); if (context->return_valid != AUDITSC_INVALID) audit_log_format(ab, " success=%s exit=%ld", (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", context->return_code); audit_log_format(ab, " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", context->argv[0], context->argv[1], context->argv[2], context->argv[3], context->name_count); audit_log_task_info(ab); audit_log_key(ab, context->filterkey); audit_log_end(ab); for (aux = context->aux; aux; aux = aux->next) { ab = audit_log_start(context, GFP_KERNEL, aux->type); if (!ab) continue; /* audit_panic has been called */ switch (aux->type) { case AUDIT_BPRM_FCAPS: { struct audit_aux_data_bprm_fcaps *axs = (void *)aux; audit_log_format(ab, "fver=%x", axs->fcap_ver); audit_log_cap(ab, "fp", &axs->fcap.permitted); audit_log_cap(ab, "fi", &axs->fcap.inheritable); audit_log_format(ab, " fe=%d", axs->fcap.fE); audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); audit_log_cap(ab, "pp", &axs->new_pcap.permitted); audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); audit_log_cap(ab, "pe", &axs->new_pcap.effective); audit_log_cap(ab, "pa", &axs->new_pcap.ambient); audit_log_format(ab, " frootid=%d", from_kuid(&init_user_ns, axs->fcap.rootid)); break; } } audit_log_end(ab); } if (context->type) show_special(context, &call_panic); if (context->fds[0] >= 0) { ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); if (ab) { audit_log_format(ab, "fd0=%d fd1=%d", context->fds[0], context->fds[1]); audit_log_end(ab); } } if (context->sockaddr_len) { ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); if (ab) { audit_log_format(ab, "saddr="); audit_log_n_hex(ab, (void *)context->sockaddr, context->sockaddr_len); audit_log_end(ab); } } for (aux = context->aux_pids; aux; aux = aux->next) { struct audit_aux_data_pids *axs = (void *)aux; for (i = 0; i < axs->pid_count; i++) if (audit_log_pid_context(context, axs->target_pid[i], axs->target_auid[i], axs->target_uid[i], axs->target_sessionid[i], axs->target_sid[i], axs->target_comm[i])) call_panic = 1; } if (context->target_pid && audit_log_pid_context(context, context->target_pid, context->target_auid, context->target_uid, context->target_sessionid, context->target_sid, context->target_comm)) call_panic = 1; if (context->pwd.dentry && context->pwd.mnt) { ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); if (ab) { audit_log_d_path(ab, "cwd=", &context->pwd); audit_log_end(ab); } } i = 0; list_for_each_entry(n, &context->names_list, list) { if (n->hidden) continue; audit_log_name(context, n, NULL, i++, &call_panic); } audit_log_proctitle(); /* Send end of event record to help user space know we are finished */ ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); if (ab) audit_log_end(ab); if (call_panic) audit_panic("error converting sid to string"); } /** * __audit_free - free a per-task audit context * @tsk: task whose audit context block to free * * Called from copy_process and do_exit */ void __audit_free(struct task_struct *tsk) { struct audit_context *context = tsk->audit_context; if (!context) return; if (!list_empty(&context->killed_trees)) audit_kill_trees(context); /* We are called either by do_exit() or the fork() error handling code; * in the former case tsk == current and in the latter tsk is a * random task_struct that doesn't doesn't have any meaningful data we * need to log via audit_log_exit(). */ if (tsk == current && !context->dummy && context->in_syscall) { context->return_valid = AUDITSC_INVALID; context->return_code = 0; audit_filter_syscall(tsk, context); audit_filter_inodes(tsk, context); if (context->current_state == AUDIT_STATE_RECORD) audit_log_exit(); } audit_set_context(tsk, NULL); audit_free_context(context); } /** * __audit_syscall_entry - fill in an audit record at syscall entry * @major: major syscall type (function) * @a1: additional syscall register 1 * @a2: additional syscall register 2 * @a3: additional syscall register 3 * @a4: additional syscall register 4 * * Fill in audit context at syscall entry. This only happens if the * audit context was created when the task was created and the state or * filters demand the audit context be built. If the state from the * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD, * then the record will be written at syscall exit time (otherwise, it * will only be written if another part of the kernel requests that it * be written). */ void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, unsigned long a3, unsigned long a4) { struct audit_context *context = audit_context(); enum audit_state state; if (!audit_enabled || !context) return; BUG_ON(context->in_syscall || context->name_count); state = context->state; if (state == AUDIT_STATE_DISABLED) return; context->dummy = !audit_n_rules; if (!context->dummy && state == AUDIT_STATE_BUILD) { context->prio = 0; if (auditd_test_task(current)) return; } context->arch = syscall_get_arch(current); context->major = major; context->argv[0] = a1; context->argv[1] = a2; context->argv[2] = a3; context->argv[3] = a4; context->serial = 0; context->in_syscall = 1; context->current_state = state; context->ppid = 0; ktime_get_coarse_real_ts64(&context->ctime); } /** * __audit_syscall_exit - deallocate audit context after a system call * @success: success value of the syscall * @return_code: return value of the syscall * * Tear down after system call. If the audit context has been marked as * auditable (either because of the AUDIT_STATE_RECORD state from * filtering, or because some other part of the kernel wrote an audit * message), then write out the syscall information. In call cases, * free the names stored from getname(). */ void __audit_syscall_exit(int success, long return_code) { struct audit_context *context; context = audit_context(); if (!context) return; if (!list_empty(&context->killed_trees)) audit_kill_trees(context); if (!context->dummy && context->in_syscall) { if (success) context->return_valid = AUDITSC_SUCCESS; else context->return_valid = AUDITSC_FAILURE; /* * we need to fix up the return code in the audit logs if the * actual return codes are later going to be fixed up by the * arch specific signal handlers * * This is actually a test for: * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) * * but is faster than a bunch of || */ if (unlikely(return_code <= -ERESTARTSYS) && (return_code >= -ERESTART_RESTARTBLOCK) && (return_code != -ENOIOCTLCMD)) context->return_code = -EINTR; else context->return_code = return_code; audit_filter_syscall(current, context); audit_filter_inodes(current, context); if (context->current_state == AUDIT_STATE_RECORD) audit_log_exit(); } context->in_syscall = 0; context->prio = context->state == AUDIT_STATE_RECORD ? ~0ULL : 0; audit_free_module(context); audit_free_names(context); unroll_tree_refs(context, NULL, 0); audit_free_aux(context); context->aux = NULL; context->aux_pids = NULL; context->target_pid = 0; context->target_sid = 0; context->sockaddr_len = 0; context->type = 0; context->fds[0] = -1; if (context->state != AUDIT_STATE_RECORD) { kfree(context->filterkey); context->filterkey = NULL; } } static inline void handle_one(const struct inode *inode) { struct audit_context *context; struct audit_tree_refs *p; struct audit_chunk *chunk; int count; if (likely(!inode->i_fsnotify_marks)) return; context = audit_context(); p = context->trees; count = context->tree_count; rcu_read_lock(); chunk = audit_tree_lookup(inode); rcu_read_unlock(); if (!chunk) return; if (likely(put_tree_ref(context, chunk))) return; if (unlikely(!grow_tree_refs(context))) { pr_warn("out of memory, audit has lost a tree reference\n"); audit_set_auditable(context); audit_put_chunk(chunk); unroll_tree_refs(context, p, count); return; } put_tree_ref(context, chunk); } static void handle_path(const struct dentry *dentry) { struct audit_context *context; struct audit_tree_refs *p; const struct dentry *d, *parent; struct audit_chunk *drop; unsigned long seq; int count; context = audit_context(); p = context->trees; count = context->tree_count; retry: drop = NULL; d = dentry; rcu_read_lock(); seq = read_seqbegin(&rename_lock); for(;;) { struct inode *inode = d_backing_inode(d); if (inode && unlikely(inode->i_fsnotify_marks)) { struct audit_chunk *chunk; chunk = audit_tree_lookup(inode); if (chunk) { if (unlikely(!put_tree_ref(context, chunk))) { drop = chunk; break; } } } parent = d->d_parent; if (parent == d) break; d = parent; } if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ rcu_read_unlock(); if (!drop) { /* just a race with rename */ unroll_tree_refs(context, p, count); goto retry; } audit_put_chunk(drop); if (grow_tree_refs(context)) { /* OK, got more space */ unroll_tree_refs(context, p, count); goto retry; } /* too bad */ pr_warn("out of memory, audit has lost a tree reference\n"); unroll_tree_refs(context, p, count); audit_set_auditable(context); return; } rcu_read_unlock(); } static struct audit_names *audit_alloc_name(struct audit_context *context, unsigned char type) { struct audit_names *aname; if (context->name_count < AUDIT_NAMES) { aname = &context->preallocated_names[context->name_count]; memset(aname, 0, sizeof(*aname)); } else { aname = kzalloc(sizeof(*aname), GFP_NOFS); if (!aname) return NULL; aname->should_free = true; } aname->ino = AUDIT_INO_UNSET; aname->type = type; list_add_tail(&aname->list, &context->names_list); context->name_count++; if (!context->pwd.dentry) get_fs_pwd(current->fs, &context->pwd); return aname; } /** * __audit_reusename - fill out filename with info from existing entry * @uptr: userland ptr to pathname * * Search the audit_names list for the current audit context. If there is an * existing entry with a matching "uptr" then return the filename * associated with that audit_name. If not, return NULL. */ struct filename * __audit_reusename(const __user char *uptr) { struct audit_context *context = audit_context(); struct audit_names *n; list_for_each_entry(n, &context->names_list, list) { if (!n->name) continue; if (n->name->uptr == uptr) { n->name->refcnt++; return n->name; } } return NULL; } /** * __audit_getname - add a name to the list * @name: name to add * * Add a name to the list of audit names for this context. * Called from fs/namei.c:getname(). */ void __audit_getname(struct filename *name) { struct audit_context *context = audit_context(); struct audit_names *n; if (!context->in_syscall) return; n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); if (!n) return; n->name = name; n->name_len = AUDIT_NAME_FULL; name->aname = n; name->refcnt++; } static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry) { struct cpu_vfs_cap_data caps; int rc; if (!dentry) return 0; rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps); if (rc) return rc; name->fcap.permitted = caps.permitted; name->fcap.inheritable = caps.inheritable; name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); name->fcap.rootid = caps.rootid; name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; return 0; } /* Copy inode data into an audit_names. */ static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, struct inode *inode, unsigned int flags) { name->ino = inode->i_ino; name->dev = inode->i_sb->s_dev; name->mode = inode->i_mode; name->uid = inode->i_uid; name->gid = inode->i_gid; name->rdev = inode->i_rdev; security_inode_getsecid(inode, &name->osid); if (flags & AUDIT_INODE_NOEVAL) { name->fcap_ver = -1; return; } audit_copy_fcaps(name, dentry); } /** * __audit_inode - store the inode and device from a lookup * @name: name being audited * @dentry: dentry being audited * @flags: attributes for this particular entry */ void __audit_inode(struct filename *name, const struct dentry *dentry, unsigned int flags) { struct audit_context *context = audit_context(); struct inode *inode = d_backing_inode(dentry); struct audit_names *n; bool parent = flags & AUDIT_INODE_PARENT; struct audit_entry *e; struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; int i; if (!context->in_syscall) return; rcu_read_lock(); list_for_each_entry_rcu(e, list, list) { for (i = 0; i < e->rule.field_count; i++) { struct audit_field *f = &e->rule.fields[i]; if (f->type == AUDIT_FSTYPE && audit_comparator(inode->i_sb->s_magic, f->op, f->val) && e->rule.action == AUDIT_NEVER) { rcu_read_unlock(); return; } } } rcu_read_unlock(); if (!name) goto out_alloc; /* * If we have a pointer to an audit_names entry already, then we can * just use it directly if the type is correct. */ n = name->aname; if (n) { if (parent) { if (n->type == AUDIT_TYPE_PARENT || n->type == AUDIT_TYPE_UNKNOWN) goto out; } else { if (n->type != AUDIT_TYPE_PARENT) goto out; } } list_for_each_entry_reverse(n, &context->names_list, list) { if (n->ino) { /* valid inode number, use that for the comparison */ if (n->ino != inode->i_ino || n->dev != inode->i_sb->s_dev) continue; } else if (n->name) { /* inode number has not been set, check the name */ if (strcmp(n->name->name, name->name)) continue; } else /* no inode and no name (?!) ... this is odd ... */ continue; /* match the correct record type */ if (parent) { if (n->type == AUDIT_TYPE_PARENT || n->type == AUDIT_TYPE_UNKNOWN) goto out; } else { if (n->type != AUDIT_TYPE_PARENT) goto out; } } out_alloc: /* unable to find an entry with both a matching name and type */ n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); if (!n) return; if (name) { n->name = name; name->refcnt++; } out: if (parent) { n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; n->type = AUDIT_TYPE_PARENT; if (flags & AUDIT_INODE_HIDDEN) n->hidden = true; } else { n->name_len = AUDIT_NAME_FULL; n->type = AUDIT_TYPE_NORMAL; } handle_path(dentry); audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); } void __audit_file(const struct file *file) { __audit_inode(NULL, file->f_path.dentry, 0); } /** * __audit_inode_child - collect inode info for created/removed objects * @parent: inode of dentry parent * @dentry: dentry being audited * @type: AUDIT_TYPE_* value that we're looking for * * For syscalls that create or remove filesystem objects, audit_inode * can only collect information for the filesystem object's parent. * This call updates the audit context with the child's information. * Syscalls that create a new filesystem object must be hooked after * the object is created. Syscalls that remove a filesystem object * must be hooked prior, in order to capture the target inode during * unsuccessful attempts. */ void __audit_inode_child(struct inode *parent, const struct dentry *dentry, const unsigned char type) { struct audit_context *context = audit_context(); struct inode *inode = d_backing_inode(dentry); const struct qstr *dname = &dentry->d_name; struct audit_names *n, *found_parent = NULL, *found_child = NULL; struct audit_entry *e; struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; int i; if (!context->in_syscall) return; rcu_read_lock(); list_for_each_entry_rcu(e, list, list) { for (i = 0; i < e->rule.field_count; i++) { struct audit_field *f = &e->rule.fields[i]; if (f->type == AUDIT_FSTYPE && audit_comparator(parent->i_sb->s_magic, f->op, f->val) && e->rule.action == AUDIT_NEVER) { rcu_read_unlock(); return; } } } rcu_read_unlock(); if (inode) handle_one(inode); /* look for a parent entry first */ list_for_each_entry(n, &context->names_list, list) { if (!n->name || (n->type != AUDIT_TYPE_PARENT && n->type != AUDIT_TYPE_UNKNOWN)) continue; if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && !audit_compare_dname_path(dname, n->name->name, n->name_len)) { if (n->type == AUDIT_TYPE_UNKNOWN) n->type = AUDIT_TYPE_PARENT; found_parent = n; break; } } cond_resched(); /* is there a matching child entry? */ list_for_each_entry(n, &context->names_list, list) { /* can only match entries that have a name */ if (!n->name || (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) continue; if (!strcmp(dname->name, n->name->name) || !audit_compare_dname_path(dname, n->name->name, found_parent ? found_parent->name_len : AUDIT_NAME_FULL)) { if (n->type == AUDIT_TYPE_UNKNOWN) n->type = type; found_child = n; break; } } if (!found_parent) { /* create a new, "anonymous" parent record */ n = audit_alloc_name(context, AUDIT_TYPE_PARENT); if (!n) return; audit_copy_inode(n, NULL, parent, 0); } if (!found_child) { found_child = audit_alloc_name(context, type); if (!found_child) return; /* Re-use the name belonging to the slot for a matching parent * directory. All names for this context are relinquished in * audit_free_names() */ if (found_parent) { found_child->name = found_parent->name; found_child->name_len = AUDIT_NAME_FULL; found_child->name->refcnt++; } } if (inode) audit_copy_inode(found_child, dentry, inode, 0); else found_child->ino = AUDIT_INO_UNSET; } EXPORT_SYMBOL_GPL(__audit_inode_child); /** * auditsc_get_stamp - get local copies of audit_context values * @ctx: audit_context for the task * @t: timespec64 to store time recorded in the audit_context * @serial: serial value that is recorded in the audit_context * * Also sets the context as auditable. */ int auditsc_get_stamp(struct audit_context *ctx, struct timespec64 *t, unsigned int *serial) { if (!ctx->in_syscall) return 0; if (!ctx->serial) ctx->serial = audit_serial(); t->tv_sec = ctx->ctime.tv_sec; t->tv_nsec = ctx->ctime.tv_nsec; *serial = ctx->serial; if (!ctx->prio) { ctx->prio = 1; ctx->current_state = AUDIT_STATE_RECORD; } return 1; } /** * __audit_mq_open - record audit data for a POSIX MQ open * @oflag: open flag * @mode: mode bits * @attr: queue attributes * */ void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) { struct audit_context *context = audit_context(); if (attr) memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); else memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); context->mq_open.oflag = oflag; context->mq_open.mode = mode; context->type = AUDIT_MQ_OPEN; } /** * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive * @mqdes: MQ descriptor * @msg_len: Message length * @msg_prio: Message priority * @abs_timeout: Message timeout in absolute time * */ void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, const struct timespec64 *abs_timeout) { struct audit_context *context = audit_context(); struct timespec64 *p = &context->mq_sendrecv.abs_timeout; if (abs_timeout) memcpy(p, abs_timeout, sizeof(*p)); else memset(p, 0, sizeof(*p)); context->mq_sendrecv.mqdes = mqdes; context->mq_sendrecv.msg_len = msg_len; context->mq_sendrecv.msg_prio = msg_prio; context->type = AUDIT_MQ_SENDRECV; } /** * __audit_mq_notify - record audit data for a POSIX MQ notify * @mqdes: MQ descriptor * @notification: Notification event * */ void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) { struct audit_context *context = audit_context(); if (notification) context->mq_notify.sigev_signo = notification->sigev_signo; else context->mq_notify.sigev_signo = 0; context->mq_notify.mqdes = mqdes; context->type = AUDIT_MQ_NOTIFY; } /** * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute * @mqdes: MQ descriptor * @mqstat: MQ flags * */ void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) { struct audit_context *context = audit_context(); context->mq_getsetattr.mqdes = mqdes; context->mq_getsetattr.mqstat = *mqstat; context->type = AUDIT_MQ_GETSETATTR; } /** * __audit_ipc_obj - record audit data for ipc object * @ipcp: ipc permissions * */ void __audit_ipc_obj(struct kern_ipc_perm *ipcp) { struct audit_context *context = audit_context(); context->ipc.uid = ipcp->uid; context->ipc.gid = ipcp->gid; context->ipc.mode = ipcp->mode; context->ipc.has_perm = 0; security_ipc_getsecid(ipcp, &context->ipc.osid); context->type = AUDIT_IPC; } /** * __audit_ipc_set_perm - record audit data for new ipc permissions * @qbytes: msgq bytes * @uid: msgq user id * @gid: msgq group id * @mode: msgq mode (permissions) * * Called only after audit_ipc_obj(). */ void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) { struct audit_context *context = audit_context(); context->ipc.qbytes = qbytes; context->ipc.perm_uid = uid; context->ipc.perm_gid = gid; context->ipc.perm_mode = mode; context->ipc.has_perm = 1; } void __audit_bprm(struct linux_binprm *bprm) { struct audit_context *context = audit_context(); context->type = AUDIT_EXECVE; context->execve.argc = bprm->argc; } /** * __audit_socketcall - record audit data for sys_socketcall * @nargs: number of args, which should not be more than AUDITSC_ARGS. * @args: args array * */ int __audit_socketcall(int nargs, unsigned long *args) { struct audit_context *context = audit_context(); if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) return -EINVAL; context->type = AUDIT_SOCKETCALL; context->socketcall.nargs = nargs; memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); return 0; } /** * __audit_fd_pair - record audit data for pipe and socketpair * @fd1: the first file descriptor * @fd2: the second file descriptor * */ void __audit_fd_pair(int fd1, int fd2) { struct audit_context *context = audit_context(); context->fds[0] = fd1; context->fds[1] = fd2; } /** * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto * @len: data length in user space * @a: data address in kernel space * * Returns 0 for success or NULL context or < 0 on error. */ int __audit_sockaddr(int len, void *a) { struct audit_context *context = audit_context(); if (!context->sockaddr) { void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); if (!p) return -ENOMEM; context->sockaddr = p; } context->sockaddr_len = len; memcpy(context->sockaddr, a, len); return 0; } void __audit_ptrace(struct task_struct *t) { struct audit_context *context = audit_context(); context->target_pid = task_tgid_nr(t); context->target_auid = audit_get_loginuid(t); context->target_uid = task_uid(t); context->target_sessionid = audit_get_sessionid(t); security_task_getsecid_obj(t, &context->target_sid); memcpy(context->target_comm, t->comm, TASK_COMM_LEN); } /** * audit_signal_info_syscall - record signal info for syscalls * @t: task being signaled * * If the audit subsystem is being terminated, record the task (pid) * and uid that is doing that. */ int audit_signal_info_syscall(struct task_struct *t) { struct audit_aux_data_pids *axp; struct audit_context *ctx = audit_context(); kuid_t t_uid = task_uid(t); if (!audit_signals || audit_dummy_context()) return 0; /* optimize the common case by putting first signal recipient directly * in audit_context */ if (!ctx->target_pid) { ctx->target_pid = task_tgid_nr(t); ctx->target_auid = audit_get_loginuid(t); ctx->target_uid = t_uid; ctx->target_sessionid = audit_get_sessionid(t); security_task_getsecid_obj(t, &ctx->target_sid); memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); return 0; } axp = (void *)ctx->aux_pids; if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { axp = kzalloc(sizeof(*axp), GFP_ATOMIC); if (!axp) return -ENOMEM; axp->d.type = AUDIT_OBJ_PID; axp->d.next = ctx->aux_pids; ctx->aux_pids = (void *)axp; } BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); axp->target_pid[axp->pid_count] = task_tgid_nr(t); axp->target_auid[axp->pid_count] = audit_get_loginuid(t); axp->target_uid[axp->pid_count] = t_uid; axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]); memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); axp->pid_count++; return 0; } /** * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps * @bprm: pointer to the bprm being processed * @new: the proposed new credentials * @old: the old credentials * * Simply check if the proc already has the caps given by the file and if not * store the priv escalation info for later auditing at the end of the syscall * * -Eric */ int __audit_log_bprm_fcaps(struct linux_binprm *bprm, const struct cred *new, const struct cred *old) { struct audit_aux_data_bprm_fcaps *ax; struct audit_context *context = audit_context(); struct cpu_vfs_cap_data vcaps; ax = kmalloc(sizeof(*ax), GFP_KERNEL); if (!ax) return -ENOMEM; ax->d.type = AUDIT_BPRM_FCAPS; ax->d.next = context->aux; context->aux = (void *)ax; get_vfs_caps_from_disk(&init_user_ns, bprm->file->f_path.dentry, &vcaps); ax->fcap.permitted = vcaps.permitted; ax->fcap.inheritable = vcaps.inheritable; ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); ax->fcap.rootid = vcaps.rootid; ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; ax->old_pcap.permitted = old->cap_permitted; ax->old_pcap.inheritable = old->cap_inheritable; ax->old_pcap.effective = old->cap_effective; ax->old_pcap.ambient = old->cap_ambient; ax->new_pcap.permitted = new->cap_permitted; ax->new_pcap.inheritable = new->cap_inheritable; ax->new_pcap.effective = new->cap_effective; ax->new_pcap.ambient = new->cap_ambient; return 0; } /** * __audit_log_capset - store information about the arguments to the capset syscall * @new: the new credentials * @old: the old (current) credentials * * Record the arguments userspace sent to sys_capset for later printing by the * audit system if applicable */ void __audit_log_capset(const struct cred *new, const struct cred *old) { struct audit_context *context = audit_context(); context->capset.pid = task_tgid_nr(current); context->capset.cap.effective = new->cap_effective; context->capset.cap.inheritable = new->cap_effective; context->capset.cap.permitted = new->cap_permitted; context->capset.cap.ambient = new->cap_ambient; context->type = AUDIT_CAPSET; } void __audit_mmap_fd(int fd, int flags) { struct audit_context *context = audit_context(); context->mmap.fd = fd; context->mmap.flags = flags; context->type = AUDIT_MMAP; } void __audit_log_kern_module(char *name) { struct audit_context *context = audit_context(); context->module.name = kstrdup(name, GFP_KERNEL); if (!context->module.name) audit_log_lost("out of memory in __audit_log_kern_module"); context->type = AUDIT_KERN_MODULE; } void __audit_fanotify(unsigned int response) { audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, "resp=%u", response); } void __audit_tk_injoffset(struct timespec64 offset) { struct audit_context *context = audit_context(); /* only set type if not already set by NTP */ if (!context->type) context->type = AUDIT_TIME_INJOFFSET; memcpy(&context->time.tk_injoffset, &offset, sizeof(offset)); } void __audit_ntp_log(const struct audit_ntp_data *ad) { struct audit_context *context = audit_context(); int type; for (type = 0; type < AUDIT_NTP_NVALS; type++) if (ad->vals[type].newval != ad->vals[type].oldval) { /* unconditionally set type, overwriting TK */ context->type = AUDIT_TIME_ADJNTPVAL; memcpy(&context->time.ntp_data, ad, sizeof(*ad)); break; } } void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, enum audit_nfcfgop op, gfp_t gfp) { struct audit_buffer *ab; char comm[sizeof(current->comm)]; ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG); if (!ab) return; audit_log_format(ab, "table=%s family=%u entries=%u op=%s", name, af, nentries, audit_nfcfgs[op].s); audit_log_format(ab, " pid=%u", task_pid_nr(current)); audit_log_task_context(ab); /* subj= */ audit_log_format(ab, " comm="); audit_log_untrustedstring(ab, get_task_comm(comm, current)); audit_log_end(ab); } EXPORT_SYMBOL_GPL(__audit_log_nfcfg); static void audit_log_task(struct audit_buffer *ab) { kuid_t auid, uid; kgid_t gid; unsigned int sessionid; char comm[sizeof(current->comm)]; auid = audit_get_loginuid(current); sessionid = audit_get_sessionid(current); current_uid_gid(&uid, &gid); audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", from_kuid(&init_user_ns, auid), from_kuid(&init_user_ns, uid), from_kgid(&init_user_ns, gid), sessionid); audit_log_task_context(ab); audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); audit_log_untrustedstring(ab, get_task_comm(comm, current)); audit_log_d_path_exe(ab, current->mm); } /** * audit_core_dumps - record information about processes that end abnormally * @signr: signal value * * If a process ends with a core dump, something fishy is going on and we * should record the event for investigation. */ void audit_core_dumps(long signr) { struct audit_buffer *ab; if (!audit_enabled) return; if (signr == SIGQUIT) /* don't care for those */ return; ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); if (unlikely(!ab)) return; audit_log_task(ab); audit_log_format(ab, " sig=%ld res=1", signr); audit_log_end(ab); } /** * audit_seccomp - record information about a seccomp action * @syscall: syscall number * @signr: signal value * @code: the seccomp action * * Record the information associated with a seccomp action. Event filtering for * seccomp actions that are not to be logged is done in seccomp_log(). * Therefore, this function forces auditing independent of the audit_enabled * and dummy context state because seccomp actions should be logged even when * audit is not in use. */ void audit_seccomp(unsigned long syscall, long signr, int code) { struct audit_buffer *ab; ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); if (unlikely(!ab)) return; audit_log_task(ab); audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", signr, syscall_get_arch(current), syscall, in_compat_syscall(), KSTK_EIP(current), code); audit_log_end(ab); } void audit_seccomp_actions_logged(const char *names, const char *old_names, int res) { struct audit_buffer *ab; if (!audit_enabled) return; ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE); if (unlikely(!ab)) return; audit_log_format(ab, "op=seccomp-logging actions=%s old-actions=%s res=%d", names, old_names, res); audit_log_end(ab); } struct list_head *audit_killed_trees(void) { struct audit_context *ctx = audit_context(); if (likely(!ctx || !ctx->in_syscall)) return NULL; return &ctx->killed_trees; } |
38 38 38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | // SPDX-License-Identifier: GPL-2.0-or-later /* * NET4: Sysctl interface to net af_unix subsystem. * * Authors: Mike Shaver. */ #include <linux/mm.h> #include <linux/slab.h> #include <linux/sysctl.h> #include <net/af_unix.h> static struct ctl_table unix_table[] = { { .procname = "max_dgram_qlen", .data = &init_net.unx.sysctl_max_dgram_qlen, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec }, { } }; int __net_init unix_sysctl_register(struct net *net) { struct ctl_table *table; table = kmemdup(unix_table, sizeof(unix_table), GFP_KERNEL); if (table == NULL) goto err_alloc; /* Don't export sysctls to unprivileged users */ if (net->user_ns != &init_user_ns) table[0].procname = NULL; table[0].data = &net->unx.sysctl_max_dgram_qlen; net->unx.ctl = register_net_sysctl(net, "net/unix", table); if (net->unx.ctl == NULL) goto err_reg; return 0; err_reg: kfree(table); err_alloc: return -ENOMEM; } void unix_sysctl_unregister(struct net *net) { struct ctl_table *table; table = net->unx.ctl->ctl_table_arg; unregister_net_sysctl_table(net->unx.ctl); kfree(table); } |
177 176 177 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 | /* SPDX-License-Identifier: GPL-2.0 */ /* * linux/cgroup-defs.h - basic definitions for cgroup * * This file provides basic type and interface. Include this file directly * only if necessary to avoid cyclic dependencies. */ #ifndef _LINUX_CGROUP_DEFS_H #define _LINUX_CGROUP_DEFS_H #include <linux/limits.h> #include <linux/list.h> #include <linux/idr.h> #include <linux/wait.h> #include <linux/mutex.h> #include <linux/rcupdate.h> #include <linux/refcount.h> #include <linux/percpu-refcount.h> #include <linux/percpu-rwsem.h> #include <linux/u64_stats_sync.h> #include <linux/workqueue.h> #include <linux/bpf-cgroup.h> #include <linux/psi_types.h> #ifdef CONFIG_CGROUPS struct cgroup; struct cgroup_root; struct cgroup_subsys; struct cgroup_taskset; struct kernfs_node; struct kernfs_ops; struct kernfs_open_file; struct seq_file; struct poll_table_struct; #define MAX_CGROUP_TYPE_NAMELEN 32 #define MAX_CGROUP_ROOT_NAMELEN 64 #define MAX_CFTYPE_NAME 64 /* define the enumeration of all cgroup subsystems */ #define SUBSYS(_x) _x ## _cgrp_id, enum cgroup_subsys_id { #include <linux/cgroup_subsys.h> CGROUP_SUBSYS_COUNT, }; #undef SUBSYS /* bits in struct cgroup_subsys_state flags field */ enum { CSS_NO_REF = (1 << 0), /* no reference counting for this css */ CSS_ONLINE = (1 << 1), /* between ->css_online() and ->css_offline() */ CSS_RELEASED = (1 << 2), /* refcnt reached zero, released */ CSS_VISIBLE = (1 << 3), /* css is visible to userland */ CSS_DYING = (1 << 4), /* css is dying */ }; /* bits in struct cgroup flags field */ enum { /* Control Group requires release notifications to userspace */ CGRP_NOTIFY_ON_RELEASE, /* * Clone the parent's configuration when creating a new child * cpuset cgroup. For historical reasons, this option can be * specified at mount time and thus is implemented here. */ CGRP_CPUSET_CLONE_CHILDREN, /* Control group has to be frozen. */ CGRP_FREEZE, /* Cgroup is frozen. */ CGRP_FROZEN, /* Control group has to be killed. */ CGRP_KILL, }; /* cgroup_root->flags */ enum { CGRP_ROOT_NOPREFIX = (1 << 1), /* mounted subsystems have no named prefix */ CGRP_ROOT_XATTR = (1 << 2), /* supports extended attributes */ /* * Consider namespaces as delegation boundaries. If this flag is * set, controller specific interface files in a namespace root * aren't writeable from inside the namespace. */ CGRP_ROOT_NS_DELEGATE = (1 << 3), /* * Enable cpuset controller in v1 cgroup to use v2 behavior. */ CGRP_ROOT_CPUSET_V2_MODE = (1 << 4), /* * Enable legacy local memory.events. */ CGRP_ROOT_MEMORY_LOCAL_EVENTS = (1 << 5), /* * Enable recursive subtree protection */ CGRP_ROOT_MEMORY_RECURSIVE_PROT = (1 << 6), }; /* cftype->flags */ enum { CFTYPE_ONLY_ON_ROOT = (1 << 0), /* only create on root cgrp */ CFTYPE_NOT_ON_ROOT = (1 << 1), /* don't create on root cgrp */ CFTYPE_NS_DELEGATABLE = (1 << 2), /* writeable beyond delegation boundaries */ CFTYPE_NO_PREFIX = (1 << 3), /* (DON'T USE FOR NEW FILES) no subsys prefix */ CFTYPE_WORLD_WRITABLE = (1 << 4), /* (DON'T USE FOR NEW FILES) S_IWUGO */ CFTYPE_DEBUG = (1 << 5), /* create when cgroup_debug */ CFTYPE_PRESSURE = (1 << 6), /* only if pressure feature is enabled */ /* internal flags, do not use outside cgroup core proper */ __CFTYPE_ONLY_ON_DFL = (1 << 16), /* only on default hierarchy */ __CFTYPE_NOT_ON_DFL = (1 << 17), /* not on default hierarchy */ }; /* * cgroup_file is the handle for a file instance created in a cgroup which * is used, for example, to generate file changed notifications. This can * be obtained by setting cftype->file_offset. */ struct cgroup_file { /* do not access any fields from outside cgroup core */ struct kernfs_node *kn; unsigned long notified_at; struct timer_list notify_timer; }; /* * Per-subsystem/per-cgroup state maintained by the system. This is the * fundamental structural building block that controllers deal with. * * Fields marked with "PI:" are public and immutable and may be accessed * directly without synchronization. */ struct cgroup_subsys_state { /* PI: the cgroup that this css is attached to */ struct cgroup *cgroup; /* PI: the cgroup subsystem that this css is attached to */ struct cgroup_subsys *ss; /* reference count - access via css_[try]get() and css_put() */ struct percpu_ref refcnt; /* siblings list anchored at the parent's ->children */ struct list_head sibling; struct list_head children; /* flush target list anchored at cgrp->rstat_css_list */ struct list_head rstat_css_node; /* * PI: Subsys-unique ID. 0 is unused and root is always 1. The * matching css can be looked up using css_from_id(). */ int id; unsigned int flags; /* * Monotonically increasing unique serial number which defines a * uniform order among all csses. It's guaranteed that all * ->children lists are in the ascending order of ->serial_nr and * used to allow interrupting and resuming iterations. */ u64 serial_nr; /* * Incremented by online self and children. Used to guarantee that * parents are not offlined before their children. */ atomic_t online_cnt; /* percpu_ref killing and RCU release */ struct work_struct destroy_work; struct rcu_work destroy_rwork; /* * PI: the parent css. Placed here for cache proximity to following * fields of the containing structure. */ struct cgroup_subsys_state *parent; }; /* * A css_set is a structure holding pointers to a set of * cgroup_subsys_state objects. This saves space in the task struct * object and speeds up fork()/exit(), since a single inc/dec and a * list_add()/del() can bump the reference count on the entire cgroup * set for a task. */ struct css_set { /* * Set of subsystem states, one for each subsystem. This array is * immutable after creation apart from the init_css_set during * subsystem registration (at boot time). */ struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT]; /* reference count */ refcount_t refcount; /* * For a domain cgroup, the following points to self. If threaded, * to the matching cset of the nearest domain ancestor. The * dom_cset provides access to the domain cgroup and its csses to * which domain level resource consumptions should be charged. */ struct css_set *dom_cset; /* the default cgroup associated with this css_set */ struct cgroup *dfl_cgrp; /* internal task count, protected by css_set_lock */ int nr_tasks; /* * Lists running through all tasks using this cgroup group. * mg_tasks lists tasks which belong to this cset but are in the * process of being migrated out or in. Protected by * css_set_rwsem, but, during migration, once tasks are moved to * mg_tasks, it can be read safely while holding cgroup_mutex. */ struct list_head tasks; struct list_head mg_tasks; struct list_head dying_tasks; /* all css_task_iters currently walking this cset */ struct list_head task_iters; /* * On the default hierarchy, ->subsys[ssid] may point to a css * attached to an ancestor instead of the cgroup this css_set is * associated with. The following node is anchored at * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to * iterate through all css's attached to a given cgroup. */ struct list_head e_cset_node[CGROUP_SUBSYS_COUNT]; /* all threaded csets whose ->dom_cset points to this cset */ struct list_head threaded_csets; struct list_head threaded_csets_node; /* * List running through all cgroup groups in the same hash * slot. Protected by css_set_lock */ struct hlist_node hlist; /* * List of cgrp_cset_links pointing at cgroups referenced from this * css_set. Protected by css_set_lock. */ struct list_head cgrp_links; /* * List of csets participating in the on-going migration either as * source or destination. Protected by cgroup_mutex. */ struct list_head mg_src_preload_node; struct list_head mg_dst_preload_node; struct list_head mg_node; /* * If this cset is acting as the source of migration the following * two fields are set. mg_src_cgrp and mg_dst_cgrp are * respectively the source and destination cgroups of the on-going * migration. mg_dst_cset is the destination cset the target tasks * on this cset should be migrated to. Protected by cgroup_mutex. */ struct cgroup *mg_src_cgrp; struct cgroup *mg_dst_cgrp; struct css_set *mg_dst_cset; /* dead and being drained, ignore for migration */ bool dead; /* For RCU-protected deletion */ struct rcu_head rcu_head; }; struct cgroup_base_stat { struct task_cputime cputime; }; /* * rstat - cgroup scalable recursive statistics. Accounting is done * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the * hierarchy on reads. * * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are * linked into the updated tree. On the following read, propagation only * considers and consumes the updated tree. This makes reading O(the * number of descendants which have been active since last read) instead of * O(the total number of descendants). * * This is important because there can be a lot of (draining) cgroups which * aren't active and stat may be read frequently. The combination can * become very expensive. By propagating selectively, increasing reading * frequency decreases the cost of each read. * * This struct hosts both the fields which implement the above - * updated_children and updated_next - and the fields which track basic * resource statistics on top of it - bsync, bstat and last_bstat. */ struct cgroup_rstat_cpu { /* * ->bsync protects ->bstat. These are the only fields which get * updated in the hot path. */ struct u64_stats_sync bsync; struct cgroup_base_stat bstat; /* * Snapshots at the last reading. These are used to calculate the * deltas to propagate to the global counters. */ struct cgroup_base_stat last_bstat; /* * Child cgroups with stat updates on this cpu since the last read * are linked on the parent's ->updated_children through * ->updated_next. * * In addition to being more compact, singly-linked list pointing * to the cgroup makes it unnecessary for each per-cpu struct to * point back to the associated cgroup. * * Protected by per-cpu cgroup_rstat_cpu_lock. */ struct cgroup *updated_children; /* terminated by self cgroup */ struct cgroup *updated_next; /* NULL iff not on the list */ }; struct cgroup_freezer_state { /* Should the cgroup and its descendants be frozen. */ bool freeze; /* Should the cgroup actually be frozen? */ int e_freeze; /* Fields below are protected by css_set_lock */ /* Number of frozen descendant cgroups */ int nr_frozen_descendants; /* * Number of tasks, which are counted as frozen: * frozen, SIGSTOPped, and PTRACEd. */ int nr_frozen_tasks; }; struct cgroup { /* self css with NULL ->ss, points back to this cgroup */ struct cgroup_subsys_state self; unsigned long flags; /* "unsigned long" so bitops work */ /* * The depth this cgroup is at. The root is at depth zero and each * step down the hierarchy increments the level. This along with * ancestor_ids[] can determine whether a given cgroup is a * descendant of another without traversing the hierarchy. */ int level; /* Maximum allowed descent tree depth */ int max_depth; /* * Keep track of total numbers of visible and dying descent cgroups. * Dying cgroups are cgroups which were deleted by a user, * but are still existing because someone else is holding a reference. * max_descendants is a maximum allowed number of descent cgroups. * * nr_descendants and nr_dying_descendants are protected * by cgroup_mutex and css_set_lock. It's fine to read them holding * any of cgroup_mutex and css_set_lock; for writing both locks * should be held. */ int nr_descendants; int nr_dying_descendants; int max_descendants; /* * Each non-empty css_set associated with this cgroup contributes * one to nr_populated_csets. The counter is zero iff this cgroup * doesn't have any tasks. * * All children which have non-zero nr_populated_csets and/or * nr_populated_children of their own contribute one to either * nr_populated_domain_children or nr_populated_threaded_children * depending on their type. Each counter is zero iff all cgroups * of the type in the subtree proper don't have any tasks. */ int nr_populated_csets; int nr_populated_domain_children; int nr_populated_threaded_children; int nr_threaded_children; /* # of live threaded child cgroups */ struct kernfs_node *kn; /* cgroup kernfs entry */ struct cgroup_file procs_file; /* handle for "cgroup.procs" */ struct cgroup_file events_file; /* handle for "cgroup.events" */ /* * The bitmask of subsystems enabled on the child cgroups. * ->subtree_control is the one configured through * "cgroup.subtree_control" while ->child_ss_mask is the effective * one which may have more subsystems enabled. Controller knobs * are made available iff it's enabled in ->subtree_control. */ u16 subtree_control; u16 subtree_ss_mask; u16 old_subtree_control; u16 old_subtree_ss_mask; /* Private pointers for each registered subsystem */ struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT]; struct cgroup_root *root; /* * List of cgrp_cset_links pointing at css_sets with tasks in this * cgroup. Protected by css_set_lock. */ struct list_head cset_links; /* * On the default hierarchy, a css_set for a cgroup with some * susbsys disabled will point to css's which are associated with * the closest ancestor which has the subsys enabled. The * following lists all css_sets which point to this cgroup's css * for the given subsystem. */ struct list_head e_csets[CGROUP_SUBSYS_COUNT]; /* * If !threaded, self. If threaded, it points to the nearest * domain ancestor. Inside a threaded subtree, cgroups are exempt * from process granularity and no-internal-task constraint. * Domain level resource consumptions which aren't tied to a * specific task are charged to the dom_cgrp. */ struct cgroup *dom_cgrp; struct cgroup *old_dom_cgrp; /* used while enabling threaded */ /* per-cpu recursive resource statistics */ struct cgroup_rstat_cpu __percpu *rstat_cpu; struct list_head rstat_css_list; /* cgroup basic resource statistics */ struct cgroup_base_stat last_bstat; struct cgroup_base_stat bstat; struct prev_cputime prev_cputime; /* for printing out cputime */ /* * list of pidlists, up to two for each namespace (one for procs, one * for tasks); created on demand. */ struct list_head pidlists; struct mutex pidlist_mutex; /* used to wait for offlining of csses */ wait_queue_head_t offline_waitq; /* used to schedule release agent */ struct work_struct release_agent_work; /* used to track pressure stalls */ struct psi_group psi; /* used to store eBPF programs */ struct cgroup_bpf bpf; /* If there is block congestion on this cgroup. */ atomic_t congestion_count; /* Used to store internal freezer state */ struct cgroup_freezer_state freezer; /* ids of the ancestors at each level including self */ u64 ancestor_ids[]; }; /* * A cgroup_root represents the root of a cgroup hierarchy, and may be * associated with a kernfs_root to form an active hierarchy. This is * internal to cgroup core. Don't access directly from controllers. */ struct cgroup_root { struct kernfs_root *kf_root; /* The bitmask of subsystems attached to this hierarchy */ unsigned int subsys_mask; /* Unique id for this hierarchy. */ int hierarchy_id; /* A list running through the active hierarchies */ struct list_head root_list; struct rcu_head rcu; /* Must be near the top */ /* The root cgroup. Root is destroyed on its release. */ struct cgroup cgrp; /* for cgrp->ancestor_ids[0] */ u64 cgrp_ancestor_id_storage; /* Number of cgroups in the hierarchy, used only for /proc/cgroups */ atomic_t nr_cgrps; /* Hierarchy-specific flags */ unsigned int flags; /* The path to use for release notifications. */ char release_agent_path[PATH_MAX]; /* The name for this hierarchy - may be empty */ char name[MAX_CGROUP_ROOT_NAMELEN]; }; /* * struct cftype: handler definitions for cgroup control files * * When reading/writing to a file: * - the cgroup to use is file->f_path.dentry->d_parent->d_fsdata * - the 'cftype' of the file is file->f_path.dentry->d_fsdata */ struct cftype { /* * By convention, the name should begin with the name of the * subsystem, followed by a period. Zero length string indicates * end of cftype array. */ char name[MAX_CFTYPE_NAME]; unsigned long private; /* * The maximum length of string, excluding trailing nul, that can * be passed to write. If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed. */ size_t max_write_len; /* CFTYPE_* flags */ unsigned int flags; /* * If non-zero, should contain the offset from the start of css to * a struct cgroup_file field. cgroup will record the handle of * the created file into it. The recorded handle can be used as * long as the containing css remains accessible. */ unsigned int file_offset; /* * Fields used for internal bookkeeping. Initialized automatically * during registration. */ struct cgroup_subsys *ss; /* NULL for cgroup core files */ struct list_head node; /* anchored at ss->cfts */ struct kernfs_ops *kf_ops; int (*open)(struct kernfs_open_file *of); void (*release)(struct kernfs_open_file *of); /* * read_u64() is a shortcut for the common case of returning a * single integer. Use it in place of read() */ u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft); /* * read_s64() is a signed version of read_u64() */ s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft); /* generic seq_file read interface */ int (*seq_show)(struct seq_file *sf, void *v); /* optional ops, implement all or none */ void *(*seq_start)(struct seq_file *sf, loff_t *ppos); void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos); void (*seq_stop)(struct seq_file *sf, void *v); /* * write_u64() is a shortcut for the common case of accepting * a single integer (as parsed by simple_strtoull) from * userspace. Use in place of write(); return 0 or error. */ int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft, u64 val); /* * write_s64() is a signed version of write_u64() */ int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft, s64 val); /* * write() is the generic write callback which maps directly to * kernfs write operation and overrides all other operations. * Maximum write size is determined by ->max_write_len. Use * of_css/cft() to access the associated css and cft. */ ssize_t (*write)(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off); __poll_t (*poll)(struct kernfs_open_file *of, struct poll_table_struct *pt); #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lock_class_key lockdep_key; #endif }; /* * Control Group subsystem type. * See Documentation/admin-guide/cgroup-v1/cgroups.rst for details */ struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css); int (*css_online)(struct cgroup_subsys_state *css); void (*css_offline)(struct cgroup_subsys_state *css); void (*css_released)(struct cgroup_subsys_state *css); void (*css_free)(struct cgroup_subsys_state *css); void (*css_reset)(struct cgroup_subsys_state *css); void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu); int (*css_extra_stat_show)(struct seq_file *seq, struct cgroup_subsys_state *css); int (*can_attach)(struct cgroup_taskset *tset); void (*cancel_attach)(struct cgroup_taskset *tset); void (*attach)(struct cgroup_taskset *tset); void (*post_attach)(void); int (*can_fork)(struct task_struct *task, struct css_set *cset); void (*cancel_fork)(struct task_struct *task, struct css_set *cset); void (*fork)(struct task_struct *task); void (*exit)(struct task_struct *task); void (*release)(struct task_struct *task); void (*bind)(struct cgroup_subsys_state *root_css); bool early_init:1; /* * If %true, the controller, on the default hierarchy, doesn't show * up in "cgroup.controllers" or "cgroup.subtree_control", is * implicitly enabled on all cgroups on the default hierarchy, and * bypasses the "no internal process" constraint. This is for * utility type controllers which is transparent to userland. * * An implicit controller can be stolen from the default hierarchy * anytime and thus must be okay with offline csses from previous * hierarchies coexisting with csses for the current one. */ bool implicit_on_dfl:1; /* * If %true, the controller, supports threaded mode on the default * hierarchy. In a threaded subtree, both process granularity and * no-internal-process constraint are ignored and a threaded * controllers should be able to handle that. * * Note that as an implicit controller is automatically enabled on * all cgroups on the default hierarchy, it should also be * threaded. implicit && !threaded is not supported. */ bool threaded:1; /* the following two fields are initialized automatically during boot */ int id; const char *name; /* optional, initialized automatically during boot if not set */ const char *legacy_name; /* link to parent, protected by cgroup_lock() */ struct cgroup_root *root; /* idr for css->id */ struct idr css_idr; /* * List of cftypes. Each entry is the first entry of an array * terminated by zero length name. */ struct list_head cfts; /* * Base cftypes which are automatically registered. The two can * point to the same array. */ struct cftype *dfl_cftypes; /* for the default hierarchy */ struct cftype *legacy_cftypes; /* for the legacy hierarchies */ /* * A subsystem may depend on other subsystems. When such subsystem * is enabled on a cgroup, the depended-upon subsystems are enabled * together if available. Subsystems enabled due to dependency are * not visible to userland until explicitly enabled. The following * specifies the mask of subsystems that this one depends on. */ unsigned int depends_on; }; extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem; /** * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups * @tsk: target task * * Allows cgroup operations to synchronize against threadgroup changes * using a percpu_rw_semaphore. */ static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk) { percpu_down_read(&cgroup_threadgroup_rwsem); } /** * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups * @tsk: target task * * Counterpart of cgroup_threadcgroup_change_begin(). */ static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) { percpu_up_read(&cgroup_threadgroup_rwsem); } #else /* CONFIG_CGROUPS */ #define CGROUP_SUBSYS_COUNT 0 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk) { might_sleep(); } static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {} #endif /* CONFIG_CGROUPS */ #ifdef CONFIG_SOCK_CGROUP_DATA /* * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains * per-socket cgroup information except for memcg association. * * On legacy hierarchies, net_prio and net_cls controllers directly * set attributes on each sock which can then be tested by the network * layer. On the default hierarchy, each sock is associated with the * cgroup it was created in and the networking layer can match the * cgroup directly. */ struct sock_cgroup_data { struct cgroup *cgroup; /* v2 */ #ifdef CONFIG_CGROUP_NET_CLASSID u32 classid; /* v1 */ #endif #ifdef CONFIG_CGROUP_NET_PRIO u16 prioidx; /* v1 */ #endif }; static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd) { #ifdef CONFIG_CGROUP_NET_PRIO return READ_ONCE(skcd->prioidx); #else return 1; #endif } static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd) { #ifdef CONFIG_CGROUP_NET_CLASSID return READ_ONCE(skcd->classid); #else return 0; #endif } static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd, u16 prioidx) { #ifdef CONFIG_CGROUP_NET_PRIO WRITE_ONCE(skcd->prioidx, prioidx); #endif } static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd, u32 classid) { #ifdef CONFIG_CGROUP_NET_CLASSID WRITE_ONCE(skcd->classid, classid); #endif } #else /* CONFIG_SOCK_CGROUP_DATA */ struct sock_cgroup_data { }; #endif /* CONFIG_SOCK_CGROUP_DATA */ #endif /* _LINUX_CGROUP_DEFS_H */ |
1 62 63 63 840 497 2 2 9 396 26 241 2 242 241 241 128 114 34 65 1 242 13 13 7 5 5 5 9 9 9 1 63 63 63 63 63 63 63 63 63 63 63 63 63 1 62 63 63 45 21 63 63 63 63 21 45 63 989 913 85 13 217 217 169 68 214 15 204 38 38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Neighbour Discovery for IPv6 * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * Mike Shaver <shaver@ingenia.com> */ /* * Changes: * * Alexey I. Froloff : RFC6106 (DNSSL) support * Pierre Ynard : export userland ND options * through netlink (RDNSS support) * Lars Fenneberg : fixed MTU setting on receipt * of an RA. * Janos Farkas : kmalloc failure checks * Alexey Kuznetsov : state machine reworked * and moved to net/core. * Pekka Savola : RFC2461 validation * YOSHIFUJI Hideaki @USAGI : Verify ND options properly */ #define pr_fmt(fmt) "ICMPv6: " fmt #include <linux/module.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/sched.h> #include <linux/net.h> #include <linux/in6.h> #include <linux/route.h> #include <linux/init.h> #include <linux/rcupdate.h> #include <linux/slab.h> #ifdef CONFIG_SYSCTL #include <linux/sysctl.h> #endif #include <linux/if_addr.h> #include <linux/if_ether.h> #include <linux/if_arp.h> #include <linux/ipv6.h> #include <linux/icmpv6.h> #include <linux/jhash.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ipv6.h> #include <net/protocol.h> #include <net/ndisc.h> #include <net/ip6_route.h> #include <net/addrconf.h> #include <net/icmp.h> #include <net/netlink.h> #include <linux/rtnetlink.h> #include <net/flow.h> #include <net/ip6_checksum.h> #include <net/inet_common.h> #include <linux/proc_fs.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv6.h> static u32 ndisc_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd); static bool ndisc_key_eq(const struct neighbour *neigh, const void *pkey); static bool ndisc_allow_add(const struct net_device *dev, struct netlink_ext_ack *extack); static int ndisc_constructor(struct neighbour *neigh); static void ndisc_solicit(struct neighbour *neigh, struct sk_buff *skb); static void ndisc_error_report(struct neighbour *neigh, struct sk_buff *skb); static int pndisc_constructor(struct pneigh_entry *n); static void pndisc_destructor(struct pneigh_entry *n); static void pndisc_redo(struct sk_buff *skb); static int ndisc_is_multicast(const void *pkey); static const struct neigh_ops ndisc_generic_ops = { .family = AF_INET6, .solicit = ndisc_solicit, .error_report = ndisc_error_report, .output = neigh_resolve_output, .connected_output = neigh_connected_output, }; static const struct neigh_ops ndisc_hh_ops = { .family = AF_INET6, .solicit = ndisc_solicit, .error_report = ndisc_error_report, .output = neigh_resolve_output, .connected_output = neigh_resolve_output, }; static const struct neigh_ops ndisc_direct_ops = { .family = AF_INET6, .output = neigh_direct_output, .connected_output = neigh_direct_output, }; struct neigh_table nd_tbl = { .family = AF_INET6, .key_len = sizeof(struct in6_addr), .protocol = cpu_to_be16(ETH_P_IPV6), .hash = ndisc_hash, .key_eq = ndisc_key_eq, .constructor = ndisc_constructor, .pconstructor = pndisc_constructor, .pdestructor = pndisc_destructor, .proxy_redo = pndisc_redo, .is_multicast = ndisc_is_multicast, .allow_add = ndisc_allow_add, .id = "ndisc_cache", .parms = { .tbl = &nd_tbl, .reachable_time = ND_REACHABLE_TIME, .data = { [NEIGH_VAR_MCAST_PROBES] = 3, [NEIGH_VAR_UCAST_PROBES] = 3, [NEIGH_VAR_RETRANS_TIME] = ND_RETRANS_TIMER, [NEIGH_VAR_BASE_REACHABLE_TIME] = ND_REACHABLE_TIME, [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ, [NEIGH_VAR_GC_STALETIME] = 60 * HZ, [NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX, [NEIGH_VAR_PROXY_QLEN] = 64, [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ, [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10, }, }, .gc_interval = 30 * HZ, .gc_thresh1 = 128, .gc_thresh2 = 512, .gc_thresh3 = 1024, }; EXPORT_SYMBOL_GPL(nd_tbl); void __ndisc_fill_addr_option(struct sk_buff *skb, int type, void *data, int data_len, int pad) { int space = __ndisc_opt_addr_space(data_len, pad); u8 *opt = skb_put(skb, space); opt[0] = type; opt[1] = space>>3; memset(opt + 2, 0, pad); opt += pad; space -= pad; memcpy(opt+2, data, data_len); data_len += 2; opt += data_len; space -= data_len; if (space > 0) memset(opt, 0, space); } EXPORT_SYMBOL_GPL(__ndisc_fill_addr_option); static inline void ndisc_fill_addr_option(struct sk_buff *skb, int type, void *data, u8 icmp6_type) { __ndisc_fill_addr_option(skb, type, data, skb->dev->addr_len, ndisc_addr_option_pad(skb->dev->type)); ndisc_ops_fill_addr_option(skb->dev, skb, icmp6_type); } static inline void ndisc_fill_redirect_addr_option(struct sk_buff *skb, void *ha, const u8 *ops_data) { ndisc_fill_addr_option(skb, ND_OPT_TARGET_LL_ADDR, ha, NDISC_REDIRECT); ndisc_ops_fill_redirect_addr_option(skb->dev, skb, ops_data); } static struct nd_opt_hdr *ndisc_next_option(struct nd_opt_hdr *cur, struct nd_opt_hdr *end) { int type; if (!cur || !end || cur >= end) return NULL; type = cur->nd_opt_type; do { cur = ((void *)cur) + (cur->nd_opt_len << 3); } while (cur < end && cur->nd_opt_type != type); return cur <= end && cur->nd_opt_type == type ? cur : NULL; } static inline int ndisc_is_useropt(const struct net_device *dev, struct nd_opt_hdr *opt) { return opt->nd_opt_type == ND_OPT_PREFIX_INFO || opt->nd_opt_type == ND_OPT_RDNSS || opt->nd_opt_type == ND_OPT_DNSSL || opt->nd_opt_type == ND_OPT_CAPTIVE_PORTAL || opt->nd_opt_type == ND_OPT_PREF64 || ndisc_ops_is_useropt(dev, opt->nd_opt_type); } static struct nd_opt_hdr *ndisc_next_useropt(const struct net_device *dev, struct nd_opt_hdr *cur, struct nd_opt_hdr *end) { if (!cur || !end || cur >= end) return NULL; do { cur = ((void *)cur) + (cur->nd_opt_len << 3); } while (cur < end && !ndisc_is_useropt(dev, cur)); return cur <= end && ndisc_is_useropt(dev, cur) ? cur : NULL; } struct ndisc_options *ndisc_parse_options(const struct net_device *dev, u8 *opt, int opt_len, struct ndisc_options *ndopts) { struct nd_opt_hdr *nd_opt = (struct nd_opt_hdr *)opt; if (!nd_opt || opt_len < 0 || !ndopts) return NULL; memset(ndopts, 0, sizeof(*ndopts)); while (opt_len) { bool unknown = false; int l; if (opt_len < sizeof(struct nd_opt_hdr)) return NULL; l = nd_opt->nd_opt_len << 3; if (opt_len < l || l == 0) return NULL; if (ndisc_ops_parse_options(dev, nd_opt, ndopts)) goto next_opt; switch (nd_opt->nd_opt_type) { case ND_OPT_SOURCE_LL_ADDR: case ND_OPT_TARGET_LL_ADDR: case ND_OPT_MTU: case ND_OPT_NONCE: case ND_OPT_REDIRECT_HDR: if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { ND_PRINTK(2, warn, "%s: duplicated ND6 option found: type=%d\n", __func__, nd_opt->nd_opt_type); } else { ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; } break; case ND_OPT_PREFIX_INFO: ndopts->nd_opts_pi_end = nd_opt; if (!ndopts->nd_opt_array[nd_opt->nd_opt_type]) ndopts->nd_opt_array[nd_opt->nd_opt_type] = nd_opt; break; #ifdef CONFIG_IPV6_ROUTE_INFO case ND_OPT_ROUTE_INFO: ndopts->nd_opts_ri_end = nd_opt; if (!ndopts->nd_opts_ri) ndopts->nd_opts_ri = nd_opt; break; #endif default: unknown = true; } if (ndisc_is_useropt(dev, nd_opt)) { ndopts->nd_useropts_end = nd_opt; if (!ndopts->nd_useropts) ndopts->nd_useropts = nd_opt; } else if (unknown) { /* * Unknown options must be silently ignored, * to accommodate future extension to the * protocol. */ ND_PRINTK(2, notice, "%s: ignored unsupported option; type=%d, len=%d\n", __func__, nd_opt->nd_opt_type, nd_opt->nd_opt_len); } next_opt: opt_len -= l; nd_opt = ((void *)nd_opt) + l; } return ndopts; } int ndisc_mc_map(const struct in6_addr *addr, char *buf, struct net_device *dev, int dir) { switch (dev->type) { case ARPHRD_ETHER: case ARPHRD_IEEE802: /* Not sure. Check it later. --ANK */ case ARPHRD_FDDI: ipv6_eth_mc_map(addr, buf); return 0; case ARPHRD_ARCNET: ipv6_arcnet_mc_map(addr, buf); return 0; case ARPHRD_INFINIBAND: ipv6_ib_mc_map(addr, dev->broadcast, buf); return 0; case ARPHRD_IPGRE: return ipv6_ipgre_mc_map(addr, dev->broadcast, buf); default: if (dir) { memcpy(buf, dev->broadcast, dev->addr_len); return 0; } } return -EINVAL; } EXPORT_SYMBOL(ndisc_mc_map); static u32 ndisc_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd) { return ndisc_hashfn(pkey, dev, hash_rnd); } static bool ndisc_key_eq(const struct neighbour *n, const void *pkey) { return neigh_key_eq128(n, pkey); } static int ndisc_constructor(struct neighbour *neigh) { struct in6_addr *addr = (struct in6_addr *)&neigh->primary_key; struct net_device *dev = neigh->dev; struct inet6_dev *in6_dev; struct neigh_parms *parms; bool is_multicast = ipv6_addr_is_multicast(addr); in6_dev = in6_dev_get(dev); if (!in6_dev) { return -EINVAL; } parms = in6_dev->nd_parms; __neigh_parms_put(neigh->parms); neigh->parms = neigh_parms_clone(parms); neigh->type = is_multicast ? RTN_MULTICAST : RTN_UNICAST; if (!dev->header_ops) { neigh->nud_state = NUD_NOARP; neigh->ops = &ndisc_direct_ops; neigh->output = neigh_direct_output; } else { if (is_multicast) { neigh->nud_state = NUD_NOARP; ndisc_mc_map(addr, neigh->ha, dev, 1); } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) { neigh->nud_state = NUD_NOARP; memcpy(neigh->ha, dev->dev_addr, dev->addr_len); if (dev->flags&IFF_LOOPBACK) neigh->type = RTN_LOCAL; } else if (dev->flags&IFF_POINTOPOINT) { neigh->nud_state = NUD_NOARP; memcpy(neigh->ha, dev->broadcast, dev->addr_len); } if (dev->header_ops->cache) neigh->ops = &ndisc_hh_ops; else neigh->ops = &ndisc_generic_ops; if (neigh->nud_state&NUD_VALID) neigh->output = neigh->ops->connected_output; else neigh->output = neigh->ops->output; } in6_dev_put(in6_dev); return 0; } static int pndisc_constructor(struct pneigh_entry *n) { struct in6_addr *addr = (struct in6_addr *)&n->key; struct in6_addr maddr; struct net_device *dev = n->dev; if (!dev || !__in6_dev_get(dev)) return -EINVAL; addrconf_addr_solict_mult(addr, &maddr); ipv6_dev_mc_inc(dev, &maddr); return 0; } static void pndisc_destructor(struct pneigh_entry *n) { struct in6_addr *addr = (struct in6_addr *)&n->key; struct in6_addr maddr; struct net_device *dev = n->dev; if (!dev || !__in6_dev_get(dev)) return; addrconf_addr_solict_mult(addr, &maddr); ipv6_dev_mc_dec(dev, &maddr); } /* called with rtnl held */ static bool ndisc_allow_add(const struct net_device *dev, struct netlink_ext_ack *extack) { struct inet6_dev *idev = __in6_dev_get(dev); if (!idev || idev->cnf.disable_ipv6) { NL_SET_ERR_MSG(extack, "IPv6 is disabled on this device"); return false; } return true; } static struct sk_buff *ndisc_alloc_skb(struct net_device *dev, int len) { int hlen = LL_RESERVED_SPACE(dev); int tlen = dev->needed_tailroom; struct sock *sk = dev_net(dev)->ipv6.ndisc_sk; struct sk_buff *skb; skb = alloc_skb(hlen + sizeof(struct ipv6hdr) + len + tlen, GFP_ATOMIC); if (!skb) { ND_PRINTK(0, err, "ndisc: %s failed to allocate an skb\n", __func__); return NULL; } skb->protocol = htons(ETH_P_IPV6); skb->dev = dev; skb_reserve(skb, hlen + sizeof(struct ipv6hdr)); skb_reset_transport_header(skb); /* Manually assign socket ownership as we avoid calling * sock_alloc_send_pskb() to bypass wmem buffer limits */ skb_set_owner_w(skb, sk); return skb; } static void ip6_nd_hdr(struct sk_buff *skb, const struct in6_addr *saddr, const struct in6_addr *daddr, int hop_limit, int len) { struct ipv6hdr *hdr; struct inet6_dev *idev; unsigned tclass; rcu_read_lock(); idev = __in6_dev_get(skb->dev); tclass = idev ? idev->cnf.ndisc_tclass : 0; rcu_read_unlock(); skb_push(skb, sizeof(*hdr)); skb_reset_network_header(skb); hdr = ipv6_hdr(skb); ip6_flow_hdr(hdr, tclass, 0); hdr->payload_len = htons(len); hdr->nexthdr = IPPROTO_ICMPV6; hdr->hop_limit = hop_limit; hdr->saddr = *saddr; hdr->daddr = *daddr; } static void ndisc_send_skb(struct sk_buff *skb, const struct in6_addr *daddr, const struct in6_addr *saddr) { struct dst_entry *dst = skb_dst(skb); struct net *net = dev_net(skb->dev); struct sock *sk = net->ipv6.ndisc_sk; struct inet6_dev *idev; int err; struct icmp6hdr *icmp6h = icmp6_hdr(skb); u8 type; type = icmp6h->icmp6_type; if (!dst) { struct flowi6 fl6; int oif = skb->dev->ifindex; icmpv6_flow_init(sk, &fl6, type, saddr, daddr, oif); dst = icmp6_dst_alloc(skb->dev, &fl6); if (IS_ERR(dst)) { kfree_skb(skb); return; } skb_dst_set(skb, dst); } icmp6h->icmp6_cksum = csum_ipv6_magic(saddr, daddr, skb->len, IPPROTO_ICMPV6, csum_partial(icmp6h, skb->len, 0)); ip6_nd_hdr(skb, saddr, daddr, inet6_sk(sk)->hop_limit, skb->len); rcu_read_lock(); idev = __in6_dev_get(dst->dev); IP6_UPD_PO_STATS(net, idev, IPSTATS_MIB_OUT, skb->len); err = NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, skb, NULL, dst->dev, dst_output); if (!err) { ICMP6MSGOUT_INC_STATS(net, idev, type); ICMP6_INC_STATS(net, idev, ICMP6_MIB_OUTMSGS); } rcu_read_unlock(); } void ndisc_send_na(struct net_device *dev, const struct in6_addr *daddr, const struct in6_addr *solicited_addr, bool router, bool solicited, bool override, bool inc_opt) { struct sk_buff *skb; struct in6_addr tmpaddr; struct inet6_ifaddr *ifp; const struct in6_addr *src_addr; struct nd_msg *msg; int optlen = 0; /* for anycast or proxy, solicited_addr != src_addr */ ifp = ipv6_get_ifaddr(dev_net(dev), solicited_addr, dev, 1); if (ifp) { src_addr = solicited_addr; if (ifp->flags & IFA_F_OPTIMISTIC) override = false; inc_opt |= ifp->idev->cnf.force_tllao; in6_ifa_put(ifp); } else { if (ipv6_dev_get_saddr(dev_net(dev), dev, daddr, inet6_sk(dev_net(dev)->ipv6.ndisc_sk)->srcprefs, &tmpaddr)) return; src_addr = &tmpaddr; } if (!dev->addr_len) inc_opt = false; if (inc_opt) optlen += ndisc_opt_addr_space(dev, NDISC_NEIGHBOUR_ADVERTISEMENT); skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!skb) return; msg = skb_put(skb, sizeof(*msg)); *msg = (struct nd_msg) { .icmph = { .icmp6_type = NDISC_NEIGHBOUR_ADVERTISEMENT, .icmp6_router = router, .icmp6_solicited = solicited, .icmp6_override = override, }, .target = *solicited_addr, }; if (inc_opt) ndisc_fill_addr_option(skb, ND_OPT_TARGET_LL_ADDR, dev->dev_addr, NDISC_NEIGHBOUR_ADVERTISEMENT); ndisc_send_skb(skb, daddr, src_addr); } static void ndisc_send_unsol_na(struct net_device *dev) { struct inet6_dev *idev; struct inet6_ifaddr *ifa; idev = in6_dev_get(dev); if (!idev) return; read_lock_bh(&idev->lock); list_for_each_entry(ifa, &idev->addr_list, if_list) { /* skip tentative addresses until dad completes */ if (ifa->flags & IFA_F_TENTATIVE && !(ifa->flags & IFA_F_OPTIMISTIC)) continue; ndisc_send_na(dev, &in6addr_linklocal_allnodes, &ifa->addr, /*router=*/ !!idev->cnf.forwarding, /*solicited=*/ false, /*override=*/ true, /*inc_opt=*/ true); } read_unlock_bh(&idev->lock); in6_dev_put(idev); } void ndisc_send_ns(struct net_device *dev, const struct in6_addr *solicit, const struct in6_addr *daddr, const struct in6_addr *saddr, u64 nonce) { struct sk_buff *skb; struct in6_addr addr_buf; int inc_opt = dev->addr_len; int optlen = 0; struct nd_msg *msg; if (!saddr) { if (ipv6_get_lladdr(dev, &addr_buf, (IFA_F_TENTATIVE|IFA_F_OPTIMISTIC))) return; saddr = &addr_buf; } if (ipv6_addr_any(saddr)) inc_opt = false; if (inc_opt) optlen += ndisc_opt_addr_space(dev, NDISC_NEIGHBOUR_SOLICITATION); if (nonce != 0) optlen += 8; skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!skb) return; msg = skb_put(skb, sizeof(*msg)); *msg = (struct nd_msg) { .icmph = { .icmp6_type = NDISC_NEIGHBOUR_SOLICITATION, }, .target = *solicit, }; if (inc_opt) ndisc_fill_addr_option(skb, ND_OPT_SOURCE_LL_ADDR, dev->dev_addr, NDISC_NEIGHBOUR_SOLICITATION); if (nonce != 0) { u8 *opt = skb_put(skb, 8); opt[0] = ND_OPT_NONCE; opt[1] = 8 >> 3; memcpy(opt + 2, &nonce, 6); } ndisc_send_skb(skb, daddr, saddr); } void ndisc_send_rs(struct net_device *dev, const struct in6_addr *saddr, const struct in6_addr *daddr) { struct sk_buff *skb; struct rs_msg *msg; int send_sllao = dev->addr_len; int optlen = 0; #ifdef CONFIG_IPV6_OPTIMISTIC_DAD /* * According to section 2.2 of RFC 4429, we must not * send router solicitations with a sllao from * optimistic addresses, but we may send the solicitation * if we don't include the sllao. So here we check * if our address is optimistic, and if so, we * suppress the inclusion of the sllao. */ if (send_sllao) { struct inet6_ifaddr *ifp = ipv6_get_ifaddr(dev_net(dev), saddr, dev, 1); if (ifp) { if (ifp->flags & IFA_F_OPTIMISTIC) { send_sllao = 0; } in6_ifa_put(ifp); } else { send_sllao = 0; } } #endif if (send_sllao) optlen += ndisc_opt_addr_space(dev, NDISC_ROUTER_SOLICITATION); skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!skb) return; msg = skb_put(skb, sizeof(*msg)); *msg = (struct rs_msg) { .icmph = { .icmp6_type = NDISC_ROUTER_SOLICITATION, }, }; if (send_sllao) ndisc_fill_addr_option(skb, ND_OPT_SOURCE_LL_ADDR, dev->dev_addr, NDISC_ROUTER_SOLICITATION); ndisc_send_skb(skb, daddr, saddr); } static void ndisc_error_report(struct neighbour *neigh, struct sk_buff *skb) { /* * "The sender MUST return an ICMP * destination unreachable" */ dst_link_failure(skb); kfree_skb(skb); } /* Called with locked neigh: either read or both */ static void ndisc_solicit(struct neighbour *neigh, struct sk_buff *skb) { struct in6_addr *saddr = NULL; struct in6_addr mcaddr; struct net_device *dev = neigh->dev; struct in6_addr *target = (struct in6_addr *)&neigh->primary_key; int probes = atomic_read(&neigh->probes); if (skb && ipv6_chk_addr_and_flags(dev_net(dev), &ipv6_hdr(skb)->saddr, dev, false, 1, IFA_F_TENTATIVE|IFA_F_OPTIMISTIC)) saddr = &ipv6_hdr(skb)->saddr; probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES); if (probes < 0) { if (!(neigh->nud_state & NUD_VALID)) { ND_PRINTK(1, dbg, "%s: trying to ucast probe in NUD_INVALID: %pI6\n", __func__, target); } ndisc_send_ns(dev, target, target, saddr, 0); } else if ((probes -= NEIGH_VAR(neigh->parms, APP_PROBES)) < 0) { neigh_app_ns(neigh); } else { addrconf_addr_solict_mult(target, &mcaddr); ndisc_send_ns(dev, target, &mcaddr, saddr, 0); } } static int pndisc_is_router(const void *pkey, struct net_device *dev) { struct pneigh_entry *n; int ret = -1; read_lock_bh(&nd_tbl.lock); n = __pneigh_lookup(&nd_tbl, dev_net(dev), pkey, dev); if (n) ret = !!(n->flags & NTF_ROUTER); read_unlock_bh(&nd_tbl.lock); return ret; } void ndisc_update(const struct net_device *dev, struct neighbour *neigh, const u8 *lladdr, u8 new, u32 flags, u8 icmp6_type, struct ndisc_options *ndopts) { neigh_update(neigh, lladdr, new, flags, 0); /* report ndisc ops about neighbour update */ ndisc_ops_update(dev, neigh, flags, icmp6_type, ndopts); } static void ndisc_recv_ns(struct sk_buff *skb) { struct nd_msg *msg = (struct nd_msg *)skb_transport_header(skb); const struct in6_addr *saddr = &ipv6_hdr(skb)->saddr; const struct in6_addr *daddr = &ipv6_hdr(skb)->daddr; u8 *lladdr = NULL; u32 ndoptlen = skb_tail_pointer(skb) - (skb_transport_header(skb) + offsetof(struct nd_msg, opt)); struct ndisc_options ndopts; struct net_device *dev = skb->dev; struct inet6_ifaddr *ifp; struct inet6_dev *idev = NULL; struct neighbour *neigh; int dad = ipv6_addr_any(saddr); bool inc; int is_router = -1; u64 nonce = 0; if (skb->len < sizeof(struct nd_msg)) { ND_PRINTK(2, warn, "NS: packet too short\n"); return; } if (ipv6_addr_is_multicast(&msg->target)) { ND_PRINTK(2, warn, "NS: multicast target address\n"); return; } /* * RFC2461 7.1.1: * DAD has to be destined for solicited node multicast address. */ if (dad && !ipv6_addr_is_solict_mult(daddr)) { ND_PRINTK(2, warn, "NS: bad DAD packet (wrong destination)\n"); return; } if (!ndisc_parse_options(dev, msg->opt, ndoptlen, &ndopts)) { ND_PRINTK(2, warn, "NS: invalid ND options\n"); return; } if (ndopts.nd_opts_src_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, dev); if (!lladdr) { ND_PRINTK(2, warn, "NS: invalid link-layer address length\n"); return; } /* RFC2461 7.1.1: * If the IP source address is the unspecified address, * there MUST NOT be source link-layer address option * in the message. */ if (dad) { ND_PRINTK(2, warn, "NS: bad DAD packet (link-layer address option)\n"); return; } } if (ndopts.nd_opts_nonce && ndopts.nd_opts_nonce->nd_opt_len == 1) memcpy(&nonce, (u8 *)(ndopts.nd_opts_nonce + 1), 6); inc = ipv6_addr_is_multicast(daddr); ifp = ipv6_get_ifaddr(dev_net(dev), &msg->target, dev, 1); if (ifp) { have_ifp: if (ifp->flags & (IFA_F_TENTATIVE|IFA_F_OPTIMISTIC)) { if (dad) { if (nonce != 0 && ifp->dad_nonce == nonce) { u8 *np = (u8 *)&nonce; /* Matching nonce if looped back */ ND_PRINTK(2, notice, "%s: IPv6 DAD loopback for address %pI6c nonce %pM ignored\n", ifp->idev->dev->name, &ifp->addr, np); goto out; } /* * We are colliding with another node * who is doing DAD * so fail our DAD process */ addrconf_dad_failure(skb, ifp); return; } else { /* * This is not a dad solicitation. * If we are an optimistic node, * we should respond. * Otherwise, we should ignore it. */ if (!(ifp->flags & IFA_F_OPTIMISTIC)) goto out; } } idev = ifp->idev; } else { struct net *net = dev_net(dev); /* perhaps an address on the master device */ if (netif_is_l3_slave(dev)) { struct net_device *mdev; mdev = netdev_master_upper_dev_get_rcu(dev); if (mdev) { ifp = ipv6_get_ifaddr(net, &msg->target, mdev, 1); if (ifp) goto have_ifp; } } idev = in6_dev_get(dev); if (!idev) { /* XXX: count this drop? */ return; } if (ipv6_chk_acast_addr(net, dev, &msg->target) || (idev->cnf.forwarding && (net->ipv6.devconf_all->proxy_ndp || idev->cnf.proxy_ndp) && (is_router = pndisc_is_router(&msg->target, dev)) >= 0)) { if (!(NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED) && skb->pkt_type != PACKET_HOST && inc && NEIGH_VAR(idev->nd_parms, PROXY_DELAY) != 0) { /* * for anycast or proxy, * sender should delay its response * by a random time between 0 and * MAX_ANYCAST_DELAY_TIME seconds. * (RFC2461) -- yoshfuji */ struct sk_buff *n = skb_clone(skb, GFP_ATOMIC); if (n) pneigh_enqueue(&nd_tbl, idev->nd_parms, n); goto out; } } else goto out; } if (is_router < 0) is_router = idev->cnf.forwarding; if (dad) { ndisc_send_na(dev, &in6addr_linklocal_allnodes, &msg->target, !!is_router, false, (ifp != NULL), true); goto out; } if (inc) NEIGH_CACHE_STAT_INC(&nd_tbl, rcv_probes_mcast); else NEIGH_CACHE_STAT_INC(&nd_tbl, rcv_probes_ucast); /* * update / create cache entry * for the source address */ neigh = __neigh_lookup(&nd_tbl, saddr, dev, !inc || lladdr || !dev->addr_len); if (neigh) ndisc_update(dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE, NDISC_NEIGHBOUR_SOLICITATION, &ndopts); if (neigh || !dev->header_ops) { ndisc_send_na(dev, saddr, &msg->target, !!is_router, true, (ifp != NULL && inc), inc); if (neigh) neigh_release(neigh); } out: if (ifp) in6_ifa_put(ifp); else in6_dev_put(idev); } static void ndisc_recv_na(struct sk_buff *skb) { struct nd_msg *msg = (struct nd_msg *)skb_transport_header(skb); struct in6_addr *saddr = &ipv6_hdr(skb)->saddr; const struct in6_addr *daddr = &ipv6_hdr(skb)->daddr; u8 *lladdr = NULL; u32 ndoptlen = skb_tail_pointer(skb) - (skb_transport_header(skb) + offsetof(struct nd_msg, opt)); struct ndisc_options ndopts; struct net_device *dev = skb->dev; struct inet6_dev *idev = __in6_dev_get(dev); struct inet6_ifaddr *ifp; struct neighbour *neigh; if (skb->len < sizeof(struct nd_msg)) { ND_PRINTK(2, warn, "NA: packet too short\n"); return; } if (ipv6_addr_is_multicast(&msg->target)) { ND_PRINTK(2, warn, "NA: target address is multicast\n"); return; } if (ipv6_addr_is_multicast(daddr) && msg->icmph.icmp6_solicited) { ND_PRINTK(2, warn, "NA: solicited NA is multicasted\n"); return; } /* For some 802.11 wireless deployments (and possibly other networks), * there will be a NA proxy and unsolicitd packets are attacks * and thus should not be accepted. */ if (!msg->icmph.icmp6_solicited && idev && idev->cnf.drop_unsolicited_na) return; if (!ndisc_parse_options(dev, msg->opt, ndoptlen, &ndopts)) { ND_PRINTK(2, warn, "NS: invalid ND option\n"); return; } if (ndopts.nd_opts_tgt_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr, dev); if (!lladdr) { ND_PRINTK(2, warn, "NA: invalid link-layer address length\n"); return; } } ifp = ipv6_get_ifaddr(dev_net(dev), &msg->target, dev, 1); if (ifp) { if (skb->pkt_type != PACKET_LOOPBACK && (ifp->flags & IFA_F_TENTATIVE)) { addrconf_dad_failure(skb, ifp); return; } /* What should we make now? The advertisement is invalid, but ndisc specs say nothing about it. It could be misconfiguration, or an smart proxy agent tries to help us :-) We should not print the error if NA has been received from loopback - it is just our own unsolicited advertisement. */ if (skb->pkt_type != PACKET_LOOPBACK) ND_PRINTK(1, warn, "NA: %pM advertised our address %pI6c on %s!\n", eth_hdr(skb)->h_source, &ifp->addr, ifp->idev->dev->name); in6_ifa_put(ifp); return; } neigh = neigh_lookup(&nd_tbl, &msg->target, dev); if (neigh) { u8 old_flags = neigh->flags; struct net *net = dev_net(dev); if (neigh->nud_state & NUD_FAILED) goto out; /* * Don't update the neighbor cache entry on a proxy NA from * ourselves because either the proxied node is off link or it * has already sent a NA to us. */ if (lladdr && !memcmp(lladdr, dev->dev_addr, dev->addr_len) && net->ipv6.devconf_all->forwarding && net->ipv6.devconf_all->proxy_ndp && pneigh_lookup(&nd_tbl, net, &msg->target, dev, 0)) { /* XXX: idev->cnf.proxy_ndp */ goto out; } ndisc_update(dev, neigh, lladdr, msg->icmph.icmp6_solicited ? NUD_REACHABLE : NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| (msg->icmph.icmp6_override ? NEIGH_UPDATE_F_OVERRIDE : 0)| NEIGH_UPDATE_F_OVERRIDE_ISROUTER| (msg->icmph.icmp6_router ? NEIGH_UPDATE_F_ISROUTER : 0), NDISC_NEIGHBOUR_ADVERTISEMENT, &ndopts); if ((old_flags & ~neigh->flags) & NTF_ROUTER) { /* * Change: router to host */ rt6_clean_tohost(dev_net(dev), saddr); } out: neigh_release(neigh); } } static void ndisc_recv_rs(struct sk_buff *skb) { struct rs_msg *rs_msg = (struct rs_msg *)skb_transport_header(skb); unsigned long ndoptlen = skb->len - sizeof(*rs_msg); struct neighbour *neigh; struct inet6_dev *idev; const struct in6_addr *saddr = &ipv6_hdr(skb)->saddr; struct ndisc_options ndopts; u8 *lladdr = NULL; if (skb->len < sizeof(*rs_msg)) return; idev = __in6_dev_get(skb->dev); if (!idev) { ND_PRINTK(1, err, "RS: can't find in6 device\n"); return; } /* Don't accept RS if we're not in router mode */ if (!idev->cnf.forwarding) goto out; /* * Don't update NCE if src = ::; * this implies that the source node has no ip address assigned yet. */ if (ipv6_addr_any(saddr)) goto out; /* Parse ND options */ if (!ndisc_parse_options(skb->dev, rs_msg->opt, ndoptlen, &ndopts)) { ND_PRINTK(2, notice, "NS: invalid ND option, ignored\n"); goto out; } if (ndopts.nd_opts_src_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, skb->dev); if (!lladdr) goto out; } neigh = __neigh_lookup(&nd_tbl, saddr, skb->dev, 1); if (neigh) { ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE_ISROUTER, NDISC_ROUTER_SOLICITATION, &ndopts); neigh_release(neigh); } out: return; } static void ndisc_ra_useropt(struct sk_buff *ra, struct nd_opt_hdr *opt) { struct icmp6hdr *icmp6h = (struct icmp6hdr *)skb_transport_header(ra); struct sk_buff *skb; struct nlmsghdr *nlh; struct nduseroptmsg *ndmsg; struct net *net = dev_net(ra->dev); int err; int base_size = NLMSG_ALIGN(sizeof(struct nduseroptmsg) + (opt->nd_opt_len << 3)); size_t msg_size = base_size + nla_total_size(sizeof(struct in6_addr)); skb = nlmsg_new(msg_size, GFP_ATOMIC); if (!skb) { err = -ENOBUFS; goto errout; } nlh = nlmsg_put(skb, 0, 0, RTM_NEWNDUSEROPT, base_size, 0); if (!nlh) { goto nla_put_failure; } ndmsg = nlmsg_data(nlh); ndmsg->nduseropt_family = AF_INET6; ndmsg->nduseropt_ifindex = ra->dev->ifindex; ndmsg->nduseropt_icmp_type = icmp6h->icmp6_type; ndmsg->nduseropt_icmp_code = icmp6h->icmp6_code; ndmsg->nduseropt_opts_len = opt->nd_opt_len << 3; memcpy(ndmsg + 1, opt, opt->nd_opt_len << 3); if (nla_put_in6_addr(skb, NDUSEROPT_SRCADDR, &ipv6_hdr(ra)->saddr)) goto nla_put_failure; nlmsg_end(skb, nlh); rtnl_notify(skb, net, 0, RTNLGRP_ND_USEROPT, NULL, GFP_ATOMIC); return; nla_put_failure: nlmsg_free(skb); err = -EMSGSIZE; errout: rtnl_set_sk_err(net, RTNLGRP_ND_USEROPT, err); } static void ndisc_router_discovery(struct sk_buff *skb) { struct ra_msg *ra_msg = (struct ra_msg *)skb_transport_header(skb); struct neighbour *neigh = NULL; struct inet6_dev *in6_dev; struct fib6_info *rt = NULL; u32 defrtr_usr_metric; struct net *net; int lifetime; struct ndisc_options ndopts; int optlen; unsigned int pref = 0; __u32 old_if_flags; bool send_ifinfo_notify = false; __u8 *opt = (__u8 *)(ra_msg + 1); optlen = (skb_tail_pointer(skb) - skb_transport_header(skb)) - sizeof(struct ra_msg); ND_PRINTK(2, info, "RA: %s, dev: %s\n", __func__, skb->dev->name); if (!(ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)) { ND_PRINTK(2, warn, "RA: source address is not link-local\n"); return; } if (optlen < 0) { ND_PRINTK(2, warn, "RA: packet too short\n"); return; } #ifdef CONFIG_IPV6_NDISC_NODETYPE if (skb->ndisc_nodetype == NDISC_NODETYPE_HOST) { ND_PRINTK(2, warn, "RA: from host or unauthorized router\n"); return; } #endif /* * set the RA_RECV flag in the interface */ in6_dev = __in6_dev_get(skb->dev); if (!in6_dev) { ND_PRINTK(0, err, "RA: can't find inet6 device for %s\n", skb->dev->name); return; } if (!ndisc_parse_options(skb->dev, opt, optlen, &ndopts)) { ND_PRINTK(2, warn, "RA: invalid ND options\n"); return; } if (!ipv6_accept_ra(in6_dev)) { ND_PRINTK(2, info, "RA: %s, did not accept ra for dev: %s\n", __func__, skb->dev->name); goto skip_linkparms; } #ifdef CONFIG_IPV6_NDISC_NODETYPE /* skip link-specific parameters from interior routers */ if (skb->ndisc_nodetype == NDISC_NODETYPE_NODEFAULT) { ND_PRINTK(2, info, "RA: %s, nodetype is NODEFAULT, dev: %s\n", __func__, skb->dev->name); goto skip_linkparms; } #endif if (in6_dev->if_flags & IF_RS_SENT) { /* * flag that an RA was received after an RS was sent * out on this interface. */ in6_dev->if_flags |= IF_RA_RCVD; } /* * Remember the managed/otherconf flags from most recently * received RA message (RFC 2462) -- yoshfuji */ old_if_flags = in6_dev->if_flags; in6_dev->if_flags = (in6_dev->if_flags & ~(IF_RA_MANAGED | IF_RA_OTHERCONF)) | (ra_msg->icmph.icmp6_addrconf_managed ? IF_RA_MANAGED : 0) | (ra_msg->icmph.icmp6_addrconf_other ? IF_RA_OTHERCONF : 0); if (old_if_flags != in6_dev->if_flags) send_ifinfo_notify = true; if (!in6_dev->cnf.accept_ra_defrtr) { ND_PRINTK(2, info, "RA: %s, defrtr is false for dev: %s\n", __func__, skb->dev->name); goto skip_defrtr; } lifetime = ntohs(ra_msg->icmph.icmp6_rt_lifetime); if (lifetime != 0 && lifetime < in6_dev->cnf.accept_ra_min_lft) { ND_PRINTK(2, info, "RA: router lifetime (%ds) is too short: %s\n", lifetime, skb->dev->name); goto skip_defrtr; } /* Do not accept RA with source-addr found on local machine unless * accept_ra_from_local is set to true. */ net = dev_net(in6_dev->dev); if (!in6_dev->cnf.accept_ra_from_local && ipv6_chk_addr(net, &ipv6_hdr(skb)->saddr, in6_dev->dev, 0)) { ND_PRINTK(2, info, "RA from local address detected on dev: %s: default router ignored\n", skb->dev->name); goto skip_defrtr; } #ifdef CONFIG_IPV6_ROUTER_PREF pref = ra_msg->icmph.icmp6_router_pref; /* 10b is handled as if it were 00b (medium) */ if (pref == ICMPV6_ROUTER_PREF_INVALID || !in6_dev->cnf.accept_ra_rtr_pref) pref = ICMPV6_ROUTER_PREF_MEDIUM; #endif /* routes added from RAs do not use nexthop objects */ rt = rt6_get_dflt_router(net, &ipv6_hdr(skb)->saddr, skb->dev); if (rt) { neigh = ip6_neigh_lookup(&rt->fib6_nh->fib_nh_gw6, rt->fib6_nh->fib_nh_dev, NULL, &ipv6_hdr(skb)->saddr); if (!neigh) { ND_PRINTK(0, err, "RA: %s got default router without neighbour\n", __func__); fib6_info_release(rt); return; } } /* Set default route metric as specified by user */ defrtr_usr_metric = in6_dev->cnf.ra_defrtr_metric; /* delete the route if lifetime is 0 or if metric needs change */ if (rt && (lifetime == 0 || rt->fib6_metric != defrtr_usr_metric)) { ip6_del_rt(net, rt, false); rt = NULL; } ND_PRINTK(3, info, "RA: rt: %p lifetime: %d, metric: %d, for dev: %s\n", rt, lifetime, defrtr_usr_metric, skb->dev->name); if (!rt && lifetime) { ND_PRINTK(3, info, "RA: adding default router\n"); if (neigh) neigh_release(neigh); rt = rt6_add_dflt_router(net, &ipv6_hdr(skb)->saddr, skb->dev, pref, defrtr_usr_metric); if (!rt) { ND_PRINTK(0, err, "RA: %s failed to add default route\n", __func__); return; } neigh = ip6_neigh_lookup(&rt->fib6_nh->fib_nh_gw6, rt->fib6_nh->fib_nh_dev, NULL, &ipv6_hdr(skb)->saddr); if (!neigh) { ND_PRINTK(0, err, "RA: %s got default router without neighbour\n", __func__); fib6_info_release(rt); return; } neigh->flags |= NTF_ROUTER; } else if (rt) { rt->fib6_flags = (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref); } if (rt) fib6_set_expires(rt, jiffies + (HZ * lifetime)); if (in6_dev->cnf.accept_ra_min_hop_limit < 256 && ra_msg->icmph.icmp6_hop_limit) { if (in6_dev->cnf.accept_ra_min_hop_limit <= ra_msg->icmph.icmp6_hop_limit) { in6_dev->cnf.hop_limit = ra_msg->icmph.icmp6_hop_limit; fib6_metric_set(rt, RTAX_HOPLIMIT, ra_msg->icmph.icmp6_hop_limit); } else { ND_PRINTK(2, warn, "RA: Got route advertisement with lower hop_limit than minimum\n"); } } skip_defrtr: /* * Update Reachable Time and Retrans Timer */ if (in6_dev->nd_parms) { unsigned long rtime = ntohl(ra_msg->retrans_timer); if (rtime && rtime/1000 < MAX_SCHEDULE_TIMEOUT/HZ) { rtime = (rtime*HZ)/1000; if (rtime < HZ/100) rtime = HZ/100; NEIGH_VAR_SET(in6_dev->nd_parms, RETRANS_TIME, rtime); in6_dev->tstamp = jiffies; send_ifinfo_notify = true; } rtime = ntohl(ra_msg->reachable_time); if (rtime && rtime/1000 < MAX_SCHEDULE_TIMEOUT/(3*HZ)) { rtime = (rtime*HZ)/1000; if (rtime < HZ/10) rtime = HZ/10; if (rtime != NEIGH_VAR(in6_dev->nd_parms, BASE_REACHABLE_TIME)) { NEIGH_VAR_SET(in6_dev->nd_parms, BASE_REACHABLE_TIME, rtime); NEIGH_VAR_SET(in6_dev->nd_parms, GC_STALETIME, 3 * rtime); in6_dev->nd_parms->reachable_time = neigh_rand_reach_time(rtime); in6_dev->tstamp = jiffies; send_ifinfo_notify = true; } } } skip_linkparms: /* * Process options. */ if (!neigh) neigh = __neigh_lookup(&nd_tbl, &ipv6_hdr(skb)->saddr, skb->dev, 1); if (neigh) { u8 *lladdr = NULL; if (ndopts.nd_opts_src_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, skb->dev); if (!lladdr) { ND_PRINTK(2, warn, "RA: invalid link-layer address length\n"); goto out; } } ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE_ISROUTER| NEIGH_UPDATE_F_ISROUTER, NDISC_ROUTER_ADVERTISEMENT, &ndopts); } if (!ipv6_accept_ra(in6_dev)) { ND_PRINTK(2, info, "RA: %s, accept_ra is false for dev: %s\n", __func__, skb->dev->name); goto out; } #ifdef CONFIG_IPV6_ROUTE_INFO if (!in6_dev->cnf.accept_ra_from_local && ipv6_chk_addr(dev_net(in6_dev->dev), &ipv6_hdr(skb)->saddr, in6_dev->dev, 0)) { ND_PRINTK(2, info, "RA from local address detected on dev: %s: router info ignored.\n", skb->dev->name); goto skip_routeinfo; } if (in6_dev->cnf.accept_ra_rtr_pref && ndopts.nd_opts_ri) { struct nd_opt_hdr *p; for (p = ndopts.nd_opts_ri; p; p = ndisc_next_option(p, ndopts.nd_opts_ri_end)) { struct route_info *ri = (struct route_info *)p; #ifdef CONFIG_IPV6_NDISC_NODETYPE if (skb->ndisc_nodetype == NDISC_NODETYPE_NODEFAULT && ri->prefix_len == 0) continue; #endif if (ri->prefix_len == 0 && !in6_dev->cnf.accept_ra_defrtr) continue; if (ri->lifetime != 0 && ntohl(ri->lifetime) < in6_dev->cnf.accept_ra_min_lft) continue; if (ri->prefix_len < in6_dev->cnf.accept_ra_rt_info_min_plen) continue; if (ri->prefix_len > in6_dev->cnf.accept_ra_rt_info_max_plen) continue; rt6_route_rcv(skb->dev, (u8 *)p, (p->nd_opt_len) << 3, &ipv6_hdr(skb)->saddr); } } skip_routeinfo: #endif #ifdef CONFIG_IPV6_NDISC_NODETYPE /* skip link-specific ndopts from interior routers */ if (skb->ndisc_nodetype == NDISC_NODETYPE_NODEFAULT) { ND_PRINTK(2, info, "RA: %s, nodetype is NODEFAULT (interior routes), dev: %s\n", __func__, skb->dev->name); goto out; } #endif if (in6_dev->cnf.accept_ra_pinfo && ndopts.nd_opts_pi) { struct nd_opt_hdr *p; for (p = ndopts.nd_opts_pi; p; p = ndisc_next_option(p, ndopts.nd_opts_pi_end)) { addrconf_prefix_rcv(skb->dev, (u8 *)p, (p->nd_opt_len) << 3, ndopts.nd_opts_src_lladdr != NULL); } } if (ndopts.nd_opts_mtu && in6_dev->cnf.accept_ra_mtu) { __be32 n; u32 mtu; memcpy(&n, ((u8 *)(ndopts.nd_opts_mtu+1))+2, sizeof(mtu)); mtu = ntohl(n); if (in6_dev->ra_mtu != mtu) { in6_dev->ra_mtu = mtu; send_ifinfo_notify = true; } if (mtu < IPV6_MIN_MTU || mtu > skb->dev->mtu) { ND_PRINTK(2, warn, "RA: invalid mtu: %d\n", mtu); } else if (in6_dev->cnf.mtu6 != mtu) { in6_dev->cnf.mtu6 = mtu; fib6_metric_set(rt, RTAX_MTU, mtu); rt6_mtu_change(skb->dev, mtu); } } if (ndopts.nd_useropts) { struct nd_opt_hdr *p; for (p = ndopts.nd_useropts; p; p = ndisc_next_useropt(skb->dev, p, ndopts.nd_useropts_end)) { ndisc_ra_useropt(skb, p); } } if (ndopts.nd_opts_tgt_lladdr || ndopts.nd_opts_rh) { ND_PRINTK(2, warn, "RA: invalid RA options\n"); } out: /* Send a notify if RA changed managed/otherconf flags or * timer settings or ra_mtu value */ if (send_ifinfo_notify) inet6_ifinfo_notify(RTM_NEWLINK, in6_dev); fib6_info_release(rt); if (neigh) neigh_release(neigh); } static void ndisc_redirect_rcv(struct sk_buff *skb) { u8 *hdr; struct ndisc_options ndopts; struct rd_msg *msg = (struct rd_msg *)skb_transport_header(skb); u32 ndoptlen = skb_tail_pointer(skb) - (skb_transport_header(skb) + offsetof(struct rd_msg, opt)); #ifdef CONFIG_IPV6_NDISC_NODETYPE switch (skb->ndisc_nodetype) { case NDISC_NODETYPE_HOST: case NDISC_NODETYPE_NODEFAULT: ND_PRINTK(2, warn, "Redirect: from host or unauthorized router\n"); return; } #endif if (!(ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)) { ND_PRINTK(2, warn, "Redirect: source address is not link-local\n"); return; } if (!ndisc_parse_options(skb->dev, msg->opt, ndoptlen, &ndopts)) return; if (!ndopts.nd_opts_rh) { ip6_redirect_no_header(skb, dev_net(skb->dev), skb->dev->ifindex); return; } hdr = (u8 *)ndopts.nd_opts_rh; hdr += 8; if (!pskb_pull(skb, hdr - skb_transport_header(skb))) return; icmpv6_notify(skb, NDISC_REDIRECT, 0, 0); } static void ndisc_fill_redirect_hdr_option(struct sk_buff *skb, struct sk_buff *orig_skb, int rd_len) { u8 *opt = skb_put(skb, rd_len); memset(opt, 0, 8); *(opt++) = ND_OPT_REDIRECT_HDR; *(opt++) = (rd_len >> 3); opt += 6; skb_copy_bits(orig_skb, skb_network_offset(orig_skb), opt, rd_len - 8); } void ndisc_send_redirect(struct sk_buff *skb, const struct in6_addr *target) { struct net_device *dev = skb->dev; struct net *net = dev_net(dev); struct sock *sk = net->ipv6.ndisc_sk; int optlen = 0; struct inet_peer *peer; struct sk_buff *buff; struct rd_msg *msg; struct in6_addr saddr_buf; struct rt6_info *rt; struct dst_entry *dst; struct flowi6 fl6; int rd_len; u8 ha_buf[MAX_ADDR_LEN], *ha = NULL, ops_data_buf[NDISC_OPS_REDIRECT_DATA_SPACE], *ops_data = NULL; bool ret; if (netif_is_l3_master(skb->dev)) { dev = __dev_get_by_index(dev_net(skb->dev), IPCB(skb)->iif); if (!dev) return; } if (ipv6_get_lladdr(dev, &saddr_buf, IFA_F_TENTATIVE)) { ND_PRINTK(2, warn, "Redirect: no link-local address on %s\n", dev->name); return; } if (!ipv6_addr_equal(&ipv6_hdr(skb)->daddr, target) && ipv6_addr_type(target) != (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) { ND_PRINTK(2, warn, "Redirect: target address is not link-local unicast\n"); return; } icmpv6_flow_init(sk, &fl6, NDISC_REDIRECT, &saddr_buf, &ipv6_hdr(skb)->saddr, dev->ifindex); dst = ip6_route_output(net, NULL, &fl6); if (dst->error) { dst_release(dst); return; } dst = xfrm_lookup(net, dst, flowi6_to_flowi(&fl6), NULL, 0); if (IS_ERR(dst)) return; rt = (struct rt6_info *) dst; if (rt->rt6i_flags & RTF_GATEWAY) { ND_PRINTK(2, warn, "Redirect: destination is not a neighbour\n"); goto release; } peer = inet_getpeer_v6(net->ipv6.peers, &ipv6_hdr(skb)->saddr, 1); ret = inet_peer_xrlim_allow(peer, 1*HZ); if (peer) inet_putpeer(peer); if (!ret) goto release; if (dev->addr_len) { struct neighbour *neigh = dst_neigh_lookup(skb_dst(skb), target); if (!neigh) { ND_PRINTK(2, warn, "Redirect: no neigh for target address\n"); goto release; } read_lock_bh(&neigh->lock); if (neigh->nud_state & NUD_VALID) { memcpy(ha_buf, neigh->ha, dev->addr_len); read_unlock_bh(&neigh->lock); ha = ha_buf; optlen += ndisc_redirect_opt_addr_space(dev, neigh, ops_data_buf, &ops_data); } else read_unlock_bh(&neigh->lock); neigh_release(neigh); } rd_len = min_t(unsigned int, IPV6_MIN_MTU - sizeof(struct ipv6hdr) - sizeof(*msg) - optlen, skb->len + 8); rd_len &= ~0x7; optlen += rd_len; buff = ndisc_alloc_skb(dev, sizeof(*msg) + optlen); if (!buff) goto release; msg = skb_put(buff, sizeof(*msg)); *msg = (struct rd_msg) { .icmph = { .icmp6_type = NDISC_REDIRECT, }, .target = *target, .dest = ipv6_hdr(skb)->daddr, }; /* * include target_address option */ if (ha) ndisc_fill_redirect_addr_option(buff, ha, ops_data); /* * build redirect option and copy skb over to the new packet. */ if (rd_len) ndisc_fill_redirect_hdr_option(buff, skb, rd_len); skb_dst_set(buff, dst); ndisc_send_skb(buff, &ipv6_hdr(skb)->saddr, &saddr_buf); return; release: dst_release(dst); } static void pndisc_redo(struct sk_buff *skb) { ndisc_recv_ns(skb); kfree_skb(skb); } static int ndisc_is_multicast(const void *pkey) { return ipv6_addr_is_multicast((struct in6_addr *)pkey); } static bool ndisc_suppress_frag_ndisc(struct sk_buff *skb) { struct inet6_dev *idev = __in6_dev_get(skb->dev); if (!idev) return true; if (IP6CB(skb)->flags & IP6SKB_FRAGMENTED && idev->cnf.suppress_frag_ndisc) { net_warn_ratelimited("Received fragmented ndisc packet. Carefully consider disabling suppress_frag_ndisc.\n"); return true; } return false; } int ndisc_rcv(struct sk_buff *skb) { struct nd_msg *msg; if (ndisc_suppress_frag_ndisc(skb)) return 0; if (skb_linearize(skb)) return 0; msg = (struct nd_msg *)skb_transport_header(skb); __skb_push(skb, skb->data - skb_transport_header(skb)); if (ipv6_hdr(skb)->hop_limit != 255) { ND_PRINTK(2, warn, "NDISC: invalid hop-limit: %d\n", ipv6_hdr(skb)->hop_limit); return 0; } if (msg->icmph.icmp6_code != 0) { ND_PRINTK(2, warn, "NDISC: invalid ICMPv6 code: %d\n", msg->icmph.icmp6_code); return 0; } switch (msg->icmph.icmp6_type) { case NDISC_NEIGHBOUR_SOLICITATION: memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb)); ndisc_recv_ns(skb); break; case NDISC_NEIGHBOUR_ADVERTISEMENT: ndisc_recv_na(skb); break; case NDISC_ROUTER_SOLICITATION: ndisc_recv_rs(skb); break; case NDISC_ROUTER_ADVERTISEMENT: ndisc_router_discovery(skb); break; case NDISC_REDIRECT: ndisc_redirect_rcv(skb); break; } return 0; } static int ndisc_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct netdev_notifier_change_info *change_info; struct net *net = dev_net(dev); struct inet6_dev *idev; switch (event) { case NETDEV_CHANGEADDR: neigh_changeaddr(&nd_tbl, dev); fib6_run_gc(0, net, false); fallthrough; case NETDEV_UP: idev = in6_dev_get(dev); if (!idev) break; if (idev->cnf.ndisc_notify || net->ipv6.devconf_all->ndisc_notify) ndisc_send_unsol_na(dev); in6_dev_put(idev); break; case NETDEV_CHANGE: change_info = ptr; if (change_info->flags_changed & IFF_NOARP) neigh_changeaddr(&nd_tbl, dev); if (!netif_carrier_ok(dev)) neigh_carrier_down(&nd_tbl, dev); break; case NETDEV_DOWN: neigh_ifdown(&nd_tbl, dev); fib6_run_gc(0, net, false); break; case NETDEV_NOTIFY_PEERS: ndisc_send_unsol_na(dev); break; default: break; } return NOTIFY_DONE; } static struct notifier_block ndisc_netdev_notifier = { .notifier_call = ndisc_netdev_event, .priority = ADDRCONF_NOTIFY_PRIORITY - 5, }; #ifdef CONFIG_SYSCTL static void ndisc_warn_deprecated_sysctl(struct ctl_table *ctl, const char *func, const char *dev_name) { static char warncomm[TASK_COMM_LEN]; static int warned; if (strcmp(warncomm, current->comm) && warned < 5) { strcpy(warncomm, current->comm); pr_warn("process `%s' is using deprecated sysctl (%s) net.ipv6.neigh.%s.%s - use net.ipv6.neigh.%s.%s_ms instead\n", warncomm, func, dev_name, ctl->procname, dev_name, ctl->procname); warned++; } } int ndisc_ifinfo_sysctl_change(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct net_device *dev = ctl->extra1; struct inet6_dev *idev; int ret; if ((strcmp(ctl->procname, "retrans_time") == 0) || (strcmp(ctl->procname, "base_reachable_time") == 0)) ndisc_warn_deprecated_sysctl(ctl, "syscall", dev ? dev->name : "default"); if (strcmp(ctl->procname, "retrans_time") == 0) ret = neigh_proc_dointvec(ctl, write, buffer, lenp, ppos); else if (strcmp(ctl->procname, "base_reachable_time") == 0) ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); else if ((strcmp(ctl->procname, "retrans_time_ms") == 0) || (strcmp(ctl->procname, "base_reachable_time_ms") == 0)) ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); else ret = -1; if (write && ret == 0 && dev && (idev = in6_dev_get(dev)) != NULL) { if (ctl->data == &NEIGH_VAR(idev->nd_parms, BASE_REACHABLE_TIME)) idev->nd_parms->reachable_time = neigh_rand_reach_time(NEIGH_VAR(idev->nd_parms, BASE_REACHABLE_TIME)); idev->tstamp = jiffies; inet6_ifinfo_notify(RTM_NEWLINK, idev); in6_dev_put(idev); } return ret; } #endif static int __net_init ndisc_net_init(struct net *net) { struct ipv6_pinfo *np; struct sock *sk; int err; err = inet_ctl_sock_create(&sk, PF_INET6, SOCK_RAW, IPPROTO_ICMPV6, net); if (err < 0) { ND_PRINTK(0, err, "NDISC: Failed to initialize the control socket (err %d)\n", err); return err; } net->ipv6.ndisc_sk = sk; np = inet6_sk(sk); np->hop_limit = 255; /* Do not loopback ndisc messages */ np->mc_loop = 0; return 0; } static void __net_exit ndisc_net_exit(struct net *net) { inet_ctl_sock_destroy(net->ipv6.ndisc_sk); } static struct pernet_operations ndisc_net_ops = { .init = ndisc_net_init, .exit = ndisc_net_exit, }; int __init ndisc_init(void) { int err; err = register_pernet_subsys(&ndisc_net_ops); if (err) return err; /* * Initialize the neighbour table */ neigh_table_init(NEIGH_ND_TABLE, &nd_tbl); #ifdef CONFIG_SYSCTL err = neigh_sysctl_register(NULL, &nd_tbl.parms, ndisc_ifinfo_sysctl_change); if (err) goto out_unregister_pernet; out: #endif return err; #ifdef CONFIG_SYSCTL out_unregister_pernet: unregister_pernet_subsys(&ndisc_net_ops); goto out; #endif } int __init ndisc_late_init(void) { return register_netdevice_notifier(&ndisc_netdev_notifier); } void ndisc_late_cleanup(void) { unregister_netdevice_notifier(&ndisc_netdev_notifier); } void ndisc_cleanup(void) { #ifdef CONFIG_SYSCTL neigh_sysctl_unregister(&nd_tbl.parms); #endif neigh_table_clear(NEIGH_ND_TABLE, &nd_tbl); unregister_pernet_subsys(&ndisc_net_ops); } |
2 7094 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 | /* SPDX-License-Identifier: GPL-2.0 */ /* thread_info.h: common low-level thread information accessors * * Copyright (C) 2002 David Howells (dhowells@redhat.com) * - Incorporating suggestions made by Linus Torvalds */ #ifndef _LINUX_THREAD_INFO_H #define _LINUX_THREAD_INFO_H #include <linux/types.h> #include <linux/limits.h> #include <linux/bug.h> #include <linux/restart_block.h> #include <linux/errno.h> #ifdef CONFIG_THREAD_INFO_IN_TASK /* * For CONFIG_THREAD_INFO_IN_TASK kernels we need <asm/current.h> for the * definition of current, but for !CONFIG_THREAD_INFO_IN_TASK kernels, * including <asm/current.h> can cause a circular dependency on some platforms. */ #include <asm/current.h> #define current_thread_info() ((struct thread_info *)current) #endif #include <linux/bitops.h> /* * For per-arch arch_within_stack_frames() implementations, defined in * asm/thread_info.h. */ enum { BAD_STACK = -1, NOT_STACK = 0, GOOD_FRAME, GOOD_STACK, }; #ifdef CONFIG_GENERIC_ENTRY enum syscall_work_bit { SYSCALL_WORK_BIT_SECCOMP, SYSCALL_WORK_BIT_SYSCALL_TRACEPOINT, SYSCALL_WORK_BIT_SYSCALL_TRACE, SYSCALL_WORK_BIT_SYSCALL_EMU, SYSCALL_WORK_BIT_SYSCALL_AUDIT, SYSCALL_WORK_BIT_SYSCALL_USER_DISPATCH, SYSCALL_WORK_BIT_SYSCALL_EXIT_TRAP, }; #define SYSCALL_WORK_SECCOMP BIT(SYSCALL_WORK_BIT_SECCOMP) #define SYSCALL_WORK_SYSCALL_TRACEPOINT BIT(SYSCALL_WORK_BIT_SYSCALL_TRACEPOINT) #define SYSCALL_WORK_SYSCALL_TRACE BIT(SYSCALL_WORK_BIT_SYSCALL_TRACE) #define SYSCALL_WORK_SYSCALL_EMU BIT(SYSCALL_WORK_BIT_SYSCALL_EMU) #define SYSCALL_WORK_SYSCALL_AUDIT BIT(SYSCALL_WORK_BIT_SYSCALL_AUDIT) #define SYSCALL_WORK_SYSCALL_USER_DISPATCH BIT(SYSCALL_WORK_BIT_SYSCALL_USER_DISPATCH) #define SYSCALL_WORK_SYSCALL_EXIT_TRAP BIT(SYSCALL_WORK_BIT_SYSCALL_EXIT_TRAP) #endif #include <asm/thread_info.h> #ifdef __KERNEL__ #ifndef arch_set_restart_data #define arch_set_restart_data(restart) do { } while (0) #endif static inline long set_restart_fn(struct restart_block *restart, long (*fn)(struct restart_block *)) { restart->fn = fn; arch_set_restart_data(restart); return -ERESTART_RESTARTBLOCK; } #ifndef THREAD_ALIGN #define THREAD_ALIGN THREAD_SIZE #endif #define THREADINFO_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO) /* * flag set/clear/test wrappers * - pass TIF_xxxx constants to these functions */ static inline void set_ti_thread_flag(struct thread_info *ti, int flag) { set_bit(flag, (unsigned long *)&ti->flags); } static inline void clear_ti_thread_flag(struct thread_info *ti, int flag) { clear_bit(flag, (unsigned long *)&ti->flags); } static inline void update_ti_thread_flag(struct thread_info *ti, int flag, bool value) { if (value) set_ti_thread_flag(ti, flag); else clear_ti_thread_flag(ti, flag); } static inline int test_and_set_ti_thread_flag(struct thread_info *ti, int flag) { return test_and_set_bit(flag, (unsigned long *)&ti->flags); } static inline int test_and_clear_ti_thread_flag(struct thread_info *ti, int flag) { return test_and_clear_bit(flag, (unsigned long *)&ti->flags); } static inline int test_ti_thread_flag(struct thread_info *ti, int flag) { return test_bit(flag, (unsigned long *)&ti->flags); } /* * This may be used in noinstr code, and needs to be __always_inline to prevent * inadvertent instrumentation. */ static __always_inline unsigned long read_ti_thread_flags(struct thread_info *ti) { return READ_ONCE(ti->flags); } #define set_thread_flag(flag) \ set_ti_thread_flag(current_thread_info(), flag) #define clear_thread_flag(flag) \ clear_ti_thread_flag(current_thread_info(), flag) #define update_thread_flag(flag, value) \ update_ti_thread_flag(current_thread_info(), flag, value) #define test_and_set_thread_flag(flag) \ test_and_set_ti_thread_flag(current_thread_info(), flag) #define test_and_clear_thread_flag(flag) \ test_and_clear_ti_thread_flag(current_thread_info(), flag) #define test_thread_flag(flag) \ test_ti_thread_flag(current_thread_info(), flag) #define read_thread_flags() \ read_ti_thread_flags(current_thread_info()) #define read_task_thread_flags(t) \ read_ti_thread_flags(task_thread_info(t)) #ifdef CONFIG_GENERIC_ENTRY #define set_syscall_work(fl) \ set_bit(SYSCALL_WORK_BIT_##fl, ¤t_thread_info()->syscall_work) #define test_syscall_work(fl) \ test_bit(SYSCALL_WORK_BIT_##fl, ¤t_thread_info()->syscall_work) #define clear_syscall_work(fl) \ clear_bit(SYSCALL_WORK_BIT_##fl, ¤t_thread_info()->syscall_work) #define set_task_syscall_work(t, fl) \ set_bit(SYSCALL_WORK_BIT_##fl, &task_thread_info(t)->syscall_work) #define test_task_syscall_work(t, fl) \ test_bit(SYSCALL_WORK_BIT_##fl, &task_thread_info(t)->syscall_work) #define clear_task_syscall_work(t, fl) \ clear_bit(SYSCALL_WORK_BIT_##fl, &task_thread_info(t)->syscall_work) #else /* CONFIG_GENERIC_ENTRY */ #define set_syscall_work(fl) \ set_ti_thread_flag(current_thread_info(), TIF_##fl) #define test_syscall_work(fl) \ test_ti_thread_flag(current_thread_info(), TIF_##fl) #define clear_syscall_work(fl) \ clear_ti_thread_flag(current_thread_info(), TIF_##fl) #define set_task_syscall_work(t, fl) \ set_ti_thread_flag(task_thread_info(t), TIF_##fl) #define test_task_syscall_work(t, fl) \ test_ti_thread_flag(task_thread_info(t), TIF_##fl) #define clear_task_syscall_work(t, fl) \ clear_ti_thread_flag(task_thread_info(t), TIF_##fl) #endif /* !CONFIG_GENERIC_ENTRY */ #define tif_need_resched() test_thread_flag(TIF_NEED_RESCHED) #ifndef CONFIG_HAVE_ARCH_WITHIN_STACK_FRAMES static inline int arch_within_stack_frames(const void * const stack, const void * const stackend, const void *obj, unsigned long len) { return 0; } #endif #ifdef CONFIG_HARDENED_USERCOPY extern void __check_object_size(const void *ptr, unsigned long n, bool to_user); static __always_inline void check_object_size(const void *ptr, unsigned long n, bool to_user) { if (!__builtin_constant_p(n)) __check_object_size(ptr, n, to_user); } #else static inline void check_object_size(const void *ptr, unsigned long n, bool to_user) { } #endif /* CONFIG_HARDENED_USERCOPY */ extern void __compiletime_error("copy source size is too small") __bad_copy_from(void); extern void __compiletime_error("copy destination size is too small") __bad_copy_to(void); static inline void copy_overflow(int size, unsigned long count) { WARN(1, "Buffer overflow detected (%d < %lu)!\n", size, count); } static __always_inline __must_check bool check_copy_size(const void *addr, size_t bytes, bool is_source) { int sz = __compiletime_object_size(addr); if (unlikely(sz >= 0 && sz < bytes)) { if (!__builtin_constant_p(bytes)) copy_overflow(sz, bytes); else if (is_source) __bad_copy_from(); else __bad_copy_to(); return false; } if (WARN_ON_ONCE(bytes > INT_MAX)) return false; check_object_size(addr, bytes, is_source); return true; } #ifndef arch_setup_new_exec static inline void arch_setup_new_exec(void) { } #endif #endif /* __KERNEL__ */ #endif /* _LINUX_THREAD_INFO_H */ |
45 45 48 2 48 28 28 6 6 13 13 58 58 58 58 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 | // SPDX-License-Identifier: GPL-2.0-only /* * TCP CUBIC: Binary Increase Congestion control for TCP v2.3 * Home page: * http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC * This is from the implementation of CUBIC TCP in * Sangtae Ha, Injong Rhee and Lisong Xu, * "CUBIC: A New TCP-Friendly High-Speed TCP Variant" * in ACM SIGOPS Operating System Review, July 2008. * Available from: * http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf * * CUBIC integrates a new slow start algorithm, called HyStart. * The details of HyStart are presented in * Sangtae Ha and Injong Rhee, * "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008. * Available from: * http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf * * All testing results are available from: * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing * * Unless CUBIC is enabled and congestion window is large * this behaves the same as the original Reno. */ #include <linux/mm.h> #include <linux/module.h> #include <linux/math64.h> #include <net/tcp.h> #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation * max_cwnd = snd_cwnd * beta */ #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */ /* Two methods of hybrid slow start */ #define HYSTART_ACK_TRAIN 0x1 #define HYSTART_DELAY 0x2 /* Number of delay samples for detecting the increase of delay */ #define HYSTART_MIN_SAMPLES 8 #define HYSTART_DELAY_MIN (4000U) /* 4 ms */ #define HYSTART_DELAY_MAX (16000U) /* 16 ms */ #define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX) static int fast_convergence __read_mostly = 1; static int beta __read_mostly = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */ static int initial_ssthresh __read_mostly; static int bic_scale __read_mostly = 41; static int tcp_friendliness __read_mostly = 1; static int hystart __read_mostly = 1; static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY; static int hystart_low_window __read_mostly = 16; static int hystart_ack_delta_us __read_mostly = 2000; static u32 cube_rtt_scale __read_mostly; static u32 beta_scale __read_mostly; static u64 cube_factor __read_mostly; /* Note parameters that are used for precomputing scale factors are read-only */ module_param(fast_convergence, int, 0644); MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence"); module_param(beta, int, 0644); MODULE_PARM_DESC(beta, "beta for multiplicative increase"); module_param(initial_ssthresh, int, 0644); MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold"); module_param(bic_scale, int, 0444); MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)"); module_param(tcp_friendliness, int, 0644); MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness"); module_param(hystart, int, 0644); MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm"); module_param(hystart_detect, int, 0644); MODULE_PARM_DESC(hystart_detect, "hybrid slow start detection mechanisms" " 1: packet-train 2: delay 3: both packet-train and delay"); module_param(hystart_low_window, int, 0644); MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start"); module_param(hystart_ack_delta_us, int, 0644); MODULE_PARM_DESC(hystart_ack_delta_us, "spacing between ack's indicating train (usecs)"); /* BIC TCP Parameters */ struct bictcp { u32 cnt; /* increase cwnd by 1 after ACKs */ u32 last_max_cwnd; /* last maximum snd_cwnd */ u32 last_cwnd; /* the last snd_cwnd */ u32 last_time; /* time when updated last_cwnd */ u32 bic_origin_point;/* origin point of bic function */ u32 bic_K; /* time to origin point from the beginning of the current epoch */ u32 delay_min; /* min delay (usec) */ u32 epoch_start; /* beginning of an epoch */ u32 ack_cnt; /* number of acks */ u32 tcp_cwnd; /* estimated tcp cwnd */ u16 unused; u8 sample_cnt; /* number of samples to decide curr_rtt */ u8 found; /* the exit point is found? */ u32 round_start; /* beginning of each round */ u32 end_seq; /* end_seq of the round */ u32 last_ack; /* last time when the ACK spacing is close */ u32 curr_rtt; /* the minimum rtt of current round */ }; static inline void bictcp_reset(struct bictcp *ca) { memset(ca, 0, offsetof(struct bictcp, unused)); ca->found = 0; } static inline u32 bictcp_clock_us(const struct sock *sk) { return tcp_sk(sk)->tcp_mstamp; } static inline void bictcp_hystart_reset(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); ca->round_start = ca->last_ack = bictcp_clock_us(sk); ca->end_seq = tp->snd_nxt; ca->curr_rtt = ~0U; ca->sample_cnt = 0; } static void cubictcp_init(struct sock *sk) { struct bictcp *ca = inet_csk_ca(sk); bictcp_reset(ca); if (hystart) bictcp_hystart_reset(sk); if (!hystart && initial_ssthresh) tcp_sk(sk)->snd_ssthresh = initial_ssthresh; } static void cubictcp_cwnd_event(struct sock *sk, enum tcp_ca_event event) { if (event == CA_EVENT_TX_START) { struct bictcp *ca = inet_csk_ca(sk); u32 now = tcp_jiffies32; s32 delta; delta = now - tcp_sk(sk)->lsndtime; /* We were application limited (idle) for a while. * Shift epoch_start to keep cwnd growth to cubic curve. */ if (ca->epoch_start && delta > 0) { ca->epoch_start += delta; if (after(ca->epoch_start, now)) ca->epoch_start = now; } return; } } /* calculate the cubic root of x using a table lookup followed by one * Newton-Raphson iteration. * Avg err ~= 0.195% */ static u32 cubic_root(u64 a) { u32 x, b, shift; /* * cbrt(x) MSB values for x MSB values in [0..63]. * Precomputed then refined by hand - Willy Tarreau * * For x in [0..63], * v = cbrt(x << 18) - 1 * cbrt(x) = (v[x] + 10) >> 6 */ static const u8 v[] = { /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118, /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156, /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179, /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199, /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215, /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229, /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242, /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254, }; b = fls64(a); if (b < 7) { /* a in [0..63] */ return ((u32)v[(u32)a] + 35) >> 6; } b = ((b * 84) >> 8) - 1; shift = (a >> (b * 3)); x = ((u32)(((u32)v[shift] + 10) << b)) >> 6; /* * Newton-Raphson iteration * 2 * x = ( 2 * x + a / x ) / 3 * k+1 k k */ x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1))); x = ((x * 341) >> 10); return x; } /* * Compute congestion window to use. */ static inline void bictcp_update(struct bictcp *ca, u32 cwnd, u32 acked) { u32 delta, bic_target, max_cnt; u64 offs, t; ca->ack_cnt += acked; /* count the number of ACKed packets */ if (ca->last_cwnd == cwnd && (s32)(tcp_jiffies32 - ca->last_time) <= HZ / 32) return; /* The CUBIC function can update ca->cnt at most once per jiffy. * On all cwnd reduction events, ca->epoch_start is set to 0, * which will force a recalculation of ca->cnt. */ if (ca->epoch_start && tcp_jiffies32 == ca->last_time) goto tcp_friendliness; ca->last_cwnd = cwnd; ca->last_time = tcp_jiffies32; if (ca->epoch_start == 0) { ca->epoch_start = tcp_jiffies32; /* record beginning */ ca->ack_cnt = acked; /* start counting */ ca->tcp_cwnd = cwnd; /* syn with cubic */ if (ca->last_max_cwnd <= cwnd) { ca->bic_K = 0; ca->bic_origin_point = cwnd; } else { /* Compute new K based on * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ) */ ca->bic_K = cubic_root(cube_factor * (ca->last_max_cwnd - cwnd)); ca->bic_origin_point = ca->last_max_cwnd; } } /* cubic function - calc*/ /* calculate c * time^3 / rtt, * while considering overflow in calculation of time^3 * (so time^3 is done by using 64 bit) * and without the support of division of 64bit numbers * (so all divisions are done by using 32 bit) * also NOTE the unit of those veriables * time = (t - K) / 2^bictcp_HZ * c = bic_scale >> 10 * rtt = (srtt >> 3) / HZ * !!! The following code does not have overflow problems, * if the cwnd < 1 million packets !!! */ t = (s32)(tcp_jiffies32 - ca->epoch_start); t += usecs_to_jiffies(ca->delay_min); /* change the unit from HZ to bictcp_HZ */ t <<= BICTCP_HZ; do_div(t, HZ); if (t < ca->bic_K) /* t - K */ offs = ca->bic_K - t; else offs = t - ca->bic_K; /* c/rtt * (t-K)^3 */ delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ); if (t < ca->bic_K) /* below origin*/ bic_target = ca->bic_origin_point - delta; else /* above origin*/ bic_target = ca->bic_origin_point + delta; /* cubic function - calc bictcp_cnt*/ if (bic_target > cwnd) { ca->cnt = cwnd / (bic_target - cwnd); } else { ca->cnt = 100 * cwnd; /* very small increment*/ } /* * The initial growth of cubic function may be too conservative * when the available bandwidth is still unknown. */ if (ca->last_max_cwnd == 0 && ca->cnt > 20) ca->cnt = 20; /* increase cwnd 5% per RTT */ tcp_friendliness: /* TCP Friendly */ if (tcp_friendliness) { u32 scale = beta_scale; delta = (cwnd * scale) >> 3; while (ca->ack_cnt > delta) { /* update tcp cwnd */ ca->ack_cnt -= delta; ca->tcp_cwnd++; } if (ca->tcp_cwnd > cwnd) { /* if bic is slower than tcp */ delta = ca->tcp_cwnd - cwnd; max_cnt = cwnd / delta; if (ca->cnt > max_cnt) ca->cnt = max_cnt; } } /* The maximum rate of cwnd increase CUBIC allows is 1 packet per * 2 packets ACKed, meaning cwnd grows at 1.5x per RTT. */ ca->cnt = max(ca->cnt, 2U); } static void cubictcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) { struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); if (!tcp_is_cwnd_limited(sk)) return; if (tcp_in_slow_start(tp)) { acked = tcp_slow_start(tp, acked); if (!acked) return; } bictcp_update(ca, tcp_snd_cwnd(tp), acked); tcp_cong_avoid_ai(tp, ca->cnt, acked); } static u32 cubictcp_recalc_ssthresh(struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); ca->epoch_start = 0; /* end of epoch */ /* Wmax and fast convergence */ if (tcp_snd_cwnd(tp) < ca->last_max_cwnd && fast_convergence) ca->last_max_cwnd = (tcp_snd_cwnd(tp) * (BICTCP_BETA_SCALE + beta)) / (2 * BICTCP_BETA_SCALE); else ca->last_max_cwnd = tcp_snd_cwnd(tp); return max((tcp_snd_cwnd(tp) * beta) / BICTCP_BETA_SCALE, 2U); } static void cubictcp_state(struct sock *sk, u8 new_state) { if (new_state == TCP_CA_Loss) { bictcp_reset(inet_csk_ca(sk)); bictcp_hystart_reset(sk); } } /* Account for TSO/GRO delays. * Otherwise short RTT flows could get too small ssthresh, since during * slow start we begin with small TSO packets and ca->delay_min would * not account for long aggregation delay when TSO packets get bigger. * Ideally even with a very small RTT we would like to have at least one * TSO packet being sent and received by GRO, and another one in qdisc layer. * We apply another 100% factor because @rate is doubled at this point. * We cap the cushion to 1ms. */ static u32 hystart_ack_delay(struct sock *sk) { unsigned long rate; rate = READ_ONCE(sk->sk_pacing_rate); if (!rate) return 0; return min_t(u64, USEC_PER_MSEC, div64_ul((u64)GSO_MAX_SIZE * 4 * USEC_PER_SEC, rate)); } static void hystart_update(struct sock *sk, u32 delay) { struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); u32 threshold; if (after(tp->snd_una, ca->end_seq)) bictcp_hystart_reset(sk); if (hystart_detect & HYSTART_ACK_TRAIN) { u32 now = bictcp_clock_us(sk); /* first detection parameter - ack-train detection */ if ((s32)(now - ca->last_ack) <= hystart_ack_delta_us) { ca->last_ack = now; threshold = ca->delay_min + hystart_ack_delay(sk); /* Hystart ack train triggers if we get ack past * ca->delay_min/2. * Pacing might have delayed packets up to RTT/2 * during slow start. */ if (sk->sk_pacing_status == SK_PACING_NONE) threshold >>= 1; if ((s32)(now - ca->round_start) > threshold) { ca->found = 1; pr_debug("hystart_ack_train (%u > %u) delay_min %u (+ ack_delay %u) cwnd %u\n", now - ca->round_start, threshold, ca->delay_min, hystart_ack_delay(sk), tcp_snd_cwnd(tp)); NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHYSTARTTRAINDETECT); NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPHYSTARTTRAINCWND, tcp_snd_cwnd(tp)); tp->snd_ssthresh = tcp_snd_cwnd(tp); } } } if (hystart_detect & HYSTART_DELAY) { /* obtain the minimum delay of more than sampling packets */ if (ca->curr_rtt > delay) ca->curr_rtt = delay; if (ca->sample_cnt < HYSTART_MIN_SAMPLES) { ca->sample_cnt++; } else { if (ca->curr_rtt > ca->delay_min + HYSTART_DELAY_THRESH(ca->delay_min >> 3)) { ca->found = 1; NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHYSTARTDELAYDETECT); NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPHYSTARTDELAYCWND, tcp_snd_cwnd(tp)); tp->snd_ssthresh = tcp_snd_cwnd(tp); } } } } static void cubictcp_acked(struct sock *sk, const struct ack_sample *sample) { const struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); u32 delay; /* Some calls are for duplicates without timetamps */ if (sample->rtt_us < 0) return; /* Discard delay samples right after fast recovery */ if (ca->epoch_start && (s32)(tcp_jiffies32 - ca->epoch_start) < HZ) return; delay = sample->rtt_us; if (delay == 0) delay = 1; /* first time call or link delay decreases */ if (ca->delay_min == 0 || ca->delay_min > delay) ca->delay_min = delay; /* hystart triggers when cwnd is larger than some threshold */ if (!ca->found && tcp_in_slow_start(tp) && hystart && tcp_snd_cwnd(tp) >= hystart_low_window) hystart_update(sk, delay); } static struct tcp_congestion_ops cubictcp __read_mostly = { .init = cubictcp_init, .ssthresh = cubictcp_recalc_ssthresh, .cong_avoid = cubictcp_cong_avoid, .set_state = cubictcp_state, .undo_cwnd = tcp_reno_undo_cwnd, .cwnd_event = cubictcp_cwnd_event, .pkts_acked = cubictcp_acked, .owner = THIS_MODULE, .name = "cubic", }; static int __init cubictcp_register(void) { BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE); /* Precompute a bunch of the scaling factors that are used per-packet * based on SRTT of 100ms */ beta_scale = 8*(BICTCP_BETA_SCALE+beta) / 3 / (BICTCP_BETA_SCALE - beta); cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */ /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3 * so K = cubic_root( (wmax-cwnd)*rtt/c ) * the unit of K is bictcp_HZ=2^10, not HZ * * c = bic_scale >> 10 * rtt = 100ms * * the following code has been designed and tested for * cwnd < 1 million packets * RTT < 100 seconds * HZ < 1,000,00 (corresponding to 10 nano-second) */ /* 1/c * 2^2*bictcp_HZ * srtt */ cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */ /* divide by bic_scale and by constant Srtt (100ms) */ do_div(cube_factor, bic_scale * 10); return tcp_register_congestion_control(&cubictcp); } static void __exit cubictcp_unregister(void) { tcp_unregister_congestion_control(&cubictcp); } module_init(cubictcp_register); module_exit(cubictcp_unregister); MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("CUBIC TCP"); MODULE_VERSION("2.3"); |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2020 Google LLC. */ #ifndef _LINUX_BPF_LSM_H #define _LINUX_BPF_LSM_H #include <linux/sched.h> #include <linux/bpf.h> #include <linux/lsm_hooks.h> #ifdef CONFIG_BPF_LSM #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ RET bpf_lsm_##NAME(__VA_ARGS__); #include <linux/lsm_hook_defs.h> #undef LSM_HOOK struct bpf_storage_blob { struct bpf_local_storage __rcu *storage; }; extern struct lsm_blob_sizes bpf_lsm_blob_sizes; int bpf_lsm_verify_prog(struct bpf_verifier_log *vlog, const struct bpf_prog *prog); bool bpf_lsm_is_sleepable_hook(u32 btf_id); static inline struct bpf_storage_blob *bpf_inode( const struct inode *inode) { if (unlikely(!inode->i_security)) return NULL; return inode->i_security + bpf_lsm_blob_sizes.lbs_inode; } extern const struct bpf_func_proto bpf_inode_storage_get_proto; extern const struct bpf_func_proto bpf_inode_storage_delete_proto; void bpf_inode_storage_free(struct inode *inode); #else /* !CONFIG_BPF_LSM */ static inline bool bpf_lsm_is_sleepable_hook(u32 btf_id) { return false; } static inline int bpf_lsm_verify_prog(struct bpf_verifier_log *vlog, const struct bpf_prog *prog) { return -EOPNOTSUPP; } static inline struct bpf_storage_blob *bpf_inode( const struct inode *inode) { return NULL; } static inline void bpf_inode_storage_free(struct inode *inode) { } #endif /* CONFIG_BPF_LSM */ #endif /* _LINUX_BPF_LSM_H */ |
9 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Queued spinlock * * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P. * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP * * Authors: Waiman Long <waiman.long@hpe.com> */ #ifndef __ASM_GENERIC_QSPINLOCK_H #define __ASM_GENERIC_QSPINLOCK_H #include <asm-generic/qspinlock_types.h> #include <linux/atomic.h> #ifndef queued_spin_is_locked /** * queued_spin_is_locked - is the spinlock locked? * @lock: Pointer to queued spinlock structure * Return: 1 if it is locked, 0 otherwise */ static __always_inline int queued_spin_is_locked(struct qspinlock *lock) { /* * Any !0 state indicates it is locked, even if _Q_LOCKED_VAL * isn't immediately observable. */ return atomic_read(&lock->val); } #endif /** * queued_spin_value_unlocked - is the spinlock structure unlocked? * @lock: queued spinlock structure * Return: 1 if it is unlocked, 0 otherwise * * N.B. Whenever there are tasks waiting for the lock, it is considered * locked wrt the lockref code to avoid lock stealing by the lockref * code and change things underneath the lock. This also allows some * optimizations to be applied without conflict with lockref. */ static __always_inline int queued_spin_value_unlocked(struct qspinlock lock) { return !lock.val.counter; } /** * queued_spin_is_contended - check if the lock is contended * @lock : Pointer to queued spinlock structure * Return: 1 if lock contended, 0 otherwise */ static __always_inline int queued_spin_is_contended(struct qspinlock *lock) { return atomic_read(&lock->val) & ~_Q_LOCKED_MASK; } /** * queued_spin_trylock - try to acquire the queued spinlock * @lock : Pointer to queued spinlock structure * Return: 1 if lock acquired, 0 if failed */ static __always_inline int queued_spin_trylock(struct qspinlock *lock) { int val = atomic_read(&lock->val); if (unlikely(val)) return 0; return likely(atomic_try_cmpxchg_acquire(&lock->val, &val, _Q_LOCKED_VAL)); } extern void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val); #ifndef queued_spin_lock /** * queued_spin_lock - acquire a queued spinlock * @lock: Pointer to queued spinlock structure */ static __always_inline void queued_spin_lock(struct qspinlock *lock) { int val = 0; if (likely(atomic_try_cmpxchg_acquire(&lock->val, &val, _Q_LOCKED_VAL))) return; queued_spin_lock_slowpath(lock, val); } #endif #ifndef queued_spin_unlock /** * queued_spin_unlock - release a queued spinlock * @lock : Pointer to queued spinlock structure */ static __always_inline void queued_spin_unlock(struct qspinlock *lock) { /* * unlock() needs release semantics: */ smp_store_release(&lock->locked, 0); } #endif #ifndef virt_spin_lock static __always_inline bool virt_spin_lock(struct qspinlock *lock) { return false; } #endif /* * Remapping spinlock architecture specific functions to the corresponding * queued spinlock functions. */ #define arch_spin_is_locked(l) queued_spin_is_locked(l) #define arch_spin_is_contended(l) queued_spin_is_contended(l) #define arch_spin_value_unlocked(l) queued_spin_value_unlocked(l) #define arch_spin_lock(l) queued_spin_lock(l) #define arch_spin_trylock(l) queued_spin_trylock(l) #define arch_spin_unlock(l) queued_spin_unlock(l) #endif /* __ASM_GENERIC_QSPINLOCK_H */ |
79 79 20 3 56 18 3 26 18 61 75 17 75 20 56 74 58 58 19 19 78 78 21 58 58 56 19 74 35 29 80 5 75 74 1 73 14 66 1 5 76 6 70 16 16 1 6 21 111 34 1 15 61 37 37 29 9 18 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 | // SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2007 Alan Stern * Copyright (C) IBM Corporation, 2009 * Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com> * * Thanks to Ingo Molnar for his many suggestions. * * Authors: Alan Stern <stern@rowland.harvard.edu> * K.Prasad <prasad@linux.vnet.ibm.com> * Frederic Weisbecker <fweisbec@gmail.com> */ /* * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility, * using the CPU's debug registers. * This file contains the arch-independent routines. */ #include <linux/irqflags.h> #include <linux/kallsyms.h> #include <linux/notifier.h> #include <linux/kprobes.h> #include <linux/kdebug.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/percpu.h> #include <linux/sched.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/cpu.h> #include <linux/smp.h> #include <linux/bug.h> #include <linux/hw_breakpoint.h> /* * Constraints data */ struct bp_cpuinfo { /* Number of pinned cpu breakpoints in a cpu */ unsigned int cpu_pinned; /* tsk_pinned[n] is the number of tasks having n+1 breakpoints */ unsigned int *tsk_pinned; /* Number of non-pinned cpu/task breakpoints in a cpu */ unsigned int flexible; /* XXX: placeholder, see fetch_this_slot() */ }; static DEFINE_PER_CPU(struct bp_cpuinfo, bp_cpuinfo[TYPE_MAX]); static int nr_slots[TYPE_MAX]; static struct bp_cpuinfo *get_bp_info(int cpu, enum bp_type_idx type) { return per_cpu_ptr(bp_cpuinfo + type, cpu); } /* Keep track of the breakpoints attached to tasks */ static LIST_HEAD(bp_task_head); static int constraints_initialized; /* Gather the number of total pinned and un-pinned bp in a cpuset */ struct bp_busy_slots { unsigned int pinned; unsigned int flexible; }; /* Serialize accesses to the above constraints */ static DEFINE_MUTEX(nr_bp_mutex); __weak int hw_breakpoint_weight(struct perf_event *bp) { return 1; } static inline enum bp_type_idx find_slot_idx(u64 bp_type) { if (bp_type & HW_BREAKPOINT_RW) return TYPE_DATA; return TYPE_INST; } /* * Report the maximum number of pinned breakpoints a task * have in this cpu */ static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type) { unsigned int *tsk_pinned = get_bp_info(cpu, type)->tsk_pinned; int i; for (i = nr_slots[type] - 1; i >= 0; i--) { if (tsk_pinned[i] > 0) return i + 1; } return 0; } /* * Count the number of breakpoints of the same type and same task. * The given event must be not on the list. */ static int task_bp_pinned(int cpu, struct perf_event *bp, enum bp_type_idx type) { struct task_struct *tsk = bp->hw.target; struct perf_event *iter; int count = 0; list_for_each_entry(iter, &bp_task_head, hw.bp_list) { if (iter->hw.target == tsk && find_slot_idx(iter->attr.bp_type) == type && (iter->cpu < 0 || cpu == iter->cpu)) count += hw_breakpoint_weight(iter); } return count; } static const struct cpumask *cpumask_of_bp(struct perf_event *bp) { if (bp->cpu >= 0) return cpumask_of(bp->cpu); return cpu_possible_mask; } /* * Report the number of pinned/un-pinned breakpoints we have in * a given cpu (cpu > -1) or in all of them (cpu = -1). */ static void fetch_bp_busy_slots(struct bp_busy_slots *slots, struct perf_event *bp, enum bp_type_idx type) { const struct cpumask *cpumask = cpumask_of_bp(bp); int cpu; for_each_cpu(cpu, cpumask) { struct bp_cpuinfo *info = get_bp_info(cpu, type); int nr; nr = info->cpu_pinned; if (!bp->hw.target) nr += max_task_bp_pinned(cpu, type); else nr += task_bp_pinned(cpu, bp, type); if (nr > slots->pinned) slots->pinned = nr; nr = info->flexible; if (nr > slots->flexible) slots->flexible = nr; } } /* * For now, continue to consider flexible as pinned, until we can * ensure no flexible event can ever be scheduled before a pinned event * in a same cpu. */ static void fetch_this_slot(struct bp_busy_slots *slots, int weight) { slots->pinned += weight; } /* * Add a pinned breakpoint for the given task in our constraint table */ static void toggle_bp_task_slot(struct perf_event *bp, int cpu, enum bp_type_idx type, int weight) { unsigned int *tsk_pinned = get_bp_info(cpu, type)->tsk_pinned; int old_idx, new_idx; old_idx = task_bp_pinned(cpu, bp, type) - 1; new_idx = old_idx + weight; if (old_idx >= 0) tsk_pinned[old_idx]--; if (new_idx >= 0) tsk_pinned[new_idx]++; } /* * Add/remove the given breakpoint in our constraint table */ static void toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type, int weight) { const struct cpumask *cpumask = cpumask_of_bp(bp); int cpu; if (!enable) weight = -weight; /* Pinned counter cpu profiling */ if (!bp->hw.target) { get_bp_info(bp->cpu, type)->cpu_pinned += weight; return; } /* Pinned counter task profiling */ for_each_cpu(cpu, cpumask) toggle_bp_task_slot(bp, cpu, type, weight); if (enable) list_add_tail(&bp->hw.bp_list, &bp_task_head); else list_del(&bp->hw.bp_list); } __weak int arch_reserve_bp_slot(struct perf_event *bp) { return 0; } __weak void arch_release_bp_slot(struct perf_event *bp) { } /* * Function to perform processor-specific cleanup during unregistration */ __weak void arch_unregister_hw_breakpoint(struct perf_event *bp) { /* * A weak stub function here for those archs that don't define * it inside arch/.../kernel/hw_breakpoint.c */ } /* * Constraints to check before allowing this new breakpoint counter: * * == Non-pinned counter == (Considered as pinned for now) * * - If attached to a single cpu, check: * * (per_cpu(info->flexible, cpu) || (per_cpu(info->cpu_pinned, cpu) * + max(per_cpu(info->tsk_pinned, cpu)))) < HBP_NUM * * -> If there are already non-pinned counters in this cpu, it means * there is already a free slot for them. * Otherwise, we check that the maximum number of per task * breakpoints (for this cpu) plus the number of per cpu breakpoint * (for this cpu) doesn't cover every registers. * * - If attached to every cpus, check: * * (per_cpu(info->flexible, *) || (max(per_cpu(info->cpu_pinned, *)) * + max(per_cpu(info->tsk_pinned, *)))) < HBP_NUM * * -> This is roughly the same, except we check the number of per cpu * bp for every cpu and we keep the max one. Same for the per tasks * breakpoints. * * * == Pinned counter == * * - If attached to a single cpu, check: * * ((per_cpu(info->flexible, cpu) > 1) + per_cpu(info->cpu_pinned, cpu) * + max(per_cpu(info->tsk_pinned, cpu))) < HBP_NUM * * -> Same checks as before. But now the info->flexible, if any, must keep * one register at least (or they will never be fed). * * - If attached to every cpus, check: * * ((per_cpu(info->flexible, *) > 1) + max(per_cpu(info->cpu_pinned, *)) * + max(per_cpu(info->tsk_pinned, *))) < HBP_NUM */ static int __reserve_bp_slot(struct perf_event *bp, u64 bp_type) { struct bp_busy_slots slots = {0}; enum bp_type_idx type; int weight; int ret; /* We couldn't initialize breakpoint constraints on boot */ if (!constraints_initialized) return -ENOMEM; /* Basic checks */ if (bp_type == HW_BREAKPOINT_EMPTY || bp_type == HW_BREAKPOINT_INVALID) return -EINVAL; type = find_slot_idx(bp_type); weight = hw_breakpoint_weight(bp); fetch_bp_busy_slots(&slots, bp, type); /* * Simulate the addition of this breakpoint to the constraints * and see the result. */ fetch_this_slot(&slots, weight); /* Flexible counters need to keep at least one slot */ if (slots.pinned + (!!slots.flexible) > nr_slots[type]) return -ENOSPC; ret = arch_reserve_bp_slot(bp); if (ret) return ret; toggle_bp_slot(bp, true, type, weight); return 0; } int reserve_bp_slot(struct perf_event *bp) { int ret; mutex_lock(&nr_bp_mutex); ret = __reserve_bp_slot(bp, bp->attr.bp_type); mutex_unlock(&nr_bp_mutex); return ret; } static void __release_bp_slot(struct perf_event *bp, u64 bp_type) { enum bp_type_idx type; int weight; arch_release_bp_slot(bp); type = find_slot_idx(bp_type); weight = hw_breakpoint_weight(bp); toggle_bp_slot(bp, false, type, weight); } void release_bp_slot(struct perf_event *bp) { mutex_lock(&nr_bp_mutex); arch_unregister_hw_breakpoint(bp); __release_bp_slot(bp, bp->attr.bp_type); mutex_unlock(&nr_bp_mutex); } static int __modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type) { int err; __release_bp_slot(bp, old_type); err = __reserve_bp_slot(bp, new_type); if (err) { /* * Reserve the old_type slot back in case * there's no space for the new type. * * This must succeed, because we just released * the old_type slot in the __release_bp_slot * call above. If not, something is broken. */ WARN_ON(__reserve_bp_slot(bp, old_type)); } return err; } static int modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type) { int ret; mutex_lock(&nr_bp_mutex); ret = __modify_bp_slot(bp, old_type, new_type); mutex_unlock(&nr_bp_mutex); return ret; } /* * Allow the kernel debugger to reserve breakpoint slots without * taking a lock using the dbg_* variant of for the reserve and * release breakpoint slots. */ int dbg_reserve_bp_slot(struct perf_event *bp) { if (mutex_is_locked(&nr_bp_mutex)) return -1; return __reserve_bp_slot(bp, bp->attr.bp_type); } int dbg_release_bp_slot(struct perf_event *bp) { if (mutex_is_locked(&nr_bp_mutex)) return -1; __release_bp_slot(bp, bp->attr.bp_type); return 0; } static int hw_breakpoint_parse(struct perf_event *bp, const struct perf_event_attr *attr, struct arch_hw_breakpoint *hw) { int err; err = hw_breakpoint_arch_parse(bp, attr, hw); if (err) return err; if (arch_check_bp_in_kernelspace(hw)) { if (attr->exclude_kernel) return -EINVAL; /* * Don't let unprivileged users set a breakpoint in the trap * path to avoid trap recursion attacks. */ if (!capable(CAP_SYS_ADMIN)) return -EPERM; } return 0; } int register_perf_hw_breakpoint(struct perf_event *bp) { struct arch_hw_breakpoint hw = { }; int err; err = reserve_bp_slot(bp); if (err) return err; err = hw_breakpoint_parse(bp, &bp->attr, &hw); if (err) { release_bp_slot(bp); return err; } bp->hw.info = hw; return 0; } /** * register_user_hw_breakpoint - register a hardware breakpoint for user space * @attr: breakpoint attributes * @triggered: callback to trigger when we hit the breakpoint * @context: context data could be used in the triggered callback * @tsk: pointer to 'task_struct' of the process to which the address belongs */ struct perf_event * register_user_hw_breakpoint(struct perf_event_attr *attr, perf_overflow_handler_t triggered, void *context, struct task_struct *tsk) { return perf_event_create_kernel_counter(attr, -1, tsk, triggered, context); } EXPORT_SYMBOL_GPL(register_user_hw_breakpoint); static void hw_breakpoint_copy_attr(struct perf_event_attr *to, struct perf_event_attr *from) { to->bp_addr = from->bp_addr; to->bp_type = from->bp_type; to->bp_len = from->bp_len; to->disabled = from->disabled; } int modify_user_hw_breakpoint_check(struct perf_event *bp, struct perf_event_attr *attr, bool check) { struct arch_hw_breakpoint hw = { }; int err; err = hw_breakpoint_parse(bp, attr, &hw); if (err) return err; if (check) { struct perf_event_attr old_attr; old_attr = bp->attr; hw_breakpoint_copy_attr(&old_attr, attr); if (memcmp(&old_attr, attr, sizeof(*attr))) return -EINVAL; } if (bp->attr.bp_type != attr->bp_type) { err = modify_bp_slot(bp, bp->attr.bp_type, attr->bp_type); if (err) return err; } hw_breakpoint_copy_attr(&bp->attr, attr); bp->hw.info = hw; return 0; } /** * modify_user_hw_breakpoint - modify a user-space hardware breakpoint * @bp: the breakpoint structure to modify * @attr: new breakpoint attributes */ int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr) { int err; /* * modify_user_hw_breakpoint can be invoked with IRQs disabled and hence it * will not be possible to raise IPIs that invoke __perf_event_disable. * So call the function directly after making sure we are targeting the * current task. */ if (irqs_disabled() && bp->ctx && bp->ctx->task == current) perf_event_disable_local(bp); else perf_event_disable(bp); err = modify_user_hw_breakpoint_check(bp, attr, false); if (!bp->attr.disabled) perf_event_enable(bp); return err; } EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint); /** * unregister_hw_breakpoint - unregister a user-space hardware breakpoint * @bp: the breakpoint structure to unregister */ void unregister_hw_breakpoint(struct perf_event *bp) { if (!bp) return; perf_event_release_kernel(bp); } EXPORT_SYMBOL_GPL(unregister_hw_breakpoint); /** * register_wide_hw_breakpoint - register a wide breakpoint in the kernel * @attr: breakpoint attributes * @triggered: callback to trigger when we hit the breakpoint * @context: context data could be used in the triggered callback * * @return a set of per_cpu pointers to perf events */ struct perf_event * __percpu * register_wide_hw_breakpoint(struct perf_event_attr *attr, perf_overflow_handler_t triggered, void *context) { struct perf_event * __percpu *cpu_events, *bp; long err = 0; int cpu; cpu_events = alloc_percpu(typeof(*cpu_events)); if (!cpu_events) return (void __percpu __force *)ERR_PTR(-ENOMEM); cpus_read_lock(); for_each_online_cpu(cpu) { bp = perf_event_create_kernel_counter(attr, cpu, NULL, triggered, context); if (IS_ERR(bp)) { err = PTR_ERR(bp); break; } per_cpu(*cpu_events, cpu) = bp; } cpus_read_unlock(); if (likely(!err)) return cpu_events; unregister_wide_hw_breakpoint(cpu_events); return (void __percpu __force *)ERR_PTR(err); } EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint); /** * unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel * @cpu_events: the per cpu set of events to unregister */ void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events) { int cpu; for_each_possible_cpu(cpu) unregister_hw_breakpoint(per_cpu(*cpu_events, cpu)); free_percpu(cpu_events); } EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint); static struct notifier_block hw_breakpoint_exceptions_nb = { .notifier_call = hw_breakpoint_exceptions_notify, /* we need to be notified first */ .priority = 0x7fffffff }; static void bp_perf_event_destroy(struct perf_event *event) { release_bp_slot(event); } static int hw_breakpoint_event_init(struct perf_event *bp) { int err; if (bp->attr.type != PERF_TYPE_BREAKPOINT) return -ENOENT; /* * no branch sampling for breakpoint events */ if (has_branch_stack(bp)) return -EOPNOTSUPP; err = register_perf_hw_breakpoint(bp); if (err) return err; bp->destroy = bp_perf_event_destroy; return 0; } static int hw_breakpoint_add(struct perf_event *bp, int flags) { if (!(flags & PERF_EF_START)) bp->hw.state = PERF_HES_STOPPED; if (is_sampling_event(bp)) { bp->hw.last_period = bp->hw.sample_period; perf_swevent_set_period(bp); } return arch_install_hw_breakpoint(bp); } static void hw_breakpoint_del(struct perf_event *bp, int flags) { arch_uninstall_hw_breakpoint(bp); } static void hw_breakpoint_start(struct perf_event *bp, int flags) { bp->hw.state = 0; } static void hw_breakpoint_stop(struct perf_event *bp, int flags) { bp->hw.state = PERF_HES_STOPPED; } static struct pmu perf_breakpoint = { .task_ctx_nr = perf_sw_context, /* could eventually get its own */ .event_init = hw_breakpoint_event_init, .add = hw_breakpoint_add, .del = hw_breakpoint_del, .start = hw_breakpoint_start, .stop = hw_breakpoint_stop, .read = hw_breakpoint_pmu_read, }; int __init init_hw_breakpoint(void) { int cpu, err_cpu; int i; for (i = 0; i < TYPE_MAX; i++) nr_slots[i] = hw_breakpoint_slots(i); for_each_possible_cpu(cpu) { for (i = 0; i < TYPE_MAX; i++) { struct bp_cpuinfo *info = get_bp_info(cpu, i); info->tsk_pinned = kcalloc(nr_slots[i], sizeof(int), GFP_KERNEL); if (!info->tsk_pinned) goto err_alloc; } } constraints_initialized = 1; perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT); return register_die_notifier(&hw_breakpoint_exceptions_nb); err_alloc: for_each_possible_cpu(err_cpu) { for (i = 0; i < TYPE_MAX; i++) kfree(get_bp_info(err_cpu, i)->tsk_pinned); if (err_cpu == cpu) break; } return -ENOMEM; } |
1 1 1 3 3 4 3 1 2 28 39 40 7 39 6 44 10 28 55 55 55 55 55 55 1 55 55 45 2 11 9 45 9 40 7 46 54 21 1 4 1 2 3 44 10 40 1 2 58 1 2 5 1 4 4 4 2 4 2 1 8 6 11 5 105 105 58 5 54 3 56 1 2 52 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 | // SPDX-License-Identifier: GPL-2.0-or-later /* AF_RXRPC sendmsg() implementation. * * Copyright (C) 2007, 2016 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/net.h> #include <linux/gfp.h> #include <linux/skbuff.h> #include <linux/export.h> #include <linux/sched/signal.h> #include <net/sock.h> #include <net/af_rxrpc.h> #include "ar-internal.h" /* * Return true if there's sufficient Tx queue space. */ static bool rxrpc_check_tx_space(struct rxrpc_call *call, rxrpc_seq_t *_tx_win) { unsigned int win_size = min_t(unsigned int, call->tx_winsize, call->cong_cwnd + call->cong_extra); rxrpc_seq_t tx_win = READ_ONCE(call->tx_hard_ack); if (_tx_win) *_tx_win = tx_win; return call->tx_top - tx_win < win_size; } /* * Wait for space to appear in the Tx queue or a signal to occur. */ static int rxrpc_wait_for_tx_window_intr(struct rxrpc_sock *rx, struct rxrpc_call *call, long *timeo) { for (;;) { set_current_state(TASK_INTERRUPTIBLE); if (rxrpc_check_tx_space(call, NULL)) return 0; if (call->state >= RXRPC_CALL_COMPLETE) return call->error; if (signal_pending(current)) return sock_intr_errno(*timeo); trace_rxrpc_transmit(call, rxrpc_transmit_wait); *timeo = schedule_timeout(*timeo); } } /* * Wait for space to appear in the Tx queue uninterruptibly, but with * a timeout of 2*RTT if no progress was made and a signal occurred. */ static int rxrpc_wait_for_tx_window_waitall(struct rxrpc_sock *rx, struct rxrpc_call *call) { rxrpc_seq_t tx_start, tx_win; signed long rtt, timeout; rtt = READ_ONCE(call->peer->srtt_us) >> 3; rtt = usecs_to_jiffies(rtt) * 2; if (rtt < 2) rtt = 2; timeout = rtt; tx_start = READ_ONCE(call->tx_hard_ack); for (;;) { set_current_state(TASK_UNINTERRUPTIBLE); tx_win = READ_ONCE(call->tx_hard_ack); if (rxrpc_check_tx_space(call, &tx_win)) return 0; if (call->state >= RXRPC_CALL_COMPLETE) return call->error; if (timeout == 0 && tx_win == tx_start && signal_pending(current)) return -EINTR; if (tx_win != tx_start) { timeout = rtt; tx_start = tx_win; } trace_rxrpc_transmit(call, rxrpc_transmit_wait); timeout = schedule_timeout(timeout); } } /* * Wait for space to appear in the Tx queue uninterruptibly. */ static int rxrpc_wait_for_tx_window_nonintr(struct rxrpc_sock *rx, struct rxrpc_call *call, long *timeo) { for (;;) { set_current_state(TASK_UNINTERRUPTIBLE); if (rxrpc_check_tx_space(call, NULL)) return 0; if (call->state >= RXRPC_CALL_COMPLETE) return call->error; trace_rxrpc_transmit(call, rxrpc_transmit_wait); *timeo = schedule_timeout(*timeo); } } /* * wait for space to appear in the transmit/ACK window * - caller holds the socket locked */ static int rxrpc_wait_for_tx_window(struct rxrpc_sock *rx, struct rxrpc_call *call, long *timeo, bool waitall) { DECLARE_WAITQUEUE(myself, current); int ret; _enter(",{%u,%u,%u}", call->tx_hard_ack, call->tx_top, call->tx_winsize); add_wait_queue(&call->waitq, &myself); switch (call->interruptibility) { case RXRPC_INTERRUPTIBLE: if (waitall) ret = rxrpc_wait_for_tx_window_waitall(rx, call); else ret = rxrpc_wait_for_tx_window_intr(rx, call, timeo); break; case RXRPC_PREINTERRUPTIBLE: case RXRPC_UNINTERRUPTIBLE: default: ret = rxrpc_wait_for_tx_window_nonintr(rx, call, timeo); break; } remove_wait_queue(&call->waitq, &myself); set_current_state(TASK_RUNNING); _leave(" = %d", ret); return ret; } /* * Schedule an instant Tx resend. */ static inline void rxrpc_instant_resend(struct rxrpc_call *call, int ix) { spin_lock_bh(&call->lock); if (call->state < RXRPC_CALL_COMPLETE) { call->rxtx_annotations[ix] = (call->rxtx_annotations[ix] & RXRPC_TX_ANNO_LAST) | RXRPC_TX_ANNO_RETRANS; if (!test_and_set_bit(RXRPC_CALL_EV_RESEND, &call->events)) rxrpc_queue_call(call); } spin_unlock_bh(&call->lock); } /* * Notify the owner of the call that the transmit phase is ended and the last * packet has been queued. */ static void rxrpc_notify_end_tx(struct rxrpc_sock *rx, struct rxrpc_call *call, rxrpc_notify_end_tx_t notify_end_tx) { if (notify_end_tx) notify_end_tx(&rx->sk, call, call->user_call_ID); } /* * Queue a DATA packet for transmission, set the resend timeout and send * the packet immediately. Returns the error from rxrpc_send_data_packet() * in case the caller wants to do something with it. */ static int rxrpc_queue_packet(struct rxrpc_sock *rx, struct rxrpc_call *call, struct sk_buff *skb, bool last, rxrpc_notify_end_tx_t notify_end_tx) { struct rxrpc_skb_priv *sp = rxrpc_skb(skb); unsigned long now; rxrpc_seq_t seq = sp->hdr.seq; int ret, ix; u8 annotation = RXRPC_TX_ANNO_UNACK; _net("queue skb %p [%d]", skb, seq); ASSERTCMP(seq, ==, call->tx_top + 1); if (last) annotation |= RXRPC_TX_ANNO_LAST; /* We have to set the timestamp before queueing as the retransmit * algorithm can see the packet as soon as we queue it. */ skb->tstamp = ktime_get_real(); ix = seq & RXRPC_RXTX_BUFF_MASK; rxrpc_get_skb(skb, rxrpc_skb_got); call->rxtx_annotations[ix] = annotation; smp_wmb(); call->rxtx_buffer[ix] = skb; call->tx_top = seq; if (last) trace_rxrpc_transmit(call, rxrpc_transmit_queue_last); else trace_rxrpc_transmit(call, rxrpc_transmit_queue); if (last || call->state == RXRPC_CALL_SERVER_ACK_REQUEST) { _debug("________awaiting reply/ACK__________"); write_lock_bh(&call->state_lock); switch (call->state) { case RXRPC_CALL_CLIENT_SEND_REQUEST: call->state = RXRPC_CALL_CLIENT_AWAIT_REPLY; rxrpc_notify_end_tx(rx, call, notify_end_tx); break; case RXRPC_CALL_SERVER_ACK_REQUEST: call->state = RXRPC_CALL_SERVER_SEND_REPLY; now = jiffies; WRITE_ONCE(call->ack_at, now + MAX_JIFFY_OFFSET); if (call->ackr_reason == RXRPC_ACK_DELAY) call->ackr_reason = 0; trace_rxrpc_timer(call, rxrpc_timer_init_for_send_reply, now); if (!last) break; fallthrough; case RXRPC_CALL_SERVER_SEND_REPLY: call->state = RXRPC_CALL_SERVER_AWAIT_ACK; rxrpc_notify_end_tx(rx, call, notify_end_tx); break; default: break; } write_unlock_bh(&call->state_lock); } if (seq == 1 && rxrpc_is_client_call(call)) rxrpc_expose_client_call(call); ret = rxrpc_send_data_packet(call, skb, false); if (ret < 0) { switch (ret) { case -ENETUNREACH: case -EHOSTUNREACH: case -ECONNREFUSED: rxrpc_set_call_completion(call, RXRPC_CALL_LOCAL_ERROR, 0, ret); goto out; } _debug("need instant resend %d", ret); rxrpc_instant_resend(call, ix); } else { unsigned long now = jiffies; unsigned long resend_at = now + call->peer->rto_j; WRITE_ONCE(call->resend_at, resend_at); rxrpc_reduce_call_timer(call, resend_at, now, rxrpc_timer_set_for_send); } out: rxrpc_free_skb(skb, rxrpc_skb_freed); _leave(" = %d", ret); return ret; } /* * send data through a socket * - must be called in process context * - The caller holds the call user access mutex, but not the socket lock. */ static int rxrpc_send_data(struct rxrpc_sock *rx, struct rxrpc_call *call, struct msghdr *msg, size_t len, rxrpc_notify_end_tx_t notify_end_tx, bool *_dropped_lock) { struct rxrpc_skb_priv *sp; struct sk_buff *skb; struct sock *sk = &rx->sk; enum rxrpc_call_state state; long timeo; bool more = msg->msg_flags & MSG_MORE; int ret, copied = 0; timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); /* this should be in poll */ sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); reload: ret = -EPIPE; if (sk->sk_shutdown & SEND_SHUTDOWN) goto maybe_error; state = READ_ONCE(call->state); ret = -ESHUTDOWN; if (state >= RXRPC_CALL_COMPLETE) goto maybe_error; ret = -EPROTO; if (state != RXRPC_CALL_CLIENT_SEND_REQUEST && state != RXRPC_CALL_SERVER_ACK_REQUEST && state != RXRPC_CALL_SERVER_SEND_REPLY) goto maybe_error; ret = -EMSGSIZE; if (call->tx_total_len != -1) { if (len - copied > call->tx_total_len) goto maybe_error; if (!more && len - copied != call->tx_total_len) goto maybe_error; } skb = call->tx_pending; call->tx_pending = NULL; rxrpc_see_skb(skb, rxrpc_skb_seen); do { /* Check to see if there's a ping ACK to reply to. */ if (call->ackr_reason == RXRPC_ACK_PING_RESPONSE) rxrpc_send_ack_packet(call, false, NULL); if (!skb) { size_t remain, bufsize, chunk, offset; _debug("alloc"); if (!rxrpc_check_tx_space(call, NULL)) goto wait_for_space; /* Work out the maximum size of a packet. Assume that * the security header is going to be in the padded * region (enc blocksize), but the trailer is not. */ remain = more ? INT_MAX : msg_data_left(msg); ret = call->conn->security->how_much_data(call, remain, &bufsize, &chunk, &offset); if (ret < 0) goto maybe_error; _debug("SIZE: %zu/%zu @%zu", chunk, bufsize, offset); /* create a buffer that we can retain until it's ACK'd */ skb = sock_alloc_send_skb( sk, bufsize, msg->msg_flags & MSG_DONTWAIT, &ret); if (!skb) goto maybe_error; sp = rxrpc_skb(skb); sp->rx_flags |= RXRPC_SKB_TX_BUFFER; rxrpc_new_skb(skb, rxrpc_skb_new); _debug("ALLOC SEND %p", skb); ASSERTCMP(skb->mark, ==, 0); __skb_put(skb, offset); sp->remain = chunk; if (sp->remain > skb_tailroom(skb)) sp->remain = skb_tailroom(skb); _net("skb: hr %d, tr %d, hl %d, rm %d", skb_headroom(skb), skb_tailroom(skb), skb_headlen(skb), sp->remain); skb->ip_summed = CHECKSUM_UNNECESSARY; } _debug("append"); sp = rxrpc_skb(skb); /* append next segment of data to the current buffer */ if (msg_data_left(msg) > 0) { int copy = skb_tailroom(skb); ASSERTCMP(copy, >, 0); if (copy > msg_data_left(msg)) copy = msg_data_left(msg); if (copy > sp->remain) copy = sp->remain; _debug("add"); ret = skb_add_data(skb, &msg->msg_iter, copy); _debug("added"); if (ret < 0) goto efault; sp->remain -= copy; skb->mark += copy; copied += copy; if (call->tx_total_len != -1) call->tx_total_len -= copy; } /* check for the far side aborting the call or a network error * occurring */ if (call->state == RXRPC_CALL_COMPLETE) goto call_terminated; /* add the packet to the send queue if it's now full */ if (sp->remain <= 0 || (msg_data_left(msg) == 0 && !more)) { struct rxrpc_connection *conn = call->conn; uint32_t seq; seq = call->tx_top + 1; sp->hdr.seq = seq; sp->hdr._rsvd = 0; sp->hdr.flags = conn->out_clientflag; if (msg_data_left(msg) == 0 && !more) sp->hdr.flags |= RXRPC_LAST_PACKET; else if (call->tx_top - call->tx_hard_ack < call->tx_winsize) sp->hdr.flags |= RXRPC_MORE_PACKETS; ret = call->security->secure_packet(call, skb, skb->mark); if (ret < 0) goto out; ret = rxrpc_queue_packet(rx, call, skb, !msg_data_left(msg) && !more, notify_end_tx); /* Should check for failure here */ skb = NULL; } } while (msg_data_left(msg) > 0); success: ret = copied; if (READ_ONCE(call->state) == RXRPC_CALL_COMPLETE) { read_lock_bh(&call->state_lock); if (call->error < 0) ret = call->error; read_unlock_bh(&call->state_lock); } out: call->tx_pending = skb; _leave(" = %d", ret); return ret; call_terminated: rxrpc_free_skb(skb, rxrpc_skb_freed); _leave(" = %d", call->error); return call->error; maybe_error: if (copied) goto success; goto out; efault: ret = -EFAULT; goto out; wait_for_space: ret = -EAGAIN; if (msg->msg_flags & MSG_DONTWAIT) goto maybe_error; mutex_unlock(&call->user_mutex); *_dropped_lock = true; ret = rxrpc_wait_for_tx_window(rx, call, &timeo, msg->msg_flags & MSG_WAITALL); if (ret < 0) goto maybe_error; if (call->interruptibility == RXRPC_INTERRUPTIBLE) { if (mutex_lock_interruptible(&call->user_mutex) < 0) { ret = sock_intr_errno(timeo); goto maybe_error; } } else { mutex_lock(&call->user_mutex); } *_dropped_lock = false; goto reload; } /* * extract control messages from the sendmsg() control buffer */ static int rxrpc_sendmsg_cmsg(struct msghdr *msg, struct rxrpc_send_params *p) { struct cmsghdr *cmsg; bool got_user_ID = false; int len; if (msg->msg_controllen == 0) return -EINVAL; for_each_cmsghdr(cmsg, msg) { if (!CMSG_OK(msg, cmsg)) return -EINVAL; len = cmsg->cmsg_len - sizeof(struct cmsghdr); _debug("CMSG %d, %d, %d", cmsg->cmsg_level, cmsg->cmsg_type, len); if (cmsg->cmsg_level != SOL_RXRPC) continue; switch (cmsg->cmsg_type) { case RXRPC_USER_CALL_ID: if (msg->msg_flags & MSG_CMSG_COMPAT) { if (len != sizeof(u32)) return -EINVAL; p->call.user_call_ID = *(u32 *)CMSG_DATA(cmsg); } else { if (len != sizeof(unsigned long)) return -EINVAL; p->call.user_call_ID = *(unsigned long *) CMSG_DATA(cmsg); } got_user_ID = true; break; case RXRPC_ABORT: if (p->command != RXRPC_CMD_SEND_DATA) return -EINVAL; p->command = RXRPC_CMD_SEND_ABORT; if (len != sizeof(p->abort_code)) return -EINVAL; p->abort_code = *(unsigned int *)CMSG_DATA(cmsg); if (p->abort_code == 0) return -EINVAL; break; case RXRPC_CHARGE_ACCEPT: if (p->command != RXRPC_CMD_SEND_DATA) return -EINVAL; p->command = RXRPC_CMD_CHARGE_ACCEPT; if (len != 0) return -EINVAL; break; case RXRPC_EXCLUSIVE_CALL: p->exclusive = true; if (len != 0) return -EINVAL; break; case RXRPC_UPGRADE_SERVICE: p->upgrade = true; if (len != 0) return -EINVAL; break; case RXRPC_TX_LENGTH: if (p->call.tx_total_len != -1 || len != sizeof(__s64)) return -EINVAL; p->call.tx_total_len = *(__s64 *)CMSG_DATA(cmsg); if (p->call.tx_total_len < 0) return -EINVAL; break; case RXRPC_SET_CALL_TIMEOUT: if (len & 3 || len < 4 || len > 12) return -EINVAL; memcpy(&p->call.timeouts, CMSG_DATA(cmsg), len); p->call.nr_timeouts = len / 4; if (p->call.timeouts.hard > INT_MAX / HZ) return -ERANGE; if (p->call.nr_timeouts >= 2 && p->call.timeouts.idle > 60 * 60 * 1000) return -ERANGE; if (p->call.nr_timeouts >= 3 && p->call.timeouts.normal > 60 * 60 * 1000) return -ERANGE; break; default: return -EINVAL; } } if (!got_user_ID) return -EINVAL; if (p->call.tx_total_len != -1 && p->command != RXRPC_CMD_SEND_DATA) return -EINVAL; _leave(" = 0"); return 0; } /* * Create a new client call for sendmsg(). * - Called with the socket lock held, which it must release. * - If it returns a call, the call's lock will need releasing by the caller. */ static struct rxrpc_call * rxrpc_new_client_call_for_sendmsg(struct rxrpc_sock *rx, struct msghdr *msg, struct rxrpc_send_params *p) __releases(&rx->sk.sk_lock.slock) __acquires(&call->user_mutex) { struct rxrpc_conn_parameters cp; struct rxrpc_call *call; struct key *key; DECLARE_SOCKADDR(struct sockaddr_rxrpc *, srx, msg->msg_name); _enter(""); if (!msg->msg_name) { release_sock(&rx->sk); return ERR_PTR(-EDESTADDRREQ); } key = rx->key; if (key && !rx->key->payload.data[0]) key = NULL; memset(&cp, 0, sizeof(cp)); cp.local = rx->local; cp.key = rx->key; cp.security_level = rx->min_sec_level; cp.exclusive = rx->exclusive | p->exclusive; cp.upgrade = p->upgrade; cp.service_id = srx->srx_service; call = rxrpc_new_client_call(rx, &cp, srx, &p->call, GFP_KERNEL, atomic_inc_return(&rxrpc_debug_id)); /* The socket is now unlocked */ rxrpc_put_peer(cp.peer); _leave(" = %p\n", call); return call; } /* * send a message forming part of a client call through an RxRPC socket * - caller holds the socket locked * - the socket may be either a client socket or a server socket */ int rxrpc_do_sendmsg(struct rxrpc_sock *rx, struct msghdr *msg, size_t len) __releases(&rx->sk.sk_lock.slock) __releases(&call->user_mutex) { enum rxrpc_call_state state; struct rxrpc_call *call; unsigned long now, j; bool dropped_lock = false; int ret; struct rxrpc_send_params p = { .call.tx_total_len = -1, .call.user_call_ID = 0, .call.nr_timeouts = 0, .call.interruptibility = RXRPC_INTERRUPTIBLE, .abort_code = 0, .command = RXRPC_CMD_SEND_DATA, .exclusive = false, .upgrade = false, }; _enter(""); ret = rxrpc_sendmsg_cmsg(msg, &p); if (ret < 0) goto error_release_sock; if (p.command == RXRPC_CMD_CHARGE_ACCEPT) { ret = -EINVAL; if (rx->sk.sk_state != RXRPC_SERVER_LISTENING) goto error_release_sock; ret = rxrpc_user_charge_accept(rx, p.call.user_call_ID); goto error_release_sock; } call = rxrpc_find_call_by_user_ID(rx, p.call.user_call_ID); if (!call) { ret = -EBADSLT; if (p.command != RXRPC_CMD_SEND_DATA) goto error_release_sock; call = rxrpc_new_client_call_for_sendmsg(rx, msg, &p); /* The socket is now unlocked... */ if (IS_ERR(call)) return PTR_ERR(call); /* ... and we have the call lock. */ ret = 0; if (READ_ONCE(call->state) == RXRPC_CALL_COMPLETE) goto out_put_unlock; } else { switch (READ_ONCE(call->state)) { case RXRPC_CALL_UNINITIALISED: case RXRPC_CALL_CLIENT_AWAIT_CONN: case RXRPC_CALL_SERVER_PREALLOC: case RXRPC_CALL_SERVER_SECURING: rxrpc_put_call(call, rxrpc_call_put); ret = -EBUSY; goto error_release_sock; default: break; } ret = mutex_lock_interruptible(&call->user_mutex); release_sock(&rx->sk); if (ret < 0) { ret = -ERESTARTSYS; goto error_put; } if (p.call.tx_total_len != -1) { ret = -EINVAL; if (call->tx_total_len != -1 || call->tx_pending || call->tx_top != 0) goto out_put_unlock; call->tx_total_len = p.call.tx_total_len; } } switch (p.call.nr_timeouts) { case 3: j = msecs_to_jiffies(p.call.timeouts.normal); if (p.call.timeouts.normal > 0 && j == 0) j = 1; WRITE_ONCE(call->next_rx_timo, j); fallthrough; case 2: j = msecs_to_jiffies(p.call.timeouts.idle); if (p.call.timeouts.idle > 0 && j == 0) j = 1; WRITE_ONCE(call->next_req_timo, j); fallthrough; case 1: if (p.call.timeouts.hard > 0) { j = p.call.timeouts.hard * HZ; now = jiffies; j += now; WRITE_ONCE(call->expect_term_by, j); rxrpc_reduce_call_timer(call, j, now, rxrpc_timer_set_for_hard); } break; } state = READ_ONCE(call->state); _debug("CALL %d USR %lx ST %d on CONN %p", call->debug_id, call->user_call_ID, state, call->conn); if (state >= RXRPC_CALL_COMPLETE) { /* it's too late for this call */ ret = -ESHUTDOWN; } else if (p.command == RXRPC_CMD_SEND_ABORT) { ret = 0; if (rxrpc_abort_call("CMD", call, 0, p.abort_code, -ECONNABORTED)) ret = rxrpc_send_abort_packet(call); } else if (p.command != RXRPC_CMD_SEND_DATA) { ret = -EINVAL; } else { ret = rxrpc_send_data(rx, call, msg, len, NULL, &dropped_lock); } out_put_unlock: if (!dropped_lock) mutex_unlock(&call->user_mutex); error_put: rxrpc_put_call(call, rxrpc_call_put); _leave(" = %d", ret); return ret; error_release_sock: release_sock(&rx->sk); return ret; } /** * rxrpc_kernel_send_data - Allow a kernel service to send data on a call * @sock: The socket the call is on * @call: The call to send data through * @msg: The data to send * @len: The amount of data to send * @notify_end_tx: Notification that the last packet is queued. * * Allow a kernel service to send data on a call. The call must be in an state * appropriate to sending data. No control data should be supplied in @msg, * nor should an address be supplied. MSG_MORE should be flagged if there's * more data to come, otherwise this data will end the transmission phase. */ int rxrpc_kernel_send_data(struct socket *sock, struct rxrpc_call *call, struct msghdr *msg, size_t len, rxrpc_notify_end_tx_t notify_end_tx) { bool dropped_lock = false; int ret; _enter("{%d,%s},", call->debug_id, rxrpc_call_states[call->state]); ASSERTCMP(msg->msg_name, ==, NULL); ASSERTCMP(msg->msg_control, ==, NULL); mutex_lock(&call->user_mutex); _debug("CALL %d USR %lx ST %d on CONN %p", call->debug_id, call->user_call_ID, call->state, call->conn); switch (READ_ONCE(call->state)) { case RXRPC_CALL_CLIENT_SEND_REQUEST: case RXRPC_CALL_SERVER_ACK_REQUEST: case RXRPC_CALL_SERVER_SEND_REPLY: ret = rxrpc_send_data(rxrpc_sk(sock->sk), call, msg, len, notify_end_tx, &dropped_lock); break; case RXRPC_CALL_COMPLETE: read_lock_bh(&call->state_lock); ret = call->error; read_unlock_bh(&call->state_lock); break; default: /* Request phase complete for this client call */ trace_rxrpc_rx_eproto(call, 0, tracepoint_string("late_send")); ret = -EPROTO; break; } if (!dropped_lock) mutex_unlock(&call->user_mutex); _leave(" = %d", ret); return ret; } EXPORT_SYMBOL(rxrpc_kernel_send_data); /** * rxrpc_kernel_abort_call - Allow a kernel service to abort a call * @sock: The socket the call is on * @call: The call to be aborted * @abort_code: The abort code to stick into the ABORT packet * @error: Local error value * @why: 3-char string indicating why. * * Allow a kernel service to abort a call, if it's still in an abortable state * and return true if the call was aborted, false if it was already complete. */ bool rxrpc_kernel_abort_call(struct socket *sock, struct rxrpc_call *call, u32 abort_code, int error, const char *why) { bool aborted; _enter("{%d},%d,%d,%s", call->debug_id, abort_code, error, why); mutex_lock(&call->user_mutex); aborted = rxrpc_abort_call(why, call, 0, abort_code, error); if (aborted) rxrpc_send_abort_packet(call); mutex_unlock(&call->user_mutex); return aborted; } EXPORT_SYMBOL(rxrpc_kernel_abort_call); /** * rxrpc_kernel_set_tx_length - Set the total Tx length on a call * @sock: The socket the call is on * @call: The call to be informed * @tx_total_len: The amount of data to be transmitted for this call * * Allow a kernel service to set the total transmit length on a call. This * allows buffer-to-packet encrypt-and-copy to be performed. * * This function is primarily for use for setting the reply length since the * request length can be set when beginning the call. */ void rxrpc_kernel_set_tx_length(struct socket *sock, struct rxrpc_call *call, s64 tx_total_len) { WARN_ON(call->tx_total_len != -1); call->tx_total_len = tx_total_len; } EXPORT_SYMBOL(rxrpc_kernel_set_tx_length); |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __FIRMWARE_LOADER_H #define __FIRMWARE_LOADER_H #include <linux/bitops.h> #include <linux/firmware.h> #include <linux/types.h> #include <linux/kref.h> #include <linux/list.h> #include <linux/completion.h> #include <generated/utsrelease.h> /** * enum fw_opt - options to control firmware loading behaviour * * @FW_OPT_UEVENT: Enables the fallback mechanism to send a kobject uevent * when the firmware is not found. Userspace is in charge to load the * firmware using the sysfs loading facility. * @FW_OPT_NOWAIT: Used to describe the firmware request is asynchronous. * @FW_OPT_USERHELPER: Enable the fallback mechanism, in case the direct * filesystem lookup fails at finding the firmware. For details refer to * firmware_fallback_sysfs(). * @FW_OPT_NO_WARN: Quiet, avoid printing warning messages. * @FW_OPT_NOCACHE: Disables firmware caching. Firmware caching is used to * cache the firmware upon suspend, so that upon resume races against the * firmware file lookup on storage is avoided. Used for calls where the * file may be too big, or where the driver takes charge of its own * firmware caching mechanism. * @FW_OPT_NOFALLBACK_SYSFS: Disable the sysfs fallback mechanism. Takes * precedence over &FW_OPT_UEVENT and &FW_OPT_USERHELPER. * @FW_OPT_FALLBACK_PLATFORM: Enable fallback to device fw copy embedded in * the platform's main firmware. If both this fallback and the sysfs * fallback are enabled, then this fallback will be tried first. * @FW_OPT_PARTIAL: Allow partial read of firmware instead of needing to read * entire file. */ enum fw_opt { FW_OPT_UEVENT = BIT(0), FW_OPT_NOWAIT = BIT(1), FW_OPT_USERHELPER = BIT(2), FW_OPT_NO_WARN = BIT(3), FW_OPT_NOCACHE = BIT(4), FW_OPT_NOFALLBACK_SYSFS = BIT(5), FW_OPT_FALLBACK_PLATFORM = BIT(6), FW_OPT_PARTIAL = BIT(7), }; enum fw_status { FW_STATUS_UNKNOWN, FW_STATUS_LOADING, FW_STATUS_DONE, FW_STATUS_ABORTED, }; /* * Concurrent request_firmware() for the same firmware need to be * serialized. struct fw_state is simple state machine which hold the * state of the firmware loading. */ struct fw_state { struct completion completion; enum fw_status status; }; struct fw_priv { struct kref ref; struct list_head list; struct firmware_cache *fwc; struct fw_state fw_st; void *data; size_t size; size_t allocated_size; size_t offset; u32 opt_flags; #ifdef CONFIG_FW_LOADER_PAGED_BUF bool is_paged_buf; struct page **pages; int nr_pages; int page_array_size; #endif #ifdef CONFIG_FW_LOADER_USER_HELPER bool need_uevent; struct list_head pending_list; #endif const char *fw_name; }; extern struct mutex fw_lock; static inline bool __fw_state_check(struct fw_priv *fw_priv, enum fw_status status) { struct fw_state *fw_st = &fw_priv->fw_st; return fw_st->status == status; } static inline int __fw_state_wait_common(struct fw_priv *fw_priv, long timeout) { struct fw_state *fw_st = &fw_priv->fw_st; long ret; ret = wait_for_completion_killable_timeout(&fw_st->completion, timeout); if (ret != 0 && fw_st->status == FW_STATUS_ABORTED) return -ENOENT; if (!ret) return -ETIMEDOUT; return ret < 0 ? ret : 0; } static inline void __fw_state_set(struct fw_priv *fw_priv, enum fw_status status) { struct fw_state *fw_st = &fw_priv->fw_st; WRITE_ONCE(fw_st->status, status); if (status == FW_STATUS_DONE || status == FW_STATUS_ABORTED) { #ifdef CONFIG_FW_LOADER_USER_HELPER /* * Doing this here ensures that the fw_priv is deleted from * the pending list in all abort/done paths. */ list_del_init(&fw_priv->pending_list); #endif complete_all(&fw_st->completion); } } static inline void fw_state_aborted(struct fw_priv *fw_priv) { __fw_state_set(fw_priv, FW_STATUS_ABORTED); } static inline bool fw_state_is_aborted(struct fw_priv *fw_priv) { return __fw_state_check(fw_priv, FW_STATUS_ABORTED); } static inline void fw_state_start(struct fw_priv *fw_priv) { __fw_state_set(fw_priv, FW_STATUS_LOADING); } static inline void fw_state_done(struct fw_priv *fw_priv) { __fw_state_set(fw_priv, FW_STATUS_DONE); } int assign_fw(struct firmware *fw, struct device *device); #ifdef CONFIG_FW_LOADER_PAGED_BUF void fw_free_paged_buf(struct fw_priv *fw_priv); int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed); int fw_map_paged_buf(struct fw_priv *fw_priv); bool fw_is_paged_buf(struct fw_priv *fw_priv); #else static inline void fw_free_paged_buf(struct fw_priv *fw_priv) {} static inline int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed) { return -ENXIO; } static inline int fw_map_paged_buf(struct fw_priv *fw_priv) { return -ENXIO; } static inline bool fw_is_paged_buf(struct fw_priv *fw_priv) { return false; } #endif #endif /* __FIRMWARE_LOADER_H */ |
865 375 859 494 864 865 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | // SPDX-License-Identifier: GPL-2.0 OR MIT /* * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. * * This is an implementation of the BLAKE2s hash and PRF functions. * * Information: https://blake2.net/ * */ #include <crypto/internal/blake2s.h> #include <linux/types.h> #include <linux/string.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/bug.h> static inline void blake2s_set_lastblock(struct blake2s_state *state) { state->f[0] = -1; } void blake2s_update(struct blake2s_state *state, const u8 *in, size_t inlen) { const size_t fill = BLAKE2S_BLOCK_SIZE - state->buflen; if (unlikely(!inlen)) return; if (inlen > fill) { memcpy(state->buf + state->buflen, in, fill); blake2s_compress(state, state->buf, 1, BLAKE2S_BLOCK_SIZE); state->buflen = 0; in += fill; inlen -= fill; } if (inlen > BLAKE2S_BLOCK_SIZE) { const size_t nblocks = DIV_ROUND_UP(inlen, BLAKE2S_BLOCK_SIZE); blake2s_compress(state, in, nblocks - 1, BLAKE2S_BLOCK_SIZE); in += BLAKE2S_BLOCK_SIZE * (nblocks - 1); inlen -= BLAKE2S_BLOCK_SIZE * (nblocks - 1); } memcpy(state->buf + state->buflen, in, inlen); state->buflen += inlen; } EXPORT_SYMBOL(blake2s_update); void blake2s_final(struct blake2s_state *state, u8 *out) { WARN_ON(IS_ENABLED(DEBUG) && !out); blake2s_set_lastblock(state); memset(state->buf + state->buflen, 0, BLAKE2S_BLOCK_SIZE - state->buflen); /* Padding */ blake2s_compress(state, state->buf, 1, state->buflen); cpu_to_le32_array(state->h, ARRAY_SIZE(state->h)); memcpy(out, state->h, state->outlen); memzero_explicit(state, sizeof(*state)); } EXPORT_SYMBOL(blake2s_final); static int __init blake2s_mod_init(void) { if (!IS_ENABLED(CONFIG_CRYPTO_MANAGER_DISABLE_TESTS) && WARN_ON(!blake2s_selftest())) return -ENODEV; return 0; } module_init(blake2s_mod_init); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("BLAKE2s hash function"); MODULE_AUTHOR("Jason A. Donenfeld <Jason@zx2c4.com>"); |
992 985 14 11 2 2 2 2 2 2 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 | // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) /* raw.c - Raw sockets for protocol family CAN * * Copyright (c) 2002-2007 Volkswagen Group Electronic Research * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Volkswagen nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * Alternatively, provided that this notice is retained in full, this * software may be distributed under the terms of the GNU General * Public License ("GPL") version 2, in which case the provisions of the * GPL apply INSTEAD OF those given above. * * The provided data structures and external interfaces from this code * are not restricted to be used by modules with a GPL compatible license. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * */ #include <linux/module.h> #include <linux/init.h> #include <linux/uio.h> #include <linux/net.h> #include <linux/slab.h> #include <linux/netdevice.h> #include <linux/socket.h> #include <linux/if_arp.h> #include <linux/skbuff.h> #include <linux/can.h> #include <linux/can/core.h> #include <linux/can/skb.h> #include <linux/can/raw.h> #include <net/sock.h> #include <net/net_namespace.h> MODULE_DESCRIPTION("PF_CAN raw protocol"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>"); MODULE_ALIAS("can-proto-1"); #define RAW_MIN_NAMELEN CAN_REQUIRED_SIZE(struct sockaddr_can, can_ifindex) #define MASK_ALL 0 /* A raw socket has a list of can_filters attached to it, each receiving * the CAN frames matching that filter. If the filter list is empty, * no CAN frames will be received by the socket. The default after * opening the socket, is to have one filter which receives all frames. * The filter list is allocated dynamically with the exception of the * list containing only one item. This common case is optimized by * storing the single filter in dfilter, to avoid using dynamic memory. */ struct uniqframe { int skbcnt; const struct sk_buff *skb; unsigned int join_rx_count; }; struct raw_sock { struct sock sk; int bound; int ifindex; struct net_device *dev; struct list_head notifier; int loopback; int recv_own_msgs; int fd_frames; int join_filters; int count; /* number of active filters */ struct can_filter dfilter; /* default/single filter */ struct can_filter *filter; /* pointer to filter(s) */ can_err_mask_t err_mask; struct uniqframe __percpu *uniq; }; static LIST_HEAD(raw_notifier_list); static DEFINE_SPINLOCK(raw_notifier_lock); static struct raw_sock *raw_busy_notifier; /* Return pointer to store the extra msg flags for raw_recvmsg(). * We use the space of one unsigned int beyond the 'struct sockaddr_can' * in skb->cb. */ static inline unsigned int *raw_flags(struct sk_buff *skb) { sock_skb_cb_check_size(sizeof(struct sockaddr_can) + sizeof(unsigned int)); /* return pointer after struct sockaddr_can */ return (unsigned int *)(&((struct sockaddr_can *)skb->cb)[1]); } static inline struct raw_sock *raw_sk(const struct sock *sk) { return (struct raw_sock *)sk; } static void raw_rcv(struct sk_buff *oskb, void *data) { struct sock *sk = (struct sock *)data; struct raw_sock *ro = raw_sk(sk); struct sockaddr_can *addr; struct sk_buff *skb; unsigned int *pflags; /* check the received tx sock reference */ if (!ro->recv_own_msgs && oskb->sk == sk) return; /* do not pass non-CAN2.0 frames to a legacy socket */ if (!ro->fd_frames && oskb->len != CAN_MTU) return; /* eliminate multiple filter matches for the same skb */ if (this_cpu_ptr(ro->uniq)->skb == oskb && this_cpu_ptr(ro->uniq)->skbcnt == can_skb_prv(oskb)->skbcnt) { if (ro->join_filters) { this_cpu_inc(ro->uniq->join_rx_count); /* drop frame until all enabled filters matched */ if (this_cpu_ptr(ro->uniq)->join_rx_count < ro->count) return; } else { return; } } else { this_cpu_ptr(ro->uniq)->skb = oskb; this_cpu_ptr(ro->uniq)->skbcnt = can_skb_prv(oskb)->skbcnt; this_cpu_ptr(ro->uniq)->join_rx_count = 1; /* drop first frame to check all enabled filters? */ if (ro->join_filters && ro->count > 1) return; } /* clone the given skb to be able to enqueue it into the rcv queue */ skb = skb_clone(oskb, GFP_ATOMIC); if (!skb) return; /* Put the datagram to the queue so that raw_recvmsg() can get * it from there. We need to pass the interface index to * raw_recvmsg(). We pass a whole struct sockaddr_can in * skb->cb containing the interface index. */ sock_skb_cb_check_size(sizeof(struct sockaddr_can)); addr = (struct sockaddr_can *)skb->cb; memset(addr, 0, sizeof(*addr)); addr->can_family = AF_CAN; addr->can_ifindex = skb->dev->ifindex; /* add CAN specific message flags for raw_recvmsg() */ pflags = raw_flags(skb); *pflags = 0; if (oskb->sk) *pflags |= MSG_DONTROUTE; if (oskb->sk == sk) *pflags |= MSG_CONFIRM; if (sock_queue_rcv_skb(sk, skb) < 0) kfree_skb(skb); } static int raw_enable_filters(struct net *net, struct net_device *dev, struct sock *sk, struct can_filter *filter, int count) { int err = 0; int i; for (i = 0; i < count; i++) { err = can_rx_register(net, dev, filter[i].can_id, filter[i].can_mask, raw_rcv, sk, "raw", sk); if (err) { /* clean up successfully registered filters */ while (--i >= 0) can_rx_unregister(net, dev, filter[i].can_id, filter[i].can_mask, raw_rcv, sk); break; } } return err; } static int raw_enable_errfilter(struct net *net, struct net_device *dev, struct sock *sk, can_err_mask_t err_mask) { int err = 0; if (err_mask) err = can_rx_register(net, dev, 0, err_mask | CAN_ERR_FLAG, raw_rcv, sk, "raw", sk); return err; } static void raw_disable_filters(struct net *net, struct net_device *dev, struct sock *sk, struct can_filter *filter, int count) { int i; for (i = 0; i < count; i++) can_rx_unregister(net, dev, filter[i].can_id, filter[i].can_mask, raw_rcv, sk); } static inline void raw_disable_errfilter(struct net *net, struct net_device *dev, struct sock *sk, can_err_mask_t err_mask) { if (err_mask) can_rx_unregister(net, dev, 0, err_mask | CAN_ERR_FLAG, raw_rcv, sk); } static inline void raw_disable_allfilters(struct net *net, struct net_device *dev, struct sock *sk) { struct raw_sock *ro = raw_sk(sk); raw_disable_filters(net, dev, sk, ro->filter, ro->count); raw_disable_errfilter(net, dev, sk, ro->err_mask); } static int raw_enable_allfilters(struct net *net, struct net_device *dev, struct sock *sk) { struct raw_sock *ro = raw_sk(sk); int err; err = raw_enable_filters(net, dev, sk, ro->filter, ro->count); if (!err) { err = raw_enable_errfilter(net, dev, sk, ro->err_mask); if (err) raw_disable_filters(net, dev, sk, ro->filter, ro->count); } return err; } static void raw_notify(struct raw_sock *ro, unsigned long msg, struct net_device *dev) { struct sock *sk = &ro->sk; if (!net_eq(dev_net(dev), sock_net(sk))) return; if (ro->dev != dev) return; switch (msg) { case NETDEV_UNREGISTER: lock_sock(sk); /* remove current filters & unregister */ if (ro->bound) { raw_disable_allfilters(dev_net(dev), dev, sk); dev_put(dev); } if (ro->count > 1) kfree(ro->filter); ro->ifindex = 0; ro->bound = 0; ro->dev = NULL; ro->count = 0; release_sock(sk); sk->sk_err = ENODEV; if (!sock_flag(sk, SOCK_DEAD)) sk_error_report(sk); break; case NETDEV_DOWN: sk->sk_err = ENETDOWN; if (!sock_flag(sk, SOCK_DEAD)) sk_error_report(sk); break; } } static int raw_notifier(struct notifier_block *nb, unsigned long msg, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); if (dev->type != ARPHRD_CAN) return NOTIFY_DONE; if (msg != NETDEV_UNREGISTER && msg != NETDEV_DOWN) return NOTIFY_DONE; if (unlikely(raw_busy_notifier)) /* Check for reentrant bug. */ return NOTIFY_DONE; spin_lock(&raw_notifier_lock); list_for_each_entry(raw_busy_notifier, &raw_notifier_list, notifier) { spin_unlock(&raw_notifier_lock); raw_notify(raw_busy_notifier, msg, dev); spin_lock(&raw_notifier_lock); } raw_busy_notifier = NULL; spin_unlock(&raw_notifier_lock); return NOTIFY_DONE; } static int raw_init(struct sock *sk) { struct raw_sock *ro = raw_sk(sk); ro->bound = 0; ro->ifindex = 0; ro->dev = NULL; /* set default filter to single entry dfilter */ ro->dfilter.can_id = 0; ro->dfilter.can_mask = MASK_ALL; ro->filter = &ro->dfilter; ro->count = 1; /* set default loopback behaviour */ ro->loopback = 1; ro->recv_own_msgs = 0; ro->fd_frames = 0; ro->join_filters = 0; /* alloc_percpu provides zero'ed memory */ ro->uniq = alloc_percpu(struct uniqframe); if (unlikely(!ro->uniq)) return -ENOMEM; /* set notifier */ spin_lock(&raw_notifier_lock); list_add_tail(&ro->notifier, &raw_notifier_list); spin_unlock(&raw_notifier_lock); return 0; } static int raw_release(struct socket *sock) { struct sock *sk = sock->sk; struct raw_sock *ro; if (!sk) return 0; ro = raw_sk(sk); spin_lock(&raw_notifier_lock); while (raw_busy_notifier == ro) { spin_unlock(&raw_notifier_lock); schedule_timeout_uninterruptible(1); spin_lock(&raw_notifier_lock); } list_del(&ro->notifier); spin_unlock(&raw_notifier_lock); rtnl_lock(); lock_sock(sk); /* remove current filters & unregister */ if (ro->bound) { if (ro->dev) { raw_disable_allfilters(dev_net(ro->dev), ro->dev, sk); dev_put(ro->dev); } else { raw_disable_allfilters(sock_net(sk), NULL, sk); } } if (ro->count > 1) kfree(ro->filter); ro->ifindex = 0; ro->bound = 0; ro->dev = NULL; ro->count = 0; free_percpu(ro->uniq); sock_orphan(sk); sock->sk = NULL; release_sock(sk); rtnl_unlock(); sock_put(sk); return 0; } static int raw_bind(struct socket *sock, struct sockaddr *uaddr, int len) { struct sockaddr_can *addr = (struct sockaddr_can *)uaddr; struct sock *sk = sock->sk; struct raw_sock *ro = raw_sk(sk); struct net_device *dev = NULL; int ifindex; int err = 0; int notify_enetdown = 0; if (len < RAW_MIN_NAMELEN) return -EINVAL; if (addr->can_family != AF_CAN) return -EINVAL; rtnl_lock(); lock_sock(sk); if (ro->bound && addr->can_ifindex == ro->ifindex) goto out; if (addr->can_ifindex) { dev = dev_get_by_index(sock_net(sk), addr->can_ifindex); if (!dev) { err = -ENODEV; goto out; } if (dev->type != ARPHRD_CAN) { err = -ENODEV; goto out_put_dev; } if (!(dev->flags & IFF_UP)) notify_enetdown = 1; ifindex = dev->ifindex; /* filters set by default/setsockopt */ err = raw_enable_allfilters(sock_net(sk), dev, sk); if (err) goto out_put_dev; } else { ifindex = 0; /* filters set by default/setsockopt */ err = raw_enable_allfilters(sock_net(sk), NULL, sk); } if (!err) { if (ro->bound) { /* unregister old filters */ if (ro->dev) { raw_disable_allfilters(dev_net(ro->dev), ro->dev, sk); /* drop reference to old ro->dev */ dev_put(ro->dev); } else { raw_disable_allfilters(sock_net(sk), NULL, sk); } } ro->ifindex = ifindex; ro->bound = 1; /* bind() ok -> hold a reference for new ro->dev */ ro->dev = dev; if (ro->dev) dev_hold(ro->dev); } out_put_dev: /* remove potential reference from dev_get_by_index() */ if (dev) dev_put(dev); out: release_sock(sk); rtnl_unlock(); if (notify_enetdown) { sk->sk_err = ENETDOWN; if (!sock_flag(sk, SOCK_DEAD)) sk_error_report(sk); } return err; } static int raw_getname(struct socket *sock, struct sockaddr *uaddr, int peer) { struct sockaddr_can *addr = (struct sockaddr_can *)uaddr; struct sock *sk = sock->sk; struct raw_sock *ro = raw_sk(sk); if (peer) return -EOPNOTSUPP; memset(addr, 0, RAW_MIN_NAMELEN); addr->can_family = AF_CAN; addr->can_ifindex = ro->ifindex; return RAW_MIN_NAMELEN; } static int raw_setsockopt(struct socket *sock, int level, int optname, sockptr_t optval, unsigned int optlen) { struct sock *sk = sock->sk; struct raw_sock *ro = raw_sk(sk); struct can_filter *filter = NULL; /* dyn. alloc'ed filters */ struct can_filter sfilter; /* single filter */ struct net_device *dev = NULL; can_err_mask_t err_mask = 0; int count = 0; int err = 0; if (level != SOL_CAN_RAW) return -EINVAL; switch (optname) { case CAN_RAW_FILTER: if (optlen % sizeof(struct can_filter) != 0) return -EINVAL; if (optlen > CAN_RAW_FILTER_MAX * sizeof(struct can_filter)) return -EINVAL; count = optlen / sizeof(struct can_filter); if (count > 1) { /* filter does not fit into dfilter => alloc space */ filter = memdup_sockptr(optval, optlen); if (IS_ERR(filter)) return PTR_ERR(filter); } else if (count == 1) { if (copy_from_sockptr(&sfilter, optval, sizeof(sfilter))) return -EFAULT; } rtnl_lock(); lock_sock(sk); dev = ro->dev; if (ro->bound && dev) { if (dev->reg_state != NETREG_REGISTERED) { if (count > 1) kfree(filter); err = -ENODEV; goto out_fil; } } if (ro->bound) { /* (try to) register the new filters */ if (count == 1) err = raw_enable_filters(sock_net(sk), dev, sk, &sfilter, 1); else err = raw_enable_filters(sock_net(sk), dev, sk, filter, count); if (err) { if (count > 1) kfree(filter); goto out_fil; } /* remove old filter registrations */ raw_disable_filters(sock_net(sk), dev, sk, ro->filter, ro->count); } /* remove old filter space */ if (ro->count > 1) kfree(ro->filter); /* link new filters to the socket */ if (count == 1) { /* copy filter data for single filter */ ro->dfilter = sfilter; filter = &ro->dfilter; } ro->filter = filter; ro->count = count; out_fil: release_sock(sk); rtnl_unlock(); break; case CAN_RAW_ERR_FILTER: if (optlen != sizeof(err_mask)) return -EINVAL; if (copy_from_sockptr(&err_mask, optval, optlen)) return -EFAULT; err_mask &= CAN_ERR_MASK; rtnl_lock(); lock_sock(sk); dev = ro->dev; if (ro->bound && dev) { if (dev->reg_state != NETREG_REGISTERED) { err = -ENODEV; goto out_err; } } /* remove current error mask */ if (ro->bound) { /* (try to) register the new err_mask */ err = raw_enable_errfilter(sock_net(sk), dev, sk, err_mask); if (err) goto out_err; /* remove old err_mask registration */ raw_disable_errfilter(sock_net(sk), dev, sk, ro->err_mask); } /* link new err_mask to the socket */ ro->err_mask = err_mask; out_err: release_sock(sk); rtnl_unlock(); break; case CAN_RAW_LOOPBACK: if (optlen != sizeof(ro->loopback)) return -EINVAL; if (copy_from_sockptr(&ro->loopback, optval, optlen)) return -EFAULT; break; case CAN_RAW_RECV_OWN_MSGS: if (optlen != sizeof(ro->recv_own_msgs)) return -EINVAL; if (copy_from_sockptr(&ro->recv_own_msgs, optval, optlen)) return -EFAULT; break; case CAN_RAW_FD_FRAMES: if (optlen != sizeof(ro->fd_frames)) return -EINVAL; if (copy_from_sockptr(&ro->fd_frames, optval, optlen)) return -EFAULT; break; case CAN_RAW_JOIN_FILTERS: if (optlen != sizeof(ro->join_filters)) return -EINVAL; if (copy_from_sockptr(&ro->join_filters, optval, optlen)) return -EFAULT; break; default: return -ENOPROTOOPT; } return err; } static int raw_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; struct raw_sock *ro = raw_sk(sk); int len; void *val; int err = 0; if (level != SOL_CAN_RAW) return -EINVAL; if (get_user(len, optlen)) return -EFAULT; if (len < 0) return -EINVAL; switch (optname) { case CAN_RAW_FILTER: lock_sock(sk); if (ro->count > 0) { int fsize = ro->count * sizeof(struct can_filter); /* user space buffer to small for filter list? */ if (len < fsize) { /* return -ERANGE and needed space in optlen */ err = -ERANGE; if (put_user(fsize, optlen)) err = -EFAULT; } else { if (len > fsize) len = fsize; if (copy_to_user(optval, ro->filter, len)) err = -EFAULT; } } else { len = 0; } release_sock(sk); if (!err) err = put_user(len, optlen); return err; case CAN_RAW_ERR_FILTER: if (len > sizeof(can_err_mask_t)) len = sizeof(can_err_mask_t); val = &ro->err_mask; break; case CAN_RAW_LOOPBACK: if (len > sizeof(int)) len = sizeof(int); val = &ro->loopback; break; case CAN_RAW_RECV_OWN_MSGS: if (len > sizeof(int)) len = sizeof(int); val = &ro->recv_own_msgs; break; case CAN_RAW_FD_FRAMES: if (len > sizeof(int)) len = sizeof(int); val = &ro->fd_frames; break; case CAN_RAW_JOIN_FILTERS: if (len > sizeof(int)) len = sizeof(int); val = &ro->join_filters; break; default: return -ENOPROTOOPT; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, val, len)) return -EFAULT; return 0; } static int raw_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) { struct sock *sk = sock->sk; struct raw_sock *ro = raw_sk(sk); struct sockcm_cookie sockc; struct sk_buff *skb; struct net_device *dev; int ifindex; int err; if (msg->msg_name) { DECLARE_SOCKADDR(struct sockaddr_can *, addr, msg->msg_name); if (msg->msg_namelen < RAW_MIN_NAMELEN) return -EINVAL; if (addr->can_family != AF_CAN) return -EINVAL; ifindex = addr->can_ifindex; } else { ifindex = ro->ifindex; } dev = dev_get_by_index(sock_net(sk), ifindex); if (!dev) return -ENXIO; err = -EINVAL; if (ro->fd_frames && dev->mtu == CANFD_MTU) { if (unlikely(size != CANFD_MTU && size != CAN_MTU)) goto put_dev; } else { if (unlikely(size != CAN_MTU)) goto put_dev; } skb = sock_alloc_send_skb(sk, size + sizeof(struct can_skb_priv), msg->msg_flags & MSG_DONTWAIT, &err); if (!skb) goto put_dev; can_skb_reserve(skb); can_skb_prv(skb)->ifindex = dev->ifindex; can_skb_prv(skb)->skbcnt = 0; err = memcpy_from_msg(skb_put(skb, size), msg, size); if (err < 0) goto free_skb; sockcm_init(&sockc, sk); if (msg->msg_controllen) { err = sock_cmsg_send(sk, msg, &sockc); if (unlikely(err)) goto free_skb; } skb->dev = dev; skb->sk = sk; skb->priority = sk->sk_priority; skb->mark = sk->sk_mark; skb->tstamp = sockc.transmit_time; skb_setup_tx_timestamp(skb, sockc.tsflags); err = can_send(skb, ro->loopback); dev_put(dev); if (err) goto send_failed; return size; free_skb: kfree_skb(skb); put_dev: dev_put(dev); send_failed: return err; } static int raw_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; struct sk_buff *skb; int err = 0; int noblock; noblock = flags & MSG_DONTWAIT; flags &= ~MSG_DONTWAIT; if (flags & MSG_ERRQUEUE) return sock_recv_errqueue(sk, msg, size, SOL_CAN_RAW, SCM_CAN_RAW_ERRQUEUE); skb = skb_recv_datagram(sk, flags, noblock, &err); if (!skb) return err; if (size < skb->len) msg->msg_flags |= MSG_TRUNC; else size = skb->len; err = memcpy_to_msg(msg, skb->data, size); if (err < 0) { skb_free_datagram(sk, skb); return err; } sock_recv_ts_and_drops(msg, sk, skb); if (msg->msg_name) { __sockaddr_check_size(RAW_MIN_NAMELEN); msg->msg_namelen = RAW_MIN_NAMELEN; memcpy(msg->msg_name, skb->cb, msg->msg_namelen); } /* assign the flags that have been recorded in raw_rcv() */ msg->msg_flags |= *(raw_flags(skb)); skb_free_datagram(sk, skb); return size; } static int raw_sock_no_ioctlcmd(struct socket *sock, unsigned int cmd, unsigned long arg) { /* no ioctls for socket layer -> hand it down to NIC layer */ return -ENOIOCTLCMD; } static const struct proto_ops raw_ops = { .family = PF_CAN, .release = raw_release, .bind = raw_bind, .connect = sock_no_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = raw_getname, .poll = datagram_poll, .ioctl = raw_sock_no_ioctlcmd, .gettstamp = sock_gettstamp, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = raw_setsockopt, .getsockopt = raw_getsockopt, .sendmsg = raw_sendmsg, .recvmsg = raw_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static struct proto raw_proto __read_mostly = { .name = "CAN_RAW", .owner = THIS_MODULE, .obj_size = sizeof(struct raw_sock), .init = raw_init, }; static const struct can_proto raw_can_proto = { .type = SOCK_RAW, .protocol = CAN_RAW, .ops = &raw_ops, .prot = &raw_proto, }; static struct notifier_block canraw_notifier = { .notifier_call = raw_notifier }; static __init int raw_module_init(void) { int err; pr_info("can: raw protocol\n"); err = can_proto_register(&raw_can_proto); if (err < 0) pr_err("can: registration of raw protocol failed\n"); else register_netdevice_notifier(&canraw_notifier); return err; } static __exit void raw_module_exit(void) { can_proto_unregister(&raw_can_proto); unregister_netdevice_notifier(&canraw_notifier); } module_init(raw_module_init); module_exit(raw_module_exit); |
18 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. */ #ifndef _WG_PEER_H #define _WG_PEER_H #include "device.h" #include "noise.h" #include "cookie.h" #include <linux/types.h> #include <linux/netfilter.h> #include <linux/spinlock.h> #include <linux/kref.h> #include <net/dst_cache.h> struct wg_device; struct endpoint { union { struct sockaddr addr; struct sockaddr_in addr4; struct sockaddr_in6 addr6; }; union { struct { struct in_addr src4; /* Essentially the same as addr6->scope_id */ int src_if4; }; struct in6_addr src6; }; }; struct wg_peer { struct wg_device *device; struct prev_queue tx_queue, rx_queue; struct sk_buff_head staged_packet_queue; int serial_work_cpu; bool is_dead; struct noise_keypairs keypairs; struct endpoint endpoint; struct dst_cache endpoint_cache; rwlock_t endpoint_lock; struct noise_handshake handshake; atomic64_t last_sent_handshake; struct work_struct transmit_handshake_work, clear_peer_work, transmit_packet_work; struct cookie latest_cookie; struct hlist_node pubkey_hash; u64 rx_bytes, tx_bytes; struct timer_list timer_retransmit_handshake, timer_send_keepalive; struct timer_list timer_new_handshake, timer_zero_key_material; struct timer_list timer_persistent_keepalive; unsigned int timer_handshake_attempts; u16 persistent_keepalive_interval; bool timer_need_another_keepalive; bool sent_lastminute_handshake; struct timespec64 walltime_last_handshake; struct kref refcount; struct rcu_head rcu; struct list_head peer_list; struct list_head allowedips_list; struct napi_struct napi; u64 internal_id; }; struct wg_peer *wg_peer_create(struct wg_device *wg, const u8 public_key[NOISE_PUBLIC_KEY_LEN], const u8 preshared_key[NOISE_SYMMETRIC_KEY_LEN]); struct wg_peer *__must_check wg_peer_get_maybe_zero(struct wg_peer *peer); static inline struct wg_peer *wg_peer_get(struct wg_peer *peer) { kref_get(&peer->refcount); return peer; } void wg_peer_put(struct wg_peer *peer); void wg_peer_remove(struct wg_peer *peer); void wg_peer_remove_all(struct wg_device *wg); int wg_peer_init(void); void wg_peer_uninit(void); #endif /* _WG_PEER_H */ |
1250 1261 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 | // SPDX-License-Identifier: GPL-2.0-only /* * linux/mm/swapfile.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * Swap reorganised 29.12.95, Stephen Tweedie */ #include <linux/mm.h> #include <linux/sched/mm.h> #include <linux/sched/task.h> #include <linux/hugetlb.h> #include <linux/mman.h> #include <linux/slab.h> #include <linux/kernel_stat.h> #include <linux/swap.h> #include <linux/vmalloc.h> #include <linux/pagemap.h> #include <linux/namei.h> #include <linux/shmem_fs.h> #include <linux/blkdev.h> #include <linux/random.h> #include <linux/writeback.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/init.h> #include <linux/ksm.h> #include <linux/rmap.h> #include <linux/security.h> #include <linux/backing-dev.h> #include <linux/mutex.h> #include <linux/capability.h> #include <linux/syscalls.h> #include <linux/memcontrol.h> #include <linux/poll.h> #include <linux/oom.h> #include <linux/frontswap.h> #include <linux/swapfile.h> #include <linux/export.h> #include <linux/swap_slots.h> #include <linux/sort.h> #include <linux/completion.h> #include <asm/tlbflush.h> #include <linux/swapops.h> #include <linux/swap_cgroup.h> static bool swap_count_continued(struct swap_info_struct *, pgoff_t, unsigned char); static void free_swap_count_continuations(struct swap_info_struct *); DEFINE_SPINLOCK(swap_lock); static unsigned int nr_swapfiles; atomic_long_t nr_swap_pages; /* * Some modules use swappable objects and may try to swap them out under * memory pressure (via the shrinker). Before doing so, they may wish to * check to see if any swap space is available. */ EXPORT_SYMBOL_GPL(nr_swap_pages); /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ long total_swap_pages; static int least_priority = -1; static const char Bad_file[] = "Bad swap file entry "; static const char Unused_file[] = "Unused swap file entry "; static const char Bad_offset[] = "Bad swap offset entry "; static const char Unused_offset[] = "Unused swap offset entry "; /* * all active swap_info_structs * protected with swap_lock, and ordered by priority. */ PLIST_HEAD(swap_active_head); /* * all available (active, not full) swap_info_structs * protected with swap_avail_lock, ordered by priority. * This is used by get_swap_page() instead of swap_active_head * because swap_active_head includes all swap_info_structs, * but get_swap_page() doesn't need to look at full ones. * This uses its own lock instead of swap_lock because when a * swap_info_struct changes between not-full/full, it needs to * add/remove itself to/from this list, but the swap_info_struct->lock * is held and the locking order requires swap_lock to be taken * before any swap_info_struct->lock. */ static struct plist_head *swap_avail_heads; static DEFINE_SPINLOCK(swap_avail_lock); struct swap_info_struct *swap_info[MAX_SWAPFILES]; static DEFINE_MUTEX(swapon_mutex); static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); /* Activity counter to indicate that a swapon or swapoff has occurred */ static atomic_t proc_poll_event = ATOMIC_INIT(0); atomic_t nr_rotate_swap = ATOMIC_INIT(0); static struct swap_info_struct *swap_type_to_swap_info(int type) { if (type >= MAX_SWAPFILES) return NULL; return READ_ONCE(swap_info[type]); /* rcu_dereference() */ } static inline unsigned char swap_count(unsigned char ent) { return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ } /* Reclaim the swap entry anyway if possible */ #define TTRS_ANYWAY 0x1 /* * Reclaim the swap entry if there are no more mappings of the * corresponding page */ #define TTRS_UNMAPPED 0x2 /* Reclaim the swap entry if swap is getting full*/ #define TTRS_FULL 0x4 /* returns 1 if swap entry is freed */ static int __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset, unsigned long flags) { swp_entry_t entry = swp_entry(si->type, offset); struct page *page; int ret = 0; page = find_get_page(swap_address_space(entry), offset); if (!page) return 0; /* * When this function is called from scan_swap_map_slots() and it's * called by vmscan.c at reclaiming pages. So, we hold a lock on a page, * here. We have to use trylock for avoiding deadlock. This is a special * case and you should use try_to_free_swap() with explicit lock_page() * in usual operations. */ if (trylock_page(page)) { if ((flags & TTRS_ANYWAY) || ((flags & TTRS_UNMAPPED) && !page_mapped(page)) || ((flags & TTRS_FULL) && mem_cgroup_swap_full(page))) ret = try_to_free_swap(page); unlock_page(page); } put_page(page); return ret; } static inline struct swap_extent *first_se(struct swap_info_struct *sis) { struct rb_node *rb = rb_first(&sis->swap_extent_root); return rb_entry(rb, struct swap_extent, rb_node); } static inline struct swap_extent *next_se(struct swap_extent *se) { struct rb_node *rb = rb_next(&se->rb_node); return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; } /* * swapon tell device that all the old swap contents can be discarded, * to allow the swap device to optimize its wear-levelling. */ static int discard_swap(struct swap_info_struct *si) { struct swap_extent *se; sector_t start_block; sector_t nr_blocks; int err = 0; /* Do not discard the swap header page! */ se = first_se(si); start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); if (nr_blocks) { err = blkdev_issue_discard(si->bdev, start_block, nr_blocks, GFP_KERNEL, 0); if (err) return err; cond_resched(); } for (se = next_se(se); se; se = next_se(se)) { start_block = se->start_block << (PAGE_SHIFT - 9); nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); err = blkdev_issue_discard(si->bdev, start_block, nr_blocks, GFP_KERNEL, 0); if (err) break; cond_resched(); } return err; /* That will often be -EOPNOTSUPP */ } static struct swap_extent * offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) { struct swap_extent *se; struct rb_node *rb; rb = sis->swap_extent_root.rb_node; while (rb) { se = rb_entry(rb, struct swap_extent, rb_node); if (offset < se->start_page) rb = rb->rb_left; else if (offset >= se->start_page + se->nr_pages) rb = rb->rb_right; else return se; } /* It *must* be present */ BUG(); } sector_t swap_page_sector(struct page *page) { struct swap_info_struct *sis = page_swap_info(page); struct swap_extent *se; sector_t sector; pgoff_t offset; offset = __page_file_index(page); se = offset_to_swap_extent(sis, offset); sector = se->start_block + (offset - se->start_page); return sector << (PAGE_SHIFT - 9); } /* * swap allocation tell device that a cluster of swap can now be discarded, * to allow the swap device to optimize its wear-levelling. */ static void discard_swap_cluster(struct swap_info_struct *si, pgoff_t start_page, pgoff_t nr_pages) { struct swap_extent *se = offset_to_swap_extent(si, start_page); while (nr_pages) { pgoff_t offset = start_page - se->start_page; sector_t start_block = se->start_block + offset; sector_t nr_blocks = se->nr_pages - offset; if (nr_blocks > nr_pages) nr_blocks = nr_pages; start_page += nr_blocks; nr_pages -= nr_blocks; start_block <<= PAGE_SHIFT - 9; nr_blocks <<= PAGE_SHIFT - 9; if (blkdev_issue_discard(si->bdev, start_block, nr_blocks, GFP_NOIO, 0)) break; se = next_se(se); } } #ifdef CONFIG_THP_SWAP #define SWAPFILE_CLUSTER HPAGE_PMD_NR #define swap_entry_size(size) (size) #else #define SWAPFILE_CLUSTER 256 /* * Define swap_entry_size() as constant to let compiler to optimize * out some code if !CONFIG_THP_SWAP */ #define swap_entry_size(size) 1 #endif #define LATENCY_LIMIT 256 static inline void cluster_set_flag(struct swap_cluster_info *info, unsigned int flag) { info->flags = flag; } static inline unsigned int cluster_count(struct swap_cluster_info *info) { return info->data; } static inline void cluster_set_count(struct swap_cluster_info *info, unsigned int c) { info->data = c; } static inline void cluster_set_count_flag(struct swap_cluster_info *info, unsigned int c, unsigned int f) { info->flags = f; info->data = c; } static inline unsigned int cluster_next(struct swap_cluster_info *info) { return info->data; } static inline void cluster_set_next(struct swap_cluster_info *info, unsigned int n) { info->data = n; } static inline void cluster_set_next_flag(struct swap_cluster_info *info, unsigned int n, unsigned int f) { info->flags = f; info->data = n; } static inline bool cluster_is_free(struct swap_cluster_info *info) { return info->flags & CLUSTER_FLAG_FREE; } static inline bool cluster_is_null(struct swap_cluster_info *info) { return info->flags & CLUSTER_FLAG_NEXT_NULL; } static inline void cluster_set_null(struct swap_cluster_info *info) { info->flags = CLUSTER_FLAG_NEXT_NULL; info->data = 0; } static inline bool cluster_is_huge(struct swap_cluster_info *info) { if (IS_ENABLED(CONFIG_THP_SWAP)) return info->flags & CLUSTER_FLAG_HUGE; return false; } static inline void cluster_clear_huge(struct swap_cluster_info *info) { info->flags &= ~CLUSTER_FLAG_HUGE; } static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, unsigned long offset) { struct swap_cluster_info *ci; ci = si->cluster_info; if (ci) { ci += offset / SWAPFILE_CLUSTER; spin_lock(&ci->lock); } return ci; } static inline void unlock_cluster(struct swap_cluster_info *ci) { if (ci) spin_unlock(&ci->lock); } /* * Determine the locking method in use for this device. Return * swap_cluster_info if SSD-style cluster-based locking is in place. */ static inline struct swap_cluster_info *lock_cluster_or_swap_info( struct swap_info_struct *si, unsigned long offset) { struct swap_cluster_info *ci; /* Try to use fine-grained SSD-style locking if available: */ ci = lock_cluster(si, offset); /* Otherwise, fall back to traditional, coarse locking: */ if (!ci) spin_lock(&si->lock); return ci; } static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, struct swap_cluster_info *ci) { if (ci) unlock_cluster(ci); else spin_unlock(&si->lock); } static inline bool cluster_list_empty(struct swap_cluster_list *list) { return cluster_is_null(&list->head); } static inline unsigned int cluster_list_first(struct swap_cluster_list *list) { return cluster_next(&list->head); } static void cluster_list_init(struct swap_cluster_list *list) { cluster_set_null(&list->head); cluster_set_null(&list->tail); } static void cluster_list_add_tail(struct swap_cluster_list *list, struct swap_cluster_info *ci, unsigned int idx) { if (cluster_list_empty(list)) { cluster_set_next_flag(&list->head, idx, 0); cluster_set_next_flag(&list->tail, idx, 0); } else { struct swap_cluster_info *ci_tail; unsigned int tail = cluster_next(&list->tail); /* * Nested cluster lock, but both cluster locks are * only acquired when we held swap_info_struct->lock */ ci_tail = ci + tail; spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); cluster_set_next(ci_tail, idx); spin_unlock(&ci_tail->lock); cluster_set_next_flag(&list->tail, idx, 0); } } static unsigned int cluster_list_del_first(struct swap_cluster_list *list, struct swap_cluster_info *ci) { unsigned int idx; idx = cluster_next(&list->head); if (cluster_next(&list->tail) == idx) { cluster_set_null(&list->head); cluster_set_null(&list->tail); } else cluster_set_next_flag(&list->head, cluster_next(&ci[idx]), 0); return idx; } /* Add a cluster to discard list and schedule it to do discard */ static void swap_cluster_schedule_discard(struct swap_info_struct *si, unsigned int idx) { /* * If scan_swap_map_slots() can't find a free cluster, it will check * si->swap_map directly. To make sure the discarding cluster isn't * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). * It will be cleared after discard */ memset(si->swap_map + idx * SWAPFILE_CLUSTER, SWAP_MAP_BAD, SWAPFILE_CLUSTER); cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); schedule_work(&si->discard_work); } static void __free_cluster(struct swap_info_struct *si, unsigned long idx) { struct swap_cluster_info *ci = si->cluster_info; cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); cluster_list_add_tail(&si->free_clusters, ci, idx); } /* * Doing discard actually. After a cluster discard is finished, the cluster * will be added to free cluster list. caller should hold si->lock. */ static void swap_do_scheduled_discard(struct swap_info_struct *si) { struct swap_cluster_info *info, *ci; unsigned int idx; info = si->cluster_info; while (!cluster_list_empty(&si->discard_clusters)) { idx = cluster_list_del_first(&si->discard_clusters, info); spin_unlock(&si->lock); discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, SWAPFILE_CLUSTER); spin_lock(&si->lock); ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); __free_cluster(si, idx); memset(si->swap_map + idx * SWAPFILE_CLUSTER, 0, SWAPFILE_CLUSTER); unlock_cluster(ci); } } static void swap_discard_work(struct work_struct *work) { struct swap_info_struct *si; si = container_of(work, struct swap_info_struct, discard_work); spin_lock(&si->lock); swap_do_scheduled_discard(si); spin_unlock(&si->lock); } static void swap_users_ref_free(struct percpu_ref *ref) { struct swap_info_struct *si; si = container_of(ref, struct swap_info_struct, users); complete(&si->comp); } static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) { struct swap_cluster_info *ci = si->cluster_info; VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); cluster_list_del_first(&si->free_clusters, ci); cluster_set_count_flag(ci + idx, 0, 0); } static void free_cluster(struct swap_info_struct *si, unsigned long idx) { struct swap_cluster_info *ci = si->cluster_info + idx; VM_BUG_ON(cluster_count(ci) != 0); /* * If the swap is discardable, prepare discard the cluster * instead of free it immediately. The cluster will be freed * after discard. */ if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == (SWP_WRITEOK | SWP_PAGE_DISCARD)) { swap_cluster_schedule_discard(si, idx); return; } __free_cluster(si, idx); } /* * The cluster corresponding to page_nr will be used. The cluster will be * removed from free cluster list and its usage counter will be increased. */ static void inc_cluster_info_page(struct swap_info_struct *p, struct swap_cluster_info *cluster_info, unsigned long page_nr) { unsigned long idx = page_nr / SWAPFILE_CLUSTER; if (!cluster_info) return; if (cluster_is_free(&cluster_info[idx])) alloc_cluster(p, idx); VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); cluster_set_count(&cluster_info[idx], cluster_count(&cluster_info[idx]) + 1); } /* * The cluster corresponding to page_nr decreases one usage. If the usage * counter becomes 0, which means no page in the cluster is in using, we can * optionally discard the cluster and add it to free cluster list. */ static void dec_cluster_info_page(struct swap_info_struct *p, struct swap_cluster_info *cluster_info, unsigned long page_nr) { unsigned long idx = page_nr / SWAPFILE_CLUSTER; if (!cluster_info) return; VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); cluster_set_count(&cluster_info[idx], cluster_count(&cluster_info[idx]) - 1); if (cluster_count(&cluster_info[idx]) == 0) free_cluster(p, idx); } /* * It's possible scan_swap_map_slots() uses a free cluster in the middle of free * cluster list. Avoiding such abuse to avoid list corruption. */ static bool scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, unsigned long offset) { struct percpu_cluster *percpu_cluster; bool conflict; offset /= SWAPFILE_CLUSTER; conflict = !cluster_list_empty(&si->free_clusters) && offset != cluster_list_first(&si->free_clusters) && cluster_is_free(&si->cluster_info[offset]); if (!conflict) return false; percpu_cluster = this_cpu_ptr(si->percpu_cluster); cluster_set_null(&percpu_cluster->index); return true; } /* * Try to get a swap entry from current cpu's swap entry pool (a cluster). This * might involve allocating a new cluster for current CPU too. */ static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, unsigned long *offset, unsigned long *scan_base) { struct percpu_cluster *cluster; struct swap_cluster_info *ci; unsigned long tmp, max; new_cluster: cluster = this_cpu_ptr(si->percpu_cluster); if (cluster_is_null(&cluster->index)) { if (!cluster_list_empty(&si->free_clusters)) { cluster->index = si->free_clusters.head; cluster->next = cluster_next(&cluster->index) * SWAPFILE_CLUSTER; } else if (!cluster_list_empty(&si->discard_clusters)) { /* * we don't have free cluster but have some clusters in * discarding, do discard now and reclaim them, then * reread cluster_next_cpu since we dropped si->lock */ swap_do_scheduled_discard(si); *scan_base = this_cpu_read(*si->cluster_next_cpu); *offset = *scan_base; goto new_cluster; } else return false; } /* * Other CPUs can use our cluster if they can't find a free cluster, * check if there is still free entry in the cluster */ tmp = cluster->next; max = min_t(unsigned long, si->max, (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); if (tmp < max) { ci = lock_cluster(si, tmp); while (tmp < max) { if (!si->swap_map[tmp]) break; tmp++; } unlock_cluster(ci); } if (tmp >= max) { cluster_set_null(&cluster->index); goto new_cluster; } cluster->next = tmp + 1; *offset = tmp; *scan_base = tmp; return true; } static void __del_from_avail_list(struct swap_info_struct *p) { int nid; assert_spin_locked(&p->lock); for_each_node(nid) plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); } static void del_from_avail_list(struct swap_info_struct *p) { spin_lock(&swap_avail_lock); __del_from_avail_list(p); spin_unlock(&swap_avail_lock); } static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, unsigned int nr_entries) { unsigned int end = offset + nr_entries - 1; if (offset == si->lowest_bit) si->lowest_bit += nr_entries; if (end == si->highest_bit) WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); si->inuse_pages += nr_entries; if (si->inuse_pages == si->pages) { si->lowest_bit = si->max; si->highest_bit = 0; del_from_avail_list(si); } } static void add_to_avail_list(struct swap_info_struct *p) { int nid; spin_lock(&swap_avail_lock); for_each_node(nid) { WARN_ON(!plist_node_empty(&p->avail_lists[nid])); plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); } spin_unlock(&swap_avail_lock); } static void swap_range_free(struct swap_info_struct *si, unsigned long offset, unsigned int nr_entries) { unsigned long begin = offset; unsigned long end = offset + nr_entries - 1; void (*swap_slot_free_notify)(struct block_device *, unsigned long); if (offset < si->lowest_bit) si->lowest_bit = offset; if (end > si->highest_bit) { bool was_full = !si->highest_bit; WRITE_ONCE(si->highest_bit, end); if (was_full && (si->flags & SWP_WRITEOK)) add_to_avail_list(si); } atomic_long_add(nr_entries, &nr_swap_pages); si->inuse_pages -= nr_entries; if (si->flags & SWP_BLKDEV) swap_slot_free_notify = si->bdev->bd_disk->fops->swap_slot_free_notify; else swap_slot_free_notify = NULL; while (offset <= end) { arch_swap_invalidate_page(si->type, offset); frontswap_invalidate_page(si->type, offset); if (swap_slot_free_notify) swap_slot_free_notify(si->bdev, offset); offset++; } clear_shadow_from_swap_cache(si->type, begin, end); } static void set_cluster_next(struct swap_info_struct *si, unsigned long next) { unsigned long prev; if (!(si->flags & SWP_SOLIDSTATE)) { si->cluster_next = next; return; } prev = this_cpu_read(*si->cluster_next_cpu); /* * Cross the swap address space size aligned trunk, choose * another trunk randomly to avoid lock contention on swap * address space if possible. */ if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != (next >> SWAP_ADDRESS_SPACE_SHIFT)) { /* No free swap slots available */ if (si->highest_bit <= si->lowest_bit) return; next = si->lowest_bit + prandom_u32_max(si->highest_bit - si->lowest_bit + 1); next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); next = max_t(unsigned int, next, si->lowest_bit); } this_cpu_write(*si->cluster_next_cpu, next); } static int scan_swap_map_slots(struct swap_info_struct *si, unsigned char usage, int nr, swp_entry_t slots[]) { struct swap_cluster_info *ci; unsigned long offset; unsigned long scan_base; unsigned long last_in_cluster = 0; int latency_ration = LATENCY_LIMIT; int n_ret = 0; bool scanned_many = false; /* * We try to cluster swap pages by allocating them sequentially * in swap. Once we've allocated SWAPFILE_CLUSTER pages this * way, however, we resort to first-free allocation, starting * a new cluster. This prevents us from scattering swap pages * all over the entire swap partition, so that we reduce * overall disk seek times between swap pages. -- sct * But we do now try to find an empty cluster. -Andrea * And we let swap pages go all over an SSD partition. Hugh */ si->flags += SWP_SCANNING; /* * Use percpu scan base for SSD to reduce lock contention on * cluster and swap cache. For HDD, sequential access is more * important. */ if (si->flags & SWP_SOLIDSTATE) scan_base = this_cpu_read(*si->cluster_next_cpu); else scan_base = si->cluster_next; offset = scan_base; /* SSD algorithm */ if (si->cluster_info) { if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) goto scan; } else if (unlikely(!si->cluster_nr--)) { if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { si->cluster_nr = SWAPFILE_CLUSTER - 1; goto checks; } spin_unlock(&si->lock); /* * If seek is expensive, start searching for new cluster from * start of partition, to minimize the span of allocated swap. * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info * case, just handled by scan_swap_map_try_ssd_cluster() above. */ scan_base = offset = si->lowest_bit; last_in_cluster = offset + SWAPFILE_CLUSTER - 1; /* Locate the first empty (unaligned) cluster */ for (; last_in_cluster <= si->highest_bit; offset++) { if (si->swap_map[offset]) last_in_cluster = offset + SWAPFILE_CLUSTER; else if (offset == last_in_cluster) { spin_lock(&si->lock); offset -= SWAPFILE_CLUSTER - 1; si->cluster_next = offset; si->cluster_nr = SWAPFILE_CLUSTER - 1; goto checks; } if (unlikely(--latency_ration < 0)) { cond_resched(); latency_ration = LATENCY_LIMIT; } } offset = scan_base; spin_lock(&si->lock); si->cluster_nr = SWAPFILE_CLUSTER - 1; } checks: if (si->cluster_info) { while (scan_swap_map_ssd_cluster_conflict(si, offset)) { /* take a break if we already got some slots */ if (n_ret) goto done; if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) goto scan; } } if (!(si->flags & SWP_WRITEOK)) goto no_page; if (!si->highest_bit) goto no_page; if (offset > si->highest_bit) scan_base = offset = si->lowest_bit; ci = lock_cluster(si, offset); /* reuse swap entry of cache-only swap if not busy. */ if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { int swap_was_freed; unlock_cluster(ci); spin_unlock(&si->lock); swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); spin_lock(&si->lock); /* entry was freed successfully, try to use this again */ if (swap_was_freed) goto checks; goto scan; /* check next one */ } if (si->swap_map[offset]) { unlock_cluster(ci); if (!n_ret) goto scan; else goto done; } WRITE_ONCE(si->swap_map[offset], usage); inc_cluster_info_page(si, si->cluster_info, offset); unlock_cluster(ci); swap_range_alloc(si, offset, 1); slots[n_ret++] = swp_entry(si->type, offset); /* got enough slots or reach max slots? */ if ((n_ret == nr) || (offset >= si->highest_bit)) goto done; /* search for next available slot */ /* time to take a break? */ if (unlikely(--latency_ration < 0)) { if (n_ret) goto done; spin_unlock(&si->lock); cond_resched(); spin_lock(&si->lock); latency_ration = LATENCY_LIMIT; } /* try to get more slots in cluster */ if (si->cluster_info) { if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) goto checks; } else if (si->cluster_nr && !si->swap_map[++offset]) { /* non-ssd case, still more slots in cluster? */ --si->cluster_nr; goto checks; } /* * Even if there's no free clusters available (fragmented), * try to scan a little more quickly with lock held unless we * have scanned too many slots already. */ if (!scanned_many) { unsigned long scan_limit; if (offset < scan_base) scan_limit = scan_base; else scan_limit = si->highest_bit; for (; offset <= scan_limit && --latency_ration > 0; offset++) { if (!si->swap_map[offset]) goto checks; } } done: set_cluster_next(si, offset + 1); si->flags -= SWP_SCANNING; return n_ret; scan: spin_unlock(&si->lock); while (++offset <= READ_ONCE(si->highest_bit)) { if (data_race(!si->swap_map[offset])) { spin_lock(&si->lock); goto checks; } if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { spin_lock(&si->lock); goto checks; } if (unlikely(--latency_ration < 0)) { cond_resched(); latency_ration = LATENCY_LIMIT; scanned_many = true; } } offset = si->lowest_bit; while (offset < scan_base) { if (data_race(!si->swap_map[offset])) { spin_lock(&si->lock); goto checks; } if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { spin_lock(&si->lock); goto checks; } if (unlikely(--latency_ration < 0)) { cond_resched(); latency_ration = LATENCY_LIMIT; scanned_many = true; } offset++; } spin_lock(&si->lock); no_page: si->flags -= SWP_SCANNING; return n_ret; } static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) { unsigned long idx; struct swap_cluster_info *ci; unsigned long offset; /* * Should not even be attempting cluster allocations when huge * page swap is disabled. Warn and fail the allocation. */ if (!IS_ENABLED(CONFIG_THP_SWAP)) { VM_WARN_ON_ONCE(1); return 0; } if (cluster_list_empty(&si->free_clusters)) return 0; idx = cluster_list_first(&si->free_clusters); offset = idx * SWAPFILE_CLUSTER; ci = lock_cluster(si, offset); alloc_cluster(si, idx); cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER); unlock_cluster(ci); swap_range_alloc(si, offset, SWAPFILE_CLUSTER); *slot = swp_entry(si->type, offset); return 1; } static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) { unsigned long offset = idx * SWAPFILE_CLUSTER; struct swap_cluster_info *ci; ci = lock_cluster(si, offset); memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); cluster_set_count_flag(ci, 0, 0); free_cluster(si, idx); unlock_cluster(ci); swap_range_free(si, offset, SWAPFILE_CLUSTER); } int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) { unsigned long size = swap_entry_size(entry_size); struct swap_info_struct *si, *next; long avail_pgs; int n_ret = 0; int node; /* Only single cluster request supported */ WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); spin_lock(&swap_avail_lock); avail_pgs = atomic_long_read(&nr_swap_pages) / size; if (avail_pgs <= 0) { spin_unlock(&swap_avail_lock); goto noswap; } n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); atomic_long_sub(n_goal * size, &nr_swap_pages); start_over: node = numa_node_id(); plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { /* requeue si to after same-priority siblings */ plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); spin_unlock(&swap_avail_lock); spin_lock(&si->lock); if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { spin_lock(&swap_avail_lock); if (plist_node_empty(&si->avail_lists[node])) { spin_unlock(&si->lock); goto nextsi; } WARN(!si->highest_bit, "swap_info %d in list but !highest_bit\n", si->type); WARN(!(si->flags & SWP_WRITEOK), "swap_info %d in list but !SWP_WRITEOK\n", si->type); __del_from_avail_list(si); spin_unlock(&si->lock); goto nextsi; } if (size == SWAPFILE_CLUSTER) { if (si->flags & SWP_BLKDEV) n_ret = swap_alloc_cluster(si, swp_entries); } else n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, n_goal, swp_entries); spin_unlock(&si->lock); if (n_ret || size == SWAPFILE_CLUSTER) goto check_out; pr_debug("scan_swap_map of si %d failed to find offset\n", si->type); cond_resched(); spin_lock(&swap_avail_lock); nextsi: /* * if we got here, it's likely that si was almost full before, * and since scan_swap_map_slots() can drop the si->lock, * multiple callers probably all tried to get a page from the * same si and it filled up before we could get one; or, the si * filled up between us dropping swap_avail_lock and taking * si->lock. Since we dropped the swap_avail_lock, the * swap_avail_head list may have been modified; so if next is * still in the swap_avail_head list then try it, otherwise * start over if we have not gotten any slots. */ if (plist_node_empty(&next->avail_lists[node])) goto start_over; } spin_unlock(&swap_avail_lock); check_out: if (n_ret < n_goal) atomic_long_add((long)(n_goal - n_ret) * size, &nr_swap_pages); noswap: return n_ret; } static struct swap_info_struct *__swap_info_get(swp_entry_t entry) { struct swap_info_struct *p; unsigned long offset; if (!entry.val) goto out; p = swp_swap_info(entry); if (!p) goto bad_nofile; if (data_race(!(p->flags & SWP_USED))) goto bad_device; offset = swp_offset(entry); if (offset >= p->max) goto bad_offset; return p; bad_offset: pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); goto out; bad_device: pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); goto out; bad_nofile: pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); out: return NULL; } static struct swap_info_struct *_swap_info_get(swp_entry_t entry) { struct swap_info_struct *p; p = __swap_info_get(entry); if (!p) goto out; if (data_race(!p->swap_map[swp_offset(entry)])) goto bad_free; return p; bad_free: pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); out: return NULL; } static struct swap_info_struct *swap_info_get(swp_entry_t entry) { struct swap_info_struct *p; p = _swap_info_get(entry); if (p) spin_lock(&p->lock); return p; } static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, struct swap_info_struct *q) { struct swap_info_struct *p; p = _swap_info_get(entry); if (p != q) { if (q != NULL) spin_unlock(&q->lock); if (p != NULL) spin_lock(&p->lock); } return p; } static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, unsigned long offset, unsigned char usage) { unsigned char count; unsigned char has_cache; count = p->swap_map[offset]; has_cache = count & SWAP_HAS_CACHE; count &= ~SWAP_HAS_CACHE; if (usage == SWAP_HAS_CACHE) { VM_BUG_ON(!has_cache); has_cache = 0; } else if (count == SWAP_MAP_SHMEM) { /* * Or we could insist on shmem.c using a special * swap_shmem_free() and free_shmem_swap_and_cache()... */ count = 0; } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { if (count == COUNT_CONTINUED) { if (swap_count_continued(p, offset, count)) count = SWAP_MAP_MAX | COUNT_CONTINUED; else count = SWAP_MAP_MAX; } else count--; } usage = count | has_cache; if (usage) WRITE_ONCE(p->swap_map[offset], usage); else WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); return usage; } /* * When we get a swap entry, if there aren't some other ways to * prevent swapoff, such as the folio in swap cache is locked, page * table lock is held, etc., the swap entry may become invalid because * of swapoff. Then, we need to enclose all swap related functions * with get_swap_device() and put_swap_device(), unless the swap * functions call get/put_swap_device() by themselves. * * Note that when only holding the PTL, swapoff might succeed immediately * after freeing a swap entry. Therefore, immediately after * __swap_entry_free(), the swap info might become stale and should not * be touched without a prior get_swap_device(). * * Check whether swap entry is valid in the swap device. If so, * return pointer to swap_info_struct, and keep the swap entry valid * via preventing the swap device from being swapoff, until * put_swap_device() is called. Otherwise return NULL. * * Notice that swapoff or swapoff+swapon can still happen before the * percpu_ref_tryget_live() in get_swap_device() or after the * percpu_ref_put() in put_swap_device() if there isn't any other way * to prevent swapoff. The caller must be prepared for that. For * example, the following situation is possible. * * CPU1 CPU2 * do_swap_page() * ... swapoff+swapon * __read_swap_cache_async() * swapcache_prepare() * __swap_duplicate() * // check swap_map * // verify PTE not changed * * In __swap_duplicate(), the swap_map need to be checked before * changing partly because the specified swap entry may be for another * swap device which has been swapoff. And in do_swap_page(), after * the page is read from the swap device, the PTE is verified not * changed with the page table locked to check whether the swap device * has been swapoff or swapoff+swapon. */ struct swap_info_struct *get_swap_device(swp_entry_t entry) { struct swap_info_struct *si; unsigned long offset; if (!entry.val) goto out; si = swp_swap_info(entry); if (!si) goto bad_nofile; if (!percpu_ref_tryget_live(&si->users)) goto out; /* * Guarantee the si->users are checked before accessing other * fields of swap_info_struct. * * Paired with the spin_unlock() after setup_swap_info() in * enable_swap_info(). */ smp_rmb(); offset = swp_offset(entry); if (offset >= si->max) goto put_out; return si; bad_nofile: pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); out: return NULL; put_out: percpu_ref_put(&si->users); return NULL; } static unsigned char __swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) { struct swap_cluster_info *ci; unsigned long offset = swp_offset(entry); unsigned char usage; ci = lock_cluster_or_swap_info(p, offset); usage = __swap_entry_free_locked(p, offset, 1); unlock_cluster_or_swap_info(p, ci); if (!usage) free_swap_slot(entry); return usage; } static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) { struct swap_cluster_info *ci; unsigned long offset = swp_offset(entry); unsigned char count; ci = lock_cluster(p, offset); count = p->swap_map[offset]; VM_BUG_ON(count != SWAP_HAS_CACHE); p->swap_map[offset] = 0; dec_cluster_info_page(p, p->cluster_info, offset); unlock_cluster(ci); mem_cgroup_uncharge_swap(entry, 1); swap_range_free(p, offset, 1); } /* * Caller has made sure that the swap device corresponding to entry * is still around or has not been recycled. */ void swap_free(swp_entry_t entry) { struct swap_info_struct *p; p = _swap_info_get(entry); if (p) __swap_entry_free(p, entry); } /* * Called after dropping swapcache to decrease refcnt to swap entries. */ void put_swap_page(struct page *page, swp_entry_t entry) { unsigned long offset = swp_offset(entry); unsigned long idx = offset / SWAPFILE_CLUSTER; struct swap_cluster_info *ci; struct swap_info_struct *si; unsigned char *map; unsigned int i, free_entries = 0; unsigned char val; int size = swap_entry_size(thp_nr_pages(page)); si = _swap_info_get(entry); if (!si) return; ci = lock_cluster_or_swap_info(si, offset); if (size == SWAPFILE_CLUSTER) { VM_BUG_ON(!cluster_is_huge(ci)); map = si->swap_map + offset; for (i = 0; i < SWAPFILE_CLUSTER; i++) { val = map[i]; VM_BUG_ON(!(val & SWAP_HAS_CACHE)); if (val == SWAP_HAS_CACHE) free_entries++; } cluster_clear_huge(ci); if (free_entries == SWAPFILE_CLUSTER) { unlock_cluster_or_swap_info(si, ci); spin_lock(&si->lock); mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); swap_free_cluster(si, idx); spin_unlock(&si->lock); return; } } for (i = 0; i < size; i++, entry.val++) { if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { unlock_cluster_or_swap_info(si, ci); free_swap_slot(entry); if (i == size - 1) return; lock_cluster_or_swap_info(si, offset); } } unlock_cluster_or_swap_info(si, ci); } #ifdef CONFIG_THP_SWAP int split_swap_cluster(swp_entry_t entry) { struct swap_info_struct *si; struct swap_cluster_info *ci; unsigned long offset = swp_offset(entry); si = _swap_info_get(entry); if (!si) return -EBUSY; ci = lock_cluster(si, offset); cluster_clear_huge(ci); unlock_cluster(ci); return 0; } #endif static int swp_entry_cmp(const void *ent1, const void *ent2) { const swp_entry_t *e1 = ent1, *e2 = ent2; return (int)swp_type(*e1) - (int)swp_type(*e2); } void swapcache_free_entries(swp_entry_t *entries, int n) { struct swap_info_struct *p, *prev; int i; if (n <= 0) return; prev = NULL; p = NULL; /* * Sort swap entries by swap device, so each lock is only taken once. * nr_swapfiles isn't absolutely correct, but the overhead of sort() is * so low that it isn't necessary to optimize further. */ if (nr_swapfiles > 1) sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); for (i = 0; i < n; ++i) { p = swap_info_get_cont(entries[i], prev); if (p) swap_entry_free(p, entries[i]); prev = p; } if (p) spin_unlock(&p->lock); } /* * How many references to page are currently swapped out? * This does not give an exact answer when swap count is continued, * but does include the high COUNT_CONTINUED flag to allow for that. */ int page_swapcount(struct page *page) { int count = 0; struct swap_info_struct *p; struct swap_cluster_info *ci; swp_entry_t entry; unsigned long offset; entry.val = page_private(page); p = _swap_info_get(entry); if (p) { offset = swp_offset(entry); ci = lock_cluster_or_swap_info(p, offset); count = swap_count(p->swap_map[offset]); unlock_cluster_or_swap_info(p, ci); } return count; } int __swap_count(swp_entry_t entry) { struct swap_info_struct *si; pgoff_t offset = swp_offset(entry); int count = 0; si = get_swap_device(entry); if (si) { count = swap_count(si->swap_map[offset]); put_swap_device(si); } return count; } static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) { int count = 0; pgoff_t offset = swp_offset(entry); struct swap_cluster_info *ci; ci = lock_cluster_or_swap_info(si, offset); count = swap_count(si->swap_map[offset]); unlock_cluster_or_swap_info(si, ci); return count; } /* * How many references to @entry are currently swapped out? * This does not give an exact answer when swap count is continued, * but does include the high COUNT_CONTINUED flag to allow for that. */ int __swp_swapcount(swp_entry_t entry) { int count = 0; struct swap_info_struct *si; si = get_swap_device(entry); if (si) { count = swap_swapcount(si, entry); put_swap_device(si); } return count; } /* * How many references to @entry are currently swapped out? * This considers COUNT_CONTINUED so it returns exact answer. */ int swp_swapcount(swp_entry_t entry) { int count, tmp_count, n; struct swap_info_struct *p; struct swap_cluster_info *ci; struct page *page; pgoff_t offset; unsigned char *map; p = _swap_info_get(entry); if (!p) return 0; offset = swp_offset(entry); ci = lock_cluster_or_swap_info(p, offset); count = swap_count(p->swap_map[offset]); if (!(count & COUNT_CONTINUED)) goto out; count &= ~COUNT_CONTINUED; n = SWAP_MAP_MAX + 1; page = vmalloc_to_page(p->swap_map + offset); offset &= ~PAGE_MASK; VM_BUG_ON(page_private(page) != SWP_CONTINUED); do { page = list_next_entry(page, lru); map = kmap_atomic(page); tmp_count = map[offset]; kunmap_atomic(map); count += (tmp_count & ~COUNT_CONTINUED) * n; n *= (SWAP_CONT_MAX + 1); } while (tmp_count & COUNT_CONTINUED); out: unlock_cluster_or_swap_info(p, ci); return count; } static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, swp_entry_t entry) { struct swap_cluster_info *ci; unsigned char *map = si->swap_map; unsigned long roffset = swp_offset(entry); unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); int i; bool ret = false; ci = lock_cluster_or_swap_info(si, offset); if (!ci || !cluster_is_huge(ci)) { if (swap_count(map[roffset])) ret = true; goto unlock_out; } for (i = 0; i < SWAPFILE_CLUSTER; i++) { if (swap_count(map[offset + i])) { ret = true; break; } } unlock_out: unlock_cluster_or_swap_info(si, ci); return ret; } static bool page_swapped(struct page *page) { swp_entry_t entry; struct swap_info_struct *si; if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) return page_swapcount(page) != 0; page = compound_head(page); entry.val = page_private(page); si = _swap_info_get(entry); if (si) return swap_page_trans_huge_swapped(si, entry); return false; } static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount, int *total_swapcount) { int i, map_swapcount, _total_mapcount, _total_swapcount; unsigned long offset = 0; struct swap_info_struct *si; struct swap_cluster_info *ci = NULL; unsigned char *map = NULL; int mapcount, swapcount = 0; /* hugetlbfs shouldn't call it */ VM_BUG_ON_PAGE(PageHuge(page), page); if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) { mapcount = page_trans_huge_mapcount(page, total_mapcount); if (PageSwapCache(page)) swapcount = page_swapcount(page); if (total_swapcount) *total_swapcount = swapcount; return mapcount + swapcount; } page = compound_head(page); _total_mapcount = _total_swapcount = map_swapcount = 0; if (PageSwapCache(page)) { swp_entry_t entry; entry.val = page_private(page); si = _swap_info_get(entry); if (si) { map = si->swap_map; offset = swp_offset(entry); } } if (map) ci = lock_cluster(si, offset); for (i = 0; i < HPAGE_PMD_NR; i++) { mapcount = atomic_read(&page[i]._mapcount) + 1; _total_mapcount += mapcount; if (map) { swapcount = swap_count(map[offset + i]); _total_swapcount += swapcount; } map_swapcount = max(map_swapcount, mapcount + swapcount); } unlock_cluster(ci); if (PageDoubleMap(page)) { map_swapcount -= 1; _total_mapcount -= HPAGE_PMD_NR; } mapcount = compound_mapcount(page); map_swapcount += mapcount; _total_mapcount += mapcount; if (total_mapcount) *total_mapcount = _total_mapcount; if (total_swapcount) *total_swapcount = _total_swapcount; return map_swapcount; } /* * We can write to an anon page without COW if there are no other references * to it. And as a side-effect, free up its swap: because the old content * on disk will never be read, and seeking back there to write new content * later would only waste time away from clustering. * * NOTE: total_map_swapcount should not be relied upon by the caller if * reuse_swap_page() returns false, but it may be always overwritten * (see the other implementation for CONFIG_SWAP=n). */ bool reuse_swap_page(struct page *page, int *total_map_swapcount) { int count, total_mapcount, total_swapcount; VM_BUG_ON_PAGE(!PageLocked(page), page); if (unlikely(PageKsm(page))) return false; count = page_trans_huge_map_swapcount(page, &total_mapcount, &total_swapcount); if (total_map_swapcount) *total_map_swapcount = total_mapcount + total_swapcount; if (count == 1 && PageSwapCache(page) && (likely(!PageTransCompound(page)) || /* The remaining swap count will be freed soon */ total_swapcount == page_swapcount(page))) { if (!PageWriteback(page)) { page = compound_head(page); delete_from_swap_cache(page); SetPageDirty(page); } else { swp_entry_t entry; struct swap_info_struct *p; entry.val = page_private(page); p = swap_info_get(entry); if (p->flags & SWP_STABLE_WRITES) { spin_unlock(&p->lock); return false; } spin_unlock(&p->lock); } } return count <= 1; } /* * If swap is getting full, or if there are no more mappings of this page, * then try_to_free_swap is called to free its swap space. */ int try_to_free_swap(struct page *page) { VM_BUG_ON_PAGE(!PageLocked(page), page); if (!PageSwapCache(page)) return 0; if (PageWriteback(page)) return 0; if (page_swapped(page)) return 0; /* * Once hibernation has begun to create its image of memory, * there's a danger that one of the calls to try_to_free_swap() * - most probably a call from __try_to_reclaim_swap() while * hibernation is allocating its own swap pages for the image, * but conceivably even a call from memory reclaim - will free * the swap from a page which has already been recorded in the * image as a clean swapcache page, and then reuse its swap for * another page of the image. On waking from hibernation, the * original page might be freed under memory pressure, then * later read back in from swap, now with the wrong data. * * Hibernation suspends storage while it is writing the image * to disk so check that here. */ if (pm_suspended_storage()) return 0; page = compound_head(page); delete_from_swap_cache(page); SetPageDirty(page); return 1; } /* * Free the swap entry like above, but also try to * free the page cache entry if it is the last user. */ int free_swap_and_cache(swp_entry_t entry) { struct swap_info_struct *p; unsigned char count; if (non_swap_entry(entry)) return 1; p = get_swap_device(entry); if (p) { if (WARN_ON(data_race(!p->swap_map[swp_offset(entry)]))) { put_swap_device(p); return 0; } count = __swap_entry_free(p, entry); if (count == SWAP_HAS_CACHE && !swap_page_trans_huge_swapped(p, entry)) __try_to_reclaim_swap(p, swp_offset(entry), TTRS_UNMAPPED | TTRS_FULL); put_swap_device(p); } return p != NULL; } #ifdef CONFIG_HIBERNATION swp_entry_t get_swap_page_of_type(int type) { struct swap_info_struct *si = swap_type_to_swap_info(type); swp_entry_t entry = {0}; if (!si) goto fail; /* This is called for allocating swap entry, not cache */ spin_lock(&si->lock); if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry)) atomic_long_dec(&nr_swap_pages); spin_unlock(&si->lock); fail: return entry; } /* * Find the swap type that corresponds to given device (if any). * * @offset - number of the PAGE_SIZE-sized block of the device, starting * from 0, in which the swap header is expected to be located. * * This is needed for the suspend to disk (aka swsusp). */ int swap_type_of(dev_t device, sector_t offset) { int type; if (!device) return -1; spin_lock(&swap_lock); for (type = 0; type < nr_swapfiles; type++) { struct swap_info_struct *sis = swap_info[type]; if (!(sis->flags & SWP_WRITEOK)) continue; if (device == sis->bdev->bd_dev) { struct swap_extent *se = first_se(sis); if (se->start_block == offset) { spin_unlock(&swap_lock); return type; } } } spin_unlock(&swap_lock); return -ENODEV; } int find_first_swap(dev_t *device) { int type; spin_lock(&swap_lock); for (type = 0; type < nr_swapfiles; type++) { struct swap_info_struct *sis = swap_info[type]; if (!(sis->flags & SWP_WRITEOK)) continue; *device = sis->bdev->bd_dev; spin_unlock(&swap_lock); return type; } spin_unlock(&swap_lock); return -ENODEV; } /* * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev * corresponding to given index in swap_info (swap type). */ sector_t swapdev_block(int type, pgoff_t offset) { struct swap_info_struct *si = swap_type_to_swap_info(type); struct swap_extent *se; if (!si || !(si->flags & SWP_WRITEOK)) return 0; se = offset_to_swap_extent(si, offset); return se->start_block + (offset - se->start_page); } /* * Return either the total number of swap pages of given type, or the number * of free pages of that type (depending on @free) * * This is needed for software suspend */ unsigned int count_swap_pages(int type, int free) { unsigned int n = 0; spin_lock(&swap_lock); if ((unsigned int)type < nr_swapfiles) { struct swap_info_struct *sis = swap_info[type]; spin_lock(&sis->lock); if (sis->flags & SWP_WRITEOK) { n = sis->pages; if (free) n -= sis->inuse_pages; } spin_unlock(&sis->lock); } spin_unlock(&swap_lock); return n; } #endif /* CONFIG_HIBERNATION */ static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) { return pte_same(pte_swp_clear_flags(pte), swp_pte); } /* * No need to decide whether this PTE shares the swap entry with others, * just let do_wp_page work it out if a write is requested later - to * force COW, vm_page_prot omits write permission from any private vma. */ static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, swp_entry_t entry, struct page *page) { struct page *swapcache; spinlock_t *ptl; pte_t *pte; int ret = 1; swapcache = page; page = ksm_might_need_to_copy(page, vma, addr); if (unlikely(!page)) return -ENOMEM; pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { ret = 0; goto out; } dec_mm_counter(vma->vm_mm, MM_SWAPENTS); inc_mm_counter(vma->vm_mm, MM_ANONPAGES); get_page(page); set_pte_at(vma->vm_mm, addr, pte, pte_mkold(mk_pte(page, vma->vm_page_prot))); if (page == swapcache) { page_add_anon_rmap(page, vma, addr, false); } else { /* ksm created a completely new copy */ page_add_new_anon_rmap(page, vma, addr, false); lru_cache_add_inactive_or_unevictable(page, vma); } swap_free(entry); out: pte_unmap_unlock(pte, ptl); if (page != swapcache) { unlock_page(page); put_page(page); } return ret; } static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, unsigned long end, unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse) { struct page *page; swp_entry_t entry; pte_t *pte; struct swap_info_struct *si; unsigned long offset; int ret = 0; volatile unsigned char *swap_map; si = swap_info[type]; pte = pte_offset_map(pmd, addr); do { if (!is_swap_pte(*pte)) continue; entry = pte_to_swp_entry(*pte); if (swp_type(entry) != type) continue; offset = swp_offset(entry); if (frontswap && !frontswap_test(si, offset)) continue; pte_unmap(pte); swap_map = &si->swap_map[offset]; page = lookup_swap_cache(entry, vma, addr); if (!page) { struct vm_fault vmf = { .vma = vma, .address = addr, .pmd = pmd, }; page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, &vmf); } if (!page) { if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD) goto try_next; return -ENOMEM; } lock_page(page); wait_on_page_writeback(page); ret = unuse_pte(vma, pmd, addr, entry, page); if (ret < 0) { unlock_page(page); put_page(page); goto out; } try_to_free_swap(page); unlock_page(page); put_page(page); if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) { ret = FRONTSWAP_PAGES_UNUSED; goto out; } try_next: pte = pte_offset_map(pmd, addr); } while (pte++, addr += PAGE_SIZE, addr != end); pte_unmap(pte - 1); ret = 0; out: return ret; } static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, unsigned long addr, unsigned long end, unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse) { pmd_t *pmd; unsigned long next; int ret; pmd = pmd_offset(pud, addr); do { cond_resched(); next = pmd_addr_end(addr, end); if (pmd_none_or_trans_huge_or_clear_bad(pmd)) continue; ret = unuse_pte_range(vma, pmd, addr, next, type, frontswap, fs_pages_to_unuse); if (ret) return ret; } while (pmd++, addr = next, addr != end); return 0; } static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr, unsigned long end, unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse) { pud_t *pud; unsigned long next; int ret; pud = pud_offset(p4d, addr); do { next = pud_addr_end(addr, end); if (pud_none_or_clear_bad(pud)) continue; ret = unuse_pmd_range(vma, pud, addr, next, type, frontswap, fs_pages_to_unuse); if (ret) return ret; } while (pud++, addr = next, addr != end); return 0; } static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse) { p4d_t *p4d; unsigned long next; int ret; p4d = p4d_offset(pgd, addr); do { next = p4d_addr_end(addr, end); if (p4d_none_or_clear_bad(p4d)) continue; ret = unuse_pud_range(vma, p4d, addr, next, type, frontswap, fs_pages_to_unuse); if (ret) return ret; } while (p4d++, addr = next, addr != end); return 0; } static int unuse_vma(struct vm_area_struct *vma, unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse) { pgd_t *pgd; unsigned long addr, end, next; int ret; addr = vma->vm_start; end = vma->vm_end; pgd = pgd_offset(vma->vm_mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; ret = unuse_p4d_range(vma, pgd, addr, next, type, frontswap, fs_pages_to_unuse); if (ret) return ret; } while (pgd++, addr = next, addr != end); return 0; } static int unuse_mm(struct mm_struct *mm, unsigned int type, bool frontswap, unsigned long *fs_pages_to_unuse) { struct vm_area_struct *vma; int ret = 0; mmap_read_lock(mm); for (vma = mm->mmap; vma; vma = vma->vm_next) { if (vma->anon_vma && !is_vm_hugetlb_page(vma)) { ret = unuse_vma(vma, type, frontswap, fs_pages_to_unuse); if (ret) break; } cond_resched(); } mmap_read_unlock(mm); return ret; } /* * Scan swap_map (or frontswap_map if frontswap parameter is true) * from current position to next entry still in use. Return 0 * if there are no inuse entries after prev till end of the map. */ static unsigned int find_next_to_unuse(struct swap_info_struct *si, unsigned int prev, bool frontswap) { unsigned int i; unsigned char count; /* * No need for swap_lock here: we're just looking * for whether an entry is in use, not modifying it; false * hits are okay, and sys_swapoff() has already prevented new * allocations from this area (while holding swap_lock). */ for (i = prev + 1; i < si->max; i++) { count = READ_ONCE(si->swap_map[i]); if (count && swap_count(count) != SWAP_MAP_BAD) if (!frontswap || frontswap_test(si, i)) break; if ((i % LATENCY_LIMIT) == 0) cond_resched(); } if (i == si->max) i = 0; return i; } /* * If the boolean frontswap is true, only unuse pages_to_unuse pages; * pages_to_unuse==0 means all pages; ignored if frontswap is false */ int try_to_unuse(unsigned int type, bool frontswap, unsigned long pages_to_unuse) { struct mm_struct *prev_mm; struct mm_struct *mm; struct list_head *p; int retval = 0; struct swap_info_struct *si = swap_info[type]; struct page *page; swp_entry_t entry; unsigned int i; if (!READ_ONCE(si->inuse_pages)) return 0; if (!frontswap) pages_to_unuse = 0; retry: retval = shmem_unuse(type, frontswap, &pages_to_unuse); if (retval) goto out; prev_mm = &init_mm; mmget(prev_mm); spin_lock(&mmlist_lock); p = &init_mm.mmlist; while (READ_ONCE(si->inuse_pages) && !signal_pending(current) && (p = p->next) != &init_mm.mmlist) { mm = list_entry(p, struct mm_struct, mmlist); if (!mmget_not_zero(mm)) continue; spin_unlock(&mmlist_lock); mmput(prev_mm); prev_mm = mm; retval = unuse_mm(mm, type, frontswap, &pages_to_unuse); if (retval) { mmput(prev_mm); goto out; } /* * Make sure that we aren't completely killing * interactive performance. */ cond_resched(); spin_lock(&mmlist_lock); } spin_unlock(&mmlist_lock); mmput(prev_mm); i = 0; while (READ_ONCE(si->inuse_pages) && !signal_pending(current) && (i = find_next_to_unuse(si, i, frontswap)) != 0) { entry = swp_entry(type, i); page = find_get_page(swap_address_space(entry), i); if (!page) continue; /* * It is conceivable that a racing task removed this page from * swap cache just before we acquired the page lock. The page * might even be back in swap cache on another swap area. But * that is okay, try_to_free_swap() only removes stale pages. */ lock_page(page); wait_on_page_writeback(page); try_to_free_swap(page); unlock_page(page); put_page(page); /* * For frontswap, we just need to unuse pages_to_unuse, if * it was specified. Need not check frontswap again here as * we already zeroed out pages_to_unuse if not frontswap. */ if (pages_to_unuse && --pages_to_unuse == 0) goto out; } /* * Lets check again to see if there are still swap entries in the map. * If yes, we would need to do retry the unuse logic again. * Under global memory pressure, swap entries can be reinserted back * into process space after the mmlist loop above passes over them. * * Limit the number of retries? No: when mmget_not_zero() above fails, * that mm is likely to be freeing swap from exit_mmap(), which proceeds * at its own independent pace; and even shmem_writepage() could have * been preempted after get_swap_page(), temporarily hiding that swap. * It's easy and robust (though cpu-intensive) just to keep retrying. */ if (READ_ONCE(si->inuse_pages)) { if (!signal_pending(current)) goto retry; retval = -EINTR; } out: return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval; } /* * After a successful try_to_unuse, if no swap is now in use, we know * we can empty the mmlist. swap_lock must be held on entry and exit. * Note that mmlist_lock nests inside swap_lock, and an mm must be * added to the mmlist just after page_duplicate - before would be racy. */ static void drain_mmlist(void) { struct list_head *p, *next; unsigned int type; for (type = 0; type < nr_swapfiles; type++) if (swap_info[type]->inuse_pages) return; spin_lock(&mmlist_lock); list_for_each_safe(p, next, &init_mm.mmlist) list_del_init(p); spin_unlock(&mmlist_lock); } /* * Free all of a swapdev's extent information */ static void destroy_swap_extents(struct swap_info_struct *sis) { while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { struct rb_node *rb = sis->swap_extent_root.rb_node; struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); rb_erase(rb, &sis->swap_extent_root); kfree(se); } if (sis->flags & SWP_ACTIVATED) { struct file *swap_file = sis->swap_file; struct address_space *mapping = swap_file->f_mapping; sis->flags &= ~SWP_ACTIVATED; if (mapping->a_ops->swap_deactivate) mapping->a_ops->swap_deactivate(swap_file); } } /* * Add a block range (and the corresponding page range) into this swapdev's * extent tree. * * This function rather assumes that it is called in ascending page order. */ int add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, unsigned long nr_pages, sector_t start_block) { struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; struct swap_extent *se; struct swap_extent *new_se; /* * place the new node at the right most since the * function is called in ascending page order. */ while (*link) { parent = *link; link = &parent->rb_right; } if (parent) { se = rb_entry(parent, struct swap_extent, rb_node); BUG_ON(se->start_page + se->nr_pages != start_page); if (se->start_block + se->nr_pages == start_block) { /* Merge it */ se->nr_pages += nr_pages; return 0; } } /* No merge, insert a new extent. */ new_se = kmalloc(sizeof(*se), GFP_KERNEL); if (new_se == NULL) return -ENOMEM; new_se->start_page = start_page; new_se->nr_pages = nr_pages; new_se->start_block = start_block; rb_link_node(&new_se->rb_node, parent, link); rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); return 1; } EXPORT_SYMBOL_GPL(add_swap_extent); /* * A `swap extent' is a simple thing which maps a contiguous range of pages * onto a contiguous range of disk blocks. An ordered list of swap extents * is built at swapon time and is then used at swap_writepage/swap_readpage * time for locating where on disk a page belongs. * * If the swapfile is an S_ISBLK block device, a single extent is installed. * This is done so that the main operating code can treat S_ISBLK and S_ISREG * swap files identically. * * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK * swapfiles are handled *identically* after swapon time. * * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If * some stray blocks are found which do not fall within the PAGE_SIZE alignment * requirements, they are simply tossed out - we will never use those blocks * for swapping. * * For all swap devices we set S_SWAPFILE across the life of the swapon. This * prevents users from writing to the swap device, which will corrupt memory. * * The amount of disk space which a single swap extent represents varies. * Typically it is in the 1-4 megabyte range. So we can have hundreds of * extents in the list. To avoid much list walking, we cache the previous * search location in `curr_swap_extent', and start new searches from there. * This is extremely effective. The average number of iterations in * map_swap_page() has been measured at about 0.3 per page. - akpm. */ static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) { struct file *swap_file = sis->swap_file; struct address_space *mapping = swap_file->f_mapping; struct inode *inode = mapping->host; int ret; if (S_ISBLK(inode->i_mode)) { ret = add_swap_extent(sis, 0, sis->max, 0); *span = sis->pages; return ret; } if (mapping->a_ops->swap_activate) { ret = mapping->a_ops->swap_activate(sis, swap_file, span); if (ret >= 0) sis->flags |= SWP_ACTIVATED; if (!ret) { sis->flags |= SWP_FS_OPS; ret = add_swap_extent(sis, 0, sis->max, 0); *span = sis->pages; } return ret; } return generic_swapfile_activate(sis, swap_file, span); } static int swap_node(struct swap_info_struct *p) { struct block_device *bdev; if (p->bdev) bdev = p->bdev; else bdev = p->swap_file->f_inode->i_sb->s_bdev; return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; } static void setup_swap_info(struct swap_info_struct *p, int prio, unsigned char *swap_map, struct swap_cluster_info *cluster_info) { int i; if (prio >= 0) p->prio = prio; else p->prio = --least_priority; /* * the plist prio is negated because plist ordering is * low-to-high, while swap ordering is high-to-low */ p->list.prio = -p->prio; for_each_node(i) { if (p->prio >= 0) p->avail_lists[i].prio = -p->prio; else { if (swap_node(p) == i) p->avail_lists[i].prio = 1; else p->avail_lists[i].prio = -p->prio; } } p->swap_map = swap_map; p->cluster_info = cluster_info; } static void _enable_swap_info(struct swap_info_struct *p) { p->flags |= SWP_WRITEOK; atomic_long_add(p->pages, &nr_swap_pages); total_swap_pages += p->pages; assert_spin_locked(&swap_lock); /* * both lists are plists, and thus priority ordered. * swap_active_head needs to be priority ordered for swapoff(), * which on removal of any swap_info_struct with an auto-assigned * (i.e. negative) priority increments the auto-assigned priority * of any lower-priority swap_info_structs. * swap_avail_head needs to be priority ordered for get_swap_page(), * which allocates swap pages from the highest available priority * swap_info_struct. */ plist_add(&p->list, &swap_active_head); add_to_avail_list(p); } static void enable_swap_info(struct swap_info_struct *p, int prio, unsigned char *swap_map, struct swap_cluster_info *cluster_info, unsigned long *frontswap_map) { frontswap_init(p->type, frontswap_map); spin_lock(&swap_lock); spin_lock(&p->lock); setup_swap_info(p, prio, swap_map, cluster_info); spin_unlock(&p->lock); spin_unlock(&swap_lock); /* * Finished initializing swap device, now it's safe to reference it. */ percpu_ref_resurrect(&p->users); spin_lock(&swap_lock); spin_lock(&p->lock); _enable_swap_info(p); spin_unlock(&p->lock); spin_unlock(&swap_lock); } static void reinsert_swap_info(struct swap_info_struct *p) { spin_lock(&swap_lock); spin_lock(&p->lock); setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); _enable_swap_info(p); spin_unlock(&p->lock); spin_unlock(&swap_lock); } bool has_usable_swap(void) { bool ret = true; spin_lock(&swap_lock); if (plist_head_empty(&swap_active_head)) ret = false; spin_unlock(&swap_lock); return ret; } SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) { struct swap_info_struct *p = NULL; unsigned char *swap_map; struct swap_cluster_info *cluster_info; unsigned long *frontswap_map; struct file *swap_file, *victim; struct address_space *mapping; struct inode *inode; struct filename *pathname; int err, found = 0; unsigned int old_block_size; if (!capable(CAP_SYS_ADMIN)) return -EPERM; BUG_ON(!current->mm); pathname = getname(specialfile); if (IS_ERR(pathname)) return PTR_ERR(pathname); victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); err = PTR_ERR(victim); if (IS_ERR(victim)) goto out; mapping = victim->f_mapping; spin_lock(&swap_lock); plist_for_each_entry(p, &swap_active_head, list) { if (p->flags & SWP_WRITEOK) { if (p->swap_file->f_mapping == mapping) { found = 1; break; } } } if (!found) { err = -EINVAL; spin_unlock(&swap_lock); goto out_dput; } if (!security_vm_enough_memory_mm(current->mm, p->pages)) vm_unacct_memory(p->pages); else { err = -ENOMEM; spin_unlock(&swap_lock); goto out_dput; } spin_lock(&p->lock); del_from_avail_list(p); if (p->prio < 0) { struct swap_info_struct *si = p; int nid; plist_for_each_entry_continue(si, &swap_active_head, list) { si->prio++; si->list.prio--; for_each_node(nid) { if (si->avail_lists[nid].prio != 1) si->avail_lists[nid].prio--; } } least_priority++; } plist_del(&p->list, &swap_active_head); atomic_long_sub(p->pages, &nr_swap_pages); total_swap_pages -= p->pages; p->flags &= ~SWP_WRITEOK; spin_unlock(&p->lock); spin_unlock(&swap_lock); disable_swap_slots_cache_lock(); set_current_oom_origin(); err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ clear_current_oom_origin(); if (err) { /* re-insert swap space back into swap_list */ reinsert_swap_info(p); reenable_swap_slots_cache_unlock(); goto out_dput; } reenable_swap_slots_cache_unlock(); /* * Wait for swap operations protected by get/put_swap_device() * to complete. * * We need synchronize_rcu() here to protect the accessing to * the swap cache data structure. */ percpu_ref_kill(&p->users); synchronize_rcu(); wait_for_completion(&p->comp); flush_work(&p->discard_work); destroy_swap_extents(p); if (p->flags & SWP_CONTINUED) free_swap_count_continuations(p); if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev))) atomic_dec(&nr_rotate_swap); mutex_lock(&swapon_mutex); spin_lock(&swap_lock); spin_lock(&p->lock); drain_mmlist(); /* wait for anyone still in scan_swap_map_slots */ p->highest_bit = 0; /* cuts scans short */ while (p->flags >= SWP_SCANNING) { spin_unlock(&p->lock); spin_unlock(&swap_lock); schedule_timeout_uninterruptible(1); spin_lock(&swap_lock); spin_lock(&p->lock); } swap_file = p->swap_file; old_block_size = p->old_block_size; p->swap_file = NULL; p->max = 0; swap_map = p->swap_map; p->swap_map = NULL; cluster_info = p->cluster_info; p->cluster_info = NULL; frontswap_map = frontswap_map_get(p); spin_unlock(&p->lock); spin_unlock(&swap_lock); arch_swap_invalidate_area(p->type); frontswap_invalidate_area(p->type); frontswap_map_set(p, NULL); mutex_unlock(&swapon_mutex); free_percpu(p->percpu_cluster); p->percpu_cluster = NULL; free_percpu(p->cluster_next_cpu); p->cluster_next_cpu = NULL; vfree(swap_map); kvfree(cluster_info); kvfree(frontswap_map); /* Destroy swap account information */ swap_cgroup_swapoff(p->type); exit_swap_address_space(p->type); inode = mapping->host; if (S_ISBLK(inode->i_mode)) { struct block_device *bdev = I_BDEV(inode); set_blocksize(bdev, old_block_size); blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); } inode_lock(inode); inode->i_flags &= ~S_SWAPFILE; inode_unlock(inode); filp_close(swap_file, NULL); /* * Clear the SWP_USED flag after all resources are freed so that swapon * can reuse this swap_info in alloc_swap_info() safely. It is ok to * not hold p->lock after we cleared its SWP_WRITEOK. */ spin_lock(&swap_lock); p->flags = 0; spin_unlock(&swap_lock); err = 0; atomic_inc(&proc_poll_event); wake_up_interruptible(&proc_poll_wait); out_dput: filp_close(victim, NULL); out: putname(pathname); return err; } #ifdef CONFIG_PROC_FS static __poll_t swaps_poll(struct file *file, poll_table *wait) { struct seq_file *seq = file->private_data; poll_wait(file, &proc_poll_wait, wait); if (seq->poll_event != atomic_read(&proc_poll_event)) { seq->poll_event = atomic_read(&proc_poll_event); return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; } return EPOLLIN | EPOLLRDNORM; } /* iterator */ static void *swap_start(struct seq_file *swap, loff_t *pos) { struct swap_info_struct *si; int type; loff_t l = *pos; mutex_lock(&swapon_mutex); if (!l) return SEQ_START_TOKEN; for (type = 0; (si = swap_type_to_swap_info(type)); type++) { if (!(si->flags & SWP_USED) || !si->swap_map) continue; if (!--l) return si; } return NULL; } static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) { struct swap_info_struct *si = v; int type; if (v == SEQ_START_TOKEN) type = 0; else type = si->type + 1; ++(*pos); for (; (si = swap_type_to_swap_info(type)); type++) { if (!(si->flags & SWP_USED) || !si->swap_map) continue; return si; } return NULL; } static void swap_stop(struct seq_file *swap, void *v) { mutex_unlock(&swapon_mutex); } static int swap_show(struct seq_file *swap, void *v) { struct swap_info_struct *si = v; struct file *file; int len; unsigned int bytes, inuse; if (si == SEQ_START_TOKEN) { seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); return 0; } bytes = si->pages << (PAGE_SHIFT - 10); inuse = si->inuse_pages << (PAGE_SHIFT - 10); file = si->swap_file; len = seq_file_path(swap, file, " \t\n\\"); seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n", len < 40 ? 40 - len : 1, " ", S_ISBLK(file_inode(file)->i_mode) ? "partition" : "file\t", bytes, bytes < 10000000 ? "\t" : "", inuse, inuse < 10000000 ? "\t" : "", si->prio); return 0; } static const struct seq_operations swaps_op = { .start = swap_start, .next = swap_next, .stop = swap_stop, .show = swap_show }; static int swaps_open(struct inode *inode, struct file *file) { struct seq_file *seq; int ret; ret = seq_open(file, &swaps_op); if (ret) return ret; seq = file->private_data; seq->poll_event = atomic_read(&proc_poll_event); return 0; } static const struct proc_ops swaps_proc_ops = { .proc_flags = PROC_ENTRY_PERMANENT, .proc_open = swaps_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = seq_release, .proc_poll = swaps_poll, }; static int __init procswaps_init(void) { proc_create("swaps", 0, NULL, &swaps_proc_ops); return 0; } __initcall(procswaps_init); #endif /* CONFIG_PROC_FS */ #ifdef MAX_SWAPFILES_CHECK static int __init max_swapfiles_check(void) { MAX_SWAPFILES_CHECK(); return 0; } late_initcall(max_swapfiles_check); #endif static struct swap_info_struct *alloc_swap_info(void) { struct swap_info_struct *p; struct swap_info_struct *defer = NULL; unsigned int type; int i; p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); if (!p) return ERR_PTR(-ENOMEM); if (percpu_ref_init(&p->users, swap_users_ref_free, PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { kvfree(p); return ERR_PTR(-ENOMEM); } spin_lock(&swap_lock); for (type = 0; type < nr_swapfiles; type++) { if (!(swap_info[type]->flags & SWP_USED)) break; } if (type >= MAX_SWAPFILES) { spin_unlock(&swap_lock); percpu_ref_exit(&p->users); kvfree(p); return ERR_PTR(-EPERM); } if (type >= nr_swapfiles) { p->type = type; /* * Publish the swap_info_struct after initializing it. * Note that kvzalloc() above zeroes all its fields. */ smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ nr_swapfiles++; } else { defer = p; p = swap_info[type]; /* * Do not memset this entry: a racing procfs swap_next() * would be relying on p->type to remain valid. */ } p->swap_extent_root = RB_ROOT; plist_node_init(&p->list, 0); for_each_node(i) plist_node_init(&p->avail_lists[i], 0); p->flags = SWP_USED; spin_unlock(&swap_lock); if (defer) { percpu_ref_exit(&defer->users); kvfree(defer); } spin_lock_init(&p->lock); spin_lock_init(&p->cont_lock); init_completion(&p->comp); return p; } static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) { int error; if (S_ISBLK(inode->i_mode)) { p->bdev = blkdev_get_by_dev(inode->i_rdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); if (IS_ERR(p->bdev)) { error = PTR_ERR(p->bdev); p->bdev = NULL; return error; } p->old_block_size = block_size(p->bdev); error = set_blocksize(p->bdev, PAGE_SIZE); if (error < 0) return error; /* * Zoned block devices contain zones that have a sequential * write only restriction. Hence zoned block devices are not * suitable for swapping. Disallow them here. */ if (blk_queue_is_zoned(p->bdev->bd_disk->queue)) return -EINVAL; p->flags |= SWP_BLKDEV; } else if (S_ISREG(inode->i_mode)) { p->bdev = inode->i_sb->s_bdev; } return 0; } /* * Find out how many pages are allowed for a single swap device. There * are two limiting factors: * 1) the number of bits for the swap offset in the swp_entry_t type, and * 2) the number of bits in the swap pte, as defined by the different * architectures. * * In order to find the largest possible bit mask, a swap entry with * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, * decoded to a swp_entry_t again, and finally the swap offset is * extracted. * * This will mask all the bits from the initial ~0UL mask that can't * be encoded in either the swp_entry_t or the architecture definition * of a swap pte. */ unsigned long generic_max_swapfile_size(void) { return swp_offset(pte_to_swp_entry( swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; } /* Can be overridden by an architecture for additional checks. */ __weak unsigned long max_swapfile_size(void) { return generic_max_swapfile_size(); } static unsigned long read_swap_header(struct swap_info_struct *p, union swap_header *swap_header, struct inode *inode) { int i; unsigned long maxpages; unsigned long swapfilepages; unsigned long last_page; if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { pr_err("Unable to find swap-space signature\n"); return 0; } /* swap partition endianness hack... */ if (swab32(swap_header->info.version) == 1) { swab32s(&swap_header->info.version); swab32s(&swap_header->info.last_page); swab32s(&swap_header->info.nr_badpages); if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) return 0; for (i = 0; i < swap_header->info.nr_badpages; i++) swab32s(&swap_header->info.badpages[i]); } /* Check the swap header's sub-version */ if (swap_header->info.version != 1) { pr_warn("Unable to handle swap header version %d\n", swap_header->info.version); return 0; } p->lowest_bit = 1; p->cluster_next = 1; p->cluster_nr = 0; maxpages = max_swapfile_size(); last_page = swap_header->info.last_page; if (!last_page) { pr_warn("Empty swap-file\n"); return 0; } if (last_page > maxpages) { pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", maxpages << (PAGE_SHIFT - 10), last_page << (PAGE_SHIFT - 10)); } if (maxpages > last_page) { maxpages = last_page + 1; /* p->max is an unsigned int: don't overflow it */ if ((unsigned int)maxpages == 0) maxpages = UINT_MAX; } p->highest_bit = maxpages - 1; if (!maxpages) return 0; swapfilepages = i_size_read(inode) >> PAGE_SHIFT; if (swapfilepages && maxpages > swapfilepages) { pr_warn("Swap area shorter than signature indicates\n"); return 0; } if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) return 0; if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) return 0; return maxpages; } #define SWAP_CLUSTER_INFO_COLS \ DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) #define SWAP_CLUSTER_SPACE_COLS \ DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) #define SWAP_CLUSTER_COLS \ max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) static int setup_swap_map_and_extents(struct swap_info_struct *p, union swap_header *swap_header, unsigned char *swap_map, struct swap_cluster_info *cluster_info, unsigned long maxpages, sector_t *span) { unsigned int j, k; unsigned int nr_good_pages; int nr_extents; unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; unsigned long i, idx; nr_good_pages = maxpages - 1; /* omit header page */ cluster_list_init(&p->free_clusters); cluster_list_init(&p->discard_clusters); for (i = 0; i < swap_header->info.nr_badpages; i++) { unsigned int page_nr = swap_header->info.badpages[i]; if (page_nr == 0 || page_nr > swap_header->info.last_page) return -EINVAL; if (page_nr < maxpages) { swap_map[page_nr] = SWAP_MAP_BAD; nr_good_pages--; /* * Haven't marked the cluster free yet, no list * operation involved */ inc_cluster_info_page(p, cluster_info, page_nr); } } /* Haven't marked the cluster free yet, no list operation involved */ for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) inc_cluster_info_page(p, cluster_info, i); if (nr_good_pages) { swap_map[0] = SWAP_MAP_BAD; /* * Not mark the cluster free yet, no list * operation involved */ inc_cluster_info_page(p, cluster_info, 0); p->max = maxpages; p->pages = nr_good_pages; nr_extents = setup_swap_extents(p, span); if (nr_extents < 0) return nr_extents; nr_good_pages = p->pages; } if (!nr_good_pages) { pr_warn("Empty swap-file\n"); return -EINVAL; } if (!cluster_info) return nr_extents; /* * Reduce false cache line sharing between cluster_info and * sharing same address space. */ for (k = 0; k < SWAP_CLUSTER_COLS; k++) { j = (k + col) % SWAP_CLUSTER_COLS; for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { idx = i * SWAP_CLUSTER_COLS + j; if (idx >= nr_clusters) continue; if (cluster_count(&cluster_info[idx])) continue; cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); cluster_list_add_tail(&p->free_clusters, cluster_info, idx); } } return nr_extents; } /* * Helper to sys_swapon determining if a given swap * backing device queue supports DISCARD operations. */ static bool swap_discardable(struct swap_info_struct *si) { struct request_queue *q = bdev_get_queue(si->bdev); if (!q || !blk_queue_discard(q)) return false; return true; } SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) { struct swap_info_struct *p; struct filename *name; struct file *swap_file = NULL; struct address_space *mapping; struct dentry *dentry; int prio; int error; union swap_header *swap_header; int nr_extents; sector_t span; unsigned long maxpages; unsigned char *swap_map = NULL; struct swap_cluster_info *cluster_info = NULL; unsigned long *frontswap_map = NULL; struct page *page = NULL; struct inode *inode = NULL; bool inced_nr_rotate_swap = false; if (swap_flags & ~SWAP_FLAGS_VALID) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!swap_avail_heads) return -ENOMEM; p = alloc_swap_info(); if (IS_ERR(p)) return PTR_ERR(p); INIT_WORK(&p->discard_work, swap_discard_work); name = getname(specialfile); if (IS_ERR(name)) { error = PTR_ERR(name); name = NULL; goto bad_swap; } swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); if (IS_ERR(swap_file)) { error = PTR_ERR(swap_file); swap_file = NULL; goto bad_swap; } p->swap_file = swap_file; mapping = swap_file->f_mapping; dentry = swap_file->f_path.dentry; inode = mapping->host; error = claim_swapfile(p, inode); if (unlikely(error)) goto bad_swap; inode_lock(inode); if (d_unlinked(dentry) || cant_mount(dentry)) { error = -ENOENT; goto bad_swap_unlock_inode; } if (IS_SWAPFILE(inode)) { error = -EBUSY; goto bad_swap_unlock_inode; } /* * Read the swap header. */ if (!mapping->a_ops->readpage) { error = -EINVAL; goto bad_swap_unlock_inode; } page = read_mapping_page(mapping, 0, swap_file); if (IS_ERR(page)) { error = PTR_ERR(page); goto bad_swap_unlock_inode; } swap_header = kmap(page); maxpages = read_swap_header(p, swap_header, inode); if (unlikely(!maxpages)) { error = -EINVAL; goto bad_swap_unlock_inode; } /* OK, set up the swap map and apply the bad block list */ swap_map = vzalloc(maxpages); if (!swap_map) { error = -ENOMEM; goto bad_swap_unlock_inode; } if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue)) p->flags |= SWP_STABLE_WRITES; if (p->bdev && p->bdev->bd_disk->fops->rw_page) p->flags |= SWP_SYNCHRONOUS_IO; if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { int cpu; unsigned long ci, nr_cluster; p->flags |= SWP_SOLIDSTATE; p->cluster_next_cpu = alloc_percpu(unsigned int); if (!p->cluster_next_cpu) { error = -ENOMEM; goto bad_swap_unlock_inode; } /* * select a random position to start with to help wear leveling * SSD */ for_each_possible_cpu(cpu) { per_cpu(*p->cluster_next_cpu, cpu) = 1 + prandom_u32_max(p->highest_bit); } nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), GFP_KERNEL); if (!cluster_info) { error = -ENOMEM; goto bad_swap_unlock_inode; } for (ci = 0; ci < nr_cluster; ci++) spin_lock_init(&((cluster_info + ci)->lock)); p->percpu_cluster = alloc_percpu(struct percpu_cluster); if (!p->percpu_cluster) { error = -ENOMEM; goto bad_swap_unlock_inode; } for_each_possible_cpu(cpu) { struct percpu_cluster *cluster; cluster = per_cpu_ptr(p->percpu_cluster, cpu); cluster_set_null(&cluster->index); } } else { atomic_inc(&nr_rotate_swap); inced_nr_rotate_swap = true; } error = swap_cgroup_swapon(p->type, maxpages); if (error) goto bad_swap_unlock_inode; nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, cluster_info, maxpages, &span); if (unlikely(nr_extents < 0)) { error = nr_extents; goto bad_swap_unlock_inode; } /* frontswap enabled? set up bit-per-page map for frontswap */ if (IS_ENABLED(CONFIG_FRONTSWAP)) frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), sizeof(long), GFP_KERNEL); if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { /* * When discard is enabled for swap with no particular * policy flagged, we set all swap discard flags here in * order to sustain backward compatibility with older * swapon(8) releases. */ p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | SWP_PAGE_DISCARD); /* * By flagging sys_swapon, a sysadmin can tell us to * either do single-time area discards only, or to just * perform discards for released swap page-clusters. * Now it's time to adjust the p->flags accordingly. */ if (swap_flags & SWAP_FLAG_DISCARD_ONCE) p->flags &= ~SWP_PAGE_DISCARD; else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) p->flags &= ~SWP_AREA_DISCARD; /* issue a swapon-time discard if it's still required */ if (p->flags & SWP_AREA_DISCARD) { int err = discard_swap(p); if (unlikely(err)) pr_err("swapon: discard_swap(%p): %d\n", p, err); } } error = init_swap_address_space(p->type, maxpages); if (error) goto bad_swap_unlock_inode; /* * Flush any pending IO and dirty mappings before we start using this * swap device. */ inode->i_flags |= S_SWAPFILE; error = inode_drain_writes(inode); if (error) { inode->i_flags &= ~S_SWAPFILE; goto free_swap_address_space; } mutex_lock(&swapon_mutex); prio = -1; if (swap_flags & SWAP_FLAG_PREFER) prio = (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", p->pages<<(PAGE_SHIFT-10), name->name, p->prio, nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), (p->flags & SWP_SOLIDSTATE) ? "SS" : "", (p->flags & SWP_DISCARDABLE) ? "D" : "", (p->flags & SWP_AREA_DISCARD) ? "s" : "", (p->flags & SWP_PAGE_DISCARD) ? "c" : "", (frontswap_map) ? "FS" : ""); mutex_unlock(&swapon_mutex); atomic_inc(&proc_poll_event); wake_up_interruptible(&proc_poll_wait); error = 0; goto out; free_swap_address_space: exit_swap_address_space(p->type); bad_swap_unlock_inode: inode_unlock(inode); bad_swap: free_percpu(p->percpu_cluster); p->percpu_cluster = NULL; free_percpu(p->cluster_next_cpu); p->cluster_next_cpu = NULL; if (inode && S_ISBLK(inode->i_mode) && p->bdev) { set_blocksize(p->bdev, p->old_block_size); blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); } inode = NULL; destroy_swap_extents(p); swap_cgroup_swapoff(p->type); spin_lock(&swap_lock); p->swap_file = NULL; p->flags = 0; spin_unlock(&swap_lock); vfree(swap_map); kvfree(cluster_info); kvfree(frontswap_map); if (inced_nr_rotate_swap) atomic_dec(&nr_rotate_swap); if (swap_file) filp_close(swap_file, NULL); out: if (page && !IS_ERR(page)) { kunmap(page); put_page(page); } if (name) putname(name); if (inode) inode_unlock(inode); if (!error) enable_swap_slots_cache(); return error; } void si_swapinfo(struct sysinfo *val) { unsigned int type; unsigned long nr_to_be_unused = 0; spin_lock(&swap_lock); for (type = 0; type < nr_swapfiles; type++) { struct swap_info_struct *si = swap_info[type]; if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) nr_to_be_unused += si->inuse_pages; } val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; val->totalswap = total_swap_pages + nr_to_be_unused; spin_unlock(&swap_lock); } /* * Verify that a swap entry is valid and increment its swap map count. * * Returns error code in following case. * - success -> 0 * - swp_entry is invalid -> EINVAL * - swp_entry is migration entry -> EINVAL * - swap-cache reference is requested but there is already one. -> EEXIST * - swap-cache reference is requested but the entry is not used. -> ENOENT * - swap-mapped reference requested but needs continued swap count. -> ENOMEM */ static int __swap_duplicate(swp_entry_t entry, unsigned char usage) { struct swap_info_struct *p; struct swap_cluster_info *ci; unsigned long offset; unsigned char count; unsigned char has_cache; int err; p = get_swap_device(entry); if (!p) return -EINVAL; offset = swp_offset(entry); ci = lock_cluster_or_swap_info(p, offset); count = p->swap_map[offset]; /* * swapin_readahead() doesn't check if a swap entry is valid, so the * swap entry could be SWAP_MAP_BAD. Check here with lock held. */ if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { err = -ENOENT; goto unlock_out; } has_cache = count & SWAP_HAS_CACHE; count &= ~SWAP_HAS_CACHE; err = 0; if (usage == SWAP_HAS_CACHE) { /* set SWAP_HAS_CACHE if there is no cache and entry is used */ if (!has_cache && count) has_cache = SWAP_HAS_CACHE; else if (has_cache) /* someone else added cache */ err = -EEXIST; else /* no users remaining */ err = -ENOENT; } else if (count || has_cache) { if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) count += usage; else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) err = -EINVAL; else if (swap_count_continued(p, offset, count)) count = COUNT_CONTINUED; else err = -ENOMEM; } else err = -ENOENT; /* unused swap entry */ WRITE_ONCE(p->swap_map[offset], count | has_cache); unlock_out: unlock_cluster_or_swap_info(p, ci); if (p) put_swap_device(p); return err; } /* * Help swapoff by noting that swap entry belongs to shmem/tmpfs * (in which case its reference count is never incremented). */ void swap_shmem_alloc(swp_entry_t entry) { __swap_duplicate(entry, SWAP_MAP_SHMEM); } /* * Increase reference count of swap entry by 1. * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required * but could not be atomically allocated. Returns 0, just as if it succeeded, * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which * might occur if a page table entry has got corrupted. */ int swap_duplicate(swp_entry_t entry) { int err = 0; while (!err && __swap_duplicate(entry, 1) == -ENOMEM) err = add_swap_count_continuation(entry, GFP_ATOMIC); return err; } /* * @entry: swap entry for which we allocate swap cache. * * Called when allocating swap cache for existing swap entry, * This can return error codes. Returns 0 at success. * -EEXIST means there is a swap cache. * Note: return code is different from swap_duplicate(). */ int swapcache_prepare(swp_entry_t entry) { return __swap_duplicate(entry, SWAP_HAS_CACHE); } struct swap_info_struct *swp_swap_info(swp_entry_t entry) { return swap_type_to_swap_info(swp_type(entry)); } struct swap_info_struct *page_swap_info(struct page *page) { swp_entry_t entry = { .val = page_private(page) }; return swp_swap_info(entry); } /* * out-of-line __page_file_ methods to avoid include hell. */ struct address_space *__page_file_mapping(struct page *page) { return page_swap_info(page)->swap_file->f_mapping; } EXPORT_SYMBOL_GPL(__page_file_mapping); pgoff_t __page_file_index(struct page *page) { swp_entry_t swap = { .val = page_private(page) }; return swp_offset(swap); } EXPORT_SYMBOL_GPL(__page_file_index); /* * add_swap_count_continuation - called when a swap count is duplicated * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's * page of the original vmalloc'ed swap_map, to hold the continuation count * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. * * These continuation pages are seldom referenced: the common paths all work * on the original swap_map, only referring to a continuation page when the * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. * * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) * can be called after dropping locks. */ int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) { struct swap_info_struct *si; struct swap_cluster_info *ci; struct page *head; struct page *page; struct page *list_page; pgoff_t offset; unsigned char count; int ret = 0; /* * When debugging, it's easier to use __GFP_ZERO here; but it's better * for latency not to zero a page while GFP_ATOMIC and holding locks. */ page = alloc_page(gfp_mask | __GFP_HIGHMEM); si = get_swap_device(entry); if (!si) { /* * An acceptable race has occurred since the failing * __swap_duplicate(): the swap device may be swapoff */ goto outer; } spin_lock(&si->lock); offset = swp_offset(entry); ci = lock_cluster(si, offset); count = swap_count(si->swap_map[offset]); if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { /* * The higher the swap count, the more likely it is that tasks * will race to add swap count continuation: we need to avoid * over-provisioning. */ goto out; } if (!page) { ret = -ENOMEM; goto out; } /* * We are fortunate that although vmalloc_to_page uses pte_offset_map, * no architecture is using highmem pages for kernel page tables: so it * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. */ head = vmalloc_to_page(si->swap_map + offset); offset &= ~PAGE_MASK; spin_lock(&si->cont_lock); /* * Page allocation does not initialize the page's lru field, * but it does always reset its private field. */ if (!page_private(head)) { BUG_ON(count & COUNT_CONTINUED); INIT_LIST_HEAD(&head->lru); set_page_private(head, SWP_CONTINUED); si->flags |= SWP_CONTINUED; } list_for_each_entry(list_page, &head->lru, lru) { unsigned char *map; /* * If the previous map said no continuation, but we've found * a continuation page, free our allocation and use this one. */ if (!(count & COUNT_CONTINUED)) goto out_unlock_cont; map = kmap_atomic(list_page) + offset; count = *map; kunmap_atomic(map); /* * If this continuation count now has some space in it, * free our allocation and use this one. */ if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) goto out_unlock_cont; } list_add_tail(&page->lru, &head->lru); page = NULL; /* now it's attached, don't free it */ out_unlock_cont: spin_unlock(&si->cont_lock); out: unlock_cluster(ci); spin_unlock(&si->lock); put_swap_device(si); outer: if (page) __free_page(page); return ret; } /* * swap_count_continued - when the original swap_map count is incremented * from SWAP_MAP_MAX, check if there is already a continuation page to carry * into, carry if so, or else fail until a new continuation page is allocated; * when the original swap_map count is decremented from 0 with continuation, * borrow from the continuation and report whether it still holds more. * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster * lock. */ static bool swap_count_continued(struct swap_info_struct *si, pgoff_t offset, unsigned char count) { struct page *head; struct page *page; unsigned char *map; bool ret; head = vmalloc_to_page(si->swap_map + offset); if (page_private(head) != SWP_CONTINUED) { BUG_ON(count & COUNT_CONTINUED); return false; /* need to add count continuation */ } spin_lock(&si->cont_lock); offset &= ~PAGE_MASK; page = list_next_entry(head, lru); map = kmap_atomic(page) + offset; if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ goto init_map; /* jump over SWAP_CONT_MAX checks */ if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ /* * Think of how you add 1 to 999 */ while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { kunmap_atomic(map); page = list_next_entry(page, lru); BUG_ON(page == head); map = kmap_atomic(page) + offset; } if (*map == SWAP_CONT_MAX) { kunmap_atomic(map); page = list_next_entry(page, lru); if (page == head) { ret = false; /* add count continuation */ goto out; } map = kmap_atomic(page) + offset; init_map: *map = 0; /* we didn't zero the page */ } *map += 1; kunmap_atomic(map); while ((page = list_prev_entry(page, lru)) != head) { map = kmap_atomic(page) + offset; *map = COUNT_CONTINUED; kunmap_atomic(map); } ret = true; /* incremented */ } else { /* decrementing */ /* * Think of how you subtract 1 from 1000 */ BUG_ON(count != COUNT_CONTINUED); while (*map == COUNT_CONTINUED) { kunmap_atomic(map); page = list_next_entry(page, lru); BUG_ON(page == head); map = kmap_atomic(page) + offset; } BUG_ON(*map == 0); *map -= 1; if (*map == 0) count = 0; kunmap_atomic(map); while ((page = list_prev_entry(page, lru)) != head) { map = kmap_atomic(page) + offset; *map = SWAP_CONT_MAX | count; count = COUNT_CONTINUED; kunmap_atomic(map); } ret = count == COUNT_CONTINUED; } out: spin_unlock(&si->cont_lock); return ret; } /* * free_swap_count_continuations - swapoff free all the continuation pages * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. */ static void free_swap_count_continuations(struct swap_info_struct *si) { pgoff_t offset; for (offset = 0; offset < si->max; offset += PAGE_SIZE) { struct page *head; head = vmalloc_to_page(si->swap_map + offset); if (page_private(head)) { struct page *page, *next; list_for_each_entry_safe(page, next, &head->lru, lru) { list_del(&page->lru); __free_page(page); } } } } #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask) { struct swap_info_struct *si, *next; int nid = page_to_nid(page); if (!(gfp_mask & __GFP_IO)) return; if (!blk_cgroup_congested()) return; /* * We've already scheduled a throttle, avoid taking the global swap * lock. */ if (current->throttle_queue) return; spin_lock(&swap_avail_lock); plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], avail_lists[nid]) { if (si->bdev) { blkcg_schedule_throttle(bdev_get_queue(si->bdev), true); break; } } spin_unlock(&swap_avail_lock); } #endif static int __init swapfile_init(void) { int nid; swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), GFP_KERNEL); if (!swap_avail_heads) { pr_emerg("Not enough memory for swap heads, swap is disabled\n"); return -ENOMEM; } for_each_node(nid) plist_head_init(&swap_avail_heads[nid]); return 0; } subsys_initcall(swapfile_init); |
4 4 4 4 4 4 4 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 | // SPDX-License-Identifier: GPL-2.0 /* * linux/fs/ext4/xattr.c * * Copyright (C) 2001-2003 Andreas Gruenbacher, <agruen@suse.de> * * Fix by Harrison Xing <harrison@mountainviewdata.com>. * Ext4 code with a lot of help from Eric Jarman <ejarman@acm.org>. * Extended attributes for symlinks and special files added per * suggestion of Luka Renko <luka.renko@hermes.si>. * xattr consolidation Copyright (c) 2004 James Morris <jmorris@redhat.com>, * Red Hat Inc. * ea-in-inode support by Alex Tomas <alex@clusterfs.com> aka bzzz * and Andreas Gruenbacher <agruen@suse.de>. */ /* * Extended attributes are stored directly in inodes (on file systems with * inodes bigger than 128 bytes) and on additional disk blocks. The i_file_acl * field contains the block number if an inode uses an additional block. All * attributes must fit in the inode and one additional block. Blocks that * contain the identical set of attributes may be shared among several inodes. * Identical blocks are detected by keeping a cache of blocks that have * recently been accessed. * * The attributes in inodes and on blocks have a different header; the entries * are stored in the same format: * * +------------------+ * | header | * | entry 1 | | * | entry 2 | | growing downwards * | entry 3 | v * | four null bytes | * | . . . | * | value 1 | ^ * | value 3 | | growing upwards * | value 2 | | * +------------------+ * * The header is followed by multiple entry descriptors. In disk blocks, the * entry descriptors are kept sorted. In inodes, they are unsorted. The * attribute values are aligned to the end of the block in no specific order. * * Locking strategy * ---------------- * EXT4_I(inode)->i_file_acl is protected by EXT4_I(inode)->xattr_sem. * EA blocks are only changed if they are exclusive to an inode, so * holding xattr_sem also means that nothing but the EA block's reference * count can change. Multiple writers to the same block are synchronized * by the buffer lock. */ #include <linux/init.h> #include <linux/fs.h> #include <linux/slab.h> #include <linux/mbcache.h> #include <linux/quotaops.h> #include <linux/iversion.h> #include "ext4_jbd2.h" #include "ext4.h" #include "xattr.h" #include "acl.h" #ifdef EXT4_XATTR_DEBUG # define ea_idebug(inode, fmt, ...) \ printk(KERN_DEBUG "inode %s:%lu: " fmt "\n", \ inode->i_sb->s_id, inode->i_ino, ##__VA_ARGS__) # define ea_bdebug(bh, fmt, ...) \ printk(KERN_DEBUG "block %pg:%lu: " fmt "\n", \ bh->b_bdev, (unsigned long)bh->b_blocknr, ##__VA_ARGS__) #else # define ea_idebug(inode, fmt, ...) no_printk(fmt, ##__VA_ARGS__) # define ea_bdebug(bh, fmt, ...) no_printk(fmt, ##__VA_ARGS__) #endif static void ext4_xattr_block_cache_insert(struct mb_cache *, struct buffer_head *); static struct buffer_head * ext4_xattr_block_cache_find(struct inode *, struct ext4_xattr_header *, struct mb_cache_entry **); static __le32 ext4_xattr_hash_entry(char *name, size_t name_len, __le32 *value, size_t value_count); static void ext4_xattr_rehash(struct ext4_xattr_header *); static const struct xattr_handler * const ext4_xattr_handler_map[] = { [EXT4_XATTR_INDEX_USER] = &ext4_xattr_user_handler, #ifdef CONFIG_EXT4_FS_POSIX_ACL [EXT4_XATTR_INDEX_POSIX_ACL_ACCESS] = &posix_acl_access_xattr_handler, [EXT4_XATTR_INDEX_POSIX_ACL_DEFAULT] = &posix_acl_default_xattr_handler, #endif [EXT4_XATTR_INDEX_TRUSTED] = &ext4_xattr_trusted_handler, #ifdef CONFIG_EXT4_FS_SECURITY [EXT4_XATTR_INDEX_SECURITY] = &ext4_xattr_security_handler, #endif [EXT4_XATTR_INDEX_HURD] = &ext4_xattr_hurd_handler, }; const struct xattr_handler *ext4_xattr_handlers[] = { &ext4_xattr_user_handler, &ext4_xattr_trusted_handler, #ifdef CONFIG_EXT4_FS_POSIX_ACL &posix_acl_access_xattr_handler, &posix_acl_default_xattr_handler, #endif #ifdef CONFIG_EXT4_FS_SECURITY &ext4_xattr_security_handler, #endif &ext4_xattr_hurd_handler, NULL }; #define EA_BLOCK_CACHE(inode) (((struct ext4_sb_info *) \ inode->i_sb->s_fs_info)->s_ea_block_cache) #define EA_INODE_CACHE(inode) (((struct ext4_sb_info *) \ inode->i_sb->s_fs_info)->s_ea_inode_cache) static int ext4_expand_inode_array(struct ext4_xattr_inode_array **ea_inode_array, struct inode *inode); #ifdef CONFIG_LOCKDEP void ext4_xattr_inode_set_class(struct inode *ea_inode) { struct ext4_inode_info *ei = EXT4_I(ea_inode); lockdep_set_subclass(&ea_inode->i_rwsem, 1); (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ lockdep_set_subclass(&ei->i_data_sem, I_DATA_SEM_EA); } #endif static __le32 ext4_xattr_block_csum(struct inode *inode, sector_t block_nr, struct ext4_xattr_header *hdr) { struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); __u32 csum; __le64 dsk_block_nr = cpu_to_le64(block_nr); __u32 dummy_csum = 0; int offset = offsetof(struct ext4_xattr_header, h_checksum); csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&dsk_block_nr, sizeof(dsk_block_nr)); csum = ext4_chksum(sbi, csum, (__u8 *)hdr, offset); csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, sizeof(dummy_csum)); offset += sizeof(dummy_csum); csum = ext4_chksum(sbi, csum, (__u8 *)hdr + offset, EXT4_BLOCK_SIZE(inode->i_sb) - offset); return cpu_to_le32(csum); } static int ext4_xattr_block_csum_verify(struct inode *inode, struct buffer_head *bh) { struct ext4_xattr_header *hdr = BHDR(bh); int ret = 1; if (ext4_has_metadata_csum(inode->i_sb)) { lock_buffer(bh); ret = (hdr->h_checksum == ext4_xattr_block_csum(inode, bh->b_blocknr, hdr)); unlock_buffer(bh); } return ret; } static void ext4_xattr_block_csum_set(struct inode *inode, struct buffer_head *bh) { if (ext4_has_metadata_csum(inode->i_sb)) BHDR(bh)->h_checksum = ext4_xattr_block_csum(inode, bh->b_blocknr, BHDR(bh)); } static inline const struct xattr_handler * ext4_xattr_handler(int name_index) { const struct xattr_handler *handler = NULL; if (name_index > 0 && name_index < ARRAY_SIZE(ext4_xattr_handler_map)) handler = ext4_xattr_handler_map[name_index]; return handler; } static int ext4_xattr_check_entries(struct ext4_xattr_entry *entry, void *end, void *value_start) { struct ext4_xattr_entry *e = entry; /* Find the end of the names list */ while (!IS_LAST_ENTRY(e)) { struct ext4_xattr_entry *next = EXT4_XATTR_NEXT(e); if ((void *)next >= end) return -EFSCORRUPTED; if (strnlen(e->e_name, e->e_name_len) != e->e_name_len) return -EFSCORRUPTED; e = next; } /* Check the values */ while (!IS_LAST_ENTRY(entry)) { u32 size = le32_to_cpu(entry->e_value_size); if (size > EXT4_XATTR_SIZE_MAX) return -EFSCORRUPTED; if (size != 0 && entry->e_value_inum == 0) { u16 offs = le16_to_cpu(entry->e_value_offs); void *value; /* * The value cannot overlap the names, and the value * with padding cannot extend beyond 'end'. Check both * the padded and unpadded sizes, since the size may * overflow to 0 when adding padding. */ if (offs > end - value_start) return -EFSCORRUPTED; value = value_start + offs; if (value < (void *)e + sizeof(u32) || size > end - value || EXT4_XATTR_SIZE(size) > end - value) return -EFSCORRUPTED; } entry = EXT4_XATTR_NEXT(entry); } return 0; } static inline int __ext4_xattr_check_block(struct inode *inode, struct buffer_head *bh, const char *function, unsigned int line) { int error = -EFSCORRUPTED; if (BHDR(bh)->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC) || BHDR(bh)->h_blocks != cpu_to_le32(1)) goto errout; if (buffer_verified(bh)) return 0; error = -EFSBADCRC; if (!ext4_xattr_block_csum_verify(inode, bh)) goto errout; error = ext4_xattr_check_entries(BFIRST(bh), bh->b_data + bh->b_size, bh->b_data); errout: if (error) __ext4_error_inode(inode, function, line, 0, -error, "corrupted xattr block %llu", (unsigned long long) bh->b_blocknr); else set_buffer_verified(bh); return error; } #define ext4_xattr_check_block(inode, bh) \ __ext4_xattr_check_block((inode), (bh), __func__, __LINE__) static int __xattr_check_inode(struct inode *inode, struct ext4_xattr_ibody_header *header, void *end, const char *function, unsigned int line) { int error = -EFSCORRUPTED; if (end - (void *)header < sizeof(*header) + sizeof(u32) || (header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC))) goto errout; error = ext4_xattr_check_entries(IFIRST(header), end, IFIRST(header)); errout: if (error) __ext4_error_inode(inode, function, line, 0, -error, "corrupted in-inode xattr"); return error; } #define xattr_check_inode(inode, header, end) \ __xattr_check_inode((inode), (header), (end), __func__, __LINE__) static int xattr_find_entry(struct inode *inode, struct ext4_xattr_entry **pentry, void *end, int name_index, const char *name, int sorted) { struct ext4_xattr_entry *entry, *next; size_t name_len; int cmp = 1; if (name == NULL) return -EINVAL; name_len = strlen(name); for (entry = *pentry; !IS_LAST_ENTRY(entry); entry = next) { next = EXT4_XATTR_NEXT(entry); if ((void *) next >= end) { EXT4_ERROR_INODE(inode, "corrupted xattr entries"); return -EFSCORRUPTED; } cmp = name_index - entry->e_name_index; if (!cmp) cmp = name_len - entry->e_name_len; if (!cmp) cmp = memcmp(name, entry->e_name, name_len); if (cmp <= 0 && (sorted || cmp == 0)) break; } *pentry = entry; return cmp ? -ENODATA : 0; } static u32 ext4_xattr_inode_hash(struct ext4_sb_info *sbi, const void *buffer, size_t size) { return ext4_chksum(sbi, sbi->s_csum_seed, buffer, size); } static u64 ext4_xattr_inode_get_ref(struct inode *ea_inode) { return ((u64)ea_inode->i_ctime.tv_sec << 32) | (u32) inode_peek_iversion_raw(ea_inode); } static void ext4_xattr_inode_set_ref(struct inode *ea_inode, u64 ref_count) { ea_inode->i_ctime.tv_sec = (u32)(ref_count >> 32); inode_set_iversion_raw(ea_inode, ref_count & 0xffffffff); } static u32 ext4_xattr_inode_get_hash(struct inode *ea_inode) { return (u32)ea_inode->i_atime.tv_sec; } static void ext4_xattr_inode_set_hash(struct inode *ea_inode, u32 hash) { ea_inode->i_atime.tv_sec = hash; } /* * Read the EA value from an inode. */ static int ext4_xattr_inode_read(struct inode *ea_inode, void *buf, size_t size) { int blocksize = 1 << ea_inode->i_blkbits; int bh_count = (size + blocksize - 1) >> ea_inode->i_blkbits; int tail_size = (size % blocksize) ?: blocksize; struct buffer_head *bhs_inline[8]; struct buffer_head **bhs = bhs_inline; int i, ret; if (bh_count > ARRAY_SIZE(bhs_inline)) { bhs = kmalloc_array(bh_count, sizeof(*bhs), GFP_NOFS); if (!bhs) return -ENOMEM; } ret = ext4_bread_batch(ea_inode, 0 /* block */, bh_count, true /* wait */, bhs); if (ret) goto free_bhs; for (i = 0; i < bh_count; i++) { /* There shouldn't be any holes in ea_inode. */ if (!bhs[i]) { ret = -EFSCORRUPTED; goto put_bhs; } memcpy((char *)buf + blocksize * i, bhs[i]->b_data, i < bh_count - 1 ? blocksize : tail_size); } ret = 0; put_bhs: for (i = 0; i < bh_count; i++) brelse(bhs[i]); free_bhs: if (bhs != bhs_inline) kfree(bhs); return ret; } #define EXT4_XATTR_INODE_GET_PARENT(inode) ((__u32)(inode)->i_mtime.tv_sec) static int ext4_xattr_inode_iget(struct inode *parent, unsigned long ea_ino, u32 ea_inode_hash, struct inode **ea_inode) { struct inode *inode; int err; /* * We have to check for this corruption early as otherwise * iget_locked() could wait indefinitely for the state of our * parent inode. */ if (parent->i_ino == ea_ino) { ext4_error(parent->i_sb, "Parent and EA inode have the same ino %lu", ea_ino); return -EFSCORRUPTED; } inode = ext4_iget(parent->i_sb, ea_ino, EXT4_IGET_EA_INODE); if (IS_ERR(inode)) { err = PTR_ERR(inode); ext4_error(parent->i_sb, "error while reading EA inode %lu err=%d", ea_ino, err); return err; } ext4_xattr_inode_set_class(inode); /* * Check whether this is an old Lustre-style xattr inode. Lustre * implementation does not have hash validation, rather it has a * backpointer from ea_inode to the parent inode. */ if (ea_inode_hash != ext4_xattr_inode_get_hash(inode) && EXT4_XATTR_INODE_GET_PARENT(inode) == parent->i_ino && inode->i_generation == parent->i_generation) { ext4_set_inode_state(inode, EXT4_STATE_LUSTRE_EA_INODE); ext4_xattr_inode_set_ref(inode, 1); } else { inode_lock_nested(inode, I_MUTEX_XATTR); inode->i_flags |= S_NOQUOTA; inode_unlock(inode); } *ea_inode = inode; return 0; } /* Remove entry from mbcache when EA inode is getting evicted */ void ext4_evict_ea_inode(struct inode *inode) { struct mb_cache_entry *oe; if (!EA_INODE_CACHE(inode)) return; /* Wait for entry to get unused so that we can remove it */ while ((oe = mb_cache_entry_delete_or_get(EA_INODE_CACHE(inode), ext4_xattr_inode_get_hash(inode), inode->i_ino))) { mb_cache_entry_wait_unused(oe); mb_cache_entry_put(EA_INODE_CACHE(inode), oe); } } static int ext4_xattr_inode_verify_hashes(struct inode *ea_inode, struct ext4_xattr_entry *entry, void *buffer, size_t size) { u32 hash; /* Verify stored hash matches calculated hash. */ hash = ext4_xattr_inode_hash(EXT4_SB(ea_inode->i_sb), buffer, size); if (hash != ext4_xattr_inode_get_hash(ea_inode)) return -EFSCORRUPTED; if (entry) { __le32 e_hash, tmp_data; /* Verify entry hash. */ tmp_data = cpu_to_le32(hash); e_hash = ext4_xattr_hash_entry(entry->e_name, entry->e_name_len, &tmp_data, 1); if (e_hash != entry->e_hash) return -EFSCORRUPTED; } return 0; } /* * Read xattr value from the EA inode. */ static int ext4_xattr_inode_get(struct inode *inode, struct ext4_xattr_entry *entry, void *buffer, size_t size) { struct mb_cache *ea_inode_cache = EA_INODE_CACHE(inode); struct inode *ea_inode; int err; err = ext4_xattr_inode_iget(inode, le32_to_cpu(entry->e_value_inum), le32_to_cpu(entry->e_hash), &ea_inode); if (err) { ea_inode = NULL; goto out; } if (i_size_read(ea_inode) != size) { ext4_warning_inode(ea_inode, "ea_inode file size=%llu entry size=%zu", i_size_read(ea_inode), size); err = -EFSCORRUPTED; goto out; } err = ext4_xattr_inode_read(ea_inode, buffer, size); if (err) goto out; if (!ext4_test_inode_state(ea_inode, EXT4_STATE_LUSTRE_EA_INODE)) { err = ext4_xattr_inode_verify_hashes(ea_inode, entry, buffer, size); if (err) { ext4_warning_inode(ea_inode, "EA inode hash validation failed"); goto out; } if (ea_inode_cache) mb_cache_entry_create(ea_inode_cache, GFP_NOFS, ext4_xattr_inode_get_hash(ea_inode), ea_inode->i_ino, true /* reusable */); } out: iput(ea_inode); return err; } static int ext4_xattr_block_get(struct inode *inode, int name_index, const char *name, void *buffer, size_t buffer_size) { struct buffer_head *bh = NULL; struct ext4_xattr_entry *entry; size_t size; void *end; int error; struct mb_cache *ea_block_cache = EA_BLOCK_CACHE(inode); ea_idebug(inode, "name=%d.%s, buffer=%p, buffer_size=%ld", name_index, name, buffer, (long)buffer_size); if (!EXT4_I(inode)->i_file_acl) return -ENODATA; ea_idebug(inode, "reading block %llu", (unsigned long long)EXT4_I(inode)->i_file_acl); bh = ext4_sb_bread(inode->i_sb, EXT4_I(inode)->i_file_acl, REQ_PRIO); if (IS_ERR(bh)) return PTR_ERR(bh); ea_bdebug(bh, "b_count=%d, refcount=%d", atomic_read(&(bh->b_count)), le32_to_cpu(BHDR(bh)->h_refcount)); error = ext4_xattr_check_block(inode, bh); if (error) goto cleanup; ext4_xattr_block_cache_insert(ea_block_cache, bh); entry = BFIRST(bh); end = bh->b_data + bh->b_size; error = xattr_find_entry(inode, &entry, end, name_index, name, 1); if (error) goto cleanup; size = le32_to_cpu(entry->e_value_size); error = -ERANGE; if (unlikely(size > EXT4_XATTR_SIZE_MAX)) goto cleanup; if (buffer) { if (size > buffer_size) goto cleanup; if (entry->e_value_inum) { error = ext4_xattr_inode_get(inode, entry, buffer, size); if (error) goto cleanup; } else { u16 offset = le16_to_cpu(entry->e_value_offs); void *p = bh->b_data + offset; if (unlikely(p + size > end)) goto cleanup; memcpy(buffer, p, size); } } error = size; cleanup: brelse(bh); return error; } int ext4_xattr_ibody_get(struct inode *inode, int name_index, const char *name, void *buffer, size_t buffer_size) { struct ext4_xattr_ibody_header *header; struct ext4_xattr_entry *entry; struct ext4_inode *raw_inode; struct ext4_iloc iloc; size_t size; void *end; int error; if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR)) return -ENODATA; error = ext4_get_inode_loc(inode, &iloc); if (error) return error; raw_inode = ext4_raw_inode(&iloc); header = IHDR(inode, raw_inode); end = (void *)raw_inode + EXT4_SB(inode->i_sb)->s_inode_size; error = xattr_check_inode(inode, header, end); if (error) goto cleanup; entry = IFIRST(header); error = xattr_find_entry(inode, &entry, end, name_index, name, 0); if (error) goto cleanup; size = le32_to_cpu(entry->e_value_size); error = -ERANGE; if (unlikely(size > EXT4_XATTR_SIZE_MAX)) goto cleanup; if (buffer) { if (size > buffer_size) goto cleanup; if (entry->e_value_inum) { error = ext4_xattr_inode_get(inode, entry, buffer, size); if (error) goto cleanup; } else { u16 offset = le16_to_cpu(entry->e_value_offs); void *p = (void *)IFIRST(header) + offset; if (unlikely(p + size > end)) goto cleanup; memcpy(buffer, p, size); } } error = size; cleanup: brelse(iloc.bh); return error; } /* * ext4_xattr_get() * * Copy an extended attribute into the buffer * provided, or compute the buffer size required. * Buffer is NULL to compute the size of the buffer required. * * Returns a negative error number on failure, or the number of bytes * used / required on success. */ int ext4_xattr_get(struct inode *inode, int name_index, const char *name, void *buffer, size_t buffer_size) { int error; if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) return -EIO; if (strlen(name) > 255) return -ERANGE; down_read(&EXT4_I(inode)->xattr_sem); error = ext4_xattr_ibody_get(inode, name_index, name, buffer, buffer_size); if (error == -ENODATA) error = ext4_xattr_block_get(inode, name_index, name, buffer, buffer_size); up_read(&EXT4_I(inode)->xattr_sem); return error; } static int ext4_xattr_list_entries(struct dentry *dentry, struct ext4_xattr_entry *entry, char *buffer, size_t buffer_size) { size_t rest = buffer_size; for (; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) { const struct xattr_handler *handler = ext4_xattr_handler(entry->e_name_index); if (handler && (!handler->list || handler->list(dentry))) { const char *prefix = handler->prefix ?: handler->name; size_t prefix_len = strlen(prefix); size_t size = prefix_len + entry->e_name_len + 1; if (buffer) { if (size > rest) return -ERANGE; memcpy(buffer, prefix, prefix_len); buffer += prefix_len; memcpy(buffer, entry->e_name, entry->e_name_len); buffer += entry->e_name_len; *buffer++ = 0; } rest -= size; } } return buffer_size - rest; /* total size */ } static int ext4_xattr_block_list(struct dentry *dentry, char *buffer, size_t buffer_size) { struct inode *inode = d_inode(dentry); struct buffer_head *bh = NULL; int error; ea_idebug(inode, "buffer=%p, buffer_size=%ld", buffer, (long)buffer_size); if (!EXT4_I(inode)->i_file_acl) return 0; ea_idebug(inode, "reading block %llu", (unsigned long long)EXT4_I(inode)->i_file_acl); bh = ext4_sb_bread(inode->i_sb, EXT4_I(inode)->i_file_acl, REQ_PRIO); if (IS_ERR(bh)) return PTR_ERR(bh); ea_bdebug(bh, "b_count=%d, refcount=%d", atomic_read(&(bh->b_count)), le32_to_cpu(BHDR(bh)->h_refcount)); error = ext4_xattr_check_block(inode, bh); if (error) goto cleanup; ext4_xattr_block_cache_insert(EA_BLOCK_CACHE(inode), bh); error = ext4_xattr_list_entries(dentry, BFIRST(bh), buffer, buffer_size); cleanup: brelse(bh); return error; } static int ext4_xattr_ibody_list(struct dentry *dentry, char *buffer, size_t buffer_size) { struct inode *inode = d_inode(dentry); struct ext4_xattr_ibody_header *header; struct ext4_inode *raw_inode; struct ext4_iloc iloc; void *end; int error; if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR)) return 0; error = ext4_get_inode_loc(inode, &iloc); if (error) return error; raw_inode = ext4_raw_inode(&iloc); header = IHDR(inode, raw_inode); end = (void *)raw_inode + EXT4_SB(inode->i_sb)->s_inode_size; error = xattr_check_inode(inode, header, end); if (error) goto cleanup; error = ext4_xattr_list_entries(dentry, IFIRST(header), buffer, buffer_size); cleanup: brelse(iloc.bh); return error; } /* * Inode operation listxattr() * * d_inode(dentry)->i_rwsem: don't care * * Copy a list of attribute names into the buffer * provided, or compute the buffer size required. * Buffer is NULL to compute the size of the buffer required. * * Returns a negative error number on failure, or the number of bytes * used / required on success. */ ssize_t ext4_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size) { int ret, ret2; down_read(&EXT4_I(d_inode(dentry))->xattr_sem); ret = ret2 = ext4_xattr_ibody_list(dentry, buffer, buffer_size); if (ret < 0) goto errout; if (buffer) { buffer += ret; buffer_size -= ret; } ret = ext4_xattr_block_list(dentry, buffer, buffer_size); if (ret < 0) goto errout; ret += ret2; errout: up_read(&EXT4_I(d_inode(dentry))->xattr_sem); return ret; } /* * If the EXT4_FEATURE_COMPAT_EXT_ATTR feature of this file system is * not set, set it. */ static void ext4_xattr_update_super_block(handle_t *handle, struct super_block *sb) { if (ext4_has_feature_xattr(sb)) return; BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get_write_access"); if (ext4_journal_get_write_access(handle, sb, EXT4_SB(sb)->s_sbh, EXT4_JTR_NONE) == 0) { lock_buffer(EXT4_SB(sb)->s_sbh); ext4_set_feature_xattr(sb); ext4_superblock_csum_set(sb); unlock_buffer(EXT4_SB(sb)->s_sbh); ext4_handle_dirty_metadata(handle, NULL, EXT4_SB(sb)->s_sbh); } } int ext4_get_inode_usage(struct inode *inode, qsize_t *usage) { struct ext4_iloc iloc = { .bh = NULL }; struct buffer_head *bh = NULL; struct ext4_inode *raw_inode; struct ext4_xattr_ibody_header *header; struct ext4_xattr_entry *entry; qsize_t ea_inode_refs = 0; void *end; int ret; lockdep_assert_held_read(&EXT4_I(inode)->xattr_sem); if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { ret = ext4_get_inode_loc(inode, &iloc); if (ret) goto out; raw_inode = ext4_raw_inode(&iloc); header = IHDR(inode, raw_inode); end = (void *)raw_inode + EXT4_SB(inode->i_sb)->s_inode_size; ret = xattr_check_inode(inode, header, end); if (ret) goto out; for (entry = IFIRST(header); !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) if (entry->e_value_inum) ea_inode_refs++; } if (EXT4_I(inode)->i_file_acl) { bh = ext4_sb_bread(inode->i_sb, EXT4_I(inode)->i_file_acl, REQ_PRIO); if (IS_ERR(bh)) { ret = PTR_ERR(bh); bh = NULL; goto out; } ret = ext4_xattr_check_block(inode, bh); if (ret) goto out; for (entry = BFIRST(bh); !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) if (entry->e_value_inum) ea_inode_refs++; } *usage = ea_inode_refs + 1; ret = 0; out: brelse(iloc.bh); brelse(bh); return ret; } static inline size_t round_up_cluster(struct inode *inode, size_t length) { struct super_block *sb = inode->i_sb; size_t cluster_size = 1 << (EXT4_SB(sb)->s_cluster_bits + inode->i_blkbits); size_t mask = ~(cluster_size - 1); return (length + cluster_size - 1) & mask; } static int ext4_xattr_inode_alloc_quota(struct inode *inode, size_t len) { int err; err = dquot_alloc_inode(inode); if (err) return err; err = dquot_alloc_space_nodirty(inode, round_up_cluster(inode, len)); if (err) dquot_free_inode(inode); return err; } static void ext4_xattr_inode_free_quota(struct inode *parent, struct inode *ea_inode, size_t len) { if (ea_inode && ext4_test_inode_state(ea_inode, EXT4_STATE_LUSTRE_EA_INODE)) return; dquot_free_space_nodirty(parent, round_up_cluster(parent, len)); dquot_free_inode(parent); } int __ext4_xattr_set_credits(struct super_block *sb, struct inode *inode, struct buffer_head *block_bh, size_t value_len, bool is_create) { int credits; int blocks; /* * 1) Owner inode update * 2) Ref count update on old xattr block * 3) new xattr block * 4) block bitmap update for new xattr block * 5) group descriptor for new xattr block * 6) block bitmap update for old xattr block * 7) group descriptor for old block * * 6 & 7 can happen if we have two racing threads T_a and T_b * which are each trying to set an xattr on inodes I_a and I_b * which were both initially sharing an xattr block. */ credits = 7; /* Quota updates. */ credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(sb); /* * In case of inline data, we may push out the data to a block, * so we need to reserve credits for this eventuality */ if (inode && ext4_has_inline_data(inode)) credits += ext4_writepage_trans_blocks(inode) + 1; /* We are done if ea_inode feature is not enabled. */ if (!ext4_has_feature_ea_inode(sb)) return credits; /* New ea_inode, inode map, block bitmap, group descriptor. */ credits += 4; /* Data blocks. */ blocks = (value_len + sb->s_blocksize - 1) >> sb->s_blocksize_bits; /* Indirection block or one level of extent tree. */ blocks += 1; /* Block bitmap and group descriptor updates for each block. */ credits += blocks * 2; /* Blocks themselves. */ credits += blocks; if (!is_create) { /* Dereference ea_inode holding old xattr value. * Old ea_inode, inode map, block bitmap, group descriptor. */ credits += 4; /* Data blocks for old ea_inode. */ blocks = XATTR_SIZE_MAX >> sb->s_blocksize_bits; /* Indirection block or one level of extent tree for old * ea_inode. */ blocks += 1; /* Block bitmap and group descriptor updates for each block. */ credits += blocks * 2; } /* We may need to clone the existing xattr block in which case we need * to increment ref counts for existing ea_inodes referenced by it. */ if (block_bh) { struct ext4_xattr_entry *entry = BFIRST(block_bh); for (; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) if (entry->e_value_inum) /* Ref count update on ea_inode. */ credits += 1; } return credits; } static int ext4_xattr_inode_update_ref(handle_t *handle, struct inode *ea_inode, int ref_change) { struct ext4_iloc iloc; s64 ref_count; int ret; inode_lock_nested(ea_inode, I_MUTEX_XATTR); ret = ext4_reserve_inode_write(handle, ea_inode, &iloc); if (ret) goto out; ref_count = ext4_xattr_inode_get_ref(ea_inode); ref_count += ref_change; ext4_xattr_inode_set_ref(ea_inode, ref_count); if (ref_change > 0) { WARN_ONCE(ref_count <= 0, "EA inode %lu ref_count=%lld", ea_inode->i_ino, ref_count); if (ref_count == 1) { WARN_ONCE(ea_inode->i_nlink, "EA inode %lu i_nlink=%u", ea_inode->i_ino, ea_inode->i_nlink); set_nlink(ea_inode, 1); ext4_orphan_del(handle, ea_inode); } } else { WARN_ONCE(ref_count < 0, "EA inode %lu ref_count=%lld", ea_inode->i_ino, ref_count); if (ref_count == 0) { WARN_ONCE(ea_inode->i_nlink != 1, "EA inode %lu i_nlink=%u", ea_inode->i_ino, ea_inode->i_nlink); clear_nlink(ea_inode); ext4_orphan_add(handle, ea_inode); } } ret = ext4_mark_iloc_dirty(handle, ea_inode, &iloc); if (ret) ext4_warning_inode(ea_inode, "ext4_mark_iloc_dirty() failed ret=%d", ret); out: inode_unlock(ea_inode); return ret; } static int ext4_xattr_inode_inc_ref(handle_t *handle, struct inode *ea_inode) { return ext4_xattr_inode_update_ref(handle, ea_inode, 1); } static int ext4_xattr_inode_dec_ref(handle_t *handle, struct inode *ea_inode) { return ext4_xattr_inode_update_ref(handle, ea_inode, -1); } static int ext4_xattr_inode_inc_ref_all(handle_t *handle, struct inode *parent, struct ext4_xattr_entry *first) { struct inode *ea_inode; struct ext4_xattr_entry *entry; struct ext4_xattr_entry *failed_entry; unsigned int ea_ino; int err, saved_err; for (entry = first; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) { if (!entry->e_value_inum) continue; ea_ino = le32_to_cpu(entry->e_value_inum); err = ext4_xattr_inode_iget(parent, ea_ino, le32_to_cpu(entry->e_hash), &ea_inode); if (err) goto cleanup; err = ext4_xattr_inode_inc_ref(handle, ea_inode); if (err) { ext4_warning_inode(ea_inode, "inc ref error %d", err); iput(ea_inode); goto cleanup; } iput(ea_inode); } return 0; cleanup: saved_err = err; failed_entry = entry; for (entry = first; entry != failed_entry; entry = EXT4_XATTR_NEXT(entry)) { if (!entry->e_value_inum) continue; ea_ino = le32_to_cpu(entry->e_value_inum); err = ext4_xattr_inode_iget(parent, ea_ino, le32_to_cpu(entry->e_hash), &ea_inode); if (err) { ext4_warning(parent->i_sb, "cleanup ea_ino %u iget error %d", ea_ino, err); continue; } err = ext4_xattr_inode_dec_ref(handle, ea_inode); if (err) ext4_warning_inode(ea_inode, "cleanup dec ref error %d", err); iput(ea_inode); } return saved_err; } static int ext4_xattr_restart_fn(handle_t *handle, struct inode *inode, struct buffer_head *bh, bool block_csum, bool dirty) { int error; if (bh && dirty) { if (block_csum) ext4_xattr_block_csum_set(inode, bh); error = ext4_handle_dirty_metadata(handle, NULL, bh); if (error) { ext4_warning(inode->i_sb, "Handle metadata (error %d)", error); return error; } } return 0; } static void ext4_xattr_inode_dec_ref_all(handle_t *handle, struct inode *parent, struct buffer_head *bh, struct ext4_xattr_entry *first, bool block_csum, struct ext4_xattr_inode_array **ea_inode_array, int extra_credits, bool skip_quota) { struct inode *ea_inode; struct ext4_xattr_entry *entry; bool dirty = false; unsigned int ea_ino; int err; int credits; /* One credit for dec ref on ea_inode, one for orphan list addition, */ credits = 2 + extra_credits; for (entry = first; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) { if (!entry->e_value_inum) continue; ea_ino = le32_to_cpu(entry->e_value_inum); err = ext4_xattr_inode_iget(parent, ea_ino, le32_to_cpu(entry->e_hash), &ea_inode); if (err) continue; err = ext4_expand_inode_array(ea_inode_array, ea_inode); if (err) { ext4_warning_inode(ea_inode, "Expand inode array err=%d", err); iput(ea_inode); continue; } err = ext4_journal_ensure_credits_fn(handle, credits, credits, ext4_free_metadata_revoke_credits(parent->i_sb, 1), ext4_xattr_restart_fn(handle, parent, bh, block_csum, dirty)); if (err < 0) { ext4_warning_inode(ea_inode, "Ensure credits err=%d", err); continue; } if (err > 0) { err = ext4_journal_get_write_access(handle, parent->i_sb, bh, EXT4_JTR_NONE); if (err) { ext4_warning_inode(ea_inode, "Re-get write access err=%d", err); continue; } } err = ext4_xattr_inode_dec_ref(handle, ea_inode); if (err) { ext4_warning_inode(ea_inode, "ea_inode dec ref err=%d", err); continue; } if (!skip_quota) ext4_xattr_inode_free_quota(parent, ea_inode, le32_to_cpu(entry->e_value_size)); /* * Forget about ea_inode within the same transaction that * decrements the ref count. This avoids duplicate decrements in * case the rest of the work spills over to subsequent * transactions. */ entry->e_value_inum = 0; entry->e_value_size = 0; dirty = true; } if (dirty) { /* * Note that we are deliberately skipping csum calculation for * the final update because we do not expect any journal * restarts until xattr block is freed. */ err = ext4_handle_dirty_metadata(handle, NULL, bh); if (err) ext4_warning_inode(parent, "handle dirty metadata err=%d", err); } } /* * Release the xattr block BH: If the reference count is > 1, decrement it; * otherwise free the block. */ static void ext4_xattr_release_block(handle_t *handle, struct inode *inode, struct buffer_head *bh, struct ext4_xattr_inode_array **ea_inode_array, int extra_credits) { struct mb_cache *ea_block_cache = EA_BLOCK_CACHE(inode); u32 hash, ref; int error = 0; BUFFER_TRACE(bh, "get_write_access"); error = ext4_journal_get_write_access(handle, inode->i_sb, bh, EXT4_JTR_NONE); if (error) goto out; retry_ref: lock_buffer(bh); hash = le32_to_cpu(BHDR(bh)->h_hash); ref = le32_to_cpu(BHDR(bh)->h_refcount); if (ref == 1) { ea_bdebug(bh, "refcount now=0; freeing"); /* * This must happen under buffer lock for * ext4_xattr_block_set() to reliably detect freed block */ if (ea_block_cache) { struct mb_cache_entry *oe; oe = mb_cache_entry_delete_or_get(ea_block_cache, hash, bh->b_blocknr); if (oe) { unlock_buffer(bh); mb_cache_entry_wait_unused(oe); mb_cache_entry_put(ea_block_cache, oe); goto retry_ref; } } get_bh(bh); unlock_buffer(bh); if (ext4_has_feature_ea_inode(inode->i_sb)) ext4_xattr_inode_dec_ref_all(handle, inode, bh, BFIRST(bh), true /* block_csum */, ea_inode_array, extra_credits, true /* skip_quota */); ext4_free_blocks(handle, inode, bh, 0, 1, EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET); } else { ref--; BHDR(bh)->h_refcount = cpu_to_le32(ref); if (ref == EXT4_XATTR_REFCOUNT_MAX - 1) { struct mb_cache_entry *ce; if (ea_block_cache) { ce = mb_cache_entry_get(ea_block_cache, hash, bh->b_blocknr); if (ce) { set_bit(MBE_REUSABLE_B, &ce->e_flags); mb_cache_entry_put(ea_block_cache, ce); } } } ext4_xattr_block_csum_set(inode, bh); /* * Beware of this ugliness: Releasing of xattr block references * from different inodes can race and so we have to protect * from a race where someone else frees the block (and releases * its journal_head) before we are done dirtying the buffer. In * nojournal mode this race is harmless and we actually cannot * call ext4_handle_dirty_metadata() with locked buffer as * that function can call sync_dirty_buffer() so for that case * we handle the dirtying after unlocking the buffer. */ if (ext4_handle_valid(handle)) error = ext4_handle_dirty_metadata(handle, inode, bh); unlock_buffer(bh); if (!ext4_handle_valid(handle)) error = ext4_handle_dirty_metadata(handle, inode, bh); if (IS_SYNC(inode)) ext4_handle_sync(handle); dquot_free_block(inode, EXT4_C2B(EXT4_SB(inode->i_sb), 1)); ea_bdebug(bh, "refcount now=%d; releasing", le32_to_cpu(BHDR(bh)->h_refcount)); } out: ext4_std_error(inode->i_sb, error); return; } /* * Find the available free space for EAs. This also returns the total number of * bytes used by EA entries. */ static size_t ext4_xattr_free_space(struct ext4_xattr_entry *last, size_t *min_offs, void *base, int *total) { for (; !IS_LAST_ENTRY(last); last = EXT4_XATTR_NEXT(last)) { if (!last->e_value_inum && last->e_value_size) { size_t offs = le16_to_cpu(last->e_value_offs); if (offs < *min_offs) *min_offs = offs; } if (total) *total += EXT4_XATTR_LEN(last->e_name_len); } return (*min_offs - ((void *)last - base) - sizeof(__u32)); } /* * Write the value of the EA in an inode. */ static int ext4_xattr_inode_write(handle_t *handle, struct inode *ea_inode, const void *buf, int bufsize) { struct buffer_head *bh = NULL; unsigned long block = 0; int blocksize = ea_inode->i_sb->s_blocksize; int max_blocks = (bufsize + blocksize - 1) >> ea_inode->i_blkbits; int csize, wsize = 0; int ret = 0, ret2 = 0; int retries = 0; retry: while (ret >= 0 && ret < max_blocks) { struct ext4_map_blocks map; map.m_lblk = block += ret; map.m_len = max_blocks -= ret; ret = ext4_map_blocks(handle, ea_inode, &map, EXT4_GET_BLOCKS_CREATE); if (ret <= 0) { ext4_mark_inode_dirty(handle, ea_inode); if (ret == -ENOSPC && ext4_should_retry_alloc(ea_inode->i_sb, &retries)) { ret = 0; goto retry; } break; } } if (ret < 0) return ret; block = 0; while (wsize < bufsize) { brelse(bh); csize = (bufsize - wsize) > blocksize ? blocksize : bufsize - wsize; bh = ext4_getblk(handle, ea_inode, block, 0); if (IS_ERR(bh)) return PTR_ERR(bh); if (!bh) { WARN_ON_ONCE(1); EXT4_ERROR_INODE(ea_inode, "ext4_getblk() return bh = NULL"); return -EFSCORRUPTED; } ret = ext4_journal_get_write_access(handle, ea_inode->i_sb, bh, EXT4_JTR_NONE); if (ret) goto out; memcpy(bh->b_data, buf, csize); /* * Zero out block tail to avoid writing uninitialized memory * to disk. */ if (csize < blocksize) memset(bh->b_data + csize, 0, blocksize - csize); set_buffer_uptodate(bh); ext4_handle_dirty_metadata(handle, ea_inode, bh); buf += csize; wsize += csize; block += 1; } inode_lock(ea_inode); i_size_write(ea_inode, wsize); ext4_update_i_disksize(ea_inode, wsize); inode_unlock(ea_inode); ret2 = ext4_mark_inode_dirty(handle, ea_inode); if (unlikely(ret2 && !ret)) ret = ret2; out: brelse(bh); return ret; } /* * Create an inode to store the value of a large EA. */ static struct inode *ext4_xattr_inode_create(handle_t *handle, struct inode *inode, u32 hash) { struct inode *ea_inode = NULL; uid_t owner[2] = { i_uid_read(inode), i_gid_read(inode) }; int err; if (inode->i_sb->s_root == NULL) { ext4_warning(inode->i_sb, "refuse to create EA inode when umounting"); WARN_ON(1); return ERR_PTR(-EINVAL); } /* * Let the next inode be the goal, so we try and allocate the EA inode * in the same group, or nearby one. */ ea_inode = ext4_new_inode(handle, inode->i_sb->s_root->d_inode, S_IFREG | 0600, NULL, inode->i_ino + 1, owner, EXT4_EA_INODE_FL); if (!IS_ERR(ea_inode)) { ea_inode->i_op = &ext4_file_inode_operations; ea_inode->i_fop = &ext4_file_operations; ext4_set_aops(ea_inode); ext4_xattr_inode_set_class(ea_inode); unlock_new_inode(ea_inode); ext4_xattr_inode_set_ref(ea_inode, 1); ext4_xattr_inode_set_hash(ea_inode, hash); err = ext4_mark_inode_dirty(handle, ea_inode); if (!err) err = ext4_inode_attach_jinode(ea_inode); if (err) { if (ext4_xattr_inode_dec_ref(handle, ea_inode)) ext4_warning_inode(ea_inode, "cleanup dec ref error %d", err); iput(ea_inode); return ERR_PTR(err); } /* * Xattr inodes are shared therefore quota charging is performed * at a higher level. */ dquot_free_inode(ea_inode); dquot_drop(ea_inode); inode_lock(ea_inode); ea_inode->i_flags |= S_NOQUOTA; inode_unlock(ea_inode); } return ea_inode; } static struct inode * ext4_xattr_inode_cache_find(struct inode *inode, const void *value, size_t value_len, u32 hash) { struct inode *ea_inode; struct mb_cache_entry *ce; struct mb_cache *ea_inode_cache = EA_INODE_CACHE(inode); void *ea_data; if (!ea_inode_cache) return NULL; ce = mb_cache_entry_find_first(ea_inode_cache, hash); if (!ce) return NULL; WARN_ON_ONCE(ext4_handle_valid(journal_current_handle()) && !(current->flags & PF_MEMALLOC_NOFS)); ea_data = kvmalloc(value_len, GFP_KERNEL); if (!ea_data) { mb_cache_entry_put(ea_inode_cache, ce); return NULL; } while (ce) { ea_inode = ext4_iget(inode->i_sb, ce->e_value, EXT4_IGET_EA_INODE); if (IS_ERR(ea_inode)) goto next_entry; ext4_xattr_inode_set_class(ea_inode); if (i_size_read(ea_inode) == value_len && !ext4_xattr_inode_read(ea_inode, ea_data, value_len) && !ext4_xattr_inode_verify_hashes(ea_inode, NULL, ea_data, value_len) && !memcmp(value, ea_data, value_len)) { mb_cache_entry_touch(ea_inode_cache, ce); mb_cache_entry_put(ea_inode_cache, ce); kvfree(ea_data); return ea_inode; } iput(ea_inode); next_entry: ce = mb_cache_entry_find_next(ea_inode_cache, ce); } kvfree(ea_data); return NULL; } /* * Add value of the EA in an inode. */ static int ext4_xattr_inode_lookup_create(handle_t *handle, struct inode *inode, const void *value, size_t value_len, struct inode **ret_inode) { struct inode *ea_inode; u32 hash; int err; hash = ext4_xattr_inode_hash(EXT4_SB(inode->i_sb), value, value_len); ea_inode = ext4_xattr_inode_cache_find(inode, value, value_len, hash); if (ea_inode) { err = ext4_xattr_inode_inc_ref(handle, ea_inode); if (err) { iput(ea_inode); return err; } *ret_inode = ea_inode; return 0; } /* Create an inode for the EA value */ ea_inode = ext4_xattr_inode_create(handle, inode, hash); if (IS_ERR(ea_inode)) return PTR_ERR(ea_inode); err = ext4_xattr_inode_write(handle, ea_inode, value, value_len); if (err) { ext4_xattr_inode_dec_ref(handle, ea_inode); iput(ea_inode); return err; } if (EA_INODE_CACHE(inode)) mb_cache_entry_create(EA_INODE_CACHE(inode), GFP_NOFS, hash, ea_inode->i_ino, true /* reusable */); *ret_inode = ea_inode; return 0; } /* * Reserve min(block_size/8, 1024) bytes for xattr entries/names if ea_inode * feature is enabled. */ #define EXT4_XATTR_BLOCK_RESERVE(inode) min(i_blocksize(inode)/8, 1024U) static int ext4_xattr_set_entry(struct ext4_xattr_info *i, struct ext4_xattr_search *s, handle_t *handle, struct inode *inode, bool is_block) { struct ext4_xattr_entry *last, *next; struct ext4_xattr_entry *here = s->here; size_t min_offs = s->end - s->base, name_len = strlen(i->name); int in_inode = i->in_inode; struct inode *old_ea_inode = NULL; struct inode *new_ea_inode = NULL; size_t old_size, new_size; int ret; /* Space used by old and new values. */ old_size = (!s->not_found && !here->e_value_inum) ? EXT4_XATTR_SIZE(le32_to_cpu(here->e_value_size)) : 0; new_size = (i->value && !in_inode) ? EXT4_XATTR_SIZE(i->value_len) : 0; /* * Optimization for the simple case when old and new values have the * same padded sizes. Not applicable if external inodes are involved. */ if (new_size && new_size == old_size) { size_t offs = le16_to_cpu(here->e_value_offs); void *val = s->base + offs; here->e_value_size = cpu_to_le32(i->value_len); if (i->value == EXT4_ZERO_XATTR_VALUE) { memset(val, 0, new_size); } else { memcpy(val, i->value, i->value_len); /* Clear padding bytes. */ memset(val + i->value_len, 0, new_size - i->value_len); } goto update_hash; } /* Compute min_offs and last. */ last = s->first; for (; !IS_LAST_ENTRY(last); last = next) { next = EXT4_XATTR_NEXT(last); if ((void *)next >= s->end) { EXT4_ERROR_INODE(inode, "corrupted xattr entries"); ret = -EFSCORRUPTED; goto out; } if (!last->e_value_inum && last->e_value_size) { size_t offs = le16_to_cpu(last->e_value_offs); if (offs < min_offs) min_offs = offs; } } /* Check whether we have enough space. */ if (i->value) { size_t free; free = min_offs - ((void *)last - s->base) - sizeof(__u32); if (!s->not_found) free += EXT4_XATTR_LEN(name_len) + old_size; if (free < EXT4_XATTR_LEN(name_len) + new_size) { ret = -ENOSPC; goto out; } /* * If storing the value in an external inode is an option, * reserve space for xattr entries/names in the external * attribute block so that a long value does not occupy the * whole space and prevent further entries being added. */ if (ext4_has_feature_ea_inode(inode->i_sb) && new_size && is_block && (min_offs + old_size - new_size) < EXT4_XATTR_BLOCK_RESERVE(inode)) { ret = -ENOSPC; goto out; } } /* * Getting access to old and new ea inodes is subject to failures. * Finish that work before doing any modifications to the xattr data. */ if (!s->not_found && here->e_value_inum) { ret = ext4_xattr_inode_iget(inode, le32_to_cpu(here->e_value_inum), le32_to_cpu(here->e_hash), &old_ea_inode); if (ret) { old_ea_inode = NULL; goto out; } } if (i->value && in_inode) { WARN_ON_ONCE(!i->value_len); ret = ext4_xattr_inode_alloc_quota(inode, i->value_len); if (ret) goto out; ret = ext4_xattr_inode_lookup_create(handle, inode, i->value, i->value_len, &new_ea_inode); if (ret) { new_ea_inode = NULL; ext4_xattr_inode_free_quota(inode, NULL, i->value_len); goto out; } } if (old_ea_inode) { /* We are ready to release ref count on the old_ea_inode. */ ret = ext4_xattr_inode_dec_ref(handle, old_ea_inode); if (ret) { /* Release newly required ref count on new_ea_inode. */ if (new_ea_inode) { int err; err = ext4_xattr_inode_dec_ref(handle, new_ea_inode); if (err) ext4_warning_inode(new_ea_inode, "dec ref new_ea_inode err=%d", err); ext4_xattr_inode_free_quota(inode, new_ea_inode, i->value_len); } goto out; } ext4_xattr_inode_free_quota(inode, old_ea_inode, le32_to_cpu(here->e_value_size)); } /* No failures allowed past this point. */ if (!s->not_found && here->e_value_size && !here->e_value_inum) { /* Remove the old value. */ void *first_val = s->base + min_offs; size_t offs = le16_to_cpu(here->e_value_offs); void *val = s->base + offs; memmove(first_val + old_size, first_val, val - first_val); memset(first_val, 0, old_size); min_offs += old_size; /* Adjust all value offsets. */ last = s->first; while (!IS_LAST_ENTRY(last)) { size_t o = le16_to_cpu(last->e_value_offs); if (!last->e_value_inum && last->e_value_size && o < offs) last->e_value_offs = cpu_to_le16(o + old_size); last = EXT4_XATTR_NEXT(last); } } if (!i->value) { /* Remove old name. */ size_t size = EXT4_XATTR_LEN(name_len); last = ENTRY((void *)last - size); memmove(here, (void *)here + size, (void *)last - (void *)here + sizeof(__u32)); memset(last, 0, size); /* * Update i_inline_off - moved ibody region might contain * system.data attribute. Handling a failure here won't * cause other complications for setting an xattr. */ if (!is_block && ext4_has_inline_data(inode)) { ret = ext4_find_inline_data_nolock(inode); if (ret) { ext4_warning_inode(inode, "unable to update i_inline_off"); goto out; } } } else if (s->not_found) { /* Insert new name. */ size_t size = EXT4_XATTR_LEN(name_len); size_t rest = (void *)last - (void *)here + sizeof(__u32); memmove((void *)here + size, here, rest); memset(here, 0, size); here->e_name_index = i->name_index; here->e_name_len = name_len; memcpy(here->e_name, i->name, name_len); } else { /* This is an update, reset value info. */ here->e_value_inum = 0; here->e_value_offs = 0; here->e_value_size = 0; } if (i->value) { /* Insert new value. */ if (in_inode) { here->e_value_inum = cpu_to_le32(new_ea_inode->i_ino); } else if (i->value_len) { void *val = s->base + min_offs - new_size; here->e_value_offs = cpu_to_le16(min_offs - new_size); if (i->value == EXT4_ZERO_XATTR_VALUE) { memset(val, 0, new_size); } else { memcpy(val, i->value, i->value_len); /* Clear padding bytes. */ memset(val + i->value_len, 0, new_size - i->value_len); } } here->e_value_size = cpu_to_le32(i->value_len); } update_hash: if (i->value) { __le32 hash = 0; /* Entry hash calculation. */ if (in_inode) { __le32 crc32c_hash; /* * Feed crc32c hash instead of the raw value for entry * hash calculation. This is to avoid walking * potentially long value buffer again. */ crc32c_hash = cpu_to_le32( ext4_xattr_inode_get_hash(new_ea_inode)); hash = ext4_xattr_hash_entry(here->e_name, here->e_name_len, &crc32c_hash, 1); } else if (is_block) { __le32 *value = s->base + le16_to_cpu( here->e_value_offs); hash = ext4_xattr_hash_entry(here->e_name, here->e_name_len, value, new_size >> 2); } here->e_hash = hash; } if (is_block) ext4_xattr_rehash((struct ext4_xattr_header *)s->base); ret = 0; out: iput(old_ea_inode); iput(new_ea_inode); return ret; } struct ext4_xattr_block_find { struct ext4_xattr_search s; struct buffer_head *bh; }; static int ext4_xattr_block_find(struct inode *inode, struct ext4_xattr_info *i, struct ext4_xattr_block_find *bs) { struct super_block *sb = inode->i_sb; int error; ea_idebug(inode, "name=%d.%s, value=%p, value_len=%ld", i->name_index, i->name, i->value, (long)i->value_len); if (EXT4_I(inode)->i_file_acl) { /* The inode already has an extended attribute block. */ bs->bh = ext4_sb_bread(sb, EXT4_I(inode)->i_file_acl, REQ_PRIO); if (IS_ERR(bs->bh)) { error = PTR_ERR(bs->bh); bs->bh = NULL; return error; } ea_bdebug(bs->bh, "b_count=%d, refcount=%d", atomic_read(&(bs->bh->b_count)), le32_to_cpu(BHDR(bs->bh)->h_refcount)); error = ext4_xattr_check_block(inode, bs->bh); if (error) return error; /* Find the named attribute. */ bs->s.base = BHDR(bs->bh); bs->s.first = BFIRST(bs->bh); bs->s.end = bs->bh->b_data + bs->bh->b_size; bs->s.here = bs->s.first; error = xattr_find_entry(inode, &bs->s.here, bs->s.end, i->name_index, i->name, 1); if (error && error != -ENODATA) return error; bs->s.not_found = error; } return 0; } static int ext4_xattr_block_set(handle_t *handle, struct inode *inode, struct ext4_xattr_info *i, struct ext4_xattr_block_find *bs) { struct super_block *sb = inode->i_sb; struct buffer_head *new_bh = NULL; struct ext4_xattr_search s_copy = bs->s; struct ext4_xattr_search *s = &s_copy; struct mb_cache_entry *ce = NULL; int error = 0; struct mb_cache *ea_block_cache = EA_BLOCK_CACHE(inode); struct inode *ea_inode = NULL, *tmp_inode; size_t old_ea_inode_quota = 0; unsigned int ea_ino; #define header(x) ((struct ext4_xattr_header *)(x)) if (s->base) { int offset = (char *)s->here - bs->bh->b_data; BUFFER_TRACE(bs->bh, "get_write_access"); error = ext4_journal_get_write_access(handle, sb, bs->bh, EXT4_JTR_NONE); if (error) goto cleanup; lock_buffer(bs->bh); if (header(s->base)->h_refcount == cpu_to_le32(1)) { __u32 hash = le32_to_cpu(BHDR(bs->bh)->h_hash); /* * This must happen under buffer lock for * ext4_xattr_block_set() to reliably detect modified * block */ if (ea_block_cache) { struct mb_cache_entry *oe; oe = mb_cache_entry_delete_or_get(ea_block_cache, hash, bs->bh->b_blocknr); if (oe) { /* * Xattr block is getting reused. Leave * it alone. */ mb_cache_entry_put(ea_block_cache, oe); goto clone_block; } } ea_bdebug(bs->bh, "modifying in-place"); error = ext4_xattr_set_entry(i, s, handle, inode, true /* is_block */); ext4_xattr_block_csum_set(inode, bs->bh); unlock_buffer(bs->bh); if (error == -EFSCORRUPTED) goto bad_block; if (!error) error = ext4_handle_dirty_metadata(handle, inode, bs->bh); if (error) goto cleanup; goto inserted; } clone_block: unlock_buffer(bs->bh); ea_bdebug(bs->bh, "cloning"); s->base = kmemdup(BHDR(bs->bh), bs->bh->b_size, GFP_NOFS); error = -ENOMEM; if (s->base == NULL) goto cleanup; s->first = ENTRY(header(s->base)+1); header(s->base)->h_refcount = cpu_to_le32(1); s->here = ENTRY(s->base + offset); s->end = s->base + bs->bh->b_size; /* * If existing entry points to an xattr inode, we need * to prevent ext4_xattr_set_entry() from decrementing * ref count on it because the reference belongs to the * original block. In this case, make the entry look * like it has an empty value. */ if (!s->not_found && s->here->e_value_inum) { ea_ino = le32_to_cpu(s->here->e_value_inum); error = ext4_xattr_inode_iget(inode, ea_ino, le32_to_cpu(s->here->e_hash), &tmp_inode); if (error) goto cleanup; if (!ext4_test_inode_state(tmp_inode, EXT4_STATE_LUSTRE_EA_INODE)) { /* * Defer quota free call for previous * inode until success is guaranteed. */ old_ea_inode_quota = le32_to_cpu( s->here->e_value_size); } iput(tmp_inode); s->here->e_value_inum = 0; s->here->e_value_size = 0; } } else { /* Allocate a buffer where we construct the new block. */ s->base = kzalloc(sb->s_blocksize, GFP_NOFS); error = -ENOMEM; if (s->base == NULL) goto cleanup; header(s->base)->h_magic = cpu_to_le32(EXT4_XATTR_MAGIC); header(s->base)->h_blocks = cpu_to_le32(1); header(s->base)->h_refcount = cpu_to_le32(1); s->first = ENTRY(header(s->base)+1); s->here = ENTRY(header(s->base)+1); s->end = s->base + sb->s_blocksize; } error = ext4_xattr_set_entry(i, s, handle, inode, true /* is_block */); if (error == -EFSCORRUPTED) goto bad_block; if (error) goto cleanup; if (i->value && s->here->e_value_inum) { /* * A ref count on ea_inode has been taken as part of the call to * ext4_xattr_set_entry() above. We would like to drop this * extra ref but we have to wait until the xattr block is * initialized and has its own ref count on the ea_inode. */ ea_ino = le32_to_cpu(s->here->e_value_inum); error = ext4_xattr_inode_iget(inode, ea_ino, le32_to_cpu(s->here->e_hash), &ea_inode); if (error) { ea_inode = NULL; goto cleanup; } } inserted: if (!IS_LAST_ENTRY(s->first)) { new_bh = ext4_xattr_block_cache_find(inode, header(s->base), &ce); if (new_bh) { /* We found an identical block in the cache. */ if (new_bh == bs->bh) ea_bdebug(new_bh, "keeping"); else { u32 ref; #ifdef EXT4_XATTR_DEBUG WARN_ON_ONCE(dquot_initialize_needed(inode)); #endif /* The old block is released after updating the inode. */ error = dquot_alloc_block(inode, EXT4_C2B(EXT4_SB(sb), 1)); if (error) goto cleanup; BUFFER_TRACE(new_bh, "get_write_access"); error = ext4_journal_get_write_access( handle, sb, new_bh, EXT4_JTR_NONE); if (error) goto cleanup_dquot; lock_buffer(new_bh); /* * We have to be careful about races with * adding references to xattr block. Once we * hold buffer lock xattr block's state is * stable so we can check the additional * reference fits. */ ref = le32_to_cpu(BHDR(new_bh)->h_refcount) + 1; if (ref > EXT4_XATTR_REFCOUNT_MAX) { /* * Undo everything and check mbcache * again. */ unlock_buffer(new_bh); dquot_free_block(inode, EXT4_C2B(EXT4_SB(sb), 1)); brelse(new_bh); mb_cache_entry_put(ea_block_cache, ce); ce = NULL; new_bh = NULL; goto inserted; } BHDR(new_bh)->h_refcount = cpu_to_le32(ref); if (ref == EXT4_XATTR_REFCOUNT_MAX) clear_bit(MBE_REUSABLE_B, &ce->e_flags); ea_bdebug(new_bh, "reusing; refcount now=%d", ref); ext4_xattr_block_csum_set(inode, new_bh); unlock_buffer(new_bh); error = ext4_handle_dirty_metadata(handle, inode, new_bh); if (error) goto cleanup_dquot; } mb_cache_entry_touch(ea_block_cache, ce); mb_cache_entry_put(ea_block_cache, ce); ce = NULL; } else if (bs->bh && s->base == bs->bh->b_data) { /* We were modifying this block in-place. */ ea_bdebug(bs->bh, "keeping this block"); ext4_xattr_block_cache_insert(ea_block_cache, bs->bh); new_bh = bs->bh; get_bh(new_bh); } else { /* We need to allocate a new block */ ext4_fsblk_t goal, block; #ifdef EXT4_XATTR_DEBUG WARN_ON_ONCE(dquot_initialize_needed(inode)); #endif goal = ext4_group_first_block_no(sb, EXT4_I(inode)->i_block_group); block = ext4_new_meta_blocks(handle, inode, goal, 0, NULL, &error); if (error) goto cleanup; ea_idebug(inode, "creating block %llu", (unsigned long long)block); new_bh = sb_getblk(sb, block); if (unlikely(!new_bh)) { error = -ENOMEM; getblk_failed: ext4_free_blocks(handle, inode, NULL, block, 1, EXT4_FREE_BLOCKS_METADATA); goto cleanup; } error = ext4_xattr_inode_inc_ref_all(handle, inode, ENTRY(header(s->base)+1)); if (error) goto getblk_failed; if (ea_inode) { /* Drop the extra ref on ea_inode. */ error = ext4_xattr_inode_dec_ref(handle, ea_inode); if (error) ext4_warning_inode(ea_inode, "dec ref error=%d", error); iput(ea_inode); ea_inode = NULL; } lock_buffer(new_bh); error = ext4_journal_get_create_access(handle, sb, new_bh, EXT4_JTR_NONE); if (error) { unlock_buffer(new_bh); error = -EIO; goto getblk_failed; } memcpy(new_bh->b_data, s->base, new_bh->b_size); ext4_xattr_block_csum_set(inode, new_bh); set_buffer_uptodate(new_bh); unlock_buffer(new_bh); ext4_xattr_block_cache_insert(ea_block_cache, new_bh); error = ext4_handle_dirty_metadata(handle, inode, new_bh); if (error) goto cleanup; } } if (old_ea_inode_quota) ext4_xattr_inode_free_quota(inode, NULL, old_ea_inode_quota); /* Update the inode. */ EXT4_I(inode)->i_file_acl = new_bh ? new_bh->b_blocknr : 0; /* Drop the previous xattr block. */ if (bs->bh && bs->bh != new_bh) { struct ext4_xattr_inode_array *ea_inode_array = NULL; ext4_xattr_release_block(handle, inode, bs->bh, &ea_inode_array, 0 /* extra_credits */); ext4_xattr_inode_array_free(ea_inode_array); } error = 0; cleanup: if (ea_inode) { int error2; error2 = ext4_xattr_inode_dec_ref(handle, ea_inode); if (error2) ext4_warning_inode(ea_inode, "dec ref error=%d", error2); /* If there was an error, revert the quota charge. */ if (error) ext4_xattr_inode_free_quota(inode, ea_inode, i_size_read(ea_inode)); iput(ea_inode); } if (ce) mb_cache_entry_put(ea_block_cache, ce); brelse(new_bh); if (!(bs->bh && s->base == bs->bh->b_data)) kfree(s->base); return error; cleanup_dquot: dquot_free_block(inode, EXT4_C2B(EXT4_SB(sb), 1)); goto cleanup; bad_block: EXT4_ERROR_INODE(inode, "bad block %llu", EXT4_I(inode)->i_file_acl); goto cleanup; #undef header } int ext4_xattr_ibody_find(struct inode *inode, struct ext4_xattr_info *i, struct ext4_xattr_ibody_find *is) { struct ext4_xattr_ibody_header *header; struct ext4_inode *raw_inode; int error; if (!EXT4_INODE_HAS_XATTR_SPACE(inode)) return 0; raw_inode = ext4_raw_inode(&is->iloc); header = IHDR(inode, raw_inode); is->s.base = is->s.first = IFIRST(header); is->s.here = is->s.first; is->s.end = (void *)raw_inode + EXT4_SB(inode->i_sb)->s_inode_size; if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { error = xattr_check_inode(inode, header, is->s.end); if (error) return error; /* Find the named attribute. */ error = xattr_find_entry(inode, &is->s.here, is->s.end, i->name_index, i->name, 0); if (error && error != -ENODATA) return error; is->s.not_found = error; } return 0; } int ext4_xattr_ibody_set(handle_t *handle, struct inode *inode, struct ext4_xattr_info *i, struct ext4_xattr_ibody_find *is) { struct ext4_xattr_ibody_header *header; struct ext4_xattr_search *s = &is->s; int error; if (!EXT4_INODE_HAS_XATTR_SPACE(inode)) return -ENOSPC; error = ext4_xattr_set_entry(i, s, handle, inode, false /* is_block */); if (error) return error; header = IHDR(inode, ext4_raw_inode(&is->iloc)); if (!IS_LAST_ENTRY(s->first)) { header->h_magic = cpu_to_le32(EXT4_XATTR_MAGIC); ext4_set_inode_state(inode, EXT4_STATE_XATTR); } else { header->h_magic = cpu_to_le32(0); ext4_clear_inode_state(inode, EXT4_STATE_XATTR); } return 0; } static int ext4_xattr_value_same(struct ext4_xattr_search *s, struct ext4_xattr_info *i) { void *value; /* When e_value_inum is set the value is stored externally. */ if (s->here->e_value_inum) return 0; if (le32_to_cpu(s->here->e_value_size) != i->value_len) return 0; value = ((void *)s->base) + le16_to_cpu(s->here->e_value_offs); return !memcmp(value, i->value, i->value_len); } static struct buffer_head *ext4_xattr_get_block(struct inode *inode) { struct buffer_head *bh; int error; if (!EXT4_I(inode)->i_file_acl) return NULL; bh = ext4_sb_bread(inode->i_sb, EXT4_I(inode)->i_file_acl, REQ_PRIO); if (IS_ERR(bh)) return bh; error = ext4_xattr_check_block(inode, bh); if (error) { brelse(bh); return ERR_PTR(error); } return bh; } /* * ext4_xattr_set_handle() * * Create, replace or remove an extended attribute for this inode. Value * is NULL to remove an existing extended attribute, and non-NULL to * either replace an existing extended attribute, or create a new extended * attribute. The flags XATTR_REPLACE and XATTR_CREATE * specify that an extended attribute must exist and must not exist * previous to the call, respectively. * * Returns 0, or a negative error number on failure. */ int ext4_xattr_set_handle(handle_t *handle, struct inode *inode, int name_index, const char *name, const void *value, size_t value_len, int flags) { struct ext4_xattr_info i = { .name_index = name_index, .name = name, .value = value, .value_len = value_len, .in_inode = 0, }; struct ext4_xattr_ibody_find is = { .s = { .not_found = -ENODATA, }, }; struct ext4_xattr_block_find bs = { .s = { .not_found = -ENODATA, }, }; int no_expand; int error; if (!name) return -EINVAL; if (strlen(name) > 255) return -ERANGE; ext4_write_lock_xattr(inode, &no_expand); /* Check journal credits under write lock. */ if (ext4_handle_valid(handle)) { struct buffer_head *bh; int credits; bh = ext4_xattr_get_block(inode); if (IS_ERR(bh)) { error = PTR_ERR(bh); goto cleanup; } credits = __ext4_xattr_set_credits(inode->i_sb, inode, bh, value_len, flags & XATTR_CREATE); brelse(bh); if (jbd2_handle_buffer_credits(handle) < credits) { error = -ENOSPC; goto cleanup; } WARN_ON_ONCE(!(current->flags & PF_MEMALLOC_NOFS)); } error = ext4_reserve_inode_write(handle, inode, &is.iloc); if (error) goto cleanup; if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) { struct ext4_inode *raw_inode = ext4_raw_inode(&is.iloc); memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); ext4_clear_inode_state(inode, EXT4_STATE_NEW); } error = ext4_xattr_ibody_find(inode, &i, &is); if (error) goto cleanup; if (is.s.not_found) error = ext4_xattr_block_find(inode, &i, &bs); if (error) goto cleanup; if (is.s.not_found && bs.s.not_found) { error = -ENODATA; if (flags & XATTR_REPLACE) goto cleanup; error = 0; if (!value) goto cleanup; } else { error = -EEXIST; if (flags & XATTR_CREATE) goto cleanup; } if (!value) { if (!is.s.not_found) error = ext4_xattr_ibody_set(handle, inode, &i, &is); else if (!bs.s.not_found) error = ext4_xattr_block_set(handle, inode, &i, &bs); } else { error = 0; /* Xattr value did not change? Save us some work and bail out */ if (!is.s.not_found && ext4_xattr_value_same(&is.s, &i)) goto cleanup; if (!bs.s.not_found && ext4_xattr_value_same(&bs.s, &i)) goto cleanup; if (ext4_has_feature_ea_inode(inode->i_sb) && (EXT4_XATTR_SIZE(i.value_len) > EXT4_XATTR_MIN_LARGE_EA_SIZE(inode->i_sb->s_blocksize))) i.in_inode = 1; retry_inode: error = ext4_xattr_ibody_set(handle, inode, &i, &is); if (!error && !bs.s.not_found) { i.value = NULL; error = ext4_xattr_block_set(handle, inode, &i, &bs); } else if (error == -ENOSPC) { if (EXT4_I(inode)->i_file_acl && !bs.s.base) { brelse(bs.bh); bs.bh = NULL; error = ext4_xattr_block_find(inode, &i, &bs); if (error) goto cleanup; } error = ext4_xattr_block_set(handle, inode, &i, &bs); if (!error && !is.s.not_found) { i.value = NULL; error = ext4_xattr_ibody_set(handle, inode, &i, &is); } else if (error == -ENOSPC) { /* * Xattr does not fit in the block, store at * external inode if possible. */ if (ext4_has_feature_ea_inode(inode->i_sb) && i.value_len && !i.in_inode) { i.in_inode = 1; goto retry_inode; } } } } if (!error) { ext4_xattr_update_super_block(handle, inode->i_sb); inode->i_ctime = current_time(inode); if (!value) no_expand = 0; error = ext4_mark_iloc_dirty(handle, inode, &is.iloc); /* * The bh is consumed by ext4_mark_iloc_dirty, even with * error != 0. */ is.iloc.bh = NULL; if (IS_SYNC(inode)) ext4_handle_sync(handle); } ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR, handle); cleanup: brelse(is.iloc.bh); brelse(bs.bh); ext4_write_unlock_xattr(inode, &no_expand); return error; } int ext4_xattr_set_credits(struct inode *inode, size_t value_len, bool is_create, int *credits) { struct buffer_head *bh; int err; *credits = 0; if (!EXT4_SB(inode->i_sb)->s_journal) return 0; down_read(&EXT4_I(inode)->xattr_sem); bh = ext4_xattr_get_block(inode); if (IS_ERR(bh)) { err = PTR_ERR(bh); } else { *credits = __ext4_xattr_set_credits(inode->i_sb, inode, bh, value_len, is_create); brelse(bh); err = 0; } up_read(&EXT4_I(inode)->xattr_sem); return err; } /* * ext4_xattr_set() * * Like ext4_xattr_set_handle, but start from an inode. This extended * attribute modification is a filesystem transaction by itself. * * Returns 0, or a negative error number on failure. */ int ext4_xattr_set(struct inode *inode, int name_index, const char *name, const void *value, size_t value_len, int flags) { handle_t *handle; struct super_block *sb = inode->i_sb; int error, retries = 0; int credits; error = dquot_initialize(inode); if (error) return error; retry: error = ext4_xattr_set_credits(inode, value_len, flags & XATTR_CREATE, &credits); if (error) return error; handle = ext4_journal_start(inode, EXT4_HT_XATTR, credits); if (IS_ERR(handle)) { error = PTR_ERR(handle); } else { int error2; error = ext4_xattr_set_handle(handle, inode, name_index, name, value, value_len, flags); ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR, handle); error2 = ext4_journal_stop(handle); if (error == -ENOSPC && ext4_should_retry_alloc(sb, &retries)) goto retry; if (error == 0) error = error2; } return error; } /* * Shift the EA entries in the inode to create space for the increased * i_extra_isize. */ static void ext4_xattr_shift_entries(struct ext4_xattr_entry *entry, int value_offs_shift, void *to, void *from, size_t n) { struct ext4_xattr_entry *last = entry; int new_offs; /* We always shift xattr headers further thus offsets get lower */ BUG_ON(value_offs_shift > 0); /* Adjust the value offsets of the entries */ for (; !IS_LAST_ENTRY(last); last = EXT4_XATTR_NEXT(last)) { if (!last->e_value_inum && last->e_value_size) { new_offs = le16_to_cpu(last->e_value_offs) + value_offs_shift; last->e_value_offs = cpu_to_le16(new_offs); } } /* Shift the entries by n bytes */ memmove(to, from, n); } /* * Move xattr pointed to by 'entry' from inode into external xattr block */ static int ext4_xattr_move_to_block(handle_t *handle, struct inode *inode, struct ext4_inode *raw_inode, struct ext4_xattr_entry *entry) { struct ext4_xattr_ibody_find *is = NULL; struct ext4_xattr_block_find *bs = NULL; char *buffer = NULL, *b_entry_name = NULL; size_t value_size = le32_to_cpu(entry->e_value_size); struct ext4_xattr_info i = { .value = NULL, .value_len = 0, .name_index = entry->e_name_index, .in_inode = !!entry->e_value_inum, }; struct ext4_xattr_ibody_header *header = IHDR(inode, raw_inode); int needs_kvfree = 0; int error; is = kzalloc(sizeof(struct ext4_xattr_ibody_find), GFP_NOFS); bs = kzalloc(sizeof(struct ext4_xattr_block_find), GFP_NOFS); b_entry_name = kmalloc(entry->e_name_len + 1, GFP_NOFS); if (!is || !bs || !b_entry_name) { error = -ENOMEM; goto out; } is->s.not_found = -ENODATA; bs->s.not_found = -ENODATA; is->iloc.bh = NULL; bs->bh = NULL; /* Save the entry name and the entry value */ if (entry->e_value_inum) { buffer = kvmalloc(value_size, GFP_NOFS); if (!buffer) { error = -ENOMEM; goto out; } needs_kvfree = 1; error = ext4_xattr_inode_get(inode, entry, buffer, value_size); if (error) goto out; } else { size_t value_offs = le16_to_cpu(entry->e_value_offs); buffer = (void *)IFIRST(header) + value_offs; } memcpy(b_entry_name, entry->e_name, entry->e_name_len); b_entry_name[entry->e_name_len] = '\0'; i.name = b_entry_name; error = ext4_get_inode_loc(inode, &is->iloc); if (error) goto out; error = ext4_xattr_ibody_find(inode, &i, is); if (error) goto out; i.value = buffer; i.value_len = value_size; error = ext4_xattr_block_find(inode, &i, bs); if (error) goto out; /* Move ea entry from the inode into the block */ error = ext4_xattr_block_set(handle, inode, &i, bs); if (error) goto out; /* Remove the chosen entry from the inode */ i.value = NULL; i.value_len = 0; error = ext4_xattr_ibody_set(handle, inode, &i, is); out: kfree(b_entry_name); if (needs_kvfree && buffer) kvfree(buffer); if (is) brelse(is->iloc.bh); if (bs) brelse(bs->bh); kfree(is); kfree(bs); return error; } static int ext4_xattr_make_inode_space(handle_t *handle, struct inode *inode, struct ext4_inode *raw_inode, int isize_diff, size_t ifree, size_t bfree, int *total_ino) { struct ext4_xattr_ibody_header *header = IHDR(inode, raw_inode); struct ext4_xattr_entry *small_entry; struct ext4_xattr_entry *entry; struct ext4_xattr_entry *last; unsigned int entry_size; /* EA entry size */ unsigned int total_size; /* EA entry size + value size */ unsigned int min_total_size; int error; while (isize_diff > ifree) { entry = NULL; small_entry = NULL; min_total_size = ~0U; last = IFIRST(header); /* Find the entry best suited to be pushed into EA block */ for (; !IS_LAST_ENTRY(last); last = EXT4_XATTR_NEXT(last)) { /* never move system.data out of the inode */ if ((last->e_name_len == 4) && (last->e_name_index == EXT4_XATTR_INDEX_SYSTEM) && !memcmp(last->e_name, "data", 4)) continue; total_size = EXT4_XATTR_LEN(last->e_name_len); if (!last->e_value_inum) total_size += EXT4_XATTR_SIZE( le32_to_cpu(last->e_value_size)); if (total_size <= bfree && total_size < min_total_size) { if (total_size + ifree < isize_diff) { small_entry = last; } else { entry = last; min_total_size = total_size; } } } if (entry == NULL) { if (small_entry == NULL) return -ENOSPC; entry = small_entry; } entry_size = EXT4_XATTR_LEN(entry->e_name_len); total_size = entry_size; if (!entry->e_value_inum) total_size += EXT4_XATTR_SIZE( le32_to_cpu(entry->e_value_size)); error = ext4_xattr_move_to_block(handle, inode, raw_inode, entry); if (error) return error; *total_ino -= entry_size; ifree += total_size; bfree -= total_size; } return 0; } /* * Expand an inode by new_extra_isize bytes when EAs are present. * Returns 0 on success or negative error number on failure. */ int ext4_expand_extra_isize_ea(struct inode *inode, int new_extra_isize, struct ext4_inode *raw_inode, handle_t *handle) { struct ext4_xattr_ibody_header *header; struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); static unsigned int mnt_count; size_t min_offs; size_t ifree, bfree; int total_ino; void *base, *end; int error = 0, tried_min_extra_isize = 0; int s_min_extra_isize = le16_to_cpu(sbi->s_es->s_min_extra_isize); int isize_diff; /* How much do we need to grow i_extra_isize */ retry: isize_diff = new_extra_isize - EXT4_I(inode)->i_extra_isize; if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) return 0; header = IHDR(inode, raw_inode); /* * Check if enough free space is available in the inode to shift the * entries ahead by new_extra_isize. */ base = IFIRST(header); end = (void *)raw_inode + EXT4_SB(inode->i_sb)->s_inode_size; min_offs = end - base; total_ino = sizeof(struct ext4_xattr_ibody_header) + sizeof(u32); error = xattr_check_inode(inode, header, end); if (error) goto cleanup; ifree = ext4_xattr_free_space(base, &min_offs, base, &total_ino); if (ifree >= isize_diff) goto shift; /* * Enough free space isn't available in the inode, check if * EA block can hold new_extra_isize bytes. */ if (EXT4_I(inode)->i_file_acl) { struct buffer_head *bh; bh = ext4_sb_bread(inode->i_sb, EXT4_I(inode)->i_file_acl, REQ_PRIO); if (IS_ERR(bh)) { error = PTR_ERR(bh); goto cleanup; } error = ext4_xattr_check_block(inode, bh); if (error) { brelse(bh); goto cleanup; } base = BHDR(bh); end = bh->b_data + bh->b_size; min_offs = end - base; bfree = ext4_xattr_free_space(BFIRST(bh), &min_offs, base, NULL); brelse(bh); if (bfree + ifree < isize_diff) { if (!tried_min_extra_isize && s_min_extra_isize) { tried_min_extra_isize++; new_extra_isize = s_min_extra_isize; goto retry; } error = -ENOSPC; goto cleanup; } } else { bfree = inode->i_sb->s_blocksize; } error = ext4_xattr_make_inode_space(handle, inode, raw_inode, isize_diff, ifree, bfree, &total_ino); if (error) { if (error == -ENOSPC && !tried_min_extra_isize && s_min_extra_isize) { tried_min_extra_isize++; new_extra_isize = s_min_extra_isize; goto retry; } goto cleanup; } shift: /* Adjust the offsets and shift the remaining entries ahead */ ext4_xattr_shift_entries(IFIRST(header), EXT4_I(inode)->i_extra_isize - new_extra_isize, (void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + new_extra_isize, (void *)header, total_ino); EXT4_I(inode)->i_extra_isize = new_extra_isize; if (ext4_has_inline_data(inode)) error = ext4_find_inline_data_nolock(inode); cleanup: if (error && (mnt_count != le16_to_cpu(sbi->s_es->s_mnt_count))) { ext4_warning(inode->i_sb, "Unable to expand inode %lu. Delete some EAs or run e2fsck.", inode->i_ino); mnt_count = le16_to_cpu(sbi->s_es->s_mnt_count); } return error; } #define EIA_INCR 16 /* must be 2^n */ #define EIA_MASK (EIA_INCR - 1) /* Add the large xattr @inode into @ea_inode_array for deferred iput(). * If @ea_inode_array is new or full it will be grown and the old * contents copied over. */ static int ext4_expand_inode_array(struct ext4_xattr_inode_array **ea_inode_array, struct inode *inode) { if (*ea_inode_array == NULL) { /* * Start with 15 inodes, so it fits into a power-of-two size. * If *ea_inode_array is NULL, this is essentially offsetof() */ (*ea_inode_array) = kmalloc(offsetof(struct ext4_xattr_inode_array, inodes[EIA_MASK]), GFP_NOFS); if (*ea_inode_array == NULL) return -ENOMEM; (*ea_inode_array)->count = 0; } else if (((*ea_inode_array)->count & EIA_MASK) == EIA_MASK) { /* expand the array once all 15 + n * 16 slots are full */ struct ext4_xattr_inode_array *new_array = NULL; int count = (*ea_inode_array)->count; /* if new_array is NULL, this is essentially offsetof() */ new_array = kmalloc( offsetof(struct ext4_xattr_inode_array, inodes[count + EIA_INCR]), GFP_NOFS); if (new_array == NULL) return -ENOMEM; memcpy(new_array, *ea_inode_array, offsetof(struct ext4_xattr_inode_array, inodes[count])); kfree(*ea_inode_array); *ea_inode_array = new_array; } (*ea_inode_array)->inodes[(*ea_inode_array)->count++] = inode; return 0; } /* * ext4_xattr_delete_inode() * * Free extended attribute resources associated with this inode. Traverse * all entries and decrement reference on any xattr inodes associated with this * inode. This is called immediately before an inode is freed. We have exclusive * access to the inode. If an orphan inode is deleted it will also release its * references on xattr block and xattr inodes. */ int ext4_xattr_delete_inode(handle_t *handle, struct inode *inode, struct ext4_xattr_inode_array **ea_inode_array, int extra_credits) { struct buffer_head *bh = NULL; struct ext4_xattr_ibody_header *header; struct ext4_iloc iloc = { .bh = NULL }; struct ext4_xattr_entry *entry; struct inode *ea_inode; int error; error = ext4_journal_ensure_credits(handle, extra_credits, ext4_free_metadata_revoke_credits(inode->i_sb, 1)); if (error < 0) { EXT4_ERROR_INODE(inode, "ensure credits (error %d)", error); goto cleanup; } if (ext4_has_feature_ea_inode(inode->i_sb) && ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { error = ext4_get_inode_loc(inode, &iloc); if (error) { EXT4_ERROR_INODE(inode, "inode loc (error %d)", error); goto cleanup; } error = ext4_journal_get_write_access(handle, inode->i_sb, iloc.bh, EXT4_JTR_NONE); if (error) { EXT4_ERROR_INODE(inode, "write access (error %d)", error); goto cleanup; } header = IHDR(inode, ext4_raw_inode(&iloc)); if (header->h_magic == cpu_to_le32(EXT4_XATTR_MAGIC)) ext4_xattr_inode_dec_ref_all(handle, inode, iloc.bh, IFIRST(header), false /* block_csum */, ea_inode_array, extra_credits, false /* skip_quota */); } if (EXT4_I(inode)->i_file_acl) { bh = ext4_sb_bread(inode->i_sb, EXT4_I(inode)->i_file_acl, REQ_PRIO); if (IS_ERR(bh)) { error = PTR_ERR(bh); if (error == -EIO) { EXT4_ERROR_INODE_ERR(inode, EIO, "block %llu read error", EXT4_I(inode)->i_file_acl); } bh = NULL; goto cleanup; } error = ext4_xattr_check_block(inode, bh); if (error) goto cleanup; if (ext4_has_feature_ea_inode(inode->i_sb)) { for (entry = BFIRST(bh); !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) { if (!entry->e_value_inum) continue; error = ext4_xattr_inode_iget(inode, le32_to_cpu(entry->e_value_inum), le32_to_cpu(entry->e_hash), &ea_inode); if (error) continue; ext4_xattr_inode_free_quota(inode, ea_inode, le32_to_cpu(entry->e_value_size)); iput(ea_inode); } } ext4_xattr_release_block(handle, inode, bh, ea_inode_array, extra_credits); /* * Update i_file_acl value in the same transaction that releases * block. */ EXT4_I(inode)->i_file_acl = 0; error = ext4_mark_inode_dirty(handle, inode); if (error) { EXT4_ERROR_INODE(inode, "mark inode dirty (error %d)", error); goto cleanup; } ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR, handle); } error = 0; cleanup: brelse(iloc.bh); brelse(bh); return error; } void ext4_xattr_inode_array_free(struct ext4_xattr_inode_array *ea_inode_array) { int idx; if (ea_inode_array == NULL) return; for (idx = 0; idx < ea_inode_array->count; ++idx) iput(ea_inode_array->inodes[idx]); kfree(ea_inode_array); } /* * ext4_xattr_block_cache_insert() * * Create a new entry in the extended attribute block cache, and insert * it unless such an entry is already in the cache. * * Returns 0, or a negative error number on failure. */ static void ext4_xattr_block_cache_insert(struct mb_cache *ea_block_cache, struct buffer_head *bh) { struct ext4_xattr_header *header = BHDR(bh); __u32 hash = le32_to_cpu(header->h_hash); int reusable = le32_to_cpu(header->h_refcount) < EXT4_XATTR_REFCOUNT_MAX; int error; if (!ea_block_cache) return; error = mb_cache_entry_create(ea_block_cache, GFP_NOFS, hash, bh->b_blocknr, reusable); if (error) { if (error == -EBUSY) ea_bdebug(bh, "already in cache"); } else ea_bdebug(bh, "inserting [%x]", (int)hash); } /* * ext4_xattr_cmp() * * Compare two extended attribute blocks for equality. * * Returns 0 if the blocks are equal, 1 if they differ, and * a negative error number on errors. */ static int ext4_xattr_cmp(struct ext4_xattr_header *header1, struct ext4_xattr_header *header2) { struct ext4_xattr_entry *entry1, *entry2; entry1 = ENTRY(header1+1); entry2 = ENTRY(header2+1); while (!IS_LAST_ENTRY(entry1)) { if (IS_LAST_ENTRY(entry2)) return 1; if (entry1->e_hash != entry2->e_hash || entry1->e_name_index != entry2->e_name_index || entry1->e_name_len != entry2->e_name_len || entry1->e_value_size != entry2->e_value_size || entry1->e_value_inum != entry2->e_value_inum || memcmp(entry1->e_name, entry2->e_name, entry1->e_name_len)) return 1; if (!entry1->e_value_inum && memcmp((char *)header1 + le16_to_cpu(entry1->e_value_offs), (char *)header2 + le16_to_cpu(entry2->e_value_offs), le32_to_cpu(entry1->e_value_size))) return 1; entry1 = EXT4_XATTR_NEXT(entry1); entry2 = EXT4_XATTR_NEXT(entry2); } if (!IS_LAST_ENTRY(entry2)) return 1; return 0; } /* * ext4_xattr_block_cache_find() * * Find an identical extended attribute block. * * Returns a pointer to the block found, or NULL if such a block was * not found or an error occurred. */ static struct buffer_head * ext4_xattr_block_cache_find(struct inode *inode, struct ext4_xattr_header *header, struct mb_cache_entry **pce) { __u32 hash = le32_to_cpu(header->h_hash); struct mb_cache_entry *ce; struct mb_cache *ea_block_cache = EA_BLOCK_CACHE(inode); if (!ea_block_cache) return NULL; if (!header->h_hash) return NULL; /* never share */ ea_idebug(inode, "looking for cached blocks [%x]", (int)hash); ce = mb_cache_entry_find_first(ea_block_cache, hash); while (ce) { struct buffer_head *bh; bh = ext4_sb_bread(inode->i_sb, ce->e_value, REQ_PRIO); if (IS_ERR(bh)) { if (PTR_ERR(bh) == -ENOMEM) { mb_cache_entry_put(ea_block_cache, ce); return NULL; } bh = NULL; EXT4_ERROR_INODE(inode, "block %lu read error", (unsigned long)ce->e_value); } else if (ext4_xattr_cmp(header, BHDR(bh)) == 0) { *pce = ce; return bh; } brelse(bh); ce = mb_cache_entry_find_next(ea_block_cache, ce); } return NULL; } #define NAME_HASH_SHIFT 5 #define VALUE_HASH_SHIFT 16 /* * ext4_xattr_hash_entry() * * Compute the hash of an extended attribute. */ static __le32 ext4_xattr_hash_entry(char *name, size_t name_len, __le32 *value, size_t value_count) { __u32 hash = 0; while (name_len--) { hash = (hash << NAME_HASH_SHIFT) ^ (hash >> (8*sizeof(hash) - NAME_HASH_SHIFT)) ^ *name++; } while (value_count--) { hash = (hash << VALUE_HASH_SHIFT) ^ (hash >> (8*sizeof(hash) - VALUE_HASH_SHIFT)) ^ le32_to_cpu(*value++); } return cpu_to_le32(hash); } #undef NAME_HASH_SHIFT #undef VALUE_HASH_SHIFT #define BLOCK_HASH_SHIFT 16 /* * ext4_xattr_rehash() * * Re-compute the extended attribute hash value after an entry has changed. */ static void ext4_xattr_rehash(struct ext4_xattr_header *header) { struct ext4_xattr_entry *here; __u32 hash = 0; here = ENTRY(header+1); while (!IS_LAST_ENTRY(here)) { if (!here->e_hash) { /* Block is not shared if an entry's hash value == 0 */ hash = 0; break; } hash = (hash << BLOCK_HASH_SHIFT) ^ (hash >> (8*sizeof(hash) - BLOCK_HASH_SHIFT)) ^ le32_to_cpu(here->e_hash); here = EXT4_XATTR_NEXT(here); } header->h_hash = cpu_to_le32(hash); } #undef BLOCK_HASH_SHIFT #define HASH_BUCKET_BITS 10 struct mb_cache * ext4_xattr_create_cache(void) { return mb_cache_create(HASH_BUCKET_BITS); } void ext4_xattr_destroy_cache(struct mb_cache *cache) { if (cache) mb_cache_destroy(cache); } |
3 3 3 13 3 1 9 1 8 2 4 1 1 1 1 1 2 1 9 1 1 2 1 4 3 3 5 1 3 1 11 11 2 2 2 1 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 | // SPDX-License-Identifier: GPL-2.0 /* XSKMAP used for AF_XDP sockets * Copyright(c) 2018 Intel Corporation. */ #include <linux/bpf.h> #include <linux/capability.h> #include <net/xdp_sock.h> #include <linux/slab.h> #include <linux/sched.h> #include "xsk.h" static struct xsk_map_node *xsk_map_node_alloc(struct xsk_map *map, struct xdp_sock __rcu **map_entry) { struct xsk_map_node *node; node = bpf_map_kzalloc(&map->map, sizeof(*node), GFP_ATOMIC | __GFP_NOWARN); if (!node) return ERR_PTR(-ENOMEM); bpf_map_inc(&map->map); node->map = map; node->map_entry = map_entry; return node; } static void xsk_map_node_free(struct xsk_map_node *node) { bpf_map_put(&node->map->map); kfree(node); } static void xsk_map_sock_add(struct xdp_sock *xs, struct xsk_map_node *node) { spin_lock_bh(&xs->map_list_lock); list_add_tail(&node->node, &xs->map_list); spin_unlock_bh(&xs->map_list_lock); } static void xsk_map_sock_delete(struct xdp_sock *xs, struct xdp_sock __rcu **map_entry) { struct xsk_map_node *n, *tmp; spin_lock_bh(&xs->map_list_lock); list_for_each_entry_safe(n, tmp, &xs->map_list, node) { if (map_entry == n->map_entry) { list_del(&n->node); xsk_map_node_free(n); } } spin_unlock_bh(&xs->map_list_lock); } static struct bpf_map *xsk_map_alloc(union bpf_attr *attr) { struct xsk_map *m; int numa_node; u64 size; if (!capable(CAP_NET_ADMIN)) return ERR_PTR(-EPERM); if (attr->max_entries == 0 || attr->key_size != 4 || attr->value_size != 4 || attr->map_flags & ~(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)) return ERR_PTR(-EINVAL); numa_node = bpf_map_attr_numa_node(attr); size = struct_size(m, xsk_map, attr->max_entries); m = bpf_map_area_alloc(size, numa_node); if (!m) return ERR_PTR(-ENOMEM); bpf_map_init_from_attr(&m->map, attr); spin_lock_init(&m->lock); return &m->map; } static void xsk_map_free(struct bpf_map *map) { struct xsk_map *m = container_of(map, struct xsk_map, map); synchronize_net(); bpf_map_area_free(m); } static int xsk_map_get_next_key(struct bpf_map *map, void *key, void *next_key) { struct xsk_map *m = container_of(map, struct xsk_map, map); u32 index = key ? *(u32 *)key : U32_MAX; u32 *next = next_key; if (index >= m->map.max_entries) { *next = 0; return 0; } if (index == m->map.max_entries - 1) return -ENOENT; *next = index + 1; return 0; } static int xsk_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) { const int ret = BPF_REG_0, mp = BPF_REG_1, index = BPF_REG_2; struct bpf_insn *insn = insn_buf; *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5); *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(sizeof(struct xsk_sock *))); *insn++ = BPF_ALU64_IMM(BPF_ADD, mp, offsetof(struct xsk_map, xsk_map)); *insn++ = BPF_ALU64_REG(BPF_ADD, ret, mp); *insn++ = BPF_LDX_MEM(BPF_SIZEOF(struct xsk_sock *), ret, ret, 0); *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); *insn++ = BPF_MOV64_IMM(ret, 0); return insn - insn_buf; } /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or * by local_bh_disable() (from XDP calls inside NAPI). The * rcu_read_lock_bh_held() below makes lockdep accept both. */ static void *__xsk_map_lookup_elem(struct bpf_map *map, u32 key) { struct xsk_map *m = container_of(map, struct xsk_map, map); if (key >= map->max_entries) return NULL; return rcu_dereference_check(m->xsk_map[key], rcu_read_lock_bh_held()); } static void *xsk_map_lookup_elem(struct bpf_map *map, void *key) { return __xsk_map_lookup_elem(map, *(u32 *)key); } static void *xsk_map_lookup_elem_sys_only(struct bpf_map *map, void *key) { return ERR_PTR(-EOPNOTSUPP); } static int xsk_map_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { struct xsk_map *m = container_of(map, struct xsk_map, map); struct xdp_sock __rcu **map_entry; struct xdp_sock *xs, *old_xs; u32 i = *(u32 *)key, fd = *(u32 *)value; struct xsk_map_node *node; struct socket *sock; int err; if (unlikely(map_flags > BPF_EXIST)) return -EINVAL; if (unlikely(i >= m->map.max_entries)) return -E2BIG; sock = sockfd_lookup(fd, &err); if (!sock) return err; if (sock->sk->sk_family != PF_XDP) { sockfd_put(sock); return -EOPNOTSUPP; } xs = (struct xdp_sock *)sock->sk; map_entry = &m->xsk_map[i]; node = xsk_map_node_alloc(m, map_entry); if (IS_ERR(node)) { sockfd_put(sock); return PTR_ERR(node); } spin_lock_bh(&m->lock); old_xs = rcu_dereference_protected(*map_entry, lockdep_is_held(&m->lock)); if (old_xs == xs) { err = 0; goto out; } else if (old_xs && map_flags == BPF_NOEXIST) { err = -EEXIST; goto out; } else if (!old_xs && map_flags == BPF_EXIST) { err = -ENOENT; goto out; } xsk_map_sock_add(xs, node); rcu_assign_pointer(*map_entry, xs); if (old_xs) xsk_map_sock_delete(old_xs, map_entry); spin_unlock_bh(&m->lock); sockfd_put(sock); return 0; out: spin_unlock_bh(&m->lock); sockfd_put(sock); xsk_map_node_free(node); return err; } static int xsk_map_delete_elem(struct bpf_map *map, void *key) { struct xsk_map *m = container_of(map, struct xsk_map, map); struct xdp_sock __rcu **map_entry; struct xdp_sock *old_xs; u32 k = *(u32 *)key; if (k >= map->max_entries) return -EINVAL; spin_lock_bh(&m->lock); map_entry = &m->xsk_map[k]; old_xs = unrcu_pointer(xchg(map_entry, NULL)); if (old_xs) xsk_map_sock_delete(old_xs, map_entry); spin_unlock_bh(&m->lock); return 0; } static int xsk_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags) { return __bpf_xdp_redirect_map(map, ifindex, flags, 0, __xsk_map_lookup_elem); } void xsk_map_try_sock_delete(struct xsk_map *map, struct xdp_sock *xs, struct xdp_sock __rcu **map_entry) { spin_lock_bh(&map->lock); if (rcu_access_pointer(*map_entry) == xs) { rcu_assign_pointer(*map_entry, NULL); xsk_map_sock_delete(xs, map_entry); } spin_unlock_bh(&map->lock); } static bool xsk_map_meta_equal(const struct bpf_map *meta0, const struct bpf_map *meta1) { return meta0->max_entries == meta1->max_entries && bpf_map_meta_equal(meta0, meta1); } static int xsk_map_btf_id; const struct bpf_map_ops xsk_map_ops = { .map_meta_equal = xsk_map_meta_equal, .map_alloc = xsk_map_alloc, .map_free = xsk_map_free, .map_get_next_key = xsk_map_get_next_key, .map_lookup_elem = xsk_map_lookup_elem, .map_gen_lookup = xsk_map_gen_lookup, .map_lookup_elem_sys_only = xsk_map_lookup_elem_sys_only, .map_update_elem = xsk_map_update_elem, .map_delete_elem = xsk_map_delete_elem, .map_check_btf = map_check_no_btf, .map_btf_name = "xsk_map", .map_btf_id = &xsk_map_btf_id, .map_redirect = xsk_map_redirect, }; |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | /* SPDX-License-Identifier: GPL-2.0 */ /* Copyright (C) B.A.T.M.A.N. contributors: * * Marek Lindner */ #ifndef _NET_BATMAN_ADV_GATEWAY_CLIENT_H_ #define _NET_BATMAN_ADV_GATEWAY_CLIENT_H_ #include "main.h" #include <linux/kref.h> #include <linux/netlink.h> #include <linux/skbuff.h> #include <linux/types.h> #include <uapi/linux/batadv_packet.h> void batadv_gw_check_client_stop(struct batadv_priv *bat_priv); void batadv_gw_reselect(struct batadv_priv *bat_priv); void batadv_gw_election(struct batadv_priv *bat_priv); struct batadv_orig_node * batadv_gw_get_selected_orig(struct batadv_priv *bat_priv); void batadv_gw_check_election(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node); void batadv_gw_node_update(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node, struct batadv_tvlv_gateway_data *gateway); void batadv_gw_node_delete(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node); void batadv_gw_node_free(struct batadv_priv *bat_priv); void batadv_gw_node_release(struct kref *ref); struct batadv_gw_node * batadv_gw_get_selected_gw_node(struct batadv_priv *bat_priv); int batadv_gw_dump(struct sk_buff *msg, struct netlink_callback *cb); bool batadv_gw_out_of_range(struct batadv_priv *bat_priv, struct sk_buff *skb); enum batadv_dhcp_recipient batadv_gw_dhcp_recipient_get(struct sk_buff *skb, unsigned int *header_len, u8 *chaddr); struct batadv_gw_node *batadv_gw_node_get(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node); /** * batadv_gw_node_put() - decrement the gw_node refcounter and possibly release * it * @gw_node: gateway node to free */ static inline void batadv_gw_node_put(struct batadv_gw_node *gw_node) { if (!gw_node) return; kref_put(&gw_node->refcount, batadv_gw_node_release); } #endif /* _NET_BATMAN_ADV_GATEWAY_CLIENT_H_ */ |
623 88 299 623 14 726 724 722 726 725 7 7 38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 | // SPDX-License-Identifier: GPL-2.0-only /* Helper handling for netfilter. */ /* (C) 1999-2001 Paul `Rusty' Russell * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org> * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org> * (C) 2006-2012 Patrick McHardy <kaber@trash.net> */ #include <linux/types.h> #include <linux/netfilter.h> #include <linux/module.h> #include <linux/skbuff.h> #include <linux/vmalloc.h> #include <linux/stddef.h> #include <linux/random.h> #include <linux/err.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/rculist.h> #include <linux/rtnetlink.h> #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_core.h> #include <net/netfilter/nf_conntrack_ecache.h> #include <net/netfilter/nf_conntrack_extend.h> #include <net/netfilter/nf_conntrack_helper.h> #include <net/netfilter/nf_conntrack_l4proto.h> #include <net/netfilter/nf_log.h> static DEFINE_MUTEX(nf_ct_helper_mutex); struct hlist_head *nf_ct_helper_hash __read_mostly; EXPORT_SYMBOL_GPL(nf_ct_helper_hash); unsigned int nf_ct_helper_hsize __read_mostly; EXPORT_SYMBOL_GPL(nf_ct_helper_hsize); static unsigned int nf_ct_helper_count __read_mostly; static bool nf_ct_auto_assign_helper __read_mostly = false; module_param_named(nf_conntrack_helper, nf_ct_auto_assign_helper, bool, 0644); MODULE_PARM_DESC(nf_conntrack_helper, "Enable automatic conntrack helper assignment (default 0)"); static DEFINE_MUTEX(nf_ct_nat_helpers_mutex); static struct list_head nf_ct_nat_helpers __read_mostly; /* Stupid hash, but collision free for the default registrations of the * helpers currently in the kernel. */ static unsigned int helper_hash(const struct nf_conntrack_tuple *tuple) { return (((tuple->src.l3num << 8) | tuple->dst.protonum) ^ (__force __u16)tuple->src.u.all) % nf_ct_helper_hsize; } static struct nf_conntrack_helper * __nf_ct_helper_find(const struct nf_conntrack_tuple *tuple) { struct nf_conntrack_helper *helper; struct nf_conntrack_tuple_mask mask = { .src.u.all = htons(0xFFFF) }; unsigned int h; if (!nf_ct_helper_count) return NULL; h = helper_hash(tuple); hlist_for_each_entry_rcu(helper, &nf_ct_helper_hash[h], hnode) { if (nf_ct_tuple_src_mask_cmp(tuple, &helper->tuple, &mask)) return helper; } return NULL; } struct nf_conntrack_helper * __nf_conntrack_helper_find(const char *name, u16 l3num, u8 protonum) { struct nf_conntrack_helper *h; unsigned int i; for (i = 0; i < nf_ct_helper_hsize; i++) { hlist_for_each_entry_rcu(h, &nf_ct_helper_hash[i], hnode) { if (strcmp(h->name, name)) continue; if (h->tuple.src.l3num != NFPROTO_UNSPEC && h->tuple.src.l3num != l3num) continue; if (h->tuple.dst.protonum == protonum) return h; } } return NULL; } EXPORT_SYMBOL_GPL(__nf_conntrack_helper_find); struct nf_conntrack_helper * nf_conntrack_helper_try_module_get(const char *name, u16 l3num, u8 protonum) { struct nf_conntrack_helper *h; rcu_read_lock(); h = __nf_conntrack_helper_find(name, l3num, protonum); #ifdef CONFIG_MODULES if (h == NULL) { rcu_read_unlock(); if (request_module("nfct-helper-%s", name) == 0) { rcu_read_lock(); h = __nf_conntrack_helper_find(name, l3num, protonum); } else { return h; } } #endif if (h != NULL && !try_module_get(h->me)) h = NULL; if (h != NULL && !refcount_inc_not_zero(&h->refcnt)) { module_put(h->me); h = NULL; } rcu_read_unlock(); return h; } EXPORT_SYMBOL_GPL(nf_conntrack_helper_try_module_get); void nf_conntrack_helper_put(struct nf_conntrack_helper *helper) { refcount_dec(&helper->refcnt); module_put(helper->me); } EXPORT_SYMBOL_GPL(nf_conntrack_helper_put); static struct nf_conntrack_nat_helper * nf_conntrack_nat_helper_find(const char *mod_name) { struct nf_conntrack_nat_helper *cur; bool found = false; list_for_each_entry_rcu(cur, &nf_ct_nat_helpers, list) { if (!strcmp(cur->mod_name, mod_name)) { found = true; break; } } return found ? cur : NULL; } int nf_nat_helper_try_module_get(const char *name, u16 l3num, u8 protonum) { struct nf_conntrack_helper *h; struct nf_conntrack_nat_helper *nat; char mod_name[NF_CT_HELPER_NAME_LEN]; int ret = 0; rcu_read_lock(); h = __nf_conntrack_helper_find(name, l3num, protonum); if (!h) { rcu_read_unlock(); return -ENOENT; } nat = nf_conntrack_nat_helper_find(h->nat_mod_name); if (!nat) { snprintf(mod_name, sizeof(mod_name), "%s", h->nat_mod_name); rcu_read_unlock(); request_module(mod_name); rcu_read_lock(); nat = nf_conntrack_nat_helper_find(mod_name); if (!nat) { rcu_read_unlock(); return -ENOENT; } } if (!try_module_get(nat->module)) ret = -ENOENT; rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(nf_nat_helper_try_module_get); void nf_nat_helper_put(struct nf_conntrack_helper *helper) { struct nf_conntrack_nat_helper *nat; nat = nf_conntrack_nat_helper_find(helper->nat_mod_name); if (WARN_ON_ONCE(!nat)) return; module_put(nat->module); } EXPORT_SYMBOL_GPL(nf_nat_helper_put); struct nf_conn_help * nf_ct_helper_ext_add(struct nf_conn *ct, gfp_t gfp) { struct nf_conn_help *help; help = nf_ct_ext_add(ct, NF_CT_EXT_HELPER, gfp); if (help) INIT_HLIST_HEAD(&help->expectations); else pr_debug("failed to add helper extension area"); return help; } EXPORT_SYMBOL_GPL(nf_ct_helper_ext_add); static struct nf_conntrack_helper * nf_ct_lookup_helper(struct nf_conn *ct, struct net *net) { struct nf_conntrack_net *cnet = nf_ct_pernet(net); if (!cnet->sysctl_auto_assign_helper) { if (cnet->auto_assign_helper_warned) return NULL; if (!__nf_ct_helper_find(&ct->tuplehash[IP_CT_DIR_REPLY].tuple)) return NULL; pr_info("nf_conntrack: default automatic helper assignment " "has been turned off for security reasons and CT-based " "firewall rule not found. Use the iptables CT target " "to attach helpers instead.\n"); cnet->auto_assign_helper_warned = true; return NULL; } return __nf_ct_helper_find(&ct->tuplehash[IP_CT_DIR_REPLY].tuple); } int __nf_ct_try_assign_helper(struct nf_conn *ct, struct nf_conn *tmpl, gfp_t flags) { struct nf_conntrack_helper *helper = NULL; struct nf_conn_help *help; struct net *net = nf_ct_net(ct); /* We already got a helper explicitly attached. The function * nf_conntrack_alter_reply - in case NAT is in use - asks for looking * the helper up again. Since now the user is in full control of * making consistent helper configurations, skip this automatic * re-lookup, otherwise we'll lose the helper. */ if (test_bit(IPS_HELPER_BIT, &ct->status)) return 0; if (tmpl != NULL) { help = nfct_help(tmpl); if (help != NULL) { helper = help->helper; set_bit(IPS_HELPER_BIT, &ct->status); } } help = nfct_help(ct); if (helper == NULL) { helper = nf_ct_lookup_helper(ct, net); if (helper == NULL) { if (help) RCU_INIT_POINTER(help->helper, NULL); return 0; } } if (help == NULL) { help = nf_ct_helper_ext_add(ct, flags); if (help == NULL) return -ENOMEM; } else { /* We only allow helper re-assignment of the same sort since * we cannot reallocate the helper extension area. */ struct nf_conntrack_helper *tmp = rcu_dereference(help->helper); if (tmp && tmp->help != helper->help) { RCU_INIT_POINTER(help->helper, NULL); return 0; } } rcu_assign_pointer(help->helper, helper); return 0; } EXPORT_SYMBOL_GPL(__nf_ct_try_assign_helper); /* appropriate ct lock protecting must be taken by caller */ static int unhelp(struct nf_conn *ct, void *me) { struct nf_conn_help *help = nfct_help(ct); if (help && rcu_dereference_raw(help->helper) == me) { nf_conntrack_event(IPCT_HELPER, ct); RCU_INIT_POINTER(help->helper, NULL); } /* We are not intended to delete this conntrack. */ return 0; } void nf_ct_helper_destroy(struct nf_conn *ct) { struct nf_conn_help *help = nfct_help(ct); struct nf_conntrack_helper *helper; if (help) { rcu_read_lock(); helper = rcu_dereference(help->helper); if (helper && helper->destroy) helper->destroy(ct); rcu_read_unlock(); } } static LIST_HEAD(nf_ct_helper_expectfn_list); void nf_ct_helper_expectfn_register(struct nf_ct_helper_expectfn *n) { spin_lock_bh(&nf_conntrack_expect_lock); list_add_rcu(&n->head, &nf_ct_helper_expectfn_list); spin_unlock_bh(&nf_conntrack_expect_lock); } EXPORT_SYMBOL_GPL(nf_ct_helper_expectfn_register); void nf_ct_helper_expectfn_unregister(struct nf_ct_helper_expectfn *n) { spin_lock_bh(&nf_conntrack_expect_lock); list_del_rcu(&n->head); spin_unlock_bh(&nf_conntrack_expect_lock); } EXPORT_SYMBOL_GPL(nf_ct_helper_expectfn_unregister); /* Caller should hold the rcu lock */ struct nf_ct_helper_expectfn * nf_ct_helper_expectfn_find_by_name(const char *name) { struct nf_ct_helper_expectfn *cur; bool found = false; list_for_each_entry_rcu(cur, &nf_ct_helper_expectfn_list, head) { if (!strcmp(cur->name, name)) { found = true; break; } } return found ? cur : NULL; } EXPORT_SYMBOL_GPL(nf_ct_helper_expectfn_find_by_name); /* Caller should hold the rcu lock */ struct nf_ct_helper_expectfn * nf_ct_helper_expectfn_find_by_symbol(const void *symbol) { struct nf_ct_helper_expectfn *cur; bool found = false; list_for_each_entry_rcu(cur, &nf_ct_helper_expectfn_list, head) { if (cur->expectfn == symbol) { found = true; break; } } return found ? cur : NULL; } EXPORT_SYMBOL_GPL(nf_ct_helper_expectfn_find_by_symbol); __printf(3, 4) void nf_ct_helper_log(struct sk_buff *skb, const struct nf_conn *ct, const char *fmt, ...) { const struct nf_conn_help *help; const struct nf_conntrack_helper *helper; struct va_format vaf; va_list args; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; /* Called from the helper function, this call never fails */ help = nfct_help(ct); /* rcu_read_lock()ed by nf_hook_thresh */ helper = rcu_dereference(help->helper); nf_log_packet(nf_ct_net(ct), nf_ct_l3num(ct), 0, skb, NULL, NULL, NULL, "nf_ct_%s: dropping packet: %pV ", helper->name, &vaf); va_end(args); } EXPORT_SYMBOL_GPL(nf_ct_helper_log); int nf_conntrack_helper_register(struct nf_conntrack_helper *me) { struct nf_conntrack_tuple_mask mask = { .src.u.all = htons(0xFFFF) }; unsigned int h = helper_hash(&me->tuple); struct nf_conntrack_helper *cur; int ret = 0, i; BUG_ON(me->expect_policy == NULL); BUG_ON(me->expect_class_max >= NF_CT_MAX_EXPECT_CLASSES); BUG_ON(strlen(me->name) > NF_CT_HELPER_NAME_LEN - 1); if (!nf_ct_helper_hash) return -ENOENT; if (me->expect_policy->max_expected > NF_CT_EXPECT_MAX_CNT) return -EINVAL; mutex_lock(&nf_ct_helper_mutex); for (i = 0; i < nf_ct_helper_hsize; i++) { hlist_for_each_entry(cur, &nf_ct_helper_hash[i], hnode) { if (!strcmp(cur->name, me->name) && (cur->tuple.src.l3num == NFPROTO_UNSPEC || cur->tuple.src.l3num == me->tuple.src.l3num) && cur->tuple.dst.protonum == me->tuple.dst.protonum) { ret = -EEXIST; goto out; } } } /* avoid unpredictable behaviour for auto_assign_helper */ if (!(me->flags & NF_CT_HELPER_F_USERSPACE)) { hlist_for_each_entry(cur, &nf_ct_helper_hash[h], hnode) { if (nf_ct_tuple_src_mask_cmp(&cur->tuple, &me->tuple, &mask)) { ret = -EEXIST; goto out; } } } refcount_set(&me->refcnt, 1); hlist_add_head_rcu(&me->hnode, &nf_ct_helper_hash[h]); nf_ct_helper_count++; out: mutex_unlock(&nf_ct_helper_mutex); return ret; } EXPORT_SYMBOL_GPL(nf_conntrack_helper_register); static bool expect_iter_me(struct nf_conntrack_expect *exp, void *data) { struct nf_conn_help *help = nfct_help(exp->master); const struct nf_conntrack_helper *me = data; const struct nf_conntrack_helper *this; if (exp->helper == me) return true; this = rcu_dereference_protected(help->helper, lockdep_is_held(&nf_conntrack_expect_lock)); return this == me; } void nf_conntrack_helper_unregister(struct nf_conntrack_helper *me) { mutex_lock(&nf_ct_helper_mutex); hlist_del_rcu(&me->hnode); nf_ct_helper_count--; mutex_unlock(&nf_ct_helper_mutex); /* Make sure every nothing is still using the helper unless its a * connection in the hash. */ synchronize_rcu(); nf_ct_expect_iterate_destroy(expect_iter_me, NULL); nf_ct_iterate_destroy(unhelp, me); /* Maybe someone has gotten the helper already when unhelp above. * So need to wait it. */ synchronize_rcu(); } EXPORT_SYMBOL_GPL(nf_conntrack_helper_unregister); void nf_ct_helper_init(struct nf_conntrack_helper *helper, u16 l3num, u16 protonum, const char *name, u16 default_port, u16 spec_port, u32 id, const struct nf_conntrack_expect_policy *exp_pol, u32 expect_class_max, int (*help)(struct sk_buff *skb, unsigned int protoff, struct nf_conn *ct, enum ip_conntrack_info ctinfo), int (*from_nlattr)(struct nlattr *attr, struct nf_conn *ct), struct module *module) { helper->tuple.src.l3num = l3num; helper->tuple.dst.protonum = protonum; helper->tuple.src.u.all = htons(spec_port); helper->expect_policy = exp_pol; helper->expect_class_max = expect_class_max; helper->help = help; helper->from_nlattr = from_nlattr; helper->me = module; snprintf(helper->nat_mod_name, sizeof(helper->nat_mod_name), NF_NAT_HELPER_PREFIX "%s", name); if (spec_port == default_port) snprintf(helper->name, sizeof(helper->name), "%s", name); else snprintf(helper->name, sizeof(helper->name), "%s-%u", name, id); } EXPORT_SYMBOL_GPL(nf_ct_helper_init); int nf_conntrack_helpers_register(struct nf_conntrack_helper *helper, unsigned int n) { unsigned int i; int err = 0; for (i = 0; i < n; i++) { err = nf_conntrack_helper_register(&helper[i]); if (err < 0) goto err; } return err; err: if (i > 0) nf_conntrack_helpers_unregister(helper, i); return err; } EXPORT_SYMBOL_GPL(nf_conntrack_helpers_register); void nf_conntrack_helpers_unregister(struct nf_conntrack_helper *helper, unsigned int n) { while (n-- > 0) nf_conntrack_helper_unregister(&helper[n]); } EXPORT_SYMBOL_GPL(nf_conntrack_helpers_unregister); void nf_nat_helper_register(struct nf_conntrack_nat_helper *nat) { mutex_lock(&nf_ct_nat_helpers_mutex); list_add_rcu(&nat->list, &nf_ct_nat_helpers); mutex_unlock(&nf_ct_nat_helpers_mutex); } EXPORT_SYMBOL_GPL(nf_nat_helper_register); void nf_nat_helper_unregister(struct nf_conntrack_nat_helper *nat) { mutex_lock(&nf_ct_nat_helpers_mutex); list_del_rcu(&nat->list); mutex_unlock(&nf_ct_nat_helpers_mutex); } EXPORT_SYMBOL_GPL(nf_nat_helper_unregister); static const struct nf_ct_ext_type helper_extend = { .len = sizeof(struct nf_conn_help), .align = __alignof__(struct nf_conn_help), .id = NF_CT_EXT_HELPER, }; void nf_ct_set_auto_assign_helper_warned(struct net *net) { nf_ct_pernet(net)->auto_assign_helper_warned = true; } EXPORT_SYMBOL_GPL(nf_ct_set_auto_assign_helper_warned); void nf_conntrack_helper_pernet_init(struct net *net) { struct nf_conntrack_net *cnet = nf_ct_pernet(net); cnet->sysctl_auto_assign_helper = nf_ct_auto_assign_helper; } int nf_conntrack_helper_init(void) { int ret; nf_ct_helper_hsize = 1; /* gets rounded up to use one page */ nf_ct_helper_hash = nf_ct_alloc_hashtable(&nf_ct_helper_hsize, 0); if (!nf_ct_helper_hash) return -ENOMEM; ret = nf_ct_extend_register(&helper_extend); if (ret < 0) { pr_err("nf_ct_helper: Unable to register helper extension.\n"); goto out_extend; } INIT_LIST_HEAD(&nf_ct_nat_helpers); return 0; out_extend: kvfree(nf_ct_helper_hash); return ret; } void nf_conntrack_helper_fini(void) { nf_ct_extend_unregister(&helper_extend); kvfree(nf_ct_helper_hash); nf_ct_helper_hash = NULL; } |
190 24 24 24 24 29 29 29 1 8 8 7 1 173 174 174 174 175 173 2 6 7 7 2 2 4 2 6 7 7 7 7 6 7 8 6 3 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 | /* * cgroup_freezer.c - control group freezer subsystem * * Copyright IBM Corporation, 2007 * * Author : Cedric Le Goater <clg@fr.ibm.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2.1 of the GNU Lesser General Public License * as published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. */ #include <linux/export.h> #include <linux/slab.h> #include <linux/cgroup.h> #include <linux/fs.h> #include <linux/uaccess.h> #include <linux/freezer.h> #include <linux/seq_file.h> #include <linux/mutex.h> /* * A cgroup is freezing if any FREEZING flags are set. FREEZING_SELF is * set if "FROZEN" is written to freezer.state cgroupfs file, and cleared * for "THAWED". FREEZING_PARENT is set if the parent freezer is FREEZING * for whatever reason. IOW, a cgroup has FREEZING_PARENT set if one of * its ancestors has FREEZING_SELF set. */ enum freezer_state_flags { CGROUP_FREEZER_ONLINE = (1 << 0), /* freezer is fully online */ CGROUP_FREEZING_SELF = (1 << 1), /* this freezer is freezing */ CGROUP_FREEZING_PARENT = (1 << 2), /* the parent freezer is freezing */ CGROUP_FROZEN = (1 << 3), /* this and its descendants frozen */ /* mask for all FREEZING flags */ CGROUP_FREEZING = CGROUP_FREEZING_SELF | CGROUP_FREEZING_PARENT, }; struct freezer { struct cgroup_subsys_state css; unsigned int state; }; static DEFINE_MUTEX(freezer_mutex); static inline struct freezer *css_freezer(struct cgroup_subsys_state *css) { return css ? container_of(css, struct freezer, css) : NULL; } static inline struct freezer *task_freezer(struct task_struct *task) { return css_freezer(task_css(task, freezer_cgrp_id)); } static struct freezer *parent_freezer(struct freezer *freezer) { return css_freezer(freezer->css.parent); } bool cgroup_freezing(struct task_struct *task) { bool ret; rcu_read_lock(); ret = task_freezer(task)->state & CGROUP_FREEZING; rcu_read_unlock(); return ret; } static const char *freezer_state_strs(unsigned int state) { if (state & CGROUP_FROZEN) return "FROZEN"; if (state & CGROUP_FREEZING) return "FREEZING"; return "THAWED"; }; static struct cgroup_subsys_state * freezer_css_alloc(struct cgroup_subsys_state *parent_css) { struct freezer *freezer; freezer = kzalloc(sizeof(struct freezer), GFP_KERNEL); if (!freezer) return ERR_PTR(-ENOMEM); return &freezer->css; } /** * freezer_css_online - commit creation of a freezer css * @css: css being created * * We're committing to creation of @css. Mark it online and inherit * parent's freezing state while holding both parent's and our * freezer->lock. */ static int freezer_css_online(struct cgroup_subsys_state *css) { struct freezer *freezer = css_freezer(css); struct freezer *parent = parent_freezer(freezer); mutex_lock(&freezer_mutex); freezer->state |= CGROUP_FREEZER_ONLINE; if (parent && (parent->state & CGROUP_FREEZING)) { freezer->state |= CGROUP_FREEZING_PARENT | CGROUP_FROZEN; atomic_inc(&system_freezing_cnt); } mutex_unlock(&freezer_mutex); return 0; } /** * freezer_css_offline - initiate destruction of a freezer css * @css: css being destroyed * * @css is going away. Mark it dead and decrement system_freezing_count if * it was holding one. */ static void freezer_css_offline(struct cgroup_subsys_state *css) { struct freezer *freezer = css_freezer(css); mutex_lock(&freezer_mutex); if (freezer->state & CGROUP_FREEZING) atomic_dec(&system_freezing_cnt); freezer->state = 0; mutex_unlock(&freezer_mutex); } static void freezer_css_free(struct cgroup_subsys_state *css) { kfree(css_freezer(css)); } /* * Tasks can be migrated into a different freezer anytime regardless of its * current state. freezer_attach() is responsible for making new tasks * conform to the current state. * * Freezer state changes and task migration are synchronized via * @freezer->lock. freezer_attach() makes the new tasks conform to the * current state and all following state changes can see the new tasks. */ static void freezer_attach(struct cgroup_taskset *tset) { struct task_struct *task; struct cgroup_subsys_state *new_css; mutex_lock(&freezer_mutex); /* * Make the new tasks conform to the current state of @new_css. * For simplicity, when migrating any task to a FROZEN cgroup, we * revert it to FREEZING and let update_if_frozen() determine the * correct state later. * * Tasks in @tset are on @new_css but may not conform to its * current state before executing the following - !frozen tasks may * be visible in a FROZEN cgroup and frozen tasks in a THAWED one. */ cgroup_taskset_for_each(task, new_css, tset) { struct freezer *freezer = css_freezer(new_css); if (!(freezer->state & CGROUP_FREEZING)) { __thaw_task(task); } else { freeze_task(task); /* clear FROZEN and propagate upwards */ while (freezer && (freezer->state & CGROUP_FROZEN)) { freezer->state &= ~CGROUP_FROZEN; freezer = parent_freezer(freezer); } } } mutex_unlock(&freezer_mutex); } /** * freezer_fork - cgroup post fork callback * @task: a task which has just been forked * * @task has just been created and should conform to the current state of * the cgroup_freezer it belongs to. This function may race against * freezer_attach(). Losing to freezer_attach() means that we don't have * to do anything as freezer_attach() will put @task into the appropriate * state. */ static void freezer_fork(struct task_struct *task) { struct freezer *freezer; /* * The root cgroup is non-freezable, so we can skip locking the * freezer. This is safe regardless of race with task migration. * If we didn't race or won, skipping is obviously the right thing * to do. If we lost and root is the new cgroup, noop is still the * right thing to do. */ if (task_css_is_root(task, freezer_cgrp_id)) return; mutex_lock(&freezer_mutex); rcu_read_lock(); freezer = task_freezer(task); if (freezer->state & CGROUP_FREEZING) freeze_task(task); rcu_read_unlock(); mutex_unlock(&freezer_mutex); } /** * update_if_frozen - update whether a cgroup finished freezing * @css: css of interest * * Once FREEZING is initiated, transition to FROZEN is lazily updated by * calling this function. If the current state is FREEZING but not FROZEN, * this function checks whether all tasks of this cgroup and the descendant * cgroups finished freezing and, if so, sets FROZEN. * * The caller is responsible for grabbing RCU read lock and calling * update_if_frozen() on all descendants prior to invoking this function. * * Task states and freezer state might disagree while tasks are being * migrated into or out of @css, so we can't verify task states against * @freezer state here. See freezer_attach() for details. */ static void update_if_frozen(struct cgroup_subsys_state *css) { struct freezer *freezer = css_freezer(css); struct cgroup_subsys_state *pos; struct css_task_iter it; struct task_struct *task; lockdep_assert_held(&freezer_mutex); if (!(freezer->state & CGROUP_FREEZING) || (freezer->state & CGROUP_FROZEN)) return; /* are all (live) children frozen? */ rcu_read_lock(); css_for_each_child(pos, css) { struct freezer *child = css_freezer(pos); if ((child->state & CGROUP_FREEZER_ONLINE) && !(child->state & CGROUP_FROZEN)) { rcu_read_unlock(); return; } } rcu_read_unlock(); /* are all tasks frozen? */ css_task_iter_start(css, 0, &it); while ((task = css_task_iter_next(&it))) { if (freezing(task)) { /* * freezer_should_skip() indicates that the task * should be skipped when determining freezing * completion. Consider it frozen in addition to * the usual frozen condition. */ if (!frozen(task) && !freezer_should_skip(task)) goto out_iter_end; } } freezer->state |= CGROUP_FROZEN; out_iter_end: css_task_iter_end(&it); } static int freezer_read(struct seq_file *m, void *v) { struct cgroup_subsys_state *css = seq_css(m), *pos; mutex_lock(&freezer_mutex); rcu_read_lock(); /* update states bottom-up */ css_for_each_descendant_post(pos, css) { if (!css_tryget_online(pos)) continue; rcu_read_unlock(); update_if_frozen(pos); rcu_read_lock(); css_put(pos); } rcu_read_unlock(); mutex_unlock(&freezer_mutex); seq_puts(m, freezer_state_strs(css_freezer(css)->state)); seq_putc(m, '\n'); return 0; } static void freeze_cgroup(struct freezer *freezer) { struct css_task_iter it; struct task_struct *task; css_task_iter_start(&freezer->css, 0, &it); while ((task = css_task_iter_next(&it))) freeze_task(task); css_task_iter_end(&it); } static void unfreeze_cgroup(struct freezer *freezer) { struct css_task_iter it; struct task_struct *task; css_task_iter_start(&freezer->css, 0, &it); while ((task = css_task_iter_next(&it))) __thaw_task(task); css_task_iter_end(&it); } /** * freezer_apply_state - apply state change to a single cgroup_freezer * @freezer: freezer to apply state change to * @freeze: whether to freeze or unfreeze * @state: CGROUP_FREEZING_* flag to set or clear * * Set or clear @state on @cgroup according to @freeze, and perform * freezing or thawing as necessary. */ static void freezer_apply_state(struct freezer *freezer, bool freeze, unsigned int state) { /* also synchronizes against task migration, see freezer_attach() */ lockdep_assert_held(&freezer_mutex); if (!(freezer->state & CGROUP_FREEZER_ONLINE)) return; if (freeze) { if (!(freezer->state & CGROUP_FREEZING)) atomic_inc(&system_freezing_cnt); freezer->state |= state; freeze_cgroup(freezer); } else { bool was_freezing = freezer->state & CGROUP_FREEZING; freezer->state &= ~state; if (!(freezer->state & CGROUP_FREEZING)) { if (was_freezing) atomic_dec(&system_freezing_cnt); freezer->state &= ~CGROUP_FROZEN; unfreeze_cgroup(freezer); } } } /** * freezer_change_state - change the freezing state of a cgroup_freezer * @freezer: freezer of interest * @freeze: whether to freeze or thaw * * Freeze or thaw @freezer according to @freeze. The operations are * recursive - all descendants of @freezer will be affected. */ static void freezer_change_state(struct freezer *freezer, bool freeze) { struct cgroup_subsys_state *pos; /* * Update all its descendants in pre-order traversal. Each * descendant will try to inherit its parent's FREEZING state as * CGROUP_FREEZING_PARENT. */ mutex_lock(&freezer_mutex); rcu_read_lock(); css_for_each_descendant_pre(pos, &freezer->css) { struct freezer *pos_f = css_freezer(pos); struct freezer *parent = parent_freezer(pos_f); if (!css_tryget_online(pos)) continue; rcu_read_unlock(); if (pos_f == freezer) freezer_apply_state(pos_f, freeze, CGROUP_FREEZING_SELF); else freezer_apply_state(pos_f, parent->state & CGROUP_FREEZING, CGROUP_FREEZING_PARENT); rcu_read_lock(); css_put(pos); } rcu_read_unlock(); mutex_unlock(&freezer_mutex); } static ssize_t freezer_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { bool freeze; buf = strstrip(buf); if (strcmp(buf, freezer_state_strs(0)) == 0) freeze = false; else if (strcmp(buf, freezer_state_strs(CGROUP_FROZEN)) == 0) freeze = true; else return -EINVAL; freezer_change_state(css_freezer(of_css(of)), freeze); return nbytes; } static u64 freezer_self_freezing_read(struct cgroup_subsys_state *css, struct cftype *cft) { struct freezer *freezer = css_freezer(css); return (bool)(freezer->state & CGROUP_FREEZING_SELF); } static u64 freezer_parent_freezing_read(struct cgroup_subsys_state *css, struct cftype *cft) { struct freezer *freezer = css_freezer(css); return (bool)(freezer->state & CGROUP_FREEZING_PARENT); } static struct cftype files[] = { { .name = "state", .flags = CFTYPE_NOT_ON_ROOT, .seq_show = freezer_read, .write = freezer_write, }, { .name = "self_freezing", .flags = CFTYPE_NOT_ON_ROOT, .read_u64 = freezer_self_freezing_read, }, { .name = "parent_freezing", .flags = CFTYPE_NOT_ON_ROOT, .read_u64 = freezer_parent_freezing_read, }, { } /* terminate */ }; struct cgroup_subsys freezer_cgrp_subsys = { .css_alloc = freezer_css_alloc, .css_online = freezer_css_online, .css_offline = freezer_css_offline, .css_free = freezer_css_free, .attach = freezer_attach, .fork = freezer_fork, .legacy_cftypes = files, }; |
245 244 177 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 | // SPDX-License-Identifier: GPL-2.0 /* * Implement CPU time clocks for the POSIX clock interface. */ #include <linux/sched/signal.h> #include <linux/sched/cputime.h> #include <linux/posix-timers.h> #include <linux/errno.h> #include <linux/math64.h> #include <linux/uaccess.h> #include <linux/kernel_stat.h> #include <trace/events/timer.h> #include <linux/tick.h> #include <linux/workqueue.h> #include <linux/compat.h> #include <linux/sched/deadline.h> #include "posix-timers.h" static void posix_cpu_timer_rearm(struct k_itimer *timer); void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit) { posix_cputimers_init(pct); if (cpu_limit != RLIM_INFINITY) { pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC; pct->timers_active = true; } } /* * Called after updating RLIMIT_CPU to run cpu timer and update * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if * necessary. Needs siglock protection since other code may update the * expiration cache as well. */ void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) { u64 nsecs = rlim_new * NSEC_PER_SEC; spin_lock_irq(&task->sighand->siglock); set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL); spin_unlock_irq(&task->sighand->siglock); } /* * Functions for validating access to tasks. */ static struct pid *pid_for_clock(const clockid_t clock, bool gettime) { const bool thread = !!CPUCLOCK_PERTHREAD(clock); const pid_t upid = CPUCLOCK_PID(clock); struct pid *pid; if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX) return NULL; /* * If the encoded PID is 0, then the timer is targeted at current * or the process to which current belongs. */ if (upid == 0) return thread ? task_pid(current) : task_tgid(current); pid = find_vpid(upid); if (!pid) return NULL; if (thread) { struct task_struct *tsk = pid_task(pid, PIDTYPE_PID); return (tsk && same_thread_group(tsk, current)) ? pid : NULL; } /* * For clock_gettime(PROCESS) allow finding the process by * with the pid of the current task. The code needs the tgid * of the process so that pid_task(pid, PIDTYPE_TGID) can be * used to find the process. */ if (gettime && (pid == task_pid(current))) return task_tgid(current); /* * For processes require that pid identifies a process. */ return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL; } static inline int validate_clock_permissions(const clockid_t clock) { int ret; rcu_read_lock(); ret = pid_for_clock(clock, false) ? 0 : -EINVAL; rcu_read_unlock(); return ret; } static inline enum pid_type clock_pid_type(const clockid_t clock) { return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID; } static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer) { return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock)); } /* * Update expiry time from increment, and increase overrun count, * given the current clock sample. */ static u64 bump_cpu_timer(struct k_itimer *timer, u64 now) { u64 delta, incr, expires = timer->it.cpu.node.expires; int i; if (!timer->it_interval) return expires; if (now < expires) return expires; incr = timer->it_interval; delta = now + incr - expires; /* Don't use (incr*2 < delta), incr*2 might overflow. */ for (i = 0; incr < delta - incr; i++) incr = incr << 1; for (; i >= 0; incr >>= 1, i--) { if (delta < incr) continue; timer->it.cpu.node.expires += incr; timer->it_overrun += 1LL << i; delta -= incr; } return timer->it.cpu.node.expires; } /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */ static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct) { return !(~pct->bases[CPUCLOCK_PROF].nextevt | ~pct->bases[CPUCLOCK_VIRT].nextevt | ~pct->bases[CPUCLOCK_SCHED].nextevt); } static int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp) { int error = validate_clock_permissions(which_clock); if (!error) { tp->tv_sec = 0; tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { /* * If sched_clock is using a cycle counter, we * don't have any idea of its true resolution * exported, but it is much more than 1s/HZ. */ tp->tv_nsec = 1; } } return error; } static int posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp) { int error = validate_clock_permissions(clock); /* * You can never reset a CPU clock, but we check for other errors * in the call before failing with EPERM. */ return error ? : -EPERM; } /* * Sample a per-thread clock for the given task. clkid is validated. */ static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p) { u64 utime, stime; if (clkid == CPUCLOCK_SCHED) return task_sched_runtime(p); task_cputime(p, &utime, &stime); switch (clkid) { case CPUCLOCK_PROF: return utime + stime; case CPUCLOCK_VIRT: return utime; default: WARN_ON_ONCE(1); } return 0; } static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime) { samples[CPUCLOCK_PROF] = stime + utime; samples[CPUCLOCK_VIRT] = utime; samples[CPUCLOCK_SCHED] = rtime; } static void task_sample_cputime(struct task_struct *p, u64 *samples) { u64 stime, utime; task_cputime(p, &utime, &stime); store_samples(samples, stime, utime, p->se.sum_exec_runtime); } static void proc_sample_cputime_atomic(struct task_cputime_atomic *at, u64 *samples) { u64 stime, utime, rtime; utime = atomic64_read(&at->utime); stime = atomic64_read(&at->stime); rtime = atomic64_read(&at->sum_exec_runtime); store_samples(samples, stime, utime, rtime); } /* * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg * to avoid race conditions with concurrent updates to cputime. */ static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime) { u64 curr_cputime; retry: curr_cputime = atomic64_read(cputime); if (sum_cputime > curr_cputime) { if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime) goto retry; } } static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum) { __update_gt_cputime(&cputime_atomic->utime, sum->utime); __update_gt_cputime(&cputime_atomic->stime, sum->stime); __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); } /** * thread_group_sample_cputime - Sample cputime for a given task * @tsk: Task for which cputime needs to be started * @samples: Storage for time samples * * Called from sys_getitimer() to calculate the expiry time of an active * timer. That means group cputime accounting is already active. Called * with task sighand lock held. * * Updates @times with an uptodate sample of the thread group cputimes. */ void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples) { struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; struct posix_cputimers *pct = &tsk->signal->posix_cputimers; WARN_ON_ONCE(!pct->timers_active); proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); } /** * thread_group_start_cputime - Start cputime and return a sample * @tsk: Task for which cputime needs to be started * @samples: Storage for time samples * * The thread group cputime accounting is avoided when there are no posix * CPU timers armed. Before starting a timer it's required to check whether * the time accounting is active. If not, a full update of the atomic * accounting store needs to be done and the accounting enabled. * * Updates @times with an uptodate sample of the thread group cputimes. */ static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples) { struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; struct posix_cputimers *pct = &tsk->signal->posix_cputimers; lockdep_assert_task_sighand_held(tsk); /* Check if cputimer isn't running. This is accessed without locking. */ if (!READ_ONCE(pct->timers_active)) { struct task_cputime sum; /* * The POSIX timer interface allows for absolute time expiry * values through the TIMER_ABSTIME flag, therefore we have * to synchronize the timer to the clock every time we start it. */ thread_group_cputime(tsk, &sum); update_gt_cputime(&cputimer->cputime_atomic, &sum); /* * We're setting timers_active without a lock. Ensure this * only gets written to in one operation. We set it after * update_gt_cputime() as a small optimization, but * barriers are not required because update_gt_cputime() * can handle concurrent updates. */ WRITE_ONCE(pct->timers_active, true); } proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); } static void __thread_group_cputime(struct task_struct *tsk, u64 *samples) { struct task_cputime ct; thread_group_cputime(tsk, &ct); store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime); } /* * Sample a process (thread group) clock for the given task clkid. If the * group's cputime accounting is already enabled, read the atomic * store. Otherwise a full update is required. clkid is already validated. */ static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p, bool start) { struct thread_group_cputimer *cputimer = &p->signal->cputimer; struct posix_cputimers *pct = &p->signal->posix_cputimers; u64 samples[CPUCLOCK_MAX]; if (!READ_ONCE(pct->timers_active)) { if (start) thread_group_start_cputime(p, samples); else __thread_group_cputime(p, samples); } else { proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples); } return samples[clkid]; } static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp) { const clockid_t clkid = CPUCLOCK_WHICH(clock); struct task_struct *tsk; u64 t; rcu_read_lock(); tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock)); if (!tsk) { rcu_read_unlock(); return -EINVAL; } if (CPUCLOCK_PERTHREAD(clock)) t = cpu_clock_sample(clkid, tsk); else t = cpu_clock_sample_group(clkid, tsk, false); rcu_read_unlock(); *tp = ns_to_timespec64(t); return 0; } /* * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. * This is called from sys_timer_create() and do_cpu_nanosleep() with the * new timer already all-zeros initialized. */ static int posix_cpu_timer_create(struct k_itimer *new_timer) { static struct lock_class_key posix_cpu_timers_key; struct pid *pid; rcu_read_lock(); pid = pid_for_clock(new_timer->it_clock, false); if (!pid) { rcu_read_unlock(); return -EINVAL; } /* * If posix timer expiry is handled in task work context then * timer::it_lock can be taken without disabling interrupts as all * other locking happens in task context. This requires a separate * lock class key otherwise regular posix timer expiry would record * the lock class being taken in interrupt context and generate a * false positive warning. */ if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK)) lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key); new_timer->kclock = &clock_posix_cpu; timerqueue_init(&new_timer->it.cpu.node); new_timer->it.cpu.pid = get_pid(pid); rcu_read_unlock(); return 0; } static struct posix_cputimer_base *timer_base(struct k_itimer *timer, struct task_struct *tsk) { int clkidx = CPUCLOCK_WHICH(timer->it_clock); if (CPUCLOCK_PERTHREAD(timer->it_clock)) return tsk->posix_cputimers.bases + clkidx; else return tsk->signal->posix_cputimers.bases + clkidx; } /* * Force recalculating the base earliest expiration on the next tick. * This will also re-evaluate the need to keep around the process wide * cputime counter and tick dependency and eventually shut these down * if necessary. */ static void trigger_base_recalc_expires(struct k_itimer *timer, struct task_struct *tsk) { struct posix_cputimer_base *base = timer_base(timer, tsk); base->nextevt = 0; } /* * Dequeue the timer and reset the base if it was its earliest expiration. * It makes sure the next tick recalculates the base next expiration so we * don't keep the costly process wide cputime counter around for a random * amount of time, along with the tick dependency. * * If another timer gets queued between this and the next tick, its * expiration will update the base next event if necessary on the next * tick. */ static void disarm_timer(struct k_itimer *timer, struct task_struct *p) { struct cpu_timer *ctmr = &timer->it.cpu; struct posix_cputimer_base *base; if (!cpu_timer_dequeue(ctmr)) return; base = timer_base(timer, p); if (cpu_timer_getexpires(ctmr) == base->nextevt) trigger_base_recalc_expires(timer, p); } /* * Clean up a CPU-clock timer that is about to be destroyed. * This is called from timer deletion with the timer already locked. * If we return TIMER_RETRY, it's necessary to release the timer's lock * and try again. (This happens when the timer is in the middle of firing.) */ static int posix_cpu_timer_del(struct k_itimer *timer) { struct cpu_timer *ctmr = &timer->it.cpu; struct sighand_struct *sighand; struct task_struct *p; unsigned long flags; int ret = 0; rcu_read_lock(); p = cpu_timer_task_rcu(timer); if (!p) goto out; /* * Protect against sighand release/switch in exit/exec and process/ * thread timer list entry concurrent read/writes. */ sighand = lock_task_sighand(p, &flags); if (unlikely(sighand == NULL)) { /* * This raced with the reaping of the task. The exit cleanup * should have removed this timer from the timer queue. */ WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node)); } else { if (timer->it.cpu.firing) ret = TIMER_RETRY; else disarm_timer(timer, p); unlock_task_sighand(p, &flags); } out: rcu_read_unlock(); if (!ret) put_pid(ctmr->pid); return ret; } static void cleanup_timerqueue(struct timerqueue_head *head) { struct timerqueue_node *node; struct cpu_timer *ctmr; while ((node = timerqueue_getnext(head))) { timerqueue_del(head, node); ctmr = container_of(node, struct cpu_timer, node); ctmr->head = NULL; } } /* * Clean out CPU timers which are still armed when a thread exits. The * timers are only removed from the list. No other updates are done. The * corresponding posix timers are still accessible, but cannot be rearmed. * * This must be called with the siglock held. */ static void cleanup_timers(struct posix_cputimers *pct) { cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead); cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead); cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead); } /* * These are both called with the siglock held, when the current thread * is being reaped. When the final (leader) thread in the group is reaped, * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. */ void posix_cpu_timers_exit(struct task_struct *tsk) { cleanup_timers(&tsk->posix_cputimers); } void posix_cpu_timers_exit_group(struct task_struct *tsk) { cleanup_timers(&tsk->signal->posix_cputimers); } /* * Insert the timer on the appropriate list before any timers that * expire later. This must be called with the sighand lock held. */ static void arm_timer(struct k_itimer *timer, struct task_struct *p) { struct posix_cputimer_base *base = timer_base(timer, p); struct cpu_timer *ctmr = &timer->it.cpu; u64 newexp = cpu_timer_getexpires(ctmr); if (!cpu_timer_enqueue(&base->tqhead, ctmr)) return; /* * We are the new earliest-expiring POSIX 1.b timer, hence * need to update expiration cache. Take into account that * for process timers we share expiration cache with itimers * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. */ if (newexp < base->nextevt) base->nextevt = newexp; if (CPUCLOCK_PERTHREAD(timer->it_clock)) tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER); else tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER); } /* * The timer is locked, fire it and arrange for its reload. */ static void cpu_timer_fire(struct k_itimer *timer) { struct cpu_timer *ctmr = &timer->it.cpu; if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { /* * User don't want any signal. */ cpu_timer_setexpires(ctmr, 0); } else if (unlikely(timer->sigq == NULL)) { /* * This a special case for clock_nanosleep, * not a normal timer from sys_timer_create. */ wake_up_process(timer->it_process); cpu_timer_setexpires(ctmr, 0); } else if (!timer->it_interval) { /* * One-shot timer. Clear it as soon as it's fired. */ posix_timer_event(timer, 0); cpu_timer_setexpires(ctmr, 0); } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { /* * The signal did not get queued because the signal * was ignored, so we won't get any callback to * reload the timer. But we need to keep it * ticking in case the signal is deliverable next time. */ posix_cpu_timer_rearm(timer); ++timer->it_requeue_pending; } } /* * Guts of sys_timer_settime for CPU timers. * This is called with the timer locked and interrupts disabled. * If we return TIMER_RETRY, it's necessary to release the timer's lock * and try again. (This happens when the timer is in the middle of firing.) */ static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, struct itimerspec64 *new, struct itimerspec64 *old) { clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); u64 old_expires, new_expires, old_incr, val; struct cpu_timer *ctmr = &timer->it.cpu; struct sighand_struct *sighand; struct task_struct *p; unsigned long flags; int ret = 0; rcu_read_lock(); p = cpu_timer_task_rcu(timer); if (!p) { /* * If p has just been reaped, we can no * longer get any information about it at all. */ rcu_read_unlock(); return -ESRCH; } /* * Use the to_ktime conversion because that clamps the maximum * value to KTIME_MAX and avoid multiplication overflows. */ new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value)); /* * Protect against sighand release/switch in exit/exec and p->cpu_timers * and p->signal->cpu_timers read/write in arm_timer() */ sighand = lock_task_sighand(p, &flags); /* * If p has just been reaped, we can no * longer get any information about it at all. */ if (unlikely(sighand == NULL)) { rcu_read_unlock(); return -ESRCH; } /* * Disarm any old timer after extracting its expiry time. */ old_incr = timer->it_interval; old_expires = cpu_timer_getexpires(ctmr); if (unlikely(timer->it.cpu.firing)) { timer->it.cpu.firing = -1; ret = TIMER_RETRY; } else { cpu_timer_dequeue(ctmr); } /* * We need to sample the current value to convert the new * value from to relative and absolute, and to convert the * old value from absolute to relative. To set a process * timer, we need a sample to balance the thread expiry * times (in arm_timer). With an absolute time, we must * check if it's already passed. In short, we need a sample. */ if (CPUCLOCK_PERTHREAD(timer->it_clock)) val = cpu_clock_sample(clkid, p); else val = cpu_clock_sample_group(clkid, p, true); if (old) { if (old_expires == 0) { old->it_value.tv_sec = 0; old->it_value.tv_nsec = 0; } else { /* * Update the timer in case it has overrun already. * If it has, we'll report it as having overrun and * with the next reloaded timer already ticking, * though we are swallowing that pending * notification here to install the new setting. */ u64 exp = bump_cpu_timer(timer, val); if (val < exp) { old_expires = exp - val; old->it_value = ns_to_timespec64(old_expires); } else { old->it_value.tv_nsec = 1; old->it_value.tv_sec = 0; } } } if (unlikely(ret)) { /* * We are colliding with the timer actually firing. * Punt after filling in the timer's old value, and * disable this firing since we are already reporting * it as an overrun (thanks to bump_cpu_timer above). */ unlock_task_sighand(p, &flags); goto out; } if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) { new_expires += val; } /* * Install the new expiry time (or zero). * For a timer with no notification action, we don't actually * arm the timer (we'll just fake it for timer_gettime). */ cpu_timer_setexpires(ctmr, new_expires); if (new_expires != 0 && val < new_expires) { arm_timer(timer, p); } unlock_task_sighand(p, &flags); /* * Install the new reload setting, and * set up the signal and overrun bookkeeping. */ timer->it_interval = timespec64_to_ktime(new->it_interval); /* * This acts as a modification timestamp for the timer, * so any automatic reload attempt will punt on seeing * that we have reset the timer manually. */ timer->it_requeue_pending = (timer->it_requeue_pending + 2) & ~REQUEUE_PENDING; timer->it_overrun_last = 0; timer->it_overrun = -1; if (val >= new_expires) { if (new_expires != 0) { /* * The designated time already passed, so we notify * immediately, even if the thread never runs to * accumulate more time on this clock. */ cpu_timer_fire(timer); } /* * Make sure we don't keep around the process wide cputime * counter or the tick dependency if they are not necessary. */ sighand = lock_task_sighand(p, &flags); if (!sighand) goto out; if (!cpu_timer_queued(ctmr)) trigger_base_recalc_expires(timer, p); unlock_task_sighand(p, &flags); } out: rcu_read_unlock(); if (old) old->it_interval = ns_to_timespec64(old_incr); return ret; } static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp) { clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); struct cpu_timer *ctmr = &timer->it.cpu; u64 now, expires = cpu_timer_getexpires(ctmr); struct task_struct *p; rcu_read_lock(); p = cpu_timer_task_rcu(timer); if (!p) goto out; /* * Easy part: convert the reload time. */ itp->it_interval = ktime_to_timespec64(timer->it_interval); if (!expires) goto out; /* * Sample the clock to take the difference with the expiry time. */ if (CPUCLOCK_PERTHREAD(timer->it_clock)) now = cpu_clock_sample(clkid, p); else now = cpu_clock_sample_group(clkid, p, false); if (now < expires) { itp->it_value = ns_to_timespec64(expires - now); } else { /* * The timer should have expired already, but the firing * hasn't taken place yet. Say it's just about to expire. */ itp->it_value.tv_nsec = 1; itp->it_value.tv_sec = 0; } out: rcu_read_unlock(); } #define MAX_COLLECTED 20 static u64 collect_timerqueue(struct timerqueue_head *head, struct list_head *firing, u64 now) { struct timerqueue_node *next; int i = 0; while ((next = timerqueue_getnext(head))) { struct cpu_timer *ctmr; u64 expires; ctmr = container_of(next, struct cpu_timer, node); expires = cpu_timer_getexpires(ctmr); /* Limit the number of timers to expire at once */ if (++i == MAX_COLLECTED || now < expires) return expires; ctmr->firing = 1; /* See posix_cpu_timer_wait_running() */ rcu_assign_pointer(ctmr->handling, current); cpu_timer_dequeue(ctmr); list_add_tail(&ctmr->elist, firing); } return U64_MAX; } static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples, struct list_head *firing) { struct posix_cputimer_base *base = pct->bases; int i; for (i = 0; i < CPUCLOCK_MAX; i++, base++) { base->nextevt = collect_timerqueue(&base->tqhead, firing, samples[i]); } } static inline void check_dl_overrun(struct task_struct *tsk) { if (tsk->dl.dl_overrun) { tsk->dl.dl_overrun = 0; __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); } } static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard) { if (time < limit) return false; if (print_fatal_signals) { pr_info("%s Watchdog Timeout (%s): %s[%d]\n", rt ? "RT" : "CPU", hard ? "hard" : "soft", current->comm, task_pid_nr(current)); } __group_send_sig_info(signo, SEND_SIG_PRIV, current); return true; } /* * Check for any per-thread CPU timers that have fired and move them off * the tsk->cpu_timers[N] list onto the firing list. Here we update the * tsk->it_*_expires values to reflect the remaining thread CPU timers. */ static void check_thread_timers(struct task_struct *tsk, struct list_head *firing) { struct posix_cputimers *pct = &tsk->posix_cputimers; u64 samples[CPUCLOCK_MAX]; unsigned long soft; if (dl_task(tsk)) check_dl_overrun(tsk); if (expiry_cache_is_inactive(pct)) return; task_sample_cputime(tsk, samples); collect_posix_cputimers(pct, samples, firing); /* * Check for the special case thread timers. */ soft = task_rlimit(tsk, RLIMIT_RTTIME); if (soft != RLIM_INFINITY) { /* Task RT timeout is accounted in jiffies. RTTIME is usec */ unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ); unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME); /* At the hard limit, send SIGKILL. No further action. */ if (hard != RLIM_INFINITY && check_rlimit(rttime, hard, SIGKILL, true, true)) return; /* At the soft limit, send a SIGXCPU every second */ if (check_rlimit(rttime, soft, SIGXCPU, true, false)) { soft += USEC_PER_SEC; tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft; } } if (expiry_cache_is_inactive(pct)) tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER); } static inline void stop_process_timers(struct signal_struct *sig) { struct posix_cputimers *pct = &sig->posix_cputimers; /* Turn off the active flag. This is done without locking. */ WRITE_ONCE(pct->timers_active, false); tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER); } static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, u64 *expires, u64 cur_time, int signo) { if (!it->expires) return; if (cur_time >= it->expires) { if (it->incr) it->expires += it->incr; else it->expires = 0; trace_itimer_expire(signo == SIGPROF ? ITIMER_PROF : ITIMER_VIRTUAL, task_tgid(tsk), cur_time); __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); } if (it->expires && it->expires < *expires) *expires = it->expires; } /* * Check for any per-thread CPU timers that have fired and move them * off the tsk->*_timers list onto the firing list. Per-thread timers * have already been taken off. */ static void check_process_timers(struct task_struct *tsk, struct list_head *firing) { struct signal_struct *const sig = tsk->signal; struct posix_cputimers *pct = &sig->posix_cputimers; u64 samples[CPUCLOCK_MAX]; unsigned long soft; /* * If there are no active process wide timers (POSIX 1.b, itimers, * RLIMIT_CPU) nothing to check. Also skip the process wide timer * processing when there is already another task handling them. */ if (!READ_ONCE(pct->timers_active) || pct->expiry_active) return; /* * Signify that a thread is checking for process timers. * Write access to this field is protected by the sighand lock. */ pct->expiry_active = true; /* * Collect the current process totals. Group accounting is active * so the sample can be taken directly. */ proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples); collect_posix_cputimers(pct, samples, firing); /* * Check for the special case process timers. */ check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &pct->bases[CPUCLOCK_PROF].nextevt, samples[CPUCLOCK_PROF], SIGPROF); check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &pct->bases[CPUCLOCK_VIRT].nextevt, samples[CPUCLOCK_VIRT], SIGVTALRM); soft = task_rlimit(tsk, RLIMIT_CPU); if (soft != RLIM_INFINITY) { /* RLIMIT_CPU is in seconds. Samples are nanoseconds */ unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU); u64 ptime = samples[CPUCLOCK_PROF]; u64 softns = (u64)soft * NSEC_PER_SEC; u64 hardns = (u64)hard * NSEC_PER_SEC; /* At the hard limit, send SIGKILL. No further action. */ if (hard != RLIM_INFINITY && check_rlimit(ptime, hardns, SIGKILL, false, true)) return; /* At the soft limit, send a SIGXCPU every second */ if (check_rlimit(ptime, softns, SIGXCPU, false, false)) { sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1; softns += NSEC_PER_SEC; } /* Update the expiry cache */ if (softns < pct->bases[CPUCLOCK_PROF].nextevt) pct->bases[CPUCLOCK_PROF].nextevt = softns; } if (expiry_cache_is_inactive(pct)) stop_process_timers(sig); pct->expiry_active = false; } /* * This is called from the signal code (via posixtimer_rearm) * when the last timer signal was delivered and we have to reload the timer. */ static void posix_cpu_timer_rearm(struct k_itimer *timer) { clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock); struct task_struct *p; struct sighand_struct *sighand; unsigned long flags; u64 now; rcu_read_lock(); p = cpu_timer_task_rcu(timer); if (!p) goto out; /* Protect timer list r/w in arm_timer() */ sighand = lock_task_sighand(p, &flags); if (unlikely(sighand == NULL)) goto out; /* * Fetch the current sample and update the timer's expiry time. */ if (CPUCLOCK_PERTHREAD(timer->it_clock)) now = cpu_clock_sample(clkid, p); else now = cpu_clock_sample_group(clkid, p, true); bump_cpu_timer(timer, now); /* * Now re-arm for the new expiry time. */ arm_timer(timer, p); unlock_task_sighand(p, &flags); out: rcu_read_unlock(); } /** * task_cputimers_expired - Check whether posix CPU timers are expired * * @samples: Array of current samples for the CPUCLOCK clocks * @pct: Pointer to a posix_cputimers container * * Returns true if any member of @samples is greater than the corresponding * member of @pct->bases[CLK].nextevt. False otherwise */ static inline bool task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct) { int i; for (i = 0; i < CPUCLOCK_MAX; i++) { if (samples[i] >= pct->bases[i].nextevt) return true; } return false; } /** * fastpath_timer_check - POSIX CPU timers fast path. * * @tsk: The task (thread) being checked. * * Check the task and thread group timers. If both are zero (there are no * timers set) return false. Otherwise snapshot the task and thread group * timers and compare them with the corresponding expiration times. Return * true if a timer has expired, else return false. */ static inline bool fastpath_timer_check(struct task_struct *tsk) { struct posix_cputimers *pct = &tsk->posix_cputimers; struct signal_struct *sig; if (!expiry_cache_is_inactive(pct)) { u64 samples[CPUCLOCK_MAX]; task_sample_cputime(tsk, samples); if (task_cputimers_expired(samples, pct)) return true; } sig = tsk->signal; pct = &sig->posix_cputimers; /* * Check if thread group timers expired when timers are active and * no other thread in the group is already handling expiry for * thread group cputimers. These fields are read without the * sighand lock. However, this is fine because this is meant to be * a fastpath heuristic to determine whether we should try to * acquire the sighand lock to handle timer expiry. * * In the worst case scenario, if concurrently timers_active is set * or expiry_active is cleared, but the current thread doesn't see * the change yet, the timer checks are delayed until the next * thread in the group gets a scheduler interrupt to handle the * timer. This isn't an issue in practice because these types of * delays with signals actually getting sent are expected. */ if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) { u64 samples[CPUCLOCK_MAX]; proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples); if (task_cputimers_expired(samples, pct)) return true; } if (dl_task(tsk) && tsk->dl.dl_overrun) return true; return false; } static void handle_posix_cpu_timers(struct task_struct *tsk); #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK static void posix_cpu_timers_work(struct callback_head *work) { struct posix_cputimers_work *cw = container_of(work, typeof(*cw), work); mutex_lock(&cw->mutex); handle_posix_cpu_timers(current); mutex_unlock(&cw->mutex); } /* * Invoked from the posix-timer core when a cancel operation failed because * the timer is marked firing. The caller holds rcu_read_lock(), which * protects the timer and the task which is expiring it from being freed. */ static void posix_cpu_timer_wait_running(struct k_itimer *timr) { struct task_struct *tsk = rcu_dereference(timr->it.cpu.handling); /* Has the handling task completed expiry already? */ if (!tsk) return; /* Ensure that the task cannot go away */ get_task_struct(tsk); /* Now drop the RCU protection so the mutex can be locked */ rcu_read_unlock(); /* Wait on the expiry mutex */ mutex_lock(&tsk->posix_cputimers_work.mutex); /* Release it immediately again. */ mutex_unlock(&tsk->posix_cputimers_work.mutex); /* Drop the task reference. */ put_task_struct(tsk); /* Relock RCU so the callsite is balanced */ rcu_read_lock(); } static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr) { /* Ensure that timr->it.cpu.handling task cannot go away */ rcu_read_lock(); spin_unlock_irq(&timr->it_lock); posix_cpu_timer_wait_running(timr); rcu_read_unlock(); /* @timr is on stack and is valid */ spin_lock_irq(&timr->it_lock); } /* * Clear existing posix CPU timers task work. */ void clear_posix_cputimers_work(struct task_struct *p) { /* * A copied work entry from the old task is not meaningful, clear it. * N.B. init_task_work will not do this. */ memset(&p->posix_cputimers_work.work, 0, sizeof(p->posix_cputimers_work.work)); init_task_work(&p->posix_cputimers_work.work, posix_cpu_timers_work); mutex_init(&p->posix_cputimers_work.mutex); p->posix_cputimers_work.scheduled = false; } /* * Initialize posix CPU timers task work in init task. Out of line to * keep the callback static and to avoid header recursion hell. */ void __init posix_cputimers_init_work(void) { clear_posix_cputimers_work(current); } /* * Note: All operations on tsk->posix_cputimer_work.scheduled happen either * in hard interrupt context or in task context with interrupts * disabled. Aside of that the writer/reader interaction is always in the * context of the current task, which means they are strict per CPU. */ static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk) { return tsk->posix_cputimers_work.scheduled; } static inline void __run_posix_cpu_timers(struct task_struct *tsk) { if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled)) return; /* Schedule task work to actually expire the timers */ tsk->posix_cputimers_work.scheduled = true; task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME); } static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk, unsigned long start) { bool ret = true; /* * On !RT kernels interrupts are disabled while collecting expired * timers, so no tick can happen and the fast path check can be * reenabled without further checks. */ if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { tsk->posix_cputimers_work.scheduled = false; return true; } /* * On RT enabled kernels ticks can happen while the expired timers * are collected under sighand lock. But any tick which observes * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath * checks. So reenabling the tick work has do be done carefully: * * Disable interrupts and run the fast path check if jiffies have * advanced since the collecting of expired timers started. If * jiffies have not advanced or the fast path check did not find * newly expired timers, reenable the fast path check in the timer * interrupt. If there are newly expired timers, return false and * let the collection loop repeat. */ local_irq_disable(); if (start != jiffies && fastpath_timer_check(tsk)) ret = false; else tsk->posix_cputimers_work.scheduled = false; local_irq_enable(); return ret; } #else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */ static inline void __run_posix_cpu_timers(struct task_struct *tsk) { lockdep_posixtimer_enter(); handle_posix_cpu_timers(tsk); lockdep_posixtimer_exit(); } static void posix_cpu_timer_wait_running(struct k_itimer *timr) { cpu_relax(); } static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr) { spin_unlock_irq(&timr->it_lock); cpu_relax(); spin_lock_irq(&timr->it_lock); } static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk) { return false; } static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk, unsigned long start) { return true; } #endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */ static void handle_posix_cpu_timers(struct task_struct *tsk) { struct k_itimer *timer, *next; unsigned long flags, start; LIST_HEAD(firing); if (!lock_task_sighand(tsk, &flags)) return; do { /* * On RT locking sighand lock does not disable interrupts, * so this needs to be careful vs. ticks. Store the current * jiffies value. */ start = READ_ONCE(jiffies); barrier(); /* * Here we take off tsk->signal->cpu_timers[N] and * tsk->cpu_timers[N] all the timers that are firing, and * put them on the firing list. */ check_thread_timers(tsk, &firing); check_process_timers(tsk, &firing); /* * The above timer checks have updated the expiry cache and * because nothing can have queued or modified timers after * sighand lock was taken above it is guaranteed to be * consistent. So the next timer interrupt fastpath check * will find valid data. * * If timer expiry runs in the timer interrupt context then * the loop is not relevant as timers will be directly * expired in interrupt context. The stub function below * returns always true which allows the compiler to * optimize the loop out. * * If timer expiry is deferred to task work context then * the following rules apply: * * - On !RT kernels no tick can have happened on this CPU * after sighand lock was acquired because interrupts are * disabled. So reenabling task work before dropping * sighand lock and reenabling interrupts is race free. * * - On RT kernels ticks might have happened but the tick * work ignored posix CPU timer handling because the * CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work * must be done very carefully including a check whether * ticks have happened since the start of the timer * expiry checks. posix_cpu_timers_enable_work() takes * care of that and eventually lets the expiry checks * run again. */ } while (!posix_cpu_timers_enable_work(tsk, start)); /* * We must release sighand lock before taking any timer's lock. * There is a potential race with timer deletion here, as the * siglock now protects our private firing list. We have set * the firing flag in each timer, so that a deletion attempt * that gets the timer lock before we do will give it up and * spin until we've taken care of that timer below. */ unlock_task_sighand(tsk, &flags); /* * Now that all the timers on our list have the firing flag, * no one will touch their list entries but us. We'll take * each timer's lock before clearing its firing flag, so no * timer call will interfere. */ list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) { int cpu_firing; /* * spin_lock() is sufficient here even independent of the * expiry context. If expiry happens in hard interrupt * context it's obvious. For task work context it's safe * because all other operations on timer::it_lock happen in * task context (syscall or exit). */ spin_lock(&timer->it_lock); list_del_init(&timer->it.cpu.elist); cpu_firing = timer->it.cpu.firing; timer->it.cpu.firing = 0; /* * The firing flag is -1 if we collided with a reset * of the timer, which already reported this * almost-firing as an overrun. So don't generate an event. */ if (likely(cpu_firing >= 0)) cpu_timer_fire(timer); /* See posix_cpu_timer_wait_running() */ rcu_assign_pointer(timer->it.cpu.handling, NULL); spin_unlock(&timer->it_lock); } } /* * This is called from the timer interrupt handler. The irq handler has * already updated our counts. We need to check if any timers fire now. * Interrupts are disabled. */ void run_posix_cpu_timers(void) { struct task_struct *tsk = current; lockdep_assert_irqs_disabled(); /* * If the actual expiry is deferred to task work context and the * work is already scheduled there is no point to do anything here. */ if (posix_cpu_timers_work_scheduled(tsk)) return; /* * The fast path checks that there are no expired thread or thread * group timers. If that's so, just return. */ if (!fastpath_timer_check(tsk)) return; __run_posix_cpu_timers(tsk); } /* * Set one of the process-wide special case CPU timers or RLIMIT_CPU. * The tsk->sighand->siglock must be held by the caller. */ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid, u64 *newval, u64 *oldval) { u64 now, *nextevt; if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED)) return; nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt; now = cpu_clock_sample_group(clkid, tsk, true); if (oldval) { /* * We are setting itimer. The *oldval is absolute and we update * it to be relative, *newval argument is relative and we update * it to be absolute. */ if (*oldval) { if (*oldval <= now) { /* Just about to fire. */ *oldval = TICK_NSEC; } else { *oldval -= now; } } if (*newval) *newval += now; } /* * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF * expiry cache is also used by RLIMIT_CPU!. */ if (*newval < *nextevt) *nextevt = *newval; tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER); } static int do_cpu_nanosleep(const clockid_t which_clock, int flags, const struct timespec64 *rqtp) { struct itimerspec64 it; struct k_itimer timer; u64 expires; int error; /* * Set up a temporary timer and then wait for it to go off. */ memset(&timer, 0, sizeof timer); spin_lock_init(&timer.it_lock); timer.it_clock = which_clock; timer.it_overrun = -1; error = posix_cpu_timer_create(&timer); timer.it_process = current; if (!error) { static struct itimerspec64 zero_it; struct restart_block *restart; memset(&it, 0, sizeof(it)); it.it_value = *rqtp; spin_lock_irq(&timer.it_lock); error = posix_cpu_timer_set(&timer, flags, &it, NULL); if (error) { spin_unlock_irq(&timer.it_lock); return error; } while (!signal_pending(current)) { if (!cpu_timer_getexpires(&timer.it.cpu)) { /* * Our timer fired and was reset, below * deletion can not fail. */ posix_cpu_timer_del(&timer); spin_unlock_irq(&timer.it_lock); return 0; } /* * Block until cpu_timer_fire (or a signal) wakes us. */ __set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irq(&timer.it_lock); schedule(); spin_lock_irq(&timer.it_lock); } /* * We were interrupted by a signal. */ expires = cpu_timer_getexpires(&timer.it.cpu); error = posix_cpu_timer_set(&timer, 0, &zero_it, &it); if (!error) { /* Timer is now unarmed, deletion can not fail. */ posix_cpu_timer_del(&timer); } else { while (error == TIMER_RETRY) { posix_cpu_timer_wait_running_nsleep(&timer); error = posix_cpu_timer_del(&timer); } } spin_unlock_irq(&timer.it_lock); if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) { /* * It actually did fire already. */ return 0; } error = -ERESTART_RESTARTBLOCK; /* * Report back to the user the time still remaining. */ restart = ¤t->restart_block; restart->nanosleep.expires = expires; if (restart->nanosleep.type != TT_NONE) error = nanosleep_copyout(restart, &it.it_value); } return error; } static long posix_cpu_nsleep_restart(struct restart_block *restart_block); static int posix_cpu_nsleep(const clockid_t which_clock, int flags, const struct timespec64 *rqtp) { struct restart_block *restart_block = ¤t->restart_block; int error; /* * Diagnose required errors first. */ if (CPUCLOCK_PERTHREAD(which_clock) && (CPUCLOCK_PID(which_clock) == 0 || CPUCLOCK_PID(which_clock) == task_pid_vnr(current))) return -EINVAL; error = do_cpu_nanosleep(which_clock, flags, rqtp); if (error == -ERESTART_RESTARTBLOCK) { if (flags & TIMER_ABSTIME) return -ERESTARTNOHAND; restart_block->nanosleep.clockid = which_clock; set_restart_fn(restart_block, posix_cpu_nsleep_restart); } return error; } static long posix_cpu_nsleep_restart(struct restart_block *restart_block) { clockid_t which_clock = restart_block->nanosleep.clockid; struct timespec64 t; t = ns_to_timespec64(restart_block->nanosleep.expires); return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t); } #define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED) #define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED) static int process_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp) { return posix_cpu_clock_getres(PROCESS_CLOCK, tp); } static int process_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp) { return posix_cpu_clock_get(PROCESS_CLOCK, tp); } static int process_cpu_timer_create(struct k_itimer *timer) { timer->it_clock = PROCESS_CLOCK; return posix_cpu_timer_create(timer); } static int process_cpu_nsleep(const clockid_t which_clock, int flags, const struct timespec64 *rqtp) { return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp); } static int thread_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp) { return posix_cpu_clock_getres(THREAD_CLOCK, tp); } static int thread_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp) { return posix_cpu_clock_get(THREAD_CLOCK, tp); } static int thread_cpu_timer_create(struct k_itimer *timer) { timer->it_clock = THREAD_CLOCK; return posix_cpu_timer_create(timer); } const struct k_clock clock_posix_cpu = { .clock_getres = posix_cpu_clock_getres, .clock_set = posix_cpu_clock_set, .clock_get_timespec = posix_cpu_clock_get, .timer_create = posix_cpu_timer_create, .nsleep = posix_cpu_nsleep, .timer_set = posix_cpu_timer_set, .timer_del = posix_cpu_timer_del, .timer_get = posix_cpu_timer_get, .timer_rearm = posix_cpu_timer_rearm, .timer_wait_running = posix_cpu_timer_wait_running, }; const struct k_clock clock_process = { .clock_getres = process_cpu_clock_getres, .clock_get_timespec = process_cpu_clock_get, .timer_create = process_cpu_timer_create, .nsleep = process_cpu_nsleep, }; const struct k_clock clock_thread = { .clock_getres = thread_cpu_clock_getres, .clock_get_timespec = thread_cpu_clock_get, .timer_create = thread_cpu_timer_create, }; |
5 5 4 1 5 5 5 7 1 2 1 1 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 | // SPDX-License-Identifier: GPL-2.0-only #include <linux/slab.h> #include <linux/stat.h> #include <linux/sched/xacct.h> #include <linux/fcntl.h> #include <linux/file.h> #include <linux/uio.h> #include <linux/fsnotify.h> #include <linux/security.h> #include <linux/export.h> #include <linux/syscalls.h> #include <linux/pagemap.h> #include <linux/splice.h> #include <linux/compat.h> #include <linux/mount.h> #include <linux/fs.h> #include "internal.h" #include <linux/uaccess.h> #include <asm/unistd.h> /* * Performs necessary checks before doing a clone. * * Can adjust amount of bytes to clone via @req_count argument. * Returns appropriate error code that caller should return or * zero in case the clone should be allowed. */ static int generic_remap_checks(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t *req_count, unsigned int remap_flags) { struct inode *inode_in = file_in->f_mapping->host; struct inode *inode_out = file_out->f_mapping->host; uint64_t count = *req_count; uint64_t bcount; loff_t size_in, size_out; loff_t bs = inode_out->i_sb->s_blocksize; int ret; /* The start of both ranges must be aligned to an fs block. */ if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs)) return -EINVAL; /* Ensure offsets don't wrap. */ if (pos_in + count < pos_in || pos_out + count < pos_out) return -EINVAL; size_in = i_size_read(inode_in); size_out = i_size_read(inode_out); /* Dedupe requires both ranges to be within EOF. */ if ((remap_flags & REMAP_FILE_DEDUP) && (pos_in >= size_in || pos_in + count > size_in || pos_out >= size_out || pos_out + count > size_out)) return -EINVAL; /* Ensure the infile range is within the infile. */ if (pos_in >= size_in) return -EINVAL; count = min(count, size_in - (uint64_t)pos_in); ret = generic_write_check_limits(file_out, pos_out, &count); if (ret) return ret; /* * If the user wanted us to link to the infile's EOF, round up to the * next block boundary for this check. * * Otherwise, make sure the count is also block-aligned, having * already confirmed the starting offsets' block alignment. */ if (pos_in + count == size_in && (!(remap_flags & REMAP_FILE_DEDUP) || pos_out + count == size_out)) { bcount = ALIGN(size_in, bs) - pos_in; } else { if (!IS_ALIGNED(count, bs)) count = ALIGN_DOWN(count, bs); bcount = count; } /* Don't allow overlapped cloning within the same file. */ if (inode_in == inode_out && pos_out + bcount > pos_in && pos_out < pos_in + bcount) return -EINVAL; /* * We shortened the request but the caller can't deal with that, so * bounce the request back to userspace. */ if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN)) return -EINVAL; *req_count = count; return 0; } static int remap_verify_area(struct file *file, loff_t pos, loff_t len, bool write) { if (unlikely(pos < 0 || len < 0)) return -EINVAL; if (unlikely((loff_t) (pos + len) < 0)) return -EINVAL; return security_file_permission(file, write ? MAY_WRITE : MAY_READ); } /* * Ensure that we don't remap a partial EOF block in the middle of something * else. Assume that the offsets have already been checked for block * alignment. * * For clone we only link a partial EOF block above or at the destination file's * EOF. For deduplication we accept a partial EOF block only if it ends at the * destination file's EOF (can not link it into the middle of a file). * * Shorten the request if possible. */ static int generic_remap_check_len(struct inode *inode_in, struct inode *inode_out, loff_t pos_out, loff_t *len, unsigned int remap_flags) { u64 blkmask = i_blocksize(inode_in) - 1; loff_t new_len = *len; if ((*len & blkmask) == 0) return 0; if (pos_out + *len < i_size_read(inode_out)) new_len &= ~blkmask; if (new_len == *len) return 0; if (remap_flags & REMAP_FILE_CAN_SHORTEN) { *len = new_len; return 0; } return (remap_flags & REMAP_FILE_DEDUP) ? -EBADE : -EINVAL; } /* Read a page's worth of file data into the page cache. */ static struct page *vfs_dedupe_get_page(struct inode *inode, loff_t offset) { struct page *page; page = read_mapping_page(inode->i_mapping, offset >> PAGE_SHIFT, NULL); if (IS_ERR(page)) return page; if (!PageUptodate(page)) { put_page(page); return ERR_PTR(-EIO); } return page; } /* * Lock two pages, ensuring that we lock in offset order if the pages are from * the same file. */ static void vfs_lock_two_pages(struct page *page1, struct page *page2) { /* Always lock in order of increasing index. */ if (page1->index > page2->index) swap(page1, page2); lock_page(page1); if (page1 != page2) lock_page(page2); } /* Unlock two pages, being careful not to unlock the same page twice. */ static void vfs_unlock_two_pages(struct page *page1, struct page *page2) { unlock_page(page1); if (page1 != page2) unlock_page(page2); } /* * Compare extents of two files to see if they are the same. * Caller must have locked both inodes to prevent write races. */ static int vfs_dedupe_file_range_compare(struct inode *src, loff_t srcoff, struct inode *dest, loff_t destoff, loff_t len, bool *is_same) { loff_t src_poff; loff_t dest_poff; void *src_addr; void *dest_addr; struct page *src_page; struct page *dest_page; loff_t cmp_len; bool same; int error; error = -EINVAL; same = true; while (len) { src_poff = srcoff & (PAGE_SIZE - 1); dest_poff = destoff & (PAGE_SIZE - 1); cmp_len = min(PAGE_SIZE - src_poff, PAGE_SIZE - dest_poff); cmp_len = min(cmp_len, len); if (cmp_len <= 0) goto out_error; src_page = vfs_dedupe_get_page(src, srcoff); if (IS_ERR(src_page)) { error = PTR_ERR(src_page); goto out_error; } dest_page = vfs_dedupe_get_page(dest, destoff); if (IS_ERR(dest_page)) { error = PTR_ERR(dest_page); put_page(src_page); goto out_error; } vfs_lock_two_pages(src_page, dest_page); /* * Now that we've locked both pages, make sure they're still * mapped to the file data we're interested in. If not, * someone is invalidating pages on us and we lose. */ if (!PageUptodate(src_page) || !PageUptodate(dest_page) || src_page->mapping != src->i_mapping || dest_page->mapping != dest->i_mapping) { same = false; goto unlock; } src_addr = kmap_atomic(src_page); dest_addr = kmap_atomic(dest_page); flush_dcache_page(src_page); flush_dcache_page(dest_page); if (memcmp(src_addr + src_poff, dest_addr + dest_poff, cmp_len)) same = false; kunmap_atomic(dest_addr); kunmap_atomic(src_addr); unlock: vfs_unlock_two_pages(src_page, dest_page); put_page(dest_page); put_page(src_page); if (!same) break; srcoff += cmp_len; destoff += cmp_len; len -= cmp_len; } *is_same = same; return 0; out_error: return error; } /* * Check that the two inodes are eligible for cloning, the ranges make * sense, and then flush all dirty data. Caller must ensure that the * inodes have been locked against any other modifications. * * If there's an error, then the usual negative error code is returned. * Otherwise returns 0 with *len set to the request length. */ int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t *len, unsigned int remap_flags) { struct inode *inode_in = file_inode(file_in); struct inode *inode_out = file_inode(file_out); bool same_inode = (inode_in == inode_out); int ret; /* Don't touch certain kinds of inodes */ if (IS_IMMUTABLE(inode_out)) return -EPERM; if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out)) return -ETXTBSY; /* Don't reflink dirs, pipes, sockets... */ if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode)) return -EISDIR; if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode)) return -EINVAL; /* Zero length dedupe exits immediately; reflink goes to EOF. */ if (*len == 0) { loff_t isize = i_size_read(inode_in); if ((remap_flags & REMAP_FILE_DEDUP) || pos_in == isize) return 0; if (pos_in > isize) return -EINVAL; *len = isize - pos_in; if (*len == 0) return 0; } /* Check that we don't violate system file offset limits. */ ret = generic_remap_checks(file_in, pos_in, file_out, pos_out, len, remap_flags); if (ret) return ret; /* Wait for the completion of any pending IOs on both files */ inode_dio_wait(inode_in); if (!same_inode) inode_dio_wait(inode_out); ret = filemap_write_and_wait_range(inode_in->i_mapping, pos_in, pos_in + *len - 1); if (ret) return ret; ret = filemap_write_and_wait_range(inode_out->i_mapping, pos_out, pos_out + *len - 1); if (ret) return ret; /* * Check that the extents are the same. */ if (remap_flags & REMAP_FILE_DEDUP) { bool is_same = false; ret = vfs_dedupe_file_range_compare(inode_in, pos_in, inode_out, pos_out, *len, &is_same); if (ret) return ret; if (!is_same) return -EBADE; } ret = generic_remap_check_len(inode_in, inode_out, pos_out, len, remap_flags); if (ret) return ret; /* If can't alter the file contents, we're done. */ if (!(remap_flags & REMAP_FILE_DEDUP)) ret = file_modified(file_out); return ret; } EXPORT_SYMBOL(generic_remap_file_range_prep); loff_t do_clone_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t len, unsigned int remap_flags) { loff_t ret; WARN_ON_ONCE(remap_flags & REMAP_FILE_DEDUP); /* * FICLONE/FICLONERANGE ioctls enforce that src and dest files are on * the same mount. Practically, they only need to be on the same file * system. */ if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb) return -EXDEV; ret = generic_file_rw_checks(file_in, file_out); if (ret < 0) return ret; if (!file_in->f_op->remap_file_range) return -EOPNOTSUPP; ret = remap_verify_area(file_in, pos_in, len, false); if (ret) return ret; ret = remap_verify_area(file_out, pos_out, len, true); if (ret) return ret; ret = file_in->f_op->remap_file_range(file_in, pos_in, file_out, pos_out, len, remap_flags); if (ret < 0) return ret; fsnotify_access(file_in); fsnotify_modify(file_out); return ret; } EXPORT_SYMBOL(do_clone_file_range); loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t len, unsigned int remap_flags) { loff_t ret; file_start_write(file_out); ret = do_clone_file_range(file_in, pos_in, file_out, pos_out, len, remap_flags); file_end_write(file_out); return ret; } EXPORT_SYMBOL(vfs_clone_file_range); /* Check whether we are allowed to dedupe the destination file */ static bool allow_file_dedupe(struct file *file) { struct user_namespace *mnt_userns = file_mnt_user_ns(file); struct inode *inode = file_inode(file); if (capable(CAP_SYS_ADMIN)) return true; if (file->f_mode & FMODE_WRITE) return true; if (uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode))) return true; if (!inode_permission(mnt_userns, inode, MAY_WRITE)) return true; return false; } loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos, struct file *dst_file, loff_t dst_pos, loff_t len, unsigned int remap_flags) { loff_t ret; WARN_ON_ONCE(remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_CAN_SHORTEN)); ret = mnt_want_write_file(dst_file); if (ret) return ret; /* * This is redundant if called from vfs_dedupe_file_range(), but other * callers need it and it's not performance sesitive... */ ret = remap_verify_area(src_file, src_pos, len, false); if (ret) goto out_drop_write; ret = remap_verify_area(dst_file, dst_pos, len, true); if (ret) goto out_drop_write; ret = -EPERM; if (!allow_file_dedupe(dst_file)) goto out_drop_write; ret = -EXDEV; if (src_file->f_path.mnt != dst_file->f_path.mnt) goto out_drop_write; ret = -EISDIR; if (S_ISDIR(file_inode(dst_file)->i_mode)) goto out_drop_write; ret = -EINVAL; if (!dst_file->f_op->remap_file_range) goto out_drop_write; if (len == 0) { ret = 0; goto out_drop_write; } ret = dst_file->f_op->remap_file_range(src_file, src_pos, dst_file, dst_pos, len, remap_flags | REMAP_FILE_DEDUP); out_drop_write: mnt_drop_write_file(dst_file); return ret; } EXPORT_SYMBOL(vfs_dedupe_file_range_one); int vfs_dedupe_file_range(struct file *file, struct file_dedupe_range *same) { struct file_dedupe_range_info *info; struct inode *src = file_inode(file); u64 off; u64 len; int i; int ret; u16 count = same->dest_count; loff_t deduped; if (!(file->f_mode & FMODE_READ)) return -EINVAL; if (same->reserved1 || same->reserved2) return -EINVAL; off = same->src_offset; len = same->src_length; if (S_ISDIR(src->i_mode)) return -EISDIR; if (!S_ISREG(src->i_mode)) return -EINVAL; if (!file->f_op->remap_file_range) return -EOPNOTSUPP; ret = remap_verify_area(file, off, len, false); if (ret < 0) return ret; ret = 0; if (off + len > i_size_read(src)) return -EINVAL; /* Arbitrary 1G limit on a single dedupe request, can be raised. */ len = min_t(u64, len, 1 << 30); /* pre-format output fields to sane values */ for (i = 0; i < count; i++) { same->info[i].bytes_deduped = 0ULL; same->info[i].status = FILE_DEDUPE_RANGE_SAME; } for (i = 0, info = same->info; i < count; i++, info++) { struct fd dst_fd = fdget(info->dest_fd); struct file *dst_file = dst_fd.file; if (!dst_file) { info->status = -EBADF; goto next_loop; } if (info->reserved) { info->status = -EINVAL; goto next_fdput; } deduped = vfs_dedupe_file_range_one(file, off, dst_file, info->dest_offset, len, REMAP_FILE_CAN_SHORTEN); if (deduped == -EBADE) info->status = FILE_DEDUPE_RANGE_DIFFERS; else if (deduped < 0) info->status = deduped; else info->bytes_deduped = len; next_fdput: fdput(dst_fd); next_loop: if (fatal_signal_pending(current)) break; } return ret; } EXPORT_SYMBOL(vfs_dedupe_file_range); |
7 1 7 1 7 1 7 1 8 12 12 12 16 8 16 8 8 4 12 10 10 16 16 20 20 2 16 22 1 1 1 19 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 | // SPDX-License-Identifier: GPL-2.0-only #include <linux/module.h> #include <linux/sock_diag.h> #include <linux/net.h> #include <linux/netdevice.h> #include <linux/packet_diag.h> #include <linux/percpu.h> #include <net/net_namespace.h> #include <net/sock.h> #include "internal.h" static int pdiag_put_info(const struct packet_sock *po, struct sk_buff *nlskb) { struct packet_diag_info pinfo; pinfo.pdi_index = po->ifindex; pinfo.pdi_version = po->tp_version; pinfo.pdi_reserve = po->tp_reserve; pinfo.pdi_copy_thresh = po->copy_thresh; pinfo.pdi_tstamp = po->tp_tstamp; pinfo.pdi_flags = 0; if (po->running) pinfo.pdi_flags |= PDI_RUNNING; if (packet_sock_flag(po, PACKET_SOCK_AUXDATA)) pinfo.pdi_flags |= PDI_AUXDATA; if (packet_sock_flag(po, PACKET_SOCK_ORIGDEV)) pinfo.pdi_flags |= PDI_ORIGDEV; if (po->has_vnet_hdr) pinfo.pdi_flags |= PDI_VNETHDR; if (po->tp_loss) pinfo.pdi_flags |= PDI_LOSS; return nla_put(nlskb, PACKET_DIAG_INFO, sizeof(pinfo), &pinfo); } static int pdiag_put_mclist(const struct packet_sock *po, struct sk_buff *nlskb) { struct nlattr *mca; struct packet_mclist *ml; mca = nla_nest_start_noflag(nlskb, PACKET_DIAG_MCLIST); if (!mca) return -EMSGSIZE; rtnl_lock(); for (ml = po->mclist; ml; ml = ml->next) { struct packet_diag_mclist *dml; dml = nla_reserve_nohdr(nlskb, sizeof(*dml)); if (!dml) { rtnl_unlock(); nla_nest_cancel(nlskb, mca); return -EMSGSIZE; } dml->pdmc_index = ml->ifindex; dml->pdmc_type = ml->type; dml->pdmc_alen = ml->alen; dml->pdmc_count = ml->count; BUILD_BUG_ON(sizeof(dml->pdmc_addr) != sizeof(ml->addr)); memcpy(dml->pdmc_addr, ml->addr, sizeof(ml->addr)); } rtnl_unlock(); nla_nest_end(nlskb, mca); return 0; } static int pdiag_put_ring(struct packet_ring_buffer *ring, int ver, int nl_type, struct sk_buff *nlskb) { struct packet_diag_ring pdr; if (!ring->pg_vec) return 0; pdr.pdr_block_size = ring->pg_vec_pages << PAGE_SHIFT; pdr.pdr_block_nr = ring->pg_vec_len; pdr.pdr_frame_size = ring->frame_size; pdr.pdr_frame_nr = ring->frame_max + 1; if (ver > TPACKET_V2) { pdr.pdr_retire_tmo = ring->prb_bdqc.retire_blk_tov; pdr.pdr_sizeof_priv = ring->prb_bdqc.blk_sizeof_priv; pdr.pdr_features = ring->prb_bdqc.feature_req_word; } else { pdr.pdr_retire_tmo = 0; pdr.pdr_sizeof_priv = 0; pdr.pdr_features = 0; } return nla_put(nlskb, nl_type, sizeof(pdr), &pdr); } static int pdiag_put_rings_cfg(struct packet_sock *po, struct sk_buff *skb) { int ret; mutex_lock(&po->pg_vec_lock); ret = pdiag_put_ring(&po->rx_ring, po->tp_version, PACKET_DIAG_RX_RING, skb); if (!ret) ret = pdiag_put_ring(&po->tx_ring, po->tp_version, PACKET_DIAG_TX_RING, skb); mutex_unlock(&po->pg_vec_lock); return ret; } static int pdiag_put_fanout(struct packet_sock *po, struct sk_buff *nlskb) { int ret = 0; mutex_lock(&fanout_mutex); if (po->fanout) { u32 val; val = (u32)po->fanout->id | ((u32)po->fanout->type << 16); ret = nla_put_u32(nlskb, PACKET_DIAG_FANOUT, val); } mutex_unlock(&fanout_mutex); return ret; } static int sk_diag_fill(struct sock *sk, struct sk_buff *skb, struct packet_diag_req *req, bool may_report_filterinfo, struct user_namespace *user_ns, u32 portid, u32 seq, u32 flags, int sk_ino) { struct nlmsghdr *nlh; struct packet_diag_msg *rp; struct packet_sock *po = pkt_sk(sk); nlh = nlmsg_put(skb, portid, seq, SOCK_DIAG_BY_FAMILY, sizeof(*rp), flags); if (!nlh) return -EMSGSIZE; rp = nlmsg_data(nlh); rp->pdiag_family = AF_PACKET; rp->pdiag_type = sk->sk_type; rp->pdiag_num = ntohs(READ_ONCE(po->num)); rp->pdiag_ino = sk_ino; sock_diag_save_cookie(sk, rp->pdiag_cookie); if ((req->pdiag_show & PACKET_SHOW_INFO) && pdiag_put_info(po, skb)) goto out_nlmsg_trim; if ((req->pdiag_show & PACKET_SHOW_INFO) && nla_put_u32(skb, PACKET_DIAG_UID, from_kuid_munged(user_ns, sock_i_uid(sk)))) goto out_nlmsg_trim; if ((req->pdiag_show & PACKET_SHOW_MCLIST) && pdiag_put_mclist(po, skb)) goto out_nlmsg_trim; if ((req->pdiag_show & PACKET_SHOW_RING_CFG) && pdiag_put_rings_cfg(po, skb)) goto out_nlmsg_trim; if ((req->pdiag_show & PACKET_SHOW_FANOUT) && pdiag_put_fanout(po, skb)) goto out_nlmsg_trim; if ((req->pdiag_show & PACKET_SHOW_MEMINFO) && sock_diag_put_meminfo(sk, skb, PACKET_DIAG_MEMINFO)) goto out_nlmsg_trim; if ((req->pdiag_show & PACKET_SHOW_FILTER) && sock_diag_put_filterinfo(may_report_filterinfo, sk, skb, PACKET_DIAG_FILTER)) goto out_nlmsg_trim; nlmsg_end(skb, nlh); return 0; out_nlmsg_trim: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static int packet_diag_dump(struct sk_buff *skb, struct netlink_callback *cb) { int num = 0, s_num = cb->args[0]; struct packet_diag_req *req; struct net *net; struct sock *sk; bool may_report_filterinfo; net = sock_net(skb->sk); req = nlmsg_data(cb->nlh); may_report_filterinfo = netlink_net_capable(cb->skb, CAP_NET_ADMIN); mutex_lock(&net->packet.sklist_lock); sk_for_each(sk, &net->packet.sklist) { if (!net_eq(sock_net(sk), net)) continue; if (num < s_num) goto next; if (sk_diag_fill(sk, skb, req, may_report_filterinfo, sk_user_ns(NETLINK_CB(cb->skb).sk), NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, NLM_F_MULTI, sock_i_ino(sk)) < 0) goto done; next: num++; } done: mutex_unlock(&net->packet.sklist_lock); cb->args[0] = num; return skb->len; } static int packet_diag_handler_dump(struct sk_buff *skb, struct nlmsghdr *h) { int hdrlen = sizeof(struct packet_diag_req); struct net *net = sock_net(skb->sk); struct packet_diag_req *req; if (nlmsg_len(h) < hdrlen) return -EINVAL; req = nlmsg_data(h); /* Make it possible to support protocol filtering later */ if (req->sdiag_protocol) return -EINVAL; if (h->nlmsg_flags & NLM_F_DUMP) { struct netlink_dump_control c = { .dump = packet_diag_dump, }; return netlink_dump_start(net->diag_nlsk, skb, h, &c); } else return -EOPNOTSUPP; } static const struct sock_diag_handler packet_diag_handler = { .family = AF_PACKET, .dump = packet_diag_handler_dump, }; static int __init packet_diag_init(void) { return sock_diag_register(&packet_diag_handler); } static void __exit packet_diag_exit(void) { sock_diag_unregister(&packet_diag_handler); } module_init(packet_diag_init); module_exit(packet_diag_exit); MODULE_LICENSE("GPL"); MODULE_ALIAS_NET_PF_PROTO_TYPE(PF_NETLINK, NETLINK_SOCK_DIAG, 17 /* AF_PACKET */); |
47 49 48 7 29 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _IPV6_FRAG_H #define _IPV6_FRAG_H #include <linux/kernel.h> #include <net/addrconf.h> #include <net/ipv6.h> #include <net/inet_frag.h> enum ip6_defrag_users { IP6_DEFRAG_LOCAL_DELIVER, IP6_DEFRAG_CONNTRACK_IN, __IP6_DEFRAG_CONNTRACK_IN = IP6_DEFRAG_CONNTRACK_IN + USHRT_MAX, IP6_DEFRAG_CONNTRACK_OUT, __IP6_DEFRAG_CONNTRACK_OUT = IP6_DEFRAG_CONNTRACK_OUT + USHRT_MAX, IP6_DEFRAG_CONNTRACK_BRIDGE_IN, __IP6_DEFRAG_CONNTRACK_BRIDGE_IN = IP6_DEFRAG_CONNTRACK_BRIDGE_IN + USHRT_MAX, }; /* * Equivalent of ipv4 struct ip */ struct frag_queue { struct inet_frag_queue q; int iif; __u16 nhoffset; u8 ecn; }; #if IS_ENABLED(CONFIG_IPV6) static inline void ip6frag_init(struct inet_frag_queue *q, const void *a) { struct frag_queue *fq = container_of(q, struct frag_queue, q); const struct frag_v6_compare_key *key = a; q->key.v6 = *key; fq->ecn = 0; } static inline u32 ip6frag_key_hashfn(const void *data, u32 len, u32 seed) { return jhash2(data, sizeof(struct frag_v6_compare_key) / sizeof(u32), seed); } static inline u32 ip6frag_obj_hashfn(const void *data, u32 len, u32 seed) { const struct inet_frag_queue *fq = data; return jhash2((const u32 *)&fq->key.v6, sizeof(struct frag_v6_compare_key) / sizeof(u32), seed); } static inline int ip6frag_obj_cmpfn(struct rhashtable_compare_arg *arg, const void *ptr) { const struct frag_v6_compare_key *key = arg->key; const struct inet_frag_queue *fq = ptr; return !!memcmp(&fq->key, key, sizeof(*key)); } static inline void ip6frag_expire_frag_queue(struct net *net, struct frag_queue *fq) { struct net_device *dev = NULL; struct sk_buff *head; rcu_read_lock(); /* Paired with the WRITE_ONCE() in fqdir_pre_exit(). */ if (READ_ONCE(fq->q.fqdir->dead)) goto out_rcu_unlock; spin_lock(&fq->q.lock); if (fq->q.flags & INET_FRAG_COMPLETE) goto out; inet_frag_kill(&fq->q); dev = dev_get_by_index_rcu(net, fq->iif); if (!dev) goto out; __IP6_INC_STATS(net, __in6_dev_get(dev), IPSTATS_MIB_REASMFAILS); __IP6_INC_STATS(net, __in6_dev_get(dev), IPSTATS_MIB_REASMTIMEOUT); /* Don't send error if the first segment did not arrive. */ if (!(fq->q.flags & INET_FRAG_FIRST_IN)) goto out; /* sk_buff::dev and sk_buff::rbnode are unionized. So we * pull the head out of the tree in order to be able to * deal with head->dev. */ head = inet_frag_pull_head(&fq->q); if (!head) goto out; head->dev = dev; spin_unlock(&fq->q.lock); icmpv6_send(head, ICMPV6_TIME_EXCEED, ICMPV6_EXC_FRAGTIME, 0); kfree_skb(head); goto out_rcu_unlock; out: spin_unlock(&fq->q.lock); out_rcu_unlock: rcu_read_unlock(); inet_frag_put(&fq->q); } /* Check if the upper layer header is truncated in the first fragment. */ static inline bool ipv6frag_thdr_truncated(struct sk_buff *skb, int start, u8 *nexthdrp) { u8 nexthdr = *nexthdrp; __be16 frag_off; int offset; offset = ipv6_skip_exthdr(skb, start, &nexthdr, &frag_off); if (offset < 0 || (frag_off & htons(IP6_OFFSET))) return false; switch (nexthdr) { case NEXTHDR_TCP: offset += sizeof(struct tcphdr); break; case NEXTHDR_UDP: offset += sizeof(struct udphdr); break; case NEXTHDR_ICMP: offset += sizeof(struct icmp6hdr); break; default: offset += 1; } if (offset > skb->len) return true; return false; } #endif #endif |
32 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | // SPDX-License-Identifier: GPL-2.0-only /* * cfg80211 debugfs * * Copyright 2009 Luis R. Rodriguez <lrodriguez@atheros.com> * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> */ #include <linux/slab.h> #include "core.h" #include "debugfs.h" #define DEBUGFS_READONLY_FILE(name, buflen, fmt, value...) \ static ssize_t name## _read(struct file *file, char __user *userbuf, \ size_t count, loff_t *ppos) \ { \ struct wiphy *wiphy = file->private_data; \ char buf[buflen]; \ int res; \ \ res = scnprintf(buf, buflen, fmt "\n", ##value); \ return simple_read_from_buffer(userbuf, count, ppos, buf, res); \ } \ \ static const struct file_operations name## _ops = { \ .read = name## _read, \ .open = simple_open, \ .llseek = generic_file_llseek, \ } DEBUGFS_READONLY_FILE(rts_threshold, 20, "%d", wiphy->rts_threshold); DEBUGFS_READONLY_FILE(fragmentation_threshold, 20, "%d", wiphy->frag_threshold); DEBUGFS_READONLY_FILE(short_retry_limit, 20, "%d", wiphy->retry_short); DEBUGFS_READONLY_FILE(long_retry_limit, 20, "%d", wiphy->retry_long); static int ht_print_chan(struct ieee80211_channel *chan, char *buf, int buf_size, int offset) { if (WARN_ON(offset > buf_size)) return 0; if (chan->flags & IEEE80211_CHAN_DISABLED) return scnprintf(buf + offset, buf_size - offset, "%d Disabled\n", chan->center_freq); return scnprintf(buf + offset, buf_size - offset, "%d HT40 %c%c\n", chan->center_freq, (chan->flags & IEEE80211_CHAN_NO_HT40MINUS) ? ' ' : '-', (chan->flags & IEEE80211_CHAN_NO_HT40PLUS) ? ' ' : '+'); } static ssize_t ht40allow_map_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct wiphy *wiphy = file->private_data; char *buf; unsigned int offset = 0, buf_size = PAGE_SIZE, i; enum nl80211_band band; struct ieee80211_supported_band *sband; ssize_t r; buf = kzalloc(buf_size, GFP_KERNEL); if (!buf) return -ENOMEM; for (band = 0; band < NUM_NL80211_BANDS; band++) { sband = wiphy->bands[band]; if (!sband) continue; for (i = 0; i < sband->n_channels; i++) offset += ht_print_chan(&sband->channels[i], buf, buf_size, offset); } r = simple_read_from_buffer(user_buf, count, ppos, buf, offset); kfree(buf); return r; } static const struct file_operations ht40allow_map_ops = { .read = ht40allow_map_read, .open = simple_open, .llseek = default_llseek, }; #define DEBUGFS_ADD(name) \ debugfs_create_file(#name, 0444, phyd, &rdev->wiphy, &name## _ops) void cfg80211_debugfs_rdev_add(struct cfg80211_registered_device *rdev) { struct dentry *phyd = rdev->wiphy.debugfsdir; DEBUGFS_ADD(rts_threshold); DEBUGFS_ADD(fragmentation_threshold); DEBUGFS_ADD(short_retry_limit); DEBUGFS_ADD(long_retry_limit); DEBUGFS_ADD(ht40allow_map); } |
67 67 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | // SPDX-License-Identifier: GPL-2.0-or-later /* * CRC32C *@Article{castagnoli-crc, * author = { Guy Castagnoli and Stefan Braeuer and Martin Herrman}, * title = {{Optimization of Cyclic Redundancy-Check Codes with 24 * and 32 Parity Bits}}, * journal = IEEE Transactions on Communication, * year = {1993}, * volume = {41}, * number = {6}, * pages = {}, * month = {June}, *} * Used by the iSCSI driver, possibly others, and derived from * the iscsi-crc.c module of the linux-iscsi driver at * http://linux-iscsi.sourceforge.net. * * Following the example of lib/crc32, this function is intended to be * flexible and useful for all users. Modules that currently have their * own crc32c, but hopefully may be able to use this one are: * net/sctp (please add all your doco to here if you change to * use this one!) * <endoflist> * * Copyright (c) 2004 Cisco Systems, Inc. */ #include <crypto/hash.h> #include <linux/err.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/crc32c.h> static struct crypto_shash *tfm; u32 crc32c(u32 crc, const void *address, unsigned int length) { SHASH_DESC_ON_STACK(shash, tfm); u32 ret, *ctx = (u32 *)shash_desc_ctx(shash); int err; shash->tfm = tfm; *ctx = crc; err = crypto_shash_update(shash, address, length); BUG_ON(err); ret = *ctx; barrier_data(ctx); return ret; } EXPORT_SYMBOL(crc32c); static int __init libcrc32c_mod_init(void) { tfm = crypto_alloc_shash("crc32c", 0, 0); return PTR_ERR_OR_ZERO(tfm); } static void __exit libcrc32c_mod_fini(void) { crypto_free_shash(tfm); } const char *crc32c_impl(void) { return crypto_shash_driver_name(tfm); } EXPORT_SYMBOL(crc32c_impl); module_init(libcrc32c_mod_init); module_exit(libcrc32c_mod_fini); MODULE_AUTHOR("Clay Haapala <chaapala@cisco.com>"); MODULE_DESCRIPTION("CRC32c (Castagnoli) calculations"); MODULE_LICENSE("GPL"); MODULE_SOFTDEP("pre: crc32c"); |
7 7 8 8 6 7 7 7 7 7 7 7 7 7 7 3 5 7 7 7 7 7 7 7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 | // SPDX-License-Identifier: GPL-2.0 /* Copyright (C) B.A.T.M.A.N. contributors: * * Marek Lindner, Simon Wunderlich */ #include "bat_iv_ogm.h" #include "main.h" #include <linux/atomic.h> #include <linux/bitmap.h> #include <linux/bitops.h> #include <linux/bug.h> #include <linux/byteorder/generic.h> #include <linux/cache.h> #include <linux/errno.h> #include <linux/etherdevice.h> #include <linux/gfp.h> #include <linux/if_ether.h> #include <linux/init.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/kref.h> #include <linux/list.h> #include <linux/lockdep.h> #include <linux/mutex.h> #include <linux/netdevice.h> #include <linux/netlink.h> #include <linux/pkt_sched.h> #include <linux/prandom.h> #include <linux/printk.h> #include <linux/random.h> #include <linux/rculist.h> #include <linux/rcupdate.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/stddef.h> #include <linux/string.h> #include <linux/types.h> #include <linux/workqueue.h> #include <net/genetlink.h> #include <net/netlink.h> #include <uapi/linux/batadv_packet.h> #include <uapi/linux/batman_adv.h> #include "bat_algo.h" #include "bitarray.h" #include "gateway_client.h" #include "hard-interface.h" #include "hash.h" #include "log.h" #include "netlink.h" #include "network-coding.h" #include "originator.h" #include "routing.h" #include "send.h" #include "translation-table.h" #include "tvlv.h" static void batadv_iv_send_outstanding_bat_ogm_packet(struct work_struct *work); /** * enum batadv_dup_status - duplicate status */ enum batadv_dup_status { /** @BATADV_NO_DUP: the packet is no duplicate */ BATADV_NO_DUP = 0, /** * @BATADV_ORIG_DUP: OGM is a duplicate in the originator (but not for * the neighbor) */ BATADV_ORIG_DUP, /** @BATADV_NEIGH_DUP: OGM is a duplicate for the neighbor */ BATADV_NEIGH_DUP, /** * @BATADV_PROTECTED: originator is currently protected (after reboot) */ BATADV_PROTECTED, }; /** * batadv_ring_buffer_set() - update the ring buffer with the given value * @lq_recv: pointer to the ring buffer * @lq_index: index to store the value at * @value: value to store in the ring buffer */ static void batadv_ring_buffer_set(u8 lq_recv[], u8 *lq_index, u8 value) { lq_recv[*lq_index] = value; *lq_index = (*lq_index + 1) % BATADV_TQ_GLOBAL_WINDOW_SIZE; } /** * batadv_ring_buffer_avg() - compute the average of all non-zero values stored * in the given ring buffer * @lq_recv: pointer to the ring buffer * * Return: computed average value. */ static u8 batadv_ring_buffer_avg(const u8 lq_recv[]) { const u8 *ptr; u16 count = 0; u16 i = 0; u16 sum = 0; ptr = lq_recv; while (i < BATADV_TQ_GLOBAL_WINDOW_SIZE) { if (*ptr != 0) { count++; sum += *ptr; } i++; ptr++; } if (count == 0) return 0; return (u8)(sum / count); } /** * batadv_iv_ogm_orig_get() - retrieve or create (if does not exist) an * originator * @bat_priv: the bat priv with all the soft interface information * @addr: mac address of the originator * * Return: the originator object corresponding to the passed mac address or NULL * on failure. * If the object does not exist, it is created and initialised. */ static struct batadv_orig_node * batadv_iv_ogm_orig_get(struct batadv_priv *bat_priv, const u8 *addr) { struct batadv_orig_node *orig_node; int hash_added; orig_node = batadv_orig_hash_find(bat_priv, addr); if (orig_node) return orig_node; orig_node = batadv_orig_node_new(bat_priv, addr); if (!orig_node) return NULL; spin_lock_init(&orig_node->bat_iv.ogm_cnt_lock); kref_get(&orig_node->refcount); hash_added = batadv_hash_add(bat_priv->orig_hash, batadv_compare_orig, batadv_choose_orig, orig_node, &orig_node->hash_entry); if (hash_added != 0) goto free_orig_node_hash; return orig_node; free_orig_node_hash: /* reference for batadv_hash_add */ batadv_orig_node_put(orig_node); /* reference from batadv_orig_node_new */ batadv_orig_node_put(orig_node); return NULL; } static struct batadv_neigh_node * batadv_iv_ogm_neigh_new(struct batadv_hard_iface *hard_iface, const u8 *neigh_addr, struct batadv_orig_node *orig_node, struct batadv_orig_node *orig_neigh) { struct batadv_neigh_node *neigh_node; neigh_node = batadv_neigh_node_get_or_create(orig_node, hard_iface, neigh_addr); if (!neigh_node) goto out; neigh_node->orig_node = orig_neigh; out: return neigh_node; } static int batadv_iv_ogm_iface_enable(struct batadv_hard_iface *hard_iface) { struct batadv_ogm_packet *batadv_ogm_packet; unsigned char *ogm_buff; u32 random_seqno; mutex_lock(&hard_iface->bat_iv.ogm_buff_mutex); /* randomize initial seqno to avoid collision */ get_random_bytes(&random_seqno, sizeof(random_seqno)); atomic_set(&hard_iface->bat_iv.ogm_seqno, random_seqno); hard_iface->bat_iv.ogm_buff_len = BATADV_OGM_HLEN; ogm_buff = kmalloc(hard_iface->bat_iv.ogm_buff_len, GFP_ATOMIC); if (!ogm_buff) { mutex_unlock(&hard_iface->bat_iv.ogm_buff_mutex); return -ENOMEM; } hard_iface->bat_iv.ogm_buff = ogm_buff; batadv_ogm_packet = (struct batadv_ogm_packet *)ogm_buff; batadv_ogm_packet->packet_type = BATADV_IV_OGM; batadv_ogm_packet->version = BATADV_COMPAT_VERSION; batadv_ogm_packet->ttl = 2; batadv_ogm_packet->flags = BATADV_NO_FLAGS; batadv_ogm_packet->reserved = 0; batadv_ogm_packet->tq = BATADV_TQ_MAX_VALUE; mutex_unlock(&hard_iface->bat_iv.ogm_buff_mutex); return 0; } static void batadv_iv_ogm_iface_disable(struct batadv_hard_iface *hard_iface) { mutex_lock(&hard_iface->bat_iv.ogm_buff_mutex); kfree(hard_iface->bat_iv.ogm_buff); hard_iface->bat_iv.ogm_buff = NULL; mutex_unlock(&hard_iface->bat_iv.ogm_buff_mutex); } static void batadv_iv_ogm_iface_update_mac(struct batadv_hard_iface *hard_iface) { struct batadv_ogm_packet *batadv_ogm_packet; void *ogm_buff; mutex_lock(&hard_iface->bat_iv.ogm_buff_mutex); ogm_buff = hard_iface->bat_iv.ogm_buff; if (!ogm_buff) goto unlock; batadv_ogm_packet = ogm_buff; ether_addr_copy(batadv_ogm_packet->orig, hard_iface->net_dev->dev_addr); ether_addr_copy(batadv_ogm_packet->prev_sender, hard_iface->net_dev->dev_addr); unlock: mutex_unlock(&hard_iface->bat_iv.ogm_buff_mutex); } static void batadv_iv_ogm_primary_iface_set(struct batadv_hard_iface *hard_iface) { struct batadv_ogm_packet *batadv_ogm_packet; void *ogm_buff; mutex_lock(&hard_iface->bat_iv.ogm_buff_mutex); ogm_buff = hard_iface->bat_iv.ogm_buff; if (!ogm_buff) goto unlock; batadv_ogm_packet = ogm_buff; batadv_ogm_packet->ttl = BATADV_TTL; unlock: mutex_unlock(&hard_iface->bat_iv.ogm_buff_mutex); } /* when do we schedule our own ogm to be sent */ static unsigned long batadv_iv_ogm_emit_send_time(const struct batadv_priv *bat_priv) { unsigned int msecs; msecs = atomic_read(&bat_priv->orig_interval) - BATADV_JITTER; msecs += prandom_u32_max(2 * BATADV_JITTER); return jiffies + msecs_to_jiffies(msecs); } /* when do we schedule a ogm packet to be sent */ static unsigned long batadv_iv_ogm_fwd_send_time(void) { return jiffies + msecs_to_jiffies(prandom_u32_max(BATADV_JITTER / 2)); } /* apply hop penalty for a normal link */ static u8 batadv_hop_penalty(u8 tq, const struct batadv_priv *bat_priv) { int hop_penalty = atomic_read(&bat_priv->hop_penalty); int new_tq; new_tq = tq * (BATADV_TQ_MAX_VALUE - hop_penalty); new_tq /= BATADV_TQ_MAX_VALUE; return new_tq; } /** * batadv_iv_ogm_aggr_packet() - checks if there is another OGM attached * @buff_pos: current position in the skb * @packet_len: total length of the skb * @ogm_packet: potential OGM in buffer * * Return: true if there is enough space for another OGM, false otherwise. */ static bool batadv_iv_ogm_aggr_packet(int buff_pos, int packet_len, const struct batadv_ogm_packet *ogm_packet) { int next_buff_pos = 0; /* check if there is enough space for the header */ next_buff_pos += buff_pos + sizeof(*ogm_packet); if (next_buff_pos > packet_len) return false; /* check if there is enough space for the optional TVLV */ next_buff_pos += ntohs(ogm_packet->tvlv_len); return (next_buff_pos <= packet_len) && (next_buff_pos <= BATADV_MAX_AGGREGATION_BYTES); } /* send a batman ogm to a given interface */ static void batadv_iv_ogm_send_to_if(struct batadv_forw_packet *forw_packet, struct batadv_hard_iface *hard_iface) { struct batadv_priv *bat_priv = netdev_priv(hard_iface->soft_iface); const char *fwd_str; u8 packet_num; s16 buff_pos; struct batadv_ogm_packet *batadv_ogm_packet; struct sk_buff *skb; u8 *packet_pos; if (hard_iface->if_status != BATADV_IF_ACTIVE) return; packet_num = 0; buff_pos = 0; packet_pos = forw_packet->skb->data; batadv_ogm_packet = (struct batadv_ogm_packet *)packet_pos; /* adjust all flags and log packets */ while (batadv_iv_ogm_aggr_packet(buff_pos, forw_packet->packet_len, batadv_ogm_packet)) { /* we might have aggregated direct link packets with an * ordinary base packet */ if (forw_packet->direct_link_flags & BIT(packet_num) && forw_packet->if_incoming == hard_iface) batadv_ogm_packet->flags |= BATADV_DIRECTLINK; else batadv_ogm_packet->flags &= ~BATADV_DIRECTLINK; if (packet_num > 0 || !forw_packet->own) fwd_str = "Forwarding"; else fwd_str = "Sending own"; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "%s %spacket (originator %pM, seqno %u, TQ %d, TTL %d, IDF %s) on interface %s [%pM]\n", fwd_str, (packet_num > 0 ? "aggregated " : ""), batadv_ogm_packet->orig, ntohl(batadv_ogm_packet->seqno), batadv_ogm_packet->tq, batadv_ogm_packet->ttl, ((batadv_ogm_packet->flags & BATADV_DIRECTLINK) ? "on" : "off"), hard_iface->net_dev->name, hard_iface->net_dev->dev_addr); buff_pos += BATADV_OGM_HLEN; buff_pos += ntohs(batadv_ogm_packet->tvlv_len); packet_num++; packet_pos = forw_packet->skb->data + buff_pos; batadv_ogm_packet = (struct batadv_ogm_packet *)packet_pos; } /* create clone because function is called more than once */ skb = skb_clone(forw_packet->skb, GFP_ATOMIC); if (skb) { batadv_inc_counter(bat_priv, BATADV_CNT_MGMT_TX); batadv_add_counter(bat_priv, BATADV_CNT_MGMT_TX_BYTES, skb->len + ETH_HLEN); batadv_send_broadcast_skb(skb, hard_iface); } } /* send a batman ogm packet */ static void batadv_iv_ogm_emit(struct batadv_forw_packet *forw_packet) { struct net_device *soft_iface; if (!forw_packet->if_incoming) { pr_err("Error - can't forward packet: incoming iface not specified\n"); return; } soft_iface = forw_packet->if_incoming->soft_iface; if (WARN_ON(!forw_packet->if_outgoing)) return; if (forw_packet->if_outgoing->soft_iface != soft_iface) { pr_warn("%s: soft interface switch for queued OGM\n", __func__); return; } if (forw_packet->if_incoming->if_status != BATADV_IF_ACTIVE) return; /* only for one specific outgoing interface */ batadv_iv_ogm_send_to_if(forw_packet, forw_packet->if_outgoing); } /** * batadv_iv_ogm_can_aggregate() - find out if an OGM can be aggregated on an * existing forward packet * @new_bat_ogm_packet: OGM packet to be aggregated * @bat_priv: the bat priv with all the soft interface information * @packet_len: (total) length of the OGM * @send_time: timestamp (jiffies) when the packet is to be sent * @directlink: true if this is a direct link packet * @if_incoming: interface where the packet was received * @if_outgoing: interface for which the retransmission should be considered * @forw_packet: the forwarded packet which should be checked * * Return: true if new_packet can be aggregated with forw_packet */ static bool batadv_iv_ogm_can_aggregate(const struct batadv_ogm_packet *new_bat_ogm_packet, struct batadv_priv *bat_priv, int packet_len, unsigned long send_time, bool directlink, const struct batadv_hard_iface *if_incoming, const struct batadv_hard_iface *if_outgoing, const struct batadv_forw_packet *forw_packet) { struct batadv_ogm_packet *batadv_ogm_packet; int aggregated_bytes = forw_packet->packet_len + packet_len; struct batadv_hard_iface *primary_if = NULL; bool res = false; unsigned long aggregation_end_time; batadv_ogm_packet = (struct batadv_ogm_packet *)forw_packet->skb->data; aggregation_end_time = send_time; aggregation_end_time += msecs_to_jiffies(BATADV_MAX_AGGREGATION_MS); /* we can aggregate the current packet to this aggregated packet * if: * * - the send time is within our MAX_AGGREGATION_MS time * - the resulting packet won't be bigger than * MAX_AGGREGATION_BYTES * otherwise aggregation is not possible */ if (!time_before(send_time, forw_packet->send_time) || !time_after_eq(aggregation_end_time, forw_packet->send_time)) return false; if (aggregated_bytes > BATADV_MAX_AGGREGATION_BYTES) return false; /* packet is not leaving on the same interface. */ if (forw_packet->if_outgoing != if_outgoing) return false; /* check aggregation compatibility * -> direct link packets are broadcasted on * their interface only * -> aggregate packet if the current packet is * a "global" packet as well as the base * packet */ primary_if = batadv_primary_if_get_selected(bat_priv); if (!primary_if) return false; /* packets without direct link flag and high TTL * are flooded through the net */ if (!directlink && !(batadv_ogm_packet->flags & BATADV_DIRECTLINK) && batadv_ogm_packet->ttl != 1 && /* own packets originating non-primary * interfaces leave only that interface */ (!forw_packet->own || forw_packet->if_incoming == primary_if)) { res = true; goto out; } /* if the incoming packet is sent via this one * interface only - we still can aggregate */ if (directlink && new_bat_ogm_packet->ttl == 1 && forw_packet->if_incoming == if_incoming && /* packets from direct neighbors or * own secondary interface packets * (= secondary interface packets in general) */ (batadv_ogm_packet->flags & BATADV_DIRECTLINK || (forw_packet->own && forw_packet->if_incoming != primary_if))) { res = true; goto out; } out: batadv_hardif_put(primary_if); return res; } /** * batadv_iv_ogm_aggregate_new() - create a new aggregated packet and add this * packet to it. * @packet_buff: pointer to the OGM * @packet_len: (total) length of the OGM * @send_time: timestamp (jiffies) when the packet is to be sent * @direct_link: whether this OGM has direct link status * @if_incoming: interface where the packet was received * @if_outgoing: interface for which the retransmission should be considered * @own_packet: true if it is a self-generated ogm */ static void batadv_iv_ogm_aggregate_new(const unsigned char *packet_buff, int packet_len, unsigned long send_time, bool direct_link, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing, int own_packet) { struct batadv_priv *bat_priv = netdev_priv(if_incoming->soft_iface); struct batadv_forw_packet *forw_packet_aggr; struct sk_buff *skb; unsigned char *skb_buff; unsigned int skb_size; atomic_t *queue_left = own_packet ? NULL : &bat_priv->batman_queue_left; if (atomic_read(&bat_priv->aggregated_ogms) && packet_len < BATADV_MAX_AGGREGATION_BYTES) skb_size = BATADV_MAX_AGGREGATION_BYTES; else skb_size = packet_len; skb_size += ETH_HLEN; skb = netdev_alloc_skb_ip_align(NULL, skb_size); if (!skb) return; forw_packet_aggr = batadv_forw_packet_alloc(if_incoming, if_outgoing, queue_left, bat_priv, skb); if (!forw_packet_aggr) { kfree_skb(skb); return; } forw_packet_aggr->skb->priority = TC_PRIO_CONTROL; skb_reserve(forw_packet_aggr->skb, ETH_HLEN); skb_buff = skb_put(forw_packet_aggr->skb, packet_len); forw_packet_aggr->packet_len = packet_len; memcpy(skb_buff, packet_buff, packet_len); forw_packet_aggr->own = own_packet; forw_packet_aggr->direct_link_flags = BATADV_NO_FLAGS; forw_packet_aggr->send_time = send_time; /* save packet direct link flag status */ if (direct_link) forw_packet_aggr->direct_link_flags |= 1; INIT_DELAYED_WORK(&forw_packet_aggr->delayed_work, batadv_iv_send_outstanding_bat_ogm_packet); batadv_forw_packet_ogmv1_queue(bat_priv, forw_packet_aggr, send_time); } /* aggregate a new packet into the existing ogm packet */ static void batadv_iv_ogm_aggregate(struct batadv_forw_packet *forw_packet_aggr, const unsigned char *packet_buff, int packet_len, bool direct_link) { unsigned long new_direct_link_flag; skb_put_data(forw_packet_aggr->skb, packet_buff, packet_len); forw_packet_aggr->packet_len += packet_len; forw_packet_aggr->num_packets++; /* save packet direct link flag status */ if (direct_link) { new_direct_link_flag = BIT(forw_packet_aggr->num_packets); forw_packet_aggr->direct_link_flags |= new_direct_link_flag; } } /** * batadv_iv_ogm_queue_add() - queue up an OGM for transmission * @bat_priv: the bat priv with all the soft interface information * @packet_buff: pointer to the OGM * @packet_len: (total) length of the OGM * @if_incoming: interface where the packet was received * @if_outgoing: interface for which the retransmission should be considered * @own_packet: true if it is a self-generated ogm * @send_time: timestamp (jiffies) when the packet is to be sent */ static void batadv_iv_ogm_queue_add(struct batadv_priv *bat_priv, unsigned char *packet_buff, int packet_len, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing, int own_packet, unsigned long send_time) { /* _aggr -> pointer to the packet we want to aggregate with * _pos -> pointer to the position in the queue */ struct batadv_forw_packet *forw_packet_aggr = NULL; struct batadv_forw_packet *forw_packet_pos = NULL; struct batadv_ogm_packet *batadv_ogm_packet; bool direct_link; unsigned long max_aggregation_jiffies; batadv_ogm_packet = (struct batadv_ogm_packet *)packet_buff; direct_link = !!(batadv_ogm_packet->flags & BATADV_DIRECTLINK); max_aggregation_jiffies = msecs_to_jiffies(BATADV_MAX_AGGREGATION_MS); /* find position for the packet in the forward queue */ spin_lock_bh(&bat_priv->forw_bat_list_lock); /* own packets are not to be aggregated */ if (atomic_read(&bat_priv->aggregated_ogms) && !own_packet) { hlist_for_each_entry(forw_packet_pos, &bat_priv->forw_bat_list, list) { if (batadv_iv_ogm_can_aggregate(batadv_ogm_packet, bat_priv, packet_len, send_time, direct_link, if_incoming, if_outgoing, forw_packet_pos)) { forw_packet_aggr = forw_packet_pos; break; } } } /* nothing to aggregate with - either aggregation disabled or no * suitable aggregation packet found */ if (!forw_packet_aggr) { /* the following section can run without the lock */ spin_unlock_bh(&bat_priv->forw_bat_list_lock); /* if we could not aggregate this packet with one of the others * we hold it back for a while, so that it might be aggregated * later on */ if (!own_packet && atomic_read(&bat_priv->aggregated_ogms)) send_time += max_aggregation_jiffies; batadv_iv_ogm_aggregate_new(packet_buff, packet_len, send_time, direct_link, if_incoming, if_outgoing, own_packet); } else { batadv_iv_ogm_aggregate(forw_packet_aggr, packet_buff, packet_len, direct_link); spin_unlock_bh(&bat_priv->forw_bat_list_lock); } } static void batadv_iv_ogm_forward(struct batadv_orig_node *orig_node, const struct ethhdr *ethhdr, struct batadv_ogm_packet *batadv_ogm_packet, bool is_single_hop_neigh, bool is_from_best_next_hop, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing) { struct batadv_priv *bat_priv = netdev_priv(if_incoming->soft_iface); u16 tvlv_len; if (batadv_ogm_packet->ttl <= 1) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "ttl exceeded\n"); return; } if (!is_from_best_next_hop) { /* Mark the forwarded packet when it is not coming from our * best next hop. We still need to forward the packet for our * neighbor link quality detection to work in case the packet * originated from a single hop neighbor. Otherwise we can * simply drop the ogm. */ if (is_single_hop_neigh) batadv_ogm_packet->flags |= BATADV_NOT_BEST_NEXT_HOP; else return; } tvlv_len = ntohs(batadv_ogm_packet->tvlv_len); batadv_ogm_packet->ttl--; ether_addr_copy(batadv_ogm_packet->prev_sender, ethhdr->h_source); /* apply hop penalty */ batadv_ogm_packet->tq = batadv_hop_penalty(batadv_ogm_packet->tq, bat_priv); batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Forwarding packet: tq: %i, ttl: %i\n", batadv_ogm_packet->tq, batadv_ogm_packet->ttl); if (is_single_hop_neigh) batadv_ogm_packet->flags |= BATADV_DIRECTLINK; else batadv_ogm_packet->flags &= ~BATADV_DIRECTLINK; batadv_iv_ogm_queue_add(bat_priv, (unsigned char *)batadv_ogm_packet, BATADV_OGM_HLEN + tvlv_len, if_incoming, if_outgoing, 0, batadv_iv_ogm_fwd_send_time()); } /** * batadv_iv_ogm_slide_own_bcast_window() - bitshift own OGM broadcast windows * for the given interface * @hard_iface: the interface for which the windows have to be shifted */ static void batadv_iv_ogm_slide_own_bcast_window(struct batadv_hard_iface *hard_iface) { struct batadv_priv *bat_priv = netdev_priv(hard_iface->soft_iface); struct batadv_hashtable *hash = bat_priv->orig_hash; struct hlist_head *head; struct batadv_orig_node *orig_node; struct batadv_orig_ifinfo *orig_ifinfo; unsigned long *word; u32 i; u8 *w; for (i = 0; i < hash->size; i++) { head = &hash->table[i]; rcu_read_lock(); hlist_for_each_entry_rcu(orig_node, head, hash_entry) { hlist_for_each_entry_rcu(orig_ifinfo, &orig_node->ifinfo_list, list) { if (orig_ifinfo->if_outgoing != hard_iface) continue; spin_lock_bh(&orig_node->bat_iv.ogm_cnt_lock); word = orig_ifinfo->bat_iv.bcast_own; batadv_bit_get_packet(bat_priv, word, 1, 0); w = &orig_ifinfo->bat_iv.bcast_own_sum; *w = bitmap_weight(word, BATADV_TQ_LOCAL_WINDOW_SIZE); spin_unlock_bh(&orig_node->bat_iv.ogm_cnt_lock); } } rcu_read_unlock(); } } /** * batadv_iv_ogm_schedule_buff() - schedule submission of hardif ogm buffer * @hard_iface: interface whose ogm buffer should be transmitted */ static void batadv_iv_ogm_schedule_buff(struct batadv_hard_iface *hard_iface) { struct batadv_priv *bat_priv = netdev_priv(hard_iface->soft_iface); unsigned char **ogm_buff = &hard_iface->bat_iv.ogm_buff; struct batadv_ogm_packet *batadv_ogm_packet; struct batadv_hard_iface *primary_if, *tmp_hard_iface; int *ogm_buff_len = &hard_iface->bat_iv.ogm_buff_len; u32 seqno; u16 tvlv_len = 0; unsigned long send_time; lockdep_assert_held(&hard_iface->bat_iv.ogm_buff_mutex); /* interface already disabled by batadv_iv_ogm_iface_disable */ if (!*ogm_buff) return; /* the interface gets activated here to avoid race conditions between * the moment of activating the interface in * hardif_activate_interface() where the originator mac is set and * outdated packets (especially uninitialized mac addresses) in the * packet queue */ if (hard_iface->if_status == BATADV_IF_TO_BE_ACTIVATED) hard_iface->if_status = BATADV_IF_ACTIVE; primary_if = batadv_primary_if_get_selected(bat_priv); if (hard_iface == primary_if) { /* tt changes have to be committed before the tvlv data is * appended as it may alter the tt tvlv container */ batadv_tt_local_commit_changes(bat_priv); tvlv_len = batadv_tvlv_container_ogm_append(bat_priv, ogm_buff, ogm_buff_len, BATADV_OGM_HLEN); } batadv_ogm_packet = (struct batadv_ogm_packet *)(*ogm_buff); batadv_ogm_packet->tvlv_len = htons(tvlv_len); /* change sequence number to network order */ seqno = (u32)atomic_read(&hard_iface->bat_iv.ogm_seqno); batadv_ogm_packet->seqno = htonl(seqno); atomic_inc(&hard_iface->bat_iv.ogm_seqno); batadv_iv_ogm_slide_own_bcast_window(hard_iface); send_time = batadv_iv_ogm_emit_send_time(bat_priv); if (hard_iface != primary_if) { /* OGMs from secondary interfaces are only scheduled on their * respective interfaces. */ batadv_iv_ogm_queue_add(bat_priv, *ogm_buff, *ogm_buff_len, hard_iface, hard_iface, 1, send_time); goto out; } /* OGMs from primary interfaces are scheduled on all * interfaces. */ rcu_read_lock(); list_for_each_entry_rcu(tmp_hard_iface, &batadv_hardif_list, list) { if (tmp_hard_iface->soft_iface != hard_iface->soft_iface) continue; if (!kref_get_unless_zero(&tmp_hard_iface->refcount)) continue; batadv_iv_ogm_queue_add(bat_priv, *ogm_buff, *ogm_buff_len, hard_iface, tmp_hard_iface, 1, send_time); batadv_hardif_put(tmp_hard_iface); } rcu_read_unlock(); out: batadv_hardif_put(primary_if); } static void batadv_iv_ogm_schedule(struct batadv_hard_iface *hard_iface) { if (hard_iface->if_status == BATADV_IF_NOT_IN_USE || hard_iface->if_status == BATADV_IF_TO_BE_REMOVED) return; mutex_lock(&hard_iface->bat_iv.ogm_buff_mutex); batadv_iv_ogm_schedule_buff(hard_iface); mutex_unlock(&hard_iface->bat_iv.ogm_buff_mutex); } /** * batadv_iv_orig_ifinfo_sum() - Get bcast_own sum for originator over interface * @orig_node: originator which reproadcasted the OGMs directly * @if_outgoing: interface which transmitted the original OGM and received the * direct rebroadcast * * Return: Number of replied (rebroadcasted) OGMs which were transmitted by * an originator and directly (without intermediate hop) received by a specific * interface */ static u8 batadv_iv_orig_ifinfo_sum(struct batadv_orig_node *orig_node, struct batadv_hard_iface *if_outgoing) { struct batadv_orig_ifinfo *orig_ifinfo; u8 sum; orig_ifinfo = batadv_orig_ifinfo_get(orig_node, if_outgoing); if (!orig_ifinfo) return 0; spin_lock_bh(&orig_node->bat_iv.ogm_cnt_lock); sum = orig_ifinfo->bat_iv.bcast_own_sum; spin_unlock_bh(&orig_node->bat_iv.ogm_cnt_lock); batadv_orig_ifinfo_put(orig_ifinfo); return sum; } /** * batadv_iv_ogm_orig_update() - use OGM to update corresponding data in an * originator * @bat_priv: the bat priv with all the soft interface information * @orig_node: the orig node who originally emitted the ogm packet * @orig_ifinfo: ifinfo for the outgoing interface of the orig_node * @ethhdr: Ethernet header of the OGM * @batadv_ogm_packet: the ogm packet * @if_incoming: interface where the packet was received * @if_outgoing: interface for which the retransmission should be considered * @dup_status: the duplicate status of this ogm packet. */ static void batadv_iv_ogm_orig_update(struct batadv_priv *bat_priv, struct batadv_orig_node *orig_node, struct batadv_orig_ifinfo *orig_ifinfo, const struct ethhdr *ethhdr, const struct batadv_ogm_packet *batadv_ogm_packet, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing, enum batadv_dup_status dup_status) { struct batadv_neigh_ifinfo *neigh_ifinfo = NULL; struct batadv_neigh_ifinfo *router_ifinfo = NULL; struct batadv_neigh_node *neigh_node = NULL; struct batadv_neigh_node *tmp_neigh_node = NULL; struct batadv_neigh_node *router = NULL; u8 sum_orig, sum_neigh; u8 *neigh_addr; u8 tq_avg; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "%s(): Searching and updating originator entry of received packet\n", __func__); rcu_read_lock(); hlist_for_each_entry_rcu(tmp_neigh_node, &orig_node->neigh_list, list) { neigh_addr = tmp_neigh_node->addr; if (batadv_compare_eth(neigh_addr, ethhdr->h_source) && tmp_neigh_node->if_incoming == if_incoming && kref_get_unless_zero(&tmp_neigh_node->refcount)) { if (WARN(neigh_node, "too many matching neigh_nodes")) batadv_neigh_node_put(neigh_node); neigh_node = tmp_neigh_node; continue; } if (dup_status != BATADV_NO_DUP) continue; /* only update the entry for this outgoing interface */ neigh_ifinfo = batadv_neigh_ifinfo_get(tmp_neigh_node, if_outgoing); if (!neigh_ifinfo) continue; spin_lock_bh(&tmp_neigh_node->ifinfo_lock); batadv_ring_buffer_set(neigh_ifinfo->bat_iv.tq_recv, &neigh_ifinfo->bat_iv.tq_index, 0); tq_avg = batadv_ring_buffer_avg(neigh_ifinfo->bat_iv.tq_recv); neigh_ifinfo->bat_iv.tq_avg = tq_avg; spin_unlock_bh(&tmp_neigh_node->ifinfo_lock); batadv_neigh_ifinfo_put(neigh_ifinfo); neigh_ifinfo = NULL; } if (!neigh_node) { struct batadv_orig_node *orig_tmp; orig_tmp = batadv_iv_ogm_orig_get(bat_priv, ethhdr->h_source); if (!orig_tmp) goto unlock; neigh_node = batadv_iv_ogm_neigh_new(if_incoming, ethhdr->h_source, orig_node, orig_tmp); batadv_orig_node_put(orig_tmp); if (!neigh_node) goto unlock; } else { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Updating existing last-hop neighbor of originator\n"); } rcu_read_unlock(); neigh_ifinfo = batadv_neigh_ifinfo_new(neigh_node, if_outgoing); if (!neigh_ifinfo) goto out; neigh_node->last_seen = jiffies; spin_lock_bh(&neigh_node->ifinfo_lock); batadv_ring_buffer_set(neigh_ifinfo->bat_iv.tq_recv, &neigh_ifinfo->bat_iv.tq_index, batadv_ogm_packet->tq); tq_avg = batadv_ring_buffer_avg(neigh_ifinfo->bat_iv.tq_recv); neigh_ifinfo->bat_iv.tq_avg = tq_avg; spin_unlock_bh(&neigh_node->ifinfo_lock); if (dup_status == BATADV_NO_DUP) { orig_ifinfo->last_ttl = batadv_ogm_packet->ttl; neigh_ifinfo->last_ttl = batadv_ogm_packet->ttl; } /* if this neighbor already is our next hop there is nothing * to change */ router = batadv_orig_router_get(orig_node, if_outgoing); if (router == neigh_node) goto out; if (router) { router_ifinfo = batadv_neigh_ifinfo_get(router, if_outgoing); if (!router_ifinfo) goto out; /* if this neighbor does not offer a better TQ we won't * consider it */ if (router_ifinfo->bat_iv.tq_avg > neigh_ifinfo->bat_iv.tq_avg) goto out; } /* if the TQ is the same and the link not more symmetric we * won't consider it either */ if (router_ifinfo && neigh_ifinfo->bat_iv.tq_avg == router_ifinfo->bat_iv.tq_avg) { sum_orig = batadv_iv_orig_ifinfo_sum(router->orig_node, router->if_incoming); sum_neigh = batadv_iv_orig_ifinfo_sum(neigh_node->orig_node, neigh_node->if_incoming); if (sum_orig >= sum_neigh) goto out; } batadv_update_route(bat_priv, orig_node, if_outgoing, neigh_node); goto out; unlock: rcu_read_unlock(); out: batadv_neigh_node_put(neigh_node); batadv_neigh_node_put(router); batadv_neigh_ifinfo_put(neigh_ifinfo); batadv_neigh_ifinfo_put(router_ifinfo); } /** * batadv_iv_ogm_calc_tq() - calculate tq for current received ogm packet * @orig_node: the orig node who originally emitted the ogm packet * @orig_neigh_node: the orig node struct of the neighbor who sent the packet * @batadv_ogm_packet: the ogm packet * @if_incoming: interface where the packet was received * @if_outgoing: interface for which the retransmission should be considered * * Return: true if the link can be considered bidirectional, false otherwise */ static bool batadv_iv_ogm_calc_tq(struct batadv_orig_node *orig_node, struct batadv_orig_node *orig_neigh_node, struct batadv_ogm_packet *batadv_ogm_packet, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing) { struct batadv_priv *bat_priv = netdev_priv(if_incoming->soft_iface); struct batadv_neigh_node *neigh_node = NULL, *tmp_neigh_node; struct batadv_neigh_ifinfo *neigh_ifinfo; u8 total_count; u8 orig_eq_count, neigh_rq_count, neigh_rq_inv, tq_own; unsigned int tq_iface_hop_penalty = BATADV_TQ_MAX_VALUE; unsigned int neigh_rq_inv_cube, neigh_rq_max_cube; unsigned int tq_asym_penalty, inv_asym_penalty; unsigned int combined_tq; bool ret = false; /* find corresponding one hop neighbor */ rcu_read_lock(); hlist_for_each_entry_rcu(tmp_neigh_node, &orig_neigh_node->neigh_list, list) { if (!batadv_compare_eth(tmp_neigh_node->addr, orig_neigh_node->orig)) continue; if (tmp_neigh_node->if_incoming != if_incoming) continue; if (!kref_get_unless_zero(&tmp_neigh_node->refcount)) continue; neigh_node = tmp_neigh_node; break; } rcu_read_unlock(); if (!neigh_node) neigh_node = batadv_iv_ogm_neigh_new(if_incoming, orig_neigh_node->orig, orig_neigh_node, orig_neigh_node); if (!neigh_node) goto out; /* if orig_node is direct neighbor update neigh_node last_seen */ if (orig_node == orig_neigh_node) neigh_node->last_seen = jiffies; orig_node->last_seen = jiffies; /* find packet count of corresponding one hop neighbor */ orig_eq_count = batadv_iv_orig_ifinfo_sum(orig_neigh_node, if_incoming); neigh_ifinfo = batadv_neigh_ifinfo_new(neigh_node, if_outgoing); if (neigh_ifinfo) { neigh_rq_count = neigh_ifinfo->bat_iv.real_packet_count; batadv_neigh_ifinfo_put(neigh_ifinfo); } else { neigh_rq_count = 0; } /* pay attention to not get a value bigger than 100 % */ if (orig_eq_count > neigh_rq_count) total_count = neigh_rq_count; else total_count = orig_eq_count; /* if we have too few packets (too less data) we set tq_own to zero * if we receive too few packets it is not considered bidirectional */ if (total_count < BATADV_TQ_LOCAL_BIDRECT_SEND_MINIMUM || neigh_rq_count < BATADV_TQ_LOCAL_BIDRECT_RECV_MINIMUM) tq_own = 0; else /* neigh_node->real_packet_count is never zero as we * only purge old information when getting new * information */ tq_own = (BATADV_TQ_MAX_VALUE * total_count) / neigh_rq_count; /* 1 - ((1-x) ** 3), normalized to TQ_MAX_VALUE this does * affect the nearly-symmetric links only a little, but * punishes asymmetric links more. This will give a value * between 0 and TQ_MAX_VALUE */ neigh_rq_inv = BATADV_TQ_LOCAL_WINDOW_SIZE - neigh_rq_count; neigh_rq_inv_cube = neigh_rq_inv * neigh_rq_inv * neigh_rq_inv; neigh_rq_max_cube = BATADV_TQ_LOCAL_WINDOW_SIZE * BATADV_TQ_LOCAL_WINDOW_SIZE * BATADV_TQ_LOCAL_WINDOW_SIZE; inv_asym_penalty = BATADV_TQ_MAX_VALUE * neigh_rq_inv_cube; inv_asym_penalty /= neigh_rq_max_cube; tq_asym_penalty = BATADV_TQ_MAX_VALUE - inv_asym_penalty; tq_iface_hop_penalty -= atomic_read(&if_incoming->hop_penalty); /* penalize if the OGM is forwarded on the same interface. WiFi * interfaces and other half duplex devices suffer from throughput * drops as they can't send and receive at the same time. */ if (if_outgoing && if_incoming == if_outgoing && batadv_is_wifi_hardif(if_outgoing)) tq_iface_hop_penalty = batadv_hop_penalty(tq_iface_hop_penalty, bat_priv); combined_tq = batadv_ogm_packet->tq * tq_own * tq_asym_penalty * tq_iface_hop_penalty; combined_tq /= BATADV_TQ_MAX_VALUE * BATADV_TQ_MAX_VALUE * BATADV_TQ_MAX_VALUE; batadv_ogm_packet->tq = combined_tq; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "bidirectional: orig = %pM neigh = %pM => own_bcast = %2i, real recv = %2i, local tq: %3i, asym_penalty: %3i, iface_hop_penalty: %3i, total tq: %3i, if_incoming = %s, if_outgoing = %s\n", orig_node->orig, orig_neigh_node->orig, total_count, neigh_rq_count, tq_own, tq_asym_penalty, tq_iface_hop_penalty, batadv_ogm_packet->tq, if_incoming->net_dev->name, if_outgoing ? if_outgoing->net_dev->name : "DEFAULT"); /* if link has the minimum required transmission quality * consider it bidirectional */ if (batadv_ogm_packet->tq >= BATADV_TQ_TOTAL_BIDRECT_LIMIT) ret = true; out: batadv_neigh_node_put(neigh_node); return ret; } /** * batadv_iv_ogm_update_seqnos() - process a batman packet for all interfaces, * adjust the sequence number and find out whether it is a duplicate * @ethhdr: ethernet header of the packet * @batadv_ogm_packet: OGM packet to be considered * @if_incoming: interface on which the OGM packet was received * @if_outgoing: interface for which the retransmission should be considered * * Return: duplicate status as enum batadv_dup_status */ static enum batadv_dup_status batadv_iv_ogm_update_seqnos(const struct ethhdr *ethhdr, const struct batadv_ogm_packet *batadv_ogm_packet, const struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing) { struct batadv_priv *bat_priv = netdev_priv(if_incoming->soft_iface); struct batadv_orig_node *orig_node; struct batadv_orig_ifinfo *orig_ifinfo = NULL; struct batadv_neigh_node *neigh_node; struct batadv_neigh_ifinfo *neigh_ifinfo; bool is_dup; s32 seq_diff; bool need_update = false; int set_mark; enum batadv_dup_status ret = BATADV_NO_DUP; u32 seqno = ntohl(batadv_ogm_packet->seqno); u8 *neigh_addr; u8 packet_count; unsigned long *bitmap; orig_node = batadv_iv_ogm_orig_get(bat_priv, batadv_ogm_packet->orig); if (!orig_node) return BATADV_NO_DUP; orig_ifinfo = batadv_orig_ifinfo_new(orig_node, if_outgoing); if (WARN_ON(!orig_ifinfo)) { batadv_orig_node_put(orig_node); return 0; } spin_lock_bh(&orig_node->bat_iv.ogm_cnt_lock); seq_diff = seqno - orig_ifinfo->last_real_seqno; /* signalize caller that the packet is to be dropped. */ if (!hlist_empty(&orig_node->neigh_list) && batadv_window_protected(bat_priv, seq_diff, BATADV_TQ_LOCAL_WINDOW_SIZE, &orig_ifinfo->batman_seqno_reset, NULL)) { ret = BATADV_PROTECTED; goto out; } rcu_read_lock(); hlist_for_each_entry_rcu(neigh_node, &orig_node->neigh_list, list) { neigh_ifinfo = batadv_neigh_ifinfo_new(neigh_node, if_outgoing); if (!neigh_ifinfo) continue; neigh_addr = neigh_node->addr; is_dup = batadv_test_bit(neigh_ifinfo->bat_iv.real_bits, orig_ifinfo->last_real_seqno, seqno); if (batadv_compare_eth(neigh_addr, ethhdr->h_source) && neigh_node->if_incoming == if_incoming) { set_mark = 1; if (is_dup) ret = BATADV_NEIGH_DUP; } else { set_mark = 0; if (is_dup && ret != BATADV_NEIGH_DUP) ret = BATADV_ORIG_DUP; } /* if the window moved, set the update flag. */ bitmap = neigh_ifinfo->bat_iv.real_bits; need_update |= batadv_bit_get_packet(bat_priv, bitmap, seq_diff, set_mark); packet_count = bitmap_weight(bitmap, BATADV_TQ_LOCAL_WINDOW_SIZE); neigh_ifinfo->bat_iv.real_packet_count = packet_count; batadv_neigh_ifinfo_put(neigh_ifinfo); } rcu_read_unlock(); if (need_update) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "%s updating last_seqno: old %u, new %u\n", if_outgoing ? if_outgoing->net_dev->name : "DEFAULT", orig_ifinfo->last_real_seqno, seqno); orig_ifinfo->last_real_seqno = seqno; } out: spin_unlock_bh(&orig_node->bat_iv.ogm_cnt_lock); batadv_orig_node_put(orig_node); batadv_orig_ifinfo_put(orig_ifinfo); return ret; } /** * batadv_iv_ogm_process_per_outif() - process a batman iv OGM for an outgoing * interface * @skb: the skb containing the OGM * @ogm_offset: offset from skb->data to start of ogm header * @orig_node: the (cached) orig node for the originator of this OGM * @if_incoming: the interface where this packet was received * @if_outgoing: the interface for which the packet should be considered */ static void batadv_iv_ogm_process_per_outif(const struct sk_buff *skb, int ogm_offset, struct batadv_orig_node *orig_node, struct batadv_hard_iface *if_incoming, struct batadv_hard_iface *if_outgoing) { struct batadv_priv *bat_priv = netdev_priv(if_incoming->soft_iface); struct batadv_hardif_neigh_node *hardif_neigh = NULL; struct batadv_neigh_node *router = NULL; struct batadv_neigh_node *router_router = NULL; struct batadv_orig_node *orig_neigh_node; struct batadv_orig_ifinfo *orig_ifinfo; struct batadv_neigh_node *orig_neigh_router = NULL; struct batadv_neigh_ifinfo *router_ifinfo = NULL; struct batadv_ogm_packet *ogm_packet; enum batadv_dup_status dup_status; bool is_from_best_next_hop = false; bool is_single_hop_neigh = false; bool sameseq, similar_ttl; struct sk_buff *skb_priv; struct ethhdr *ethhdr; u8 *prev_sender; bool is_bidirect; /* create a private copy of the skb, as some functions change tq value * and/or flags. */ skb_priv = skb_copy(skb, GFP_ATOMIC); if (!skb_priv) return; ethhdr = eth_hdr(skb_priv); ogm_packet = (struct batadv_ogm_packet *)(skb_priv->data + ogm_offset); dup_status = batadv_iv_ogm_update_seqnos(ethhdr, ogm_packet, if_incoming, if_outgoing); if (batadv_compare_eth(ethhdr->h_source, ogm_packet->orig)) is_single_hop_neigh = true; if (dup_status == BATADV_PROTECTED) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: packet within seqno protection time (sender: %pM)\n", ethhdr->h_source); goto out; } if (ogm_packet->tq == 0) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: originator packet with tq equal 0\n"); goto out; } if (is_single_hop_neigh) { hardif_neigh = batadv_hardif_neigh_get(if_incoming, ethhdr->h_source); if (hardif_neigh) hardif_neigh->last_seen = jiffies; } router = batadv_orig_router_get(orig_node, if_outgoing); if (router) { router_router = batadv_orig_router_get(router->orig_node, if_outgoing); router_ifinfo = batadv_neigh_ifinfo_get(router, if_outgoing); } if ((router_ifinfo && router_ifinfo->bat_iv.tq_avg != 0) && (batadv_compare_eth(router->addr, ethhdr->h_source))) is_from_best_next_hop = true; prev_sender = ogm_packet->prev_sender; /* avoid temporary routing loops */ if (router && router_router && (batadv_compare_eth(router->addr, prev_sender)) && !(batadv_compare_eth(ogm_packet->orig, prev_sender)) && (batadv_compare_eth(router->addr, router_router->addr))) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: ignoring all rebroadcast packets that may make me loop (sender: %pM)\n", ethhdr->h_source); goto out; } if (if_outgoing == BATADV_IF_DEFAULT) batadv_tvlv_ogm_receive(bat_priv, ogm_packet, orig_node); /* if sender is a direct neighbor the sender mac equals * originator mac */ if (is_single_hop_neigh) orig_neigh_node = orig_node; else orig_neigh_node = batadv_iv_ogm_orig_get(bat_priv, ethhdr->h_source); if (!orig_neigh_node) goto out; /* Update nc_nodes of the originator */ batadv_nc_update_nc_node(bat_priv, orig_node, orig_neigh_node, ogm_packet, is_single_hop_neigh); orig_neigh_router = batadv_orig_router_get(orig_neigh_node, if_outgoing); /* drop packet if sender is not a direct neighbor and if we * don't route towards it */ if (!is_single_hop_neigh && !orig_neigh_router) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: OGM via unknown neighbor!\n"); goto out_neigh; } is_bidirect = batadv_iv_ogm_calc_tq(orig_node, orig_neigh_node, ogm_packet, if_incoming, if_outgoing); /* update ranking if it is not a duplicate or has the same * seqno and similar ttl as the non-duplicate */ orig_ifinfo = batadv_orig_ifinfo_new(orig_node, if_outgoing); if (!orig_ifinfo) goto out_neigh; sameseq = orig_ifinfo->last_real_seqno == ntohl(ogm_packet->seqno); similar_ttl = (orig_ifinfo->last_ttl - 3) <= ogm_packet->ttl; if (is_bidirect && (dup_status == BATADV_NO_DUP || (sameseq && similar_ttl))) { batadv_iv_ogm_orig_update(bat_priv, orig_node, orig_ifinfo, ethhdr, ogm_packet, if_incoming, if_outgoing, dup_status); } batadv_orig_ifinfo_put(orig_ifinfo); /* only forward for specific interface, not for the default one. */ if (if_outgoing == BATADV_IF_DEFAULT) goto out_neigh; /* is single hop (direct) neighbor */ if (is_single_hop_neigh) { /* OGMs from secondary interfaces should only scheduled once * per interface where it has been received, not multiple times */ if (ogm_packet->ttl <= 2 && if_incoming != if_outgoing) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: OGM from secondary interface and wrong outgoing interface\n"); goto out_neigh; } /* mark direct link on incoming interface */ batadv_iv_ogm_forward(orig_node, ethhdr, ogm_packet, is_single_hop_neigh, is_from_best_next_hop, if_incoming, if_outgoing); batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Forwarding packet: rebroadcast neighbor packet with direct link flag\n"); goto out_neigh; } /* multihop originator */ if (!is_bidirect) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: not received via bidirectional link\n"); goto out_neigh; } if (dup_status == BATADV_NEIGH_DUP) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: duplicate packet received\n"); goto out_neigh; } batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Forwarding packet: rebroadcast originator packet\n"); batadv_iv_ogm_forward(orig_node, ethhdr, ogm_packet, is_single_hop_neigh, is_from_best_next_hop, if_incoming, if_outgoing); out_neigh: if (orig_neigh_node && !is_single_hop_neigh) batadv_orig_node_put(orig_neigh_node); out: batadv_neigh_ifinfo_put(router_ifinfo); batadv_neigh_node_put(router); batadv_neigh_node_put(router_router); batadv_neigh_node_put(orig_neigh_router); batadv_hardif_neigh_put(hardif_neigh); consume_skb(skb_priv); } /** * batadv_iv_ogm_process_reply() - Check OGM for direct reply and process it * @ogm_packet: rebroadcast OGM packet to process * @if_incoming: the interface where this packet was received * @orig_node: originator which reproadcasted the OGMs * @if_incoming_seqno: OGM sequence number when rebroadcast was received */ static void batadv_iv_ogm_process_reply(struct batadv_ogm_packet *ogm_packet, struct batadv_hard_iface *if_incoming, struct batadv_orig_node *orig_node, u32 if_incoming_seqno) { struct batadv_orig_ifinfo *orig_ifinfo; s32 bit_pos; u8 *weight; /* neighbor has to indicate direct link and it has to * come via the corresponding interface */ if (!(ogm_packet->flags & BATADV_DIRECTLINK)) return; if (!batadv_compare_eth(if_incoming->net_dev->dev_addr, ogm_packet->orig)) return; orig_ifinfo = batadv_orig_ifinfo_get(orig_node, if_incoming); if (!orig_ifinfo) return; /* save packet seqno for bidirectional check */ spin_lock_bh(&orig_node->bat_iv.ogm_cnt_lock); bit_pos = if_incoming_seqno - 2; bit_pos -= ntohl(ogm_packet->seqno); batadv_set_bit(orig_ifinfo->bat_iv.bcast_own, bit_pos); weight = &orig_ifinfo->bat_iv.bcast_own_sum; *weight = bitmap_weight(orig_ifinfo->bat_iv.bcast_own, BATADV_TQ_LOCAL_WINDOW_SIZE); spin_unlock_bh(&orig_node->bat_iv.ogm_cnt_lock); batadv_orig_ifinfo_put(orig_ifinfo); } /** * batadv_iv_ogm_process() - process an incoming batman iv OGM * @skb: the skb containing the OGM * @ogm_offset: offset to the OGM which should be processed (for aggregates) * @if_incoming: the interface where this packet was received */ static void batadv_iv_ogm_process(const struct sk_buff *skb, int ogm_offset, struct batadv_hard_iface *if_incoming) { struct batadv_priv *bat_priv = netdev_priv(if_incoming->soft_iface); struct batadv_orig_node *orig_neigh_node, *orig_node; struct batadv_hard_iface *hard_iface; struct batadv_ogm_packet *ogm_packet; u32 if_incoming_seqno; bool has_directlink_flag; struct ethhdr *ethhdr; bool is_my_oldorig = false; bool is_my_addr = false; bool is_my_orig = false; ogm_packet = (struct batadv_ogm_packet *)(skb->data + ogm_offset); ethhdr = eth_hdr(skb); /* Silently drop when the batman packet is actually not a * correct packet. * * This might happen if a packet is padded (e.g. Ethernet has a * minimum frame length of 64 byte) and the aggregation interprets * it as an additional length. * * TODO: A more sane solution would be to have a bit in the * batadv_ogm_packet to detect whether the packet is the last * packet in an aggregation. Here we expect that the padding * is always zero (or not 0x01) */ if (ogm_packet->packet_type != BATADV_IV_OGM) return; /* could be changed by schedule_own_packet() */ if_incoming_seqno = atomic_read(&if_incoming->bat_iv.ogm_seqno); if (ogm_packet->flags & BATADV_DIRECTLINK) has_directlink_flag = true; else has_directlink_flag = false; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Received BATMAN packet via NB: %pM, IF: %s [%pM] (from OG: %pM, via prev OG: %pM, seqno %u, tq %d, TTL %d, V %d, IDF %d)\n", ethhdr->h_source, if_incoming->net_dev->name, if_incoming->net_dev->dev_addr, ogm_packet->orig, ogm_packet->prev_sender, ntohl(ogm_packet->seqno), ogm_packet->tq, ogm_packet->ttl, ogm_packet->version, has_directlink_flag); rcu_read_lock(); list_for_each_entry_rcu(hard_iface, &batadv_hardif_list, list) { if (hard_iface->if_status != BATADV_IF_ACTIVE) continue; if (hard_iface->soft_iface != if_incoming->soft_iface) continue; if (batadv_compare_eth(ethhdr->h_source, hard_iface->net_dev->dev_addr)) is_my_addr = true; if (batadv_compare_eth(ogm_packet->orig, hard_iface->net_dev->dev_addr)) is_my_orig = true; if (batadv_compare_eth(ogm_packet->prev_sender, hard_iface->net_dev->dev_addr)) is_my_oldorig = true; } rcu_read_unlock(); if (is_my_addr) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: received my own broadcast (sender: %pM)\n", ethhdr->h_source); return; } if (is_my_orig) { orig_neigh_node = batadv_iv_ogm_orig_get(bat_priv, ethhdr->h_source); if (!orig_neigh_node) return; batadv_iv_ogm_process_reply(ogm_packet, if_incoming, orig_neigh_node, if_incoming_seqno); batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: originator packet from myself (via neighbor)\n"); batadv_orig_node_put(orig_neigh_node); return; } if (is_my_oldorig) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: ignoring all rebroadcast echos (sender: %pM)\n", ethhdr->h_source); return; } if (ogm_packet->flags & BATADV_NOT_BEST_NEXT_HOP) { batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Drop packet: ignoring all packets not forwarded from the best next hop (sender: %pM)\n", ethhdr->h_source); return; } orig_node = batadv_iv_ogm_orig_get(bat_priv, ogm_packet->orig); if (!orig_node) return; batadv_iv_ogm_process_per_outif(skb, ogm_offset, orig_node, if_incoming, BATADV_IF_DEFAULT); rcu_read_lock(); list_for_each_entry_rcu(hard_iface, &batadv_hardif_list, list) { if (hard_iface->if_status != BATADV_IF_ACTIVE) continue; if (hard_iface->soft_iface != bat_priv->soft_iface) continue; if (!kref_get_unless_zero(&hard_iface->refcount)) continue; batadv_iv_ogm_process_per_outif(skb, ogm_offset, orig_node, if_incoming, hard_iface); batadv_hardif_put(hard_iface); } rcu_read_unlock(); batadv_orig_node_put(orig_node); } static void batadv_iv_send_outstanding_bat_ogm_packet(struct work_struct *work) { struct delayed_work *delayed_work; struct batadv_forw_packet *forw_packet; struct batadv_priv *bat_priv; bool dropped = false; delayed_work = to_delayed_work(work); forw_packet = container_of(delayed_work, struct batadv_forw_packet, delayed_work); bat_priv = netdev_priv(forw_packet->if_incoming->soft_iface); if (atomic_read(&bat_priv->mesh_state) == BATADV_MESH_DEACTIVATING) { dropped = true; goto out; } batadv_iv_ogm_emit(forw_packet); /* we have to have at least one packet in the queue to determine the * queues wake up time unless we are shutting down. * * only re-schedule if this is the "original" copy, e.g. the OGM of the * primary interface should only be rescheduled once per period, but * this function will be called for the forw_packet instances of the * other secondary interfaces as well. */ if (forw_packet->own && forw_packet->if_incoming == forw_packet->if_outgoing) batadv_iv_ogm_schedule(forw_packet->if_incoming); out: /* do we get something for free()? */ if (batadv_forw_packet_steal(forw_packet, &bat_priv->forw_bat_list_lock)) batadv_forw_packet_free(forw_packet, dropped); } static int batadv_iv_ogm_receive(struct sk_buff *skb, struct batadv_hard_iface *if_incoming) { struct batadv_priv *bat_priv = netdev_priv(if_incoming->soft_iface); struct batadv_ogm_packet *ogm_packet; u8 *packet_pos; int ogm_offset; bool res; int ret = NET_RX_DROP; res = batadv_check_management_packet(skb, if_incoming, BATADV_OGM_HLEN); if (!res) goto free_skb; /* did we receive a B.A.T.M.A.N. IV OGM packet on an interface * that does not have B.A.T.M.A.N. IV enabled ? */ if (bat_priv->algo_ops->iface.enable != batadv_iv_ogm_iface_enable) goto free_skb; batadv_inc_counter(bat_priv, BATADV_CNT_MGMT_RX); batadv_add_counter(bat_priv, BATADV_CNT_MGMT_RX_BYTES, skb->len + ETH_HLEN); ogm_offset = 0; ogm_packet = (struct batadv_ogm_packet *)skb->data; /* unpack the aggregated packets and process them one by one */ while (batadv_iv_ogm_aggr_packet(ogm_offset, skb_headlen(skb), ogm_packet)) { batadv_iv_ogm_process(skb, ogm_offset, if_incoming); ogm_offset += BATADV_OGM_HLEN; ogm_offset += ntohs(ogm_packet->tvlv_len); packet_pos = skb->data + ogm_offset; ogm_packet = (struct batadv_ogm_packet *)packet_pos; } ret = NET_RX_SUCCESS; free_skb: if (ret == NET_RX_SUCCESS) consume_skb(skb); else kfree_skb(skb); return ret; } /** * batadv_iv_ogm_neigh_get_tq_avg() - Get the TQ average for a neighbour on a * given outgoing interface. * @neigh_node: Neighbour of interest * @if_outgoing: Outgoing interface of interest * @tq_avg: Pointer of where to store the TQ average * * Return: False if no average TQ available, otherwise true. */ static bool batadv_iv_ogm_neigh_get_tq_avg(struct batadv_neigh_node *neigh_node, struct batadv_hard_iface *if_outgoing, u8 *tq_avg) { struct batadv_neigh_ifinfo *n_ifinfo; n_ifinfo = batadv_neigh_ifinfo_get(neigh_node, if_outgoing); if (!n_ifinfo) return false; *tq_avg = n_ifinfo->bat_iv.tq_avg; batadv_neigh_ifinfo_put(n_ifinfo); return true; } /** * batadv_iv_ogm_orig_dump_subentry() - Dump an originator subentry into a * message * @msg: Netlink message to dump into * @portid: Port making netlink request * @seq: Sequence number of netlink message * @bat_priv: The bat priv with all the soft interface information * @if_outgoing: Limit dump to entries with this outgoing interface * @orig_node: Originator to dump * @neigh_node: Single hops neighbour * @best: Is the best originator * * Return: Error code, or 0 on success */ static int batadv_iv_ogm_orig_dump_subentry(struct sk_buff *msg, u32 portid, u32 seq, struct batadv_priv *bat_priv, struct batadv_hard_iface *if_outgoing, struct batadv_orig_node *orig_node, struct batadv_neigh_node *neigh_node, bool best) { void *hdr; u8 tq_avg; unsigned int last_seen_msecs; last_seen_msecs = jiffies_to_msecs(jiffies - orig_node->last_seen); if (!batadv_iv_ogm_neigh_get_tq_avg(neigh_node, if_outgoing, &tq_avg)) return 0; if (if_outgoing != BATADV_IF_DEFAULT && if_outgoing != neigh_node->if_incoming) return 0; hdr = genlmsg_put(msg, portid, seq, &batadv_netlink_family, NLM_F_MULTI, BATADV_CMD_GET_ORIGINATORS); if (!hdr) return -ENOBUFS; if (nla_put(msg, BATADV_ATTR_ORIG_ADDRESS, ETH_ALEN, orig_node->orig) || nla_put(msg, BATADV_ATTR_NEIGH_ADDRESS, ETH_ALEN, neigh_node->addr) || nla_put_string(msg, BATADV_ATTR_HARD_IFNAME, neigh_node->if_incoming->net_dev->name) || nla_put_u32(msg, BATADV_ATTR_HARD_IFINDEX, neigh_node->if_incoming->net_dev->ifindex) || nla_put_u8(msg, BATADV_ATTR_TQ, tq_avg) || nla_put_u32(msg, BATADV_ATTR_LAST_SEEN_MSECS, last_seen_msecs)) goto nla_put_failure; if (best && nla_put_flag(msg, BATADV_ATTR_FLAG_BEST)) goto nla_put_failure; genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } /** * batadv_iv_ogm_orig_dump_entry() - Dump an originator entry into a message * @msg: Netlink message to dump into * @portid: Port making netlink request * @seq: Sequence number of netlink message * @bat_priv: The bat priv with all the soft interface information * @if_outgoing: Limit dump to entries with this outgoing interface * @orig_node: Originator to dump * @sub_s: Number of sub entries to skip * * This function assumes the caller holds rcu_read_lock(). * * Return: Error code, or 0 on success */ static int batadv_iv_ogm_orig_dump_entry(struct sk_buff *msg, u32 portid, u32 seq, struct batadv_priv *bat_priv, struct batadv_hard_iface *if_outgoing, struct batadv_orig_node *orig_node, int *sub_s) { struct batadv_neigh_node *neigh_node_best; struct batadv_neigh_node *neigh_node; int sub = 0; bool best; u8 tq_avg_best; neigh_node_best = batadv_orig_router_get(orig_node, if_outgoing); if (!neigh_node_best) goto out; if (!batadv_iv_ogm_neigh_get_tq_avg(neigh_node_best, if_outgoing, &tq_avg_best)) goto out; if (tq_avg_best == 0) goto out; hlist_for_each_entry_rcu(neigh_node, &orig_node->neigh_list, list) { if (sub++ < *sub_s) continue; best = (neigh_node == neigh_node_best); if (batadv_iv_ogm_orig_dump_subentry(msg, portid, seq, bat_priv, if_outgoing, orig_node, neigh_node, best)) { batadv_neigh_node_put(neigh_node_best); *sub_s = sub - 1; return -EMSGSIZE; } } out: batadv_neigh_node_put(neigh_node_best); *sub_s = 0; return 0; } /** * batadv_iv_ogm_orig_dump_bucket() - Dump an originator bucket into a * message * @msg: Netlink message to dump into * @portid: Port making netlink request * @seq: Sequence number of netlink message * @bat_priv: The bat priv with all the soft interface information * @if_outgoing: Limit dump to entries with this outgoing interface * @head: Bucket to be dumped * @idx_s: Number of entries to be skipped * @sub: Number of sub entries to be skipped * * Return: Error code, or 0 on success */ static int batadv_iv_ogm_orig_dump_bucket(struct sk_buff *msg, u32 portid, u32 seq, struct batadv_priv *bat_priv, struct batadv_hard_iface *if_outgoing, struct hlist_head *head, int *idx_s, int *sub) { struct batadv_orig_node *orig_node; int idx = 0; rcu_read_lock(); hlist_for_each_entry_rcu(orig_node, head, hash_entry) { if (idx++ < *idx_s) continue; if (batadv_iv_ogm_orig_dump_entry(msg, portid, seq, bat_priv, if_outgoing, orig_node, sub)) { rcu_read_unlock(); *idx_s = idx - 1; return -EMSGSIZE; } } rcu_read_unlock(); *idx_s = 0; *sub = 0; return 0; } /** * batadv_iv_ogm_orig_dump() - Dump the originators into a message * @msg: Netlink message to dump into * @cb: Control block containing additional options * @bat_priv: The bat priv with all the soft interface information * @if_outgoing: Limit dump to entries with this outgoing interface */ static void batadv_iv_ogm_orig_dump(struct sk_buff *msg, struct netlink_callback *cb, struct batadv_priv *bat_priv, struct batadv_hard_iface *if_outgoing) { struct batadv_hashtable *hash = bat_priv->orig_hash; struct hlist_head *head; int bucket = cb->args[0]; int idx = cb->args[1]; int sub = cb->args[2]; int portid = NETLINK_CB(cb->skb).portid; while (bucket < hash->size) { head = &hash->table[bucket]; if (batadv_iv_ogm_orig_dump_bucket(msg, portid, cb->nlh->nlmsg_seq, bat_priv, if_outgoing, head, &idx, &sub)) break; bucket++; } cb->args[0] = bucket; cb->args[1] = idx; cb->args[2] = sub; } /** * batadv_iv_ogm_neigh_diff() - calculate tq difference of two neighbors * @neigh1: the first neighbor object of the comparison * @if_outgoing1: outgoing interface for the first neighbor * @neigh2: the second neighbor object of the comparison * @if_outgoing2: outgoing interface for the second neighbor * @diff: pointer to integer receiving the calculated difference * * The content of *@diff is only valid when this function returns true. * It is less, equal to or greater than 0 if the metric via neigh1 is lower, * the same as or higher than the metric via neigh2 * * Return: true when the difference could be calculated, false otherwise */ static bool batadv_iv_ogm_neigh_diff(struct batadv_neigh_node *neigh1, struct batadv_hard_iface *if_outgoing1, struct batadv_neigh_node *neigh2, struct batadv_hard_iface *if_outgoing2, int *diff) { struct batadv_neigh_ifinfo *neigh1_ifinfo, *neigh2_ifinfo; u8 tq1, tq2; bool ret = true; neigh1_ifinfo = batadv_neigh_ifinfo_get(neigh1, if_outgoing1); neigh2_ifinfo = batadv_neigh_ifinfo_get(neigh2, if_outgoing2); if (!neigh1_ifinfo || !neigh2_ifinfo) { ret = false; goto out; } tq1 = neigh1_ifinfo->bat_iv.tq_avg; tq2 = neigh2_ifinfo->bat_iv.tq_avg; *diff = (int)tq1 - (int)tq2; out: batadv_neigh_ifinfo_put(neigh1_ifinfo); batadv_neigh_ifinfo_put(neigh2_ifinfo); return ret; } /** * batadv_iv_ogm_neigh_dump_neigh() - Dump a neighbour into a netlink message * @msg: Netlink message to dump into * @portid: Port making netlink request * @seq: Sequence number of netlink message * @hardif_neigh: Neighbour to be dumped * * Return: Error code, or 0 on success */ static int batadv_iv_ogm_neigh_dump_neigh(struct sk_buff *msg, u32 portid, u32 seq, struct batadv_hardif_neigh_node *hardif_neigh) { void *hdr; unsigned int last_seen_msecs; last_seen_msecs = jiffies_to_msecs(jiffies - hardif_neigh->last_seen); hdr = genlmsg_put(msg, portid, seq, &batadv_netlink_family, NLM_F_MULTI, BATADV_CMD_GET_NEIGHBORS); if (!hdr) return -ENOBUFS; if (nla_put(msg, BATADV_ATTR_NEIGH_ADDRESS, ETH_ALEN, hardif_neigh->addr) || nla_put_string(msg, BATADV_ATTR_HARD_IFNAME, hardif_neigh->if_incoming->net_dev->name) || nla_put_u32(msg, BATADV_ATTR_HARD_IFINDEX, hardif_neigh->if_incoming->net_dev->ifindex) || nla_put_u32(msg, BATADV_ATTR_LAST_SEEN_MSECS, last_seen_msecs)) goto nla_put_failure; genlmsg_end(msg, hdr); return 0; nla_put_failure: genlmsg_cancel(msg, hdr); return -EMSGSIZE; } /** * batadv_iv_ogm_neigh_dump_hardif() - Dump the neighbours of a hard interface * into a message * @msg: Netlink message to dump into * @portid: Port making netlink request * @seq: Sequence number of netlink message * @bat_priv: The bat priv with all the soft interface information * @hard_iface: Hard interface to dump the neighbours for * @idx_s: Number of entries to skip * * This function assumes the caller holds rcu_read_lock(). * * Return: Error code, or 0 on success */ static int batadv_iv_ogm_neigh_dump_hardif(struct sk_buff *msg, u32 portid, u32 seq, struct batadv_priv *bat_priv, struct batadv_hard_iface *hard_iface, int *idx_s) { struct batadv_hardif_neigh_node *hardif_neigh; int idx = 0; hlist_for_each_entry_rcu(hardif_neigh, &hard_iface->neigh_list, list) { if (idx++ < *idx_s) continue; if (batadv_iv_ogm_neigh_dump_neigh(msg, portid, seq, hardif_neigh)) { *idx_s = idx - 1; return -EMSGSIZE; } } *idx_s = 0; return 0; } /** * batadv_iv_ogm_neigh_dump() - Dump the neighbours into a message * @msg: Netlink message to dump into * @cb: Control block containing additional options * @bat_priv: The bat priv with all the soft interface information * @single_hardif: Limit dump to this hard interface */ static void batadv_iv_ogm_neigh_dump(struct sk_buff *msg, struct netlink_callback *cb, struct batadv_priv *bat_priv, struct batadv_hard_iface *single_hardif) { struct batadv_hard_iface *hard_iface; int i_hardif = 0; int i_hardif_s = cb->args[0]; int idx = cb->args[1]; int portid = NETLINK_CB(cb->skb).portid; rcu_read_lock(); if (single_hardif) { if (i_hardif_s == 0) { if (batadv_iv_ogm_neigh_dump_hardif(msg, portid, cb->nlh->nlmsg_seq, bat_priv, single_hardif, &idx) == 0) i_hardif++; } } else { list_for_each_entry_rcu(hard_iface, &batadv_hardif_list, list) { if (hard_iface->soft_iface != bat_priv->soft_iface) continue; if (i_hardif++ < i_hardif_s) continue; if (batadv_iv_ogm_neigh_dump_hardif(msg, portid, cb->nlh->nlmsg_seq, bat_priv, hard_iface, &idx)) { i_hardif--; break; } } } rcu_read_unlock(); cb->args[0] = i_hardif; cb->args[1] = idx; } /** * batadv_iv_ogm_neigh_cmp() - compare the metrics of two neighbors * @neigh1: the first neighbor object of the comparison * @if_outgoing1: outgoing interface for the first neighbor * @neigh2: the second neighbor object of the comparison * @if_outgoing2: outgoing interface for the second neighbor * * Return: a value less, equal to or greater than 0 if the metric via neigh1 is * lower, the same as or higher than the metric via neigh2 */ static int batadv_iv_ogm_neigh_cmp(struct batadv_neigh_node *neigh1, struct batadv_hard_iface *if_outgoing1, struct batadv_neigh_node *neigh2, struct batadv_hard_iface *if_outgoing2) { bool ret; int diff; ret = batadv_iv_ogm_neigh_diff(neigh1, if_outgoing1, neigh2, if_outgoing2, &diff); if (!ret) return 0; return diff; } /** * batadv_iv_ogm_neigh_is_sob() - check if neigh1 is similarly good or better * than neigh2 from the metric prospective * @neigh1: the first neighbor object of the comparison * @if_outgoing1: outgoing interface for the first neighbor * @neigh2: the second neighbor object of the comparison * @if_outgoing2: outgoing interface for the second neighbor * * Return: true if the metric via neigh1 is equally good or better than * the metric via neigh2, false otherwise. */ static bool batadv_iv_ogm_neigh_is_sob(struct batadv_neigh_node *neigh1, struct batadv_hard_iface *if_outgoing1, struct batadv_neigh_node *neigh2, struct batadv_hard_iface *if_outgoing2) { bool ret; int diff; ret = batadv_iv_ogm_neigh_diff(neigh1, if_outgoing1, neigh2, if_outgoing2, &diff); if (!ret) return false; ret = diff > -BATADV_TQ_SIMILARITY_THRESHOLD; return ret; } static void batadv_iv_iface_enabled(struct batadv_hard_iface *hard_iface) { /* begin scheduling originator messages on that interface */ batadv_iv_ogm_schedule(hard_iface); } /** * batadv_iv_init_sel_class() - initialize GW selection class * @bat_priv: the bat priv with all the soft interface information */ static void batadv_iv_init_sel_class(struct batadv_priv *bat_priv) { /* set default TQ difference threshold to 20 */ atomic_set(&bat_priv->gw.sel_class, 20); } static struct batadv_gw_node * batadv_iv_gw_get_best_gw_node(struct batadv_priv *bat_priv) { struct batadv_neigh_node *router; struct batadv_neigh_ifinfo *router_ifinfo; struct batadv_gw_node *gw_node, *curr_gw = NULL; u64 max_gw_factor = 0; u64 tmp_gw_factor = 0; u8 max_tq = 0; u8 tq_avg; struct batadv_orig_node *orig_node; rcu_read_lock(); hlist_for_each_entry_rcu(gw_node, &bat_priv->gw.gateway_list, list) { orig_node = gw_node->orig_node; router = batadv_orig_router_get(orig_node, BATADV_IF_DEFAULT); if (!router) continue; router_ifinfo = batadv_neigh_ifinfo_get(router, BATADV_IF_DEFAULT); if (!router_ifinfo) goto next; if (!kref_get_unless_zero(&gw_node->refcount)) goto next; tq_avg = router_ifinfo->bat_iv.tq_avg; switch (atomic_read(&bat_priv->gw.sel_class)) { case 1: /* fast connection */ tmp_gw_factor = tq_avg * tq_avg; tmp_gw_factor *= gw_node->bandwidth_down; tmp_gw_factor *= 100 * 100; tmp_gw_factor >>= 18; if (tmp_gw_factor > max_gw_factor || (tmp_gw_factor == max_gw_factor && tq_avg > max_tq)) { batadv_gw_node_put(curr_gw); curr_gw = gw_node; kref_get(&curr_gw->refcount); } break; default: /* 2: stable connection (use best statistic) * 3: fast-switch (use best statistic but change as * soon as a better gateway appears) * XX: late-switch (use best statistic but change as * soon as a better gateway appears which has * $routing_class more tq points) */ if (tq_avg > max_tq) { batadv_gw_node_put(curr_gw); curr_gw = gw_node; kref_get(&curr_gw->refcount); } break; } if (tq_avg > max_tq) max_tq = tq_avg; if (tmp_gw_factor > max_gw_factor) max_gw_factor = tmp_gw_factor; batadv_gw_node_put(gw_node); next: batadv_neigh_node_put(router); batadv_neigh_ifinfo_put(router_ifinfo); } rcu_read_unlock(); return curr_gw; } static bool batadv_iv_gw_is_eligible(struct batadv_priv *bat_priv, struct batadv_orig_node *curr_gw_orig, struct batadv_orig_node *orig_node) { struct batadv_neigh_ifinfo *router_orig_ifinfo = NULL; struct batadv_neigh_ifinfo *router_gw_ifinfo = NULL; struct batadv_neigh_node *router_gw = NULL; struct batadv_neigh_node *router_orig = NULL; u8 gw_tq_avg, orig_tq_avg; bool ret = false; /* dynamic re-election is performed only on fast or late switch */ if (atomic_read(&bat_priv->gw.sel_class) <= 2) return false; router_gw = batadv_orig_router_get(curr_gw_orig, BATADV_IF_DEFAULT); if (!router_gw) { ret = true; goto out; } router_gw_ifinfo = batadv_neigh_ifinfo_get(router_gw, BATADV_IF_DEFAULT); if (!router_gw_ifinfo) { ret = true; goto out; } router_orig = batadv_orig_router_get(orig_node, BATADV_IF_DEFAULT); if (!router_orig) goto out; router_orig_ifinfo = batadv_neigh_ifinfo_get(router_orig, BATADV_IF_DEFAULT); if (!router_orig_ifinfo) goto out; gw_tq_avg = router_gw_ifinfo->bat_iv.tq_avg; orig_tq_avg = router_orig_ifinfo->bat_iv.tq_avg; /* the TQ value has to be better */ if (orig_tq_avg < gw_tq_avg) goto out; /* if the routing class is greater than 3 the value tells us how much * greater the TQ value of the new gateway must be */ if ((atomic_read(&bat_priv->gw.sel_class) > 3) && (orig_tq_avg - gw_tq_avg < atomic_read(&bat_priv->gw.sel_class))) goto out; batadv_dbg(BATADV_DBG_BATMAN, bat_priv, "Restarting gateway selection: better gateway found (tq curr: %i, tq new: %i)\n", gw_tq_avg, orig_tq_avg); ret = true; out: batadv_neigh_ifinfo_put(router_gw_ifinfo); batadv_neigh_ifinfo_put(router_orig_ifinfo); batadv_neigh_node_put(router_gw); batadv_neigh_node_put(router_orig); return ret; } /** * batadv_iv_gw_dump_entry() - Dump a gateway into a message * @msg: Netlink message to dump into * @portid: Port making netlink request * @cb: Control block containing additional options * @bat_priv: The bat priv with all the soft interface information * @gw_node: Gateway to be dumped * * Return: Error code, or 0 on success */ static int batadv_iv_gw_dump_entry(struct sk_buff *msg, u32 portid, struct netlink_callback *cb, struct batadv_priv *bat_priv, struct batadv_gw_node *gw_node) { struct batadv_neigh_ifinfo *router_ifinfo = NULL; struct batadv_neigh_node *router; struct batadv_gw_node *curr_gw = NULL; int ret = 0; void *hdr; router = batadv_orig_router_get(gw_node->orig_node, BATADV_IF_DEFAULT); if (!router) goto out; router_ifinfo = batadv_neigh_ifinfo_get(router, BATADV_IF_DEFAULT); if (!router_ifinfo) goto out; curr_gw = batadv_gw_get_selected_gw_node(bat_priv); hdr = genlmsg_put(msg, portid, cb->nlh->nlmsg_seq, &batadv_netlink_family, NLM_F_MULTI, BATADV_CMD_GET_GATEWAYS); if (!hdr) { ret = -ENOBUFS; goto out; } genl_dump_check_consistent(cb, hdr); ret = -EMSGSIZE; if (curr_gw == gw_node) if (nla_put_flag(msg, BATADV_ATTR_FLAG_BEST)) { genlmsg_cancel(msg, hdr); goto out; } if (nla_put(msg, BATADV_ATTR_ORIG_ADDRESS, ETH_ALEN, gw_node->orig_node->orig) || nla_put_u8(msg, BATADV_ATTR_TQ, router_ifinfo->bat_iv.tq_avg) || nla_put(msg, BATADV_ATTR_ROUTER, ETH_ALEN, router->addr) || nla_put_string(msg, BATADV_ATTR_HARD_IFNAME, router->if_incoming->net_dev->name) || nla_put_u32(msg, BATADV_ATTR_HARD_IFINDEX, router->if_incoming->net_dev->ifindex) || nla_put_u32(msg, BATADV_ATTR_BANDWIDTH_DOWN, gw_node->bandwidth_down) || nla_put_u32(msg, BATADV_ATTR_BANDWIDTH_UP, gw_node->bandwidth_up)) { genlmsg_cancel(msg, hdr); goto out; } genlmsg_end(msg, hdr); ret = 0; out: batadv_gw_node_put(curr_gw); batadv_neigh_ifinfo_put(router_ifinfo); batadv_neigh_node_put(router); return ret; } /** * batadv_iv_gw_dump() - Dump gateways into a message * @msg: Netlink message to dump into * @cb: Control block containing additional options * @bat_priv: The bat priv with all the soft interface information */ static void batadv_iv_gw_dump(struct sk_buff *msg, struct netlink_callback *cb, struct batadv_priv *bat_priv) { int portid = NETLINK_CB(cb->skb).portid; struct batadv_gw_node *gw_node; int idx_skip = cb->args[0]; int idx = 0; spin_lock_bh(&bat_priv->gw.list_lock); cb->seq = bat_priv->gw.generation << 1 | 1; hlist_for_each_entry(gw_node, &bat_priv->gw.gateway_list, list) { if (idx++ < idx_skip) continue; if (batadv_iv_gw_dump_entry(msg, portid, cb, bat_priv, gw_node)) { idx_skip = idx - 1; goto unlock; } } idx_skip = idx; unlock: spin_unlock_bh(&bat_priv->gw.list_lock); cb->args[0] = idx_skip; } static struct batadv_algo_ops batadv_batman_iv __read_mostly = { .name = "BATMAN_IV", .iface = { .enable = batadv_iv_ogm_iface_enable, .enabled = batadv_iv_iface_enabled, .disable = batadv_iv_ogm_iface_disable, .update_mac = batadv_iv_ogm_iface_update_mac, .primary_set = batadv_iv_ogm_primary_iface_set, }, .neigh = { .cmp = batadv_iv_ogm_neigh_cmp, .is_similar_or_better = batadv_iv_ogm_neigh_is_sob, .dump = batadv_iv_ogm_neigh_dump, }, .orig = { .dump = batadv_iv_ogm_orig_dump, }, .gw = { .init_sel_class = batadv_iv_init_sel_class, .get_best_gw_node = batadv_iv_gw_get_best_gw_node, .is_eligible = batadv_iv_gw_is_eligible, .dump = batadv_iv_gw_dump, }, }; /** * batadv_iv_init() - B.A.T.M.A.N. IV initialization function * * Return: 0 on success or negative error number in case of failure */ int __init batadv_iv_init(void) { int ret; /* batman originator packet */ ret = batadv_recv_handler_register(BATADV_IV_OGM, batadv_iv_ogm_receive); if (ret < 0) goto out; ret = batadv_algo_register(&batadv_batman_iv); if (ret < 0) goto handler_unregister; goto out; handler_unregister: batadv_recv_handler_unregister(BATADV_IV_OGM); out: return ret; } |
4 33 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 | // SPDX-License-Identifier: GPL-2.0-only /* * This file provides /sys/class/ieee80211/<wiphy name>/ * and some default attributes. * * Copyright 2005-2006 Jiri Benc <jbenc@suse.cz> * Copyright 2006 Johannes Berg <johannes@sipsolutions.net> * Copyright (C) 2020-2021 Intel Corporation */ #include <linux/device.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/nl80211.h> #include <linux/rtnetlink.h> #include <net/cfg80211.h> #include "sysfs.h" #include "core.h" #include "rdev-ops.h" static inline struct cfg80211_registered_device *dev_to_rdev( struct device *dev) { return container_of(dev, struct cfg80211_registered_device, wiphy.dev); } #define SHOW_FMT(name, fmt, member) \ static ssize_t name ## _show(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ return sprintf(buf, fmt "\n", dev_to_rdev(dev)->member); \ } \ static DEVICE_ATTR_RO(name) SHOW_FMT(index, "%d", wiphy_idx); SHOW_FMT(macaddress, "%pM", wiphy.perm_addr); SHOW_FMT(address_mask, "%pM", wiphy.addr_mask); static ssize_t name_show(struct device *dev, struct device_attribute *attr, char *buf) { struct wiphy *wiphy = &dev_to_rdev(dev)->wiphy; return sprintf(buf, "%s\n", wiphy_name(wiphy)); } static DEVICE_ATTR_RO(name); static ssize_t addresses_show(struct device *dev, struct device_attribute *attr, char *buf) { struct wiphy *wiphy = &dev_to_rdev(dev)->wiphy; char *start = buf; int i; if (!wiphy->addresses) return sprintf(buf, "%pM\n", wiphy->perm_addr); for (i = 0; i < wiphy->n_addresses; i++) buf += sprintf(buf, "%pM\n", wiphy->addresses[i].addr); return buf - start; } static DEVICE_ATTR_RO(addresses); static struct attribute *ieee80211_attrs[] = { &dev_attr_index.attr, &dev_attr_macaddress.attr, &dev_attr_address_mask.attr, &dev_attr_addresses.attr, &dev_attr_name.attr, NULL, }; ATTRIBUTE_GROUPS(ieee80211); static void wiphy_dev_release(struct device *dev) { struct cfg80211_registered_device *rdev = dev_to_rdev(dev); cfg80211_dev_free(rdev); } #ifdef CONFIG_PM_SLEEP static void cfg80211_leave_all(struct cfg80211_registered_device *rdev) { struct wireless_dev *wdev; list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) cfg80211_leave(rdev, wdev); } static int wiphy_suspend(struct device *dev) { struct cfg80211_registered_device *rdev = dev_to_rdev(dev); int ret = 0; rdev->suspend_at = ktime_get_boottime_seconds(); rtnl_lock(); wiphy_lock(&rdev->wiphy); if (rdev->wiphy.registered) { if (!rdev->wiphy.wowlan_config) { cfg80211_leave_all(rdev); cfg80211_process_rdev_events(rdev); } if (rdev->ops->suspend) ret = rdev_suspend(rdev, rdev->wiphy.wowlan_config); if (ret == 1) { /* Driver refuse to configure wowlan */ cfg80211_leave_all(rdev); cfg80211_process_rdev_events(rdev); ret = rdev_suspend(rdev, NULL); } } wiphy_unlock(&rdev->wiphy); rtnl_unlock(); return ret; } static int wiphy_resume(struct device *dev) { struct cfg80211_registered_device *rdev = dev_to_rdev(dev); int ret = 0; /* Age scan results with time spent in suspend */ cfg80211_bss_age(rdev, ktime_get_boottime_seconds() - rdev->suspend_at); rtnl_lock(); wiphy_lock(&rdev->wiphy); if (rdev->wiphy.registered && rdev->ops->resume) ret = rdev_resume(rdev); wiphy_unlock(&rdev->wiphy); if (ret) cfg80211_shutdown_all_interfaces(&rdev->wiphy); rtnl_unlock(); return ret; } static SIMPLE_DEV_PM_OPS(wiphy_pm_ops, wiphy_suspend, wiphy_resume); #define WIPHY_PM_OPS (&wiphy_pm_ops) #else #define WIPHY_PM_OPS NULL #endif static const void *wiphy_namespace(struct device *d) { struct wiphy *wiphy = container_of(d, struct wiphy, dev); return wiphy_net(wiphy); } struct class ieee80211_class = { .name = "ieee80211", .owner = THIS_MODULE, .dev_release = wiphy_dev_release, .dev_groups = ieee80211_groups, .pm = WIPHY_PM_OPS, .ns_type = &net_ns_type_operations, .namespace = wiphy_namespace, }; int wiphy_sysfs_init(void) { return class_register(&ieee80211_class); } void wiphy_sysfs_exit(void) { class_unregister(&ieee80211_class); } |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com * Written by Alex Tomas <alex@clusterfs.com> */ #ifndef _EXT4_EXTENTS #define _EXT4_EXTENTS #include "ext4.h" /* * With AGGRESSIVE_TEST defined, the capacity of index/leaf blocks * becomes very small, so index split, in-depth growing and * other hard changes happen much more often. * This is for debug purposes only. */ #define AGGRESSIVE_TEST_ /* * With EXTENTS_STATS defined, the number of blocks and extents * are collected in the truncate path. They'll be shown at * umount time. */ #define EXTENTS_STATS__ /* * If CHECK_BINSEARCH is defined, then the results of the binary search * will also be checked by linear search. */ #define CHECK_BINSEARCH__ /* * If EXT_STATS is defined then stats numbers are collected. * These number will be displayed at umount time. */ #define EXT_STATS_ /* * ext4_inode has i_block array (60 bytes total). * The first 12 bytes store ext4_extent_header; * the remainder stores an array of ext4_extent. * For non-inode extent blocks, ext4_extent_tail * follows the array. */ /* * This is the extent tail on-disk structure. * All other extent structures are 12 bytes long. It turns out that * block_size % 12 >= 4 for at least all powers of 2 greater than 512, which * covers all valid ext4 block sizes. Therefore, this tail structure can be * crammed into the end of the block without having to rebalance the tree. */ struct ext4_extent_tail { __le32 et_checksum; /* crc32c(uuid+inum+extent_block) */ }; /* * This is the extent on-disk structure. * It's used at the bottom of the tree. */ struct ext4_extent { __le32 ee_block; /* first logical block extent covers */ __le16 ee_len; /* number of blocks covered by extent */ __le16 ee_start_hi; /* high 16 bits of physical block */ __le32 ee_start_lo; /* low 32 bits of physical block */ }; /* * This is index on-disk structure. * It's used at all the levels except the bottom. */ struct ext4_extent_idx { __le32 ei_block; /* index covers logical blocks from 'block' */ __le32 ei_leaf_lo; /* pointer to the physical block of the next * * level. leaf or next index could be there */ __le16 ei_leaf_hi; /* high 16 bits of physical block */ __u16 ei_unused; }; /* * Each block (leaves and indexes), even inode-stored has header. */ struct ext4_extent_header { __le16 eh_magic; /* probably will support different formats */ __le16 eh_entries; /* number of valid entries */ __le16 eh_max; /* capacity of store in entries */ __le16 eh_depth; /* has tree real underlying blocks? */ __le32 eh_generation; /* generation of the tree */ }; #define EXT4_EXT_MAGIC cpu_to_le16(0xf30a) #define EXT4_MAX_EXTENT_DEPTH 5 #define EXT4_EXTENT_TAIL_OFFSET(hdr) \ (sizeof(struct ext4_extent_header) + \ (sizeof(struct ext4_extent) * le16_to_cpu((hdr)->eh_max))) static inline struct ext4_extent_tail * find_ext4_extent_tail(struct ext4_extent_header *eh) { return (struct ext4_extent_tail *)(((void *)eh) + EXT4_EXTENT_TAIL_OFFSET(eh)); } /* * Array of ext4_ext_path contains path to some extent. * Creation/lookup routines use it for traversal/splitting/etc. * Truncate uses it to simulate recursive walking. */ struct ext4_ext_path { ext4_fsblk_t p_block; __u16 p_depth; __u16 p_maxdepth; struct ext4_extent *p_ext; struct ext4_extent_idx *p_idx; struct ext4_extent_header *p_hdr; struct buffer_head *p_bh; }; /* * Used to record a portion of a cluster found at the beginning or end * of an extent while traversing the extent tree during space removal. * A partial cluster may be removed if it does not contain blocks shared * with extents that aren't being deleted (tofree state). Otherwise, * it cannot be removed (nofree state). */ struct partial_cluster { ext4_fsblk_t pclu; /* physical cluster number */ ext4_lblk_t lblk; /* logical block number within logical cluster */ enum {initial, tofree, nofree} state; }; /* * structure for external API */ /* * EXT_INIT_MAX_LEN is the maximum number of blocks we can have in an * initialized extent. This is 2^15 and not (2^16 - 1), since we use the * MSB of ee_len field in the extent datastructure to signify if this * particular extent is an initialized extent or an unwritten (i.e. * preallocated). * EXT_UNWRITTEN_MAX_LEN is the maximum number of blocks we can have in an * unwritten extent. * If ee_len is <= 0x8000, it is an initialized extent. Otherwise, it is an * unwritten one. In other words, if MSB of ee_len is set, it is an * unwritten extent with only one special scenario when ee_len = 0x8000. * In this case we can not have an unwritten extent of zero length and * thus we make it as a special case of initialized extent with 0x8000 length. * This way we get better extent-to-group alignment for initialized extents. * Hence, the maximum number of blocks we can have in an *initialized* * extent is 2^15 (32768) and in an *unwritten* extent is 2^15-1 (32767). */ #define EXT_INIT_MAX_LEN (1UL << 15) #define EXT_UNWRITTEN_MAX_LEN (EXT_INIT_MAX_LEN - 1) #define EXT_FIRST_EXTENT(__hdr__) \ ((struct ext4_extent *) (((char *) (__hdr__)) + \ sizeof(struct ext4_extent_header))) #define EXT_FIRST_INDEX(__hdr__) \ ((struct ext4_extent_idx *) (((char *) (__hdr__)) + \ sizeof(struct ext4_extent_header))) #define EXT_HAS_FREE_INDEX(__path__) \ (le16_to_cpu((__path__)->p_hdr->eh_entries) \ < le16_to_cpu((__path__)->p_hdr->eh_max)) #define EXT_LAST_EXTENT(__hdr__) \ (EXT_FIRST_EXTENT((__hdr__)) + le16_to_cpu((__hdr__)->eh_entries) - 1) #define EXT_LAST_INDEX(__hdr__) \ (EXT_FIRST_INDEX((__hdr__)) + le16_to_cpu((__hdr__)->eh_entries) - 1) #define EXT_MAX_EXTENT(__hdr__) \ ((le16_to_cpu((__hdr__)->eh_max)) ? \ ((EXT_FIRST_EXTENT((__hdr__)) + le16_to_cpu((__hdr__)->eh_max) - 1)) \ : NULL) #define EXT_MAX_INDEX(__hdr__) \ ((le16_to_cpu((__hdr__)->eh_max)) ? \ ((EXT_FIRST_INDEX((__hdr__)) + le16_to_cpu((__hdr__)->eh_max) - 1)) \ : NULL) static inline struct ext4_extent_header *ext_inode_hdr(struct inode *inode) { return (struct ext4_extent_header *) EXT4_I(inode)->i_data; } static inline struct ext4_extent_header *ext_block_hdr(struct buffer_head *bh) { return (struct ext4_extent_header *) bh->b_data; } static inline unsigned short ext_depth(struct inode *inode) { return le16_to_cpu(ext_inode_hdr(inode)->eh_depth); } static inline void ext4_ext_mark_unwritten(struct ext4_extent *ext) { /* We can not have an unwritten extent of zero length! */ BUG_ON((le16_to_cpu(ext->ee_len) & ~EXT_INIT_MAX_LEN) == 0); ext->ee_len |= cpu_to_le16(EXT_INIT_MAX_LEN); } static inline int ext4_ext_is_unwritten(struct ext4_extent *ext) { /* Extent with ee_len of 0x8000 is treated as an initialized extent */ return (le16_to_cpu(ext->ee_len) > EXT_INIT_MAX_LEN); } static inline int ext4_ext_get_actual_len(struct ext4_extent *ext) { return (le16_to_cpu(ext->ee_len) <= EXT_INIT_MAX_LEN ? le16_to_cpu(ext->ee_len) : (le16_to_cpu(ext->ee_len) - EXT_INIT_MAX_LEN)); } static inline void ext4_ext_mark_initialized(struct ext4_extent *ext) { ext->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ext)); } /* * ext4_ext_pblock: * combine low and high parts of physical block number into ext4_fsblk_t */ static inline ext4_fsblk_t ext4_ext_pblock(struct ext4_extent *ex) { ext4_fsblk_t block; block = le32_to_cpu(ex->ee_start_lo); block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1; return block; } /* * ext4_idx_pblock: * combine low and high parts of a leaf physical block number into ext4_fsblk_t */ static inline ext4_fsblk_t ext4_idx_pblock(struct ext4_extent_idx *ix) { ext4_fsblk_t block; block = le32_to_cpu(ix->ei_leaf_lo); block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1; return block; } /* * ext4_ext_store_pblock: * stores a large physical block number into an extent struct, * breaking it into parts */ static inline void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb) { ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); } /* * ext4_idx_store_pblock: * stores a large physical block number into an index struct, * breaking it into parts */ static inline void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb) { ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff)); ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff); } #endif /* _EXT4_EXTENTS */ |
38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 | // SPDX-License-Identifier: GPL-2.0 #include <linux/kernel.h> #include <linux/ip.h> #include <linux/sctp.h> #include <net/ip.h> #include <net/ip6_checksum.h> #include <linux/netfilter.h> #include <linux/netfilter_ipv4.h> #include <net/sctp/checksum.h> #include <net/ip_vs.h> static int sctp_csum_check(int af, struct sk_buff *skb, struct ip_vs_protocol *pp); static int sctp_conn_schedule(struct netns_ipvs *ipvs, int af, struct sk_buff *skb, struct ip_vs_proto_data *pd, int *verdict, struct ip_vs_conn **cpp, struct ip_vs_iphdr *iph) { struct ip_vs_service *svc; struct sctp_chunkhdr _schunkh, *sch; struct sctphdr *sh, _sctph; __be16 _ports[2], *ports = NULL; if (likely(!ip_vs_iph_icmp(iph))) { sh = skb_header_pointer(skb, iph->len, sizeof(_sctph), &_sctph); if (sh) { sch = skb_header_pointer(skb, iph->len + sizeof(_sctph), sizeof(_schunkh), &_schunkh); if (sch) { if (sch->type == SCTP_CID_ABORT || !(sysctl_sloppy_sctp(ipvs) || sch->type == SCTP_CID_INIT)) return 1; ports = &sh->source; } } } else { ports = skb_header_pointer( skb, iph->len, sizeof(_ports), &_ports); } if (!ports) { *verdict = NF_DROP; return 0; } if (likely(!ip_vs_iph_inverse(iph))) svc = ip_vs_service_find(ipvs, af, skb->mark, iph->protocol, &iph->daddr, ports[1]); else svc = ip_vs_service_find(ipvs, af, skb->mark, iph->protocol, &iph->saddr, ports[0]); if (svc) { int ignored; if (ip_vs_todrop(ipvs)) { /* * It seems that we are very loaded. * We have to drop this packet :( */ *verdict = NF_DROP; return 0; } /* * Let the virtual server select a real server for the * incoming connection, and create a connection entry. */ *cpp = ip_vs_schedule(svc, skb, pd, &ignored, iph); if (!*cpp && ignored <= 0) { if (!ignored) *verdict = ip_vs_leave(svc, skb, pd, iph); else *verdict = NF_DROP; return 0; } } /* NF_ACCEPT */ return 1; } static void sctp_nat_csum(struct sk_buff *skb, struct sctphdr *sctph, unsigned int sctphoff) { sctph->checksum = sctp_compute_cksum(skb, sctphoff); skb->ip_summed = CHECKSUM_UNNECESSARY; } static int sctp_snat_handler(struct sk_buff *skb, struct ip_vs_protocol *pp, struct ip_vs_conn *cp, struct ip_vs_iphdr *iph) { struct sctphdr *sctph; unsigned int sctphoff = iph->len; bool payload_csum = false; #ifdef CONFIG_IP_VS_IPV6 if (cp->af == AF_INET6 && iph->fragoffs) return 1; #endif /* csum_check requires unshared skb */ if (skb_ensure_writable(skb, sctphoff + sizeof(*sctph))) return 0; if (unlikely(cp->app != NULL)) { int ret; /* Some checks before mangling */ if (!sctp_csum_check(cp->af, skb, pp)) return 0; /* Call application helper if needed */ ret = ip_vs_app_pkt_out(cp, skb, iph); if (ret == 0) return 0; /* ret=2: csum update is needed after payload mangling */ if (ret == 2) payload_csum = true; } sctph = (void *) skb_network_header(skb) + sctphoff; /* Only update csum if we really have to */ if (sctph->source != cp->vport || payload_csum || skb->ip_summed == CHECKSUM_PARTIAL) { sctph->source = cp->vport; if (!skb_is_gso(skb)) sctp_nat_csum(skb, sctph, sctphoff); } else { skb->ip_summed = CHECKSUM_UNNECESSARY; } return 1; } static int sctp_dnat_handler(struct sk_buff *skb, struct ip_vs_protocol *pp, struct ip_vs_conn *cp, struct ip_vs_iphdr *iph) { struct sctphdr *sctph; unsigned int sctphoff = iph->len; bool payload_csum = false; #ifdef CONFIG_IP_VS_IPV6 if (cp->af == AF_INET6 && iph->fragoffs) return 1; #endif /* csum_check requires unshared skb */ if (skb_ensure_writable(skb, sctphoff + sizeof(*sctph))) return 0; if (unlikely(cp->app != NULL)) { int ret; /* Some checks before mangling */ if (!sctp_csum_check(cp->af, skb, pp)) return 0; /* Call application helper if needed */ ret = ip_vs_app_pkt_in(cp, skb, iph); if (ret == 0) return 0; /* ret=2: csum update is needed after payload mangling */ if (ret == 2) payload_csum = true; } sctph = (void *) skb_network_header(skb) + sctphoff; /* Only update csum if we really have to */ if (sctph->dest != cp->dport || payload_csum || (skb->ip_summed == CHECKSUM_PARTIAL && !(skb_dst(skb)->dev->features & NETIF_F_SCTP_CRC))) { sctph->dest = cp->dport; if (!skb_is_gso(skb)) sctp_nat_csum(skb, sctph, sctphoff); } else if (skb->ip_summed != CHECKSUM_PARTIAL) { skb->ip_summed = CHECKSUM_UNNECESSARY; } return 1; } static int sctp_csum_check(int af, struct sk_buff *skb, struct ip_vs_protocol *pp) { unsigned int sctphoff; struct sctphdr *sh; __le32 cmp, val; #ifdef CONFIG_IP_VS_IPV6 if (af == AF_INET6) sctphoff = sizeof(struct ipv6hdr); else #endif sctphoff = ip_hdrlen(skb); sh = (struct sctphdr *)(skb->data + sctphoff); cmp = sh->checksum; val = sctp_compute_cksum(skb, sctphoff); if (val != cmp) { /* CRC failure, dump it. */ IP_VS_DBG_RL_PKT(0, af, pp, skb, 0, "Failed checksum for"); return 0; } return 1; } enum ipvs_sctp_event_t { IP_VS_SCTP_DATA = 0, /* DATA, SACK, HEARTBEATs */ IP_VS_SCTP_INIT, IP_VS_SCTP_INIT_ACK, IP_VS_SCTP_COOKIE_ECHO, IP_VS_SCTP_COOKIE_ACK, IP_VS_SCTP_SHUTDOWN, IP_VS_SCTP_SHUTDOWN_ACK, IP_VS_SCTP_SHUTDOWN_COMPLETE, IP_VS_SCTP_ERROR, IP_VS_SCTP_ABORT, IP_VS_SCTP_EVENT_LAST }; /* RFC 2960, 3.2 Chunk Field Descriptions */ static __u8 sctp_events[] = { [SCTP_CID_DATA] = IP_VS_SCTP_DATA, [SCTP_CID_INIT] = IP_VS_SCTP_INIT, [SCTP_CID_INIT_ACK] = IP_VS_SCTP_INIT_ACK, [SCTP_CID_SACK] = IP_VS_SCTP_DATA, [SCTP_CID_HEARTBEAT] = IP_VS_SCTP_DATA, [SCTP_CID_HEARTBEAT_ACK] = IP_VS_SCTP_DATA, [SCTP_CID_ABORT] = IP_VS_SCTP_ABORT, [SCTP_CID_SHUTDOWN] = IP_VS_SCTP_SHUTDOWN, [SCTP_CID_SHUTDOWN_ACK] = IP_VS_SCTP_SHUTDOWN_ACK, [SCTP_CID_ERROR] = IP_VS_SCTP_ERROR, [SCTP_CID_COOKIE_ECHO] = IP_VS_SCTP_COOKIE_ECHO, [SCTP_CID_COOKIE_ACK] = IP_VS_SCTP_COOKIE_ACK, [SCTP_CID_ECN_ECNE] = IP_VS_SCTP_DATA, [SCTP_CID_ECN_CWR] = IP_VS_SCTP_DATA, [SCTP_CID_SHUTDOWN_COMPLETE] = IP_VS_SCTP_SHUTDOWN_COMPLETE, }; /* SCTP States: * See RFC 2960, 4. SCTP Association State Diagram * * New states (not in diagram): * - INIT1 state: use shorter timeout for dropped INIT packets * - REJECTED state: use shorter timeout if INIT is rejected with ABORT * - INIT, COOKIE_SENT, COOKIE_REPLIED, COOKIE states: for better debugging * * The states are as seen in real server. In the diagram, INIT1, INIT, * COOKIE_SENT and COOKIE_REPLIED processing happens in CLOSED state. * * States as per packets from client (C) and server (S): * * Setup of client connection: * IP_VS_SCTP_S_INIT1: First C:INIT sent, wait for S:INIT-ACK * IP_VS_SCTP_S_INIT: Next C:INIT sent, wait for S:INIT-ACK * IP_VS_SCTP_S_COOKIE_SENT: S:INIT-ACK sent, wait for C:COOKIE-ECHO * IP_VS_SCTP_S_COOKIE_REPLIED: C:COOKIE-ECHO sent, wait for S:COOKIE-ACK * * Setup of server connection: * IP_VS_SCTP_S_COOKIE_WAIT: S:INIT sent, wait for C:INIT-ACK * IP_VS_SCTP_S_COOKIE: C:INIT-ACK sent, wait for S:COOKIE-ECHO * IP_VS_SCTP_S_COOKIE_ECHOED: S:COOKIE-ECHO sent, wait for C:COOKIE-ACK */ #define sNO IP_VS_SCTP_S_NONE #define sI1 IP_VS_SCTP_S_INIT1 #define sIN IP_VS_SCTP_S_INIT #define sCS IP_VS_SCTP_S_COOKIE_SENT #define sCR IP_VS_SCTP_S_COOKIE_REPLIED #define sCW IP_VS_SCTP_S_COOKIE_WAIT #define sCO IP_VS_SCTP_S_COOKIE #define sCE IP_VS_SCTP_S_COOKIE_ECHOED #define sES IP_VS_SCTP_S_ESTABLISHED #define sSS IP_VS_SCTP_S_SHUTDOWN_SENT #define sSR IP_VS_SCTP_S_SHUTDOWN_RECEIVED #define sSA IP_VS_SCTP_S_SHUTDOWN_ACK_SENT #define sRJ IP_VS_SCTP_S_REJECTED #define sCL IP_VS_SCTP_S_CLOSED static const __u8 sctp_states [IP_VS_DIR_LAST][IP_VS_SCTP_EVENT_LAST][IP_VS_SCTP_S_LAST] = { { /* INPUT */ /* sNO, sI1, sIN, sCS, sCR, sCW, sCO, sCE, sES, sSS, sSR, sSA, sRJ, sCL*/ /* d */{sES, sI1, sIN, sCS, sCR, sCW, sCO, sCE, sES, sSS, sSR, sSA, sRJ, sCL}, /* i */{sI1, sIN, sIN, sCS, sCR, sCW, sCO, sCE, sES, sSS, sSR, sSA, sIN, sIN}, /* i_a */{sCW, sCW, sCW, sCS, sCR, sCO, sCO, sCE, sES, sSS, sSR, sSA, sRJ, sCL}, /* c_e */{sCR, sIN, sIN, sCR, sCR, sCW, sCO, sCE, sES, sSS, sSR, sSA, sRJ, sCL}, /* c_a */{sES, sI1, sIN, sCS, sCR, sCW, sCO, sES, sES, sSS, sSR, sSA, sRJ, sCL}, /* s */{sSR, sI1, sIN, sCS, sCR, sCW, sCO, sCE, sSR, sSS, sSR, sSA, sRJ, sCL}, /* s_a */{sCL, sIN, sIN, sCS, sCR, sCW, sCO, sCE, sES, sCL, sSR, sCL, sRJ, sCL}, /* s_c */{sCL, sCL, sCL, sCS, sCR, sCW, sCO, sCE, sES, sSS, sSR, sCL, sRJ, sCL}, /* err */{sCL, sI1, sIN, sCS, sCR, sCW, sCO, sCL, sES, sSS, sSR, sSA, sRJ, sCL}, /* ab */{sCL, sCL, sCL, sCL, sCL, sRJ, sCL, sCL, sCL, sCL, sCL, sCL, sCL, sCL}, }, { /* OUTPUT */ /* sNO, sI1, sIN, sCS, sCR, sCW, sCO, sCE, sES, sSS, sSR, sSA, sRJ, sCL*/ /* d */{sES, sI1, sIN, sCS, sCR, sCW, sCO, sCE, sES, sSS, sSR, sSA, sRJ, sCL}, /* i */{sCW, sCW, sCW, sCW, sCW, sCW, sCW, sCW, sES, sCW, sCW, sCW, sCW, sCW}, /* i_a */{sCS, sCS, sCS, sCS, sCR, sCW, sCO, sCE, sES, sSS, sSR, sSA, sRJ, sCL}, /* c_e */{sCE, sCE, sCE, sCE, sCE, sCE, sCE, sCE, sES, sSS, sSR, sSA, sRJ, sCL}, /* c_a */{sES, sES, sES, sES, sES, sES, sES, sES, sES, sSS, sSR, sSA, sRJ, sCL}, /* s */{sSS, sSS, sSS, sSS, sSS, sSS, sSS, sSS, sSS, sSS, sSR, sSA, sRJ, sCL}, /* s_a */{sSA, sSA, sSA, sSA, sSA, sCW, sCO, sCE, sES, sSA, sSA, sSA, sRJ, sCL}, /* s_c */{sCL, sI1, sIN, sCS, sCR, sCW, sCO, sCE, sES, sSS, sSR, sSA, sRJ, sCL}, /* err */{sCL, sCL, sCL, sCL, sCL, sCW, sCO, sCE, sES, sSS, sSR, sSA, sRJ, sCL}, /* ab */{sCL, sRJ, sCL, sCL, sCL, sCL, sCL, sCL, sCL, sCL, sCL, sCL, sCL, sCL}, }, { /* INPUT-ONLY */ /* sNO, sI1, sIN, sCS, sCR, sCW, sCO, sCE, sES, sSS, sSR, sSA, sRJ, sCL*/ /* d */{sES, sI1, sIN, sCS, sCR, sES, sCO, sCE, sES, sSS, sSR, sSA, sRJ, sCL}, /* i */{sI1, sIN, sIN, sIN, sIN, sIN, sCO, sCE, sES, sSS, sSR, sSA, sIN, sIN}, /* i_a */{sCE, sCE, sCE, sCE, sCE, sCE, sCO, sCE, sES, sSS, sSR, sSA, sRJ, sCL}, /* c_e */{sES, sES, sES, sES, sES, sES, sCO, sCE, sES, sSS, sSR, sSA, sRJ, sCL}, /* c_a */{sES, sI1, sIN, sES, sES, sCW, sES, sES, sES, sSS, sSR, sSA, sRJ, sCL}, /* s */{sSR, sI1, sIN, sCS, sCR, sCW, sCO, sCE, sSR, sSS, sSR, sSA, sRJ, sCL}, /* s_a */{sCL, sIN, sIN, sCS, sCR, sCW, sCO, sCE, sCL, sCL, sSR, sCL, sRJ, sCL}, /* s_c */{sCL, sCL, sCL, sCL, sCL, sCW, sCO, sCE, sES, sSS, sCL, sCL, sRJ, sCL}, /* err */{sCL, sI1, sIN, sCS, sCR, sCW, sCO, sCE, sES, sSS, sSR, sSA, sRJ, sCL}, /* ab */{sCL, sCL, sCL, sCL, sCL, sRJ, sCL, sCL, sCL, sCL, sCL, sCL, sCL, sCL}, }, }; #define IP_VS_SCTP_MAX_RTO ((60 + 1) * HZ) /* Timeout table[state] */ static const int sctp_timeouts[IP_VS_SCTP_S_LAST + 1] = { [IP_VS_SCTP_S_NONE] = 2 * HZ, [IP_VS_SCTP_S_INIT1] = (0 + 3 + 1) * HZ, [IP_VS_SCTP_S_INIT] = IP_VS_SCTP_MAX_RTO, [IP_VS_SCTP_S_COOKIE_SENT] = IP_VS_SCTP_MAX_RTO, [IP_VS_SCTP_S_COOKIE_REPLIED] = IP_VS_SCTP_MAX_RTO, [IP_VS_SCTP_S_COOKIE_WAIT] = IP_VS_SCTP_MAX_RTO, [IP_VS_SCTP_S_COOKIE] = IP_VS_SCTP_MAX_RTO, [IP_VS_SCTP_S_COOKIE_ECHOED] = IP_VS_SCTP_MAX_RTO, [IP_VS_SCTP_S_ESTABLISHED] = 15 * 60 * HZ, [IP_VS_SCTP_S_SHUTDOWN_SENT] = IP_VS_SCTP_MAX_RTO, [IP_VS_SCTP_S_SHUTDOWN_RECEIVED] = IP_VS_SCTP_MAX_RTO, [IP_VS_SCTP_S_SHUTDOWN_ACK_SENT] = IP_VS_SCTP_MAX_RTO, [IP_VS_SCTP_S_REJECTED] = (0 + 3 + 1) * HZ, [IP_VS_SCTP_S_CLOSED] = IP_VS_SCTP_MAX_RTO, [IP_VS_SCTP_S_LAST] = 2 * HZ, }; static const char *sctp_state_name_table[IP_VS_SCTP_S_LAST + 1] = { [IP_VS_SCTP_S_NONE] = "NONE", [IP_VS_SCTP_S_INIT1] = "INIT1", [IP_VS_SCTP_S_INIT] = "INIT", [IP_VS_SCTP_S_COOKIE_SENT] = "C-SENT", [IP_VS_SCTP_S_COOKIE_REPLIED] = "C-REPLIED", [IP_VS_SCTP_S_COOKIE_WAIT] = "C-WAIT", [IP_VS_SCTP_S_COOKIE] = "COOKIE", [IP_VS_SCTP_S_COOKIE_ECHOED] = "C-ECHOED", [IP_VS_SCTP_S_ESTABLISHED] = "ESTABLISHED", [IP_VS_SCTP_S_SHUTDOWN_SENT] = "S-SENT", [IP_VS_SCTP_S_SHUTDOWN_RECEIVED] = "S-RECEIVED", [IP_VS_SCTP_S_SHUTDOWN_ACK_SENT] = "S-ACK-SENT", [IP_VS_SCTP_S_REJECTED] = "REJECTED", [IP_VS_SCTP_S_CLOSED] = "CLOSED", [IP_VS_SCTP_S_LAST] = "BUG!", }; static const char *sctp_state_name(int state) { if (state >= IP_VS_SCTP_S_LAST) return "ERR!"; if (sctp_state_name_table[state]) return sctp_state_name_table[state]; return "?"; } static inline void set_sctp_state(struct ip_vs_proto_data *pd, struct ip_vs_conn *cp, int direction, const struct sk_buff *skb) { struct sctp_chunkhdr _sctpch, *sch; unsigned char chunk_type; int event, next_state; int ihl, cofs; #ifdef CONFIG_IP_VS_IPV6 ihl = cp->af == AF_INET ? ip_hdrlen(skb) : sizeof(struct ipv6hdr); #else ihl = ip_hdrlen(skb); #endif cofs = ihl + sizeof(struct sctphdr); sch = skb_header_pointer(skb, cofs, sizeof(_sctpch), &_sctpch); if (sch == NULL) return; chunk_type = sch->type; /* * Section 3: Multiple chunks can be bundled into one SCTP packet * up to the MTU size, except for the INIT, INIT ACK, and * SHUTDOWN COMPLETE chunks. These chunks MUST NOT be bundled with * any other chunk in a packet. * * Section 3.3.7: DATA chunks MUST NOT be bundled with ABORT. Control * chunks (except for INIT, INIT ACK, and SHUTDOWN COMPLETE) MAY be * bundled with an ABORT, but they MUST be placed before the ABORT * in the SCTP packet or they will be ignored by the receiver. */ if ((sch->type == SCTP_CID_COOKIE_ECHO) || (sch->type == SCTP_CID_COOKIE_ACK)) { int clen = ntohs(sch->length); if (clen >= sizeof(_sctpch)) { sch = skb_header_pointer(skb, cofs + ALIGN(clen, 4), sizeof(_sctpch), &_sctpch); if (sch && sch->type == SCTP_CID_ABORT) chunk_type = sch->type; } } event = (chunk_type < sizeof(sctp_events)) ? sctp_events[chunk_type] : IP_VS_SCTP_DATA; /* Update direction to INPUT_ONLY if necessary * or delete NO_OUTPUT flag if output packet detected */ if (cp->flags & IP_VS_CONN_F_NOOUTPUT) { if (direction == IP_VS_DIR_OUTPUT) cp->flags &= ~IP_VS_CONN_F_NOOUTPUT; else direction = IP_VS_DIR_INPUT_ONLY; } next_state = sctp_states[direction][event][cp->state]; if (next_state != cp->state) { struct ip_vs_dest *dest = cp->dest; IP_VS_DBG_BUF(8, "%s %s %s:%d->" "%s:%d state: %s->%s conn->refcnt:%d\n", pd->pp->name, ((direction == IP_VS_DIR_OUTPUT) ? "output " : "input "), IP_VS_DBG_ADDR(cp->daf, &cp->daddr), ntohs(cp->dport), IP_VS_DBG_ADDR(cp->af, &cp->caddr), ntohs(cp->cport), sctp_state_name(cp->state), sctp_state_name(next_state), refcount_read(&cp->refcnt)); if (dest) { if (!(cp->flags & IP_VS_CONN_F_INACTIVE) && (next_state != IP_VS_SCTP_S_ESTABLISHED)) { atomic_dec(&dest->activeconns); atomic_inc(&dest->inactconns); cp->flags |= IP_VS_CONN_F_INACTIVE; } else if ((cp->flags & IP_VS_CONN_F_INACTIVE) && (next_state == IP_VS_SCTP_S_ESTABLISHED)) { atomic_inc(&dest->activeconns); atomic_dec(&dest->inactconns); cp->flags &= ~IP_VS_CONN_F_INACTIVE; } } if (next_state == IP_VS_SCTP_S_ESTABLISHED) ip_vs_control_assure_ct(cp); } if (likely(pd)) cp->timeout = pd->timeout_table[cp->state = next_state]; else /* What to do ? */ cp->timeout = sctp_timeouts[cp->state = next_state]; } static void sctp_state_transition(struct ip_vs_conn *cp, int direction, const struct sk_buff *skb, struct ip_vs_proto_data *pd) { spin_lock_bh(&cp->lock); set_sctp_state(pd, cp, direction, skb); spin_unlock_bh(&cp->lock); } static inline __u16 sctp_app_hashkey(__be16 port) { return (((__force u16)port >> SCTP_APP_TAB_BITS) ^ (__force u16)port) & SCTP_APP_TAB_MASK; } static int sctp_register_app(struct netns_ipvs *ipvs, struct ip_vs_app *inc) { struct ip_vs_app *i; __u16 hash; __be16 port = inc->port; int ret = 0; struct ip_vs_proto_data *pd = ip_vs_proto_data_get(ipvs, IPPROTO_SCTP); hash = sctp_app_hashkey(port); list_for_each_entry(i, &ipvs->sctp_apps[hash], p_list) { if (i->port == port) { ret = -EEXIST; goto out; } } list_add_rcu(&inc->p_list, &ipvs->sctp_apps[hash]); atomic_inc(&pd->appcnt); out: return ret; } static void sctp_unregister_app(struct netns_ipvs *ipvs, struct ip_vs_app *inc) { struct ip_vs_proto_data *pd = ip_vs_proto_data_get(ipvs, IPPROTO_SCTP); atomic_dec(&pd->appcnt); list_del_rcu(&inc->p_list); } static int sctp_app_conn_bind(struct ip_vs_conn *cp) { struct netns_ipvs *ipvs = cp->ipvs; int hash; struct ip_vs_app *inc; int result = 0; /* Default binding: bind app only for NAT */ if (IP_VS_FWD_METHOD(cp) != IP_VS_CONN_F_MASQ) return 0; /* Lookup application incarnations and bind the right one */ hash = sctp_app_hashkey(cp->vport); list_for_each_entry_rcu(inc, &ipvs->sctp_apps[hash], p_list) { if (inc->port == cp->vport) { if (unlikely(!ip_vs_app_inc_get(inc))) break; IP_VS_DBG_BUF(9, "%s: Binding conn %s:%u->" "%s:%u to app %s on port %u\n", __func__, IP_VS_DBG_ADDR(cp->af, &cp->caddr), ntohs(cp->cport), IP_VS_DBG_ADDR(cp->af, &cp->vaddr), ntohs(cp->vport), inc->name, ntohs(inc->port)); cp->app = inc; if (inc->init_conn) result = inc->init_conn(inc, cp); break; } } return result; } /* --------------------------------------------- * timeouts is netns related now. * --------------------------------------------- */ static int __ip_vs_sctp_init(struct netns_ipvs *ipvs, struct ip_vs_proto_data *pd) { ip_vs_init_hash_table(ipvs->sctp_apps, SCTP_APP_TAB_SIZE); pd->timeout_table = ip_vs_create_timeout_table((int *)sctp_timeouts, sizeof(sctp_timeouts)); if (!pd->timeout_table) return -ENOMEM; return 0; } static void __ip_vs_sctp_exit(struct netns_ipvs *ipvs, struct ip_vs_proto_data *pd) { kfree(pd->timeout_table); } struct ip_vs_protocol ip_vs_protocol_sctp = { .name = "SCTP", .protocol = IPPROTO_SCTP, .num_states = IP_VS_SCTP_S_LAST, .dont_defrag = 0, .init = NULL, .exit = NULL, .init_netns = __ip_vs_sctp_init, .exit_netns = __ip_vs_sctp_exit, .register_app = sctp_register_app, .unregister_app = sctp_unregister_app, .conn_schedule = sctp_conn_schedule, .conn_in_get = ip_vs_conn_in_get_proto, .conn_out_get = ip_vs_conn_out_get_proto, .snat_handler = sctp_snat_handler, .dnat_handler = sctp_dnat_handler, .state_name = sctp_state_name, .state_transition = sctp_state_transition, .app_conn_bind = sctp_app_conn_bind, .debug_packet = ip_vs_tcpudp_debug_packet, .timeout_change = NULL, }; |
1 7 7 8 8 3 3 1 1 4 3 1 3 3 3 4 4 8 8 3 1 1 1 1 2 2 8 6 1 1 5 1 1 3 2 2 4 3 4 1 3 3 3 3 13 14 1 1 4 5 3 2 2 10 5 4 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 | // SPDX-License-Identifier: GPL-2.0-or-later /* * net/sched/act_api.c Packet action API. * * Author: Jamal Hadi Salim */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/skbuff.h> #include <linux/init.h> #include <linux/kmod.h> #include <linux/err.h> #include <linux/module.h> #include <net/net_namespace.h> #include <net/sock.h> #include <net/sch_generic.h> #include <net/pkt_cls.h> #include <net/act_api.h> #include <net/netlink.h> #ifdef CONFIG_INET DEFINE_STATIC_KEY_FALSE(tcf_frag_xmit_count); EXPORT_SYMBOL_GPL(tcf_frag_xmit_count); #endif int tcf_dev_queue_xmit(struct sk_buff *skb, int (*xmit)(struct sk_buff *skb)) { #ifdef CONFIG_INET if (static_branch_unlikely(&tcf_frag_xmit_count)) return sch_frag_xmit_hook(skb, xmit); #endif return xmit(skb); } EXPORT_SYMBOL_GPL(tcf_dev_queue_xmit); static void tcf_action_goto_chain_exec(const struct tc_action *a, struct tcf_result *res) { const struct tcf_chain *chain = rcu_dereference_bh(a->goto_chain); res->goto_tp = rcu_dereference_bh(chain->filter_chain); } static void tcf_free_cookie_rcu(struct rcu_head *p) { struct tc_cookie *cookie = container_of(p, struct tc_cookie, rcu); kfree(cookie->data); kfree(cookie); } static void tcf_set_action_cookie(struct tc_cookie __rcu **old_cookie, struct tc_cookie *new_cookie) { struct tc_cookie *old; old = xchg((__force struct tc_cookie **)old_cookie, new_cookie); if (old) call_rcu(&old->rcu, tcf_free_cookie_rcu); } int tcf_action_check_ctrlact(int action, struct tcf_proto *tp, struct tcf_chain **newchain, struct netlink_ext_ack *extack) { int opcode = TC_ACT_EXT_OPCODE(action), ret = -EINVAL; u32 chain_index; if (!opcode) ret = action > TC_ACT_VALUE_MAX ? -EINVAL : 0; else if (opcode <= TC_ACT_EXT_OPCODE_MAX || action == TC_ACT_UNSPEC) ret = 0; if (ret) { NL_SET_ERR_MSG(extack, "invalid control action"); goto end; } if (TC_ACT_EXT_CMP(action, TC_ACT_GOTO_CHAIN)) { chain_index = action & TC_ACT_EXT_VAL_MASK; if (!tp || !newchain) { ret = -EINVAL; NL_SET_ERR_MSG(extack, "can't goto NULL proto/chain"); goto end; } *newchain = tcf_chain_get_by_act(tp->chain->block, chain_index); if (!*newchain) { ret = -ENOMEM; NL_SET_ERR_MSG(extack, "can't allocate goto_chain"); } } end: return ret; } EXPORT_SYMBOL(tcf_action_check_ctrlact); struct tcf_chain *tcf_action_set_ctrlact(struct tc_action *a, int action, struct tcf_chain *goto_chain) { a->tcfa_action = action; goto_chain = rcu_replace_pointer(a->goto_chain, goto_chain, 1); return goto_chain; } EXPORT_SYMBOL(tcf_action_set_ctrlact); /* XXX: For standalone actions, we don't need a RCU grace period either, because * actions are always connected to filters and filters are already destroyed in * RCU callbacks, so after a RCU grace period actions are already disconnected * from filters. Readers later can not find us. */ static void free_tcf(struct tc_action *p) { struct tcf_chain *chain = rcu_dereference_protected(p->goto_chain, 1); free_percpu(p->cpu_bstats); free_percpu(p->cpu_bstats_hw); free_percpu(p->cpu_qstats); tcf_set_action_cookie(&p->act_cookie, NULL); if (chain) tcf_chain_put_by_act(chain); kfree(p); } static void tcf_action_cleanup(struct tc_action *p) { if (p->ops->cleanup) p->ops->cleanup(p); gen_kill_estimator(&p->tcfa_rate_est); free_tcf(p); } static int __tcf_action_put(struct tc_action *p, bool bind) { struct tcf_idrinfo *idrinfo = p->idrinfo; if (refcount_dec_and_mutex_lock(&p->tcfa_refcnt, &idrinfo->lock)) { if (bind) atomic_dec(&p->tcfa_bindcnt); idr_remove(&idrinfo->action_idr, p->tcfa_index); mutex_unlock(&idrinfo->lock); tcf_action_cleanup(p); return 1; } if (bind) atomic_dec(&p->tcfa_bindcnt); return 0; } static int __tcf_idr_release(struct tc_action *p, bool bind, bool strict) { int ret = 0; /* Release with strict==1 and bind==0 is only called through act API * interface (classifiers always bind). Only case when action with * positive reference count and zero bind count can exist is when it was * also created with act API (unbinding last classifier will destroy the * action if it was created by classifier). So only case when bind count * can be changed after initial check is when unbound action is * destroyed by act API while classifier binds to action with same id * concurrently. This result either creation of new action(same behavior * as before), or reusing existing action if concurrent process * increments reference count before action is deleted. Both scenarios * are acceptable. */ if (p) { if (!bind && strict && atomic_read(&p->tcfa_bindcnt) > 0) return -EPERM; if (__tcf_action_put(p, bind)) ret = ACT_P_DELETED; } return ret; } int tcf_idr_release(struct tc_action *a, bool bind) { const struct tc_action_ops *ops = a->ops; int ret; ret = __tcf_idr_release(a, bind, false); if (ret == ACT_P_DELETED) module_put(ops->owner); return ret; } EXPORT_SYMBOL(tcf_idr_release); static size_t tcf_action_shared_attrs_size(const struct tc_action *act) { struct tc_cookie *act_cookie; u32 cookie_len = 0; rcu_read_lock(); act_cookie = rcu_dereference(act->act_cookie); if (act_cookie) cookie_len = nla_total_size(act_cookie->len); rcu_read_unlock(); return nla_total_size(0) /* action number nested */ + nla_total_size(IFNAMSIZ) /* TCA_ACT_KIND */ + cookie_len /* TCA_ACT_COOKIE */ + nla_total_size(sizeof(struct nla_bitfield32)) /* TCA_ACT_HW_STATS */ + nla_total_size(0) /* TCA_ACT_STATS nested */ + nla_total_size(sizeof(struct nla_bitfield32)) /* TCA_ACT_FLAGS */ /* TCA_STATS_BASIC */ + nla_total_size_64bit(sizeof(struct gnet_stats_basic)) /* TCA_STATS_PKT64 */ + nla_total_size_64bit(sizeof(u64)) /* TCA_STATS_QUEUE */ + nla_total_size_64bit(sizeof(struct gnet_stats_queue)) + nla_total_size(0) /* TCA_OPTIONS nested */ + nla_total_size(sizeof(struct tcf_t)); /* TCA_GACT_TM */ } static size_t tcf_action_full_attrs_size(size_t sz) { return NLMSG_HDRLEN /* struct nlmsghdr */ + sizeof(struct tcamsg) + nla_total_size(0) /* TCA_ACT_TAB nested */ + sz; } static size_t tcf_action_fill_size(const struct tc_action *act) { size_t sz = tcf_action_shared_attrs_size(act); if (act->ops->get_fill_size) return act->ops->get_fill_size(act) + sz; return sz; } static int tcf_action_dump_terse(struct sk_buff *skb, struct tc_action *a, bool from_act) { unsigned char *b = skb_tail_pointer(skb); struct tc_cookie *cookie; if (nla_put_string(skb, TCA_KIND, a->ops->kind)) goto nla_put_failure; if (tcf_action_copy_stats(skb, a, 0)) goto nla_put_failure; if (from_act && nla_put_u32(skb, TCA_ACT_INDEX, a->tcfa_index)) goto nla_put_failure; rcu_read_lock(); cookie = rcu_dereference(a->act_cookie); if (cookie) { if (nla_put(skb, TCA_ACT_COOKIE, cookie->len, cookie->data)) { rcu_read_unlock(); goto nla_put_failure; } } rcu_read_unlock(); return 0; nla_put_failure: nlmsg_trim(skb, b); return -1; } static int tcf_dump_walker(struct tcf_idrinfo *idrinfo, struct sk_buff *skb, struct netlink_callback *cb) { int err = 0, index = -1, s_i = 0, n_i = 0; u32 act_flags = cb->args[2]; unsigned long jiffy_since = cb->args[3]; struct nlattr *nest; struct idr *idr = &idrinfo->action_idr; struct tc_action *p; unsigned long id = 1; unsigned long tmp; mutex_lock(&idrinfo->lock); s_i = cb->args[0]; idr_for_each_entry_ul(idr, p, tmp, id) { index++; if (index < s_i) continue; if (IS_ERR(p)) continue; if (jiffy_since && time_after(jiffy_since, (unsigned long)p->tcfa_tm.lastuse)) continue; nest = nla_nest_start_noflag(skb, n_i); if (!nest) { index--; goto nla_put_failure; } err = (act_flags & TCA_ACT_FLAG_TERSE_DUMP) ? tcf_action_dump_terse(skb, p, true) : tcf_action_dump_1(skb, p, 0, 0); if (err < 0) { index--; nlmsg_trim(skb, nest); goto done; } nla_nest_end(skb, nest); n_i++; if (!(act_flags & TCA_ACT_FLAG_LARGE_DUMP_ON) && n_i >= TCA_ACT_MAX_PRIO) goto done; } done: if (index >= 0) cb->args[0] = index + 1; mutex_unlock(&idrinfo->lock); if (n_i) { if (act_flags & TCA_ACT_FLAG_LARGE_DUMP_ON) cb->args[1] = n_i; } return n_i; nla_put_failure: nla_nest_cancel(skb, nest); goto done; } static int tcf_idr_release_unsafe(struct tc_action *p) { if (atomic_read(&p->tcfa_bindcnt) > 0) return -EPERM; if (refcount_dec_and_test(&p->tcfa_refcnt)) { idr_remove(&p->idrinfo->action_idr, p->tcfa_index); tcf_action_cleanup(p); return ACT_P_DELETED; } return 0; } static int tcf_del_walker(struct tcf_idrinfo *idrinfo, struct sk_buff *skb, const struct tc_action_ops *ops, struct netlink_ext_ack *extack) { struct nlattr *nest; int n_i = 0; int ret = -EINVAL; struct idr *idr = &idrinfo->action_idr; struct tc_action *p; unsigned long id = 1; unsigned long tmp; nest = nla_nest_start_noflag(skb, 0); if (nest == NULL) goto nla_put_failure; if (nla_put_string(skb, TCA_KIND, ops->kind)) goto nla_put_failure; ret = 0; mutex_lock(&idrinfo->lock); idr_for_each_entry_ul(idr, p, tmp, id) { if (IS_ERR(p)) continue; ret = tcf_idr_release_unsafe(p); if (ret == ACT_P_DELETED) module_put(ops->owner); else if (ret < 0) break; n_i++; } mutex_unlock(&idrinfo->lock); if (ret < 0) { if (n_i) NL_SET_ERR_MSG(extack, "Unable to flush all TC actions"); else goto nla_put_failure; } ret = nla_put_u32(skb, TCA_FCNT, n_i); if (ret) goto nla_put_failure; nla_nest_end(skb, nest); return n_i; nla_put_failure: nla_nest_cancel(skb, nest); return ret; } int tcf_generic_walker(struct tc_action_net *tn, struct sk_buff *skb, struct netlink_callback *cb, int type, const struct tc_action_ops *ops, struct netlink_ext_ack *extack) { struct tcf_idrinfo *idrinfo = tn->idrinfo; if (type == RTM_DELACTION) { return tcf_del_walker(idrinfo, skb, ops, extack); } else if (type == RTM_GETACTION) { return tcf_dump_walker(idrinfo, skb, cb); } else { WARN(1, "tcf_generic_walker: unknown command %d\n", type); NL_SET_ERR_MSG(extack, "tcf_generic_walker: unknown command"); return -EINVAL; } } EXPORT_SYMBOL(tcf_generic_walker); int tcf_idr_search(struct tc_action_net *tn, struct tc_action **a, u32 index) { struct tcf_idrinfo *idrinfo = tn->idrinfo; struct tc_action *p; mutex_lock(&idrinfo->lock); p = idr_find(&idrinfo->action_idr, index); if (IS_ERR(p)) p = NULL; else if (p) refcount_inc(&p->tcfa_refcnt); mutex_unlock(&idrinfo->lock); if (p) { *a = p; return true; } return false; } EXPORT_SYMBOL(tcf_idr_search); static int tcf_idr_delete_index(struct tcf_idrinfo *idrinfo, u32 index) { struct tc_action *p; int ret = 0; mutex_lock(&idrinfo->lock); p = idr_find(&idrinfo->action_idr, index); if (!p) { mutex_unlock(&idrinfo->lock); return -ENOENT; } if (!atomic_read(&p->tcfa_bindcnt)) { if (refcount_dec_and_test(&p->tcfa_refcnt)) { struct module *owner = p->ops->owner; WARN_ON(p != idr_remove(&idrinfo->action_idr, p->tcfa_index)); mutex_unlock(&idrinfo->lock); tcf_action_cleanup(p); module_put(owner); return 0; } ret = 0; } else { ret = -EPERM; } mutex_unlock(&idrinfo->lock); return ret; } int tcf_idr_create(struct tc_action_net *tn, u32 index, struct nlattr *est, struct tc_action **a, const struct tc_action_ops *ops, int bind, bool cpustats, u32 flags) { struct tc_action *p = kzalloc(ops->size, GFP_KERNEL); struct tcf_idrinfo *idrinfo = tn->idrinfo; int err = -ENOMEM; if (unlikely(!p)) return -ENOMEM; refcount_set(&p->tcfa_refcnt, 1); if (bind) atomic_set(&p->tcfa_bindcnt, 1); if (cpustats) { p->cpu_bstats = netdev_alloc_pcpu_stats(struct gnet_stats_basic_cpu); if (!p->cpu_bstats) goto err1; p->cpu_bstats_hw = netdev_alloc_pcpu_stats(struct gnet_stats_basic_cpu); if (!p->cpu_bstats_hw) goto err2; p->cpu_qstats = alloc_percpu(struct gnet_stats_queue); if (!p->cpu_qstats) goto err3; } spin_lock_init(&p->tcfa_lock); p->tcfa_index = index; p->tcfa_tm.install = jiffies; p->tcfa_tm.lastuse = jiffies; p->tcfa_tm.firstuse = 0; p->tcfa_flags = flags & TCA_ACT_FLAGS_USER_MASK; if (est) { err = gen_new_estimator(&p->tcfa_bstats, p->cpu_bstats, &p->tcfa_rate_est, &p->tcfa_lock, NULL, est); if (err) goto err4; } p->idrinfo = idrinfo; __module_get(ops->owner); p->ops = ops; *a = p; return 0; err4: free_percpu(p->cpu_qstats); err3: free_percpu(p->cpu_bstats_hw); err2: free_percpu(p->cpu_bstats); err1: kfree(p); return err; } EXPORT_SYMBOL(tcf_idr_create); int tcf_idr_create_from_flags(struct tc_action_net *tn, u32 index, struct nlattr *est, struct tc_action **a, const struct tc_action_ops *ops, int bind, u32 flags) { /* Set cpustats according to actions flags. */ return tcf_idr_create(tn, index, est, a, ops, bind, !(flags & TCA_ACT_FLAGS_NO_PERCPU_STATS), flags); } EXPORT_SYMBOL(tcf_idr_create_from_flags); /* Cleanup idr index that was allocated but not initialized. */ void tcf_idr_cleanup(struct tc_action_net *tn, u32 index) { struct tcf_idrinfo *idrinfo = tn->idrinfo; mutex_lock(&idrinfo->lock); /* Remove ERR_PTR(-EBUSY) allocated by tcf_idr_check_alloc */ WARN_ON(!IS_ERR(idr_remove(&idrinfo->action_idr, index))); mutex_unlock(&idrinfo->lock); } EXPORT_SYMBOL(tcf_idr_cleanup); /* Check if action with specified index exists. If actions is found, increments * its reference and bind counters, and return 1. Otherwise insert temporary * error pointer (to prevent concurrent users from inserting actions with same * index) and return 0. * * May return -EAGAIN for binding actions in case of a parallel add/delete on * the requested index. */ int tcf_idr_check_alloc(struct tc_action_net *tn, u32 *index, struct tc_action **a, int bind) { struct tcf_idrinfo *idrinfo = tn->idrinfo; struct tc_action *p; int ret; u32 max; if (*index) { rcu_read_lock(); p = idr_find(&idrinfo->action_idr, *index); if (IS_ERR(p)) { /* This means that another process allocated * index but did not assign the pointer yet. */ rcu_read_unlock(); return -EAGAIN; } if (!p) { /* Empty slot, try to allocate it */ max = *index; rcu_read_unlock(); goto new; } if (!refcount_inc_not_zero(&p->tcfa_refcnt)) { /* Action was deleted in parallel */ rcu_read_unlock(); return -EAGAIN; } if (bind) atomic_inc(&p->tcfa_bindcnt); *a = p; rcu_read_unlock(); return 1; } else { /* Find a slot */ *index = 1; max = UINT_MAX; } new: *a = NULL; mutex_lock(&idrinfo->lock); ret = idr_alloc_u32(&idrinfo->action_idr, ERR_PTR(-EBUSY), index, max, GFP_KERNEL); mutex_unlock(&idrinfo->lock); /* N binds raced for action allocation, * retry for all the ones that failed. */ if (ret == -ENOSPC && *index == max) ret = -EAGAIN; return ret; } EXPORT_SYMBOL(tcf_idr_check_alloc); void tcf_idrinfo_destroy(const struct tc_action_ops *ops, struct tcf_idrinfo *idrinfo) { struct idr *idr = &idrinfo->action_idr; struct tc_action *p; int ret; unsigned long id = 1; unsigned long tmp; idr_for_each_entry_ul(idr, p, tmp, id) { ret = __tcf_idr_release(p, false, true); if (ret == ACT_P_DELETED) module_put(ops->owner); else if (ret < 0) return; } idr_destroy(&idrinfo->action_idr); } EXPORT_SYMBOL(tcf_idrinfo_destroy); static LIST_HEAD(act_base); static DEFINE_RWLOCK(act_mod_lock); int tcf_register_action(struct tc_action_ops *act, struct pernet_operations *ops) { struct tc_action_ops *a; int ret; if (!act->act || !act->dump || !act->init || !act->walk || !act->lookup) return -EINVAL; /* We have to register pernet ops before making the action ops visible, * otherwise tcf_action_init_1() could get a partially initialized * netns. */ ret = register_pernet_subsys(ops); if (ret) return ret; write_lock(&act_mod_lock); list_for_each_entry(a, &act_base, head) { if (act->id == a->id || (strcmp(act->kind, a->kind) == 0)) { write_unlock(&act_mod_lock); unregister_pernet_subsys(ops); return -EEXIST; } } list_add_tail(&act->head, &act_base); write_unlock(&act_mod_lock); return 0; } EXPORT_SYMBOL(tcf_register_action); int tcf_unregister_action(struct tc_action_ops *act, struct pernet_operations *ops) { struct tc_action_ops *a; int err = -ENOENT; write_lock(&act_mod_lock); list_for_each_entry(a, &act_base, head) { if (a == act) { list_del(&act->head); err = 0; break; } } write_unlock(&act_mod_lock); if (!err) unregister_pernet_subsys(ops); return err; } EXPORT_SYMBOL(tcf_unregister_action); /* lookup by name */ static struct tc_action_ops *tc_lookup_action_n(char *kind) { struct tc_action_ops *a, *res = NULL; if (kind) { read_lock(&act_mod_lock); list_for_each_entry(a, &act_base, head) { if (strcmp(kind, a->kind) == 0) { if (try_module_get(a->owner)) res = a; break; } } read_unlock(&act_mod_lock); } return res; } /* lookup by nlattr */ static struct tc_action_ops *tc_lookup_action(struct nlattr *kind) { struct tc_action_ops *a, *res = NULL; if (kind) { read_lock(&act_mod_lock); list_for_each_entry(a, &act_base, head) { if (nla_strcmp(kind, a->kind) == 0) { if (try_module_get(a->owner)) res = a; break; } } read_unlock(&act_mod_lock); } return res; } /*TCA_ACT_MAX_PRIO is 32, there count up to 32 */ #define TCA_ACT_MAX_PRIO_MASK 0x1FF int tcf_action_exec(struct sk_buff *skb, struct tc_action **actions, int nr_actions, struct tcf_result *res) { u32 jmp_prgcnt = 0; u32 jmp_ttl = TCA_ACT_MAX_PRIO; /*matches actions per filter */ int i; int ret = TC_ACT_OK; if (skb_skip_tc_classify(skb)) return TC_ACT_OK; restart_act_graph: for (i = 0; i < nr_actions; i++) { const struct tc_action *a = actions[i]; int repeat_ttl; if (jmp_prgcnt > 0) { jmp_prgcnt -= 1; continue; } repeat_ttl = 32; repeat: ret = a->ops->act(skb, a, res); if (unlikely(ret == TC_ACT_REPEAT)) { if (--repeat_ttl != 0) goto repeat; /* suspicious opcode, stop pipeline */ net_warn_ratelimited("TC_ACT_REPEAT abuse ?\n"); return TC_ACT_OK; } if (TC_ACT_EXT_CMP(ret, TC_ACT_JUMP)) { jmp_prgcnt = ret & TCA_ACT_MAX_PRIO_MASK; if (!jmp_prgcnt || (jmp_prgcnt > nr_actions)) { /* faulty opcode, stop pipeline */ return TC_ACT_OK; } else { jmp_ttl -= 1; if (jmp_ttl > 0) goto restart_act_graph; else /* faulty graph, stop pipeline */ return TC_ACT_OK; } } else if (TC_ACT_EXT_CMP(ret, TC_ACT_GOTO_CHAIN)) { if (unlikely(!rcu_access_pointer(a->goto_chain))) { net_warn_ratelimited("can't go to NULL chain!\n"); return TC_ACT_SHOT; } tcf_action_goto_chain_exec(a, res); } if (ret != TC_ACT_PIPE) break; } return ret; } EXPORT_SYMBOL(tcf_action_exec); int tcf_action_destroy(struct tc_action *actions[], int bind) { const struct tc_action_ops *ops; struct tc_action *a; int ret = 0, i; for (i = 0; i < TCA_ACT_MAX_PRIO && actions[i]; i++) { a = actions[i]; actions[i] = NULL; ops = a->ops; ret = __tcf_idr_release(a, bind, true); if (ret == ACT_P_DELETED) module_put(ops->owner); else if (ret < 0) return ret; } return ret; } static int tcf_action_put(struct tc_action *p) { return __tcf_action_put(p, false); } /* Put all actions in this array, skip those NULL's. */ static void tcf_action_put_many(struct tc_action *actions[]) { int i; for (i = 0; i < TCA_ACT_MAX_PRIO; i++) { struct tc_action *a = actions[i]; const struct tc_action_ops *ops; if (!a) continue; ops = a->ops; if (tcf_action_put(a)) module_put(ops->owner); } } int tcf_action_dump_old(struct sk_buff *skb, struct tc_action *a, int bind, int ref) { return a->ops->dump(skb, a, bind, ref); } int tcf_action_dump_1(struct sk_buff *skb, struct tc_action *a, int bind, int ref) { int err = -EINVAL; unsigned char *b = skb_tail_pointer(skb); struct nlattr *nest; if (tcf_action_dump_terse(skb, a, false)) goto nla_put_failure; if (a->hw_stats != TCA_ACT_HW_STATS_ANY && nla_put_bitfield32(skb, TCA_ACT_HW_STATS, a->hw_stats, TCA_ACT_HW_STATS_ANY)) goto nla_put_failure; if (a->used_hw_stats_valid && nla_put_bitfield32(skb, TCA_ACT_USED_HW_STATS, a->used_hw_stats, TCA_ACT_HW_STATS_ANY)) goto nla_put_failure; if (a->tcfa_flags && nla_put_bitfield32(skb, TCA_ACT_FLAGS, a->tcfa_flags, a->tcfa_flags)) goto nla_put_failure; nest = nla_nest_start_noflag(skb, TCA_OPTIONS); if (nest == NULL) goto nla_put_failure; err = tcf_action_dump_old(skb, a, bind, ref); if (err > 0) { nla_nest_end(skb, nest); return err; } nla_put_failure: nlmsg_trim(skb, b); return -1; } EXPORT_SYMBOL(tcf_action_dump_1); int tcf_action_dump(struct sk_buff *skb, struct tc_action *actions[], int bind, int ref, bool terse) { struct tc_action *a; int err = -EINVAL, i; struct nlattr *nest; for (i = 0; i < TCA_ACT_MAX_PRIO && actions[i]; i++) { a = actions[i]; nest = nla_nest_start_noflag(skb, i + 1); if (nest == NULL) goto nla_put_failure; err = terse ? tcf_action_dump_terse(skb, a, false) : tcf_action_dump_1(skb, a, bind, ref); if (err < 0) goto errout; nla_nest_end(skb, nest); } return 0; nla_put_failure: err = -EINVAL; errout: nla_nest_cancel(skb, nest); return err; } static struct tc_cookie *nla_memdup_cookie(struct nlattr **tb) { struct tc_cookie *c = kzalloc(sizeof(*c), GFP_KERNEL); if (!c) return NULL; c->data = nla_memdup(tb[TCA_ACT_COOKIE], GFP_KERNEL); if (!c->data) { kfree(c); return NULL; } c->len = nla_len(tb[TCA_ACT_COOKIE]); return c; } static u8 tcf_action_hw_stats_get(struct nlattr *hw_stats_attr) { struct nla_bitfield32 hw_stats_bf; /* If the user did not pass the attr, that means he does * not care about the type. Return "any" in that case * which is setting on all supported types. */ if (!hw_stats_attr) return TCA_ACT_HW_STATS_ANY; hw_stats_bf = nla_get_bitfield32(hw_stats_attr); return hw_stats_bf.value; } static const struct nla_policy tcf_action_policy[TCA_ACT_MAX + 1] = { [TCA_ACT_KIND] = { .type = NLA_STRING }, [TCA_ACT_INDEX] = { .type = NLA_U32 }, [TCA_ACT_COOKIE] = { .type = NLA_BINARY, .len = TC_COOKIE_MAX_SIZE }, [TCA_ACT_OPTIONS] = { .type = NLA_NESTED }, [TCA_ACT_FLAGS] = NLA_POLICY_BITFIELD32(TCA_ACT_FLAGS_NO_PERCPU_STATS), [TCA_ACT_HW_STATS] = NLA_POLICY_BITFIELD32(TCA_ACT_HW_STATS_ANY), }; void tcf_idr_insert_many(struct tc_action *actions[]) { int i; for (i = 0; i < TCA_ACT_MAX_PRIO; i++) { struct tc_action *a = actions[i]; struct tcf_idrinfo *idrinfo; if (!a) continue; idrinfo = a->idrinfo; mutex_lock(&idrinfo->lock); /* Replace ERR_PTR(-EBUSY) allocated by tcf_idr_check_alloc if * it is just created, otherwise this is just a nop. */ idr_replace(&idrinfo->action_idr, a, a->tcfa_index); mutex_unlock(&idrinfo->lock); } } struct tc_action_ops *tc_action_load_ops(struct nlattr *nla, bool police, bool rtnl_held, struct netlink_ext_ack *extack) { struct nlattr *tb[TCA_ACT_MAX + 1]; struct tc_action_ops *a_o; char act_name[IFNAMSIZ]; struct nlattr *kind; int err; if (!police) { err = nla_parse_nested_deprecated(tb, TCA_ACT_MAX, nla, tcf_action_policy, extack); if (err < 0) return ERR_PTR(err); err = -EINVAL; kind = tb[TCA_ACT_KIND]; if (!kind) { NL_SET_ERR_MSG(extack, "TC action kind must be specified"); return ERR_PTR(err); } if (nla_strscpy(act_name, kind, IFNAMSIZ) < 0) { NL_SET_ERR_MSG(extack, "TC action name too long"); return ERR_PTR(err); } } else { if (strlcpy(act_name, "police", IFNAMSIZ) >= IFNAMSIZ) { NL_SET_ERR_MSG(extack, "TC action name too long"); return ERR_PTR(-EINVAL); } } a_o = tc_lookup_action_n(act_name); if (a_o == NULL) { #ifdef CONFIG_MODULES if (rtnl_held) rtnl_unlock(); request_module("act_%s", act_name); if (rtnl_held) rtnl_lock(); a_o = tc_lookup_action_n(act_name); /* We dropped the RTNL semaphore in order to * perform the module load. So, even if we * succeeded in loading the module we have to * tell the caller to replay the request. We * indicate this using -EAGAIN. */ if (a_o != NULL) { module_put(a_o->owner); return ERR_PTR(-EAGAIN); } #endif NL_SET_ERR_MSG(extack, "Failed to load TC action module"); return ERR_PTR(-ENOENT); } return a_o; } struct tc_action *tcf_action_init_1(struct net *net, struct tcf_proto *tp, struct nlattr *nla, struct nlattr *est, struct tc_action_ops *a_o, int *init_res, u32 flags, struct netlink_ext_ack *extack) { bool police = flags & TCA_ACT_FLAGS_POLICE; struct nla_bitfield32 userflags = { 0, 0 }; u8 hw_stats = TCA_ACT_HW_STATS_ANY; struct nlattr *tb[TCA_ACT_MAX + 1]; struct tc_cookie *cookie = NULL; struct tc_action *a; int err; /* backward compatibility for policer */ if (!police) { err = nla_parse_nested_deprecated(tb, TCA_ACT_MAX, nla, tcf_action_policy, extack); if (err < 0) return ERR_PTR(err); if (tb[TCA_ACT_COOKIE]) { cookie = nla_memdup_cookie(tb); if (!cookie) { NL_SET_ERR_MSG(extack, "No memory to generate TC cookie"); err = -ENOMEM; goto err_out; } } hw_stats = tcf_action_hw_stats_get(tb[TCA_ACT_HW_STATS]); if (tb[TCA_ACT_FLAGS]) userflags = nla_get_bitfield32(tb[TCA_ACT_FLAGS]); err = a_o->init(net, tb[TCA_ACT_OPTIONS], est, &a, tp, userflags.value | flags, extack); } else { err = a_o->init(net, nla, est, &a, tp, userflags.value | flags, extack); } if (err < 0) goto err_out; *init_res = err; if (!police && tb[TCA_ACT_COOKIE]) tcf_set_action_cookie(&a->act_cookie, cookie); if (!police) a->hw_stats = hw_stats; return a; err_out: if (cookie) { kfree(cookie->data); kfree(cookie); } return ERR_PTR(err); } /* Returns numbers of initialized actions or negative error. */ int tcf_action_init(struct net *net, struct tcf_proto *tp, struct nlattr *nla, struct nlattr *est, struct tc_action *actions[], int init_res[], size_t *attr_size, u32 flags, struct netlink_ext_ack *extack) { struct tc_action_ops *ops[TCA_ACT_MAX_PRIO] = {}; struct nlattr *tb[TCA_ACT_MAX_PRIO + 1]; struct tc_action *act; size_t sz = 0; int err; int i; err = nla_parse_nested_deprecated(tb, TCA_ACT_MAX_PRIO, nla, NULL, extack); if (err < 0) return err; for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { struct tc_action_ops *a_o; a_o = tc_action_load_ops(tb[i], flags & TCA_ACT_FLAGS_POLICE, !(flags & TCA_ACT_FLAGS_NO_RTNL), extack); if (IS_ERR(a_o)) { err = PTR_ERR(a_o); goto err_mod; } ops[i - 1] = a_o; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_init_1(net, tp, tb[i], est, ops[i - 1], &init_res[i - 1], flags, extack); if (IS_ERR(act)) { err = PTR_ERR(act); goto err; } sz += tcf_action_fill_size(act); /* Start from index 0 */ actions[i - 1] = act; } /* We have to commit them all together, because if any error happened in * between, we could not handle the failure gracefully. */ tcf_idr_insert_many(actions); *attr_size = tcf_action_full_attrs_size(sz); err = i - 1; goto err_mod; err: tcf_action_destroy(actions, flags & TCA_ACT_FLAGS_BIND); err_mod: for (i = 0; i < TCA_ACT_MAX_PRIO; i++) { if (ops[i]) module_put(ops[i]->owner); } return err; } void tcf_action_update_stats(struct tc_action *a, u64 bytes, u64 packets, u64 drops, bool hw) { if (a->cpu_bstats) { _bstats_cpu_update(this_cpu_ptr(a->cpu_bstats), bytes, packets); this_cpu_ptr(a->cpu_qstats)->drops += drops; if (hw) _bstats_cpu_update(this_cpu_ptr(a->cpu_bstats_hw), bytes, packets); return; } _bstats_update(&a->tcfa_bstats, bytes, packets); a->tcfa_qstats.drops += drops; if (hw) _bstats_update(&a->tcfa_bstats_hw, bytes, packets); } EXPORT_SYMBOL(tcf_action_update_stats); int tcf_action_copy_stats(struct sk_buff *skb, struct tc_action *p, int compat_mode) { int err = 0; struct gnet_dump d; if (p == NULL) goto errout; /* compat_mode being true specifies a call that is supposed * to add additional backward compatibility statistic TLVs. */ if (compat_mode) { if (p->type == TCA_OLD_COMPAT) err = gnet_stats_start_copy_compat(skb, 0, TCA_STATS, TCA_XSTATS, &p->tcfa_lock, &d, TCA_PAD); else return 0; } else err = gnet_stats_start_copy(skb, TCA_ACT_STATS, &p->tcfa_lock, &d, TCA_ACT_PAD); if (err < 0) goto errout; if (gnet_stats_copy_basic(NULL, &d, p->cpu_bstats, &p->tcfa_bstats) < 0 || gnet_stats_copy_basic_hw(NULL, &d, p->cpu_bstats_hw, &p->tcfa_bstats_hw) < 0 || gnet_stats_copy_rate_est(&d, &p->tcfa_rate_est) < 0 || gnet_stats_copy_queue(&d, p->cpu_qstats, &p->tcfa_qstats, p->tcfa_qstats.qlen) < 0) goto errout; if (gnet_stats_finish_copy(&d) < 0) goto errout; return 0; errout: return -1; } static int tca_get_fill(struct sk_buff *skb, struct tc_action *actions[], u32 portid, u32 seq, u16 flags, int event, int bind, int ref) { struct tcamsg *t; struct nlmsghdr *nlh; unsigned char *b = skb_tail_pointer(skb); struct nlattr *nest; nlh = nlmsg_put(skb, portid, seq, event, sizeof(*t), flags); if (!nlh) goto out_nlmsg_trim; t = nlmsg_data(nlh); t->tca_family = AF_UNSPEC; t->tca__pad1 = 0; t->tca__pad2 = 0; nest = nla_nest_start_noflag(skb, TCA_ACT_TAB); if (!nest) goto out_nlmsg_trim; if (tcf_action_dump(skb, actions, bind, ref, false) < 0) goto out_nlmsg_trim; nla_nest_end(skb, nest); nlh->nlmsg_len = skb_tail_pointer(skb) - b; return skb->len; out_nlmsg_trim: nlmsg_trim(skb, b); return -1; } static int tcf_get_notify(struct net *net, u32 portid, struct nlmsghdr *n, struct tc_action *actions[], int event, struct netlink_ext_ack *extack) { struct sk_buff *skb; skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); if (!skb) return -ENOBUFS; if (tca_get_fill(skb, actions, portid, n->nlmsg_seq, 0, event, 0, 1) <= 0) { NL_SET_ERR_MSG(extack, "Failed to fill netlink attributes while adding TC action"); kfree_skb(skb); return -EINVAL; } return rtnl_unicast(skb, net, portid); } static struct tc_action *tcf_action_get_1(struct net *net, struct nlattr *nla, struct nlmsghdr *n, u32 portid, struct netlink_ext_ack *extack) { struct nlattr *tb[TCA_ACT_MAX + 1]; const struct tc_action_ops *ops; struct tc_action *a; int index; int err; err = nla_parse_nested_deprecated(tb, TCA_ACT_MAX, nla, tcf_action_policy, extack); if (err < 0) goto err_out; err = -EINVAL; if (tb[TCA_ACT_INDEX] == NULL || nla_len(tb[TCA_ACT_INDEX]) < sizeof(index)) { NL_SET_ERR_MSG(extack, "Invalid TC action index value"); goto err_out; } index = nla_get_u32(tb[TCA_ACT_INDEX]); err = -EINVAL; ops = tc_lookup_action(tb[TCA_ACT_KIND]); if (!ops) { /* could happen in batch of actions */ NL_SET_ERR_MSG(extack, "Specified TC action kind not found"); goto err_out; } err = -ENOENT; if (ops->lookup(net, &a, index) == 0) { NL_SET_ERR_MSG(extack, "TC action with specified index not found"); goto err_mod; } module_put(ops->owner); return a; err_mod: module_put(ops->owner); err_out: return ERR_PTR(err); } static int tca_action_flush(struct net *net, struct nlattr *nla, struct nlmsghdr *n, u32 portid, struct netlink_ext_ack *extack) { struct sk_buff *skb; unsigned char *b; struct nlmsghdr *nlh; struct tcamsg *t; struct netlink_callback dcb; struct nlattr *nest; struct nlattr *tb[TCA_ACT_MAX + 1]; const struct tc_action_ops *ops; struct nlattr *kind; int err = -ENOMEM; skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); if (!skb) return err; b = skb_tail_pointer(skb); err = nla_parse_nested_deprecated(tb, TCA_ACT_MAX, nla, tcf_action_policy, extack); if (err < 0) goto err_out; err = -EINVAL; kind = tb[TCA_ACT_KIND]; ops = tc_lookup_action(kind); if (!ops) { /*some idjot trying to flush unknown action */ NL_SET_ERR_MSG(extack, "Cannot flush unknown TC action"); goto err_out; } nlh = nlmsg_put(skb, portid, n->nlmsg_seq, RTM_DELACTION, sizeof(*t), 0); if (!nlh) { NL_SET_ERR_MSG(extack, "Failed to create TC action flush notification"); goto out_module_put; } t = nlmsg_data(nlh); t->tca_family = AF_UNSPEC; t->tca__pad1 = 0; t->tca__pad2 = 0; nest = nla_nest_start_noflag(skb, TCA_ACT_TAB); if (!nest) { NL_SET_ERR_MSG(extack, "Failed to add new netlink message"); goto out_module_put; } err = ops->walk(net, skb, &dcb, RTM_DELACTION, ops, extack); if (err <= 0) { nla_nest_cancel(skb, nest); goto out_module_put; } nla_nest_end(skb, nest); nlh->nlmsg_len = skb_tail_pointer(skb) - b; nlh->nlmsg_flags |= NLM_F_ROOT; module_put(ops->owner); err = rtnetlink_send(skb, net, portid, RTNLGRP_TC, n->nlmsg_flags & NLM_F_ECHO); if (err < 0) NL_SET_ERR_MSG(extack, "Failed to send TC action flush notification"); return err; out_module_put: module_put(ops->owner); err_out: kfree_skb(skb); return err; } static int tcf_action_delete(struct net *net, struct tc_action *actions[]) { int i; for (i = 0; i < TCA_ACT_MAX_PRIO && actions[i]; i++) { struct tc_action *a = actions[i]; const struct tc_action_ops *ops = a->ops; /* Actions can be deleted concurrently so we must save their * type and id to search again after reference is released. */ struct tcf_idrinfo *idrinfo = a->idrinfo; u32 act_index = a->tcfa_index; actions[i] = NULL; if (tcf_action_put(a)) { /* last reference, action was deleted concurrently */ module_put(ops->owner); } else { int ret; /* now do the delete */ ret = tcf_idr_delete_index(idrinfo, act_index); if (ret < 0) return ret; } } return 0; } static int tcf_del_notify(struct net *net, struct nlmsghdr *n, struct tc_action *actions[], u32 portid, size_t attr_size, struct netlink_ext_ack *extack) { int ret; struct sk_buff *skb; skb = alloc_skb(attr_size <= NLMSG_GOODSIZE ? NLMSG_GOODSIZE : attr_size, GFP_KERNEL); if (!skb) return -ENOBUFS; if (tca_get_fill(skb, actions, portid, n->nlmsg_seq, 0, RTM_DELACTION, 0, 2) <= 0) { NL_SET_ERR_MSG(extack, "Failed to fill netlink TC action attributes"); kfree_skb(skb); return -EINVAL; } /* now do the delete */ ret = tcf_action_delete(net, actions); if (ret < 0) { NL_SET_ERR_MSG(extack, "Failed to delete TC action"); kfree_skb(skb); return ret; } ret = rtnetlink_send(skb, net, portid, RTNLGRP_TC, n->nlmsg_flags & NLM_F_ECHO); return ret; } static int tca_action_gd(struct net *net, struct nlattr *nla, struct nlmsghdr *n, u32 portid, int event, struct netlink_ext_ack *extack) { int i, ret; struct nlattr *tb[TCA_ACT_MAX_PRIO + 1]; struct tc_action *act; size_t attr_size = 0; struct tc_action *actions[TCA_ACT_MAX_PRIO] = {}; ret = nla_parse_nested_deprecated(tb, TCA_ACT_MAX_PRIO, nla, NULL, extack); if (ret < 0) return ret; if (event == RTM_DELACTION && n->nlmsg_flags & NLM_F_ROOT) { if (tb[1]) return tca_action_flush(net, tb[1], n, portid, extack); NL_SET_ERR_MSG(extack, "Invalid netlink attributes while flushing TC action"); return -EINVAL; } for (i = 1; i <= TCA_ACT_MAX_PRIO && tb[i]; i++) { act = tcf_action_get_1(net, tb[i], n, portid, extack); if (IS_ERR(act)) { ret = PTR_ERR(act); goto err; } attr_size += tcf_action_fill_size(act); actions[i - 1] = act; } attr_size = tcf_action_full_attrs_size(attr_size); if (event == RTM_GETACTION) ret = tcf_get_notify(net, portid, n, actions, event, extack); else { /* delete */ ret = tcf_del_notify(net, n, actions, portid, attr_size, extack); if (ret) goto err; return 0; } err: tcf_action_put_many(actions); return ret; } static int tcf_add_notify(struct net *net, struct nlmsghdr *n, struct tc_action *actions[], u32 portid, size_t attr_size, struct netlink_ext_ack *extack) { struct sk_buff *skb; skb = alloc_skb(attr_size <= NLMSG_GOODSIZE ? NLMSG_GOODSIZE : attr_size, GFP_KERNEL); if (!skb) return -ENOBUFS; if (tca_get_fill(skb, actions, portid, n->nlmsg_seq, n->nlmsg_flags, RTM_NEWACTION, 0, 0) <= 0) { NL_SET_ERR_MSG(extack, "Failed to fill netlink attributes while adding TC action"); kfree_skb(skb); return -EINVAL; } return rtnetlink_send(skb, net, portid, RTNLGRP_TC, n->nlmsg_flags & NLM_F_ECHO); } static int tcf_action_add(struct net *net, struct nlattr *nla, struct nlmsghdr *n, u32 portid, u32 flags, struct netlink_ext_ack *extack) { size_t attr_size = 0; int loop, ret, i; struct tc_action *actions[TCA_ACT_MAX_PRIO] = {}; int init_res[TCA_ACT_MAX_PRIO] = {}; for (loop = 0; loop < 10; loop++) { ret = tcf_action_init(net, NULL, nla, NULL, actions, init_res, &attr_size, flags, extack); if (ret != -EAGAIN) break; } if (ret < 0) return ret; ret = tcf_add_notify(net, n, actions, portid, attr_size, extack); /* only put existing actions */ for (i = 0; i < TCA_ACT_MAX_PRIO; i++) if (init_res[i] == ACT_P_CREATED) actions[i] = NULL; tcf_action_put_many(actions); return ret; } static const struct nla_policy tcaa_policy[TCA_ROOT_MAX + 1] = { [TCA_ROOT_FLAGS] = NLA_POLICY_BITFIELD32(TCA_ACT_FLAG_LARGE_DUMP_ON | TCA_ACT_FLAG_TERSE_DUMP), [TCA_ROOT_TIME_DELTA] = { .type = NLA_U32 }, }; static int tc_ctl_action(struct sk_buff *skb, struct nlmsghdr *n, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); struct nlattr *tca[TCA_ROOT_MAX + 1]; u32 portid = NETLINK_CB(skb).portid; u32 flags = 0; int ret = 0; if ((n->nlmsg_type != RTM_GETACTION) && !netlink_capable(skb, CAP_NET_ADMIN)) return -EPERM; ret = nlmsg_parse_deprecated(n, sizeof(struct tcamsg), tca, TCA_ROOT_MAX, NULL, extack); if (ret < 0) return ret; if (tca[TCA_ACT_TAB] == NULL) { NL_SET_ERR_MSG(extack, "Netlink action attributes missing"); return -EINVAL; } /* n->nlmsg_flags & NLM_F_CREATE */ switch (n->nlmsg_type) { case RTM_NEWACTION: /* we are going to assume all other flags * imply create only if it doesn't exist * Note that CREATE | EXCL implies that * but since we want avoid ambiguity (eg when flags * is zero) then just set this */ if (n->nlmsg_flags & NLM_F_REPLACE) flags = TCA_ACT_FLAGS_REPLACE; ret = tcf_action_add(net, tca[TCA_ACT_TAB], n, portid, flags, extack); break; case RTM_DELACTION: ret = tca_action_gd(net, tca[TCA_ACT_TAB], n, portid, RTM_DELACTION, extack); break; case RTM_GETACTION: ret = tca_action_gd(net, tca[TCA_ACT_TAB], n, portid, RTM_GETACTION, extack); break; default: BUG(); } return ret; } static struct nlattr *find_dump_kind(struct nlattr **nla) { struct nlattr *tb1, *tb2[TCA_ACT_MAX + 1]; struct nlattr *tb[TCA_ACT_MAX_PRIO + 1]; struct nlattr *kind; tb1 = nla[TCA_ACT_TAB]; if (tb1 == NULL) return NULL; if (nla_parse_deprecated(tb, TCA_ACT_MAX_PRIO, nla_data(tb1), NLMSG_ALIGN(nla_len(tb1)), NULL, NULL) < 0) return NULL; if (tb[1] == NULL) return NULL; if (nla_parse_nested_deprecated(tb2, TCA_ACT_MAX, tb[1], tcf_action_policy, NULL) < 0) return NULL; kind = tb2[TCA_ACT_KIND]; return kind; } static int tc_dump_action(struct sk_buff *skb, struct netlink_callback *cb) { struct net *net = sock_net(skb->sk); struct nlmsghdr *nlh; unsigned char *b = skb_tail_pointer(skb); struct nlattr *nest; struct tc_action_ops *a_o; int ret = 0; struct tcamsg *t = (struct tcamsg *) nlmsg_data(cb->nlh); struct nlattr *tb[TCA_ROOT_MAX + 1]; struct nlattr *count_attr = NULL; unsigned long jiffy_since = 0; struct nlattr *kind = NULL; struct nla_bitfield32 bf; u32 msecs_since = 0; u32 act_count = 0; ret = nlmsg_parse_deprecated(cb->nlh, sizeof(struct tcamsg), tb, TCA_ROOT_MAX, tcaa_policy, cb->extack); if (ret < 0) return ret; kind = find_dump_kind(tb); if (kind == NULL) { pr_info("tc_dump_action: action bad kind\n"); return 0; } a_o = tc_lookup_action(kind); if (a_o == NULL) return 0; cb->args[2] = 0; if (tb[TCA_ROOT_FLAGS]) { bf = nla_get_bitfield32(tb[TCA_ROOT_FLAGS]); cb->args[2] = bf.value; } if (tb[TCA_ROOT_TIME_DELTA]) { msecs_since = nla_get_u32(tb[TCA_ROOT_TIME_DELTA]); } nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, cb->nlh->nlmsg_type, sizeof(*t), 0); if (!nlh) goto out_module_put; if (msecs_since) jiffy_since = jiffies - msecs_to_jiffies(msecs_since); t = nlmsg_data(nlh); t->tca_family = AF_UNSPEC; t->tca__pad1 = 0; t->tca__pad2 = 0; cb->args[3] = jiffy_since; count_attr = nla_reserve(skb, TCA_ROOT_COUNT, sizeof(u32)); if (!count_attr) goto out_module_put; nest = nla_nest_start_noflag(skb, TCA_ACT_TAB); if (nest == NULL) goto out_module_put; ret = a_o->walk(net, skb, cb, RTM_GETACTION, a_o, NULL); if (ret < 0) goto out_module_put; if (ret > 0) { nla_nest_end(skb, nest); ret = skb->len; act_count = cb->args[1]; memcpy(nla_data(count_attr), &act_count, sizeof(u32)); cb->args[1] = 0; } else nlmsg_trim(skb, b); nlh->nlmsg_len = skb_tail_pointer(skb) - b; if (NETLINK_CB(cb->skb).portid && ret) nlh->nlmsg_flags |= NLM_F_MULTI; module_put(a_o->owner); return skb->len; out_module_put: module_put(a_o->owner); nlmsg_trim(skb, b); return skb->len; } static int __init tc_action_init(void) { rtnl_register(PF_UNSPEC, RTM_NEWACTION, tc_ctl_action, NULL, 0); rtnl_register(PF_UNSPEC, RTM_DELACTION, tc_ctl_action, NULL, 0); rtnl_register(PF_UNSPEC, RTM_GETACTION, tc_ctl_action, tc_dump_action, 0); return 0; } subsys_initcall(tc_action_init); |
8 7 9 8 8 8 38 446 446 445 445 446 446 446 188 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | // SPDX-License-Identifier: GPL-2.0-only /* -*- linux-c -*- * sysctl_net.c: sysctl interface to net subsystem. * * Begun April 1, 1996, Mike Shaver. * Added /proc/sys/net directories for each protocol family. [MS] * * Revision 1.2 1996/05/08 20:24:40 shaver * Added bits for NET_BRIDGE and the NET_IPV4_ARP stuff and * NET_IPV4_IP_FORWARD. * * */ #include <linux/mm.h> #include <linux/export.h> #include <linux/sysctl.h> #include <linux/nsproxy.h> #include <net/sock.h> #ifdef CONFIG_INET #include <net/ip.h> #endif #ifdef CONFIG_NET #include <linux/if_ether.h> #endif static struct ctl_table_set * net_ctl_header_lookup(struct ctl_table_root *root) { return ¤t->nsproxy->net_ns->sysctls; } static int is_seen(struct ctl_table_set *set) { return ¤t->nsproxy->net_ns->sysctls == set; } /* Return standard mode bits for table entry. */ static int net_ctl_permissions(struct ctl_table_header *head, struct ctl_table *table) { struct net *net = container_of(head->set, struct net, sysctls); /* Allow network administrator to have same access as root. */ if (ns_capable_noaudit(net->user_ns, CAP_NET_ADMIN)) { int mode = (table->mode >> 6) & 7; return (mode << 6) | (mode << 3) | mode; } return table->mode; } static void net_ctl_set_ownership(struct ctl_table_header *head, struct ctl_table *table, kuid_t *uid, kgid_t *gid) { struct net *net = container_of(head->set, struct net, sysctls); kuid_t ns_root_uid; kgid_t ns_root_gid; ns_root_uid = make_kuid(net->user_ns, 0); if (uid_valid(ns_root_uid)) *uid = ns_root_uid; ns_root_gid = make_kgid(net->user_ns, 0); if (gid_valid(ns_root_gid)) *gid = ns_root_gid; } static struct ctl_table_root net_sysctl_root = { .lookup = net_ctl_header_lookup, .permissions = net_ctl_permissions, .set_ownership = net_ctl_set_ownership, }; static int __net_init sysctl_net_init(struct net *net) { setup_sysctl_set(&net->sysctls, &net_sysctl_root, is_seen); return 0; } static void __net_exit sysctl_net_exit(struct net *net) { retire_sysctl_set(&net->sysctls); } static struct pernet_operations sysctl_pernet_ops = { .init = sysctl_net_init, .exit = sysctl_net_exit, }; static struct ctl_table_header *net_header; __init int net_sysctl_init(void) { static struct ctl_table empty[1]; int ret = -ENOMEM; /* Avoid limitations in the sysctl implementation by * registering "/proc/sys/net" as an empty directory not in a * network namespace. */ net_header = register_sysctl("net", empty); if (!net_header) goto out; ret = register_pernet_subsys(&sysctl_pernet_ops); if (ret) goto out1; out: return ret; out1: unregister_sysctl_table(net_header); net_header = NULL; goto out; } /* Verify that sysctls for non-init netns are safe by either: * 1) being read-only, or * 2) having a data pointer which points outside of the global kernel/module * data segment, and rather into the heap where a per-net object was * allocated. */ static void ensure_safe_net_sysctl(struct net *net, const char *path, struct ctl_table *table) { struct ctl_table *ent; pr_debug("Registering net sysctl (net %p): %s\n", net, path); for (ent = table; ent->procname; ent++) { unsigned long addr; const char *where; pr_debug(" procname=%s mode=%o proc_handler=%ps data=%p\n", ent->procname, ent->mode, ent->proc_handler, ent->data); /* If it's not writable inside the netns, then it can't hurt. */ if ((ent->mode & 0222) == 0) { pr_debug(" Not writable by anyone\n"); continue; } /* Where does data point? */ addr = (unsigned long)ent->data; if (is_module_address(addr)) where = "module"; else if (core_kernel_data(addr)) where = "kernel"; else continue; /* If it is writable and points to kernel/module global * data, then it's probably a netns leak. */ WARN(1, "sysctl %s/%s: data points to %s global data: %ps\n", path, ent->procname, where, ent->data); /* Make it "safe" by dropping writable perms */ ent->mode &= ~0222; } } struct ctl_table_header *register_net_sysctl(struct net *net, const char *path, struct ctl_table *table) { if (!net_eq(net, &init_net)) ensure_safe_net_sysctl(net, path, table); return __register_sysctl_table(&net->sysctls, path, table); } EXPORT_SYMBOL_GPL(register_net_sysctl); void unregister_net_sysctl_table(struct ctl_table_header *header) { unregister_sysctl_table(header); } EXPORT_SYMBOL_GPL(unregister_net_sysctl_table); |
1 1 989 989 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 | // SPDX-License-Identifier: GPL-2.0-or-later /* * G8BPQ compatible "AX.25 via ethernet" driver release 004 * * This code REQUIRES 2.0.0 or higher/ NET3.029 * * This is a "pseudo" network driver to allow AX.25 over Ethernet * using G8BPQ encapsulation. It has been extracted from the protocol * implementation because * * - things got unreadable within the protocol stack * - to cure the protocol stack from "feature-ism" * - a protocol implementation shouldn't need to know on * which hardware it is running * - user-level programs like the AX.25 utilities shouldn't * need to know about the hardware. * - IP over ethernet encapsulated AX.25 was impossible * - rxecho.c did not work * - to have room for extensions * - it just deserves to "live" as an own driver * * This driver can use any ethernet destination address, and can be * limited to accept frames from one dedicated ethernet card only. * * Note that the driver sets up the BPQ devices automagically on * startup or (if started before the "insmod" of an ethernet device) * on "ifconfig up". It hopefully will remove the BPQ on "rmmod"ing * the ethernet device (in fact: as soon as another ethernet or bpq * device gets "ifconfig"ured). * * I have heard that several people are thinking of experiments * with highspeed packet radio using existing ethernet cards. * Well, this driver is prepared for this purpose, just add * your tx key control and a txdelay / tailtime algorithm, * probably some buffering, and /voila/... * * History * BPQ 001 Joerg(DL1BKE) Extracted BPQ code from AX.25 * protocol stack and added my own * yet existing patches * BPQ 002 Joerg(DL1BKE) Scan network device list on * startup. * BPQ 003 Joerg(DL1BKE) Ethernet destination address * and accepted source address * can be configured by an ioctl() * call. * Fixed to match Linux networking * changes - 2.1.15. * BPQ 004 Joerg(DL1BKE) Fixed to not lock up on ifconfig. */ #include <linux/errno.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/in.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/net.h> #include <linux/slab.h> #include <net/ax25.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/if_arp.h> #include <linux/skbuff.h> #include <net/sock.h> #include <linux/uaccess.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/notifier.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/stat.h> #include <linux/module.h> #include <linux/init.h> #include <linux/rtnetlink.h> #include <net/ip.h> #include <net/arp.h> #include <net/net_namespace.h> #include <linux/bpqether.h> static const char banner[] __initconst = KERN_INFO \ "AX.25: bpqether driver version 004\n"; static int bpq_rcv(struct sk_buff *, struct net_device *, struct packet_type *, struct net_device *); static int bpq_device_event(struct notifier_block *, unsigned long, void *); static struct packet_type bpq_packet_type __read_mostly = { .type = cpu_to_be16(ETH_P_BPQ), .func = bpq_rcv, }; static struct notifier_block bpq_dev_notifier = { .notifier_call = bpq_device_event, }; struct bpqdev { struct list_head bpq_list; /* list of bpq devices chain */ struct net_device *ethdev; /* link to ethernet device */ struct net_device *axdev; /* bpq device (bpq#) */ char dest_addr[6]; /* ether destination address */ char acpt_addr[6]; /* accept ether frames from this address only */ }; static LIST_HEAD(bpq_devices); /* * bpqether network devices are paired with ethernet devices below them, so * form a special "super class" of normal ethernet devices; split their locks * off into a separate class since they always nest. */ static struct lock_class_key bpq_netdev_xmit_lock_key; static struct lock_class_key bpq_netdev_addr_lock_key; static void bpq_set_lockdep_class_one(struct net_device *dev, struct netdev_queue *txq, void *_unused) { lockdep_set_class(&txq->_xmit_lock, &bpq_netdev_xmit_lock_key); } static void bpq_set_lockdep_class(struct net_device *dev) { lockdep_set_class(&dev->addr_list_lock, &bpq_netdev_addr_lock_key); netdev_for_each_tx_queue(dev, bpq_set_lockdep_class_one, NULL); } /* ------------------------------------------------------------------------ */ /* * Get the ethernet device for a BPQ device */ static inline struct net_device *bpq_get_ether_dev(struct net_device *dev) { struct bpqdev *bpq = netdev_priv(dev); return bpq ? bpq->ethdev : NULL; } /* * Get the BPQ device for the ethernet device */ static inline struct net_device *bpq_get_ax25_dev(struct net_device *dev) { struct bpqdev *bpq; list_for_each_entry_rcu(bpq, &bpq_devices, bpq_list, lockdep_rtnl_is_held()) { if (bpq->ethdev == dev) return bpq->axdev; } return NULL; } static inline int dev_is_ethdev(struct net_device *dev) { return dev->type == ARPHRD_ETHER && strncmp(dev->name, "dummy", 5); } /* ------------------------------------------------------------------------ */ /* * Receive an AX.25 frame via an ethernet interface. */ static int bpq_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *ptype, struct net_device *orig_dev) { int len; char * ptr; struct ethhdr *eth; struct bpqdev *bpq; if (!net_eq(dev_net(dev), &init_net)) goto drop; if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL) return NET_RX_DROP; if (!pskb_may_pull(skb, sizeof(struct ethhdr))) goto drop; rcu_read_lock(); dev = bpq_get_ax25_dev(dev); if (dev == NULL || !netif_running(dev)) goto drop_unlock; /* * if we want to accept frames from just one ethernet device * we check the source address of the sender. */ bpq = netdev_priv(dev); eth = eth_hdr(skb); if (!(bpq->acpt_addr[0] & 0x01) && !ether_addr_equal(eth->h_source, bpq->acpt_addr)) goto drop_unlock; if (skb_cow(skb, sizeof(struct ethhdr))) goto drop_unlock; len = skb->data[0] + skb->data[1] * 256 - 5; skb_pull(skb, 2); /* Remove the length bytes */ skb_trim(skb, len); /* Set the length of the data */ dev->stats.rx_packets++; dev->stats.rx_bytes += len; ptr = skb_push(skb, 1); *ptr = 0; skb->protocol = ax25_type_trans(skb, dev); netif_rx(skb); unlock: rcu_read_unlock(); return 0; drop_unlock: kfree_skb(skb); goto unlock; drop: kfree_skb(skb); return 0; } /* * Send an AX.25 frame via an ethernet interface */ static netdev_tx_t bpq_xmit(struct sk_buff *skb, struct net_device *dev) { unsigned char *ptr; struct bpqdev *bpq; struct net_device *orig_dev; int size; if (skb->protocol == htons(ETH_P_IP)) return ax25_ip_xmit(skb); /* * Just to be *really* sure not to send anything if the interface * is down, the ethernet device may have gone. */ if (!netif_running(dev)) { kfree_skb(skb); return NETDEV_TX_OK; } skb_pull(skb, 1); /* Drop KISS byte */ size = skb->len; /* * We're about to mess with the skb which may still shared with the * generic networking code so unshare and ensure it's got enough * space for the BPQ headers. */ if (skb_cow(skb, AX25_BPQ_HEADER_LEN)) { if (net_ratelimit()) pr_err("bpqether: out of memory\n"); kfree_skb(skb); return NETDEV_TX_OK; } ptr = skb_push(skb, 2); /* Make space for length */ *ptr++ = (size + 5) % 256; *ptr++ = (size + 5) / 256; bpq = netdev_priv(dev); orig_dev = dev; if ((dev = bpq_get_ether_dev(dev)) == NULL) { orig_dev->stats.tx_dropped++; kfree_skb(skb); return NETDEV_TX_OK; } skb->protocol = ax25_type_trans(skb, dev); skb_reset_network_header(skb); dev_hard_header(skb, dev, ETH_P_BPQ, bpq->dest_addr, NULL, 0); dev->stats.tx_packets++; dev->stats.tx_bytes+=skb->len; dev_queue_xmit(skb); netif_wake_queue(dev); return NETDEV_TX_OK; } /* * Set AX.25 callsign */ static int bpq_set_mac_address(struct net_device *dev, void *addr) { struct sockaddr *sa = (struct sockaddr *)addr; memcpy(dev->dev_addr, sa->sa_data, dev->addr_len); return 0; } /* Ioctl commands * * SIOCSBPQETHOPT reserved for enhancements * SIOCSBPQETHADDR set the destination and accepted * source ethernet address (broadcast * or multicast: accept all) */ static int bpq_siocdevprivate(struct net_device *dev, struct ifreq *ifr, void __user *data, int cmd) { struct bpq_ethaddr __user *ethaddr = data; struct bpqdev *bpq = netdev_priv(dev); struct bpq_req req; if (!capable(CAP_NET_ADMIN)) return -EPERM; switch (cmd) { case SIOCSBPQETHOPT: if (copy_from_user(&req, data, sizeof(struct bpq_req))) return -EFAULT; switch (req.cmd) { case SIOCGBPQETHPARAM: case SIOCSBPQETHPARAM: default: return -EINVAL; } break; case SIOCSBPQETHADDR: if (copy_from_user(bpq->dest_addr, ethaddr->destination, ETH_ALEN)) return -EFAULT; if (copy_from_user(bpq->acpt_addr, ethaddr->accept, ETH_ALEN)) return -EFAULT; break; default: return -EINVAL; } return 0; } /* * open/close a device */ static int bpq_open(struct net_device *dev) { netif_start_queue(dev); return 0; } static int bpq_close(struct net_device *dev) { netif_stop_queue(dev); return 0; } /* ------------------------------------------------------------------------ */ #ifdef CONFIG_PROC_FS /* * Proc filesystem */ static void *bpq_seq_start(struct seq_file *seq, loff_t *pos) __acquires(RCU) { int i = 1; struct bpqdev *bpqdev; rcu_read_lock(); if (*pos == 0) return SEQ_START_TOKEN; list_for_each_entry_rcu(bpqdev, &bpq_devices, bpq_list) { if (i == *pos) return bpqdev; } return NULL; } static void *bpq_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct list_head *p; struct bpqdev *bpqdev = v; ++*pos; if (v == SEQ_START_TOKEN) p = rcu_dereference(list_next_rcu(&bpq_devices)); else p = rcu_dereference(list_next_rcu(&bpqdev->bpq_list)); return (p == &bpq_devices) ? NULL : list_entry(p, struct bpqdev, bpq_list); } static void bpq_seq_stop(struct seq_file *seq, void *v) __releases(RCU) { rcu_read_unlock(); } static int bpq_seq_show(struct seq_file *seq, void *v) { if (v == SEQ_START_TOKEN) seq_puts(seq, "dev ether destination accept from\n"); else { const struct bpqdev *bpqdev = v; seq_printf(seq, "%-5s %-10s %pM ", bpqdev->axdev->name, bpqdev->ethdev->name, bpqdev->dest_addr); if (is_multicast_ether_addr(bpqdev->acpt_addr)) seq_printf(seq, "*\n"); else seq_printf(seq, "%pM\n", bpqdev->acpt_addr); } return 0; } static const struct seq_operations bpq_seqops = { .start = bpq_seq_start, .next = bpq_seq_next, .stop = bpq_seq_stop, .show = bpq_seq_show, }; #endif /* ------------------------------------------------------------------------ */ static const struct net_device_ops bpq_netdev_ops = { .ndo_open = bpq_open, .ndo_stop = bpq_close, .ndo_start_xmit = bpq_xmit, .ndo_set_mac_address = bpq_set_mac_address, .ndo_siocdevprivate = bpq_siocdevprivate, }; static void bpq_setup(struct net_device *dev) { dev->netdev_ops = &bpq_netdev_ops; dev->needs_free_netdev = true; memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN); memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN); dev->flags = 0; dev->features = NETIF_F_LLTX; /* Allow recursion */ #if IS_ENABLED(CONFIG_AX25) dev->header_ops = &ax25_header_ops; #endif dev->type = ARPHRD_AX25; dev->hard_header_len = AX25_MAX_HEADER_LEN + AX25_BPQ_HEADER_LEN; dev->mtu = AX25_DEF_PACLEN; dev->addr_len = AX25_ADDR_LEN; } /* * Setup a new device. */ static int bpq_new_device(struct net_device *edev) { int err; struct net_device *ndev; struct bpqdev *bpq; ndev = alloc_netdev(sizeof(struct bpqdev), "bpq%d", NET_NAME_UNKNOWN, bpq_setup); if (!ndev) return -ENOMEM; bpq = netdev_priv(ndev); dev_hold(edev); bpq->ethdev = edev; bpq->axdev = ndev; eth_broadcast_addr(bpq->dest_addr); eth_broadcast_addr(bpq->acpt_addr); err = register_netdevice(ndev); if (err) goto error; bpq_set_lockdep_class(ndev); /* List protected by RTNL */ list_add_rcu(&bpq->bpq_list, &bpq_devices); return 0; error: dev_put(edev); free_netdev(ndev); return err; } static void bpq_free_device(struct net_device *ndev) { struct bpqdev *bpq = netdev_priv(ndev); dev_put(bpq->ethdev); list_del_rcu(&bpq->bpq_list); unregister_netdevice(ndev); } /* * Handle device status changes. */ static int bpq_device_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); if (!net_eq(dev_net(dev), &init_net)) return NOTIFY_DONE; if (!dev_is_ethdev(dev) && !bpq_get_ax25_dev(dev)) return NOTIFY_DONE; switch (event) { case NETDEV_UP: /* new ethernet device -> new BPQ interface */ if (bpq_get_ax25_dev(dev) == NULL) bpq_new_device(dev); break; case NETDEV_DOWN: /* ethernet device closed -> close BPQ interface */ if ((dev = bpq_get_ax25_dev(dev)) != NULL) dev_close(dev); break; case NETDEV_UNREGISTER: /* ethernet device removed -> free BPQ interface */ if ((dev = bpq_get_ax25_dev(dev)) != NULL) bpq_free_device(dev); break; default: break; } return NOTIFY_DONE; } /* ------------------------------------------------------------------------ */ /* * Initialize driver. To be called from af_ax25 if not compiled as a * module */ static int __init bpq_init_driver(void) { #ifdef CONFIG_PROC_FS if (!proc_create_seq("bpqether", 0444, init_net.proc_net, &bpq_seqops)) { printk(KERN_ERR "bpq: cannot create /proc/net/bpqether entry.\n"); return -ENOENT; } #endif /* CONFIG_PROC_FS */ dev_add_pack(&bpq_packet_type); register_netdevice_notifier(&bpq_dev_notifier); printk(banner); return 0; } static void __exit bpq_cleanup_driver(void) { struct bpqdev *bpq; dev_remove_pack(&bpq_packet_type); unregister_netdevice_notifier(&bpq_dev_notifier); remove_proc_entry("bpqether", init_net.proc_net); rtnl_lock(); while (!list_empty(&bpq_devices)) { bpq = list_entry(bpq_devices.next, struct bpqdev, bpq_list); bpq_free_device(bpq->axdev); } rtnl_unlock(); } MODULE_AUTHOR("Joerg Reuter DL1BKE <jreuter@yaina.de>"); MODULE_DESCRIPTION("Transmit and receive AX.25 packets over Ethernet"); MODULE_LICENSE("GPL"); module_init(bpq_init_driver); module_exit(bpq_cleanup_driver); |
106 1103 177 177 39 358 358 131 131 99 99 180 180 180 179 77 76 77 77 77 5 3 2 5 3 2 20 16 501 276 525 501 532 532 1 532 26 524 112 523 52 427 2 1 20 147 17 134 19 15 5 1 2 3 2 1 2 17 4 20 20 1 125 8 11 10 12 160 104 103 405 18 4 20 4 4 2 51 15 7 31 107 8 18 42 13 17 11 154 6 5 14 1 2 3 2 2 2 11 38 2 15 13 9 5 3 27 1 8 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 | // SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com */ #include <linux/bpf.h> #include <linux/rcupdate.h> #include <linux/random.h> #include <linux/smp.h> #include <linux/topology.h> #include <linux/ktime.h> #include <linux/sched.h> #include <linux/uidgid.h> #include <linux/filter.h> #include <linux/ctype.h> #include <linux/jiffies.h> #include <linux/pid_namespace.h> #include <linux/proc_ns.h> #include <linux/security.h> #include "../../lib/kstrtox.h" /* If kernel subsystem is allowing eBPF programs to call this function, * inside its own verifier_ops->get_func_proto() callback it should return * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments * * Different map implementations will rely on rcu in map methods * lookup/update/delete, therefore eBPF programs must run under rcu lock * if program is allowed to access maps, so check rcu_read_lock_held in * all three functions. */ BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) { WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); return (unsigned long) map->ops->map_lookup_elem(map, key); } const struct bpf_func_proto bpf_map_lookup_elem_proto = { .func = bpf_map_lookup_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_KEY, }; BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, void *, value, u64, flags) { WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); return map->ops->map_update_elem(map, key, value, flags); } const struct bpf_func_proto bpf_map_update_elem_proto = { .func = bpf_map_update_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_KEY, .arg3_type = ARG_PTR_TO_MAP_VALUE, .arg4_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) { WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); return map->ops->map_delete_elem(map, key); } const struct bpf_func_proto bpf_map_delete_elem_proto = { .func = bpf_map_delete_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_KEY, }; BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) { return map->ops->map_push_elem(map, value, flags); } const struct bpf_func_proto bpf_map_push_elem_proto = { .func = bpf_map_push_elem, .gpl_only = false, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_MAP_VALUE, .arg3_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) { return map->ops->map_pop_elem(map, value); } const struct bpf_func_proto bpf_map_pop_elem_proto = { .func = bpf_map_pop_elem, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE, }; BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) { return map->ops->map_peek_elem(map, value); } const struct bpf_func_proto bpf_map_peek_elem_proto = { .func = bpf_map_peek_elem, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE, }; const struct bpf_func_proto bpf_get_prandom_u32_proto = { .func = bpf_user_rnd_u32, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_get_smp_processor_id) { return smp_processor_id(); } const struct bpf_func_proto bpf_get_smp_processor_id_proto = { .func = bpf_get_smp_processor_id, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_get_numa_node_id) { return numa_node_id(); } const struct bpf_func_proto bpf_get_numa_node_id_proto = { .func = bpf_get_numa_node_id, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_ktime_get_ns) { /* NMI safe access to clock monotonic */ return ktime_get_mono_fast_ns(); } const struct bpf_func_proto bpf_ktime_get_ns_proto = { .func = bpf_ktime_get_ns, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_ktime_get_boot_ns) { /* NMI safe access to clock boottime */ return ktime_get_boot_fast_ns(); } const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { .func = bpf_ktime_get_boot_ns, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_ktime_get_coarse_ns) { return ktime_get_coarse_ns(); } const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { .func = bpf_ktime_get_coarse_ns, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_get_current_pid_tgid) { struct task_struct *task = current; if (unlikely(!task)) return -EINVAL; return (u64) task->tgid << 32 | task->pid; } const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { .func = bpf_get_current_pid_tgid, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_0(bpf_get_current_uid_gid) { struct task_struct *task = current; kuid_t uid; kgid_t gid; if (unlikely(!task)) return -EINVAL; current_uid_gid(&uid, &gid); return (u64) from_kgid(&init_user_ns, gid) << 32 | from_kuid(&init_user_ns, uid); } const struct bpf_func_proto bpf_get_current_uid_gid_proto = { .func = bpf_get_current_uid_gid, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) { struct task_struct *task = current; if (unlikely(!task)) goto err_clear; strncpy(buf, task->comm, size); /* Verifier guarantees that size > 0. For task->comm exceeding * size, guarantee that buf is %NUL-terminated. Unconditionally * done here to save the size test. */ buf[size - 1] = 0; return 0; err_clear: memset(buf, 0, size); return -EINVAL; } const struct bpf_func_proto bpf_get_current_comm_proto = { .func = bpf_get_current_comm, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE, }; #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) { arch_spinlock_t *l = (void *)lock; union { __u32 val; arch_spinlock_t lock; } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); arch_spin_lock(l); } static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) { arch_spinlock_t *l = (void *)lock; arch_spin_unlock(l); } #else static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) { atomic_t *l = (void *)lock; BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); do { atomic_cond_read_relaxed(l, !VAL); } while (atomic_xchg(l, 1)); } static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) { atomic_t *l = (void *)lock; atomic_set_release(l, 0); } #endif static DEFINE_PER_CPU(unsigned long, irqsave_flags); static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) { unsigned long flags; local_irq_save(flags); __bpf_spin_lock(lock); __this_cpu_write(irqsave_flags, flags); } NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) { __bpf_spin_lock_irqsave(lock); return 0; } const struct bpf_func_proto bpf_spin_lock_proto = { .func = bpf_spin_lock, .gpl_only = false, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_SPIN_LOCK, }; static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) { unsigned long flags; flags = __this_cpu_read(irqsave_flags); __bpf_spin_unlock(lock); local_irq_restore(flags); } NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) { __bpf_spin_unlock_irqrestore(lock); return 0; } const struct bpf_func_proto bpf_spin_unlock_proto = { .func = bpf_spin_unlock, .gpl_only = false, .ret_type = RET_VOID, .arg1_type = ARG_PTR_TO_SPIN_LOCK, }; void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, bool lock_src) { struct bpf_spin_lock *lock; if (lock_src) lock = src + map->spin_lock_off; else lock = dst + map->spin_lock_off; preempt_disable(); __bpf_spin_lock_irqsave(lock); copy_map_value(map, dst, src); __bpf_spin_unlock_irqrestore(lock); preempt_enable(); } BPF_CALL_0(bpf_jiffies64) { return get_jiffies_64(); } const struct bpf_func_proto bpf_jiffies64_proto = { .func = bpf_jiffies64, .gpl_only = false, .ret_type = RET_INTEGER, }; #ifdef CONFIG_CGROUPS BPF_CALL_0(bpf_get_current_cgroup_id) { struct cgroup *cgrp; u64 cgrp_id; rcu_read_lock(); cgrp = task_dfl_cgroup(current); cgrp_id = cgroup_id(cgrp); rcu_read_unlock(); return cgrp_id; } const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { .func = bpf_get_current_cgroup_id, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) { struct cgroup *cgrp; struct cgroup *ancestor; u64 cgrp_id; rcu_read_lock(); cgrp = task_dfl_cgroup(current); ancestor = cgroup_ancestor(cgrp, ancestor_level); cgrp_id = ancestor ? cgroup_id(ancestor) : 0; rcu_read_unlock(); return cgrp_id; } const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { .func = bpf_get_current_ancestor_cgroup_id, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, }; #ifdef CONFIG_CGROUP_BPF BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags) { /* flags argument is not used now, * but provides an ability to extend the API. * verifier checks that its value is correct. */ enum bpf_cgroup_storage_type stype = cgroup_storage_type(map); struct bpf_cgroup_storage *storage; struct bpf_cg_run_ctx *ctx; void *ptr; /* get current cgroup storage from BPF run context */ ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); storage = ctx->prog_item->cgroup_storage[stype]; if (stype == BPF_CGROUP_STORAGE_SHARED) ptr = &READ_ONCE(storage->buf)->data[0]; else ptr = this_cpu_ptr(storage->percpu_buf); return (unsigned long)ptr; } const struct bpf_func_proto bpf_get_local_storage_proto = { .func = bpf_get_local_storage, .gpl_only = false, .ret_type = RET_PTR_TO_MAP_VALUE, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_ANYTHING, }; #endif #define BPF_STRTOX_BASE_MASK 0x1F static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, unsigned long long *res, bool *is_negative) { unsigned int base = flags & BPF_STRTOX_BASE_MASK; const char *cur_buf = buf; size_t cur_len = buf_len; unsigned int consumed; size_t val_len; char str[64]; if (!buf || !buf_len || !res || !is_negative) return -EINVAL; if (base != 0 && base != 8 && base != 10 && base != 16) return -EINVAL; if (flags & ~BPF_STRTOX_BASE_MASK) return -EINVAL; while (cur_buf < buf + buf_len && isspace(*cur_buf)) ++cur_buf; *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); if (*is_negative) ++cur_buf; consumed = cur_buf - buf; cur_len -= consumed; if (!cur_len) return -EINVAL; cur_len = min(cur_len, sizeof(str) - 1); memcpy(str, cur_buf, cur_len); str[cur_len] = '\0'; cur_buf = str; cur_buf = _parse_integer_fixup_radix(cur_buf, &base); val_len = _parse_integer(cur_buf, base, res); if (val_len & KSTRTOX_OVERFLOW) return -ERANGE; if (val_len == 0) return -EINVAL; cur_buf += val_len; consumed += cur_buf - str; return consumed; } static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, long long *res) { unsigned long long _res; bool is_negative; int err; err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); if (err < 0) return err; if (is_negative) { if ((long long)-_res > 0) return -ERANGE; *res = -_res; } else { if ((long long)_res < 0) return -ERANGE; *res = _res; } return err; } BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, s64 *, res) { long long _res; int err; err = __bpf_strtoll(buf, buf_len, flags, &_res); if (err < 0) return err; if (_res != (long)_res) return -ERANGE; *res = _res; return err; } const struct bpf_func_proto bpf_strtol_proto = { .func = bpf_strtol, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_LONG, }; BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, u64 *, res) { unsigned long long _res; bool is_negative; int err; err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); if (err < 0) return err; if (is_negative) return -EINVAL; if (_res != (unsigned long)_res) return -ERANGE; *res = _res; return err; } const struct bpf_func_proto bpf_strtoul_proto = { .func = bpf_strtoul, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg2_type = ARG_CONST_SIZE, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_LONG, }; #endif BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, struct bpf_pidns_info *, nsdata, u32, size) { struct task_struct *task = current; struct pid_namespace *pidns; int err = -EINVAL; if (unlikely(size != sizeof(struct bpf_pidns_info))) goto clear; if (unlikely((u64)(dev_t)dev != dev)) goto clear; if (unlikely(!task)) goto clear; pidns = task_active_pid_ns(task); if (unlikely(!pidns)) { err = -ENOENT; goto clear; } if (!ns_match(&pidns->ns, (dev_t)dev, ino)) goto clear; nsdata->pid = task_pid_nr_ns(task, pidns); nsdata->tgid = task_tgid_nr_ns(task, pidns); return 0; clear: memset((void *)nsdata, 0, (size_t) size); return err; } const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { .func = bpf_get_ns_current_pid_tgid, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, }; static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { .func = bpf_get_raw_cpu_id, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, u64, flags, void *, data, u64, size) { if (unlikely(flags & ~(BPF_F_INDEX_MASK))) return -EINVAL; return bpf_event_output(map, flags, data, size, NULL, 0, NULL); } const struct bpf_func_proto bpf_event_output_data_proto = { .func = bpf_event_output_data, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, const void __user *, user_ptr) { int ret = copy_from_user(dst, user_ptr, size); if (unlikely(ret)) { memset(dst, 0, size); ret = -EFAULT; } return ret; } const struct bpf_func_proto bpf_copy_from_user_proto = { .func = bpf_copy_from_user, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_UNINIT_MEM, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) { if (cpu >= nr_cpu_ids) return (unsigned long)NULL; return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); } const struct bpf_func_proto bpf_per_cpu_ptr_proto = { .func = bpf_per_cpu_ptr, .gpl_only = false, .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, .arg2_type = ARG_ANYTHING, }; BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) { return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); } const struct bpf_func_proto bpf_this_cpu_ptr_proto = { .func = bpf_this_cpu_ptr, .gpl_only = false, .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, }; static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, size_t bufsz) { void __user *user_ptr = (__force void __user *)unsafe_ptr; buf[0] = 0; switch (fmt_ptype) { case 's': #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE if ((unsigned long)unsafe_ptr < TASK_SIZE) return strncpy_from_user_nofault(buf, user_ptr, bufsz); fallthrough; #endif case 'k': return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); case 'u': return strncpy_from_user_nofault(buf, user_ptr, bufsz); } return -EINVAL; } /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary * arguments representation. */ #define MAX_BPRINTF_BIN_ARGS 512 /* Support executing three nested bprintf helper calls on a given CPU */ #define MAX_BPRINTF_NEST_LEVEL 3 struct bpf_bprintf_buffers { char bin_args[MAX_BPRINTF_BIN_ARGS]; char buf[MAX_BPRINTF_BUF]; }; static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs); static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); static int try_get_buffers(struct bpf_bprintf_buffers **bufs) { int nest_level; preempt_disable(); nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { this_cpu_dec(bpf_bprintf_nest_level); preempt_enable(); return -EBUSY; } *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]); return 0; } void bpf_bprintf_cleanup(struct bpf_bprintf_data *data) { if (!data->bin_args && !data->buf) return; if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0)) return; this_cpu_dec(bpf_bprintf_nest_level); preempt_enable(); } /* * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers * * Returns a negative value if fmt is an invalid format string or 0 otherwise. * * This can be used in two ways: * - Format string verification only: when data->get_bin_args is false * - Arguments preparation: in addition to the above verification, it writes in * data->bin_args a binary representation of arguments usable by bstr_printf * where pointers from BPF have been sanitized. * * In argument preparation mode, if 0 is returned, safe temporary buffers are * allocated and bpf_bprintf_cleanup should be called to free them after use. */ int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, u32 num_args, struct bpf_bprintf_data *data) { bool get_buffers = (data->get_bin_args && num_args) || data->get_buf; char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; struct bpf_bprintf_buffers *buffers = NULL; size_t sizeof_cur_arg, sizeof_cur_ip; int err, i, num_spec = 0; u64 cur_arg; char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; fmt_end = strnchr(fmt, fmt_size, 0); if (!fmt_end) return -EINVAL; fmt_size = fmt_end - fmt; if (get_buffers && try_get_buffers(&buffers)) return -EBUSY; if (data->get_bin_args) { if (num_args) tmp_buf = buffers->bin_args; tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS; data->bin_args = (u32 *)tmp_buf; } if (data->get_buf) data->buf = buffers->buf; for (i = 0; i < fmt_size; i++) { if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { err = -EINVAL; goto out; } if (fmt[i] != '%') continue; if (fmt[i + 1] == '%') { i++; continue; } if (num_spec >= num_args) { err = -EINVAL; goto out; } /* The string is zero-terminated so if fmt[i] != 0, we can * always access fmt[i + 1], in the worst case it will be a 0 */ i++; /* skip optional "[0 +-][num]" width formatting field */ while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || fmt[i] == ' ') i++; if (fmt[i] >= '1' && fmt[i] <= '9') { i++; while (fmt[i] >= '0' && fmt[i] <= '9') i++; } if (fmt[i] == 'p') { sizeof_cur_arg = sizeof(long); if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && fmt[i + 2] == 's') { fmt_ptype = fmt[i + 1]; i += 2; goto fmt_str; } if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || fmt[i + 1] == 'x' || fmt[i + 1] == 's' || fmt[i + 1] == 'S') { /* just kernel pointers */ if (tmp_buf) cur_arg = raw_args[num_spec]; i++; goto nocopy_fmt; } if (fmt[i + 1] == 'B') { if (tmp_buf) { err = snprintf(tmp_buf, (tmp_buf_end - tmp_buf), "%pB", (void *)(long)raw_args[num_spec]); tmp_buf += (err + 1); } i++; num_spec++; continue; } /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { err = -EINVAL; goto out; } i += 2; if (!tmp_buf) goto nocopy_fmt; sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { err = -ENOSPC; goto out; } unsafe_ptr = (char *)(long)raw_args[num_spec]; err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, sizeof_cur_ip); if (err < 0) memset(cur_ip, 0, sizeof_cur_ip); /* hack: bstr_printf expects IP addresses to be * pre-formatted as strings, ironically, the easiest way * to do that is to call snprintf. */ ip_spec[2] = fmt[i - 1]; ip_spec[3] = fmt[i]; err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, ip_spec, &cur_ip); tmp_buf += err + 1; num_spec++; continue; } else if (fmt[i] == 's') { fmt_ptype = fmt[i]; fmt_str: if (fmt[i + 1] != 0 && !isspace(fmt[i + 1]) && !ispunct(fmt[i + 1])) { err = -EINVAL; goto out; } if (!tmp_buf) goto nocopy_fmt; if (tmp_buf_end == tmp_buf) { err = -ENOSPC; goto out; } unsafe_ptr = (char *)(long)raw_args[num_spec]; err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, fmt_ptype, tmp_buf_end - tmp_buf); if (err < 0) { tmp_buf[0] = '\0'; err = 1; } tmp_buf += err; num_spec++; continue; } else if (fmt[i] == 'c') { if (!tmp_buf) goto nocopy_fmt; if (tmp_buf_end == tmp_buf) { err = -ENOSPC; goto out; } *tmp_buf = raw_args[num_spec]; tmp_buf++; num_spec++; continue; } sizeof_cur_arg = sizeof(int); if (fmt[i] == 'l') { sizeof_cur_arg = sizeof(long); i++; } if (fmt[i] == 'l') { sizeof_cur_arg = sizeof(long long); i++; } if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && fmt[i] != 'x' && fmt[i] != 'X') { err = -EINVAL; goto out; } if (tmp_buf) cur_arg = raw_args[num_spec]; nocopy_fmt: if (tmp_buf) { tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { err = -ENOSPC; goto out; } if (sizeof_cur_arg == 8) { *(u32 *)tmp_buf = *(u32 *)&cur_arg; *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); } else { *(u32 *)tmp_buf = (u32)(long)cur_arg; } tmp_buf += sizeof_cur_arg; } num_spec++; } err = 0; out: if (err) bpf_bprintf_cleanup(data); return err; } BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, const void *, args, u32, data_len) { struct bpf_bprintf_data data = { .get_bin_args = true, }; int err, num_args; if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || (data_len && !args)) return -EINVAL; num_args = data_len / 8; /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we * can safely give an unbounded size. */ err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data); if (err < 0) return err; err = bstr_printf(str, str_size, fmt, data.bin_args); bpf_bprintf_cleanup(&data); return err + 1; } const struct bpf_func_proto bpf_snprintf_proto = { .func = bpf_snprintf, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM_OR_NULL, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_PTR_TO_CONST_STR, .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; /* BPF map elements can contain 'struct bpf_timer'. * Such map owns all of its BPF timers. * 'struct bpf_timer' is allocated as part of map element allocation * and it's zero initialized. * That space is used to keep 'struct bpf_timer_kern'. * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and * remembers 'struct bpf_map *' pointer it's part of. * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. * bpf_timer_start() arms the timer. * If user space reference to a map goes to zero at this point * ops->map_release_uref callback is responsible for cancelling the timers, * freeing their memory, and decrementing prog's refcnts. * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. * Inner maps can contain bpf timers as well. ops->map_release_uref is * freeing the timers when inner map is replaced or deleted by user space. */ struct bpf_hrtimer { struct hrtimer timer; struct bpf_map *map; struct bpf_prog *prog; void __rcu *callback_fn; void *value; struct rcu_head rcu; }; /* the actual struct hidden inside uapi struct bpf_timer */ struct bpf_timer_kern { struct bpf_hrtimer *timer; /* bpf_spin_lock is used here instead of spinlock_t to make * sure that it always fits into space resereved by struct bpf_timer * regardless of LOCKDEP and spinlock debug flags. */ struct bpf_spin_lock lock; } __attribute__((aligned(8))); static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) { struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); struct bpf_map *map = t->map; void *value = t->value; void *callback_fn; void *key; u32 idx; callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held()); if (!callback_fn) goto out; /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and * cannot be preempted by another bpf_timer_cb() on the same cpu. * Remember the timer this callback is servicing to prevent * deadlock if callback_fn() calls bpf_timer_cancel() or * bpf_map_delete_elem() on the same timer. */ this_cpu_write(hrtimer_running, t); if (map->map_type == BPF_MAP_TYPE_ARRAY) { struct bpf_array *array = container_of(map, struct bpf_array, map); /* compute the key */ idx = ((char *)value - array->value) / array->elem_size; key = &idx; } else { /* hash or lru */ key = value - round_up(map->key_size, 8); } BPF_CAST_CALL(callback_fn)((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); /* The verifier checked that return value is zero. */ this_cpu_write(hrtimer_running, NULL); out: return HRTIMER_NORESTART; } BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map, u64, flags) { clockid_t clockid = flags & (MAX_CLOCKS - 1); struct bpf_hrtimer *t; int ret = 0; BUILD_BUG_ON(MAX_CLOCKS != 16); BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer)); BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer)); if (in_nmi()) return -EOPNOTSUPP; if (flags >= MAX_CLOCKS || /* similar to timerfd except _ALARM variants are not supported */ (clockid != CLOCK_MONOTONIC && clockid != CLOCK_REALTIME && clockid != CLOCK_BOOTTIME)) return -EINVAL; __bpf_spin_lock_irqsave(&timer->lock); t = timer->timer; if (t) { ret = -EBUSY; goto out; } /* allocate hrtimer via map_kmalloc to use memcg accounting */ t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node); if (!t) { ret = -ENOMEM; goto out; } t->value = (void *)timer - map->timer_off; t->map = map; t->prog = NULL; rcu_assign_pointer(t->callback_fn, NULL); hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); t->timer.function = bpf_timer_cb; WRITE_ONCE(timer->timer, t); /* Guarantee the order between timer->timer and map->usercnt. So * when there are concurrent uref release and bpf timer init, either * bpf_timer_cancel_and_free() called by uref release reads a no-NULL * timer or atomic64_read() below returns a zero usercnt. */ smp_mb(); if (!atomic64_read(&map->usercnt)) { /* maps with timers must be either held by user space * or pinned in bpffs. */ WRITE_ONCE(timer->timer, NULL); kfree(t); ret = -EPERM; } out: __bpf_spin_unlock_irqrestore(&timer->lock); return ret; } static const struct bpf_func_proto bpf_timer_init_proto = { .func = bpf_timer_init, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_TIMER, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn, struct bpf_prog_aux *, aux) { struct bpf_prog *prev, *prog = aux->prog; struct bpf_hrtimer *t; int ret = 0; if (in_nmi()) return -EOPNOTSUPP; __bpf_spin_lock_irqsave(&timer->lock); t = timer->timer; if (!t) { ret = -EINVAL; goto out; } if (!atomic64_read(&t->map->usercnt)) { /* maps with timers must be either held by user space * or pinned in bpffs. Otherwise timer might still be * running even when bpf prog is detached and user space * is gone, since map_release_uref won't ever be called. */ ret = -EPERM; goto out; } prev = t->prog; if (prev != prog) { /* Bump prog refcnt once. Every bpf_timer_set_callback() * can pick different callback_fn-s within the same prog. */ prog = bpf_prog_inc_not_zero(prog); if (IS_ERR(prog)) { ret = PTR_ERR(prog); goto out; } if (prev) /* Drop prev prog refcnt when swapping with new prog */ bpf_prog_put(prev); t->prog = prog; } rcu_assign_pointer(t->callback_fn, callback_fn); out: __bpf_spin_unlock_irqrestore(&timer->lock); return ret; } static const struct bpf_func_proto bpf_timer_set_callback_proto = { .func = bpf_timer_set_callback, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_TIMER, .arg2_type = ARG_PTR_TO_FUNC, }; BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags) { struct bpf_hrtimer *t; int ret = 0; if (in_nmi()) return -EOPNOTSUPP; if (flags) return -EINVAL; __bpf_spin_lock_irqsave(&timer->lock); t = timer->timer; if (!t || !t->prog) { ret = -EINVAL; goto out; } hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT); out: __bpf_spin_unlock_irqrestore(&timer->lock); return ret; } static const struct bpf_func_proto bpf_timer_start_proto = { .func = bpf_timer_start, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_TIMER, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; static void drop_prog_refcnt(struct bpf_hrtimer *t) { struct bpf_prog *prog = t->prog; if (prog) { bpf_prog_put(prog); t->prog = NULL; rcu_assign_pointer(t->callback_fn, NULL); } } BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer) { struct bpf_hrtimer *t; int ret = 0; if (in_nmi()) return -EOPNOTSUPP; rcu_read_lock(); __bpf_spin_lock_irqsave(&timer->lock); t = timer->timer; if (!t) { ret = -EINVAL; goto out; } if (this_cpu_read(hrtimer_running) == t) { /* If bpf callback_fn is trying to bpf_timer_cancel() * its own timer the hrtimer_cancel() will deadlock * since it waits for callback_fn to finish */ ret = -EDEADLK; goto out; } drop_prog_refcnt(t); out: __bpf_spin_unlock_irqrestore(&timer->lock); /* Cancel the timer and wait for associated callback to finish * if it was running. */ ret = ret ?: hrtimer_cancel(&t->timer); rcu_read_unlock(); return ret; } static const struct bpf_func_proto bpf_timer_cancel_proto = { .func = bpf_timer_cancel, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_TIMER, }; /* This function is called by map_delete/update_elem for individual element and * by ops->map_release_uref when the user space reference to a map reaches zero. */ void bpf_timer_cancel_and_free(void *val) { struct bpf_timer_kern *timer = val; struct bpf_hrtimer *t; /* Performance optimization: read timer->timer without lock first. */ if (!READ_ONCE(timer->timer)) return; __bpf_spin_lock_irqsave(&timer->lock); /* re-read it under lock */ t = timer->timer; if (!t) goto out; drop_prog_refcnt(t); /* The subsequent bpf_timer_start/cancel() helpers won't be able to use * this timer, since it won't be initialized. */ WRITE_ONCE(timer->timer, NULL); out: __bpf_spin_unlock_irqrestore(&timer->lock); if (!t) return; /* Cancel the timer and wait for callback to complete if it was running. * If hrtimer_cancel() can be safely called it's safe to call kfree(t) * right after for both preallocated and non-preallocated maps. * The timer->timer = NULL was already done and no code path can * see address 't' anymore. * * Check that bpf_map_delete/update_elem() wasn't called from timer * callback_fn. In such case don't call hrtimer_cancel() (since it will * deadlock) and don't call hrtimer_try_to_cancel() (since it will just * return -1). Though callback_fn is still running on this cpu it's * safe to do kfree(t) because bpf_timer_cb() read everything it needed * from 't'. The bpf subprog callback_fn won't be able to access 't', * since timer->timer = NULL was already done. The timer will be * effectively cancelled because bpf_timer_cb() will return * HRTIMER_NORESTART. */ if (this_cpu_read(hrtimer_running) != t) hrtimer_cancel(&t->timer); kfree_rcu(t, rcu); } const struct bpf_func_proto bpf_get_current_task_proto __weak; const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; const struct bpf_func_proto bpf_probe_read_user_proto __weak; const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; const struct bpf_func_proto bpf_task_pt_regs_proto __weak; const struct bpf_func_proto * bpf_base_func_proto(enum bpf_func_id func_id) { switch (func_id) { case BPF_FUNC_map_lookup_elem: return &bpf_map_lookup_elem_proto; case BPF_FUNC_map_update_elem: return &bpf_map_update_elem_proto; case BPF_FUNC_map_delete_elem: return &bpf_map_delete_elem_proto; case BPF_FUNC_map_push_elem: return &bpf_map_push_elem_proto; case BPF_FUNC_map_pop_elem: return &bpf_map_pop_elem_proto; case BPF_FUNC_map_peek_elem: return &bpf_map_peek_elem_proto; case BPF_FUNC_get_prandom_u32: return &bpf_get_prandom_u32_proto; case BPF_FUNC_get_smp_processor_id: return &bpf_get_raw_smp_processor_id_proto; case BPF_FUNC_get_numa_node_id: return &bpf_get_numa_node_id_proto; case BPF_FUNC_tail_call: return &bpf_tail_call_proto; case BPF_FUNC_ktime_get_ns: return &bpf_ktime_get_ns_proto; case BPF_FUNC_ktime_get_boot_ns: return &bpf_ktime_get_boot_ns_proto; case BPF_FUNC_ringbuf_output: return &bpf_ringbuf_output_proto; case BPF_FUNC_ringbuf_reserve: return &bpf_ringbuf_reserve_proto; case BPF_FUNC_ringbuf_submit: return &bpf_ringbuf_submit_proto; case BPF_FUNC_ringbuf_discard: return &bpf_ringbuf_discard_proto; case BPF_FUNC_ringbuf_query: return &bpf_ringbuf_query_proto; case BPF_FUNC_for_each_map_elem: return &bpf_for_each_map_elem_proto; default: break; } if (!bpf_capable()) return NULL; switch (func_id) { case BPF_FUNC_spin_lock: return &bpf_spin_lock_proto; case BPF_FUNC_spin_unlock: return &bpf_spin_unlock_proto; case BPF_FUNC_jiffies64: return &bpf_jiffies64_proto; case BPF_FUNC_per_cpu_ptr: return &bpf_per_cpu_ptr_proto; case BPF_FUNC_this_cpu_ptr: return &bpf_this_cpu_ptr_proto; case BPF_FUNC_timer_init: return &bpf_timer_init_proto; case BPF_FUNC_timer_set_callback: return &bpf_timer_set_callback_proto; case BPF_FUNC_timer_start: return &bpf_timer_start_proto; case BPF_FUNC_timer_cancel: return &bpf_timer_cancel_proto; default: break; } if (!perfmon_capable()) return NULL; switch (func_id) { case BPF_FUNC_trace_printk: return bpf_get_trace_printk_proto(); case BPF_FUNC_get_current_task: return &bpf_get_current_task_proto; case BPF_FUNC_get_current_task_btf: return &bpf_get_current_task_btf_proto; case BPF_FUNC_probe_read_user: return &bpf_probe_read_user_proto; case BPF_FUNC_probe_read_kernel: return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? NULL : &bpf_probe_read_kernel_proto; case BPF_FUNC_probe_read_user_str: return &bpf_probe_read_user_str_proto; case BPF_FUNC_probe_read_kernel_str: return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? NULL : &bpf_probe_read_kernel_str_proto; case BPF_FUNC_snprintf_btf: return &bpf_snprintf_btf_proto; case BPF_FUNC_snprintf: return &bpf_snprintf_proto; case BPF_FUNC_task_pt_regs: return &bpf_task_pt_regs_proto; default: return NULL; } } |
52 52 52 52 36 91 55 52 52 52 52 55 55 24 53 9 7 8 7 8 51 8 7 7 52 7 55 55 55 52 52 52 52 55 52 7 52 55 55 55 55 2 2 55 55 55 55 55 55 54 55 55 55 55 55 55 54 55 46 46 20 21 21 4 17 21 21 2 20 20 55 55 2 2 54 53 3 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 | // SPDX-License-Identifier: GPL-2.0-or-later /* Client connection-specific management code. * * Copyright (C) 2016, 2020 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * Client connections need to be cached for a little while after they've made a * call so as to handle retransmitted DATA packets in case the server didn't * receive the final ACK or terminating ABORT we sent it. * * There are flags of relevance to the cache: * * (2) DONT_REUSE - The connection should be discarded as soon as possible and * should not be reused. This is set when an exclusive connection is used * or a call ID counter overflows. * * The caching state may only be changed if the cache lock is held. * * There are two idle client connection expiry durations. If the total number * of connections is below the reap threshold, we use the normal duration; if * it's above, we use the fast duration. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/slab.h> #include <linux/idr.h> #include <linux/timer.h> #include <linux/sched/signal.h> #include "ar-internal.h" __read_mostly unsigned int rxrpc_reap_client_connections = 900; __read_mostly unsigned long rxrpc_conn_idle_client_expiry = 2 * 60 * HZ; __read_mostly unsigned long rxrpc_conn_idle_client_fast_expiry = 2 * HZ; /* * We use machine-unique IDs for our client connections. */ DEFINE_IDR(rxrpc_client_conn_ids); static DEFINE_SPINLOCK(rxrpc_conn_id_lock); static void rxrpc_deactivate_bundle(struct rxrpc_bundle *bundle); /* * Get a connection ID and epoch for a client connection from the global pool. * The connection struct pointer is then recorded in the idr radix tree. The * epoch doesn't change until the client is rebooted (or, at least, unless the * module is unloaded). */ static int rxrpc_get_client_connection_id(struct rxrpc_connection *conn, gfp_t gfp) { struct rxrpc_net *rxnet = conn->params.local->rxnet; int id; _enter(""); idr_preload(gfp); spin_lock(&rxrpc_conn_id_lock); id = idr_alloc_cyclic(&rxrpc_client_conn_ids, conn, 1, 0x40000000, GFP_NOWAIT); if (id < 0) goto error; spin_unlock(&rxrpc_conn_id_lock); idr_preload_end(); conn->proto.epoch = rxnet->epoch; conn->proto.cid = id << RXRPC_CIDSHIFT; set_bit(RXRPC_CONN_HAS_IDR, &conn->flags); _leave(" [CID %x]", conn->proto.cid); return 0; error: spin_unlock(&rxrpc_conn_id_lock); idr_preload_end(); _leave(" = %d", id); return id; } /* * Release a connection ID for a client connection from the global pool. */ static void rxrpc_put_client_connection_id(struct rxrpc_connection *conn) { if (test_bit(RXRPC_CONN_HAS_IDR, &conn->flags)) { spin_lock(&rxrpc_conn_id_lock); idr_remove(&rxrpc_client_conn_ids, conn->proto.cid >> RXRPC_CIDSHIFT); spin_unlock(&rxrpc_conn_id_lock); } } /* * Destroy the client connection ID tree. */ void rxrpc_destroy_client_conn_ids(void) { struct rxrpc_connection *conn; int id; if (!idr_is_empty(&rxrpc_client_conn_ids)) { idr_for_each_entry(&rxrpc_client_conn_ids, conn, id) { pr_err("AF_RXRPC: Leaked client conn %p {%d}\n", conn, refcount_read(&conn->ref)); } BUG(); } idr_destroy(&rxrpc_client_conn_ids); } /* * Allocate a connection bundle. */ static struct rxrpc_bundle *rxrpc_alloc_bundle(struct rxrpc_conn_parameters *cp, gfp_t gfp) { struct rxrpc_bundle *bundle; bundle = kzalloc(sizeof(*bundle), gfp); if (bundle) { bundle->params = *cp; rxrpc_get_peer(bundle->params.peer); refcount_set(&bundle->ref, 1); atomic_set(&bundle->active, 1); spin_lock_init(&bundle->channel_lock); INIT_LIST_HEAD(&bundle->waiting_calls); } return bundle; } struct rxrpc_bundle *rxrpc_get_bundle(struct rxrpc_bundle *bundle) { refcount_inc(&bundle->ref); return bundle; } static void rxrpc_free_bundle(struct rxrpc_bundle *bundle) { rxrpc_put_peer(bundle->params.peer); kfree(bundle); } void rxrpc_put_bundle(struct rxrpc_bundle *bundle) { unsigned int d = bundle->debug_id; bool dead; int r; dead = __refcount_dec_and_test(&bundle->ref, &r); _debug("PUT B=%x %d", d, r - 1); if (dead) rxrpc_free_bundle(bundle); } /* * Allocate a client connection. */ static struct rxrpc_connection * rxrpc_alloc_client_connection(struct rxrpc_bundle *bundle, gfp_t gfp) { struct rxrpc_connection *conn; struct rxrpc_net *rxnet = bundle->params.local->rxnet; int ret; _enter(""); conn = rxrpc_alloc_connection(gfp); if (!conn) { _leave(" = -ENOMEM"); return ERR_PTR(-ENOMEM); } refcount_set(&conn->ref, 1); conn->bundle = bundle; conn->params = bundle->params; conn->out_clientflag = RXRPC_CLIENT_INITIATED; conn->state = RXRPC_CONN_CLIENT; conn->service_id = conn->params.service_id; ret = rxrpc_get_client_connection_id(conn, gfp); if (ret < 0) goto error_0; ret = rxrpc_init_client_conn_security(conn); if (ret < 0) goto error_1; atomic_inc(&rxnet->nr_conns); write_lock(&rxnet->conn_lock); list_add_tail(&conn->proc_link, &rxnet->conn_proc_list); write_unlock(&rxnet->conn_lock); rxrpc_get_bundle(bundle); rxrpc_get_peer(conn->params.peer); rxrpc_get_local(conn->params.local); key_get(conn->params.key); trace_rxrpc_conn(conn->debug_id, rxrpc_conn_new_client, refcount_read(&conn->ref), __builtin_return_address(0)); atomic_inc(&rxnet->nr_client_conns); trace_rxrpc_client(conn, -1, rxrpc_client_alloc); _leave(" = %p", conn); return conn; error_1: rxrpc_put_client_connection_id(conn); error_0: kfree(conn); _leave(" = %d", ret); return ERR_PTR(ret); } /* * Determine if a connection may be reused. */ static bool rxrpc_may_reuse_conn(struct rxrpc_connection *conn) { struct rxrpc_net *rxnet; int id_cursor, id, distance, limit; if (!conn) goto dont_reuse; rxnet = conn->params.local->rxnet; if (test_bit(RXRPC_CONN_DONT_REUSE, &conn->flags)) goto dont_reuse; if (conn->state != RXRPC_CONN_CLIENT || conn->proto.epoch != rxnet->epoch) goto mark_dont_reuse; /* The IDR tree gets very expensive on memory if the connection IDs are * widely scattered throughout the number space, so we shall want to * kill off connections that, say, have an ID more than about four * times the maximum number of client conns away from the current * allocation point to try and keep the IDs concentrated. */ id_cursor = idr_get_cursor(&rxrpc_client_conn_ids); id = conn->proto.cid >> RXRPC_CIDSHIFT; distance = id - id_cursor; if (distance < 0) distance = -distance; limit = max_t(unsigned long, atomic_read(&rxnet->nr_conns) * 4, 1024); if (distance > limit) goto mark_dont_reuse; return true; mark_dont_reuse: set_bit(RXRPC_CONN_DONT_REUSE, &conn->flags); dont_reuse: return false; } /* * Look up the conn bundle that matches the connection parameters, adding it if * it doesn't yet exist. */ static struct rxrpc_bundle *rxrpc_look_up_bundle(struct rxrpc_conn_parameters *cp, gfp_t gfp) { static atomic_t rxrpc_bundle_id; struct rxrpc_bundle *bundle, *candidate; struct rxrpc_local *local = cp->local; struct rb_node *p, **pp, *parent; long diff; _enter("{%px,%x,%u,%u}", cp->peer, key_serial(cp->key), cp->security_level, cp->upgrade); if (cp->exclusive) return rxrpc_alloc_bundle(cp, gfp); /* First, see if the bundle is already there. */ _debug("search 1"); spin_lock(&local->client_bundles_lock); p = local->client_bundles.rb_node; while (p) { bundle = rb_entry(p, struct rxrpc_bundle, local_node); #define cmp(X) ((long)bundle->params.X - (long)cp->X) diff = (cmp(peer) ?: cmp(key) ?: cmp(security_level) ?: cmp(upgrade)); #undef cmp if (diff < 0) p = p->rb_left; else if (diff > 0) p = p->rb_right; else goto found_bundle; } spin_unlock(&local->client_bundles_lock); _debug("not found"); /* It wasn't. We need to add one. */ candidate = rxrpc_alloc_bundle(cp, gfp); if (!candidate) return NULL; _debug("search 2"); spin_lock(&local->client_bundles_lock); pp = &local->client_bundles.rb_node; parent = NULL; while (*pp) { parent = *pp; bundle = rb_entry(parent, struct rxrpc_bundle, local_node); #define cmp(X) ((long)bundle->params.X - (long)cp->X) diff = (cmp(peer) ?: cmp(key) ?: cmp(security_level) ?: cmp(upgrade)); #undef cmp if (diff < 0) pp = &(*pp)->rb_left; else if (diff > 0) pp = &(*pp)->rb_right; else goto found_bundle_free; } _debug("new bundle"); candidate->debug_id = atomic_inc_return(&rxrpc_bundle_id); rb_link_node(&candidate->local_node, parent, pp); rb_insert_color(&candidate->local_node, &local->client_bundles); rxrpc_get_bundle(candidate); spin_unlock(&local->client_bundles_lock); _leave(" = %u [new]", candidate->debug_id); return candidate; found_bundle_free: rxrpc_free_bundle(candidate); found_bundle: rxrpc_get_bundle(bundle); atomic_inc(&bundle->active); spin_unlock(&local->client_bundles_lock); _leave(" = %u [found]", bundle->debug_id); return bundle; } /* * Create or find a client bundle to use for a call. * * If we return with a connection, the call will be on its waiting list. It's * left to the caller to assign a channel and wake up the call. */ static struct rxrpc_bundle *rxrpc_prep_call(struct rxrpc_sock *rx, struct rxrpc_call *call, struct rxrpc_conn_parameters *cp, struct sockaddr_rxrpc *srx, gfp_t gfp) { struct rxrpc_bundle *bundle; _enter("{%d,%lx},", call->debug_id, call->user_call_ID); cp->peer = rxrpc_lookup_peer(rx, cp->local, srx, gfp); if (!cp->peer) goto error; call->cong_cwnd = cp->peer->cong_cwnd; if (call->cong_cwnd >= call->cong_ssthresh) call->cong_mode = RXRPC_CALL_CONGEST_AVOIDANCE; else call->cong_mode = RXRPC_CALL_SLOW_START; if (cp->upgrade) __set_bit(RXRPC_CALL_UPGRADE, &call->flags); /* Find the client connection bundle. */ bundle = rxrpc_look_up_bundle(cp, gfp); if (!bundle) goto error; /* Get this call queued. Someone else may activate it whilst we're * lining up a new connection, but that's fine. */ spin_lock(&bundle->channel_lock); list_add_tail(&call->chan_wait_link, &bundle->waiting_calls); spin_unlock(&bundle->channel_lock); _leave(" = [B=%x]", bundle->debug_id); return bundle; error: _leave(" = -ENOMEM"); return ERR_PTR(-ENOMEM); } /* * Allocate a new connection and add it into a bundle. */ static void rxrpc_add_conn_to_bundle(struct rxrpc_bundle *bundle, gfp_t gfp) __releases(bundle->channel_lock) { struct rxrpc_connection *candidate = NULL, *old = NULL; bool conflict; int i; _enter(""); conflict = bundle->alloc_conn; if (!conflict) bundle->alloc_conn = true; spin_unlock(&bundle->channel_lock); if (conflict) { _leave(" [conf]"); return; } candidate = rxrpc_alloc_client_connection(bundle, gfp); spin_lock(&bundle->channel_lock); bundle->alloc_conn = false; if (IS_ERR(candidate)) { bundle->alloc_error = PTR_ERR(candidate); spin_unlock(&bundle->channel_lock); _leave(" [err %ld]", PTR_ERR(candidate)); return; } bundle->alloc_error = 0; for (i = 0; i < ARRAY_SIZE(bundle->conns); i++) { unsigned int shift = i * RXRPC_MAXCALLS; int j; old = bundle->conns[i]; if (!rxrpc_may_reuse_conn(old)) { if (old) trace_rxrpc_client(old, -1, rxrpc_client_replace); candidate->bundle_shift = shift; atomic_inc(&bundle->active); bundle->conns[i] = candidate; for (j = 0; j < RXRPC_MAXCALLS; j++) set_bit(shift + j, &bundle->avail_chans); candidate = NULL; break; } old = NULL; } spin_unlock(&bundle->channel_lock); if (candidate) { _debug("discard C=%x", candidate->debug_id); trace_rxrpc_client(candidate, -1, rxrpc_client_duplicate); rxrpc_put_connection(candidate); } rxrpc_put_connection(old); _leave(""); } /* * Add a connection to a bundle if there are no usable connections or we have * connections waiting for extra capacity. */ static void rxrpc_maybe_add_conn(struct rxrpc_bundle *bundle, gfp_t gfp) { struct rxrpc_call *call; int i, usable; _enter(""); spin_lock(&bundle->channel_lock); /* See if there are any usable connections. */ usable = 0; for (i = 0; i < ARRAY_SIZE(bundle->conns); i++) if (rxrpc_may_reuse_conn(bundle->conns[i])) usable++; if (!usable && !list_empty(&bundle->waiting_calls)) { call = list_first_entry(&bundle->waiting_calls, struct rxrpc_call, chan_wait_link); if (test_bit(RXRPC_CALL_UPGRADE, &call->flags)) bundle->try_upgrade = true; } if (!usable) goto alloc_conn; if (!bundle->avail_chans && !bundle->try_upgrade && !list_empty(&bundle->waiting_calls) && usable < ARRAY_SIZE(bundle->conns)) goto alloc_conn; spin_unlock(&bundle->channel_lock); _leave(""); return; alloc_conn: return rxrpc_add_conn_to_bundle(bundle, gfp); } /* * Assign a channel to the call at the front of the queue and wake the call up. * We don't increment the callNumber counter until this number has been exposed * to the world. */ static void rxrpc_activate_one_channel(struct rxrpc_connection *conn, unsigned int channel) { struct rxrpc_channel *chan = &conn->channels[channel]; struct rxrpc_bundle *bundle = conn->bundle; struct rxrpc_call *call = list_entry(bundle->waiting_calls.next, struct rxrpc_call, chan_wait_link); u32 call_id = chan->call_counter + 1; _enter("C=%x,%u", conn->debug_id, channel); trace_rxrpc_client(conn, channel, rxrpc_client_chan_activate); /* Cancel the final ACK on the previous call if it hasn't been sent yet * as the DATA packet will implicitly ACK it. */ clear_bit(RXRPC_CONN_FINAL_ACK_0 + channel, &conn->flags); clear_bit(conn->bundle_shift + channel, &bundle->avail_chans); rxrpc_see_call(call); list_del_init(&call->chan_wait_link); call->peer = rxrpc_get_peer(conn->params.peer); call->conn = rxrpc_get_connection(conn); call->cid = conn->proto.cid | channel; call->call_id = call_id; call->security = conn->security; call->security_ix = conn->security_ix; call->service_id = conn->service_id; trace_rxrpc_connect_call(call); _net("CONNECT call %08x:%08x as call %d on conn %d", call->cid, call->call_id, call->debug_id, conn->debug_id); write_lock_bh(&call->state_lock); call->state = RXRPC_CALL_CLIENT_SEND_REQUEST; write_unlock_bh(&call->state_lock); /* Paired with the read barrier in rxrpc_connect_call(). This orders * cid and epoch in the connection wrt to call_id without the need to * take the channel_lock. * * We provisionally assign a callNumber at this point, but we don't * confirm it until the call is about to be exposed. * * TODO: Pair with a barrier in the data_ready handler when that looks * at the call ID through a connection channel. */ smp_wmb(); chan->call_id = call_id; chan->call_debug_id = call->debug_id; rcu_assign_pointer(chan->call, call); wake_up(&call->waitq); } /* * Remove a connection from the idle list if it's on it. */ static void rxrpc_unidle_conn(struct rxrpc_bundle *bundle, struct rxrpc_connection *conn) { struct rxrpc_net *rxnet = bundle->params.local->rxnet; bool drop_ref; if (!list_empty(&conn->cache_link)) { drop_ref = false; spin_lock(&rxnet->client_conn_cache_lock); if (!list_empty(&conn->cache_link)) { list_del_init(&conn->cache_link); drop_ref = true; } spin_unlock(&rxnet->client_conn_cache_lock); if (drop_ref) rxrpc_put_connection(conn); } } /* * Assign channels and callNumbers to waiting calls with channel_lock * held by caller. */ static void rxrpc_activate_channels_locked(struct rxrpc_bundle *bundle) { struct rxrpc_connection *conn; unsigned long avail, mask; unsigned int channel, slot; if (bundle->try_upgrade) mask = 1; else mask = ULONG_MAX; while (!list_empty(&bundle->waiting_calls)) { avail = bundle->avail_chans & mask; if (!avail) break; channel = __ffs(avail); clear_bit(channel, &bundle->avail_chans); slot = channel / RXRPC_MAXCALLS; conn = bundle->conns[slot]; if (!conn) break; if (bundle->try_upgrade) set_bit(RXRPC_CONN_PROBING_FOR_UPGRADE, &conn->flags); rxrpc_unidle_conn(bundle, conn); channel &= (RXRPC_MAXCALLS - 1); conn->act_chans |= 1 << channel; rxrpc_activate_one_channel(conn, channel); } } /* * Assign channels and callNumbers to waiting calls. */ static void rxrpc_activate_channels(struct rxrpc_bundle *bundle) { _enter("B=%x", bundle->debug_id); trace_rxrpc_client(NULL, -1, rxrpc_client_activate_chans); if (!bundle->avail_chans) return; spin_lock(&bundle->channel_lock); rxrpc_activate_channels_locked(bundle); spin_unlock(&bundle->channel_lock); _leave(""); } /* * Wait for a callNumber and a channel to be granted to a call. */ static int rxrpc_wait_for_channel(struct rxrpc_bundle *bundle, struct rxrpc_call *call, gfp_t gfp) { DECLARE_WAITQUEUE(myself, current); int ret = 0; _enter("%d", call->debug_id); if (!gfpflags_allow_blocking(gfp)) { rxrpc_maybe_add_conn(bundle, gfp); rxrpc_activate_channels(bundle); ret = bundle->alloc_error ?: -EAGAIN; goto out; } add_wait_queue_exclusive(&call->waitq, &myself); for (;;) { rxrpc_maybe_add_conn(bundle, gfp); rxrpc_activate_channels(bundle); ret = bundle->alloc_error; if (ret < 0) break; switch (call->interruptibility) { case RXRPC_INTERRUPTIBLE: case RXRPC_PREINTERRUPTIBLE: set_current_state(TASK_INTERRUPTIBLE); break; case RXRPC_UNINTERRUPTIBLE: default: set_current_state(TASK_UNINTERRUPTIBLE); break; } if (READ_ONCE(call->state) != RXRPC_CALL_CLIENT_AWAIT_CONN) break; if ((call->interruptibility == RXRPC_INTERRUPTIBLE || call->interruptibility == RXRPC_PREINTERRUPTIBLE) && signal_pending(current)) { ret = -ERESTARTSYS; break; } schedule(); } remove_wait_queue(&call->waitq, &myself); __set_current_state(TASK_RUNNING); out: _leave(" = %d", ret); return ret; } /* * find a connection for a call * - called in process context with IRQs enabled */ int rxrpc_connect_call(struct rxrpc_sock *rx, struct rxrpc_call *call, struct rxrpc_conn_parameters *cp, struct sockaddr_rxrpc *srx, gfp_t gfp) { struct rxrpc_bundle *bundle; struct rxrpc_net *rxnet = cp->local->rxnet; int ret = 0; _enter("{%d,%lx},", call->debug_id, call->user_call_ID); rxrpc_discard_expired_client_conns(&rxnet->client_conn_reaper); bundle = rxrpc_prep_call(rx, call, cp, srx, gfp); if (IS_ERR(bundle)) { ret = PTR_ERR(bundle); goto out; } if (call->state == RXRPC_CALL_CLIENT_AWAIT_CONN) { ret = rxrpc_wait_for_channel(bundle, call, gfp); if (ret < 0) goto wait_failed; } granted_channel: /* Paired with the write barrier in rxrpc_activate_one_channel(). */ smp_rmb(); out_put_bundle: rxrpc_deactivate_bundle(bundle); rxrpc_put_bundle(bundle); out: _leave(" = %d", ret); return ret; wait_failed: spin_lock(&bundle->channel_lock); list_del_init(&call->chan_wait_link); spin_unlock(&bundle->channel_lock); if (call->state != RXRPC_CALL_CLIENT_AWAIT_CONN) { ret = 0; goto granted_channel; } trace_rxrpc_client(call->conn, ret, rxrpc_client_chan_wait_failed); rxrpc_set_call_completion(call, RXRPC_CALL_LOCAL_ERROR, 0, ret); rxrpc_disconnect_client_call(bundle, call); goto out_put_bundle; } /* * Note that a call, and thus a connection, is about to be exposed to the * world. */ void rxrpc_expose_client_call(struct rxrpc_call *call) { unsigned int channel = call->cid & RXRPC_CHANNELMASK; struct rxrpc_connection *conn = call->conn; struct rxrpc_channel *chan = &conn->channels[channel]; if (!test_and_set_bit(RXRPC_CALL_EXPOSED, &call->flags)) { /* Mark the call ID as being used. If the callNumber counter * exceeds ~2 billion, we kill the connection after its * outstanding calls have finished so that the counter doesn't * wrap. */ chan->call_counter++; if (chan->call_counter >= INT_MAX) set_bit(RXRPC_CONN_DONT_REUSE, &conn->flags); trace_rxrpc_client(conn, channel, rxrpc_client_exposed); } } /* * Set the reap timer. */ static void rxrpc_set_client_reap_timer(struct rxrpc_net *rxnet) { if (!rxnet->kill_all_client_conns) { unsigned long now = jiffies; unsigned long reap_at = now + rxrpc_conn_idle_client_expiry; if (rxnet->live) timer_reduce(&rxnet->client_conn_reap_timer, reap_at); } } /* * Disconnect a client call. */ void rxrpc_disconnect_client_call(struct rxrpc_bundle *bundle, struct rxrpc_call *call) { struct rxrpc_connection *conn; struct rxrpc_channel *chan = NULL; struct rxrpc_net *rxnet = bundle->params.local->rxnet; unsigned int channel; bool may_reuse; u32 cid; _enter("c=%x", call->debug_id); spin_lock(&bundle->channel_lock); set_bit(RXRPC_CALL_DISCONNECTED, &call->flags); /* Calls that have never actually been assigned a channel can simply be * discarded. */ conn = call->conn; if (!conn) { _debug("call is waiting"); ASSERTCMP(call->call_id, ==, 0); ASSERT(!test_bit(RXRPC_CALL_EXPOSED, &call->flags)); list_del_init(&call->chan_wait_link); goto out; } cid = call->cid; channel = cid & RXRPC_CHANNELMASK; chan = &conn->channels[channel]; trace_rxrpc_client(conn, channel, rxrpc_client_chan_disconnect); if (rcu_access_pointer(chan->call) != call) { spin_unlock(&bundle->channel_lock); BUG(); } may_reuse = rxrpc_may_reuse_conn(conn); /* If a client call was exposed to the world, we save the result for * retransmission. * * We use a barrier here so that the call number and abort code can be * read without needing to take a lock. * * TODO: Make the incoming packet handler check this and handle * terminal retransmission without requiring access to the call. */ if (test_bit(RXRPC_CALL_EXPOSED, &call->flags)) { _debug("exposed %u,%u", call->call_id, call->abort_code); __rxrpc_disconnect_call(conn, call); if (test_and_clear_bit(RXRPC_CONN_PROBING_FOR_UPGRADE, &conn->flags)) { trace_rxrpc_client(conn, channel, rxrpc_client_to_active); bundle->try_upgrade = false; if (may_reuse) rxrpc_activate_channels_locked(bundle); } } /* See if we can pass the channel directly to another call. */ if (may_reuse && !list_empty(&bundle->waiting_calls)) { trace_rxrpc_client(conn, channel, rxrpc_client_chan_pass); rxrpc_activate_one_channel(conn, channel); goto out; } /* Schedule the final ACK to be transmitted in a short while so that it * can be skipped if we find a follow-on call. The first DATA packet * of the follow on call will implicitly ACK this call. */ if (call->completion == RXRPC_CALL_SUCCEEDED && test_bit(RXRPC_CALL_EXPOSED, &call->flags)) { unsigned long final_ack_at = jiffies + 2; WRITE_ONCE(chan->final_ack_at, final_ack_at); smp_wmb(); /* vs rxrpc_process_delayed_final_acks() */ set_bit(RXRPC_CONN_FINAL_ACK_0 + channel, &conn->flags); rxrpc_reduce_conn_timer(conn, final_ack_at); } /* Deactivate the channel. */ rcu_assign_pointer(chan->call, NULL); set_bit(conn->bundle_shift + channel, &conn->bundle->avail_chans); conn->act_chans &= ~(1 << channel); /* If no channels remain active, then put the connection on the idle * list for a short while. Give it a ref to stop it going away if it * becomes unbundled. */ if (!conn->act_chans) { trace_rxrpc_client(conn, channel, rxrpc_client_to_idle); conn->idle_timestamp = jiffies; rxrpc_get_connection(conn); spin_lock(&rxnet->client_conn_cache_lock); list_move_tail(&conn->cache_link, &rxnet->idle_client_conns); spin_unlock(&rxnet->client_conn_cache_lock); rxrpc_set_client_reap_timer(rxnet); } out: spin_unlock(&bundle->channel_lock); _leave(""); return; } /* * Remove a connection from a bundle. */ static void rxrpc_unbundle_conn(struct rxrpc_connection *conn) { struct rxrpc_bundle *bundle = conn->bundle; unsigned int bindex; bool need_drop = false; int i; _enter("C=%x", conn->debug_id); if (conn->flags & RXRPC_CONN_FINAL_ACK_MASK) rxrpc_process_delayed_final_acks(conn, true); spin_lock(&bundle->channel_lock); bindex = conn->bundle_shift / RXRPC_MAXCALLS; if (bundle->conns[bindex] == conn) { _debug("clear slot %u", bindex); bundle->conns[bindex] = NULL; for (i = 0; i < RXRPC_MAXCALLS; i++) clear_bit(conn->bundle_shift + i, &bundle->avail_chans); need_drop = true; } spin_unlock(&bundle->channel_lock); if (need_drop) { rxrpc_deactivate_bundle(bundle); rxrpc_put_connection(conn); } } /* * Drop the active count on a bundle. */ static void rxrpc_deactivate_bundle(struct rxrpc_bundle *bundle) { struct rxrpc_local *local = bundle->params.local; bool need_put = false; if (atomic_dec_and_lock(&bundle->active, &local->client_bundles_lock)) { if (!bundle->params.exclusive) { _debug("erase bundle"); rb_erase(&bundle->local_node, &local->client_bundles); need_put = true; } spin_unlock(&local->client_bundles_lock); if (need_put) rxrpc_put_bundle(bundle); } } /* * Clean up a dead client connection. */ static void rxrpc_kill_client_conn(struct rxrpc_connection *conn) { struct rxrpc_local *local = conn->params.local; struct rxrpc_net *rxnet = local->rxnet; _enter("C=%x", conn->debug_id); trace_rxrpc_client(conn, -1, rxrpc_client_cleanup); atomic_dec(&rxnet->nr_client_conns); rxrpc_put_client_connection_id(conn); rxrpc_kill_connection(conn); } /* * Clean up a dead client connections. */ void rxrpc_put_client_conn(struct rxrpc_connection *conn) { const void *here = __builtin_return_address(0); unsigned int debug_id = conn->debug_id; bool dead; int r; dead = __refcount_dec_and_test(&conn->ref, &r); trace_rxrpc_conn(debug_id, rxrpc_conn_put_client, r - 1, here); if (dead) rxrpc_kill_client_conn(conn); } /* * Discard expired client connections from the idle list. Each conn in the * idle list has been exposed and holds an extra ref because of that. * * This may be called from conn setup or from a work item so cannot be * considered non-reentrant. */ void rxrpc_discard_expired_client_conns(struct work_struct *work) { struct rxrpc_connection *conn; struct rxrpc_net *rxnet = container_of(work, struct rxrpc_net, client_conn_reaper); unsigned long expiry, conn_expires_at, now; unsigned int nr_conns; _enter(""); if (list_empty(&rxnet->idle_client_conns)) { _leave(" [empty]"); return; } /* Don't double up on the discarding */ if (!spin_trylock(&rxnet->client_conn_discard_lock)) { _leave(" [already]"); return; } /* We keep an estimate of what the number of conns ought to be after * we've discarded some so that we don't overdo the discarding. */ nr_conns = atomic_read(&rxnet->nr_client_conns); next: spin_lock(&rxnet->client_conn_cache_lock); if (list_empty(&rxnet->idle_client_conns)) goto out; conn = list_entry(rxnet->idle_client_conns.next, struct rxrpc_connection, cache_link); if (!rxnet->kill_all_client_conns) { /* If the number of connections is over the reap limit, we * expedite discard by reducing the expiry timeout. We must, * however, have at least a short grace period to be able to do * final-ACK or ABORT retransmission. */ expiry = rxrpc_conn_idle_client_expiry; if (nr_conns > rxrpc_reap_client_connections) expiry = rxrpc_conn_idle_client_fast_expiry; if (conn->params.local->service_closed) expiry = rxrpc_closed_conn_expiry * HZ; conn_expires_at = conn->idle_timestamp + expiry; now = READ_ONCE(jiffies); if (time_after(conn_expires_at, now)) goto not_yet_expired; } trace_rxrpc_client(conn, -1, rxrpc_client_discard); list_del_init(&conn->cache_link); spin_unlock(&rxnet->client_conn_cache_lock); rxrpc_unbundle_conn(conn); rxrpc_put_connection(conn); /* Drop the ->cache_link ref */ nr_conns--; goto next; not_yet_expired: /* The connection at the front of the queue hasn't yet expired, so * schedule the work item for that point if we discarded something. * * We don't worry if the work item is already scheduled - it can look * after rescheduling itself at a later time. We could cancel it, but * then things get messier. */ _debug("not yet"); if (!rxnet->kill_all_client_conns) timer_reduce(&rxnet->client_conn_reap_timer, conn_expires_at); out: spin_unlock(&rxnet->client_conn_cache_lock); spin_unlock(&rxnet->client_conn_discard_lock); _leave(""); } /* * Preemptively destroy all the client connection records rather than waiting * for them to time out */ void rxrpc_destroy_all_client_connections(struct rxrpc_net *rxnet) { _enter(""); spin_lock(&rxnet->client_conn_cache_lock); rxnet->kill_all_client_conns = true; spin_unlock(&rxnet->client_conn_cache_lock); del_timer_sync(&rxnet->client_conn_reap_timer); if (!rxrpc_queue_work(&rxnet->client_conn_reaper)) _debug("destroy: queue failed"); _leave(""); } /* * Clean up the client connections on a local endpoint. */ void rxrpc_clean_up_local_conns(struct rxrpc_local *local) { struct rxrpc_connection *conn, *tmp; struct rxrpc_net *rxnet = local->rxnet; LIST_HEAD(graveyard); _enter(""); spin_lock(&rxnet->client_conn_cache_lock); list_for_each_entry_safe(conn, tmp, &rxnet->idle_client_conns, cache_link) { if (conn->params.local == local) { trace_rxrpc_client(conn, -1, rxrpc_client_discard); list_move(&conn->cache_link, &graveyard); } } spin_unlock(&rxnet->client_conn_cache_lock); while (!list_empty(&graveyard)) { conn = list_entry(graveyard.next, struct rxrpc_connection, cache_link); list_del_init(&conn->cache_link); rxrpc_unbundle_conn(conn); rxrpc_put_connection(conn); } _leave(" [culled]"); } |
27 27 27 26 26 27 135 135 135 15 15 15 15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 | // SPDX-License-Identifier: GPL-2.0 #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/netdevice.h> #include <net/gro_cells.h> struct gro_cell { struct sk_buff_head napi_skbs; struct napi_struct napi; }; int gro_cells_receive(struct gro_cells *gcells, struct sk_buff *skb) { struct net_device *dev = skb->dev; struct gro_cell *cell; int res; rcu_read_lock(); if (unlikely(!(dev->flags & IFF_UP))) goto drop; if (!gcells->cells || skb_cloned(skb) || netif_elide_gro(dev)) { res = netif_rx(skb); goto unlock; } cell = this_cpu_ptr(gcells->cells); if (skb_queue_len(&cell->napi_skbs) > READ_ONCE(netdev_max_backlog)) { drop: atomic_long_inc(&dev->rx_dropped); kfree_skb(skb); res = NET_RX_DROP; goto unlock; } __skb_queue_tail(&cell->napi_skbs, skb); if (skb_queue_len(&cell->napi_skbs) == 1) napi_schedule(&cell->napi); res = NET_RX_SUCCESS; unlock: rcu_read_unlock(); return res; } EXPORT_SYMBOL(gro_cells_receive); /* called under BH context */ static int gro_cell_poll(struct napi_struct *napi, int budget) { struct gro_cell *cell = container_of(napi, struct gro_cell, napi); struct sk_buff *skb; int work_done = 0; while (work_done < budget) { skb = __skb_dequeue(&cell->napi_skbs); if (!skb) break; napi_gro_receive(napi, skb); work_done++; } if (work_done < budget) napi_complete_done(napi, work_done); return work_done; } int gro_cells_init(struct gro_cells *gcells, struct net_device *dev) { int i; gcells->cells = alloc_percpu(struct gro_cell); if (!gcells->cells) return -ENOMEM; for_each_possible_cpu(i) { struct gro_cell *cell = per_cpu_ptr(gcells->cells, i); __skb_queue_head_init(&cell->napi_skbs); set_bit(NAPI_STATE_NO_BUSY_POLL, &cell->napi.state); netif_napi_add(dev, &cell->napi, gro_cell_poll, NAPI_POLL_WEIGHT); napi_enable(&cell->napi); } return 0; } EXPORT_SYMBOL(gro_cells_init); void gro_cells_destroy(struct gro_cells *gcells) { int i; if (!gcells->cells) return; for_each_possible_cpu(i) { struct gro_cell *cell = per_cpu_ptr(gcells->cells, i); napi_disable(&cell->napi); __netif_napi_del(&cell->napi); __skb_queue_purge(&cell->napi_skbs); } /* This barrier is needed because netpoll could access dev->napi_list * under rcu protection. */ synchronize_net(); free_percpu(gcells->cells); gcells->cells = NULL; } EXPORT_SYMBOL(gro_cells_destroy); |
9 4 4 2 2 2 2 2 2 9 3804 122 3 125 45 72 71 3799 252 3674 1820 1902 1895 252 13 4 1 3 10 74 3575 75 3575 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* * VLAN An implementation of 802.1Q VLAN tagging. * * Authors: Ben Greear <greearb@candelatech.com> */ #ifndef _LINUX_IF_VLAN_H_ #define _LINUX_IF_VLAN_H_ #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/rtnetlink.h> #include <linux/bug.h> #include <uapi/linux/if_vlan.h> #define VLAN_HLEN 4 /* The additional bytes required by VLAN * (in addition to the Ethernet header) */ #define VLAN_ETH_HLEN 18 /* Total octets in header. */ #define VLAN_ETH_ZLEN 64 /* Min. octets in frame sans FCS */ /* * According to 802.3ac, the packet can be 4 bytes longer. --Klika Jan */ #define VLAN_ETH_DATA_LEN 1500 /* Max. octets in payload */ #define VLAN_ETH_FRAME_LEN 1518 /* Max. octets in frame sans FCS */ #define VLAN_MAX_DEPTH 8 /* Max. number of nested VLAN tags parsed */ /* * struct vlan_hdr - vlan header * @h_vlan_TCI: priority and VLAN ID * @h_vlan_encapsulated_proto: packet type ID or len */ struct vlan_hdr { __be16 h_vlan_TCI; __be16 h_vlan_encapsulated_proto; }; /** * struct vlan_ethhdr - vlan ethernet header (ethhdr + vlan_hdr) * @h_dest: destination ethernet address * @h_source: source ethernet address * @h_vlan_proto: ethernet protocol * @h_vlan_TCI: priority and VLAN ID * @h_vlan_encapsulated_proto: packet type ID or len */ struct vlan_ethhdr { unsigned char h_dest[ETH_ALEN]; unsigned char h_source[ETH_ALEN]; __be16 h_vlan_proto; __be16 h_vlan_TCI; __be16 h_vlan_encapsulated_proto; }; #include <linux/skbuff.h> static inline struct vlan_ethhdr *vlan_eth_hdr(const struct sk_buff *skb) { return (struct vlan_ethhdr *)skb_mac_header(skb); } /* Prefer this version in TX path, instead of * skb_reset_mac_header() + vlan_eth_hdr() */ static inline struct vlan_ethhdr *skb_vlan_eth_hdr(const struct sk_buff *skb) { return (struct vlan_ethhdr *)skb->data; } #define VLAN_PRIO_MASK 0xe000 /* Priority Code Point */ #define VLAN_PRIO_SHIFT 13 #define VLAN_CFI_MASK 0x1000 /* Canonical Format Indicator / Drop Eligible Indicator */ #define VLAN_VID_MASK 0x0fff /* VLAN Identifier */ #define VLAN_N_VID 4096 /* found in socket.c */ extern void vlan_ioctl_set(int (*hook)(struct net *, void __user *)); static inline bool is_vlan_dev(const struct net_device *dev) { return dev->priv_flags & IFF_802_1Q_VLAN; } #define skb_vlan_tag_present(__skb) ((__skb)->vlan_present) #define skb_vlan_tag_get(__skb) ((__skb)->vlan_tci) #define skb_vlan_tag_get_id(__skb) ((__skb)->vlan_tci & VLAN_VID_MASK) #define skb_vlan_tag_get_cfi(__skb) (!!((__skb)->vlan_tci & VLAN_CFI_MASK)) #define skb_vlan_tag_get_prio(__skb) (((__skb)->vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT) static inline int vlan_get_rx_ctag_filter_info(struct net_device *dev) { ASSERT_RTNL(); return notifier_to_errno(call_netdevice_notifiers(NETDEV_CVLAN_FILTER_PUSH_INFO, dev)); } static inline void vlan_drop_rx_ctag_filter_info(struct net_device *dev) { ASSERT_RTNL(); call_netdevice_notifiers(NETDEV_CVLAN_FILTER_DROP_INFO, dev); } static inline int vlan_get_rx_stag_filter_info(struct net_device *dev) { ASSERT_RTNL(); return notifier_to_errno(call_netdevice_notifiers(NETDEV_SVLAN_FILTER_PUSH_INFO, dev)); } static inline void vlan_drop_rx_stag_filter_info(struct net_device *dev) { ASSERT_RTNL(); call_netdevice_notifiers(NETDEV_SVLAN_FILTER_DROP_INFO, dev); } /** * struct vlan_pcpu_stats - VLAN percpu rx/tx stats * @rx_packets: number of received packets * @rx_bytes: number of received bytes * @rx_multicast: number of received multicast packets * @tx_packets: number of transmitted packets * @tx_bytes: number of transmitted bytes * @syncp: synchronization point for 64bit counters * @rx_errors: number of rx errors * @tx_dropped: number of tx drops */ struct vlan_pcpu_stats { u64 rx_packets; u64 rx_bytes; u64 rx_multicast; u64 tx_packets; u64 tx_bytes; struct u64_stats_sync syncp; u32 rx_errors; u32 tx_dropped; }; #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) extern struct net_device *__vlan_find_dev_deep_rcu(struct net_device *real_dev, __be16 vlan_proto, u16 vlan_id); extern int vlan_for_each(struct net_device *dev, int (*action)(struct net_device *dev, int vid, void *arg), void *arg); extern struct net_device *vlan_dev_real_dev(const struct net_device *dev); extern u16 vlan_dev_vlan_id(const struct net_device *dev); extern __be16 vlan_dev_vlan_proto(const struct net_device *dev); /** * struct vlan_priority_tci_mapping - vlan egress priority mappings * @priority: skb priority * @vlan_qos: vlan priority: (skb->priority << 13) & 0xE000 * @next: pointer to next struct */ struct vlan_priority_tci_mapping { u32 priority; u16 vlan_qos; struct vlan_priority_tci_mapping *next; }; struct proc_dir_entry; struct netpoll; /** * struct vlan_dev_priv - VLAN private device data * @nr_ingress_mappings: number of ingress priority mappings * @ingress_priority_map: ingress priority mappings * @nr_egress_mappings: number of egress priority mappings * @egress_priority_map: hash of egress priority mappings * @vlan_proto: VLAN encapsulation protocol * @vlan_id: VLAN identifier * @flags: device flags * @real_dev: underlying netdevice * @real_dev_addr: address of underlying netdevice * @dent: proc dir entry * @vlan_pcpu_stats: ptr to percpu rx stats */ struct vlan_dev_priv { unsigned int nr_ingress_mappings; u32 ingress_priority_map[8]; unsigned int nr_egress_mappings; struct vlan_priority_tci_mapping *egress_priority_map[16]; __be16 vlan_proto; u16 vlan_id; u16 flags; struct net_device *real_dev; unsigned char real_dev_addr[ETH_ALEN]; struct proc_dir_entry *dent; struct vlan_pcpu_stats __percpu *vlan_pcpu_stats; #ifdef CONFIG_NET_POLL_CONTROLLER struct netpoll *netpoll; #endif }; static inline struct vlan_dev_priv *vlan_dev_priv(const struct net_device *dev) { return netdev_priv(dev); } static inline u16 vlan_dev_get_egress_qos_mask(struct net_device *dev, u32 skprio) { struct vlan_priority_tci_mapping *mp; smp_rmb(); /* coupled with smp_wmb() in vlan_dev_set_egress_priority() */ mp = vlan_dev_priv(dev)->egress_priority_map[(skprio & 0xF)]; while (mp) { if (mp->priority == skprio) { return mp->vlan_qos; /* This should already be shifted * to mask correctly with the * VLAN's TCI */ } mp = mp->next; } return 0; } extern bool vlan_do_receive(struct sk_buff **skb); extern int vlan_vid_add(struct net_device *dev, __be16 proto, u16 vid); extern void vlan_vid_del(struct net_device *dev, __be16 proto, u16 vid); extern int vlan_vids_add_by_dev(struct net_device *dev, const struct net_device *by_dev); extern void vlan_vids_del_by_dev(struct net_device *dev, const struct net_device *by_dev); extern bool vlan_uses_dev(const struct net_device *dev); #else static inline struct net_device * __vlan_find_dev_deep_rcu(struct net_device *real_dev, __be16 vlan_proto, u16 vlan_id) { return NULL; } static inline int vlan_for_each(struct net_device *dev, int (*action)(struct net_device *dev, int vid, void *arg), void *arg) { return 0; } static inline struct net_device *vlan_dev_real_dev(const struct net_device *dev) { BUG(); return NULL; } static inline u16 vlan_dev_vlan_id(const struct net_device *dev) { BUG(); return 0; } static inline __be16 vlan_dev_vlan_proto(const struct net_device *dev) { BUG(); return 0; } static inline u16 vlan_dev_get_egress_qos_mask(struct net_device *dev, u32 skprio) { return 0; } static inline bool vlan_do_receive(struct sk_buff **skb) { return false; } static inline int vlan_vid_add(struct net_device *dev, __be16 proto, u16 vid) { return 0; } static inline void vlan_vid_del(struct net_device *dev, __be16 proto, u16 vid) { } static inline int vlan_vids_add_by_dev(struct net_device *dev, const struct net_device *by_dev) { return 0; } static inline void vlan_vids_del_by_dev(struct net_device *dev, const struct net_device *by_dev) { } static inline bool vlan_uses_dev(const struct net_device *dev) { return false; } #endif /** * eth_type_vlan - check for valid vlan ether type. * @ethertype: ether type to check * * Returns true if the ether type is a vlan ether type. */ static inline bool eth_type_vlan(__be16 ethertype) { switch (ethertype) { case htons(ETH_P_8021Q): case htons(ETH_P_8021AD): return true; default: return false; } } static inline bool vlan_hw_offload_capable(netdev_features_t features, __be16 proto) { if (proto == htons(ETH_P_8021Q) && features & NETIF_F_HW_VLAN_CTAG_TX) return true; if (proto == htons(ETH_P_8021AD) && features & NETIF_F_HW_VLAN_STAG_TX) return true; return false; } /** * __vlan_insert_inner_tag - inner VLAN tag inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * @mac_len: MAC header length including outer vlan headers * * Inserts the VLAN tag into @skb as part of the payload at offset mac_len * Returns error if skb_cow_head fails. * * Does not change skb->protocol so this function can be used during receive. */ static inline int __vlan_insert_inner_tag(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci, unsigned int mac_len) { struct vlan_ethhdr *veth; if (skb_cow_head(skb, VLAN_HLEN) < 0) return -ENOMEM; skb_push(skb, VLAN_HLEN); /* Move the mac header sans proto to the beginning of the new header. */ if (likely(mac_len > ETH_TLEN)) memmove(skb->data, skb->data + VLAN_HLEN, mac_len - ETH_TLEN); skb->mac_header -= VLAN_HLEN; veth = (struct vlan_ethhdr *)(skb->data + mac_len - ETH_HLEN); /* first, the ethernet type */ if (likely(mac_len >= ETH_TLEN)) { /* h_vlan_encapsulated_proto should already be populated, and * skb->data has space for h_vlan_proto */ veth->h_vlan_proto = vlan_proto; } else { /* h_vlan_encapsulated_proto should not be populated, and * skb->data has no space for h_vlan_proto */ veth->h_vlan_encapsulated_proto = skb->protocol; } /* now, the TCI */ veth->h_vlan_TCI = htons(vlan_tci); return 0; } /** * __vlan_insert_tag - regular VLAN tag inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * * Inserts the VLAN tag into @skb as part of the payload * Returns error if skb_cow_head fails. * * Does not change skb->protocol so this function can be used during receive. */ static inline int __vlan_insert_tag(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) { return __vlan_insert_inner_tag(skb, vlan_proto, vlan_tci, ETH_HLEN); } /** * vlan_insert_inner_tag - inner VLAN tag inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * @mac_len: MAC header length including outer vlan headers * * Inserts the VLAN tag into @skb as part of the payload at offset mac_len * Returns a VLAN tagged skb. If a new skb is created, @skb is freed. * * Following the skb_unshare() example, in case of error, the calling function * doesn't have to worry about freeing the original skb. * * Does not change skb->protocol so this function can be used during receive. */ static inline struct sk_buff *vlan_insert_inner_tag(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci, unsigned int mac_len) { int err; err = __vlan_insert_inner_tag(skb, vlan_proto, vlan_tci, mac_len); if (err) { dev_kfree_skb_any(skb); return NULL; } return skb; } /** * vlan_insert_tag - regular VLAN tag inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * * Inserts the VLAN tag into @skb as part of the payload * Returns a VLAN tagged skb. If a new skb is created, @skb is freed. * * Following the skb_unshare() example, in case of error, the calling function * doesn't have to worry about freeing the original skb. * * Does not change skb->protocol so this function can be used during receive. */ static inline struct sk_buff *vlan_insert_tag(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) { return vlan_insert_inner_tag(skb, vlan_proto, vlan_tci, ETH_HLEN); } /** * vlan_insert_tag_set_proto - regular VLAN tag inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * * Inserts the VLAN tag into @skb as part of the payload * Returns a VLAN tagged skb. If a new skb is created, @skb is freed. * * Following the skb_unshare() example, in case of error, the calling function * doesn't have to worry about freeing the original skb. */ static inline struct sk_buff *vlan_insert_tag_set_proto(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) { skb = vlan_insert_tag(skb, vlan_proto, vlan_tci); if (skb) skb->protocol = vlan_proto; return skb; } /** * __vlan_hwaccel_clear_tag - clear hardware accelerated VLAN info * @skb: skbuff to clear * * Clears the VLAN information from @skb */ static inline void __vlan_hwaccel_clear_tag(struct sk_buff *skb) { skb->vlan_present = 0; } /** * __vlan_hwaccel_copy_tag - copy hardware accelerated VLAN info from another skb * @dst: skbuff to copy to * @src: skbuff to copy from * * Copies VLAN information from @src to @dst (for branchless code) */ static inline void __vlan_hwaccel_copy_tag(struct sk_buff *dst, const struct sk_buff *src) { dst->vlan_present = src->vlan_present; dst->vlan_proto = src->vlan_proto; dst->vlan_tci = src->vlan_tci; } /* * __vlan_hwaccel_push_inside - pushes vlan tag to the payload * @skb: skbuff to tag * * Pushes the VLAN tag from @skb->vlan_tci inside to the payload. * * Following the skb_unshare() example, in case of error, the calling function * doesn't have to worry about freeing the original skb. */ static inline struct sk_buff *__vlan_hwaccel_push_inside(struct sk_buff *skb) { skb = vlan_insert_tag_set_proto(skb, skb->vlan_proto, skb_vlan_tag_get(skb)); if (likely(skb)) __vlan_hwaccel_clear_tag(skb); return skb; } /** * __vlan_hwaccel_put_tag - hardware accelerated VLAN inserting * @skb: skbuff to tag * @vlan_proto: VLAN encapsulation protocol * @vlan_tci: VLAN TCI to insert * * Puts the VLAN TCI in @skb->vlan_tci and lets the device do the rest */ static inline void __vlan_hwaccel_put_tag(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) { skb->vlan_proto = vlan_proto; skb->vlan_tci = vlan_tci; skb->vlan_present = 1; } /** * __vlan_get_tag - get the VLAN ID that is part of the payload * @skb: skbuff to query * @vlan_tci: buffer to store value * * Returns error if the skb is not of VLAN type */ static inline int __vlan_get_tag(const struct sk_buff *skb, u16 *vlan_tci) { struct vlan_ethhdr *veth = skb_vlan_eth_hdr(skb); if (!eth_type_vlan(veth->h_vlan_proto)) return -EINVAL; *vlan_tci = ntohs(veth->h_vlan_TCI); return 0; } /** * __vlan_hwaccel_get_tag - get the VLAN ID that is in @skb->cb[] * @skb: skbuff to query * @vlan_tci: buffer to store value * * Returns error if @skb->vlan_tci is not set correctly */ static inline int __vlan_hwaccel_get_tag(const struct sk_buff *skb, u16 *vlan_tci) { if (skb_vlan_tag_present(skb)) { *vlan_tci = skb_vlan_tag_get(skb); return 0; } else { *vlan_tci = 0; return -EINVAL; } } /** * vlan_get_tag - get the VLAN ID from the skb * @skb: skbuff to query * @vlan_tci: buffer to store value * * Returns error if the skb is not VLAN tagged */ static inline int vlan_get_tag(const struct sk_buff *skb, u16 *vlan_tci) { if (skb->dev->features & NETIF_F_HW_VLAN_CTAG_TX) { return __vlan_hwaccel_get_tag(skb, vlan_tci); } else { return __vlan_get_tag(skb, vlan_tci); } } /** * vlan_get_protocol - get protocol EtherType. * @skb: skbuff to query * @type: first vlan protocol * @mac_offset: MAC offset * @depth: buffer to store length of eth and vlan tags in bytes * * Returns the EtherType of the packet, regardless of whether it is * vlan encapsulated (normal or hardware accelerated) or not. */ static inline __be16 __vlan_get_protocol_offset(const struct sk_buff *skb, __be16 type, int mac_offset, int *depth) { unsigned int vlan_depth = skb->mac_len, parse_depth = VLAN_MAX_DEPTH; /* if type is 802.1Q/AD then the header should already be * present at mac_len - VLAN_HLEN (if mac_len > 0), or at * ETH_HLEN otherwise */ if (eth_type_vlan(type)) { if (vlan_depth) { if (WARN_ON(vlan_depth < VLAN_HLEN)) return 0; vlan_depth -= VLAN_HLEN; } else { vlan_depth = ETH_HLEN; } do { struct vlan_hdr vhdr, *vh; vh = skb_header_pointer(skb, mac_offset + vlan_depth, sizeof(vhdr), &vhdr); if (unlikely(!vh || !--parse_depth)) return 0; type = vh->h_vlan_encapsulated_proto; vlan_depth += VLAN_HLEN; } while (eth_type_vlan(type)); } if (depth) *depth = vlan_depth; return type; } static inline __be16 __vlan_get_protocol(const struct sk_buff *skb, __be16 type, int *depth) { return __vlan_get_protocol_offset(skb, type, 0, depth); } /** * vlan_get_protocol - get protocol EtherType. * @skb: skbuff to query * * Returns the EtherType of the packet, regardless of whether it is * vlan encapsulated (normal or hardware accelerated) or not. */ static inline __be16 vlan_get_protocol(const struct sk_buff *skb) { return __vlan_get_protocol(skb, skb->protocol, NULL); } /* This version of __vlan_get_protocol() also pulls mac header in skb->head */ static inline __be16 vlan_get_protocol_and_depth(struct sk_buff *skb, __be16 type, int *depth) { int maclen; type = __vlan_get_protocol(skb, type, &maclen); if (type) { if (!pskb_may_pull(skb, maclen)) type = 0; else if (depth) *depth = maclen; } return type; } /* A getter for the SKB protocol field which will handle VLAN tags consistently * whether VLAN acceleration is enabled or not. */ static inline __be16 skb_protocol(const struct sk_buff *skb, bool skip_vlan) { if (!skip_vlan) /* VLAN acceleration strips the VLAN header from the skb and * moves it to skb->vlan_proto */ return skb_vlan_tag_present(skb) ? skb->vlan_proto : skb->protocol; return vlan_get_protocol(skb); } static inline void vlan_set_encap_proto(struct sk_buff *skb, struct vlan_hdr *vhdr) { __be16 proto; unsigned short *rawp; /* * Was a VLAN packet, grab the encapsulated protocol, which the layer * three protocols care about. */ proto = vhdr->h_vlan_encapsulated_proto; if (eth_proto_is_802_3(proto)) { skb->protocol = proto; return; } rawp = (unsigned short *)(vhdr + 1); if (*rawp == 0xFFFF) /* * This is a magic hack to spot IPX packets. Older Novell * breaks the protocol design and runs IPX over 802.3 without * an 802.2 LLC layer. We look for FFFF which isn't a used * 802.2 SSAP/DSAP. This won't work for fault tolerant netware * but does for the rest. */ skb->protocol = htons(ETH_P_802_3); else /* * Real 802.2 LLC */ skb->protocol = htons(ETH_P_802_2); } /** * skb_vlan_tagged - check if skb is vlan tagged. * @skb: skbuff to query * * Returns true if the skb is tagged, regardless of whether it is hardware * accelerated or not. */ static inline bool skb_vlan_tagged(const struct sk_buff *skb) { if (!skb_vlan_tag_present(skb) && likely(!eth_type_vlan(skb->protocol))) return false; return true; } /** * skb_vlan_tagged_multi - check if skb is vlan tagged with multiple headers. * @skb: skbuff to query * * Returns true if the skb is tagged with multiple vlan headers, regardless * of whether it is hardware accelerated or not. */ static inline bool skb_vlan_tagged_multi(struct sk_buff *skb) { __be16 protocol = skb->protocol; if (!skb_vlan_tag_present(skb)) { struct vlan_ethhdr *veh; if (likely(!eth_type_vlan(protocol))) return false; if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN))) return false; veh = skb_vlan_eth_hdr(skb); protocol = veh->h_vlan_encapsulated_proto; } if (!eth_type_vlan(protocol)) return false; return true; } /** * vlan_features_check - drop unsafe features for skb with multiple tags. * @skb: skbuff to query * @features: features to be checked * * Returns features without unsafe ones if the skb has multiple tags. */ static inline netdev_features_t vlan_features_check(struct sk_buff *skb, netdev_features_t features) { if (skb_vlan_tagged_multi(skb)) { /* In the case of multi-tagged packets, use a direct mask * instead of using netdev_interesect_features(), to make * sure that only devices supporting NETIF_F_HW_CSUM will * have checksum offloading support. */ features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM | NETIF_F_FRAGLIST | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_STAG_TX; } return features; } /** * compare_vlan_header - Compare two vlan headers * @h1: Pointer to vlan header * @h2: Pointer to vlan header * * Compare two vlan headers, returns 0 if equal. * * Please note that alignment of h1 & h2 are only guaranteed to be 16 bits. */ static inline unsigned long compare_vlan_header(const struct vlan_hdr *h1, const struct vlan_hdr *h2) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) return *(u32 *)h1 ^ *(u32 *)h2; #else return ((__force u32)h1->h_vlan_TCI ^ (__force u32)h2->h_vlan_TCI) | ((__force u32)h1->h_vlan_encapsulated_proto ^ (__force u32)h2->h_vlan_encapsulated_proto); #endif } #endif /* !(_LINUX_IF_VLAN_H_) */ |
38 6 6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) ST-Ericsson AB 2010 * Author: Sjur Brendeland */ #define pr_fmt(fmt) KBUILD_MODNAME ":%s(): " fmt, __func__ #include <linux/kernel.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/pkt_sched.h> #include <net/caif/caif_layer.h> #include <net/caif/cfsrvl.h> #include <net/caif/cfpkt.h> #include <net/caif/caif_dev.h> #define SRVL_CTRL_PKT_SIZE 1 #define SRVL_FLOW_OFF 0x81 #define SRVL_FLOW_ON 0x80 #define SRVL_SET_PIN 0x82 #define container_obj(layr) container_of(layr, struct cfsrvl, layer) static void cfservl_ctrlcmd(struct cflayer *layr, enum caif_ctrlcmd ctrl, int phyid) { struct cfsrvl *service = container_obj(layr); if (layr->up == NULL || layr->up->ctrlcmd == NULL) return; switch (ctrl) { case CAIF_CTRLCMD_INIT_RSP: service->open = true; layr->up->ctrlcmd(layr->up, ctrl, phyid); break; case CAIF_CTRLCMD_DEINIT_RSP: case CAIF_CTRLCMD_INIT_FAIL_RSP: service->open = false; layr->up->ctrlcmd(layr->up, ctrl, phyid); break; case _CAIF_CTRLCMD_PHYIF_FLOW_OFF_IND: if (phyid != service->dev_info.id) break; if (service->modem_flow_on) layr->up->ctrlcmd(layr->up, CAIF_CTRLCMD_FLOW_OFF_IND, phyid); service->phy_flow_on = false; break; case _CAIF_CTRLCMD_PHYIF_FLOW_ON_IND: if (phyid != service->dev_info.id) return; if (service->modem_flow_on) { layr->up->ctrlcmd(layr->up, CAIF_CTRLCMD_FLOW_ON_IND, phyid); } service->phy_flow_on = true; break; case CAIF_CTRLCMD_FLOW_OFF_IND: if (service->phy_flow_on) { layr->up->ctrlcmd(layr->up, CAIF_CTRLCMD_FLOW_OFF_IND, phyid); } service->modem_flow_on = false; break; case CAIF_CTRLCMD_FLOW_ON_IND: if (service->phy_flow_on) { layr->up->ctrlcmd(layr->up, CAIF_CTRLCMD_FLOW_ON_IND, phyid); } service->modem_flow_on = true; break; case _CAIF_CTRLCMD_PHYIF_DOWN_IND: /* In case interface is down, let's fake a remove shutdown */ layr->up->ctrlcmd(layr->up, CAIF_CTRLCMD_REMOTE_SHUTDOWN_IND, phyid); break; case CAIF_CTRLCMD_REMOTE_SHUTDOWN_IND: layr->up->ctrlcmd(layr->up, ctrl, phyid); break; default: pr_warn("Unexpected ctrl in cfsrvl (%d)\n", ctrl); /* We have both modem and phy flow on, send flow on */ layr->up->ctrlcmd(layr->up, ctrl, phyid); service->phy_flow_on = true; break; } } static int cfservl_modemcmd(struct cflayer *layr, enum caif_modemcmd ctrl) { struct cfsrvl *service = container_obj(layr); caif_assert(layr != NULL); caif_assert(layr->dn != NULL); caif_assert(layr->dn->transmit != NULL); if (!service->supports_flowctrl) return 0; switch (ctrl) { case CAIF_MODEMCMD_FLOW_ON_REQ: { struct cfpkt *pkt; struct caif_payload_info *info; u8 flow_on = SRVL_FLOW_ON; pkt = cfpkt_create(SRVL_CTRL_PKT_SIZE); if (!pkt) return -ENOMEM; if (cfpkt_add_head(pkt, &flow_on, 1) < 0) { pr_err("Packet is erroneous!\n"); cfpkt_destroy(pkt); return -EPROTO; } info = cfpkt_info(pkt); info->channel_id = service->layer.id; info->hdr_len = 1; info->dev_info = &service->dev_info; cfpkt_set_prio(pkt, TC_PRIO_CONTROL); return layr->dn->transmit(layr->dn, pkt); } case CAIF_MODEMCMD_FLOW_OFF_REQ: { struct cfpkt *pkt; struct caif_payload_info *info; u8 flow_off = SRVL_FLOW_OFF; pkt = cfpkt_create(SRVL_CTRL_PKT_SIZE); if (!pkt) return -ENOMEM; if (cfpkt_add_head(pkt, &flow_off, 1) < 0) { pr_err("Packet is erroneous!\n"); cfpkt_destroy(pkt); return -EPROTO; } info = cfpkt_info(pkt); info->channel_id = service->layer.id; info->hdr_len = 1; info->dev_info = &service->dev_info; cfpkt_set_prio(pkt, TC_PRIO_CONTROL); return layr->dn->transmit(layr->dn, pkt); } default: break; } return -EINVAL; } static void cfsrvl_release(struct cflayer *layer) { struct cfsrvl *service = container_of(layer, struct cfsrvl, layer); kfree(service); } void cfsrvl_init(struct cfsrvl *service, u8 channel_id, struct dev_info *dev_info, bool supports_flowctrl) { caif_assert(offsetof(struct cfsrvl, layer) == 0); service->open = false; service->modem_flow_on = true; service->phy_flow_on = true; service->layer.id = channel_id; service->layer.ctrlcmd = cfservl_ctrlcmd; service->layer.modemcmd = cfservl_modemcmd; service->dev_info = *dev_info; service->supports_flowctrl = supports_flowctrl; service->release = cfsrvl_release; } bool cfsrvl_ready(struct cfsrvl *service, int *err) { if (!service->open) { *err = -ENOTCONN; return false; } return true; } u8 cfsrvl_getphyid(struct cflayer *layer) { struct cfsrvl *servl = container_obj(layer); return servl->dev_info.id; } bool cfsrvl_phyid_match(struct cflayer *layer, int phyid) { struct cfsrvl *servl = container_obj(layer); return servl->dev_info.id == phyid; } void caif_free_client(struct cflayer *adap_layer) { struct cfsrvl *servl; if (adap_layer == NULL || adap_layer->dn == NULL) return; servl = container_obj(adap_layer->dn); servl->release(&servl->layer); } EXPORT_SYMBOL(caif_free_client); void caif_client_register_refcnt(struct cflayer *adapt_layer, void (*hold)(struct cflayer *lyr), void (*put)(struct cflayer *lyr)) { struct cfsrvl *service; if (WARN_ON(adapt_layer == NULL || adapt_layer->dn == NULL)) return; service = container_of(adapt_layer->dn, struct cfsrvl, layer); service->hold = hold; service->put = put; } EXPORT_SYMBOL(caif_client_register_refcnt); |
91 58 3 92 60 6 6 12 12 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NET_UDP_TUNNEL_H #define __NET_UDP_TUNNEL_H #include <net/ip_tunnels.h> #include <net/udp.h> #if IS_ENABLED(CONFIG_IPV6) #include <net/ipv6.h> #include <net/ipv6_stubs.h> #endif struct udp_port_cfg { u8 family; /* Used only for kernel-created sockets */ union { struct in_addr local_ip; #if IS_ENABLED(CONFIG_IPV6) struct in6_addr local_ip6; #endif }; union { struct in_addr peer_ip; #if IS_ENABLED(CONFIG_IPV6) struct in6_addr peer_ip6; #endif }; __be16 local_udp_port; __be16 peer_udp_port; int bind_ifindex; unsigned int use_udp_checksums:1, use_udp6_tx_checksums:1, use_udp6_rx_checksums:1, ipv6_v6only:1; }; int udp_sock_create4(struct net *net, struct udp_port_cfg *cfg, struct socket **sockp); #if IS_ENABLED(CONFIG_IPV6) int udp_sock_create6(struct net *net, struct udp_port_cfg *cfg, struct socket **sockp); #else static inline int udp_sock_create6(struct net *net, struct udp_port_cfg *cfg, struct socket **sockp) { return 0; } #endif static inline int udp_sock_create(struct net *net, struct udp_port_cfg *cfg, struct socket **sockp) { if (cfg->family == AF_INET) return udp_sock_create4(net, cfg, sockp); if (cfg->family == AF_INET6) return udp_sock_create6(net, cfg, sockp); return -EPFNOSUPPORT; } typedef int (*udp_tunnel_encap_rcv_t)(struct sock *sk, struct sk_buff *skb); typedef int (*udp_tunnel_encap_err_lookup_t)(struct sock *sk, struct sk_buff *skb); typedef void (*udp_tunnel_encap_err_rcv_t)(struct sock *sk, struct sk_buff *skb, unsigned int udp_offset); typedef void (*udp_tunnel_encap_destroy_t)(struct sock *sk); typedef struct sk_buff *(*udp_tunnel_gro_receive_t)(struct sock *sk, struct list_head *head, struct sk_buff *skb); typedef int (*udp_tunnel_gro_complete_t)(struct sock *sk, struct sk_buff *skb, int nhoff); struct udp_tunnel_sock_cfg { void *sk_user_data; /* user data used by encap_rcv call back */ /* Used for setting up udp_sock fields, see udp.h for details */ __u8 encap_type; udp_tunnel_encap_rcv_t encap_rcv; udp_tunnel_encap_err_lookup_t encap_err_lookup; udp_tunnel_encap_err_rcv_t encap_err_rcv; udp_tunnel_encap_destroy_t encap_destroy; udp_tunnel_gro_receive_t gro_receive; udp_tunnel_gro_complete_t gro_complete; }; /* Setup the given (UDP) sock to receive UDP encapsulated packets */ void setup_udp_tunnel_sock(struct net *net, struct socket *sock, struct udp_tunnel_sock_cfg *sock_cfg); /* -- List of parsable UDP tunnel types -- * * Adding to this list will result in serious debate. The main issue is * that this list is essentially a list of workarounds for either poorly * designed tunnels, or poorly designed device offloads. * * The parsing supported via these types should really be used for Rx * traffic only as the network stack will have already inserted offsets for * the location of the headers in the skb. In addition any ports that are * pushed should be kept within the namespace without leaking to other * devices such as VFs or other ports on the same device. * * It is strongly encouraged to use CHECKSUM_COMPLETE for Rx to avoid the * need to use this for Rx checksum offload. It should not be necessary to * call this function to perform Tx offloads on outgoing traffic. */ enum udp_parsable_tunnel_type { UDP_TUNNEL_TYPE_VXLAN = BIT(0), /* RFC 7348 */ UDP_TUNNEL_TYPE_GENEVE = BIT(1), /* draft-ietf-nvo3-geneve */ UDP_TUNNEL_TYPE_VXLAN_GPE = BIT(2), /* draft-ietf-nvo3-vxlan-gpe */ }; struct udp_tunnel_info { unsigned short type; sa_family_t sa_family; __be16 port; u8 hw_priv; }; /* Notify network devices of offloadable types */ void udp_tunnel_push_rx_port(struct net_device *dev, struct socket *sock, unsigned short type); void udp_tunnel_drop_rx_port(struct net_device *dev, struct socket *sock, unsigned short type); void udp_tunnel_notify_add_rx_port(struct socket *sock, unsigned short type); void udp_tunnel_notify_del_rx_port(struct socket *sock, unsigned short type); static inline void udp_tunnel_get_rx_info(struct net_device *dev) { ASSERT_RTNL(); if (!(dev->features & NETIF_F_RX_UDP_TUNNEL_PORT)) return; call_netdevice_notifiers(NETDEV_UDP_TUNNEL_PUSH_INFO, dev); } static inline void udp_tunnel_drop_rx_info(struct net_device *dev) { ASSERT_RTNL(); if (!(dev->features & NETIF_F_RX_UDP_TUNNEL_PORT)) return; call_netdevice_notifiers(NETDEV_UDP_TUNNEL_DROP_INFO, dev); } /* Transmit the skb using UDP encapsulation. */ void udp_tunnel_xmit_skb(struct rtable *rt, struct sock *sk, struct sk_buff *skb, __be32 src, __be32 dst, __u8 tos, __u8 ttl, __be16 df, __be16 src_port, __be16 dst_port, bool xnet, bool nocheck); int udp_tunnel6_xmit_skb(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb, struct net_device *dev, struct in6_addr *saddr, struct in6_addr *daddr, __u8 prio, __u8 ttl, __be32 label, __be16 src_port, __be16 dst_port, bool nocheck); void udp_tunnel_sock_release(struct socket *sock); struct metadata_dst *udp_tun_rx_dst(struct sk_buff *skb, unsigned short family, __be16 flags, __be64 tunnel_id, int md_size); #ifdef CONFIG_INET static inline int udp_tunnel_handle_offloads(struct sk_buff *skb, bool udp_csum) { int type = udp_csum ? SKB_GSO_UDP_TUNNEL_CSUM : SKB_GSO_UDP_TUNNEL; return iptunnel_handle_offloads(skb, type); } #endif static inline void udp_tunnel_encap_enable(struct socket *sock) { struct udp_sock *up = udp_sk(sock->sk); if (up->encap_enabled) return; up->encap_enabled = 1; #if IS_ENABLED(CONFIG_IPV6) if (sock->sk->sk_family == PF_INET6) ipv6_stub->udpv6_encap_enable(); #endif udp_encap_enable(); } #define UDP_TUNNEL_NIC_MAX_TABLES 4 enum udp_tunnel_nic_info_flags { /* Device callbacks may sleep */ UDP_TUNNEL_NIC_INFO_MAY_SLEEP = BIT(0), /* Device only supports offloads when it's open, all ports * will be removed before close and re-added after open. */ UDP_TUNNEL_NIC_INFO_OPEN_ONLY = BIT(1), /* Device supports only IPv4 tunnels */ UDP_TUNNEL_NIC_INFO_IPV4_ONLY = BIT(2), /* Device has hard-coded the IANA VXLAN port (4789) as VXLAN. * This port must not be counted towards n_entries of any table. * Driver will not receive any callback associated with port 4789. */ UDP_TUNNEL_NIC_INFO_STATIC_IANA_VXLAN = BIT(3), }; struct udp_tunnel_nic; #define UDP_TUNNEL_NIC_MAX_SHARING_DEVICES (U16_MAX / 2) struct udp_tunnel_nic_shared { struct udp_tunnel_nic *udp_tunnel_nic_info; struct list_head devices; }; struct udp_tunnel_nic_shared_node { struct net_device *dev; struct list_head list; }; /** * struct udp_tunnel_nic_info - driver UDP tunnel offload information * @set_port: callback for adding a new port * @unset_port: callback for removing a port * @sync_table: callback for syncing the entire port table at once * @shared: reference to device global state (optional) * @flags: device flags from enum udp_tunnel_nic_info_flags * @tables: UDP port tables this device has * @tables.n_entries: number of entries in this table * @tables.tunnel_types: types of tunnels this table accepts * * Drivers are expected to provide either @set_port and @unset_port callbacks * or the @sync_table callback. Callbacks are invoked with rtnl lock held. * * Devices which (misguidedly) share the UDP tunnel port table across multiple * netdevs should allocate an instance of struct udp_tunnel_nic_shared and * point @shared at it. * There must never be more than %UDP_TUNNEL_NIC_MAX_SHARING_DEVICES devices * sharing a table. * * Known limitations: * - UDP tunnel port notifications are fundamentally best-effort - * it is likely the driver will both see skbs which use a UDP tunnel port, * while not being a tunneled skb, and tunnel skbs from other ports - * drivers should only use these ports for non-critical RX-side offloads, * e.g. the checksum offload; * - none of the devices care about the socket family at present, so we don't * track it. Please extend this code if you care. */ struct udp_tunnel_nic_info { /* one-by-one */ int (*set_port)(struct net_device *dev, unsigned int table, unsigned int entry, struct udp_tunnel_info *ti); int (*unset_port)(struct net_device *dev, unsigned int table, unsigned int entry, struct udp_tunnel_info *ti); /* all at once */ int (*sync_table)(struct net_device *dev, unsigned int table); struct udp_tunnel_nic_shared *shared; unsigned int flags; struct udp_tunnel_nic_table_info { unsigned int n_entries; unsigned int tunnel_types; } tables[UDP_TUNNEL_NIC_MAX_TABLES]; }; /* UDP tunnel module dependencies * * Tunnel drivers are expected to have a hard dependency on the udp_tunnel * module. NIC drivers are not, they just attach their * struct udp_tunnel_nic_info to the netdev and wait for callbacks to come. * Loading a tunnel driver will cause the udp_tunnel module to be loaded * and only then will all the required state structures be allocated. * Since we want a weak dependency from the drivers and the core to udp_tunnel * we call things through the following stubs. */ struct udp_tunnel_nic_ops { void (*get_port)(struct net_device *dev, unsigned int table, unsigned int idx, struct udp_tunnel_info *ti); void (*set_port_priv)(struct net_device *dev, unsigned int table, unsigned int idx, u8 priv); void (*add_port)(struct net_device *dev, struct udp_tunnel_info *ti); void (*del_port)(struct net_device *dev, struct udp_tunnel_info *ti); void (*reset_ntf)(struct net_device *dev); size_t (*dump_size)(struct net_device *dev, unsigned int table); int (*dump_write)(struct net_device *dev, unsigned int table, struct sk_buff *skb); }; #ifdef CONFIG_INET extern const struct udp_tunnel_nic_ops *udp_tunnel_nic_ops; #else #define udp_tunnel_nic_ops ((struct udp_tunnel_nic_ops *)NULL) #endif static inline void udp_tunnel_nic_get_port(struct net_device *dev, unsigned int table, unsigned int idx, struct udp_tunnel_info *ti) { /* This helper is used from .sync_table, we indicate empty entries * by zero'ed @ti. Drivers which need to know the details of a port * when it gets deleted should use the .set_port / .unset_port * callbacks. * Zero out here, otherwise !CONFIG_INET causes uninitilized warnings. */ memset(ti, 0, sizeof(*ti)); if (udp_tunnel_nic_ops) udp_tunnel_nic_ops->get_port(dev, table, idx, ti); } static inline void udp_tunnel_nic_set_port_priv(struct net_device *dev, unsigned int table, unsigned int idx, u8 priv) { if (udp_tunnel_nic_ops) udp_tunnel_nic_ops->set_port_priv(dev, table, idx, priv); } static inline void udp_tunnel_nic_add_port(struct net_device *dev, struct udp_tunnel_info *ti) { if (!(dev->features & NETIF_F_RX_UDP_TUNNEL_PORT)) return; if (udp_tunnel_nic_ops) udp_tunnel_nic_ops->add_port(dev, ti); } static inline void udp_tunnel_nic_del_port(struct net_device *dev, struct udp_tunnel_info *ti) { if (!(dev->features & NETIF_F_RX_UDP_TUNNEL_PORT)) return; if (udp_tunnel_nic_ops) udp_tunnel_nic_ops->del_port(dev, ti); } /** * udp_tunnel_nic_reset_ntf() - device-originating reset notification * @dev: network interface device structure * * Called by the driver to inform the core that the entire UDP tunnel port * state has been lost, usually due to device reset. Core will assume device * forgot all the ports and issue .set_port and .sync_table callbacks as * necessary. * * This function must be called with rtnl lock held, and will issue all * the callbacks before returning. */ static inline void udp_tunnel_nic_reset_ntf(struct net_device *dev) { if (udp_tunnel_nic_ops) udp_tunnel_nic_ops->reset_ntf(dev); } static inline size_t udp_tunnel_nic_dump_size(struct net_device *dev, unsigned int table) { if (!udp_tunnel_nic_ops) return 0; return udp_tunnel_nic_ops->dump_size(dev, table); } static inline int udp_tunnel_nic_dump_write(struct net_device *dev, unsigned int table, struct sk_buff *skb) { if (!udp_tunnel_nic_ops) return 0; return udp_tunnel_nic_ops->dump_write(dev, table, skb); } #endif |
69 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | /* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_X86_TLB_H #define _ASM_X86_TLB_H #define tlb_start_vma(tlb, vma) do { } while (0) #define tlb_end_vma(tlb, vma) do { } while (0) #define tlb_flush tlb_flush static inline void tlb_flush(struct mmu_gather *tlb); #include <asm-generic/tlb.h> static inline void tlb_flush(struct mmu_gather *tlb) { unsigned long start = 0UL, end = TLB_FLUSH_ALL; unsigned int stride_shift = tlb_get_unmap_shift(tlb); if (!tlb->fullmm && !tlb->need_flush_all) { start = tlb->start; end = tlb->end; } flush_tlb_mm_range(tlb->mm, start, end, stride_shift, tlb->freed_tables); } /* * While x86 architecture in general requires an IPI to perform TLB * shootdown, enablement code for several hypervisors overrides * .flush_tlb_others hook in pv_mmu_ops and implements it by issuing * a hypercall. To keep software pagetable walkers safe in this case we * switch to RCU based table free (MMU_GATHER_RCU_TABLE_FREE). See the comment * below 'ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE' in include/asm-generic/tlb.h * for more details. */ static inline void __tlb_remove_table(void *table) { free_page_and_swap_cache(table); } #endif /* _ASM_X86_TLB_H */ |
164 165 163 164 3 3 3 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | // SPDX-License-Identifier: GPL-2.0-or-later /* Copyright (c) 2014 Mahesh Bandewar <maheshb@google.com> */ #include "ipvlan.h" static unsigned int ipvlan_netid __read_mostly; struct ipvlan_netns { unsigned int ipvl_nf_hook_refcnt; }; static struct ipvl_addr *ipvlan_skb_to_addr(struct sk_buff *skb, struct net_device *dev) { struct ipvl_addr *addr = NULL; struct ipvl_port *port; int addr_type; void *lyr3h; if (!dev || !netif_is_ipvlan_port(dev)) goto out; port = ipvlan_port_get_rcu(dev); if (!port || port->mode != IPVLAN_MODE_L3S) goto out; lyr3h = ipvlan_get_L3_hdr(port, skb, &addr_type); if (!lyr3h) goto out; addr = ipvlan_addr_lookup(port, lyr3h, addr_type, true); out: return addr; } static struct sk_buff *ipvlan_l3_rcv(struct net_device *dev, struct sk_buff *skb, u16 proto) { struct ipvl_addr *addr; struct net_device *sdev; addr = ipvlan_skb_to_addr(skb, dev); if (!addr) goto out; sdev = addr->master->dev; switch (proto) { case AF_INET: { struct iphdr *ip4h = ip_hdr(skb); int err; err = ip_route_input_noref(skb, ip4h->daddr, ip4h->saddr, ip4h->tos, sdev); if (unlikely(err)) goto out; break; } #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: { struct dst_entry *dst; struct ipv6hdr *ip6h = ipv6_hdr(skb); int flags = RT6_LOOKUP_F_HAS_SADDR; struct flowi6 fl6 = { .flowi6_iif = sdev->ifindex, .daddr = ip6h->daddr, .saddr = ip6h->saddr, .flowlabel = ip6_flowinfo(ip6h), .flowi6_mark = skb->mark, .flowi6_proto = ip6h->nexthdr, }; skb_dst_drop(skb); dst = ip6_route_input_lookup(dev_net(sdev), sdev, &fl6, skb, flags); skb_dst_set(skb, dst); break; } #endif default: break; } out: return skb; } static const struct l3mdev_ops ipvl_l3mdev_ops = { .l3mdev_l3_rcv = ipvlan_l3_rcv, }; static unsigned int ipvlan_nf_input(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct ipvl_addr *addr; unsigned int len; addr = ipvlan_skb_to_addr(skb, skb->dev); if (!addr) goto out; skb->dev = addr->master->dev; skb->skb_iif = skb->dev->ifindex; #if IS_ENABLED(CONFIG_IPV6) if (addr->atype == IPVL_IPV6) IP6CB(skb)->iif = skb->dev->ifindex; #endif len = skb->len + ETH_HLEN; ipvlan_count_rx(addr->master, len, true, false); out: return NF_ACCEPT; } static const struct nf_hook_ops ipvl_nfops[] = { { .hook = ipvlan_nf_input, .pf = NFPROTO_IPV4, .hooknum = NF_INET_LOCAL_IN, .priority = INT_MAX, }, #if IS_ENABLED(CONFIG_IPV6) { .hook = ipvlan_nf_input, .pf = NFPROTO_IPV6, .hooknum = NF_INET_LOCAL_IN, .priority = INT_MAX, }, #endif }; static int ipvlan_register_nf_hook(struct net *net) { struct ipvlan_netns *vnet = net_generic(net, ipvlan_netid); int err = 0; if (!vnet->ipvl_nf_hook_refcnt) { err = nf_register_net_hooks(net, ipvl_nfops, ARRAY_SIZE(ipvl_nfops)); if (!err) vnet->ipvl_nf_hook_refcnt = 1; } else { vnet->ipvl_nf_hook_refcnt++; } return err; } static void ipvlan_unregister_nf_hook(struct net *net) { struct ipvlan_netns *vnet = net_generic(net, ipvlan_netid); if (WARN_ON(!vnet->ipvl_nf_hook_refcnt)) return; vnet->ipvl_nf_hook_refcnt--; if (!vnet->ipvl_nf_hook_refcnt) nf_unregister_net_hooks(net, ipvl_nfops, ARRAY_SIZE(ipvl_nfops)); } void ipvlan_migrate_l3s_hook(struct net *oldnet, struct net *newnet) { struct ipvlan_netns *old_vnet; ASSERT_RTNL(); old_vnet = net_generic(oldnet, ipvlan_netid); if (!old_vnet->ipvl_nf_hook_refcnt) return; ipvlan_register_nf_hook(newnet); ipvlan_unregister_nf_hook(oldnet); } static void ipvlan_ns_exit(struct net *net) { struct ipvlan_netns *vnet = net_generic(net, ipvlan_netid); if (WARN_ON_ONCE(vnet->ipvl_nf_hook_refcnt)) { vnet->ipvl_nf_hook_refcnt = 0; nf_unregister_net_hooks(net, ipvl_nfops, ARRAY_SIZE(ipvl_nfops)); } } static struct pernet_operations ipvlan_net_ops = { .id = &ipvlan_netid, .size = sizeof(struct ipvlan_netns), .exit = ipvlan_ns_exit, }; int ipvlan_l3s_init(void) { return register_pernet_subsys(&ipvlan_net_ops); } void ipvlan_l3s_cleanup(void) { unregister_pernet_subsys(&ipvlan_net_ops); } int ipvlan_l3s_register(struct ipvl_port *port) { struct net_device *dev = port->dev; int ret; ASSERT_RTNL(); ret = ipvlan_register_nf_hook(read_pnet(&port->pnet)); if (!ret) { dev->l3mdev_ops = &ipvl_l3mdev_ops; dev->priv_flags |= IFF_L3MDEV_RX_HANDLER; } return ret; } void ipvlan_l3s_unregister(struct ipvl_port *port) { struct net_device *dev = port->dev; ASSERT_RTNL(); dev->priv_flags &= ~IFF_L3MDEV_RX_HANDLER; ipvlan_unregister_nf_hook(read_pnet(&port->pnet)); dev->l3mdev_ops = NULL; } |
55 46 21 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 | // SPDX-License-Identifier: GPL-2.0-or-later /* Null security operations. * * Copyright (C) 2016 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #include <net/af_rxrpc.h> #include "ar-internal.h" static int none_init_connection_security(struct rxrpc_connection *conn, struct rxrpc_key_token *token) { return 0; } /* * Work out how much data we can put in an unsecured packet. */ static int none_how_much_data(struct rxrpc_call *call, size_t remain, size_t *_buf_size, size_t *_data_size, size_t *_offset) { *_buf_size = *_data_size = min_t(size_t, remain, RXRPC_JUMBO_DATALEN); *_offset = 0; return 0; } static int none_secure_packet(struct rxrpc_call *call, struct sk_buff *skb, size_t data_size) { return 0; } static int none_verify_packet(struct rxrpc_call *call, struct sk_buff *skb, unsigned int offset, unsigned int len, rxrpc_seq_t seq, u16 expected_cksum) { return 0; } static void none_free_call_crypto(struct rxrpc_call *call) { } static void none_locate_data(struct rxrpc_call *call, struct sk_buff *skb, unsigned int *_offset, unsigned int *_len) { } static int none_respond_to_challenge(struct rxrpc_connection *conn, struct sk_buff *skb, u32 *_abort_code) { struct rxrpc_skb_priv *sp = rxrpc_skb(skb); trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, tracepoint_string("chall_none")); return -EPROTO; } static int none_verify_response(struct rxrpc_connection *conn, struct sk_buff *skb, u32 *_abort_code) { struct rxrpc_skb_priv *sp = rxrpc_skb(skb); trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, tracepoint_string("resp_none")); return -EPROTO; } static void none_clear(struct rxrpc_connection *conn) { } static int none_init(void) { return 0; } static void none_exit(void) { } /* * RxRPC Kerberos-based security */ const struct rxrpc_security rxrpc_no_security = { .name = "none", .security_index = RXRPC_SECURITY_NONE, .init = none_init, .exit = none_exit, .init_connection_security = none_init_connection_security, .free_call_crypto = none_free_call_crypto, .how_much_data = none_how_much_data, .secure_packet = none_secure_packet, .verify_packet = none_verify_packet, .locate_data = none_locate_data, .respond_to_challenge = none_respond_to_challenge, .verify_response = none_verify_response, .clear = none_clear, }; |
34 34 34 55 2 1 52 52 1 1 50 10 37 47 481 75 174 25 245 435 435 435 180 387 50 429 8 428 8 172 264 474 15 15 15 502 93 216 369 562 217 369 558 5 500 93 372 76 141 559 5 5 5 558 2 18 2 187 468 558 558 558 694 693 3 690 655 600 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 | // SPDX-License-Identifier: GPL-2.0-only /* * linux/fs/open.c * * Copyright (C) 1991, 1992 Linus Torvalds */ #include <linux/string.h> #include <linux/mm.h> #include <linux/file.h> #include <linux/fdtable.h> #include <linux/fsnotify.h> #include <linux/module.h> #include <linux/tty.h> #include <linux/namei.h> #include <linux/backing-dev.h> #include <linux/capability.h> #include <linux/securebits.h> #include <linux/security.h> #include <linux/mount.h> #include <linux/fcntl.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/fs.h> #include <linux/personality.h> #include <linux/pagemap.h> #include <linux/syscalls.h> #include <linux/rcupdate.h> #include <linux/audit.h> #include <linux/falloc.h> #include <linux/fs_struct.h> #include <linux/ima.h> #include <linux/dnotify.h> #include <linux/compat.h> #include <linux/mnt_idmapping.h> #include "internal.h" int do_truncate(struct user_namespace *mnt_userns, struct dentry *dentry, loff_t length, unsigned int time_attrs, struct file *filp) { int ret; struct iattr newattrs; /* Not pretty: "inode->i_size" shouldn't really be signed. But it is. */ if (length < 0) return -EINVAL; newattrs.ia_size = length; newattrs.ia_valid = ATTR_SIZE | time_attrs; if (filp) { newattrs.ia_file = filp; newattrs.ia_valid |= ATTR_FILE; } /* Remove suid, sgid, and file capabilities on truncate too */ ret = dentry_needs_remove_privs(mnt_userns, dentry); if (ret < 0) return ret; if (ret) newattrs.ia_valid |= ret | ATTR_FORCE; inode_lock(dentry->d_inode); /* Note any delegations or leases have already been broken: */ ret = notify_change(mnt_userns, dentry, &newattrs, NULL); inode_unlock(dentry->d_inode); return ret; } long vfs_truncate(const struct path *path, loff_t length) { struct user_namespace *mnt_userns; struct inode *inode; long error; inode = path->dentry->d_inode; /* For directories it's -EISDIR, for other non-regulars - -EINVAL */ if (S_ISDIR(inode->i_mode)) return -EISDIR; if (!S_ISREG(inode->i_mode)) return -EINVAL; error = mnt_want_write(path->mnt); if (error) goto out; mnt_userns = mnt_user_ns(path->mnt); error = inode_permission(mnt_userns, inode, MAY_WRITE); if (error) goto mnt_drop_write_and_out; error = -EPERM; if (IS_APPEND(inode)) goto mnt_drop_write_and_out; error = get_write_access(inode); if (error) goto mnt_drop_write_and_out; /* * Make sure that there are no leases. get_write_access() protects * against the truncate racing with a lease-granting setlease(). */ error = break_lease(inode, O_WRONLY); if (error) goto put_write_and_out; error = security_path_truncate(path); if (!error) error = do_truncate(mnt_userns, path->dentry, length, 0, NULL); put_write_and_out: put_write_access(inode); mnt_drop_write_and_out: mnt_drop_write(path->mnt); out: return error; } EXPORT_SYMBOL_GPL(vfs_truncate); long do_sys_truncate(const char __user *pathname, loff_t length) { unsigned int lookup_flags = LOOKUP_FOLLOW; struct path path; int error; if (length < 0) /* sorry, but loff_t says... */ return -EINVAL; retry: error = user_path_at(AT_FDCWD, pathname, lookup_flags, &path); if (!error) { error = vfs_truncate(&path, length); path_put(&path); } if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } return error; } SYSCALL_DEFINE2(truncate, const char __user *, path, long, length) { return do_sys_truncate(path, length); } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE2(truncate, const char __user *, path, compat_off_t, length) { return do_sys_truncate(path, length); } #endif long do_sys_ftruncate(unsigned int fd, loff_t length, int small) { struct inode *inode; struct dentry *dentry; struct fd f; int error; error = -EINVAL; if (length < 0) goto out; error = -EBADF; f = fdget(fd); if (!f.file) goto out; /* explicitly opened as large or we are on 64-bit box */ if (f.file->f_flags & O_LARGEFILE) small = 0; dentry = f.file->f_path.dentry; inode = dentry->d_inode; error = -EINVAL; if (!S_ISREG(inode->i_mode) || !(f.file->f_mode & FMODE_WRITE)) goto out_putf; error = -EINVAL; /* Cannot ftruncate over 2^31 bytes without large file support */ if (small && length > MAX_NON_LFS) goto out_putf; error = -EPERM; /* Check IS_APPEND on real upper inode */ if (IS_APPEND(file_inode(f.file))) goto out_putf; sb_start_write(inode->i_sb); error = security_path_truncate(&f.file->f_path); if (!error) error = do_truncate(file_mnt_user_ns(f.file), dentry, length, ATTR_MTIME | ATTR_CTIME, f.file); sb_end_write(inode->i_sb); out_putf: fdput(f); out: return error; } SYSCALL_DEFINE2(ftruncate, unsigned int, fd, off_t, length) { return do_sys_ftruncate(fd, length, 1); } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE2(ftruncate, unsigned int, fd, compat_off_t, length) { return do_sys_ftruncate(fd, length, 1); } #endif /* LFS versions of truncate are only needed on 32 bit machines */ #if BITS_PER_LONG == 32 SYSCALL_DEFINE2(truncate64, const char __user *, path, loff_t, length) { return do_sys_truncate(path, length); } SYSCALL_DEFINE2(ftruncate64, unsigned int, fd, loff_t, length) { return do_sys_ftruncate(fd, length, 0); } #endif /* BITS_PER_LONG == 32 */ int vfs_fallocate(struct file *file, int mode, loff_t offset, loff_t len) { struct inode *inode = file_inode(file); long ret; if (offset < 0 || len <= 0) return -EINVAL; /* Return error if mode is not supported */ if (mode & ~FALLOC_FL_SUPPORTED_MASK) return -EOPNOTSUPP; /* Punch hole and zero range are mutually exclusive */ if ((mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) == (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) return -EOPNOTSUPP; /* Punch hole must have keep size set */ if ((mode & FALLOC_FL_PUNCH_HOLE) && !(mode & FALLOC_FL_KEEP_SIZE)) return -EOPNOTSUPP; /* Collapse range should only be used exclusively. */ if ((mode & FALLOC_FL_COLLAPSE_RANGE) && (mode & ~FALLOC_FL_COLLAPSE_RANGE)) return -EINVAL; /* Insert range should only be used exclusively. */ if ((mode & FALLOC_FL_INSERT_RANGE) && (mode & ~FALLOC_FL_INSERT_RANGE)) return -EINVAL; /* Unshare range should only be used with allocate mode. */ if ((mode & FALLOC_FL_UNSHARE_RANGE) && (mode & ~(FALLOC_FL_UNSHARE_RANGE | FALLOC_FL_KEEP_SIZE))) return -EINVAL; if (!(file->f_mode & FMODE_WRITE)) return -EBADF; /* * We can only allow pure fallocate on append only files */ if ((mode & ~FALLOC_FL_KEEP_SIZE) && IS_APPEND(inode)) return -EPERM; if (IS_IMMUTABLE(inode)) return -EPERM; /* * We cannot allow any fallocate operation on an active swapfile */ if (IS_SWAPFILE(inode)) return -ETXTBSY; /* * Revalidate the write permissions, in case security policy has * changed since the files were opened. */ ret = security_file_permission(file, MAY_WRITE); if (ret) return ret; if (S_ISFIFO(inode->i_mode)) return -ESPIPE; if (S_ISDIR(inode->i_mode)) return -EISDIR; if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) return -ENODEV; /* Check for wrap through zero too */ if (((offset + len) > inode->i_sb->s_maxbytes) || ((offset + len) < 0)) return -EFBIG; if (!file->f_op->fallocate) return -EOPNOTSUPP; file_start_write(file); ret = file->f_op->fallocate(file, mode, offset, len); /* * Create inotify and fanotify events. * * To keep the logic simple always create events if fallocate succeeds. * This implies that events are even created if the file size remains * unchanged, e.g. when using flag FALLOC_FL_KEEP_SIZE. */ if (ret == 0) fsnotify_modify(file); file_end_write(file); return ret; } EXPORT_SYMBOL_GPL(vfs_fallocate); int ksys_fallocate(int fd, int mode, loff_t offset, loff_t len) { struct fd f = fdget(fd); int error = -EBADF; if (f.file) { error = vfs_fallocate(f.file, mode, offset, len); fdput(f); } return error; } SYSCALL_DEFINE4(fallocate, int, fd, int, mode, loff_t, offset, loff_t, len) { return ksys_fallocate(fd, mode, offset, len); } /* * access() needs to use the real uid/gid, not the effective uid/gid. * We do this by temporarily clearing all FS-related capabilities and * switching the fsuid/fsgid around to the real ones. */ static const struct cred *access_override_creds(void) { const struct cred *old_cred; struct cred *override_cred; override_cred = prepare_creds(); if (!override_cred) return NULL; override_cred->fsuid = override_cred->uid; override_cred->fsgid = override_cred->gid; if (!issecure(SECURE_NO_SETUID_FIXUP)) { /* Clear the capabilities if we switch to a non-root user */ kuid_t root_uid = make_kuid(override_cred->user_ns, 0); if (!uid_eq(override_cred->uid, root_uid)) cap_clear(override_cred->cap_effective); else override_cred->cap_effective = override_cred->cap_permitted; } /* * The new set of credentials can *only* be used in * task-synchronous circumstances, and does not need * RCU freeing, unless somebody then takes a separate * reference to it. * * NOTE! This is _only_ true because this credential * is used purely for override_creds() that installs * it as the subjective cred. Other threads will be * accessing ->real_cred, not the subjective cred. * * If somebody _does_ make a copy of this (using the * 'get_current_cred()' function), that will clear the * non_rcu field, because now that other user may be * expecting RCU freeing. But normal thread-synchronous * cred accesses will keep things non-RCY. */ override_cred->non_rcu = 1; old_cred = override_creds(override_cred); /* override_cred() gets its own ref */ put_cred(override_cred); return old_cred; } static long do_faccessat(int dfd, const char __user *filename, int mode, int flags) { struct path path; struct inode *inode; int res; unsigned int lookup_flags = LOOKUP_FOLLOW; const struct cred *old_cred = NULL; if (mode & ~S_IRWXO) /* where's F_OK, X_OK, W_OK, R_OK? */ return -EINVAL; if (flags & ~(AT_EACCESS | AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) return -EINVAL; if (flags & AT_SYMLINK_NOFOLLOW) lookup_flags &= ~LOOKUP_FOLLOW; if (flags & AT_EMPTY_PATH) lookup_flags |= LOOKUP_EMPTY; if (!(flags & AT_EACCESS)) { old_cred = access_override_creds(); if (!old_cred) return -ENOMEM; } retry: res = user_path_at(dfd, filename, lookup_flags, &path); if (res) goto out; inode = d_backing_inode(path.dentry); if ((mode & MAY_EXEC) && S_ISREG(inode->i_mode)) { /* * MAY_EXEC on regular files is denied if the fs is mounted * with the "noexec" flag. */ res = -EACCES; if (path_noexec(&path)) goto out_path_release; } res = inode_permission(mnt_user_ns(path.mnt), inode, mode | MAY_ACCESS); /* SuS v2 requires we report a read only fs too */ if (res || !(mode & S_IWOTH) || special_file(inode->i_mode)) goto out_path_release; /* * This is a rare case where using __mnt_is_readonly() * is OK without a mnt_want/drop_write() pair. Since * no actual write to the fs is performed here, we do * not need to telegraph to that to anyone. * * By doing this, we accept that this access is * inherently racy and know that the fs may change * state before we even see this result. */ if (__mnt_is_readonly(path.mnt)) res = -EROFS; out_path_release: path_put(&path); if (retry_estale(res, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out: if (old_cred) revert_creds(old_cred); return res; } SYSCALL_DEFINE3(faccessat, int, dfd, const char __user *, filename, int, mode) { return do_faccessat(dfd, filename, mode, 0); } SYSCALL_DEFINE4(faccessat2, int, dfd, const char __user *, filename, int, mode, int, flags) { return do_faccessat(dfd, filename, mode, flags); } SYSCALL_DEFINE2(access, const char __user *, filename, int, mode) { return do_faccessat(AT_FDCWD, filename, mode, 0); } SYSCALL_DEFINE1(chdir, const char __user *, filename) { struct path path; int error; unsigned int lookup_flags = LOOKUP_FOLLOW | LOOKUP_DIRECTORY; retry: error = user_path_at(AT_FDCWD, filename, lookup_flags, &path); if (error) goto out; error = path_permission(&path, MAY_EXEC | MAY_CHDIR); if (error) goto dput_and_out; set_fs_pwd(current->fs, &path); dput_and_out: path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out: return error; } SYSCALL_DEFINE1(fchdir, unsigned int, fd) { struct fd f = fdget_raw(fd); int error; error = -EBADF; if (!f.file) goto out; error = -ENOTDIR; if (!d_can_lookup(f.file->f_path.dentry)) goto out_putf; error = file_permission(f.file, MAY_EXEC | MAY_CHDIR); if (!error) set_fs_pwd(current->fs, &f.file->f_path); out_putf: fdput(f); out: return error; } SYSCALL_DEFINE1(chroot, const char __user *, filename) { struct path path; int error; unsigned int lookup_flags = LOOKUP_FOLLOW | LOOKUP_DIRECTORY; retry: error = user_path_at(AT_FDCWD, filename, lookup_flags, &path); if (error) goto out; error = path_permission(&path, MAY_EXEC | MAY_CHDIR); if (error) goto dput_and_out; error = -EPERM; if (!ns_capable(current_user_ns(), CAP_SYS_CHROOT)) goto dput_and_out; error = security_path_chroot(&path); if (error) goto dput_and_out; set_fs_root(current->fs, &path); error = 0; dput_and_out: path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out: return error; } int chmod_common(const struct path *path, umode_t mode) { struct inode *inode = path->dentry->d_inode; struct inode *delegated_inode = NULL; struct iattr newattrs; int error; error = mnt_want_write(path->mnt); if (error) return error; retry_deleg: inode_lock(inode); error = security_path_chmod(path, mode); if (error) goto out_unlock; newattrs.ia_mode = (mode & S_IALLUGO) | (inode->i_mode & ~S_IALLUGO); newattrs.ia_valid = ATTR_MODE | ATTR_CTIME; error = notify_change(mnt_user_ns(path->mnt), path->dentry, &newattrs, &delegated_inode); out_unlock: inode_unlock(inode); if (delegated_inode) { error = break_deleg_wait(&delegated_inode); if (!error) goto retry_deleg; } mnt_drop_write(path->mnt); return error; } int vfs_fchmod(struct file *file, umode_t mode) { audit_file(file); return chmod_common(&file->f_path, mode); } SYSCALL_DEFINE2(fchmod, unsigned int, fd, umode_t, mode) { struct fd f = fdget(fd); int err = -EBADF; if (f.file) { err = vfs_fchmod(f.file, mode); fdput(f); } return err; } static int do_fchmodat(int dfd, const char __user *filename, umode_t mode) { struct path path; int error; unsigned int lookup_flags = LOOKUP_FOLLOW; retry: error = user_path_at(dfd, filename, lookup_flags, &path); if (!error) { error = chmod_common(&path, mode); path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } } return error; } SYSCALL_DEFINE3(fchmodat, int, dfd, const char __user *, filename, umode_t, mode) { return do_fchmodat(dfd, filename, mode); } SYSCALL_DEFINE2(chmod, const char __user *, filename, umode_t, mode) { return do_fchmodat(AT_FDCWD, filename, mode); } int chown_common(const struct path *path, uid_t user, gid_t group) { struct user_namespace *mnt_userns, *fs_userns; struct inode *inode = path->dentry->d_inode; struct inode *delegated_inode = NULL; int error; struct iattr newattrs; kuid_t uid; kgid_t gid; uid = make_kuid(current_user_ns(), user); gid = make_kgid(current_user_ns(), group); mnt_userns = mnt_user_ns(path->mnt); fs_userns = i_user_ns(inode); uid = mapped_kuid_user(mnt_userns, fs_userns, uid); gid = mapped_kgid_user(mnt_userns, fs_userns, gid); retry_deleg: newattrs.ia_valid = ATTR_CTIME; if (user != (uid_t) -1) { if (!uid_valid(uid)) return -EINVAL; newattrs.ia_valid |= ATTR_UID; newattrs.ia_uid = uid; } if (group != (gid_t) -1) { if (!gid_valid(gid)) return -EINVAL; newattrs.ia_valid |= ATTR_GID; newattrs.ia_gid = gid; } inode_lock(inode); if (!S_ISDIR(inode->i_mode)) newattrs.ia_valid |= ATTR_KILL_SUID | ATTR_KILL_PRIV | setattr_should_drop_sgid(mnt_userns, inode); error = security_path_chown(path, uid, gid); if (!error) error = notify_change(mnt_userns, path->dentry, &newattrs, &delegated_inode); inode_unlock(inode); if (delegated_inode) { error = break_deleg_wait(&delegated_inode); if (!error) goto retry_deleg; } return error; } int do_fchownat(int dfd, const char __user *filename, uid_t user, gid_t group, int flag) { struct path path; int error = -EINVAL; int lookup_flags; if ((flag & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) goto out; lookup_flags = (flag & AT_SYMLINK_NOFOLLOW) ? 0 : LOOKUP_FOLLOW; if (flag & AT_EMPTY_PATH) lookup_flags |= LOOKUP_EMPTY; retry: error = user_path_at(dfd, filename, lookup_flags, &path); if (error) goto out; error = mnt_want_write(path.mnt); if (error) goto out_release; error = chown_common(&path, user, group); mnt_drop_write(path.mnt); out_release: path_put(&path); if (retry_estale(error, lookup_flags)) { lookup_flags |= LOOKUP_REVAL; goto retry; } out: return error; } SYSCALL_DEFINE5(fchownat, int, dfd, const char __user *, filename, uid_t, user, gid_t, group, int, flag) { return do_fchownat(dfd, filename, user, group, flag); } SYSCALL_DEFINE3(chown, const char __user *, filename, uid_t, user, gid_t, group) { return do_fchownat(AT_FDCWD, filename, user, group, 0); } SYSCALL_DEFINE3(lchown, const char __user *, filename, uid_t, user, gid_t, group) { return do_fchownat(AT_FDCWD, filename, user, group, AT_SYMLINK_NOFOLLOW); } int vfs_fchown(struct file *file, uid_t user, gid_t group) { int error; error = mnt_want_write_file(file); if (error) return error; audit_file(file); error = chown_common(&file->f_path, user, group); mnt_drop_write_file(file); return error; } int ksys_fchown(unsigned int fd, uid_t user, gid_t group) { struct fd f = fdget(fd); int error = -EBADF; if (f.file) { error = vfs_fchown(f.file, user, group); fdput(f); } return error; } SYSCALL_DEFINE3(fchown, unsigned int, fd, uid_t, user, gid_t, group) { return ksys_fchown(fd, user, group); } static int do_dentry_open(struct file *f, struct inode *inode, int (*open)(struct inode *, struct file *)) { static const struct file_operations empty_fops = {}; int error; path_get(&f->f_path); f->f_inode = inode; f->f_mapping = inode->i_mapping; f->f_wb_err = filemap_sample_wb_err(f->f_mapping); f->f_sb_err = file_sample_sb_err(f); if (unlikely(f->f_flags & O_PATH)) { f->f_mode = FMODE_PATH | FMODE_OPENED; f->f_op = &empty_fops; return 0; } if ((f->f_mode & (FMODE_READ | FMODE_WRITE)) == FMODE_READ) { i_readcount_inc(inode); } else if (f->f_mode & FMODE_WRITE && !special_file(inode->i_mode)) { error = get_write_access(inode); if (unlikely(error)) goto cleanup_file; error = __mnt_want_write(f->f_path.mnt); if (unlikely(error)) { put_write_access(inode); goto cleanup_file; } f->f_mode |= FMODE_WRITER; } /* POSIX.1-2008/SUSv4 Section XSI 2.9.7 */ if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)) f->f_mode |= FMODE_ATOMIC_POS; f->f_op = fops_get(inode->i_fop); if (WARN_ON(!f->f_op)) { error = -ENODEV; goto cleanup_all; } error = security_file_open(f); if (error) goto cleanup_all; error = break_lease(locks_inode(f), f->f_flags); if (error) goto cleanup_all; /* normally all 3 are set; ->open() can clear them if needed */ f->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; if (!open) open = f->f_op->open; if (open) { error = open(inode, f); if (error) goto cleanup_all; } f->f_mode |= FMODE_OPENED; if ((f->f_mode & FMODE_READ) && likely(f->f_op->read || f->f_op->read_iter)) f->f_mode |= FMODE_CAN_READ; if ((f->f_mode & FMODE_WRITE) && likely(f->f_op->write || f->f_op->write_iter)) f->f_mode |= FMODE_CAN_WRITE; f->f_write_hint = WRITE_LIFE_NOT_SET; f->f_flags &= ~(O_CREAT | O_EXCL | O_NOCTTY | O_TRUNC); file_ra_state_init(&f->f_ra, f->f_mapping->host->i_mapping); /* NB: we're sure to have correct a_ops only after f_op->open */ if (f->f_flags & O_DIRECT) { if (!f->f_mapping->a_ops || !f->f_mapping->a_ops->direct_IO) return -EINVAL; } /* * XXX: Huge page cache doesn't support writing yet. Drop all page * cache for this file before processing writes. */ if (f->f_mode & FMODE_WRITE) { /* * Paired with smp_mb() in collapse_file() to ensure nr_thps * is up to date and the update to i_writecount by * get_write_access() is visible. Ensures subsequent insertion * of THPs into the page cache will fail. */ smp_mb(); if (filemap_nr_thps(inode->i_mapping)) { struct address_space *mapping = inode->i_mapping; filemap_invalidate_lock(inode->i_mapping); /* * unmap_mapping_range just need to be called once * here, because the private pages is not need to be * unmapped mapping (e.g. data segment of dynamic * shared libraries here). */ unmap_mapping_range(mapping, 0, 0, 0); truncate_inode_pages(mapping, 0); filemap_invalidate_unlock(inode->i_mapping); } } return 0; cleanup_all: if (WARN_ON_ONCE(error > 0)) error = -EINVAL; fops_put(f->f_op); put_file_access(f); cleanup_file: path_put(&f->f_path); f->f_path.mnt = NULL; f->f_path.dentry = NULL; f->f_inode = NULL; return error; } /** * finish_open - finish opening a file * @file: file pointer * @dentry: pointer to dentry * @open: open callback * @opened: state of open * * This can be used to finish opening a file passed to i_op->atomic_open(). * * If the open callback is set to NULL, then the standard f_op->open() * filesystem callback is substituted. * * NB: the dentry reference is _not_ consumed. If, for example, the dentry is * the return value of d_splice_alias(), then the caller needs to perform dput() * on it after finish_open(). * * Returns zero on success or -errno if the open failed. */ int finish_open(struct file *file, struct dentry *dentry, int (*open)(struct inode *, struct file *)) { BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */ file->f_path.dentry = dentry; return do_dentry_open(file, d_backing_inode(dentry), open); } EXPORT_SYMBOL(finish_open); /** * finish_no_open - finish ->atomic_open() without opening the file * * @file: file pointer * @dentry: dentry or NULL (as returned from ->lookup()) * * This can be used to set the result of a successful lookup in ->atomic_open(). * * NB: unlike finish_open() this function does consume the dentry reference and * the caller need not dput() it. * * Returns "0" which must be the return value of ->atomic_open() after having * called this function. */ int finish_no_open(struct file *file, struct dentry *dentry) { file->f_path.dentry = dentry; return 0; } EXPORT_SYMBOL(finish_no_open); char *file_path(struct file *filp, char *buf, int buflen) { return d_path(&filp->f_path, buf, buflen); } EXPORT_SYMBOL(file_path); /** * vfs_open - open the file at the given path * @path: path to open * @file: newly allocated file with f_flag initialized * @cred: credentials to use */ int vfs_open(const struct path *path, struct file *file) { file->f_path = *path; return do_dentry_open(file, d_backing_inode(path->dentry), NULL); } struct file *dentry_open(const struct path *path, int flags, const struct cred *cred) { int error; struct file *f; validate_creds(cred); /* We must always pass in a valid mount pointer. */ BUG_ON(!path->mnt); f = alloc_empty_file(flags, cred); if (!IS_ERR(f)) { error = vfs_open(path, f); if (error) { fput(f); f = ERR_PTR(error); } } return f; } EXPORT_SYMBOL(dentry_open); /** * dentry_create - Create and open a file * @path: path to create * @flags: O_ flags * @mode: mode bits for new file * @cred: credentials to use * * Caller must hold the parent directory's lock, and have prepared * a negative dentry, placed in @path->dentry, for the new file. * * Caller sets @path->mnt to the vfsmount of the filesystem where * the new file is to be created. The parent directory and the * negative dentry must reside on the same filesystem instance. * * On success, returns a "struct file *". Otherwise a ERR_PTR * is returned. */ struct file *dentry_create(const struct path *path, int flags, umode_t mode, const struct cred *cred) { struct file *f; int error; validate_creds(cred); f = alloc_empty_file(flags, cred); if (IS_ERR(f)) return f; error = vfs_create(mnt_user_ns(path->mnt), d_inode(path->dentry->d_parent), path->dentry, mode, true); if (!error) error = vfs_open(path, f); if (unlikely(error)) { fput(f); return ERR_PTR(error); } return f; } EXPORT_SYMBOL(dentry_create); struct file *open_with_fake_path(const struct path *path, int flags, struct inode *inode, const struct cred *cred) { struct file *f = alloc_empty_file_noaccount(flags, cred); if (!IS_ERR(f)) { int error; f->f_path = *path; error = do_dentry_open(f, inode, NULL); if (error) { fput(f); f = ERR_PTR(error); } } return f; } EXPORT_SYMBOL(open_with_fake_path); #define WILL_CREATE(flags) (flags & (O_CREAT | __O_TMPFILE)) #define O_PATH_FLAGS (O_DIRECTORY | O_NOFOLLOW | O_PATH | O_CLOEXEC) inline struct open_how build_open_how(int flags, umode_t mode) { struct open_how how = { .flags = flags & VALID_OPEN_FLAGS, .mode = mode & S_IALLUGO, }; /* O_PATH beats everything else. */ if (how.flags & O_PATH) how.flags &= O_PATH_FLAGS; /* Modes should only be set for create-like flags. */ if (!WILL_CREATE(how.flags)) how.mode = 0; return how; } inline int build_open_flags(const struct open_how *how, struct open_flags *op) { u64 flags = how->flags; u64 strip = FMODE_NONOTIFY | O_CLOEXEC; int lookup_flags = 0; int acc_mode = ACC_MODE(flags); BUILD_BUG_ON_MSG(upper_32_bits(VALID_OPEN_FLAGS), "struct open_flags doesn't yet handle flags > 32 bits"); /* * Strip flags that either shouldn't be set by userspace like * FMODE_NONOTIFY or that aren't relevant in determining struct * open_flags like O_CLOEXEC. */ flags &= ~strip; /* * Older syscalls implicitly clear all of the invalid flags or argument * values before calling build_open_flags(), but openat2(2) checks all * of its arguments. */ if (flags & ~VALID_OPEN_FLAGS) return -EINVAL; if (how->resolve & ~VALID_RESOLVE_FLAGS) return -EINVAL; /* Scoping flags are mutually exclusive. */ if ((how->resolve & RESOLVE_BENEATH) && (how->resolve & RESOLVE_IN_ROOT)) return -EINVAL; /* Deal with the mode. */ if (WILL_CREATE(flags)) { if (how->mode & ~S_IALLUGO) return -EINVAL; op->mode = how->mode | S_IFREG; } else { if (how->mode != 0) return -EINVAL; op->mode = 0; } /* * In order to ensure programs get explicit errors when trying to use * O_TMPFILE on old kernels, O_TMPFILE is implemented such that it * looks like (O_DIRECTORY|O_RDWR & ~O_CREAT) to old kernels. But we * have to require userspace to explicitly set it. */ if (flags & __O_TMPFILE) { if ((flags & O_TMPFILE_MASK) != O_TMPFILE) return -EINVAL; if (!(acc_mode & MAY_WRITE)) return -EINVAL; } if (flags & O_PATH) { /* O_PATH only permits certain other flags to be set. */ if (flags & ~O_PATH_FLAGS) return -EINVAL; acc_mode = 0; } /* * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only * check for O_DSYNC if the need any syncing at all we enforce it's * always set instead of having to deal with possibly weird behaviour * for malicious applications setting only __O_SYNC. */ if (flags & __O_SYNC) flags |= O_DSYNC; op->open_flag = flags; /* O_TRUNC implies we need access checks for write permissions */ if (flags & O_TRUNC) acc_mode |= MAY_WRITE; /* Allow the LSM permission hook to distinguish append access from general write access. */ if (flags & O_APPEND) acc_mode |= MAY_APPEND; op->acc_mode = acc_mode; op->intent = flags & O_PATH ? 0 : LOOKUP_OPEN; if (flags & O_CREAT) { op->intent |= LOOKUP_CREATE; if (flags & O_EXCL) { op->intent |= LOOKUP_EXCL; flags |= O_NOFOLLOW; } } if (flags & O_DIRECTORY) lookup_flags |= LOOKUP_DIRECTORY; if (!(flags & O_NOFOLLOW)) lookup_flags |= LOOKUP_FOLLOW; if (how->resolve & RESOLVE_NO_XDEV) lookup_flags |= LOOKUP_NO_XDEV; if (how->resolve & RESOLVE_NO_MAGICLINKS) lookup_flags |= LOOKUP_NO_MAGICLINKS; if (how->resolve & RESOLVE_NO_SYMLINKS) lookup_flags |= LOOKUP_NO_SYMLINKS; if (how->resolve & RESOLVE_BENEATH) lookup_flags |= LOOKUP_BENEATH; if (how->resolve & RESOLVE_IN_ROOT) lookup_flags |= LOOKUP_IN_ROOT; if (how->resolve & RESOLVE_CACHED) { /* Don't bother even trying for create/truncate/tmpfile open */ if (flags & (O_TRUNC | O_CREAT | __O_TMPFILE)) return -EAGAIN; lookup_flags |= LOOKUP_CACHED; } op->lookup_flags = lookup_flags; return 0; } /** * file_open_name - open file and return file pointer * * @name: struct filename containing path to open * @flags: open flags as per the open(2) second argument * @mode: mode for the new file if O_CREAT is set, else ignored * * This is the helper to open a file from kernelspace if you really * have to. But in generally you should not do this, so please move * along, nothing to see here.. */ struct file *file_open_name(struct filename *name, int flags, umode_t mode) { struct open_flags op; struct open_how how = build_open_how(flags, mode); int err = build_open_flags(&how, &op); if (err) return ERR_PTR(err); return do_filp_open(AT_FDCWD, name, &op); } /** * filp_open - open file and return file pointer * * @filename: path to open * @flags: open flags as per the open(2) second argument * @mode: mode for the new file if O_CREAT is set, else ignored * * This is the helper to open a file from kernelspace if you really * have to. But in generally you should not do this, so please move * along, nothing to see here.. */ struct file *filp_open(const char *filename, int flags, umode_t mode) { struct filename *name = getname_kernel(filename); struct file *file = ERR_CAST(name); if (!IS_ERR(name)) { file = file_open_name(name, flags, mode); putname(name); } return file; } EXPORT_SYMBOL(filp_open); struct file *file_open_root(const struct path *root, const char *filename, int flags, umode_t mode) { struct open_flags op; struct open_how how = build_open_how(flags, mode); int err = build_open_flags(&how, &op); if (err) return ERR_PTR(err); return do_file_open_root(root, filename, &op); } EXPORT_SYMBOL(file_open_root); static long do_sys_openat2(int dfd, const char __user *filename, struct open_how *how) { struct open_flags op; int fd = build_open_flags(how, &op); struct filename *tmp; if (fd) return fd; tmp = getname(filename); if (IS_ERR(tmp)) return PTR_ERR(tmp); fd = get_unused_fd_flags(how->flags); if (fd >= 0) { struct file *f = do_filp_open(dfd, tmp, &op); if (IS_ERR(f)) { put_unused_fd(fd); fd = PTR_ERR(f); } else { fsnotify_open(f); fd_install(fd, f); } } putname(tmp); return fd; } long do_sys_open(int dfd, const char __user *filename, int flags, umode_t mode) { struct open_how how = build_open_how(flags, mode); return do_sys_openat2(dfd, filename, &how); } SYSCALL_DEFINE3(open, const char __user *, filename, int, flags, umode_t, mode) { if (force_o_largefile()) flags |= O_LARGEFILE; return do_sys_open(AT_FDCWD, filename, flags, mode); } SYSCALL_DEFINE4(openat, int, dfd, const char __user *, filename, int, flags, umode_t, mode) { if (force_o_largefile()) flags |= O_LARGEFILE; return do_sys_open(dfd, filename, flags, mode); } SYSCALL_DEFINE4(openat2, int, dfd, const char __user *, filename, struct open_how __user *, how, size_t, usize) { int err; struct open_how tmp; BUILD_BUG_ON(sizeof(struct open_how) < OPEN_HOW_SIZE_VER0); BUILD_BUG_ON(sizeof(struct open_how) != OPEN_HOW_SIZE_LATEST); if (unlikely(usize < OPEN_HOW_SIZE_VER0)) return -EINVAL; if (unlikely(usize > PAGE_SIZE)) return -E2BIG; err = copy_struct_from_user(&tmp, sizeof(tmp), how, usize); if (err) return err; /* O_LARGEFILE is only allowed for non-O_PATH. */ if (!(tmp.flags & O_PATH) && force_o_largefile()) tmp.flags |= O_LARGEFILE; return do_sys_openat2(dfd, filename, &tmp); } #ifdef CONFIG_COMPAT /* * Exactly like sys_open(), except that it doesn't set the * O_LARGEFILE flag. */ COMPAT_SYSCALL_DEFINE3(open, const char __user *, filename, int, flags, umode_t, mode) { return do_sys_open(AT_FDCWD, filename, flags, mode); } /* * Exactly like sys_openat(), except that it doesn't set the * O_LARGEFILE flag. */ COMPAT_SYSCALL_DEFINE4(openat, int, dfd, const char __user *, filename, int, flags, umode_t, mode) { return do_sys_open(dfd, filename, flags, mode); } #endif #ifndef __alpha__ /* * For backward compatibility? Maybe this should be moved * into arch/i386 instead? */ SYSCALL_DEFINE2(creat, const char __user *, pathname, umode_t, mode) { int flags = O_CREAT | O_WRONLY | O_TRUNC; if (force_o_largefile()) flags |= O_LARGEFILE; return do_sys_open(AT_FDCWD, pathname, flags, mode); } #endif /* * "id" is the POSIX thread ID. We use the * files pointer for this.. */ int filp_close(struct file *filp, fl_owner_t id) { int retval = 0; if (!file_count(filp)) { printk(KERN_ERR "VFS: Close: file count is 0\n"); return 0; } if (filp->f_op->flush) retval = filp->f_op->flush(filp, id); if (likely(!(filp->f_mode & FMODE_PATH))) { dnotify_flush(filp, id); locks_remove_posix(filp, id); } fput(filp); return retval; } EXPORT_SYMBOL(filp_close); /* * Careful here! We test whether the file pointer is NULL before * releasing the fd. This ensures that one clone task can't release * an fd while another clone is opening it. */ SYSCALL_DEFINE1(close, unsigned int, fd) { int retval = close_fd(fd); /* can't restart close syscall because file table entry was cleared */ if (unlikely(retval == -ERESTARTSYS || retval == -ERESTARTNOINTR || retval == -ERESTARTNOHAND || retval == -ERESTART_RESTARTBLOCK)) retval = -EINTR; return retval; } /** * close_range() - Close all file descriptors in a given range. * * @fd: starting file descriptor to close * @max_fd: last file descriptor to close * @flags: reserved for future extensions * * This closes a range of file descriptors. All file descriptors * from @fd up to and including @max_fd are closed. * Currently, errors to close a given file descriptor are ignored. */ SYSCALL_DEFINE3(close_range, unsigned int, fd, unsigned int, max_fd, unsigned int, flags) { return __close_range(fd, max_fd, flags); } /* * This routine simulates a hangup on the tty, to arrange that users * are given clean terminals at login time. */ SYSCALL_DEFINE0(vhangup) { if (capable(CAP_SYS_TTY_CONFIG)) { tty_vhangup_self(); return 0; } return -EPERM; } /* * Called when an inode is about to be open. * We use this to disallow opening large files on 32bit systems if * the caller didn't specify O_LARGEFILE. On 64bit systems we force * on this flag in sys_open. */ int generic_file_open(struct inode * inode, struct file * filp) { if (!(filp->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS) return -EOVERFLOW; return 0; } EXPORT_SYMBOL(generic_file_open); /* * This is used by subsystems that don't want seekable * file descriptors. The function is not supposed to ever fail, the only * reason it returns an 'int' and not 'void' is so that it can be plugged * directly into file_operations structure. */ int nonseekable_open(struct inode *inode, struct file *filp) { filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE); return 0; } EXPORT_SYMBOL(nonseekable_open); /* * stream_open is used by subsystems that want stream-like file descriptors. * Such file descriptors are not seekable and don't have notion of position * (file.f_pos is always 0 and ppos passed to .read()/.write() is always NULL). * Contrary to file descriptors of other regular files, .read() and .write() * can run simultaneously. * * stream_open never fails and is marked to return int so that it could be * directly used as file_operations.open . */ int stream_open(struct inode *inode, struct file *filp) { filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE | FMODE_ATOMIC_POS); filp->f_mode |= FMODE_STREAM; return 0; } EXPORT_SYMBOL(stream_open); |
38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | // SPDX-License-Identifier: GPL-2.0-only /* (C) 1999-2001 Paul `Rusty' Russell * (C) 2002-2004 Netfilter Core Team <coreteam@netfilter.org> */ #include <linux/types.h> #include <linux/jiffies.h> #include <linux/timer.h> #include <linux/netfilter.h> #include <net/netfilter/nf_conntrack_l4proto.h> #include <net/netfilter/nf_conntrack_timeout.h> static const unsigned int nf_ct_generic_timeout = 600*HZ; #ifdef CONFIG_NF_CONNTRACK_TIMEOUT #include <linux/netfilter/nfnetlink.h> #include <linux/netfilter/nfnetlink_cttimeout.h> static int generic_timeout_nlattr_to_obj(struct nlattr *tb[], struct net *net, void *data) { struct nf_generic_net *gn = nf_generic_pernet(net); unsigned int *timeout = data; if (!timeout) timeout = &gn->timeout; if (tb[CTA_TIMEOUT_GENERIC_TIMEOUT]) *timeout = ntohl(nla_get_be32(tb[CTA_TIMEOUT_GENERIC_TIMEOUT])) * HZ; else { /* Set default generic timeout. */ *timeout = gn->timeout; } return 0; } static int generic_timeout_obj_to_nlattr(struct sk_buff *skb, const void *data) { const unsigned int *timeout = data; if (nla_put_be32(skb, CTA_TIMEOUT_GENERIC_TIMEOUT, htonl(*timeout / HZ))) goto nla_put_failure; return 0; nla_put_failure: return -ENOSPC; } static const struct nla_policy generic_timeout_nla_policy[CTA_TIMEOUT_GENERIC_MAX+1] = { [CTA_TIMEOUT_GENERIC_TIMEOUT] = { .type = NLA_U32 }, }; #endif /* CONFIG_NF_CONNTRACK_TIMEOUT */ void nf_conntrack_generic_init_net(struct net *net) { struct nf_generic_net *gn = nf_generic_pernet(net); gn->timeout = nf_ct_generic_timeout; } const struct nf_conntrack_l4proto nf_conntrack_l4proto_generic = { .l4proto = 255, #ifdef CONFIG_NF_CONNTRACK_TIMEOUT .ctnl_timeout = { .nlattr_to_obj = generic_timeout_nlattr_to_obj, .obj_to_nlattr = generic_timeout_obj_to_nlattr, .nlattr_max = CTA_TIMEOUT_GENERIC_MAX, .obj_size = sizeof(unsigned int), .nla_policy = generic_timeout_nla_policy, }, #endif /* CONFIG_NF_CONNTRACK_TIMEOUT */ }; |
483 484 163 165 27 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 | // SPDX-License-Identifier: GPL-2.0 /* * fs/sysfs/dir.c - sysfs core and dir operation implementation * * Copyright (c) 2001-3 Patrick Mochel * Copyright (c) 2007 SUSE Linux Products GmbH * Copyright (c) 2007 Tejun Heo <teheo@suse.de> * * Please see Documentation/filesystems/sysfs.rst for more information. */ #define pr_fmt(fmt) "sysfs: " fmt #include <linux/fs.h> #include <linux/kobject.h> #include <linux/slab.h> #include "sysfs.h" DEFINE_SPINLOCK(sysfs_symlink_target_lock); void sysfs_warn_dup(struct kernfs_node *parent, const char *name) { char *buf; buf = kzalloc(PATH_MAX, GFP_KERNEL); if (buf) kernfs_path(parent, buf, PATH_MAX); pr_warn("cannot create duplicate filename '%s/%s'\n", buf, name); dump_stack(); kfree(buf); } /** * sysfs_create_dir_ns - create a directory for an object with a namespace tag * @kobj: object we're creating directory for * @ns: the namespace tag to use */ int sysfs_create_dir_ns(struct kobject *kobj, const void *ns) { struct kernfs_node *parent, *kn; kuid_t uid; kgid_t gid; if (WARN_ON(!kobj)) return -EINVAL; if (kobj->parent) parent = kobj->parent->sd; else parent = sysfs_root_kn; if (!parent) return -ENOENT; kobject_get_ownership(kobj, &uid, &gid); kn = kernfs_create_dir_ns(parent, kobject_name(kobj), S_IRWXU | S_IRUGO | S_IXUGO, uid, gid, kobj, ns); if (IS_ERR(kn)) { if (PTR_ERR(kn) == -EEXIST) sysfs_warn_dup(parent, kobject_name(kobj)); return PTR_ERR(kn); } kobj->sd = kn; return 0; } /** * sysfs_remove_dir - remove an object's directory. * @kobj: object. * * The only thing special about this is that we remove any files in * the directory before we remove the directory, and we've inlined * what used to be sysfs_rmdir() below, instead of calling separately. */ void sysfs_remove_dir(struct kobject *kobj) { struct kernfs_node *kn = kobj->sd; /* * In general, kboject owner is responsible for ensuring removal * doesn't race with other operations and sysfs doesn't provide any * protection; however, when @kobj is used as a symlink target, the * symlinking entity usually doesn't own @kobj and thus has no * control over removal. @kobj->sd may be removed anytime * and symlink code may end up dereferencing an already freed node. * * sysfs_symlink_target_lock synchronizes @kobj->sd * disassociation against symlink operations so that symlink code * can safely dereference @kobj->sd. */ spin_lock(&sysfs_symlink_target_lock); kobj->sd = NULL; spin_unlock(&sysfs_symlink_target_lock); if (kn) { WARN_ON_ONCE(kernfs_type(kn) != KERNFS_DIR); kernfs_remove(kn); } } int sysfs_rename_dir_ns(struct kobject *kobj, const char *new_name, const void *new_ns) { struct kernfs_node *parent; int ret; parent = kernfs_get_parent(kobj->sd); ret = kernfs_rename_ns(kobj->sd, parent, new_name, new_ns); kernfs_put(parent); return ret; } int sysfs_move_dir_ns(struct kobject *kobj, struct kobject *new_parent_kobj, const void *new_ns) { struct kernfs_node *kn = kobj->sd; struct kernfs_node *new_parent; new_parent = new_parent_kobj && new_parent_kobj->sd ? new_parent_kobj->sd : sysfs_root_kn; return kernfs_rename_ns(kn, new_parent, kn->name, new_ns); } /** * sysfs_create_mount_point - create an always empty directory * @parent_kobj: kobject that will contain this always empty directory * @name: The name of the always empty directory to add */ int sysfs_create_mount_point(struct kobject *parent_kobj, const char *name) { struct kernfs_node *kn, *parent = parent_kobj->sd; kn = kernfs_create_empty_dir(parent, name); if (IS_ERR(kn)) { if (PTR_ERR(kn) == -EEXIST) sysfs_warn_dup(parent, name); return PTR_ERR(kn); } return 0; } EXPORT_SYMBOL_GPL(sysfs_create_mount_point); /** * sysfs_remove_mount_point - remove an always empty directory. * @parent_kobj: kobject that will contain this always empty directory * @name: The name of the always empty directory to remove * */ void sysfs_remove_mount_point(struct kobject *parent_kobj, const char *name) { struct kernfs_node *parent = parent_kobj->sd; kernfs_remove_by_name_ns(parent, name, NULL); } EXPORT_SYMBOL_GPL(sysfs_remove_mount_point); |
17 1 1 15 16 6 6 1 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 | /* * Routines to compress and uncompress tcp packets (for transmission * over low speed serial lines). * * Copyright (c) 1989 Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms are permitted * provided that the above copyright notice and this paragraph are * duplicated in all such forms and that any documentation, * advertising materials, and other materials related to such * distribution and use acknowledge that the software was developed * by the University of California, Berkeley. The name of the * University may not be used to endorse or promote products derived * from this software without specific prior written permission. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. * * Van Jacobson (van@helios.ee.lbl.gov), Dec 31, 1989: * - Initial distribution. * * * modified for KA9Q Internet Software Package by * Katie Stevens (dkstevens@ucdavis.edu) * University of California, Davis * Computing Services * - 01-31-90 initial adaptation (from 1.19) * PPP.05 02-15-90 [ks] * PPP.08 05-02-90 [ks] use PPP protocol field to signal compression * PPP.15 09-90 [ks] improve mbuf handling * PPP.16 11-02 [karn] substantially rewritten to use NOS facilities * * - Feb 1991 Bill_Simpson@um.cc.umich.edu * variable number of conversation slots * allow zero or one slots * separate routines * status display * - Jul 1994 Dmitry Gorodchanin * Fixes for memory leaks. * - Oct 1994 Dmitry Gorodchanin * Modularization. * - Jan 1995 Bjorn Ekwall * Use ip_fast_csum from ip.h * - July 1995 Christos A. Polyzols * Spotted bug in tcp option checking * * * This module is a difficult issue. It's clearly inet code but it's also clearly * driver code belonging close to PPP and SLIP */ #include <linux/module.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/kernel.h> #include <net/slhc_vj.h> #ifdef CONFIG_INET /* Entire module is for IP only */ #include <linux/mm.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/termios.h> #include <linux/in.h> #include <linux/fcntl.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <net/ip.h> #include <net/protocol.h> #include <net/icmp.h> #include <net/tcp.h> #include <linux/skbuff.h> #include <net/sock.h> #include <linux/timer.h> #include <linux/uaccess.h> #include <net/checksum.h> #include <asm/unaligned.h> static unsigned char *encode(unsigned char *cp, unsigned short n); static long decode(unsigned char **cpp); static unsigned char * put16(unsigned char *cp, unsigned short x); static unsigned short pull16(unsigned char **cpp); /* Allocate compression data structure * slots must be in range 0 to 255 (zero meaning no compression) * Returns pointer to structure or ERR_PTR() on error. */ struct slcompress * slhc_init(int rslots, int tslots) { short i; struct cstate *ts; struct slcompress *comp; if (rslots < 0 || rslots > 255 || tslots < 0 || tslots > 255) return ERR_PTR(-EINVAL); comp = kzalloc(sizeof(struct slcompress), GFP_KERNEL); if (! comp) goto out_fail; if (rslots > 0) { size_t rsize = rslots * sizeof(struct cstate); comp->rstate = kzalloc(rsize, GFP_KERNEL); if (! comp->rstate) goto out_free; comp->rslot_limit = rslots - 1; } if (tslots > 0) { size_t tsize = tslots * sizeof(struct cstate); comp->tstate = kzalloc(tsize, GFP_KERNEL); if (! comp->tstate) goto out_free2; comp->tslot_limit = tslots - 1; } comp->xmit_oldest = 0; comp->xmit_current = 255; comp->recv_current = 255; /* * don't accept any packets with implicit index until we get * one with an explicit index. Otherwise the uncompress code * will try to use connection 255, which is almost certainly * out of range */ comp->flags |= SLF_TOSS; if ( tslots > 0 ) { ts = comp->tstate; for(i = comp->tslot_limit; i > 0; --i){ ts[i].cs_this = i; ts[i].next = &(ts[i - 1]); } ts[0].next = &(ts[comp->tslot_limit]); ts[0].cs_this = 0; } return comp; out_free2: kfree(comp->rstate); out_free: kfree(comp); out_fail: return ERR_PTR(-ENOMEM); } /* Free a compression data structure */ void slhc_free(struct slcompress *comp) { if ( IS_ERR_OR_NULL(comp) ) return; if ( comp->tstate != NULLSLSTATE ) kfree( comp->tstate ); if ( comp->rstate != NULLSLSTATE ) kfree( comp->rstate ); kfree( comp ); } /* Put a short in host order into a char array in network order */ static inline unsigned char * put16(unsigned char *cp, unsigned short x) { *cp++ = x >> 8; *cp++ = x; return cp; } /* Encode a number */ static unsigned char * encode(unsigned char *cp, unsigned short n) { if(n >= 256 || n == 0){ *cp++ = 0; cp = put16(cp,n); } else { *cp++ = n; } return cp; } /* Pull a 16-bit integer in host order from buffer in network byte order */ static unsigned short pull16(unsigned char **cpp) { short rval; rval = *(*cpp)++; rval <<= 8; rval |= *(*cpp)++; return rval; } /* Decode a number */ static long decode(unsigned char **cpp) { int x; x = *(*cpp)++; if(x == 0){ return pull16(cpp) & 0xffff; /* pull16 returns -1 on error */ } else { return x & 0xff; /* -1 if PULLCHAR returned error */ } } /* * icp and isize are the original packet. * ocp is a place to put a copy if necessary. * cpp is initially a pointer to icp. If the copy is used, * change it to ocp. */ int slhc_compress(struct slcompress *comp, unsigned char *icp, int isize, unsigned char *ocp, unsigned char **cpp, int compress_cid) { struct cstate *ocs = &(comp->tstate[comp->xmit_oldest]); struct cstate *lcs = ocs; struct cstate *cs = lcs->next; unsigned long deltaS, deltaA; short changes = 0; int nlen, hlen; unsigned char new_seq[16]; unsigned char *cp = new_seq; struct iphdr *ip; struct tcphdr *th, *oth; __sum16 csum; /* * Don't play with runt packets. */ if(isize<sizeof(struct iphdr)) return isize; ip = (struct iphdr *) icp; if (ip->version != 4 || ip->ihl < 5) return isize; /* Bail if this packet isn't TCP, or is an IP fragment */ if (ip->protocol != IPPROTO_TCP || (ntohs(ip->frag_off) & 0x3fff)) { /* Send as regular IP */ if(ip->protocol != IPPROTO_TCP) comp->sls_o_nontcp++; else comp->sls_o_tcp++; return isize; } nlen = ip->ihl * 4; if (isize < nlen + sizeof(*th)) return isize; th = (struct tcphdr *)(icp + nlen); if (th->doff < sizeof(struct tcphdr) / 4) return isize; hlen = nlen + th->doff * 4; /* Bail if the TCP packet isn't `compressible' (i.e., ACK isn't set or * some other control bit is set). Also uncompressible if * it's a runt. */ if(hlen > isize || th->syn || th->fin || th->rst || ! (th->ack)){ /* TCP connection stuff; send as regular IP */ comp->sls_o_tcp++; return isize; } /* * Packet is compressible -- we're going to send either a * COMPRESSED_TCP or UNCOMPRESSED_TCP packet. Either way, * we need to locate (or create) the connection state. * * States are kept in a circularly linked list with * xmit_oldest pointing to the end of the list. The * list is kept in lru order by moving a state to the * head of the list whenever it is referenced. Since * the list is short and, empirically, the connection * we want is almost always near the front, we locate * states via linear search. If we don't find a state * for the datagram, the oldest state is (re-)used. */ for ( ; ; ) { if( ip->saddr == cs->cs_ip.saddr && ip->daddr == cs->cs_ip.daddr && th->source == cs->cs_tcp.source && th->dest == cs->cs_tcp.dest) goto found; /* if current equal oldest, at end of list */ if ( cs == ocs ) break; lcs = cs; cs = cs->next; comp->sls_o_searches++; } /* * Didn't find it -- re-use oldest cstate. Send an * uncompressed packet that tells the other side what * connection number we're using for this conversation. * * Note that since the state list is circular, the oldest * state points to the newest and we only need to set * xmit_oldest to update the lru linkage. */ comp->sls_o_misses++; comp->xmit_oldest = lcs->cs_this; goto uncompressed; found: /* * Found it -- move to the front on the connection list. */ if(lcs == ocs) { /* found at most recently used */ } else if (cs == ocs) { /* found at least recently used */ comp->xmit_oldest = lcs->cs_this; } else { /* more than 2 elements */ lcs->next = cs->next; cs->next = ocs->next; ocs->next = cs; } /* * Make sure that only what we expect to change changed. * Check the following: * IP protocol version, header length & type of service. * The "Don't fragment" bit. * The time-to-live field. * The TCP header length. * IP options, if any. * TCP options, if any. * If any of these things are different between the previous & * current datagram, we send the current datagram `uncompressed'. */ oth = &cs->cs_tcp; if(ip->version != cs->cs_ip.version || ip->ihl != cs->cs_ip.ihl || ip->tos != cs->cs_ip.tos || (ip->frag_off & htons(0x4000)) != (cs->cs_ip.frag_off & htons(0x4000)) || ip->ttl != cs->cs_ip.ttl || th->doff != cs->cs_tcp.doff || (ip->ihl > 5 && memcmp(ip+1,cs->cs_ipopt,((ip->ihl)-5)*4) != 0) || (th->doff > 5 && memcmp(th+1,cs->cs_tcpopt,((th->doff)-5)*4) != 0)){ goto uncompressed; } /* * Figure out which of the changing fields changed. The * receiver expects changes in the order: urgent, window, * ack, seq (the order minimizes the number of temporaries * needed in this section of code). */ if(th->urg){ deltaS = ntohs(th->urg_ptr); cp = encode(cp,deltaS); changes |= NEW_U; } else if(th->urg_ptr != oth->urg_ptr){ /* argh! URG not set but urp changed -- a sensible * implementation should never do this but RFC793 * doesn't prohibit the change so we have to deal * with it. */ goto uncompressed; } if((deltaS = ntohs(th->window) - ntohs(oth->window)) != 0){ cp = encode(cp,deltaS); changes |= NEW_W; } if((deltaA = ntohl(th->ack_seq) - ntohl(oth->ack_seq)) != 0L){ if(deltaA > 0x0000ffff) goto uncompressed; cp = encode(cp,deltaA); changes |= NEW_A; } if((deltaS = ntohl(th->seq) - ntohl(oth->seq)) != 0L){ if(deltaS > 0x0000ffff) goto uncompressed; cp = encode(cp,deltaS); changes |= NEW_S; } switch(changes){ case 0: /* Nothing changed. If this packet contains data and the * last one didn't, this is probably a data packet following * an ack (normal on an interactive connection) and we send * it compressed. Otherwise it's probably a retransmit, * retransmitted ack or window probe. Send it uncompressed * in case the other side missed the compressed version. */ if(ip->tot_len != cs->cs_ip.tot_len && ntohs(cs->cs_ip.tot_len) == hlen) break; goto uncompressed; case SPECIAL_I: case SPECIAL_D: /* actual changes match one of our special case encodings -- * send packet uncompressed. */ goto uncompressed; case NEW_S|NEW_A: if(deltaS == deltaA && deltaS == ntohs(cs->cs_ip.tot_len) - hlen){ /* special case for echoed terminal traffic */ changes = SPECIAL_I; cp = new_seq; } break; case NEW_S: if(deltaS == ntohs(cs->cs_ip.tot_len) - hlen){ /* special case for data xfer */ changes = SPECIAL_D; cp = new_seq; } break; } deltaS = ntohs(ip->id) - ntohs(cs->cs_ip.id); if(deltaS != 1){ cp = encode(cp,deltaS); changes |= NEW_I; } if(th->psh) changes |= TCP_PUSH_BIT; /* Grab the cksum before we overwrite it below. Then update our * state with this packet's header. */ csum = th->check; memcpy(&cs->cs_ip,ip,20); memcpy(&cs->cs_tcp,th,20); /* We want to use the original packet as our compressed packet. * (cp - new_seq) is the number of bytes we need for compressed * sequence numbers. In addition we need one byte for the change * mask, one for the connection id and two for the tcp checksum. * So, (cp - new_seq) + 4 bytes of header are needed. */ deltaS = cp - new_seq; if(compress_cid == 0 || comp->xmit_current != cs->cs_this){ cp = ocp; *cpp = ocp; *cp++ = changes | NEW_C; *cp++ = cs->cs_this; comp->xmit_current = cs->cs_this; } else { cp = ocp; *cpp = ocp; *cp++ = changes; } *(__sum16 *)cp = csum; cp += 2; /* deltaS is now the size of the change section of the compressed header */ memcpy(cp,new_seq,deltaS); /* Write list of deltas */ memcpy(cp+deltaS,icp+hlen,isize-hlen); comp->sls_o_compressed++; ocp[0] |= SL_TYPE_COMPRESSED_TCP; return isize - hlen + deltaS + (cp - ocp); /* Update connection state cs & send uncompressed packet (i.e., * a regular ip/tcp packet but with the 'conversation id' we hope * to use on future compressed packets in the protocol field). */ uncompressed: memcpy(&cs->cs_ip,ip,20); memcpy(&cs->cs_tcp,th,20); if (ip->ihl > 5) memcpy(cs->cs_ipopt, ip+1, ((ip->ihl) - 5) * 4); if (th->doff > 5) memcpy(cs->cs_tcpopt, th+1, ((th->doff) - 5) * 4); comp->xmit_current = cs->cs_this; comp->sls_o_uncompressed++; memcpy(ocp, icp, isize); *cpp = ocp; ocp[9] = cs->cs_this; ocp[0] |= SL_TYPE_UNCOMPRESSED_TCP; return isize; } int slhc_uncompress(struct slcompress *comp, unsigned char *icp, int isize) { int changes; long x; struct tcphdr *thp; struct iphdr *ip; struct cstate *cs; int len, hdrlen; unsigned char *cp = icp; /* We've got a compressed packet; read the change byte */ comp->sls_i_compressed++; if(isize < 3){ comp->sls_i_error++; return 0; } changes = *cp++; if(changes & NEW_C){ /* Make sure the state index is in range, then grab the state. * If we have a good state index, clear the 'discard' flag. */ x = *cp++; /* Read conn index */ if(x < 0 || x > comp->rslot_limit) goto bad; /* Check if the cstate is initialized */ if (!comp->rstate[x].initialized) goto bad; comp->flags &=~ SLF_TOSS; comp->recv_current = x; } else { /* this packet has an implicit state index. If we've * had a line error since the last time we got an * explicit state index, we have to toss the packet. */ if(comp->flags & SLF_TOSS){ comp->sls_i_tossed++; return 0; } } cs = &comp->rstate[comp->recv_current]; thp = &cs->cs_tcp; ip = &cs->cs_ip; thp->check = *(__sum16 *)cp; cp += 2; thp->psh = (changes & TCP_PUSH_BIT) ? 1 : 0; /* * we can use the same number for the length of the saved header and * the current one, because the packet wouldn't have been sent * as compressed unless the options were the same as the previous one */ hdrlen = ip->ihl * 4 + thp->doff * 4; switch(changes & SPECIALS_MASK){ case SPECIAL_I: /* Echoed terminal traffic */ { short i; i = ntohs(ip->tot_len) - hdrlen; thp->ack_seq = htonl( ntohl(thp->ack_seq) + i); thp->seq = htonl( ntohl(thp->seq) + i); } break; case SPECIAL_D: /* Unidirectional data */ thp->seq = htonl( ntohl(thp->seq) + ntohs(ip->tot_len) - hdrlen); break; default: if(changes & NEW_U){ thp->urg = 1; if((x = decode(&cp)) == -1) { goto bad; } thp->urg_ptr = htons(x); } else thp->urg = 0; if(changes & NEW_W){ if((x = decode(&cp)) == -1) { goto bad; } thp->window = htons( ntohs(thp->window) + x); } if(changes & NEW_A){ if((x = decode(&cp)) == -1) { goto bad; } thp->ack_seq = htonl( ntohl(thp->ack_seq) + x); } if(changes & NEW_S){ if((x = decode(&cp)) == -1) { goto bad; } thp->seq = htonl( ntohl(thp->seq) + x); } break; } if(changes & NEW_I){ if((x = decode(&cp)) == -1) { goto bad; } ip->id = htons (ntohs (ip->id) + x); } else ip->id = htons (ntohs (ip->id) + 1); /* * At this point, cp points to the first byte of data in the * packet. Put the reconstructed TCP and IP headers back on the * packet. Recalculate IP checksum (but not TCP checksum). */ len = isize - (cp - icp); if (len < 0) goto bad; len += hdrlen; ip->tot_len = htons(len); ip->check = 0; memmove(icp + hdrlen, cp, len - hdrlen); cp = icp; memcpy(cp, ip, 20); cp += 20; if (ip->ihl > 5) { memcpy(cp, cs->cs_ipopt, (ip->ihl - 5) * 4); cp += (ip->ihl - 5) * 4; } put_unaligned(ip_fast_csum(icp, ip->ihl), &((struct iphdr *)icp)->check); memcpy(cp, thp, 20); cp += 20; if (thp->doff > 5) { memcpy(cp, cs->cs_tcpopt, ((thp->doff) - 5) * 4); cp += ((thp->doff) - 5) * 4; } return len; bad: comp->sls_i_error++; return slhc_toss( comp ); } int slhc_remember(struct slcompress *comp, unsigned char *icp, int isize) { const struct tcphdr *th; unsigned char index; struct iphdr *iph; struct cstate *cs; unsigned int ihl; /* The packet is shorter than a legal IP header. * Also make sure isize is positive. */ if (isize < (int)sizeof(struct iphdr)) { runt: comp->sls_i_runt++; return slhc_toss(comp); } iph = (struct iphdr *)icp; /* Peek at the IP header's IHL field to find its length */ ihl = iph->ihl; /* The IP header length field is too small, * or packet is shorter than the IP header followed * by minimal tcp header. */ if (ihl < 5 || isize < ihl * 4 + sizeof(struct tcphdr)) goto runt; index = iph->protocol; iph->protocol = IPPROTO_TCP; if (ip_fast_csum(icp, ihl)) { /* Bad IP header checksum; discard */ comp->sls_i_badcheck++; return slhc_toss(comp); } if (index > comp->rslot_limit) { comp->sls_i_error++; return slhc_toss(comp); } th = (struct tcphdr *)(icp + ihl * 4); if (th->doff < sizeof(struct tcphdr) / 4) goto runt; if (isize < ihl * 4 + th->doff * 4) goto runt; /* Update local state */ cs = &comp->rstate[comp->recv_current = index]; comp->flags &=~ SLF_TOSS; memcpy(&cs->cs_ip, iph, sizeof(*iph)); memcpy(&cs->cs_tcp, th, sizeof(*th)); if (ihl > 5) memcpy(cs->cs_ipopt, &iph[1], (ihl - 5) * 4); if (th->doff > 5) memcpy(cs->cs_tcpopt, &th[1], (th->doff - 5) * 4); cs->cs_hsize = ihl*2 + th->doff*2; cs->initialized = true; /* Put headers back on packet * Neither header checksum is recalculated */ comp->sls_i_uncompressed++; return isize; } int slhc_toss(struct slcompress *comp) { if ( comp == NULLSLCOMPR ) return 0; comp->flags |= SLF_TOSS; return 0; } #else /* CONFIG_INET */ int slhc_toss(struct slcompress *comp) { printk(KERN_DEBUG "Called IP function on non IP-system: slhc_toss"); return -EINVAL; } int slhc_uncompress(struct slcompress *comp, unsigned char *icp, int isize) { printk(KERN_DEBUG "Called IP function on non IP-system: slhc_uncompress"); return -EINVAL; } int slhc_compress(struct slcompress *comp, unsigned char *icp, int isize, unsigned char *ocp, unsigned char **cpp, int compress_cid) { printk(KERN_DEBUG "Called IP function on non IP-system: slhc_compress"); return -EINVAL; } int slhc_remember(struct slcompress *comp, unsigned char *icp, int isize) { printk(KERN_DEBUG "Called IP function on non IP-system: slhc_remember"); return -EINVAL; } void slhc_free(struct slcompress *comp) { printk(KERN_DEBUG "Called IP function on non IP-system: slhc_free"); } struct slcompress * slhc_init(int rslots, int tslots) { printk(KERN_DEBUG "Called IP function on non IP-system: slhc_init"); return NULL; } #endif /* CONFIG_INET */ /* VJ header compression */ EXPORT_SYMBOL(slhc_init); EXPORT_SYMBOL(slhc_free); EXPORT_SYMBOL(slhc_remember); EXPORT_SYMBOL(slhc_compress); EXPORT_SYMBOL(slhc_uncompress); EXPORT_SYMBOL(slhc_toss); MODULE_LICENSE("Dual BSD/GPL"); |
88 88 88 17 17 15 3 21 4 17 21 65 65 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 | // SPDX-License-Identifier: GPL-2.0-or-later /* RxRPC virtual connection handler, common bits. * * Copyright (C) 2007, 2016 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/slab.h> #include <linux/net.h> #include <linux/skbuff.h> #include "ar-internal.h" /* * Time till a connection expires after last use (in seconds). */ unsigned int __read_mostly rxrpc_connection_expiry = 10 * 60; unsigned int __read_mostly rxrpc_closed_conn_expiry = 10; static void rxrpc_destroy_connection(struct rcu_head *); static void rxrpc_connection_timer(struct timer_list *timer) { struct rxrpc_connection *conn = container_of(timer, struct rxrpc_connection, timer); rxrpc_queue_conn(conn); } /* * allocate a new connection */ struct rxrpc_connection *rxrpc_alloc_connection(gfp_t gfp) { struct rxrpc_connection *conn; _enter(""); conn = kzalloc(sizeof(struct rxrpc_connection), gfp); if (conn) { INIT_LIST_HEAD(&conn->cache_link); timer_setup(&conn->timer, &rxrpc_connection_timer, 0); INIT_WORK(&conn->processor, &rxrpc_process_connection); INIT_LIST_HEAD(&conn->proc_link); INIT_LIST_HEAD(&conn->link); skb_queue_head_init(&conn->rx_queue); conn->security = &rxrpc_no_security; spin_lock_init(&conn->state_lock); conn->debug_id = atomic_inc_return(&rxrpc_debug_id); conn->idle_timestamp = jiffies; } _leave(" = %p{%d}", conn, conn ? conn->debug_id : 0); return conn; } /* * Look up a connection in the cache by protocol parameters. * * If successful, a pointer to the connection is returned, but no ref is taken. * NULL is returned if there is no match. * * When searching for a service call, if we find a peer but no connection, we * return that through *_peer in case we need to create a new service call. * * The caller must be holding the RCU read lock. */ struct rxrpc_connection *rxrpc_find_connection_rcu(struct rxrpc_local *local, struct sk_buff *skb, struct rxrpc_peer **_peer) { struct rxrpc_connection *conn; struct rxrpc_conn_proto k; struct rxrpc_skb_priv *sp = rxrpc_skb(skb); struct sockaddr_rxrpc srx; struct rxrpc_peer *peer; _enter(",%x", sp->hdr.cid & RXRPC_CIDMASK); if (rxrpc_extract_addr_from_skb(&srx, skb) < 0) goto not_found; if (srx.transport.family != local->srx.transport.family && (srx.transport.family == AF_INET && local->srx.transport.family != AF_INET6)) { pr_warn_ratelimited("AF_RXRPC: Protocol mismatch %u not %u\n", srx.transport.family, local->srx.transport.family); goto not_found; } k.epoch = sp->hdr.epoch; k.cid = sp->hdr.cid & RXRPC_CIDMASK; if (rxrpc_to_server(sp)) { /* We need to look up service connections by the full protocol * parameter set. We look up the peer first as an intermediate * step and then the connection from the peer's tree. */ peer = rxrpc_lookup_peer_rcu(local, &srx); if (!peer) goto not_found; *_peer = peer; conn = rxrpc_find_service_conn_rcu(peer, skb); if (!conn || refcount_read(&conn->ref) == 0) goto not_found; _leave(" = %p", conn); return conn; } else { /* Look up client connections by connection ID alone as their * IDs are unique for this machine. */ conn = idr_find(&rxrpc_client_conn_ids, sp->hdr.cid >> RXRPC_CIDSHIFT); if (!conn || refcount_read(&conn->ref) == 0) { _debug("no conn"); goto not_found; } if (conn->proto.epoch != k.epoch || conn->params.local != local) goto not_found; peer = conn->params.peer; switch (srx.transport.family) { case AF_INET: if (peer->srx.transport.sin.sin_port != srx.transport.sin.sin_port || peer->srx.transport.sin.sin_addr.s_addr != srx.transport.sin.sin_addr.s_addr) goto not_found; break; #ifdef CONFIG_AF_RXRPC_IPV6 case AF_INET6: if (peer->srx.transport.sin6.sin6_port != srx.transport.sin6.sin6_port || memcmp(&peer->srx.transport.sin6.sin6_addr, &srx.transport.sin6.sin6_addr, sizeof(struct in6_addr)) != 0) goto not_found; break; #endif default: BUG(); } _leave(" = %p", conn); return conn; } not_found: _leave(" = NULL"); return NULL; } /* * Disconnect a call and clear any channel it occupies when that call * terminates. The caller must hold the channel_lock and must release the * call's ref on the connection. */ void __rxrpc_disconnect_call(struct rxrpc_connection *conn, struct rxrpc_call *call) { struct rxrpc_channel *chan = &conn->channels[call->cid & RXRPC_CHANNELMASK]; _enter("%d,%x", conn->debug_id, call->cid); if (rcu_access_pointer(chan->call) == call) { /* Save the result of the call so that we can repeat it if necessary * through the channel, whilst disposing of the actual call record. */ trace_rxrpc_disconnect_call(call); switch (call->completion) { case RXRPC_CALL_SUCCEEDED: chan->last_seq = call->rx_hard_ack; chan->last_type = RXRPC_PACKET_TYPE_ACK; break; case RXRPC_CALL_LOCALLY_ABORTED: chan->last_abort = call->abort_code; chan->last_type = RXRPC_PACKET_TYPE_ABORT; break; default: chan->last_abort = RX_CALL_DEAD; chan->last_type = RXRPC_PACKET_TYPE_ABORT; break; } /* Sync with rxrpc_conn_retransmit(). */ smp_wmb(); chan->last_call = chan->call_id; chan->call_id = chan->call_counter; rcu_assign_pointer(chan->call, NULL); } _leave(""); } /* * Disconnect a call and clear any channel it occupies when that call * terminates. */ void rxrpc_disconnect_call(struct rxrpc_call *call) { struct rxrpc_connection *conn = call->conn; call->peer->cong_cwnd = call->cong_cwnd; if (!hlist_unhashed(&call->error_link)) { spin_lock_bh(&call->peer->lock); hlist_del_rcu(&call->error_link); spin_unlock_bh(&call->peer->lock); } if (rxrpc_is_client_call(call)) return rxrpc_disconnect_client_call(conn->bundle, call); spin_lock(&conn->bundle->channel_lock); __rxrpc_disconnect_call(conn, call); spin_unlock(&conn->bundle->channel_lock); set_bit(RXRPC_CALL_DISCONNECTED, &call->flags); conn->idle_timestamp = jiffies; } /* * Kill off a connection. */ void rxrpc_kill_connection(struct rxrpc_connection *conn) { struct rxrpc_net *rxnet = conn->params.local->rxnet; ASSERT(!rcu_access_pointer(conn->channels[0].call) && !rcu_access_pointer(conn->channels[1].call) && !rcu_access_pointer(conn->channels[2].call) && !rcu_access_pointer(conn->channels[3].call)); ASSERT(list_empty(&conn->cache_link)); write_lock(&rxnet->conn_lock); list_del_init(&conn->proc_link); write_unlock(&rxnet->conn_lock); /* Drain the Rx queue. Note that even though we've unpublished, an * incoming packet could still be being added to our Rx queue, so we * will need to drain it again in the RCU cleanup handler. */ rxrpc_purge_queue(&conn->rx_queue); /* Leave final destruction to RCU. The connection processor work item * must carry a ref on the connection to prevent us getting here whilst * it is queued or running. */ call_rcu(&conn->rcu, rxrpc_destroy_connection); } /* * Queue a connection's work processor, getting a ref to pass to the work * queue. */ bool rxrpc_queue_conn(struct rxrpc_connection *conn) { const void *here = __builtin_return_address(0); int r; if (!__refcount_inc_not_zero(&conn->ref, &r)) return false; if (rxrpc_queue_work(&conn->processor)) trace_rxrpc_conn(conn->debug_id, rxrpc_conn_queued, r + 1, here); else rxrpc_put_connection(conn); return true; } /* * Note the re-emergence of a connection. */ void rxrpc_see_connection(struct rxrpc_connection *conn) { const void *here = __builtin_return_address(0); if (conn) { int n = refcount_read(&conn->ref); trace_rxrpc_conn(conn->debug_id, rxrpc_conn_seen, n, here); } } /* * Get a ref on a connection. */ struct rxrpc_connection *rxrpc_get_connection(struct rxrpc_connection *conn) { const void *here = __builtin_return_address(0); int r; __refcount_inc(&conn->ref, &r); trace_rxrpc_conn(conn->debug_id, rxrpc_conn_got, r, here); return conn; } /* * Try to get a ref on a connection. */ struct rxrpc_connection * rxrpc_get_connection_maybe(struct rxrpc_connection *conn) { const void *here = __builtin_return_address(0); int r; if (conn) { if (__refcount_inc_not_zero(&conn->ref, &r)) trace_rxrpc_conn(conn->debug_id, rxrpc_conn_got, r + 1, here); else conn = NULL; } return conn; } /* * Set the service connection reap timer. */ static void rxrpc_set_service_reap_timer(struct rxrpc_net *rxnet, unsigned long reap_at) { if (rxnet->live) timer_reduce(&rxnet->service_conn_reap_timer, reap_at); } /* * Release a service connection */ void rxrpc_put_service_conn(struct rxrpc_connection *conn) { const void *here = __builtin_return_address(0); unsigned int debug_id = conn->debug_id; int r; __refcount_dec(&conn->ref, &r); trace_rxrpc_conn(debug_id, rxrpc_conn_put_service, r - 1, here); if (r - 1 == 1) rxrpc_set_service_reap_timer(conn->params.local->rxnet, jiffies + rxrpc_connection_expiry); } /* * destroy a virtual connection */ static void rxrpc_destroy_connection(struct rcu_head *rcu) { struct rxrpc_connection *conn = container_of(rcu, struct rxrpc_connection, rcu); _enter("{%d,u=%d}", conn->debug_id, refcount_read(&conn->ref)); ASSERTCMP(refcount_read(&conn->ref), ==, 0); _net("DESTROY CONN %d", conn->debug_id); del_timer_sync(&conn->timer); rxrpc_purge_queue(&conn->rx_queue); conn->security->clear(conn); key_put(conn->params.key); rxrpc_put_bundle(conn->bundle); rxrpc_put_peer(conn->params.peer); if (atomic_dec_and_test(&conn->params.local->rxnet->nr_conns)) wake_up_var(&conn->params.local->rxnet->nr_conns); rxrpc_put_local(conn->params.local); kfree(conn); _leave(""); } /* * reap dead service connections */ void rxrpc_service_connection_reaper(struct work_struct *work) { struct rxrpc_connection *conn, *_p; struct rxrpc_net *rxnet = container_of(work, struct rxrpc_net, service_conn_reaper); unsigned long expire_at, earliest, idle_timestamp, now; LIST_HEAD(graveyard); _enter(""); now = jiffies; earliest = now + MAX_JIFFY_OFFSET; write_lock(&rxnet->conn_lock); list_for_each_entry_safe(conn, _p, &rxnet->service_conns, link) { ASSERTCMP(refcount_read(&conn->ref), >, 0); if (likely(refcount_read(&conn->ref) > 1)) continue; if (conn->state == RXRPC_CONN_SERVICE_PREALLOC) continue; if (rxnet->live && !conn->params.local->dead) { idle_timestamp = READ_ONCE(conn->idle_timestamp); expire_at = idle_timestamp + rxrpc_connection_expiry * HZ; if (conn->params.local->service_closed) expire_at = idle_timestamp + rxrpc_closed_conn_expiry * HZ; _debug("reap CONN %d { u=%d,t=%ld }", conn->debug_id, refcount_read(&conn->ref), (long)expire_at - (long)now); if (time_before(now, expire_at)) { if (time_before(expire_at, earliest)) earliest = expire_at; continue; } } /* The usage count sits at 1 whilst the object is unused on the * list; we reduce that to 0 to make the object unavailable. */ if (!refcount_dec_if_one(&conn->ref)) continue; trace_rxrpc_conn(conn->debug_id, rxrpc_conn_reap_service, 0, NULL); if (rxrpc_conn_is_client(conn)) BUG(); else rxrpc_unpublish_service_conn(conn); list_move_tail(&conn->link, &graveyard); } write_unlock(&rxnet->conn_lock); if (earliest != now + MAX_JIFFY_OFFSET) { _debug("reschedule reaper %ld", (long)earliest - (long)now); ASSERT(time_after(earliest, now)); rxrpc_set_service_reap_timer(rxnet, earliest); } while (!list_empty(&graveyard)) { conn = list_entry(graveyard.next, struct rxrpc_connection, link); list_del_init(&conn->link); ASSERTCMP(refcount_read(&conn->ref), ==, 0); rxrpc_kill_connection(conn); } _leave(""); } /* * preemptively destroy all the service connection records rather than * waiting for them to time out */ void rxrpc_destroy_all_connections(struct rxrpc_net *rxnet) { struct rxrpc_connection *conn, *_p; bool leak = false; _enter(""); atomic_dec(&rxnet->nr_conns); rxrpc_destroy_all_client_connections(rxnet); del_timer_sync(&rxnet->service_conn_reap_timer); rxrpc_queue_work(&rxnet->service_conn_reaper); flush_workqueue(rxrpc_workqueue); write_lock(&rxnet->conn_lock); list_for_each_entry_safe(conn, _p, &rxnet->service_conns, link) { pr_err("AF_RXRPC: Leaked conn %p {%d}\n", conn, refcount_read(&conn->ref)); leak = true; } write_unlock(&rxnet->conn_lock); BUG_ON(leak); ASSERT(list_empty(&rxnet->conn_proc_list)); /* We need to wait for the connections to be destroyed by RCU as they * pin things that we still need to get rid of. */ wait_var_event(&rxnet->nr_conns, !atomic_read(&rxnet->nr_conns)); _leave(""); } |
2 2 1 6 6 4 2 8 1 7 2 4 1 1 4 1 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2017 Nicira, Inc. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/if.h> #include <linux/skbuff.h> #include <linux/ip.h> #include <linux/kernel.h> #include <linux/openvswitch.h> #include <linux/netlink.h> #include <linux/rculist.h> #include <linux/swap.h> #include <net/netlink.h> #include <net/genetlink.h> #include "datapath.h" #include "meter.h" static const struct nla_policy meter_policy[OVS_METER_ATTR_MAX + 1] = { [OVS_METER_ATTR_ID] = { .type = NLA_U32, }, [OVS_METER_ATTR_KBPS] = { .type = NLA_FLAG }, [OVS_METER_ATTR_STATS] = { .len = sizeof(struct ovs_flow_stats) }, [OVS_METER_ATTR_BANDS] = { .type = NLA_NESTED }, [OVS_METER_ATTR_USED] = { .type = NLA_U64 }, [OVS_METER_ATTR_CLEAR] = { .type = NLA_FLAG }, [OVS_METER_ATTR_MAX_METERS] = { .type = NLA_U32 }, [OVS_METER_ATTR_MAX_BANDS] = { .type = NLA_U32 }, }; static const struct nla_policy band_policy[OVS_BAND_ATTR_MAX + 1] = { [OVS_BAND_ATTR_TYPE] = { .type = NLA_U32, }, [OVS_BAND_ATTR_RATE] = { .type = NLA_U32, }, [OVS_BAND_ATTR_BURST] = { .type = NLA_U32, }, [OVS_BAND_ATTR_STATS] = { .len = sizeof(struct ovs_flow_stats) }, }; static u32 meter_hash(struct dp_meter_instance *ti, u32 id) { return id % ti->n_meters; } static void ovs_meter_free(struct dp_meter *meter) { if (!meter) return; kfree_rcu(meter, rcu); } /* Call with ovs_mutex or RCU read lock. */ static struct dp_meter *lookup_meter(const struct dp_meter_table *tbl, u32 meter_id) { struct dp_meter_instance *ti = rcu_dereference_ovsl(tbl->ti); u32 hash = meter_hash(ti, meter_id); struct dp_meter *meter; meter = rcu_dereference_ovsl(ti->dp_meters[hash]); if (meter && likely(meter->id == meter_id)) return meter; return NULL; } static struct dp_meter_instance *dp_meter_instance_alloc(const u32 size) { struct dp_meter_instance *ti; ti = kvzalloc(sizeof(*ti) + sizeof(struct dp_meter *) * size, GFP_KERNEL); if (!ti) return NULL; ti->n_meters = size; return ti; } static void dp_meter_instance_free(struct dp_meter_instance *ti) { kvfree(ti); } static void dp_meter_instance_free_rcu(struct rcu_head *rcu) { struct dp_meter_instance *ti; ti = container_of(rcu, struct dp_meter_instance, rcu); kvfree(ti); } static int dp_meter_instance_realloc(struct dp_meter_table *tbl, u32 size) { struct dp_meter_instance *ti = rcu_dereference_ovsl(tbl->ti); int n_meters = min(size, ti->n_meters); struct dp_meter_instance *new_ti; int i; new_ti = dp_meter_instance_alloc(size); if (!new_ti) return -ENOMEM; for (i = 0; i < n_meters; i++) if (rcu_dereference_ovsl(ti->dp_meters[i])) new_ti->dp_meters[i] = ti->dp_meters[i]; rcu_assign_pointer(tbl->ti, new_ti); call_rcu(&ti->rcu, dp_meter_instance_free_rcu); return 0; } static void dp_meter_instance_insert(struct dp_meter_instance *ti, struct dp_meter *meter) { u32 hash; hash = meter_hash(ti, meter->id); rcu_assign_pointer(ti->dp_meters[hash], meter); } static void dp_meter_instance_remove(struct dp_meter_instance *ti, struct dp_meter *meter) { u32 hash; hash = meter_hash(ti, meter->id); RCU_INIT_POINTER(ti->dp_meters[hash], NULL); } static int attach_meter(struct dp_meter_table *tbl, struct dp_meter *meter) { struct dp_meter_instance *ti = rcu_dereference_ovsl(tbl->ti); u32 hash = meter_hash(ti, meter->id); int err; /* In generally, slots selected should be empty, because * OvS uses id-pool to fetch a available id. */ if (unlikely(rcu_dereference_ovsl(ti->dp_meters[hash]))) return -EBUSY; dp_meter_instance_insert(ti, meter); /* That function is thread-safe. */ tbl->count++; if (tbl->count >= tbl->max_meters_allowed) { err = -EFBIG; goto attach_err; } if (tbl->count >= ti->n_meters && dp_meter_instance_realloc(tbl, ti->n_meters * 2)) { err = -ENOMEM; goto attach_err; } return 0; attach_err: dp_meter_instance_remove(ti, meter); tbl->count--; return err; } static int detach_meter(struct dp_meter_table *tbl, struct dp_meter *meter) { struct dp_meter_instance *ti; ASSERT_OVSL(); if (!meter) return 0; ti = rcu_dereference_ovsl(tbl->ti); dp_meter_instance_remove(ti, meter); tbl->count--; /* Shrink the meter array if necessary. */ if (ti->n_meters > DP_METER_ARRAY_SIZE_MIN && tbl->count <= (ti->n_meters / 4)) { int half_size = ti->n_meters / 2; int i; /* Avoid hash collision, don't move slots to other place. * Make sure there are no references of meters in array * which will be released. */ for (i = half_size; i < ti->n_meters; i++) if (rcu_dereference_ovsl(ti->dp_meters[i])) goto out; if (dp_meter_instance_realloc(tbl, half_size)) goto shrink_err; } out: return 0; shrink_err: dp_meter_instance_insert(ti, meter); tbl->count++; return -ENOMEM; } static struct sk_buff * ovs_meter_cmd_reply_start(struct genl_info *info, u8 cmd, struct ovs_header **ovs_reply_header) { struct sk_buff *skb; struct ovs_header *ovs_header = info->userhdr; skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC); if (!skb) return ERR_PTR(-ENOMEM); *ovs_reply_header = genlmsg_put(skb, info->snd_portid, info->snd_seq, &dp_meter_genl_family, 0, cmd); if (!*ovs_reply_header) { nlmsg_free(skb); return ERR_PTR(-EMSGSIZE); } (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex; return skb; } static int ovs_meter_cmd_reply_stats(struct sk_buff *reply, u32 meter_id, struct dp_meter *meter) { struct nlattr *nla; struct dp_meter_band *band; u16 i; if (nla_put_u32(reply, OVS_METER_ATTR_ID, meter_id)) goto error; if (nla_put(reply, OVS_METER_ATTR_STATS, sizeof(struct ovs_flow_stats), &meter->stats)) goto error; if (nla_put_u64_64bit(reply, OVS_METER_ATTR_USED, meter->used, OVS_METER_ATTR_PAD)) goto error; nla = nla_nest_start_noflag(reply, OVS_METER_ATTR_BANDS); if (!nla) goto error; band = meter->bands; for (i = 0; i < meter->n_bands; ++i, ++band) { struct nlattr *band_nla; band_nla = nla_nest_start_noflag(reply, OVS_BAND_ATTR_UNSPEC); if (!band_nla || nla_put(reply, OVS_BAND_ATTR_STATS, sizeof(struct ovs_flow_stats), &band->stats)) goto error; nla_nest_end(reply, band_nla); } nla_nest_end(reply, nla); return 0; error: return -EMSGSIZE; } static int ovs_meter_cmd_features(struct sk_buff *skb, struct genl_info *info) { struct ovs_header *ovs_header = info->userhdr; struct ovs_header *ovs_reply_header; struct nlattr *nla, *band_nla; struct sk_buff *reply; struct datapath *dp; int err = -EMSGSIZE; reply = ovs_meter_cmd_reply_start(info, OVS_METER_CMD_FEATURES, &ovs_reply_header); if (IS_ERR(reply)) return PTR_ERR(reply); ovs_lock(); dp = get_dp(sock_net(skb->sk), ovs_header->dp_ifindex); if (!dp) { err = -ENODEV; goto exit_unlock; } if (nla_put_u32(reply, OVS_METER_ATTR_MAX_METERS, dp->meter_tbl.max_meters_allowed)) goto exit_unlock; ovs_unlock(); if (nla_put_u32(reply, OVS_METER_ATTR_MAX_BANDS, DP_MAX_BANDS)) goto nla_put_failure; nla = nla_nest_start_noflag(reply, OVS_METER_ATTR_BANDS); if (!nla) goto nla_put_failure; band_nla = nla_nest_start_noflag(reply, OVS_BAND_ATTR_UNSPEC); if (!band_nla) goto nla_put_failure; /* Currently only DROP band type is supported. */ if (nla_put_u32(reply, OVS_BAND_ATTR_TYPE, OVS_METER_BAND_TYPE_DROP)) goto nla_put_failure; nla_nest_end(reply, band_nla); nla_nest_end(reply, nla); genlmsg_end(reply, ovs_reply_header); return genlmsg_reply(reply, info); exit_unlock: ovs_unlock(); nla_put_failure: nlmsg_free(reply); return err; } static struct dp_meter *dp_meter_create(struct nlattr **a) { struct nlattr *nla; int rem; u16 n_bands = 0; struct dp_meter *meter; struct dp_meter_band *band; int err; /* Validate attributes, count the bands. */ if (!a[OVS_METER_ATTR_BANDS]) return ERR_PTR(-EINVAL); nla_for_each_nested(nla, a[OVS_METER_ATTR_BANDS], rem) if (++n_bands > DP_MAX_BANDS) return ERR_PTR(-EINVAL); /* Allocate and set up the meter before locking anything. */ meter = kzalloc(struct_size(meter, bands, n_bands), GFP_KERNEL); if (!meter) return ERR_PTR(-ENOMEM); meter->id = nla_get_u32(a[OVS_METER_ATTR_ID]); meter->used = div_u64(ktime_get_ns(), 1000 * 1000); meter->kbps = a[OVS_METER_ATTR_KBPS] ? 1 : 0; meter->keep_stats = !a[OVS_METER_ATTR_CLEAR]; spin_lock_init(&meter->lock); if (meter->keep_stats && a[OVS_METER_ATTR_STATS]) { meter->stats = *(struct ovs_flow_stats *) nla_data(a[OVS_METER_ATTR_STATS]); } meter->n_bands = n_bands; /* Set up meter bands. */ band = meter->bands; nla_for_each_nested(nla, a[OVS_METER_ATTR_BANDS], rem) { struct nlattr *attr[OVS_BAND_ATTR_MAX + 1]; u32 band_max_delta_t; err = nla_parse_deprecated((struct nlattr **)&attr, OVS_BAND_ATTR_MAX, nla_data(nla), nla_len(nla), band_policy, NULL); if (err) goto exit_free_meter; if (!attr[OVS_BAND_ATTR_TYPE] || !attr[OVS_BAND_ATTR_RATE] || !attr[OVS_BAND_ATTR_BURST]) { err = -EINVAL; goto exit_free_meter; } band->type = nla_get_u32(attr[OVS_BAND_ATTR_TYPE]); band->rate = nla_get_u32(attr[OVS_BAND_ATTR_RATE]); if (band->rate == 0) { err = -EINVAL; goto exit_free_meter; } band->burst_size = nla_get_u32(attr[OVS_BAND_ATTR_BURST]); /* Figure out max delta_t that is enough to fill any bucket. * Keep max_delta_t size to the bucket units: * pkts => 1/1000 packets, kilobits => bits. * * Start with a full bucket. */ band->bucket = band->burst_size * 1000ULL; band_max_delta_t = div_u64(band->bucket, band->rate); if (band_max_delta_t > meter->max_delta_t) meter->max_delta_t = band_max_delta_t; band++; } return meter; exit_free_meter: kfree(meter); return ERR_PTR(err); } static int ovs_meter_cmd_set(struct sk_buff *skb, struct genl_info *info) { struct nlattr **a = info->attrs; struct dp_meter *meter, *old_meter; struct sk_buff *reply; struct ovs_header *ovs_reply_header; struct ovs_header *ovs_header = info->userhdr; struct dp_meter_table *meter_tbl; struct datapath *dp; int err; u32 meter_id; bool failed; if (!a[OVS_METER_ATTR_ID]) return -EINVAL; meter = dp_meter_create(a); if (IS_ERR(meter)) return PTR_ERR(meter); reply = ovs_meter_cmd_reply_start(info, OVS_METER_CMD_SET, &ovs_reply_header); if (IS_ERR(reply)) { err = PTR_ERR(reply); goto exit_free_meter; } ovs_lock(); dp = get_dp(sock_net(skb->sk), ovs_header->dp_ifindex); if (!dp) { err = -ENODEV; goto exit_unlock; } meter_tbl = &dp->meter_tbl; meter_id = nla_get_u32(a[OVS_METER_ATTR_ID]); old_meter = lookup_meter(meter_tbl, meter_id); err = detach_meter(meter_tbl, old_meter); if (err) goto exit_unlock; err = attach_meter(meter_tbl, meter); if (err) goto exit_free_old_meter; ovs_unlock(); /* Build response with the meter_id and stats from * the old meter, if any. */ failed = nla_put_u32(reply, OVS_METER_ATTR_ID, meter_id); WARN_ON(failed); if (old_meter) { spin_lock_bh(&old_meter->lock); if (old_meter->keep_stats) { err = ovs_meter_cmd_reply_stats(reply, meter_id, old_meter); WARN_ON(err); } spin_unlock_bh(&old_meter->lock); ovs_meter_free(old_meter); } genlmsg_end(reply, ovs_reply_header); return genlmsg_reply(reply, info); exit_free_old_meter: ovs_meter_free(old_meter); exit_unlock: ovs_unlock(); nlmsg_free(reply); exit_free_meter: kfree(meter); return err; } static int ovs_meter_cmd_get(struct sk_buff *skb, struct genl_info *info) { struct ovs_header *ovs_header = info->userhdr; struct ovs_header *ovs_reply_header; struct nlattr **a = info->attrs; struct dp_meter *meter; struct sk_buff *reply; struct datapath *dp; u32 meter_id; int err; if (!a[OVS_METER_ATTR_ID]) return -EINVAL; meter_id = nla_get_u32(a[OVS_METER_ATTR_ID]); reply = ovs_meter_cmd_reply_start(info, OVS_METER_CMD_GET, &ovs_reply_header); if (IS_ERR(reply)) return PTR_ERR(reply); ovs_lock(); dp = get_dp(sock_net(skb->sk), ovs_header->dp_ifindex); if (!dp) { err = -ENODEV; goto exit_unlock; } /* Locate meter, copy stats. */ meter = lookup_meter(&dp->meter_tbl, meter_id); if (!meter) { err = -ENOENT; goto exit_unlock; } spin_lock_bh(&meter->lock); err = ovs_meter_cmd_reply_stats(reply, meter_id, meter); spin_unlock_bh(&meter->lock); if (err) goto exit_unlock; ovs_unlock(); genlmsg_end(reply, ovs_reply_header); return genlmsg_reply(reply, info); exit_unlock: ovs_unlock(); nlmsg_free(reply); return err; } static int ovs_meter_cmd_del(struct sk_buff *skb, struct genl_info *info) { struct ovs_header *ovs_header = info->userhdr; struct ovs_header *ovs_reply_header; struct nlattr **a = info->attrs; struct dp_meter *old_meter; struct sk_buff *reply; struct datapath *dp; u32 meter_id; int err; if (!a[OVS_METER_ATTR_ID]) return -EINVAL; reply = ovs_meter_cmd_reply_start(info, OVS_METER_CMD_DEL, &ovs_reply_header); if (IS_ERR(reply)) return PTR_ERR(reply); ovs_lock(); dp = get_dp(sock_net(skb->sk), ovs_header->dp_ifindex); if (!dp) { err = -ENODEV; goto exit_unlock; } meter_id = nla_get_u32(a[OVS_METER_ATTR_ID]); old_meter = lookup_meter(&dp->meter_tbl, meter_id); if (old_meter) { spin_lock_bh(&old_meter->lock); err = ovs_meter_cmd_reply_stats(reply, meter_id, old_meter); WARN_ON(err); spin_unlock_bh(&old_meter->lock); err = detach_meter(&dp->meter_tbl, old_meter); if (err) goto exit_unlock; } ovs_unlock(); ovs_meter_free(old_meter); genlmsg_end(reply, ovs_reply_header); return genlmsg_reply(reply, info); exit_unlock: ovs_unlock(); nlmsg_free(reply); return err; } /* Meter action execution. * * Return true 'meter_id' drop band is triggered. The 'skb' should be * dropped by the caller'. */ bool ovs_meter_execute(struct datapath *dp, struct sk_buff *skb, struct sw_flow_key *key, u32 meter_id) { long long int now_ms = div_u64(ktime_get_ns(), 1000 * 1000); long long int long_delta_ms; struct dp_meter_band *band; struct dp_meter *meter; int i, band_exceeded_max = -1; u32 band_exceeded_rate = 0; u32 delta_ms; u32 cost; meter = lookup_meter(&dp->meter_tbl, meter_id); /* Do not drop the packet when there is no meter. */ if (!meter) return false; /* Lock the meter while using it. */ spin_lock(&meter->lock); long_delta_ms = (now_ms - meter->used); /* ms */ if (long_delta_ms < 0) { /* This condition means that we have several threads fighting * for a meter lock, and the one who received the packets a * bit later wins. Assuming that all racing threads received * packets at the same time to avoid overflow. */ long_delta_ms = 0; } /* Make sure delta_ms will not be too large, so that bucket will not * wrap around below. */ delta_ms = (long_delta_ms > (long long int)meter->max_delta_t) ? meter->max_delta_t : (u32)long_delta_ms; /* Update meter statistics. */ meter->used = now_ms; meter->stats.n_packets += 1; meter->stats.n_bytes += skb->len; /* Bucket rate is either in kilobits per second, or in packets per * second. We maintain the bucket in the units of either bits or * 1/1000th of a packet, correspondingly. * Then, when rate is multiplied with milliseconds, we get the * bucket units: * msec * kbps = bits, and * msec * packets/sec = 1/1000 packets. * * 'cost' is the number of bucket units in this packet. */ cost = (meter->kbps) ? skb->len * 8 : 1000; /* Update all bands and find the one hit with the highest rate. */ for (i = 0; i < meter->n_bands; ++i) { long long int max_bucket_size; band = &meter->bands[i]; max_bucket_size = band->burst_size * 1000LL; band->bucket += delta_ms * band->rate; if (band->bucket > max_bucket_size) band->bucket = max_bucket_size; if (band->bucket >= cost) { band->bucket -= cost; } else if (band->rate > band_exceeded_rate) { band_exceeded_rate = band->rate; band_exceeded_max = i; } } if (band_exceeded_max >= 0) { /* Update band statistics. */ band = &meter->bands[band_exceeded_max]; band->stats.n_packets += 1; band->stats.n_bytes += skb->len; /* Drop band triggered, let the caller drop the 'skb'. */ if (band->type == OVS_METER_BAND_TYPE_DROP) { spin_unlock(&meter->lock); return true; } } spin_unlock(&meter->lock); return false; } static const struct genl_small_ops dp_meter_genl_ops[] = { { .cmd = OVS_METER_CMD_FEATURES, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = 0, /* OK for unprivileged users. */ .doit = ovs_meter_cmd_features }, { .cmd = OVS_METER_CMD_SET, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN * privilege. */ .doit = ovs_meter_cmd_set, }, { .cmd = OVS_METER_CMD_GET, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = 0, /* OK for unprivileged users. */ .doit = ovs_meter_cmd_get, }, { .cmd = OVS_METER_CMD_DEL, .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN * privilege. */ .doit = ovs_meter_cmd_del }, }; static const struct genl_multicast_group ovs_meter_multicast_group = { .name = OVS_METER_MCGROUP, }; struct genl_family dp_meter_genl_family __ro_after_init = { .hdrsize = sizeof(struct ovs_header), .name = OVS_METER_FAMILY, .version = OVS_METER_VERSION, .maxattr = OVS_METER_ATTR_MAX, .policy = meter_policy, .netnsok = true, .parallel_ops = true, .small_ops = dp_meter_genl_ops, .n_small_ops = ARRAY_SIZE(dp_meter_genl_ops), .mcgrps = &ovs_meter_multicast_group, .n_mcgrps = 1, .module = THIS_MODULE, }; int ovs_meters_init(struct datapath *dp) { struct dp_meter_table *tbl = &dp->meter_tbl; struct dp_meter_instance *ti; unsigned long free_mem_bytes; ti = dp_meter_instance_alloc(DP_METER_ARRAY_SIZE_MIN); if (!ti) return -ENOMEM; /* Allow meters in a datapath to use ~3.12% of physical memory. */ free_mem_bytes = nr_free_buffer_pages() * (PAGE_SIZE >> 5); tbl->max_meters_allowed = min(free_mem_bytes / sizeof(struct dp_meter), DP_METER_NUM_MAX); if (!tbl->max_meters_allowed) goto out_err; rcu_assign_pointer(tbl->ti, ti); tbl->count = 0; return 0; out_err: dp_meter_instance_free(ti); return -ENOMEM; } void ovs_meters_exit(struct datapath *dp) { struct dp_meter_table *tbl = &dp->meter_tbl; struct dp_meter_instance *ti = rcu_dereference_raw(tbl->ti); int i; for (i = 0; i < ti->n_meters; i++) ovs_meter_free(rcu_dereference_raw(ti->dp_meters[i])); dp_meter_instance_free(ti); } |
3335 3328 3096 3100 23 23 4 4 148 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 51 51 52 40 34 13 53 53 2 52 2 15 15 51 53 2 52 52 17 28 46 45 53 52 43 43 22 42 53 47 28 28 53 105 125 126 143 143 144 144 38 144 73 73 144 38 105 112 144 70 23 23 23 23 23 19 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 | // SPDX-License-Identifier: GPL-2.0-only /* * Resizable, Scalable, Concurrent Hash Table * * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch> * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net> * * Code partially derived from nft_hash * Rewritten with rehash code from br_multicast plus single list * pointer as suggested by Josh Triplett */ #include <linux/atomic.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/log2.h> #include <linux/sched.h> #include <linux/rculist.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/mm.h> #include <linux/jhash.h> #include <linux/random.h> #include <linux/rhashtable.h> #include <linux/err.h> #include <linux/export.h> #define HASH_DEFAULT_SIZE 64UL #define HASH_MIN_SIZE 4U union nested_table { union nested_table __rcu *table; struct rhash_lock_head __rcu *bucket; }; static u32 head_hashfn(struct rhashtable *ht, const struct bucket_table *tbl, const struct rhash_head *he) { return rht_head_hashfn(ht, tbl, he, ht->p); } #ifdef CONFIG_PROVE_LOCKING #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT)) int lockdep_rht_mutex_is_held(struct rhashtable *ht) { return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1; } EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held); int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash) { if (!debug_locks) return 1; if (unlikely(tbl->nest)) return 1; return bit_spin_is_locked(0, (unsigned long *)&tbl->buckets[hash]); } EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held); #else #define ASSERT_RHT_MUTEX(HT) #endif static inline union nested_table *nested_table_top( const struct bucket_table *tbl) { /* The top-level bucket entry does not need RCU protection * because it's set at the same time as tbl->nest. */ return (void *)rcu_dereference_protected(tbl->buckets[0], 1); } static void nested_table_free(union nested_table *ntbl, unsigned int size) { const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); const unsigned int len = 1 << shift; unsigned int i; ntbl = rcu_dereference_protected(ntbl->table, 1); if (!ntbl) return; if (size > len) { size >>= shift; for (i = 0; i < len; i++) nested_table_free(ntbl + i, size); } kfree(ntbl); } static void nested_bucket_table_free(const struct bucket_table *tbl) { unsigned int size = tbl->size >> tbl->nest; unsigned int len = 1 << tbl->nest; union nested_table *ntbl; unsigned int i; ntbl = nested_table_top(tbl); for (i = 0; i < len; i++) nested_table_free(ntbl + i, size); kfree(ntbl); } static void bucket_table_free(const struct bucket_table *tbl) { if (tbl->nest) nested_bucket_table_free(tbl); kvfree(tbl); } static void bucket_table_free_rcu(struct rcu_head *head) { bucket_table_free(container_of(head, struct bucket_table, rcu)); } static union nested_table *nested_table_alloc(struct rhashtable *ht, union nested_table __rcu **prev, bool leaf) { union nested_table *ntbl; int i; ntbl = rcu_dereference(*prev); if (ntbl) return ntbl; ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC); if (ntbl && leaf) { for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++) INIT_RHT_NULLS_HEAD(ntbl[i].bucket); } if (cmpxchg((union nested_table **)prev, NULL, ntbl) == NULL) return ntbl; /* Raced with another thread. */ kfree(ntbl); return rcu_dereference(*prev); } static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht, size_t nbuckets, gfp_t gfp) { const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); struct bucket_table *tbl; size_t size; if (nbuckets < (1 << (shift + 1))) return NULL; size = sizeof(*tbl) + sizeof(tbl->buckets[0]); tbl = kzalloc(size, gfp); if (!tbl) return NULL; if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets, false)) { kfree(tbl); return NULL; } tbl->nest = (ilog2(nbuckets) - 1) % shift + 1; return tbl; } static struct bucket_table *bucket_table_alloc(struct rhashtable *ht, size_t nbuckets, gfp_t gfp) { struct bucket_table *tbl = NULL; size_t size; int i; static struct lock_class_key __key; tbl = kvzalloc(struct_size(tbl, buckets, nbuckets), gfp); size = nbuckets; if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) { tbl = nested_bucket_table_alloc(ht, nbuckets, gfp); nbuckets = 0; } if (tbl == NULL) return NULL; lockdep_init_map(&tbl->dep_map, "rhashtable_bucket", &__key, 0); tbl->size = size; rcu_head_init(&tbl->rcu); INIT_LIST_HEAD(&tbl->walkers); tbl->hash_rnd = get_random_u32(); for (i = 0; i < nbuckets; i++) INIT_RHT_NULLS_HEAD(tbl->buckets[i]); return tbl; } static struct bucket_table *rhashtable_last_table(struct rhashtable *ht, struct bucket_table *tbl) { struct bucket_table *new_tbl; do { new_tbl = tbl; tbl = rht_dereference_rcu(tbl->future_tbl, ht); } while (tbl); return new_tbl; } static int rhashtable_rehash_one(struct rhashtable *ht, struct rhash_lock_head __rcu **bkt, unsigned int old_hash) { struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl); int err = -EAGAIN; struct rhash_head *head, *next, *entry; struct rhash_head __rcu **pprev = NULL; unsigned int new_hash; if (new_tbl->nest) goto out; err = -ENOENT; rht_for_each_from(entry, rht_ptr(bkt, old_tbl, old_hash), old_tbl, old_hash) { err = 0; next = rht_dereference_bucket(entry->next, old_tbl, old_hash); if (rht_is_a_nulls(next)) break; pprev = &entry->next; } if (err) goto out; new_hash = head_hashfn(ht, new_tbl, entry); rht_lock_nested(new_tbl, &new_tbl->buckets[new_hash], SINGLE_DEPTH_NESTING); head = rht_ptr(new_tbl->buckets + new_hash, new_tbl, new_hash); RCU_INIT_POINTER(entry->next, head); rht_assign_unlock(new_tbl, &new_tbl->buckets[new_hash], entry); if (pprev) rcu_assign_pointer(*pprev, next); else /* Need to preserved the bit lock. */ rht_assign_locked(bkt, next); out: return err; } static int rhashtable_rehash_chain(struct rhashtable *ht, unsigned int old_hash) { struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); struct rhash_lock_head __rcu **bkt = rht_bucket_var(old_tbl, old_hash); int err; if (!bkt) return 0; rht_lock(old_tbl, bkt); while (!(err = rhashtable_rehash_one(ht, bkt, old_hash))) ; if (err == -ENOENT) err = 0; rht_unlock(old_tbl, bkt); return err; } static int rhashtable_rehash_attach(struct rhashtable *ht, struct bucket_table *old_tbl, struct bucket_table *new_tbl) { /* Make insertions go into the new, empty table right away. Deletions * and lookups will be attempted in both tables until we synchronize. * As cmpxchg() provides strong barriers, we do not need * rcu_assign_pointer(). */ if (cmpxchg((struct bucket_table **)&old_tbl->future_tbl, NULL, new_tbl) != NULL) return -EEXIST; return 0; } static int rhashtable_rehash_table(struct rhashtable *ht) { struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); struct bucket_table *new_tbl; struct rhashtable_walker *walker; unsigned int old_hash; int err; new_tbl = rht_dereference(old_tbl->future_tbl, ht); if (!new_tbl) return 0; for (old_hash = 0; old_hash < old_tbl->size; old_hash++) { err = rhashtable_rehash_chain(ht, old_hash); if (err) return err; cond_resched(); } /* Publish the new table pointer. */ rcu_assign_pointer(ht->tbl, new_tbl); spin_lock(&ht->lock); list_for_each_entry(walker, &old_tbl->walkers, list) walker->tbl = NULL; /* Wait for readers. All new readers will see the new * table, and thus no references to the old table will * remain. * We do this inside the locked region so that * rhashtable_walk_stop() can use rcu_head_after_call_rcu() * to check if it should not re-link the table. */ call_rcu(&old_tbl->rcu, bucket_table_free_rcu); spin_unlock(&ht->lock); return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0; } static int rhashtable_rehash_alloc(struct rhashtable *ht, struct bucket_table *old_tbl, unsigned int size) { struct bucket_table *new_tbl; int err; ASSERT_RHT_MUTEX(ht); new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL); if (new_tbl == NULL) return -ENOMEM; err = rhashtable_rehash_attach(ht, old_tbl, new_tbl); if (err) bucket_table_free(new_tbl); return err; } /** * rhashtable_shrink - Shrink hash table while allowing concurrent lookups * @ht: the hash table to shrink * * This function shrinks the hash table to fit, i.e., the smallest * size would not cause it to expand right away automatically. * * The caller must ensure that no concurrent resizing occurs by holding * ht->mutex. * * The caller must ensure that no concurrent table mutations take place. * It is however valid to have concurrent lookups if they are RCU protected. * * It is valid to have concurrent insertions and deletions protected by per * bucket locks or concurrent RCU protected lookups and traversals. */ static int rhashtable_shrink(struct rhashtable *ht) { struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); unsigned int nelems = atomic_read(&ht->nelems); unsigned int size = 0; if (nelems) size = roundup_pow_of_two(nelems * 3 / 2); if (size < ht->p.min_size) size = ht->p.min_size; if (old_tbl->size <= size) return 0; if (rht_dereference(old_tbl->future_tbl, ht)) return -EEXIST; return rhashtable_rehash_alloc(ht, old_tbl, size); } static void rht_deferred_worker(struct work_struct *work) { struct rhashtable *ht; struct bucket_table *tbl; int err = 0; ht = container_of(work, struct rhashtable, run_work); mutex_lock(&ht->mutex); tbl = rht_dereference(ht->tbl, ht); tbl = rhashtable_last_table(ht, tbl); if (rht_grow_above_75(ht, tbl)) err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2); else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl)) err = rhashtable_shrink(ht); else if (tbl->nest) err = rhashtable_rehash_alloc(ht, tbl, tbl->size); if (!err || err == -EEXIST) { int nerr; nerr = rhashtable_rehash_table(ht); err = err ?: nerr; } mutex_unlock(&ht->mutex); if (err) schedule_work(&ht->run_work); } static int rhashtable_insert_rehash(struct rhashtable *ht, struct bucket_table *tbl) { struct bucket_table *old_tbl; struct bucket_table *new_tbl; unsigned int size; int err; old_tbl = rht_dereference_rcu(ht->tbl, ht); size = tbl->size; err = -EBUSY; if (rht_grow_above_75(ht, tbl)) size *= 2; /* Do not schedule more than one rehash */ else if (old_tbl != tbl) goto fail; err = -ENOMEM; new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN); if (new_tbl == NULL) goto fail; err = rhashtable_rehash_attach(ht, tbl, new_tbl); if (err) { bucket_table_free(new_tbl); if (err == -EEXIST) err = 0; } else schedule_work(&ht->run_work); return err; fail: /* Do not fail the insert if someone else did a rehash. */ if (likely(rcu_access_pointer(tbl->future_tbl))) return 0; /* Schedule async rehash to retry allocation in process context. */ if (err == -ENOMEM) schedule_work(&ht->run_work); return err; } static void *rhashtable_lookup_one(struct rhashtable *ht, struct rhash_lock_head __rcu **bkt, struct bucket_table *tbl, unsigned int hash, const void *key, struct rhash_head *obj) { struct rhashtable_compare_arg arg = { .ht = ht, .key = key, }; struct rhash_head __rcu **pprev = NULL; struct rhash_head *head; int elasticity; elasticity = RHT_ELASTICITY; rht_for_each_from(head, rht_ptr(bkt, tbl, hash), tbl, hash) { struct rhlist_head *list; struct rhlist_head *plist; elasticity--; if (!key || (ht->p.obj_cmpfn ? ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) : rhashtable_compare(&arg, rht_obj(ht, head)))) { pprev = &head->next; continue; } if (!ht->rhlist) return rht_obj(ht, head); list = container_of(obj, struct rhlist_head, rhead); plist = container_of(head, struct rhlist_head, rhead); RCU_INIT_POINTER(list->next, plist); head = rht_dereference_bucket(head->next, tbl, hash); RCU_INIT_POINTER(list->rhead.next, head); if (pprev) rcu_assign_pointer(*pprev, obj); else /* Need to preserve the bit lock */ rht_assign_locked(bkt, obj); return NULL; } if (elasticity <= 0) return ERR_PTR(-EAGAIN); return ERR_PTR(-ENOENT); } static struct bucket_table *rhashtable_insert_one( struct rhashtable *ht, struct rhash_lock_head __rcu **bkt, struct bucket_table *tbl, unsigned int hash, struct rhash_head *obj, void *data) { struct bucket_table *new_tbl; struct rhash_head *head; if (!IS_ERR_OR_NULL(data)) return ERR_PTR(-EEXIST); if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT) return ERR_CAST(data); new_tbl = rht_dereference_rcu(tbl->future_tbl, ht); if (new_tbl) return new_tbl; if (PTR_ERR(data) != -ENOENT) return ERR_CAST(data); if (unlikely(rht_grow_above_max(ht, tbl))) return ERR_PTR(-E2BIG); if (unlikely(rht_grow_above_100(ht, tbl))) return ERR_PTR(-EAGAIN); head = rht_ptr(bkt, tbl, hash); RCU_INIT_POINTER(obj->next, head); if (ht->rhlist) { struct rhlist_head *list; list = container_of(obj, struct rhlist_head, rhead); RCU_INIT_POINTER(list->next, NULL); } /* bkt is always the head of the list, so it holds * the lock, which we need to preserve */ rht_assign_locked(bkt, obj); atomic_inc(&ht->nelems); if (rht_grow_above_75(ht, tbl)) schedule_work(&ht->run_work); return NULL; } static void *rhashtable_try_insert(struct rhashtable *ht, const void *key, struct rhash_head *obj) { struct bucket_table *new_tbl; struct bucket_table *tbl; struct rhash_lock_head __rcu **bkt; unsigned int hash; void *data; new_tbl = rcu_dereference(ht->tbl); do { tbl = new_tbl; hash = rht_head_hashfn(ht, tbl, obj, ht->p); if (rcu_access_pointer(tbl->future_tbl)) /* Failure is OK */ bkt = rht_bucket_var(tbl, hash); else bkt = rht_bucket_insert(ht, tbl, hash); if (bkt == NULL) { new_tbl = rht_dereference_rcu(tbl->future_tbl, ht); data = ERR_PTR(-EAGAIN); } else { rht_lock(tbl, bkt); data = rhashtable_lookup_one(ht, bkt, tbl, hash, key, obj); new_tbl = rhashtable_insert_one(ht, bkt, tbl, hash, obj, data); if (PTR_ERR(new_tbl) != -EEXIST) data = ERR_CAST(new_tbl); rht_unlock(tbl, bkt); } } while (!IS_ERR_OR_NULL(new_tbl)); if (PTR_ERR(data) == -EAGAIN) data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?: -EAGAIN); return data; } void *rhashtable_insert_slow(struct rhashtable *ht, const void *key, struct rhash_head *obj) { void *data; do { rcu_read_lock(); data = rhashtable_try_insert(ht, key, obj); rcu_read_unlock(); } while (PTR_ERR(data) == -EAGAIN); return data; } EXPORT_SYMBOL_GPL(rhashtable_insert_slow); /** * rhashtable_walk_enter - Initialise an iterator * @ht: Table to walk over * @iter: Hash table Iterator * * This function prepares a hash table walk. * * Note that if you restart a walk after rhashtable_walk_stop you * may see the same object twice. Also, you may miss objects if * there are removals in between rhashtable_walk_stop and the next * call to rhashtable_walk_start. * * For a completely stable walk you should construct your own data * structure outside the hash table. * * This function may be called from any process context, including * non-preemptable context, but cannot be called from softirq or * hardirq context. * * You must call rhashtable_walk_exit after this function returns. */ void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter) { iter->ht = ht; iter->p = NULL; iter->slot = 0; iter->skip = 0; iter->end_of_table = 0; spin_lock(&ht->lock); iter->walker.tbl = rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock)); list_add(&iter->walker.list, &iter->walker.tbl->walkers); spin_unlock(&ht->lock); } EXPORT_SYMBOL_GPL(rhashtable_walk_enter); /** * rhashtable_walk_exit - Free an iterator * @iter: Hash table Iterator * * This function frees resources allocated by rhashtable_walk_enter. */ void rhashtable_walk_exit(struct rhashtable_iter *iter) { spin_lock(&iter->ht->lock); if (iter->walker.tbl) list_del(&iter->walker.list); spin_unlock(&iter->ht->lock); } EXPORT_SYMBOL_GPL(rhashtable_walk_exit); /** * rhashtable_walk_start_check - Start a hash table walk * @iter: Hash table iterator * * Start a hash table walk at the current iterator position. Note that we take * the RCU lock in all cases including when we return an error. So you must * always call rhashtable_walk_stop to clean up. * * Returns zero if successful. * * Returns -EAGAIN if resize event occurred. Note that the iterator * will rewind back to the beginning and you may use it immediately * by calling rhashtable_walk_next. * * rhashtable_walk_start is defined as an inline variant that returns * void. This is preferred in cases where the caller would ignore * resize events and always continue. */ int rhashtable_walk_start_check(struct rhashtable_iter *iter) __acquires(RCU) { struct rhashtable *ht = iter->ht; bool rhlist = ht->rhlist; rcu_read_lock(); spin_lock(&ht->lock); if (iter->walker.tbl) list_del(&iter->walker.list); spin_unlock(&ht->lock); if (iter->end_of_table) return 0; if (!iter->walker.tbl) { iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht); iter->slot = 0; iter->skip = 0; return -EAGAIN; } if (iter->p && !rhlist) { /* * We need to validate that 'p' is still in the table, and * if so, update 'skip' */ struct rhash_head *p; int skip = 0; rht_for_each_rcu(p, iter->walker.tbl, iter->slot) { skip++; if (p == iter->p) { iter->skip = skip; goto found; } } iter->p = NULL; } else if (iter->p && rhlist) { /* Need to validate that 'list' is still in the table, and * if so, update 'skip' and 'p'. */ struct rhash_head *p; struct rhlist_head *list; int skip = 0; rht_for_each_rcu(p, iter->walker.tbl, iter->slot) { for (list = container_of(p, struct rhlist_head, rhead); list; list = rcu_dereference(list->next)) { skip++; if (list == iter->list) { iter->p = p; iter->skip = skip; goto found; } } } iter->p = NULL; } found: return 0; } EXPORT_SYMBOL_GPL(rhashtable_walk_start_check); /** * __rhashtable_walk_find_next - Find the next element in a table (or the first * one in case of a new walk). * * @iter: Hash table iterator * * Returns the found object or NULL when the end of the table is reached. * * Returns -EAGAIN if resize event occurred. */ static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter) { struct bucket_table *tbl = iter->walker.tbl; struct rhlist_head *list = iter->list; struct rhashtable *ht = iter->ht; struct rhash_head *p = iter->p; bool rhlist = ht->rhlist; if (!tbl) return NULL; for (; iter->slot < tbl->size; iter->slot++) { int skip = iter->skip; rht_for_each_rcu(p, tbl, iter->slot) { if (rhlist) { list = container_of(p, struct rhlist_head, rhead); do { if (!skip) goto next; skip--; list = rcu_dereference(list->next); } while (list); continue; } if (!skip) break; skip--; } next: if (!rht_is_a_nulls(p)) { iter->skip++; iter->p = p; iter->list = list; return rht_obj(ht, rhlist ? &list->rhead : p); } iter->skip = 0; } iter->p = NULL; /* Ensure we see any new tables. */ smp_rmb(); iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht); if (iter->walker.tbl) { iter->slot = 0; iter->skip = 0; return ERR_PTR(-EAGAIN); } else { iter->end_of_table = true; } return NULL; } /** * rhashtable_walk_next - Return the next object and advance the iterator * @iter: Hash table iterator * * Note that you must call rhashtable_walk_stop when you are finished * with the walk. * * Returns the next object or NULL when the end of the table is reached. * * Returns -EAGAIN if resize event occurred. Note that the iterator * will rewind back to the beginning and you may continue to use it. */ void *rhashtable_walk_next(struct rhashtable_iter *iter) { struct rhlist_head *list = iter->list; struct rhashtable *ht = iter->ht; struct rhash_head *p = iter->p; bool rhlist = ht->rhlist; if (p) { if (!rhlist || !(list = rcu_dereference(list->next))) { p = rcu_dereference(p->next); list = container_of(p, struct rhlist_head, rhead); } if (!rht_is_a_nulls(p)) { iter->skip++; iter->p = p; iter->list = list; return rht_obj(ht, rhlist ? &list->rhead : p); } /* At the end of this slot, switch to next one and then find * next entry from that point. */ iter->skip = 0; iter->slot++; } return __rhashtable_walk_find_next(iter); } EXPORT_SYMBOL_GPL(rhashtable_walk_next); /** * rhashtable_walk_peek - Return the next object but don't advance the iterator * @iter: Hash table iterator * * Returns the next object or NULL when the end of the table is reached. * * Returns -EAGAIN if resize event occurred. Note that the iterator * will rewind back to the beginning and you may continue to use it. */ void *rhashtable_walk_peek(struct rhashtable_iter *iter) { struct rhlist_head *list = iter->list; struct rhashtable *ht = iter->ht; struct rhash_head *p = iter->p; if (p) return rht_obj(ht, ht->rhlist ? &list->rhead : p); /* No object found in current iter, find next one in the table. */ if (iter->skip) { /* A nonzero skip value points to the next entry in the table * beyond that last one that was found. Decrement skip so * we find the current value. __rhashtable_walk_find_next * will restore the original value of skip assuming that * the table hasn't changed. */ iter->skip--; } return __rhashtable_walk_find_next(iter); } EXPORT_SYMBOL_GPL(rhashtable_walk_peek); /** * rhashtable_walk_stop - Finish a hash table walk * @iter: Hash table iterator * * Finish a hash table walk. Does not reset the iterator to the start of the * hash table. */ void rhashtable_walk_stop(struct rhashtable_iter *iter) __releases(RCU) { struct rhashtable *ht; struct bucket_table *tbl = iter->walker.tbl; if (!tbl) goto out; ht = iter->ht; spin_lock(&ht->lock); if (rcu_head_after_call_rcu(&tbl->rcu, bucket_table_free_rcu)) /* This bucket table is being freed, don't re-link it. */ iter->walker.tbl = NULL; else list_add(&iter->walker.list, &tbl->walkers); spin_unlock(&ht->lock); out: rcu_read_unlock(); } EXPORT_SYMBOL_GPL(rhashtable_walk_stop); static size_t rounded_hashtable_size(const struct rhashtable_params *params) { size_t retsize; if (params->nelem_hint) retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3), (unsigned long)params->min_size); else retsize = max(HASH_DEFAULT_SIZE, (unsigned long)params->min_size); return retsize; } static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed) { return jhash2(key, length, seed); } /** * rhashtable_init - initialize a new hash table * @ht: hash table to be initialized * @params: configuration parameters * * Initializes a new hash table based on the provided configuration * parameters. A table can be configured either with a variable or * fixed length key: * * Configuration Example 1: Fixed length keys * struct test_obj { * int key; * void * my_member; * struct rhash_head node; * }; * * struct rhashtable_params params = { * .head_offset = offsetof(struct test_obj, node), * .key_offset = offsetof(struct test_obj, key), * .key_len = sizeof(int), * .hashfn = jhash, * }; * * Configuration Example 2: Variable length keys * struct test_obj { * [...] * struct rhash_head node; * }; * * u32 my_hash_fn(const void *data, u32 len, u32 seed) * { * struct test_obj *obj = data; * * return [... hash ...]; * } * * struct rhashtable_params params = { * .head_offset = offsetof(struct test_obj, node), * .hashfn = jhash, * .obj_hashfn = my_hash_fn, * }; */ int rhashtable_init(struct rhashtable *ht, const struct rhashtable_params *params) { struct bucket_table *tbl; size_t size; if ((!params->key_len && !params->obj_hashfn) || (params->obj_hashfn && !params->obj_cmpfn)) return -EINVAL; memset(ht, 0, sizeof(*ht)); mutex_init(&ht->mutex); spin_lock_init(&ht->lock); memcpy(&ht->p, params, sizeof(*params)); if (params->min_size) ht->p.min_size = roundup_pow_of_two(params->min_size); /* Cap total entries at 2^31 to avoid nelems overflow. */ ht->max_elems = 1u << 31; if (params->max_size) { ht->p.max_size = rounddown_pow_of_two(params->max_size); if (ht->p.max_size < ht->max_elems / 2) ht->max_elems = ht->p.max_size * 2; } ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE); size = rounded_hashtable_size(&ht->p); ht->key_len = ht->p.key_len; if (!params->hashfn) { ht->p.hashfn = jhash; if (!(ht->key_len & (sizeof(u32) - 1))) { ht->key_len /= sizeof(u32); ht->p.hashfn = rhashtable_jhash2; } } /* * This is api initialization and thus we need to guarantee the * initial rhashtable allocation. Upon failure, retry with the * smallest possible size with __GFP_NOFAIL semantics. */ tbl = bucket_table_alloc(ht, size, GFP_KERNEL); if (unlikely(tbl == NULL)) { size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE); tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL); } atomic_set(&ht->nelems, 0); RCU_INIT_POINTER(ht->tbl, tbl); INIT_WORK(&ht->run_work, rht_deferred_worker); return 0; } EXPORT_SYMBOL_GPL(rhashtable_init); /** * rhltable_init - initialize a new hash list table * @hlt: hash list table to be initialized * @params: configuration parameters * * Initializes a new hash list table. * * See documentation for rhashtable_init. */ int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params) { int err; err = rhashtable_init(&hlt->ht, params); hlt->ht.rhlist = true; return err; } EXPORT_SYMBOL_GPL(rhltable_init); static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj, void (*free_fn)(void *ptr, void *arg), void *arg) { struct rhlist_head *list; if (!ht->rhlist) { free_fn(rht_obj(ht, obj), arg); return; } list = container_of(obj, struct rhlist_head, rhead); do { obj = &list->rhead; list = rht_dereference(list->next, ht); free_fn(rht_obj(ht, obj), arg); } while (list); } /** * rhashtable_free_and_destroy - free elements and destroy hash table * @ht: the hash table to destroy * @free_fn: callback to release resources of element * @arg: pointer passed to free_fn * * Stops an eventual async resize. If defined, invokes free_fn for each * element to releasal resources. Please note that RCU protected * readers may still be accessing the elements. Releasing of resources * must occur in a compatible manner. Then frees the bucket array. * * This function will eventually sleep to wait for an async resize * to complete. The caller is responsible that no further write operations * occurs in parallel. */ void rhashtable_free_and_destroy(struct rhashtable *ht, void (*free_fn)(void *ptr, void *arg), void *arg) { struct bucket_table *tbl, *next_tbl; unsigned int i; cancel_work_sync(&ht->run_work); mutex_lock(&ht->mutex); tbl = rht_dereference(ht->tbl, ht); restart: if (free_fn) { for (i = 0; i < tbl->size; i++) { struct rhash_head *pos, *next; cond_resched(); for (pos = rht_ptr_exclusive(rht_bucket(tbl, i)), next = !rht_is_a_nulls(pos) ? rht_dereference(pos->next, ht) : NULL; !rht_is_a_nulls(pos); pos = next, next = !rht_is_a_nulls(pos) ? rht_dereference(pos->next, ht) : NULL) rhashtable_free_one(ht, pos, free_fn, arg); } } next_tbl = rht_dereference(tbl->future_tbl, ht); bucket_table_free(tbl); if (next_tbl) { tbl = next_tbl; goto restart; } mutex_unlock(&ht->mutex); } EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy); void rhashtable_destroy(struct rhashtable *ht) { return rhashtable_free_and_destroy(ht, NULL, NULL); } EXPORT_SYMBOL_GPL(rhashtable_destroy); struct rhash_lock_head __rcu **__rht_bucket_nested( const struct bucket_table *tbl, unsigned int hash) { const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); unsigned int index = hash & ((1 << tbl->nest) - 1); unsigned int size = tbl->size >> tbl->nest; unsigned int subhash = hash; union nested_table *ntbl; ntbl = nested_table_top(tbl); ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash); subhash >>= tbl->nest; while (ntbl && size > (1 << shift)) { index = subhash & ((1 << shift) - 1); ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash); size >>= shift; subhash >>= shift; } if (!ntbl) return NULL; return &ntbl[subhash].bucket; } EXPORT_SYMBOL_GPL(__rht_bucket_nested); struct rhash_lock_head __rcu **rht_bucket_nested( const struct bucket_table *tbl, unsigned int hash) { static struct rhash_lock_head __rcu *rhnull; if (!rhnull) INIT_RHT_NULLS_HEAD(rhnull); return __rht_bucket_nested(tbl, hash) ?: &rhnull; } EXPORT_SYMBOL_GPL(rht_bucket_nested); struct rhash_lock_head __rcu **rht_bucket_nested_insert( struct rhashtable *ht, struct bucket_table *tbl, unsigned int hash) { const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); unsigned int index = hash & ((1 << tbl->nest) - 1); unsigned int size = tbl->size >> tbl->nest; union nested_table *ntbl; ntbl = nested_table_top(tbl); hash >>= tbl->nest; ntbl = nested_table_alloc(ht, &ntbl[index].table, size <= (1 << shift)); while (ntbl && size > (1 << shift)) { index = hash & ((1 << shift) - 1); size >>= shift; hash >>= shift; ntbl = nested_table_alloc(ht, &ntbl[index].table, size <= (1 << shift)); } if (!ntbl) return NULL; return &ntbl[hash].bucket; } EXPORT_SYMBOL_GPL(rht_bucket_nested_insert); |
80 80 66 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | #include <linux/dcache.h> #include "internal.h" unsigned name_to_int(const struct qstr *qstr) { const char *name = qstr->name; int len = qstr->len; unsigned n = 0; if (len > 1 && *name == '0') goto out; do { unsigned c = *name++ - '0'; if (c > 9) goto out; if (n >= (~0U-9)/10) goto out; n *= 10; n += c; } while (--len > 0); return n; out: return ~0U; } |
17138 17139 17140 17133 17140 4036 17138 187 3956 186 3959 3420 3421 3420 28 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 | /* SPDX-License-Identifier: GPL-2.0+ */ /* * Read-Copy Update mechanism for mutual exclusion * * Copyright IBM Corporation, 2001 * * Author: Dipankar Sarma <dipankar@in.ibm.com> * * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com> * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. * Papers: * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) * * For detailed explanation of Read-Copy Update mechanism see - * http://lse.sourceforge.net/locking/rcupdate.html * */ #ifndef __LINUX_RCUPDATE_H #define __LINUX_RCUPDATE_H #include <linux/types.h> #include <linux/compiler.h> #include <linux/atomic.h> #include <linux/irqflags.h> #include <linux/preempt.h> #include <linux/bottom_half.h> #include <linux/lockdep.h> #include <asm/processor.h> #include <linux/cpumask.h> #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) #define ulong2long(a) (*(long *)(&(a))) #define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b))) #define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b))) /* Exported common interfaces */ void call_rcu(struct rcu_head *head, rcu_callback_t func); void rcu_barrier_tasks(void); void rcu_barrier_tasks_rude(void); void synchronize_rcu(void); #ifdef CONFIG_PREEMPT_RCU void __rcu_read_lock(void); void __rcu_read_unlock(void); /* * Defined as a macro as it is a very low level header included from * areas that don't even know about current. This gives the rcu_read_lock() * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. */ #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting) #else /* #ifdef CONFIG_PREEMPT_RCU */ #ifdef CONFIG_TINY_RCU #define rcu_read_unlock_strict() do { } while (0) #else void rcu_read_unlock_strict(void); #endif static inline void __rcu_read_lock(void) { preempt_disable(); } static inline void __rcu_read_unlock(void) { preempt_enable(); rcu_read_unlock_strict(); } static inline int rcu_preempt_depth(void) { return 0; } #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ /* Internal to kernel */ void rcu_init(void); extern int rcu_scheduler_active __read_mostly; void rcu_sched_clock_irq(int user); void rcu_report_dead(unsigned int cpu); void rcutree_migrate_callbacks(int cpu); #ifdef CONFIG_TASKS_RCU_GENERIC void rcu_init_tasks_generic(void); #else static inline void rcu_init_tasks_generic(void) { } #endif #ifdef CONFIG_RCU_STALL_COMMON void rcu_sysrq_start(void); void rcu_sysrq_end(void); #else /* #ifdef CONFIG_RCU_STALL_COMMON */ static inline void rcu_sysrq_start(void) { } static inline void rcu_sysrq_end(void) { } #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ #ifdef CONFIG_NO_HZ_FULL void rcu_user_enter(void); void rcu_user_exit(void); #else static inline void rcu_user_enter(void) { } static inline void rcu_user_exit(void) { } #endif /* CONFIG_NO_HZ_FULL */ #ifdef CONFIG_RCU_NOCB_CPU void rcu_init_nohz(void); int rcu_nocb_cpu_offload(int cpu); int rcu_nocb_cpu_deoffload(int cpu); void rcu_nocb_flush_deferred_wakeup(void); #else /* #ifdef CONFIG_RCU_NOCB_CPU */ static inline void rcu_init_nohz(void) { } static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; } static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; } static inline void rcu_nocb_flush_deferred_wakeup(void) { } #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ /** * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers * @a: Code that RCU needs to pay attention to. * * RCU read-side critical sections are forbidden in the inner idle loop, * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU * will happily ignore any such read-side critical sections. However, * things like powertop need tracepoints in the inner idle loop. * * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) * will tell RCU that it needs to pay attention, invoke its argument * (in this example, calling the do_something_with_RCU() function), * and then tell RCU to go back to ignoring this CPU. It is permissible * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is * on the order of a million or so, even on 32-bit systems). It is * not legal to block within RCU_NONIDLE(), nor is it permissible to * transfer control either into or out of RCU_NONIDLE()'s statement. */ #define RCU_NONIDLE(a) \ do { \ rcu_irq_enter_irqson(); \ do { a; } while (0); \ rcu_irq_exit_irqson(); \ } while (0) /* * Note a quasi-voluntary context switch for RCU-tasks's benefit. * This is a macro rather than an inline function to avoid #include hell. */ #ifdef CONFIG_TASKS_RCU_GENERIC # ifdef CONFIG_TASKS_RCU # define rcu_tasks_classic_qs(t, preempt) \ do { \ if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ WRITE_ONCE((t)->rcu_tasks_holdout, false); \ } while (0) void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); void synchronize_rcu_tasks(void); # else # define rcu_tasks_classic_qs(t, preempt) do { } while (0) # define call_rcu_tasks call_rcu # define synchronize_rcu_tasks synchronize_rcu # endif # ifdef CONFIG_TASKS_TRACE_RCU # define rcu_tasks_trace_qs(t) \ do { \ if (!likely(READ_ONCE((t)->trc_reader_checked)) && \ !unlikely(READ_ONCE((t)->trc_reader_nesting))) { \ smp_store_release(&(t)->trc_reader_checked, true); \ smp_mb(); /* Readers partitioned by store. */ \ } \ } while (0) # else # define rcu_tasks_trace_qs(t) do { } while (0) # endif #define rcu_tasks_qs(t, preempt) \ do { \ rcu_tasks_classic_qs((t), (preempt)); \ rcu_tasks_trace_qs((t)); \ } while (0) # ifdef CONFIG_TASKS_RUDE_RCU void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func); void synchronize_rcu_tasks_rude(void); # endif #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) void exit_tasks_rcu_start(void); void exit_tasks_rcu_stop(void); void exit_tasks_rcu_finish(void); #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ #define rcu_tasks_qs(t, preempt) do { } while (0) #define rcu_note_voluntary_context_switch(t) do { } while (0) #define call_rcu_tasks call_rcu #define synchronize_rcu_tasks synchronize_rcu static inline void exit_tasks_rcu_start(void) { } static inline void exit_tasks_rcu_stop(void) { } static inline void exit_tasks_rcu_finish(void) { } #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ /** * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period? * * As an accident of implementation, an RCU Tasks Trace grace period also * acts as an RCU grace period. However, this could change at any time. * Code relying on this accident must call this function to verify that * this accident is still happening. * * You have been warned! */ static inline bool rcu_trace_implies_rcu_gp(void) { return true; } /** * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU * * This macro resembles cond_resched(), except that it is defined to * report potential quiescent states to RCU-tasks even if the cond_resched() * machinery were to be shut off, as some advocate for PREEMPTION kernels. */ #define cond_resched_tasks_rcu_qs() \ do { \ rcu_tasks_qs(current, false); \ cond_resched(); \ } while (0) /** * rcu_softirq_qs_periodic - Report RCU and RCU-Tasks quiescent states * @old_ts: jiffies at start of processing. * * This helper is for long-running softirq handlers, such as NAPI threads in * networking. The caller should initialize the variable passed in as @old_ts * at the beginning of the softirq handler. When invoked frequently, this macro * will invoke rcu_softirq_qs() every 100 milliseconds thereafter, which will * provide both RCU and RCU-Tasks quiescent states. Note that this macro * modifies its old_ts argument. * * Because regions of code that have disabled softirq act as RCU read-side * critical sections, this macro should be invoked with softirq (and * preemption) enabled. * * The macro is not needed when CONFIG_PREEMPT_RT is defined. RT kernels would * have more chance to invoke schedule() calls and provide necessary quiescent * states. As a contrast, calling cond_resched() only won't achieve the same * effect because cond_resched() does not provide RCU-Tasks quiescent states. */ #define rcu_softirq_qs_periodic(old_ts) \ do { \ if (!IS_ENABLED(CONFIG_PREEMPT_RT) && \ time_after(jiffies, (old_ts) + HZ / 10)) { \ preempt_disable(); \ rcu_softirq_qs(); \ preempt_enable(); \ (old_ts) = jiffies; \ } \ } while (0) /* * Infrastructure to implement the synchronize_() primitives in * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. */ #if defined(CONFIG_TREE_RCU) #include <linux/rcutree.h> #elif defined(CONFIG_TINY_RCU) #include <linux/rcutiny.h> #else #error "Unknown RCU implementation specified to kernel configuration" #endif /* * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls * are needed for dynamic initialization and destruction of rcu_head * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for * dynamic initialization and destruction of statically allocated rcu_head * structures. However, rcu_head structures allocated dynamically in the * heap don't need any initialization. */ #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD void init_rcu_head(struct rcu_head *head); void destroy_rcu_head(struct rcu_head *head); void init_rcu_head_on_stack(struct rcu_head *head); void destroy_rcu_head_on_stack(struct rcu_head *head); #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ static inline void init_rcu_head(struct rcu_head *head) { } static inline void destroy_rcu_head(struct rcu_head *head) { } static inline void init_rcu_head_on_stack(struct rcu_head *head) { } static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) bool rcu_lockdep_current_cpu_online(void); #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ static inline bool rcu_lockdep_current_cpu_online(void) { return true; } #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ extern struct lockdep_map rcu_lock_map; extern struct lockdep_map rcu_bh_lock_map; extern struct lockdep_map rcu_sched_lock_map; extern struct lockdep_map rcu_callback_map; #ifdef CONFIG_DEBUG_LOCK_ALLOC static inline void rcu_lock_acquire(struct lockdep_map *map) { lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); } static inline void rcu_lock_release(struct lockdep_map *map) { lock_release(map, _THIS_IP_); } int debug_lockdep_rcu_enabled(void); int rcu_read_lock_held(void); int rcu_read_lock_bh_held(void); int rcu_read_lock_sched_held(void); int rcu_read_lock_any_held(void); #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ # define rcu_lock_acquire(a) do { } while (0) # define rcu_lock_release(a) do { } while (0) static inline int rcu_read_lock_held(void) { return 1; } static inline int rcu_read_lock_bh_held(void) { return 1; } static inline int rcu_read_lock_sched_held(void) { return !preemptible(); } static inline int rcu_read_lock_any_held(void) { return !preemptible(); } #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ #ifdef CONFIG_PROVE_RCU /** * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met * @c: condition to check * @s: informative message * * This checks debug_lockdep_rcu_enabled() before checking (c) to * prevent early boot splats due to lockdep not yet being initialized, * and rechecks it after checking (c) to prevent false-positive splats * due to races with lockdep being disabled. See commit 3066820034b5dd * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail. */ #define RCU_LOCKDEP_WARN(c, s) \ do { \ static bool __section(".data.unlikely") __warned; \ if (debug_lockdep_rcu_enabled() && (c) && \ debug_lockdep_rcu_enabled() && !__warned) { \ __warned = true; \ lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ } \ } while (0) #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) static inline void rcu_preempt_sleep_check(void) { RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), "Illegal context switch in RCU read-side critical section"); } #else /* #ifdef CONFIG_PROVE_RCU */ static inline void rcu_preempt_sleep_check(void) { } #endif /* #else #ifdef CONFIG_PROVE_RCU */ #define rcu_sleep_check() \ do { \ rcu_preempt_sleep_check(); \ if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ "Illegal context switch in RCU-bh read-side critical section"); \ RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ "Illegal context switch in RCU-sched read-side critical section"); \ } while (0) #else /* #ifdef CONFIG_PROVE_RCU */ #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c)) #define rcu_sleep_check() do { } while (0) #endif /* #else #ifdef CONFIG_PROVE_RCU */ /* * Helper functions for rcu_dereference_check(), rcu_dereference_protected() * and rcu_assign_pointer(). Some of these could be folded into their * callers, but they are left separate in order to ease introduction of * multiple pointers markings to match different RCU implementations * (e.g., __srcu), should this make sense in the future. */ #ifdef __CHECKER__ #define rcu_check_sparse(p, space) \ ((void)(((typeof(*p) space *)p) == p)) #else /* #ifdef __CHECKER__ */ #define rcu_check_sparse(p, space) #endif /* #else #ifdef __CHECKER__ */ /** * unrcu_pointer - mark a pointer as not being RCU protected * @p: pointer needing to lose its __rcu property * * Converts @p from an __rcu pointer to a __kernel pointer. * This allows an __rcu pointer to be used with xchg() and friends. */ #define unrcu_pointer(p) \ ({ \ typeof(*p) *_________p1 = (typeof(*p) *__force)(p); \ rcu_check_sparse(p, __rcu); \ ((typeof(*p) __force __kernel *)(_________p1)); \ }) #define __rcu_access_pointer(p, space) \ ({ \ typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \ rcu_check_sparse(p, space); \ ((typeof(*p) __force __kernel *)(_________p1)); \ }) #define __rcu_dereference_check(p, c, space) \ ({ \ /* Dependency order vs. p above. */ \ typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \ RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ rcu_check_sparse(p, space); \ ((typeof(*p) __force __kernel *)(________p1)); \ }) #define __rcu_dereference_protected(p, c, space) \ ({ \ RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ rcu_check_sparse(p, space); \ ((typeof(*p) __force __kernel *)(p)); \ }) #define rcu_dereference_raw(p) \ ({ \ /* Dependency order vs. p above. */ \ typeof(p) ________p1 = READ_ONCE(p); \ ((typeof(*p) __force __kernel *)(________p1)); \ }) /** * RCU_INITIALIZER() - statically initialize an RCU-protected global variable * @v: The value to statically initialize with. */ #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) /** * rcu_assign_pointer() - assign to RCU-protected pointer * @p: pointer to assign to * @v: value to assign (publish) * * Assigns the specified value to the specified RCU-protected * pointer, ensuring that any concurrent RCU readers will see * any prior initialization. * * Inserts memory barriers on architectures that require them * (which is most of them), and also prevents the compiler from * reordering the code that initializes the structure after the pointer * assignment. More importantly, this call documents which pointers * will be dereferenced by RCU read-side code. * * In some special cases, you may use RCU_INIT_POINTER() instead * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due * to the fact that it does not constrain either the CPU or the compiler. * That said, using RCU_INIT_POINTER() when you should have used * rcu_assign_pointer() is a very bad thing that results in * impossible-to-diagnose memory corruption. So please be careful. * See the RCU_INIT_POINTER() comment header for details. * * Note that rcu_assign_pointer() evaluates each of its arguments only * once, appearances notwithstanding. One of the "extra" evaluations * is in typeof() and the other visible only to sparse (__CHECKER__), * neither of which actually execute the argument. As with most cpp * macros, this execute-arguments-only-once property is important, so * please be careful when making changes to rcu_assign_pointer() and the * other macros that it invokes. */ #define rcu_assign_pointer(p, v) \ do { \ uintptr_t _r_a_p__v = (uintptr_t)(v); \ rcu_check_sparse(p, __rcu); \ \ if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ else \ smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ } while (0) /** * rcu_replace_pointer() - replace an RCU pointer, returning its old value * @rcu_ptr: RCU pointer, whose old value is returned * @ptr: regular pointer * @c: the lockdep conditions under which the dereference will take place * * Perform a replacement, where @rcu_ptr is an RCU-annotated * pointer and @c is the lockdep argument that is passed to the * rcu_dereference_protected() call used to read that pointer. The old * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. */ #define rcu_replace_pointer(rcu_ptr, ptr, c) \ ({ \ typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ rcu_assign_pointer((rcu_ptr), (ptr)); \ __tmp; \ }) /** * rcu_access_pointer() - fetch RCU pointer with no dereferencing * @p: The pointer to read * * Return the value of the specified RCU-protected pointer, but omit the * lockdep checks for being in an RCU read-side critical section. This is * useful when the value of this pointer is accessed, but the pointer is * not dereferenced, for example, when testing an RCU-protected pointer * against NULL. Although rcu_access_pointer() may also be used in cases * where update-side locks prevent the value of the pointer from changing, * you should instead use rcu_dereference_protected() for this use case. * * It is also permissible to use rcu_access_pointer() when read-side * access to the pointer was removed at least one grace period ago, as * is the case in the context of the RCU callback that is freeing up * the data, or after a synchronize_rcu() returns. This can be useful * when tearing down multi-linked structures after a grace period * has elapsed. */ #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) /** * rcu_dereference_check() - rcu_dereference with debug checking * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * Do an rcu_dereference(), but check that the conditions under which the * dereference will take place are correct. Typically the conditions * indicate the various locking conditions that should be held at that * point. The check should return true if the conditions are satisfied. * An implicit check for being in an RCU read-side critical section * (rcu_read_lock()) is included. * * For example: * * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); * * could be used to indicate to lockdep that foo->bar may only be dereferenced * if either rcu_read_lock() is held, or that the lock required to replace * the bar struct at foo->bar is held. * * Note that the list of conditions may also include indications of when a lock * need not be held, for example during initialisation or destruction of the * target struct: * * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || * atomic_read(&foo->usage) == 0); * * Inserts memory barriers on architectures that require them * (currently only the Alpha), prevents the compiler from refetching * (and from merging fetches), and, more importantly, documents exactly * which pointers are protected by RCU and checks that the pointer is * annotated as __rcu. */ #define rcu_dereference_check(p, c) \ __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu) /** * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * This is the RCU-bh counterpart to rcu_dereference_check(). However, * please note that starting in v5.0 kernels, vanilla RCU grace periods * wait for local_bh_disable() regions of code in addition to regions of * code demarked by rcu_read_lock() and rcu_read_unlock(). This means * that synchronize_rcu(), call_rcu, and friends all take not only * rcu_read_lock() but also rcu_read_lock_bh() into account. */ #define rcu_dereference_bh_check(p, c) \ __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu) /** * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * This is the RCU-sched counterpart to rcu_dereference_check(). * However, please note that starting in v5.0 kernels, vanilla RCU grace * periods wait for preempt_disable() regions of code in addition to * regions of code demarked by rcu_read_lock() and rcu_read_unlock(). * This means that synchronize_rcu(), call_rcu, and friends all take not * only rcu_read_lock() but also rcu_read_lock_sched() into account. */ #define rcu_dereference_sched_check(p, c) \ __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \ __rcu) /* * The tracing infrastructure traces RCU (we want that), but unfortunately * some of the RCU checks causes tracing to lock up the system. * * The no-tracing version of rcu_dereference_raw() must not call * rcu_read_lock_held(). */ #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu) /** * rcu_dereference_protected() - fetch RCU pointer when updates prevented * @p: The pointer to read, prior to dereferencing * @c: The conditions under which the dereference will take place * * Return the value of the specified RCU-protected pointer, but omit * the READ_ONCE(). This is useful in cases where update-side locks * prevent the value of the pointer from changing. Please note that this * primitive does *not* prevent the compiler from repeating this reference * or combining it with other references, so it should not be used without * protection of appropriate locks. * * This function is only for update-side use. Using this function * when protected only by rcu_read_lock() will result in infrequent * but very ugly failures. */ #define rcu_dereference_protected(p, c) \ __rcu_dereference_protected((p), (c), __rcu) /** * rcu_dereference() - fetch RCU-protected pointer for dereferencing * @p: The pointer to read, prior to dereferencing * * This is a simple wrapper around rcu_dereference_check(). */ #define rcu_dereference(p) rcu_dereference_check(p, 0) /** * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing * @p: The pointer to read, prior to dereferencing * * Makes rcu_dereference_check() do the dirty work. */ #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) /** * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing * @p: The pointer to read, prior to dereferencing * * Makes rcu_dereference_check() do the dirty work. */ #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) /** * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism * @p: The pointer to hand off * * This is simply an identity function, but it documents where a pointer * is handed off from RCU to some other synchronization mechanism, for * example, reference counting or locking. In C11, it would map to * kill_dependency(). It could be used as follows:: * * rcu_read_lock(); * p = rcu_dereference(gp); * long_lived = is_long_lived(p); * if (long_lived) { * if (!atomic_inc_not_zero(p->refcnt)) * long_lived = false; * else * p = rcu_pointer_handoff(p); * } * rcu_read_unlock(); */ #define rcu_pointer_handoff(p) (p) /** * rcu_read_lock() - mark the beginning of an RCU read-side critical section * * When synchronize_rcu() is invoked on one CPU while other CPUs * are within RCU read-side critical sections, then the * synchronize_rcu() is guaranteed to block until after all the other * CPUs exit their critical sections. Similarly, if call_rcu() is invoked * on one CPU while other CPUs are within RCU read-side critical * sections, invocation of the corresponding RCU callback is deferred * until after the all the other CPUs exit their critical sections. * * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also * wait for regions of code with preemption disabled, including regions of * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which * define synchronize_sched(), only code enclosed within rcu_read_lock() * and rcu_read_unlock() are guaranteed to be waited for. * * Note, however, that RCU callbacks are permitted to run concurrently * with new RCU read-side critical sections. One way that this can happen * is via the following sequence of events: (1) CPU 0 enters an RCU * read-side critical section, (2) CPU 1 invokes call_rcu() to register * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU * callback is invoked. This is legal, because the RCU read-side critical * section that was running concurrently with the call_rcu() (and which * therefore might be referencing something that the corresponding RCU * callback would free up) has completed before the corresponding * RCU callback is invoked. * * RCU read-side critical sections may be nested. Any deferred actions * will be deferred until the outermost RCU read-side critical section * completes. * * You can avoid reading and understanding the next paragraph by * following this rule: don't put anything in an rcu_read_lock() RCU * read-side critical section that would block in a !PREEMPTION kernel. * But if you want the full story, read on! * * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), * it is illegal to block while in an RCU read-side critical section. * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION * kernel builds, RCU read-side critical sections may be preempted, * but explicit blocking is illegal. Finally, in preemptible RCU * implementations in real-time (with -rt patchset) kernel builds, RCU * read-side critical sections may be preempted and they may also block, but * only when acquiring spinlocks that are subject to priority inheritance. */ static __always_inline void rcu_read_lock(void) { __rcu_read_lock(); __acquire(RCU); rcu_lock_acquire(&rcu_lock_map); RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_lock() used illegally while idle"); } /* * So where is rcu_write_lock()? It does not exist, as there is no * way for writers to lock out RCU readers. This is a feature, not * a bug -- this property is what provides RCU's performance benefits. * Of course, writers must coordinate with each other. The normal * spinlock primitives work well for this, but any other technique may be * used as well. RCU does not care how the writers keep out of each * others' way, as long as they do so. */ /** * rcu_read_unlock() - marks the end of an RCU read-side critical section. * * In almost all situations, rcu_read_unlock() is immune from deadlock. * In recent kernels that have consolidated synchronize_sched() and * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity * also extends to the scheduler's runqueue and priority-inheritance * spinlocks, courtesy of the quiescent-state deferral that is carried * out when rcu_read_unlock() is invoked with interrupts disabled. * * See rcu_read_lock() for more information. */ static inline void rcu_read_unlock(void) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_unlock() used illegally while idle"); __release(RCU); __rcu_read_unlock(); rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ } /** * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section * * This is equivalent to rcu_read_lock(), but also disables softirqs. * Note that anything else that disables softirqs can also serve as an RCU * read-side critical section. However, please note that this equivalence * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and * rcu_read_lock_bh() were unrelated. * * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() * must occur in the same context, for example, it is illegal to invoke * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() * was invoked from some other task. */ static inline void rcu_read_lock_bh(void) { local_bh_disable(); __acquire(RCU_BH); rcu_lock_acquire(&rcu_bh_lock_map); RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_lock_bh() used illegally while idle"); } /** * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section * * See rcu_read_lock_bh() for more information. */ static inline void rcu_read_unlock_bh(void) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_unlock_bh() used illegally while idle"); rcu_lock_release(&rcu_bh_lock_map); __release(RCU_BH); local_bh_enable(); } /** * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section * * This is equivalent to rcu_read_lock(), but also disables preemption. * Read-side critical sections can also be introduced by anything else that * disables preemption, including local_irq_disable() and friends. However, * please note that the equivalence to rcu_read_lock() applies only to * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched() * were unrelated. * * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() * must occur in the same context, for example, it is illegal to invoke * rcu_read_unlock_sched() from process context if the matching * rcu_read_lock_sched() was invoked from an NMI handler. */ static inline void rcu_read_lock_sched(void) { preempt_disable(); __acquire(RCU_SCHED); rcu_lock_acquire(&rcu_sched_lock_map); RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_lock_sched() used illegally while idle"); } /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ static inline notrace void rcu_read_lock_sched_notrace(void) { preempt_disable_notrace(); __acquire(RCU_SCHED); } /** * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section * * See rcu_read_lock_sched() for more information. */ static inline void rcu_read_unlock_sched(void) { RCU_LOCKDEP_WARN(!rcu_is_watching(), "rcu_read_unlock_sched() used illegally while idle"); rcu_lock_release(&rcu_sched_lock_map); __release(RCU_SCHED); preempt_enable(); } /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ static inline notrace void rcu_read_unlock_sched_notrace(void) { __release(RCU_SCHED); preempt_enable_notrace(); } /** * RCU_INIT_POINTER() - initialize an RCU protected pointer * @p: The pointer to be initialized. * @v: The value to initialized the pointer to. * * Initialize an RCU-protected pointer in special cases where readers * do not need ordering constraints on the CPU or the compiler. These * special cases are: * * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* * 2. The caller has taken whatever steps are required to prevent * RCU readers from concurrently accessing this pointer *or* * 3. The referenced data structure has already been exposed to * readers either at compile time or via rcu_assign_pointer() *and* * * a. You have not made *any* reader-visible changes to * this structure since then *or* * b. It is OK for readers accessing this structure from its * new location to see the old state of the structure. (For * example, the changes were to statistical counters or to * other state where exact synchronization is not required.) * * Failure to follow these rules governing use of RCU_INIT_POINTER() will * result in impossible-to-diagnose memory corruption. As in the structures * will look OK in crash dumps, but any concurrent RCU readers might * see pre-initialized values of the referenced data structure. So * please be very careful how you use RCU_INIT_POINTER()!!! * * If you are creating an RCU-protected linked structure that is accessed * by a single external-to-structure RCU-protected pointer, then you may * use RCU_INIT_POINTER() to initialize the internal RCU-protected * pointers, but you must use rcu_assign_pointer() to initialize the * external-to-structure pointer *after* you have completely initialized * the reader-accessible portions of the linked structure. * * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no * ordering guarantees for either the CPU or the compiler. */ #define RCU_INIT_POINTER(p, v) \ do { \ rcu_check_sparse(p, __rcu); \ WRITE_ONCE(p, RCU_INITIALIZER(v)); \ } while (0) /** * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer * @p: The pointer to be initialized. * @v: The value to initialized the pointer to. * * GCC-style initialization for an RCU-protected pointer in a structure field. */ #define RCU_POINTER_INITIALIZER(p, v) \ .p = RCU_INITIALIZER(v) /* * Does the specified offset indicate that the corresponding rcu_head * structure can be handled by kvfree_rcu()? */ #define __is_kvfree_rcu_offset(offset) ((offset) < 4096) /** * kfree_rcu() - kfree an object after a grace period. * @ptr: pointer to kfree for both single- and double-argument invocations. * @rhf: the name of the struct rcu_head within the type of @ptr, * but only for double-argument invocations. * * Many rcu callbacks functions just call kfree() on the base structure. * These functions are trivial, but their size adds up, and furthermore * when they are used in a kernel module, that module must invoke the * high-latency rcu_barrier() function at module-unload time. * * The kfree_rcu() function handles this issue. Rather than encoding a * function address in the embedded rcu_head structure, kfree_rcu() instead * encodes the offset of the rcu_head structure within the base structure. * Because the functions are not allowed in the low-order 4096 bytes of * kernel virtual memory, offsets up to 4095 bytes can be accommodated. * If the offset is larger than 4095 bytes, a compile-time error will * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can * either fall back to use of call_rcu() or rearrange the structure to * position the rcu_head structure into the first 4096 bytes. * * Note that the allowable offset might decrease in the future, for example, * to allow something like kmem_cache_free_rcu(). * * The BUILD_BUG_ON check must not involve any function calls, hence the * checks are done in macros here. */ #define kfree_rcu(ptr, rhf...) kvfree_rcu(ptr, ## rhf) /** * kvfree_rcu() - kvfree an object after a grace period. * * This macro consists of one or two arguments and it is * based on whether an object is head-less or not. If it * has a head then a semantic stays the same as it used * to be before: * * kvfree_rcu(ptr, rhf); * * where @ptr is a pointer to kvfree(), @rhf is the name * of the rcu_head structure within the type of @ptr. * * When it comes to head-less variant, only one argument * is passed and that is just a pointer which has to be * freed after a grace period. Therefore the semantic is * * kvfree_rcu(ptr); * * where @ptr is a pointer to kvfree(). * * Please note, head-less way of freeing is permitted to * use from a context that has to follow might_sleep() * annotation. Otherwise, please switch and embed the * rcu_head structure within the type of @ptr. */ #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \ kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__) #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME #define kvfree_rcu_arg_2(ptr, rhf) \ do { \ typeof (ptr) ___p = (ptr); \ \ if (___p) { \ BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \ kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long) \ (offsetof(typeof(*(ptr)), rhf))); \ } \ } while (0) #define kvfree_rcu_arg_1(ptr) \ do { \ typeof(ptr) ___p = (ptr); \ \ if (___p) \ kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \ } while (0) /* * Place this after a lock-acquisition primitive to guarantee that * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies * if the UNLOCK and LOCK are executed by the same CPU or if the * UNLOCK and LOCK operate on the same lock variable. */ #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ #define smp_mb__after_unlock_lock() do { } while (0) #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ /* Has the specified rcu_head structure been handed to call_rcu()? */ /** * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() * @rhp: The rcu_head structure to initialize. * * If you intend to invoke rcu_head_after_call_rcu() to test whether a * given rcu_head structure has already been passed to call_rcu(), then * you must also invoke this rcu_head_init() function on it just after * allocating that structure. Calls to this function must not race with * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. */ static inline void rcu_head_init(struct rcu_head *rhp) { rhp->func = (rcu_callback_t)~0L; } /** * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()? * @rhp: The rcu_head structure to test. * @f: The function passed to call_rcu() along with @rhp. * * Returns @true if the @rhp has been passed to call_rcu() with @func, * and @false otherwise. Emits a warning in any other case, including * the case where @rhp has already been invoked after a grace period. * Calls to this function must not race with callback invocation. One way * to avoid such races is to enclose the call to rcu_head_after_call_rcu() * in an RCU read-side critical section that includes a read-side fetch * of the pointer to the structure containing @rhp. */ static inline bool rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) { rcu_callback_t func = READ_ONCE(rhp->func); if (func == f) return true; WARN_ON_ONCE(func != (rcu_callback_t)~0L); return false; } /* kernel/ksysfs.c definitions */ extern int rcu_expedited; extern int rcu_normal; #endif /* __LINUX_RCUPDATE_H */ |
3341 10 2794 2794 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 | /* SPDX-License-Identifier: GPL-2.0-only */ /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com */ #ifndef _LINUX_BPF_VERIFIER_H #define _LINUX_BPF_VERIFIER_H 1 #include <linux/bpf.h> /* for enum bpf_reg_type */ #include <linux/btf.h> /* for struct btf and btf_id() */ #include <linux/filter.h> /* for MAX_BPF_STACK */ #include <linux/tnum.h> /* Maximum variable offset umax_value permitted when resolving memory accesses. * In practice this is far bigger than any realistic pointer offset; this limit * ensures that umax_value + (int)off + (int)size cannot overflow a u64. */ #define BPF_MAX_VAR_OFF (1 << 29) /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures * that converting umax_value to int cannot overflow. */ #define BPF_MAX_VAR_SIZ (1 << 29) /* size of type_str_buf in bpf_verifier. */ #define TYPE_STR_BUF_LEN 64 /* Liveness marks, used for registers and spilled-regs (in stack slots). * Read marks propagate upwards until they find a write mark; they record that * "one of this state's descendants read this reg" (and therefore the reg is * relevant for states_equal() checks). * Write marks collect downwards and do not propagate; they record that "the * straight-line code that reached this state (from its parent) wrote this reg" * (and therefore that reads propagated from this state or its descendants * should not propagate to its parent). * A state with a write mark can receive read marks; it just won't propagate * them to its parent, since the write mark is a property, not of the state, * but of the link between it and its parent. See mark_reg_read() and * mark_stack_slot_read() in kernel/bpf/verifier.c. */ enum bpf_reg_liveness { REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */ REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */ REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */ REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64, REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */ REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */ }; struct bpf_reg_state { /* Ordering of fields matters. See states_equal() */ enum bpf_reg_type type; /* Fixed part of pointer offset, pointer types only */ s32 off; union { /* valid when type == PTR_TO_PACKET */ int range; /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | * PTR_TO_MAP_VALUE_OR_NULL */ struct { struct bpf_map *map_ptr; /* To distinguish map lookups from outer map * the map_uid is non-zero for registers * pointing to inner maps. */ u32 map_uid; }; /* for PTR_TO_BTF_ID */ struct { struct btf *btf; u32 btf_id; }; u32 mem_size; /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */ /* Max size from any of the above. */ struct { unsigned long raw1; unsigned long raw2; } raw; u32 subprogno; /* for PTR_TO_FUNC */ }; /* For PTR_TO_PACKET, used to find other pointers with the same variable * offset, so they can share range knowledge. * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we * came from, when one is tested for != NULL. * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation * for the purpose of tracking that it's freed. * For PTR_TO_SOCKET this is used to share which pointers retain the * same reference to the socket, to determine proper reference freeing. */ u32 id; /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned * from a pointer-cast helper, bpf_sk_fullsock() and * bpf_tcp_sock(). * * Consider the following where "sk" is a reference counted * pointer returned from "sk = bpf_sk_lookup_tcp();": * * 1: sk = bpf_sk_lookup_tcp(); * 2: if (!sk) { return 0; } * 3: fullsock = bpf_sk_fullsock(sk); * 4: if (!fullsock) { bpf_sk_release(sk); return 0; } * 5: tp = bpf_tcp_sock(fullsock); * 6: if (!tp) { bpf_sk_release(sk); return 0; } * 7: bpf_sk_release(sk); * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain * * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and * "tp" ptr should be invalidated also. In order to do that, * the reg holding "fullsock" and "sk" need to remember * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id * such that the verifier can reset all regs which have * ref_obj_id matching the sk_reg->id. * * sk_reg->ref_obj_id is set to sk_reg->id at line 1. * sk_reg->id will stay as NULL-marking purpose only. * After NULL-marking is done, sk_reg->id can be reset to 0. * * After "fullsock = bpf_sk_fullsock(sk);" at line 3, * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id. * * After "tp = bpf_tcp_sock(fullsock);" at line 5, * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id * which is the same as sk_reg->ref_obj_id. * * From the verifier perspective, if sk, fullsock and tp * are not NULL, they are the same ptr with different * reg->type. In particular, bpf_sk_release(tp) is also * allowed and has the same effect as bpf_sk_release(sk). */ u32 ref_obj_id; /* For scalar types (SCALAR_VALUE), this represents our knowledge of * the actual value. * For pointer types, this represents the variable part of the offset * from the pointed-to object, and is shared with all bpf_reg_states * with the same id as us. */ struct tnum var_off; /* Used to determine if any memory access using this register will * result in a bad access. * These refer to the same value as var_off, not necessarily the actual * contents of the register. */ s64 smin_value; /* minimum possible (s64)value */ s64 smax_value; /* maximum possible (s64)value */ u64 umin_value; /* minimum possible (u64)value */ u64 umax_value; /* maximum possible (u64)value */ s32 s32_min_value; /* minimum possible (s32)value */ s32 s32_max_value; /* maximum possible (s32)value */ u32 u32_min_value; /* minimum possible (u32)value */ u32 u32_max_value; /* maximum possible (u32)value */ /* parentage chain for liveness checking */ struct bpf_reg_state *parent; /* Inside the callee two registers can be both PTR_TO_STACK like * R1=fp-8 and R2=fp-8, but one of them points to this function stack * while another to the caller's stack. To differentiate them 'frameno' * is used which is an index in bpf_verifier_state->frame[] array * pointing to bpf_func_state. */ u32 frameno; /* Tracks subreg definition. The stored value is the insn_idx of the * writing insn. This is safe because subreg_def is used before any insn * patching which only happens after main verification finished. */ s32 subreg_def; enum bpf_reg_liveness live; /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */ bool precise; }; enum bpf_stack_slot_type { STACK_INVALID, /* nothing was stored in this stack slot */ STACK_SPILL, /* register spilled into stack */ STACK_MISC, /* BPF program wrote some data into this slot */ STACK_ZERO, /* BPF program wrote constant zero */ }; #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */ struct bpf_stack_state { struct bpf_reg_state spilled_ptr; u8 slot_type[BPF_REG_SIZE]; }; struct bpf_reference_state { /* Track each reference created with a unique id, even if the same * instruction creates the reference multiple times (eg, via CALL). */ int id; /* Instruction where the allocation of this reference occurred. This * is used purely to inform the user of a reference leak. */ int insn_idx; /* There can be a case like: * main (frame 0) * cb (frame 1) * func (frame 3) * cb (frame 4) * Hence for frame 4, if callback_ref just stored boolean, it would be * impossible to distinguish nested callback refs. Hence store the * frameno and compare that to callback_ref in check_reference_leak when * exiting a callback function. */ int callback_ref; }; /* state of the program: * type of all registers and stack info */ struct bpf_func_state { struct bpf_reg_state regs[MAX_BPF_REG]; /* index of call instruction that called into this func */ int callsite; /* stack frame number of this function state from pov of * enclosing bpf_verifier_state. * 0 = main function, 1 = first callee. */ u32 frameno; /* subprog number == index within subprog_info * zero == main subprog */ u32 subprogno; /* Every bpf_timer_start will increment async_entry_cnt. * It's used to distinguish: * void foo(void) { for(;;); } * void foo(void) { bpf_timer_set_callback(,foo); } */ u32 async_entry_cnt; bool in_callback_fn; bool in_async_callback_fn; /* The following fields should be last. See copy_func_state() */ int acquired_refs; struct bpf_reference_state *refs; int allocated_stack; struct bpf_stack_state *stack; }; struct bpf_idx_pair { u32 prev_idx; u32 idx; }; struct bpf_id_pair { u32 old; u32 cur; }; /* Maximum number of register states that can exist at once */ #define BPF_ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) #define MAX_CALL_FRAMES 8 struct bpf_verifier_state { /* call stack tracking */ struct bpf_func_state *frame[MAX_CALL_FRAMES]; struct bpf_verifier_state *parent; /* * 'branches' field is the number of branches left to explore: * 0 - all possible paths from this state reached bpf_exit or * were safely pruned * 1 - at least one path is being explored. * This state hasn't reached bpf_exit * 2 - at least two paths are being explored. * This state is an immediate parent of two children. * One is fallthrough branch with branches==1 and another * state is pushed into stack (to be explored later) also with * branches==1. The parent of this state has branches==1. * The verifier state tree connected via 'parent' pointer looks like: * 1 * 1 * 2 -> 1 (first 'if' pushed into stack) * 1 * 2 -> 1 (second 'if' pushed into stack) * 1 * 1 * 1 bpf_exit. * * Once do_check() reaches bpf_exit, it calls update_branch_counts() * and the verifier state tree will look: * 1 * 1 * 2 -> 1 (first 'if' pushed into stack) * 1 * 1 -> 1 (second 'if' pushed into stack) * 0 * 0 * 0 bpf_exit. * After pop_stack() the do_check() will resume at second 'if'. * * If is_state_visited() sees a state with branches > 0 it means * there is a loop. If such state is exactly equal to the current state * it's an infinite loop. Note states_equal() checks for states * equvalency, so two states being 'states_equal' does not mean * infinite loop. The exact comparison is provided by * states_maybe_looping() function. It's a stronger pre-check and * much faster than states_equal(). * * This algorithm may not find all possible infinite loops or * loop iteration count may be too high. * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in. */ u32 branches; u32 insn_idx; u32 curframe; u32 active_spin_lock; bool speculative; /* first and last insn idx of this verifier state */ u32 first_insn_idx; u32 last_insn_idx; /* jmp history recorded from first to last. * backtracking is using it to go from last to first. * For most states jmp_history_cnt is [0-3]. * For loops can go up to ~40. */ struct bpf_idx_pair *jmp_history; u32 jmp_history_cnt; }; #define bpf_get_spilled_reg(slot, frame) \ (((slot < frame->allocated_stack / BPF_REG_SIZE) && \ (frame->stack[slot].slot_type[0] == STACK_SPILL)) \ ? &frame->stack[slot].spilled_ptr : NULL) /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */ #define bpf_for_each_spilled_reg(iter, frame, reg) \ for (iter = 0, reg = bpf_get_spilled_reg(iter, frame); \ iter < frame->allocated_stack / BPF_REG_SIZE; \ iter++, reg = bpf_get_spilled_reg(iter, frame)) /* Invoke __expr over regsiters in __vst, setting __state and __reg */ #define bpf_for_each_reg_in_vstate(__vst, __state, __reg, __expr) \ ({ \ struct bpf_verifier_state *___vstate = __vst; \ int ___i, ___j; \ for (___i = 0; ___i <= ___vstate->curframe; ___i++) { \ struct bpf_reg_state *___regs; \ __state = ___vstate->frame[___i]; \ ___regs = __state->regs; \ for (___j = 0; ___j < MAX_BPF_REG; ___j++) { \ __reg = &___regs[___j]; \ (void)(__expr); \ } \ bpf_for_each_spilled_reg(___j, __state, __reg) { \ if (!__reg) \ continue; \ (void)(__expr); \ } \ } \ }) /* linked list of verifier states used to prune search */ struct bpf_verifier_state_list { struct bpf_verifier_state state; struct bpf_verifier_state_list *next; int miss_cnt, hit_cnt; }; /* Possible states for alu_state member. */ #define BPF_ALU_SANITIZE_SRC (1U << 0) #define BPF_ALU_SANITIZE_DST (1U << 1) #define BPF_ALU_NEG_VALUE (1U << 2) #define BPF_ALU_NON_POINTER (1U << 3) #define BPF_ALU_IMMEDIATE (1U << 4) #define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \ BPF_ALU_SANITIZE_DST) struct bpf_insn_aux_data { union { enum bpf_reg_type ptr_type; /* pointer type for load/store insns */ unsigned long map_ptr_state; /* pointer/poison value for maps */ s32 call_imm; /* saved imm field of call insn */ u32 alu_limit; /* limit for add/sub register with pointer */ struct { u32 map_index; /* index into used_maps[] */ u32 map_off; /* offset from value base address */ }; struct { enum bpf_reg_type reg_type; /* type of pseudo_btf_id */ union { struct { struct btf *btf; u32 btf_id; /* btf_id for struct typed var */ }; u32 mem_size; /* mem_size for non-struct typed var */ }; } btf_var; }; u64 map_key_state; /* constant (32 bit) key tracking for maps */ int ctx_field_size; /* the ctx field size for load insn, maybe 0 */ u32 seen; /* this insn was processed by the verifier at env->pass_cnt */ bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */ bool zext_dst; /* this insn zero extends dst reg */ u8 alu_state; /* used in combination with alu_limit */ /* below fields are initialized once */ unsigned int orig_idx; /* original instruction index */ bool prune_point; }; #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ #define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */ #define BPF_VERIFIER_TMP_LOG_SIZE 1024 struct bpf_verifier_log { u32 level; char kbuf[BPF_VERIFIER_TMP_LOG_SIZE]; char __user *ubuf; u32 len_used; u32 len_total; }; static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log) { return log->len_used >= log->len_total - 1; } #define BPF_LOG_LEVEL1 1 #define BPF_LOG_LEVEL2 2 #define BPF_LOG_STATS 4 #define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2) #define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS) #define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */ static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log) { return log && ((log->level && log->ubuf && !bpf_verifier_log_full(log)) || log->level == BPF_LOG_KERNEL); } static inline bool bpf_verifier_log_attr_valid(const struct bpf_verifier_log *log) { return log->len_total >= 128 && log->len_total <= UINT_MAX >> 2 && log->level && log->ubuf && !(log->level & ~BPF_LOG_MASK); } #define BPF_MAX_SUBPROGS 256 struct bpf_subprog_info { /* 'start' has to be the first field otherwise find_subprog() won't work */ u32 start; /* insn idx of function entry point */ u32 linfo_idx; /* The idx to the main_prog->aux->linfo */ u16 stack_depth; /* max. stack depth used by this function */ bool has_tail_call; bool tail_call_reachable; bool has_ld_abs; bool is_async_cb; }; /* single container for all structs * one verifier_env per bpf_check() call */ struct bpf_verifier_env { u32 insn_idx; u32 prev_insn_idx; struct bpf_prog *prog; /* eBPF program being verified */ const struct bpf_verifier_ops *ops; struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */ int stack_size; /* number of states to be processed */ bool strict_alignment; /* perform strict pointer alignment checks */ bool test_state_freq; /* test verifier with different pruning frequency */ struct bpf_verifier_state *cur_state; /* current verifier state */ struct bpf_verifier_state_list **explored_states; /* search pruning optimization */ struct bpf_verifier_state_list *free_list; struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */ u32 used_map_cnt; /* number of used maps */ u32 used_btf_cnt; /* number of used BTF objects */ u32 id_gen; /* used to generate unique reg IDs */ bool explore_alu_limits; bool allow_ptr_leaks; bool allow_uninit_stack; bool allow_ptr_to_map_access; bool bpf_capable; bool bypass_spec_v1; bool bypass_spec_v4; bool seen_direct_write; struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ const struct bpf_line_info *prev_linfo; struct bpf_verifier_log log; struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1]; struct bpf_id_pair idmap_scratch[BPF_ID_MAP_SIZE]; struct { int *insn_state; int *insn_stack; int cur_stack; } cfg; u32 pass_cnt; /* number of times do_check() was called */ u32 subprog_cnt; /* number of instructions analyzed by the verifier */ u32 prev_insn_processed, insn_processed; /* number of jmps, calls, exits analyzed so far */ u32 prev_jmps_processed, jmps_processed; /* total verification time */ u64 verification_time; /* maximum number of verifier states kept in 'branching' instructions */ u32 max_states_per_insn; /* total number of allocated verifier states */ u32 total_states; /* some states are freed during program analysis. * this is peak number of states. this number dominates kernel * memory consumption during verification */ u32 peak_states; /* longest register parentage chain walked for liveness marking */ u32 longest_mark_read_walk; bpfptr_t fd_array; /* buffer used in reg_type_str() to generate reg_type string */ char type_str_buf[TYPE_STR_BUF_LEN]; }; __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, va_list args); __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, const char *fmt, ...); __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, const char *fmt, ...); static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env) { struct bpf_verifier_state *cur = env->cur_state; return cur->frame[cur->curframe]; } static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env) { return cur_func(env)->regs; } int bpf_prog_offload_verifier_prep(struct bpf_prog *prog); int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env, int insn_idx, int prev_insn_idx); int bpf_prog_offload_finalize(struct bpf_verifier_env *env); void bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off, struct bpf_insn *insn); void bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt); int check_ptr_off_reg(struct bpf_verifier_env *env, const struct bpf_reg_state *reg, int regno); int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, u32 regno, u32 mem_size); /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */ static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog, struct btf *btf, u32 btf_id) { if (tgt_prog) return ((u64)tgt_prog->aux->id << 32) | btf_id; else return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id; } /* unpack the IDs from the key as constructed above */ static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id) { if (obj_id) *obj_id = key >> 32; if (btf_id) *btf_id = key & 0x7FFFFFFF; } int bpf_check_attach_target(struct bpf_verifier_log *log, const struct bpf_prog *prog, const struct bpf_prog *tgt_prog, u32 btf_id, struct bpf_attach_target_info *tgt_info); #define BPF_BASE_TYPE_MASK GENMASK(BPF_BASE_TYPE_BITS - 1, 0) /* extract base type from bpf_{arg, return, reg}_type. */ static inline u32 base_type(u32 type) { return type & BPF_BASE_TYPE_MASK; } /* extract flags from an extended type. See bpf_type_flag in bpf.h. */ static inline u32 type_flag(u32 type) { return type & ~BPF_BASE_TYPE_MASK; } #endif /* _LINUX_BPF_VERIFIER_H */ |
2372 726 2298 2297 148 147 248 249 32 32 32 32 32 17 17 17 6402 6398 18 18 18 17 18 18 18 18 18 1258 1257 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 | // SPDX-License-Identifier: GPL-2.0-only /* Kernel thread helper functions. * Copyright (C) 2004 IBM Corporation, Rusty Russell. * Copyright (C) 2009 Red Hat, Inc. * * Creation is done via kthreadd, so that we get a clean environment * even if we're invoked from userspace (think modprobe, hotplug cpu, * etc.). */ #include <uapi/linux/sched/types.h> #include <linux/mm.h> #include <linux/mmu_context.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/sched/task.h> #include <linux/kthread.h> #include <linux/completion.h> #include <linux/err.h> #include <linux/cgroup.h> #include <linux/cpuset.h> #include <linux/unistd.h> #include <linux/file.h> #include <linux/export.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/freezer.h> #include <linux/ptrace.h> #include <linux/uaccess.h> #include <linux/numa.h> #include <linux/sched/isolation.h> #include <trace/events/sched.h> static DEFINE_SPINLOCK(kthread_create_lock); static LIST_HEAD(kthread_create_list); struct task_struct *kthreadd_task; struct kthread_create_info { /* Information passed to kthread() from kthreadd. */ int (*threadfn)(void *data); void *data; int node; /* Result passed back to kthread_create() from kthreadd. */ struct task_struct *result; struct completion *done; struct list_head list; }; struct kthread { unsigned long flags; unsigned int cpu; int (*threadfn)(void *); void *data; mm_segment_t oldfs; struct completion parked; struct completion exited; #ifdef CONFIG_BLK_CGROUP struct cgroup_subsys_state *blkcg_css; #endif }; enum KTHREAD_BITS { KTHREAD_IS_PER_CPU = 0, KTHREAD_SHOULD_STOP, KTHREAD_SHOULD_PARK, }; static inline struct kthread *to_kthread(struct task_struct *k) { WARN_ON(!(k->flags & PF_KTHREAD)); return (__force void *)k->set_child_tid; } /* * Variant of to_kthread() that doesn't assume @p is a kthread. * * Per construction; when: * * (p->flags & PF_KTHREAD) && p->set_child_tid * * the task is both a kthread and struct kthread is persistent. However * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and * begin_new_exec()). */ static inline struct kthread *__to_kthread(struct task_struct *p) { void *kthread = (__force void *)p->set_child_tid; if (kthread && !(p->flags & PF_KTHREAD)) kthread = NULL; return kthread; } void set_kthread_struct(struct task_struct *p) { struct kthread *kthread; if (__to_kthread(p)) return; kthread = kzalloc(sizeof(*kthread), GFP_KERNEL); /* * We abuse ->set_child_tid to avoid the new member and because it * can't be wrongly copied by copy_process(). We also rely on fact * that the caller can't exec, so PF_KTHREAD can't be cleared. */ p->set_child_tid = (__force void __user *)kthread; } void free_kthread_struct(struct task_struct *k) { struct kthread *kthread; /* * Can be NULL if this kthread was created by kernel_thread() * or if kmalloc() in kthread() failed. */ kthread = to_kthread(k); #ifdef CONFIG_BLK_CGROUP WARN_ON_ONCE(kthread && kthread->blkcg_css); #endif kfree(kthread); } /** * kthread_should_stop - should this kthread return now? * * When someone calls kthread_stop() on your kthread, it will be woken * and this will return true. You should then return, and your return * value will be passed through to kthread_stop(). */ bool kthread_should_stop(void) { return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags); } EXPORT_SYMBOL(kthread_should_stop); bool __kthread_should_park(struct task_struct *k) { return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags); } EXPORT_SYMBOL_GPL(__kthread_should_park); /** * kthread_should_park - should this kthread park now? * * When someone calls kthread_park() on your kthread, it will be woken * and this will return true. You should then do the necessary * cleanup and call kthread_parkme() * * Similar to kthread_should_stop(), but this keeps the thread alive * and in a park position. kthread_unpark() "restarts" the thread and * calls the thread function again. */ bool kthread_should_park(void) { return __kthread_should_park(current); } EXPORT_SYMBOL_GPL(kthread_should_park); /** * kthread_freezable_should_stop - should this freezable kthread return now? * @was_frozen: optional out parameter, indicates whether %current was frozen * * kthread_should_stop() for freezable kthreads, which will enter * refrigerator if necessary. This function is safe from kthread_stop() / * freezer deadlock and freezable kthreads should use this function instead * of calling try_to_freeze() directly. */ bool kthread_freezable_should_stop(bool *was_frozen) { bool frozen = false; might_sleep(); if (unlikely(freezing(current))) frozen = __refrigerator(true); if (was_frozen) *was_frozen = frozen; return kthread_should_stop(); } EXPORT_SYMBOL_GPL(kthread_freezable_should_stop); /** * kthread_func - return the function specified on kthread creation * @task: kthread task in question * * Returns NULL if the task is not a kthread. */ void *kthread_func(struct task_struct *task) { struct kthread *kthread = __to_kthread(task); if (kthread) return kthread->threadfn; return NULL; } EXPORT_SYMBOL_GPL(kthread_func); /** * kthread_data - return data value specified on kthread creation * @task: kthread task in question * * Return the data value specified when kthread @task was created. * The caller is responsible for ensuring the validity of @task when * calling this function. */ void *kthread_data(struct task_struct *task) { return to_kthread(task)->data; } EXPORT_SYMBOL_GPL(kthread_data); /** * kthread_probe_data - speculative version of kthread_data() * @task: possible kthread task in question * * @task could be a kthread task. Return the data value specified when it * was created if accessible. If @task isn't a kthread task or its data is * inaccessible for any reason, %NULL is returned. This function requires * that @task itself is safe to dereference. */ void *kthread_probe_data(struct task_struct *task) { struct kthread *kthread = __to_kthread(task); void *data = NULL; if (kthread) copy_from_kernel_nofault(&data, &kthread->data, sizeof(data)); return data; } static void __kthread_parkme(struct kthread *self) { for (;;) { /* * TASK_PARKED is a special state; we must serialize against * possible pending wakeups to avoid store-store collisions on * task->state. * * Such a collision might possibly result in the task state * changin from TASK_PARKED and us failing the * wait_task_inactive() in kthread_park(). */ set_special_state(TASK_PARKED); if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags)) break; /* * Thread is going to call schedule(), do not preempt it, * or the caller of kthread_park() may spend more time in * wait_task_inactive(). */ preempt_disable(); complete(&self->parked); schedule_preempt_disabled(); preempt_enable(); } __set_current_state(TASK_RUNNING); } void kthread_parkme(void) { __kthread_parkme(to_kthread(current)); } EXPORT_SYMBOL_GPL(kthread_parkme); /** * kthread_exit - Cause the current kthread return @result to kthread_stop(). * @result: The integer value to return to kthread_stop(). * * While kthread_exit can be called directly, it exists so that * functions which do some additional work in non-modular code such as * module_put_and_kthread_exit can be implemented. * * Does not return. */ void __noreturn kthread_exit(long result) { do_exit(result); } static int kthread(void *_create) { /* Copy data: it's on kthread's stack */ struct kthread_create_info *create = _create; int (*threadfn)(void *data) = create->threadfn; void *data = create->data; struct completion *done; struct kthread *self; int ret; set_kthread_struct(current); self = to_kthread(current); /* If user was SIGKILLed, I release the structure. */ done = xchg(&create->done, NULL); if (!done) { kfree(create); kthread_exit(-EINTR); } if (!self) { create->result = ERR_PTR(-ENOMEM); complete(done); kthread_exit(-ENOMEM); } self->threadfn = threadfn; self->data = data; init_completion(&self->exited); init_completion(&self->parked); current->vfork_done = &self->exited; /* OK, tell user we're spawned, wait for stop or wakeup */ __set_current_state(TASK_UNINTERRUPTIBLE); create->result = current; /* * Thread is going to call schedule(), do not preempt it, * or the creator may spend more time in wait_task_inactive(). */ preempt_disable(); complete(done); schedule_preempt_disabled(); preempt_enable(); ret = -EINTR; if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) { cgroup_kthread_ready(); __kthread_parkme(self); ret = threadfn(data); } kthread_exit(ret); } /* called from kernel_clone() to get node information for about to be created task */ int tsk_fork_get_node(struct task_struct *tsk) { #ifdef CONFIG_NUMA if (tsk == kthreadd_task) return tsk->pref_node_fork; #endif return NUMA_NO_NODE; } static void create_kthread(struct kthread_create_info *create) { int pid; #ifdef CONFIG_NUMA current->pref_node_fork = create->node; #endif /* We want our own signal handler (we take no signals by default). */ pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD); if (pid < 0) { /* If user was SIGKILLed, I release the structure. */ struct completion *done = xchg(&create->done, NULL); if (!done) { kfree(create); return; } create->result = ERR_PTR(pid); complete(done); } } static __printf(4, 0) struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data), void *data, int node, const char namefmt[], va_list args) { DECLARE_COMPLETION_ONSTACK(done); struct task_struct *task; struct kthread_create_info *create = kmalloc(sizeof(*create), GFP_KERNEL); if (!create) return ERR_PTR(-ENOMEM); create->threadfn = threadfn; create->data = data; create->node = node; create->done = &done; spin_lock(&kthread_create_lock); list_add_tail(&create->list, &kthread_create_list); spin_unlock(&kthread_create_lock); wake_up_process(kthreadd_task); /* * Wait for completion in killable state, for I might be chosen by * the OOM killer while kthreadd is trying to allocate memory for * new kernel thread. */ if (unlikely(wait_for_completion_killable(&done))) { /* * If I was SIGKILLed before kthreadd (or new kernel thread) * calls complete(), leave the cleanup of this structure to * that thread. */ if (xchg(&create->done, NULL)) return ERR_PTR(-EINTR); /* * kthreadd (or new kernel thread) will call complete() * shortly. */ wait_for_completion(&done); } task = create->result; if (!IS_ERR(task)) { static const struct sched_param param = { .sched_priority = 0 }; char name[TASK_COMM_LEN]; /* * task is already visible to other tasks, so updating * COMM must be protected. */ vsnprintf(name, sizeof(name), namefmt, args); set_task_comm(task, name); /* * root may have changed our (kthreadd's) priority or CPU mask. * The kernel thread should not inherit these properties. */ sched_setscheduler_nocheck(task, SCHED_NORMAL, ¶m); set_cpus_allowed_ptr(task, housekeeping_cpumask(HK_FLAG_KTHREAD)); } kfree(create); return task; } /** * kthread_create_on_node - create a kthread. * @threadfn: the function to run until signal_pending(current). * @data: data ptr for @threadfn. * @node: task and thread structures for the thread are allocated on this node * @namefmt: printf-style name for the thread. * * Description: This helper function creates and names a kernel * thread. The thread will be stopped: use wake_up_process() to start * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and * is affine to all CPUs. * * If thread is going to be bound on a particular cpu, give its node * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE. * When woken, the thread will run @threadfn() with @data as its * argument. @threadfn() can either call do_exit() directly if it is a * standalone thread for which no one will call kthread_stop(), or * return when 'kthread_should_stop()' is true (which means * kthread_stop() has been called). The return value should be zero * or a negative error number; it will be passed to kthread_stop(). * * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR). */ struct task_struct *kthread_create_on_node(int (*threadfn)(void *data), void *data, int node, const char namefmt[], ...) { struct task_struct *task; va_list args; va_start(args, namefmt); task = __kthread_create_on_node(threadfn, data, node, namefmt, args); va_end(args); return task; } EXPORT_SYMBOL(kthread_create_on_node); static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state) { unsigned long flags; if (!wait_task_inactive(p, state)) { WARN_ON(1); return; } /* It's safe because the task is inactive. */ raw_spin_lock_irqsave(&p->pi_lock, flags); do_set_cpus_allowed(p, mask); p->flags |= PF_NO_SETAFFINITY; raw_spin_unlock_irqrestore(&p->pi_lock, flags); } static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state) { __kthread_bind_mask(p, cpumask_of(cpu), state); } void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask) { __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE); } /** * kthread_bind - bind a just-created kthread to a cpu. * @p: thread created by kthread_create(). * @cpu: cpu (might not be online, must be possible) for @k to run on. * * Description: This function is equivalent to set_cpus_allowed(), * except that @cpu doesn't need to be online, and the thread must be * stopped (i.e., just returned from kthread_create()). */ void kthread_bind(struct task_struct *p, unsigned int cpu) { __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE); } EXPORT_SYMBOL(kthread_bind); /** * kthread_create_on_cpu - Create a cpu bound kthread * @threadfn: the function to run until signal_pending(current). * @data: data ptr for @threadfn. * @cpu: The cpu on which the thread should be bound, * @namefmt: printf-style name for the thread. Format is restricted * to "name.*%u". Code fills in cpu number. * * Description: This helper function creates and names a kernel thread */ struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data), void *data, unsigned int cpu, const char *namefmt) { struct task_struct *p; p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt, cpu); if (IS_ERR(p)) return p; kthread_bind(p, cpu); /* CPU hotplug need to bind once again when unparking the thread. */ to_kthread(p)->cpu = cpu; return p; } EXPORT_SYMBOL(kthread_create_on_cpu); void kthread_set_per_cpu(struct task_struct *k, int cpu) { struct kthread *kthread = to_kthread(k); if (!kthread) return; WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY)); if (cpu < 0) { clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags); return; } kthread->cpu = cpu; set_bit(KTHREAD_IS_PER_CPU, &kthread->flags); } bool kthread_is_per_cpu(struct task_struct *p) { struct kthread *kthread = __to_kthread(p); if (!kthread) return false; return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags); } /** * kthread_unpark - unpark a thread created by kthread_create(). * @k: thread created by kthread_create(). * * Sets kthread_should_park() for @k to return false, wakes it, and * waits for it to return. If the thread is marked percpu then its * bound to the cpu again. */ void kthread_unpark(struct task_struct *k) { struct kthread *kthread = to_kthread(k); if (!test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)) return; /* * Newly created kthread was parked when the CPU was offline. * The binding was lost and we need to set it again. */ if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags)) __kthread_bind(k, kthread->cpu, TASK_PARKED); clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags); /* * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup. */ wake_up_state(k, TASK_PARKED); } EXPORT_SYMBOL_GPL(kthread_unpark); /** * kthread_park - park a thread created by kthread_create(). * @k: thread created by kthread_create(). * * Sets kthread_should_park() for @k to return true, wakes it, and * waits for it to return. This can also be called after kthread_create() * instead of calling wake_up_process(): the thread will park without * calling threadfn(). * * Returns 0 if the thread is parked, -ENOSYS if the thread exited. * If called by the kthread itself just the park bit is set. */ int kthread_park(struct task_struct *k) { struct kthread *kthread = to_kthread(k); if (WARN_ON(k->flags & PF_EXITING)) return -ENOSYS; if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags))) return -EBUSY; set_bit(KTHREAD_SHOULD_PARK, &kthread->flags); if (k != current) { wake_up_process(k); /* * Wait for __kthread_parkme() to complete(), this means we * _will_ have TASK_PARKED and are about to call schedule(). */ wait_for_completion(&kthread->parked); /* * Now wait for that schedule() to complete and the task to * get scheduled out. */ WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED)); } return 0; } EXPORT_SYMBOL_GPL(kthread_park); /** * kthread_stop - stop a thread created by kthread_create(). * @k: thread created by kthread_create(). * * Sets kthread_should_stop() for @k to return true, wakes it, and * waits for it to exit. This can also be called after kthread_create() * instead of calling wake_up_process(): the thread will exit without * calling threadfn(). * * If threadfn() may call kthread_exit() itself, the caller must ensure * task_struct can't go away. * * Returns the result of threadfn(), or %-EINTR if wake_up_process() * was never called. */ int kthread_stop(struct task_struct *k) { struct kthread *kthread; int ret; trace_sched_kthread_stop(k); get_task_struct(k); kthread = to_kthread(k); set_bit(KTHREAD_SHOULD_STOP, &kthread->flags); kthread_unpark(k); wake_up_process(k); wait_for_completion(&kthread->exited); ret = k->exit_code; put_task_struct(k); trace_sched_kthread_stop_ret(ret); return ret; } EXPORT_SYMBOL(kthread_stop); int kthreadd(void *unused) { struct task_struct *tsk = current; /* Setup a clean context for our children to inherit. */ set_task_comm(tsk, "kthreadd"); ignore_signals(tsk); set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_FLAG_KTHREAD)); set_mems_allowed(node_states[N_MEMORY]); current->flags |= PF_NOFREEZE; cgroup_init_kthreadd(); for (;;) { set_current_state(TASK_INTERRUPTIBLE); if (list_empty(&kthread_create_list)) schedule(); __set_current_state(TASK_RUNNING); spin_lock(&kthread_create_lock); while (!list_empty(&kthread_create_list)) { struct kthread_create_info *create; create = list_entry(kthread_create_list.next, struct kthread_create_info, list); list_del_init(&create->list); spin_unlock(&kthread_create_lock); create_kthread(create); spin_lock(&kthread_create_lock); } spin_unlock(&kthread_create_lock); } return 0; } void __kthread_init_worker(struct kthread_worker *worker, const char *name, struct lock_class_key *key) { memset(worker, 0, sizeof(struct kthread_worker)); raw_spin_lock_init(&worker->lock); lockdep_set_class_and_name(&worker->lock, key, name); INIT_LIST_HEAD(&worker->work_list); INIT_LIST_HEAD(&worker->delayed_work_list); } EXPORT_SYMBOL_GPL(__kthread_init_worker); /** * kthread_worker_fn - kthread function to process kthread_worker * @worker_ptr: pointer to initialized kthread_worker * * This function implements the main cycle of kthread worker. It processes * work_list until it is stopped with kthread_stop(). It sleeps when the queue * is empty. * * The works are not allowed to keep any locks, disable preemption or interrupts * when they finish. There is defined a safe point for freezing when one work * finishes and before a new one is started. * * Also the works must not be handled by more than one worker at the same time, * see also kthread_queue_work(). */ int kthread_worker_fn(void *worker_ptr) { struct kthread_worker *worker = worker_ptr; struct kthread_work *work; /* * FIXME: Update the check and remove the assignment when all kthread * worker users are created using kthread_create_worker*() functions. */ WARN_ON(worker->task && worker->task != current); worker->task = current; if (worker->flags & KTW_FREEZABLE) set_freezable(); repeat: set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */ if (kthread_should_stop()) { __set_current_state(TASK_RUNNING); raw_spin_lock_irq(&worker->lock); worker->task = NULL; raw_spin_unlock_irq(&worker->lock); return 0; } work = NULL; raw_spin_lock_irq(&worker->lock); if (!list_empty(&worker->work_list)) { work = list_first_entry(&worker->work_list, struct kthread_work, node); list_del_init(&work->node); } worker->current_work = work; raw_spin_unlock_irq(&worker->lock); if (work) { kthread_work_func_t func = work->func; __set_current_state(TASK_RUNNING); trace_sched_kthread_work_execute_start(work); work->func(work); /* * Avoid dereferencing work after this point. The trace * event only cares about the address. */ trace_sched_kthread_work_execute_end(work, func); } else if (!freezing(current)) { schedule(); } else { /* * Handle the case where the current remains * TASK_INTERRUPTIBLE. try_to_freeze() expects * the current to be TASK_RUNNING. */ __set_current_state(TASK_RUNNING); } try_to_freeze(); cond_resched(); goto repeat; } EXPORT_SYMBOL_GPL(kthread_worker_fn); static __printf(3, 0) struct kthread_worker * __kthread_create_worker(int cpu, unsigned int flags, const char namefmt[], va_list args) { struct kthread_worker *worker; struct task_struct *task; int node = NUMA_NO_NODE; worker = kzalloc(sizeof(*worker), GFP_KERNEL); if (!worker) return ERR_PTR(-ENOMEM); kthread_init_worker(worker); if (cpu >= 0) node = cpu_to_node(cpu); task = __kthread_create_on_node(kthread_worker_fn, worker, node, namefmt, args); if (IS_ERR(task)) goto fail_task; if (cpu >= 0) kthread_bind(task, cpu); worker->flags = flags; worker->task = task; wake_up_process(task); return worker; fail_task: kfree(worker); return ERR_CAST(task); } /** * kthread_create_worker - create a kthread worker * @flags: flags modifying the default behavior of the worker * @namefmt: printf-style name for the kthread worker (task). * * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) * when the needed structures could not get allocated, and ERR_PTR(-EINTR) * when the worker was SIGKILLed. */ struct kthread_worker * kthread_create_worker(unsigned int flags, const char namefmt[], ...) { struct kthread_worker *worker; va_list args; va_start(args, namefmt); worker = __kthread_create_worker(-1, flags, namefmt, args); va_end(args); return worker; } EXPORT_SYMBOL(kthread_create_worker); /** * kthread_create_worker_on_cpu - create a kthread worker and bind it * to a given CPU and the associated NUMA node. * @cpu: CPU number * @flags: flags modifying the default behavior of the worker * @namefmt: printf-style name for the kthread worker (task). * * Use a valid CPU number if you want to bind the kthread worker * to the given CPU and the associated NUMA node. * * A good practice is to add the cpu number also into the worker name. * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu). * * CPU hotplug: * The kthread worker API is simple and generic. It just provides a way * to create, use, and destroy workers. * * It is up to the API user how to handle CPU hotplug. They have to decide * how to handle pending work items, prevent queuing new ones, and * restore the functionality when the CPU goes off and on. There are a * few catches: * * - CPU affinity gets lost when it is scheduled on an offline CPU. * * - The worker might not exist when the CPU was off when the user * created the workers. * * Good practice is to implement two CPU hotplug callbacks and to * destroy/create the worker when the CPU goes down/up. * * Return: * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM) * when the needed structures could not get allocated, and ERR_PTR(-EINTR) * when the worker was SIGKILLed. */ struct kthread_worker * kthread_create_worker_on_cpu(int cpu, unsigned int flags, const char namefmt[], ...) { struct kthread_worker *worker; va_list args; va_start(args, namefmt); worker = __kthread_create_worker(cpu, flags, namefmt, args); va_end(args); return worker; } EXPORT_SYMBOL(kthread_create_worker_on_cpu); /* * Returns true when the work could not be queued at the moment. * It happens when it is already pending in a worker list * or when it is being cancelled. */ static inline bool queuing_blocked(struct kthread_worker *worker, struct kthread_work *work) { lockdep_assert_held(&worker->lock); return !list_empty(&work->node) || work->canceling; } static void kthread_insert_work_sanity_check(struct kthread_worker *worker, struct kthread_work *work) { lockdep_assert_held(&worker->lock); WARN_ON_ONCE(!list_empty(&work->node)); /* Do not use a work with >1 worker, see kthread_queue_work() */ WARN_ON_ONCE(work->worker && work->worker != worker); } /* insert @work before @pos in @worker */ static void kthread_insert_work(struct kthread_worker *worker, struct kthread_work *work, struct list_head *pos) { kthread_insert_work_sanity_check(worker, work); trace_sched_kthread_work_queue_work(worker, work); list_add_tail(&work->node, pos); work->worker = worker; if (!worker->current_work && likely(worker->task)) wake_up_process(worker->task); } /** * kthread_queue_work - queue a kthread_work * @worker: target kthread_worker * @work: kthread_work to queue * * Queue @work to work processor @task for async execution. @task * must have been created with kthread_worker_create(). Returns %true * if @work was successfully queued, %false if it was already pending. * * Reinitialize the work if it needs to be used by another worker. * For example, when the worker was stopped and started again. */ bool kthread_queue_work(struct kthread_worker *worker, struct kthread_work *work) { bool ret = false; unsigned long flags; raw_spin_lock_irqsave(&worker->lock, flags); if (!queuing_blocked(worker, work)) { kthread_insert_work(worker, work, &worker->work_list); ret = true; } raw_spin_unlock_irqrestore(&worker->lock, flags); return ret; } EXPORT_SYMBOL_GPL(kthread_queue_work); /** * kthread_delayed_work_timer_fn - callback that queues the associated kthread * delayed work when the timer expires. * @t: pointer to the expired timer * * The format of the function is defined by struct timer_list. * It should have been called from irqsafe timer with irq already off. */ void kthread_delayed_work_timer_fn(struct timer_list *t) { struct kthread_delayed_work *dwork = from_timer(dwork, t, timer); struct kthread_work *work = &dwork->work; struct kthread_worker *worker = work->worker; unsigned long flags; /* * This might happen when a pending work is reinitialized. * It means that it is used a wrong way. */ if (WARN_ON_ONCE(!worker)) return; raw_spin_lock_irqsave(&worker->lock, flags); /* Work must not be used with >1 worker, see kthread_queue_work(). */ WARN_ON_ONCE(work->worker != worker); /* Move the work from worker->delayed_work_list. */ WARN_ON_ONCE(list_empty(&work->node)); list_del_init(&work->node); if (!work->canceling) kthread_insert_work(worker, work, &worker->work_list); raw_spin_unlock_irqrestore(&worker->lock, flags); } EXPORT_SYMBOL(kthread_delayed_work_timer_fn); static void __kthread_queue_delayed_work(struct kthread_worker *worker, struct kthread_delayed_work *dwork, unsigned long delay) { struct timer_list *timer = &dwork->timer; struct kthread_work *work = &dwork->work; WARN_ON_FUNCTION_MISMATCH(timer->function, kthread_delayed_work_timer_fn); /* * If @delay is 0, queue @dwork->work immediately. This is for * both optimization and correctness. The earliest @timer can * expire is on the closest next tick and delayed_work users depend * on that there's no such delay when @delay is 0. */ if (!delay) { kthread_insert_work(worker, work, &worker->work_list); return; } /* Be paranoid and try to detect possible races already now. */ kthread_insert_work_sanity_check(worker, work); list_add(&work->node, &worker->delayed_work_list); work->worker = worker; timer->expires = jiffies + delay; add_timer(timer); } /** * kthread_queue_delayed_work - queue the associated kthread work * after a delay. * @worker: target kthread_worker * @dwork: kthread_delayed_work to queue * @delay: number of jiffies to wait before queuing * * If the work has not been pending it starts a timer that will queue * the work after the given @delay. If @delay is zero, it queues the * work immediately. * * Return: %false if the @work has already been pending. It means that * either the timer was running or the work was queued. It returns %true * otherwise. */ bool kthread_queue_delayed_work(struct kthread_worker *worker, struct kthread_delayed_work *dwork, unsigned long delay) { struct kthread_work *work = &dwork->work; unsigned long flags; bool ret = false; raw_spin_lock_irqsave(&worker->lock, flags); if (!queuing_blocked(worker, work)) { __kthread_queue_delayed_work(worker, dwork, delay); ret = true; } raw_spin_unlock_irqrestore(&worker->lock, flags); return ret; } EXPORT_SYMBOL_GPL(kthread_queue_delayed_work); struct kthread_flush_work { struct kthread_work work; struct completion done; }; static void kthread_flush_work_fn(struct kthread_work *work) { struct kthread_flush_work *fwork = container_of(work, struct kthread_flush_work, work); complete(&fwork->done); } /** * kthread_flush_work - flush a kthread_work * @work: work to flush * * If @work is queued or executing, wait for it to finish execution. */ void kthread_flush_work(struct kthread_work *work) { struct kthread_flush_work fwork = { KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), COMPLETION_INITIALIZER_ONSTACK(fwork.done), }; struct kthread_worker *worker; bool noop = false; worker = work->worker; if (!worker) return; raw_spin_lock_irq(&worker->lock); /* Work must not be used with >1 worker, see kthread_queue_work(). */ WARN_ON_ONCE(work->worker != worker); if (!list_empty(&work->node)) kthread_insert_work(worker, &fwork.work, work->node.next); else if (worker->current_work == work) kthread_insert_work(worker, &fwork.work, worker->work_list.next); else noop = true; raw_spin_unlock_irq(&worker->lock); if (!noop) wait_for_completion(&fwork.done); } EXPORT_SYMBOL_GPL(kthread_flush_work); /* * Make sure that the timer is neither set nor running and could * not manipulate the work list_head any longer. * * The function is called under worker->lock. The lock is temporary * released but the timer can't be set again in the meantime. */ static void kthread_cancel_delayed_work_timer(struct kthread_work *work, unsigned long *flags) { struct kthread_delayed_work *dwork = container_of(work, struct kthread_delayed_work, work); struct kthread_worker *worker = work->worker; /* * del_timer_sync() must be called to make sure that the timer * callback is not running. The lock must be temporary released * to avoid a deadlock with the callback. In the meantime, * any queuing is blocked by setting the canceling counter. */ work->canceling++; raw_spin_unlock_irqrestore(&worker->lock, *flags); del_timer_sync(&dwork->timer); raw_spin_lock_irqsave(&worker->lock, *flags); work->canceling--; } /* * This function removes the work from the worker queue. * * It is called under worker->lock. The caller must make sure that * the timer used by delayed work is not running, e.g. by calling * kthread_cancel_delayed_work_timer(). * * The work might still be in use when this function finishes. See the * current_work proceed by the worker. * * Return: %true if @work was pending and successfully canceled, * %false if @work was not pending */ static bool __kthread_cancel_work(struct kthread_work *work) { /* * Try to remove the work from a worker list. It might either * be from worker->work_list or from worker->delayed_work_list. */ if (!list_empty(&work->node)) { list_del_init(&work->node); return true; } return false; } /** * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work * @worker: kthread worker to use * @dwork: kthread delayed work to queue * @delay: number of jiffies to wait before queuing * * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise, * modify @dwork's timer so that it expires after @delay. If @delay is zero, * @work is guaranteed to be queued immediately. * * Return: %false if @dwork was idle and queued, %true otherwise. * * A special case is when the work is being canceled in parallel. * It might be caused either by the real kthread_cancel_delayed_work_sync() * or yet another kthread_mod_delayed_work() call. We let the other command * win and return %true here. The return value can be used for reference * counting and the number of queued works stays the same. Anyway, the caller * is supposed to synchronize these operations a reasonable way. * * This function is safe to call from any context including IRQ handler. * See __kthread_cancel_work() and kthread_delayed_work_timer_fn() * for details. */ bool kthread_mod_delayed_work(struct kthread_worker *worker, struct kthread_delayed_work *dwork, unsigned long delay) { struct kthread_work *work = &dwork->work; unsigned long flags; int ret; raw_spin_lock_irqsave(&worker->lock, flags); /* Do not bother with canceling when never queued. */ if (!work->worker) { ret = false; goto fast_queue; } /* Work must not be used with >1 worker, see kthread_queue_work() */ WARN_ON_ONCE(work->worker != worker); /* * Temporary cancel the work but do not fight with another command * that is canceling the work as well. * * It is a bit tricky because of possible races with another * mod_delayed_work() and cancel_delayed_work() callers. * * The timer must be canceled first because worker->lock is released * when doing so. But the work can be removed from the queue (list) * only when it can be queued again so that the return value can * be used for reference counting. */ kthread_cancel_delayed_work_timer(work, &flags); if (work->canceling) { /* The number of works in the queue does not change. */ ret = true; goto out; } ret = __kthread_cancel_work(work); fast_queue: __kthread_queue_delayed_work(worker, dwork, delay); out: raw_spin_unlock_irqrestore(&worker->lock, flags); return ret; } EXPORT_SYMBOL_GPL(kthread_mod_delayed_work); static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork) { struct kthread_worker *worker = work->worker; unsigned long flags; int ret = false; if (!worker) goto out; raw_spin_lock_irqsave(&worker->lock, flags); /* Work must not be used with >1 worker, see kthread_queue_work(). */ WARN_ON_ONCE(work->worker != worker); if (is_dwork) kthread_cancel_delayed_work_timer(work, &flags); ret = __kthread_cancel_work(work); if (worker->current_work != work) goto out_fast; /* * The work is in progress and we need to wait with the lock released. * In the meantime, block any queuing by setting the canceling counter. */ work->canceling++; raw_spin_unlock_irqrestore(&worker->lock, flags); kthread_flush_work(work); raw_spin_lock_irqsave(&worker->lock, flags); work->canceling--; out_fast: raw_spin_unlock_irqrestore(&worker->lock, flags); out: return ret; } /** * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish * @work: the kthread work to cancel * * Cancel @work and wait for its execution to finish. This function * can be used even if the work re-queues itself. On return from this * function, @work is guaranteed to be not pending or executing on any CPU. * * kthread_cancel_work_sync(&delayed_work->work) must not be used for * delayed_work's. Use kthread_cancel_delayed_work_sync() instead. * * The caller must ensure that the worker on which @work was last * queued can't be destroyed before this function returns. * * Return: %true if @work was pending, %false otherwise. */ bool kthread_cancel_work_sync(struct kthread_work *work) { return __kthread_cancel_work_sync(work, false); } EXPORT_SYMBOL_GPL(kthread_cancel_work_sync); /** * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and * wait for it to finish. * @dwork: the kthread delayed work to cancel * * This is kthread_cancel_work_sync() for delayed works. * * Return: %true if @dwork was pending, %false otherwise. */ bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork) { return __kthread_cancel_work_sync(&dwork->work, true); } EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync); /** * kthread_flush_worker - flush all current works on a kthread_worker * @worker: worker to flush * * Wait until all currently executing or pending works on @worker are * finished. */ void kthread_flush_worker(struct kthread_worker *worker) { struct kthread_flush_work fwork = { KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), COMPLETION_INITIALIZER_ONSTACK(fwork.done), }; kthread_queue_work(worker, &fwork.work); wait_for_completion(&fwork.done); } EXPORT_SYMBOL_GPL(kthread_flush_worker); /** * kthread_destroy_worker - destroy a kthread worker * @worker: worker to be destroyed * * Flush and destroy @worker. The simple flush is enough because the kthread * worker API is used only in trivial scenarios. There are no multi-step state * machines needed. */ void kthread_destroy_worker(struct kthread_worker *worker) { struct task_struct *task; task = worker->task; if (WARN_ON(!task)) return; kthread_flush_worker(worker); kthread_stop(task); WARN_ON(!list_empty(&worker->work_list)); kfree(worker); } EXPORT_SYMBOL(kthread_destroy_worker); /** * kthread_use_mm - make the calling kthread operate on an address space * @mm: address space to operate on */ void kthread_use_mm(struct mm_struct *mm) { struct mm_struct *active_mm; struct task_struct *tsk = current; WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); WARN_ON_ONCE(tsk->mm); task_lock(tsk); /* Hold off tlb flush IPIs while switching mm's */ local_irq_disable(); active_mm = tsk->active_mm; if (active_mm != mm) { mmgrab(mm); tsk->active_mm = mm; } tsk->mm = mm; membarrier_update_current_mm(mm); switch_mm_irqs_off(active_mm, mm, tsk); local_irq_enable(); task_unlock(tsk); #ifdef finish_arch_post_lock_switch finish_arch_post_lock_switch(); #endif /* * When a kthread starts operating on an address space, the loop * in membarrier_{private,global}_expedited() may not observe * that tsk->mm, and not issue an IPI. Membarrier requires a * memory barrier after storing to tsk->mm, before accessing * user-space memory. A full memory barrier for membarrier * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by * mmdrop(), or explicitly with smp_mb(). */ if (active_mm != mm) mmdrop(active_mm); else smp_mb(); to_kthread(tsk)->oldfs = force_uaccess_begin(); } EXPORT_SYMBOL_GPL(kthread_use_mm); /** * kthread_unuse_mm - reverse the effect of kthread_use_mm() * @mm: address space to operate on */ void kthread_unuse_mm(struct mm_struct *mm) { struct task_struct *tsk = current; WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); WARN_ON_ONCE(!tsk->mm); force_uaccess_end(to_kthread(tsk)->oldfs); task_lock(tsk); /* * When a kthread stops operating on an address space, the loop * in membarrier_{private,global}_expedited() may not observe * that tsk->mm, and not issue an IPI. Membarrier requires a * memory barrier after accessing user-space memory, before * clearing tsk->mm. */ smp_mb__after_spinlock(); sync_mm_rss(mm); local_irq_disable(); tsk->mm = NULL; membarrier_update_current_mm(NULL); /* active_mm is still 'mm' */ enter_lazy_tlb(mm, tsk); local_irq_enable(); task_unlock(tsk); } EXPORT_SYMBOL_GPL(kthread_unuse_mm); #ifdef CONFIG_BLK_CGROUP /** * kthread_associate_blkcg - associate blkcg to current kthread * @css: the cgroup info * * Current thread must be a kthread. The thread is running jobs on behalf of * other threads. In some cases, we expect the jobs attach cgroup info of * original threads instead of that of current thread. This function stores * original thread's cgroup info in current kthread context for later * retrieval. */ void kthread_associate_blkcg(struct cgroup_subsys_state *css) { struct kthread *kthread; if (!(current->flags & PF_KTHREAD)) return; kthread = to_kthread(current); if (!kthread) return; if (kthread->blkcg_css) { css_put(kthread->blkcg_css); kthread->blkcg_css = NULL; } if (css) { css_get(css); kthread->blkcg_css = css; } } EXPORT_SYMBOL(kthread_associate_blkcg); /** * kthread_blkcg - get associated blkcg css of current kthread * * Current thread must be a kthread. */ struct cgroup_subsys_state *kthread_blkcg(void) { struct kthread *kthread; if (current->flags & PF_KTHREAD) { kthread = to_kthread(current); if (kthread) return kthread->blkcg_css; } return NULL; } EXPORT_SYMBOL(kthread_blkcg); #endif |
2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | // SPDX-License-Identifier: GPL-2.0-or-later /* * MPLS GSO Support * * Authors: Simon Horman (horms@verge.net.au) * * Based on: GSO portions of net/ipv4/gre.c */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/err.h> #include <linux/module.h> #include <linux/netdev_features.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <net/mpls.h> static struct sk_buff *mpls_gso_segment(struct sk_buff *skb, netdev_features_t features) { struct sk_buff *segs = ERR_PTR(-EINVAL); u16 mac_offset = skb->mac_header; netdev_features_t mpls_features; u16 mac_len = skb->mac_len; __be16 mpls_protocol; unsigned int mpls_hlen; skb_reset_network_header(skb); mpls_hlen = skb_inner_network_header(skb) - skb_network_header(skb); if (unlikely(!mpls_hlen || mpls_hlen % MPLS_HLEN)) goto out; if (unlikely(!pskb_may_pull(skb, mpls_hlen))) goto out; /* Setup inner SKB. */ mpls_protocol = skb->protocol; skb->protocol = skb->inner_protocol; __skb_pull(skb, mpls_hlen); skb->mac_len = 0; skb_reset_mac_header(skb); /* Segment inner packet. */ mpls_features = skb->dev->mpls_features & features; segs = skb_mac_gso_segment(skb, mpls_features); if (IS_ERR_OR_NULL(segs)) { skb_gso_error_unwind(skb, mpls_protocol, mpls_hlen, mac_offset, mac_len); goto out; } skb = segs; mpls_hlen += mac_len; do { skb->mac_len = mac_len; skb->protocol = mpls_protocol; skb_reset_inner_network_header(skb); __skb_push(skb, mpls_hlen); skb_reset_mac_header(skb); skb_set_network_header(skb, mac_len); } while ((skb = skb->next)); out: return segs; } static struct packet_offload mpls_mc_offload __read_mostly = { .type = cpu_to_be16(ETH_P_MPLS_MC), .priority = 15, .callbacks = { .gso_segment = mpls_gso_segment, }, }; static struct packet_offload mpls_uc_offload __read_mostly = { .type = cpu_to_be16(ETH_P_MPLS_UC), .priority = 15, .callbacks = { .gso_segment = mpls_gso_segment, }, }; static int __init mpls_gso_init(void) { pr_info("MPLS GSO support\n"); dev_add_offload(&mpls_uc_offload); dev_add_offload(&mpls_mc_offload); return 0; } static void __exit mpls_gso_exit(void) { dev_remove_offload(&mpls_uc_offload); dev_remove_offload(&mpls_mc_offload); } module_init(mpls_gso_init); module_exit(mpls_gso_exit); MODULE_DESCRIPTION("MPLS GSO support"); MODULE_AUTHOR("Simon Horman (horms@verge.net.au)"); MODULE_LICENSE("GPL"); |
4 4 3 3 7 7 6 6 3 3 3 5 5 4 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C)2003,2004 USAGI/WIDE Project * * Authors Mitsuru KANDA <mk@linux-ipv6.org> * YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> */ #define pr_fmt(fmt) "IPv6: " fmt #include <linux/icmpv6.h> #include <linux/init.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <net/ipv6.h> #include <net/protocol.h> #include <net/xfrm.h> static struct xfrm6_tunnel __rcu *tunnel6_handlers __read_mostly; static struct xfrm6_tunnel __rcu *tunnel46_handlers __read_mostly; static struct xfrm6_tunnel __rcu *tunnelmpls6_handlers __read_mostly; static DEFINE_MUTEX(tunnel6_mutex); static inline int xfrm6_tunnel_mpls_supported(void) { return IS_ENABLED(CONFIG_MPLS); } int xfrm6_tunnel_register(struct xfrm6_tunnel *handler, unsigned short family) { struct xfrm6_tunnel __rcu **pprev; struct xfrm6_tunnel *t; int ret = -EEXIST; int priority = handler->priority; mutex_lock(&tunnel6_mutex); switch (family) { case AF_INET6: pprev = &tunnel6_handlers; break; case AF_INET: pprev = &tunnel46_handlers; break; case AF_MPLS: pprev = &tunnelmpls6_handlers; break; default: goto err; } for (; (t = rcu_dereference_protected(*pprev, lockdep_is_held(&tunnel6_mutex))) != NULL; pprev = &t->next) { if (t->priority > priority) break; if (t->priority == priority) goto err; } handler->next = *pprev; rcu_assign_pointer(*pprev, handler); ret = 0; err: mutex_unlock(&tunnel6_mutex); return ret; } EXPORT_SYMBOL(xfrm6_tunnel_register); int xfrm6_tunnel_deregister(struct xfrm6_tunnel *handler, unsigned short family) { struct xfrm6_tunnel __rcu **pprev; struct xfrm6_tunnel *t; int ret = -ENOENT; mutex_lock(&tunnel6_mutex); switch (family) { case AF_INET6: pprev = &tunnel6_handlers; break; case AF_INET: pprev = &tunnel46_handlers; break; case AF_MPLS: pprev = &tunnelmpls6_handlers; break; default: goto err; } for (; (t = rcu_dereference_protected(*pprev, lockdep_is_held(&tunnel6_mutex))) != NULL; pprev = &t->next) { if (t == handler) { *pprev = handler->next; ret = 0; break; } } err: mutex_unlock(&tunnel6_mutex); synchronize_net(); return ret; } EXPORT_SYMBOL(xfrm6_tunnel_deregister); #define for_each_tunnel_rcu(head, handler) \ for (handler = rcu_dereference(head); \ handler != NULL; \ handler = rcu_dereference(handler->next)) \ static int tunnelmpls6_rcv(struct sk_buff *skb) { struct xfrm6_tunnel *handler; if (!pskb_may_pull(skb, sizeof(struct ipv6hdr))) goto drop; for_each_tunnel_rcu(tunnelmpls6_handlers, handler) if (!handler->handler(skb)) return 0; icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0); drop: kfree_skb(skb); return 0; } static int tunnel6_rcv(struct sk_buff *skb) { struct xfrm6_tunnel *handler; if (!pskb_may_pull(skb, sizeof(struct ipv6hdr))) goto drop; for_each_tunnel_rcu(tunnel6_handlers, handler) if (!handler->handler(skb)) return 0; icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0); drop: kfree_skb(skb); return 0; } #if IS_ENABLED(CONFIG_INET6_XFRM_TUNNEL) static int tunnel6_rcv_cb(struct sk_buff *skb, u8 proto, int err) { struct xfrm6_tunnel __rcu *head; struct xfrm6_tunnel *handler; int ret; head = (proto == IPPROTO_IPV6) ? tunnel6_handlers : tunnel46_handlers; for_each_tunnel_rcu(head, handler) { if (handler->cb_handler) { ret = handler->cb_handler(skb, err); if (ret <= 0) return ret; } } return 0; } static const struct xfrm_input_afinfo tunnel6_input_afinfo = { .family = AF_INET6, .is_ipip = true, .callback = tunnel6_rcv_cb, }; #endif static int tunnel46_rcv(struct sk_buff *skb) { struct xfrm6_tunnel *handler; if (!pskb_may_pull(skb, sizeof(struct iphdr))) goto drop; for_each_tunnel_rcu(tunnel46_handlers, handler) if (!handler->handler(skb)) return 0; icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0); drop: kfree_skb(skb); return 0; } static int tunnel6_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { struct xfrm6_tunnel *handler; for_each_tunnel_rcu(tunnel6_handlers, handler) if (!handler->err_handler(skb, opt, type, code, offset, info)) return 0; return -ENOENT; } static int tunnel46_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { struct xfrm6_tunnel *handler; for_each_tunnel_rcu(tunnel46_handlers, handler) if (!handler->err_handler(skb, opt, type, code, offset, info)) return 0; return -ENOENT; } static int tunnelmpls6_err(struct sk_buff *skb, struct inet6_skb_parm *opt, u8 type, u8 code, int offset, __be32 info) { struct xfrm6_tunnel *handler; for_each_tunnel_rcu(tunnelmpls6_handlers, handler) if (!handler->err_handler(skb, opt, type, code, offset, info)) return 0; return -ENOENT; } static const struct inet6_protocol tunnel6_protocol = { .handler = tunnel6_rcv, .err_handler = tunnel6_err, .flags = INET6_PROTO_NOPOLICY|INET6_PROTO_FINAL, }; static const struct inet6_protocol tunnel46_protocol = { .handler = tunnel46_rcv, .err_handler = tunnel46_err, .flags = INET6_PROTO_NOPOLICY|INET6_PROTO_FINAL, }; static const struct inet6_protocol tunnelmpls6_protocol = { .handler = tunnelmpls6_rcv, .err_handler = tunnelmpls6_err, .flags = INET6_PROTO_NOPOLICY|INET6_PROTO_FINAL, }; static int __init tunnel6_init(void) { if (inet6_add_protocol(&tunnel6_protocol, IPPROTO_IPV6)) { pr_err("%s: can't add protocol\n", __func__); return -EAGAIN; } if (inet6_add_protocol(&tunnel46_protocol, IPPROTO_IPIP)) { pr_err("%s: can't add protocol\n", __func__); inet6_del_protocol(&tunnel6_protocol, IPPROTO_IPV6); return -EAGAIN; } if (xfrm6_tunnel_mpls_supported() && inet6_add_protocol(&tunnelmpls6_protocol, IPPROTO_MPLS)) { pr_err("%s: can't add protocol\n", __func__); inet6_del_protocol(&tunnel6_protocol, IPPROTO_IPV6); inet6_del_protocol(&tunnel46_protocol, IPPROTO_IPIP); return -EAGAIN; } #if IS_ENABLED(CONFIG_INET6_XFRM_TUNNEL) if (xfrm_input_register_afinfo(&tunnel6_input_afinfo)) { pr_err("%s: can't add input afinfo\n", __func__); inet6_del_protocol(&tunnel6_protocol, IPPROTO_IPV6); inet6_del_protocol(&tunnel46_protocol, IPPROTO_IPIP); if (xfrm6_tunnel_mpls_supported()) inet6_del_protocol(&tunnelmpls6_protocol, IPPROTO_MPLS); return -EAGAIN; } #endif return 0; } static void __exit tunnel6_fini(void) { #if IS_ENABLED(CONFIG_INET6_XFRM_TUNNEL) if (xfrm_input_unregister_afinfo(&tunnel6_input_afinfo)) pr_err("%s: can't remove input afinfo\n", __func__); #endif if (inet6_del_protocol(&tunnel46_protocol, IPPROTO_IPIP)) pr_err("%s: can't remove protocol\n", __func__); if (inet6_del_protocol(&tunnel6_protocol, IPPROTO_IPV6)) pr_err("%s: can't remove protocol\n", __func__); if (xfrm6_tunnel_mpls_supported() && inet6_del_protocol(&tunnelmpls6_protocol, IPPROTO_MPLS)) pr_err("%s: can't remove protocol\n", __func__); } module_init(tunnel6_init); module_exit(tunnel6_fini); MODULE_LICENSE("GPL"); |
38 38 38 38 38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | // SPDX-License-Identifier: GPL-2.0 /* * procfs-based user access to knfsd statistics * * /proc/net/rpc/nfsd * * Format: * rc <hits> <misses> <nocache> * Statistsics for the reply cache * fh <stale> <deprecated filehandle cache stats> * statistics for filehandle lookup * io <bytes-read> <bytes-written> * statistics for IO throughput * th <threads> <deprecated thread usage histogram stats> * number of threads * ra <deprecated ra-cache stats> * * plus generic RPC stats (see net/sunrpc/stats.c) * * Copyright (C) 1995, 1996, 1997 Olaf Kirch <okir@monad.swb.de> */ #include <linux/seq_file.h> #include <linux/module.h> #include <linux/sunrpc/stats.h> #include <net/net_namespace.h> #include "nfsd.h" static int nfsd_show(struct seq_file *seq, void *v) { struct net *net = PDE_DATA(file_inode(seq->file)); struct nfsd_net *nn = net_generic(net, nfsd_net_id); int i; seq_printf(seq, "rc %lld %lld %lld\nfh %lld 0 0 0 0\nio %lld %lld\n", percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_HITS]), percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_MISSES]), percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_NOCACHE]), percpu_counter_sum_positive(&nn->counter[NFSD_STATS_FH_STALE]), percpu_counter_sum_positive(&nn->counter[NFSD_STATS_IO_READ]), percpu_counter_sum_positive(&nn->counter[NFSD_STATS_IO_WRITE])); /* thread usage: */ seq_printf(seq, "th %u 0", atomic_read(&nfsd_th_cnt)); /* deprecated thread usage histogram stats */ for (i = 0; i < 10; i++) seq_puts(seq, " 0.000"); /* deprecated ra-cache stats */ seq_puts(seq, "\nra 0 0 0 0 0 0 0 0 0 0 0 0\n"); /* show my rpc info */ svc_seq_show(seq, &nn->nfsd_svcstats); #ifdef CONFIG_NFSD_V4 /* Show count for individual nfsv4 operations */ /* Writing operation numbers 0 1 2 also for maintaining uniformity */ seq_printf(seq,"proc4ops %u", LAST_NFS4_OP + 1); for (i = 0; i <= LAST_NFS4_OP; i++) { seq_printf(seq, " %lld", percpu_counter_sum_positive(&nn->counter[NFSD_STATS_NFS4_OP(i)])); } seq_putc(seq, '\n'); #endif return 0; } DEFINE_PROC_SHOW_ATTRIBUTE(nfsd); int nfsd_percpu_counters_init(struct percpu_counter *counters, int num) { int i, err = 0; for (i = 0; !err && i < num; i++) err = percpu_counter_init(&counters[i], 0, GFP_KERNEL); if (!err) return 0; for (; i > 0; i--) percpu_counter_destroy(&counters[i-1]); return err; } void nfsd_percpu_counters_reset(struct percpu_counter counters[], int num) { int i; for (i = 0; i < num; i++) percpu_counter_set(&counters[i], 0); } void nfsd_percpu_counters_destroy(struct percpu_counter counters[], int num) { int i; for (i = 0; i < num; i++) percpu_counter_destroy(&counters[i]); } int nfsd_stat_counters_init(struct nfsd_net *nn) { return nfsd_percpu_counters_init(nn->counter, NFSD_STATS_COUNTERS_NUM); } void nfsd_stat_counters_destroy(struct nfsd_net *nn) { nfsd_percpu_counters_destroy(nn->counter, NFSD_STATS_COUNTERS_NUM); } void nfsd_proc_stat_init(struct net *net) { struct nfsd_net *nn = net_generic(net, nfsd_net_id); svc_proc_register(net, &nn->nfsd_svcstats, &nfsd_proc_ops); } void nfsd_proc_stat_shutdown(struct net *net) { svc_proc_unregister(net, "nfsd"); } |
425 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 | // SPDX-License-Identifier: GPL-2.0 /* * Dynamic byte queue limits. See include/linux/dynamic_queue_limits.h * * Copyright (c) 2011, Tom Herbert <therbert@google.com> */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/jiffies.h> #include <linux/dynamic_queue_limits.h> #include <linux/compiler.h> #include <linux/export.h> #define POSDIFF(A, B) ((int)((A) - (B)) > 0 ? (A) - (B) : 0) #define AFTER_EQ(A, B) ((int)((A) - (B)) >= 0) /* Records completed count and recalculates the queue limit */ void dql_completed(struct dql *dql, unsigned int count) { unsigned int inprogress, prev_inprogress, limit; unsigned int ovlimit, completed, num_queued; bool all_prev_completed; num_queued = READ_ONCE(dql->num_queued); /* Can't complete more than what's in queue */ BUG_ON(count > num_queued - dql->num_completed); completed = dql->num_completed + count; limit = dql->limit; ovlimit = POSDIFF(num_queued - dql->num_completed, limit); inprogress = num_queued - completed; prev_inprogress = dql->prev_num_queued - dql->num_completed; all_prev_completed = AFTER_EQ(completed, dql->prev_num_queued); if ((ovlimit && !inprogress) || (dql->prev_ovlimit && all_prev_completed)) { /* * Queue considered starved if: * - The queue was over-limit in the last interval, * and there is no more data in the queue. * OR * - The queue was over-limit in the previous interval and * when enqueuing it was possible that all queued data * had been consumed. This covers the case when queue * may have becomes starved between completion processing * running and next time enqueue was scheduled. * * When queue is starved increase the limit by the amount * of bytes both sent and completed in the last interval, * plus any previous over-limit. */ limit += POSDIFF(completed, dql->prev_num_queued) + dql->prev_ovlimit; dql->slack_start_time = jiffies; dql->lowest_slack = UINT_MAX; } else if (inprogress && prev_inprogress && !all_prev_completed) { /* * Queue was not starved, check if the limit can be decreased. * A decrease is only considered if the queue has been busy in * the whole interval (the check above). * * If there is slack, the amount of excess data queued above * the amount needed to prevent starvation, the queue limit * can be decreased. To avoid hysteresis we consider the * minimum amount of slack found over several iterations of the * completion routine. */ unsigned int slack, slack_last_objs; /* * Slack is the maximum of * - The queue limit plus previous over-limit minus twice * the number of objects completed. Note that two times * number of completed bytes is a basis for an upper bound * of the limit. * - Portion of objects in the last queuing operation that * was not part of non-zero previous over-limit. That is * "round down" by non-overlimit portion of the last * queueing operation. */ slack = POSDIFF(limit + dql->prev_ovlimit, 2 * (completed - dql->num_completed)); slack_last_objs = dql->prev_ovlimit ? POSDIFF(dql->prev_last_obj_cnt, dql->prev_ovlimit) : 0; slack = max(slack, slack_last_objs); if (slack < dql->lowest_slack) dql->lowest_slack = slack; if (time_after(jiffies, dql->slack_start_time + dql->slack_hold_time)) { limit = POSDIFF(limit, dql->lowest_slack); dql->slack_start_time = jiffies; dql->lowest_slack = UINT_MAX; } } /* Enforce bounds on limit */ limit = clamp(limit, dql->min_limit, dql->max_limit); if (limit != dql->limit) { dql->limit = limit; ovlimit = 0; } dql->adj_limit = limit + completed; dql->prev_ovlimit = ovlimit; dql->prev_last_obj_cnt = dql->last_obj_cnt; dql->num_completed = completed; dql->prev_num_queued = num_queued; } EXPORT_SYMBOL(dql_completed); void dql_reset(struct dql *dql) { /* Reset all dynamic values */ dql->limit = 0; dql->num_queued = 0; dql->num_completed = 0; dql->last_obj_cnt = 0; dql->prev_num_queued = 0; dql->prev_last_obj_cnt = 0; dql->prev_ovlimit = 0; dql->lowest_slack = UINT_MAX; dql->slack_start_time = jiffies; } EXPORT_SYMBOL(dql_reset); void dql_init(struct dql *dql, unsigned int hold_time) { dql->max_limit = DQL_MAX_LIMIT; dql->min_limit = 0; dql->slack_hold_time = hold_time; dql_reset(dql); } EXPORT_SYMBOL(dql_init); |
38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | // SPDX-License-Identifier: GPL-2.0-only #include <linux/kernel.h> #include <linux/proc_fs.h> #include <net/netfilter/nf_flow_table.h> static void *nf_flow_table_cpu_seq_start(struct seq_file *seq, loff_t *pos) { struct net *net = seq_file_net(seq); int cpu; if (*pos == 0) return SEQ_START_TOKEN; for (cpu = *pos - 1; cpu < nr_cpu_ids; ++cpu) { if (!cpu_possible(cpu)) continue; *pos = cpu + 1; return per_cpu_ptr(net->ft.stat, cpu); } return NULL; } static void *nf_flow_table_cpu_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct net *net = seq_file_net(seq); int cpu; for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { if (!cpu_possible(cpu)) continue; *pos = cpu + 1; return per_cpu_ptr(net->ft.stat, cpu); } (*pos)++; return NULL; } static void nf_flow_table_cpu_seq_stop(struct seq_file *seq, void *v) { } static int nf_flow_table_cpu_seq_show(struct seq_file *seq, void *v) { const struct nf_flow_table_stat *st = v; if (v == SEQ_START_TOKEN) { seq_puts(seq, "wq_add wq_del wq_stats\n"); return 0; } seq_printf(seq, "%8d %8d %8d\n", st->count_wq_add, st->count_wq_del, st->count_wq_stats ); return 0; } static const struct seq_operations nf_flow_table_cpu_seq_ops = { .start = nf_flow_table_cpu_seq_start, .next = nf_flow_table_cpu_seq_next, .stop = nf_flow_table_cpu_seq_stop, .show = nf_flow_table_cpu_seq_show, }; int nf_flow_table_init_proc(struct net *net) { struct proc_dir_entry *pde; pde = proc_create_net("nf_flowtable", 0444, net->proc_net_stat, &nf_flow_table_cpu_seq_ops, sizeof(struct seq_net_private)); return pde ? 0 : -ENOMEM; } void nf_flow_table_fini_proc(struct net *net) { remove_proc_entry("nf_flowtable", net->proc_net_stat); } |
40 40 40 40 39 40 38 40 40 29 30 7 8 8 8 27 28 27 29 5 5 40 40 40 40 12 12 12 12 12 12 12 12 12 12 12 12 12 12 40 39 40 40 40 40 40 40 40 40 40 40 40 40 39 40 40 40 40 40 40 32 32 4 51 51 51 39 39 35 40 40 40 39 40 40 40 40 44 44 44 40 40 40 40 40 44 43 44 44 44 43 44 44 44 44 44 44 44 43 44 44 44 44 44 44 4 40 40 44 44 44 40 4 44 6 44 43 40 4 40 4 44 43 43 44 44 44 44 44 44 43 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright (C) 2015 - 2017 Intel Deutschland GmbH * Copyright (C) 2018-2021 Intel Corporation */ #include <linux/module.h> #include <linux/init.h> #include <linux/etherdevice.h> #include <linux/netdevice.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/skbuff.h> #include <linux/if_arp.h> #include <linux/timer.h> #include <linux/rtnetlink.h> #include <net/codel.h> #include <net/mac80211.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "rate.h" #include "sta_info.h" #include "debugfs_sta.h" #include "mesh.h" #include "wme.h" /** * DOC: STA information lifetime rules * * STA info structures (&struct sta_info) are managed in a hash table * for faster lookup and a list for iteration. They are managed using * RCU, i.e. access to the list and hash table is protected by RCU. * * Upon allocating a STA info structure with sta_info_alloc(), the caller * owns that structure. It must then insert it into the hash table using * either sta_info_insert() or sta_info_insert_rcu(); only in the latter * case (which acquires an rcu read section but must not be called from * within one) will the pointer still be valid after the call. Note that * the caller may not do much with the STA info before inserting it, in * particular, it may not start any mesh peer link management or add * encryption keys. * * When the insertion fails (sta_info_insert()) returns non-zero), the * structure will have been freed by sta_info_insert()! * * Station entries are added by mac80211 when you establish a link with a * peer. This means different things for the different type of interfaces * we support. For a regular station this mean we add the AP sta when we * receive an association response from the AP. For IBSS this occurs when * get to know about a peer on the same IBSS. For WDS we add the sta for * the peer immediately upon device open. When using AP mode we add stations * for each respective station upon request from userspace through nl80211. * * In order to remove a STA info structure, various sta_info_destroy_*() * calls are available. * * There is no concept of ownership on a STA entry, each structure is * owned by the global hash table/list until it is removed. All users of * the structure need to be RCU protected so that the structure won't be * freed before they are done using it. */ static const struct rhashtable_params sta_rht_params = { .nelem_hint = 3, /* start small */ .automatic_shrinking = true, .head_offset = offsetof(struct sta_info, hash_node), .key_offset = offsetof(struct sta_info, addr), .key_len = ETH_ALEN, .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, }; /* Caller must hold local->sta_mtx */ static int sta_info_hash_del(struct ieee80211_local *local, struct sta_info *sta) { return rhltable_remove(&local->sta_hash, &sta->hash_node, sta_rht_params); } static void __cleanup_single_sta(struct sta_info *sta) { int ac, i; struct tid_ampdu_tx *tid_tx; struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct ps_data *ps; if (test_sta_flag(sta, WLAN_STA_PS_STA) || test_sta_flag(sta, WLAN_STA_PS_DRIVER) || test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { if (sta->sdata->vif.type == NL80211_IFTYPE_AP || sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) ps = &sdata->bss->ps; else if (ieee80211_vif_is_mesh(&sdata->vif)) ps = &sdata->u.mesh.ps; else return; clear_sta_flag(sta, WLAN_STA_PS_STA); clear_sta_flag(sta, WLAN_STA_PS_DRIVER); clear_sta_flag(sta, WLAN_STA_PS_DELIVER); atomic_dec(&ps->num_sta_ps); } if (sta->sta.txq[0]) { for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { struct txq_info *txqi; if (!sta->sta.txq[i]) continue; txqi = to_txq_info(sta->sta.txq[i]); ieee80211_txq_purge(local, txqi); } } for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); } if (ieee80211_vif_is_mesh(&sdata->vif)) mesh_sta_cleanup(sta); cancel_work_sync(&sta->drv_deliver_wk); /* * Destroy aggregation state here. It would be nice to wait for the * driver to finish aggregation stop and then clean up, but for now * drivers have to handle aggregation stop being requested, followed * directly by station destruction. */ for (i = 0; i < IEEE80211_NUM_TIDS; i++) { kfree(sta->ampdu_mlme.tid_start_tx[i]); tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); if (!tid_tx) continue; ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); kfree(tid_tx); } } static void cleanup_single_sta(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; __cleanup_single_sta(sta); sta_info_free(local, sta); } struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, const u8 *addr) { return rhltable_lookup(&local->sta_hash, addr, sta_rht_params); } /* protected by RCU */ struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, const u8 *addr) { struct ieee80211_local *local = sdata->local; struct rhlist_head *tmp; struct sta_info *sta; rcu_read_lock(); for_each_sta_info(local, addr, sta, tmp) { if (sta->sdata == sdata) { rcu_read_unlock(); /* this is safe as the caller must already hold * another rcu read section or the mutex */ return sta; } } rcu_read_unlock(); return NULL; } /* * Get sta info either from the specified interface * or from one of its vlans */ struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, const u8 *addr) { struct ieee80211_local *local = sdata->local; struct rhlist_head *tmp; struct sta_info *sta; rcu_read_lock(); for_each_sta_info(local, addr, sta, tmp) { if (sta->sdata == sdata || (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { rcu_read_unlock(); /* this is safe as the caller must already hold * another rcu read section or the mutex */ return sta; } } rcu_read_unlock(); return NULL; } struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local, const u8 *sta_addr, const u8 *vif_addr) { struct rhlist_head *tmp; struct sta_info *sta; for_each_sta_info(local, sta_addr, sta, tmp) { if (ether_addr_equal(vif_addr, sta->sdata->vif.addr)) return sta; } return NULL; } struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, int idx) { struct ieee80211_local *local = sdata->local; struct sta_info *sta; int i = 0; list_for_each_entry_rcu(sta, &local->sta_list, list, lockdep_is_held(&local->sta_mtx)) { if (sdata != sta->sdata) continue; if (i < idx) { ++i; continue; } return sta; } return NULL; } /** * sta_info_free - free STA * * @local: pointer to the global information * @sta: STA info to free * * This function must undo everything done by sta_info_alloc() * that may happen before sta_info_insert(). It may only be * called when sta_info_insert() has not been attempted (and * if that fails, the station is freed anyway.) */ void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) { /* * If we had used sta_info_pre_move_state() then we might not * have gone through the state transitions down again, so do * it here now (and warn if it's inserted). * * This will clear state such as fast TX/RX that may have been * allocated during state transitions. */ while (sta->sta_state > IEEE80211_STA_NONE) { int ret; WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED)); ret = sta_info_move_state(sta, sta->sta_state - 1); if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret)) break; } if (sta->rate_ctrl) rate_control_free_sta(sta); sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); if (sta->sta.txq[0]) kfree(to_txq_info(sta->sta.txq[0])); kfree(rcu_dereference_raw(sta->sta.rates)); #ifdef CONFIG_MAC80211_MESH kfree(sta->mesh); #endif free_percpu(sta->pcpu_rx_stats); kfree(sta); } /* Caller must hold local->sta_mtx */ static int sta_info_hash_add(struct ieee80211_local *local, struct sta_info *sta) { return rhltable_insert(&local->sta_hash, &sta->hash_node, sta_rht_params); } static void sta_deliver_ps_frames(struct work_struct *wk) { struct sta_info *sta; sta = container_of(wk, struct sta_info, drv_deliver_wk); if (sta->dead) return; local_bh_disable(); if (!test_sta_flag(sta, WLAN_STA_PS_STA)) ieee80211_sta_ps_deliver_wakeup(sta); else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) ieee80211_sta_ps_deliver_poll_response(sta); else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) ieee80211_sta_ps_deliver_uapsd(sta); local_bh_enable(); } static int sta_prepare_rate_control(struct ieee80211_local *local, struct sta_info *sta, gfp_t gfp) { if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) return 0; sta->rate_ctrl = local->rate_ctrl; sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, sta, gfp); if (!sta->rate_ctrl_priv) return -ENOMEM; return 0; } struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, const u8 *addr, gfp_t gfp) { struct ieee80211_local *local = sdata->local; struct ieee80211_hw *hw = &local->hw; struct sta_info *sta; int i; sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); if (!sta) return NULL; if (ieee80211_hw_check(hw, USES_RSS)) { sta->pcpu_rx_stats = alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp); if (!sta->pcpu_rx_stats) goto free; } spin_lock_init(&sta->lock); spin_lock_init(&sta->ps_lock); INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); mutex_init(&sta->ampdu_mlme.mtx); #ifdef CONFIG_MAC80211_MESH if (ieee80211_vif_is_mesh(&sdata->vif)) { sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); if (!sta->mesh) goto free; sta->mesh->plink_sta = sta; spin_lock_init(&sta->mesh->plink_lock); if (ieee80211_vif_is_mesh(&sdata->vif) && !sdata->u.mesh.user_mpm) timer_setup(&sta->mesh->plink_timer, mesh_plink_timer, 0); sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; } #endif memcpy(sta->addr, addr, ETH_ALEN); memcpy(sta->sta.addr, addr, ETH_ALEN); sta->sta.max_rx_aggregation_subframes = local->hw.max_rx_aggregation_subframes; /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only. * The Tx path starts to use a key as soon as the key slot ptk_idx * references to is not NULL. To not use the initial Rx-only key * prematurely for Tx initialize ptk_idx to an impossible PTK keyid * which always will refer to a NULL key. */ BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX); sta->ptk_idx = INVALID_PTK_KEYIDX; sta->local = local; sta->sdata = sdata; sta->rx_stats.last_rx = jiffies; u64_stats_init(&sta->rx_stats.syncp); ieee80211_init_frag_cache(&sta->frags); sta->sta_state = IEEE80211_STA_NONE; /* Mark TID as unreserved */ sta->reserved_tid = IEEE80211_TID_UNRESERVED; sta->last_connected = ktime_get_seconds(); ewma_signal_init(&sta->rx_stats_avg.signal); ewma_avg_signal_init(&sta->status_stats.avg_ack_signal); for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++) ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]); if (local->ops->wake_tx_queue) { void *txq_data; int size = sizeof(struct txq_info) + ALIGN(hw->txq_data_size, sizeof(void *)); txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); if (!txq_data) goto free; for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { struct txq_info *txq = txq_data + i * size; /* might not do anything for the bufferable MMPDU TXQ */ ieee80211_txq_init(sdata, sta, txq, i); } } if (sta_prepare_rate_control(local, sta, gfp)) goto free_txq; for (i = 0; i < IEEE80211_NUM_ACS; i++) { skb_queue_head_init(&sta->ps_tx_buf[i]); skb_queue_head_init(&sta->tx_filtered[i]); init_airtime_info(&sta->airtime[i], &local->airtime[i]); } for (i = 0; i < IEEE80211_NUM_TIDS; i++) sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); for (i = 0; i < NUM_NL80211_BANDS; i++) { u32 mandatory = 0; int r; if (!hw->wiphy->bands[i]) continue; switch (i) { case NL80211_BAND_2GHZ: /* * We use both here, even if we cannot really know for * sure the station will support both, but the only use * for this is when we don't know anything yet and send * management frames, and then we'll pick the lowest * possible rate anyway. * If we don't include _G here, we cannot find a rate * in P2P, and thus trigger the WARN_ONCE() in rate.c */ mandatory = IEEE80211_RATE_MANDATORY_B | IEEE80211_RATE_MANDATORY_G; break; case NL80211_BAND_5GHZ: mandatory = IEEE80211_RATE_MANDATORY_A; break; case NL80211_BAND_60GHZ: WARN_ON(1); mandatory = 0; break; } for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) { struct ieee80211_rate *rate; rate = &hw->wiphy->bands[i]->bitrates[r]; if (!(rate->flags & mandatory)) continue; sta->sta.supp_rates[i] |= BIT(r); } } sta->sta.smps_mode = IEEE80211_SMPS_OFF; if (sdata->vif.type == NL80211_IFTYPE_AP || sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { struct ieee80211_supported_band *sband; u8 smps; sband = ieee80211_get_sband(sdata); if (!sband) goto free_txq; smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> IEEE80211_HT_CAP_SM_PS_SHIFT; /* * Assume that hostapd advertises our caps in the beacon and * this is the known_smps_mode for a station that just assciated */ switch (smps) { case WLAN_HT_SMPS_CONTROL_DISABLED: sta->known_smps_mode = IEEE80211_SMPS_OFF; break; case WLAN_HT_SMPS_CONTROL_STATIC: sta->known_smps_mode = IEEE80211_SMPS_STATIC; break; case WLAN_HT_SMPS_CONTROL_DYNAMIC: sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; break; default: WARN_ON(1); } } sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA; sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD; sta->cparams.target = MS2TIME(20); sta->cparams.interval = MS2TIME(100); sta->cparams.ecn = true; sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); return sta; free_txq: if (sta->sta.txq[0]) kfree(to_txq_info(sta->sta.txq[0])); free: free_percpu(sta->pcpu_rx_stats); #ifdef CONFIG_MAC80211_MESH kfree(sta->mesh); #endif kfree(sta); return NULL; } static int sta_info_insert_check(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; /* * Can't be a WARN_ON because it can be triggered through a race: * something inserts a STA (on one CPU) without holding the RTNL * and another CPU turns off the net device. */ if (unlikely(!ieee80211_sdata_running(sdata))) return -ENETDOWN; if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || !is_valid_ether_addr(sta->sta.addr))) return -EINVAL; /* The RCU read lock is required by rhashtable due to * asynchronous resize/rehash. We also require the mutex * for correctness. */ rcu_read_lock(); lockdep_assert_held(&sdata->local->sta_mtx); if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { rcu_read_unlock(); return -ENOTUNIQ; } rcu_read_unlock(); return 0; } static int sta_info_insert_drv_state(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sta_info *sta) { enum ieee80211_sta_state state; int err = 0; for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { err = drv_sta_state(local, sdata, sta, state, state + 1); if (err) break; } if (!err) { /* * Drivers using legacy sta_add/sta_remove callbacks only * get uploaded set to true after sta_add is called. */ if (!local->ops->sta_add) sta->uploaded = true; return 0; } if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { sdata_info(sdata, "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", sta->sta.addr, state + 1, err); err = 0; } /* unwind on error */ for (; state > IEEE80211_STA_NOTEXIST; state--) WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); return err; } static void ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; bool allow_p2p_go_ps = sdata->vif.p2p; struct sta_info *sta; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) { if (sdata != sta->sdata || !test_sta_flag(sta, WLAN_STA_ASSOC)) continue; if (!sta->sta.support_p2p_ps) { allow_p2p_go_ps = false; break; } } rcu_read_unlock(); if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) { sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps; ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS); } } /* * should be called with sta_mtx locked * this function replaces the mutex lock * with a RCU lock */ static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) { struct ieee80211_local *local = sta->local; struct ieee80211_sub_if_data *sdata = sta->sdata; struct station_info *sinfo = NULL; int err = 0; lockdep_assert_held(&local->sta_mtx); /* check if STA exists already */ if (sta_info_get_bss(sdata, sta->sta.addr)) { err = -EEXIST; goto out_cleanup; } sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); if (!sinfo) { err = -ENOMEM; goto out_cleanup; } local->num_sta++; local->sta_generation++; smp_mb(); /* simplify things and don't accept BA sessions yet */ set_sta_flag(sta, WLAN_STA_BLOCK_BA); /* make the station visible */ err = sta_info_hash_add(local, sta); if (err) goto out_drop_sta; list_add_tail_rcu(&sta->list, &local->sta_list); /* notify driver */ err = sta_info_insert_drv_state(local, sdata, sta); if (err) goto out_remove; set_sta_flag(sta, WLAN_STA_INSERTED); if (sta->sta_state >= IEEE80211_STA_ASSOC) { ieee80211_recalc_min_chandef(sta->sdata); if (!sta->sta.support_p2p_ps) ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); } /* accept BA sessions now */ clear_sta_flag(sta, WLAN_STA_BLOCK_BA); ieee80211_sta_debugfs_add(sta); rate_control_add_sta_debugfs(sta); sinfo->generation = local->sta_generation; cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); kfree(sinfo); sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); /* move reference to rcu-protected */ rcu_read_lock(); mutex_unlock(&local->sta_mtx); if (ieee80211_vif_is_mesh(&sdata->vif)) mesh_accept_plinks_update(sdata); ieee80211_check_fast_xmit(sta); return 0; out_remove: sta_info_hash_del(local, sta); list_del_rcu(&sta->list); out_drop_sta: local->num_sta--; synchronize_net(); out_cleanup: cleanup_single_sta(sta); mutex_unlock(&local->sta_mtx); kfree(sinfo); rcu_read_lock(); return err; } int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) { struct ieee80211_local *local = sta->local; int err; might_sleep(); mutex_lock(&local->sta_mtx); err = sta_info_insert_check(sta); if (err) { sta_info_free(local, sta); mutex_unlock(&local->sta_mtx); rcu_read_lock(); return err; } return sta_info_insert_finish(sta); } int sta_info_insert(struct sta_info *sta) { int err = sta_info_insert_rcu(sta); rcu_read_unlock(); return err; } static inline void __bss_tim_set(u8 *tim, u16 id) { /* * This format has been mandated by the IEEE specifications, * so this line may not be changed to use the __set_bit() format. */ tim[id / 8] |= (1 << (id % 8)); } static inline void __bss_tim_clear(u8 *tim, u16 id) { /* * This format has been mandated by the IEEE specifications, * so this line may not be changed to use the __clear_bit() format. */ tim[id / 8] &= ~(1 << (id % 8)); } static inline bool __bss_tim_get(u8 *tim, u16 id) { /* * This format has been mandated by the IEEE specifications, * so this line may not be changed to use the test_bit() format. */ return tim[id / 8] & (1 << (id % 8)); } static unsigned long ieee80211_tids_for_ac(int ac) { /* If we ever support TIDs > 7, this obviously needs to be adjusted */ switch (ac) { case IEEE80211_AC_VO: return BIT(6) | BIT(7); case IEEE80211_AC_VI: return BIT(4) | BIT(5); case IEEE80211_AC_BE: return BIT(0) | BIT(3); case IEEE80211_AC_BK: return BIT(1) | BIT(2); default: WARN_ON(1); return 0; } } static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) { struct ieee80211_local *local = sta->local; struct ps_data *ps; bool indicate_tim = false; u8 ignore_for_tim = sta->sta.uapsd_queues; int ac; u16 id = sta->sta.aid; if (sta->sdata->vif.type == NL80211_IFTYPE_AP || sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { if (WARN_ON_ONCE(!sta->sdata->bss)) return; ps = &sta->sdata->bss->ps; #ifdef CONFIG_MAC80211_MESH } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { ps = &sta->sdata->u.mesh.ps; #endif } else { return; } /* No need to do anything if the driver does all */ if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim) return; if (sta->dead) goto done; /* * If all ACs are delivery-enabled then we should build * the TIM bit for all ACs anyway; if only some are then * we ignore those and build the TIM bit using only the * non-enabled ones. */ if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) ignore_for_tim = 0; if (ignore_pending) ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { unsigned long tids; if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac]) continue; indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || !skb_queue_empty(&sta->ps_tx_buf[ac]); if (indicate_tim) break; tids = ieee80211_tids_for_ac(ac); indicate_tim |= sta->driver_buffered_tids & tids; indicate_tim |= sta->txq_buffered_tids & tids; } done: spin_lock_bh(&local->tim_lock); if (indicate_tim == __bss_tim_get(ps->tim, id)) goto out_unlock; if (indicate_tim) __bss_tim_set(ps->tim, id); else __bss_tim_clear(ps->tim, id); if (local->ops->set_tim && !WARN_ON(sta->dead)) { local->tim_in_locked_section = true; drv_set_tim(local, &sta->sta, indicate_tim); local->tim_in_locked_section = false; } out_unlock: spin_unlock_bh(&local->tim_lock); } void sta_info_recalc_tim(struct sta_info *sta) { __sta_info_recalc_tim(sta, false); } static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_tx_info *info; int timeout; if (!skb) return false; info = IEEE80211_SKB_CB(skb); /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ timeout = (sta->listen_interval * sta->sdata->vif.bss_conf.beacon_int * 32 / 15625) * HZ; if (timeout < STA_TX_BUFFER_EXPIRE) timeout = STA_TX_BUFFER_EXPIRE; return time_after(jiffies, info->control.jiffies + timeout); } static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, struct sta_info *sta, int ac) { unsigned long flags; struct sk_buff *skb; /* * First check for frames that should expire on the filtered * queue. Frames here were rejected by the driver and are on * a separate queue to avoid reordering with normal PS-buffered * frames. They also aren't accounted for right now in the * total_ps_buffered counter. */ for (;;) { spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); skb = skb_peek(&sta->tx_filtered[ac]); if (sta_info_buffer_expired(sta, skb)) skb = __skb_dequeue(&sta->tx_filtered[ac]); else skb = NULL; spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); /* * Frames are queued in order, so if this one * hasn't expired yet we can stop testing. If * we actually reached the end of the queue we * also need to stop, of course. */ if (!skb) break; ieee80211_free_txskb(&local->hw, skb); } /* * Now also check the normal PS-buffered queue, this will * only find something if the filtered queue was emptied * since the filtered frames are all before the normal PS * buffered frames. */ for (;;) { spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); skb = skb_peek(&sta->ps_tx_buf[ac]); if (sta_info_buffer_expired(sta, skb)) skb = __skb_dequeue(&sta->ps_tx_buf[ac]); else skb = NULL; spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); /* * frames are queued in order, so if this one * hasn't expired yet (or we reached the end of * the queue) we can stop testing */ if (!skb) break; local->total_ps_buffered--; ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", sta->sta.addr); ieee80211_free_txskb(&local->hw, skb); } /* * Finally, recalculate the TIM bit for this station -- it might * now be clear because the station was too slow to retrieve its * frames. */ sta_info_recalc_tim(sta); /* * Return whether there are any frames still buffered, this is * used to check whether the cleanup timer still needs to run, * if there are no frames we don't need to rearm the timer. */ return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && skb_queue_empty(&sta->tx_filtered[ac])); } static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, struct sta_info *sta) { bool have_buffered = false; int ac; /* This is only necessary for stations on BSS/MBSS interfaces */ if (!sta->sdata->bss && !ieee80211_vif_is_mesh(&sta->sdata->vif)) return false; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) have_buffered |= sta_info_cleanup_expire_buffered_ac(local, sta, ac); return have_buffered; } static int __must_check __sta_info_destroy_part1(struct sta_info *sta) { struct ieee80211_local *local; struct ieee80211_sub_if_data *sdata; int ret; might_sleep(); if (!sta) return -ENOENT; local = sta->local; sdata = sta->sdata; lockdep_assert_held(&local->sta_mtx); /* * Before removing the station from the driver and * rate control, it might still start new aggregation * sessions -- block that to make sure the tear-down * will be sufficient. */ set_sta_flag(sta, WLAN_STA_BLOCK_BA); ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); /* * Before removing the station from the driver there might be pending * rx frames on RSS queues sent prior to the disassociation - wait for * all such frames to be processed. */ drv_sync_rx_queues(local, sta); ret = sta_info_hash_del(local, sta); if (WARN_ON(ret)) return ret; /* * for TDLS peers, make sure to return to the base channel before * removal. */ if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); } list_del_rcu(&sta->list); sta->removed = true; if (sta->uploaded) drv_sta_pre_rcu_remove(local, sta->sdata, sta); if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && rcu_access_pointer(sdata->u.vlan.sta) == sta) RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); return 0; } static void __sta_info_destroy_part2(struct sta_info *sta) { struct ieee80211_local *local = sta->local; struct ieee80211_sub_if_data *sdata = sta->sdata; struct station_info *sinfo; int ret; /* * NOTE: This assumes at least synchronize_net() was done * after _part1 and before _part2! */ /* * There's a potential race in _part1 where we set WLAN_STA_BLOCK_BA * but someone might have just gotten past a check, and not yet into * queuing the work/creating the data/etc. * * Do another round of destruction so that the worker is certainly * canceled before we later free the station. * * Since this is after synchronize_rcu()/synchronize_net() we're now * certain that nobody can actually hold a reference to the STA and * be calling e.g. ieee80211_start_tx_ba_session(). */ ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); might_sleep(); lockdep_assert_held(&local->sta_mtx); if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC); WARN_ON_ONCE(ret); } /* now keys can no longer be reached */ ieee80211_free_sta_keys(local, sta); /* disable TIM bit - last chance to tell driver */ __sta_info_recalc_tim(sta, true); sta->dead = true; local->num_sta--; local->sta_generation++; while (sta->sta_state > IEEE80211_STA_NONE) { ret = sta_info_move_state(sta, sta->sta_state - 1); if (ret) { WARN_ON_ONCE(1); break; } } if (sta->uploaded) { ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, IEEE80211_STA_NOTEXIST); WARN_ON_ONCE(ret != 0); } sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); if (sinfo) sta_set_sinfo(sta, sinfo, true); cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); kfree(sinfo); ieee80211_sta_debugfs_remove(sta); ieee80211_destroy_frag_cache(&sta->frags); cleanup_single_sta(sta); } int __must_check __sta_info_destroy(struct sta_info *sta) { int err = __sta_info_destroy_part1(sta); if (err) return err; synchronize_net(); __sta_info_destroy_part2(sta); return 0; } int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) { struct sta_info *sta; int ret; mutex_lock(&sdata->local->sta_mtx); sta = sta_info_get(sdata, addr); ret = __sta_info_destroy(sta); mutex_unlock(&sdata->local->sta_mtx); return ret; } int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, const u8 *addr) { struct sta_info *sta; int ret; mutex_lock(&sdata->local->sta_mtx); sta = sta_info_get_bss(sdata, addr); ret = __sta_info_destroy(sta); mutex_unlock(&sdata->local->sta_mtx); return ret; } static void sta_info_cleanup(struct timer_list *t) { struct ieee80211_local *local = from_timer(local, t, sta_cleanup); struct sta_info *sta; bool timer_needed = false; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) if (sta_info_cleanup_expire_buffered(local, sta)) timer_needed = true; rcu_read_unlock(); if (local->quiescing) return; if (!timer_needed) return; mod_timer(&local->sta_cleanup, round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); } int sta_info_init(struct ieee80211_local *local) { int err; err = rhltable_init(&local->sta_hash, &sta_rht_params); if (err) return err; spin_lock_init(&local->tim_lock); mutex_init(&local->sta_mtx); INIT_LIST_HEAD(&local->sta_list); timer_setup(&local->sta_cleanup, sta_info_cleanup, 0); return 0; } void sta_info_stop(struct ieee80211_local *local) { del_timer_sync(&local->sta_cleanup); rhltable_destroy(&local->sta_hash); } int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) { struct ieee80211_local *local = sdata->local; struct sta_info *sta, *tmp; LIST_HEAD(free_list); int ret = 0; might_sleep(); WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); WARN_ON(vlans && !sdata->bss); mutex_lock(&local->sta_mtx); list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { if (sdata == sta->sdata || (vlans && sdata->bss == sta->sdata->bss)) { if (!WARN_ON(__sta_info_destroy_part1(sta))) list_add(&sta->free_list, &free_list); ret++; } } if (!list_empty(&free_list)) { synchronize_net(); list_for_each_entry_safe(sta, tmp, &free_list, free_list) __sta_info_destroy_part2(sta); } mutex_unlock(&local->sta_mtx); return ret; } void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, unsigned long exp_time) { struct ieee80211_local *local = sdata->local; struct sta_info *sta, *tmp; mutex_lock(&local->sta_mtx); list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { unsigned long last_active = ieee80211_sta_last_active(sta); if (sdata != sta->sdata) continue; if (time_is_before_jiffies(last_active + exp_time)) { sta_dbg(sta->sdata, "expiring inactive STA %pM\n", sta->sta.addr); if (ieee80211_vif_is_mesh(&sdata->vif) && test_sta_flag(sta, WLAN_STA_PS_STA)) atomic_dec(&sdata->u.mesh.ps.num_sta_ps); WARN_ON(__sta_info_destroy(sta)); } } mutex_unlock(&local->sta_mtx); } struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, const u8 *addr, const u8 *localaddr) { struct ieee80211_local *local = hw_to_local(hw); struct rhlist_head *tmp; struct sta_info *sta; /* * Just return a random station if localaddr is NULL * ... first in list. */ for_each_sta_info(local, addr, sta, tmp) { if (localaddr && !ether_addr_equal(sta->sdata->vif.addr, localaddr)) continue; if (!sta->uploaded) return NULL; return &sta->sta; } return NULL; } EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, const u8 *addr) { struct sta_info *sta; if (!vif) return NULL; sta = sta_info_get_bss(vif_to_sdata(vif), addr); if (!sta) return NULL; if (!sta->uploaded) return NULL; return &sta->sta; } EXPORT_SYMBOL(ieee80211_find_sta); /* powersave support code */ void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct sk_buff_head pending; int filtered = 0, buffered = 0, ac, i; unsigned long flags; struct ps_data *ps; if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); if (sdata->vif.type == NL80211_IFTYPE_AP) ps = &sdata->bss->ps; else if (ieee80211_vif_is_mesh(&sdata->vif)) ps = &sdata->u.mesh.ps; else return; clear_sta_flag(sta, WLAN_STA_SP); BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); sta->driver_buffered_tids = 0; sta->txq_buffered_tids = 0; if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i])) continue; schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i])); } skb_queue_head_init(&pending); /* sync with ieee80211_tx_h_unicast_ps_buf */ spin_lock_bh(&sta->ps_lock); /* Send all buffered frames to the station */ for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { int count = skb_queue_len(&pending), tmp; spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); tmp = skb_queue_len(&pending); filtered += tmp - count; count = tmp; spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); tmp = skb_queue_len(&pending); buffered += tmp - count; } ieee80211_add_pending_skbs(local, &pending); /* now we're no longer in the deliver code */ clear_sta_flag(sta, WLAN_STA_PS_DELIVER); /* The station might have polled and then woken up before we responded, * so clear these flags now to avoid them sticking around. */ clear_sta_flag(sta, WLAN_STA_PSPOLL); clear_sta_flag(sta, WLAN_STA_UAPSD); spin_unlock_bh(&sta->ps_lock); atomic_dec(&ps->num_sta_ps); local->total_ps_buffered -= buffered; sta_info_recalc_tim(sta); ps_dbg(sdata, "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n", sta->sta.addr, sta->sta.aid, filtered, buffered); ieee80211_check_fast_xmit(sta); } static void ieee80211_send_null_response(struct sta_info *sta, int tid, enum ieee80211_frame_release_type reason, bool call_driver, bool more_data) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_qos_hdr *nullfunc; struct sk_buff *skb; int size = sizeof(*nullfunc); __le16 fc; bool qos = sta->sta.wme; struct ieee80211_tx_info *info; struct ieee80211_chanctx_conf *chanctx_conf; if (qos) { fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC | IEEE80211_FCTL_FROMDS); } else { size -= 2; fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC | IEEE80211_FCTL_FROMDS); } skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom); nullfunc = skb_put(skb, size); nullfunc->frame_control = fc; nullfunc->duration_id = 0; memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); nullfunc->seq_ctrl = 0; skb->priority = tid; skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); if (qos) { nullfunc->qos_ctrl = cpu_to_le16(tid); if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { nullfunc->qos_ctrl |= cpu_to_le16(IEEE80211_QOS_CTL_EOSP); if (more_data) nullfunc->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); } } info = IEEE80211_SKB_CB(skb); /* * Tell TX path to send this frame even though the * STA may still remain is PS mode after this frame * exchange. Also set EOSP to indicate this packet * ends the poll/service period. */ info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | IEEE80211_TX_STATUS_EOSP | IEEE80211_TX_CTL_REQ_TX_STATUS; info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; if (call_driver) drv_allow_buffered_frames(local, sta, BIT(tid), 1, reason, false); skb->dev = sdata->dev; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (WARN_ON(!chanctx_conf)) { rcu_read_unlock(); kfree_skb(skb); return; } info->band = chanctx_conf->def.chan->band; ieee80211_xmit(sdata, sta, skb); rcu_read_unlock(); } static int find_highest_prio_tid(unsigned long tids) { /* lower 3 TIDs aren't ordered perfectly */ if (tids & 0xF8) return fls(tids) - 1; /* TID 0 is BE just like TID 3 */ if (tids & BIT(0)) return 0; return fls(tids) - 1; } /* Indicates if the MORE_DATA bit should be set in the last * frame obtained by ieee80211_sta_ps_get_frames. * Note that driver_release_tids is relevant only if * reason = IEEE80211_FRAME_RELEASE_PSPOLL */ static bool ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, enum ieee80211_frame_release_type reason, unsigned long driver_release_tids) { int ac; /* If the driver has data on more than one TID then * certainly there's more data if we release just a * single frame now (from a single TID). This will * only happen for PS-Poll. */ if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && hweight16(driver_release_tids) > 1) return true; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) continue; if (!skb_queue_empty(&sta->tx_filtered[ac]) || !skb_queue_empty(&sta->ps_tx_buf[ac])) return true; } return false; } static void ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, enum ieee80211_frame_release_type reason, struct sk_buff_head *frames, unsigned long *driver_release_tids) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; int ac; /* Get response frame(s) and more data bit for the last one. */ for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { unsigned long tids; if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) continue; tids = ieee80211_tids_for_ac(ac); /* if we already have frames from software, then we can't also * release from hardware queues */ if (skb_queue_empty(frames)) { *driver_release_tids |= sta->driver_buffered_tids & tids; *driver_release_tids |= sta->txq_buffered_tids & tids; } if (!*driver_release_tids) { struct sk_buff *skb; while (n_frames > 0) { skb = skb_dequeue(&sta->tx_filtered[ac]); if (!skb) { skb = skb_dequeue( &sta->ps_tx_buf[ac]); if (skb) local->total_ps_buffered--; } if (!skb) break; n_frames--; __skb_queue_tail(frames, skb); } } /* If we have more frames buffered on this AC, then abort the * loop since we can't send more data from other ACs before * the buffered frames from this. */ if (!skb_queue_empty(&sta->tx_filtered[ac]) || !skb_queue_empty(&sta->ps_tx_buf[ac])) break; } } static void ieee80211_sta_ps_deliver_response(struct sta_info *sta, int n_frames, u8 ignored_acs, enum ieee80211_frame_release_type reason) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; unsigned long driver_release_tids = 0; struct sk_buff_head frames; bool more_data; /* Service or PS-Poll period starts */ set_sta_flag(sta, WLAN_STA_SP); __skb_queue_head_init(&frames); ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, &frames, &driver_release_tids); more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) driver_release_tids = BIT(find_highest_prio_tid(driver_release_tids)); if (skb_queue_empty(&frames) && !driver_release_tids) { int tid, ac; /* * For PS-Poll, this can only happen due to a race condition * when we set the TIM bit and the station notices it, but * before it can poll for the frame we expire it. * * For uAPSD, this is said in the standard (11.2.1.5 h): * At each unscheduled SP for a non-AP STA, the AP shall * attempt to transmit at least one MSDU or MMPDU, but no * more than the value specified in the Max SP Length field * in the QoS Capability element from delivery-enabled ACs, * that are destined for the non-AP STA. * * Since we have no other MSDU/MMPDU, transmit a QoS null frame. */ /* This will evaluate to 1, 3, 5 or 7. */ for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++) if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac])) break; tid = 7 - 2 * ac; ieee80211_send_null_response(sta, tid, reason, true, false); } else if (!driver_release_tids) { struct sk_buff_head pending; struct sk_buff *skb; int num = 0; u16 tids = 0; bool need_null = false; skb_queue_head_init(&pending); while ((skb = __skb_dequeue(&frames))) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (void *) skb->data; u8 *qoshdr = NULL; num++; /* * Tell TX path to send this frame even though the * STA may still remain is PS mode after this frame * exchange. */ info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; /* * Use MoreData flag to indicate whether there are * more buffered frames for this STA */ if (more_data || !skb_queue_empty(&frames)) hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); else hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA); if (ieee80211_is_data_qos(hdr->frame_control) || ieee80211_is_qos_nullfunc(hdr->frame_control)) qoshdr = ieee80211_get_qos_ctl(hdr); tids |= BIT(skb->priority); __skb_queue_tail(&pending, skb); /* end service period after last frame or add one */ if (!skb_queue_empty(&frames)) continue; if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { /* for PS-Poll, there's only one frame */ info->flags |= IEEE80211_TX_STATUS_EOSP | IEEE80211_TX_CTL_REQ_TX_STATUS; break; } /* For uAPSD, things are a bit more complicated. If the * last frame has a QoS header (i.e. is a QoS-data or * QoS-nulldata frame) then just set the EOSP bit there * and be done. * If the frame doesn't have a QoS header (which means * it should be a bufferable MMPDU) then we can't set * the EOSP bit in the QoS header; add a QoS-nulldata * frame to the list to send it after the MMPDU. * * Note that this code is only in the mac80211-release * code path, we assume that the driver will not buffer * anything but QoS-data frames, or if it does, will * create the QoS-nulldata frame by itself if needed. * * Cf. 802.11-2012 10.2.1.10 (c). */ if (qoshdr) { *qoshdr |= IEEE80211_QOS_CTL_EOSP; info->flags |= IEEE80211_TX_STATUS_EOSP | IEEE80211_TX_CTL_REQ_TX_STATUS; } else { /* The standard isn't completely clear on this * as it says the more-data bit should be set * if there are more BUs. The QoS-Null frame * we're about to send isn't buffered yet, we * only create it below, but let's pretend it * was buffered just in case some clients only * expect more-data=0 when eosp=1. */ hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); need_null = true; num++; } break; } drv_allow_buffered_frames(local, sta, tids, num, reason, more_data); ieee80211_add_pending_skbs(local, &pending); if (need_null) ieee80211_send_null_response( sta, find_highest_prio_tid(tids), reason, false, false); sta_info_recalc_tim(sta); } else { int tid; /* * We need to release a frame that is buffered somewhere in the * driver ... it'll have to handle that. * Note that the driver also has to check the number of frames * on the TIDs we're releasing from - if there are more than * n_frames it has to set the more-data bit (if we didn't ask * it to set it anyway due to other buffered frames); if there * are fewer than n_frames it has to make sure to adjust that * to allow the service period to end properly. */ drv_release_buffered_frames(local, sta, driver_release_tids, n_frames, reason, more_data); /* * Note that we don't recalculate the TIM bit here as it would * most likely have no effect at all unless the driver told us * that the TID(s) became empty before returning here from the * release function. * Either way, however, when the driver tells us that the TID(s) * became empty or we find that a txq became empty, we'll do the * TIM recalculation. */ if (!sta->sta.txq[0]) return; for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { if (!sta->sta.txq[tid] || !(driver_release_tids & BIT(tid)) || txq_has_queue(sta->sta.txq[tid])) continue; sta_info_recalc_tim(sta); break; } } } void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) { u8 ignore_for_response = sta->sta.uapsd_queues; /* * If all ACs are delivery-enabled then we should reply * from any of them, if only some are enabled we reply * only from the non-enabled ones. */ if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) ignore_for_response = 0; ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, IEEE80211_FRAME_RELEASE_PSPOLL); } void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) { int n_frames = sta->sta.max_sp; u8 delivery_enabled = sta->sta.uapsd_queues; /* * If we ever grow support for TSPEC this might happen if * the TSPEC update from hostapd comes in between a trigger * frame setting WLAN_STA_UAPSD in the RX path and this * actually getting called. */ if (!delivery_enabled) return; switch (sta->sta.max_sp) { case 1: n_frames = 2; break; case 2: n_frames = 4; break; case 3: n_frames = 6; break; case 0: /* XXX: what is a good value? */ n_frames = 128; break; } ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, IEEE80211_FRAME_RELEASE_UAPSD); } void ieee80211_sta_block_awake(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, bool block) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); trace_api_sta_block_awake(sta->local, pubsta, block); if (block) { set_sta_flag(sta, WLAN_STA_PS_DRIVER); ieee80211_clear_fast_xmit(sta); return; } if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) return; if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { set_sta_flag(sta, WLAN_STA_PS_DELIVER); clear_sta_flag(sta, WLAN_STA_PS_DRIVER); ieee80211_queue_work(hw, &sta->drv_deliver_wk); } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || test_sta_flag(sta, WLAN_STA_UAPSD)) { /* must be asleep in this case */ clear_sta_flag(sta, WLAN_STA_PS_DRIVER); ieee80211_queue_work(hw, &sta->drv_deliver_wk); } else { clear_sta_flag(sta, WLAN_STA_PS_DRIVER); ieee80211_check_fast_xmit(sta); } } EXPORT_SYMBOL(ieee80211_sta_block_awake); void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct ieee80211_local *local = sta->local; trace_api_eosp(local, pubsta); clear_sta_flag(sta, WLAN_STA_SP); } EXPORT_SYMBOL(ieee80211_sta_eosp); void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); enum ieee80211_frame_release_type reason; bool more_data; trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); reason = IEEE80211_FRAME_RELEASE_UAPSD; more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, reason, 0); ieee80211_send_null_response(sta, tid, reason, false, more_data); } EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, u8 tid, bool buffered) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) return; trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); if (buffered) set_bit(tid, &sta->driver_buffered_tids); else clear_bit(tid, &sta->driver_buffered_tids); sta_info_recalc_tim(sta); } EXPORT_SYMBOL(ieee80211_sta_set_buffered); void ieee80211_register_airtime(struct ieee80211_txq *txq, u32 tx_airtime, u32 rx_airtime) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); struct ieee80211_local *local = sdata->local; u64 weight_sum, weight_sum_reciprocal; struct airtime_sched_info *air_sched; struct airtime_info *air_info; u32 airtime = 0; air_sched = &local->airtime[txq->ac]; air_info = to_airtime_info(txq); if (local->airtime_flags & AIRTIME_USE_TX) airtime += tx_airtime; if (local->airtime_flags & AIRTIME_USE_RX) airtime += rx_airtime; /* Weights scale so the unit weight is 256 */ airtime <<= 8; spin_lock_bh(&air_sched->lock); air_info->tx_airtime += tx_airtime; air_info->rx_airtime += rx_airtime; if (air_sched->weight_sum) { weight_sum = air_sched->weight_sum; weight_sum_reciprocal = air_sched->weight_sum_reciprocal; } else { weight_sum = air_info->weight; weight_sum_reciprocal = air_info->weight_reciprocal; } /* Round the calculation of global vt */ air_sched->v_t += (u64)((airtime + (weight_sum >> 1)) * weight_sum_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_64; air_info->v_t += (u32)((airtime + (air_info->weight >> 1)) * air_info->weight_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_32; ieee80211_resort_txq(&local->hw, txq); spin_unlock_bh(&air_sched->lock); } void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid, u32 tx_airtime, u32 rx_airtime) { struct ieee80211_txq *txq = pubsta->txq[tid]; if (!txq) return; ieee80211_register_airtime(txq, tx_airtime, rx_airtime); } EXPORT_SYMBOL(ieee80211_sta_register_airtime); void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local, struct sta_info *sta, u8 ac, u16 tx_airtime, bool tx_completed) { int tx_pending; if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) return; if (!tx_completed) { if (sta) atomic_add(tx_airtime, &sta->airtime[ac].aql_tx_pending); atomic_add(tx_airtime, &local->aql_total_pending_airtime); return; } if (sta) { tx_pending = atomic_sub_return(tx_airtime, &sta->airtime[ac].aql_tx_pending); if (tx_pending < 0) atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending, tx_pending, 0); } tx_pending = atomic_sub_return(tx_airtime, &local->aql_total_pending_airtime); if (WARN_ONCE(tx_pending < 0, "Device %s AC %d pending airtime underflow: %u, %u", wiphy_name(local->hw.wiphy), ac, tx_pending, tx_airtime)) atomic_cmpxchg(&local->aql_total_pending_airtime, tx_pending, 0); } int sta_info_move_state(struct sta_info *sta, enum ieee80211_sta_state new_state) { might_sleep(); if (sta->sta_state == new_state) return 0; /* check allowed transitions first */ switch (new_state) { case IEEE80211_STA_NONE: if (sta->sta_state != IEEE80211_STA_AUTH) return -EINVAL; break; case IEEE80211_STA_AUTH: if (sta->sta_state != IEEE80211_STA_NONE && sta->sta_state != IEEE80211_STA_ASSOC) return -EINVAL; break; case IEEE80211_STA_ASSOC: if (sta->sta_state != IEEE80211_STA_AUTH && sta->sta_state != IEEE80211_STA_AUTHORIZED) return -EINVAL; break; case IEEE80211_STA_AUTHORIZED: if (sta->sta_state != IEEE80211_STA_ASSOC) return -EINVAL; break; default: WARN(1, "invalid state %d", new_state); return -EINVAL; } sta_dbg(sta->sdata, "moving STA %pM to state %d\n", sta->sta.addr, new_state); /* * notify the driver before the actual changes so it can * fail the transition */ if (test_sta_flag(sta, WLAN_STA_INSERTED)) { int err = drv_sta_state(sta->local, sta->sdata, sta, sta->sta_state, new_state); if (err) return err; } /* reflect the change in all state variables */ switch (new_state) { case IEEE80211_STA_NONE: if (sta->sta_state == IEEE80211_STA_AUTH) clear_bit(WLAN_STA_AUTH, &sta->_flags); break; case IEEE80211_STA_AUTH: if (sta->sta_state == IEEE80211_STA_NONE) { set_bit(WLAN_STA_AUTH, &sta->_flags); } else if (sta->sta_state == IEEE80211_STA_ASSOC) { clear_bit(WLAN_STA_ASSOC, &sta->_flags); ieee80211_recalc_min_chandef(sta->sdata); if (!sta->sta.support_p2p_ps) ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); } break; case IEEE80211_STA_ASSOC: if (sta->sta_state == IEEE80211_STA_AUTH) { set_bit(WLAN_STA_ASSOC, &sta->_flags); sta->assoc_at = ktime_get_boottime_ns(); ieee80211_recalc_min_chandef(sta->sdata); if (!sta->sta.support_p2p_ps) ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { ieee80211_vif_dec_num_mcast(sta->sdata); clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); ieee80211_clear_fast_xmit(sta); ieee80211_clear_fast_rx(sta); } break; case IEEE80211_STA_AUTHORIZED: if (sta->sta_state == IEEE80211_STA_ASSOC) { ieee80211_vif_inc_num_mcast(sta->sdata); set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); ieee80211_check_fast_xmit(sta); ieee80211_check_fast_rx(sta); } if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN || sta->sdata->vif.type == NL80211_IFTYPE_AP) cfg80211_send_layer2_update(sta->sdata->dev, sta->sta.addr); break; default: break; } sta->sta_state = new_state; return 0; } u8 sta_info_tx_streams(struct sta_info *sta) { struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; u8 rx_streams; if (!sta->sta.ht_cap.ht_supported) return 1; if (sta->sta.vht_cap.vht_supported) { int i; u16 tx_mcs_map = le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); for (i = 7; i >= 0; i--) if ((tx_mcs_map & (0x3 << (i * 2))) != IEEE80211_VHT_MCS_NOT_SUPPORTED) return i + 1; } if (ht_cap->mcs.rx_mask[3]) rx_streams = 4; else if (ht_cap->mcs.rx_mask[2]) rx_streams = 3; else if (ht_cap->mcs.rx_mask[1]) rx_streams = 2; else rx_streams = 1; if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) return rx_streams; return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; } static struct ieee80211_sta_rx_stats * sta_get_last_rx_stats(struct sta_info *sta) { struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; int cpu; if (!sta->pcpu_rx_stats) return stats; for_each_possible_cpu(cpu) { struct ieee80211_sta_rx_stats *cpustats; cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu); if (time_after(cpustats->last_rx, stats->last_rx)) stats = cpustats; } return stats; } static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate, struct rate_info *rinfo) { rinfo->bw = STA_STATS_GET(BW, rate); switch (STA_STATS_GET(TYPE, rate)) { case STA_STATS_RATE_TYPE_VHT: rinfo->flags = RATE_INFO_FLAGS_VHT_MCS; rinfo->mcs = STA_STATS_GET(VHT_MCS, rate); rinfo->nss = STA_STATS_GET(VHT_NSS, rate); if (STA_STATS_GET(SGI, rate)) rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; break; case STA_STATS_RATE_TYPE_HT: rinfo->flags = RATE_INFO_FLAGS_MCS; rinfo->mcs = STA_STATS_GET(HT_MCS, rate); if (STA_STATS_GET(SGI, rate)) rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; break; case STA_STATS_RATE_TYPE_LEGACY: { struct ieee80211_supported_band *sband; u16 brate; unsigned int shift; int band = STA_STATS_GET(LEGACY_BAND, rate); int rate_idx = STA_STATS_GET(LEGACY_IDX, rate); sband = local->hw.wiphy->bands[band]; if (WARN_ON_ONCE(!sband->bitrates)) break; brate = sband->bitrates[rate_idx].bitrate; if (rinfo->bw == RATE_INFO_BW_5) shift = 2; else if (rinfo->bw == RATE_INFO_BW_10) shift = 1; else shift = 0; rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); break; } case STA_STATS_RATE_TYPE_HE: rinfo->flags = RATE_INFO_FLAGS_HE_MCS; rinfo->mcs = STA_STATS_GET(HE_MCS, rate); rinfo->nss = STA_STATS_GET(HE_NSS, rate); rinfo->he_gi = STA_STATS_GET(HE_GI, rate); rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate); rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate); break; } } static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) { u32 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate); if (rate == STA_STATS_RATE_INVALID) return -EINVAL; sta_stats_decode_rate(sta->local, rate, rinfo); return 0; } static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats, int tid) { unsigned int start; u64 value; do { start = u64_stats_fetch_begin_irq(&rxstats->syncp); value = rxstats->msdu[tid]; } while (u64_stats_fetch_retry_irq(&rxstats->syncp, start)); return value; } static void sta_set_tidstats(struct sta_info *sta, struct cfg80211_tid_stats *tidstats, int tid) { struct ieee80211_local *local = sta->local; int cpu; if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { tidstats->rx_msdu += sta_get_tidstats_msdu(&sta->rx_stats, tid); if (sta->pcpu_rx_stats) { for_each_possible_cpu(cpu) { struct ieee80211_sta_rx_stats *cpurxs; cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); tidstats->rx_msdu += sta_get_tidstats_msdu(cpurxs, tid); } } tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); } if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); tidstats->tx_msdu = sta->tx_stats.msdu[tid]; } if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid]; } if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED); tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid]; } if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) { spin_lock_bh(&local->fq.lock); rcu_read_lock(); tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS); ieee80211_fill_txq_stats(&tidstats->txq_stats, to_txq_info(sta->sta.txq[tid])); rcu_read_unlock(); spin_unlock_bh(&local->fq.lock); } } static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats) { unsigned int start; u64 value; do { start = u64_stats_fetch_begin_irq(&rxstats->syncp); value = rxstats->bytes; } while (u64_stats_fetch_retry_irq(&rxstats->syncp, start)); return value; } void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo, bool tidstats) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; u32 thr = 0; int i, ac, cpu; struct ieee80211_sta_rx_stats *last_rxstats; last_rxstats = sta_get_last_rx_stats(sta); sinfo->generation = sdata->local->sta_generation; /* do before driver, so beacon filtering drivers have a * chance to e.g. just add the number of filtered beacons * (or just modify the value entirely, of course) */ if (sdata->vif.type == NL80211_IFTYPE_STATION) sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; drv_sta_statistics(local, sdata, &sta->sta, sinfo); sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) | BIT_ULL(NL80211_STA_INFO_STA_FLAGS) | BIT_ULL(NL80211_STA_INFO_BSS_PARAM) | BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) | BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) | BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC); if (sdata->vif.type == NL80211_IFTYPE_STATION) { sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS); } sinfo->connected_time = ktime_get_seconds() - sta->last_connected; sinfo->assoc_at = sta->assoc_at; sinfo->inactive_time = jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta)); if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) | BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) { sinfo->tx_bytes = 0; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) sinfo->tx_bytes += sta->tx_stats.bytes[ac]; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64); } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) { sinfo->tx_packets = 0; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) sinfo->tx_packets += sta->tx_stats.packets[ac]; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS); } if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) | BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) { sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats); if (sta->pcpu_rx_stats) { for_each_possible_cpu(cpu) { struct ieee80211_sta_rx_stats *cpurxs; cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); sinfo->rx_bytes += sta_get_stats_bytes(cpurxs); } } sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64); } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) { sinfo->rx_packets = sta->rx_stats.packets; if (sta->pcpu_rx_stats) { for_each_possible_cpu(cpu) { struct ieee80211_sta_rx_stats *cpurxs; cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); sinfo->rx_packets += cpurxs->packets; } } sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS); } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) { sinfo->tx_retries = sta->status_stats.retry_count; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES); } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) { sinfo->tx_failed = sta->status_stats.retry_failed; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED); } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) { for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) sinfo->rx_duration += sta->airtime[ac].rx_airtime; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION); } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) { for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) sinfo->tx_duration += sta->airtime[ac].tx_airtime; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION); } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) { sinfo->airtime_weight = sta->airtime[0].weight; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT); } sinfo->rx_dropped_misc = sta->rx_stats.dropped; if (sta->pcpu_rx_stats) { for_each_possible_cpu(cpu) { struct ieee80211_sta_rx_stats *cpurxs; cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); sinfo->rx_dropped_misc += cpurxs->dropped; } } if (sdata->vif.type == NL80211_IFTYPE_STATION && !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) | BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG); sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); } if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) { sinfo->signal = (s8)last_rxstats->last_signal; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); } if (!sta->pcpu_rx_stats && !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) { sinfo->signal_avg = -ewma_signal_read(&sta->rx_stats_avg.signal); sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG); } } /* for the average - if pcpu_rx_stats isn't set - rxstats must point to * the sta->rx_stats struct, so the check here is fine with and without * pcpu statistics */ if (last_rxstats->chains && !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) | BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL); if (!sta->pcpu_rx_stats) sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); sinfo->chains = last_rxstats->chains; for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { sinfo->chain_signal[i] = last_rxstats->chain_signal_last[i]; sinfo->chain_signal_avg[i] = -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]); } } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) { sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate, &sinfo->txrate); sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) { if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0) sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE); } if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) { for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) sta_set_tidstats(sta, &sinfo->pertid[i], i); } if (ieee80211_vif_is_mesh(&sdata->vif)) { #ifdef CONFIG_MAC80211_MESH sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) | BIT_ULL(NL80211_STA_INFO_PLID) | BIT_ULL(NL80211_STA_INFO_PLINK_STATE) | BIT_ULL(NL80211_STA_INFO_LOCAL_PM) | BIT_ULL(NL80211_STA_INFO_PEER_PM) | BIT_ULL(NL80211_STA_INFO_NONPEER_PM) | BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) | BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS); sinfo->llid = sta->mesh->llid; sinfo->plid = sta->mesh->plid; sinfo->plink_state = sta->mesh->plink_state; if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET); sinfo->t_offset = sta->mesh->t_offset; } sinfo->local_pm = sta->mesh->local_pm; sinfo->peer_pm = sta->mesh->peer_pm; sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; sinfo->connected_to_gate = sta->mesh->connected_to_gate; sinfo->connected_to_as = sta->mesh->connected_to_as; #endif } sinfo->bss_param.flags = 0; if (sdata->vif.bss_conf.use_cts_prot) sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; if (sdata->vif.bss_conf.use_short_preamble) sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; if (sdata->vif.bss_conf.use_short_slot) sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; sinfo->sta_flags.set = 0; sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | BIT(NL80211_STA_FLAG_WME) | BIT(NL80211_STA_FLAG_MFP) | BIT(NL80211_STA_FLAG_AUTHENTICATED) | BIT(NL80211_STA_FLAG_ASSOCIATED) | BIT(NL80211_STA_FLAG_TDLS_PEER); if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); if (sta->sta.wme) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); if (test_sta_flag(sta, WLAN_STA_MFP)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); if (test_sta_flag(sta, WLAN_STA_AUTH)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); if (test_sta_flag(sta, WLAN_STA_ASSOC)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); thr = sta_get_expected_throughput(sta); if (thr != 0) { sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT); sinfo->expected_throughput = thr; } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) && sta->status_stats.ack_signal_filled) { sinfo->ack_signal = sta->status_stats.last_ack_signal; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL); } if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) && sta->status_stats.ack_signal_filled) { sinfo->avg_ack_signal = -(s8)ewma_avg_signal_read( &sta->status_stats.avg_ack_signal); sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG); } if (ieee80211_vif_is_mesh(&sdata->vif)) { sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC); sinfo->airtime_link_metric = airtime_link_metric_get(local, sta); } } u32 sta_get_expected_throughput(struct sta_info *sta) { struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; struct rate_control_ref *ref = NULL; u32 thr = 0; if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) ref = local->rate_ctrl; /* check if the driver has a SW RC implementation */ if (ref && ref->ops->get_expected_throughput) thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); else thr = drv_get_expected_throughput(local, sta); return thr; } unsigned long ieee80211_sta_last_active(struct sta_info *sta) { struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta); if (!sta->status_stats.last_ack || time_after(stats->last_rx, sta->status_stats.last_ack)) return stats->last_rx; return sta->status_stats.last_ack; } static void sta_update_codel_params(struct sta_info *sta, u32 thr) { if (!sta->sdata->local->ops->wake_tx_queue) return; if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) { sta->cparams.target = MS2TIME(50); sta->cparams.interval = MS2TIME(300); sta->cparams.ecn = false; } else { sta->cparams.target = MS2TIME(20); sta->cparams.interval = MS2TIME(100); sta->cparams.ecn = true; } } void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta, u32 thr) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); sta_update_codel_params(sta, thr); } |
2043 1716 2217 40 1334 1319 1 244 194 272 1812 244 46 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 | // SPDX-License-Identifier: GPL-2.0 // Generated by scripts/atomic/gen-atomic-instrumented.sh // DO NOT MODIFY THIS FILE DIRECTLY /* * This file provides wrappers with KASAN instrumentation for atomic operations. * To use this functionality an arch's atomic.h file needs to define all * atomic operations with arch_ prefix (e.g. arch_atomic_read()) and include * this file at the end. This file provides atomic_read() that forwards to * arch_atomic_read() for actual atomic operation. * Note: if an arch atomic operation is implemented by means of other atomic * operations (e.g. atomic_read()/atomic_cmpxchg() loop), then it needs to use * arch_ variants (i.e. arch_atomic_read()/arch_atomic_cmpxchg()) to avoid * double instrumentation. */ #ifndef _LINUX_ATOMIC_INSTRUMENTED_H #define _LINUX_ATOMIC_INSTRUMENTED_H #include <linux/build_bug.h> #include <linux/compiler.h> #include <linux/instrumented.h> static __always_inline int atomic_read(const atomic_t *v) { instrument_atomic_read(v, sizeof(*v)); return arch_atomic_read(v); } static __always_inline int atomic_read_acquire(const atomic_t *v) { instrument_atomic_read(v, sizeof(*v)); return arch_atomic_read_acquire(v); } static __always_inline void atomic_set(atomic_t *v, int i) { instrument_atomic_write(v, sizeof(*v)); arch_atomic_set(v, i); } static __always_inline void atomic_set_release(atomic_t *v, int i) { instrument_atomic_write(v, sizeof(*v)); arch_atomic_set_release(v, i); } static __always_inline void atomic_add(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic_add(i, v); } static __always_inline int atomic_add_return(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_add_return(i, v); } static __always_inline int atomic_add_return_acquire(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_add_return_acquire(i, v); } static __always_inline int atomic_add_return_release(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_add_return_release(i, v); } static __always_inline int atomic_add_return_relaxed(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_add_return_relaxed(i, v); } static __always_inline int atomic_fetch_add(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_add(i, v); } static __always_inline int atomic_fetch_add_acquire(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_add_acquire(i, v); } static __always_inline int atomic_fetch_add_release(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_add_release(i, v); } static __always_inline int atomic_fetch_add_relaxed(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_add_relaxed(i, v); } static __always_inline void atomic_sub(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic_sub(i, v); } static __always_inline int atomic_sub_return(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_sub_return(i, v); } static __always_inline int atomic_sub_return_acquire(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_sub_return_acquire(i, v); } static __always_inline int atomic_sub_return_release(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_sub_return_release(i, v); } static __always_inline int atomic_sub_return_relaxed(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_sub_return_relaxed(i, v); } static __always_inline int atomic_fetch_sub(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_sub(i, v); } static __always_inline int atomic_fetch_sub_acquire(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_sub_acquire(i, v); } static __always_inline int atomic_fetch_sub_release(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_sub_release(i, v); } static __always_inline int atomic_fetch_sub_relaxed(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_sub_relaxed(i, v); } static __always_inline void atomic_inc(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic_inc(v); } static __always_inline int atomic_inc_return(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_inc_return(v); } static __always_inline int atomic_inc_return_acquire(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_inc_return_acquire(v); } static __always_inline int atomic_inc_return_release(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_inc_return_release(v); } static __always_inline int atomic_inc_return_relaxed(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_inc_return_relaxed(v); } static __always_inline int atomic_fetch_inc(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_inc(v); } static __always_inline int atomic_fetch_inc_acquire(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_inc_acquire(v); } static __always_inline int atomic_fetch_inc_release(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_inc_release(v); } static __always_inline int atomic_fetch_inc_relaxed(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_inc_relaxed(v); } static __always_inline void atomic_dec(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic_dec(v); } static __always_inline int atomic_dec_return(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_dec_return(v); } static __always_inline int atomic_dec_return_acquire(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_dec_return_acquire(v); } static __always_inline int atomic_dec_return_release(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_dec_return_release(v); } static __always_inline int atomic_dec_return_relaxed(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_dec_return_relaxed(v); } static __always_inline int atomic_fetch_dec(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_dec(v); } static __always_inline int atomic_fetch_dec_acquire(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_dec_acquire(v); } static __always_inline int atomic_fetch_dec_release(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_dec_release(v); } static __always_inline int atomic_fetch_dec_relaxed(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_dec_relaxed(v); } static __always_inline void atomic_and(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic_and(i, v); } static __always_inline int atomic_fetch_and(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_and(i, v); } static __always_inline int atomic_fetch_and_acquire(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_and_acquire(i, v); } static __always_inline int atomic_fetch_and_release(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_and_release(i, v); } static __always_inline int atomic_fetch_and_relaxed(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_and_relaxed(i, v); } static __always_inline void atomic_andnot(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic_andnot(i, v); } static __always_inline int atomic_fetch_andnot(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_andnot(i, v); } static __always_inline int atomic_fetch_andnot_acquire(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_andnot_acquire(i, v); } static __always_inline int atomic_fetch_andnot_release(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_andnot_release(i, v); } static __always_inline int atomic_fetch_andnot_relaxed(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_andnot_relaxed(i, v); } static __always_inline void atomic_or(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic_or(i, v); } static __always_inline int atomic_fetch_or(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_or(i, v); } static __always_inline int atomic_fetch_or_acquire(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_or_acquire(i, v); } static __always_inline int atomic_fetch_or_release(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_or_release(i, v); } static __always_inline int atomic_fetch_or_relaxed(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_or_relaxed(i, v); } static __always_inline void atomic_xor(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic_xor(i, v); } static __always_inline int atomic_fetch_xor(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_xor(i, v); } static __always_inline int atomic_fetch_xor_acquire(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_xor_acquire(i, v); } static __always_inline int atomic_fetch_xor_release(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_xor_release(i, v); } static __always_inline int atomic_fetch_xor_relaxed(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_xor_relaxed(i, v); } static __always_inline int atomic_xchg(atomic_t *v, int i) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_xchg(v, i); } static __always_inline int atomic_xchg_acquire(atomic_t *v, int i) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_xchg_acquire(v, i); } static __always_inline int atomic_xchg_release(atomic_t *v, int i) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_xchg_release(v, i); } static __always_inline int atomic_xchg_relaxed(atomic_t *v, int i) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_xchg_relaxed(v, i); } static __always_inline int atomic_cmpxchg(atomic_t *v, int old, int new) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_cmpxchg(v, old, new); } static __always_inline int atomic_cmpxchg_acquire(atomic_t *v, int old, int new) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_cmpxchg_acquire(v, old, new); } static __always_inline int atomic_cmpxchg_release(atomic_t *v, int old, int new) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_cmpxchg_release(v, old, new); } static __always_inline int atomic_cmpxchg_relaxed(atomic_t *v, int old, int new) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_cmpxchg_relaxed(v, old, new); } static __always_inline bool atomic_try_cmpxchg(atomic_t *v, int *old, int new) { instrument_atomic_read_write(v, sizeof(*v)); instrument_atomic_read_write(old, sizeof(*old)); return arch_atomic_try_cmpxchg(v, old, new); } static __always_inline bool atomic_try_cmpxchg_acquire(atomic_t *v, int *old, int new) { instrument_atomic_read_write(v, sizeof(*v)); instrument_atomic_read_write(old, sizeof(*old)); return arch_atomic_try_cmpxchg_acquire(v, old, new); } static __always_inline bool atomic_try_cmpxchg_release(atomic_t *v, int *old, int new) { instrument_atomic_read_write(v, sizeof(*v)); instrument_atomic_read_write(old, sizeof(*old)); return arch_atomic_try_cmpxchg_release(v, old, new); } static __always_inline bool atomic_try_cmpxchg_relaxed(atomic_t *v, int *old, int new) { instrument_atomic_read_write(v, sizeof(*v)); instrument_atomic_read_write(old, sizeof(*old)); return arch_atomic_try_cmpxchg_relaxed(v, old, new); } static __always_inline bool atomic_sub_and_test(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_sub_and_test(i, v); } static __always_inline bool atomic_dec_and_test(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_dec_and_test(v); } static __always_inline bool atomic_inc_and_test(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_inc_and_test(v); } static __always_inline bool atomic_add_negative(int i, atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_add_negative(i, v); } static __always_inline int atomic_fetch_add_unless(atomic_t *v, int a, int u) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_fetch_add_unless(v, a, u); } static __always_inline bool atomic_add_unless(atomic_t *v, int a, int u) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_add_unless(v, a, u); } static __always_inline bool atomic_inc_not_zero(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_inc_not_zero(v); } static __always_inline bool atomic_inc_unless_negative(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_inc_unless_negative(v); } static __always_inline bool atomic_dec_unless_positive(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_dec_unless_positive(v); } static __always_inline int atomic_dec_if_positive(atomic_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_dec_if_positive(v); } static __always_inline s64 atomic64_read(const atomic64_t *v) { instrument_atomic_read(v, sizeof(*v)); return arch_atomic64_read(v); } static __always_inline s64 atomic64_read_acquire(const atomic64_t *v) { instrument_atomic_read(v, sizeof(*v)); return arch_atomic64_read_acquire(v); } static __always_inline void atomic64_set(atomic64_t *v, s64 i) { instrument_atomic_write(v, sizeof(*v)); arch_atomic64_set(v, i); } static __always_inline void atomic64_set_release(atomic64_t *v, s64 i) { instrument_atomic_write(v, sizeof(*v)); arch_atomic64_set_release(v, i); } static __always_inline void atomic64_add(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic64_add(i, v); } static __always_inline s64 atomic64_add_return(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_add_return(i, v); } static __always_inline s64 atomic64_add_return_acquire(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_add_return_acquire(i, v); } static __always_inline s64 atomic64_add_return_release(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_add_return_release(i, v); } static __always_inline s64 atomic64_add_return_relaxed(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_add_return_relaxed(i, v); } static __always_inline s64 atomic64_fetch_add(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_add(i, v); } static __always_inline s64 atomic64_fetch_add_acquire(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_add_acquire(i, v); } static __always_inline s64 atomic64_fetch_add_release(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_add_release(i, v); } static __always_inline s64 atomic64_fetch_add_relaxed(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_add_relaxed(i, v); } static __always_inline void atomic64_sub(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic64_sub(i, v); } static __always_inline s64 atomic64_sub_return(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_sub_return(i, v); } static __always_inline s64 atomic64_sub_return_acquire(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_sub_return_acquire(i, v); } static __always_inline s64 atomic64_sub_return_release(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_sub_return_release(i, v); } static __always_inline s64 atomic64_sub_return_relaxed(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_sub_return_relaxed(i, v); } static __always_inline s64 atomic64_fetch_sub(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_sub(i, v); } static __always_inline s64 atomic64_fetch_sub_acquire(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_sub_acquire(i, v); } static __always_inline s64 atomic64_fetch_sub_release(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_sub_release(i, v); } static __always_inline s64 atomic64_fetch_sub_relaxed(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_sub_relaxed(i, v); } static __always_inline void atomic64_inc(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic64_inc(v); } static __always_inline s64 atomic64_inc_return(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_inc_return(v); } static __always_inline s64 atomic64_inc_return_acquire(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_inc_return_acquire(v); } static __always_inline s64 atomic64_inc_return_release(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_inc_return_release(v); } static __always_inline s64 atomic64_inc_return_relaxed(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_inc_return_relaxed(v); } static __always_inline s64 atomic64_fetch_inc(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_inc(v); } static __always_inline s64 atomic64_fetch_inc_acquire(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_inc_acquire(v); } static __always_inline s64 atomic64_fetch_inc_release(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_inc_release(v); } static __always_inline s64 atomic64_fetch_inc_relaxed(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_inc_relaxed(v); } static __always_inline void atomic64_dec(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic64_dec(v); } static __always_inline s64 atomic64_dec_return(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_dec_return(v); } static __always_inline s64 atomic64_dec_return_acquire(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_dec_return_acquire(v); } static __always_inline s64 atomic64_dec_return_release(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_dec_return_release(v); } static __always_inline s64 atomic64_dec_return_relaxed(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_dec_return_relaxed(v); } static __always_inline s64 atomic64_fetch_dec(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_dec(v); } static __always_inline s64 atomic64_fetch_dec_acquire(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_dec_acquire(v); } static __always_inline s64 atomic64_fetch_dec_release(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_dec_release(v); } static __always_inline s64 atomic64_fetch_dec_relaxed(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_dec_relaxed(v); } static __always_inline void atomic64_and(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic64_and(i, v); } static __always_inline s64 atomic64_fetch_and(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_and(i, v); } static __always_inline s64 atomic64_fetch_and_acquire(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_and_acquire(i, v); } static __always_inline s64 atomic64_fetch_and_release(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_and_release(i, v); } static __always_inline s64 atomic64_fetch_and_relaxed(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_and_relaxed(i, v); } static __always_inline void atomic64_andnot(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic64_andnot(i, v); } static __always_inline s64 atomic64_fetch_andnot(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_andnot(i, v); } static __always_inline s64 atomic64_fetch_andnot_acquire(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_andnot_acquire(i, v); } static __always_inline s64 atomic64_fetch_andnot_release(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_andnot_release(i, v); } static __always_inline s64 atomic64_fetch_andnot_relaxed(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_andnot_relaxed(i, v); } static __always_inline void atomic64_or(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic64_or(i, v); } static __always_inline s64 atomic64_fetch_or(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_or(i, v); } static __always_inline s64 atomic64_fetch_or_acquire(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_or_acquire(i, v); } static __always_inline s64 atomic64_fetch_or_release(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_or_release(i, v); } static __always_inline s64 atomic64_fetch_or_relaxed(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_or_relaxed(i, v); } static __always_inline void atomic64_xor(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic64_xor(i, v); } static __always_inline s64 atomic64_fetch_xor(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_xor(i, v); } static __always_inline s64 atomic64_fetch_xor_acquire(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_xor_acquire(i, v); } static __always_inline s64 atomic64_fetch_xor_release(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_xor_release(i, v); } static __always_inline s64 atomic64_fetch_xor_relaxed(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_xor_relaxed(i, v); } static __always_inline s64 atomic64_xchg(atomic64_t *v, s64 i) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_xchg(v, i); } static __always_inline s64 atomic64_xchg_acquire(atomic64_t *v, s64 i) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_xchg_acquire(v, i); } static __always_inline s64 atomic64_xchg_release(atomic64_t *v, s64 i) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_xchg_release(v, i); } static __always_inline s64 atomic64_xchg_relaxed(atomic64_t *v, s64 i) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_xchg_relaxed(v, i); } static __always_inline s64 atomic64_cmpxchg(atomic64_t *v, s64 old, s64 new) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_cmpxchg(v, old, new); } static __always_inline s64 atomic64_cmpxchg_acquire(atomic64_t *v, s64 old, s64 new) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_cmpxchg_acquire(v, old, new); } static __always_inline s64 atomic64_cmpxchg_release(atomic64_t *v, s64 old, s64 new) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_cmpxchg_release(v, old, new); } static __always_inline s64 atomic64_cmpxchg_relaxed(atomic64_t *v, s64 old, s64 new) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_cmpxchg_relaxed(v, old, new); } static __always_inline bool atomic64_try_cmpxchg(atomic64_t *v, s64 *old, s64 new) { instrument_atomic_read_write(v, sizeof(*v)); instrument_atomic_read_write(old, sizeof(*old)); return arch_atomic64_try_cmpxchg(v, old, new); } static __always_inline bool atomic64_try_cmpxchg_acquire(atomic64_t *v, s64 *old, s64 new) { instrument_atomic_read_write(v, sizeof(*v)); instrument_atomic_read_write(old, sizeof(*old)); return arch_atomic64_try_cmpxchg_acquire(v, old, new); } static __always_inline bool atomic64_try_cmpxchg_release(atomic64_t *v, s64 *old, s64 new) { instrument_atomic_read_write(v, sizeof(*v)); instrument_atomic_read_write(old, sizeof(*old)); return arch_atomic64_try_cmpxchg_release(v, old, new); } static __always_inline bool atomic64_try_cmpxchg_relaxed(atomic64_t *v, s64 *old, s64 new) { instrument_atomic_read_write(v, sizeof(*v)); instrument_atomic_read_write(old, sizeof(*old)); return arch_atomic64_try_cmpxchg_relaxed(v, old, new); } static __always_inline bool atomic64_sub_and_test(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_sub_and_test(i, v); } static __always_inline bool atomic64_dec_and_test(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_dec_and_test(v); } static __always_inline bool atomic64_inc_and_test(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_inc_and_test(v); } static __always_inline bool atomic64_add_negative(s64 i, atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_add_negative(i, v); } static __always_inline s64 atomic64_fetch_add_unless(atomic64_t *v, s64 a, s64 u) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_fetch_add_unless(v, a, u); } static __always_inline bool atomic64_add_unless(atomic64_t *v, s64 a, s64 u) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_add_unless(v, a, u); } static __always_inline bool atomic64_inc_not_zero(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_inc_not_zero(v); } static __always_inline bool atomic64_inc_unless_negative(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_inc_unless_negative(v); } static __always_inline bool atomic64_dec_unless_positive(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_dec_unless_positive(v); } static __always_inline s64 atomic64_dec_if_positive(atomic64_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic64_dec_if_positive(v); } static __always_inline long atomic_long_read(const atomic_long_t *v) { instrument_atomic_read(v, sizeof(*v)); return arch_atomic_long_read(v); } static __always_inline long atomic_long_read_acquire(const atomic_long_t *v) { instrument_atomic_read(v, sizeof(*v)); return arch_atomic_long_read_acquire(v); } static __always_inline void atomic_long_set(atomic_long_t *v, long i) { instrument_atomic_write(v, sizeof(*v)); arch_atomic_long_set(v, i); } static __always_inline void atomic_long_set_release(atomic_long_t *v, long i) { instrument_atomic_write(v, sizeof(*v)); arch_atomic_long_set_release(v, i); } static __always_inline void atomic_long_add(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic_long_add(i, v); } static __always_inline long atomic_long_add_return(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_add_return(i, v); } static __always_inline long atomic_long_add_return_acquire(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_add_return_acquire(i, v); } static __always_inline long atomic_long_add_return_release(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_add_return_release(i, v); } static __always_inline long atomic_long_add_return_relaxed(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_add_return_relaxed(i, v); } static __always_inline long atomic_long_fetch_add(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_add(i, v); } static __always_inline long atomic_long_fetch_add_acquire(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_add_acquire(i, v); } static __always_inline long atomic_long_fetch_add_release(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_add_release(i, v); } static __always_inline long atomic_long_fetch_add_relaxed(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_add_relaxed(i, v); } static __always_inline void atomic_long_sub(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic_long_sub(i, v); } static __always_inline long atomic_long_sub_return(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_sub_return(i, v); } static __always_inline long atomic_long_sub_return_acquire(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_sub_return_acquire(i, v); } static __always_inline long atomic_long_sub_return_release(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_sub_return_release(i, v); } static __always_inline long atomic_long_sub_return_relaxed(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_sub_return_relaxed(i, v); } static __always_inline long atomic_long_fetch_sub(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_sub(i, v); } static __always_inline long atomic_long_fetch_sub_acquire(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_sub_acquire(i, v); } static __always_inline long atomic_long_fetch_sub_release(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_sub_release(i, v); } static __always_inline long atomic_long_fetch_sub_relaxed(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_sub_relaxed(i, v); } static __always_inline void atomic_long_inc(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic_long_inc(v); } static __always_inline long atomic_long_inc_return(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_inc_return(v); } static __always_inline long atomic_long_inc_return_acquire(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_inc_return_acquire(v); } static __always_inline long atomic_long_inc_return_release(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_inc_return_release(v); } static __always_inline long atomic_long_inc_return_relaxed(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_inc_return_relaxed(v); } static __always_inline long atomic_long_fetch_inc(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_inc(v); } static __always_inline long atomic_long_fetch_inc_acquire(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_inc_acquire(v); } static __always_inline long atomic_long_fetch_inc_release(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_inc_release(v); } static __always_inline long atomic_long_fetch_inc_relaxed(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_inc_relaxed(v); } static __always_inline void atomic_long_dec(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic_long_dec(v); } static __always_inline long atomic_long_dec_return(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_dec_return(v); } static __always_inline long atomic_long_dec_return_acquire(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_dec_return_acquire(v); } static __always_inline long atomic_long_dec_return_release(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_dec_return_release(v); } static __always_inline long atomic_long_dec_return_relaxed(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_dec_return_relaxed(v); } static __always_inline long atomic_long_fetch_dec(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_dec(v); } static __always_inline long atomic_long_fetch_dec_acquire(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_dec_acquire(v); } static __always_inline long atomic_long_fetch_dec_release(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_dec_release(v); } static __always_inline long atomic_long_fetch_dec_relaxed(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_dec_relaxed(v); } static __always_inline void atomic_long_and(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic_long_and(i, v); } static __always_inline long atomic_long_fetch_and(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_and(i, v); } static __always_inline long atomic_long_fetch_and_acquire(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_and_acquire(i, v); } static __always_inline long atomic_long_fetch_and_release(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_and_release(i, v); } static __always_inline long atomic_long_fetch_and_relaxed(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_and_relaxed(i, v); } static __always_inline void atomic_long_andnot(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic_long_andnot(i, v); } static __always_inline long atomic_long_fetch_andnot(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_andnot(i, v); } static __always_inline long atomic_long_fetch_andnot_acquire(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_andnot_acquire(i, v); } static __always_inline long atomic_long_fetch_andnot_release(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_andnot_release(i, v); } static __always_inline long atomic_long_fetch_andnot_relaxed(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_andnot_relaxed(i, v); } static __always_inline void atomic_long_or(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic_long_or(i, v); } static __always_inline long atomic_long_fetch_or(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_or(i, v); } static __always_inline long atomic_long_fetch_or_acquire(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_or_acquire(i, v); } static __always_inline long atomic_long_fetch_or_release(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_or_release(i, v); } static __always_inline long atomic_long_fetch_or_relaxed(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_or_relaxed(i, v); } static __always_inline void atomic_long_xor(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); arch_atomic_long_xor(i, v); } static __always_inline long atomic_long_fetch_xor(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_xor(i, v); } static __always_inline long atomic_long_fetch_xor_acquire(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_xor_acquire(i, v); } static __always_inline long atomic_long_fetch_xor_release(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_xor_release(i, v); } static __always_inline long atomic_long_fetch_xor_relaxed(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_xor_relaxed(i, v); } static __always_inline long atomic_long_xchg(atomic_long_t *v, long i) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_xchg(v, i); } static __always_inline long atomic_long_xchg_acquire(atomic_long_t *v, long i) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_xchg_acquire(v, i); } static __always_inline long atomic_long_xchg_release(atomic_long_t *v, long i) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_xchg_release(v, i); } static __always_inline long atomic_long_xchg_relaxed(atomic_long_t *v, long i) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_xchg_relaxed(v, i); } static __always_inline long atomic_long_cmpxchg(atomic_long_t *v, long old, long new) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_cmpxchg(v, old, new); } static __always_inline long atomic_long_cmpxchg_acquire(atomic_long_t *v, long old, long new) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_cmpxchg_acquire(v, old, new); } static __always_inline long atomic_long_cmpxchg_release(atomic_long_t *v, long old, long new) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_cmpxchg_release(v, old, new); } static __always_inline long atomic_long_cmpxchg_relaxed(atomic_long_t *v, long old, long new) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_cmpxchg_relaxed(v, old, new); } static __always_inline bool atomic_long_try_cmpxchg(atomic_long_t *v, long *old, long new) { instrument_atomic_read_write(v, sizeof(*v)); instrument_atomic_read_write(old, sizeof(*old)); return arch_atomic_long_try_cmpxchg(v, old, new); } static __always_inline bool atomic_long_try_cmpxchg_acquire(atomic_long_t *v, long *old, long new) { instrument_atomic_read_write(v, sizeof(*v)); instrument_atomic_read_write(old, sizeof(*old)); return arch_atomic_long_try_cmpxchg_acquire(v, old, new); } static __always_inline bool atomic_long_try_cmpxchg_release(atomic_long_t *v, long *old, long new) { instrument_atomic_read_write(v, sizeof(*v)); instrument_atomic_read_write(old, sizeof(*old)); return arch_atomic_long_try_cmpxchg_release(v, old, new); } static __always_inline bool atomic_long_try_cmpxchg_relaxed(atomic_long_t *v, long *old, long new) { instrument_atomic_read_write(v, sizeof(*v)); instrument_atomic_read_write(old, sizeof(*old)); return arch_atomic_long_try_cmpxchg_relaxed(v, old, new); } static __always_inline bool atomic_long_sub_and_test(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_sub_and_test(i, v); } static __always_inline bool atomic_long_dec_and_test(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_dec_and_test(v); } static __always_inline bool atomic_long_inc_and_test(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_inc_and_test(v); } static __always_inline bool atomic_long_add_negative(long i, atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_add_negative(i, v); } static __always_inline long atomic_long_fetch_add_unless(atomic_long_t *v, long a, long u) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_fetch_add_unless(v, a, u); } static __always_inline bool atomic_long_add_unless(atomic_long_t *v, long a, long u) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_add_unless(v, a, u); } static __always_inline bool atomic_long_inc_not_zero(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_inc_not_zero(v); } static __always_inline bool atomic_long_inc_unless_negative(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_inc_unless_negative(v); } static __always_inline bool atomic_long_dec_unless_positive(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_dec_unless_positive(v); } static __always_inline long atomic_long_dec_if_positive(atomic_long_t *v) { instrument_atomic_read_write(v, sizeof(*v)); return arch_atomic_long_dec_if_positive(v); } #define xchg(ptr, ...) \ ({ \ typeof(ptr) __ai_ptr = (ptr); \ instrument_atomic_write(__ai_ptr, sizeof(*__ai_ptr)); \ arch_xchg(__ai_ptr, __VA_ARGS__); \ }) #define xchg_acquire(ptr, ...) \ ({ \ typeof(ptr) __ai_ptr = (ptr); \ instrument_atomic_write(__ai_ptr, sizeof(*__ai_ptr)); \ arch_xchg_acquire(__ai_ptr, __VA_ARGS__); \ }) #define xchg_release(ptr, ...) \ ({ \ typeof(ptr) __ai_ptr = (ptr); \ instrument_atomic_write(__ai_ptr, sizeof(*__ai_ptr)); \ arch_xchg_release(__ai_ptr, __VA_ARGS__); \ }) #define xchg_relaxed(ptr, ...) \ ({ \ typeof(ptr) __ai_ptr = (ptr); \ instrument_atomic_write(__ai_ptr, sizeof(*__ai_ptr)); \ arch_xchg_relaxed(__ai_ptr, __VA_ARGS__); \ }) #define cmpxchg(ptr, ...) \ ({ \ typeof(ptr) __ai_ptr = (ptr); \ instrument_atomic_write(__ai_ptr, sizeof(*__ai_ptr)); \ arch_cmpxchg(__ai_ptr, __VA_ARGS__); \ }) #define cmpxchg_acquire(ptr, ...) \ ({ \ typeof(ptr) __ai_ptr = (ptr); \ instrument_atomic_write(__ai_ptr, sizeof(*__ai_ptr)); \ arch_cmpxchg_acquire(__ai_ptr, __VA_ARGS__); \ }) #define cmpxchg_release(ptr, ...) \ ({ \ typeof(ptr) __ai_ptr = (ptr); \ instrument_atomic_write(__ai_ptr, sizeof(*__ai_ptr)); \ arch_cmpxchg_release(__ai_ptr, __VA_ARGS__); \ }) #define cmpxchg_relaxed(ptr, ...) \ ({ \ typeof(ptr) __ai_ptr = (ptr); \ instrument_atomic_write(__ai_ptr, sizeof(*__ai_ptr)); \ arch_cmpxchg_relaxed(__ai_ptr, __VA_ARGS__); \ }) #define cmpxchg64(ptr, ...) \ ({ \ typeof(ptr) __ai_ptr = (ptr); \ instrument_atomic_write(__ai_ptr, sizeof(*__ai_ptr)); \ arch_cmpxchg64(__ai_ptr, __VA_ARGS__); \ }) #define cmpxchg64_acquire(ptr, ...) \ ({ \ typeof(ptr) __ai_ptr = (ptr); \ instrument_atomic_write(__ai_ptr, sizeof(*__ai_ptr)); \ arch_cmpxchg64_acquire(__ai_ptr, __VA_ARGS__); \ }) #define cmpxchg64_release(ptr, ...) \ ({ \ typeof(ptr) __ai_ptr = (ptr); \ instrument_atomic_write(__ai_ptr, sizeof(*__ai_ptr)); \ arch_cmpxchg64_release(__ai_ptr, __VA_ARGS__); \ }) #define cmpxchg64_relaxed(ptr, ...) \ ({ \ typeof(ptr) __ai_ptr = (ptr); \ instrument_atomic_write(__ai_ptr, sizeof(*__ai_ptr)); \ arch_cmpxchg64_relaxed(__ai_ptr, __VA_ARGS__); \ }) #define try_cmpxchg(ptr, oldp, ...) \ ({ \ typeof(ptr) __ai_ptr = (ptr); \ typeof(oldp) __ai_oldp = (oldp); \ instrument_atomic_write(__ai_ptr, sizeof(*__ai_ptr)); \ instrument_atomic_write(__ai_oldp, sizeof(*__ai_oldp)); \ arch_try_cmpxchg(__ai_ptr, __ai_oldp, __VA_ARGS__); \ }) #define try_cmpxchg_acquire(ptr, oldp, ...) \ ({ \ typeof(ptr) __ai_ptr = (ptr); \ typeof(oldp) __ai_oldp = (oldp); \ instrument_atomic_write(__ai_ptr, sizeof(*__ai_ptr)); \ instrument_atomic_write(__ai_oldp, sizeof(*__ai_oldp)); \ arch_try_cmpxchg_acquire(__ai_ptr, __ai_oldp, __VA_ARGS__); \ }) #define try_cmpxchg_release(ptr, oldp, ...) \ ({ \ typeof(ptr) __ai_ptr = (ptr); \ typeof(oldp) __ai_oldp = (oldp); \ instrument_atomic_write(__ai_ptr, sizeof(*__ai_ptr)); \ instrument_atomic_write(__ai_oldp, sizeof(*__ai_oldp)); \ arch_try_cmpxchg_release(__ai_ptr, __ai_oldp, __VA_ARGS__); \ }) #define try_cmpxchg_relaxed(ptr, oldp, ...) \ ({ \ typeof(ptr) __ai_ptr = (ptr); \ typeof(oldp) __ai_oldp = (oldp); \ instrument_atomic_write(__ai_ptr, sizeof(*__ai_ptr)); \ instrument_atomic_write(__ai_oldp, sizeof(*__ai_oldp)); \ arch_try_cmpxchg_relaxed(__ai_ptr, __ai_oldp, __VA_ARGS__); \ }) #define cmpxchg_local(ptr, ...) \ ({ \ typeof(ptr) __ai_ptr = (ptr); \ instrument_atomic_write(__ai_ptr, sizeof(*__ai_ptr)); \ arch_cmpxchg_local(__ai_ptr, __VA_ARGS__); \ }) #define cmpxchg64_local(ptr, ...) \ ({ \ typeof(ptr) __ai_ptr = (ptr); \ instrument_atomic_write(__ai_ptr, sizeof(*__ai_ptr)); \ arch_cmpxchg64_local(__ai_ptr, __VA_ARGS__); \ }) #define sync_cmpxchg(ptr, ...) \ ({ \ typeof(ptr) __ai_ptr = (ptr); \ instrument_atomic_write(__ai_ptr, sizeof(*__ai_ptr)); \ arch_sync_cmpxchg(__ai_ptr, __VA_ARGS__); \ }) #define cmpxchg_double(ptr, ...) \ ({ \ typeof(ptr) __ai_ptr = (ptr); \ instrument_atomic_write(__ai_ptr, 2 * sizeof(*__ai_ptr)); \ arch_cmpxchg_double(__ai_ptr, __VA_ARGS__); \ }) #define cmpxchg_double_local(ptr, ...) \ ({ \ typeof(ptr) __ai_ptr = (ptr); \ instrument_atomic_write(__ai_ptr, 2 * sizeof(*__ai_ptr)); \ arch_cmpxchg_double_local(__ai_ptr, __VA_ARGS__); \ }) #endif /* _LINUX_ATOMIC_INSTRUMENTED_H */ // 2a9553f0a9d5619f19151092df5cabbbf16ce835 |
6 9 12 10 12 12 11 11 19 20 20 15 20 15 15 15 15 15 10 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 | // SPDX-License-Identifier: GPL-2.0-or-later /* Copyright (c) 2014 Mahesh Bandewar <maheshb@google.com> */ #include "ipvlan.h" static u32 ipvlan_jhash_secret __read_mostly; void ipvlan_init_secret(void) { net_get_random_once(&ipvlan_jhash_secret, sizeof(ipvlan_jhash_secret)); } void ipvlan_count_rx(const struct ipvl_dev *ipvlan, unsigned int len, bool success, bool mcast) { if (likely(success)) { struct ipvl_pcpu_stats *pcptr; pcptr = this_cpu_ptr(ipvlan->pcpu_stats); u64_stats_update_begin(&pcptr->syncp); pcptr->rx_pkts++; pcptr->rx_bytes += len; if (mcast) pcptr->rx_mcast++; u64_stats_update_end(&pcptr->syncp); } else { this_cpu_inc(ipvlan->pcpu_stats->rx_errs); } } EXPORT_SYMBOL_GPL(ipvlan_count_rx); #if IS_ENABLED(CONFIG_IPV6) static u8 ipvlan_get_v6_hash(const void *iaddr) { const struct in6_addr *ip6_addr = iaddr; return __ipv6_addr_jhash(ip6_addr, ipvlan_jhash_secret) & IPVLAN_HASH_MASK; } #else static u8 ipvlan_get_v6_hash(const void *iaddr) { return 0; } #endif static u8 ipvlan_get_v4_hash(const void *iaddr) { const struct in_addr *ip4_addr = iaddr; return jhash_1word(ip4_addr->s_addr, ipvlan_jhash_secret) & IPVLAN_HASH_MASK; } static bool addr_equal(bool is_v6, struct ipvl_addr *addr, const void *iaddr) { if (!is_v6 && addr->atype == IPVL_IPV4) { struct in_addr *i4addr = (struct in_addr *)iaddr; return addr->ip4addr.s_addr == i4addr->s_addr; #if IS_ENABLED(CONFIG_IPV6) } else if (is_v6 && addr->atype == IPVL_IPV6) { struct in6_addr *i6addr = (struct in6_addr *)iaddr; return ipv6_addr_equal(&addr->ip6addr, i6addr); #endif } return false; } static struct ipvl_addr *ipvlan_ht_addr_lookup(const struct ipvl_port *port, const void *iaddr, bool is_v6) { struct ipvl_addr *addr; u8 hash; hash = is_v6 ? ipvlan_get_v6_hash(iaddr) : ipvlan_get_v4_hash(iaddr); hlist_for_each_entry_rcu(addr, &port->hlhead[hash], hlnode) if (addr_equal(is_v6, addr, iaddr)) return addr; return NULL; } void ipvlan_ht_addr_add(struct ipvl_dev *ipvlan, struct ipvl_addr *addr) { struct ipvl_port *port = ipvlan->port; u8 hash; hash = (addr->atype == IPVL_IPV6) ? ipvlan_get_v6_hash(&addr->ip6addr) : ipvlan_get_v4_hash(&addr->ip4addr); if (hlist_unhashed(&addr->hlnode)) hlist_add_head_rcu(&addr->hlnode, &port->hlhead[hash]); } void ipvlan_ht_addr_del(struct ipvl_addr *addr) { hlist_del_init_rcu(&addr->hlnode); } struct ipvl_addr *ipvlan_find_addr(const struct ipvl_dev *ipvlan, const void *iaddr, bool is_v6) { struct ipvl_addr *addr, *ret = NULL; rcu_read_lock(); list_for_each_entry_rcu(addr, &ipvlan->addrs, anode) { if (addr_equal(is_v6, addr, iaddr)) { ret = addr; break; } } rcu_read_unlock(); return ret; } bool ipvlan_addr_busy(struct ipvl_port *port, void *iaddr, bool is_v6) { struct ipvl_dev *ipvlan; bool ret = false; rcu_read_lock(); list_for_each_entry_rcu(ipvlan, &port->ipvlans, pnode) { if (ipvlan_find_addr(ipvlan, iaddr, is_v6)) { ret = true; break; } } rcu_read_unlock(); return ret; } void *ipvlan_get_L3_hdr(struct ipvl_port *port, struct sk_buff *skb, int *type) { void *lyr3h = NULL; switch (skb->protocol) { case htons(ETH_P_ARP): { struct arphdr *arph; if (unlikely(!pskb_may_pull(skb, arp_hdr_len(port->dev)))) return NULL; arph = arp_hdr(skb); *type = IPVL_ARP; lyr3h = arph; break; } case htons(ETH_P_IP): { u32 pktlen; struct iphdr *ip4h; if (unlikely(!pskb_may_pull(skb, sizeof(*ip4h)))) return NULL; ip4h = ip_hdr(skb); pktlen = ntohs(ip4h->tot_len); if (ip4h->ihl < 5 || ip4h->version != 4) return NULL; if (skb->len < pktlen || pktlen < (ip4h->ihl * 4)) return NULL; *type = IPVL_IPV4; lyr3h = ip4h; break; } #if IS_ENABLED(CONFIG_IPV6) case htons(ETH_P_IPV6): { struct ipv6hdr *ip6h; if (unlikely(!pskb_may_pull(skb, sizeof(*ip6h)))) return NULL; ip6h = ipv6_hdr(skb); if (ip6h->version != 6) return NULL; *type = IPVL_IPV6; lyr3h = ip6h; /* Only Neighbour Solicitation pkts need different treatment */ if (ipv6_addr_any(&ip6h->saddr) && ip6h->nexthdr == NEXTHDR_ICMP) { struct icmp6hdr *icmph; if (unlikely(!pskb_may_pull(skb, sizeof(*ip6h) + sizeof(*icmph)))) return NULL; ip6h = ipv6_hdr(skb); icmph = (struct icmp6hdr *)(ip6h + 1); if (icmph->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION) { /* Need to access the ipv6 address in body */ if (unlikely(!pskb_may_pull(skb, sizeof(*ip6h) + sizeof(*icmph) + sizeof(struct in6_addr)))) return NULL; ip6h = ipv6_hdr(skb); icmph = (struct icmp6hdr *)(ip6h + 1); } *type = IPVL_ICMPV6; lyr3h = icmph; } break; } #endif default: return NULL; } return lyr3h; } unsigned int ipvlan_mac_hash(const unsigned char *addr) { u32 hash = jhash_1word(__get_unaligned_cpu32(addr+2), ipvlan_jhash_secret); return hash & IPVLAN_MAC_FILTER_MASK; } void ipvlan_process_multicast(struct work_struct *work) { struct ipvl_port *port = container_of(work, struct ipvl_port, wq); struct ethhdr *ethh; struct ipvl_dev *ipvlan; struct sk_buff *skb, *nskb; struct sk_buff_head list; unsigned int len; unsigned int mac_hash; int ret; u8 pkt_type; bool tx_pkt; __skb_queue_head_init(&list); spin_lock_bh(&port->backlog.lock); skb_queue_splice_tail_init(&port->backlog, &list); spin_unlock_bh(&port->backlog.lock); while ((skb = __skb_dequeue(&list)) != NULL) { struct net_device *dev = skb->dev; bool consumed = false; ethh = eth_hdr(skb); tx_pkt = IPVL_SKB_CB(skb)->tx_pkt; mac_hash = ipvlan_mac_hash(ethh->h_dest); if (ether_addr_equal(ethh->h_dest, port->dev->broadcast)) pkt_type = PACKET_BROADCAST; else pkt_type = PACKET_MULTICAST; rcu_read_lock(); list_for_each_entry_rcu(ipvlan, &port->ipvlans, pnode) { if (tx_pkt && (ipvlan->dev == skb->dev)) continue; if (!test_bit(mac_hash, ipvlan->mac_filters)) continue; if (!(ipvlan->dev->flags & IFF_UP)) continue; ret = NET_RX_DROP; len = skb->len + ETH_HLEN; nskb = skb_clone(skb, GFP_ATOMIC); local_bh_disable(); if (nskb) { consumed = true; nskb->pkt_type = pkt_type; nskb->dev = ipvlan->dev; if (tx_pkt) ret = dev_forward_skb(ipvlan->dev, nskb); else ret = netif_rx(nskb); } ipvlan_count_rx(ipvlan, len, ret == NET_RX_SUCCESS, true); local_bh_enable(); } rcu_read_unlock(); if (tx_pkt) { /* If the packet originated here, send it out. */ skb->dev = port->dev; skb->pkt_type = pkt_type; dev_queue_xmit(skb); } else { if (consumed) consume_skb(skb); else kfree_skb(skb); } if (dev) dev_put(dev); cond_resched(); } } static void ipvlan_skb_crossing_ns(struct sk_buff *skb, struct net_device *dev) { bool xnet = true; if (dev) xnet = !net_eq(dev_net(skb->dev), dev_net(dev)); skb_scrub_packet(skb, xnet); if (dev) skb->dev = dev; } static int ipvlan_rcv_frame(struct ipvl_addr *addr, struct sk_buff **pskb, bool local) { struct ipvl_dev *ipvlan = addr->master; struct net_device *dev = ipvlan->dev; unsigned int len; rx_handler_result_t ret = RX_HANDLER_CONSUMED; bool success = false; struct sk_buff *skb = *pskb; len = skb->len + ETH_HLEN; /* Only packets exchanged between two local slaves need to have * device-up check as well as skb-share check. */ if (local) { if (unlikely(!(dev->flags & IFF_UP))) { kfree_skb(skb); goto out; } skb = skb_share_check(skb, GFP_ATOMIC); if (!skb) goto out; *pskb = skb; } if (local) { skb->pkt_type = PACKET_HOST; if (dev_forward_skb(ipvlan->dev, skb) == NET_RX_SUCCESS) success = true; } else { skb->dev = dev; ret = RX_HANDLER_ANOTHER; success = true; } out: ipvlan_count_rx(ipvlan, len, success, false); return ret; } struct ipvl_addr *ipvlan_addr_lookup(struct ipvl_port *port, void *lyr3h, int addr_type, bool use_dest) { struct ipvl_addr *addr = NULL; switch (addr_type) { #if IS_ENABLED(CONFIG_IPV6) case IPVL_IPV6: { struct ipv6hdr *ip6h; struct in6_addr *i6addr; ip6h = (struct ipv6hdr *)lyr3h; i6addr = use_dest ? &ip6h->daddr : &ip6h->saddr; addr = ipvlan_ht_addr_lookup(port, i6addr, true); break; } case IPVL_ICMPV6: { struct nd_msg *ndmh; struct in6_addr *i6addr; /* Make sure that the NeighborSolicitation ICMPv6 packets * are handled to avoid DAD issue. */ ndmh = (struct nd_msg *)lyr3h; if (ndmh->icmph.icmp6_type == NDISC_NEIGHBOUR_SOLICITATION) { i6addr = &ndmh->target; addr = ipvlan_ht_addr_lookup(port, i6addr, true); } break; } #endif case IPVL_IPV4: { struct iphdr *ip4h; __be32 *i4addr; ip4h = (struct iphdr *)lyr3h; i4addr = use_dest ? &ip4h->daddr : &ip4h->saddr; addr = ipvlan_ht_addr_lookup(port, i4addr, false); break; } case IPVL_ARP: { struct arphdr *arph; unsigned char *arp_ptr; __be32 dip; arph = (struct arphdr *)lyr3h; arp_ptr = (unsigned char *)(arph + 1); if (use_dest) arp_ptr += (2 * port->dev->addr_len) + 4; else arp_ptr += port->dev->addr_len; memcpy(&dip, arp_ptr, 4); addr = ipvlan_ht_addr_lookup(port, &dip, false); break; } } return addr; } static noinline_for_stack int ipvlan_process_v4_outbound(struct sk_buff *skb) { const struct iphdr *ip4h = ip_hdr(skb); struct net_device *dev = skb->dev; struct net *net = dev_net(dev); struct rtable *rt; int err, ret = NET_XMIT_DROP; struct flowi4 fl4 = { .flowi4_oif = dev->ifindex, .flowi4_tos = RT_TOS(ip4h->tos), .flowi4_flags = FLOWI_FLAG_ANYSRC, .flowi4_mark = skb->mark, .daddr = ip4h->daddr, .saddr = ip4h->saddr, }; rt = ip_route_output_flow(net, &fl4, NULL); if (IS_ERR(rt)) goto err; if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) { ip_rt_put(rt); goto err; } skb_dst_set(skb, &rt->dst); memset(IPCB(skb), 0, sizeof(*IPCB(skb))); err = ip_local_out(net, NULL, skb); if (unlikely(net_xmit_eval(err))) DEV_STATS_INC(dev, tx_errors); else ret = NET_XMIT_SUCCESS; goto out; err: DEV_STATS_INC(dev, tx_errors); kfree_skb(skb); out: return ret; } #if IS_ENABLED(CONFIG_IPV6) static noinline_for_stack int ipvlan_route_v6_outbound(struct net_device *dev, struct sk_buff *skb) { const struct ipv6hdr *ip6h = ipv6_hdr(skb); struct flowi6 fl6 = { .flowi6_oif = dev->ifindex, .daddr = ip6h->daddr, .saddr = ip6h->saddr, .flowi6_flags = FLOWI_FLAG_ANYSRC, .flowlabel = ip6_flowinfo(ip6h), .flowi6_mark = skb->mark, .flowi6_proto = ip6h->nexthdr, }; struct dst_entry *dst; int err; dst = ip6_route_output(dev_net(dev), NULL, &fl6); err = dst->error; if (err) { dst_release(dst); return err; } skb_dst_set(skb, dst); return 0; } static int ipvlan_process_v6_outbound(struct sk_buff *skb) { struct net_device *dev = skb->dev; int err, ret = NET_XMIT_DROP; err = ipvlan_route_v6_outbound(dev, skb); if (unlikely(err)) { DEV_STATS_INC(dev, tx_errors); kfree_skb(skb); return err; } memset(IP6CB(skb), 0, sizeof(*IP6CB(skb))); err = ip6_local_out(dev_net(dev), NULL, skb); if (unlikely(net_xmit_eval(err))) DEV_STATS_INC(dev, tx_errors); else ret = NET_XMIT_SUCCESS; return ret; } #else static int ipvlan_process_v6_outbound(struct sk_buff *skb) { return NET_XMIT_DROP; } #endif static int ipvlan_process_outbound(struct sk_buff *skb) { int ret = NET_XMIT_DROP; /* The ipvlan is a pseudo-L2 device, so the packets that we receive * will have L2; which need to discarded and processed further * in the net-ns of the main-device. */ if (skb_mac_header_was_set(skb)) { /* In this mode we dont care about * multicast and broadcast traffic */ struct ethhdr *ethh = eth_hdr(skb); if (is_multicast_ether_addr(ethh->h_dest)) { pr_debug_ratelimited( "Dropped {multi|broad}cast of type=[%x]\n", ntohs(skb->protocol)); kfree_skb(skb); goto out; } skb_pull(skb, sizeof(*ethh)); skb->mac_header = (typeof(skb->mac_header))~0U; skb_reset_network_header(skb); } if (skb->protocol == htons(ETH_P_IPV6)) ret = ipvlan_process_v6_outbound(skb); else if (skb->protocol == htons(ETH_P_IP)) ret = ipvlan_process_v4_outbound(skb); else { pr_warn_ratelimited("Dropped outbound packet type=%x\n", ntohs(skb->protocol)); kfree_skb(skb); } out: return ret; } static void ipvlan_multicast_enqueue(struct ipvl_port *port, struct sk_buff *skb, bool tx_pkt) { if (skb->protocol == htons(ETH_P_PAUSE)) { kfree_skb(skb); return; } /* Record that the deferred packet is from TX or RX path. By * looking at mac-addresses on packet will lead to erronus decisions. * (This would be true for a loopback-mode on master device or a * hair-pin mode of the switch.) */ IPVL_SKB_CB(skb)->tx_pkt = tx_pkt; spin_lock(&port->backlog.lock); if (skb_queue_len(&port->backlog) < IPVLAN_QBACKLOG_LIMIT) { if (skb->dev) dev_hold(skb->dev); __skb_queue_tail(&port->backlog, skb); spin_unlock(&port->backlog.lock); schedule_work(&port->wq); } else { spin_unlock(&port->backlog.lock); atomic_long_inc(&skb->dev->rx_dropped); kfree_skb(skb); } } static int ipvlan_xmit_mode_l3(struct sk_buff *skb, struct net_device *dev) { const struct ipvl_dev *ipvlan = netdev_priv(dev); void *lyr3h; struct ipvl_addr *addr; int addr_type; lyr3h = ipvlan_get_L3_hdr(ipvlan->port, skb, &addr_type); if (!lyr3h) goto out; if (!ipvlan_is_vepa(ipvlan->port)) { addr = ipvlan_addr_lookup(ipvlan->port, lyr3h, addr_type, true); if (addr) { if (ipvlan_is_private(ipvlan->port)) { consume_skb(skb); return NET_XMIT_DROP; } ipvlan_rcv_frame(addr, &skb, true); return NET_XMIT_SUCCESS; } } out: ipvlan_skb_crossing_ns(skb, ipvlan->phy_dev); return ipvlan_process_outbound(skb); } static int ipvlan_xmit_mode_l2(struct sk_buff *skb, struct net_device *dev) { const struct ipvl_dev *ipvlan = netdev_priv(dev); struct ethhdr *eth = skb_eth_hdr(skb); struct ipvl_addr *addr; void *lyr3h; int addr_type; if (!ipvlan_is_vepa(ipvlan->port) && ether_addr_equal(eth->h_dest, eth->h_source)) { lyr3h = ipvlan_get_L3_hdr(ipvlan->port, skb, &addr_type); if (lyr3h) { addr = ipvlan_addr_lookup(ipvlan->port, lyr3h, addr_type, true); if (addr) { if (ipvlan_is_private(ipvlan->port)) { consume_skb(skb); return NET_XMIT_DROP; } ipvlan_rcv_frame(addr, &skb, true); return NET_XMIT_SUCCESS; } } skb = skb_share_check(skb, GFP_ATOMIC); if (!skb) return NET_XMIT_DROP; /* Packet definitely does not belong to any of the * virtual devices, but the dest is local. So forward * the skb for the main-dev. At the RX side we just return * RX_PASS for it to be processed further on the stack. */ dev_forward_skb(ipvlan->phy_dev, skb); return NET_XMIT_SUCCESS; } else if (is_multicast_ether_addr(eth->h_dest)) { skb_reset_mac_header(skb); ipvlan_skb_crossing_ns(skb, NULL); ipvlan_multicast_enqueue(ipvlan->port, skb, true); return NET_XMIT_SUCCESS; } skb->dev = ipvlan->phy_dev; return dev_queue_xmit(skb); } int ipvlan_queue_xmit(struct sk_buff *skb, struct net_device *dev) { struct ipvl_dev *ipvlan = netdev_priv(dev); struct ipvl_port *port = ipvlan_port_get_rcu_bh(ipvlan->phy_dev); if (!port) goto out; if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) goto out; switch(port->mode) { case IPVLAN_MODE_L2: return ipvlan_xmit_mode_l2(skb, dev); case IPVLAN_MODE_L3: #ifdef CONFIG_IPVLAN_L3S case IPVLAN_MODE_L3S: #endif return ipvlan_xmit_mode_l3(skb, dev); } /* Should not reach here */ WARN_ONCE(true, "%s called for mode = [%x]\n", __func__, port->mode); out: kfree_skb(skb); return NET_XMIT_DROP; } static bool ipvlan_external_frame(struct sk_buff *skb, struct ipvl_port *port) { struct ethhdr *eth = eth_hdr(skb); struct ipvl_addr *addr; void *lyr3h; int addr_type; if (ether_addr_equal(eth->h_source, skb->dev->dev_addr)) { lyr3h = ipvlan_get_L3_hdr(port, skb, &addr_type); if (!lyr3h) return true; addr = ipvlan_addr_lookup(port, lyr3h, addr_type, false); if (addr) return false; } return true; } static rx_handler_result_t ipvlan_handle_mode_l3(struct sk_buff **pskb, struct ipvl_port *port) { void *lyr3h; int addr_type; struct ipvl_addr *addr; struct sk_buff *skb = *pskb; rx_handler_result_t ret = RX_HANDLER_PASS; lyr3h = ipvlan_get_L3_hdr(port, skb, &addr_type); if (!lyr3h) goto out; addr = ipvlan_addr_lookup(port, lyr3h, addr_type, true); if (addr) ret = ipvlan_rcv_frame(addr, pskb, false); out: return ret; } static rx_handler_result_t ipvlan_handle_mode_l2(struct sk_buff **pskb, struct ipvl_port *port) { struct sk_buff *skb = *pskb; struct ethhdr *eth = eth_hdr(skb); rx_handler_result_t ret = RX_HANDLER_PASS; if (is_multicast_ether_addr(eth->h_dest)) { if (ipvlan_external_frame(skb, port)) { struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); /* External frames are queued for device local * distribution, but a copy is given to master * straight away to avoid sending duplicates later * when work-queue processes this frame. This is * achieved by returning RX_HANDLER_PASS. */ if (nskb) { ipvlan_skb_crossing_ns(nskb, NULL); ipvlan_multicast_enqueue(port, nskb, false); } } } else { /* Perform like l3 mode for non-multicast packet */ ret = ipvlan_handle_mode_l3(pskb, port); } return ret; } rx_handler_result_t ipvlan_handle_frame(struct sk_buff **pskb) { struct sk_buff *skb = *pskb; struct ipvl_port *port = ipvlan_port_get_rcu(skb->dev); if (!port) return RX_HANDLER_PASS; switch (port->mode) { case IPVLAN_MODE_L2: return ipvlan_handle_mode_l2(pskb, port); case IPVLAN_MODE_L3: return ipvlan_handle_mode_l3(pskb, port); #ifdef CONFIG_IPVLAN_L3S case IPVLAN_MODE_L3S: return RX_HANDLER_PASS; #endif } /* Should not reach here */ WARN_ONCE(true, "%s called for mode = [%x]\n", __func__, port->mode); kfree_skb(skb); return RX_HANDLER_CONSUMED; } |
14 65 17 53 42 14 6 62 50 7 20 53 1 53 53 53 53 45 61 62 247 231 17 246 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | // SPDX-License-Identifier: GPL-2.0 #include <linux/module.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/socket.h> #include <linux/net.h> #include <linux/fs.h> #include <net/af_unix.h> #include <net/scm.h> #include <linux/init.h> #include <linux/io_uring.h> #include "scm.h" unsigned int unix_tot_inflight; EXPORT_SYMBOL(unix_tot_inflight); LIST_HEAD(gc_inflight_list); EXPORT_SYMBOL(gc_inflight_list); DEFINE_SPINLOCK(unix_gc_lock); EXPORT_SYMBOL(unix_gc_lock); struct sock *unix_get_socket(struct file *filp) { struct sock *u_sock = NULL; struct inode *inode = file_inode(filp); /* Socket ? */ if (S_ISSOCK(inode->i_mode) && !(filp->f_mode & FMODE_PATH)) { struct socket *sock = SOCKET_I(inode); struct sock *s = sock->sk; /* PF_UNIX ? */ if (s && sock->ops && sock->ops->family == PF_UNIX) u_sock = s; } return u_sock; } EXPORT_SYMBOL(unix_get_socket); /* Keep the number of times in flight count for the file * descriptor if it is for an AF_UNIX socket. */ void unix_inflight(struct user_struct *user, struct file *fp) { struct sock *s = unix_get_socket(fp); spin_lock(&unix_gc_lock); if (s) { struct unix_sock *u = unix_sk(s); if (!u->inflight) { BUG_ON(!list_empty(&u->link)); list_add_tail(&u->link, &gc_inflight_list); } else { BUG_ON(list_empty(&u->link)); } u->inflight++; /* Paired with READ_ONCE() in wait_for_unix_gc() */ WRITE_ONCE(unix_tot_inflight, unix_tot_inflight + 1); } WRITE_ONCE(user->unix_inflight, user->unix_inflight + 1); spin_unlock(&unix_gc_lock); } void unix_notinflight(struct user_struct *user, struct file *fp) { struct sock *s = unix_get_socket(fp); spin_lock(&unix_gc_lock); if (s) { struct unix_sock *u = unix_sk(s); BUG_ON(!u->inflight); BUG_ON(list_empty(&u->link)); u->inflight--; if (!u->inflight) list_del_init(&u->link); /* Paired with READ_ONCE() in wait_for_unix_gc() */ WRITE_ONCE(unix_tot_inflight, unix_tot_inflight - 1); } WRITE_ONCE(user->unix_inflight, user->unix_inflight - 1); spin_unlock(&unix_gc_lock); } /* * The "user->unix_inflight" variable is protected by the garbage * collection lock, and we just read it locklessly here. If you go * over the limit, there might be a tiny race in actually noticing * it across threads. Tough. */ static inline bool too_many_unix_fds(struct task_struct *p) { struct user_struct *user = current_user(); if (unlikely(READ_ONCE(user->unix_inflight) > task_rlimit(p, RLIMIT_NOFILE))) return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); return false; } int unix_attach_fds(struct scm_cookie *scm, struct sk_buff *skb) { int i; if (too_many_unix_fds(current)) return -ETOOMANYREFS; /* * Need to duplicate file references for the sake of garbage * collection. Otherwise a socket in the fps might become a * candidate for GC while the skb is not yet queued. */ UNIXCB(skb).fp = scm_fp_dup(scm->fp); if (!UNIXCB(skb).fp) return -ENOMEM; for (i = scm->fp->count - 1; i >= 0; i--) unix_inflight(scm->fp->user, scm->fp->fp[i]); return 0; } EXPORT_SYMBOL(unix_attach_fds); void unix_detach_fds(struct scm_cookie *scm, struct sk_buff *skb) { int i; scm->fp = UNIXCB(skb).fp; UNIXCB(skb).fp = NULL; for (i = scm->fp->count-1; i >= 0; i--) unix_notinflight(scm->fp->user, scm->fp->fp[i]); } EXPORT_SYMBOL(unix_detach_fds); void unix_destruct_scm(struct sk_buff *skb) { struct scm_cookie scm; memset(&scm, 0, sizeof(scm)); scm.pid = UNIXCB(skb).pid; if (UNIXCB(skb).fp) unix_detach_fds(&scm, skb); /* Alas, it calls VFS */ /* So fscking what? fput() had been SMP-safe since the last Summer */ scm_destroy(&scm); sock_wfree(skb); } EXPORT_SYMBOL(unix_destruct_scm); |
4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 | // SPDX-License-Identifier: GPL-2.0 /* * Block device elevator/IO-scheduler. * * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE * * 30042000 Jens Axboe <axboe@kernel.dk> : * * Split the elevator a bit so that it is possible to choose a different * one or even write a new "plug in". There are three pieces: * - elevator_fn, inserts a new request in the queue list * - elevator_merge_fn, decides whether a new buffer can be merged with * an existing request * - elevator_dequeue_fn, called when a request is taken off the active list * * 20082000 Dave Jones <davej@suse.de> : * Removed tests for max-bomb-segments, which was breaking elvtune * when run without -bN * * Jens: * - Rework again to work with bio instead of buffer_heads * - loose bi_dev comparisons, partition handling is right now * - completely modularize elevator setup and teardown * */ #include <linux/kernel.h> #include <linux/fs.h> #include <linux/blkdev.h> #include <linux/elevator.h> #include <linux/bio.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/compiler.h> #include <linux/blktrace_api.h> #include <linux/hash.h> #include <linux/uaccess.h> #include <linux/pm_runtime.h> #include <linux/blk-cgroup.h> #include <trace/events/block.h> #include "blk.h" #include "blk-mq-sched.h" #include "blk-pm.h" #include "blk-wbt.h" static DEFINE_SPINLOCK(elv_list_lock); static LIST_HEAD(elv_list); /* * Merge hash stuff. */ #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq)) /* * Query io scheduler to see if the current process issuing bio may be * merged with rq. */ static int elv_iosched_allow_bio_merge(struct request *rq, struct bio *bio) { struct request_queue *q = rq->q; struct elevator_queue *e = q->elevator; if (e->type->ops.allow_merge) return e->type->ops.allow_merge(q, rq, bio); return 1; } /* * can we safely merge with this request? */ bool elv_bio_merge_ok(struct request *rq, struct bio *bio) { if (!blk_rq_merge_ok(rq, bio)) return false; if (!elv_iosched_allow_bio_merge(rq, bio)) return false; return true; } EXPORT_SYMBOL(elv_bio_merge_ok); static inline bool elv_support_features(unsigned int elv_features, unsigned int required_features) { return (required_features & elv_features) == required_features; } /** * elevator_match - Test an elevator name and features * @e: Scheduler to test * @name: Elevator name to test * @required_features: Features that the elevator must provide * * Return true if the elevator @e name matches @name and if @e provides all * the features specified by @required_features. */ static bool elevator_match(const struct elevator_type *e, const char *name, unsigned int required_features) { if (!elv_support_features(e->elevator_features, required_features)) return false; if (!strcmp(e->elevator_name, name)) return true; if (e->elevator_alias && !strcmp(e->elevator_alias, name)) return true; return false; } /** * elevator_find - Find an elevator * @name: Name of the elevator to find * @required_features: Features that the elevator must provide * * Return the first registered scheduler with name @name and supporting the * features @required_features and NULL otherwise. */ static struct elevator_type *elevator_find(const char *name, unsigned int required_features) { struct elevator_type *e; list_for_each_entry(e, &elv_list, list) { if (elevator_match(e, name, required_features)) return e; } return NULL; } static void elevator_put(struct elevator_type *e) { module_put(e->elevator_owner); } static struct elevator_type *elevator_get(struct request_queue *q, const char *name, bool try_loading) { struct elevator_type *e; spin_lock(&elv_list_lock); e = elevator_find(name, q->required_elevator_features); if (!e && try_loading) { spin_unlock(&elv_list_lock); request_module("%s-iosched", name); spin_lock(&elv_list_lock); e = elevator_find(name, q->required_elevator_features); } if (e && !try_module_get(e->elevator_owner)) e = NULL; spin_unlock(&elv_list_lock); return e; } static struct kobj_type elv_ktype; struct elevator_queue *elevator_alloc(struct request_queue *q, struct elevator_type *e) { struct elevator_queue *eq; eq = kzalloc_node(sizeof(*eq), GFP_KERNEL, q->node); if (unlikely(!eq)) return NULL; eq->type = e; kobject_init(&eq->kobj, &elv_ktype); mutex_init(&eq->sysfs_lock); hash_init(eq->hash); return eq; } EXPORT_SYMBOL(elevator_alloc); static void elevator_release(struct kobject *kobj) { struct elevator_queue *e; e = container_of(kobj, struct elevator_queue, kobj); elevator_put(e->type); kfree(e); } void __elevator_exit(struct request_queue *q, struct elevator_queue *e) { mutex_lock(&e->sysfs_lock); blk_mq_exit_sched(q, e); mutex_unlock(&e->sysfs_lock); kobject_put(&e->kobj); } static inline void __elv_rqhash_del(struct request *rq) { hash_del(&rq->hash); rq->rq_flags &= ~RQF_HASHED; } void elv_rqhash_del(struct request_queue *q, struct request *rq) { if (ELV_ON_HASH(rq)) __elv_rqhash_del(rq); } EXPORT_SYMBOL_GPL(elv_rqhash_del); void elv_rqhash_add(struct request_queue *q, struct request *rq) { struct elevator_queue *e = q->elevator; BUG_ON(ELV_ON_HASH(rq)); hash_add(e->hash, &rq->hash, rq_hash_key(rq)); rq->rq_flags |= RQF_HASHED; } EXPORT_SYMBOL_GPL(elv_rqhash_add); void elv_rqhash_reposition(struct request_queue *q, struct request *rq) { __elv_rqhash_del(rq); elv_rqhash_add(q, rq); } struct request *elv_rqhash_find(struct request_queue *q, sector_t offset) { struct elevator_queue *e = q->elevator; struct hlist_node *next; struct request *rq; hash_for_each_possible_safe(e->hash, rq, next, hash, offset) { BUG_ON(!ELV_ON_HASH(rq)); if (unlikely(!rq_mergeable(rq))) { __elv_rqhash_del(rq); continue; } if (rq_hash_key(rq) == offset) return rq; } return NULL; } /* * RB-tree support functions for inserting/lookup/removal of requests * in a sorted RB tree. */ void elv_rb_add(struct rb_root *root, struct request *rq) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct request *__rq; while (*p) { parent = *p; __rq = rb_entry(parent, struct request, rb_node); if (blk_rq_pos(rq) < blk_rq_pos(__rq)) p = &(*p)->rb_left; else if (blk_rq_pos(rq) >= blk_rq_pos(__rq)) p = &(*p)->rb_right; } rb_link_node(&rq->rb_node, parent, p); rb_insert_color(&rq->rb_node, root); } EXPORT_SYMBOL(elv_rb_add); void elv_rb_del(struct rb_root *root, struct request *rq) { BUG_ON(RB_EMPTY_NODE(&rq->rb_node)); rb_erase(&rq->rb_node, root); RB_CLEAR_NODE(&rq->rb_node); } EXPORT_SYMBOL(elv_rb_del); struct request *elv_rb_find(struct rb_root *root, sector_t sector) { struct rb_node *n = root->rb_node; struct request *rq; while (n) { rq = rb_entry(n, struct request, rb_node); if (sector < blk_rq_pos(rq)) n = n->rb_left; else if (sector > blk_rq_pos(rq)) n = n->rb_right; else return rq; } return NULL; } EXPORT_SYMBOL(elv_rb_find); enum elv_merge elv_merge(struct request_queue *q, struct request **req, struct bio *bio) { struct elevator_queue *e = q->elevator; struct request *__rq; /* * Levels of merges: * nomerges: No merges at all attempted * noxmerges: Only simple one-hit cache try * merges: All merge tries attempted */ if (blk_queue_nomerges(q) || !bio_mergeable(bio)) return ELEVATOR_NO_MERGE; /* * First try one-hit cache. */ if (q->last_merge && elv_bio_merge_ok(q->last_merge, bio)) { enum elv_merge ret = blk_try_merge(q->last_merge, bio); if (ret != ELEVATOR_NO_MERGE) { *req = q->last_merge; return ret; } } if (blk_queue_noxmerges(q)) return ELEVATOR_NO_MERGE; /* * See if our hash lookup can find a potential backmerge. */ __rq = elv_rqhash_find(q, bio->bi_iter.bi_sector); if (__rq && elv_bio_merge_ok(__rq, bio)) { *req = __rq; if (blk_discard_mergable(__rq)) return ELEVATOR_DISCARD_MERGE; return ELEVATOR_BACK_MERGE; } if (e->type->ops.request_merge) return e->type->ops.request_merge(q, req, bio); return ELEVATOR_NO_MERGE; } /* * Attempt to do an insertion back merge. Only check for the case where * we can append 'rq' to an existing request, so we can throw 'rq' away * afterwards. * * Returns true if we merged, false otherwise. 'free' will contain all * requests that need to be freed. */ bool elv_attempt_insert_merge(struct request_queue *q, struct request *rq, struct list_head *free) { struct request *__rq; bool ret; if (blk_queue_nomerges(q)) return false; /* * First try one-hit cache. */ if (q->last_merge && blk_attempt_req_merge(q, q->last_merge, rq)) { list_add(&rq->queuelist, free); return true; } if (blk_queue_noxmerges(q)) return false; ret = false; /* * See if our hash lookup can find a potential backmerge. */ while (1) { __rq = elv_rqhash_find(q, blk_rq_pos(rq)); if (!__rq || !blk_attempt_req_merge(q, __rq, rq)) break; list_add(&rq->queuelist, free); /* The merged request could be merged with others, try again */ ret = true; rq = __rq; } return ret; } void elv_merged_request(struct request_queue *q, struct request *rq, enum elv_merge type) { struct elevator_queue *e = q->elevator; if (e->type->ops.request_merged) e->type->ops.request_merged(q, rq, type); if (type == ELEVATOR_BACK_MERGE) elv_rqhash_reposition(q, rq); q->last_merge = rq; } void elv_merge_requests(struct request_queue *q, struct request *rq, struct request *next) { struct elevator_queue *e = q->elevator; if (e->type->ops.requests_merged) e->type->ops.requests_merged(q, rq, next); elv_rqhash_reposition(q, rq); q->last_merge = rq; } struct request *elv_latter_request(struct request_queue *q, struct request *rq) { struct elevator_queue *e = q->elevator; if (e->type->ops.next_request) return e->type->ops.next_request(q, rq); return NULL; } struct request *elv_former_request(struct request_queue *q, struct request *rq) { struct elevator_queue *e = q->elevator; if (e->type->ops.former_request) return e->type->ops.former_request(q, rq); return NULL; } #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr) static ssize_t elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page) { struct elv_fs_entry *entry = to_elv(attr); struct elevator_queue *e; ssize_t error; if (!entry->show) return -EIO; e = container_of(kobj, struct elevator_queue, kobj); mutex_lock(&e->sysfs_lock); error = e->type ? entry->show(e, page) : -ENOENT; mutex_unlock(&e->sysfs_lock); return error; } static ssize_t elv_attr_store(struct kobject *kobj, struct attribute *attr, const char *page, size_t length) { struct elv_fs_entry *entry = to_elv(attr); struct elevator_queue *e; ssize_t error; if (!entry->store) return -EIO; e = container_of(kobj, struct elevator_queue, kobj); mutex_lock(&e->sysfs_lock); error = e->type ? entry->store(e, page, length) : -ENOENT; mutex_unlock(&e->sysfs_lock); return error; } static const struct sysfs_ops elv_sysfs_ops = { .show = elv_attr_show, .store = elv_attr_store, }; static struct kobj_type elv_ktype = { .sysfs_ops = &elv_sysfs_ops, .release = elevator_release, }; int elv_register_queue(struct request_queue *q, bool uevent) { struct elevator_queue *e = q->elevator; int error; lockdep_assert_held(&q->sysfs_lock); error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched"); if (!error) { struct elv_fs_entry *attr = e->type->elevator_attrs; if (attr) { while (attr->attr.name) { if (sysfs_create_file(&e->kobj, &attr->attr)) break; attr++; } } if (uevent) kobject_uevent(&e->kobj, KOBJ_ADD); e->registered = 1; } return error; } void elv_unregister_queue(struct request_queue *q) { lockdep_assert_held(&q->sysfs_lock); if (q) { struct elevator_queue *e = q->elevator; kobject_uevent(&e->kobj, KOBJ_REMOVE); kobject_del(&e->kobj); e->registered = 0; } } int elv_register(struct elevator_type *e) { /* insert_requests and dispatch_request are mandatory */ if (WARN_ON_ONCE(!e->ops.insert_requests || !e->ops.dispatch_request)) return -EINVAL; /* create icq_cache if requested */ if (e->icq_size) { if (WARN_ON(e->icq_size < sizeof(struct io_cq)) || WARN_ON(e->icq_align < __alignof__(struct io_cq))) return -EINVAL; snprintf(e->icq_cache_name, sizeof(e->icq_cache_name), "%s_io_cq", e->elevator_name); e->icq_cache = kmem_cache_create(e->icq_cache_name, e->icq_size, e->icq_align, 0, NULL); if (!e->icq_cache) return -ENOMEM; } /* register, don't allow duplicate names */ spin_lock(&elv_list_lock); if (elevator_find(e->elevator_name, 0)) { spin_unlock(&elv_list_lock); kmem_cache_destroy(e->icq_cache); return -EBUSY; } list_add_tail(&e->list, &elv_list); spin_unlock(&elv_list_lock); printk(KERN_INFO "io scheduler %s registered\n", e->elevator_name); return 0; } EXPORT_SYMBOL_GPL(elv_register); void elv_unregister(struct elevator_type *e) { /* unregister */ spin_lock(&elv_list_lock); list_del_init(&e->list); spin_unlock(&elv_list_lock); /* * Destroy icq_cache if it exists. icq's are RCU managed. Make * sure all RCU operations are complete before proceeding. */ if (e->icq_cache) { rcu_barrier(); kmem_cache_destroy(e->icq_cache); e->icq_cache = NULL; } } EXPORT_SYMBOL_GPL(elv_unregister); int elevator_switch_mq(struct request_queue *q, struct elevator_type *new_e) { int ret; lockdep_assert_held(&q->sysfs_lock); if (q->elevator) { if (q->elevator->registered) elv_unregister_queue(q); ioc_clear_queue(q); elevator_exit(q, q->elevator); } ret = blk_mq_init_sched(q, new_e); if (ret) goto out; if (new_e) { ret = elv_register_queue(q, true); if (ret) { elevator_exit(q, q->elevator); goto out; } } if (new_e) blk_add_trace_msg(q, "elv switch: %s", new_e->elevator_name); else blk_add_trace_msg(q, "elv switch: none"); out: return ret; } static inline bool elv_support_iosched(struct request_queue *q) { if (!queue_is_mq(q) || (q->tag_set->flags & BLK_MQ_F_NO_SCHED)) return false; return true; } /* * For single queue devices, default to using mq-deadline. If we have multiple * queues or mq-deadline is not available, default to "none". */ static struct elevator_type *elevator_get_default(struct request_queue *q) { if (q->tag_set->flags & BLK_MQ_F_NO_SCHED_BY_DEFAULT) return NULL; if (q->nr_hw_queues != 1 && !blk_mq_is_sbitmap_shared(q->tag_set->flags)) return NULL; return elevator_get(q, "mq-deadline", false); } /* * Get the first elevator providing the features required by the request queue. * Default to "none" if no matching elevator is found. */ static struct elevator_type *elevator_get_by_features(struct request_queue *q) { struct elevator_type *e, *found = NULL; spin_lock(&elv_list_lock); list_for_each_entry(e, &elv_list, list) { if (elv_support_features(e->elevator_features, q->required_elevator_features)) { found = e; break; } } if (found && !try_module_get(found->elevator_owner)) found = NULL; spin_unlock(&elv_list_lock); return found; } /* * For a device queue that has no required features, use the default elevator * settings. Otherwise, use the first elevator available matching the required * features. If no suitable elevator is find or if the chosen elevator * initialization fails, fall back to the "none" elevator (no elevator). */ void elevator_init_mq(struct request_queue *q) { struct elevator_type *e; int err; if (!elv_support_iosched(q)) return; WARN_ON_ONCE(blk_queue_registered(q)); if (unlikely(q->elevator)) return; if (!q->required_elevator_features) e = elevator_get_default(q); else e = elevator_get_by_features(q); if (!e) return; /* * We are called before adding disk, when there isn't any FS I/O, * so freezing queue plus canceling dispatch work is enough to * drain any dispatch activities originated from passthrough * requests, then no need to quiesce queue which may add long boot * latency, especially when lots of disks are involved. */ blk_mq_freeze_queue(q); blk_mq_cancel_work_sync(q); err = blk_mq_init_sched(q, e); blk_mq_unfreeze_queue(q); if (err) { pr_warn("\"%s\" elevator initialization failed, " "falling back to \"none\"\n", e->elevator_name); elevator_put(e); } } /* * switch to new_e io scheduler. be careful not to introduce deadlocks - * we don't free the old io scheduler, before we have allocated what we * need for the new one. this way we have a chance of going back to the old * one, if the new one fails init for some reason. */ static int elevator_switch(struct request_queue *q, struct elevator_type *new_e) { int err; lockdep_assert_held(&q->sysfs_lock); blk_mq_freeze_queue(q); blk_mq_quiesce_queue(q); err = elevator_switch_mq(q, new_e); blk_mq_unquiesce_queue(q); blk_mq_unfreeze_queue(q); return err; } /* * Switch this queue to the given IO scheduler. */ static int __elevator_change(struct request_queue *q, const char *name) { char elevator_name[ELV_NAME_MAX]; struct elevator_type *e; /* Make sure queue is not in the middle of being removed */ if (!blk_queue_registered(q)) return -ENOENT; /* * Special case for mq, turn off scheduling */ if (!strncmp(name, "none", 4)) { if (!q->elevator) return 0; return elevator_switch(q, NULL); } strlcpy(elevator_name, name, sizeof(elevator_name)); e = elevator_get(q, strstrip(elevator_name), true); if (!e) return -EINVAL; if (q->elevator && elevator_match(q->elevator->type, elevator_name, 0)) { elevator_put(e); return 0; } return elevator_switch(q, e); } ssize_t elv_iosched_store(struct request_queue *q, const char *name, size_t count) { int ret; if (!elv_support_iosched(q)) return count; ret = __elevator_change(q, name); if (!ret) return count; return ret; } ssize_t elv_iosched_show(struct request_queue *q, char *name) { struct elevator_queue *e = q->elevator; struct elevator_type *elv = NULL; struct elevator_type *__e; int len = 0; if (!queue_is_mq(q)) return sprintf(name, "none\n"); if (!q->elevator) len += sprintf(name+len, "[none] "); else elv = e->type; spin_lock(&elv_list_lock); list_for_each_entry(__e, &elv_list, list) { if (elv && elevator_match(elv, __e->elevator_name, 0)) { len += sprintf(name+len, "[%s] ", elv->elevator_name); continue; } if (elv_support_iosched(q) && elevator_match(__e, __e->elevator_name, q->required_elevator_features)) len += sprintf(name+len, "%s ", __e->elevator_name); } spin_unlock(&elv_list_lock); if (q->elevator) len += sprintf(name+len, "none"); len += sprintf(len+name, "\n"); return len; } struct request *elv_rb_former_request(struct request_queue *q, struct request *rq) { struct rb_node *rbprev = rb_prev(&rq->rb_node); if (rbprev) return rb_entry_rq(rbprev); return NULL; } EXPORT_SYMBOL(elv_rb_former_request); struct request *elv_rb_latter_request(struct request_queue *q, struct request *rq) { struct rb_node *rbnext = rb_next(&rq->rb_node); if (rbnext) return rb_entry_rq(rbnext); return NULL; } EXPORT_SYMBOL(elv_rb_latter_request); static int __init elevator_setup(char *str) { pr_warn("Kernel parameter elevator= does not have any effect anymore.\n" "Please use sysfs to set IO scheduler for individual devices.\n"); return 1; } __setup("elevator=", elevator_setup); |
600 596 601 598 598 599 628 632 600 628 627 627 630 632 630 598 630 597 629 631 678 677 676 675 630 629 631 167 167 102 678 11 155 146 11 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 | // SPDX-License-Identifier: GPL-2.0-only /* * (C) 1999-2001 Paul `Rusty' Russell * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org> * (C) 2011 Patrick McHardy <kaber@trash.net> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/types.h> #include <linux/timer.h> #include <linux/skbuff.h> #include <linux/gfp.h> #include <net/xfrm.h> #include <linux/siphash.h> #include <linux/rtnetlink.h> #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_core.h> #include <net/netfilter/nf_conntrack_helper.h> #include <net/netfilter/nf_conntrack_seqadj.h> #include <net/netfilter/nf_conntrack_zones.h> #include <net/netfilter/nf_nat.h> #include <net/netfilter/nf_nat_helper.h> #include <uapi/linux/netfilter/nf_nat.h> #include "nf_internals.h" static spinlock_t nf_nat_locks[CONNTRACK_LOCKS]; static DEFINE_MUTEX(nf_nat_proto_mutex); static unsigned int nat_net_id __read_mostly; static struct hlist_head *nf_nat_bysource __read_mostly; static unsigned int nf_nat_htable_size __read_mostly; static siphash_key_t nf_nat_hash_rnd __read_mostly; struct nf_nat_lookup_hook_priv { struct nf_hook_entries __rcu *entries; struct rcu_head rcu_head; }; struct nf_nat_hooks_net { struct nf_hook_ops *nat_hook_ops; unsigned int users; }; struct nat_net { struct nf_nat_hooks_net nat_proto_net[NFPROTO_NUMPROTO]; }; #ifdef CONFIG_XFRM static void nf_nat_ipv4_decode_session(struct sk_buff *skb, const struct nf_conn *ct, enum ip_conntrack_dir dir, unsigned long statusbit, struct flowi *fl) { const struct nf_conntrack_tuple *t = &ct->tuplehash[dir].tuple; struct flowi4 *fl4 = &fl->u.ip4; if (ct->status & statusbit) { fl4->daddr = t->dst.u3.ip; if (t->dst.protonum == IPPROTO_TCP || t->dst.protonum == IPPROTO_UDP || t->dst.protonum == IPPROTO_UDPLITE || t->dst.protonum == IPPROTO_DCCP || t->dst.protonum == IPPROTO_SCTP) fl4->fl4_dport = t->dst.u.all; } statusbit ^= IPS_NAT_MASK; if (ct->status & statusbit) { fl4->saddr = t->src.u3.ip; if (t->dst.protonum == IPPROTO_TCP || t->dst.protonum == IPPROTO_UDP || t->dst.protonum == IPPROTO_UDPLITE || t->dst.protonum == IPPROTO_DCCP || t->dst.protonum == IPPROTO_SCTP) fl4->fl4_sport = t->src.u.all; } } static void nf_nat_ipv6_decode_session(struct sk_buff *skb, const struct nf_conn *ct, enum ip_conntrack_dir dir, unsigned long statusbit, struct flowi *fl) { #if IS_ENABLED(CONFIG_IPV6) const struct nf_conntrack_tuple *t = &ct->tuplehash[dir].tuple; struct flowi6 *fl6 = &fl->u.ip6; if (ct->status & statusbit) { fl6->daddr = t->dst.u3.in6; if (t->dst.protonum == IPPROTO_TCP || t->dst.protonum == IPPROTO_UDP || t->dst.protonum == IPPROTO_UDPLITE || t->dst.protonum == IPPROTO_DCCP || t->dst.protonum == IPPROTO_SCTP) fl6->fl6_dport = t->dst.u.all; } statusbit ^= IPS_NAT_MASK; if (ct->status & statusbit) { fl6->saddr = t->src.u3.in6; if (t->dst.protonum == IPPROTO_TCP || t->dst.protonum == IPPROTO_UDP || t->dst.protonum == IPPROTO_UDPLITE || t->dst.protonum == IPPROTO_DCCP || t->dst.protonum == IPPROTO_SCTP) fl6->fl6_sport = t->src.u.all; } #endif } static void __nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl) { const struct nf_conn *ct; enum ip_conntrack_info ctinfo; enum ip_conntrack_dir dir; unsigned long statusbit; u8 family; ct = nf_ct_get(skb, &ctinfo); if (ct == NULL) return; family = nf_ct_l3num(ct); dir = CTINFO2DIR(ctinfo); if (dir == IP_CT_DIR_ORIGINAL) statusbit = IPS_DST_NAT; else statusbit = IPS_SRC_NAT; switch (family) { case NFPROTO_IPV4: nf_nat_ipv4_decode_session(skb, ct, dir, statusbit, fl); return; case NFPROTO_IPV6: nf_nat_ipv6_decode_session(skb, ct, dir, statusbit, fl); return; } } #endif /* CONFIG_XFRM */ /* We keep an extra hash for each conntrack, for fast searching. */ static unsigned int hash_by_src(const struct net *net, const struct nf_conntrack_zone *zone, const struct nf_conntrack_tuple *tuple) { unsigned int hash; struct { struct nf_conntrack_man src; u32 net_mix; u32 protonum; u32 zone; } __aligned(SIPHASH_ALIGNMENT) combined; get_random_once(&nf_nat_hash_rnd, sizeof(nf_nat_hash_rnd)); memset(&combined, 0, sizeof(combined)); /* Original src, to ensure we map it consistently if poss. */ combined.src = tuple->src; combined.net_mix = net_hash_mix(net); combined.protonum = tuple->dst.protonum; /* Zone ID can be used provided its valid for both directions */ if (zone->dir == NF_CT_DEFAULT_ZONE_DIR) combined.zone = zone->id; hash = siphash(&combined, sizeof(combined), &nf_nat_hash_rnd); return reciprocal_scale(hash, nf_nat_htable_size); } /* Is this tuple already taken? (not by us) */ static int nf_nat_used_tuple(const struct nf_conntrack_tuple *tuple, const struct nf_conn *ignored_conntrack) { /* Conntrack tracking doesn't keep track of outgoing tuples; only * incoming ones. NAT means they don't have a fixed mapping, * so we invert the tuple and look for the incoming reply. * * We could keep a separate hash if this proves too slow. */ struct nf_conntrack_tuple reply; nf_ct_invert_tuple(&reply, tuple); return nf_conntrack_tuple_taken(&reply, ignored_conntrack); } static bool nf_nat_inet_in_range(const struct nf_conntrack_tuple *t, const struct nf_nat_range2 *range) { if (t->src.l3num == NFPROTO_IPV4) return ntohl(t->src.u3.ip) >= ntohl(range->min_addr.ip) && ntohl(t->src.u3.ip) <= ntohl(range->max_addr.ip); return ipv6_addr_cmp(&t->src.u3.in6, &range->min_addr.in6) >= 0 && ipv6_addr_cmp(&t->src.u3.in6, &range->max_addr.in6) <= 0; } /* Is the manipable part of the tuple between min and max incl? */ static bool l4proto_in_range(const struct nf_conntrack_tuple *tuple, enum nf_nat_manip_type maniptype, const union nf_conntrack_man_proto *min, const union nf_conntrack_man_proto *max) { __be16 port; switch (tuple->dst.protonum) { case IPPROTO_ICMP: case IPPROTO_ICMPV6: return ntohs(tuple->src.u.icmp.id) >= ntohs(min->icmp.id) && ntohs(tuple->src.u.icmp.id) <= ntohs(max->icmp.id); case IPPROTO_GRE: /* all fall though */ case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_UDPLITE: case IPPROTO_DCCP: case IPPROTO_SCTP: if (maniptype == NF_NAT_MANIP_SRC) port = tuple->src.u.all; else port = tuple->dst.u.all; return ntohs(port) >= ntohs(min->all) && ntohs(port) <= ntohs(max->all); default: return true; } } /* If we source map this tuple so reply looks like reply_tuple, will * that meet the constraints of range. */ static int in_range(const struct nf_conntrack_tuple *tuple, const struct nf_nat_range2 *range) { /* If we are supposed to map IPs, then we must be in the * range specified, otherwise let this drag us onto a new src IP. */ if (range->flags & NF_NAT_RANGE_MAP_IPS && !nf_nat_inet_in_range(tuple, range)) return 0; if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED)) return 1; return l4proto_in_range(tuple, NF_NAT_MANIP_SRC, &range->min_proto, &range->max_proto); } static inline int same_src(const struct nf_conn *ct, const struct nf_conntrack_tuple *tuple) { const struct nf_conntrack_tuple *t; t = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; return (t->dst.protonum == tuple->dst.protonum && nf_inet_addr_cmp(&t->src.u3, &tuple->src.u3) && t->src.u.all == tuple->src.u.all); } /* Only called for SRC manip */ static int find_appropriate_src(struct net *net, const struct nf_conntrack_zone *zone, const struct nf_conntrack_tuple *tuple, struct nf_conntrack_tuple *result, const struct nf_nat_range2 *range) { unsigned int h = hash_by_src(net, zone, tuple); const struct nf_conn *ct; hlist_for_each_entry_rcu(ct, &nf_nat_bysource[h], nat_bysource) { if (same_src(ct, tuple) && net_eq(net, nf_ct_net(ct)) && nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL)) { /* Copy source part from reply tuple. */ nf_ct_invert_tuple(result, &ct->tuplehash[IP_CT_DIR_REPLY].tuple); result->dst = tuple->dst; if (in_range(result, range)) return 1; } } return 0; } /* For [FUTURE] fragmentation handling, we want the least-used * src-ip/dst-ip/proto triple. Fairness doesn't come into it. Thus * if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports * 1-65535, we don't do pro-rata allocation based on ports; we choose * the ip with the lowest src-ip/dst-ip/proto usage. */ static void find_best_ips_proto(const struct nf_conntrack_zone *zone, struct nf_conntrack_tuple *tuple, const struct nf_nat_range2 *range, const struct nf_conn *ct, enum nf_nat_manip_type maniptype) { union nf_inet_addr *var_ipp; unsigned int i, max; /* Host order */ u32 minip, maxip, j, dist; bool full_range; /* No IP mapping? Do nothing. */ if (!(range->flags & NF_NAT_RANGE_MAP_IPS)) return; if (maniptype == NF_NAT_MANIP_SRC) var_ipp = &tuple->src.u3; else var_ipp = &tuple->dst.u3; /* Fast path: only one choice. */ if (nf_inet_addr_cmp(&range->min_addr, &range->max_addr)) { *var_ipp = range->min_addr; return; } if (nf_ct_l3num(ct) == NFPROTO_IPV4) max = sizeof(var_ipp->ip) / sizeof(u32) - 1; else max = sizeof(var_ipp->ip6) / sizeof(u32) - 1; /* Hashing source and destination IPs gives a fairly even * spread in practice (if there are a small number of IPs * involved, there usually aren't that many connections * anyway). The consistency means that servers see the same * client coming from the same IP (some Internet Banking sites * like this), even across reboots. */ j = jhash2((u32 *)&tuple->src.u3, sizeof(tuple->src.u3) / sizeof(u32), range->flags & NF_NAT_RANGE_PERSISTENT ? 0 : (__force u32)tuple->dst.u3.all[max] ^ zone->id); full_range = false; for (i = 0; i <= max; i++) { /* If first bytes of the address are at the maximum, use the * distance. Otherwise use the full range. */ if (!full_range) { minip = ntohl((__force __be32)range->min_addr.all[i]); maxip = ntohl((__force __be32)range->max_addr.all[i]); dist = maxip - minip + 1; } else { minip = 0; dist = ~0; } var_ipp->all[i] = (__force __u32) htonl(minip + reciprocal_scale(j, dist)); if (var_ipp->all[i] != range->max_addr.all[i]) full_range = true; if (!(range->flags & NF_NAT_RANGE_PERSISTENT)) j ^= (__force u32)tuple->dst.u3.all[i]; } } /* Alter the per-proto part of the tuple (depending on maniptype), to * give a unique tuple in the given range if possible. * * Per-protocol part of tuple is initialized to the incoming packet. */ static void nf_nat_l4proto_unique_tuple(struct nf_conntrack_tuple *tuple, const struct nf_nat_range2 *range, enum nf_nat_manip_type maniptype, const struct nf_conn *ct) { unsigned int range_size, min, max, i, attempts; __be16 *keyptr; u16 off; static const unsigned int max_attempts = 128; switch (tuple->dst.protonum) { case IPPROTO_ICMP: case IPPROTO_ICMPV6: /* id is same for either direction... */ keyptr = &tuple->src.u.icmp.id; if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED)) { min = 0; range_size = 65536; } else { min = ntohs(range->min_proto.icmp.id); range_size = ntohs(range->max_proto.icmp.id) - ntohs(range->min_proto.icmp.id) + 1; } goto find_free_id; #if IS_ENABLED(CONFIG_NF_CT_PROTO_GRE) case IPPROTO_GRE: /* If there is no master conntrack we are not PPTP, do not change tuples */ if (!ct->master) return; if (maniptype == NF_NAT_MANIP_SRC) keyptr = &tuple->src.u.gre.key; else keyptr = &tuple->dst.u.gre.key; if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED)) { min = 1; range_size = 65535; } else { min = ntohs(range->min_proto.gre.key); range_size = ntohs(range->max_proto.gre.key) - min + 1; } goto find_free_id; #endif case IPPROTO_UDP: case IPPROTO_UDPLITE: case IPPROTO_TCP: case IPPROTO_SCTP: case IPPROTO_DCCP: if (maniptype == NF_NAT_MANIP_SRC) keyptr = &tuple->src.u.all; else keyptr = &tuple->dst.u.all; break; default: return; } /* If no range specified... */ if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED)) { /* If it's dst rewrite, can't change port */ if (maniptype == NF_NAT_MANIP_DST) return; if (ntohs(*keyptr) < 1024) { /* Loose convention: >> 512 is credential passing */ if (ntohs(*keyptr) < 512) { min = 1; range_size = 511 - min + 1; } else { min = 600; range_size = 1023 - min + 1; } } else { min = 1024; range_size = 65535 - 1024 + 1; } } else { min = ntohs(range->min_proto.all); max = ntohs(range->max_proto.all); if (unlikely(max < min)) swap(max, min); range_size = max - min + 1; } find_free_id: if (range->flags & NF_NAT_RANGE_PROTO_OFFSET) off = (ntohs(*keyptr) - ntohs(range->base_proto.all)); else off = prandom_u32(); attempts = range_size; if (attempts > max_attempts) attempts = max_attempts; /* We are in softirq; doing a search of the entire range risks * soft lockup when all tuples are already used. * * If we can't find any free port from first offset, pick a new * one and try again, with ever smaller search window. */ another_round: for (i = 0; i < attempts; i++, off++) { *keyptr = htons(min + off % range_size); if (!nf_nat_used_tuple(tuple, ct)) return; } if (attempts >= range_size || attempts < 16) return; attempts /= 2; off = prandom_u32(); goto another_round; } /* Manipulate the tuple into the range given. For NF_INET_POST_ROUTING, * we change the source to map into the range. For NF_INET_PRE_ROUTING * and NF_INET_LOCAL_OUT, we change the destination to map into the * range. It might not be possible to get a unique tuple, but we try. * At worst (or if we race), we will end up with a final duplicate in * __nf_conntrack_confirm and drop the packet. */ static void get_unique_tuple(struct nf_conntrack_tuple *tuple, const struct nf_conntrack_tuple *orig_tuple, const struct nf_nat_range2 *range, struct nf_conn *ct, enum nf_nat_manip_type maniptype) { const struct nf_conntrack_zone *zone; struct net *net = nf_ct_net(ct); zone = nf_ct_zone(ct); /* 1) If this srcip/proto/src-proto-part is currently mapped, * and that same mapping gives a unique tuple within the given * range, use that. * * This is only required for source (ie. NAT/masq) mappings. * So far, we don't do local source mappings, so multiple * manips not an issue. */ if (maniptype == NF_NAT_MANIP_SRC && !(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) { /* try the original tuple first */ if (in_range(orig_tuple, range)) { if (!nf_nat_used_tuple(orig_tuple, ct)) { *tuple = *orig_tuple; return; } } else if (find_appropriate_src(net, zone, orig_tuple, tuple, range)) { pr_debug("get_unique_tuple: Found current src map\n"); if (!nf_nat_used_tuple(tuple, ct)) return; } } /* 2) Select the least-used IP/proto combination in the given range */ *tuple = *orig_tuple; find_best_ips_proto(zone, tuple, range, ct, maniptype); /* 3) The per-protocol part of the manip is made to map into * the range to make a unique tuple. */ /* Only bother mapping if it's not already in range and unique */ if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) { if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) { if (!(range->flags & NF_NAT_RANGE_PROTO_OFFSET) && l4proto_in_range(tuple, maniptype, &range->min_proto, &range->max_proto) && (range->min_proto.all == range->max_proto.all || !nf_nat_used_tuple(tuple, ct))) return; } else if (!nf_nat_used_tuple(tuple, ct)) { return; } } /* Last chance: get protocol to try to obtain unique tuple. */ nf_nat_l4proto_unique_tuple(tuple, range, maniptype, ct); } struct nf_conn_nat *nf_ct_nat_ext_add(struct nf_conn *ct) { struct nf_conn_nat *nat = nfct_nat(ct); if (nat) return nat; if (!nf_ct_is_confirmed(ct)) nat = nf_ct_ext_add(ct, NF_CT_EXT_NAT, GFP_ATOMIC); return nat; } EXPORT_SYMBOL_GPL(nf_ct_nat_ext_add); unsigned int nf_nat_setup_info(struct nf_conn *ct, const struct nf_nat_range2 *range, enum nf_nat_manip_type maniptype) { struct net *net = nf_ct_net(ct); struct nf_conntrack_tuple curr_tuple, new_tuple; /* Can't setup nat info for confirmed ct. */ if (nf_ct_is_confirmed(ct)) return NF_ACCEPT; WARN_ON(maniptype != NF_NAT_MANIP_SRC && maniptype != NF_NAT_MANIP_DST); if (WARN_ON(nf_nat_initialized(ct, maniptype))) return NF_DROP; /* What we've got will look like inverse of reply. Normally * this is what is in the conntrack, except for prior * manipulations (future optimization: if num_manips == 0, * orig_tp = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) */ nf_ct_invert_tuple(&curr_tuple, &ct->tuplehash[IP_CT_DIR_REPLY].tuple); get_unique_tuple(&new_tuple, &curr_tuple, range, ct, maniptype); if (!nf_ct_tuple_equal(&new_tuple, &curr_tuple)) { struct nf_conntrack_tuple reply; /* Alter conntrack table so will recognize replies. */ nf_ct_invert_tuple(&reply, &new_tuple); nf_conntrack_alter_reply(ct, &reply); /* Non-atomic: we own this at the moment. */ if (maniptype == NF_NAT_MANIP_SRC) ct->status |= IPS_SRC_NAT; else ct->status |= IPS_DST_NAT; if (nfct_help(ct) && !nfct_seqadj(ct)) if (!nfct_seqadj_ext_add(ct)) return NF_DROP; } if (maniptype == NF_NAT_MANIP_SRC) { unsigned int srchash; spinlock_t *lock; srchash = hash_by_src(net, nf_ct_zone(ct), &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple); lock = &nf_nat_locks[srchash % CONNTRACK_LOCKS]; spin_lock_bh(lock); hlist_add_head_rcu(&ct->nat_bysource, &nf_nat_bysource[srchash]); spin_unlock_bh(lock); } /* It's done. */ if (maniptype == NF_NAT_MANIP_DST) ct->status |= IPS_DST_NAT_DONE; else ct->status |= IPS_SRC_NAT_DONE; return NF_ACCEPT; } EXPORT_SYMBOL(nf_nat_setup_info); static unsigned int __nf_nat_alloc_null_binding(struct nf_conn *ct, enum nf_nat_manip_type manip) { /* Force range to this IP; let proto decide mapping for * per-proto parts (hence not IP_NAT_RANGE_PROTO_SPECIFIED). * Use reply in case it's already been mangled (eg local packet). */ union nf_inet_addr ip = (manip == NF_NAT_MANIP_SRC ? ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.u3 : ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.u3); struct nf_nat_range2 range = { .flags = NF_NAT_RANGE_MAP_IPS, .min_addr = ip, .max_addr = ip, }; return nf_nat_setup_info(ct, &range, manip); } unsigned int nf_nat_alloc_null_binding(struct nf_conn *ct, unsigned int hooknum) { return __nf_nat_alloc_null_binding(ct, HOOK2MANIP(hooknum)); } EXPORT_SYMBOL_GPL(nf_nat_alloc_null_binding); /* Do packet manipulations according to nf_nat_setup_info. */ unsigned int nf_nat_packet(struct nf_conn *ct, enum ip_conntrack_info ctinfo, unsigned int hooknum, struct sk_buff *skb) { enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum); enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo); unsigned int verdict = NF_ACCEPT; unsigned long statusbit; if (mtype == NF_NAT_MANIP_SRC) statusbit = IPS_SRC_NAT; else statusbit = IPS_DST_NAT; /* Invert if this is reply dir. */ if (dir == IP_CT_DIR_REPLY) statusbit ^= IPS_NAT_MASK; /* Non-atomic: these bits don't change. */ if (ct->status & statusbit) verdict = nf_nat_manip_pkt(skb, ct, mtype, dir); return verdict; } EXPORT_SYMBOL_GPL(nf_nat_packet); unsigned int nf_nat_inet_fn(void *priv, struct sk_buff *skb, const struct nf_hook_state *state) { struct nf_conn *ct; enum ip_conntrack_info ctinfo; struct nf_conn_nat *nat; /* maniptype == SRC for postrouting. */ enum nf_nat_manip_type maniptype = HOOK2MANIP(state->hook); ct = nf_ct_get(skb, &ctinfo); /* Can't track? It's not due to stress, or conntrack would * have dropped it. Hence it's the user's responsibilty to * packet filter it out, or implement conntrack/NAT for that * protocol. 8) --RR */ if (!ct) return NF_ACCEPT; nat = nfct_nat(ct); switch (ctinfo) { case IP_CT_RELATED: case IP_CT_RELATED_REPLY: /* Only ICMPs can be IP_CT_IS_REPLY. Fallthrough */ case IP_CT_NEW: /* Seen it before? This can happen for loopback, retrans, * or local packets. */ if (!nf_nat_initialized(ct, maniptype)) { struct nf_nat_lookup_hook_priv *lpriv = priv; struct nf_hook_entries *e = rcu_dereference(lpriv->entries); unsigned int ret; int i; if (!e) goto null_bind; for (i = 0; i < e->num_hook_entries; i++) { ret = e->hooks[i].hook(e->hooks[i].priv, skb, state); if (ret != NF_ACCEPT) return ret; if (nf_nat_initialized(ct, maniptype)) goto do_nat; } null_bind: ret = nf_nat_alloc_null_binding(ct, state->hook); if (ret != NF_ACCEPT) return ret; } else { pr_debug("Already setup manip %s for ct %p (status bits 0x%lx)\n", maniptype == NF_NAT_MANIP_SRC ? "SRC" : "DST", ct, ct->status); if (nf_nat_oif_changed(state->hook, ctinfo, nat, state->out)) goto oif_changed; } break; default: /* ESTABLISHED */ WARN_ON(ctinfo != IP_CT_ESTABLISHED && ctinfo != IP_CT_ESTABLISHED_REPLY); if (nf_nat_oif_changed(state->hook, ctinfo, nat, state->out)) goto oif_changed; } do_nat: return nf_nat_packet(ct, ctinfo, state->hook, skb); oif_changed: nf_ct_kill_acct(ct, ctinfo, skb); return NF_DROP; } EXPORT_SYMBOL_GPL(nf_nat_inet_fn); struct nf_nat_proto_clean { u8 l3proto; u8 l4proto; }; /* kill conntracks with affected NAT section */ static int nf_nat_proto_remove(struct nf_conn *i, void *data) { const struct nf_nat_proto_clean *clean = data; if ((clean->l3proto && nf_ct_l3num(i) != clean->l3proto) || (clean->l4proto && nf_ct_protonum(i) != clean->l4proto)) return 0; return i->status & IPS_NAT_MASK ? 1 : 0; } static void __nf_nat_cleanup_conntrack(struct nf_conn *ct) { unsigned int h; h = hash_by_src(nf_ct_net(ct), nf_ct_zone(ct), &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple); spin_lock_bh(&nf_nat_locks[h % CONNTRACK_LOCKS]); hlist_del_rcu(&ct->nat_bysource); spin_unlock_bh(&nf_nat_locks[h % CONNTRACK_LOCKS]); } static int nf_nat_proto_clean(struct nf_conn *ct, void *data) { if (nf_nat_proto_remove(ct, data)) return 1; /* This module is being removed and conntrack has nat null binding. * Remove it from bysource hash, as the table will be freed soon. * * Else, when the conntrack is destoyed, nf_nat_cleanup_conntrack() * will delete entry from already-freed table. */ if (test_and_clear_bit(IPS_SRC_NAT_DONE_BIT, &ct->status)) __nf_nat_cleanup_conntrack(ct); /* don't delete conntrack. Although that would make things a lot * simpler, we'd end up flushing all conntracks on nat rmmod. */ return 0; } /* No one using conntrack by the time this called. */ static void nf_nat_cleanup_conntrack(struct nf_conn *ct) { if (ct->status & IPS_SRC_NAT_DONE) __nf_nat_cleanup_conntrack(ct); } static struct nf_ct_ext_type nat_extend __read_mostly = { .len = sizeof(struct nf_conn_nat), .align = __alignof__(struct nf_conn_nat), .destroy = nf_nat_cleanup_conntrack, .id = NF_CT_EXT_NAT, }; #if IS_ENABLED(CONFIG_NF_CT_NETLINK) #include <linux/netfilter/nfnetlink.h> #include <linux/netfilter/nfnetlink_conntrack.h> static const struct nla_policy protonat_nla_policy[CTA_PROTONAT_MAX+1] = { [CTA_PROTONAT_PORT_MIN] = { .type = NLA_U16 }, [CTA_PROTONAT_PORT_MAX] = { .type = NLA_U16 }, }; static int nf_nat_l4proto_nlattr_to_range(struct nlattr *tb[], struct nf_nat_range2 *range) { if (tb[CTA_PROTONAT_PORT_MIN]) { range->min_proto.all = nla_get_be16(tb[CTA_PROTONAT_PORT_MIN]); range->max_proto.all = range->min_proto.all; range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED; } if (tb[CTA_PROTONAT_PORT_MAX]) { range->max_proto.all = nla_get_be16(tb[CTA_PROTONAT_PORT_MAX]); range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED; } return 0; } static int nfnetlink_parse_nat_proto(struct nlattr *attr, const struct nf_conn *ct, struct nf_nat_range2 *range) { struct nlattr *tb[CTA_PROTONAT_MAX+1]; int err; err = nla_parse_nested_deprecated(tb, CTA_PROTONAT_MAX, attr, protonat_nla_policy, NULL); if (err < 0) return err; return nf_nat_l4proto_nlattr_to_range(tb, range); } static const struct nla_policy nat_nla_policy[CTA_NAT_MAX+1] = { [CTA_NAT_V4_MINIP] = { .type = NLA_U32 }, [CTA_NAT_V4_MAXIP] = { .type = NLA_U32 }, [CTA_NAT_V6_MINIP] = { .len = sizeof(struct in6_addr) }, [CTA_NAT_V6_MAXIP] = { .len = sizeof(struct in6_addr) }, [CTA_NAT_PROTO] = { .type = NLA_NESTED }, }; static int nf_nat_ipv4_nlattr_to_range(struct nlattr *tb[], struct nf_nat_range2 *range) { if (tb[CTA_NAT_V4_MINIP]) { range->min_addr.ip = nla_get_be32(tb[CTA_NAT_V4_MINIP]); range->flags |= NF_NAT_RANGE_MAP_IPS; } if (tb[CTA_NAT_V4_MAXIP]) range->max_addr.ip = nla_get_be32(tb[CTA_NAT_V4_MAXIP]); else range->max_addr.ip = range->min_addr.ip; return 0; } static int nf_nat_ipv6_nlattr_to_range(struct nlattr *tb[], struct nf_nat_range2 *range) { if (tb[CTA_NAT_V6_MINIP]) { nla_memcpy(&range->min_addr.ip6, tb[CTA_NAT_V6_MINIP], sizeof(struct in6_addr)); range->flags |= NF_NAT_RANGE_MAP_IPS; } if (tb[CTA_NAT_V6_MAXIP]) nla_memcpy(&range->max_addr.ip6, tb[CTA_NAT_V6_MAXIP], sizeof(struct in6_addr)); else range->max_addr = range->min_addr; return 0; } static int nfnetlink_parse_nat(const struct nlattr *nat, const struct nf_conn *ct, struct nf_nat_range2 *range) { struct nlattr *tb[CTA_NAT_MAX+1]; int err; memset(range, 0, sizeof(*range)); err = nla_parse_nested_deprecated(tb, CTA_NAT_MAX, nat, nat_nla_policy, NULL); if (err < 0) return err; switch (nf_ct_l3num(ct)) { case NFPROTO_IPV4: err = nf_nat_ipv4_nlattr_to_range(tb, range); break; case NFPROTO_IPV6: err = nf_nat_ipv6_nlattr_to_range(tb, range); break; default: err = -EPROTONOSUPPORT; break; } if (err) return err; if (!tb[CTA_NAT_PROTO]) return 0; return nfnetlink_parse_nat_proto(tb[CTA_NAT_PROTO], ct, range); } /* This function is called under rcu_read_lock() */ static int nfnetlink_parse_nat_setup(struct nf_conn *ct, enum nf_nat_manip_type manip, const struct nlattr *attr) { struct nf_nat_range2 range; int err; /* Should not happen, restricted to creating new conntracks * via ctnetlink. */ if (WARN_ON_ONCE(nf_nat_initialized(ct, manip))) return -EEXIST; /* No NAT information has been passed, allocate the null-binding */ if (attr == NULL) return __nf_nat_alloc_null_binding(ct, manip) == NF_DROP ? -ENOMEM : 0; err = nfnetlink_parse_nat(attr, ct, &range); if (err < 0) return err; return nf_nat_setup_info(ct, &range, manip) == NF_DROP ? -ENOMEM : 0; } #else static int nfnetlink_parse_nat_setup(struct nf_conn *ct, enum nf_nat_manip_type manip, const struct nlattr *attr) { return -EOPNOTSUPP; } #endif static struct nf_ct_helper_expectfn follow_master_nat = { .name = "nat-follow-master", .expectfn = nf_nat_follow_master, }; int nf_nat_register_fn(struct net *net, u8 pf, const struct nf_hook_ops *ops, const struct nf_hook_ops *orig_nat_ops, unsigned int ops_count) { struct nat_net *nat_net = net_generic(net, nat_net_id); struct nf_nat_hooks_net *nat_proto_net; struct nf_nat_lookup_hook_priv *priv; unsigned int hooknum = ops->hooknum; struct nf_hook_ops *nat_ops; int i, ret; if (WARN_ON_ONCE(pf >= ARRAY_SIZE(nat_net->nat_proto_net))) return -EINVAL; nat_proto_net = &nat_net->nat_proto_net[pf]; for (i = 0; i < ops_count; i++) { if (orig_nat_ops[i].hooknum == hooknum) { hooknum = i; break; } } if (WARN_ON_ONCE(i == ops_count)) return -EINVAL; mutex_lock(&nf_nat_proto_mutex); if (!nat_proto_net->nat_hook_ops) { WARN_ON(nat_proto_net->users != 0); nat_ops = kmemdup(orig_nat_ops, sizeof(*orig_nat_ops) * ops_count, GFP_KERNEL); if (!nat_ops) { mutex_unlock(&nf_nat_proto_mutex); return -ENOMEM; } for (i = 0; i < ops_count; i++) { priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (priv) { nat_ops[i].priv = priv; continue; } mutex_unlock(&nf_nat_proto_mutex); while (i) kfree(nat_ops[--i].priv); kfree(nat_ops); return -ENOMEM; } ret = nf_register_net_hooks(net, nat_ops, ops_count); if (ret < 0) { mutex_unlock(&nf_nat_proto_mutex); for (i = 0; i < ops_count; i++) kfree(nat_ops[i].priv); kfree(nat_ops); return ret; } nat_proto_net->nat_hook_ops = nat_ops; } nat_ops = nat_proto_net->nat_hook_ops; priv = nat_ops[hooknum].priv; if (WARN_ON_ONCE(!priv)) { mutex_unlock(&nf_nat_proto_mutex); return -EOPNOTSUPP; } ret = nf_hook_entries_insert_raw(&priv->entries, ops); if (ret == 0) nat_proto_net->users++; mutex_unlock(&nf_nat_proto_mutex); return ret; } void nf_nat_unregister_fn(struct net *net, u8 pf, const struct nf_hook_ops *ops, unsigned int ops_count) { struct nat_net *nat_net = net_generic(net, nat_net_id); struct nf_nat_hooks_net *nat_proto_net; struct nf_nat_lookup_hook_priv *priv; struct nf_hook_ops *nat_ops; int hooknum = ops->hooknum; int i; if (pf >= ARRAY_SIZE(nat_net->nat_proto_net)) return; nat_proto_net = &nat_net->nat_proto_net[pf]; mutex_lock(&nf_nat_proto_mutex); if (WARN_ON(nat_proto_net->users == 0)) goto unlock; nat_proto_net->users--; nat_ops = nat_proto_net->nat_hook_ops; for (i = 0; i < ops_count; i++) { if (nat_ops[i].hooknum == hooknum) { hooknum = i; break; } } if (WARN_ON_ONCE(i == ops_count)) goto unlock; priv = nat_ops[hooknum].priv; nf_hook_entries_delete_raw(&priv->entries, ops); if (nat_proto_net->users == 0) { nf_unregister_net_hooks(net, nat_ops, ops_count); for (i = 0; i < ops_count; i++) { priv = nat_ops[i].priv; kfree_rcu(priv, rcu_head); } nat_proto_net->nat_hook_ops = NULL; kfree(nat_ops); } unlock: mutex_unlock(&nf_nat_proto_mutex); } static struct pernet_operations nat_net_ops = { .id = &nat_net_id, .size = sizeof(struct nat_net), }; static const struct nf_nat_hook nat_hook = { .parse_nat_setup = nfnetlink_parse_nat_setup, #ifdef CONFIG_XFRM .decode_session = __nf_nat_decode_session, #endif .manip_pkt = nf_nat_manip_pkt, }; static int __init nf_nat_init(void) { int ret, i; /* Leave them the same for the moment. */ nf_nat_htable_size = nf_conntrack_htable_size; if (nf_nat_htable_size < CONNTRACK_LOCKS) nf_nat_htable_size = CONNTRACK_LOCKS; nf_nat_bysource = nf_ct_alloc_hashtable(&nf_nat_htable_size, 0); if (!nf_nat_bysource) return -ENOMEM; ret = nf_ct_extend_register(&nat_extend); if (ret < 0) { kvfree(nf_nat_bysource); pr_err("Unable to register extension\n"); return ret; } for (i = 0; i < CONNTRACK_LOCKS; i++) spin_lock_init(&nf_nat_locks[i]); ret = register_pernet_subsys(&nat_net_ops); if (ret < 0) { nf_ct_extend_unregister(&nat_extend); kvfree(nf_nat_bysource); return ret; } nf_ct_helper_expectfn_register(&follow_master_nat); WARN_ON(nf_nat_hook != NULL); RCU_INIT_POINTER(nf_nat_hook, &nat_hook); return 0; } static void __exit nf_nat_cleanup(void) { struct nf_nat_proto_clean clean = {}; nf_ct_iterate_destroy(nf_nat_proto_clean, &clean); nf_ct_extend_unregister(&nat_extend); nf_ct_helper_expectfn_unregister(&follow_master_nat); RCU_INIT_POINTER(nf_nat_hook, NULL); synchronize_net(); kvfree(nf_nat_bysource); unregister_pernet_subsys(&nat_net_ops); } MODULE_LICENSE("GPL"); module_init(nf_nat_init); module_exit(nf_nat_cleanup); |
322 322 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2013 Politecnico di Torino, Italy * TORSEC group -- https://security.polito.it * * Author: Roberto Sassu <roberto.sassu@polito.it> * * File: ima_template.c * Helpers to manage template descriptors. */ #include <linux/rculist.h> #include "ima.h" #include "ima_template_lib.h" enum header_fields { HDR_PCR, HDR_DIGEST, HDR_TEMPLATE_NAME, HDR_TEMPLATE_DATA, HDR__LAST }; static struct ima_template_desc builtin_templates[] = { {.name = IMA_TEMPLATE_IMA_NAME, .fmt = IMA_TEMPLATE_IMA_FMT}, {.name = "ima-ng", .fmt = "d-ng|n-ng"}, {.name = "ima-sig", .fmt = "d-ng|n-ng|sig"}, {.name = "ima-buf", .fmt = "d-ng|n-ng|buf"}, {.name = "ima-modsig", .fmt = "d-ng|n-ng|sig|d-modsig|modsig"}, {.name = "evm-sig", .fmt = "d-ng|n-ng|evmsig|xattrnames|xattrlengths|xattrvalues|iuid|igid|imode"}, {.name = "", .fmt = ""}, /* placeholder for a custom format */ }; static LIST_HEAD(defined_templates); static DEFINE_SPINLOCK(template_list); static int template_setup_done; static const struct ima_template_field supported_fields[] = { {.field_id = "d", .field_init = ima_eventdigest_init, .field_show = ima_show_template_digest}, {.field_id = "n", .field_init = ima_eventname_init, .field_show = ima_show_template_string}, {.field_id = "d-ng", .field_init = ima_eventdigest_ng_init, .field_show = ima_show_template_digest_ng}, {.field_id = "n-ng", .field_init = ima_eventname_ng_init, .field_show = ima_show_template_string}, {.field_id = "sig", .field_init = ima_eventsig_init, .field_show = ima_show_template_sig}, {.field_id = "buf", .field_init = ima_eventbuf_init, .field_show = ima_show_template_buf}, {.field_id = "d-modsig", .field_init = ima_eventdigest_modsig_init, .field_show = ima_show_template_digest_ng}, {.field_id = "modsig", .field_init = ima_eventmodsig_init, .field_show = ima_show_template_sig}, {.field_id = "evmsig", .field_init = ima_eventevmsig_init, .field_show = ima_show_template_sig}, {.field_id = "iuid", .field_init = ima_eventinodeuid_init, .field_show = ima_show_template_uint}, {.field_id = "igid", .field_init = ima_eventinodegid_init, .field_show = ima_show_template_uint}, {.field_id = "imode", .field_init = ima_eventinodemode_init, .field_show = ima_show_template_uint}, {.field_id = "xattrnames", .field_init = ima_eventinodexattrnames_init, .field_show = ima_show_template_string}, {.field_id = "xattrlengths", .field_init = ima_eventinodexattrlengths_init, .field_show = ima_show_template_sig}, {.field_id = "xattrvalues", .field_init = ima_eventinodexattrvalues_init, .field_show = ima_show_template_sig}, }; /* * Used when restoring measurements carried over from a kexec. 'd' and 'n' don't * need to be accounted for since they shouldn't be defined in the same template * description as 'd-ng' and 'n-ng' respectively. */ #define MAX_TEMPLATE_NAME_LEN \ sizeof("d-ng|n-ng|evmsig|xattrnames|xattrlengths|xattrvalues|iuid|igid|imode") static struct ima_template_desc *ima_template; static struct ima_template_desc *ima_buf_template; /** * ima_template_has_modsig - Check whether template has modsig-related fields. * @ima_template: IMA template to check. * * Tells whether the given template has fields referencing a file's appended * signature. */ bool ima_template_has_modsig(const struct ima_template_desc *ima_template) { int i; for (i = 0; i < ima_template->num_fields; i++) if (!strcmp(ima_template->fields[i]->field_id, "modsig") || !strcmp(ima_template->fields[i]->field_id, "d-modsig")) return true; return false; } static int __init ima_template_setup(char *str) { struct ima_template_desc *template_desc; int template_len = strlen(str); if (template_setup_done) return 1; if (!ima_template) ima_init_template_list(); /* * Verify that a template with the supplied name exists. * If not, use CONFIG_IMA_DEFAULT_TEMPLATE. */ template_desc = lookup_template_desc(str); if (!template_desc) { pr_err("template %s not found, using %s\n", str, CONFIG_IMA_DEFAULT_TEMPLATE); return 1; } /* * Verify whether the current hash algorithm is supported * by the 'ima' template. */ if (template_len == 3 && strcmp(str, IMA_TEMPLATE_IMA_NAME) == 0 && ima_hash_algo != HASH_ALGO_SHA1 && ima_hash_algo != HASH_ALGO_MD5) { pr_err("template does not support hash alg\n"); return 1; } ima_template = template_desc; template_setup_done = 1; return 1; } __setup("ima_template=", ima_template_setup); static int __init ima_template_fmt_setup(char *str) { int num_templates = ARRAY_SIZE(builtin_templates); if (template_setup_done) return 1; if (template_desc_init_fields(str, NULL, NULL) < 0) { pr_err("format string '%s' not valid, using template %s\n", str, CONFIG_IMA_DEFAULT_TEMPLATE); return 1; } builtin_templates[num_templates - 1].fmt = str; ima_template = builtin_templates + num_templates - 1; template_setup_done = 1; return 1; } __setup("ima_template_fmt=", ima_template_fmt_setup); struct ima_template_desc *lookup_template_desc(const char *name) { struct ima_template_desc *template_desc; int found = 0; rcu_read_lock(); list_for_each_entry_rcu(template_desc, &defined_templates, list) { if ((strcmp(template_desc->name, name) == 0) || (strcmp(template_desc->fmt, name) == 0)) { found = 1; break; } } rcu_read_unlock(); return found ? template_desc : NULL; } static const struct ima_template_field * lookup_template_field(const char *field_id) { int i; for (i = 0; i < ARRAY_SIZE(supported_fields); i++) if (strncmp(supported_fields[i].field_id, field_id, IMA_TEMPLATE_FIELD_ID_MAX_LEN) == 0) return &supported_fields[i]; return NULL; } static int template_fmt_size(const char *template_fmt) { char c; int template_fmt_len = strlen(template_fmt); int i = 0, j = 0; while (i < template_fmt_len) { c = template_fmt[i]; if (c == '|') j++; i++; } return j + 1; } int template_desc_init_fields(const char *template_fmt, const struct ima_template_field ***fields, int *num_fields) { const char *template_fmt_ptr; const struct ima_template_field *found_fields[IMA_TEMPLATE_NUM_FIELDS_MAX]; int template_num_fields; int i, len; if (num_fields && *num_fields > 0) /* already initialized? */ return 0; template_num_fields = template_fmt_size(template_fmt); if (template_num_fields > IMA_TEMPLATE_NUM_FIELDS_MAX) { pr_err("format string '%s' contains too many fields\n", template_fmt); return -EINVAL; } for (i = 0, template_fmt_ptr = template_fmt; i < template_num_fields; i++, template_fmt_ptr += len + 1) { char tmp_field_id[IMA_TEMPLATE_FIELD_ID_MAX_LEN + 1]; len = strchrnul(template_fmt_ptr, '|') - template_fmt_ptr; if (len == 0 || len > IMA_TEMPLATE_FIELD_ID_MAX_LEN) { pr_err("Invalid field with length %d\n", len); return -EINVAL; } memcpy(tmp_field_id, template_fmt_ptr, len); tmp_field_id[len] = '\0'; found_fields[i] = lookup_template_field(tmp_field_id); if (!found_fields[i]) { pr_err("field '%s' not found\n", tmp_field_id); return -ENOENT; } } if (fields && num_fields) { *fields = kmalloc_array(i, sizeof(**fields), GFP_KERNEL); if (*fields == NULL) return -ENOMEM; memcpy(*fields, found_fields, i * sizeof(**fields)); *num_fields = i; } return 0; } void ima_init_template_list(void) { int i; if (!list_empty(&defined_templates)) return; spin_lock(&template_list); for (i = 0; i < ARRAY_SIZE(builtin_templates); i++) { list_add_tail_rcu(&builtin_templates[i].list, &defined_templates); } spin_unlock(&template_list); } struct ima_template_desc *ima_template_desc_current(void) { if (!ima_template) { ima_init_template_list(); ima_template = lookup_template_desc(CONFIG_IMA_DEFAULT_TEMPLATE); } return ima_template; } struct ima_template_desc *ima_template_desc_buf(void) { if (!ima_buf_template) { ima_init_template_list(); ima_buf_template = lookup_template_desc("ima-buf"); } return ima_buf_template; } int __init ima_init_template(void) { struct ima_template_desc *template = ima_template_desc_current(); int result; result = template_desc_init_fields(template->fmt, &(template->fields), &(template->num_fields)); if (result < 0) { pr_err("template %s init failed, result: %d\n", (strlen(template->name) ? template->name : template->fmt), result); return result; } template = ima_template_desc_buf(); if (!template) { pr_err("Failed to get ima-buf template\n"); return -EINVAL; } result = template_desc_init_fields(template->fmt, &(template->fields), &(template->num_fields)); if (result < 0) pr_err("template %s init failed, result: %d\n", (strlen(template->name) ? template->name : template->fmt), result); return result; } static struct ima_template_desc *restore_template_fmt(char *template_name) { struct ima_template_desc *template_desc = NULL; int ret; ret = template_desc_init_fields(template_name, NULL, NULL); if (ret < 0) { pr_err("attempting to initialize the template \"%s\" failed\n", template_name); goto out; } template_desc = kzalloc(sizeof(*template_desc), GFP_KERNEL); if (!template_desc) goto out; template_desc->name = ""; template_desc->fmt = kstrdup(template_name, GFP_KERNEL); if (!template_desc->fmt) { kfree(template_desc); template_desc = NULL; goto out; } spin_lock(&template_list); list_add_tail_rcu(&template_desc->list, &defined_templates); spin_unlock(&template_list); out: return template_desc; } static int ima_restore_template_data(struct ima_template_desc *template_desc, void *template_data, int template_data_size, struct ima_template_entry **entry) { struct tpm_digest *digests; int ret = 0; int i; *entry = kzalloc(struct_size(*entry, template_data, template_desc->num_fields), GFP_NOFS); if (!*entry) return -ENOMEM; digests = kcalloc(NR_BANKS(ima_tpm_chip) + ima_extra_slots, sizeof(*digests), GFP_NOFS); if (!digests) { kfree(*entry); return -ENOMEM; } (*entry)->digests = digests; ret = ima_parse_buf(template_data, template_data + template_data_size, NULL, template_desc->num_fields, (*entry)->template_data, NULL, NULL, ENFORCE_FIELDS | ENFORCE_BUFEND, "template data"); if (ret < 0) { kfree((*entry)->digests); kfree(*entry); return ret; } (*entry)->template_desc = template_desc; for (i = 0; i < template_desc->num_fields; i++) { struct ima_field_data *field_data = &(*entry)->template_data[i]; u8 *data = field_data->data; (*entry)->template_data[i].data = kzalloc(field_data->len + 1, GFP_KERNEL); if (!(*entry)->template_data[i].data) { ret = -ENOMEM; break; } memcpy((*entry)->template_data[i].data, data, field_data->len); (*entry)->template_data_len += sizeof(field_data->len); (*entry)->template_data_len += field_data->len; } if (ret < 0) { ima_free_template_entry(*entry); *entry = NULL; } return ret; } /* Restore the serialized binary measurement list without extending PCRs. */ int ima_restore_measurement_list(loff_t size, void *buf) { char template_name[MAX_TEMPLATE_NAME_LEN]; unsigned char zero[TPM_DIGEST_SIZE] = { 0 }; struct ima_kexec_hdr *khdr = buf; struct ima_field_data hdr[HDR__LAST] = { [HDR_PCR] = {.len = sizeof(u32)}, [HDR_DIGEST] = {.len = TPM_DIGEST_SIZE}, }; void *bufp = buf + sizeof(*khdr); void *bufendp; struct ima_template_entry *entry; struct ima_template_desc *template_desc; DECLARE_BITMAP(hdr_mask, HDR__LAST); unsigned long count = 0; int ret = 0; if (!buf || size < sizeof(*khdr)) return 0; if (ima_canonical_fmt) { khdr->version = le16_to_cpu((__force __le16)khdr->version); khdr->count = le64_to_cpu((__force __le64)khdr->count); khdr->buffer_size = le64_to_cpu((__force __le64)khdr->buffer_size); } if (khdr->version != 1) { pr_err("attempting to restore a incompatible measurement list"); return -EINVAL; } if (khdr->count > ULONG_MAX - 1) { pr_err("attempting to restore too many measurements"); return -EINVAL; } bitmap_zero(hdr_mask, HDR__LAST); bitmap_set(hdr_mask, HDR_PCR, 1); bitmap_set(hdr_mask, HDR_DIGEST, 1); /* * ima kexec buffer prefix: version, buffer size, count * v1 format: pcr, digest, template-name-len, template-name, * template-data-size, template-data */ bufendp = buf + khdr->buffer_size; while ((bufp < bufendp) && (count++ < khdr->count)) { int enforce_mask = ENFORCE_FIELDS; enforce_mask |= (count == khdr->count) ? ENFORCE_BUFEND : 0; ret = ima_parse_buf(bufp, bufendp, &bufp, HDR__LAST, hdr, NULL, hdr_mask, enforce_mask, "entry header"); if (ret < 0) break; if (hdr[HDR_TEMPLATE_NAME].len >= MAX_TEMPLATE_NAME_LEN) { pr_err("attempting to restore a template name that is too long\n"); ret = -EINVAL; break; } /* template name is not null terminated */ memcpy(template_name, hdr[HDR_TEMPLATE_NAME].data, hdr[HDR_TEMPLATE_NAME].len); template_name[hdr[HDR_TEMPLATE_NAME].len] = 0; if (strcmp(template_name, "ima") == 0) { pr_err("attempting to restore an unsupported template \"%s\" failed\n", template_name); ret = -EINVAL; break; } template_desc = lookup_template_desc(template_name); if (!template_desc) { template_desc = restore_template_fmt(template_name); if (!template_desc) break; } /* * Only the running system's template format is initialized * on boot. As needed, initialize the other template formats. */ ret = template_desc_init_fields(template_desc->fmt, &(template_desc->fields), &(template_desc->num_fields)); if (ret < 0) { pr_err("attempting to restore the template fmt \"%s\" failed\n", template_desc->fmt); ret = -EINVAL; break; } ret = ima_restore_template_data(template_desc, hdr[HDR_TEMPLATE_DATA].data, hdr[HDR_TEMPLATE_DATA].len, &entry); if (ret < 0) break; if (memcmp(hdr[HDR_DIGEST].data, zero, sizeof(zero))) { ret = ima_calc_field_array_hash( &entry->template_data[0], entry); if (ret < 0) { pr_err("cannot calculate template digest\n"); ret = -EINVAL; break; } } entry->pcr = !ima_canonical_fmt ? *(u32 *)(hdr[HDR_PCR].data) : le32_to_cpu(*(__le32 *)(hdr[HDR_PCR].data)); ret = ima_restore_measurement_entry(entry); if (ret < 0) break; } return ret; } |
38 38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 | // SPDX-License-Identifier: GPL-2.0-or-later /* * net/sched/act_gact.c Generic actions * * copyright Jamal Hadi Salim (2002-4) */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/skbuff.h> #include <linux/rtnetlink.h> #include <linux/module.h> #include <linux/init.h> #include <net/netlink.h> #include <net/pkt_sched.h> #include <net/pkt_cls.h> #include <linux/tc_act/tc_gact.h> #include <net/tc_act/tc_gact.h> static unsigned int gact_net_id; static struct tc_action_ops act_gact_ops; #ifdef CONFIG_GACT_PROB static int gact_net_rand(struct tcf_gact *gact) { smp_rmb(); /* coupled with smp_wmb() in tcf_gact_init() */ if (prandom_u32() % gact->tcfg_pval) return gact->tcf_action; return gact->tcfg_paction; } static int gact_determ(struct tcf_gact *gact) { u32 pack = atomic_inc_return(&gact->packets); smp_rmb(); /* coupled with smp_wmb() in tcf_gact_init() */ if (pack % gact->tcfg_pval) return gact->tcf_action; return gact->tcfg_paction; } typedef int (*g_rand)(struct tcf_gact *gact); static g_rand gact_rand[MAX_RAND] = { NULL, gact_net_rand, gact_determ }; #endif /* CONFIG_GACT_PROB */ static const struct nla_policy gact_policy[TCA_GACT_MAX + 1] = { [TCA_GACT_PARMS] = { .len = sizeof(struct tc_gact) }, [TCA_GACT_PROB] = { .len = sizeof(struct tc_gact_p) }, }; static int tcf_gact_init(struct net *net, struct nlattr *nla, struct nlattr *est, struct tc_action **a, struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack) { struct tc_action_net *tn = net_generic(net, gact_net_id); bool bind = flags & TCA_ACT_FLAGS_BIND; struct nlattr *tb[TCA_GACT_MAX + 1]; struct tcf_chain *goto_ch = NULL; struct tc_gact *parm; struct tcf_gact *gact; int ret = 0; u32 index; int err; #ifdef CONFIG_GACT_PROB struct tc_gact_p *p_parm = NULL; #endif if (nla == NULL) return -EINVAL; err = nla_parse_nested_deprecated(tb, TCA_GACT_MAX, nla, gact_policy, NULL); if (err < 0) return err; if (tb[TCA_GACT_PARMS] == NULL) return -EINVAL; parm = nla_data(tb[TCA_GACT_PARMS]); index = parm->index; #ifndef CONFIG_GACT_PROB if (tb[TCA_GACT_PROB] != NULL) return -EOPNOTSUPP; #else if (tb[TCA_GACT_PROB]) { p_parm = nla_data(tb[TCA_GACT_PROB]); if (p_parm->ptype >= MAX_RAND) return -EINVAL; if (TC_ACT_EXT_CMP(p_parm->paction, TC_ACT_GOTO_CHAIN)) { NL_SET_ERR_MSG(extack, "goto chain not allowed on fallback"); return -EINVAL; } } #endif err = tcf_idr_check_alloc(tn, &index, a, bind); if (!err) { ret = tcf_idr_create_from_flags(tn, index, est, a, &act_gact_ops, bind, flags); if (ret) { tcf_idr_cleanup(tn, index); return ret; } ret = ACT_P_CREATED; } else if (err > 0) { if (bind)/* dont override defaults */ return 0; if (!(flags & TCA_ACT_FLAGS_REPLACE)) { tcf_idr_release(*a, bind); return -EEXIST; } } else { return err; } err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); if (err < 0) goto release_idr; gact = to_gact(*a); spin_lock_bh(&gact->tcf_lock); goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); #ifdef CONFIG_GACT_PROB if (p_parm) { gact->tcfg_paction = p_parm->paction; gact->tcfg_pval = max_t(u16, 1, p_parm->pval); /* Make sure tcfg_pval is written before tcfg_ptype * coupled with smp_rmb() in gact_net_rand() & gact_determ() */ smp_wmb(); gact->tcfg_ptype = p_parm->ptype; } #endif spin_unlock_bh(&gact->tcf_lock); if (goto_ch) tcf_chain_put_by_act(goto_ch); return ret; release_idr: tcf_idr_release(*a, bind); return err; } static int tcf_gact_act(struct sk_buff *skb, const struct tc_action *a, struct tcf_result *res) { struct tcf_gact *gact = to_gact(a); int action = READ_ONCE(gact->tcf_action); #ifdef CONFIG_GACT_PROB { u32 ptype = READ_ONCE(gact->tcfg_ptype); if (ptype) action = gact_rand[ptype](gact); } #endif tcf_action_update_bstats(&gact->common, skb); if (action == TC_ACT_SHOT) tcf_action_inc_drop_qstats(&gact->common); tcf_lastuse_update(&gact->tcf_tm); return action; } static void tcf_gact_stats_update(struct tc_action *a, u64 bytes, u64 packets, u64 drops, u64 lastuse, bool hw) { struct tcf_gact *gact = to_gact(a); int action = READ_ONCE(gact->tcf_action); struct tcf_t *tm = &gact->tcf_tm; tcf_action_update_stats(a, bytes, packets, action == TC_ACT_SHOT ? packets : drops, hw); tm->lastuse = max_t(u64, tm->lastuse, lastuse); } static int tcf_gact_dump(struct sk_buff *skb, struct tc_action *a, int bind, int ref) { unsigned char *b = skb_tail_pointer(skb); struct tcf_gact *gact = to_gact(a); struct tc_gact opt = { .index = gact->tcf_index, .refcnt = refcount_read(&gact->tcf_refcnt) - ref, .bindcnt = atomic_read(&gact->tcf_bindcnt) - bind, }; struct tcf_t t; spin_lock_bh(&gact->tcf_lock); opt.action = gact->tcf_action; if (nla_put(skb, TCA_GACT_PARMS, sizeof(opt), &opt)) goto nla_put_failure; #ifdef CONFIG_GACT_PROB if (gact->tcfg_ptype) { struct tc_gact_p p_opt = { .paction = gact->tcfg_paction, .pval = gact->tcfg_pval, .ptype = gact->tcfg_ptype, }; if (nla_put(skb, TCA_GACT_PROB, sizeof(p_opt), &p_opt)) goto nla_put_failure; } #endif tcf_tm_dump(&t, &gact->tcf_tm); if (nla_put_64bit(skb, TCA_GACT_TM, sizeof(t), &t, TCA_GACT_PAD)) goto nla_put_failure; spin_unlock_bh(&gact->tcf_lock); return skb->len; nla_put_failure: spin_unlock_bh(&gact->tcf_lock); nlmsg_trim(skb, b); return -1; } static int tcf_gact_walker(struct net *net, struct sk_buff *skb, struct netlink_callback *cb, int type, const struct tc_action_ops *ops, struct netlink_ext_ack *extack) { struct tc_action_net *tn = net_generic(net, gact_net_id); return tcf_generic_walker(tn, skb, cb, type, ops, extack); } static int tcf_gact_search(struct net *net, struct tc_action **a, u32 index) { struct tc_action_net *tn = net_generic(net, gact_net_id); return tcf_idr_search(tn, a, index); } static size_t tcf_gact_get_fill_size(const struct tc_action *act) { size_t sz = nla_total_size(sizeof(struct tc_gact)); /* TCA_GACT_PARMS */ #ifdef CONFIG_GACT_PROB if (to_gact(act)->tcfg_ptype) /* TCA_GACT_PROB */ sz += nla_total_size(sizeof(struct tc_gact_p)); #endif return sz; } static struct tc_action_ops act_gact_ops = { .kind = "gact", .id = TCA_ID_GACT, .owner = THIS_MODULE, .act = tcf_gact_act, .stats_update = tcf_gact_stats_update, .dump = tcf_gact_dump, .init = tcf_gact_init, .walk = tcf_gact_walker, .lookup = tcf_gact_search, .get_fill_size = tcf_gact_get_fill_size, .size = sizeof(struct tcf_gact), }; static __net_init int gact_init_net(struct net *net) { struct tc_action_net *tn = net_generic(net, gact_net_id); return tc_action_net_init(net, tn, &act_gact_ops); } static void __net_exit gact_exit_net(struct list_head *net_list) { tc_action_net_exit(net_list, gact_net_id); } static struct pernet_operations gact_net_ops = { .init = gact_init_net, .exit_batch = gact_exit_net, .id = &gact_net_id, .size = sizeof(struct tc_action_net), }; MODULE_AUTHOR("Jamal Hadi Salim(2002-4)"); MODULE_DESCRIPTION("Generic Classifier actions"); MODULE_LICENSE("GPL"); static int __init gact_init_module(void) { #ifdef CONFIG_GACT_PROB pr_info("GACT probability on\n"); #else pr_info("GACT probability NOT on\n"); #endif return tcf_register_action(&act_gact_ops, &gact_net_ops); } static void __exit gact_cleanup_module(void) { tcf_unregister_action(&act_gact_ops, &gact_net_ops); } module_init(gact_init_module); module_exit(gact_cleanup_module); |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 | /* SPDX-License-Identifier: GPL-2.0 */ /* * linux/ipc/util.h * Copyright (C) 1999 Christoph Rohland * * ipc helper functions (c) 1999 Manfred Spraul <manfred@colorfullife.com> * namespaces support. 2006 OpenVZ, SWsoft Inc. * Pavel Emelianov <xemul@openvz.org> */ #ifndef _IPC_UTIL_H #define _IPC_UTIL_H #include <linux/unistd.h> #include <linux/err.h> #include <linux/ipc_namespace.h> /* * The IPC ID contains 2 separate numbers - index and sequence number. * By default, * bits 0-14: index (32k, 15 bits) * bits 15-30: sequence number (64k, 16 bits) * * When IPCMNI extension mode is turned on, the composition changes: * bits 0-23: index (16M, 24 bits) * bits 24-30: sequence number (128, 7 bits) */ #define IPCMNI_SHIFT 15 #define IPCMNI_EXTEND_SHIFT 24 #define IPCMNI_EXTEND_MIN_CYCLE (RADIX_TREE_MAP_SIZE * RADIX_TREE_MAP_SIZE) #define IPCMNI (1 << IPCMNI_SHIFT) #define IPCMNI_EXTEND (1 << IPCMNI_EXTEND_SHIFT) #ifdef CONFIG_SYSVIPC_SYSCTL extern int ipc_mni; extern int ipc_mni_shift; extern int ipc_min_cycle; #define ipcmni_seq_shift() ipc_mni_shift #define IPCMNI_IDX_MASK ((1 << ipc_mni_shift) - 1) #else /* CONFIG_SYSVIPC_SYSCTL */ #define ipc_mni IPCMNI #define ipc_min_cycle ((int)RADIX_TREE_MAP_SIZE) #define ipcmni_seq_shift() IPCMNI_SHIFT #define IPCMNI_IDX_MASK ((1 << IPCMNI_SHIFT) - 1) #endif /* CONFIG_SYSVIPC_SYSCTL */ void sem_init(void); void msg_init(void); void shm_init(void); struct ipc_namespace; struct pid_namespace; #ifdef CONFIG_POSIX_MQUEUE extern void mq_clear_sbinfo(struct ipc_namespace *ns); extern void mq_put_mnt(struct ipc_namespace *ns); #else static inline void mq_clear_sbinfo(struct ipc_namespace *ns) { } static inline void mq_put_mnt(struct ipc_namespace *ns) { } #endif #ifdef CONFIG_SYSVIPC void sem_init_ns(struct ipc_namespace *ns); void msg_init_ns(struct ipc_namespace *ns); void shm_init_ns(struct ipc_namespace *ns); void sem_exit_ns(struct ipc_namespace *ns); void msg_exit_ns(struct ipc_namespace *ns); void shm_exit_ns(struct ipc_namespace *ns); #else static inline void sem_init_ns(struct ipc_namespace *ns) { } static inline void msg_init_ns(struct ipc_namespace *ns) { } static inline void shm_init_ns(struct ipc_namespace *ns) { } static inline void sem_exit_ns(struct ipc_namespace *ns) { } static inline void msg_exit_ns(struct ipc_namespace *ns) { } static inline void shm_exit_ns(struct ipc_namespace *ns) { } #endif /* * Structure that holds the parameters needed by the ipc operations * (see after) */ struct ipc_params { key_t key; int flg; union { size_t size; /* for shared memories */ int nsems; /* for semaphores */ } u; /* holds the getnew() specific param */ }; /* * Structure that holds some ipc operations. This structure is used to unify * the calls to sys_msgget(), sys_semget(), sys_shmget() * . routine to call to create a new ipc object. Can be one of newque, * newary, newseg * . routine to call to check permissions for a new ipc object. * Can be one of security_msg_associate, security_sem_associate, * security_shm_associate * . routine to call for an extra check if needed */ struct ipc_ops { int (*getnew)(struct ipc_namespace *, struct ipc_params *); int (*associate)(struct kern_ipc_perm *, int); int (*more_checks)(struct kern_ipc_perm *, struct ipc_params *); }; struct seq_file; struct ipc_ids; void ipc_init_ids(struct ipc_ids *ids); #ifdef CONFIG_PROC_FS void __init ipc_init_proc_interface(const char *path, const char *header, int ids, int (*show)(struct seq_file *, void *)); struct pid_namespace *ipc_seq_pid_ns(struct seq_file *); #else #define ipc_init_proc_interface(path, header, ids, show) do {} while (0) #endif #define IPC_SEM_IDS 0 #define IPC_MSG_IDS 1 #define IPC_SHM_IDS 2 #define ipcid_to_idx(id) ((id) & IPCMNI_IDX_MASK) #define ipcid_to_seqx(id) ((id) >> ipcmni_seq_shift()) #define ipcid_seq_max() (INT_MAX >> ipcmni_seq_shift()) /* must be called with ids->rwsem acquired for writing */ int ipc_addid(struct ipc_ids *, struct kern_ipc_perm *, int); /* must be called with both locks acquired. */ void ipc_rmid(struct ipc_ids *, struct kern_ipc_perm *); /* must be called with both locks acquired. */ void ipc_set_key_private(struct ipc_ids *, struct kern_ipc_perm *); /* must be called with ipcp locked */ int ipcperms(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp, short flg); /** * ipc_get_maxidx - get the highest assigned index * @ids: ipc identifier set * * The function returns the highest assigned index for @ids. The function * doesn't scan the idr tree, it uses a cached value. * * Called with ipc_ids.rwsem held for reading. */ static inline int ipc_get_maxidx(struct ipc_ids *ids) { if (ids->in_use == 0) return -1; if (ids->in_use == ipc_mni) return ipc_mni - 1; return ids->max_idx; } /* * For allocation that need to be freed by RCU. * Objects are reference counted, they start with reference count 1. * getref increases the refcount, the putref call that reduces the recount * to 0 schedules the rcu destruction. Caller must guarantee locking. * * refcount is initialized by ipc_addid(), before that point call_rcu() * must be used. */ bool ipc_rcu_getref(struct kern_ipc_perm *ptr); void ipc_rcu_putref(struct kern_ipc_perm *ptr, void (*func)(struct rcu_head *head)); struct kern_ipc_perm *ipc_obtain_object_idr(struct ipc_ids *ids, int id); void kernel_to_ipc64_perm(struct kern_ipc_perm *in, struct ipc64_perm *out); void ipc64_perm_to_ipc_perm(struct ipc64_perm *in, struct ipc_perm *out); int ipc_update_perm(struct ipc64_perm *in, struct kern_ipc_perm *out); struct kern_ipc_perm *ipcctl_obtain_check(struct ipc_namespace *ns, struct ipc_ids *ids, int id, int cmd, struct ipc64_perm *perm, int extra_perm); static inline void ipc_update_pid(struct pid **pos, struct pid *pid) { struct pid *old = *pos; if (old != pid) { *pos = get_pid(pid); put_pid(old); } } #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION int ipc_parse_version(int *cmd); #endif extern void free_msg(struct msg_msg *msg); extern struct msg_msg *load_msg(const void __user *src, size_t len); extern struct msg_msg *copy_msg(struct msg_msg *src, struct msg_msg *dst); extern int store_msg(void __user *dest, struct msg_msg *msg, size_t len); static inline int ipc_checkid(struct kern_ipc_perm *ipcp, int id) { return ipcid_to_seqx(id) != ipcp->seq; } static inline void ipc_lock_object(struct kern_ipc_perm *perm) { spin_lock(&perm->lock); } static inline void ipc_unlock_object(struct kern_ipc_perm *perm) { spin_unlock(&perm->lock); } static inline void ipc_assert_locked_object(struct kern_ipc_perm *perm) { assert_spin_locked(&perm->lock); } static inline void ipc_unlock(struct kern_ipc_perm *perm) { ipc_unlock_object(perm); rcu_read_unlock(); } /* * ipc_valid_object() - helper to sort out IPC_RMID races for codepaths * where the respective ipc_ids.rwsem is not being held down. * Checks whether the ipc object is still around or if it's gone already, as * ipc_rmid() may have already freed the ID while the ipc lock was spinning. * Needs to be called with kern_ipc_perm.lock held -- exception made for one * checkpoint case at sys_semtimedop() as noted in code commentary. */ static inline bool ipc_valid_object(struct kern_ipc_perm *perm) { return !perm->deleted; } struct kern_ipc_perm *ipc_obtain_object_check(struct ipc_ids *ids, int id); int ipcget(struct ipc_namespace *ns, struct ipc_ids *ids, const struct ipc_ops *ops, struct ipc_params *params); void free_ipcs(struct ipc_namespace *ns, struct ipc_ids *ids, void (*free)(struct ipc_namespace *, struct kern_ipc_perm *)); static inline int sem_check_semmni(struct ipc_namespace *ns) { /* * Check semmni range [0, ipc_mni] * semmni is the last element of sem_ctls[4] array */ return ((ns->sem_ctls[3] < 0) || (ns->sem_ctls[3] > ipc_mni)) ? -ERANGE : 0; } #ifdef CONFIG_COMPAT #include <linux/compat.h> struct compat_ipc_perm { key_t key; __compat_uid_t uid; __compat_gid_t gid; __compat_uid_t cuid; __compat_gid_t cgid; compat_mode_t mode; unsigned short seq; }; void to_compat_ipc_perm(struct compat_ipc_perm *, struct ipc64_perm *); void to_compat_ipc64_perm(struct compat_ipc64_perm *, struct ipc64_perm *); int get_compat_ipc_perm(struct ipc64_perm *, struct compat_ipc_perm __user *); int get_compat_ipc64_perm(struct ipc64_perm *, struct compat_ipc64_perm __user *); static inline int compat_ipc_parse_version(int *cmd) { int version = *cmd & IPC_64; *cmd &= ~IPC_64; return version; } long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg); long compat_ksys_old_msgctl(int msqid, int cmd, void __user *uptr); long compat_ksys_msgrcv(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, compat_long_t msgtyp, int msgflg); long compat_ksys_msgsnd(int msqid, compat_uptr_t msgp, compat_ssize_t msgsz, int msgflg); long compat_ksys_old_shmctl(int shmid, int cmd, void __user *uptr); #endif #endif |
17 52 535 73 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | /* SPDX-License-Identifier: GPL-2.0-or-later */ /* Integer base 2 logarithm calculation * * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #ifndef _LINUX_LOG2_H #define _LINUX_LOG2_H #include <linux/types.h> #include <linux/bitops.h> /* * non-constant log of base 2 calculators * - the arch may override these in asm/bitops.h if they can be implemented * more efficiently than using fls() and fls64() * - the arch is not required to handle n==0 if implementing the fallback */ #ifndef CONFIG_ARCH_HAS_ILOG2_U32 static inline __attribute__((const)) int __ilog2_u32(u32 n) { return fls(n) - 1; } #endif #ifndef CONFIG_ARCH_HAS_ILOG2_U64 static inline __attribute__((const)) int __ilog2_u64(u64 n) { return fls64(n) - 1; } #endif /** * is_power_of_2() - check if a value is a power of two * @n: the value to check * * Determine whether some value is a power of two, where zero is * *not* considered a power of two. * Return: true if @n is a power of 2, otherwise false. */ static inline __attribute__((const)) bool is_power_of_2(unsigned long n) { return (n != 0 && ((n & (n - 1)) == 0)); } /** * __roundup_pow_of_two() - round up to nearest power of two * @n: value to round up */ static inline __attribute__((const)) unsigned long __roundup_pow_of_two(unsigned long n) { return 1UL << fls_long(n - 1); } /** * __rounddown_pow_of_two() - round down to nearest power of two * @n: value to round down */ static inline __attribute__((const)) unsigned long __rounddown_pow_of_two(unsigned long n) { return 1UL << (fls_long(n) - 1); } /** * const_ilog2 - log base 2 of 32-bit or a 64-bit constant unsigned value * @n: parameter * * Use this where sparse expects a true constant expression, e.g. for array * indices. */ #define const_ilog2(n) \ ( \ __builtin_constant_p(n) ? ( \ (n) < 2 ? 0 : \ (n) & (1ULL << 63) ? 63 : \ (n) & (1ULL << 62) ? 62 : \ (n) & (1ULL << 61) ? 61 : \ (n) & (1ULL << 60) ? 60 : \ (n) & (1ULL << 59) ? 59 : \ (n) & (1ULL << 58) ? 58 : \ (n) & (1ULL << 57) ? 57 : \ (n) & (1ULL << 56) ? 56 : \ (n) & (1ULL << 55) ? 55 : \ (n) & (1ULL << 54) ? 54 : \ (n) & (1ULL << 53) ? 53 : \ (n) & (1ULL << 52) ? 52 : \ (n) & (1ULL << 51) ? 51 : \ (n) & (1ULL << 50) ? 50 : \ (n) & (1ULL << 49) ? 49 : \ (n) & (1ULL << 48) ? 48 : \ (n) & (1ULL << 47) ? 47 : \ (n) & (1ULL << 46) ? 46 : \ (n) & (1ULL << 45) ? 45 : \ (n) & (1ULL << 44) ? 44 : \ (n) & (1ULL << 43) ? 43 : \ (n) & (1ULL << 42) ? 42 : \ (n) & (1ULL << 41) ? 41 : \ (n) & (1ULL << 40) ? 40 : \ (n) & (1ULL << 39) ? 39 : \ (n) & (1ULL << 38) ? 38 : \ (n) & (1ULL << 37) ? 37 : \ (n) & (1ULL << 36) ? 36 : \ (n) & (1ULL << 35) ? 35 : \ (n) & (1ULL << 34) ? 34 : \ (n) & (1ULL << 33) ? 33 : \ (n) & (1ULL << 32) ? 32 : \ (n) & (1ULL << 31) ? 31 : \ (n) & (1ULL << 30) ? 30 : \ (n) & (1ULL << 29) ? 29 : \ (n) & (1ULL << 28) ? 28 : \ (n) & (1ULL << 27) ? 27 : \ (n) & (1ULL << 26) ? 26 : \ (n) & (1ULL << 25) ? 25 : \ (n) & (1ULL << 24) ? 24 : \ (n) & (1ULL << 23) ? 23 : \ (n) & (1ULL << 22) ? 22 : \ (n) & (1ULL << 21) ? 21 : \ (n) & (1ULL << 20) ? 20 : \ (n) & (1ULL << 19) ? 19 : \ (n) & (1ULL << 18) ? 18 : \ (n) & (1ULL << 17) ? 17 : \ (n) & (1ULL << 16) ? 16 : \ (n) & (1ULL << 15) ? 15 : \ (n) & (1ULL << 14) ? 14 : \ (n) & (1ULL << 13) ? 13 : \ (n) & (1ULL << 12) ? 12 : \ (n) & (1ULL << 11) ? 11 : \ (n) & (1ULL << 10) ? 10 : \ (n) & (1ULL << 9) ? 9 : \ (n) & (1ULL << 8) ? 8 : \ (n) & (1ULL << 7) ? 7 : \ (n) & (1ULL << 6) ? 6 : \ (n) & (1ULL << 5) ? 5 : \ (n) & (1ULL << 4) ? 4 : \ (n) & (1ULL << 3) ? 3 : \ (n) & (1ULL << 2) ? 2 : \ 1) : \ -1) /** * ilog2 - log base 2 of 32-bit or a 64-bit unsigned value * @n: parameter * * constant-capable log of base 2 calculation * - this can be used to initialise global variables from constant data, hence * the massive ternary operator construction * * selects the appropriately-sized optimised version depending on sizeof(n) */ #define ilog2(n) \ ( \ __builtin_constant_p(n) ? \ ((n) < 2 ? 0 : \ 63 - __builtin_clzll(n)) : \ (sizeof(n) <= 4) ? \ __ilog2_u32(n) : \ __ilog2_u64(n) \ ) /** * roundup_pow_of_two - round the given value up to nearest power of two * @n: parameter * * round the given value up to the nearest power of two * - the result is undefined when n == 0 * - this can be used to initialise global variables from constant data */ #define roundup_pow_of_two(n) \ ( \ __builtin_constant_p(n) ? ( \ ((n) == 1) ? 1 : \ (1UL << (ilog2((n) - 1) + 1)) \ ) : \ __roundup_pow_of_two(n) \ ) /** * rounddown_pow_of_two - round the given value down to nearest power of two * @n: parameter * * round the given value down to the nearest power of two * - the result is undefined when n == 0 * - this can be used to initialise global variables from constant data */ #define rounddown_pow_of_two(n) \ ( \ __builtin_constant_p(n) ? ( \ (1UL << ilog2(n))) : \ __rounddown_pow_of_two(n) \ ) static inline __attribute_const__ int __order_base_2(unsigned long n) { return n > 1 ? ilog2(n - 1) + 1 : 0; } /** * order_base_2 - calculate the (rounded up) base 2 order of the argument * @n: parameter * * The first few values calculated by this routine: * ob2(0) = 0 * ob2(1) = 0 * ob2(2) = 1 * ob2(3) = 2 * ob2(4) = 2 * ob2(5) = 3 * ... and so on. */ #define order_base_2(n) \ ( \ __builtin_constant_p(n) ? ( \ ((n) == 0 || (n) == 1) ? 0 : \ ilog2((n) - 1) + 1) : \ __order_base_2(n) \ ) static inline __attribute__((const)) int __bits_per(unsigned long n) { if (n < 2) return 1; if (is_power_of_2(n)) return order_base_2(n) + 1; return order_base_2(n); } /** * bits_per - calculate the number of bits required for the argument * @n: parameter * * This is constant-capable and can be used for compile time * initializations, e.g bitfields. * * The first few values calculated by this routine: * bf(0) = 1 * bf(1) = 1 * bf(2) = 2 * bf(3) = 2 * bf(4) = 3 * ... and so on. */ #define bits_per(n) \ ( \ __builtin_constant_p(n) ? ( \ ((n) == 0 || (n) == 1) \ ? 1 : ilog2(n) + 1 \ ) : \ __bits_per(n) \ ) #endif /* _LINUX_LOG2_H */ |
30 34 39 39 34 9 30 28 4 28 28 277 274 277 321 322 311 13 243 41 91 91 13 13 91 91 91 91 91 91 91 91 91 91 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 | // SPDX-License-Identifier: GPL-2.0 /* * event tracer * * Copyright (C) 2008 Red Hat Inc, Steven Rostedt <srostedt@redhat.com> * * - Added format output of fields of the trace point. * This was based off of work by Tom Zanussi <tzanussi@gmail.com>. * */ #define pr_fmt(fmt) fmt #include <linux/workqueue.h> #include <linux/security.h> #include <linux/spinlock.h> #include <linux/kthread.h> #include <linux/tracefs.h> #include <linux/uaccess.h> #include <linux/module.h> #include <linux/ctype.h> #include <linux/sort.h> #include <linux/slab.h> #include <linux/delay.h> #include <trace/events/sched.h> #include <trace/syscall.h> #include <asm/setup.h> #include "trace_output.h" #undef TRACE_SYSTEM #define TRACE_SYSTEM "TRACE_SYSTEM" DEFINE_MUTEX(event_mutex); LIST_HEAD(ftrace_events); static LIST_HEAD(ftrace_generic_fields); static LIST_HEAD(ftrace_common_fields); static bool eventdir_initialized; static LIST_HEAD(module_strings); struct module_string { struct list_head next; struct module *module; char *str; }; #define GFP_TRACE (GFP_KERNEL | __GFP_ZERO) static struct kmem_cache *field_cachep; static struct kmem_cache *file_cachep; static inline int system_refcount(struct event_subsystem *system) { return system->ref_count; } static int system_refcount_inc(struct event_subsystem *system) { return system->ref_count++; } static int system_refcount_dec(struct event_subsystem *system) { return --system->ref_count; } /* Double loops, do not use break, only goto's work */ #define do_for_each_event_file(tr, file) \ list_for_each_entry(tr, &ftrace_trace_arrays, list) { \ list_for_each_entry(file, &tr->events, list) #define do_for_each_event_file_safe(tr, file) \ list_for_each_entry(tr, &ftrace_trace_arrays, list) { \ struct trace_event_file *___n; \ list_for_each_entry_safe(file, ___n, &tr->events, list) #define while_for_each_event_file() \ } static struct ftrace_event_field * __find_event_field(struct list_head *head, char *name) { struct ftrace_event_field *field; list_for_each_entry(field, head, link) { if (!strcmp(field->name, name)) return field; } return NULL; } struct ftrace_event_field * trace_find_event_field(struct trace_event_call *call, char *name) { struct ftrace_event_field *field; struct list_head *head; head = trace_get_fields(call); field = __find_event_field(head, name); if (field) return field; field = __find_event_field(&ftrace_generic_fields, name); if (field) return field; return __find_event_field(&ftrace_common_fields, name); } static int __trace_define_field(struct list_head *head, const char *type, const char *name, int offset, int size, int is_signed, int filter_type) { struct ftrace_event_field *field; field = kmem_cache_alloc(field_cachep, GFP_TRACE); if (!field) return -ENOMEM; field->name = name; field->type = type; if (filter_type == FILTER_OTHER) field->filter_type = filter_assign_type(type); else field->filter_type = filter_type; field->offset = offset; field->size = size; field->is_signed = is_signed; list_add(&field->link, head); return 0; } int trace_define_field(struct trace_event_call *call, const char *type, const char *name, int offset, int size, int is_signed, int filter_type) { struct list_head *head; if (WARN_ON(!call->class)) return 0; head = trace_get_fields(call); return __trace_define_field(head, type, name, offset, size, is_signed, filter_type); } EXPORT_SYMBOL_GPL(trace_define_field); #define __generic_field(type, item, filter_type) \ ret = __trace_define_field(&ftrace_generic_fields, #type, \ #item, 0, 0, is_signed_type(type), \ filter_type); \ if (ret) \ return ret; #define __common_field(type, item) \ ret = __trace_define_field(&ftrace_common_fields, #type, \ "common_" #item, \ offsetof(typeof(ent), item), \ sizeof(ent.item), \ is_signed_type(type), FILTER_OTHER); \ if (ret) \ return ret; static int trace_define_generic_fields(void) { int ret; __generic_field(int, CPU, FILTER_CPU); __generic_field(int, cpu, FILTER_CPU); __generic_field(int, common_cpu, FILTER_CPU); __generic_field(char *, COMM, FILTER_COMM); __generic_field(char *, comm, FILTER_COMM); return ret; } static int trace_define_common_fields(void) { int ret; struct trace_entry ent; __common_field(unsigned short, type); __common_field(unsigned char, flags); /* Holds both preempt_count and migrate_disable */ __common_field(unsigned char, preempt_count); __common_field(int, pid); return ret; } static void trace_destroy_fields(struct trace_event_call *call) { struct ftrace_event_field *field, *next; struct list_head *head; head = trace_get_fields(call); list_for_each_entry_safe(field, next, head, link) { list_del(&field->link); kmem_cache_free(field_cachep, field); } } /* * run-time version of trace_event_get_offsets_<call>() that returns the last * accessible offset of trace fields excluding __dynamic_array bytes */ int trace_event_get_offsets(struct trace_event_call *call) { struct ftrace_event_field *tail; struct list_head *head; head = trace_get_fields(call); /* * head->next points to the last field with the largest offset, * since it was added last by trace_define_field() */ tail = list_first_entry(head, struct ftrace_event_field, link); return tail->offset + tail->size; } static struct trace_event_fields *find_event_field(const char *fmt, struct trace_event_call *call) { struct trace_event_fields *field = call->class->fields_array; const char *p = fmt; int len; if (!(len = str_has_prefix(fmt, "REC->"))) return NULL; fmt += len; for (p = fmt; *p; p++) { if (!isalnum(*p) && *p != '_') break; } len = p - fmt; for (; field->type; field++) { if (strncmp(field->name, fmt, len) || field->name[len]) continue; return field; } return NULL; } /* * Check if the referenced field is an array and return true, * as arrays are OK to dereference. */ static bool test_field(const char *fmt, struct trace_event_call *call) { struct trace_event_fields *field; field = find_event_field(fmt, call); if (!field) return false; /* This is an array and is OK to dereference. */ return strchr(field->type, '[') != NULL; } /* Look for a string within an argument */ static bool find_print_string(const char *arg, const char *str, const char *end) { const char *r; r = strstr(arg, str); return r && r < end; } /* Return true if the argument pointer is safe */ static bool process_pointer(const char *fmt, int len, struct trace_event_call *call) { const char *r, *e, *a; e = fmt + len; /* Find the REC-> in the argument */ r = strstr(fmt, "REC->"); if (r && r < e) { /* * Addresses of events on the buffer, or an array on the buffer is * OK to dereference. There's ways to fool this, but * this is to catch common mistakes, not malicious code. */ a = strchr(fmt, '&'); if ((a && (a < r)) || test_field(r, call)) return true; } else if (find_print_string(fmt, "__get_dynamic_array(", e)) { return true; } else if (find_print_string(fmt, "__get_rel_dynamic_array(", e)) { return true; } else if (find_print_string(fmt, "__get_dynamic_array_len(", e)) { return true; } else if (find_print_string(fmt, "__get_rel_dynamic_array_len(", e)) { return true; } else if (find_print_string(fmt, "__get_sockaddr(", e)) { return true; } else if (find_print_string(fmt, "__get_rel_sockaddr(", e)) { return true; } return false; } /* Return true if the string is safe */ static bool process_string(const char *fmt, int len, struct trace_event_call *call) { const char *r, *e, *s; e = fmt + len; /* * There are several helper functions that return strings. * If the argument contains a function, then assume its field is valid. * It is considered that the argument has a function if it has: * alphanumeric or '_' before a parenthesis. */ s = fmt; do { int i; r = strstr(s, "("); if (!r || r >= e) break; for (i = 1; r - i >= s; i++) { char ch = *(r - i); if (isspace(ch)) continue; if (isalnum(ch) || ch == '_') return true; /* Anything else, this isn't a function */ break; } /* A function could be wrapped in parethesis, try the next one */ s = r + 1; } while (s < e); /* * Check for arrays. If the argument has: foo[REC->val] * then it is very likely that foo is an array of strings * that are safe to use. */ r = strstr(s, "["); if (r && r < e) { r = strstr(r, "REC->"); if (r && r < e) return true; } /* * If there's any strings in the argument consider this arg OK as it * could be: REC->field ? "foo" : "bar" and we don't want to get into * verifying that logic here. */ if (find_print_string(fmt, "\"", e)) return true; /* Dereferenced strings are also valid like any other pointer */ if (process_pointer(fmt, len, call)) return true; /* Make sure the field is found, and consider it OK for now if it is */ return find_event_field(fmt, call) != NULL; } /* * Examine the print fmt of the event looking for unsafe dereference * pointers using %p* that could be recorded in the trace event and * much later referenced after the pointer was freed. Dereferencing * pointers are OK, if it is dereferenced into the event itself. */ static void test_event_printk(struct trace_event_call *call) { u64 dereference_flags = 0; u64 string_flags = 0; bool first = true; const char *fmt; int parens = 0; char in_quote = 0; int start_arg = 0; int arg = 0; int i, e; fmt = call->print_fmt; if (!fmt) return; for (i = 0; fmt[i]; i++) { switch (fmt[i]) { case '\\': i++; if (!fmt[i]) return; continue; case '"': case '\'': /* * The print fmt starts with a string that * is processed first to find %p* usage, * then after the first string, the print fmt * contains arguments that are used to check * if the dereferenced %p* usage is safe. */ if (first) { if (fmt[i] == '\'') continue; if (in_quote) { arg = 0; first = false; /* * If there was no %p* uses * the fmt is OK. */ if (!dereference_flags) return; } } if (in_quote) { if (in_quote == fmt[i]) in_quote = 0; } else { in_quote = fmt[i]; } continue; case '%': if (!first || !in_quote) continue; i++; if (!fmt[i]) return; switch (fmt[i]) { case '%': continue; case 'p': /* Find dereferencing fields */ switch (fmt[i + 1]) { case 'B': case 'R': case 'r': case 'b': case 'M': case 'm': case 'I': case 'i': case 'E': case 'U': case 'V': case 'N': case 'a': case 'd': case 'D': case 'g': case 't': case 'C': case 'O': case 'f': if (WARN_ONCE(arg == 63, "Too many args for event: %s", trace_event_name(call))) return; dereference_flags |= 1ULL << arg; } break; default: { bool star = false; int j; /* Increment arg if %*s exists. */ for (j = 0; fmt[i + j]; j++) { if (isdigit(fmt[i + j]) || fmt[i + j] == '.') continue; if (fmt[i + j] == '*') { star = true; continue; } if ((fmt[i + j] == 's')) { if (star) arg++; if (WARN_ONCE(arg == 63, "Too many args for event: %s", trace_event_name(call))) return; dereference_flags |= 1ULL << arg; string_flags |= 1ULL << arg; } break; } break; } /* default */ } /* switch */ arg++; continue; case '(': if (in_quote) continue; parens++; continue; case ')': if (in_quote) continue; parens--; if (WARN_ONCE(parens < 0, "Paren mismatch for event: %s\narg='%s'\n%*s", trace_event_name(call), fmt + start_arg, (i - start_arg) + 5, "^")) return; continue; case ',': if (in_quote || parens) continue; e = i; i++; while (isspace(fmt[i])) i++; /* * If start_arg is zero, then this is the start of the * first argument. The processing of the argument happens * when the end of the argument is found, as it needs to * handle paranthesis and such. */ if (!start_arg) { start_arg = i; /* Balance out the i++ in the for loop */ i--; continue; } if (dereference_flags & (1ULL << arg)) { if (string_flags & (1ULL << arg)) { if (process_string(fmt + start_arg, e - start_arg, call)) dereference_flags &= ~(1ULL << arg); } else if (process_pointer(fmt + start_arg, e - start_arg, call)) dereference_flags &= ~(1ULL << arg); } start_arg = i; arg++; /* Balance out the i++ in the for loop */ i--; } } if (dereference_flags & (1ULL << arg)) { if (string_flags & (1ULL << arg)) { if (process_string(fmt + start_arg, i - start_arg, call)) dereference_flags &= ~(1ULL << arg); } else if (process_pointer(fmt + start_arg, i - start_arg, call)) dereference_flags &= ~(1ULL << arg); } /* * If you triggered the below warning, the trace event reported * uses an unsafe dereference pointer %p*. As the data stored * at the trace event time may no longer exist when the trace * event is printed, dereferencing to the original source is * unsafe. The source of the dereference must be copied into the * event itself, and the dereference must access the copy instead. */ if (WARN_ON_ONCE(dereference_flags)) { arg = 1; while (!(dereference_flags & 1)) { dereference_flags >>= 1; arg++; } pr_warn("event %s has unsafe dereference of argument %d\n", trace_event_name(call), arg); pr_warn("print_fmt: %s\n", fmt); } } int trace_event_raw_init(struct trace_event_call *call) { int id; id = register_trace_event(&call->event); if (!id) return -ENODEV; test_event_printk(call); return 0; } EXPORT_SYMBOL_GPL(trace_event_raw_init); bool trace_event_ignore_this_pid(struct trace_event_file *trace_file) { struct trace_array *tr = trace_file->tr; struct trace_array_cpu *data; struct trace_pid_list *no_pid_list; struct trace_pid_list *pid_list; pid_list = rcu_dereference_raw(tr->filtered_pids); no_pid_list = rcu_dereference_raw(tr->filtered_no_pids); if (!pid_list && !no_pid_list) return false; data = this_cpu_ptr(tr->array_buffer.data); return data->ignore_pid; } EXPORT_SYMBOL_GPL(trace_event_ignore_this_pid); void *trace_event_buffer_reserve(struct trace_event_buffer *fbuffer, struct trace_event_file *trace_file, unsigned long len) { struct trace_event_call *event_call = trace_file->event_call; if ((trace_file->flags & EVENT_FILE_FL_PID_FILTER) && trace_event_ignore_this_pid(trace_file)) return NULL; /* * If CONFIG_PREEMPTION is enabled, then the tracepoint itself disables * preemption (adding one to the preempt_count). Since we are * interested in the preempt_count at the time the tracepoint was * hit, we need to subtract one to offset the increment. */ fbuffer->trace_ctx = tracing_gen_ctx_dec(); fbuffer->trace_file = trace_file; fbuffer->event = trace_event_buffer_lock_reserve(&fbuffer->buffer, trace_file, event_call->event.type, len, fbuffer->trace_ctx); if (!fbuffer->event) return NULL; fbuffer->regs = NULL; fbuffer->entry = ring_buffer_event_data(fbuffer->event); return fbuffer->entry; } EXPORT_SYMBOL_GPL(trace_event_buffer_reserve); int trace_event_reg(struct trace_event_call *call, enum trace_reg type, void *data) { struct trace_event_file *file = data; WARN_ON(!(call->flags & TRACE_EVENT_FL_TRACEPOINT)); switch (type) { case TRACE_REG_REGISTER: return tracepoint_probe_register(call->tp, call->class->probe, file); case TRACE_REG_UNREGISTER: tracepoint_probe_unregister(call->tp, call->class->probe, file); return 0; #ifdef CONFIG_PERF_EVENTS case TRACE_REG_PERF_REGISTER: return tracepoint_probe_register(call->tp, call->class->perf_probe, call); case TRACE_REG_PERF_UNREGISTER: tracepoint_probe_unregister(call->tp, call->class->perf_probe, call); return 0; case TRACE_REG_PERF_OPEN: case TRACE_REG_PERF_CLOSE: case TRACE_REG_PERF_ADD: case TRACE_REG_PERF_DEL: return 0; #endif } return 0; } EXPORT_SYMBOL_GPL(trace_event_reg); void trace_event_enable_cmd_record(bool enable) { struct trace_event_file *file; struct trace_array *tr; lockdep_assert_held(&event_mutex); do_for_each_event_file(tr, file) { if (!(file->flags & EVENT_FILE_FL_ENABLED)) continue; if (enable) { tracing_start_cmdline_record(); set_bit(EVENT_FILE_FL_RECORDED_CMD_BIT, &file->flags); } else { tracing_stop_cmdline_record(); clear_bit(EVENT_FILE_FL_RECORDED_CMD_BIT, &file->flags); } } while_for_each_event_file(); } void trace_event_enable_tgid_record(bool enable) { struct trace_event_file *file; struct trace_array *tr; lockdep_assert_held(&event_mutex); do_for_each_event_file(tr, file) { if (!(file->flags & EVENT_FILE_FL_ENABLED)) continue; if (enable) { tracing_start_tgid_record(); set_bit(EVENT_FILE_FL_RECORDED_TGID_BIT, &file->flags); } else { tracing_stop_tgid_record(); clear_bit(EVENT_FILE_FL_RECORDED_TGID_BIT, &file->flags); } } while_for_each_event_file(); } static int __ftrace_event_enable_disable(struct trace_event_file *file, int enable, int soft_disable) { struct trace_event_call *call = file->event_call; struct trace_array *tr = file->tr; int ret = 0; int disable; switch (enable) { case 0: /* * When soft_disable is set and enable is cleared, the sm_ref * reference counter is decremented. If it reaches 0, we want * to clear the SOFT_DISABLED flag but leave the event in the * state that it was. That is, if the event was enabled and * SOFT_DISABLED isn't set, then do nothing. But if SOFT_DISABLED * is set we do not want the event to be enabled before we * clear the bit. * * When soft_disable is not set but the SOFT_MODE flag is, * we do nothing. Do not disable the tracepoint, otherwise * "soft enable"s (clearing the SOFT_DISABLED bit) wont work. */ if (soft_disable) { if (atomic_dec_return(&file->sm_ref) > 0) break; disable = file->flags & EVENT_FILE_FL_SOFT_DISABLED; clear_bit(EVENT_FILE_FL_SOFT_MODE_BIT, &file->flags); /* Disable use of trace_buffered_event */ trace_buffered_event_disable(); } else disable = !(file->flags & EVENT_FILE_FL_SOFT_MODE); if (disable && (file->flags & EVENT_FILE_FL_ENABLED)) { clear_bit(EVENT_FILE_FL_ENABLED_BIT, &file->flags); if (file->flags & EVENT_FILE_FL_RECORDED_CMD) { tracing_stop_cmdline_record(); clear_bit(EVENT_FILE_FL_RECORDED_CMD_BIT, &file->flags); } if (file->flags & EVENT_FILE_FL_RECORDED_TGID) { tracing_stop_tgid_record(); clear_bit(EVENT_FILE_FL_RECORDED_TGID_BIT, &file->flags); } call->class->reg(call, TRACE_REG_UNREGISTER, file); } /* If in SOFT_MODE, just set the SOFT_DISABLE_BIT, else clear it */ if (file->flags & EVENT_FILE_FL_SOFT_MODE) set_bit(EVENT_FILE_FL_SOFT_DISABLED_BIT, &file->flags); else clear_bit(EVENT_FILE_FL_SOFT_DISABLED_BIT, &file->flags); break; case 1: /* * When soft_disable is set and enable is set, we want to * register the tracepoint for the event, but leave the event * as is. That means, if the event was already enabled, we do * nothing (but set SOFT_MODE). If the event is disabled, we * set SOFT_DISABLED before enabling the event tracepoint, so * it still seems to be disabled. */ if (!soft_disable) clear_bit(EVENT_FILE_FL_SOFT_DISABLED_BIT, &file->flags); else { if (atomic_inc_return(&file->sm_ref) > 1) break; set_bit(EVENT_FILE_FL_SOFT_MODE_BIT, &file->flags); /* Enable use of trace_buffered_event */ trace_buffered_event_enable(); } if (!(file->flags & EVENT_FILE_FL_ENABLED)) { bool cmd = false, tgid = false; /* Keep the event disabled, when going to SOFT_MODE. */ if (soft_disable) set_bit(EVENT_FILE_FL_SOFT_DISABLED_BIT, &file->flags); if (tr->trace_flags & TRACE_ITER_RECORD_CMD) { cmd = true; tracing_start_cmdline_record(); set_bit(EVENT_FILE_FL_RECORDED_CMD_BIT, &file->flags); } if (tr->trace_flags & TRACE_ITER_RECORD_TGID) { tgid = true; tracing_start_tgid_record(); set_bit(EVENT_FILE_FL_RECORDED_TGID_BIT, &file->flags); } ret = call->class->reg(call, TRACE_REG_REGISTER, file); if (ret) { if (cmd) tracing_stop_cmdline_record(); if (tgid) tracing_stop_tgid_record(); pr_info("event trace: Could not enable event " "%s\n", trace_event_name(call)); break; } set_bit(EVENT_FILE_FL_ENABLED_BIT, &file->flags); /* WAS_ENABLED gets set but never cleared. */ set_bit(EVENT_FILE_FL_WAS_ENABLED_BIT, &file->flags); } break; } return ret; } int trace_event_enable_disable(struct trace_event_file *file, int enable, int soft_disable) { return __ftrace_event_enable_disable(file, enable, soft_disable); } static int ftrace_event_enable_disable(struct trace_event_file *file, int enable) { return __ftrace_event_enable_disable(file, enable, 0); } static void ftrace_clear_events(struct trace_array *tr) { struct trace_event_file *file; mutex_lock(&event_mutex); list_for_each_entry(file, &tr->events, list) { ftrace_event_enable_disable(file, 0); } mutex_unlock(&event_mutex); } static void event_filter_pid_sched_process_exit(void *data, struct task_struct *task) { struct trace_pid_list *pid_list; struct trace_array *tr = data; pid_list = rcu_dereference_raw(tr->filtered_pids); trace_filter_add_remove_task(pid_list, NULL, task); pid_list = rcu_dereference_raw(tr->filtered_no_pids); trace_filter_add_remove_task(pid_list, NULL, task); } static void event_filter_pid_sched_process_fork(void *data, struct task_struct *self, struct task_struct *task) { struct trace_pid_list *pid_list; struct trace_array *tr = data; pid_list = rcu_dereference_sched(tr->filtered_pids); trace_filter_add_remove_task(pid_list, self, task); pid_list = rcu_dereference_sched(tr->filtered_no_pids); trace_filter_add_remove_task(pid_list, self, task); } void trace_event_follow_fork(struct trace_array *tr, bool enable) { if (enable) { register_trace_prio_sched_process_fork(event_filter_pid_sched_process_fork, tr, INT_MIN); register_trace_prio_sched_process_free(event_filter_pid_sched_process_exit, tr, INT_MAX); } else { unregister_trace_sched_process_fork(event_filter_pid_sched_process_fork, tr); unregister_trace_sched_process_free(event_filter_pid_sched_process_exit, tr); } } static void event_filter_pid_sched_switch_probe_pre(void *data, bool preempt, struct task_struct *prev, struct task_struct *next) { struct trace_array *tr = data; struct trace_pid_list *no_pid_list; struct trace_pid_list *pid_list; bool ret; pid_list = rcu_dereference_sched(tr->filtered_pids); no_pid_list = rcu_dereference_sched(tr->filtered_no_pids); /* * Sched switch is funny, as we only want to ignore it * in the notrace case if both prev and next should be ignored. */ ret = trace_ignore_this_task(NULL, no_pid_list, prev) && trace_ignore_this_task(NULL, no_pid_list, next); this_cpu_write(tr->array_buffer.data->ignore_pid, ret || (trace_ignore_this_task(pid_list, NULL, prev) && trace_ignore_this_task(pid_list, NULL, next))); } static void event_filter_pid_sched_switch_probe_post(void *data, bool preempt, struct task_struct *prev, struct task_struct *next) { struct trace_array *tr = data; struct trace_pid_list *no_pid_list; struct trace_pid_list *pid_list; pid_list = rcu_dereference_sched(tr->filtered_pids); no_pid_list = rcu_dereference_sched(tr->filtered_no_pids); this_cpu_write(tr->array_buffer.data->ignore_pid, trace_ignore_this_task(pid_list, no_pid_list, next)); } static void event_filter_pid_sched_wakeup_probe_pre(void *data, struct task_struct *task) { struct trace_array *tr = data; struct trace_pid_list *no_pid_list; struct trace_pid_list *pid_list; /* Nothing to do if we are already tracing */ if (!this_cpu_read(tr->array_buffer.data->ignore_pid)) return; pid_list = rcu_dereference_sched(tr->filtered_pids); no_pid_list = rcu_dereference_sched(tr->filtered_no_pids); this_cpu_write(tr->array_buffer.data->ignore_pid, trace_ignore_this_task(pid_list, no_pid_list, task)); } static void event_filter_pid_sched_wakeup_probe_post(void *data, struct task_struct *task) { struct trace_array *tr = data; struct trace_pid_list *no_pid_list; struct trace_pid_list *pid_list; /* Nothing to do if we are not tracing */ if (this_cpu_read(tr->array_buffer.data->ignore_pid)) return; pid_list = rcu_dereference_sched(tr->filtered_pids); no_pid_list = rcu_dereference_sched(tr->filtered_no_pids); /* Set tracing if current is enabled */ this_cpu_write(tr->array_buffer.data->ignore_pid, trace_ignore_this_task(pid_list, no_pid_list, current)); } static void unregister_pid_events(struct trace_array *tr) { unregister_trace_sched_switch(event_filter_pid_sched_switch_probe_pre, tr); unregister_trace_sched_switch(event_filter_pid_sched_switch_probe_post, tr); unregister_trace_sched_wakeup(event_filter_pid_sched_wakeup_probe_pre, tr); unregister_trace_sched_wakeup(event_filter_pid_sched_wakeup_probe_post, tr); unregister_trace_sched_wakeup_new(event_filter_pid_sched_wakeup_probe_pre, tr); unregister_trace_sched_wakeup_new(event_filter_pid_sched_wakeup_probe_post, tr); unregister_trace_sched_waking(event_filter_pid_sched_wakeup_probe_pre, tr); unregister_trace_sched_waking(event_filter_pid_sched_wakeup_probe_post, tr); } static void __ftrace_clear_event_pids(struct trace_array *tr, int type) { struct trace_pid_list *pid_list; struct trace_pid_list *no_pid_list; struct trace_event_file *file; int cpu; pid_list = rcu_dereference_protected(tr->filtered_pids, lockdep_is_held(&event_mutex)); no_pid_list = rcu_dereference_protected(tr->filtered_no_pids, lockdep_is_held(&event_mutex)); /* Make sure there's something to do */ if (!pid_type_enabled(type, pid_list, no_pid_list)) return; if (!still_need_pid_events(type, pid_list, no_pid_list)) { unregister_pid_events(tr); list_for_each_entry(file, &tr->events, list) { clear_bit(EVENT_FILE_FL_PID_FILTER_BIT, &file->flags); } for_each_possible_cpu(cpu) per_cpu_ptr(tr->array_buffer.data, cpu)->ignore_pid = false; } if (type & TRACE_PIDS) rcu_assign_pointer(tr->filtered_pids, NULL); if (type & TRACE_NO_PIDS) rcu_assign_pointer(tr->filtered_no_pids, NULL); /* Wait till all users are no longer using pid filtering */ tracepoint_synchronize_unregister(); if ((type & TRACE_PIDS) && pid_list) trace_pid_list_free(pid_list); if ((type & TRACE_NO_PIDS) && no_pid_list) trace_pid_list_free(no_pid_list); } static void ftrace_clear_event_pids(struct trace_array *tr, int type) { mutex_lock(&event_mutex); __ftrace_clear_event_pids(tr, type); mutex_unlock(&event_mutex); } static void __put_system(struct event_subsystem *system) { struct event_filter *filter = system->filter; WARN_ON_ONCE(system_refcount(system) == 0); if (system_refcount_dec(system)) return; list_del(&system->list); if (filter) { kfree(filter->filter_string); kfree(filter); } kfree_const(system->name); kfree(system); } static void __get_system(struct event_subsystem *system) { WARN_ON_ONCE(system_refcount(system) == 0); system_refcount_inc(system); } static void __get_system_dir(struct trace_subsystem_dir *dir) { WARN_ON_ONCE(dir->ref_count == 0); dir->ref_count++; __get_system(dir->subsystem); } static void __put_system_dir(struct trace_subsystem_dir *dir) { WARN_ON_ONCE(dir->ref_count == 0); /* If the subsystem is about to be freed, the dir must be too */ WARN_ON_ONCE(system_refcount(dir->subsystem) == 1 && dir->ref_count != 1); __put_system(dir->subsystem); if (!--dir->ref_count) kfree(dir); } static void put_system(struct trace_subsystem_dir *dir) { mutex_lock(&event_mutex); __put_system_dir(dir); mutex_unlock(&event_mutex); } static void remove_subsystem(struct trace_subsystem_dir *dir) { if (!dir) return; if (!--dir->nr_events) { tracefs_remove(dir->entry); list_del(&dir->list); __put_system_dir(dir); } } void event_file_get(struct trace_event_file *file) { atomic_inc(&file->ref); } void event_file_put(struct trace_event_file *file) { if (WARN_ON_ONCE(!atomic_read(&file->ref))) { if (file->flags & EVENT_FILE_FL_FREED) kmem_cache_free(file_cachep, file); return; } if (atomic_dec_and_test(&file->ref)) { /* Count should only go to zero when it is freed */ if (WARN_ON_ONCE(!(file->flags & EVENT_FILE_FL_FREED))) return; kmem_cache_free(file_cachep, file); } } static void remove_event_file_dir(struct trace_event_file *file) { struct dentry *dir = file->dir; tracefs_remove(dir); list_del(&file->list); remove_subsystem(file->system); free_event_filter(file->filter); file->flags |= EVENT_FILE_FL_FREED; event_file_put(file); } /* * __ftrace_set_clr_event(NULL, NULL, NULL, set) will set/unset all events. */ static int __ftrace_set_clr_event_nolock(struct trace_array *tr, const char *match, const char *sub, const char *event, int set) { struct trace_event_file *file; struct trace_event_call *call; const char *name; int ret = -EINVAL; int eret = 0; list_for_each_entry(file, &tr->events, list) { call = file->event_call; name = trace_event_name(call); if (!name || !call->class || !call->class->reg) continue; if (call->flags & TRACE_EVENT_FL_IGNORE_ENABLE) continue; if (match && strcmp(match, name) != 0 && strcmp(match, call->class->system) != 0) continue; if (sub && strcmp(sub, call->class->system) != 0) continue; if (event && strcmp(event, name) != 0) continue; ret = ftrace_event_enable_disable(file, set); /* * Save the first error and return that. Some events * may still have been enabled, but let the user * know that something went wrong. */ if (ret && !eret) eret = ret; ret = eret; } return ret; } static int __ftrace_set_clr_event(struct trace_array *tr, const char *match, const char *sub, const char *event, int set) { int ret; mutex_lock(&event_mutex); ret = __ftrace_set_clr_event_nolock(tr, match, sub, event, set); mutex_unlock(&event_mutex); return ret; } int ftrace_set_clr_event(struct trace_array *tr, char *buf, int set) { char *event = NULL, *sub = NULL, *match; int ret; if (!tr) return -ENOENT; /* * The buf format can be <subsystem>:<event-name> * *:<event-name> means any event by that name. * :<event-name> is the same. * * <subsystem>:* means all events in that subsystem * <subsystem>: means the same. * * <name> (no ':') means all events in a subsystem with * the name <name> or any event that matches <name> */ match = strsep(&buf, ":"); if (buf) { sub = match; event = buf; match = NULL; if (!strlen(sub) || strcmp(sub, "*") == 0) sub = NULL; if (!strlen(event) || strcmp(event, "*") == 0) event = NULL; } ret = __ftrace_set_clr_event(tr, match, sub, event, set); /* Put back the colon to allow this to be called again */ if (buf) *(buf - 1) = ':'; return ret; } /** * trace_set_clr_event - enable or disable an event * @system: system name to match (NULL for any system) * @event: event name to match (NULL for all events, within system) * @set: 1 to enable, 0 to disable * * This is a way for other parts of the kernel to enable or disable * event recording. * * Returns 0 on success, -EINVAL if the parameters do not match any * registered events. */ int trace_set_clr_event(const char *system, const char *event, int set) { struct trace_array *tr = top_trace_array(); if (!tr) return -ENODEV; return __ftrace_set_clr_event(tr, NULL, system, event, set); } EXPORT_SYMBOL_GPL(trace_set_clr_event); /** * trace_array_set_clr_event - enable or disable an event for a trace array. * @tr: concerned trace array. * @system: system name to match (NULL for any system) * @event: event name to match (NULL for all events, within system) * @enable: true to enable, false to disable * * This is a way for other parts of the kernel to enable or disable * event recording. * * Returns 0 on success, -EINVAL if the parameters do not match any * registered events. */ int trace_array_set_clr_event(struct trace_array *tr, const char *system, const char *event, bool enable) { int set; if (!tr) return -ENOENT; set = (enable == true) ? 1 : 0; return __ftrace_set_clr_event(tr, NULL, system, event, set); } EXPORT_SYMBOL_GPL(trace_array_set_clr_event); /* 128 should be much more than enough */ #define EVENT_BUF_SIZE 127 static ssize_t ftrace_event_write(struct file *file, const char __user *ubuf, size_t cnt, loff_t *ppos) { struct trace_parser parser; struct seq_file *m = file->private_data; struct trace_array *tr = m->private; ssize_t read, ret; if (!cnt) return 0; ret = tracing_update_buffers(); if (ret < 0) return ret; if (trace_parser_get_init(&parser, EVENT_BUF_SIZE + 1)) return -ENOMEM; read = trace_get_user(&parser, ubuf, cnt, ppos); if (read >= 0 && trace_parser_loaded((&parser))) { int set = 1; if (*parser.buffer == '!') set = 0; ret = ftrace_set_clr_event(tr, parser.buffer + !set, set); if (ret) goto out_put; } ret = read; out_put: trace_parser_put(&parser); return ret; } static void * t_next(struct seq_file *m, void *v, loff_t *pos) { struct trace_event_file *file = v; struct trace_event_call *call; struct trace_array *tr = m->private; (*pos)++; list_for_each_entry_continue(file, &tr->events, list) { call = file->event_call; /* * The ftrace subsystem is for showing formats only. * They can not be enabled or disabled via the event files. */ if (call->class && call->class->reg && !(call->flags & TRACE_EVENT_FL_IGNORE_ENABLE)) return file; } return NULL; } static void *t_start(struct seq_file *m, loff_t *pos) { struct trace_event_file *file; struct trace_array *tr = m->private; loff_t l; mutex_lock(&event_mutex); file = list_entry(&tr->events, struct trace_event_file, list); for (l = 0; l <= *pos; ) { file = t_next(m, file, &l); if (!file) break; } return file; } static void * s_next(struct seq_file *m, void *v, loff_t *pos) { struct trace_event_file *file = v; struct trace_array *tr = m->private; (*pos)++; list_for_each_entry_continue(file, &tr->events, list) { if (file->flags & EVENT_FILE_FL_ENABLED) return file; } return NULL; } static void *s_start(struct seq_file *m, loff_t *pos) { struct trace_event_file *file; struct trace_array *tr = m->private; loff_t l; mutex_lock(&event_mutex); file = list_entry(&tr->events, struct trace_event_file, list); for (l = 0; l <= *pos; ) { file = s_next(m, file, &l); if (!file) break; } return file; } static int t_show(struct seq_file *m, void *v) { struct trace_event_file *file = v; struct trace_event_call *call = file->event_call; if (strcmp(call->class->system, TRACE_SYSTEM) != 0) seq_printf(m, "%s:", call->class->system); seq_printf(m, "%s\n", trace_event_name(call)); return 0; } static void t_stop(struct seq_file *m, void *p) { mutex_unlock(&event_mutex); } static void * __next(struct seq_file *m, void *v, loff_t *pos, int type) { struct trace_array *tr = m->private; struct trace_pid_list *pid_list; if (type == TRACE_PIDS) pid_list = rcu_dereference_sched(tr->filtered_pids); else pid_list = rcu_dereference_sched(tr->filtered_no_pids); return trace_pid_next(pid_list, v, pos); } static void * p_next(struct seq_file *m, void *v, loff_t *pos) { return __next(m, v, pos, TRACE_PIDS); } static void * np_next(struct seq_file *m, void *v, loff_t *pos) { return __next(m, v, pos, TRACE_NO_PIDS); } static void *__start(struct seq_file *m, loff_t *pos, int type) __acquires(RCU) { struct trace_pid_list *pid_list; struct trace_array *tr = m->private; /* * Grab the mutex, to keep calls to p_next() having the same * tr->filtered_pids as p_start() has. * If we just passed the tr->filtered_pids around, then RCU would * have been enough, but doing that makes things more complex. */ mutex_lock(&event_mutex); rcu_read_lock_sched(); if (type == TRACE_PIDS) pid_list = rcu_dereference_sched(tr->filtered_pids); else pid_list = rcu_dereference_sched(tr->filtered_no_pids); if (!pid_list) return NULL; return trace_pid_start(pid_list, pos); } static void *p_start(struct seq_file *m, loff_t *pos) __acquires(RCU) { return __start(m, pos, TRACE_PIDS); } static void *np_start(struct seq_file *m, loff_t *pos) __acquires(RCU) { return __start(m, pos, TRACE_NO_PIDS); } static void p_stop(struct seq_file *m, void *p) __releases(RCU) { rcu_read_unlock_sched(); mutex_unlock(&event_mutex); } static ssize_t event_enable_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { struct trace_event_file *file; unsigned long flags; char buf[4] = "0"; mutex_lock(&event_mutex); file = event_file_data(filp); if (likely(file)) flags = file->flags; mutex_unlock(&event_mutex); if (!file || flags & EVENT_FILE_FL_FREED) return -ENODEV; if (flags & EVENT_FILE_FL_ENABLED && !(flags & EVENT_FILE_FL_SOFT_DISABLED)) strcpy(buf, "1"); if (flags & EVENT_FILE_FL_SOFT_DISABLED || flags & EVENT_FILE_FL_SOFT_MODE) strcat(buf, "*"); strcat(buf, "\n"); return simple_read_from_buffer(ubuf, cnt, ppos, buf, strlen(buf)); } static ssize_t event_enable_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { struct trace_event_file *file; unsigned long val; int ret; ret = kstrtoul_from_user(ubuf, cnt, 10, &val); if (ret) return ret; ret = tracing_update_buffers(); if (ret < 0) return ret; switch (val) { case 0: case 1: ret = -ENODEV; mutex_lock(&event_mutex); file = event_file_data(filp); if (likely(file && !(file->flags & EVENT_FILE_FL_FREED))) ret = ftrace_event_enable_disable(file, val); mutex_unlock(&event_mutex); break; default: return -EINVAL; } *ppos += cnt; return ret ? ret : cnt; } static ssize_t system_enable_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { const char set_to_char[4] = { '?', '0', '1', 'X' }; struct trace_subsystem_dir *dir = filp->private_data; struct event_subsystem *system = dir->subsystem; struct trace_event_call *call; struct trace_event_file *file; struct trace_array *tr = dir->tr; char buf[2]; int set = 0; int ret; mutex_lock(&event_mutex); list_for_each_entry(file, &tr->events, list) { call = file->event_call; if ((call->flags & TRACE_EVENT_FL_IGNORE_ENABLE) || !trace_event_name(call) || !call->class || !call->class->reg) continue; if (system && strcmp(call->class->system, system->name) != 0) continue; /* * We need to find out if all the events are set * or if all events or cleared, or if we have * a mixture. */ set |= (1 << !!(file->flags & EVENT_FILE_FL_ENABLED)); /* * If we have a mixture, no need to look further. */ if (set == 3) break; } mutex_unlock(&event_mutex); buf[0] = set_to_char[set]; buf[1] = '\n'; ret = simple_read_from_buffer(ubuf, cnt, ppos, buf, 2); return ret; } static ssize_t system_enable_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { struct trace_subsystem_dir *dir = filp->private_data; struct event_subsystem *system = dir->subsystem; const char *name = NULL; unsigned long val; ssize_t ret; ret = kstrtoul_from_user(ubuf, cnt, 10, &val); if (ret) return ret; ret = tracing_update_buffers(); if (ret < 0) return ret; if (val != 0 && val != 1) return -EINVAL; /* * Opening of "enable" adds a ref count to system, * so the name is safe to use. */ if (system) name = system->name; ret = __ftrace_set_clr_event(dir->tr, NULL, name, NULL, val); if (ret) goto out; ret = cnt; out: *ppos += cnt; return ret; } enum { FORMAT_HEADER = 1, FORMAT_FIELD_SEPERATOR = 2, FORMAT_PRINTFMT = 3, }; static void *f_next(struct seq_file *m, void *v, loff_t *pos) { struct trace_event_call *call = event_file_data(m->private); struct list_head *common_head = &ftrace_common_fields; struct list_head *head = trace_get_fields(call); struct list_head *node = v; (*pos)++; switch ((unsigned long)v) { case FORMAT_HEADER: node = common_head; break; case FORMAT_FIELD_SEPERATOR: node = head; break; case FORMAT_PRINTFMT: /* all done */ return NULL; } node = node->prev; if (node == common_head) return (void *)FORMAT_FIELD_SEPERATOR; else if (node == head) return (void *)FORMAT_PRINTFMT; else return node; } static int f_show(struct seq_file *m, void *v) { struct trace_event_call *call = event_file_data(m->private); struct ftrace_event_field *field; const char *array_descriptor; switch ((unsigned long)v) { case FORMAT_HEADER: seq_printf(m, "name: %s\n", trace_event_name(call)); seq_printf(m, "ID: %d\n", call->event.type); seq_puts(m, "format:\n"); return 0; case FORMAT_FIELD_SEPERATOR: seq_putc(m, '\n'); return 0; case FORMAT_PRINTFMT: seq_printf(m, "\nprint fmt: %s\n", call->print_fmt); return 0; } field = list_entry(v, struct ftrace_event_field, link); /* * Smartly shows the array type(except dynamic array). * Normal: * field:TYPE VAR * If TYPE := TYPE[LEN], it is shown: * field:TYPE VAR[LEN] */ array_descriptor = strchr(field->type, '['); if (str_has_prefix(field->type, "__data_loc")) array_descriptor = NULL; if (!array_descriptor) seq_printf(m, "\tfield:%s %s;\toffset:%u;\tsize:%u;\tsigned:%d;\n", field->type, field->name, field->offset, field->size, !!field->is_signed); else seq_printf(m, "\tfield:%.*s %s%s;\toffset:%u;\tsize:%u;\tsigned:%d;\n", (int)(array_descriptor - field->type), field->type, field->name, array_descriptor, field->offset, field->size, !!field->is_signed); return 0; } static void *f_start(struct seq_file *m, loff_t *pos) { void *p = (void *)FORMAT_HEADER; loff_t l = 0; /* ->stop() is called even if ->start() fails */ mutex_lock(&event_mutex); if (!event_file_data(m->private)) return ERR_PTR(-ENODEV); while (l < *pos && p) p = f_next(m, p, &l); return p; } static void f_stop(struct seq_file *m, void *p) { mutex_unlock(&event_mutex); } static const struct seq_operations trace_format_seq_ops = { .start = f_start, .next = f_next, .stop = f_stop, .show = f_show, }; static int trace_format_open(struct inode *inode, struct file *file) { struct seq_file *m; int ret; /* Do we want to hide event format files on tracefs lockdown? */ ret = seq_open(file, &trace_format_seq_ops); if (ret < 0) return ret; m = file->private_data; m->private = file; return 0; } #ifdef CONFIG_PERF_EVENTS static ssize_t event_id_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { int id = (long)event_file_data(filp); char buf[32]; int len; if (unlikely(!id)) return -ENODEV; len = sprintf(buf, "%d\n", id); return simple_read_from_buffer(ubuf, cnt, ppos, buf, len); } #endif static ssize_t event_filter_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { struct trace_event_file *file; struct trace_seq *s; int r = -ENODEV; if (*ppos) return 0; s = kmalloc(sizeof(*s), GFP_KERNEL); if (!s) return -ENOMEM; trace_seq_init(s); mutex_lock(&event_mutex); file = event_file_data(filp); if (file && !(file->flags & EVENT_FILE_FL_FREED)) print_event_filter(file, s); mutex_unlock(&event_mutex); if (file) r = simple_read_from_buffer(ubuf, cnt, ppos, s->buffer, trace_seq_used(s)); kfree(s); return r; } static ssize_t event_filter_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { struct trace_event_file *file; char *buf; int err = -ENODEV; if (cnt >= PAGE_SIZE) return -EINVAL; buf = memdup_user_nul(ubuf, cnt); if (IS_ERR(buf)) return PTR_ERR(buf); mutex_lock(&event_mutex); file = event_file_data(filp); if (file) err = apply_event_filter(file, buf); mutex_unlock(&event_mutex); kfree(buf); if (err < 0) return err; *ppos += cnt; return cnt; } static LIST_HEAD(event_subsystems); static int subsystem_open(struct inode *inode, struct file *filp) { struct event_subsystem *system = NULL; struct trace_subsystem_dir *dir = NULL; /* Initialize for gcc */ struct trace_array *tr; int ret; if (tracing_is_disabled()) return -ENODEV; /* Make sure the system still exists */ mutex_lock(&event_mutex); mutex_lock(&trace_types_lock); list_for_each_entry(tr, &ftrace_trace_arrays, list) { list_for_each_entry(dir, &tr->systems, list) { if (dir == inode->i_private) { /* Don't open systems with no events */ if (dir->nr_events) { __get_system_dir(dir); system = dir->subsystem; } goto exit_loop; } } } exit_loop: mutex_unlock(&trace_types_lock); mutex_unlock(&event_mutex); if (!system) return -ENODEV; /* Some versions of gcc think dir can be uninitialized here */ WARN_ON(!dir); /* Still need to increment the ref count of the system */ if (trace_array_get(tr) < 0) { put_system(dir); return -ENODEV; } ret = tracing_open_generic(inode, filp); if (ret < 0) { trace_array_put(tr); put_system(dir); } return ret; } static int system_tr_open(struct inode *inode, struct file *filp) { struct trace_subsystem_dir *dir; struct trace_array *tr = inode->i_private; int ret; /* Make a temporary dir that has no system but points to tr */ dir = kzalloc(sizeof(*dir), GFP_KERNEL); if (!dir) return -ENOMEM; ret = tracing_open_generic_tr(inode, filp); if (ret < 0) { kfree(dir); return ret; } dir->tr = tr; filp->private_data = dir; return 0; } static int subsystem_release(struct inode *inode, struct file *file) { struct trace_subsystem_dir *dir = file->private_data; trace_array_put(dir->tr); /* * If dir->subsystem is NULL, then this is a temporary * descriptor that was made for a trace_array to enable * all subsystems. */ if (dir->subsystem) put_system(dir); else kfree(dir); return 0; } static ssize_t subsystem_filter_read(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { struct trace_subsystem_dir *dir = filp->private_data; struct event_subsystem *system = dir->subsystem; struct trace_seq *s; int r; if (*ppos) return 0; s = kmalloc(sizeof(*s), GFP_KERNEL); if (!s) return -ENOMEM; trace_seq_init(s); print_subsystem_event_filter(system, s); r = simple_read_from_buffer(ubuf, cnt, ppos, s->buffer, trace_seq_used(s)); kfree(s); return r; } static ssize_t subsystem_filter_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { struct trace_subsystem_dir *dir = filp->private_data; char *buf; int err; if (cnt >= PAGE_SIZE) return -EINVAL; buf = memdup_user_nul(ubuf, cnt); if (IS_ERR(buf)) return PTR_ERR(buf); err = apply_subsystem_event_filter(dir, buf); kfree(buf); if (err < 0) return err; *ppos += cnt; return cnt; } static ssize_t show_header(struct file *filp, char __user *ubuf, size_t cnt, loff_t *ppos) { int (*func)(struct trace_seq *s) = filp->private_data; struct trace_seq *s; int r; if (*ppos) return 0; s = kmalloc(sizeof(*s), GFP_KERNEL); if (!s) return -ENOMEM; trace_seq_init(s); func(s); r = simple_read_from_buffer(ubuf, cnt, ppos, s->buffer, trace_seq_used(s)); kfree(s); return r; } static void ignore_task_cpu(void *data) { struct trace_array *tr = data; struct trace_pid_list *pid_list; struct trace_pid_list *no_pid_list; /* * This function is called by on_each_cpu() while the * event_mutex is held. */ pid_list = rcu_dereference_protected(tr->filtered_pids, mutex_is_locked(&event_mutex)); no_pid_list = rcu_dereference_protected(tr->filtered_no_pids, mutex_is_locked(&event_mutex)); this_cpu_write(tr->array_buffer.data->ignore_pid, trace_ignore_this_task(pid_list, no_pid_list, current)); } static void register_pid_events(struct trace_array *tr) { /* * Register a probe that is called before all other probes * to set ignore_pid if next or prev do not match. * Register a probe this is called after all other probes * to only keep ignore_pid set if next pid matches. */ register_trace_prio_sched_switch(event_filter_pid_sched_switch_probe_pre, tr, INT_MAX); register_trace_prio_sched_switch(event_filter_pid_sched_switch_probe_post, tr, 0); register_trace_prio_sched_wakeup(event_filter_pid_sched_wakeup_probe_pre, tr, INT_MAX); register_trace_prio_sched_wakeup(event_filter_pid_sched_wakeup_probe_post, tr, 0); register_trace_prio_sched_wakeup_new(event_filter_pid_sched_wakeup_probe_pre, tr, INT_MAX); register_trace_prio_sched_wakeup_new(event_filter_pid_sched_wakeup_probe_post, tr, 0); register_trace_prio_sched_waking(event_filter_pid_sched_wakeup_probe_pre, tr, INT_MAX); register_trace_prio_sched_waking(event_filter_pid_sched_wakeup_probe_post, tr, 0); } static ssize_t event_pid_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos, int type) { struct seq_file *m = filp->private_data; struct trace_array *tr = m->private; struct trace_pid_list *filtered_pids = NULL; struct trace_pid_list *other_pids = NULL; struct trace_pid_list *pid_list; struct trace_event_file *file; ssize_t ret; if (!cnt) return 0; ret = tracing_update_buffers(); if (ret < 0) return ret; mutex_lock(&event_mutex); if (type == TRACE_PIDS) { filtered_pids = rcu_dereference_protected(tr->filtered_pids, lockdep_is_held(&event_mutex)); other_pids = rcu_dereference_protected(tr->filtered_no_pids, lockdep_is_held(&event_mutex)); } else { filtered_pids = rcu_dereference_protected(tr->filtered_no_pids, lockdep_is_held(&event_mutex)); other_pids = rcu_dereference_protected(tr->filtered_pids, lockdep_is_held(&event_mutex)); } ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt); if (ret < 0) goto out; if (type == TRACE_PIDS) rcu_assign_pointer(tr->filtered_pids, pid_list); else rcu_assign_pointer(tr->filtered_no_pids, pid_list); list_for_each_entry(file, &tr->events, list) { set_bit(EVENT_FILE_FL_PID_FILTER_BIT, &file->flags); } if (filtered_pids) { tracepoint_synchronize_unregister(); trace_pid_list_free(filtered_pids); } else if (pid_list && !other_pids) { register_pid_events(tr); } /* * Ignoring of pids is done at task switch. But we have to * check for those tasks that are currently running. * Always do this in case a pid was appended or removed. */ on_each_cpu(ignore_task_cpu, tr, 1); out: mutex_unlock(&event_mutex); if (ret > 0) *ppos += ret; return ret; } static ssize_t ftrace_event_pid_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { return event_pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS); } static ssize_t ftrace_event_npid_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { return event_pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS); } static int ftrace_event_avail_open(struct inode *inode, struct file *file); static int ftrace_event_set_open(struct inode *inode, struct file *file); static int ftrace_event_set_pid_open(struct inode *inode, struct file *file); static int ftrace_event_set_npid_open(struct inode *inode, struct file *file); static int ftrace_event_release(struct inode *inode, struct file *file); static const struct seq_operations show_event_seq_ops = { .start = t_start, .next = t_next, .show = t_show, .stop = t_stop, }; static const struct seq_operations show_set_event_seq_ops = { .start = s_start, .next = s_next, .show = t_show, .stop = t_stop, }; static const struct seq_operations show_set_pid_seq_ops = { .start = p_start, .next = p_next, .show = trace_pid_show, .stop = p_stop, }; static const struct seq_operations show_set_no_pid_seq_ops = { .start = np_start, .next = np_next, .show = trace_pid_show, .stop = p_stop, }; static const struct file_operations ftrace_avail_fops = { .open = ftrace_event_avail_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static const struct file_operations ftrace_set_event_fops = { .open = ftrace_event_set_open, .read = seq_read, .write = ftrace_event_write, .llseek = seq_lseek, .release = ftrace_event_release, }; static const struct file_operations ftrace_set_event_pid_fops = { .open = ftrace_event_set_pid_open, .read = seq_read, .write = ftrace_event_pid_write, .llseek = seq_lseek, .release = ftrace_event_release, }; static const struct file_operations ftrace_set_event_notrace_pid_fops = { .open = ftrace_event_set_npid_open, .read = seq_read, .write = ftrace_event_npid_write, .llseek = seq_lseek, .release = ftrace_event_release, }; static const struct file_operations ftrace_enable_fops = { .open = tracing_open_file_tr, .read = event_enable_read, .write = event_enable_write, .release = tracing_release_file_tr, .llseek = default_llseek, }; static const struct file_operations ftrace_event_format_fops = { .open = trace_format_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; #ifdef CONFIG_PERF_EVENTS static const struct file_operations ftrace_event_id_fops = { .read = event_id_read, .llseek = default_llseek, }; #endif static const struct file_operations ftrace_event_filter_fops = { .open = tracing_open_file_tr, .read = event_filter_read, .write = event_filter_write, .release = tracing_release_file_tr, .llseek = default_llseek, }; static const struct file_operations ftrace_subsystem_filter_fops = { .open = subsystem_open, .read = subsystem_filter_read, .write = subsystem_filter_write, .llseek = default_llseek, .release = subsystem_release, }; static const struct file_operations ftrace_system_enable_fops = { .open = subsystem_open, .read = system_enable_read, .write = system_enable_write, .llseek = default_llseek, .release = subsystem_release, }; static const struct file_operations ftrace_tr_enable_fops = { .open = system_tr_open, .read = system_enable_read, .write = system_enable_write, .llseek = default_llseek, .release = subsystem_release, }; static const struct file_operations ftrace_show_header_fops = { .open = tracing_open_generic, .read = show_header, .llseek = default_llseek, }; static int ftrace_event_open(struct inode *inode, struct file *file, const struct seq_operations *seq_ops) { struct seq_file *m; int ret; ret = security_locked_down(LOCKDOWN_TRACEFS); if (ret) return ret; ret = seq_open(file, seq_ops); if (ret < 0) return ret; m = file->private_data; /* copy tr over to seq ops */ m->private = inode->i_private; return ret; } static int ftrace_event_release(struct inode *inode, struct file *file) { struct trace_array *tr = inode->i_private; trace_array_put(tr); return seq_release(inode, file); } static int ftrace_event_avail_open(struct inode *inode, struct file *file) { const struct seq_operations *seq_ops = &show_event_seq_ops; /* Checks for tracefs lockdown */ return ftrace_event_open(inode, file, seq_ops); } static int ftrace_event_set_open(struct inode *inode, struct file *file) { const struct seq_operations *seq_ops = &show_set_event_seq_ops; struct trace_array *tr = inode->i_private; int ret; ret = tracing_check_open_get_tr(tr); if (ret) return ret; if ((file->f_mode & FMODE_WRITE) && (file->f_flags & O_TRUNC)) ftrace_clear_events(tr); ret = ftrace_event_open(inode, file, seq_ops); if (ret < 0) trace_array_put(tr); return ret; } static int ftrace_event_set_pid_open(struct inode *inode, struct file *file) { const struct seq_operations *seq_ops = &show_set_pid_seq_ops; struct trace_array *tr = inode->i_private; int ret; ret = tracing_check_open_get_tr(tr); if (ret) return ret; if ((file->f_mode & FMODE_WRITE) && (file->f_flags & O_TRUNC)) ftrace_clear_event_pids(tr, TRACE_PIDS); ret = ftrace_event_open(inode, file, seq_ops); if (ret < 0) trace_array_put(tr); return ret; } static int ftrace_event_set_npid_open(struct inode *inode, struct file *file) { const struct seq_operations *seq_ops = &show_set_no_pid_seq_ops; struct trace_array *tr = inode->i_private; int ret; ret = tracing_check_open_get_tr(tr); if (ret) return ret; if ((file->f_mode & FMODE_WRITE) && (file->f_flags & O_TRUNC)) ftrace_clear_event_pids(tr, TRACE_NO_PIDS); ret = ftrace_event_open(inode, file, seq_ops); if (ret < 0) trace_array_put(tr); return ret; } static struct event_subsystem * create_new_subsystem(const char *name) { struct event_subsystem *system; /* need to create new entry */ system = kmalloc(sizeof(*system), GFP_KERNEL); if (!system) return NULL; system->ref_count = 1; /* Only allocate if dynamic (kprobes and modules) */ system->name = kstrdup_const(name, GFP_KERNEL); if (!system->name) goto out_free; system->filter = NULL; system->filter = kzalloc(sizeof(struct event_filter), GFP_KERNEL); if (!system->filter) goto out_free; list_add(&system->list, &event_subsystems); return system; out_free: kfree_const(system->name); kfree(system); return NULL; } static struct dentry * event_subsystem_dir(struct trace_array *tr, const char *name, struct trace_event_file *file, struct dentry *parent) { struct trace_subsystem_dir *dir; struct event_subsystem *system; struct dentry *entry; /* First see if we did not already create this dir */ list_for_each_entry(dir, &tr->systems, list) { system = dir->subsystem; if (strcmp(system->name, name) == 0) { dir->nr_events++; file->system = dir; return dir->entry; } } /* Now see if the system itself exists. */ list_for_each_entry(system, &event_subsystems, list) { if (strcmp(system->name, name) == 0) break; } /* Reset system variable when not found */ if (&system->list == &event_subsystems) system = NULL; dir = kmalloc(sizeof(*dir), GFP_KERNEL); if (!dir) goto out_fail; if (!system) { system = create_new_subsystem(name); if (!system) goto out_free; } else __get_system(system); dir->entry = tracefs_create_dir(name, parent); if (!dir->entry) { pr_warn("Failed to create system directory %s\n", name); __put_system(system); goto out_free; } dir->tr = tr; dir->ref_count = 1; dir->nr_events = 1; dir->subsystem = system; file->system = dir; /* the ftrace system is special, do not create enable or filter files */ if (strcmp(name, "ftrace") != 0) { entry = tracefs_create_file("filter", TRACE_MODE_WRITE, dir->entry, dir, &ftrace_subsystem_filter_fops); if (!entry) { kfree(system->filter); system->filter = NULL; pr_warn("Could not create tracefs '%s/filter' entry\n", name); } trace_create_file("enable", TRACE_MODE_WRITE, dir->entry, dir, &ftrace_system_enable_fops); } list_add(&dir->list, &tr->systems); return dir->entry; out_free: kfree(dir); out_fail: /* Only print this message if failed on memory allocation */ if (!dir || !system) pr_warn("No memory to create event subsystem %s\n", name); return NULL; } static int event_define_fields(struct trace_event_call *call) { struct list_head *head; int ret = 0; /* * Other events may have the same class. Only update * the fields if they are not already defined. */ head = trace_get_fields(call); if (list_empty(head)) { struct trace_event_fields *field = call->class->fields_array; unsigned int offset = sizeof(struct trace_entry); for (; field->type; field++) { if (field->type == TRACE_FUNCTION_TYPE) { field->define_fields(call); break; } offset = ALIGN(offset, field->align); ret = trace_define_field(call, field->type, field->name, offset, field->size, field->is_signed, field->filter_type); if (WARN_ON_ONCE(ret)) { pr_err("error code is %d\n", ret); break; } offset += field->size; } } return ret; } static int event_create_dir(struct dentry *parent, struct trace_event_file *file) { struct trace_event_call *call = file->event_call; struct trace_array *tr = file->tr; struct dentry *d_events; const char *name; int ret; /* * If the trace point header did not define TRACE_SYSTEM * then the system would be called "TRACE_SYSTEM". */ if (strcmp(call->class->system, TRACE_SYSTEM) != 0) { d_events = event_subsystem_dir(tr, call->class->system, file, parent); if (!d_events) return -ENOMEM; } else d_events = parent; name = trace_event_name(call); file->dir = tracefs_create_dir(name, d_events); if (!file->dir) { pr_warn("Could not create tracefs '%s' directory\n", name); return -1; } if (call->class->reg && !(call->flags & TRACE_EVENT_FL_IGNORE_ENABLE)) trace_create_file("enable", TRACE_MODE_WRITE, file->dir, file, &ftrace_enable_fops); #ifdef CONFIG_PERF_EVENTS if (call->event.type && call->class->reg) trace_create_file("id", TRACE_MODE_READ, file->dir, (void *)(long)call->event.type, &ftrace_event_id_fops); #endif ret = event_define_fields(call); if (ret < 0) { pr_warn("Could not initialize trace point events/%s\n", name); return ret; } /* * Only event directories that can be enabled should have * triggers or filters. */ if (!(call->flags & TRACE_EVENT_FL_IGNORE_ENABLE)) { trace_create_file("filter", TRACE_MODE_WRITE, file->dir, file, &ftrace_event_filter_fops); trace_create_file("trigger", TRACE_MODE_WRITE, file->dir, file, &event_trigger_fops); } #ifdef CONFIG_HIST_TRIGGERS trace_create_file("hist", TRACE_MODE_READ, file->dir, file, &event_hist_fops); #endif #ifdef CONFIG_HIST_TRIGGERS_DEBUG trace_create_file("hist_debug", TRACE_MODE_READ, file->dir, file, &event_hist_debug_fops); #endif trace_create_file("format", TRACE_MODE_READ, file->dir, call, &ftrace_event_format_fops); #ifdef CONFIG_TRACE_EVENT_INJECT if (call->event.type && call->class->reg) trace_create_file("inject", 0200, file->dir, file, &event_inject_fops); #endif return 0; } static void remove_event_from_tracers(struct trace_event_call *call) { struct trace_event_file *file; struct trace_array *tr; do_for_each_event_file_safe(tr, file) { if (file->event_call != call) continue; remove_event_file_dir(file); /* * The do_for_each_event_file_safe() is * a double loop. After finding the call for this * trace_array, we use break to jump to the next * trace_array. */ break; } while_for_each_event_file(); } static void event_remove(struct trace_event_call *call) { struct trace_array *tr; struct trace_event_file *file; do_for_each_event_file(tr, file) { if (file->event_call != call) continue; if (file->flags & EVENT_FILE_FL_WAS_ENABLED) tr->clear_trace = true; ftrace_event_enable_disable(file, 0); /* * The do_for_each_event_file() is * a double loop. After finding the call for this * trace_array, we use break to jump to the next * trace_array. */ break; } while_for_each_event_file(); if (call->event.funcs) __unregister_trace_event(&call->event); remove_event_from_tracers(call); list_del(&call->list); } static int event_init(struct trace_event_call *call) { int ret = 0; const char *name; name = trace_event_name(call); if (WARN_ON(!name)) return -EINVAL; if (call->class->raw_init) { ret = call->class->raw_init(call); if (ret < 0 && ret != -ENOSYS) pr_warn("Could not initialize trace events/%s\n", name); } return ret; } static int __register_event(struct trace_event_call *call, struct module *mod) { int ret; ret = event_init(call); if (ret < 0) return ret; list_add(&call->list, &ftrace_events); if (call->flags & TRACE_EVENT_FL_DYNAMIC) atomic_set(&call->refcnt, 0); else call->module = mod; return 0; } static char *eval_replace(char *ptr, struct trace_eval_map *map, int len) { int rlen; int elen; /* Find the length of the eval value as a string */ elen = snprintf(ptr, 0, "%ld", map->eval_value); /* Make sure there's enough room to replace the string with the value */ if (len < elen) return NULL; snprintf(ptr, elen + 1, "%ld", map->eval_value); /* Get the rest of the string of ptr */ rlen = strlen(ptr + len); memmove(ptr + elen, ptr + len, rlen); /* Make sure we end the new string */ ptr[elen + rlen] = 0; return ptr + elen; } static void update_event_printk(struct trace_event_call *call, struct trace_eval_map *map) { char *ptr; int quote = 0; int len = strlen(map->eval_string); for (ptr = call->print_fmt; *ptr; ptr++) { if (*ptr == '\\') { ptr++; /* paranoid */ if (!*ptr) break; continue; } if (*ptr == '"') { quote ^= 1; continue; } if (quote) continue; if (isdigit(*ptr)) { /* skip numbers */ do { ptr++; /* Check for alpha chars like ULL */ } while (isalnum(*ptr)); if (!*ptr) break; /* * A number must have some kind of delimiter after * it, and we can ignore that too. */ continue; } if (isalpha(*ptr) || *ptr == '_') { if (strncmp(map->eval_string, ptr, len) == 0 && !isalnum(ptr[len]) && ptr[len] != '_') { ptr = eval_replace(ptr, map, len); /* enum/sizeof string smaller than value */ if (WARN_ON_ONCE(!ptr)) return; /* * No need to decrement here, as eval_replace() * returns the pointer to the character passed * the eval, and two evals can not be placed * back to back without something in between. * We can skip that something in between. */ continue; } skip_more: do { ptr++; } while (isalnum(*ptr) || *ptr == '_'); if (!*ptr) break; /* * If what comes after this variable is a '.' or * '->' then we can continue to ignore that string. */ if (*ptr == '.' || (ptr[0] == '-' && ptr[1] == '>')) { ptr += *ptr == '.' ? 1 : 2; if (!*ptr) break; goto skip_more; } /* * Once again, we can skip the delimiter that came * after the string. */ continue; } } } static void add_str_to_module(struct module *module, char *str) { struct module_string *modstr; modstr = kmalloc(sizeof(*modstr), GFP_KERNEL); /* * If we failed to allocate memory here, then we'll just * let the str memory leak when the module is removed. * If this fails to allocate, there's worse problems than * a leaked string on module removal. */ if (WARN_ON_ONCE(!modstr)) return; modstr->module = module; modstr->str = str; list_add(&modstr->next, &module_strings); } static void update_event_fields(struct trace_event_call *call, struct trace_eval_map *map) { struct ftrace_event_field *field; struct list_head *head; char *ptr; char *str; int len = strlen(map->eval_string); /* Dynamic events should never have field maps */ if (WARN_ON_ONCE(call->flags & TRACE_EVENT_FL_DYNAMIC)) return; head = trace_get_fields(call); list_for_each_entry(field, head, link) { ptr = strchr(field->type, '['); if (!ptr) continue; ptr++; if (!isalpha(*ptr) && *ptr != '_') continue; if (strncmp(map->eval_string, ptr, len) != 0) continue; str = kstrdup(field->type, GFP_KERNEL); if (WARN_ON_ONCE(!str)) return; ptr = str + (ptr - field->type); ptr = eval_replace(ptr, map, len); /* enum/sizeof string smaller than value */ if (WARN_ON_ONCE(!ptr)) { kfree(str); continue; } /* * If the event is part of a module, then we need to free the string * when the module is removed. Otherwise, it will stay allocated * until a reboot. */ if (call->module) add_str_to_module(call->module, str); field->type = str; } } void trace_event_eval_update(struct trace_eval_map **map, int len) { struct trace_event_call *call, *p; const char *last_system = NULL; bool first = false; int last_i; int i; down_write(&trace_event_sem); list_for_each_entry_safe(call, p, &ftrace_events, list) { /* events are usually grouped together with systems */ if (!last_system || call->class->system != last_system) { first = true; last_i = 0; last_system = call->class->system; } /* * Since calls are grouped by systems, the likelihood that the * next call in the iteration belongs to the same system as the * previous call is high. As an optimization, we skip searching * for a map[] that matches the call's system if the last call * was from the same system. That's what last_i is for. If the * call has the same system as the previous call, then last_i * will be the index of the first map[] that has a matching * system. */ for (i = last_i; i < len; i++) { if (call->class->system == map[i]->system) { /* Save the first system if need be */ if (first) { last_i = i; first = false; } update_event_printk(call, map[i]); update_event_fields(call, map[i]); } } cond_resched(); } up_write(&trace_event_sem); } static struct trace_event_file * trace_create_new_event(struct trace_event_call *call, struct trace_array *tr) { struct trace_pid_list *no_pid_list; struct trace_pid_list *pid_list; struct trace_event_file *file; file = kmem_cache_alloc(file_cachep, GFP_TRACE); if (!file) return NULL; pid_list = rcu_dereference_protected(tr->filtered_pids, lockdep_is_held(&event_mutex)); no_pid_list = rcu_dereference_protected(tr->filtered_no_pids, lockdep_is_held(&event_mutex)); if (pid_list || no_pid_list) file->flags |= EVENT_FILE_FL_PID_FILTER; file->event_call = call; file->tr = tr; atomic_set(&file->sm_ref, 0); atomic_set(&file->tm_ref, 0); INIT_LIST_HEAD(&file->triggers); list_add(&file->list, &tr->events); event_file_get(file); return file; } /* Add an event to a trace directory */ static int __trace_add_new_event(struct trace_event_call *call, struct trace_array *tr) { struct trace_event_file *file; file = trace_create_new_event(call, tr); if (!file) return -ENOMEM; if (eventdir_initialized) return event_create_dir(tr->event_dir, file); else return event_define_fields(call); } /* * Just create a descriptor for early init. A descriptor is required * for enabling events at boot. We want to enable events before * the filesystem is initialized. */ static int __trace_early_add_new_event(struct trace_event_call *call, struct trace_array *tr) { struct trace_event_file *file; file = trace_create_new_event(call, tr); if (!file) return -ENOMEM; return event_define_fields(call); } struct ftrace_module_file_ops; static void __add_event_to_tracers(struct trace_event_call *call); /* Add an additional event_call dynamically */ int trace_add_event_call(struct trace_event_call *call) { int ret; lockdep_assert_held(&event_mutex); mutex_lock(&trace_types_lock); ret = __register_event(call, NULL); if (ret >= 0) __add_event_to_tracers(call); mutex_unlock(&trace_types_lock); return ret; } /* * Must be called under locking of trace_types_lock, event_mutex and * trace_event_sem. */ static void __trace_remove_event_call(struct trace_event_call *call) { event_remove(call); trace_destroy_fields(call); free_event_filter(call->filter); call->filter = NULL; } static int probe_remove_event_call(struct trace_event_call *call) { struct trace_array *tr; struct trace_event_file *file; #ifdef CONFIG_PERF_EVENTS if (call->perf_refcount) return -EBUSY; #endif do_for_each_event_file(tr, file) { if (file->event_call != call) continue; /* * We can't rely on ftrace_event_enable_disable(enable => 0) * we are going to do, EVENT_FILE_FL_SOFT_MODE can suppress * TRACE_REG_UNREGISTER. */ if (file->flags & EVENT_FILE_FL_ENABLED) goto busy; if (file->flags & EVENT_FILE_FL_WAS_ENABLED) tr->clear_trace = true; /* * The do_for_each_event_file_safe() is * a double loop. After finding the call for this * trace_array, we use break to jump to the next * trace_array. */ break; } while_for_each_event_file(); __trace_remove_event_call(call); return 0; busy: /* No need to clear the trace now */ list_for_each_entry(tr, &ftrace_trace_arrays, list) { tr->clear_trace = false; } return -EBUSY; } /* Remove an event_call */ int trace_remove_event_call(struct trace_event_call *call) { int ret; lockdep_assert_held(&event_mutex); mutex_lock(&trace_types_lock); down_write(&trace_event_sem); ret = probe_remove_event_call(call); up_write(&trace_event_sem); mutex_unlock(&trace_types_lock); return ret; } #define for_each_event(event, start, end) \ for (event = start; \ (unsigned long)event < (unsigned long)end; \ event++) #ifdef CONFIG_MODULES static void trace_module_add_events(struct module *mod) { struct trace_event_call **call, **start, **end; if (!mod->num_trace_events) return; /* Don't add infrastructure for mods without tracepoints */ if (trace_module_has_bad_taint(mod)) { pr_err("%s: module has bad taint, not creating trace events\n", mod->name); return; } start = mod->trace_events; end = mod->trace_events + mod->num_trace_events; for_each_event(call, start, end) { __register_event(*call, mod); __add_event_to_tracers(*call); } } static void trace_module_remove_events(struct module *mod) { struct trace_event_call *call, *p; struct module_string *modstr, *m; down_write(&trace_event_sem); list_for_each_entry_safe(call, p, &ftrace_events, list) { if ((call->flags & TRACE_EVENT_FL_DYNAMIC) || !call->module) continue; if (call->module == mod) __trace_remove_event_call(call); } /* Check for any strings allocade for this module */ list_for_each_entry_safe(modstr, m, &module_strings, next) { if (modstr->module != mod) continue; list_del(&modstr->next); kfree(modstr->str); kfree(modstr); } up_write(&trace_event_sem); /* * It is safest to reset the ring buffer if the module being unloaded * registered any events that were used. The only worry is if * a new module gets loaded, and takes on the same id as the events * of this module. When printing out the buffer, traced events left * over from this module may be passed to the new module events and * unexpected results may occur. */ tracing_reset_all_online_cpus_unlocked(); } static int trace_module_notify(struct notifier_block *self, unsigned long val, void *data) { struct module *mod = data; mutex_lock(&event_mutex); mutex_lock(&trace_types_lock); switch (val) { case MODULE_STATE_COMING: trace_module_add_events(mod); break; case MODULE_STATE_GOING: trace_module_remove_events(mod); break; } mutex_unlock(&trace_types_lock); mutex_unlock(&event_mutex); return NOTIFY_OK; } static struct notifier_block trace_module_nb = { .notifier_call = trace_module_notify, .priority = 1, /* higher than trace.c module notify */ }; #endif /* CONFIG_MODULES */ /* Create a new event directory structure for a trace directory. */ static void __trace_add_event_dirs(struct trace_array *tr) { struct trace_event_call *call; int ret; list_for_each_entry(call, &ftrace_events, list) { ret = __trace_add_new_event(call, tr); if (ret < 0) pr_warn("Could not create directory for event %s\n", trace_event_name(call)); } } /* Returns any file that matches the system and event */ struct trace_event_file * __find_event_file(struct trace_array *tr, const char *system, const char *event) { struct trace_event_file *file; struct trace_event_call *call; const char *name; list_for_each_entry(file, &tr->events, list) { call = file->event_call; name = trace_event_name(call); if (!name || !call->class) continue; if (strcmp(event, name) == 0 && strcmp(system, call->class->system) == 0) return file; } return NULL; } /* Returns valid trace event files that match system and event */ struct trace_event_file * find_event_file(struct trace_array *tr, const char *system, const char *event) { struct trace_event_file *file; file = __find_event_file(tr, system, event); if (!file || !file->event_call->class->reg || file->event_call->flags & TRACE_EVENT_FL_IGNORE_ENABLE) return NULL; return file; } /** * trace_get_event_file - Find and return a trace event file * @instance: The name of the trace instance containing the event * @system: The name of the system containing the event * @event: The name of the event * * Return a trace event file given the trace instance name, trace * system, and trace event name. If the instance name is NULL, it * refers to the top-level trace array. * * This function will look it up and return it if found, after calling * trace_array_get() to prevent the instance from going away, and * increment the event's module refcount to prevent it from being * removed. * * To release the file, call trace_put_event_file(), which will call * trace_array_put() and decrement the event's module refcount. * * Return: The trace event on success, ERR_PTR otherwise. */ struct trace_event_file *trace_get_event_file(const char *instance, const char *system, const char *event) { struct trace_array *tr = top_trace_array(); struct trace_event_file *file = NULL; int ret = -EINVAL; if (instance) { tr = trace_array_find_get(instance); if (!tr) return ERR_PTR(-ENOENT); } else { ret = trace_array_get(tr); if (ret) return ERR_PTR(ret); } mutex_lock(&event_mutex); file = find_event_file(tr, system, event); if (!file) { trace_array_put(tr); ret = -EINVAL; goto out; } /* Don't let event modules unload while in use */ ret = trace_event_try_get_ref(file->event_call); if (!ret) { trace_array_put(tr); ret = -EBUSY; goto out; } ret = 0; out: mutex_unlock(&event_mutex); if (ret) file = ERR_PTR(ret); return file; } EXPORT_SYMBOL_GPL(trace_get_event_file); /** * trace_put_event_file - Release a file from trace_get_event_file() * @file: The trace event file * * If a file was retrieved using trace_get_event_file(), this should * be called when it's no longer needed. It will cancel the previous * trace_array_get() called by that function, and decrement the * event's module refcount. */ void trace_put_event_file(struct trace_event_file *file) { mutex_lock(&event_mutex); trace_event_put_ref(file->event_call); mutex_unlock(&event_mutex); trace_array_put(file->tr); } EXPORT_SYMBOL_GPL(trace_put_event_file); #ifdef CONFIG_DYNAMIC_FTRACE /* Avoid typos */ #define ENABLE_EVENT_STR "enable_event" #define DISABLE_EVENT_STR "disable_event" struct event_probe_data { struct trace_event_file *file; unsigned long count; int ref; bool enable; }; static void update_event_probe(struct event_probe_data *data) { if (data->enable) clear_bit(EVENT_FILE_FL_SOFT_DISABLED_BIT, &data->file->flags); else set_bit(EVENT_FILE_FL_SOFT_DISABLED_BIT, &data->file->flags); } static void event_enable_probe(unsigned long ip, unsigned long parent_ip, struct trace_array *tr, struct ftrace_probe_ops *ops, void *data) { struct ftrace_func_mapper *mapper = data; struct event_probe_data *edata; void **pdata; pdata = ftrace_func_mapper_find_ip(mapper, ip); if (!pdata || !*pdata) return; edata = *pdata; update_event_probe(edata); } static void event_enable_count_probe(unsigned long ip, unsigned long parent_ip, struct trace_array *tr, struct ftrace_probe_ops *ops, void *data) { struct ftrace_func_mapper *mapper = data; struct event_probe_data *edata; void **pdata; pdata = ftrace_func_mapper_find_ip(mapper, ip); if (!pdata || !*pdata) return; edata = *pdata; if (!edata->count) return; /* Skip if the event is in a state we want to switch to */ if (edata->enable == !(edata->file->flags & EVENT_FILE_FL_SOFT_DISABLED)) return; if (edata->count != -1) (edata->count)--; update_event_probe(edata); } static int event_enable_print(struct seq_file *m, unsigned long ip, struct ftrace_probe_ops *ops, void *data) { struct ftrace_func_mapper *mapper = data; struct event_probe_data *edata; void **pdata; pdata = ftrace_func_mapper_find_ip(mapper, ip); if (WARN_ON_ONCE(!pdata || !*pdata)) return 0; edata = *pdata; seq_printf(m, "%ps:", (void *)ip); seq_printf(m, "%s:%s:%s", edata->enable ? ENABLE_EVENT_STR : DISABLE_EVENT_STR, edata->file->event_call->class->system, trace_event_name(edata->file->event_call)); if (edata->count == -1) seq_puts(m, ":unlimited\n"); else seq_printf(m, ":count=%ld\n", edata->count); return 0; } static int event_enable_init(struct ftrace_probe_ops *ops, struct trace_array *tr, unsigned long ip, void *init_data, void **data) { struct ftrace_func_mapper *mapper = *data; struct event_probe_data *edata = init_data; int ret; if (!mapper) { mapper = allocate_ftrace_func_mapper(); if (!mapper) return -ENODEV; *data = mapper; } ret = ftrace_func_mapper_add_ip(mapper, ip, edata); if (ret < 0) return ret; edata->ref++; return 0; } static int free_probe_data(void *data) { struct event_probe_data *edata = data; edata->ref--; if (!edata->ref) { /* Remove the SOFT_MODE flag */ __ftrace_event_enable_disable(edata->file, 0, 1); trace_event_put_ref(edata->file->event_call); kfree(edata); } return 0; } static void event_enable_free(struct ftrace_probe_ops *ops, struct trace_array *tr, unsigned long ip, void *data) { struct ftrace_func_mapper *mapper = data; struct event_probe_data *edata; if (!ip) { if (!mapper) return; free_ftrace_func_mapper(mapper, free_probe_data); return; } edata = ftrace_func_mapper_remove_ip(mapper, ip); if (WARN_ON_ONCE(!edata)) return; if (WARN_ON_ONCE(edata->ref <= 0)) return; free_probe_data(edata); } static struct ftrace_probe_ops event_enable_probe_ops = { .func = event_enable_probe, .print = event_enable_print, .init = event_enable_init, .free = event_enable_free, }; static struct ftrace_probe_ops event_enable_count_probe_ops = { .func = event_enable_count_probe, .print = event_enable_print, .init = event_enable_init, .free = event_enable_free, }; static struct ftrace_probe_ops event_disable_probe_ops = { .func = event_enable_probe, .print = event_enable_print, .init = event_enable_init, .free = event_enable_free, }; static struct ftrace_probe_ops event_disable_count_probe_ops = { .func = event_enable_count_probe, .print = event_enable_print, .init = event_enable_init, .free = event_enable_free, }; static int event_enable_func(struct trace_array *tr, struct ftrace_hash *hash, char *glob, char *cmd, char *param, int enabled) { struct trace_event_file *file; struct ftrace_probe_ops *ops; struct event_probe_data *data; const char *system; const char *event; char *number; bool enable; int ret; if (!tr) return -ENODEV; /* hash funcs only work with set_ftrace_filter */ if (!enabled || !param) return -EINVAL; system = strsep(¶m, ":"); if (!param) return -EINVAL; event = strsep(¶m, ":"); mutex_lock(&event_mutex); ret = -EINVAL; file = find_event_file(tr, system, event); if (!file) goto out; enable = strcmp(cmd, ENABLE_EVENT_STR) == 0; if (enable) ops = param ? &event_enable_count_probe_ops : &event_enable_probe_ops; else ops = param ? &event_disable_count_probe_ops : &event_disable_probe_ops; if (glob[0] == '!') { ret = unregister_ftrace_function_probe_func(glob+1, tr, ops); goto out; } ret = -ENOMEM; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) goto out; data->enable = enable; data->count = -1; data->file = file; if (!param) goto out_reg; number = strsep(¶m, ":"); ret = -EINVAL; if (!strlen(number)) goto out_free; /* * We use the callback data field (which is a pointer) * as our counter. */ ret = kstrtoul(number, 0, &data->count); if (ret) goto out_free; out_reg: /* Don't let event modules unload while probe registered */ ret = trace_event_try_get_ref(file->event_call); if (!ret) { ret = -EBUSY; goto out_free; } ret = __ftrace_event_enable_disable(file, 1, 1); if (ret < 0) goto out_put; ret = register_ftrace_function_probe(glob, tr, ops, data); /* * The above returns on success the # of functions enabled, * but if it didn't find any functions it returns zero. * Consider no functions a failure too. */ if (!ret) { ret = -ENOENT; goto out_disable; } else if (ret < 0) goto out_disable; /* Just return zero, not the number of enabled functions */ ret = 0; out: mutex_unlock(&event_mutex); return ret; out_disable: __ftrace_event_enable_disable(file, 0, 1); out_put: trace_event_put_ref(file->event_call); out_free: kfree(data); goto out; } static struct ftrace_func_command event_enable_cmd = { .name = ENABLE_EVENT_STR, .func = event_enable_func, }; static struct ftrace_func_command event_disable_cmd = { .name = DISABLE_EVENT_STR, .func = event_enable_func, }; static __init int register_event_cmds(void) { int ret; ret = register_ftrace_command(&event_enable_cmd); if (WARN_ON(ret < 0)) return ret; ret = register_ftrace_command(&event_disable_cmd); if (WARN_ON(ret < 0)) unregister_ftrace_command(&event_enable_cmd); return ret; } #else static inline int register_event_cmds(void) { return 0; } #endif /* CONFIG_DYNAMIC_FTRACE */ /* * The top level array and trace arrays created by boot-time tracing * have already had its trace_event_file descriptors created in order * to allow for early events to be recorded. * This function is called after the tracefs has been initialized, * and we now have to create the files associated to the events. */ static void __trace_early_add_event_dirs(struct trace_array *tr) { struct trace_event_file *file; int ret; list_for_each_entry(file, &tr->events, list) { ret = event_create_dir(tr->event_dir, file); if (ret < 0) pr_warn("Could not create directory for event %s\n", trace_event_name(file->event_call)); } } /* * For early boot up, the top trace array and the trace arrays created * by boot-time tracing require to have a list of events that can be * enabled. This must be done before the filesystem is set up in order * to allow events to be traced early. */ void __trace_early_add_events(struct trace_array *tr) { struct trace_event_call *call; int ret; list_for_each_entry(call, &ftrace_events, list) { /* Early boot up should not have any modules loaded */ if (!(call->flags & TRACE_EVENT_FL_DYNAMIC) && WARN_ON_ONCE(call->module)) continue; ret = __trace_early_add_new_event(call, tr); if (ret < 0) pr_warn("Could not create early event %s\n", trace_event_name(call)); } } /* Remove the event directory structure for a trace directory. */ static void __trace_remove_event_dirs(struct trace_array *tr) { struct trace_event_file *file, *next; list_for_each_entry_safe(file, next, &tr->events, list) remove_event_file_dir(file); } static void __add_event_to_tracers(struct trace_event_call *call) { struct trace_array *tr; list_for_each_entry(tr, &ftrace_trace_arrays, list) __trace_add_new_event(call, tr); } extern struct trace_event_call *__start_ftrace_events[]; extern struct trace_event_call *__stop_ftrace_events[]; static char bootup_event_buf[COMMAND_LINE_SIZE] __initdata; static __init int setup_trace_event(char *str) { strlcpy(bootup_event_buf, str, COMMAND_LINE_SIZE); ring_buffer_expanded = true; disable_tracing_selftest("running event tracing"); return 1; } __setup("trace_event=", setup_trace_event); /* Expects to have event_mutex held when called */ static int create_event_toplevel_files(struct dentry *parent, struct trace_array *tr) { struct dentry *d_events; struct dentry *entry; entry = tracefs_create_file("set_event", TRACE_MODE_WRITE, parent, tr, &ftrace_set_event_fops); if (!entry) { pr_warn("Could not create tracefs 'set_event' entry\n"); return -ENOMEM; } d_events = tracefs_create_dir("events", parent); if (!d_events) { pr_warn("Could not create tracefs 'events' directory\n"); return -ENOMEM; } entry = trace_create_file("enable", TRACE_MODE_WRITE, d_events, tr, &ftrace_tr_enable_fops); if (!entry) { pr_warn("Could not create tracefs 'enable' entry\n"); return -ENOMEM; } /* There are not as crucial, just warn if they are not created */ entry = tracefs_create_file("set_event_pid", TRACE_MODE_WRITE, parent, tr, &ftrace_set_event_pid_fops); if (!entry) pr_warn("Could not create tracefs 'set_event_pid' entry\n"); entry = tracefs_create_file("set_event_notrace_pid", TRACE_MODE_WRITE, parent, tr, &ftrace_set_event_notrace_pid_fops); if (!entry) pr_warn("Could not create tracefs 'set_event_notrace_pid' entry\n"); /* ring buffer internal formats */ entry = trace_create_file("header_page", TRACE_MODE_READ, d_events, ring_buffer_print_page_header, &ftrace_show_header_fops); if (!entry) pr_warn("Could not create tracefs 'header_page' entry\n"); entry = trace_create_file("header_event", TRACE_MODE_READ, d_events, ring_buffer_print_entry_header, &ftrace_show_header_fops); if (!entry) pr_warn("Could not create tracefs 'header_event' entry\n"); tr->event_dir = d_events; return 0; } /** * event_trace_add_tracer - add a instance of a trace_array to events * @parent: The parent dentry to place the files/directories for events in * @tr: The trace array associated with these events * * When a new instance is created, it needs to set up its events * directory, as well as other files associated with events. It also * creates the event hierarchy in the @parent/events directory. * * Returns 0 on success. * * Must be called with event_mutex held. */ int event_trace_add_tracer(struct dentry *parent, struct trace_array *tr) { int ret; lockdep_assert_held(&event_mutex); ret = create_event_toplevel_files(parent, tr); if (ret) goto out; down_write(&trace_event_sem); /* If tr already has the event list, it is initialized in early boot. */ if (unlikely(!list_empty(&tr->events))) __trace_early_add_event_dirs(tr); else __trace_add_event_dirs(tr); up_write(&trace_event_sem); out: return ret; } /* * The top trace array already had its file descriptors created. * Now the files themselves need to be created. */ static __init int early_event_add_tracer(struct dentry *parent, struct trace_array *tr) { int ret; mutex_lock(&event_mutex); ret = create_event_toplevel_files(parent, tr); if (ret) goto out_unlock; down_write(&trace_event_sem); __trace_early_add_event_dirs(tr); up_write(&trace_event_sem); out_unlock: mutex_unlock(&event_mutex); return ret; } /* Must be called with event_mutex held */ int event_trace_del_tracer(struct trace_array *tr) { lockdep_assert_held(&event_mutex); /* Disable any event triggers and associated soft-disabled events */ clear_event_triggers(tr); /* Clear the pid list */ __ftrace_clear_event_pids(tr, TRACE_PIDS | TRACE_NO_PIDS); /* Disable any running events */ __ftrace_set_clr_event_nolock(tr, NULL, NULL, NULL, 0); /* Make sure no more events are being executed */ tracepoint_synchronize_unregister(); down_write(&trace_event_sem); __trace_remove_event_dirs(tr); tracefs_remove(tr->event_dir); up_write(&trace_event_sem); tr->event_dir = NULL; return 0; } static __init int event_trace_memsetup(void) { field_cachep = KMEM_CACHE(ftrace_event_field, SLAB_PANIC); file_cachep = KMEM_CACHE(trace_event_file, SLAB_PANIC); return 0; } static __init void early_enable_events(struct trace_array *tr, bool disable_first) { char *buf = bootup_event_buf; char *token; int ret; while (true) { token = strsep(&buf, ","); if (!token) break; if (*token) { /* Restarting syscalls requires that we stop them first */ if (disable_first) ftrace_set_clr_event(tr, token, 0); ret = ftrace_set_clr_event(tr, token, 1); if (ret) pr_warn("Failed to enable trace event: %s\n", token); } /* Put back the comma to allow this to be called again */ if (buf) *(buf - 1) = ','; } } static __init int event_trace_enable(void) { struct trace_array *tr = top_trace_array(); struct trace_event_call **iter, *call; int ret; if (!tr) return -ENODEV; for_each_event(iter, __start_ftrace_events, __stop_ftrace_events) { call = *iter; ret = event_init(call); if (!ret) list_add(&call->list, &ftrace_events); } /* * We need the top trace array to have a working set of trace * points at early init, before the debug files and directories * are created. Create the file entries now, and attach them * to the actual file dentries later. */ __trace_early_add_events(tr); early_enable_events(tr, false); trace_printk_start_comm(); register_event_cmds(); register_trigger_cmds(); return 0; } /* * event_trace_enable() is called from trace_event_init() first to * initialize events and perhaps start any events that are on the * command line. Unfortunately, there are some events that will not * start this early, like the system call tracepoints that need * to set the %SYSCALL_WORK_SYSCALL_TRACEPOINT flag of pid 1. But * event_trace_enable() is called before pid 1 starts, and this flag * is never set, making the syscall tracepoint never get reached, but * the event is enabled regardless (and not doing anything). */ static __init int event_trace_enable_again(void) { struct trace_array *tr; tr = top_trace_array(); if (!tr) return -ENODEV; early_enable_events(tr, true); return 0; } early_initcall(event_trace_enable_again); /* Init fields which doesn't related to the tracefs */ static __init int event_trace_init_fields(void) { if (trace_define_generic_fields()) pr_warn("tracing: Failed to allocated generic fields"); if (trace_define_common_fields()) pr_warn("tracing: Failed to allocate common fields"); return 0; } __init int event_trace_init(void) { struct trace_array *tr; struct dentry *entry; int ret; tr = top_trace_array(); if (!tr) return -ENODEV; entry = tracefs_create_file("available_events", TRACE_MODE_READ, NULL, tr, &ftrace_avail_fops); if (!entry) pr_warn("Could not create tracefs 'available_events' entry\n"); ret = early_event_add_tracer(NULL, tr); if (ret) return ret; #ifdef CONFIG_MODULES ret = register_module_notifier(&trace_module_nb); if (ret) pr_warn("Failed to register trace events module notifier\n"); #endif eventdir_initialized = true; return 0; } void __init trace_event_init(void) { event_trace_memsetup(); init_ftrace_syscalls(); event_trace_enable(); event_trace_init_fields(); } #ifdef CONFIG_EVENT_TRACE_STARTUP_TEST static DEFINE_SPINLOCK(test_spinlock); static DEFINE_SPINLOCK(test_spinlock_irq); static DEFINE_MUTEX(test_mutex); static __init void test_work(struct work_struct *dummy) { spin_lock(&test_spinlock); spin_lock_irq(&test_spinlock_irq); udelay(1); spin_unlock_irq(&test_spinlock_irq); spin_unlock(&test_spinlock); mutex_lock(&test_mutex); msleep(1); mutex_unlock(&test_mutex); } static __init int event_test_thread(void *unused) { void *test_malloc; test_malloc = kmalloc(1234, GFP_KERNEL); if (!test_malloc) pr_info("failed to kmalloc\n"); schedule_on_each_cpu(test_work); kfree(test_malloc); set_current_state(TASK_INTERRUPTIBLE); while (!kthread_should_stop()) { schedule(); set_current_state(TASK_INTERRUPTIBLE); } __set_current_state(TASK_RUNNING); return 0; } /* * Do various things that may trigger events. */ static __init void event_test_stuff(void) { struct task_struct *test_thread; test_thread = kthread_run(event_test_thread, NULL, "test-events"); msleep(1); kthread_stop(test_thread); } /* * For every trace event defined, we will test each trace point separately, * and then by groups, and finally all trace points. */ static __init void event_trace_self_tests(void) { struct trace_subsystem_dir *dir; struct trace_event_file *file; struct trace_event_call *call; struct event_subsystem *system; struct trace_array *tr; int ret; tr = top_trace_array(); if (!tr) return; pr_info("Running tests on trace events:\n"); list_for_each_entry(file, &tr->events, list) { call = file->event_call; /* Only test those that have a probe */ if (!call->class || !call->class->probe) continue; /* * Testing syscall events here is pretty useless, but * we still do it if configured. But this is time consuming. * What we really need is a user thread to perform the * syscalls as we test. */ #ifndef CONFIG_EVENT_TRACE_TEST_SYSCALLS if (call->class->system && strcmp(call->class->system, "syscalls") == 0) continue; #endif pr_info("Testing event %s: ", trace_event_name(call)); /* * If an event is already enabled, someone is using * it and the self test should not be on. */ if (file->flags & EVENT_FILE_FL_ENABLED) { pr_warn("Enabled event during self test!\n"); WARN_ON_ONCE(1); continue; } ftrace_event_enable_disable(file, 1); event_test_stuff(); ftrace_event_enable_disable(file, 0); pr_cont("OK\n"); } /* Now test at the sub system level */ pr_info("Running tests on trace event systems:\n"); list_for_each_entry(dir, &tr->systems, list) { system = dir->subsystem; /* the ftrace system is special, skip it */ if (strcmp(system->name, "ftrace") == 0) continue; pr_info("Testing event system %s: ", system->name); ret = __ftrace_set_clr_event(tr, NULL, system->name, NULL, 1); if (WARN_ON_ONCE(ret)) { pr_warn("error enabling system %s\n", system->name); continue; } event_test_stuff(); ret = __ftrace_set_clr_event(tr, NULL, system->name, NULL, 0); if (WARN_ON_ONCE(ret)) { pr_warn("error disabling system %s\n", system->name); continue; } pr_cont("OK\n"); } /* Test with all events enabled */ pr_info("Running tests on all trace events:\n"); pr_info("Testing all events: "); ret = __ftrace_set_clr_event(tr, NULL, NULL, NULL, 1); if (WARN_ON_ONCE(ret)) { pr_warn("error enabling all events\n"); return; } event_test_stuff(); /* reset sysname */ ret = __ftrace_set_clr_event(tr, NULL, NULL, NULL, 0); if (WARN_ON_ONCE(ret)) { pr_warn("error disabling all events\n"); return; } pr_cont("OK\n"); } #ifdef CONFIG_FUNCTION_TRACER static DEFINE_PER_CPU(atomic_t, ftrace_test_event_disable); static struct trace_event_file event_trace_file __initdata; static void __init function_test_events_call(unsigned long ip, unsigned long parent_ip, struct ftrace_ops *op, struct ftrace_regs *regs) { struct trace_buffer *buffer; struct ring_buffer_event *event; struct ftrace_entry *entry; unsigned int trace_ctx; long disabled; int cpu; trace_ctx = tracing_gen_ctx(); preempt_disable_notrace(); cpu = raw_smp_processor_id(); disabled = atomic_inc_return(&per_cpu(ftrace_test_event_disable, cpu)); if (disabled != 1) goto out; event = trace_event_buffer_lock_reserve(&buffer, &event_trace_file, TRACE_FN, sizeof(*entry), trace_ctx); if (!event) goto out; entry = ring_buffer_event_data(event); entry->ip = ip; entry->parent_ip = parent_ip; event_trigger_unlock_commit(&event_trace_file, buffer, event, entry, trace_ctx); out: atomic_dec(&per_cpu(ftrace_test_event_disable, cpu)); preempt_enable_notrace(); } static struct ftrace_ops trace_ops __initdata = { .func = function_test_events_call, }; static __init void event_trace_self_test_with_function(void) { int ret; event_trace_file.tr = top_trace_array(); if (WARN_ON(!event_trace_file.tr)) return; ret = register_ftrace_function(&trace_ops); if (WARN_ON(ret < 0)) { pr_info("Failed to enable function tracer for event tests\n"); return; } pr_info("Running tests again, along with the function tracer\n"); event_trace_self_tests(); unregister_ftrace_function(&trace_ops); } #else static __init void event_trace_self_test_with_function(void) { } #endif static __init int event_trace_self_tests_init(void) { if (!tracing_selftest_disabled) { event_trace_self_tests(); event_trace_self_test_with_function(); } return 0; } late_initcall(event_trace_self_tests_init); #endif |
1784 1792 1787 1787 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 | // SPDX-License-Identifier: GPL-2.0+ /* * Driver core for serial ports * * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. * * Copyright 1999 ARM Limited * Copyright (C) 2000-2001 Deep Blue Solutions Ltd. */ #include <linux/module.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/slab.h> #include <linux/sched/signal.h> #include <linux/init.h> #include <linux/console.h> #include <linux/gpio/consumer.h> #include <linux/of.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/device.h> #include <linux/serial.h> /* for serial_state and serial_icounter_struct */ #include <linux/serial_core.h> #include <linux/sysrq.h> #include <linux/delay.h> #include <linux/mutex.h> #include <linux/security.h> #include <linux/irq.h> #include <linux/uaccess.h> /* * This is used to lock changes in serial line configuration. */ static DEFINE_MUTEX(port_mutex); /* * lockdep: port->lock is initialized in two places, but we * want only one lock-class: */ static struct lock_class_key port_lock_key; #define HIGH_BITS_OFFSET ((sizeof(long)-sizeof(int))*8) /* * Max time with active RTS before/after data is sent. */ #define RS485_MAX_RTS_DELAY 100 /* msecs */ static void uart_change_speed(struct tty_struct *tty, struct uart_state *state, struct ktermios *old_termios); static void uart_wait_until_sent(struct tty_struct *tty, int timeout); static void uart_change_pm(struct uart_state *state, enum uart_pm_state pm_state); static void uart_port_shutdown(struct tty_port *port); static int uart_dcd_enabled(struct uart_port *uport) { return !!(uport->status & UPSTAT_DCD_ENABLE); } static inline struct uart_port *uart_port_ref(struct uart_state *state) { if (atomic_add_unless(&state->refcount, 1, 0)) return state->uart_port; return NULL; } static inline void uart_port_deref(struct uart_port *uport) { if (atomic_dec_and_test(&uport->state->refcount)) wake_up(&uport->state->remove_wait); } #define uart_port_lock(state, flags) \ ({ \ struct uart_port *__uport = uart_port_ref(state); \ if (__uport) \ spin_lock_irqsave(&__uport->lock, flags); \ __uport; \ }) #define uart_port_unlock(uport, flags) \ ({ \ struct uart_port *__uport = uport; \ if (__uport) { \ spin_unlock_irqrestore(&__uport->lock, flags); \ uart_port_deref(__uport); \ } \ }) static inline struct uart_port *uart_port_check(struct uart_state *state) { lockdep_assert_held(&state->port.mutex); return state->uart_port; } /* * This routine is used by the interrupt handler to schedule processing in * the software interrupt portion of the driver. */ void uart_write_wakeup(struct uart_port *port) { struct uart_state *state = port->state; /* * This means you called this function _after_ the port was * closed. No cookie for you. */ BUG_ON(!state); tty_port_tty_wakeup(&state->port); } static void uart_stop(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; struct uart_port *port; unsigned long flags; port = uart_port_lock(state, flags); if (port) port->ops->stop_tx(port); uart_port_unlock(port, flags); } static void __uart_start(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; struct uart_port *port = state->uart_port; if (port && !uart_tx_stopped(port)) port->ops->start_tx(port); } static void uart_start(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; struct uart_port *port; unsigned long flags; port = uart_port_lock(state, flags); __uart_start(tty); uart_port_unlock(port, flags); } static void uart_update_mctrl(struct uart_port *port, unsigned int set, unsigned int clear) { unsigned long flags; unsigned int old; spin_lock_irqsave(&port->lock, flags); old = port->mctrl; port->mctrl = (old & ~clear) | set; if (old != port->mctrl && !(port->rs485.flags & SER_RS485_ENABLED)) port->ops->set_mctrl(port, port->mctrl); spin_unlock_irqrestore(&port->lock, flags); } #define uart_set_mctrl(port, set) uart_update_mctrl(port, set, 0) #define uart_clear_mctrl(port, clear) uart_update_mctrl(port, 0, clear) static void uart_port_dtr_rts(struct uart_port *uport, int raise) { if (raise) uart_set_mctrl(uport, TIOCM_DTR | TIOCM_RTS); else uart_clear_mctrl(uport, TIOCM_DTR | TIOCM_RTS); } /* * Startup the port. This will be called once per open. All calls * will be serialised by the per-port mutex. */ static int uart_port_startup(struct tty_struct *tty, struct uart_state *state, int init_hw) { struct uart_port *uport = uart_port_check(state); unsigned long flags; unsigned long page; int retval = 0; if (uport->type == PORT_UNKNOWN) return 1; /* * Make sure the device is in D0 state. */ uart_change_pm(state, UART_PM_STATE_ON); /* * Initialise and allocate the transmit and temporary * buffer. */ page = get_zeroed_page(GFP_KERNEL); if (!page) return -ENOMEM; uart_port_lock(state, flags); if (!state->xmit.buf) { state->xmit.buf = (unsigned char *) page; uart_circ_clear(&state->xmit); uart_port_unlock(uport, flags); } else { uart_port_unlock(uport, flags); /* * Do not free() the page under the port lock, see * uart_shutdown(). */ free_page(page); } retval = uport->ops->startup(uport); if (retval == 0) { if (uart_console(uport) && uport->cons->cflag) { tty->termios.c_cflag = uport->cons->cflag; tty->termios.c_ispeed = uport->cons->ispeed; tty->termios.c_ospeed = uport->cons->ospeed; uport->cons->cflag = 0; uport->cons->ispeed = 0; uport->cons->ospeed = 0; } /* * Initialise the hardware port settings. */ uart_change_speed(tty, state, NULL); /* * Setup the RTS and DTR signals once the * port is open and ready to respond. */ if (init_hw && C_BAUD(tty)) uart_port_dtr_rts(uport, 1); } /* * This is to allow setserial on this port. People may want to set * port/irq/type and then reconfigure the port properly if it failed * now. */ if (retval && capable(CAP_SYS_ADMIN)) return 1; return retval; } static int uart_startup(struct tty_struct *tty, struct uart_state *state, int init_hw) { struct tty_port *port = &state->port; int retval; if (tty_port_initialized(port)) return 0; retval = uart_port_startup(tty, state, init_hw); if (retval) set_bit(TTY_IO_ERROR, &tty->flags); return retval; } /* * This routine will shutdown a serial port; interrupts are disabled, and * DTR is dropped if the hangup on close termio flag is on. Calls to * uart_shutdown are serialised by the per-port semaphore. * * uport == NULL if uart_port has already been removed */ static void uart_shutdown(struct tty_struct *tty, struct uart_state *state) { struct uart_port *uport = uart_port_check(state); struct tty_port *port = &state->port; unsigned long flags; char *xmit_buf = NULL; /* * Set the TTY IO error marker */ if (tty) set_bit(TTY_IO_ERROR, &tty->flags); if (tty_port_initialized(port)) { tty_port_set_initialized(port, 0); /* * Turn off DTR and RTS early. */ if (uport) { if (uart_console(uport) && tty) { uport->cons->cflag = tty->termios.c_cflag; uport->cons->ispeed = tty->termios.c_ispeed; uport->cons->ospeed = tty->termios.c_ospeed; } if (!tty || C_HUPCL(tty)) uart_port_dtr_rts(uport, 0); } uart_port_shutdown(port); } /* * It's possible for shutdown to be called after suspend if we get * a DCD drop (hangup) at just the right time. Clear suspended bit so * we don't try to resume a port that has been shutdown. */ tty_port_set_suspended(port, 0); /* * Do not free() the transmit buffer page under the port lock since * this can create various circular locking scenarios. For instance, * console driver may need to allocate/free a debug object, which * can endup in printk() recursion. */ uart_port_lock(state, flags); xmit_buf = state->xmit.buf; state->xmit.buf = NULL; uart_port_unlock(uport, flags); if (xmit_buf) free_page((unsigned long)xmit_buf); } /** * uart_update_timeout - update per-port FIFO timeout. * @port: uart_port structure describing the port * @cflag: termios cflag value * @baud: speed of the port * * Set the port FIFO timeout value. The @cflag value should * reflect the actual hardware settings. */ void uart_update_timeout(struct uart_port *port, unsigned int cflag, unsigned int baud) { unsigned int size; size = tty_get_frame_size(cflag) * port->fifosize; /* * Figure the timeout to send the above number of bits. * Add .02 seconds of slop */ port->timeout = (HZ * size) / baud + HZ/50; } EXPORT_SYMBOL(uart_update_timeout); /** * uart_get_baud_rate - return baud rate for a particular port * @port: uart_port structure describing the port in question. * @termios: desired termios settings. * @old: old termios (or NULL) * @min: minimum acceptable baud rate * @max: maximum acceptable baud rate * * Decode the termios structure into a numeric baud rate, * taking account of the magic 38400 baud rate (with spd_* * flags), and mapping the %B0 rate to 9600 baud. * * If the new baud rate is invalid, try the old termios setting. * If it's still invalid, we try 9600 baud. * * Update the @termios structure to reflect the baud rate * we're actually going to be using. Don't do this for the case * where B0 is requested ("hang up"). */ unsigned int uart_get_baud_rate(struct uart_port *port, struct ktermios *termios, struct ktermios *old, unsigned int min, unsigned int max) { unsigned int try; unsigned int baud; unsigned int altbaud; int hung_up = 0; upf_t flags = port->flags & UPF_SPD_MASK; switch (flags) { case UPF_SPD_HI: altbaud = 57600; break; case UPF_SPD_VHI: altbaud = 115200; break; case UPF_SPD_SHI: altbaud = 230400; break; case UPF_SPD_WARP: altbaud = 460800; break; default: altbaud = 38400; break; } for (try = 0; try < 2; try++) { baud = tty_termios_baud_rate(termios); /* * The spd_hi, spd_vhi, spd_shi, spd_warp kludge... * Die! Die! Die! */ if (try == 0 && baud == 38400) baud = altbaud; /* * Special case: B0 rate. */ if (baud == 0) { hung_up = 1; baud = 9600; } if (baud >= min && baud <= max) return baud; /* * Oops, the quotient was zero. Try again with * the old baud rate if possible. */ termios->c_cflag &= ~CBAUD; if (old) { baud = tty_termios_baud_rate(old); if (!hung_up) tty_termios_encode_baud_rate(termios, baud, baud); old = NULL; continue; } /* * As a last resort, if the range cannot be met then clip to * the nearest chip supported rate. */ if (!hung_up) { if (baud <= min) tty_termios_encode_baud_rate(termios, min + 1, min + 1); else tty_termios_encode_baud_rate(termios, max - 1, max - 1); } } /* Should never happen */ WARN_ON(1); return 0; } EXPORT_SYMBOL(uart_get_baud_rate); /** * uart_get_divisor - return uart clock divisor * @port: uart_port structure describing the port. * @baud: desired baud rate * * Calculate the uart clock divisor for the port. */ unsigned int uart_get_divisor(struct uart_port *port, unsigned int baud) { unsigned int quot; /* * Old custom speed handling. */ if (baud == 38400 && (port->flags & UPF_SPD_MASK) == UPF_SPD_CUST) quot = port->custom_divisor; else quot = DIV_ROUND_CLOSEST(port->uartclk, 16 * baud); return quot; } EXPORT_SYMBOL(uart_get_divisor); /* Caller holds port mutex */ static void uart_change_speed(struct tty_struct *tty, struct uart_state *state, struct ktermios *old_termios) { struct uart_port *uport = uart_port_check(state); struct ktermios *termios; int hw_stopped; /* * If we have no tty, termios, or the port does not exist, * then we can't set the parameters for this port. */ if (!tty || uport->type == PORT_UNKNOWN) return; termios = &tty->termios; uport->ops->set_termios(uport, termios, old_termios); /* * Set modem status enables based on termios cflag */ spin_lock_irq(&uport->lock); if (termios->c_cflag & CRTSCTS) uport->status |= UPSTAT_CTS_ENABLE; else uport->status &= ~UPSTAT_CTS_ENABLE; if (termios->c_cflag & CLOCAL) uport->status &= ~UPSTAT_DCD_ENABLE; else uport->status |= UPSTAT_DCD_ENABLE; /* reset sw-assisted CTS flow control based on (possibly) new mode */ hw_stopped = uport->hw_stopped; uport->hw_stopped = uart_softcts_mode(uport) && !(uport->ops->get_mctrl(uport) & TIOCM_CTS); if (uport->hw_stopped) { if (!hw_stopped) uport->ops->stop_tx(uport); } else { if (hw_stopped) __uart_start(tty); } spin_unlock_irq(&uport->lock); } static int uart_put_char(struct tty_struct *tty, unsigned char c) { struct uart_state *state = tty->driver_data; struct uart_port *port; struct circ_buf *circ; unsigned long flags; int ret = 0; circ = &state->xmit; port = uart_port_lock(state, flags); if (!circ->buf) { uart_port_unlock(port, flags); return 0; } if (port && uart_circ_chars_free(circ) != 0) { circ->buf[circ->head] = c; circ->head = (circ->head + 1) & (UART_XMIT_SIZE - 1); ret = 1; } uart_port_unlock(port, flags); return ret; } static void uart_flush_chars(struct tty_struct *tty) { uart_start(tty); } static int uart_write(struct tty_struct *tty, const unsigned char *buf, int count) { struct uart_state *state = tty->driver_data; struct uart_port *port; struct circ_buf *circ; unsigned long flags; int c, ret = 0; /* * This means you called this function _after_ the port was * closed. No cookie for you. */ if (!state) { WARN_ON(1); return -EL3HLT; } port = uart_port_lock(state, flags); circ = &state->xmit; if (!circ->buf) { uart_port_unlock(port, flags); return 0; } while (port) { c = CIRC_SPACE_TO_END(circ->head, circ->tail, UART_XMIT_SIZE); if (count < c) c = count; if (c <= 0) break; memcpy(circ->buf + circ->head, buf, c); circ->head = (circ->head + c) & (UART_XMIT_SIZE - 1); buf += c; count -= c; ret += c; } __uart_start(tty); uart_port_unlock(port, flags); return ret; } static unsigned int uart_write_room(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; struct uart_port *port; unsigned long flags; unsigned int ret; port = uart_port_lock(state, flags); ret = uart_circ_chars_free(&state->xmit); uart_port_unlock(port, flags); return ret; } static unsigned int uart_chars_in_buffer(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; struct uart_port *port; unsigned long flags; unsigned int ret; port = uart_port_lock(state, flags); ret = uart_circ_chars_pending(&state->xmit); uart_port_unlock(port, flags); return ret; } static void uart_flush_buffer(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; struct uart_port *port; unsigned long flags; /* * This means you called this function _after_ the port was * closed. No cookie for you. */ if (!state) { WARN_ON(1); return; } pr_debug("uart_flush_buffer(%d) called\n", tty->index); port = uart_port_lock(state, flags); if (!port) return; uart_circ_clear(&state->xmit); if (port->ops->flush_buffer) port->ops->flush_buffer(port); uart_port_unlock(port, flags); tty_port_tty_wakeup(&state->port); } /* * This function performs low-level write of high-priority XON/XOFF * character and accounting for it. * * Requires uart_port to implement .serial_out(). */ void uart_xchar_out(struct uart_port *uport, int offset) { serial_port_out(uport, offset, uport->x_char); uport->icount.tx++; uport->x_char = 0; } EXPORT_SYMBOL_GPL(uart_xchar_out); /* * This function is used to send a high-priority XON/XOFF character to * the device */ static void uart_send_xchar(struct tty_struct *tty, char ch) { struct uart_state *state = tty->driver_data; struct uart_port *port; unsigned long flags; port = uart_port_ref(state); if (!port) return; if (port->ops->send_xchar) port->ops->send_xchar(port, ch); else { spin_lock_irqsave(&port->lock, flags); port->x_char = ch; if (ch) port->ops->start_tx(port); spin_unlock_irqrestore(&port->lock, flags); } uart_port_deref(port); } static void uart_throttle(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; upstat_t mask = UPSTAT_SYNC_FIFO; struct uart_port *port; port = uart_port_ref(state); if (!port) return; if (I_IXOFF(tty)) mask |= UPSTAT_AUTOXOFF; if (C_CRTSCTS(tty)) mask |= UPSTAT_AUTORTS; if (port->status & mask) { port->ops->throttle(port); mask &= ~port->status; } if (mask & UPSTAT_AUTORTS) uart_clear_mctrl(port, TIOCM_RTS); if (mask & UPSTAT_AUTOXOFF) uart_send_xchar(tty, STOP_CHAR(tty)); uart_port_deref(port); } static void uart_unthrottle(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; upstat_t mask = UPSTAT_SYNC_FIFO; struct uart_port *port; port = uart_port_ref(state); if (!port) return; if (I_IXOFF(tty)) mask |= UPSTAT_AUTOXOFF; if (C_CRTSCTS(tty)) mask |= UPSTAT_AUTORTS; if (port->status & mask) { port->ops->unthrottle(port); mask &= ~port->status; } if (mask & UPSTAT_AUTORTS) uart_set_mctrl(port, TIOCM_RTS); if (mask & UPSTAT_AUTOXOFF) uart_send_xchar(tty, START_CHAR(tty)); uart_port_deref(port); } static int uart_get_info(struct tty_port *port, struct serial_struct *retinfo) { struct uart_state *state = container_of(port, struct uart_state, port); struct uart_port *uport; int ret = -ENODEV; /* * Ensure the state we copy is consistent and no hardware changes * occur as we go */ mutex_lock(&port->mutex); uport = uart_port_check(state); if (!uport) goto out; retinfo->type = uport->type; retinfo->line = uport->line; retinfo->port = uport->iobase; if (HIGH_BITS_OFFSET) retinfo->port_high = (long) uport->iobase >> HIGH_BITS_OFFSET; retinfo->irq = uport->irq; retinfo->flags = (__force int)uport->flags; retinfo->xmit_fifo_size = uport->fifosize; retinfo->baud_base = uport->uartclk / 16; retinfo->close_delay = jiffies_to_msecs(port->close_delay) / 10; retinfo->closing_wait = port->closing_wait == ASYNC_CLOSING_WAIT_NONE ? ASYNC_CLOSING_WAIT_NONE : jiffies_to_msecs(port->closing_wait) / 10; retinfo->custom_divisor = uport->custom_divisor; retinfo->hub6 = uport->hub6; retinfo->io_type = uport->iotype; retinfo->iomem_reg_shift = uport->regshift; retinfo->iomem_base = (void *)(unsigned long)uport->mapbase; ret = 0; out: mutex_unlock(&port->mutex); return ret; } static int uart_get_info_user(struct tty_struct *tty, struct serial_struct *ss) { struct uart_state *state = tty->driver_data; struct tty_port *port = &state->port; return uart_get_info(port, ss) < 0 ? -EIO : 0; } static int uart_set_info(struct tty_struct *tty, struct tty_port *port, struct uart_state *state, struct serial_struct *new_info) { struct uart_port *uport = uart_port_check(state); unsigned long new_port; unsigned int change_irq, change_port, closing_wait; unsigned int old_custom_divisor, close_delay; upf_t old_flags, new_flags; int retval = 0; if (!uport) return -EIO; new_port = new_info->port; if (HIGH_BITS_OFFSET) new_port += (unsigned long) new_info->port_high << HIGH_BITS_OFFSET; new_info->irq = irq_canonicalize(new_info->irq); close_delay = msecs_to_jiffies(new_info->close_delay * 10); closing_wait = new_info->closing_wait == ASYNC_CLOSING_WAIT_NONE ? ASYNC_CLOSING_WAIT_NONE : msecs_to_jiffies(new_info->closing_wait * 10); change_irq = !(uport->flags & UPF_FIXED_PORT) && new_info->irq != uport->irq; /* * Since changing the 'type' of the port changes its resource * allocations, we should treat type changes the same as * IO port changes. */ change_port = !(uport->flags & UPF_FIXED_PORT) && (new_port != uport->iobase || (unsigned long)new_info->iomem_base != uport->mapbase || new_info->hub6 != uport->hub6 || new_info->io_type != uport->iotype || new_info->iomem_reg_shift != uport->regshift || new_info->type != uport->type); old_flags = uport->flags; new_flags = (__force upf_t)new_info->flags; old_custom_divisor = uport->custom_divisor; if (!(uport->flags & UPF_FIXED_PORT)) { unsigned int uartclk = new_info->baud_base * 16; /* check needs to be done here before other settings made */ if (uartclk == 0) { retval = -EINVAL; goto exit; } } if (!capable(CAP_SYS_ADMIN)) { retval = -EPERM; if (change_irq || change_port || (new_info->baud_base != uport->uartclk / 16) || (close_delay != port->close_delay) || (closing_wait != port->closing_wait) || (new_info->xmit_fifo_size && new_info->xmit_fifo_size != uport->fifosize) || (((new_flags ^ old_flags) & ~UPF_USR_MASK) != 0)) goto exit; uport->flags = ((uport->flags & ~UPF_USR_MASK) | (new_flags & UPF_USR_MASK)); uport->custom_divisor = new_info->custom_divisor; goto check_and_exit; } if (change_irq || change_port) { retval = security_locked_down(LOCKDOWN_TIOCSSERIAL); if (retval) goto exit; } /* * Ask the low level driver to verify the settings. */ if (uport->ops->verify_port) retval = uport->ops->verify_port(uport, new_info); if ((new_info->irq >= nr_irqs) || (new_info->irq < 0) || (new_info->baud_base < 9600)) retval = -EINVAL; if (retval) goto exit; if (change_port || change_irq) { retval = -EBUSY; /* * Make sure that we are the sole user of this port. */ if (tty_port_users(port) > 1) goto exit; /* * We need to shutdown the serial port at the old * port/type/irq combination. */ uart_shutdown(tty, state); } if (change_port) { unsigned long old_iobase, old_mapbase; unsigned int old_type, old_iotype, old_hub6, old_shift; old_iobase = uport->iobase; old_mapbase = uport->mapbase; old_type = uport->type; old_hub6 = uport->hub6; old_iotype = uport->iotype; old_shift = uport->regshift; /* * Free and release old regions */ if (old_type != PORT_UNKNOWN && uport->ops->release_port) uport->ops->release_port(uport); uport->iobase = new_port; uport->type = new_info->type; uport->hub6 = new_info->hub6; uport->iotype = new_info->io_type; uport->regshift = new_info->iomem_reg_shift; uport->mapbase = (unsigned long)new_info->iomem_base; /* * Claim and map the new regions */ if (uport->type != PORT_UNKNOWN && uport->ops->request_port) { retval = uport->ops->request_port(uport); } else { /* Always success - Jean II */ retval = 0; } /* * If we fail to request resources for the * new port, try to restore the old settings. */ if (retval) { uport->iobase = old_iobase; uport->type = old_type; uport->hub6 = old_hub6; uport->iotype = old_iotype; uport->regshift = old_shift; uport->mapbase = old_mapbase; if (old_type != PORT_UNKNOWN) { retval = uport->ops->request_port(uport); /* * If we failed to restore the old settings, * we fail like this. */ if (retval) uport->type = PORT_UNKNOWN; /* * We failed anyway. */ retval = -EBUSY; } /* Added to return the correct error -Ram Gupta */ goto exit; } } if (change_irq) uport->irq = new_info->irq; if (!(uport->flags & UPF_FIXED_PORT)) uport->uartclk = new_info->baud_base * 16; uport->flags = (uport->flags & ~UPF_CHANGE_MASK) | (new_flags & UPF_CHANGE_MASK); uport->custom_divisor = new_info->custom_divisor; port->close_delay = close_delay; port->closing_wait = closing_wait; if (new_info->xmit_fifo_size) uport->fifosize = new_info->xmit_fifo_size; check_and_exit: retval = 0; if (uport->type == PORT_UNKNOWN) goto exit; if (tty_port_initialized(port)) { if (((old_flags ^ uport->flags) & UPF_SPD_MASK) || old_custom_divisor != uport->custom_divisor) { /* * If they're setting up a custom divisor or speed, * instead of clearing it, then bitch about it. */ if (uport->flags & UPF_SPD_MASK) { dev_notice_ratelimited(uport->dev, "%s sets custom speed on %s. This is deprecated.\n", current->comm, tty_name(port->tty)); } uart_change_speed(tty, state, NULL); } } else { retval = uart_startup(tty, state, 1); if (retval == 0) tty_port_set_initialized(port, true); if (retval > 0) retval = 0; } exit: return retval; } static int uart_set_info_user(struct tty_struct *tty, struct serial_struct *ss) { struct uart_state *state = tty->driver_data; struct tty_port *port = &state->port; int retval; down_write(&tty->termios_rwsem); /* * This semaphore protects port->count. It is also * very useful to prevent opens. Also, take the * port configuration semaphore to make sure that a * module insertion/removal doesn't change anything * under us. */ mutex_lock(&port->mutex); retval = uart_set_info(tty, port, state, ss); mutex_unlock(&port->mutex); up_write(&tty->termios_rwsem); return retval; } /** * uart_get_lsr_info - get line status register info * @tty: tty associated with the UART * @state: UART being queried * @value: returned modem value */ static int uart_get_lsr_info(struct tty_struct *tty, struct uart_state *state, unsigned int __user *value) { struct uart_port *uport = uart_port_check(state); unsigned int result; result = uport->ops->tx_empty(uport); /* * If we're about to load something into the transmit * register, we'll pretend the transmitter isn't empty to * avoid a race condition (depending on when the transmit * interrupt happens). */ if (uport->x_char || ((uart_circ_chars_pending(&state->xmit) > 0) && !uart_tx_stopped(uport))) result &= ~TIOCSER_TEMT; return put_user(result, value); } static int uart_tiocmget(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; struct tty_port *port = &state->port; struct uart_port *uport; int result = -EIO; mutex_lock(&port->mutex); uport = uart_port_check(state); if (!uport) goto out; if (!tty_io_error(tty)) { result = uport->mctrl; spin_lock_irq(&uport->lock); result |= uport->ops->get_mctrl(uport); spin_unlock_irq(&uport->lock); } out: mutex_unlock(&port->mutex); return result; } static int uart_tiocmset(struct tty_struct *tty, unsigned int set, unsigned int clear) { struct uart_state *state = tty->driver_data; struct tty_port *port = &state->port; struct uart_port *uport; int ret = -EIO; mutex_lock(&port->mutex); uport = uart_port_check(state); if (!uport) goto out; if (!tty_io_error(tty)) { uart_update_mctrl(uport, set, clear); ret = 0; } out: mutex_unlock(&port->mutex); return ret; } static int uart_break_ctl(struct tty_struct *tty, int break_state) { struct uart_state *state = tty->driver_data; struct tty_port *port = &state->port; struct uart_port *uport; int ret = -EIO; mutex_lock(&port->mutex); uport = uart_port_check(state); if (!uport) goto out; if (uport->type != PORT_UNKNOWN && uport->ops->break_ctl) uport->ops->break_ctl(uport, break_state); ret = 0; out: mutex_unlock(&port->mutex); return ret; } static int uart_do_autoconfig(struct tty_struct *tty, struct uart_state *state) { struct tty_port *port = &state->port; struct uart_port *uport; int flags, ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; /* * Take the per-port semaphore. This prevents count from * changing, and hence any extra opens of the port while * we're auto-configuring. */ if (mutex_lock_interruptible(&port->mutex)) return -ERESTARTSYS; uport = uart_port_check(state); if (!uport) { ret = -EIO; goto out; } ret = -EBUSY; if (tty_port_users(port) == 1) { uart_shutdown(tty, state); /* * If we already have a port type configured, * we must release its resources. */ if (uport->type != PORT_UNKNOWN && uport->ops->release_port) uport->ops->release_port(uport); flags = UART_CONFIG_TYPE; if (uport->flags & UPF_AUTO_IRQ) flags |= UART_CONFIG_IRQ; /* * This will claim the ports resources if * a port is found. */ uport->ops->config_port(uport, flags); ret = uart_startup(tty, state, 1); if (ret == 0) tty_port_set_initialized(port, true); if (ret > 0) ret = 0; } out: mutex_unlock(&port->mutex); return ret; } static void uart_enable_ms(struct uart_port *uport) { /* * Force modem status interrupts on */ if (uport->ops->enable_ms) uport->ops->enable_ms(uport); } /* * Wait for any of the 4 modem inputs (DCD,RI,DSR,CTS) to change * - mask passed in arg for lines of interest * (use |'ed TIOCM_RNG/DSR/CD/CTS for masking) * Caller should use TIOCGICOUNT to see which one it was * * FIXME: This wants extracting into a common all driver implementation * of TIOCMWAIT using tty_port. */ static int uart_wait_modem_status(struct uart_state *state, unsigned long arg) { struct uart_port *uport; struct tty_port *port = &state->port; DECLARE_WAITQUEUE(wait, current); struct uart_icount cprev, cnow; int ret; /* * note the counters on entry */ uport = uart_port_ref(state); if (!uport) return -EIO; spin_lock_irq(&uport->lock); memcpy(&cprev, &uport->icount, sizeof(struct uart_icount)); uart_enable_ms(uport); spin_unlock_irq(&uport->lock); add_wait_queue(&port->delta_msr_wait, &wait); for (;;) { spin_lock_irq(&uport->lock); memcpy(&cnow, &uport->icount, sizeof(struct uart_icount)); spin_unlock_irq(&uport->lock); set_current_state(TASK_INTERRUPTIBLE); if (((arg & TIOCM_RNG) && (cnow.rng != cprev.rng)) || ((arg & TIOCM_DSR) && (cnow.dsr != cprev.dsr)) || ((arg & TIOCM_CD) && (cnow.dcd != cprev.dcd)) || ((arg & TIOCM_CTS) && (cnow.cts != cprev.cts))) { ret = 0; break; } schedule(); /* see if a signal did it */ if (signal_pending(current)) { ret = -ERESTARTSYS; break; } cprev = cnow; } __set_current_state(TASK_RUNNING); remove_wait_queue(&port->delta_msr_wait, &wait); uart_port_deref(uport); return ret; } /* * Get counter of input serial line interrupts (DCD,RI,DSR,CTS) * Return: write counters to the user passed counter struct * NB: both 1->0 and 0->1 transitions are counted except for * RI where only 0->1 is counted. */ static int uart_get_icount(struct tty_struct *tty, struct serial_icounter_struct *icount) { struct uart_state *state = tty->driver_data; struct uart_icount cnow; struct uart_port *uport; uport = uart_port_ref(state); if (!uport) return -EIO; spin_lock_irq(&uport->lock); memcpy(&cnow, &uport->icount, sizeof(struct uart_icount)); spin_unlock_irq(&uport->lock); uart_port_deref(uport); icount->cts = cnow.cts; icount->dsr = cnow.dsr; icount->rng = cnow.rng; icount->dcd = cnow.dcd; icount->rx = cnow.rx; icount->tx = cnow.tx; icount->frame = cnow.frame; icount->overrun = cnow.overrun; icount->parity = cnow.parity; icount->brk = cnow.brk; icount->buf_overrun = cnow.buf_overrun; return 0; } static int uart_get_rs485_config(struct uart_port *port, struct serial_rs485 __user *rs485) { unsigned long flags; struct serial_rs485 aux; spin_lock_irqsave(&port->lock, flags); aux = port->rs485; spin_unlock_irqrestore(&port->lock, flags); if (copy_to_user(rs485, &aux, sizeof(aux))) return -EFAULT; return 0; } static int uart_set_rs485_config(struct uart_port *port, struct serial_rs485 __user *rs485_user) { struct serial_rs485 rs485; int ret; unsigned long flags; if (!port->rs485_config) return -ENOTTY; if (copy_from_user(&rs485, rs485_user, sizeof(*rs485_user))) return -EFAULT; /* pick sane settings if the user hasn't */ if (!(rs485.flags & SER_RS485_RTS_ON_SEND) == !(rs485.flags & SER_RS485_RTS_AFTER_SEND)) { dev_warn_ratelimited(port->dev, "%s (%d): invalid RTS setting, using RTS_ON_SEND instead\n", port->name, port->line); rs485.flags |= SER_RS485_RTS_ON_SEND; rs485.flags &= ~SER_RS485_RTS_AFTER_SEND; } if (rs485.delay_rts_before_send > RS485_MAX_RTS_DELAY) { rs485.delay_rts_before_send = RS485_MAX_RTS_DELAY; dev_warn_ratelimited(port->dev, "%s (%d): RTS delay before sending clamped to %u ms\n", port->name, port->line, rs485.delay_rts_before_send); } if (rs485.delay_rts_after_send > RS485_MAX_RTS_DELAY) { rs485.delay_rts_after_send = RS485_MAX_RTS_DELAY; dev_warn_ratelimited(port->dev, "%s (%d): RTS delay after sending clamped to %u ms\n", port->name, port->line, rs485.delay_rts_after_send); } /* Return clean padding area to userspace */ memset(rs485.padding, 0, sizeof(rs485.padding)); spin_lock_irqsave(&port->lock, flags); ret = port->rs485_config(port, &rs485); if (!ret) { port->rs485 = rs485; /* Reset RTS and other mctrl lines when disabling RS485 */ if (!(rs485.flags & SER_RS485_ENABLED)) port->ops->set_mctrl(port, port->mctrl); } spin_unlock_irqrestore(&port->lock, flags); if (ret) return ret; if (copy_to_user(rs485_user, &port->rs485, sizeof(port->rs485))) return -EFAULT; return 0; } static int uart_get_iso7816_config(struct uart_port *port, struct serial_iso7816 __user *iso7816) { unsigned long flags; struct serial_iso7816 aux; if (!port->iso7816_config) return -ENOTTY; spin_lock_irqsave(&port->lock, flags); aux = port->iso7816; spin_unlock_irqrestore(&port->lock, flags); if (copy_to_user(iso7816, &aux, sizeof(aux))) return -EFAULT; return 0; } static int uart_set_iso7816_config(struct uart_port *port, struct serial_iso7816 __user *iso7816_user) { struct serial_iso7816 iso7816; int i, ret; unsigned long flags; if (!port->iso7816_config) return -ENOTTY; if (copy_from_user(&iso7816, iso7816_user, sizeof(*iso7816_user))) return -EFAULT; /* * There are 5 words reserved for future use. Check that userspace * doesn't put stuff in there to prevent breakages in the future. */ for (i = 0; i < 5; i++) if (iso7816.reserved[i]) return -EINVAL; spin_lock_irqsave(&port->lock, flags); ret = port->iso7816_config(port, &iso7816); spin_unlock_irqrestore(&port->lock, flags); if (ret) return ret; if (copy_to_user(iso7816_user, &port->iso7816, sizeof(port->iso7816))) return -EFAULT; return 0; } /* * Called via sys_ioctl. We can use spin_lock_irq() here. */ static int uart_ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg) { struct uart_state *state = tty->driver_data; struct tty_port *port = &state->port; struct uart_port *uport; void __user *uarg = (void __user *)arg; int ret = -ENOIOCTLCMD; /* * These ioctls don't rely on the hardware to be present. */ switch (cmd) { case TIOCSERCONFIG: down_write(&tty->termios_rwsem); ret = uart_do_autoconfig(tty, state); up_write(&tty->termios_rwsem); break; } if (ret != -ENOIOCTLCMD) goto out; if (tty_io_error(tty)) { ret = -EIO; goto out; } /* * The following should only be used when hardware is present. */ switch (cmd) { case TIOCMIWAIT: ret = uart_wait_modem_status(state, arg); break; } if (ret != -ENOIOCTLCMD) goto out; mutex_lock(&port->mutex); uport = uart_port_check(state); if (!uport || tty_io_error(tty)) { ret = -EIO; goto out_up; } /* * All these rely on hardware being present and need to be * protected against the tty being hung up. */ switch (cmd) { case TIOCSERGETLSR: /* Get line status register */ ret = uart_get_lsr_info(tty, state, uarg); break; case TIOCGRS485: ret = uart_get_rs485_config(uport, uarg); break; case TIOCSRS485: ret = uart_set_rs485_config(uport, uarg); break; case TIOCSISO7816: ret = uart_set_iso7816_config(state->uart_port, uarg); break; case TIOCGISO7816: ret = uart_get_iso7816_config(state->uart_port, uarg); break; default: if (uport->ops->ioctl) ret = uport->ops->ioctl(uport, cmd, arg); break; } out_up: mutex_unlock(&port->mutex); out: return ret; } static void uart_set_ldisc(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; struct uart_port *uport; struct tty_port *port = &state->port; if (!tty_port_initialized(port)) return; mutex_lock(&state->port.mutex); uport = uart_port_check(state); if (uport && uport->ops->set_ldisc) uport->ops->set_ldisc(uport, &tty->termios); mutex_unlock(&state->port.mutex); } static void uart_set_termios(struct tty_struct *tty, struct ktermios *old_termios) { struct uart_state *state = tty->driver_data; struct uart_port *uport; unsigned int cflag = tty->termios.c_cflag; unsigned int iflag_mask = IGNBRK|BRKINT|IGNPAR|PARMRK|INPCK; bool sw_changed = false; mutex_lock(&state->port.mutex); uport = uart_port_check(state); if (!uport) goto out; /* * Drivers doing software flow control also need to know * about changes to these input settings. */ if (uport->flags & UPF_SOFT_FLOW) { iflag_mask |= IXANY|IXON|IXOFF; sw_changed = tty->termios.c_cc[VSTART] != old_termios->c_cc[VSTART] || tty->termios.c_cc[VSTOP] != old_termios->c_cc[VSTOP]; } /* * These are the bits that are used to setup various * flags in the low level driver. We can ignore the Bfoo * bits in c_cflag; c_[io]speed will always be set * appropriately by set_termios() in tty_ioctl.c */ if ((cflag ^ old_termios->c_cflag) == 0 && tty->termios.c_ospeed == old_termios->c_ospeed && tty->termios.c_ispeed == old_termios->c_ispeed && ((tty->termios.c_iflag ^ old_termios->c_iflag) & iflag_mask) == 0 && !sw_changed) { goto out; } uart_change_speed(tty, state, old_termios); /* reload cflag from termios; port driver may have overridden flags */ cflag = tty->termios.c_cflag; /* Handle transition to B0 status */ if ((old_termios->c_cflag & CBAUD) && !(cflag & CBAUD)) uart_clear_mctrl(uport, TIOCM_RTS | TIOCM_DTR); /* Handle transition away from B0 status */ else if (!(old_termios->c_cflag & CBAUD) && (cflag & CBAUD)) { unsigned int mask = TIOCM_DTR; if (!(cflag & CRTSCTS) || !tty_throttled(tty)) mask |= TIOCM_RTS; uart_set_mctrl(uport, mask); } out: mutex_unlock(&state->port.mutex); } /* * Calls to uart_close() are serialised via the tty_lock in * drivers/tty/tty_io.c:tty_release() * drivers/tty/tty_io.c:do_tty_hangup() */ static void uart_close(struct tty_struct *tty, struct file *filp) { struct uart_state *state = tty->driver_data; if (!state) { struct uart_driver *drv = tty->driver->driver_state; struct tty_port *port; state = drv->state + tty->index; port = &state->port; spin_lock_irq(&port->lock); --port->count; spin_unlock_irq(&port->lock); return; } pr_debug("uart_close(%d) called\n", tty->index); tty_port_close(tty->port, tty, filp); } static void uart_tty_port_shutdown(struct tty_port *port) { struct uart_state *state = container_of(port, struct uart_state, port); struct uart_port *uport = uart_port_check(state); char *buf; /* * At this point, we stop accepting input. To do this, we * disable the receive line status interrupts. */ if (WARN(!uport, "detached port still initialized!\n")) return; spin_lock_irq(&uport->lock); uport->ops->stop_rx(uport); spin_unlock_irq(&uport->lock); uart_port_shutdown(port); /* * It's possible for shutdown to be called after suspend if we get * a DCD drop (hangup) at just the right time. Clear suspended bit so * we don't try to resume a port that has been shutdown. */ tty_port_set_suspended(port, 0); /* * Free the transmit buffer. */ spin_lock_irq(&uport->lock); buf = state->xmit.buf; state->xmit.buf = NULL; spin_unlock_irq(&uport->lock); if (buf) free_page((unsigned long)buf); uart_change_pm(state, UART_PM_STATE_OFF); } static void uart_wait_until_sent(struct tty_struct *tty, int timeout) { struct uart_state *state = tty->driver_data; struct uart_port *port; unsigned long char_time, expire; port = uart_port_ref(state); if (!port) return; if (port->type == PORT_UNKNOWN || port->fifosize == 0) { uart_port_deref(port); return; } /* * Set the check interval to be 1/5 of the estimated time to * send a single character, and make it at least 1. The check * interval should also be less than the timeout. * * Note: we have to use pretty tight timings here to satisfy * the NIST-PCTS. */ char_time = (port->timeout - HZ/50) / port->fifosize; char_time = char_time / 5; if (char_time == 0) char_time = 1; if (timeout && timeout < char_time) char_time = timeout; /* * If the transmitter hasn't cleared in twice the approximate * amount of time to send the entire FIFO, it probably won't * ever clear. This assumes the UART isn't doing flow * control, which is currently the case. Hence, if it ever * takes longer than port->timeout, this is probably due to a * UART bug of some kind. So, we clamp the timeout parameter at * 2*port->timeout. */ if (timeout == 0 || timeout > 2 * port->timeout) timeout = 2 * port->timeout; expire = jiffies + timeout; pr_debug("uart_wait_until_sent(%d), jiffies=%lu, expire=%lu...\n", port->line, jiffies, expire); /* * Check whether the transmitter is empty every 'char_time'. * 'timeout' / 'expire' give us the maximum amount of time * we wait. */ while (!port->ops->tx_empty(port)) { msleep_interruptible(jiffies_to_msecs(char_time)); if (signal_pending(current)) break; if (time_after(jiffies, expire)) break; } uart_port_deref(port); } /* * Calls to uart_hangup() are serialised by the tty_lock in * drivers/tty/tty_io.c:do_tty_hangup() * This runs from a workqueue and can sleep for a _short_ time only. */ static void uart_hangup(struct tty_struct *tty) { struct uart_state *state = tty->driver_data; struct tty_port *port = &state->port; struct uart_port *uport; unsigned long flags; pr_debug("uart_hangup(%d)\n", tty->index); mutex_lock(&port->mutex); uport = uart_port_check(state); WARN(!uport, "hangup of detached port!\n"); if (tty_port_active(port)) { uart_flush_buffer(tty); uart_shutdown(tty, state); spin_lock_irqsave(&port->lock, flags); port->count = 0; spin_unlock_irqrestore(&port->lock, flags); tty_port_set_active(port, 0); tty_port_tty_set(port, NULL); if (uport && !uart_console(uport)) uart_change_pm(state, UART_PM_STATE_OFF); wake_up_interruptible(&port->open_wait); wake_up_interruptible(&port->delta_msr_wait); } mutex_unlock(&port->mutex); } /* uport == NULL if uart_port has already been removed */ static void uart_port_shutdown(struct tty_port *port) { struct uart_state *state = container_of(port, struct uart_state, port); struct uart_port *uport = uart_port_check(state); /* * clear delta_msr_wait queue to avoid mem leaks: we may free * the irq here so the queue might never be woken up. Note * that we won't end up waiting on delta_msr_wait again since * any outstanding file descriptors should be pointing at * hung_up_tty_fops now. */ wake_up_interruptible(&port->delta_msr_wait); /* * Free the IRQ and disable the port. */ if (uport) uport->ops->shutdown(uport); /* * Ensure that the IRQ handler isn't running on another CPU. */ if (uport) synchronize_irq(uport->irq); } static int uart_carrier_raised(struct tty_port *port) { struct uart_state *state = container_of(port, struct uart_state, port); struct uart_port *uport; int mctrl; uport = uart_port_ref(state); /* * Should never observe uport == NULL since checks for hangup should * abort the tty_port_block_til_ready() loop before checking for carrier * raised -- but report carrier raised if it does anyway so open will * continue and not sleep */ if (WARN_ON(!uport)) return 1; spin_lock_irq(&uport->lock); uart_enable_ms(uport); mctrl = uport->ops->get_mctrl(uport); spin_unlock_irq(&uport->lock); uart_port_deref(uport); if (mctrl & TIOCM_CAR) return 1; return 0; } static void uart_dtr_rts(struct tty_port *port, int raise) { struct uart_state *state = container_of(port, struct uart_state, port); struct uart_port *uport; uport = uart_port_ref(state); if (!uport) return; uart_port_dtr_rts(uport, raise); uart_port_deref(uport); } static int uart_install(struct tty_driver *driver, struct tty_struct *tty) { struct uart_driver *drv = driver->driver_state; struct uart_state *state = drv->state + tty->index; tty->driver_data = state; return tty_standard_install(driver, tty); } /* * Calls to uart_open are serialised by the tty_lock in * drivers/tty/tty_io.c:tty_open() * Note that if this fails, then uart_close() _will_ be called. * * In time, we want to scrap the "opening nonpresent ports" * behaviour and implement an alternative way for setserial * to set base addresses/ports/types. This will allow us to * get rid of a certain amount of extra tests. */ static int uart_open(struct tty_struct *tty, struct file *filp) { struct uart_state *state = tty->driver_data; int retval; retval = tty_port_open(&state->port, tty, filp); if (retval > 0) retval = 0; return retval; } static int uart_port_activate(struct tty_port *port, struct tty_struct *tty) { struct uart_state *state = container_of(port, struct uart_state, port); struct uart_port *uport; int ret; uport = uart_port_check(state); if (!uport || uport->flags & UPF_DEAD) return -ENXIO; /* * Start up the serial port. */ ret = uart_startup(tty, state, 0); if (ret > 0) tty_port_set_active(port, 1); return ret; } static const char *uart_type(struct uart_port *port) { const char *str = NULL; if (port->ops->type) str = port->ops->type(port); if (!str) str = "unknown"; return str; } #ifdef CONFIG_PROC_FS static void uart_line_info(struct seq_file *m, struct uart_driver *drv, int i) { struct uart_state *state = drv->state + i; struct tty_port *port = &state->port; enum uart_pm_state pm_state; struct uart_port *uport; char stat_buf[32]; unsigned int status; int mmio; mutex_lock(&port->mutex); uport = uart_port_check(state); if (!uport) goto out; mmio = uport->iotype >= UPIO_MEM; seq_printf(m, "%d: uart:%s %s%08llX irq:%d", uport->line, uart_type(uport), mmio ? "mmio:0x" : "port:", mmio ? (unsigned long long)uport->mapbase : (unsigned long long)uport->iobase, uport->irq); if (uport->type == PORT_UNKNOWN) { seq_putc(m, '\n'); goto out; } if (capable(CAP_SYS_ADMIN)) { pm_state = state->pm_state; if (pm_state != UART_PM_STATE_ON) uart_change_pm(state, UART_PM_STATE_ON); spin_lock_irq(&uport->lock); status = uport->ops->get_mctrl(uport); spin_unlock_irq(&uport->lock); if (pm_state != UART_PM_STATE_ON) uart_change_pm(state, pm_state); seq_printf(m, " tx:%d rx:%d", uport->icount.tx, uport->icount.rx); if (uport->icount.frame) seq_printf(m, " fe:%d", uport->icount.frame); if (uport->icount.parity) seq_printf(m, " pe:%d", uport->icount.parity); if (uport->icount.brk) seq_printf(m, " brk:%d", uport->icount.brk); if (uport->icount.overrun) seq_printf(m, " oe:%d", uport->icount.overrun); if (uport->icount.buf_overrun) seq_printf(m, " bo:%d", uport->icount.buf_overrun); #define INFOBIT(bit, str) \ if (uport->mctrl & (bit)) \ strncat(stat_buf, (str), sizeof(stat_buf) - \ strlen(stat_buf) - 2) #define STATBIT(bit, str) \ if (status & (bit)) \ strncat(stat_buf, (str), sizeof(stat_buf) - \ strlen(stat_buf) - 2) stat_buf[0] = '\0'; stat_buf[1] = '\0'; INFOBIT(TIOCM_RTS, "|RTS"); STATBIT(TIOCM_CTS, "|CTS"); INFOBIT(TIOCM_DTR, "|DTR"); STATBIT(TIOCM_DSR, "|DSR"); STATBIT(TIOCM_CAR, "|CD"); STATBIT(TIOCM_RNG, "|RI"); if (stat_buf[0]) stat_buf[0] = ' '; seq_puts(m, stat_buf); } seq_putc(m, '\n'); #undef STATBIT #undef INFOBIT out: mutex_unlock(&port->mutex); } static int uart_proc_show(struct seq_file *m, void *v) { struct tty_driver *ttydrv = m->private; struct uart_driver *drv = ttydrv->driver_state; int i; seq_printf(m, "serinfo:1.0 driver%s%s revision:%s\n", "", "", ""); for (i = 0; i < drv->nr; i++) uart_line_info(m, drv, i); return 0; } #endif static void uart_port_spin_lock_init(struct uart_port *port) { spin_lock_init(&port->lock); lockdep_set_class(&port->lock, &port_lock_key); } #if defined(CONFIG_SERIAL_CORE_CONSOLE) || defined(CONFIG_CONSOLE_POLL) /** * uart_console_write - write a console message to a serial port * @port: the port to write the message * @s: array of characters * @count: number of characters in string to write * @putchar: function to write character to port */ void uart_console_write(struct uart_port *port, const char *s, unsigned int count, void (*putchar)(struct uart_port *, int)) { unsigned int i; for (i = 0; i < count; i++, s++) { if (*s == '\n') putchar(port, '\r'); putchar(port, *s); } } EXPORT_SYMBOL_GPL(uart_console_write); /* * Check whether an invalid uart number has been specified, and * if so, search for the first available port that does have * console support. */ struct uart_port * __init uart_get_console(struct uart_port *ports, int nr, struct console *co) { int idx = co->index; if (idx < 0 || idx >= nr || (ports[idx].iobase == 0 && ports[idx].membase == NULL)) for (idx = 0; idx < nr; idx++) if (ports[idx].iobase != 0 || ports[idx].membase != NULL) break; co->index = idx; return ports + idx; } /** * uart_parse_earlycon - Parse earlycon options * @p: ptr to 2nd field (ie., just beyond '<name>,') * @iotype: ptr for decoded iotype (out) * @addr: ptr for decoded mapbase/iobase (out) * @options: ptr for <options> field; NULL if not present (out) * * Decodes earlycon kernel command line parameters of the form * earlycon=<name>,io|mmio|mmio16|mmio32|mmio32be|mmio32native,<addr>,<options> * console=<name>,io|mmio|mmio16|mmio32|mmio32be|mmio32native,<addr>,<options> * * The optional form * * earlycon=<name>,0x<addr>,<options> * console=<name>,0x<addr>,<options> * * is also accepted; the returned @iotype will be UPIO_MEM. * * Returns 0 on success or -EINVAL on failure */ int uart_parse_earlycon(char *p, unsigned char *iotype, resource_size_t *addr, char **options) { if (strncmp(p, "mmio,", 5) == 0) { *iotype = UPIO_MEM; p += 5; } else if (strncmp(p, "mmio16,", 7) == 0) { *iotype = UPIO_MEM16; p += 7; } else if (strncmp(p, "mmio32,", 7) == 0) { *iotype = UPIO_MEM32; p += 7; } else if (strncmp(p, "mmio32be,", 9) == 0) { *iotype = UPIO_MEM32BE; p += 9; } else if (strncmp(p, "mmio32native,", 13) == 0) { *iotype = IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) ? UPIO_MEM32BE : UPIO_MEM32; p += 13; } else if (strncmp(p, "io,", 3) == 0) { *iotype = UPIO_PORT; p += 3; } else if (strncmp(p, "0x", 2) == 0) { *iotype = UPIO_MEM; } else { return -EINVAL; } /* * Before you replace it with kstrtoull(), think about options separator * (',') it will not tolerate */ *addr = simple_strtoull(p, NULL, 0); p = strchr(p, ','); if (p) p++; *options = p; return 0; } EXPORT_SYMBOL_GPL(uart_parse_earlycon); /** * uart_parse_options - Parse serial port baud/parity/bits/flow control. * @options: pointer to option string * @baud: pointer to an 'int' variable for the baud rate. * @parity: pointer to an 'int' variable for the parity. * @bits: pointer to an 'int' variable for the number of data bits. * @flow: pointer to an 'int' variable for the flow control character. * * uart_parse_options decodes a string containing the serial console * options. The format of the string is <baud><parity><bits><flow>, * eg: 115200n8r */ void uart_parse_options(const char *options, int *baud, int *parity, int *bits, int *flow) { const char *s = options; *baud = simple_strtoul(s, NULL, 10); while (*s >= '0' && *s <= '9') s++; if (*s) *parity = *s++; if (*s) *bits = *s++ - '0'; if (*s) *flow = *s; } EXPORT_SYMBOL_GPL(uart_parse_options); /** * uart_set_options - setup the serial console parameters * @port: pointer to the serial ports uart_port structure * @co: console pointer * @baud: baud rate * @parity: parity character - 'n' (none), 'o' (odd), 'e' (even) * @bits: number of data bits * @flow: flow control character - 'r' (rts) */ int uart_set_options(struct uart_port *port, struct console *co, int baud, int parity, int bits, int flow) { struct ktermios termios; static struct ktermios dummy; /* * Ensure that the serial-console lock is initialised early. * * Note that the console-enabled check is needed because of kgdboc, * which can end up calling uart_set_options() for an already enabled * console via tty_find_polling_driver() and uart_poll_init(). */ if (!uart_console_enabled(port) && !port->console_reinit) uart_port_spin_lock_init(port); memset(&termios, 0, sizeof(struct ktermios)); termios.c_cflag |= CREAD | HUPCL | CLOCAL; tty_termios_encode_baud_rate(&termios, baud, baud); if (bits == 7) termios.c_cflag |= CS7; else termios.c_cflag |= CS8; switch (parity) { case 'o': case 'O': termios.c_cflag |= PARODD; fallthrough; case 'e': case 'E': termios.c_cflag |= PARENB; break; } if (flow == 'r') termios.c_cflag |= CRTSCTS; /* * some uarts on other side don't support no flow control. * So we set * DTR in host uart to make them happy */ port->mctrl |= TIOCM_DTR; port->ops->set_termios(port, &termios, &dummy); /* * Allow the setting of the UART parameters with a NULL console * too: */ if (co) { co->cflag = termios.c_cflag; co->ispeed = termios.c_ispeed; co->ospeed = termios.c_ospeed; } return 0; } EXPORT_SYMBOL_GPL(uart_set_options); #endif /* CONFIG_SERIAL_CORE_CONSOLE */ /** * uart_change_pm - set power state of the port * * @state: port descriptor * @pm_state: new state * * Locking: port->mutex has to be held */ static void uart_change_pm(struct uart_state *state, enum uart_pm_state pm_state) { struct uart_port *port = uart_port_check(state); if (state->pm_state != pm_state) { if (port && port->ops->pm) port->ops->pm(port, pm_state, state->pm_state); state->pm_state = pm_state; } } struct uart_match { struct uart_port *port; struct uart_driver *driver; }; static int serial_match_port(struct device *dev, void *data) { struct uart_match *match = data; struct tty_driver *tty_drv = match->driver->tty_driver; dev_t devt = MKDEV(tty_drv->major, tty_drv->minor_start) + match->port->line; return dev->devt == devt; /* Actually, only one tty per port */ } int uart_suspend_port(struct uart_driver *drv, struct uart_port *uport) { struct uart_state *state = drv->state + uport->line; struct tty_port *port = &state->port; struct device *tty_dev; struct uart_match match = {uport, drv}; mutex_lock(&port->mutex); tty_dev = device_find_child(uport->dev, &match, serial_match_port); if (tty_dev && device_may_wakeup(tty_dev)) { enable_irq_wake(uport->irq); put_device(tty_dev); mutex_unlock(&port->mutex); return 0; } put_device(tty_dev); /* Nothing to do if the console is not suspending */ if (!console_suspend_enabled && uart_console(uport)) goto unlock; uport->suspended = 1; if (tty_port_initialized(port)) { const struct uart_ops *ops = uport->ops; int tries; tty_port_set_suspended(port, 1); tty_port_set_initialized(port, 0); spin_lock_irq(&uport->lock); ops->stop_tx(uport); if (!(uport->rs485.flags & SER_RS485_ENABLED)) ops->set_mctrl(uport, 0); ops->stop_rx(uport); spin_unlock_irq(&uport->lock); /* * Wait for the transmitter to empty. */ for (tries = 3; !ops->tx_empty(uport) && tries; tries--) msleep(10); if (!tries) dev_err(uport->dev, "%s: Unable to drain transmitter\n", uport->name); ops->shutdown(uport); } /* * Disable the console device before suspending. */ if (uart_console(uport)) console_stop(uport->cons); uart_change_pm(state, UART_PM_STATE_OFF); unlock: mutex_unlock(&port->mutex); return 0; } int uart_resume_port(struct uart_driver *drv, struct uart_port *uport) { struct uart_state *state = drv->state + uport->line; struct tty_port *port = &state->port; struct device *tty_dev; struct uart_match match = {uport, drv}; struct ktermios termios; mutex_lock(&port->mutex); tty_dev = device_find_child(uport->dev, &match, serial_match_port); if (!uport->suspended && device_may_wakeup(tty_dev)) { if (irqd_is_wakeup_set(irq_get_irq_data((uport->irq)))) disable_irq_wake(uport->irq); put_device(tty_dev); mutex_unlock(&port->mutex); return 0; } put_device(tty_dev); uport->suspended = 0; /* * Re-enable the console device after suspending. */ if (uart_console(uport)) { /* * First try to use the console cflag setting. */ memset(&termios, 0, sizeof(struct ktermios)); termios.c_cflag = uport->cons->cflag; termios.c_ispeed = uport->cons->ispeed; termios.c_ospeed = uport->cons->ospeed; /* * If that's unset, use the tty termios setting. */ if (port->tty && termios.c_cflag == 0) termios = port->tty->termios; if (console_suspend_enabled) uart_change_pm(state, UART_PM_STATE_ON); uport->ops->set_termios(uport, &termios, NULL); if (console_suspend_enabled) console_start(uport->cons); } if (tty_port_suspended(port)) { const struct uart_ops *ops = uport->ops; int ret; uart_change_pm(state, UART_PM_STATE_ON); spin_lock_irq(&uport->lock); if (!(uport->rs485.flags & SER_RS485_ENABLED)) ops->set_mctrl(uport, 0); spin_unlock_irq(&uport->lock); if (console_suspend_enabled || !uart_console(uport)) { /* Protected by port mutex for now */ struct tty_struct *tty = port->tty; ret = ops->startup(uport); if (ret == 0) { if (tty) uart_change_speed(tty, state, NULL); spin_lock_irq(&uport->lock); if (!(uport->rs485.flags & SER_RS485_ENABLED)) ops->set_mctrl(uport, uport->mctrl); else uport->rs485_config(uport, &uport->rs485); ops->start_tx(uport); spin_unlock_irq(&uport->lock); tty_port_set_initialized(port, 1); } else { /* * Failed to resume - maybe hardware went away? * Clear the "initialized" flag so we won't try * to call the low level drivers shutdown method. */ uart_shutdown(tty, state); } } tty_port_set_suspended(port, 0); } mutex_unlock(&port->mutex); return 0; } static inline void uart_report_port(struct uart_driver *drv, struct uart_port *port) { char address[64]; switch (port->iotype) { case UPIO_PORT: snprintf(address, sizeof(address), "I/O 0x%lx", port->iobase); break; case UPIO_HUB6: snprintf(address, sizeof(address), "I/O 0x%lx offset 0x%x", port->iobase, port->hub6); break; case UPIO_MEM: case UPIO_MEM16: case UPIO_MEM32: case UPIO_MEM32BE: case UPIO_AU: case UPIO_TSI: snprintf(address, sizeof(address), "MMIO 0x%llx", (unsigned long long)port->mapbase); break; default: strlcpy(address, "*unknown*", sizeof(address)); break; } pr_info("%s%s%s at %s (irq = %d, base_baud = %d) is a %s\n", port->dev ? dev_name(port->dev) : "", port->dev ? ": " : "", port->name, address, port->irq, port->uartclk / 16, uart_type(port)); /* The magic multiplier feature is a bit obscure, so report it too. */ if (port->flags & UPF_MAGIC_MULTIPLIER) pr_info("%s%s%s extra baud rates supported: %d, %d", port->dev ? dev_name(port->dev) : "", port->dev ? ": " : "", port->name, port->uartclk / 8, port->uartclk / 4); } static void uart_configure_port(struct uart_driver *drv, struct uart_state *state, struct uart_port *port) { unsigned int flags; /* * If there isn't a port here, don't do anything further. */ if (!port->iobase && !port->mapbase && !port->membase) return; /* * Now do the auto configuration stuff. Note that config_port * is expected to claim the resources and map the port for us. */ flags = 0; if (port->flags & UPF_AUTO_IRQ) flags |= UART_CONFIG_IRQ; if (port->flags & UPF_BOOT_AUTOCONF) { if (!(port->flags & UPF_FIXED_TYPE)) { port->type = PORT_UNKNOWN; flags |= UART_CONFIG_TYPE; } /* Synchronize with possible boot console. */ if (uart_console(port)) console_lock(); port->ops->config_port(port, flags); if (uart_console(port)) console_unlock(); } if (port->type != PORT_UNKNOWN) { unsigned long flags; uart_report_port(drv, port); /* Synchronize with possible boot console. */ if (uart_console(port)) console_lock(); /* Power up port for set_mctrl() */ uart_change_pm(state, UART_PM_STATE_ON); /* * Ensure that the modem control lines are de-activated. * keep the DTR setting that is set in uart_set_options() * We probably don't need a spinlock around this, but */ spin_lock_irqsave(&port->lock, flags); port->mctrl &= TIOCM_DTR; if (!(port->rs485.flags & SER_RS485_ENABLED)) port->ops->set_mctrl(port, port->mctrl); else port->rs485_config(port, &port->rs485); spin_unlock_irqrestore(&port->lock, flags); if (uart_console(port)) console_unlock(); /* * If this driver supports console, and it hasn't been * successfully registered yet, try to re-register it. * It may be that the port was not available. */ if (port->cons && !(port->cons->flags & CON_ENABLED)) register_console(port->cons); /* * Power down all ports by default, except the * console if we have one. */ if (!uart_console(port)) uart_change_pm(state, UART_PM_STATE_OFF); } } #ifdef CONFIG_CONSOLE_POLL static int uart_poll_init(struct tty_driver *driver, int line, char *options) { struct uart_driver *drv = driver->driver_state; struct uart_state *state = drv->state + line; struct tty_port *tport; struct uart_port *port; int baud = 9600; int bits = 8; int parity = 'n'; int flow = 'n'; int ret = 0; tport = &state->port; mutex_lock(&tport->mutex); port = uart_port_check(state); if (!port || !(port->ops->poll_get_char && port->ops->poll_put_char)) { ret = -1; goto out; } if (port->ops->poll_init) { /* * We don't set initialized as we only initialized the hw, * e.g. state->xmit is still uninitialized. */ if (!tty_port_initialized(tport)) ret = port->ops->poll_init(port); } if (!ret && options) { uart_parse_options(options, &baud, &parity, &bits, &flow); ret = uart_set_options(port, NULL, baud, parity, bits, flow); } out: mutex_unlock(&tport->mutex); return ret; } static int uart_poll_get_char(struct tty_driver *driver, int line) { struct uart_driver *drv = driver->driver_state; struct uart_state *state = drv->state + line; struct uart_port *port; int ret = -1; port = uart_port_ref(state); if (port) { ret = port->ops->poll_get_char(port); uart_port_deref(port); } return ret; } static void uart_poll_put_char(struct tty_driver *driver, int line, char ch) { struct uart_driver *drv = driver->driver_state; struct uart_state *state = drv->state + line; struct uart_port *port; port = uart_port_ref(state); if (!port) return; if (ch == '\n') port->ops->poll_put_char(port, '\r'); port->ops->poll_put_char(port, ch); uart_port_deref(port); } #endif static const struct tty_operations uart_ops = { .install = uart_install, .open = uart_open, .close = uart_close, .write = uart_write, .put_char = uart_put_char, .flush_chars = uart_flush_chars, .write_room = uart_write_room, .chars_in_buffer= uart_chars_in_buffer, .flush_buffer = uart_flush_buffer, .ioctl = uart_ioctl, .throttle = uart_throttle, .unthrottle = uart_unthrottle, .send_xchar = uart_send_xchar, .set_termios = uart_set_termios, .set_ldisc = uart_set_ldisc, .stop = uart_stop, .start = uart_start, .hangup = uart_hangup, .break_ctl = uart_break_ctl, .wait_until_sent= uart_wait_until_sent, #ifdef CONFIG_PROC_FS .proc_show = uart_proc_show, #endif .tiocmget = uart_tiocmget, .tiocmset = uart_tiocmset, .set_serial = uart_set_info_user, .get_serial = uart_get_info_user, .get_icount = uart_get_icount, #ifdef CONFIG_CONSOLE_POLL .poll_init = uart_poll_init, .poll_get_char = uart_poll_get_char, .poll_put_char = uart_poll_put_char, #endif }; static const struct tty_port_operations uart_port_ops = { .carrier_raised = uart_carrier_raised, .dtr_rts = uart_dtr_rts, .activate = uart_port_activate, .shutdown = uart_tty_port_shutdown, }; /** * uart_register_driver - register a driver with the uart core layer * @drv: low level driver structure * * Register a uart driver with the core driver. We in turn register * with the tty layer, and initialise the core driver per-port state. * * We have a proc file in /proc/tty/driver which is named after the * normal driver. * * drv->port should be NULL, and the per-port structures should be * registered using uart_add_one_port after this call has succeeded. */ int uart_register_driver(struct uart_driver *drv) { struct tty_driver *normal; int i, retval = -ENOMEM; BUG_ON(drv->state); /* * Maybe we should be using a slab cache for this, especially if * we have a large number of ports to handle. */ drv->state = kcalloc(drv->nr, sizeof(struct uart_state), GFP_KERNEL); if (!drv->state) goto out; normal = tty_alloc_driver(drv->nr, TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV); if (IS_ERR(normal)) { retval = PTR_ERR(normal); goto out_kfree; } drv->tty_driver = normal; normal->driver_name = drv->driver_name; normal->name = drv->dev_name; normal->major = drv->major; normal->minor_start = drv->minor; normal->type = TTY_DRIVER_TYPE_SERIAL; normal->subtype = SERIAL_TYPE_NORMAL; normal->init_termios = tty_std_termios; normal->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL; normal->init_termios.c_ispeed = normal->init_termios.c_ospeed = 9600; normal->driver_state = drv; tty_set_operations(normal, &uart_ops); /* * Initialise the UART state(s). */ for (i = 0; i < drv->nr; i++) { struct uart_state *state = drv->state + i; struct tty_port *port = &state->port; tty_port_init(port); port->ops = &uart_port_ops; } retval = tty_register_driver(normal); if (retval >= 0) return retval; for (i = 0; i < drv->nr; i++) tty_port_destroy(&drv->state[i].port); tty_driver_kref_put(normal); out_kfree: kfree(drv->state); out: return retval; } /** * uart_unregister_driver - remove a driver from the uart core layer * @drv: low level driver structure * * Remove all references to a driver from the core driver. The low * level driver must have removed all its ports via the * uart_remove_one_port() if it registered them with uart_add_one_port(). * (ie, drv->port == NULL) */ void uart_unregister_driver(struct uart_driver *drv) { struct tty_driver *p = drv->tty_driver; unsigned int i; tty_unregister_driver(p); tty_driver_kref_put(p); for (i = 0; i < drv->nr; i++) tty_port_destroy(&drv->state[i].port); kfree(drv->state); drv->state = NULL; drv->tty_driver = NULL; } struct tty_driver *uart_console_device(struct console *co, int *index) { struct uart_driver *p = co->data; *index = co->index; return p->tty_driver; } EXPORT_SYMBOL_GPL(uart_console_device); static ssize_t uartclk_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "%d\n", tmp.baud_base * 16); } static ssize_t type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "%d\n", tmp.type); } static ssize_t line_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "%d\n", tmp.line); } static ssize_t port_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); unsigned long ioaddr; uart_get_info(port, &tmp); ioaddr = tmp.port; if (HIGH_BITS_OFFSET) ioaddr |= (unsigned long)tmp.port_high << HIGH_BITS_OFFSET; return sprintf(buf, "0x%lX\n", ioaddr); } static ssize_t irq_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "%d\n", tmp.irq); } static ssize_t flags_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "0x%X\n", tmp.flags); } static ssize_t xmit_fifo_size_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "%d\n", tmp.xmit_fifo_size); } static ssize_t close_delay_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "%d\n", tmp.close_delay); } static ssize_t closing_wait_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "%d\n", tmp.closing_wait); } static ssize_t custom_divisor_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "%d\n", tmp.custom_divisor); } static ssize_t io_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "%d\n", tmp.io_type); } static ssize_t iomem_base_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "0x%lX\n", (unsigned long)tmp.iomem_base); } static ssize_t iomem_reg_shift_show(struct device *dev, struct device_attribute *attr, char *buf) { struct serial_struct tmp; struct tty_port *port = dev_get_drvdata(dev); uart_get_info(port, &tmp); return sprintf(buf, "%d\n", tmp.iomem_reg_shift); } static ssize_t console_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tty_port *port = dev_get_drvdata(dev); struct uart_state *state = container_of(port, struct uart_state, port); struct uart_port *uport; bool console = false; mutex_lock(&port->mutex); uport = uart_port_check(state); if (uport) console = uart_console_enabled(uport); mutex_unlock(&port->mutex); return sprintf(buf, "%c\n", console ? 'Y' : 'N'); } static ssize_t console_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct tty_port *port = dev_get_drvdata(dev); struct uart_state *state = container_of(port, struct uart_state, port); struct uart_port *uport; bool oldconsole, newconsole; int ret; ret = kstrtobool(buf, &newconsole); if (ret) return ret; mutex_lock(&port->mutex); uport = uart_port_check(state); if (uport) { oldconsole = uart_console_enabled(uport); if (oldconsole && !newconsole) { ret = unregister_console(uport->cons); } else if (!oldconsole && newconsole) { if (uart_console(uport)) { uport->console_reinit = 1; register_console(uport->cons); } else { ret = -ENOENT; } } } else { ret = -ENXIO; } mutex_unlock(&port->mutex); return ret < 0 ? ret : count; } static DEVICE_ATTR_RO(uartclk); static DEVICE_ATTR_RO(type); static DEVICE_ATTR_RO(line); static DEVICE_ATTR_RO(port); static DEVICE_ATTR_RO(irq); static DEVICE_ATTR_RO(flags); static DEVICE_ATTR_RO(xmit_fifo_size); static DEVICE_ATTR_RO(close_delay); static DEVICE_ATTR_RO(closing_wait); static DEVICE_ATTR_RO(custom_divisor); static DEVICE_ATTR_RO(io_type); static DEVICE_ATTR_RO(iomem_base); static DEVICE_ATTR_RO(iomem_reg_shift); static DEVICE_ATTR_RW(console); static struct attribute *tty_dev_attrs[] = { &dev_attr_uartclk.attr, &dev_attr_type.attr, &dev_attr_line.attr, &dev_attr_port.attr, &dev_attr_irq.attr, &dev_attr_flags.attr, &dev_attr_xmit_fifo_size.attr, &dev_attr_close_delay.attr, &dev_attr_closing_wait.attr, &dev_attr_custom_divisor.attr, &dev_attr_io_type.attr, &dev_attr_iomem_base.attr, &dev_attr_iomem_reg_shift.attr, &dev_attr_console.attr, NULL }; static const struct attribute_group tty_dev_attr_group = { .attrs = tty_dev_attrs, }; /** * uart_add_one_port - attach a driver-defined port structure * @drv: pointer to the uart low level driver structure for this port * @uport: uart port structure to use for this port. * * Context: task context, might sleep * * This allows the driver to register its own uart_port structure * with the core driver. The main purpose is to allow the low * level uart drivers to expand uart_port, rather than having yet * more levels of structures. */ int uart_add_one_port(struct uart_driver *drv, struct uart_port *uport) { struct uart_state *state; struct tty_port *port; int ret = 0; struct device *tty_dev; int num_groups; if (uport->line >= drv->nr) return -EINVAL; state = drv->state + uport->line; port = &state->port; mutex_lock(&port_mutex); mutex_lock(&port->mutex); if (state->uart_port) { ret = -EINVAL; goto out; } /* Link the port to the driver state table and vice versa */ atomic_set(&state->refcount, 1); init_waitqueue_head(&state->remove_wait); state->uart_port = uport; uport->state = state; state->pm_state = UART_PM_STATE_UNDEFINED; uport->cons = drv->cons; uport->minor = drv->tty_driver->minor_start + uport->line; uport->name = kasprintf(GFP_KERNEL, "%s%d", drv->dev_name, drv->tty_driver->name_base + uport->line); if (!uport->name) { ret = -ENOMEM; goto out; } /* * If this port is in use as a console then the spinlock is already * initialised. */ if (!uart_console_enabled(uport)) uart_port_spin_lock_init(uport); if (uport->cons && uport->dev) of_console_check(uport->dev->of_node, uport->cons->name, uport->line); tty_port_link_device(port, drv->tty_driver, uport->line); uart_configure_port(drv, state, uport); port->console = uart_console(uport); num_groups = 2; if (uport->attr_group) num_groups++; uport->tty_groups = kcalloc(num_groups, sizeof(*uport->tty_groups), GFP_KERNEL); if (!uport->tty_groups) { ret = -ENOMEM; goto out; } uport->tty_groups[0] = &tty_dev_attr_group; if (uport->attr_group) uport->tty_groups[1] = uport->attr_group; /* * Register the port whether it's detected or not. This allows * setserial to be used to alter this port's parameters. */ tty_dev = tty_port_register_device_attr_serdev(port, drv->tty_driver, uport->line, uport->dev, port, uport->tty_groups); if (!IS_ERR(tty_dev)) { device_set_wakeup_capable(tty_dev, 1); } else { dev_err(uport->dev, "Cannot register tty device on line %d\n", uport->line); } /* * Ensure UPF_DEAD is not set. */ uport->flags &= ~UPF_DEAD; out: mutex_unlock(&port->mutex); mutex_unlock(&port_mutex); return ret; } /** * uart_remove_one_port - detach a driver defined port structure * @drv: pointer to the uart low level driver structure for this port * @uport: uart port structure for this port * * Context: task context, might sleep * * This unhooks (and hangs up) the specified port structure from the * core driver. No further calls will be made to the low-level code * for this port. */ int uart_remove_one_port(struct uart_driver *drv, struct uart_port *uport) { struct uart_state *state = drv->state + uport->line; struct tty_port *port = &state->port; struct uart_port *uart_port; struct tty_struct *tty; int ret = 0; mutex_lock(&port_mutex); /* * Mark the port "dead" - this prevents any opens from * succeeding while we shut down the port. */ mutex_lock(&port->mutex); uart_port = uart_port_check(state); if (uart_port != uport) dev_alert(uport->dev, "Removing wrong port: %p != %p\n", uart_port, uport); if (!uart_port) { mutex_unlock(&port->mutex); ret = -EINVAL; goto out; } uport->flags |= UPF_DEAD; mutex_unlock(&port->mutex); /* * Remove the devices from the tty layer */ tty_port_unregister_device(port, drv->tty_driver, uport->line); tty = tty_port_tty_get(port); if (tty) { tty_vhangup(port->tty); tty_kref_put(tty); } /* * If the port is used as a console, unregister it */ if (uart_console(uport)) unregister_console(uport->cons); /* * Free the port IO and memory resources, if any. */ if (uport->type != PORT_UNKNOWN && uport->ops->release_port) uport->ops->release_port(uport); kfree(uport->tty_groups); kfree(uport->name); /* * Indicate that there isn't a port here anymore. */ uport->type = PORT_UNKNOWN; mutex_lock(&port->mutex); WARN_ON(atomic_dec_return(&state->refcount) < 0); wait_event(state->remove_wait, !atomic_read(&state->refcount)); state->uart_port = NULL; mutex_unlock(&port->mutex); out: mutex_unlock(&port_mutex); return ret; } /* * Are the two ports equivalent? */ bool uart_match_port(const struct uart_port *port1, const struct uart_port *port2) { if (port1->iotype != port2->iotype) return false; switch (port1->iotype) { case UPIO_PORT: return port1->iobase == port2->iobase; case UPIO_HUB6: return port1->iobase == port2->iobase && port1->hub6 == port2->hub6; case UPIO_MEM: case UPIO_MEM16: case UPIO_MEM32: case UPIO_MEM32BE: case UPIO_AU: case UPIO_TSI: return port1->mapbase == port2->mapbase; } return false; } EXPORT_SYMBOL(uart_match_port); /** * uart_handle_dcd_change - handle a change of carrier detect state * @uport: uart_port structure for the open port * @status: new carrier detect status, nonzero if active * * Caller must hold uport->lock */ void uart_handle_dcd_change(struct uart_port *uport, unsigned int status) { struct tty_port *port = &uport->state->port; struct tty_struct *tty = port->tty; struct tty_ldisc *ld; lockdep_assert_held_once(&uport->lock); if (tty) { ld = tty_ldisc_ref(tty); if (ld) { if (ld->ops->dcd_change) ld->ops->dcd_change(tty, status); tty_ldisc_deref(ld); } } uport->icount.dcd++; if (uart_dcd_enabled(uport)) { if (status) wake_up_interruptible(&port->open_wait); else if (tty) tty_hangup(tty); } } EXPORT_SYMBOL_GPL(uart_handle_dcd_change); /** * uart_handle_cts_change - handle a change of clear-to-send state * @uport: uart_port structure for the open port * @status: new clear to send status, nonzero if active * * Caller must hold uport->lock */ void uart_handle_cts_change(struct uart_port *uport, unsigned int status) { lockdep_assert_held_once(&uport->lock); uport->icount.cts++; if (uart_softcts_mode(uport)) { if (uport->hw_stopped) { if (status) { uport->hw_stopped = 0; uport->ops->start_tx(uport); uart_write_wakeup(uport); } } else { if (!status) { uport->hw_stopped = 1; uport->ops->stop_tx(uport); } } } } EXPORT_SYMBOL_GPL(uart_handle_cts_change); /** * uart_insert_char - push a char to the uart layer * * User is responsible to call tty_flip_buffer_push when they are done with * insertion. * * @port: corresponding port * @status: state of the serial port RX buffer (LSR for 8250) * @overrun: mask of overrun bits in @status * @ch: character to push * @flag: flag for the character (see TTY_NORMAL and friends) */ void uart_insert_char(struct uart_port *port, unsigned int status, unsigned int overrun, unsigned int ch, unsigned int flag) { struct tty_port *tport = &port->state->port; if ((status & port->ignore_status_mask & ~overrun) == 0) if (tty_insert_flip_char(tport, ch, flag) == 0) ++port->icount.buf_overrun; /* * Overrun is special. Since it's reported immediately, * it doesn't affect the current character. */ if (status & ~port->ignore_status_mask & overrun) if (tty_insert_flip_char(tport, 0, TTY_OVERRUN) == 0) ++port->icount.buf_overrun; } EXPORT_SYMBOL_GPL(uart_insert_char); #ifdef CONFIG_MAGIC_SYSRQ_SERIAL static const char sysrq_toggle_seq[] = CONFIG_MAGIC_SYSRQ_SERIAL_SEQUENCE; static void uart_sysrq_on(struct work_struct *w) { int sysrq_toggle_seq_len = strlen(sysrq_toggle_seq); sysrq_toggle_support(1); pr_info("SysRq is enabled by magic sequence '%*pE' on serial\n", sysrq_toggle_seq_len, sysrq_toggle_seq); } static DECLARE_WORK(sysrq_enable_work, uart_sysrq_on); /** * uart_try_toggle_sysrq - Enables SysRq from serial line * @port: uart_port structure where char(s) after BREAK met * @ch: new character in the sequence after received BREAK * * Enables magic SysRq when the required sequence is met on port * (see CONFIG_MAGIC_SYSRQ_SERIAL_SEQUENCE). * * Returns false if @ch is out of enabling sequence and should be * handled some other way, true if @ch was consumed. */ bool uart_try_toggle_sysrq(struct uart_port *port, unsigned int ch) { int sysrq_toggle_seq_len = strlen(sysrq_toggle_seq); if (!sysrq_toggle_seq_len) return false; BUILD_BUG_ON(ARRAY_SIZE(sysrq_toggle_seq) >= U8_MAX); if (sysrq_toggle_seq[port->sysrq_seq] != ch) { port->sysrq_seq = 0; return false; } if (++port->sysrq_seq < sysrq_toggle_seq_len) { port->sysrq = jiffies + SYSRQ_TIMEOUT; return true; } schedule_work(&sysrq_enable_work); port->sysrq = 0; return true; } EXPORT_SYMBOL_GPL(uart_try_toggle_sysrq); #endif EXPORT_SYMBOL(uart_write_wakeup); EXPORT_SYMBOL(uart_register_driver); EXPORT_SYMBOL(uart_unregister_driver); EXPORT_SYMBOL(uart_suspend_port); EXPORT_SYMBOL(uart_resume_port); EXPORT_SYMBOL(uart_add_one_port); EXPORT_SYMBOL(uart_remove_one_port); /** * uart_get_rs485_mode() - retrieve rs485 properties for given uart * @port: uart device's target port * * This function implements the device tree binding described in * Documentation/devicetree/bindings/serial/rs485.txt. */ int uart_get_rs485_mode(struct uart_port *port) { struct serial_rs485 *rs485conf = &port->rs485; struct device *dev = port->dev; u32 rs485_delay[2]; int ret; ret = device_property_read_u32_array(dev, "rs485-rts-delay", rs485_delay, 2); if (!ret) { rs485conf->delay_rts_before_send = rs485_delay[0]; rs485conf->delay_rts_after_send = rs485_delay[1]; } else { rs485conf->delay_rts_before_send = 0; rs485conf->delay_rts_after_send = 0; } /* * Clear full-duplex and enabled flags, set RTS polarity to active high * to get to a defined state with the following properties: */ rs485conf->flags &= ~(SER_RS485_RX_DURING_TX | SER_RS485_ENABLED | SER_RS485_TERMINATE_BUS | SER_RS485_RTS_AFTER_SEND); rs485conf->flags |= SER_RS485_RTS_ON_SEND; if (device_property_read_bool(dev, "rs485-rx-during-tx")) rs485conf->flags |= SER_RS485_RX_DURING_TX; if (device_property_read_bool(dev, "linux,rs485-enabled-at-boot-time")) rs485conf->flags |= SER_RS485_ENABLED; if (device_property_read_bool(dev, "rs485-rts-active-low")) { rs485conf->flags &= ~SER_RS485_RTS_ON_SEND; rs485conf->flags |= SER_RS485_RTS_AFTER_SEND; } /* * Disabling termination by default is the safe choice: Else if many * bus participants enable it, no communication is possible at all. * Works fine for short cables and users may enable for longer cables. */ port->rs485_term_gpio = devm_gpiod_get_optional(dev, "rs485-term", GPIOD_OUT_LOW); if (IS_ERR(port->rs485_term_gpio)) { ret = PTR_ERR(port->rs485_term_gpio); port->rs485_term_gpio = NULL; return dev_err_probe(dev, ret, "Cannot get rs485-term-gpios\n"); } return 0; } EXPORT_SYMBOL_GPL(uart_get_rs485_mode); MODULE_DESCRIPTION("Serial driver core"); MODULE_LICENSE("GPL"); |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Declarations of X.25 Packet Layer type objects. * * History * nov/17/96 Jonathan Naylor Initial version. * mar/20/00 Daniela Squassoni Disabling/enabling of facilities * negotiation. */ #ifndef _X25_H #define _X25_H #include <linux/x25.h> #include <linux/slab.h> #include <linux/refcount.h> #include <net/sock.h> #define X25_ADDR_LEN 16 #define X25_MAX_L2_LEN 18 /* 802.2 LLC */ #define X25_STD_MIN_LEN 3 #define X25_EXT_MIN_LEN 4 #define X25_GFI_SEQ_MASK 0x30 #define X25_GFI_STDSEQ 0x10 #define X25_GFI_EXTSEQ 0x20 #define X25_Q_BIT 0x80 #define X25_D_BIT 0x40 #define X25_STD_M_BIT 0x10 #define X25_EXT_M_BIT 0x01 #define X25_CALL_REQUEST 0x0B #define X25_CALL_ACCEPTED 0x0F #define X25_CLEAR_REQUEST 0x13 #define X25_CLEAR_CONFIRMATION 0x17 #define X25_DATA 0x00 #define X25_INTERRUPT 0x23 #define X25_INTERRUPT_CONFIRMATION 0x27 #define X25_RR 0x01 #define X25_RNR 0x05 #define X25_REJ 0x09 #define X25_RESET_REQUEST 0x1B #define X25_RESET_CONFIRMATION 0x1F #define X25_REGISTRATION_REQUEST 0xF3 #define X25_REGISTRATION_CONFIRMATION 0xF7 #define X25_RESTART_REQUEST 0xFB #define X25_RESTART_CONFIRMATION 0xFF #define X25_DIAGNOSTIC 0xF1 #define X25_ILLEGAL 0xFD /* Define the various conditions that may exist */ #define X25_COND_ACK_PENDING 0x01 #define X25_COND_OWN_RX_BUSY 0x02 #define X25_COND_PEER_RX_BUSY 0x04 /* Define Link State constants. */ enum { X25_STATE_0, /* Ready */ X25_STATE_1, /* Awaiting Call Accepted */ X25_STATE_2, /* Awaiting Clear Confirmation */ X25_STATE_3, /* Data Transfer */ X25_STATE_4, /* Awaiting Reset Confirmation */ X25_STATE_5 /* Call Accepted / Call Connected pending */ }; enum { X25_LINK_STATE_0, X25_LINK_STATE_1, X25_LINK_STATE_2, X25_LINK_STATE_3 }; #define X25_DEFAULT_T20 (180 * HZ) /* Default T20 value */ #define X25_DEFAULT_T21 (200 * HZ) /* Default T21 value */ #define X25_DEFAULT_T22 (180 * HZ) /* Default T22 value */ #define X25_DEFAULT_T23 (180 * HZ) /* Default T23 value */ #define X25_DEFAULT_T2 (3 * HZ) /* Default ack holdback value */ #define X25_DEFAULT_WINDOW_SIZE 2 /* Default Window Size */ #define X25_DEFAULT_PACKET_SIZE X25_PS128 /* Default Packet Size */ #define X25_DEFAULT_THROUGHPUT 0x0A /* Deafult Throughput */ #define X25_DEFAULT_REVERSE 0x00 /* Default Reverse Charging */ #define X25_SMODULUS 8 #define X25_EMODULUS 128 /* * X.25 Facilities constants. */ #define X25_FAC_CLASS_MASK 0xC0 #define X25_FAC_CLASS_A 0x00 #define X25_FAC_CLASS_B 0x40 #define X25_FAC_CLASS_C 0x80 #define X25_FAC_CLASS_D 0xC0 #define X25_FAC_REVERSE 0x01 /* also fast select */ #define X25_FAC_THROUGHPUT 0x02 #define X25_FAC_PACKET_SIZE 0x42 #define X25_FAC_WINDOW_SIZE 0x43 #define X25_MAX_FAC_LEN 60 #define X25_MAX_CUD_LEN 128 #define X25_FAC_CALLING_AE 0xCB #define X25_FAC_CALLED_AE 0xC9 #define X25_MARKER 0x00 #define X25_DTE_SERVICES 0x0F #define X25_MAX_AE_LEN 40 /* Max num of semi-octets in AE - OSI Nw */ #define X25_MAX_DTE_FACIL_LEN 21 /* Max length of DTE facility params */ /* Bitset in x25_sock->flags for misc flags */ #define X25_Q_BIT_FLAG 0 #define X25_INTERRUPT_FLAG 1 #define X25_ACCPT_APPRV_FLAG 2 /** * struct x25_route - x25 routing entry * @node - entry in x25_list_lock * @address - Start of address range * @sigdigits - Number of sig digits * @dev - More than one for MLP * @refcnt - reference counter */ struct x25_route { struct list_head node; struct x25_address address; unsigned int sigdigits; struct net_device *dev; refcount_t refcnt; }; struct x25_neigh { struct list_head node; struct net_device *dev; unsigned int state; unsigned int extended; struct sk_buff_head queue; unsigned long t20; struct timer_list t20timer; unsigned long global_facil_mask; refcount_t refcnt; }; struct x25_sock { struct sock sk; struct x25_address source_addr, dest_addr; struct x25_neigh *neighbour; unsigned int lci, cudmatchlength; unsigned char state, condition; unsigned short vs, vr, va, vl; unsigned long t2, t21, t22, t23; unsigned short fraglen; unsigned long flags; struct sk_buff_head ack_queue; struct sk_buff_head fragment_queue; struct sk_buff_head interrupt_in_queue; struct sk_buff_head interrupt_out_queue; struct timer_list timer; struct x25_causediag causediag; struct x25_facilities facilities; struct x25_dte_facilities dte_facilities; struct x25_calluserdata calluserdata; unsigned long vc_facil_mask; /* inc_call facilities mask */ }; struct x25_forward { struct list_head node; unsigned int lci; struct net_device *dev1; struct net_device *dev2; atomic_t refcnt; }; static inline struct x25_sock *x25_sk(const struct sock *sk) { return (struct x25_sock *)sk; } /* af_x25.c */ extern int sysctl_x25_restart_request_timeout; extern int sysctl_x25_call_request_timeout; extern int sysctl_x25_reset_request_timeout; extern int sysctl_x25_clear_request_timeout; extern int sysctl_x25_ack_holdback_timeout; extern int sysctl_x25_forward; int x25_parse_address_block(struct sk_buff *skb, struct x25_address *called_addr, struct x25_address *calling_addr); int x25_addr_ntoa(unsigned char *, struct x25_address *, struct x25_address *); int x25_addr_aton(unsigned char *, struct x25_address *, struct x25_address *); struct sock *x25_find_socket(unsigned int, struct x25_neigh *); void x25_destroy_socket_from_timer(struct sock *); int x25_rx_call_request(struct sk_buff *, struct x25_neigh *, unsigned int); void x25_kill_by_neigh(struct x25_neigh *); /* x25_dev.c */ void x25_send_frame(struct sk_buff *, struct x25_neigh *); int x25_lapb_receive_frame(struct sk_buff *, struct net_device *, struct packet_type *, struct net_device *); void x25_establish_link(struct x25_neigh *); void x25_terminate_link(struct x25_neigh *); /* x25_facilities.c */ int x25_parse_facilities(struct sk_buff *, struct x25_facilities *, struct x25_dte_facilities *, unsigned long *); int x25_create_facilities(unsigned char *, struct x25_facilities *, struct x25_dte_facilities *, unsigned long); int x25_negotiate_facilities(struct sk_buff *, struct sock *, struct x25_facilities *, struct x25_dte_facilities *); void x25_limit_facilities(struct x25_facilities *, struct x25_neigh *); /* x25_forward.c */ void x25_clear_forward_by_lci(unsigned int lci); void x25_clear_forward_by_dev(struct net_device *); int x25_forward_data(int, struct x25_neigh *, struct sk_buff *); int x25_forward_call(struct x25_address *, struct x25_neigh *, struct sk_buff *, int); /* x25_in.c */ int x25_process_rx_frame(struct sock *, struct sk_buff *); int x25_backlog_rcv(struct sock *, struct sk_buff *); /* x25_link.c */ void x25_link_control(struct sk_buff *, struct x25_neigh *, unsigned short); void x25_link_device_up(struct net_device *); void x25_link_device_down(struct net_device *); void x25_link_established(struct x25_neigh *); void x25_link_terminated(struct x25_neigh *); void x25_transmit_clear_request(struct x25_neigh *, unsigned int, unsigned char); void x25_transmit_link(struct sk_buff *, struct x25_neigh *); int x25_subscr_ioctl(unsigned int, void __user *); struct x25_neigh *x25_get_neigh(struct net_device *); void x25_link_free(void); /* x25_neigh.c */ static __inline__ void x25_neigh_hold(struct x25_neigh *nb) { refcount_inc(&nb->refcnt); } static __inline__ void x25_neigh_put(struct x25_neigh *nb) { if (refcount_dec_and_test(&nb->refcnt)) kfree(nb); } /* x25_out.c */ int x25_output(struct sock *, struct sk_buff *); void x25_kick(struct sock *); void x25_enquiry_response(struct sock *); /* x25_route.c */ struct x25_route *x25_get_route(struct x25_address *addr); struct net_device *x25_dev_get(char *); void x25_route_device_down(struct net_device *dev); int x25_route_ioctl(unsigned int, void __user *); void x25_route_free(void); static __inline__ void x25_route_hold(struct x25_route *rt) { refcount_inc(&rt->refcnt); } static __inline__ void x25_route_put(struct x25_route *rt) { if (refcount_dec_and_test(&rt->refcnt)) kfree(rt); } /* x25_subr.c */ void x25_clear_queues(struct sock *); void x25_frames_acked(struct sock *, unsigned short); void x25_requeue_frames(struct sock *); int x25_validate_nr(struct sock *, unsigned short); void x25_write_internal(struct sock *, int); int x25_decode(struct sock *, struct sk_buff *, int *, int *, int *, int *, int *); void x25_disconnect(struct sock *, int, unsigned char, unsigned char); /* x25_timer.c */ void x25_init_timers(struct sock *sk); void x25_start_heartbeat(struct sock *); void x25_start_t2timer(struct sock *); void x25_start_t21timer(struct sock *); void x25_start_t22timer(struct sock *); void x25_start_t23timer(struct sock *); void x25_stop_heartbeat(struct sock *); void x25_stop_timer(struct sock *); unsigned long x25_display_timer(struct sock *); void x25_check_rbuf(struct sock *); /* sysctl_net_x25.c */ #ifdef CONFIG_SYSCTL int x25_register_sysctl(void); void x25_unregister_sysctl(void); #else static inline int x25_register_sysctl(void) { return 0; }; static inline void x25_unregister_sysctl(void) {}; #endif /* CONFIG_SYSCTL */ struct x25_skb_cb { unsigned int flags; }; #define X25_SKB_CB(s) ((struct x25_skb_cb *) ((s)->cb)) extern struct hlist_head x25_list; extern rwlock_t x25_list_lock; extern struct list_head x25_route_list; extern rwlock_t x25_route_list_lock; extern struct list_head x25_forward_list; extern rwlock_t x25_forward_list_lock; extern struct list_head x25_neigh_list; extern rwlock_t x25_neigh_list_lock; int x25_proc_init(void); void x25_proc_exit(void); #endif |
275 275 276 277 276 63 60 60 60 60 51 28 7 63 10 60 63 63 63 52 52 52 52 276 265 277 277 277 277 277 277 277 277 277 276 277 60 262 277 277 276 277 277 276 277 277 276 73 275 275 275 116 275 275 73 260 51 63 277 275 73 277 275 73 277 63 277 62 4 275 277 277 277 277 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 | // SPDX-License-Identifier: GPL-2.0 /* * Generic ring buffer * * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com> */ #include <linux/trace_recursion.h> #include <linux/trace_events.h> #include <linux/ring_buffer.h> #include <linux/trace_clock.h> #include <linux/sched/clock.h> #include <linux/trace_seq.h> #include <linux/spinlock.h> #include <linux/irq_work.h> #include <linux/security.h> #include <linux/uaccess.h> #include <linux/hardirq.h> #include <linux/kthread.h> /* for self test */ #include <linux/module.h> #include <linux/percpu.h> #include <linux/mutex.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/hash.h> #include <linux/list.h> #include <linux/cpu.h> #include <linux/oom.h> #include <asm/local.h> static void update_pages_handler(struct work_struct *work); /* * The ring buffer header is special. We must manually up keep it. */ int ring_buffer_print_entry_header(struct trace_seq *s) { trace_seq_puts(s, "# compressed entry header\n"); trace_seq_puts(s, "\ttype_len : 5 bits\n"); trace_seq_puts(s, "\ttime_delta : 27 bits\n"); trace_seq_puts(s, "\tarray : 32 bits\n"); trace_seq_putc(s, '\n'); trace_seq_printf(s, "\tpadding : type == %d\n", RINGBUF_TYPE_PADDING); trace_seq_printf(s, "\ttime_extend : type == %d\n", RINGBUF_TYPE_TIME_EXTEND); trace_seq_printf(s, "\ttime_stamp : type == %d\n", RINGBUF_TYPE_TIME_STAMP); trace_seq_printf(s, "\tdata max type_len == %d\n", RINGBUF_TYPE_DATA_TYPE_LEN_MAX); return !trace_seq_has_overflowed(s); } /* * The ring buffer is made up of a list of pages. A separate list of pages is * allocated for each CPU. A writer may only write to a buffer that is * associated with the CPU it is currently executing on. A reader may read * from any per cpu buffer. * * The reader is special. For each per cpu buffer, the reader has its own * reader page. When a reader has read the entire reader page, this reader * page is swapped with another page in the ring buffer. * * Now, as long as the writer is off the reader page, the reader can do what * ever it wants with that page. The writer will never write to that page * again (as long as it is out of the ring buffer). * * Here's some silly ASCII art. * * +------+ * |reader| RING BUFFER * |page | * +------+ +---+ +---+ +---+ * | |-->| |-->| | * +---+ +---+ +---+ * ^ | * | | * +---------------+ * * * +------+ * |reader| RING BUFFER * |page |------------------v * +------+ +---+ +---+ +---+ * | |-->| |-->| | * +---+ +---+ +---+ * ^ | * | | * +---------------+ * * * +------+ * |reader| RING BUFFER * |page |------------------v * +------+ +---+ +---+ +---+ * ^ | |-->| |-->| | * | +---+ +---+ +---+ * | | * | | * +------------------------------+ * * * +------+ * |buffer| RING BUFFER * |page |------------------v * +------+ +---+ +---+ +---+ * ^ | | | |-->| | * | New +---+ +---+ +---+ * | Reader------^ | * | page | * +------------------------------+ * * * After we make this swap, the reader can hand this page off to the splice * code and be done with it. It can even allocate a new page if it needs to * and swap that into the ring buffer. * * We will be using cmpxchg soon to make all this lockless. * */ /* Used for individual buffers (after the counter) */ #define RB_BUFFER_OFF (1 << 20) #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) #define RB_ALIGNMENT 4U #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS # define RB_FORCE_8BYTE_ALIGNMENT 0 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT #else # define RB_FORCE_8BYTE_ALIGNMENT 1 # define RB_ARCH_ALIGNMENT 8U #endif #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX enum { RB_LEN_TIME_EXTEND = 8, RB_LEN_TIME_STAMP = 8, }; #define skip_time_extend(event) \ ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) #define extended_time(event) \ (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) static inline int rb_null_event(struct ring_buffer_event *event) { return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; } static void rb_event_set_padding(struct ring_buffer_event *event) { /* padding has a NULL time_delta */ event->type_len = RINGBUF_TYPE_PADDING; event->time_delta = 0; } static unsigned rb_event_data_length(struct ring_buffer_event *event) { unsigned length; if (event->type_len) length = event->type_len * RB_ALIGNMENT; else length = event->array[0]; return length + RB_EVNT_HDR_SIZE; } /* * Return the length of the given event. Will return * the length of the time extend if the event is a * time extend. */ static inline unsigned rb_event_length(struct ring_buffer_event *event) { switch (event->type_len) { case RINGBUF_TYPE_PADDING: if (rb_null_event(event)) /* undefined */ return -1; return event->array[0] + RB_EVNT_HDR_SIZE; case RINGBUF_TYPE_TIME_EXTEND: return RB_LEN_TIME_EXTEND; case RINGBUF_TYPE_TIME_STAMP: return RB_LEN_TIME_STAMP; case RINGBUF_TYPE_DATA: return rb_event_data_length(event); default: WARN_ON_ONCE(1); } /* not hit */ return 0; } /* * Return total length of time extend and data, * or just the event length for all other events. */ static inline unsigned rb_event_ts_length(struct ring_buffer_event *event) { unsigned len = 0; if (extended_time(event)) { /* time extends include the data event after it */ len = RB_LEN_TIME_EXTEND; event = skip_time_extend(event); } return len + rb_event_length(event); } /** * ring_buffer_event_length - return the length of the event * @event: the event to get the length of * * Returns the size of the data load of a data event. * If the event is something other than a data event, it * returns the size of the event itself. With the exception * of a TIME EXTEND, where it still returns the size of the * data load of the data event after it. */ unsigned ring_buffer_event_length(struct ring_buffer_event *event) { unsigned length; if (extended_time(event)) event = skip_time_extend(event); length = rb_event_length(event); if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) return length; length -= RB_EVNT_HDR_SIZE; if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) length -= sizeof(event->array[0]); return length; } EXPORT_SYMBOL_GPL(ring_buffer_event_length); /* inline for ring buffer fast paths */ static __always_inline void * rb_event_data(struct ring_buffer_event *event) { if (extended_time(event)) event = skip_time_extend(event); WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); /* If length is in len field, then array[0] has the data */ if (event->type_len) return (void *)&event->array[0]; /* Otherwise length is in array[0] and array[1] has the data */ return (void *)&event->array[1]; } /** * ring_buffer_event_data - return the data of the event * @event: the event to get the data from */ void *ring_buffer_event_data(struct ring_buffer_event *event) { return rb_event_data(event); } EXPORT_SYMBOL_GPL(ring_buffer_event_data); #define for_each_buffer_cpu(buffer, cpu) \ for_each_cpu(cpu, buffer->cpumask) #define for_each_online_buffer_cpu(buffer, cpu) \ for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) #define TS_SHIFT 27 #define TS_MASK ((1ULL << TS_SHIFT) - 1) #define TS_DELTA_TEST (~TS_MASK) static u64 rb_event_time_stamp(struct ring_buffer_event *event) { u64 ts; ts = event->array[0]; ts <<= TS_SHIFT; ts += event->time_delta; return ts; } /* Flag when events were overwritten */ #define RB_MISSED_EVENTS (1 << 31) /* Missed count stored at end */ #define RB_MISSED_STORED (1 << 30) struct buffer_data_page { u64 time_stamp; /* page time stamp */ local_t commit; /* write committed index */ unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ }; /* * Note, the buffer_page list must be first. The buffer pages * are allocated in cache lines, which means that each buffer * page will be at the beginning of a cache line, and thus * the least significant bits will be zero. We use this to * add flags in the list struct pointers, to make the ring buffer * lockless. */ struct buffer_page { struct list_head list; /* list of buffer pages */ local_t write; /* index for next write */ unsigned read; /* index for next read */ local_t entries; /* entries on this page */ unsigned long real_end; /* real end of data */ struct buffer_data_page *page; /* Actual data page */ }; /* * The buffer page counters, write and entries, must be reset * atomically when crossing page boundaries. To synchronize this * update, two counters are inserted into the number. One is * the actual counter for the write position or count on the page. * * The other is a counter of updaters. Before an update happens * the update partition of the counter is incremented. This will * allow the updater to update the counter atomically. * * The counter is 20 bits, and the state data is 12. */ #define RB_WRITE_MASK 0xfffff #define RB_WRITE_INTCNT (1 << 20) static void rb_init_page(struct buffer_data_page *bpage) { local_set(&bpage->commit, 0); } static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage) { return local_read(&bpage->page->commit); } static void free_buffer_page(struct buffer_page *bpage) { free_page((unsigned long)bpage->page); kfree(bpage); } /* * We need to fit the time_stamp delta into 27 bits. */ static inline int test_time_stamp(u64 delta) { if (delta & TS_DELTA_TEST) return 1; return 0; } #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) int ring_buffer_print_page_header(struct trace_seq *s) { struct buffer_data_page field; trace_seq_printf(s, "\tfield: u64 timestamp;\t" "offset:0;\tsize:%u;\tsigned:%u;\n", (unsigned int)sizeof(field.time_stamp), (unsigned int)is_signed_type(u64)); trace_seq_printf(s, "\tfield: local_t commit;\t" "offset:%u;\tsize:%u;\tsigned:%u;\n", (unsigned int)offsetof(typeof(field), commit), (unsigned int)sizeof(field.commit), (unsigned int)is_signed_type(long)); trace_seq_printf(s, "\tfield: int overwrite;\t" "offset:%u;\tsize:%u;\tsigned:%u;\n", (unsigned int)offsetof(typeof(field), commit), 1, (unsigned int)is_signed_type(long)); trace_seq_printf(s, "\tfield: char data;\t" "offset:%u;\tsize:%u;\tsigned:%u;\n", (unsigned int)offsetof(typeof(field), data), (unsigned int)BUF_PAGE_SIZE, (unsigned int)is_signed_type(char)); return !trace_seq_has_overflowed(s); } struct rb_irq_work { struct irq_work work; wait_queue_head_t waiters; wait_queue_head_t full_waiters; bool waiters_pending; bool full_waiters_pending; bool wakeup_full; }; /* * Structure to hold event state and handle nested events. */ struct rb_event_info { u64 ts; u64 delta; u64 before; u64 after; unsigned long length; struct buffer_page *tail_page; int add_timestamp; }; /* * Used for the add_timestamp * NONE * EXTEND - wants a time extend * ABSOLUTE - the buffer requests all events to have absolute time stamps * FORCE - force a full time stamp. */ enum { RB_ADD_STAMP_NONE = 0, RB_ADD_STAMP_EXTEND = BIT(1), RB_ADD_STAMP_ABSOLUTE = BIT(2), RB_ADD_STAMP_FORCE = BIT(3) }; /* * Used for which event context the event is in. * TRANSITION = 0 * NMI = 1 * IRQ = 2 * SOFTIRQ = 3 * NORMAL = 4 * * See trace_recursive_lock() comment below for more details. */ enum { RB_CTX_TRANSITION, RB_CTX_NMI, RB_CTX_IRQ, RB_CTX_SOFTIRQ, RB_CTX_NORMAL, RB_CTX_MAX }; #if BITS_PER_LONG == 32 #define RB_TIME_32 #endif /* To test on 64 bit machines */ //#define RB_TIME_32 #ifdef RB_TIME_32 struct rb_time_struct { local_t cnt; local_t top; local_t bottom; }; #else #include <asm/local64.h> struct rb_time_struct { local64_t time; }; #endif typedef struct rb_time_struct rb_time_t; #define MAX_NEST 5 /* * head_page == tail_page && head == tail then buffer is empty. */ struct ring_buffer_per_cpu { int cpu; atomic_t record_disabled; atomic_t resize_disabled; struct trace_buffer *buffer; raw_spinlock_t reader_lock; /* serialize readers */ arch_spinlock_t lock; struct lock_class_key lock_key; struct buffer_data_page *free_page; unsigned long nr_pages; unsigned int current_context; struct list_head *pages; struct buffer_page *head_page; /* read from head */ struct buffer_page *tail_page; /* write to tail */ struct buffer_page *commit_page; /* committed pages */ struct buffer_page *reader_page; unsigned long lost_events; unsigned long last_overrun; unsigned long nest; local_t entries_bytes; local_t entries; local_t overrun; local_t commit_overrun; local_t dropped_events; local_t committing; local_t commits; local_t pages_touched; local_t pages_lost; local_t pages_read; long last_pages_touch; size_t shortest_full; unsigned long read; unsigned long read_bytes; rb_time_t write_stamp; rb_time_t before_stamp; u64 event_stamp[MAX_NEST]; u64 read_stamp; /* pages removed since last reset */ unsigned long pages_removed; /* ring buffer pages to update, > 0 to add, < 0 to remove */ long nr_pages_to_update; struct list_head new_pages; /* new pages to add */ struct work_struct update_pages_work; struct completion update_done; struct rb_irq_work irq_work; }; struct trace_buffer { unsigned flags; int cpus; atomic_t record_disabled; atomic_t resizing; cpumask_var_t cpumask; struct lock_class_key *reader_lock_key; struct mutex mutex; struct ring_buffer_per_cpu **buffers; struct hlist_node node; u64 (*clock)(void); struct rb_irq_work irq_work; bool time_stamp_abs; }; struct ring_buffer_iter { struct ring_buffer_per_cpu *cpu_buffer; unsigned long head; unsigned long next_event; struct buffer_page *head_page; struct buffer_page *cache_reader_page; unsigned long cache_read; unsigned long cache_pages_removed; u64 read_stamp; u64 page_stamp; struct ring_buffer_event *event; int missed_events; }; #ifdef RB_TIME_32 /* * On 32 bit machines, local64_t is very expensive. As the ring * buffer doesn't need all the features of a true 64 bit atomic, * on 32 bit, it uses these functions (64 still uses local64_t). * * For the ring buffer, 64 bit required operations for the time is * the following: * * - Only need 59 bits (uses 60 to make it even). * - Reads may fail if it interrupted a modification of the time stamp. * It will succeed if it did not interrupt another write even if * the read itself is interrupted by a write. * It returns whether it was successful or not. * * - Writes always succeed and will overwrite other writes and writes * that were done by events interrupting the current write. * * - A write followed by a read of the same time stamp will always succeed, * but may not contain the same value. * * - A cmpxchg will fail if it interrupted another write or cmpxchg. * Other than that, it acts like a normal cmpxchg. * * The 60 bit time stamp is broken up by 30 bits in a top and bottom half * (bottom being the least significant 30 bits of the 60 bit time stamp). * * The two most significant bits of each half holds a 2 bit counter (0-3). * Each update will increment this counter by one. * When reading the top and bottom, if the two counter bits match then the * top and bottom together make a valid 60 bit number. */ #define RB_TIME_SHIFT 30 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1) static inline int rb_time_cnt(unsigned long val) { return (val >> RB_TIME_SHIFT) & 3; } static inline u64 rb_time_val(unsigned long top, unsigned long bottom) { u64 val; val = top & RB_TIME_VAL_MASK; val <<= RB_TIME_SHIFT; val |= bottom & RB_TIME_VAL_MASK; return val; } static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt) { unsigned long top, bottom; unsigned long c; /* * If the read is interrupted by a write, then the cnt will * be different. Loop until both top and bottom have been read * without interruption. */ do { c = local_read(&t->cnt); top = local_read(&t->top); bottom = local_read(&t->bottom); } while (c != local_read(&t->cnt)); *cnt = rb_time_cnt(top); /* If top and bottom counts don't match, this interrupted a write */ if (*cnt != rb_time_cnt(bottom)) return false; *ret = rb_time_val(top, bottom); return true; } static bool rb_time_read(rb_time_t *t, u64 *ret) { unsigned long cnt; return __rb_time_read(t, ret, &cnt); } static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt) { return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT); } static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom) { *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK); *bottom = (unsigned long)(val & RB_TIME_VAL_MASK); } static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt) { val = rb_time_val_cnt(val, cnt); local_set(t, val); } static void rb_time_set(rb_time_t *t, u64 val) { unsigned long cnt, top, bottom; rb_time_split(val, &top, &bottom); /* Writes always succeed with a valid number even if it gets interrupted. */ do { cnt = local_inc_return(&t->cnt); rb_time_val_set(&t->top, top, cnt); rb_time_val_set(&t->bottom, bottom, cnt); } while (cnt != local_read(&t->cnt)); } static inline bool rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set) { unsigned long ret; ret = local_cmpxchg(l, expect, set); return ret == expect; } #else /* 64 bits */ /* local64_t always succeeds */ static inline bool rb_time_read(rb_time_t *t, u64 *ret) { *ret = local64_read(&t->time); return true; } static void rb_time_set(rb_time_t *t, u64 val) { local64_set(&t->time, val); } #endif /* * Enable this to make sure that the event passed to * ring_buffer_event_time_stamp() is not committed and also * is on the buffer that it passed in. */ //#define RB_VERIFY_EVENT #ifdef RB_VERIFY_EVENT static struct list_head *rb_list_head(struct list_head *list); static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, void *event) { struct buffer_page *page = cpu_buffer->commit_page; struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); struct list_head *next; long commit, write; unsigned long addr = (unsigned long)event; bool done = false; int stop = 0; /* Make sure the event exists and is not committed yet */ do { if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) done = true; commit = local_read(&page->page->commit); write = local_read(&page->write); if (addr >= (unsigned long)&page->page->data[commit] && addr < (unsigned long)&page->page->data[write]) return; next = rb_list_head(page->list.next); page = list_entry(next, struct buffer_page, list); } while (!done); WARN_ON_ONCE(1); } #else static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, void *event) { } #endif static inline u64 rb_time_stamp(struct trace_buffer *buffer); /** * ring_buffer_event_time_stamp - return the event's current time stamp * @buffer: The buffer that the event is on * @event: the event to get the time stamp of * * Note, this must be called after @event is reserved, and before it is * committed to the ring buffer. And must be called from the same * context where the event was reserved (normal, softirq, irq, etc). * * Returns the time stamp associated with the current event. * If the event has an extended time stamp, then that is used as * the time stamp to return. * In the highly unlikely case that the event was nested more than * the max nesting, then the write_stamp of the buffer is returned, * otherwise current time is returned, but that really neither of * the last two cases should ever happen. */ u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, struct ring_buffer_event *event) { struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; unsigned int nest; u64 ts; /* If the event includes an absolute time, then just use that */ if (event->type_len == RINGBUF_TYPE_TIME_STAMP) return rb_event_time_stamp(event); nest = local_read(&cpu_buffer->committing); verify_event(cpu_buffer, event); if (WARN_ON_ONCE(!nest)) goto fail; /* Read the current saved nesting level time stamp */ if (likely(--nest < MAX_NEST)) return cpu_buffer->event_stamp[nest]; /* Shouldn't happen, warn if it does */ WARN_ONCE(1, "nest (%d) greater than max", nest); fail: /* Can only fail on 32 bit */ if (!rb_time_read(&cpu_buffer->write_stamp, &ts)) /* Screw it, just read the current time */ ts = rb_time_stamp(cpu_buffer->buffer); return ts; } /** * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer * @buffer: The ring_buffer to get the number of pages from * @cpu: The cpu of the ring_buffer to get the number of pages from * * Returns the number of pages used by a per_cpu buffer of the ring buffer. */ size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu) { return buffer->buffers[cpu]->nr_pages; } /** * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer * @buffer: The ring_buffer to get the number of pages from * @cpu: The cpu of the ring_buffer to get the number of pages from * * Returns the number of pages that have content in the ring buffer. */ size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) { size_t read; size_t lost; size_t cnt; read = local_read(&buffer->buffers[cpu]->pages_read); lost = local_read(&buffer->buffers[cpu]->pages_lost); cnt = local_read(&buffer->buffers[cpu]->pages_touched); if (WARN_ON_ONCE(cnt < lost)) return 0; cnt -= lost; /* The reader can read an empty page, but not more than that */ if (cnt < read) { WARN_ON_ONCE(read > cnt + 1); return 0; } return cnt - read; } static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full) { struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; size_t nr_pages; size_t dirty; nr_pages = cpu_buffer->nr_pages; if (!nr_pages || !full) return true; /* * Add one as dirty will never equal nr_pages, as the sub-buffer * that the writer is on is not counted as dirty. * This is needed if "buffer_percent" is set to 100. */ dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1; return (dirty * 100) >= (full * nr_pages); } /* * rb_wake_up_waiters - wake up tasks waiting for ring buffer input * * Schedules a delayed work to wake up any task that is blocked on the * ring buffer waiters queue. */ static void rb_wake_up_waiters(struct irq_work *work) { struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); wake_up_all(&rbwork->waiters); if (rbwork->full_waiters_pending || rbwork->wakeup_full) { /* Only cpu_buffer sets the above flags */ struct ring_buffer_per_cpu *cpu_buffer = container_of(rbwork, struct ring_buffer_per_cpu, irq_work); /* Called from interrupt context */ raw_spin_lock(&cpu_buffer->reader_lock); rbwork->wakeup_full = false; rbwork->full_waiters_pending = false; /* Waking up all waiters, they will reset the shortest full */ cpu_buffer->shortest_full = 0; raw_spin_unlock(&cpu_buffer->reader_lock); wake_up_all(&rbwork->full_waiters); } } /** * ring_buffer_wake_waiters - wake up any waiters on this ring buffer * @buffer: The ring buffer to wake waiters on * * In the case of a file that represents a ring buffer is closing, * it is prudent to wake up any waiters that are on this. */ void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; struct rb_irq_work *rbwork; if (!buffer) return; if (cpu == RING_BUFFER_ALL_CPUS) { /* Wake up individual ones too. One level recursion */ for_each_buffer_cpu(buffer, cpu) ring_buffer_wake_waiters(buffer, cpu); rbwork = &buffer->irq_work; } else { if (WARN_ON_ONCE(!buffer->buffers)) return; if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) return; cpu_buffer = buffer->buffers[cpu]; /* The CPU buffer may not have been initialized yet */ if (!cpu_buffer) return; rbwork = &cpu_buffer->irq_work; } /* This can be called in any context */ irq_work_queue(&rbwork->work); } static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full) { struct ring_buffer_per_cpu *cpu_buffer; bool ret = false; /* Reads of all CPUs always waits for any data */ if (cpu == RING_BUFFER_ALL_CPUS) return !ring_buffer_empty(buffer); cpu_buffer = buffer->buffers[cpu]; if (!ring_buffer_empty_cpu(buffer, cpu)) { unsigned long flags; bool pagebusy; if (!full) return true; raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; ret = !pagebusy && full_hit(buffer, cpu, full); if (!ret && (!cpu_buffer->shortest_full || cpu_buffer->shortest_full > full)) { cpu_buffer->shortest_full = full; } raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); } return ret; } static inline bool rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer, int cpu, int full, ring_buffer_cond_fn cond, void *data) { if (rb_watermark_hit(buffer, cpu, full)) return true; if (cond(data)) return true; /* * The events can happen in critical sections where * checking a work queue can cause deadlocks. * After adding a task to the queue, this flag is set * only to notify events to try to wake up the queue * using irq_work. * * We don't clear it even if the buffer is no longer * empty. The flag only causes the next event to run * irq_work to do the work queue wake up. The worse * that can happen if we race with !trace_empty() is that * an event will cause an irq_work to try to wake up * an empty queue. * * There's no reason to protect this flag either, as * the work queue and irq_work logic will do the necessary * synchronization for the wake ups. The only thing * that is necessary is that the wake up happens after * a task has been queued. It's OK for spurious wake ups. */ if (full) rbwork->full_waiters_pending = true; else rbwork->waiters_pending = true; return false; } /* * The default wait condition for ring_buffer_wait() is to just to exit the * wait loop the first time it is woken up. */ static bool rb_wait_once(void *data) { long *once = data; /* wait_event() actually calls this twice before scheduling*/ if (*once > 1) return true; (*once)++; return false; } /** * ring_buffer_wait - wait for input to the ring buffer * @buffer: buffer to wait on * @cpu: the cpu buffer to wait on * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS * * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon * as data is added to any of the @buffer's cpu buffers. Otherwise * it will wait for data to be added to a specific cpu buffer. */ int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full) { struct ring_buffer_per_cpu *cpu_buffer; struct wait_queue_head *waitq; ring_buffer_cond_fn cond; struct rb_irq_work *rbwork; void *data; long once = 0; int ret = 0; cond = rb_wait_once; data = &once; /* * Depending on what the caller is waiting for, either any * data in any cpu buffer, or a specific buffer, put the * caller on the appropriate wait queue. */ if (cpu == RING_BUFFER_ALL_CPUS) { rbwork = &buffer->irq_work; /* Full only makes sense on per cpu reads */ full = 0; } else { if (!cpumask_test_cpu(cpu, buffer->cpumask)) return -ENODEV; cpu_buffer = buffer->buffers[cpu]; rbwork = &cpu_buffer->irq_work; } if (full) waitq = &rbwork->full_waiters; else waitq = &rbwork->waiters; ret = wait_event_interruptible((*waitq), rb_wait_cond(rbwork, buffer, cpu, full, cond, data)); return ret; } /** * ring_buffer_poll_wait - poll on buffer input * @buffer: buffer to wait on * @cpu: the cpu buffer to wait on * @filp: the file descriptor * @poll_table: The poll descriptor * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS * * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon * as data is added to any of the @buffer's cpu buffers. Otherwise * it will wait for data to be added to a specific cpu buffer. * * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, * zero otherwise. */ __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, struct file *filp, poll_table *poll_table, int full) { struct ring_buffer_per_cpu *cpu_buffer; struct rb_irq_work *rbwork; if (cpu == RING_BUFFER_ALL_CPUS) { rbwork = &buffer->irq_work; full = 0; } else { if (!cpumask_test_cpu(cpu, buffer->cpumask)) return EPOLLERR; cpu_buffer = buffer->buffers[cpu]; rbwork = &cpu_buffer->irq_work; } if (full) { unsigned long flags; poll_wait(filp, &rbwork->full_waiters, poll_table); raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); if (!cpu_buffer->shortest_full || cpu_buffer->shortest_full > full) cpu_buffer->shortest_full = full; raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); if (full_hit(buffer, cpu, full)) return EPOLLIN | EPOLLRDNORM; /* * Only allow full_waiters_pending update to be seen after * the shortest_full is set. If the writer sees the * full_waiters_pending flag set, it will compare the * amount in the ring buffer to shortest_full. If the amount * in the ring buffer is greater than the shortest_full * percent, it will call the irq_work handler to wake up * this list. The irq_handler will reset shortest_full * back to zero. That's done under the reader_lock, but * the below smp_mb() makes sure that the update to * full_waiters_pending doesn't leak up into the above. */ smp_mb(); rbwork->full_waiters_pending = true; return 0; } poll_wait(filp, &rbwork->waiters, poll_table); rbwork->waiters_pending = true; /* * There's a tight race between setting the waiters_pending and * checking if the ring buffer is empty. Once the waiters_pending bit * is set, the next event will wake the task up, but we can get stuck * if there's only a single event in. * * FIXME: Ideally, we need a memory barrier on the writer side as well, * but adding a memory barrier to all events will cause too much of a * performance hit in the fast path. We only need a memory barrier when * the buffer goes from empty to having content. But as this race is * extremely small, and it's not a problem if another event comes in, we * will fix it later. */ smp_mb(); if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) return EPOLLIN | EPOLLRDNORM; return 0; } /* buffer may be either ring_buffer or ring_buffer_per_cpu */ #define RB_WARN_ON(b, cond) \ ({ \ int _____ret = unlikely(cond); \ if (_____ret) { \ if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ struct ring_buffer_per_cpu *__b = \ (void *)b; \ atomic_inc(&__b->buffer->record_disabled); \ } else \ atomic_inc(&b->record_disabled); \ WARN_ON(1); \ } \ _____ret; \ }) /* Up this if you want to test the TIME_EXTENTS and normalization */ #define DEBUG_SHIFT 0 static inline u64 rb_time_stamp(struct trace_buffer *buffer) { u64 ts; /* Skip retpolines :-( */ if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local)) ts = trace_clock_local(); else ts = buffer->clock(); /* shift to debug/test normalization and TIME_EXTENTS */ return ts << DEBUG_SHIFT; } u64 ring_buffer_time_stamp(struct trace_buffer *buffer) { u64 time; preempt_disable_notrace(); time = rb_time_stamp(buffer); preempt_enable_notrace(); return time; } EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, int cpu, u64 *ts) { /* Just stupid testing the normalize function and deltas */ *ts >>= DEBUG_SHIFT; } EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); /* * Making the ring buffer lockless makes things tricky. * Although writes only happen on the CPU that they are on, * and they only need to worry about interrupts. Reads can * happen on any CPU. * * The reader page is always off the ring buffer, but when the * reader finishes with a page, it needs to swap its page with * a new one from the buffer. The reader needs to take from * the head (writes go to the tail). But if a writer is in overwrite * mode and wraps, it must push the head page forward. * * Here lies the problem. * * The reader must be careful to replace only the head page, and * not another one. As described at the top of the file in the * ASCII art, the reader sets its old page to point to the next * page after head. It then sets the page after head to point to * the old reader page. But if the writer moves the head page * during this operation, the reader could end up with the tail. * * We use cmpxchg to help prevent this race. We also do something * special with the page before head. We set the LSB to 1. * * When the writer must push the page forward, it will clear the * bit that points to the head page, move the head, and then set * the bit that points to the new head page. * * We also don't want an interrupt coming in and moving the head * page on another writer. Thus we use the second LSB to catch * that too. Thus: * * head->list->prev->next bit 1 bit 0 * ------- ------- * Normal page 0 0 * Points to head page 0 1 * New head page 1 0 * * Note we can not trust the prev pointer of the head page, because: * * +----+ +-----+ +-----+ * | |------>| T |---X--->| N | * | |<------| | | | * +----+ +-----+ +-----+ * ^ ^ | * | +-----+ | | * +----------| R |----------+ | * | |<-----------+ * +-----+ * * Key: ---X--> HEAD flag set in pointer * T Tail page * R Reader page * N Next page * * (see __rb_reserve_next() to see where this happens) * * What the above shows is that the reader just swapped out * the reader page with a page in the buffer, but before it * could make the new header point back to the new page added * it was preempted by a writer. The writer moved forward onto * the new page added by the reader and is about to move forward * again. * * You can see, it is legitimate for the previous pointer of * the head (or any page) not to point back to itself. But only * temporarily. */ #define RB_PAGE_NORMAL 0UL #define RB_PAGE_HEAD 1UL #define RB_PAGE_UPDATE 2UL #define RB_FLAG_MASK 3UL /* PAGE_MOVED is not part of the mask */ #define RB_PAGE_MOVED 4UL /* * rb_list_head - remove any bit */ static struct list_head *rb_list_head(struct list_head *list) { unsigned long val = (unsigned long)list; return (struct list_head *)(val & ~RB_FLAG_MASK); } /* * rb_is_head_page - test if the given page is the head page * * Because the reader may move the head_page pointer, we can * not trust what the head page is (it may be pointing to * the reader page). But if the next page is a header page, * its flags will be non zero. */ static inline int rb_is_head_page(struct buffer_page *page, struct list_head *list) { unsigned long val; val = (unsigned long)list->next; if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) return RB_PAGE_MOVED; return val & RB_FLAG_MASK; } /* * rb_is_reader_page * * The unique thing about the reader page, is that, if the * writer is ever on it, the previous pointer never points * back to the reader page. */ static bool rb_is_reader_page(struct buffer_page *page) { struct list_head *list = page->list.prev; return rb_list_head(list->next) != &page->list; } /* * rb_set_list_to_head - set a list_head to be pointing to head. */ static void rb_set_list_to_head(struct list_head *list) { unsigned long *ptr; ptr = (unsigned long *)&list->next; *ptr |= RB_PAGE_HEAD; *ptr &= ~RB_PAGE_UPDATE; } /* * rb_head_page_activate - sets up head page */ static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) { struct buffer_page *head; head = cpu_buffer->head_page; if (!head) return; /* * Set the previous list pointer to have the HEAD flag. */ rb_set_list_to_head(head->list.prev); } static void rb_list_head_clear(struct list_head *list) { unsigned long *ptr = (unsigned long *)&list->next; *ptr &= ~RB_FLAG_MASK; } /* * rb_head_page_deactivate - clears head page ptr (for free list) */ static void rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) { struct list_head *hd; /* Go through the whole list and clear any pointers found. */ rb_list_head_clear(cpu_buffer->pages); list_for_each(hd, cpu_buffer->pages) rb_list_head_clear(hd); } static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, struct buffer_page *head, struct buffer_page *prev, int old_flag, int new_flag) { struct list_head *list; unsigned long val = (unsigned long)&head->list; unsigned long ret; list = &prev->list; val &= ~RB_FLAG_MASK; ret = cmpxchg((unsigned long *)&list->next, val | old_flag, val | new_flag); /* check if the reader took the page */ if ((ret & ~RB_FLAG_MASK) != val) return RB_PAGE_MOVED; return ret & RB_FLAG_MASK; } static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, struct buffer_page *head, struct buffer_page *prev, int old_flag) { return rb_head_page_set(cpu_buffer, head, prev, old_flag, RB_PAGE_UPDATE); } static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, struct buffer_page *head, struct buffer_page *prev, int old_flag) { return rb_head_page_set(cpu_buffer, head, prev, old_flag, RB_PAGE_HEAD); } static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, struct buffer_page *head, struct buffer_page *prev, int old_flag) { return rb_head_page_set(cpu_buffer, head, prev, old_flag, RB_PAGE_NORMAL); } static inline void rb_inc_page(struct buffer_page **bpage) { struct list_head *p = rb_list_head((*bpage)->list.next); *bpage = list_entry(p, struct buffer_page, list); } static struct buffer_page * rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) { struct buffer_page *head; struct buffer_page *page; struct list_head *list; int i; if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) return NULL; /* sanity check */ list = cpu_buffer->pages; if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) return NULL; page = head = cpu_buffer->head_page; /* * It is possible that the writer moves the header behind * where we started, and we miss in one loop. * A second loop should grab the header, but we'll do * three loops just because I'm paranoid. */ for (i = 0; i < 3; i++) { do { if (rb_is_head_page(page, page->list.prev)) { cpu_buffer->head_page = page; return page; } rb_inc_page(&page); } while (page != head); } RB_WARN_ON(cpu_buffer, 1); return NULL; } static int rb_head_page_replace(struct buffer_page *old, struct buffer_page *new) { unsigned long *ptr = (unsigned long *)&old->list.prev->next; unsigned long val; unsigned long ret; val = *ptr & ~RB_FLAG_MASK; val |= RB_PAGE_HEAD; ret = cmpxchg(ptr, val, (unsigned long)&new->list); return ret == val; } /* * rb_tail_page_update - move the tail page forward */ static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, struct buffer_page *tail_page, struct buffer_page *next_page) { unsigned long old_entries; unsigned long old_write; /* * The tail page now needs to be moved forward. * * We need to reset the tail page, but without messing * with possible erasing of data brought in by interrupts * that have moved the tail page and are currently on it. * * We add a counter to the write field to denote this. */ old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); /* * Just make sure we have seen our old_write and synchronize * with any interrupts that come in. */ barrier(); /* * If the tail page is still the same as what we think * it is, then it is up to us to update the tail * pointer. */ if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { /* Zero the write counter */ unsigned long val = old_write & ~RB_WRITE_MASK; unsigned long eval = old_entries & ~RB_WRITE_MASK; /* * This will only succeed if an interrupt did * not come in and change it. In which case, we * do not want to modify it. * * We add (void) to let the compiler know that we do not care * about the return value of these functions. We use the * cmpxchg to only update if an interrupt did not already * do it for us. If the cmpxchg fails, we don't care. */ (void)local_cmpxchg(&next_page->write, old_write, val); (void)local_cmpxchg(&next_page->entries, old_entries, eval); /* * No need to worry about races with clearing out the commit. * it only can increment when a commit takes place. But that * only happens in the outer most nested commit. */ local_set(&next_page->page->commit, 0); /* Either we update tail_page or an interrupt does */ if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page)) local_inc(&cpu_buffer->pages_touched); } } static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, struct buffer_page *bpage) { unsigned long val = (unsigned long)bpage; if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) return 1; return 0; } /** * rb_check_pages - integrity check of buffer pages * @cpu_buffer: CPU buffer with pages to test * * As a safety measure we check to make sure the data pages have not * been corrupted. * * Callers of this function need to guarantee that the list of pages doesn't get * modified during the check. In particular, if it's possible that the function * is invoked with concurrent readers which can swap in a new reader page then * the caller should take cpu_buffer->reader_lock. */ static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) { struct list_head *head = rb_list_head(cpu_buffer->pages); struct list_head *tmp; if (RB_WARN_ON(cpu_buffer, rb_list_head(rb_list_head(head->next)->prev) != head)) return -1; if (RB_WARN_ON(cpu_buffer, rb_list_head(rb_list_head(head->prev)->next) != head)) return -1; for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) { if (RB_WARN_ON(cpu_buffer, rb_list_head(rb_list_head(tmp->next)->prev) != tmp)) return -1; if (RB_WARN_ON(cpu_buffer, rb_list_head(rb_list_head(tmp->prev)->next) != tmp)) return -1; } return 0; } static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, long nr_pages, struct list_head *pages) { struct buffer_page *bpage, *tmp; bool user_thread = current->mm != NULL; gfp_t mflags; long i; /* * Check if the available memory is there first. * Note, si_mem_available() only gives us a rough estimate of available * memory. It may not be accurate. But we don't care, we just want * to prevent doing any allocation when it is obvious that it is * not going to succeed. */ i = si_mem_available(); if (i < nr_pages) return -ENOMEM; /* * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails * gracefully without invoking oom-killer and the system is not * destabilized. */ mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; /* * If a user thread allocates too much, and si_mem_available() * reports there's enough memory, even though there is not. * Make sure the OOM killer kills this thread. This can happen * even with RETRY_MAYFAIL because another task may be doing * an allocation after this task has taken all memory. * This is the task the OOM killer needs to take out during this * loop, even if it was triggered by an allocation somewhere else. */ if (user_thread) set_current_oom_origin(); for (i = 0; i < nr_pages; i++) { struct page *page; bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), mflags, cpu_to_node(cpu_buffer->cpu)); if (!bpage) goto free_pages; rb_check_bpage(cpu_buffer, bpage); list_add(&bpage->list, pages); page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0); if (!page) goto free_pages; bpage->page = page_address(page); rb_init_page(bpage->page); if (user_thread && fatal_signal_pending(current)) goto free_pages; } if (user_thread) clear_current_oom_origin(); return 0; free_pages: list_for_each_entry_safe(bpage, tmp, pages, list) { list_del_init(&bpage->list); free_buffer_page(bpage); } if (user_thread) clear_current_oom_origin(); return -ENOMEM; } static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) { LIST_HEAD(pages); WARN_ON(!nr_pages); if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) return -ENOMEM; /* * The ring buffer page list is a circular list that does not * start and end with a list head. All page list items point to * other pages. */ cpu_buffer->pages = pages.next; list_del(&pages); cpu_buffer->nr_pages = nr_pages; rb_check_pages(cpu_buffer); return 0; } static struct ring_buffer_per_cpu * rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; struct buffer_page *bpage; struct page *page; int ret; cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), GFP_KERNEL, cpu_to_node(cpu)); if (!cpu_buffer) return NULL; cpu_buffer->cpu = cpu; cpu_buffer->buffer = buffer; raw_spin_lock_init(&cpu_buffer->reader_lock); lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); init_completion(&cpu_buffer->update_done); init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); init_waitqueue_head(&cpu_buffer->irq_work.waiters); init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), GFP_KERNEL, cpu_to_node(cpu)); if (!bpage) goto fail_free_buffer; rb_check_bpage(cpu_buffer, bpage); cpu_buffer->reader_page = bpage; page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); if (!page) goto fail_free_reader; bpage->page = page_address(page); rb_init_page(bpage->page); INIT_LIST_HEAD(&cpu_buffer->reader_page->list); INIT_LIST_HEAD(&cpu_buffer->new_pages); ret = rb_allocate_pages(cpu_buffer, nr_pages); if (ret < 0) goto fail_free_reader; cpu_buffer->head_page = list_entry(cpu_buffer->pages, struct buffer_page, list); cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; rb_head_page_activate(cpu_buffer); return cpu_buffer; fail_free_reader: free_buffer_page(cpu_buffer->reader_page); fail_free_buffer: kfree(cpu_buffer); return NULL; } static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) { struct list_head *head = cpu_buffer->pages; struct buffer_page *bpage, *tmp; irq_work_sync(&cpu_buffer->irq_work.work); free_buffer_page(cpu_buffer->reader_page); if (head) { rb_head_page_deactivate(cpu_buffer); list_for_each_entry_safe(bpage, tmp, head, list) { list_del_init(&bpage->list); free_buffer_page(bpage); } bpage = list_entry(head, struct buffer_page, list); free_buffer_page(bpage); } free_page((unsigned long)cpu_buffer->free_page); kfree(cpu_buffer); } /** * __ring_buffer_alloc - allocate a new ring_buffer * @size: the size in bytes per cpu that is needed. * @flags: attributes to set for the ring buffer. * @key: ring buffer reader_lock_key. * * Currently the only flag that is available is the RB_FL_OVERWRITE * flag. This flag means that the buffer will overwrite old data * when the buffer wraps. If this flag is not set, the buffer will * drop data when the tail hits the head. */ struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, struct lock_class_key *key) { struct trace_buffer *buffer; long nr_pages; int bsize; int cpu; int ret; /* keep it in its own cache line */ buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), GFP_KERNEL); if (!buffer) return NULL; if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) goto fail_free_buffer; nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); buffer->flags = flags; buffer->clock = trace_clock_local; buffer->reader_lock_key = key; init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); init_waitqueue_head(&buffer->irq_work.waiters); /* need at least two pages */ if (nr_pages < 2) nr_pages = 2; buffer->cpus = nr_cpu_ids; bsize = sizeof(void *) * nr_cpu_ids; buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), GFP_KERNEL); if (!buffer->buffers) goto fail_free_cpumask; cpu = raw_smp_processor_id(); cpumask_set_cpu(cpu, buffer->cpumask); buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); if (!buffer->buffers[cpu]) goto fail_free_buffers; ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); if (ret < 0) goto fail_free_buffers; mutex_init(&buffer->mutex); return buffer; fail_free_buffers: for_each_buffer_cpu(buffer, cpu) { if (buffer->buffers[cpu]) rb_free_cpu_buffer(buffer->buffers[cpu]); } kfree(buffer->buffers); fail_free_cpumask: free_cpumask_var(buffer->cpumask); fail_free_buffer: kfree(buffer); return NULL; } EXPORT_SYMBOL_GPL(__ring_buffer_alloc); /** * ring_buffer_free - free a ring buffer. * @buffer: the buffer to free. */ void ring_buffer_free(struct trace_buffer *buffer) { int cpu; cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); irq_work_sync(&buffer->irq_work.work); for_each_buffer_cpu(buffer, cpu) rb_free_cpu_buffer(buffer->buffers[cpu]); kfree(buffer->buffers); free_cpumask_var(buffer->cpumask); kfree(buffer); } EXPORT_SYMBOL_GPL(ring_buffer_free); void ring_buffer_set_clock(struct trace_buffer *buffer, u64 (*clock)(void)) { buffer->clock = clock; } void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) { buffer->time_stamp_abs = abs; } bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) { return buffer->time_stamp_abs; } static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); static inline unsigned long rb_page_entries(struct buffer_page *bpage) { return local_read(&bpage->entries) & RB_WRITE_MASK; } static inline unsigned long rb_page_write(struct buffer_page *bpage) { return local_read(&bpage->write) & RB_WRITE_MASK; } static int rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) { struct list_head *tail_page, *to_remove, *next_page; struct buffer_page *to_remove_page, *tmp_iter_page; struct buffer_page *last_page, *first_page; unsigned long nr_removed; unsigned long head_bit; int page_entries; head_bit = 0; raw_spin_lock_irq(&cpu_buffer->reader_lock); atomic_inc(&cpu_buffer->record_disabled); /* * We don't race with the readers since we have acquired the reader * lock. We also don't race with writers after disabling recording. * This makes it easy to figure out the first and the last page to be * removed from the list. We unlink all the pages in between including * the first and last pages. This is done in a busy loop so that we * lose the least number of traces. * The pages are freed after we restart recording and unlock readers. */ tail_page = &cpu_buffer->tail_page->list; /* * tail page might be on reader page, we remove the next page * from the ring buffer */ if (cpu_buffer->tail_page == cpu_buffer->reader_page) tail_page = rb_list_head(tail_page->next); to_remove = tail_page; /* start of pages to remove */ first_page = list_entry(rb_list_head(to_remove->next), struct buffer_page, list); for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { to_remove = rb_list_head(to_remove)->next; head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; } /* Read iterators need to reset themselves when some pages removed */ cpu_buffer->pages_removed += nr_removed; next_page = rb_list_head(to_remove)->next; /* * Now we remove all pages between tail_page and next_page. * Make sure that we have head_bit value preserved for the * next page */ tail_page->next = (struct list_head *)((unsigned long)next_page | head_bit); next_page = rb_list_head(next_page); next_page->prev = tail_page; /* make sure pages points to a valid page in the ring buffer */ cpu_buffer->pages = next_page; /* update head page */ if (head_bit) cpu_buffer->head_page = list_entry(next_page, struct buffer_page, list); /* pages are removed, resume tracing and then free the pages */ atomic_dec(&cpu_buffer->record_disabled); raw_spin_unlock_irq(&cpu_buffer->reader_lock); RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); /* last buffer page to remove */ last_page = list_entry(rb_list_head(to_remove), struct buffer_page, list); tmp_iter_page = first_page; do { cond_resched(); to_remove_page = tmp_iter_page; rb_inc_page(&tmp_iter_page); /* update the counters */ page_entries = rb_page_entries(to_remove_page); if (page_entries) { /* * If something was added to this page, it was full * since it is not the tail page. So we deduct the * bytes consumed in ring buffer from here. * Increment overrun to account for the lost events. */ local_add(page_entries, &cpu_buffer->overrun); local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes); local_inc(&cpu_buffer->pages_lost); } /* * We have already removed references to this list item, just * free up the buffer_page and its page */ free_buffer_page(to_remove_page); nr_removed--; } while (to_remove_page != last_page); RB_WARN_ON(cpu_buffer, nr_removed); return nr_removed == 0; } static int rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) { struct list_head *pages = &cpu_buffer->new_pages; int retries, success; raw_spin_lock_irq(&cpu_buffer->reader_lock); /* * We are holding the reader lock, so the reader page won't be swapped * in the ring buffer. Now we are racing with the writer trying to * move head page and the tail page. * We are going to adapt the reader page update process where: * 1. We first splice the start and end of list of new pages between * the head page and its previous page. * 2. We cmpxchg the prev_page->next to point from head page to the * start of new pages list. * 3. Finally, we update the head->prev to the end of new list. * * We will try this process 10 times, to make sure that we don't keep * spinning. */ retries = 10; success = 0; while (retries--) { struct list_head *head_page, *prev_page, *r; struct list_head *last_page, *first_page; struct list_head *head_page_with_bit; head_page = &rb_set_head_page(cpu_buffer)->list; if (!head_page) break; prev_page = head_page->prev; first_page = pages->next; last_page = pages->prev; head_page_with_bit = (struct list_head *) ((unsigned long)head_page | RB_PAGE_HEAD); last_page->next = head_page_with_bit; first_page->prev = prev_page; r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); if (r == head_page_with_bit) { /* * yay, we replaced the page pointer to our new list, * now, we just have to update to head page's prev * pointer to point to end of list */ head_page->prev = last_page; success = 1; break; } } if (success) INIT_LIST_HEAD(pages); /* * If we weren't successful in adding in new pages, warn and stop * tracing */ RB_WARN_ON(cpu_buffer, !success); raw_spin_unlock_irq(&cpu_buffer->reader_lock); /* free pages if they weren't inserted */ if (!success) { struct buffer_page *bpage, *tmp; list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) { list_del_init(&bpage->list); free_buffer_page(bpage); } } return success; } static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) { int success; if (cpu_buffer->nr_pages_to_update > 0) success = rb_insert_pages(cpu_buffer); else success = rb_remove_pages(cpu_buffer, -cpu_buffer->nr_pages_to_update); if (success) cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; } static void update_pages_handler(struct work_struct *work) { struct ring_buffer_per_cpu *cpu_buffer = container_of(work, struct ring_buffer_per_cpu, update_pages_work); rb_update_pages(cpu_buffer); complete(&cpu_buffer->update_done); } /** * ring_buffer_resize - resize the ring buffer * @buffer: the buffer to resize. * @size: the new size. * @cpu_id: the cpu buffer to resize * * Minimum size is 2 * BUF_PAGE_SIZE. * * Returns 0 on success and < 0 on failure. */ int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, int cpu_id) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long nr_pages; int cpu, err; /* * Always succeed at resizing a non-existent buffer: */ if (!buffer) return 0; /* Make sure the requested buffer exists */ if (cpu_id != RING_BUFFER_ALL_CPUS && !cpumask_test_cpu(cpu_id, buffer->cpumask)) return 0; nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); /* we need a minimum of two pages */ if (nr_pages < 2) nr_pages = 2; /* prevent another thread from changing buffer sizes */ mutex_lock(&buffer->mutex); atomic_inc(&buffer->resizing); if (cpu_id == RING_BUFFER_ALL_CPUS) { /* * Don't succeed if resizing is disabled, as a reader might be * manipulating the ring buffer and is expecting a sane state while * this is true. */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; if (atomic_read(&cpu_buffer->resize_disabled)) { err = -EBUSY; goto out_err_unlock; } } /* calculate the pages to update */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; cpu_buffer->nr_pages_to_update = nr_pages - cpu_buffer->nr_pages; /* * nothing more to do for removing pages or no update */ if (cpu_buffer->nr_pages_to_update <= 0) continue; /* * to add pages, make sure all new pages can be * allocated without receiving ENOMEM */ INIT_LIST_HEAD(&cpu_buffer->new_pages); if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, &cpu_buffer->new_pages)) { /* not enough memory for new pages */ err = -ENOMEM; goto out_err; } cond_resched(); } cpus_read_lock(); /* * Fire off all the required work handlers * We can't schedule on offline CPUs, but it's not necessary * since we can change their buffer sizes without any race. */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; if (!cpu_buffer->nr_pages_to_update) continue; /* Can't run something on an offline CPU. */ if (!cpu_online(cpu)) { rb_update_pages(cpu_buffer); cpu_buffer->nr_pages_to_update = 0; } else { schedule_work_on(cpu, &cpu_buffer->update_pages_work); } } /* wait for all the updates to complete */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; if (!cpu_buffer->nr_pages_to_update) continue; if (cpu_online(cpu)) wait_for_completion(&cpu_buffer->update_done); cpu_buffer->nr_pages_to_update = 0; } cpus_read_unlock(); } else { cpu_buffer = buffer->buffers[cpu_id]; if (nr_pages == cpu_buffer->nr_pages) goto out; /* * Don't succeed if resizing is disabled, as a reader might be * manipulating the ring buffer and is expecting a sane state while * this is true. */ if (atomic_read(&cpu_buffer->resize_disabled)) { err = -EBUSY; goto out_err_unlock; } cpu_buffer->nr_pages_to_update = nr_pages - cpu_buffer->nr_pages; INIT_LIST_HEAD(&cpu_buffer->new_pages); if (cpu_buffer->nr_pages_to_update > 0 && __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, &cpu_buffer->new_pages)) { err = -ENOMEM; goto out_err; } cpus_read_lock(); /* Can't run something on an offline CPU. */ if (!cpu_online(cpu_id)) rb_update_pages(cpu_buffer); else { schedule_work_on(cpu_id, &cpu_buffer->update_pages_work); wait_for_completion(&cpu_buffer->update_done); } cpu_buffer->nr_pages_to_update = 0; cpus_read_unlock(); } out: /* * The ring buffer resize can happen with the ring buffer * enabled, so that the update disturbs the tracing as little * as possible. But if the buffer is disabled, we do not need * to worry about that, and we can take the time to verify * that the buffer is not corrupt. */ if (atomic_read(&buffer->record_disabled)) { atomic_inc(&buffer->record_disabled); /* * Even though the buffer was disabled, we must make sure * that it is truly disabled before calling rb_check_pages. * There could have been a race between checking * record_disable and incrementing it. */ synchronize_rcu(); for_each_buffer_cpu(buffer, cpu) { unsigned long flags; cpu_buffer = buffer->buffers[cpu]; raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); rb_check_pages(cpu_buffer); raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); } atomic_dec(&buffer->record_disabled); } atomic_dec(&buffer->resizing); mutex_unlock(&buffer->mutex); return 0; out_err: for_each_buffer_cpu(buffer, cpu) { struct buffer_page *bpage, *tmp; cpu_buffer = buffer->buffers[cpu]; cpu_buffer->nr_pages_to_update = 0; if (list_empty(&cpu_buffer->new_pages)) continue; list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) { list_del_init(&bpage->list); free_buffer_page(bpage); } } out_err_unlock: atomic_dec(&buffer->resizing); mutex_unlock(&buffer->mutex); return err; } EXPORT_SYMBOL_GPL(ring_buffer_resize); void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) { mutex_lock(&buffer->mutex); if (val) buffer->flags |= RB_FL_OVERWRITE; else buffer->flags &= ~RB_FL_OVERWRITE; mutex_unlock(&buffer->mutex); } EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) { return bpage->page->data + index; } static __always_inline struct ring_buffer_event * rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) { return __rb_page_index(cpu_buffer->reader_page, cpu_buffer->reader_page->read); } static struct ring_buffer_event * rb_iter_head_event(struct ring_buffer_iter *iter) { struct ring_buffer_event *event; struct buffer_page *iter_head_page = iter->head_page; unsigned long commit; unsigned length; if (iter->head != iter->next_event) return iter->event; /* * When the writer goes across pages, it issues a cmpxchg which * is a mb(), which will synchronize with the rmb here. * (see rb_tail_page_update() and __rb_reserve_next()) */ commit = rb_page_commit(iter_head_page); smp_rmb(); /* An event needs to be at least 8 bytes in size */ if (iter->head > commit - 8) goto reset; event = __rb_page_index(iter_head_page, iter->head); length = rb_event_length(event); /* * READ_ONCE() doesn't work on functions and we don't want the * compiler doing any crazy optimizations with length. */ barrier(); if ((iter->head + length) > commit || length > BUF_PAGE_SIZE) /* Writer corrupted the read? */ goto reset; memcpy(iter->event, event, length); /* * If the page stamp is still the same after this rmb() then the * event was safely copied without the writer entering the page. */ smp_rmb(); /* Make sure the page didn't change since we read this */ if (iter->page_stamp != iter_head_page->page->time_stamp || commit > rb_page_commit(iter_head_page)) goto reset; iter->next_event = iter->head + length; return iter->event; reset: /* Reset to the beginning */ iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; iter->head = 0; iter->next_event = 0; iter->missed_events = 1; return NULL; } /* Size is determined by what has been committed */ static __always_inline unsigned rb_page_size(struct buffer_page *bpage) { return rb_page_commit(bpage); } static __always_inline unsigned rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) { return rb_page_commit(cpu_buffer->commit_page); } static __always_inline unsigned rb_event_index(struct ring_buffer_event *event) { unsigned long addr = (unsigned long)event; return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; } static void rb_inc_iter(struct ring_buffer_iter *iter) { struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; /* * The iterator could be on the reader page (it starts there). * But the head could have moved, since the reader was * found. Check for this case and assign the iterator * to the head page instead of next. */ if (iter->head_page == cpu_buffer->reader_page) iter->head_page = rb_set_head_page(cpu_buffer); else rb_inc_page(&iter->head_page); iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; iter->head = 0; iter->next_event = 0; } /* * rb_handle_head_page - writer hit the head page * * Returns: +1 to retry page * 0 to continue * -1 on error */ static int rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, struct buffer_page *tail_page, struct buffer_page *next_page) { struct buffer_page *new_head; int entries; int type; int ret; entries = rb_page_entries(next_page); /* * The hard part is here. We need to move the head * forward, and protect against both readers on * other CPUs and writers coming in via interrupts. */ type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, RB_PAGE_HEAD); /* * type can be one of four: * NORMAL - an interrupt already moved it for us * HEAD - we are the first to get here. * UPDATE - we are the interrupt interrupting * a current move. * MOVED - a reader on another CPU moved the next * pointer to its reader page. Give up * and try again. */ switch (type) { case RB_PAGE_HEAD: /* * We changed the head to UPDATE, thus * it is our responsibility to update * the counters. */ local_add(entries, &cpu_buffer->overrun); local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes); local_inc(&cpu_buffer->pages_lost); /* * The entries will be zeroed out when we move the * tail page. */ /* still more to do */ break; case RB_PAGE_UPDATE: /* * This is an interrupt that interrupt the * previous update. Still more to do. */ break; case RB_PAGE_NORMAL: /* * An interrupt came in before the update * and processed this for us. * Nothing left to do. */ return 1; case RB_PAGE_MOVED: /* * The reader is on another CPU and just did * a swap with our next_page. * Try again. */ return 1; default: RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ return -1; } /* * Now that we are here, the old head pointer is * set to UPDATE. This will keep the reader from * swapping the head page with the reader page. * The reader (on another CPU) will spin till * we are finished. * * We just need to protect against interrupts * doing the job. We will set the next pointer * to HEAD. After that, we set the old pointer * to NORMAL, but only if it was HEAD before. * otherwise we are an interrupt, and only * want the outer most commit to reset it. */ new_head = next_page; rb_inc_page(&new_head); ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, RB_PAGE_NORMAL); /* * Valid returns are: * HEAD - an interrupt came in and already set it. * NORMAL - One of two things: * 1) We really set it. * 2) A bunch of interrupts came in and moved * the page forward again. */ switch (ret) { case RB_PAGE_HEAD: case RB_PAGE_NORMAL: /* OK */ break; default: RB_WARN_ON(cpu_buffer, 1); return -1; } /* * It is possible that an interrupt came in, * set the head up, then more interrupts came in * and moved it again. When we get back here, * the page would have been set to NORMAL but we * just set it back to HEAD. * * How do you detect this? Well, if that happened * the tail page would have moved. */ if (ret == RB_PAGE_NORMAL) { struct buffer_page *buffer_tail_page; buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); /* * If the tail had moved passed next, then we need * to reset the pointer. */ if (buffer_tail_page != tail_page && buffer_tail_page != next_page) rb_head_page_set_normal(cpu_buffer, new_head, next_page, RB_PAGE_HEAD); } /* * If this was the outer most commit (the one that * changed the original pointer from HEAD to UPDATE), * then it is up to us to reset it to NORMAL. */ if (type == RB_PAGE_HEAD) { ret = rb_head_page_set_normal(cpu_buffer, next_page, tail_page, RB_PAGE_UPDATE); if (RB_WARN_ON(cpu_buffer, ret != RB_PAGE_UPDATE)) return -1; } return 0; } static inline void rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, unsigned long tail, struct rb_event_info *info) { struct buffer_page *tail_page = info->tail_page; struct ring_buffer_event *event; unsigned long length = info->length; /* * Only the event that crossed the page boundary * must fill the old tail_page with padding. */ if (tail >= BUF_PAGE_SIZE) { /* * If the page was filled, then we still need * to update the real_end. Reset it to zero * and the reader will ignore it. */ if (tail == BUF_PAGE_SIZE) tail_page->real_end = 0; local_sub(length, &tail_page->write); return; } event = __rb_page_index(tail_page, tail); /* * Save the original length to the meta data. * This will be used by the reader to add lost event * counter. */ tail_page->real_end = tail; /* * If this event is bigger than the minimum size, then * we need to be careful that we don't subtract the * write counter enough to allow another writer to slip * in on this page. * We put in a discarded commit instead, to make sure * that this space is not used again, and this space will * not be accounted into 'entries_bytes'. * * If we are less than the minimum size, we don't need to * worry about it. */ if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { /* No room for any events */ /* Mark the rest of the page with padding */ rb_event_set_padding(event); /* Make sure the padding is visible before the write update */ smp_wmb(); /* Set the write back to the previous setting */ local_sub(length, &tail_page->write); return; } /* Put in a discarded event */ event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; event->type_len = RINGBUF_TYPE_PADDING; /* time delta must be non zero */ event->time_delta = 1; /* account for padding bytes */ local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); /* Make sure the padding is visible before the tail_page->write update */ smp_wmb(); /* Set write to end of buffer */ length = (tail + length) - BUF_PAGE_SIZE; local_sub(length, &tail_page->write); } static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); /* * This is the slow path, force gcc not to inline it. */ static noinline struct ring_buffer_event * rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, unsigned long tail, struct rb_event_info *info) { struct buffer_page *tail_page = info->tail_page; struct buffer_page *commit_page = cpu_buffer->commit_page; struct trace_buffer *buffer = cpu_buffer->buffer; struct buffer_page *next_page; int ret; next_page = tail_page; rb_inc_page(&next_page); /* * If for some reason, we had an interrupt storm that made * it all the way around the buffer, bail, and warn * about it. */ if (unlikely(next_page == commit_page)) { local_inc(&cpu_buffer->commit_overrun); goto out_reset; } /* * This is where the fun begins! * * We are fighting against races between a reader that * could be on another CPU trying to swap its reader * page with the buffer head. * * We are also fighting against interrupts coming in and * moving the head or tail on us as well. * * If the next page is the head page then we have filled * the buffer, unless the commit page is still on the * reader page. */ if (rb_is_head_page(next_page, &tail_page->list)) { /* * If the commit is not on the reader page, then * move the header page. */ if (!rb_is_reader_page(cpu_buffer->commit_page)) { /* * If we are not in overwrite mode, * this is easy, just stop here. */ if (!(buffer->flags & RB_FL_OVERWRITE)) { local_inc(&cpu_buffer->dropped_events); goto out_reset; } ret = rb_handle_head_page(cpu_buffer, tail_page, next_page); if (ret < 0) goto out_reset; if (ret) goto out_again; } else { /* * We need to be careful here too. The * commit page could still be on the reader * page. We could have a small buffer, and * have filled up the buffer with events * from interrupts and such, and wrapped. * * Note, if the tail page is also on the * reader_page, we let it move out. */ if (unlikely((cpu_buffer->commit_page != cpu_buffer->tail_page) && (cpu_buffer->commit_page == cpu_buffer->reader_page))) { local_inc(&cpu_buffer->commit_overrun); goto out_reset; } } } rb_tail_page_update(cpu_buffer, tail_page, next_page); out_again: rb_reset_tail(cpu_buffer, tail, info); /* Commit what we have for now. */ rb_end_commit(cpu_buffer); /* rb_end_commit() decs committing */ local_inc(&cpu_buffer->committing); /* fail and let the caller try again */ return ERR_PTR(-EAGAIN); out_reset: /* reset write */ rb_reset_tail(cpu_buffer, tail, info); return NULL; } /* Slow path */ static struct ring_buffer_event * rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs) { if (abs) event->type_len = RINGBUF_TYPE_TIME_STAMP; else event->type_len = RINGBUF_TYPE_TIME_EXTEND; /* Not the first event on the page, or not delta? */ if (abs || rb_event_index(event)) { event->time_delta = delta & TS_MASK; event->array[0] = delta >> TS_SHIFT; } else { /* nope, just zero it */ event->time_delta = 0; event->array[0] = 0; } return skip_time_extend(event); } #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK static inline bool sched_clock_stable(void) { return true; } #endif static void rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, struct rb_event_info *info) { u64 write_stamp; WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", (unsigned long long)info->delta, (unsigned long long)info->ts, (unsigned long long)info->before, (unsigned long long)info->after, (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0), sched_clock_stable() ? "" : "If you just came from a suspend/resume,\n" "please switch to the trace global clock:\n" " echo global > /sys/kernel/debug/tracing/trace_clock\n" "or add trace_clock=global to the kernel command line\n"); } static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event **event, struct rb_event_info *info, u64 *delta, unsigned int *length) { bool abs = info->add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); if (unlikely(info->delta > (1ULL << 59))) { /* did the clock go backwards */ if (info->before == info->after && info->before > info->ts) { /* not interrupted */ static int once; /* * This is possible with a recalibrating of the TSC. * Do not produce a call stack, but just report it. */ if (!once) { once++; pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", info->before, info->ts); } } else rb_check_timestamp(cpu_buffer, info); if (!abs) info->delta = 0; } *event = rb_add_time_stamp(*event, info->delta, abs); *length -= RB_LEN_TIME_EXTEND; *delta = 0; } /** * rb_update_event - update event type and data * @cpu_buffer: The per cpu buffer of the @event * @event: the event to update * @info: The info to update the @event with (contains length and delta) * * Update the type and data fields of the @event. The length * is the actual size that is written to the ring buffer, * and with this, we can determine what to place into the * data field. */ static void rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event, struct rb_event_info *info) { unsigned length = info->length; u64 delta = info->delta; unsigned int nest = local_read(&cpu_buffer->committing) - 1; if (!WARN_ON_ONCE(nest >= MAX_NEST)) cpu_buffer->event_stamp[nest] = info->ts; /* * If we need to add a timestamp, then we * add it to the start of the reserved space. */ if (unlikely(info->add_timestamp)) rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); event->time_delta = delta; length -= RB_EVNT_HDR_SIZE; if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { event->type_len = 0; event->array[0] = length; } else event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); } static unsigned rb_calculate_event_length(unsigned length) { struct ring_buffer_event event; /* Used only for sizeof array */ /* zero length can cause confusions */ if (!length) length++; if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) length += sizeof(event.array[0]); length += RB_EVNT_HDR_SIZE; length = ALIGN(length, RB_ARCH_ALIGNMENT); /* * In case the time delta is larger than the 27 bits for it * in the header, we need to add a timestamp. If another * event comes in when trying to discard this one to increase * the length, then the timestamp will be added in the allocated * space of this event. If length is bigger than the size needed * for the TIME_EXTEND, then padding has to be used. The events * length must be either RB_LEN_TIME_EXTEND, or greater than or equal * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. * As length is a multiple of 4, we only need to worry if it * is 12 (RB_LEN_TIME_EXTEND + 4). */ if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) length += RB_ALIGNMENT; return length; } static inline int rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event) { unsigned long new_index, old_index; struct buffer_page *bpage; unsigned long index; unsigned long addr; new_index = rb_event_index(event); old_index = new_index + rb_event_ts_length(event); addr = (unsigned long)event; addr &= PAGE_MASK; bpage = READ_ONCE(cpu_buffer->tail_page); /* * Make sure the tail_page is still the same and * the next write location is the end of this event */ if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { unsigned long write_mask = local_read(&bpage->write) & ~RB_WRITE_MASK; unsigned long event_length = rb_event_length(event); /* * For the before_stamp to be different than the write_stamp * to make sure that the next event adds an absolute * value and does not rely on the saved write stamp, which * is now going to be bogus. * * By setting the before_stamp to zero, the next event * is not going to use the write_stamp and will instead * create an absolute timestamp. This means there's no * reason to update the wirte_stamp! */ rb_time_set(&cpu_buffer->before_stamp, 0); /* * If an event were to come in now, it would see that the * write_stamp and the before_stamp are different, and assume * that this event just added itself before updating * the write stamp. The interrupting event will fix the * write stamp for us, and use an absolute timestamp. */ /* * This is on the tail page. It is possible that * a write could come in and move the tail page * and write to the next page. That is fine * because we just shorten what is on this page. */ old_index += write_mask; new_index += write_mask; index = local_cmpxchg(&bpage->write, old_index, new_index); if (index == old_index) { /* update counters */ local_sub(event_length, &cpu_buffer->entries_bytes); return 1; } } /* could not discard */ return 0; } static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) { local_inc(&cpu_buffer->committing); local_inc(&cpu_buffer->commits); } static __always_inline void rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) { unsigned long max_count; /* * We only race with interrupts and NMIs on this CPU. * If we own the commit event, then we can commit * all others that interrupted us, since the interruptions * are in stack format (they finish before they come * back to us). This allows us to do a simple loop to * assign the commit to the tail. */ again: max_count = cpu_buffer->nr_pages * 100; while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { if (RB_WARN_ON(cpu_buffer, !(--max_count))) return; if (RB_WARN_ON(cpu_buffer, rb_is_reader_page(cpu_buffer->tail_page))) return; /* * No need for a memory barrier here, as the update * of the tail_page did it for this page. */ local_set(&cpu_buffer->commit_page->page->commit, rb_page_write(cpu_buffer->commit_page)); rb_inc_page(&cpu_buffer->commit_page); /* add barrier to keep gcc from optimizing too much */ barrier(); } while (rb_commit_index(cpu_buffer) != rb_page_write(cpu_buffer->commit_page)) { /* Make sure the readers see the content of what is committed. */ smp_wmb(); local_set(&cpu_buffer->commit_page->page->commit, rb_page_write(cpu_buffer->commit_page)); RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->commit_page->page->commit) & ~RB_WRITE_MASK); barrier(); } /* again, keep gcc from optimizing */ barrier(); /* * If an interrupt came in just after the first while loop * and pushed the tail page forward, we will be left with * a dangling commit that will never go forward. */ if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) goto again; } static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) { unsigned long commits; if (RB_WARN_ON(cpu_buffer, !local_read(&cpu_buffer->committing))) return; again: commits = local_read(&cpu_buffer->commits); /* synchronize with interrupts */ barrier(); if (local_read(&cpu_buffer->committing) == 1) rb_set_commit_to_write(cpu_buffer); local_dec(&cpu_buffer->committing); /* synchronize with interrupts */ barrier(); /* * Need to account for interrupts coming in between the * updating of the commit page and the clearing of the * committing counter. */ if (unlikely(local_read(&cpu_buffer->commits) != commits) && !local_read(&cpu_buffer->committing)) { local_inc(&cpu_buffer->committing); goto again; } } static inline void rb_event_discard(struct ring_buffer_event *event) { if (extended_time(event)) event = skip_time_extend(event); /* array[0] holds the actual length for the discarded event */ event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; event->type_len = RINGBUF_TYPE_PADDING; /* time delta must be non zero */ if (!event->time_delta) event->time_delta = 1; } static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event) { local_inc(&cpu_buffer->entries); rb_end_commit(cpu_buffer); } static __always_inline void rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) { if (buffer->irq_work.waiters_pending) { buffer->irq_work.waiters_pending = false; /* irq_work_queue() supplies it's own memory barriers */ irq_work_queue(&buffer->irq_work.work); } if (cpu_buffer->irq_work.waiters_pending) { cpu_buffer->irq_work.waiters_pending = false; /* irq_work_queue() supplies it's own memory barriers */ irq_work_queue(&cpu_buffer->irq_work.work); } if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) return; if (cpu_buffer->reader_page == cpu_buffer->commit_page) return; if (!cpu_buffer->irq_work.full_waiters_pending) return; cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full)) return; cpu_buffer->irq_work.wakeup_full = true; cpu_buffer->irq_work.full_waiters_pending = false; /* irq_work_queue() supplies it's own memory barriers */ irq_work_queue(&cpu_buffer->irq_work.work); } #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION # define do_ring_buffer_record_recursion() \ do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) #else # define do_ring_buffer_record_recursion() do { } while (0) #endif /* * The lock and unlock are done within a preempt disable section. * The current_context per_cpu variable can only be modified * by the current task between lock and unlock. But it can * be modified more than once via an interrupt. To pass this * information from the lock to the unlock without having to * access the 'in_interrupt()' functions again (which do show * a bit of overhead in something as critical as function tracing, * we use a bitmask trick. * * bit 1 = NMI context * bit 2 = IRQ context * bit 3 = SoftIRQ context * bit 4 = normal context. * * This works because this is the order of contexts that can * preempt other contexts. A SoftIRQ never preempts an IRQ * context. * * When the context is determined, the corresponding bit is * checked and set (if it was set, then a recursion of that context * happened). * * On unlock, we need to clear this bit. To do so, just subtract * 1 from the current_context and AND it to itself. * * (binary) * 101 - 1 = 100 * 101 & 100 = 100 (clearing bit zero) * * 1010 - 1 = 1001 * 1010 & 1001 = 1000 (clearing bit 1) * * The least significant bit can be cleared this way, and it * just so happens that it is the same bit corresponding to * the current context. * * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit * is set when a recursion is detected at the current context, and if * the TRANSITION bit is already set, it will fail the recursion. * This is needed because there's a lag between the changing of * interrupt context and updating the preempt count. In this case, * a false positive will be found. To handle this, one extra recursion * is allowed, and this is done by the TRANSITION bit. If the TRANSITION * bit is already set, then it is considered a recursion and the function * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. * * On the trace_recursive_unlock(), the TRANSITION bit will be the first * to be cleared. Even if it wasn't the context that set it. That is, * if an interrupt comes in while NORMAL bit is set and the ring buffer * is called before preempt_count() is updated, since the check will * be on the NORMAL bit, the TRANSITION bit will then be set. If an * NMI then comes in, it will set the NMI bit, but when the NMI code * does the trace_recursive_unlock() it will clear the TRANSITION bit * and leave the NMI bit set. But this is fine, because the interrupt * code that set the TRANSITION bit will then clear the NMI bit when it * calls trace_recursive_unlock(). If another NMI comes in, it will * set the TRANSITION bit and continue. * * Note: The TRANSITION bit only handles a single transition between context. */ static __always_inline int trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) { unsigned int val = cpu_buffer->current_context; int bit = interrupt_context_level(); bit = RB_CTX_NORMAL - bit; if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { /* * It is possible that this was called by transitioning * between interrupt context, and preempt_count() has not * been updated yet. In this case, use the TRANSITION bit. */ bit = RB_CTX_TRANSITION; if (val & (1 << (bit + cpu_buffer->nest))) { do_ring_buffer_record_recursion(); return 1; } } val |= (1 << (bit + cpu_buffer->nest)); cpu_buffer->current_context = val; return 0; } static __always_inline void trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) { cpu_buffer->current_context &= cpu_buffer->current_context - (1 << cpu_buffer->nest); } /* The recursive locking above uses 5 bits */ #define NESTED_BITS 5 /** * ring_buffer_nest_start - Allow to trace while nested * @buffer: The ring buffer to modify * * The ring buffer has a safety mechanism to prevent recursion. * But there may be a case where a trace needs to be done while * tracing something else. In this case, calling this function * will allow this function to nest within a currently active * ring_buffer_lock_reserve(). * * Call this function before calling another ring_buffer_lock_reserve() and * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). */ void ring_buffer_nest_start(struct trace_buffer *buffer) { struct ring_buffer_per_cpu *cpu_buffer; int cpu; /* Enabled by ring_buffer_nest_end() */ preempt_disable_notrace(); cpu = raw_smp_processor_id(); cpu_buffer = buffer->buffers[cpu]; /* This is the shift value for the above recursive locking */ cpu_buffer->nest += NESTED_BITS; } /** * ring_buffer_nest_end - Allow to trace while nested * @buffer: The ring buffer to modify * * Must be called after ring_buffer_nest_start() and after the * ring_buffer_unlock_commit(). */ void ring_buffer_nest_end(struct trace_buffer *buffer) { struct ring_buffer_per_cpu *cpu_buffer; int cpu; /* disabled by ring_buffer_nest_start() */ cpu = raw_smp_processor_id(); cpu_buffer = buffer->buffers[cpu]; /* This is the shift value for the above recursive locking */ cpu_buffer->nest -= NESTED_BITS; preempt_enable_notrace(); } /** * ring_buffer_unlock_commit - commit a reserved * @buffer: The buffer to commit to * @event: The event pointer to commit. * * This commits the data to the ring buffer, and releases any locks held. * * Must be paired with ring_buffer_lock_reserve. */ int ring_buffer_unlock_commit(struct trace_buffer *buffer, struct ring_buffer_event *event) { struct ring_buffer_per_cpu *cpu_buffer; int cpu = raw_smp_processor_id(); cpu_buffer = buffer->buffers[cpu]; rb_commit(cpu_buffer, event); rb_wakeups(buffer, cpu_buffer); trace_recursive_unlock(cpu_buffer); preempt_enable_notrace(); return 0; } EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); /* Special value to validate all deltas on a page. */ #define CHECK_FULL_PAGE 1L #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS static void dump_buffer_page(struct buffer_data_page *bpage, struct rb_event_info *info, unsigned long tail) { struct ring_buffer_event *event; u64 ts, delta; int e; ts = bpage->time_stamp; pr_warn(" [%lld] PAGE TIME STAMP\n", ts); for (e = 0; e < tail; e += rb_event_length(event)) { event = (struct ring_buffer_event *)(bpage->data + e); switch (event->type_len) { case RINGBUF_TYPE_TIME_EXTEND: delta = rb_event_time_stamp(event); ts += delta; pr_warn(" [%lld] delta:%lld TIME EXTEND\n", ts, delta); break; case RINGBUF_TYPE_TIME_STAMP: delta = rb_event_time_stamp(event); ts = delta; pr_warn(" [%lld] absolute:%lld TIME STAMP\n", ts, delta); break; case RINGBUF_TYPE_PADDING: ts += event->time_delta; pr_warn(" [%lld] delta:%d PADDING\n", ts, event->time_delta); break; case RINGBUF_TYPE_DATA: ts += event->time_delta; pr_warn(" [%lld] delta:%d\n", ts, event->time_delta); break; default: break; } } } static DEFINE_PER_CPU(atomic_t, checking); static atomic_t ts_dump; /* * Check if the current event time stamp matches the deltas on * the buffer page. */ static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, struct rb_event_info *info, unsigned long tail) { struct ring_buffer_event *event; struct buffer_data_page *bpage; u64 ts, delta; bool full = false; int e; bpage = info->tail_page->page; if (tail == CHECK_FULL_PAGE) { full = true; tail = local_read(&bpage->commit); } else if (info->add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { /* Ignore events with absolute time stamps */ return; } /* * Do not check the first event (skip possible extends too). * Also do not check if previous events have not been committed. */ if (tail <= 8 || tail > local_read(&bpage->commit)) return; /* * If this interrupted another event, */ if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) goto out; ts = bpage->time_stamp; for (e = 0; e < tail; e += rb_event_length(event)) { event = (struct ring_buffer_event *)(bpage->data + e); switch (event->type_len) { case RINGBUF_TYPE_TIME_EXTEND: delta = rb_event_time_stamp(event); ts += delta; break; case RINGBUF_TYPE_TIME_STAMP: delta = rb_event_time_stamp(event); ts = delta; break; case RINGBUF_TYPE_PADDING: if (event->time_delta == 1) break; fallthrough; case RINGBUF_TYPE_DATA: ts += event->time_delta; break; default: RB_WARN_ON(cpu_buffer, 1); } } if ((full && ts > info->ts) || (!full && ts + info->delta != info->ts)) { /* If another report is happening, ignore this one */ if (atomic_inc_return(&ts_dump) != 1) { atomic_dec(&ts_dump); goto out; } atomic_inc(&cpu_buffer->record_disabled); /* There's some cases in boot up that this can happen */ WARN_ON_ONCE(system_state != SYSTEM_BOOTING); pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n", cpu_buffer->cpu, ts + info->delta, info->ts, info->delta, info->before, info->after, full ? " (full)" : ""); dump_buffer_page(bpage, info, tail); atomic_dec(&ts_dump); /* Do not re-enable checking */ return; } out: atomic_dec(this_cpu_ptr(&checking)); } #else static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, struct rb_event_info *info, unsigned long tail) { } #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ static struct ring_buffer_event * __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, struct rb_event_info *info) { struct ring_buffer_event *event; struct buffer_page *tail_page; unsigned long tail, write, w; bool a_ok; bool b_ok; /* Don't let the compiler play games with cpu_buffer->tail_page */ tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; barrier(); b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); barrier(); info->ts = rb_time_stamp(cpu_buffer->buffer); if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { info->delta = info->ts; } else { /* * If interrupting an event time update, we may need an * absolute timestamp. * Don't bother if this is the start of a new page (w == 0). */ if (!w) { /* Use the sub-buffer timestamp */ info->delta = 0; } else if (unlikely(!a_ok || !b_ok || info->before != info->after)) { info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; info->length += RB_LEN_TIME_EXTEND; } else { info->delta = info->ts - info->after; if (unlikely(test_time_stamp(info->delta))) { info->add_timestamp |= RB_ADD_STAMP_EXTEND; info->length += RB_LEN_TIME_EXTEND; } } } /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); /*C*/ write = local_add_return(info->length, &tail_page->write); /* set write to only the index of the write */ write &= RB_WRITE_MASK; tail = write - info->length; /* See if we shot pass the end of this buffer page */ if (unlikely(write > BUF_PAGE_SIZE)) { check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); return rb_move_tail(cpu_buffer, tail, info); } if (likely(tail == w)) { /* Nothing interrupted us between A and C */ /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); /* * If something came in between C and D, the write stamp * may now not be in sync. But that's fine as the before_stamp * will be different and then next event will just be forced * to use an absolute timestamp. */ if (likely(!(info->add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) /* This did not interrupt any time update */ info->delta = info->ts - info->after; else /* Just use full timestamp for interrupting event */ info->delta = info->ts; check_buffer(cpu_buffer, info, tail); } else { u64 ts; /* SLOW PATH - Interrupted between A and C */ /* Save the old before_stamp */ a_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before); RB_WARN_ON(cpu_buffer, !a_ok); /* * Read a new timestamp and update the before_stamp to make * the next event after this one force using an absolute * timestamp. This is in case an interrupt were to come in * between E and F. */ ts = rb_time_stamp(cpu_buffer->buffer); rb_time_set(&cpu_buffer->before_stamp, ts); barrier(); /*E*/ a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after); /* Was interrupted before here, write_stamp must be valid */ RB_WARN_ON(cpu_buffer, !a_ok); barrier(); /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && info->after == info->before && info->after < ts) { /* * Nothing came after this event between C and F, it is * safe to use info->after for the delta as it * matched info->before and is still valid. */ info->delta = ts - info->after; } else { /* * Interrupted between C and F: * Lost the previous events time stamp. Just set the * delta to zero, and this will be the same time as * the event this event interrupted. And the events that * came after this will still be correct (as they would * have built their delta on the previous event. */ info->delta = 0; } info->ts = ts; info->add_timestamp &= ~RB_ADD_STAMP_FORCE; } /* * If this is the first commit on the page, then it has the same * timestamp as the page itself. */ if (unlikely(!tail && !(info->add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) info->delta = 0; /* We reserved something on the buffer */ event = __rb_page_index(tail_page, tail); rb_update_event(cpu_buffer, event, info); local_inc(&tail_page->entries); /* * If this is the first commit on the page, then update * its timestamp. */ if (unlikely(!tail)) tail_page->page->time_stamp = info->ts; /* account for these added bytes */ local_add(info->length, &cpu_buffer->entries_bytes); return event; } static __always_inline struct ring_buffer_event * rb_reserve_next_event(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer, unsigned long length) { struct ring_buffer_event *event; struct rb_event_info info; int nr_loops = 0; int add_ts_default; /* ring buffer does cmpxchg, make sure it is safe in NMI context */ if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) && (unlikely(in_nmi()))) { return NULL; } rb_start_commit(cpu_buffer); /* The commit page can not change after this */ #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP /* * Due to the ability to swap a cpu buffer from a buffer * it is possible it was swapped before we committed. * (committing stops a swap). We check for it here and * if it happened, we have to fail the write. */ barrier(); if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { local_dec(&cpu_buffer->committing); local_dec(&cpu_buffer->commits); return NULL; } #endif info.length = rb_calculate_event_length(length); if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { add_ts_default = RB_ADD_STAMP_ABSOLUTE; info.length += RB_LEN_TIME_EXTEND; if (info.length > BUF_MAX_DATA_SIZE) goto out_fail; } else { add_ts_default = RB_ADD_STAMP_NONE; } again: info.add_timestamp = add_ts_default; info.delta = 0; /* * We allow for interrupts to reenter here and do a trace. * If one does, it will cause this original code to loop * back here. Even with heavy interrupts happening, this * should only happen a few times in a row. If this happens * 1000 times in a row, there must be either an interrupt * storm or we have something buggy. * Bail! */ if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) goto out_fail; event = __rb_reserve_next(cpu_buffer, &info); if (unlikely(PTR_ERR(event) == -EAGAIN)) { if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) info.length -= RB_LEN_TIME_EXTEND; goto again; } if (likely(event)) return event; out_fail: rb_end_commit(cpu_buffer); return NULL; } /** * ring_buffer_lock_reserve - reserve a part of the buffer * @buffer: the ring buffer to reserve from * @length: the length of the data to reserve (excluding event header) * * Returns a reserved event on the ring buffer to copy directly to. * The user of this interface will need to get the body to write into * and can use the ring_buffer_event_data() interface. * * The length is the length of the data needed, not the event length * which also includes the event header. * * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. * If NULL is returned, then nothing has been allocated or locked. */ struct ring_buffer_event * ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) { struct ring_buffer_per_cpu *cpu_buffer; struct ring_buffer_event *event; int cpu; /* If we are tracing schedule, we don't want to recurse */ preempt_disable_notrace(); if (unlikely(atomic_read(&buffer->record_disabled))) goto out; cpu = raw_smp_processor_id(); if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) goto out; cpu_buffer = buffer->buffers[cpu]; if (unlikely(atomic_read(&cpu_buffer->record_disabled))) goto out; if (unlikely(length > BUF_MAX_DATA_SIZE)) goto out; if (unlikely(trace_recursive_lock(cpu_buffer))) goto out; event = rb_reserve_next_event(buffer, cpu_buffer, length); if (!event) goto out_unlock; return event; out_unlock: trace_recursive_unlock(cpu_buffer); out: preempt_enable_notrace(); return NULL; } EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); /* * Decrement the entries to the page that an event is on. * The event does not even need to exist, only the pointer * to the page it is on. This may only be called before the commit * takes place. */ static inline void rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event) { unsigned long addr = (unsigned long)event; struct buffer_page *bpage = cpu_buffer->commit_page; struct buffer_page *start; addr &= PAGE_MASK; /* Do the likely case first */ if (likely(bpage->page == (void *)addr)) { local_dec(&bpage->entries); return; } /* * Because the commit page may be on the reader page we * start with the next page and check the end loop there. */ rb_inc_page(&bpage); start = bpage; do { if (bpage->page == (void *)addr) { local_dec(&bpage->entries); return; } rb_inc_page(&bpage); } while (bpage != start); /* commit not part of this buffer?? */ RB_WARN_ON(cpu_buffer, 1); } /** * ring_buffer_discard_commit - discard an event that has not been committed * @buffer: the ring buffer * @event: non committed event to discard * * Sometimes an event that is in the ring buffer needs to be ignored. * This function lets the user discard an event in the ring buffer * and then that event will not be read later. * * This function only works if it is called before the item has been * committed. It will try to free the event from the ring buffer * if another event has not been added behind it. * * If another event has been added behind it, it will set the event * up as discarded, and perform the commit. * * If this function is called, do not call ring_buffer_unlock_commit on * the event. */ void ring_buffer_discard_commit(struct trace_buffer *buffer, struct ring_buffer_event *event) { struct ring_buffer_per_cpu *cpu_buffer; int cpu; /* The event is discarded regardless */ rb_event_discard(event); cpu = smp_processor_id(); cpu_buffer = buffer->buffers[cpu]; /* * This must only be called if the event has not been * committed yet. Thus we can assume that preemption * is still disabled. */ RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); rb_decrement_entry(cpu_buffer, event); if (rb_try_to_discard(cpu_buffer, event)) goto out; out: rb_end_commit(cpu_buffer); trace_recursive_unlock(cpu_buffer); preempt_enable_notrace(); } EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); /** * ring_buffer_write - write data to the buffer without reserving * @buffer: The ring buffer to write to. * @length: The length of the data being written (excluding the event header) * @data: The data to write to the buffer. * * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as * one function. If you already have the data to write to the buffer, it * may be easier to simply call this function. * * Note, like ring_buffer_lock_reserve, the length is the length of the data * and not the length of the event which would hold the header. */ int ring_buffer_write(struct trace_buffer *buffer, unsigned long length, void *data) { struct ring_buffer_per_cpu *cpu_buffer; struct ring_buffer_event *event; void *body; int ret = -EBUSY; int cpu; preempt_disable_notrace(); if (atomic_read(&buffer->record_disabled)) goto out; cpu = raw_smp_processor_id(); if (!cpumask_test_cpu(cpu, buffer->cpumask)) goto out; cpu_buffer = buffer->buffers[cpu]; if (atomic_read(&cpu_buffer->record_disabled)) goto out; if (length > BUF_MAX_DATA_SIZE) goto out; if (unlikely(trace_recursive_lock(cpu_buffer))) goto out; event = rb_reserve_next_event(buffer, cpu_buffer, length); if (!event) goto out_unlock; body = rb_event_data(event); memcpy(body, data, length); rb_commit(cpu_buffer, event); rb_wakeups(buffer, cpu_buffer); ret = 0; out_unlock: trace_recursive_unlock(cpu_buffer); out: preempt_enable_notrace(); return ret; } EXPORT_SYMBOL_GPL(ring_buffer_write); static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) { struct buffer_page *reader = cpu_buffer->reader_page; struct buffer_page *head = rb_set_head_page(cpu_buffer); struct buffer_page *commit = cpu_buffer->commit_page; /* In case of error, head will be NULL */ if (unlikely(!head)) return true; /* Reader should exhaust content in reader page */ if (reader->read != rb_page_commit(reader)) return false; /* * If writers are committing on the reader page, knowing all * committed content has been read, the ring buffer is empty. */ if (commit == reader) return true; /* * If writers are committing on a page other than reader page * and head page, there should always be content to read. */ if (commit != head) return false; /* * Writers are committing on the head page, we just need * to care about there're committed data, and the reader will * swap reader page with head page when it is to read data. */ return rb_page_commit(commit) == 0; } /** * ring_buffer_record_disable - stop all writes into the buffer * @buffer: The ring buffer to stop writes to. * * This prevents all writes to the buffer. Any attempt to write * to the buffer after this will fail and return NULL. * * The caller should call synchronize_rcu() after this. */ void ring_buffer_record_disable(struct trace_buffer *buffer) { atomic_inc(&buffer->record_disabled); } EXPORT_SYMBOL_GPL(ring_buffer_record_disable); /** * ring_buffer_record_enable - enable writes to the buffer * @buffer: The ring buffer to enable writes * * Note, multiple disables will need the same number of enables * to truly enable the writing (much like preempt_disable). */ void ring_buffer_record_enable(struct trace_buffer *buffer) { atomic_dec(&buffer->record_disabled); } EXPORT_SYMBOL_GPL(ring_buffer_record_enable); /** * ring_buffer_record_off - stop all writes into the buffer * @buffer: The ring buffer to stop writes to. * * This prevents all writes to the buffer. Any attempt to write * to the buffer after this will fail and return NULL. * * This is different than ring_buffer_record_disable() as * it works like an on/off switch, where as the disable() version * must be paired with a enable(). */ void ring_buffer_record_off(struct trace_buffer *buffer) { unsigned int rd; unsigned int new_rd; do { rd = atomic_read(&buffer->record_disabled); new_rd = rd | RB_BUFFER_OFF; } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); } EXPORT_SYMBOL_GPL(ring_buffer_record_off); /** * ring_buffer_record_on - restart writes into the buffer * @buffer: The ring buffer to start writes to. * * This enables all writes to the buffer that was disabled by * ring_buffer_record_off(). * * This is different than ring_buffer_record_enable() as * it works like an on/off switch, where as the enable() version * must be paired with a disable(). */ void ring_buffer_record_on(struct trace_buffer *buffer) { unsigned int rd; unsigned int new_rd; do { rd = atomic_read(&buffer->record_disabled); new_rd = rd & ~RB_BUFFER_OFF; } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); } EXPORT_SYMBOL_GPL(ring_buffer_record_on); /** * ring_buffer_record_is_on - return true if the ring buffer can write * @buffer: The ring buffer to see if write is enabled * * Returns true if the ring buffer is in a state that it accepts writes. */ bool ring_buffer_record_is_on(struct trace_buffer *buffer) { return !atomic_read(&buffer->record_disabled); } /** * ring_buffer_record_is_set_on - return true if the ring buffer is set writable * @buffer: The ring buffer to see if write is set enabled * * Returns true if the ring buffer is set writable by ring_buffer_record_on(). * Note that this does NOT mean it is in a writable state. * * It may return true when the ring buffer has been disabled by * ring_buffer_record_disable(), as that is a temporary disabling of * the ring buffer. */ bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) { return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); } /** * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer * @buffer: The ring buffer to stop writes to. * @cpu: The CPU buffer to stop * * This prevents all writes to the buffer. Any attempt to write * to the buffer after this will fail and return NULL. * * The caller should call synchronize_rcu() after this. */ void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return; cpu_buffer = buffer->buffers[cpu]; atomic_inc(&cpu_buffer->record_disabled); } EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); /** * ring_buffer_record_enable_cpu - enable writes to the buffer * @buffer: The ring buffer to enable writes * @cpu: The CPU to enable. * * Note, multiple disables will need the same number of enables * to truly enable the writing (much like preempt_disable). */ void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return; cpu_buffer = buffer->buffers[cpu]; atomic_dec(&cpu_buffer->record_disabled); } EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); /* * The total entries in the ring buffer is the running counter * of entries entered into the ring buffer, minus the sum of * the entries read from the ring buffer and the number of * entries that were overwritten. */ static inline unsigned long rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) { return local_read(&cpu_buffer->entries) - (local_read(&cpu_buffer->overrun) + cpu_buffer->read); } /** * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer * @buffer: The ring buffer * @cpu: The per CPU buffer to read from. */ u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) { unsigned long flags; struct ring_buffer_per_cpu *cpu_buffer; struct buffer_page *bpage; u64 ret = 0; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return 0; cpu_buffer = buffer->buffers[cpu]; raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); /* * if the tail is on reader_page, oldest time stamp is on the reader * page */ if (cpu_buffer->tail_page == cpu_buffer->reader_page) bpage = cpu_buffer->reader_page; else bpage = rb_set_head_page(cpu_buffer); if (bpage) ret = bpage->page->time_stamp; raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); return ret; } EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); /** * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer * @buffer: The ring buffer * @cpu: The per CPU buffer to read from. */ unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long ret; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return 0; cpu_buffer = buffer->buffers[cpu]; ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; return ret; } EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); /** * ring_buffer_entries_cpu - get the number of entries in a cpu buffer * @buffer: The ring buffer * @cpu: The per CPU buffer to get the entries from. */ unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return 0; cpu_buffer = buffer->buffers[cpu]; return rb_num_of_entries(cpu_buffer); } EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); /** * ring_buffer_overrun_cpu - get the number of overruns caused by the ring * buffer wrapping around (only if RB_FL_OVERWRITE is on). * @buffer: The ring buffer * @cpu: The per CPU buffer to get the number of overruns from */ unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long ret; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return 0; cpu_buffer = buffer->buffers[cpu]; ret = local_read(&cpu_buffer->overrun); return ret; } EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); /** * ring_buffer_commit_overrun_cpu - get the number of overruns caused by * commits failing due to the buffer wrapping around while there are uncommitted * events, such as during an interrupt storm. * @buffer: The ring buffer * @cpu: The per CPU buffer to get the number of overruns from */ unsigned long ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long ret; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return 0; cpu_buffer = buffer->buffers[cpu]; ret = local_read(&cpu_buffer->commit_overrun); return ret; } EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); /** * ring_buffer_dropped_events_cpu - get the number of dropped events caused by * the ring buffer filling up (only if RB_FL_OVERWRITE is off). * @buffer: The ring buffer * @cpu: The per CPU buffer to get the number of overruns from */ unsigned long ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long ret; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return 0; cpu_buffer = buffer->buffers[cpu]; ret = local_read(&cpu_buffer->dropped_events); return ret; } EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); /** * ring_buffer_read_events_cpu - get the number of events successfully read * @buffer: The ring buffer * @cpu: The per CPU buffer to get the number of events read */ unsigned long ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return 0; cpu_buffer = buffer->buffers[cpu]; return cpu_buffer->read; } EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); /** * ring_buffer_entries - get the number of entries in a buffer * @buffer: The ring buffer * * Returns the total number of entries in the ring buffer * (all CPU entries) */ unsigned long ring_buffer_entries(struct trace_buffer *buffer) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long entries = 0; int cpu; /* if you care about this being correct, lock the buffer */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; entries += rb_num_of_entries(cpu_buffer); } return entries; } EXPORT_SYMBOL_GPL(ring_buffer_entries); /** * ring_buffer_overruns - get the number of overruns in buffer * @buffer: The ring buffer * * Returns the total number of overruns in the ring buffer * (all CPU entries) */ unsigned long ring_buffer_overruns(struct trace_buffer *buffer) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long overruns = 0; int cpu; /* if you care about this being correct, lock the buffer */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; overruns += local_read(&cpu_buffer->overrun); } return overruns; } EXPORT_SYMBOL_GPL(ring_buffer_overruns); static void rb_iter_reset(struct ring_buffer_iter *iter) { struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; /* Iterator usage is expected to have record disabled */ iter->head_page = cpu_buffer->reader_page; iter->head = cpu_buffer->reader_page->read; iter->next_event = iter->head; iter->cache_reader_page = iter->head_page; iter->cache_read = cpu_buffer->read; iter->cache_pages_removed = cpu_buffer->pages_removed; if (iter->head) { iter->read_stamp = cpu_buffer->read_stamp; iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; } else { iter->read_stamp = iter->head_page->page->time_stamp; iter->page_stamp = iter->read_stamp; } } /** * ring_buffer_iter_reset - reset an iterator * @iter: The iterator to reset * * Resets the iterator, so that it will start from the beginning * again. */ void ring_buffer_iter_reset(struct ring_buffer_iter *iter) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long flags; if (!iter) return; cpu_buffer = iter->cpu_buffer; raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); rb_iter_reset(iter); raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); } EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); /** * ring_buffer_iter_empty - check if an iterator has no more to read * @iter: The iterator to check */ int ring_buffer_iter_empty(struct ring_buffer_iter *iter) { struct ring_buffer_per_cpu *cpu_buffer; struct buffer_page *reader; struct buffer_page *head_page; struct buffer_page *commit_page; struct buffer_page *curr_commit_page; unsigned commit; u64 curr_commit_ts; u64 commit_ts; cpu_buffer = iter->cpu_buffer; reader = cpu_buffer->reader_page; head_page = cpu_buffer->head_page; commit_page = READ_ONCE(cpu_buffer->commit_page); commit_ts = commit_page->page->time_stamp; /* * When the writer goes across pages, it issues a cmpxchg which * is a mb(), which will synchronize with the rmb here. * (see rb_tail_page_update()) */ smp_rmb(); commit = rb_page_commit(commit_page); /* We want to make sure that the commit page doesn't change */ smp_rmb(); /* Make sure commit page didn't change */ curr_commit_page = READ_ONCE(cpu_buffer->commit_page); curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); /* If the commit page changed, then there's more data */ if (curr_commit_page != commit_page || curr_commit_ts != commit_ts) return 0; /* Still racy, as it may return a false positive, but that's OK */ return ((iter->head_page == commit_page && iter->head >= commit) || (iter->head_page == reader && commit_page == head_page && head_page->read == commit && iter->head == rb_page_commit(cpu_buffer->reader_page))); } EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); static void rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event) { u64 delta; switch (event->type_len) { case RINGBUF_TYPE_PADDING: return; case RINGBUF_TYPE_TIME_EXTEND: delta = rb_event_time_stamp(event); cpu_buffer->read_stamp += delta; return; case RINGBUF_TYPE_TIME_STAMP: delta = rb_event_time_stamp(event); cpu_buffer->read_stamp = delta; return; case RINGBUF_TYPE_DATA: cpu_buffer->read_stamp += event->time_delta; return; default: RB_WARN_ON(cpu_buffer, 1); } return; } static void rb_update_iter_read_stamp(struct ring_buffer_iter *iter, struct ring_buffer_event *event) { u64 delta; switch (event->type_len) { case RINGBUF_TYPE_PADDING: return; case RINGBUF_TYPE_TIME_EXTEND: delta = rb_event_time_stamp(event); iter->read_stamp += delta; return; case RINGBUF_TYPE_TIME_STAMP: delta = rb_event_time_stamp(event); iter->read_stamp = delta; return; case RINGBUF_TYPE_DATA: iter->read_stamp += event->time_delta; return; default: RB_WARN_ON(iter->cpu_buffer, 1); } return; } static struct buffer_page * rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) { struct buffer_page *reader = NULL; unsigned long overwrite; unsigned long flags; int nr_loops = 0; int ret; local_irq_save(flags); arch_spin_lock(&cpu_buffer->lock); again: /* * This should normally only loop twice. But because the * start of the reader inserts an empty page, it causes * a case where we will loop three times. There should be no * reason to loop four times (that I know of). */ if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { reader = NULL; goto out; } reader = cpu_buffer->reader_page; /* If there's more to read, return this page */ if (cpu_buffer->reader_page->read < rb_page_size(reader)) goto out; /* Never should we have an index greater than the size */ if (RB_WARN_ON(cpu_buffer, cpu_buffer->reader_page->read > rb_page_size(reader))) goto out; /* check if we caught up to the tail */ reader = NULL; if (cpu_buffer->commit_page == cpu_buffer->reader_page) goto out; /* Don't bother swapping if the ring buffer is empty */ if (rb_num_of_entries(cpu_buffer) == 0) goto out; /* * Reset the reader page to size zero. */ local_set(&cpu_buffer->reader_page->write, 0); local_set(&cpu_buffer->reader_page->entries, 0); local_set(&cpu_buffer->reader_page->page->commit, 0); cpu_buffer->reader_page->real_end = 0; spin: /* * Splice the empty reader page into the list around the head. */ reader = rb_set_head_page(cpu_buffer); if (!reader) goto out; cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); cpu_buffer->reader_page->list.prev = reader->list.prev; /* * cpu_buffer->pages just needs to point to the buffer, it * has no specific buffer page to point to. Lets move it out * of our way so we don't accidentally swap it. */ cpu_buffer->pages = reader->list.prev; /* The reader page will be pointing to the new head */ rb_set_list_to_head(&cpu_buffer->reader_page->list); /* * We want to make sure we read the overruns after we set up our * pointers to the next object. The writer side does a * cmpxchg to cross pages which acts as the mb on the writer * side. Note, the reader will constantly fail the swap * while the writer is updating the pointers, so this * guarantees that the overwrite recorded here is the one we * want to compare with the last_overrun. */ smp_mb(); overwrite = local_read(&(cpu_buffer->overrun)); /* * Here's the tricky part. * * We need to move the pointer past the header page. * But we can only do that if a writer is not currently * moving it. The page before the header page has the * flag bit '1' set if it is pointing to the page we want. * but if the writer is in the process of moving it * than it will be '2' or already moved '0'. */ ret = rb_head_page_replace(reader, cpu_buffer->reader_page); /* * If we did not convert it, then we must try again. */ if (!ret) goto spin; /* * Yay! We succeeded in replacing the page. * * Now make the new head point back to the reader page. */ rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; rb_inc_page(&cpu_buffer->head_page); local_inc(&cpu_buffer->pages_read); /* Finally update the reader page to the new head */ cpu_buffer->reader_page = reader; cpu_buffer->reader_page->read = 0; if (overwrite != cpu_buffer->last_overrun) { cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; cpu_buffer->last_overrun = overwrite; } goto again; out: /* Update the read_stamp on the first event */ if (reader && reader->read == 0) cpu_buffer->read_stamp = reader->page->time_stamp; arch_spin_unlock(&cpu_buffer->lock); local_irq_restore(flags); /* * The writer has preempt disable, wait for it. But not forever * Although, 1 second is pretty much "forever" */ #define USECS_WAIT 1000000 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) { /* If the write is past the end of page, a writer is still updating it */ if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE)) break; udelay(1); /* Get the latest version of the reader write value */ smp_rmb(); } /* The writer is not moving forward? Something is wrong */ if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT)) reader = NULL; /* * Make sure we see any padding after the write update * (see rb_reset_tail()). * * In addition, a writer may be writing on the reader page * if the page has not been fully filled, so the read barrier * is also needed to make sure we see the content of what is * committed by the writer (see rb_set_commit_to_write()). */ smp_rmb(); return reader; } static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) { struct ring_buffer_event *event; struct buffer_page *reader; unsigned length; reader = rb_get_reader_page(cpu_buffer); /* This function should not be called when buffer is empty */ if (RB_WARN_ON(cpu_buffer, !reader)) return; event = rb_reader_event(cpu_buffer); if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) cpu_buffer->read++; rb_update_read_stamp(cpu_buffer, event); length = rb_event_length(event); cpu_buffer->reader_page->read += length; cpu_buffer->read_bytes += length; } static void rb_advance_iter(struct ring_buffer_iter *iter) { struct ring_buffer_per_cpu *cpu_buffer; cpu_buffer = iter->cpu_buffer; /* If head == next_event then we need to jump to the next event */ if (iter->head == iter->next_event) { /* If the event gets overwritten again, there's nothing to do */ if (rb_iter_head_event(iter) == NULL) return; } iter->head = iter->next_event; /* * Check if we are at the end of the buffer. */ if (iter->next_event >= rb_page_size(iter->head_page)) { /* discarded commits can make the page empty */ if (iter->head_page == cpu_buffer->commit_page) return; rb_inc_iter(iter); return; } rb_update_iter_read_stamp(iter, iter->event); } static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) { return cpu_buffer->lost_events; } static struct ring_buffer_event * rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, unsigned long *lost_events) { struct ring_buffer_event *event; struct buffer_page *reader; int nr_loops = 0; if (ts) *ts = 0; again: /* * We repeat when a time extend is encountered. * Since the time extend is always attached to a data event, * we should never loop more than once. * (We never hit the following condition more than twice). */ if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) return NULL; reader = rb_get_reader_page(cpu_buffer); if (!reader) return NULL; event = rb_reader_event(cpu_buffer); switch (event->type_len) { case RINGBUF_TYPE_PADDING: if (rb_null_event(event)) RB_WARN_ON(cpu_buffer, 1); /* * Because the writer could be discarding every * event it creates (which would probably be bad) * if we were to go back to "again" then we may never * catch up, and will trigger the warn on, or lock * the box. Return the padding, and we will release * the current locks, and try again. */ return event; case RINGBUF_TYPE_TIME_EXTEND: /* Internal data, OK to advance */ rb_advance_reader(cpu_buffer); goto again; case RINGBUF_TYPE_TIME_STAMP: if (ts) { *ts = rb_event_time_stamp(event); ring_buffer_normalize_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu, ts); } /* Internal data, OK to advance */ rb_advance_reader(cpu_buffer); goto again; case RINGBUF_TYPE_DATA: if (ts && !(*ts)) { *ts = cpu_buffer->read_stamp + event->time_delta; ring_buffer_normalize_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu, ts); } if (lost_events) *lost_events = rb_lost_events(cpu_buffer); return event; default: RB_WARN_ON(cpu_buffer, 1); } return NULL; } EXPORT_SYMBOL_GPL(ring_buffer_peek); static struct ring_buffer_event * rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) { struct trace_buffer *buffer; struct ring_buffer_per_cpu *cpu_buffer; struct ring_buffer_event *event; int nr_loops = 0; if (ts) *ts = 0; cpu_buffer = iter->cpu_buffer; buffer = cpu_buffer->buffer; /* * Check if someone performed a consuming read to the buffer * or removed some pages from the buffer. In these cases, * iterator was invalidated and we need to reset it. */ if (unlikely(iter->cache_read != cpu_buffer->read || iter->cache_reader_page != cpu_buffer->reader_page || iter->cache_pages_removed != cpu_buffer->pages_removed)) rb_iter_reset(iter); again: if (ring_buffer_iter_empty(iter)) return NULL; /* * As the writer can mess with what the iterator is trying * to read, just give up if we fail to get an event after * three tries. The iterator is not as reliable when reading * the ring buffer with an active write as the consumer is. * Do not warn if the three failures is reached. */ if (++nr_loops > 3) return NULL; if (rb_per_cpu_empty(cpu_buffer)) return NULL; if (iter->head >= rb_page_size(iter->head_page)) { rb_inc_iter(iter); goto again; } event = rb_iter_head_event(iter); if (!event) goto again; switch (event->type_len) { case RINGBUF_TYPE_PADDING: if (rb_null_event(event)) { rb_inc_iter(iter); goto again; } rb_advance_iter(iter); return event; case RINGBUF_TYPE_TIME_EXTEND: /* Internal data, OK to advance */ rb_advance_iter(iter); goto again; case RINGBUF_TYPE_TIME_STAMP: if (ts) { *ts = rb_event_time_stamp(event); ring_buffer_normalize_time_stamp(cpu_buffer->buffer, cpu_buffer->cpu, ts); } /* Internal data, OK to advance */ rb_advance_iter(iter); goto again; case RINGBUF_TYPE_DATA: if (ts && !(*ts)) { *ts = iter->read_stamp + event->time_delta; ring_buffer_normalize_time_stamp(buffer, cpu_buffer->cpu, ts); } return event; default: RB_WARN_ON(cpu_buffer, 1); } return NULL; } EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) { if (likely(!in_nmi())) { raw_spin_lock(&cpu_buffer->reader_lock); return true; } /* * If an NMI die dumps out the content of the ring buffer * trylock must be used to prevent a deadlock if the NMI * preempted a task that holds the ring buffer locks. If * we get the lock then all is fine, if not, then continue * to do the read, but this can corrupt the ring buffer, * so it must be permanently disabled from future writes. * Reading from NMI is a oneshot deal. */ if (raw_spin_trylock(&cpu_buffer->reader_lock)) return true; /* Continue without locking, but disable the ring buffer */ atomic_inc(&cpu_buffer->record_disabled); return false; } static inline void rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) { if (likely(locked)) raw_spin_unlock(&cpu_buffer->reader_lock); return; } /** * ring_buffer_peek - peek at the next event to be read * @buffer: The ring buffer to read * @cpu: The cpu to peak at * @ts: The timestamp counter of this event. * @lost_events: a variable to store if events were lost (may be NULL) * * This will return the event that will be read next, but does * not consume the data. */ struct ring_buffer_event * ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, unsigned long *lost_events) { struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; struct ring_buffer_event *event; unsigned long flags; bool dolock; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return NULL; again: local_irq_save(flags); dolock = rb_reader_lock(cpu_buffer); event = rb_buffer_peek(cpu_buffer, ts, lost_events); if (event && event->type_len == RINGBUF_TYPE_PADDING) rb_advance_reader(cpu_buffer); rb_reader_unlock(cpu_buffer, dolock); local_irq_restore(flags); if (event && event->type_len == RINGBUF_TYPE_PADDING) goto again; return event; } /** ring_buffer_iter_dropped - report if there are dropped events * @iter: The ring buffer iterator * * Returns true if there was dropped events since the last peek. */ bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) { bool ret = iter->missed_events != 0; iter->missed_events = 0; return ret; } EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); /** * ring_buffer_iter_peek - peek at the next event to be read * @iter: The ring buffer iterator * @ts: The timestamp counter of this event. * * This will return the event that will be read next, but does * not increment the iterator. */ struct ring_buffer_event * ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) { struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; struct ring_buffer_event *event; unsigned long flags; again: raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); event = rb_iter_peek(iter, ts); raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); if (event && event->type_len == RINGBUF_TYPE_PADDING) goto again; return event; } /** * ring_buffer_consume - return an event and consume it * @buffer: The ring buffer to get the next event from * @cpu: the cpu to read the buffer from * @ts: a variable to store the timestamp (may be NULL) * @lost_events: a variable to store if events were lost (may be NULL) * * Returns the next event in the ring buffer, and that event is consumed. * Meaning, that sequential reads will keep returning a different event, * and eventually empty the ring buffer if the producer is slower. */ struct ring_buffer_event * ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, unsigned long *lost_events) { struct ring_buffer_per_cpu *cpu_buffer; struct ring_buffer_event *event = NULL; unsigned long flags; bool dolock; again: /* might be called in atomic */ preempt_disable(); if (!cpumask_test_cpu(cpu, buffer->cpumask)) goto out; cpu_buffer = buffer->buffers[cpu]; local_irq_save(flags); dolock = rb_reader_lock(cpu_buffer); event = rb_buffer_peek(cpu_buffer, ts, lost_events); if (event) { cpu_buffer->lost_events = 0; rb_advance_reader(cpu_buffer); } rb_reader_unlock(cpu_buffer, dolock); local_irq_restore(flags); out: preempt_enable(); if (event && event->type_len == RINGBUF_TYPE_PADDING) goto again; return event; } EXPORT_SYMBOL_GPL(ring_buffer_consume); /** * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer * @buffer: The ring buffer to read from * @cpu: The cpu buffer to iterate over * @flags: gfp flags to use for memory allocation * * This performs the initial preparations necessary to iterate * through the buffer. Memory is allocated, buffer recording * is disabled, and the iterator pointer is returned to the caller. * * Disabling buffer recording prevents the reading from being * corrupted. This is not a consuming read, so a producer is not * expected. * * After a sequence of ring_buffer_read_prepare calls, the user is * expected to make at least one call to ring_buffer_read_prepare_sync. * Afterwards, ring_buffer_read_start is invoked to get things going * for real. * * This overall must be paired with ring_buffer_read_finish. */ struct ring_buffer_iter * ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) { struct ring_buffer_per_cpu *cpu_buffer; struct ring_buffer_iter *iter; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return NULL; iter = kzalloc(sizeof(*iter), flags); if (!iter) return NULL; /* Holds the entire event: data and meta data */ iter->event = kmalloc(BUF_PAGE_SIZE, flags); if (!iter->event) { kfree(iter); return NULL; } cpu_buffer = buffer->buffers[cpu]; iter->cpu_buffer = cpu_buffer; atomic_inc(&cpu_buffer->resize_disabled); return iter; } EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); /** * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls * * All previously invoked ring_buffer_read_prepare calls to prepare * iterators will be synchronized. Afterwards, read_buffer_read_start * calls on those iterators are allowed. */ void ring_buffer_read_prepare_sync(void) { synchronize_rcu(); } EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); /** * ring_buffer_read_start - start a non consuming read of the buffer * @iter: The iterator returned by ring_buffer_read_prepare * * This finalizes the startup of an iteration through the buffer. * The iterator comes from a call to ring_buffer_read_prepare and * an intervening ring_buffer_read_prepare_sync must have been * performed. * * Must be paired with ring_buffer_read_finish. */ void ring_buffer_read_start(struct ring_buffer_iter *iter) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long flags; if (!iter) return; cpu_buffer = iter->cpu_buffer; raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); arch_spin_lock(&cpu_buffer->lock); rb_iter_reset(iter); arch_spin_unlock(&cpu_buffer->lock); raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); } EXPORT_SYMBOL_GPL(ring_buffer_read_start); /** * ring_buffer_read_finish - finish reading the iterator of the buffer * @iter: The iterator retrieved by ring_buffer_start * * This re-enables the recording to the buffer, and frees the * iterator. */ void ring_buffer_read_finish(struct ring_buffer_iter *iter) { struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; unsigned long flags; /* * Ring buffer is disabled from recording, here's a good place * to check the integrity of the ring buffer. * Must prevent readers from trying to read, as the check * clears the HEAD page and readers require it. */ raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); rb_check_pages(cpu_buffer); raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); atomic_dec(&cpu_buffer->resize_disabled); kfree(iter->event); kfree(iter); } EXPORT_SYMBOL_GPL(ring_buffer_read_finish); /** * ring_buffer_iter_advance - advance the iterator to the next location * @iter: The ring buffer iterator * * Move the location of the iterator such that the next read will * be the next location of the iterator. */ void ring_buffer_iter_advance(struct ring_buffer_iter *iter) { struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; unsigned long flags; raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); rb_advance_iter(iter); raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); } EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); /** * ring_buffer_size - return the size of the ring buffer (in bytes) * @buffer: The ring buffer. * @cpu: The CPU to get ring buffer size from. */ unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) { /* * Earlier, this method returned * BUF_PAGE_SIZE * buffer->nr_pages * Since the nr_pages field is now removed, we have converted this to * return the per cpu buffer value. */ if (!cpumask_test_cpu(cpu, buffer->cpumask)) return 0; return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; } EXPORT_SYMBOL_GPL(ring_buffer_size); static void rb_clear_buffer_page(struct buffer_page *page) { local_set(&page->write, 0); local_set(&page->entries, 0); rb_init_page(page->page); page->read = 0; } static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) { struct buffer_page *page; rb_head_page_deactivate(cpu_buffer); cpu_buffer->head_page = list_entry(cpu_buffer->pages, struct buffer_page, list); rb_clear_buffer_page(cpu_buffer->head_page); list_for_each_entry(page, cpu_buffer->pages, list) { rb_clear_buffer_page(page); } cpu_buffer->tail_page = cpu_buffer->head_page; cpu_buffer->commit_page = cpu_buffer->head_page; INIT_LIST_HEAD(&cpu_buffer->reader_page->list); INIT_LIST_HEAD(&cpu_buffer->new_pages); rb_clear_buffer_page(cpu_buffer->reader_page); local_set(&cpu_buffer->entries_bytes, 0); local_set(&cpu_buffer->overrun, 0); local_set(&cpu_buffer->commit_overrun, 0); local_set(&cpu_buffer->dropped_events, 0); local_set(&cpu_buffer->entries, 0); local_set(&cpu_buffer->committing, 0); local_set(&cpu_buffer->commits, 0); local_set(&cpu_buffer->pages_touched, 0); local_set(&cpu_buffer->pages_lost, 0); local_set(&cpu_buffer->pages_read, 0); cpu_buffer->last_pages_touch = 0; cpu_buffer->shortest_full = 0; cpu_buffer->read = 0; cpu_buffer->read_bytes = 0; rb_time_set(&cpu_buffer->write_stamp, 0); rb_time_set(&cpu_buffer->before_stamp, 0); memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); cpu_buffer->lost_events = 0; cpu_buffer->last_overrun = 0; rb_head_page_activate(cpu_buffer); cpu_buffer->pages_removed = 0; } /* Must have disabled the cpu buffer then done a synchronize_rcu */ static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) { unsigned long flags; raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) goto out; arch_spin_lock(&cpu_buffer->lock); rb_reset_cpu(cpu_buffer); arch_spin_unlock(&cpu_buffer->lock); out: raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); } /** * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer * @buffer: The ring buffer to reset a per cpu buffer of * @cpu: The CPU buffer to be reset */ void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return; /* prevent another thread from changing buffer sizes */ mutex_lock(&buffer->mutex); atomic_inc(&cpu_buffer->resize_disabled); atomic_inc(&cpu_buffer->record_disabled); /* Make sure all commits have finished */ synchronize_rcu(); reset_disabled_cpu_buffer(cpu_buffer); atomic_dec(&cpu_buffer->record_disabled); atomic_dec(&cpu_buffer->resize_disabled); mutex_unlock(&buffer->mutex); } EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); /* Flag to ensure proper resetting of atomic variables */ #define RESET_BIT (1 << 30) /** * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer * @buffer: The ring buffer to reset a per cpu buffer of * @cpu: The CPU buffer to be reset */ void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) { struct ring_buffer_per_cpu *cpu_buffer; int cpu; /* prevent another thread from changing buffer sizes */ mutex_lock(&buffer->mutex); for_each_online_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; atomic_add(RESET_BIT, &cpu_buffer->resize_disabled); atomic_inc(&cpu_buffer->record_disabled); } /* Make sure all commits have finished */ synchronize_rcu(); for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; /* * If a CPU came online during the synchronize_rcu(), then * ignore it. */ if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT)) continue; reset_disabled_cpu_buffer(cpu_buffer); atomic_dec(&cpu_buffer->record_disabled); atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled); } mutex_unlock(&buffer->mutex); } /** * ring_buffer_reset - reset a ring buffer * @buffer: The ring buffer to reset all cpu buffers */ void ring_buffer_reset(struct trace_buffer *buffer) { struct ring_buffer_per_cpu *cpu_buffer; int cpu; /* prevent another thread from changing buffer sizes */ mutex_lock(&buffer->mutex); for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; atomic_inc(&cpu_buffer->resize_disabled); atomic_inc(&cpu_buffer->record_disabled); } /* Make sure all commits have finished */ synchronize_rcu(); for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; reset_disabled_cpu_buffer(cpu_buffer); atomic_dec(&cpu_buffer->record_disabled); atomic_dec(&cpu_buffer->resize_disabled); } mutex_unlock(&buffer->mutex); } EXPORT_SYMBOL_GPL(ring_buffer_reset); /** * rind_buffer_empty - is the ring buffer empty? * @buffer: The ring buffer to test */ bool ring_buffer_empty(struct trace_buffer *buffer) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long flags; bool dolock; int cpu; int ret; /* yes this is racy, but if you don't like the race, lock the buffer */ for_each_buffer_cpu(buffer, cpu) { cpu_buffer = buffer->buffers[cpu]; local_irq_save(flags); dolock = rb_reader_lock(cpu_buffer); ret = rb_per_cpu_empty(cpu_buffer); rb_reader_unlock(cpu_buffer, dolock); local_irq_restore(flags); if (!ret) return false; } return true; } EXPORT_SYMBOL_GPL(ring_buffer_empty); /** * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? * @buffer: The ring buffer * @cpu: The CPU buffer to test */ bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; unsigned long flags; bool dolock; int ret; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return true; cpu_buffer = buffer->buffers[cpu]; local_irq_save(flags); dolock = rb_reader_lock(cpu_buffer); ret = rb_per_cpu_empty(cpu_buffer); rb_reader_unlock(cpu_buffer, dolock); local_irq_restore(flags); return ret; } EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP /** * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers * @buffer_a: One buffer to swap with * @buffer_b: The other buffer to swap with * @cpu: the CPU of the buffers to swap * * This function is useful for tracers that want to take a "snapshot" * of a CPU buffer and has another back up buffer lying around. * it is expected that the tracer handles the cpu buffer not being * used at the moment. */ int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, struct trace_buffer *buffer_b, int cpu) { struct ring_buffer_per_cpu *cpu_buffer_a; struct ring_buffer_per_cpu *cpu_buffer_b; int ret = -EINVAL; if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || !cpumask_test_cpu(cpu, buffer_b->cpumask)) goto out; cpu_buffer_a = buffer_a->buffers[cpu]; cpu_buffer_b = buffer_b->buffers[cpu]; /* At least make sure the two buffers are somewhat the same */ if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) goto out; ret = -EAGAIN; if (atomic_read(&buffer_a->record_disabled)) goto out; if (atomic_read(&buffer_b->record_disabled)) goto out; if (atomic_read(&cpu_buffer_a->record_disabled)) goto out; if (atomic_read(&cpu_buffer_b->record_disabled)) goto out; /* * We can't do a synchronize_rcu here because this * function can be called in atomic context. * Normally this will be called from the same CPU as cpu. * If not it's up to the caller to protect this. */ atomic_inc(&cpu_buffer_a->record_disabled); atomic_inc(&cpu_buffer_b->record_disabled); ret = -EBUSY; if (local_read(&cpu_buffer_a->committing)) goto out_dec; if (local_read(&cpu_buffer_b->committing)) goto out_dec; /* * When resize is in progress, we cannot swap it because * it will mess the state of the cpu buffer. */ if (atomic_read(&buffer_a->resizing)) goto out_dec; if (atomic_read(&buffer_b->resizing)) goto out_dec; buffer_a->buffers[cpu] = cpu_buffer_b; buffer_b->buffers[cpu] = cpu_buffer_a; cpu_buffer_b->buffer = buffer_a; cpu_buffer_a->buffer = buffer_b; ret = 0; out_dec: atomic_dec(&cpu_buffer_a->record_disabled); atomic_dec(&cpu_buffer_b->record_disabled); out: return ret; } EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ /** * ring_buffer_alloc_read_page - allocate a page to read from buffer * @buffer: the buffer to allocate for. * @cpu: the cpu buffer to allocate. * * This function is used in conjunction with ring_buffer_read_page. * When reading a full page from the ring buffer, these functions * can be used to speed up the process. The calling function should * allocate a few pages first with this function. Then when it * needs to get pages from the ring buffer, it passes the result * of this function into ring_buffer_read_page, which will swap * the page that was allocated, with the read page of the buffer. * * Returns: * The page allocated, or ERR_PTR */ void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) { struct ring_buffer_per_cpu *cpu_buffer; struct buffer_data_page *bpage = NULL; unsigned long flags; struct page *page; if (!cpumask_test_cpu(cpu, buffer->cpumask)) return ERR_PTR(-ENODEV); cpu_buffer = buffer->buffers[cpu]; local_irq_save(flags); arch_spin_lock(&cpu_buffer->lock); if (cpu_buffer->free_page) { bpage = cpu_buffer->free_page; cpu_buffer->free_page = NULL; } arch_spin_unlock(&cpu_buffer->lock); local_irq_restore(flags); if (bpage) goto out; page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL | __GFP_NORETRY, 0); if (!page) return ERR_PTR(-ENOMEM); bpage = page_address(page); out: rb_init_page(bpage); return bpage; } EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); /** * ring_buffer_free_read_page - free an allocated read page * @buffer: the buffer the page was allocate for * @cpu: the cpu buffer the page came from * @data: the page to free * * Free a page allocated from ring_buffer_alloc_read_page. */ void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data) { struct ring_buffer_per_cpu *cpu_buffer; struct buffer_data_page *bpage = data; struct page *page = virt_to_page(bpage); unsigned long flags; if (!buffer || !buffer->buffers || !buffer->buffers[cpu]) return; cpu_buffer = buffer->buffers[cpu]; /* If the page is still in use someplace else, we can't reuse it */ if (page_ref_count(page) > 1) goto out; local_irq_save(flags); arch_spin_lock(&cpu_buffer->lock); if (!cpu_buffer->free_page) { cpu_buffer->free_page = bpage; bpage = NULL; } arch_spin_unlock(&cpu_buffer->lock); local_irq_restore(flags); out: free_page((unsigned long)bpage); } EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); /** * ring_buffer_read_page - extract a page from the ring buffer * @buffer: buffer to extract from * @data_page: the page to use allocated from ring_buffer_alloc_read_page * @len: amount to extract * @cpu: the cpu of the buffer to extract * @full: should the extraction only happen when the page is full. * * This function will pull out a page from the ring buffer and consume it. * @data_page must be the address of the variable that was returned * from ring_buffer_alloc_read_page. This is because the page might be used * to swap with a page in the ring buffer. * * for example: * rpage = ring_buffer_alloc_read_page(buffer, cpu); * if (IS_ERR(rpage)) * return PTR_ERR(rpage); * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); * if (ret >= 0) * process_page(rpage, ret); * * When @full is set, the function will not return true unless * the writer is off the reader page. * * Note: it is up to the calling functions to handle sleeps and wakeups. * The ring buffer can be used anywhere in the kernel and can not * blindly call wake_up. The layer that uses the ring buffer must be * responsible for that. * * Returns: * >=0 if data has been transferred, returns the offset of consumed data. * <0 if no data has been transferred. */ int ring_buffer_read_page(struct trace_buffer *buffer, void **data_page, size_t len, int cpu, int full) { struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; struct ring_buffer_event *event; struct buffer_data_page *bpage; struct buffer_page *reader; unsigned long missed_events; unsigned long flags; unsigned int commit; unsigned int read; u64 save_timestamp; int ret = -1; if (!cpumask_test_cpu(cpu, buffer->cpumask)) goto out; /* * If len is not big enough to hold the page header, then * we can not copy anything. */ if (len <= BUF_PAGE_HDR_SIZE) goto out; len -= BUF_PAGE_HDR_SIZE; if (!data_page) goto out; bpage = *data_page; if (!bpage) goto out; raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); reader = rb_get_reader_page(cpu_buffer); if (!reader) goto out_unlock; event = rb_reader_event(cpu_buffer); read = reader->read; commit = rb_page_commit(reader); /* Check if any events were dropped */ missed_events = cpu_buffer->lost_events; /* * If this page has been partially read or * if len is not big enough to read the rest of the page or * a writer is still on the page, then * we must copy the data from the page to the buffer. * Otherwise, we can simply swap the page with the one passed in. */ if (read || (len < (commit - read)) || cpu_buffer->reader_page == cpu_buffer->commit_page) { struct buffer_data_page *rpage = cpu_buffer->reader_page->page; unsigned int rpos = read; unsigned int pos = 0; unsigned int size; /* * If a full page is expected, this can still be returned * if there's been a previous partial read and the * rest of the page can be read and the commit page is off * the reader page. */ if (full && (!read || (len < (commit - read)) || cpu_buffer->reader_page == cpu_buffer->commit_page)) goto out_unlock; if (len > (commit - read)) len = (commit - read); /* Always keep the time extend and data together */ size = rb_event_ts_length(event); if (len < size) goto out_unlock; /* save the current timestamp, since the user will need it */ save_timestamp = cpu_buffer->read_stamp; /* Need to copy one event at a time */ do { /* We need the size of one event, because * rb_advance_reader only advances by one event, * whereas rb_event_ts_length may include the size of * one or two events. * We have already ensured there's enough space if this * is a time extend. */ size = rb_event_length(event); memcpy(bpage->data + pos, rpage->data + rpos, size); len -= size; rb_advance_reader(cpu_buffer); rpos = reader->read; pos += size; if (rpos >= commit) break; event = rb_reader_event(cpu_buffer); /* Always keep the time extend and data together */ size = rb_event_ts_length(event); } while (len >= size); /* update bpage */ local_set(&bpage->commit, pos); bpage->time_stamp = save_timestamp; /* we copied everything to the beginning */ read = 0; } else { /* update the entry counter */ cpu_buffer->read += rb_page_entries(reader); cpu_buffer->read_bytes += rb_page_commit(reader); /* swap the pages */ rb_init_page(bpage); bpage = reader->page; reader->page = *data_page; local_set(&reader->write, 0); local_set(&reader->entries, 0); reader->read = 0; *data_page = bpage; /* * Use the real_end for the data size, * This gives us a chance to store the lost events * on the page. */ if (reader->real_end) local_set(&bpage->commit, reader->real_end); } ret = read; cpu_buffer->lost_events = 0; commit = local_read(&bpage->commit); /* * Set a flag in the commit field if we lost events */ if (missed_events) { /* If there is room at the end of the page to save the * missed events, then record it there. */ if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { memcpy(&bpage->data[commit], &missed_events, sizeof(missed_events)); local_add(RB_MISSED_STORED, &bpage->commit); commit += sizeof(missed_events); } local_add(RB_MISSED_EVENTS, &bpage->commit); } /* * This page may be off to user land. Zero it out here. */ if (commit < BUF_PAGE_SIZE) memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); out_unlock: raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); out: return ret; } EXPORT_SYMBOL_GPL(ring_buffer_read_page); /* * We only allocate new buffers, never free them if the CPU goes down. * If we were to free the buffer, then the user would lose any trace that was in * the buffer. */ int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) { struct trace_buffer *buffer; long nr_pages_same; int cpu_i; unsigned long nr_pages; buffer = container_of(node, struct trace_buffer, node); if (cpumask_test_cpu(cpu, buffer->cpumask)) return 0; nr_pages = 0; nr_pages_same = 1; /* check if all cpu sizes are same */ for_each_buffer_cpu(buffer, cpu_i) { /* fill in the size from first enabled cpu */ if (nr_pages == 0) nr_pages = buffer->buffers[cpu_i]->nr_pages; if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { nr_pages_same = 0; break; } } /* allocate minimum pages, user can later expand it */ if (!nr_pages_same) nr_pages = 2; buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); if (!buffer->buffers[cpu]) { WARN(1, "failed to allocate ring buffer on CPU %u\n", cpu); return -ENOMEM; } smp_wmb(); cpumask_set_cpu(cpu, buffer->cpumask); return 0; } #ifdef CONFIG_RING_BUFFER_STARTUP_TEST /* * This is a basic integrity check of the ring buffer. * Late in the boot cycle this test will run when configured in. * It will kick off a thread per CPU that will go into a loop * writing to the per cpu ring buffer various sizes of data. * Some of the data will be large items, some small. * * Another thread is created that goes into a spin, sending out * IPIs to the other CPUs to also write into the ring buffer. * this is to test the nesting ability of the buffer. * * Basic stats are recorded and reported. If something in the * ring buffer should happen that's not expected, a big warning * is displayed and all ring buffers are disabled. */ static struct task_struct *rb_threads[NR_CPUS] __initdata; struct rb_test_data { struct trace_buffer *buffer; unsigned long events; unsigned long bytes_written; unsigned long bytes_alloc; unsigned long bytes_dropped; unsigned long events_nested; unsigned long bytes_written_nested; unsigned long bytes_alloc_nested; unsigned long bytes_dropped_nested; int min_size_nested; int max_size_nested; int max_size; int min_size; int cpu; int cnt; }; static struct rb_test_data rb_data[NR_CPUS] __initdata; /* 1 meg per cpu */ #define RB_TEST_BUFFER_SIZE 1048576 static char rb_string[] __initdata = "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; static bool rb_test_started __initdata; struct rb_item { int size; char str[]; }; static __init int rb_write_something(struct rb_test_data *data, bool nested) { struct ring_buffer_event *event; struct rb_item *item; bool started; int event_len; int size; int len; int cnt; /* Have nested writes different that what is written */ cnt = data->cnt + (nested ? 27 : 0); /* Multiply cnt by ~e, to make some unique increment */ size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); len = size + sizeof(struct rb_item); started = rb_test_started; /* read rb_test_started before checking buffer enabled */ smp_rmb(); event = ring_buffer_lock_reserve(data->buffer, len); if (!event) { /* Ignore dropped events before test starts. */ if (started) { if (nested) data->bytes_dropped += len; else data->bytes_dropped_nested += len; } return len; } event_len = ring_buffer_event_length(event); if (RB_WARN_ON(data->buffer, event_len < len)) goto out; item = ring_buffer_event_data(event); item->size = size; memcpy(item->str, rb_string, size); if (nested) { data->bytes_alloc_nested += event_len; data->bytes_written_nested += len; data->events_nested++; if (!data->min_size_nested || len < data->min_size_nested) data->min_size_nested = len; if (len > data->max_size_nested) data->max_size_nested = len; } else { data->bytes_alloc += event_len; data->bytes_written += len; data->events++; if (!data->min_size || len < data->min_size) data->max_size = len; if (len > data->max_size) data->max_size = len; } out: ring_buffer_unlock_commit(data->buffer, event); return 0; } static __init int rb_test(void *arg) { struct rb_test_data *data = arg; while (!kthread_should_stop()) { rb_write_something(data, false); data->cnt++; set_current_state(TASK_INTERRUPTIBLE); /* Now sleep between a min of 100-300us and a max of 1ms */ usleep_range(((data->cnt % 3) + 1) * 100, 1000); } return 0; } static __init void rb_ipi(void *ignore) { struct rb_test_data *data; int cpu = smp_processor_id(); data = &rb_data[cpu]; rb_write_something(data, true); } static __init int rb_hammer_test(void *arg) { while (!kthread_should_stop()) { /* Send an IPI to all cpus to write data! */ smp_call_function(rb_ipi, NULL, 1); /* No sleep, but for non preempt, let others run */ schedule(); } return 0; } static __init int test_ringbuffer(void) { struct task_struct *rb_hammer; struct trace_buffer *buffer; int cpu; int ret = 0; if (security_locked_down(LOCKDOWN_TRACEFS)) { pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); return 0; } pr_info("Running ring buffer tests...\n"); buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); if (WARN_ON(!buffer)) return 0; /* Disable buffer so that threads can't write to it yet */ ring_buffer_record_off(buffer); for_each_online_cpu(cpu) { rb_data[cpu].buffer = buffer; rb_data[cpu].cpu = cpu; rb_data[cpu].cnt = cpu; rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu], "rbtester/%d", cpu); if (WARN_ON(IS_ERR(rb_threads[cpu]))) { pr_cont("FAILED\n"); ret = PTR_ERR(rb_threads[cpu]); goto out_free; } kthread_bind(rb_threads[cpu], cpu); wake_up_process(rb_threads[cpu]); } /* Now create the rb hammer! */ rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); if (WARN_ON(IS_ERR(rb_hammer))) { pr_cont("FAILED\n"); ret = PTR_ERR(rb_hammer); goto out_free; } ring_buffer_record_on(buffer); /* * Show buffer is enabled before setting rb_test_started. * Yes there's a small race window where events could be * dropped and the thread wont catch it. But when a ring * buffer gets enabled, there will always be some kind of * delay before other CPUs see it. Thus, we don't care about * those dropped events. We care about events dropped after * the threads see that the buffer is active. */ smp_wmb(); rb_test_started = true; set_current_state(TASK_INTERRUPTIBLE); /* Just run for 10 seconds */; schedule_timeout(10 * HZ); kthread_stop(rb_hammer); out_free: for_each_online_cpu(cpu) { if (!rb_threads[cpu]) break; kthread_stop(rb_threads[cpu]); } if (ret) { ring_buffer_free(buffer); return ret; } /* Report! */ pr_info("finished\n"); for_each_online_cpu(cpu) { struct ring_buffer_event *event; struct rb_test_data *data = &rb_data[cpu]; struct rb_item *item; unsigned long total_events; unsigned long total_dropped; unsigned long total_written; unsigned long total_alloc; unsigned long total_read = 0; unsigned long total_size = 0; unsigned long total_len = 0; unsigned long total_lost = 0; unsigned long lost; int big_event_size; int small_event_size; ret = -1; total_events = data->events + data->events_nested; total_written = data->bytes_written + data->bytes_written_nested; total_alloc = data->bytes_alloc + data->bytes_alloc_nested; total_dropped = data->bytes_dropped + data->bytes_dropped_nested; big_event_size = data->max_size + data->max_size_nested; small_event_size = data->min_size + data->min_size_nested; pr_info("CPU %d:\n", cpu); pr_info(" events: %ld\n", total_events); pr_info(" dropped bytes: %ld\n", total_dropped); pr_info(" alloced bytes: %ld\n", total_alloc); pr_info(" written bytes: %ld\n", total_written); pr_info(" biggest event: %d\n", big_event_size); pr_info(" smallest event: %d\n", small_event_size); if (RB_WARN_ON(buffer, total_dropped)) break; ret = 0; while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { total_lost += lost; item = ring_buffer_event_data(event); total_len += ring_buffer_event_length(event); total_size += item->size + sizeof(struct rb_item); if (memcmp(&item->str[0], rb_string, item->size) != 0) { pr_info("FAILED!\n"); pr_info("buffer had: %.*s\n", item->size, item->str); pr_info("expected: %.*s\n", item->size, rb_string); RB_WARN_ON(buffer, 1); ret = -1; break; } total_read++; } if (ret) break; ret = -1; pr_info(" read events: %ld\n", total_read); pr_info(" lost events: %ld\n", total_lost); pr_info(" total events: %ld\n", total_lost + total_read); pr_info(" recorded len bytes: %ld\n", total_len); pr_info(" recorded size bytes: %ld\n", total_size); if (total_lost) pr_info(" With dropped events, record len and size may not match\n" " alloced and written from above\n"); if (!total_lost) { if (RB_WARN_ON(buffer, total_len != total_alloc || total_size != total_written)) break; } if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) break; ret = 0; } if (!ret) pr_info("Ring buffer PASSED!\n"); ring_buffer_free(buffer); return 0; } late_initcall(test_ringbuffer); #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ |
7643 23 23 23 22 22 22 22 22 1258 1258 1255 1261 1256 7790 674 7635 4313 6 4318 1257 1257 1256 1259 1254 7557 678 7407 7547 7556 244 244 72 72 138 138 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 | // SPDX-License-Identifier: GPL-2.0-only /* * Simple NUMA memory policy for the Linux kernel. * * Copyright 2003,2004 Andi Kleen, SuSE Labs. * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. * * NUMA policy allows the user to give hints in which node(s) memory should * be allocated. * * Support four policies per VMA and per process: * * The VMA policy has priority over the process policy for a page fault. * * interleave Allocate memory interleaved over a set of nodes, * with normal fallback if it fails. * For VMA based allocations this interleaves based on the * offset into the backing object or offset into the mapping * for anonymous memory. For process policy an process counter * is used. * * bind Only allocate memory on a specific set of nodes, * no fallback. * FIXME: memory is allocated starting with the first node * to the last. It would be better if bind would truly restrict * the allocation to memory nodes instead * * preferred Try a specific node first before normal fallback. * As a special case NUMA_NO_NODE here means do the allocation * on the local CPU. This is normally identical to default, * but useful to set in a VMA when you have a non default * process policy. * * preferred many Try a set of nodes first before normal fallback. This is * similar to preferred without the special case. * * default Allocate on the local node first, or when on a VMA * use the process policy. This is what Linux always did * in a NUMA aware kernel and still does by, ahem, default. * * The process policy is applied for most non interrupt memory allocations * in that process' context. Interrupts ignore the policies and always * try to allocate on the local CPU. The VMA policy is only applied for memory * allocations for a VMA in the VM. * * Currently there are a few corner cases in swapping where the policy * is not applied, but the majority should be handled. When process policy * is used it is not remembered over swap outs/swap ins. * * Only the highest zone in the zone hierarchy gets policied. Allocations * requesting a lower zone just use default policy. This implies that * on systems with highmem kernel lowmem allocation don't get policied. * Same with GFP_DMA allocations. * * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between * all users and remembered even when nobody has memory mapped. */ /* Notebook: fix mmap readahead to honour policy and enable policy for any page cache object statistics for bigpages global policy for page cache? currently it uses process policy. Requires first item above. handle mremap for shared memory (currently ignored for the policy) grows down? make bind policy root only? It can trigger oom much faster and the kernel is not always grateful with that. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/mempolicy.h> #include <linux/pagewalk.h> #include <linux/highmem.h> #include <linux/hugetlb.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/sched/numa_balancing.h> #include <linux/sched/task.h> #include <linux/nodemask.h> #include <linux/cpuset.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/export.h> #include <linux/nsproxy.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/compat.h> #include <linux/ptrace.h> #include <linux/swap.h> #include <linux/seq_file.h> #include <linux/proc_fs.h> #include <linux/migrate.h> #include <linux/ksm.h> #include <linux/rmap.h> #include <linux/security.h> #include <linux/syscalls.h> #include <linux/ctype.h> #include <linux/mm_inline.h> #include <linux/mmu_notifier.h> #include <linux/printk.h> #include <linux/swapops.h> #include <asm/tlbflush.h> #include <linux/uaccess.h> #include "internal.h" /* Internal flags */ #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ static struct kmem_cache *policy_cache; static struct kmem_cache *sn_cache; /* Highest zone. An specific allocation for a zone below that is not policied. */ enum zone_type policy_zone = 0; /* * run-time system-wide default policy => local allocation */ static struct mempolicy default_policy = { .refcnt = ATOMIC_INIT(1), /* never free it */ .mode = MPOL_LOCAL, }; static struct mempolicy preferred_node_policy[MAX_NUMNODES]; /** * numa_map_to_online_node - Find closest online node * @node: Node id to start the search * * Lookup the next closest node by distance if @nid is not online. */ int numa_map_to_online_node(int node) { int min_dist = INT_MAX, dist, n, min_node; if (node == NUMA_NO_NODE || node_online(node)) return node; min_node = node; for_each_online_node(n) { dist = node_distance(node, n); if (dist < min_dist) { min_dist = dist; min_node = n; } } return min_node; } EXPORT_SYMBOL_GPL(numa_map_to_online_node); struct mempolicy *get_task_policy(struct task_struct *p) { struct mempolicy *pol = p->mempolicy; int node; if (pol) return pol; node = numa_node_id(); if (node != NUMA_NO_NODE) { pol = &preferred_node_policy[node]; /* preferred_node_policy is not initialised early in boot */ if (pol->mode) return pol; } return &default_policy; } static const struct mempolicy_operations { int (*create)(struct mempolicy *pol, const nodemask_t *nodes); void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes); } mpol_ops[MPOL_MAX]; static inline int mpol_store_user_nodemask(const struct mempolicy *pol) { return pol->flags & MPOL_MODE_FLAGS; } static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, const nodemask_t *rel) { nodemask_t tmp; nodes_fold(tmp, *orig, nodes_weight(*rel)); nodes_onto(*ret, tmp, *rel); } static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes) { if (nodes_empty(*nodes)) return -EINVAL; pol->nodes = *nodes; return 0; } static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) { if (nodes_empty(*nodes)) return -EINVAL; nodes_clear(pol->nodes); node_set(first_node(*nodes), pol->nodes); return 0; } /* * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if * any, for the new policy. mpol_new() has already validated the nodes * parameter with respect to the policy mode and flags. * * Must be called holding task's alloc_lock to protect task's mems_allowed * and mempolicy. May also be called holding the mmap_lock for write. */ static int mpol_set_nodemask(struct mempolicy *pol, const nodemask_t *nodes, struct nodemask_scratch *nsc) { int ret; /* * Default (pol==NULL) resp. local memory policies are not a * subject of any remapping. They also do not need any special * constructor. */ if (!pol || pol->mode == MPOL_LOCAL) return 0; /* Check N_MEMORY */ nodes_and(nsc->mask1, cpuset_current_mems_allowed, node_states[N_MEMORY]); VM_BUG_ON(!nodes); if (pol->flags & MPOL_F_RELATIVE_NODES) mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1); else nodes_and(nsc->mask2, *nodes, nsc->mask1); if (mpol_store_user_nodemask(pol)) pol->w.user_nodemask = *nodes; else pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed; ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); return ret; } /* * This function just creates a new policy, does some check and simple * initialization. You must invoke mpol_set_nodemask() to set nodes. */ static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, nodemask_t *nodes) { struct mempolicy *policy; pr_debug("setting mode %d flags %d nodes[0] %lx\n", mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); if (mode == MPOL_DEFAULT) { if (nodes && !nodes_empty(*nodes)) return ERR_PTR(-EINVAL); return NULL; } VM_BUG_ON(!nodes); /* * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). * All other modes require a valid pointer to a non-empty nodemask. */ if (mode == MPOL_PREFERRED) { if (nodes_empty(*nodes)) { if (((flags & MPOL_F_STATIC_NODES) || (flags & MPOL_F_RELATIVE_NODES))) return ERR_PTR(-EINVAL); mode = MPOL_LOCAL; } } else if (mode == MPOL_LOCAL) { if (!nodes_empty(*nodes) || (flags & MPOL_F_STATIC_NODES) || (flags & MPOL_F_RELATIVE_NODES)) return ERR_PTR(-EINVAL); } else if (nodes_empty(*nodes)) return ERR_PTR(-EINVAL); policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); if (!policy) return ERR_PTR(-ENOMEM); atomic_set(&policy->refcnt, 1); policy->mode = mode; policy->flags = flags; return policy; } /* Slow path of a mpol destructor. */ void __mpol_put(struct mempolicy *p) { if (!atomic_dec_and_test(&p->refcnt)) return; kmem_cache_free(policy_cache, p); } static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes) { } static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes) { nodemask_t tmp; if (pol->flags & MPOL_F_STATIC_NODES) nodes_and(tmp, pol->w.user_nodemask, *nodes); else if (pol->flags & MPOL_F_RELATIVE_NODES) mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); else { nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed, *nodes); pol->w.cpuset_mems_allowed = *nodes; } if (nodes_empty(tmp)) tmp = *nodes; pol->nodes = tmp; } static void mpol_rebind_preferred(struct mempolicy *pol, const nodemask_t *nodes) { pol->w.cpuset_mems_allowed = *nodes; } /* * mpol_rebind_policy - Migrate a policy to a different set of nodes * * Per-vma policies are protected by mmap_lock. Allocations using per-task * policies are protected by task->mems_allowed_seq to prevent a premature * OOM/allocation failure due to parallel nodemask modification. */ static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) { if (!pol || pol->mode == MPOL_LOCAL) return; if (!mpol_store_user_nodemask(pol) && nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) return; mpol_ops[pol->mode].rebind(pol, newmask); } /* * Wrapper for mpol_rebind_policy() that just requires task * pointer, and updates task mempolicy. * * Called with task's alloc_lock held. */ void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) { mpol_rebind_policy(tsk->mempolicy, new); } /* * Rebind each vma in mm to new nodemask. * * Call holding a reference to mm. Takes mm->mmap_lock during call. */ void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) { struct vm_area_struct *vma; mmap_write_lock(mm); for (vma = mm->mmap; vma; vma = vma->vm_next) mpol_rebind_policy(vma->vm_policy, new); mmap_write_unlock(mm); } static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { [MPOL_DEFAULT] = { .rebind = mpol_rebind_default, }, [MPOL_INTERLEAVE] = { .create = mpol_new_nodemask, .rebind = mpol_rebind_nodemask, }, [MPOL_PREFERRED] = { .create = mpol_new_preferred, .rebind = mpol_rebind_preferred, }, [MPOL_BIND] = { .create = mpol_new_nodemask, .rebind = mpol_rebind_nodemask, }, [MPOL_LOCAL] = { .rebind = mpol_rebind_default, }, [MPOL_PREFERRED_MANY] = { .create = mpol_new_nodemask, .rebind = mpol_rebind_preferred, }, }; static int migrate_page_add(struct page *page, struct list_head *pagelist, unsigned long flags); struct queue_pages { struct list_head *pagelist; unsigned long flags; nodemask_t *nmask; unsigned long start; unsigned long end; struct vm_area_struct *first; }; /* * Check if the page's nid is in qp->nmask. * * If MPOL_MF_INVERT is set in qp->flags, check if the nid is * in the invert of qp->nmask. */ static inline bool queue_pages_required(struct page *page, struct queue_pages *qp) { int nid = page_to_nid(page); unsigned long flags = qp->flags; return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT); } /* * queue_pages_pmd() has four possible return values: * 0 - pages are placed on the right node or queued successfully, or * special page is met, i.e. huge zero page. * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were * specified. * 2 - THP was split. * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an * existing page was already on a node that does not follow the * policy. */ static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr, unsigned long end, struct mm_walk *walk) __releases(ptl) { int ret = 0; struct page *page; struct queue_pages *qp = walk->private; unsigned long flags; if (unlikely(is_pmd_migration_entry(*pmd))) { ret = -EIO; goto unlock; } page = pmd_page(*pmd); if (is_huge_zero_page(page)) { spin_unlock(ptl); walk->action = ACTION_CONTINUE; goto out; } if (!queue_pages_required(page, qp)) goto unlock; flags = qp->flags; /* go to thp migration */ if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { if (!vma_migratable(walk->vma) || migrate_page_add(page, qp->pagelist, flags)) { ret = 1; goto unlock; } } else ret = -EIO; unlock: spin_unlock(ptl); out: return ret; } /* * Scan through pages checking if pages follow certain conditions, * and move them to the pagelist if they do. * * queue_pages_pte_range() has three possible return values: * 0 - pages are placed on the right node or queued successfully, or * special page is met, i.e. zero page. * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were * specified. * -EIO - only MPOL_MF_STRICT was specified and an existing page was already * on a node that does not follow the policy. */ static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->vma; struct page *page; struct queue_pages *qp = walk->private; unsigned long flags = qp->flags; int ret; bool has_unmovable = false; pte_t *pte, *mapped_pte; spinlock_t *ptl; ptl = pmd_trans_huge_lock(pmd, vma); if (ptl) { ret = queue_pages_pmd(pmd, ptl, addr, end, walk); if (ret != 2) return ret; } /* THP was split, fall through to pte walk */ if (pmd_trans_unstable(pmd)) return 0; mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); for (; addr != end; pte++, addr += PAGE_SIZE) { if (!pte_present(*pte)) continue; page = vm_normal_page(vma, addr, *pte); if (!page) continue; /* * vm_normal_page() filters out zero pages, but there might * still be PageReserved pages to skip, perhaps in a VDSO. */ if (PageReserved(page)) continue; if (!queue_pages_required(page, qp)) continue; if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { /* MPOL_MF_STRICT must be specified if we get here */ if (!vma_migratable(vma)) { has_unmovable = true; break; } /* * Do not abort immediately since there may be * temporary off LRU pages in the range. Still * need migrate other LRU pages. */ if (migrate_page_add(page, qp->pagelist, flags)) has_unmovable = true; } else break; } pte_unmap_unlock(mapped_pte, ptl); cond_resched(); if (has_unmovable) return 1; return addr != end ? -EIO : 0; } static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask, unsigned long addr, unsigned long end, struct mm_walk *walk) { int ret = 0; #ifdef CONFIG_HUGETLB_PAGE struct queue_pages *qp = walk->private; unsigned long flags = (qp->flags & MPOL_MF_VALID); struct page *page; spinlock_t *ptl; pte_t entry; ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); entry = huge_ptep_get(pte); if (!pte_present(entry)) goto unlock; page = pte_page(entry); if (!queue_pages_required(page, qp)) goto unlock; if (flags == MPOL_MF_STRICT) { /* * STRICT alone means only detecting misplaced page and no * need to further check other vma. */ ret = -EIO; goto unlock; } if (!vma_migratable(walk->vma)) { /* * Must be STRICT with MOVE*, otherwise .test_walk() have * stopped walking current vma. * Detecting misplaced page but allow migrating pages which * have been queued. */ ret = 1; goto unlock; } /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ if (flags & (MPOL_MF_MOVE_ALL) || (flags & MPOL_MF_MOVE && page_mapcount(page) == 1 && !hugetlb_pmd_shared(pte))) { if (isolate_hugetlb(page, qp->pagelist) && (flags & MPOL_MF_STRICT)) /* * Failed to isolate page but allow migrating pages * which have been queued. */ ret = 1; } unlock: spin_unlock(ptl); #else BUG(); #endif return ret; } #ifdef CONFIG_NUMA_BALANCING /* * This is used to mark a range of virtual addresses to be inaccessible. * These are later cleared by a NUMA hinting fault. Depending on these * faults, pages may be migrated for better NUMA placement. * * This is assuming that NUMA faults are handled using PROT_NONE. If * an architecture makes a different choice, it will need further * changes to the core. */ unsigned long change_prot_numa(struct vm_area_struct *vma, unsigned long addr, unsigned long end) { int nr_updated; nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA); if (nr_updated) count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); return nr_updated; } #else static unsigned long change_prot_numa(struct vm_area_struct *vma, unsigned long addr, unsigned long end) { return 0; } #endif /* CONFIG_NUMA_BALANCING */ static int queue_pages_test_walk(unsigned long start, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->vma; struct queue_pages *qp = walk->private; unsigned long endvma = vma->vm_end; unsigned long flags = qp->flags; /* range check first */ VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); if (!qp->first) { qp->first = vma; if (!(flags & MPOL_MF_DISCONTIG_OK) && (qp->start < vma->vm_start)) /* hole at head side of range */ return -EFAULT; } if (!(flags & MPOL_MF_DISCONTIG_OK) && ((vma->vm_end < qp->end) && (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start))) /* hole at middle or tail of range */ return -EFAULT; /* * Need check MPOL_MF_STRICT to return -EIO if possible * regardless of vma_migratable */ if (!vma_migratable(vma) && !(flags & MPOL_MF_STRICT)) return 1; if (endvma > end) endvma = end; if (flags & MPOL_MF_LAZY) { /* Similar to task_numa_work, skip inaccessible VMAs */ if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) && !(vma->vm_flags & VM_MIXEDMAP)) change_prot_numa(vma, start, endvma); return 1; } /* queue pages from current vma */ if (flags & MPOL_MF_VALID) return 0; return 1; } static const struct mm_walk_ops queue_pages_walk_ops = { .hugetlb_entry = queue_pages_hugetlb, .pmd_entry = queue_pages_pte_range, .test_walk = queue_pages_test_walk, }; /* * Walk through page tables and collect pages to be migrated. * * If pages found in a given range are on a set of nodes (determined by * @nodes and @flags,) it's isolated and queued to the pagelist which is * passed via @private. * * queue_pages_range() has three possible return values: * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were * specified. * 0 - queue pages successfully or no misplaced page. * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or * memory range specified by nodemask and maxnode points outside * your accessible address space (-EFAULT) */ static int queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, nodemask_t *nodes, unsigned long flags, struct list_head *pagelist) { int err; struct queue_pages qp = { .pagelist = pagelist, .flags = flags, .nmask = nodes, .start = start, .end = end, .first = NULL, }; err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp); if (!qp.first) /* whole range in hole */ err = -EFAULT; return err; } /* * Apply policy to a single VMA * This must be called with the mmap_lock held for writing. */ static int vma_replace_policy(struct vm_area_struct *vma, struct mempolicy *pol) { int err; struct mempolicy *old; struct mempolicy *new; pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", vma->vm_start, vma->vm_end, vma->vm_pgoff, vma->vm_ops, vma->vm_file, vma->vm_ops ? vma->vm_ops->set_policy : NULL); new = mpol_dup(pol); if (IS_ERR(new)) return PTR_ERR(new); if (vma->vm_ops && vma->vm_ops->set_policy) { err = vma->vm_ops->set_policy(vma, new); if (err) goto err_out; } old = vma->vm_policy; vma->vm_policy = new; /* protected by mmap_lock */ mpol_put(old); return 0; err_out: mpol_put(new); return err; } /* Step 2: apply policy to a range and do splits. */ static int mbind_range(struct mm_struct *mm, unsigned long start, unsigned long end, struct mempolicy *new_pol) { struct vm_area_struct *prev; struct vm_area_struct *vma; int err = 0; pgoff_t pgoff; unsigned long vmstart; unsigned long vmend; vma = find_vma(mm, start); VM_BUG_ON(!vma); prev = vma->vm_prev; if (start > vma->vm_start) prev = vma; for (; vma && vma->vm_start < end; prev = vma, vma = vma->vm_next) { vmstart = max(start, vma->vm_start); vmend = min(end, vma->vm_end); if (mpol_equal(vma_policy(vma), new_pol)) continue; pgoff = vma->vm_pgoff + ((vmstart - vma->vm_start) >> PAGE_SHIFT); prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, vma->anon_vma, vma->vm_file, pgoff, new_pol, vma->vm_userfaultfd_ctx); if (prev) { vma = prev; goto replace; } if (vma->vm_start != vmstart) { err = split_vma(vma->vm_mm, vma, vmstart, 1); if (err) goto out; } if (vma->vm_end != vmend) { err = split_vma(vma->vm_mm, vma, vmend, 0); if (err) goto out; } replace: err = vma_replace_policy(vma, new_pol); if (err) goto out; } out: return err; } /* Set the process memory policy */ static long do_set_mempolicy(unsigned short mode, unsigned short flags, nodemask_t *nodes) { struct mempolicy *new, *old; NODEMASK_SCRATCH(scratch); int ret; if (!scratch) return -ENOMEM; new = mpol_new(mode, flags, nodes); if (IS_ERR(new)) { ret = PTR_ERR(new); goto out; } ret = mpol_set_nodemask(new, nodes, scratch); if (ret) { mpol_put(new); goto out; } task_lock(current); old = current->mempolicy; current->mempolicy = new; if (new && new->mode == MPOL_INTERLEAVE) current->il_prev = MAX_NUMNODES-1; task_unlock(current); mpol_put(old); ret = 0; out: NODEMASK_SCRATCH_FREE(scratch); return ret; } /* * Return nodemask for policy for get_mempolicy() query * * Called with task's alloc_lock held */ static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) { nodes_clear(*nodes); if (p == &default_policy) return; switch (p->mode) { case MPOL_BIND: case MPOL_INTERLEAVE: case MPOL_PREFERRED: case MPOL_PREFERRED_MANY: *nodes = p->nodes; break; case MPOL_LOCAL: /* return empty node mask for local allocation */ break; default: BUG(); } } static int lookup_node(struct mm_struct *mm, unsigned long addr) { struct page *p = NULL; int err; int locked = 1; err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked); if (err > 0) { err = page_to_nid(p); put_page(p); } if (locked) mmap_read_unlock(mm); return err; } /* Retrieve NUMA policy */ static long do_get_mempolicy(int *policy, nodemask_t *nmask, unsigned long addr, unsigned long flags) { int err; struct mm_struct *mm = current->mm; struct vm_area_struct *vma = NULL; struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL; if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) return -EINVAL; if (flags & MPOL_F_MEMS_ALLOWED) { if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) return -EINVAL; *policy = 0; /* just so it's initialized */ task_lock(current); *nmask = cpuset_current_mems_allowed; task_unlock(current); return 0; } if (flags & MPOL_F_ADDR) { /* * Do NOT fall back to task policy if the * vma/shared policy at addr is NULL. We * want to return MPOL_DEFAULT in this case. */ mmap_read_lock(mm); vma = vma_lookup(mm, addr); if (!vma) { mmap_read_unlock(mm); return -EFAULT; } if (vma->vm_ops && vma->vm_ops->get_policy) pol = vma->vm_ops->get_policy(vma, addr); else pol = vma->vm_policy; } else if (addr) return -EINVAL; if (!pol) pol = &default_policy; /* indicates default behavior */ if (flags & MPOL_F_NODE) { if (flags & MPOL_F_ADDR) { /* * Take a refcount on the mpol, lookup_node() * will drop the mmap_lock, so after calling * lookup_node() only "pol" remains valid, "vma" * is stale. */ pol_refcount = pol; vma = NULL; mpol_get(pol); err = lookup_node(mm, addr); if (err < 0) goto out; *policy = err; } else if (pol == current->mempolicy && pol->mode == MPOL_INTERLEAVE) { *policy = next_node_in(current->il_prev, pol->nodes); } else { err = -EINVAL; goto out; } } else { *policy = pol == &default_policy ? MPOL_DEFAULT : pol->mode; /* * Internal mempolicy flags must be masked off before exposing * the policy to userspace. */ *policy |= (pol->flags & MPOL_MODE_FLAGS); } err = 0; if (nmask) { if (mpol_store_user_nodemask(pol)) { *nmask = pol->w.user_nodemask; } else { task_lock(current); get_policy_nodemask(pol, nmask); task_unlock(current); } } out: mpol_cond_put(pol); if (vma) mmap_read_unlock(mm); if (pol_refcount) mpol_put(pol_refcount); return err; } #ifdef CONFIG_MIGRATION /* * page migration, thp tail pages can be passed. */ static int migrate_page_add(struct page *page, struct list_head *pagelist, unsigned long flags) { struct page *head = compound_head(page); /* * Avoid migrating a page that is shared with others. */ if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) { if (!isolate_lru_page(head)) { list_add_tail(&head->lru, pagelist); mod_node_page_state(page_pgdat(head), NR_ISOLATED_ANON + page_is_file_lru(head), thp_nr_pages(head)); } else if (flags & MPOL_MF_STRICT) { /* * Non-movable page may reach here. And, there may be * temporary off LRU pages or non-LRU movable pages. * Treat them as unmovable pages since they can't be * isolated, so they can't be moved at the moment. It * should return -EIO for this case too. */ return -EIO; } } return 0; } /* * Migrate pages from one node to a target node. * Returns error or the number of pages not migrated. */ static int migrate_to_node(struct mm_struct *mm, int source, int dest, int flags) { nodemask_t nmask; LIST_HEAD(pagelist); int err = 0; struct migration_target_control mtc = { .nid = dest, .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, }; nodes_clear(nmask); node_set(source, nmask); /* * This does not "check" the range but isolates all pages that * need migration. Between passing in the full user address * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. */ VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, flags | MPOL_MF_DISCONTIG_OK, &pagelist); if (!list_empty(&pagelist)) { err = migrate_pages(&pagelist, alloc_migration_target, NULL, (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL); if (err) putback_movable_pages(&pagelist); } return err; } /* * Move pages between the two nodesets so as to preserve the physical * layout as much as possible. * * Returns the number of page that could not be moved. */ int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to, int flags) { int busy = 0; int err = 0; nodemask_t tmp; lru_cache_disable(); mmap_read_lock(mm); /* * Find a 'source' bit set in 'tmp' whose corresponding 'dest' * bit in 'to' is not also set in 'tmp'. Clear the found 'source' * bit in 'tmp', and return that <source, dest> pair for migration. * The pair of nodemasks 'to' and 'from' define the map. * * If no pair of bits is found that way, fallback to picking some * pair of 'source' and 'dest' bits that are not the same. If the * 'source' and 'dest' bits are the same, this represents a node * that will be migrating to itself, so no pages need move. * * If no bits are left in 'tmp', or if all remaining bits left * in 'tmp' correspond to the same bit in 'to', return false * (nothing left to migrate). * * This lets us pick a pair of nodes to migrate between, such that * if possible the dest node is not already occupied by some other * source node, minimizing the risk of overloading the memory on a * node that would happen if we migrated incoming memory to a node * before migrating outgoing memory source that same node. * * A single scan of tmp is sufficient. As we go, we remember the * most recent <s, d> pair that moved (s != d). If we find a pair * that not only moved, but what's better, moved to an empty slot * (d is not set in tmp), then we break out then, with that pair. * Otherwise when we finish scanning from_tmp, we at least have the * most recent <s, d> pair that moved. If we get all the way through * the scan of tmp without finding any node that moved, much less * moved to an empty node, then there is nothing left worth migrating. */ tmp = *from; while (!nodes_empty(tmp)) { int s, d; int source = NUMA_NO_NODE; int dest = 0; for_each_node_mask(s, tmp) { /* * do_migrate_pages() tries to maintain the relative * node relationship of the pages established between * threads and memory areas. * * However if the number of source nodes is not equal to * the number of destination nodes we can not preserve * this node relative relationship. In that case, skip * copying memory from a node that is in the destination * mask. * * Example: [2,3,4] -> [3,4,5] moves everything. * [0-7] - > [3,4,5] moves only 0,1,2,6,7. */ if ((nodes_weight(*from) != nodes_weight(*to)) && (node_isset(s, *to))) continue; d = node_remap(s, *from, *to); if (s == d) continue; source = s; /* Node moved. Memorize */ dest = d; /* dest not in remaining from nodes? */ if (!node_isset(dest, tmp)) break; } if (source == NUMA_NO_NODE) break; node_clear(source, tmp); err = migrate_to_node(mm, source, dest, flags); if (err > 0) busy += err; if (err < 0) break; } mmap_read_unlock(mm); lru_cache_enable(); if (err < 0) return err; return busy; } /* * Allocate a new page for page migration based on vma policy. * Start by assuming the page is mapped by the same vma as contains @start. * Search forward from there, if not. N.B., this assumes that the * list of pages handed to migrate_pages()--which is how we get here-- * is in virtual address order. */ static struct page *new_page(struct page *page, unsigned long start) { struct vm_area_struct *vma; unsigned long address; vma = find_vma(current->mm, start); while (vma) { address = page_address_in_vma(page, vma); if (address != -EFAULT) break; vma = vma->vm_next; } if (PageHuge(page)) { return alloc_huge_page_vma(page_hstate(compound_head(page)), vma, address); } else if (PageTransHuge(page)) { struct page *thp; thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address, HPAGE_PMD_ORDER); if (!thp) return NULL; prep_transhuge_page(thp); return thp; } /* * if !vma, alloc_page_vma() will use task or system default policy */ return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL, vma, address); } #else static int migrate_page_add(struct page *page, struct list_head *pagelist, unsigned long flags) { return -EIO; } int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to, int flags) { return -ENOSYS; } static struct page *new_page(struct page *page, unsigned long start) { return NULL; } #endif static long do_mbind(unsigned long start, unsigned long len, unsigned short mode, unsigned short mode_flags, nodemask_t *nmask, unsigned long flags) { struct mm_struct *mm = current->mm; struct mempolicy *new; unsigned long end; int err; int ret; LIST_HEAD(pagelist); if (flags & ~(unsigned long)MPOL_MF_VALID) return -EINVAL; if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) return -EPERM; if (start & ~PAGE_MASK) return -EINVAL; if (mode == MPOL_DEFAULT) flags &= ~MPOL_MF_STRICT; len = (len + PAGE_SIZE - 1) & PAGE_MASK; end = start + len; if (end < start) return -EINVAL; if (end == start) return 0; new = mpol_new(mode, mode_flags, nmask); if (IS_ERR(new)) return PTR_ERR(new); if (flags & MPOL_MF_LAZY) new->flags |= MPOL_F_MOF; /* * If we are using the default policy then operation * on discontinuous address spaces is okay after all */ if (!new) flags |= MPOL_MF_DISCONTIG_OK; pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", start, start + len, mode, mode_flags, nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { lru_cache_disable(); } { NODEMASK_SCRATCH(scratch); if (scratch) { mmap_write_lock(mm); err = mpol_set_nodemask(new, nmask, scratch); if (err) mmap_write_unlock(mm); } else err = -ENOMEM; NODEMASK_SCRATCH_FREE(scratch); } if (err) goto mpol_out; ret = queue_pages_range(mm, start, end, nmask, flags | MPOL_MF_INVERT, &pagelist); if (ret < 0) { err = ret; goto up_out; } err = mbind_range(mm, start, end, new); if (!err) { int nr_failed = 0; if (!list_empty(&pagelist)) { WARN_ON_ONCE(flags & MPOL_MF_LAZY); nr_failed = migrate_pages(&pagelist, new_page, NULL, start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL); if (nr_failed) putback_movable_pages(&pagelist); } if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT))) err = -EIO; } else { up_out: if (!list_empty(&pagelist)) putback_movable_pages(&pagelist); } mmap_write_unlock(mm); mpol_out: mpol_put(new); if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) lru_cache_enable(); return err; } /* * User space interface with variable sized bitmaps for nodelists. */ static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask, unsigned long maxnode) { unsigned long nlongs = BITS_TO_LONGS(maxnode); int ret; if (in_compat_syscall()) ret = compat_get_bitmap(mask, (const compat_ulong_t __user *)nmask, maxnode); else ret = copy_from_user(mask, nmask, nlongs * sizeof(unsigned long)); if (ret) return -EFAULT; if (maxnode % BITS_PER_LONG) mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1; return 0; } /* Copy a node mask from user space. */ static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, unsigned long maxnode) { --maxnode; nodes_clear(*nodes); if (maxnode == 0 || !nmask) return 0; if (maxnode > PAGE_SIZE*BITS_PER_BYTE) return -EINVAL; /* * When the user specified more nodes than supported just check * if the non supported part is all zero, one word at a time, * starting at the end. */ while (maxnode > MAX_NUMNODES) { unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG); unsigned long t; if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits)) return -EFAULT; if (maxnode - bits >= MAX_NUMNODES) { maxnode -= bits; } else { maxnode = MAX_NUMNODES; t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1); } if (t) return -EINVAL; } return get_bitmap(nodes_addr(*nodes), nmask, maxnode); } /* Copy a kernel node mask to user space */ static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, nodemask_t *nodes) { unsigned long copy = ALIGN(maxnode-1, 64) / 8; unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long); bool compat = in_compat_syscall(); if (compat) nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t); if (copy > nbytes) { if (copy > PAGE_SIZE) return -EINVAL; if (clear_user((char __user *)mask + nbytes, copy - nbytes)) return -EFAULT; copy = nbytes; maxnode = nr_node_ids; } if (compat) return compat_put_bitmap((compat_ulong_t __user *)mask, nodes_addr(*nodes), maxnode); return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; } /* Basic parameter sanity check used by both mbind() and set_mempolicy() */ static inline int sanitize_mpol_flags(int *mode, unsigned short *flags) { *flags = *mode & MPOL_MODE_FLAGS; *mode &= ~MPOL_MODE_FLAGS; if ((unsigned int)(*mode) >= MPOL_MAX) return -EINVAL; if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES)) return -EINVAL; if (*flags & MPOL_F_NUMA_BALANCING) { if (*mode != MPOL_BIND) return -EINVAL; *flags |= (MPOL_F_MOF | MPOL_F_MORON); } return 0; } static long kernel_mbind(unsigned long start, unsigned long len, unsigned long mode, const unsigned long __user *nmask, unsigned long maxnode, unsigned int flags) { unsigned short mode_flags; nodemask_t nodes; int lmode = mode; int err; start = untagged_addr(start); err = sanitize_mpol_flags(&lmode, &mode_flags); if (err) return err; err = get_nodes(&nodes, nmask, maxnode); if (err) return err; return do_mbind(start, len, lmode, mode_flags, &nodes, flags); } SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, unsigned long, mode, const unsigned long __user *, nmask, unsigned long, maxnode, unsigned int, flags) { return kernel_mbind(start, len, mode, nmask, maxnode, flags); } /* Set the process memory policy */ static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask, unsigned long maxnode) { unsigned short mode_flags; nodemask_t nodes; int lmode = mode; int err; err = sanitize_mpol_flags(&lmode, &mode_flags); if (err) return err; err = get_nodes(&nodes, nmask, maxnode); if (err) return err; return do_set_mempolicy(lmode, mode_flags, &nodes); } SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask, unsigned long, maxnode) { return kernel_set_mempolicy(mode, nmask, maxnode); } static int kernel_migrate_pages(pid_t pid, unsigned long maxnode, const unsigned long __user *old_nodes, const unsigned long __user *new_nodes) { struct mm_struct *mm = NULL; struct task_struct *task; nodemask_t task_nodes; int err; nodemask_t *old; nodemask_t *new; NODEMASK_SCRATCH(scratch); if (!scratch) return -ENOMEM; old = &scratch->mask1; new = &scratch->mask2; err = get_nodes(old, old_nodes, maxnode); if (err) goto out; err = get_nodes(new, new_nodes, maxnode); if (err) goto out; /* Find the mm_struct */ rcu_read_lock(); task = pid ? find_task_by_vpid(pid) : current; if (!task) { rcu_read_unlock(); err = -ESRCH; goto out; } get_task_struct(task); err = -EINVAL; /* * Check if this process has the right to modify the specified process. * Use the regular "ptrace_may_access()" checks. */ if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) { rcu_read_unlock(); err = -EPERM; goto out_put; } rcu_read_unlock(); task_nodes = cpuset_mems_allowed(task); /* Is the user allowed to access the target nodes? */ if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { err = -EPERM; goto out_put; } task_nodes = cpuset_mems_allowed(current); nodes_and(*new, *new, task_nodes); if (nodes_empty(*new)) goto out_put; err = security_task_movememory(task); if (err) goto out_put; mm = get_task_mm(task); put_task_struct(task); if (!mm) { err = -EINVAL; goto out; } err = do_migrate_pages(mm, old, new, capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); mmput(mm); out: NODEMASK_SCRATCH_FREE(scratch); return err; out_put: put_task_struct(task); goto out; } SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, const unsigned long __user *, old_nodes, const unsigned long __user *, new_nodes) { return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes); } /* Retrieve NUMA policy */ static int kernel_get_mempolicy(int __user *policy, unsigned long __user *nmask, unsigned long maxnode, unsigned long addr, unsigned long flags) { int err; int pval; nodemask_t nodes; if (nmask != NULL && maxnode < nr_node_ids) return -EINVAL; addr = untagged_addr(addr); err = do_get_mempolicy(&pval, &nodes, addr, flags); if (err) return err; if (policy && put_user(pval, policy)) return -EFAULT; if (nmask) err = copy_nodes_to_user(nmask, maxnode, &nodes); return err; } SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, unsigned long __user *, nmask, unsigned long, maxnode, unsigned long, addr, unsigned long, flags) { return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags); } bool vma_migratable(struct vm_area_struct *vma) { if (vma->vm_flags & (VM_IO | VM_PFNMAP)) return false; /* * DAX device mappings require predictable access latency, so avoid * incurring periodic faults. */ if (vma_is_dax(vma)) return false; if (is_vm_hugetlb_page(vma) && !hugepage_migration_supported(hstate_vma(vma))) return false; /* * Migration allocates pages in the highest zone. If we cannot * do so then migration (at least from node to node) is not * possible. */ if (vma->vm_file && gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) < policy_zone) return false; return true; } struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, unsigned long addr) { struct mempolicy *pol = NULL; if (vma) { if (vma->vm_ops && vma->vm_ops->get_policy) { pol = vma->vm_ops->get_policy(vma, addr); } else if (vma->vm_policy) { pol = vma->vm_policy; /* * shmem_alloc_page() passes MPOL_F_SHARED policy with * a pseudo vma whose vma->vm_ops=NULL. Take a reference * count on these policies which will be dropped by * mpol_cond_put() later */ if (mpol_needs_cond_ref(pol)) mpol_get(pol); } } return pol; } /* * get_vma_policy(@vma, @addr) * @vma: virtual memory area whose policy is sought * @addr: address in @vma for shared policy lookup * * Returns effective policy for a VMA at specified address. * Falls back to current->mempolicy or system default policy, as necessary. * Shared policies [those marked as MPOL_F_SHARED] require an extra reference * count--added by the get_policy() vm_op, as appropriate--to protect against * freeing by another task. It is the caller's responsibility to free the * extra reference for shared policies. */ static struct mempolicy *get_vma_policy(struct vm_area_struct *vma, unsigned long addr) { struct mempolicy *pol = __get_vma_policy(vma, addr); if (!pol) pol = get_task_policy(current); return pol; } bool vma_policy_mof(struct vm_area_struct *vma) { struct mempolicy *pol; if (vma->vm_ops && vma->vm_ops->get_policy) { bool ret = false; pol = vma->vm_ops->get_policy(vma, vma->vm_start); if (pol && (pol->flags & MPOL_F_MOF)) ret = true; mpol_cond_put(pol); return ret; } pol = vma->vm_policy; if (!pol) pol = get_task_policy(current); return pol->flags & MPOL_F_MOF; } static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) { enum zone_type dynamic_policy_zone = policy_zone; BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); /* * if policy->nodes has movable memory only, * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. * * policy->nodes is intersect with node_states[N_MEMORY]. * so if the following test fails, it implies * policy->nodes has movable memory only. */ if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY])) dynamic_policy_zone = ZONE_MOVABLE; return zone >= dynamic_policy_zone; } /* * Return a nodemask representing a mempolicy for filtering nodes for * page allocation */ nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) { int mode = policy->mode; /* Lower zones don't get a nodemask applied for MPOL_BIND */ if (unlikely(mode == MPOL_BIND) && apply_policy_zone(policy, gfp_zone(gfp)) && cpuset_nodemask_valid_mems_allowed(&policy->nodes)) return &policy->nodes; if (mode == MPOL_PREFERRED_MANY) return &policy->nodes; return NULL; } /* * Return the preferred node id for 'prefer' mempolicy, and return * the given id for all other policies. * * policy_node() is always coupled with policy_nodemask(), which * secures the nodemask limit for 'bind' and 'prefer-many' policy. */ static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd) { if (policy->mode == MPOL_PREFERRED) { nd = first_node(policy->nodes); } else { /* * __GFP_THISNODE shouldn't even be used with the bind policy * because we might easily break the expectation to stay on the * requested node and not break the policy. */ WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE)); } return nd; } /* Do dynamic interleaving for a process */ static unsigned interleave_nodes(struct mempolicy *policy) { unsigned next; struct task_struct *me = current; next = next_node_in(me->il_prev, policy->nodes); if (next < MAX_NUMNODES) me->il_prev = next; return next; } /* * Depending on the memory policy provide a node from which to allocate the * next slab entry. */ unsigned int mempolicy_slab_node(void) { struct mempolicy *policy; int node = numa_mem_id(); if (!in_task()) return node; policy = current->mempolicy; if (!policy) return node; switch (policy->mode) { case MPOL_PREFERRED: return first_node(policy->nodes); case MPOL_INTERLEAVE: return interleave_nodes(policy); case MPOL_BIND: case MPOL_PREFERRED_MANY: { struct zoneref *z; /* * Follow bind policy behavior and start allocation at the * first node. */ struct zonelist *zonelist; enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK]; z = first_zones_zonelist(zonelist, highest_zoneidx, &policy->nodes); return z->zone ? zone_to_nid(z->zone) : node; } case MPOL_LOCAL: return node; default: BUG(); } } /* * Do static interleaving for a VMA with known offset @n. Returns the n'th * node in pol->nodes (starting from n=0), wrapping around if n exceeds the * number of present nodes. */ static unsigned offset_il_node(struct mempolicy *pol, unsigned long n) { nodemask_t nodemask = pol->nodes; unsigned int target, nnodes; int i; int nid; /* * The barrier will stabilize the nodemask in a register or on * the stack so that it will stop changing under the code. * * Between first_node() and next_node(), pol->nodes could be changed * by other threads. So we put pol->nodes in a local stack. */ barrier(); nnodes = nodes_weight(nodemask); if (!nnodes) return numa_node_id(); target = (unsigned int)n % nnodes; nid = first_node(nodemask); for (i = 0; i < target; i++) nid = next_node(nid, nodemask); return nid; } /* Determine a node number for interleave */ static inline unsigned interleave_nid(struct mempolicy *pol, struct vm_area_struct *vma, unsigned long addr, int shift) { if (vma) { unsigned long off; /* * for small pages, there is no difference between * shift and PAGE_SHIFT, so the bit-shift is safe. * for huge pages, since vm_pgoff is in units of small * pages, we need to shift off the always 0 bits to get * a useful offset. */ BUG_ON(shift < PAGE_SHIFT); off = vma->vm_pgoff >> (shift - PAGE_SHIFT); off += (addr - vma->vm_start) >> shift; return offset_il_node(pol, off); } else return interleave_nodes(pol); } #ifdef CONFIG_HUGETLBFS /* * huge_node(@vma, @addr, @gfp_flags, @mpol) * @vma: virtual memory area whose policy is sought * @addr: address in @vma for shared policy lookup and interleave policy * @gfp_flags: for requested zone * @mpol: pointer to mempolicy pointer for reference counted mempolicy * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy * * Returns a nid suitable for a huge page allocation and a pointer * to the struct mempolicy for conditional unref after allocation. * If the effective policy is 'bind' or 'prefer-many', returns a pointer * to the mempolicy's @nodemask for filtering the zonelist. * * Must be protected by read_mems_allowed_begin() */ int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, struct mempolicy **mpol, nodemask_t **nodemask) { int nid; int mode; *mpol = get_vma_policy(vma, addr); *nodemask = NULL; mode = (*mpol)->mode; if (unlikely(mode == MPOL_INTERLEAVE)) { nid = interleave_nid(*mpol, vma, addr, huge_page_shift(hstate_vma(vma))); } else { nid = policy_node(gfp_flags, *mpol, numa_node_id()); if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY) *nodemask = &(*mpol)->nodes; } return nid; } /* * init_nodemask_of_mempolicy * * If the current task's mempolicy is "default" [NULL], return 'false' * to indicate default policy. Otherwise, extract the policy nodemask * for 'bind' or 'interleave' policy into the argument nodemask, or * initialize the argument nodemask to contain the single node for * 'preferred' or 'local' policy and return 'true' to indicate presence * of non-default mempolicy. * * We don't bother with reference counting the mempolicy [mpol_get/put] * because the current task is examining it's own mempolicy and a task's * mempolicy is only ever changed by the task itself. * * N.B., it is the caller's responsibility to free a returned nodemask. */ bool init_nodemask_of_mempolicy(nodemask_t *mask) { struct mempolicy *mempolicy; if (!(mask && current->mempolicy)) return false; task_lock(current); mempolicy = current->mempolicy; switch (mempolicy->mode) { case MPOL_PREFERRED: case MPOL_PREFERRED_MANY: case MPOL_BIND: case MPOL_INTERLEAVE: *mask = mempolicy->nodes; break; case MPOL_LOCAL: init_nodemask_of_node(mask, numa_node_id()); break; default: BUG(); } task_unlock(current); return true; } #endif /* * mempolicy_in_oom_domain * * If tsk's mempolicy is "bind", check for intersection between mask and * the policy nodemask. Otherwise, return true for all other policies * including "interleave", as a tsk with "interleave" policy may have * memory allocated from all nodes in system. * * Takes task_lock(tsk) to prevent freeing of its mempolicy. */ bool mempolicy_in_oom_domain(struct task_struct *tsk, const nodemask_t *mask) { struct mempolicy *mempolicy; bool ret = true; if (!mask) return ret; task_lock(tsk); mempolicy = tsk->mempolicy; if (mempolicy && mempolicy->mode == MPOL_BIND) ret = nodes_intersects(mempolicy->nodes, *mask); task_unlock(tsk); return ret; } /* Allocate a page in interleaved policy. Own path because it needs to do special accounting. */ static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, unsigned nid) { struct page *page; page = __alloc_pages(gfp, order, nid, NULL); /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */ if (!static_branch_likely(&vm_numa_stat_key)) return page; if (page && page_to_nid(page) == nid) { preempt_disable(); __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT); preempt_enable(); } return page; } static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order, int nid, struct mempolicy *pol) { struct page *page; gfp_t preferred_gfp; /* * This is a two pass approach. The first pass will only try the * preferred nodes but skip the direct reclaim and allow the * allocation to fail, while the second pass will try all the * nodes in system. */ preferred_gfp = gfp | __GFP_NOWARN; preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes); if (!page) page = __alloc_pages(gfp, order, numa_node_id(), NULL); return page; } /** * alloc_pages_vma - Allocate a page for a VMA. * @gfp: GFP flags. * @order: Order of the GFP allocation. * @vma: Pointer to VMA or NULL if not available. * @addr: Virtual address of the allocation. Must be inside @vma. * @node: Which node to prefer for allocation (modulo policy). * @hugepage: For hugepages try only the preferred node if possible. * * Allocate a page for a specific address in @vma, using the appropriate * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock * of the mm_struct of the VMA to prevent it from going away. Should be * used for all allocations for pages that will be mapped into user space. * * Return: The page on success or NULL if allocation fails. */ struct page *alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, unsigned long addr, int node, bool hugepage) { struct mempolicy *pol; struct page *page; int preferred_nid; nodemask_t *nmask; pol = get_vma_policy(vma, addr); if (pol->mode == MPOL_INTERLEAVE) { unsigned nid; nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); mpol_cond_put(pol); page = alloc_page_interleave(gfp, order, nid); goto out; } if (pol->mode == MPOL_PREFERRED_MANY) { page = alloc_pages_preferred_many(gfp, order, node, pol); mpol_cond_put(pol); goto out; } if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) { int hpage_node = node; /* * For hugepage allocation and non-interleave policy which * allows the current node (or other explicitly preferred * node) we only try to allocate from the current/preferred * node and don't fall back to other nodes, as the cost of * remote accesses would likely offset THP benefits. * * If the policy is interleave or does not allow the current * node in its nodemask, we allocate the standard way. */ if (pol->mode == MPOL_PREFERRED) hpage_node = first_node(pol->nodes); nmask = policy_nodemask(gfp, pol); if (!nmask || node_isset(hpage_node, *nmask)) { mpol_cond_put(pol); /* * First, try to allocate THP only on local node, but * don't reclaim unnecessarily, just compact. */ page = __alloc_pages_node(hpage_node, gfp | __GFP_THISNODE | __GFP_NORETRY, order); /* * If hugepage allocations are configured to always * synchronous compact or the vma has been madvised * to prefer hugepage backing, retry allowing remote * memory with both reclaim and compact as well. */ if (!page && (gfp & __GFP_DIRECT_RECLAIM)) page = __alloc_pages(gfp, order, hpage_node, nmask); goto out; } } nmask = policy_nodemask(gfp, pol); preferred_nid = policy_node(gfp, pol, node); page = __alloc_pages(gfp, order, preferred_nid, nmask); mpol_cond_put(pol); out: return page; } EXPORT_SYMBOL(alloc_pages_vma); /** * alloc_pages - Allocate pages. * @gfp: GFP flags. * @order: Power of two of number of pages to allocate. * * Allocate 1 << @order contiguous pages. The physical address of the * first page is naturally aligned (eg an order-3 allocation will be aligned * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current * process is honoured when in process context. * * Context: Can be called from any context, providing the appropriate GFP * flags are used. * Return: The page on success or NULL if allocation fails. */ struct page *alloc_pages(gfp_t gfp, unsigned order) { struct mempolicy *pol = &default_policy; struct page *page; if (!in_interrupt() && !(gfp & __GFP_THISNODE)) pol = get_task_policy(current); /* * No reference counting needed for current->mempolicy * nor system default_policy */ if (pol->mode == MPOL_INTERLEAVE) page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); else if (pol->mode == MPOL_PREFERRED_MANY) page = alloc_pages_preferred_many(gfp, order, numa_node_id(), pol); else page = __alloc_pages(gfp, order, policy_node(gfp, pol, numa_node_id()), policy_nodemask(gfp, pol)); return page; } EXPORT_SYMBOL(alloc_pages); int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) { struct mempolicy *pol = mpol_dup(vma_policy(src)); if (IS_ERR(pol)) return PTR_ERR(pol); dst->vm_policy = pol; return 0; } /* * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it * rebinds the mempolicy its copying by calling mpol_rebind_policy() * with the mems_allowed returned by cpuset_mems_allowed(). This * keeps mempolicies cpuset relative after its cpuset moves. See * further kernel/cpuset.c update_nodemask(). * * current's mempolicy may be rebinded by the other task(the task that changes * cpuset's mems), so we needn't do rebind work for current task. */ /* Slow path of a mempolicy duplicate */ struct mempolicy *__mpol_dup(struct mempolicy *old) { struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); if (!new) return ERR_PTR(-ENOMEM); /* task's mempolicy is protected by alloc_lock */ if (old == current->mempolicy) { task_lock(current); *new = *old; task_unlock(current); } else *new = *old; if (current_cpuset_is_being_rebound()) { nodemask_t mems = cpuset_mems_allowed(current); mpol_rebind_policy(new, &mems); } atomic_set(&new->refcnt, 1); return new; } /* Slow path of a mempolicy comparison */ bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) { if (!a || !b) return false; if (a->mode != b->mode) return false; if (a->flags != b->flags) return false; if (mpol_store_user_nodemask(a)) if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) return false; switch (a->mode) { case MPOL_BIND: case MPOL_INTERLEAVE: case MPOL_PREFERRED: case MPOL_PREFERRED_MANY: return !!nodes_equal(a->nodes, b->nodes); case MPOL_LOCAL: return true; default: BUG(); return false; } } /* * Shared memory backing store policy support. * * Remember policies even when nobody has shared memory mapped. * The policies are kept in Red-Black tree linked from the inode. * They are protected by the sp->lock rwlock, which should be held * for any accesses to the tree. */ /* * lookup first element intersecting start-end. Caller holds sp->lock for * reading or for writing */ static struct sp_node * sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) { struct rb_node *n = sp->root.rb_node; while (n) { struct sp_node *p = rb_entry(n, struct sp_node, nd); if (start >= p->end) n = n->rb_right; else if (end <= p->start) n = n->rb_left; else break; } if (!n) return NULL; for (;;) { struct sp_node *w = NULL; struct rb_node *prev = rb_prev(n); if (!prev) break; w = rb_entry(prev, struct sp_node, nd); if (w->end <= start) break; n = prev; } return rb_entry(n, struct sp_node, nd); } /* * Insert a new shared policy into the list. Caller holds sp->lock for * writing. */ static void sp_insert(struct shared_policy *sp, struct sp_node *new) { struct rb_node **p = &sp->root.rb_node; struct rb_node *parent = NULL; struct sp_node *nd; while (*p) { parent = *p; nd = rb_entry(parent, struct sp_node, nd); if (new->start < nd->start) p = &(*p)->rb_left; else if (new->end > nd->end) p = &(*p)->rb_right; else BUG(); } rb_link_node(&new->nd, parent, p); rb_insert_color(&new->nd, &sp->root); pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, new->policy ? new->policy->mode : 0); } /* Find shared policy intersecting idx */ struct mempolicy * mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) { struct mempolicy *pol = NULL; struct sp_node *sn; if (!sp->root.rb_node) return NULL; read_lock(&sp->lock); sn = sp_lookup(sp, idx, idx+1); if (sn) { mpol_get(sn->policy); pol = sn->policy; } read_unlock(&sp->lock); return pol; } static void sp_free(struct sp_node *n) { mpol_put(n->policy); kmem_cache_free(sn_cache, n); } /** * mpol_misplaced - check whether current page node is valid in policy * * @page: page to be checked * @vma: vm area where page mapped * @addr: virtual address where page mapped * * Lookup current policy node id for vma,addr and "compare to" page's * node id. Policy determination "mimics" alloc_page_vma(). * Called from fault path where we know the vma and faulting address. * * Return: NUMA_NO_NODE if the page is in a node that is valid for this * policy, or a suitable node ID to allocate a replacement page from. */ int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) { struct mempolicy *pol; struct zoneref *z; int curnid = page_to_nid(page); unsigned long pgoff; int thiscpu = raw_smp_processor_id(); int thisnid = cpu_to_node(thiscpu); int polnid = NUMA_NO_NODE; int ret = NUMA_NO_NODE; pol = get_vma_policy(vma, addr); if (!(pol->flags & MPOL_F_MOF)) goto out; switch (pol->mode) { case MPOL_INTERLEAVE: pgoff = vma->vm_pgoff; pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; polnid = offset_il_node(pol, pgoff); break; case MPOL_PREFERRED: if (node_isset(curnid, pol->nodes)) goto out; polnid = first_node(pol->nodes); break; case MPOL_LOCAL: polnid = numa_node_id(); break; case MPOL_BIND: /* Optimize placement among multiple nodes via NUMA balancing */ if (pol->flags & MPOL_F_MORON) { if (node_isset(thisnid, pol->nodes)) break; goto out; } fallthrough; case MPOL_PREFERRED_MANY: /* * use current page if in policy nodemask, * else select nearest allowed node, if any. * If no allowed nodes, use current [!misplaced]. */ if (node_isset(curnid, pol->nodes)) goto out; z = first_zones_zonelist( node_zonelist(numa_node_id(), GFP_HIGHUSER), gfp_zone(GFP_HIGHUSER), &pol->nodes); polnid = zone_to_nid(z->zone); break; default: BUG(); } /* Migrate the page towards the node whose CPU is referencing it */ if (pol->flags & MPOL_F_MORON) { polnid = thisnid; if (!should_numa_migrate_memory(current, page, curnid, thiscpu)) goto out; } if (curnid != polnid) ret = polnid; out: mpol_cond_put(pol); return ret; } /* * Drop the (possibly final) reference to task->mempolicy. It needs to be * dropped after task->mempolicy is set to NULL so that any allocation done as * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed * policy. */ void mpol_put_task_policy(struct task_struct *task) { struct mempolicy *pol; task_lock(task); pol = task->mempolicy; task->mempolicy = NULL; task_unlock(task); mpol_put(pol); } static void sp_delete(struct shared_policy *sp, struct sp_node *n) { pr_debug("deleting %lx-l%lx\n", n->start, n->end); rb_erase(&n->nd, &sp->root); sp_free(n); } static void sp_node_init(struct sp_node *node, unsigned long start, unsigned long end, struct mempolicy *pol) { node->start = start; node->end = end; node->policy = pol; } static struct sp_node *sp_alloc(unsigned long start, unsigned long end, struct mempolicy *pol) { struct sp_node *n; struct mempolicy *newpol; n = kmem_cache_alloc(sn_cache, GFP_KERNEL); if (!n) return NULL; newpol = mpol_dup(pol); if (IS_ERR(newpol)) { kmem_cache_free(sn_cache, n); return NULL; } newpol->flags |= MPOL_F_SHARED; sp_node_init(n, start, end, newpol); return n; } /* Replace a policy range. */ static int shared_policy_replace(struct shared_policy *sp, unsigned long start, unsigned long end, struct sp_node *new) { struct sp_node *n; struct sp_node *n_new = NULL; struct mempolicy *mpol_new = NULL; int ret = 0; restart: write_lock(&sp->lock); n = sp_lookup(sp, start, end); /* Take care of old policies in the same range. */ while (n && n->start < end) { struct rb_node *next = rb_next(&n->nd); if (n->start >= start) { if (n->end <= end) sp_delete(sp, n); else n->start = end; } else { /* Old policy spanning whole new range. */ if (n->end > end) { if (!n_new) goto alloc_new; *mpol_new = *n->policy; atomic_set(&mpol_new->refcnt, 1); sp_node_init(n_new, end, n->end, mpol_new); n->end = start; sp_insert(sp, n_new); n_new = NULL; mpol_new = NULL; break; } else n->end = start; } if (!next) break; n = rb_entry(next, struct sp_node, nd); } if (new) sp_insert(sp, new); write_unlock(&sp->lock); ret = 0; err_out: if (mpol_new) mpol_put(mpol_new); if (n_new) kmem_cache_free(sn_cache, n_new); return ret; alloc_new: write_unlock(&sp->lock); ret = -ENOMEM; n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); if (!n_new) goto err_out; mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); if (!mpol_new) goto err_out; atomic_set(&mpol_new->refcnt, 1); goto restart; } /** * mpol_shared_policy_init - initialize shared policy for inode * @sp: pointer to inode shared policy * @mpol: struct mempolicy to install * * Install non-NULL @mpol in inode's shared policy rb-tree. * On entry, the current task has a reference on a non-NULL @mpol. * This must be released on exit. * This is called at get_inode() calls and we can use GFP_KERNEL. */ void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) { int ret; sp->root = RB_ROOT; /* empty tree == default mempolicy */ rwlock_init(&sp->lock); if (mpol) { struct vm_area_struct pvma; struct mempolicy *new; NODEMASK_SCRATCH(scratch); if (!scratch) goto put_mpol; /* contextualize the tmpfs mount point mempolicy */ new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); if (IS_ERR(new)) goto free_scratch; /* no valid nodemask intersection */ task_lock(current); ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); task_unlock(current); if (ret) goto put_new; /* Create pseudo-vma that contains just the policy */ vma_init(&pvma, NULL); pvma.vm_end = TASK_SIZE; /* policy covers entire file */ mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ put_new: mpol_put(new); /* drop initial ref */ free_scratch: NODEMASK_SCRATCH_FREE(scratch); put_mpol: mpol_put(mpol); /* drop our incoming ref on sb mpol */ } } int mpol_set_shared_policy(struct shared_policy *info, struct vm_area_struct *vma, struct mempolicy *npol) { int err; struct sp_node *new = NULL; unsigned long sz = vma_pages(vma); pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", vma->vm_pgoff, sz, npol ? npol->mode : -1, npol ? npol->flags : -1, npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE); if (npol) { new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); if (!new) return -ENOMEM; } err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); if (err && new) sp_free(new); return err; } /* Free a backing policy store on inode delete. */ void mpol_free_shared_policy(struct shared_policy *p) { struct sp_node *n; struct rb_node *next; if (!p->root.rb_node) return; write_lock(&p->lock); next = rb_first(&p->root); while (next) { n = rb_entry(next, struct sp_node, nd); next = rb_next(&n->nd); sp_delete(p, n); } write_unlock(&p->lock); } #ifdef CONFIG_NUMA_BALANCING static int __initdata numabalancing_override; static void __init check_numabalancing_enable(void) { bool numabalancing_default = false; if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) numabalancing_default = true; /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */ if (numabalancing_override) set_numabalancing_state(numabalancing_override == 1); if (num_online_nodes() > 1 && !numabalancing_override) { pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n", numabalancing_default ? "Enabling" : "Disabling"); set_numabalancing_state(numabalancing_default); } } static int __init setup_numabalancing(char *str) { int ret = 0; if (!str) goto out; if (!strcmp(str, "enable")) { numabalancing_override = 1; ret = 1; } else if (!strcmp(str, "disable")) { numabalancing_override = -1; ret = 1; } out: if (!ret) pr_warn("Unable to parse numa_balancing=\n"); return ret; } __setup("numa_balancing=", setup_numabalancing); #else static inline void __init check_numabalancing_enable(void) { } #endif /* CONFIG_NUMA_BALANCING */ /* assumes fs == KERNEL_DS */ void __init numa_policy_init(void) { nodemask_t interleave_nodes; unsigned long largest = 0; int nid, prefer = 0; policy_cache = kmem_cache_create("numa_policy", sizeof(struct mempolicy), 0, SLAB_PANIC, NULL); sn_cache = kmem_cache_create("shared_policy_node", sizeof(struct sp_node), 0, SLAB_PANIC, NULL); for_each_node(nid) { preferred_node_policy[nid] = (struct mempolicy) { .refcnt = ATOMIC_INIT(1), .mode = MPOL_PREFERRED, .flags = MPOL_F_MOF | MPOL_F_MORON, .nodes = nodemask_of_node(nid), }; } /* * Set interleaving policy for system init. Interleaving is only * enabled across suitably sized nodes (default is >= 16MB), or * fall back to the largest node if they're all smaller. */ nodes_clear(interleave_nodes); for_each_node_state(nid, N_MEMORY) { unsigned long total_pages = node_present_pages(nid); /* Preserve the largest node */ if (largest < total_pages) { largest = total_pages; prefer = nid; } /* Interleave this node? */ if ((total_pages << PAGE_SHIFT) >= (16 << 20)) node_set(nid, interleave_nodes); } /* All too small, use the largest */ if (unlikely(nodes_empty(interleave_nodes))) node_set(prefer, interleave_nodes); if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) pr_err("%s: interleaving failed\n", __func__); check_numabalancing_enable(); } /* Reset policy of current process to default */ void numa_default_policy(void) { do_set_mempolicy(MPOL_DEFAULT, 0, NULL); } /* * Parse and format mempolicy from/to strings */ static const char * const policy_modes[] = { [MPOL_DEFAULT] = "default", [MPOL_PREFERRED] = "prefer", [MPOL_BIND] = "bind", [MPOL_INTERLEAVE] = "interleave", [MPOL_LOCAL] = "local", [MPOL_PREFERRED_MANY] = "prefer (many)", }; #ifdef CONFIG_TMPFS /** * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. * @str: string containing mempolicy to parse * @mpol: pointer to struct mempolicy pointer, returned on success. * * Format of input: * <mode>[=<flags>][:<nodelist>] * * On success, returns 0, else 1 */ int mpol_parse_str(char *str, struct mempolicy **mpol) { struct mempolicy *new = NULL; unsigned short mode_flags; nodemask_t nodes; char *nodelist = strchr(str, ':'); char *flags = strchr(str, '='); int err = 1, mode; if (flags) *flags++ = '\0'; /* terminate mode string */ if (nodelist) { /* NUL-terminate mode or flags string */ *nodelist++ = '\0'; if (nodelist_parse(nodelist, nodes)) goto out; if (!nodes_subset(nodes, node_states[N_MEMORY])) goto out; } else nodes_clear(nodes); mode = match_string(policy_modes, MPOL_MAX, str); if (mode < 0) goto out; switch (mode) { case MPOL_PREFERRED: /* * Insist on a nodelist of one node only, although later * we use first_node(nodes) to grab a single node, so here * nodelist (or nodes) cannot be empty. */ if (nodelist) { char *rest = nodelist; while (isdigit(*rest)) rest++; if (*rest) goto out; if (nodes_empty(nodes)) goto out; } break; case MPOL_INTERLEAVE: /* * Default to online nodes with memory if no nodelist */ if (!nodelist) nodes = node_states[N_MEMORY]; break; case MPOL_LOCAL: /* * Don't allow a nodelist; mpol_new() checks flags */ if (nodelist) goto out; break; case MPOL_DEFAULT: /* * Insist on a empty nodelist */ if (!nodelist) err = 0; goto out; case MPOL_PREFERRED_MANY: case MPOL_BIND: /* * Insist on a nodelist */ if (!nodelist) goto out; } mode_flags = 0; if (flags) { /* * Currently, we only support two mutually exclusive * mode flags. */ if (!strcmp(flags, "static")) mode_flags |= MPOL_F_STATIC_NODES; else if (!strcmp(flags, "relative")) mode_flags |= MPOL_F_RELATIVE_NODES; else goto out; } new = mpol_new(mode, mode_flags, &nodes); if (IS_ERR(new)) goto out; /* * Save nodes for mpol_to_str() to show the tmpfs mount options * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. */ if (mode != MPOL_PREFERRED) { new->nodes = nodes; } else if (nodelist) { nodes_clear(new->nodes); node_set(first_node(nodes), new->nodes); } else { new->mode = MPOL_LOCAL; } /* * Save nodes for contextualization: this will be used to "clone" * the mempolicy in a specific context [cpuset] at a later time. */ new->w.user_nodemask = nodes; err = 0; out: /* Restore string for error message */ if (nodelist) *--nodelist = ':'; if (flags) *--flags = '='; if (!err) *mpol = new; return err; } #endif /* CONFIG_TMPFS */ /** * mpol_to_str - format a mempolicy structure for printing * @buffer: to contain formatted mempolicy string * @maxlen: length of @buffer * @pol: pointer to mempolicy to be formatted * * Convert @pol into a string. If @buffer is too short, truncate the string. * Recommend a @maxlen of at least 51 for the longest mode, "weighted * interleave", plus the longest flag flags, "relative|balancing", and to * display at least a few node ids. */ void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) { char *p = buffer; nodemask_t nodes = NODE_MASK_NONE; unsigned short mode = MPOL_DEFAULT; unsigned short flags = 0; if (pol && pol != &default_policy && !(pol >= &preferred_node_policy[0] && pol <= &preferred_node_policy[ARRAY_SIZE(preferred_node_policy) - 1])) { mode = pol->mode; flags = pol->flags; } switch (mode) { case MPOL_DEFAULT: case MPOL_LOCAL: break; case MPOL_PREFERRED: case MPOL_PREFERRED_MANY: case MPOL_BIND: case MPOL_INTERLEAVE: nodes = pol->nodes; break; default: WARN_ON_ONCE(1); snprintf(p, maxlen, "unknown"); return; } p += snprintf(p, maxlen, "%s", policy_modes[mode]); if (flags & MPOL_MODE_FLAGS) { p += snprintf(p, buffer + maxlen - p, "="); /* * Static and relative are mutually exclusive. */ if (flags & MPOL_F_STATIC_NODES) p += snprintf(p, buffer + maxlen - p, "static"); else if (flags & MPOL_F_RELATIVE_NODES) p += snprintf(p, buffer + maxlen - p, "relative"); if (flags & MPOL_F_NUMA_BALANCING) { if (!is_power_of_2(flags & MPOL_MODE_FLAGS)) p += snprintf(p, buffer + maxlen - p, "|"); p += snprintf(p, buffer + maxlen - p, "balancing"); } } if (!nodes_empty(nodes)) p += scnprintf(p, buffer + maxlen - p, ":%*pbl", nodemask_pr_args(&nodes)); } bool numa_demotion_enabled = false; #ifdef CONFIG_SYSFS static ssize_t numa_demotion_enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sysfs_emit(buf, "%s\n", numa_demotion_enabled? "true" : "false"); } static ssize_t numa_demotion_enabled_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1)) numa_demotion_enabled = true; else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1)) numa_demotion_enabled = false; else return -EINVAL; return count; } static struct kobj_attribute numa_demotion_enabled_attr = __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show, numa_demotion_enabled_store); static struct attribute *numa_attrs[] = { &numa_demotion_enabled_attr.attr, NULL, }; static const struct attribute_group numa_attr_group = { .attrs = numa_attrs, }; static int __init numa_init_sysfs(void) { int err; struct kobject *numa_kobj; numa_kobj = kobject_create_and_add("numa", mm_kobj); if (!numa_kobj) { pr_err("failed to create numa kobject\n"); return -ENOMEM; } err = sysfs_create_group(numa_kobj, &numa_attr_group); if (err) { pr_err("failed to register numa group\n"); goto delete_obj; } return 0; delete_obj: kobject_put(numa_kobj); return err; } subsys_initcall(numa_init_sysfs); #endif |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 | /* BlueZ - Bluetooth protocol stack for Linux Copyright (C) 2000-2001 Qualcomm Incorporated Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS SOFTWARE IS DISCLAIMED. */ #ifndef __BLUETOOTH_H #define __BLUETOOTH_H #include <linux/poll.h> #include <net/sock.h> #include <linux/seq_file.h> #define BT_SUBSYS_VERSION 2 #define BT_SUBSYS_REVISION 22 #ifndef AF_BLUETOOTH #define AF_BLUETOOTH 31 #define PF_BLUETOOTH AF_BLUETOOTH #endif /* Bluetooth versions */ #define BLUETOOTH_VER_1_1 1 #define BLUETOOTH_VER_1_2 2 #define BLUETOOTH_VER_2_0 3 #define BLUETOOTH_VER_2_1 4 #define BLUETOOTH_VER_4_0 6 /* Reserv for core and drivers use */ #define BT_SKB_RESERVE 8 #define BTPROTO_L2CAP 0 #define BTPROTO_HCI 1 #define BTPROTO_SCO 2 #define BTPROTO_RFCOMM 3 #define BTPROTO_BNEP 4 #define BTPROTO_CMTP 5 #define BTPROTO_HIDP 6 #define BTPROTO_AVDTP 7 #define SOL_HCI 0 #define SOL_L2CAP 6 #define SOL_SCO 17 #define SOL_RFCOMM 18 #define BT_SECURITY 4 struct bt_security { __u8 level; __u8 key_size; }; #define BT_SECURITY_SDP 0 #define BT_SECURITY_LOW 1 #define BT_SECURITY_MEDIUM 2 #define BT_SECURITY_HIGH 3 #define BT_SECURITY_FIPS 4 #define BT_DEFER_SETUP 7 #define BT_FLUSHABLE 8 #define BT_FLUSHABLE_OFF 0 #define BT_FLUSHABLE_ON 1 #define BT_POWER 9 struct bt_power { __u8 force_active; }; #define BT_POWER_FORCE_ACTIVE_OFF 0 #define BT_POWER_FORCE_ACTIVE_ON 1 #define BT_CHANNEL_POLICY 10 /* BR/EDR only (default policy) * AMP controllers cannot be used. * Channel move requests from the remote device are denied. * If the L2CAP channel is currently using AMP, move the channel to BR/EDR. */ #define BT_CHANNEL_POLICY_BREDR_ONLY 0 /* BR/EDR Preferred * Allow use of AMP controllers. * If the L2CAP channel is currently on AMP, move it to BR/EDR. * Channel move requests from the remote device are allowed. */ #define BT_CHANNEL_POLICY_BREDR_PREFERRED 1 /* AMP Preferred * Allow use of AMP controllers * If the L2CAP channel is currently on BR/EDR and AMP controller * resources are available, initiate a channel move to AMP. * Channel move requests from the remote device are allowed. * If the L2CAP socket has not been connected yet, try to create * and configure the channel directly on an AMP controller rather * than BR/EDR. */ #define BT_CHANNEL_POLICY_AMP_PREFERRED 2 #define BT_VOICE 11 struct bt_voice { __u16 setting; }; #define BT_VOICE_TRANSPARENT 0x0003 #define BT_VOICE_CVSD_16BIT 0x0060 #define BT_SNDMTU 12 #define BT_RCVMTU 13 #define BT_PHY 14 #define BT_PHY_BR_1M_1SLOT 0x00000001 #define BT_PHY_BR_1M_3SLOT 0x00000002 #define BT_PHY_BR_1M_5SLOT 0x00000004 #define BT_PHY_EDR_2M_1SLOT 0x00000008 #define BT_PHY_EDR_2M_3SLOT 0x00000010 #define BT_PHY_EDR_2M_5SLOT 0x00000020 #define BT_PHY_EDR_3M_1SLOT 0x00000040 #define BT_PHY_EDR_3M_3SLOT 0x00000080 #define BT_PHY_EDR_3M_5SLOT 0x00000100 #define BT_PHY_LE_1M_TX 0x00000200 #define BT_PHY_LE_1M_RX 0x00000400 #define BT_PHY_LE_2M_TX 0x00000800 #define BT_PHY_LE_2M_RX 0x00001000 #define BT_PHY_LE_CODED_TX 0x00002000 #define BT_PHY_LE_CODED_RX 0x00004000 #define BT_MODE 15 #define BT_MODE_BASIC 0x00 #define BT_MODE_ERTM 0x01 #define BT_MODE_STREAMING 0x02 #define BT_MODE_LE_FLOWCTL 0x03 #define BT_MODE_EXT_FLOWCTL 0x04 #define BT_PKT_STATUS 16 #define BT_SCM_PKT_STATUS 0x03 __printf(1, 2) void bt_info(const char *fmt, ...); __printf(1, 2) void bt_warn(const char *fmt, ...); __printf(1, 2) void bt_err(const char *fmt, ...); #if IS_ENABLED(CONFIG_BT_FEATURE_DEBUG) void bt_dbg_set(bool enable); bool bt_dbg_get(void); __printf(1, 2) void bt_dbg(const char *fmt, ...); #endif __printf(1, 2) void bt_warn_ratelimited(const char *fmt, ...); __printf(1, 2) void bt_err_ratelimited(const char *fmt, ...); #define BT_INFO(fmt, ...) bt_info(fmt "\n", ##__VA_ARGS__) #define BT_WARN(fmt, ...) bt_warn(fmt "\n", ##__VA_ARGS__) #define BT_ERR(fmt, ...) bt_err(fmt "\n", ##__VA_ARGS__) #if IS_ENABLED(CONFIG_BT_FEATURE_DEBUG) #define BT_DBG(fmt, ...) bt_dbg(fmt "\n", ##__VA_ARGS__) #else #define BT_DBG(fmt, ...) pr_debug(fmt "\n", ##__VA_ARGS__) #endif #define bt_dev_name(hdev) ((hdev) ? (hdev)->name : "null") #define bt_dev_info(hdev, fmt, ...) \ BT_INFO("%s: " fmt, bt_dev_name(hdev), ##__VA_ARGS__) #define bt_dev_warn(hdev, fmt, ...) \ BT_WARN("%s: " fmt, bt_dev_name(hdev), ##__VA_ARGS__) #define bt_dev_err(hdev, fmt, ...) \ BT_ERR("%s: " fmt, bt_dev_name(hdev), ##__VA_ARGS__) #define bt_dev_dbg(hdev, fmt, ...) \ BT_DBG("%s: " fmt, bt_dev_name(hdev), ##__VA_ARGS__) #define bt_dev_warn_ratelimited(hdev, fmt, ...) \ bt_warn_ratelimited("%s: " fmt, bt_dev_name(hdev), ##__VA_ARGS__) #define bt_dev_err_ratelimited(hdev, fmt, ...) \ bt_err_ratelimited("%s: " fmt, bt_dev_name(hdev), ##__VA_ARGS__) /* Connection and socket states */ enum { BT_CONNECTED = 1, /* Equal to TCP_ESTABLISHED to make net code happy */ BT_OPEN, BT_BOUND, BT_LISTEN, BT_CONNECT, BT_CONNECT2, BT_CONFIG, BT_DISCONN, BT_CLOSED }; /* If unused will be removed by compiler */ static inline const char *state_to_string(int state) { switch (state) { case BT_CONNECTED: return "BT_CONNECTED"; case BT_OPEN: return "BT_OPEN"; case BT_BOUND: return "BT_BOUND"; case BT_LISTEN: return "BT_LISTEN"; case BT_CONNECT: return "BT_CONNECT"; case BT_CONNECT2: return "BT_CONNECT2"; case BT_CONFIG: return "BT_CONFIG"; case BT_DISCONN: return "BT_DISCONN"; case BT_CLOSED: return "BT_CLOSED"; } return "invalid state"; } /* BD Address */ typedef struct { __u8 b[6]; } __packed bdaddr_t; /* BD Address type */ #define BDADDR_BREDR 0x00 #define BDADDR_LE_PUBLIC 0x01 #define BDADDR_LE_RANDOM 0x02 static inline bool bdaddr_type_is_valid(u8 type) { switch (type) { case BDADDR_BREDR: case BDADDR_LE_PUBLIC: case BDADDR_LE_RANDOM: return true; } return false; } static inline bool bdaddr_type_is_le(u8 type) { switch (type) { case BDADDR_LE_PUBLIC: case BDADDR_LE_RANDOM: return true; } return false; } #define BDADDR_ANY (&(bdaddr_t) {{0, 0, 0, 0, 0, 0}}) #define BDADDR_NONE (&(bdaddr_t) {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff}}) /* Copy, swap, convert BD Address */ static inline int bacmp(const bdaddr_t *ba1, const bdaddr_t *ba2) { return memcmp(ba1, ba2, sizeof(bdaddr_t)); } static inline void bacpy(bdaddr_t *dst, const bdaddr_t *src) { memcpy(dst, src, sizeof(bdaddr_t)); } void baswap(bdaddr_t *dst, const bdaddr_t *src); /* Common socket structures and functions */ #define bt_sk(__sk) ((struct bt_sock *) __sk) struct bt_sock { struct sock sk; struct list_head accept_q; struct sock *parent; unsigned long flags; void (*skb_msg_name)(struct sk_buff *, void *, int *); void (*skb_put_cmsg)(struct sk_buff *, struct msghdr *, struct sock *); }; enum { BT_SK_DEFER_SETUP, BT_SK_SUSPEND, }; struct bt_sock_list { struct hlist_head head; rwlock_t lock; #ifdef CONFIG_PROC_FS int (* custom_seq_show)(struct seq_file *, void *); #endif }; int bt_sock_register(int proto, const struct net_proto_family *ops); void bt_sock_unregister(int proto); void bt_sock_link(struct bt_sock_list *l, struct sock *s); void bt_sock_unlink(struct bt_sock_list *l, struct sock *s); int bt_sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags); int bt_sock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, int flags); __poll_t bt_sock_poll(struct file *file, struct socket *sock, poll_table *wait); int bt_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg); int bt_sock_wait_state(struct sock *sk, int state, unsigned long timeo); int bt_sock_wait_ready(struct sock *sk, unsigned long flags); void bt_accept_enqueue(struct sock *parent, struct sock *sk, bool bh); void bt_accept_unlink(struct sock *sk); struct sock *bt_accept_dequeue(struct sock *parent, struct socket *newsock); /* Skb helpers */ struct l2cap_ctrl { u8 sframe:1, poll:1, final:1, fcs:1, sar:2, super:2; u16 reqseq; u16 txseq; u8 retries; __le16 psm; bdaddr_t bdaddr; struct l2cap_chan *chan; }; struct sco_ctrl { u8 pkt_status; }; struct hci_dev; typedef void (*hci_req_complete_t)(struct hci_dev *hdev, u8 status, u16 opcode); typedef void (*hci_req_complete_skb_t)(struct hci_dev *hdev, u8 status, u16 opcode, struct sk_buff *skb); #define HCI_REQ_START BIT(0) #define HCI_REQ_SKB BIT(1) struct hci_ctrl { u16 opcode; u8 req_flags; u8 req_event; union { hci_req_complete_t req_complete; hci_req_complete_skb_t req_complete_skb; }; }; struct bt_skb_cb { u8 pkt_type; u8 force_active; u16 expect; u8 incoming:1; union { struct l2cap_ctrl l2cap; struct sco_ctrl sco; struct hci_ctrl hci; }; }; #define bt_cb(skb) ((struct bt_skb_cb *)((skb)->cb)) #define hci_skb_pkt_type(skb) bt_cb((skb))->pkt_type #define hci_skb_expect(skb) bt_cb((skb))->expect #define hci_skb_opcode(skb) bt_cb((skb))->hci.opcode static inline struct sk_buff *bt_skb_alloc(unsigned int len, gfp_t how) { struct sk_buff *skb; skb = alloc_skb(len + BT_SKB_RESERVE, how); if (skb) skb_reserve(skb, BT_SKB_RESERVE); return skb; } static inline struct sk_buff *bt_skb_send_alloc(struct sock *sk, unsigned long len, int nb, int *err) { struct sk_buff *skb; skb = sock_alloc_send_skb(sk, len + BT_SKB_RESERVE, nb, err); if (skb) skb_reserve(skb, BT_SKB_RESERVE); if (!skb && *err) return NULL; *err = sock_error(sk); if (*err) goto out; if (sk->sk_shutdown) { *err = -ECONNRESET; goto out; } return skb; out: kfree_skb(skb); return NULL; } /* Shall not be called with lock_sock held */ static inline struct sk_buff *bt_skb_sendmsg(struct sock *sk, struct msghdr *msg, size_t len, size_t mtu, size_t headroom, size_t tailroom) { struct sk_buff *skb; size_t size = min_t(size_t, len, mtu); int err; skb = bt_skb_send_alloc(sk, size + headroom + tailroom, msg->msg_flags & MSG_DONTWAIT, &err); if (!skb) return ERR_PTR(err); skb_reserve(skb, headroom); skb_tailroom_reserve(skb, mtu, tailroom); if (!copy_from_iter_full(skb_put(skb, size), size, &msg->msg_iter)) { kfree_skb(skb); return ERR_PTR(-EFAULT); } skb->priority = sk->sk_priority; return skb; } /* Similar to bt_skb_sendmsg but can split the msg into multiple fragments * accourding to the MTU. */ static inline struct sk_buff *bt_skb_sendmmsg(struct sock *sk, struct msghdr *msg, size_t len, size_t mtu, size_t headroom, size_t tailroom) { struct sk_buff *skb, **frag; skb = bt_skb_sendmsg(sk, msg, len, mtu, headroom, tailroom); if (IS_ERR_OR_NULL(skb)) return skb; len -= skb->len; if (!len) return skb; /* Add remaining data over MTU as continuation fragments */ frag = &skb_shinfo(skb)->frag_list; while (len) { struct sk_buff *tmp; tmp = bt_skb_sendmsg(sk, msg, len, mtu, headroom, tailroom); if (IS_ERR(tmp)) { return skb; } len -= tmp->len; *frag = tmp; frag = &(*frag)->next; } return skb; } int bt_to_errno(u16 code); void hci_sock_set_flag(struct sock *sk, int nr); void hci_sock_clear_flag(struct sock *sk, int nr); int hci_sock_test_flag(struct sock *sk, int nr); unsigned short hci_sock_get_channel(struct sock *sk); u32 hci_sock_get_cookie(struct sock *sk); int hci_sock_init(void); void hci_sock_cleanup(void); int bt_sysfs_init(void); void bt_sysfs_cleanup(void); int bt_procfs_init(struct net *net, const char *name, struct bt_sock_list *sk_list, int (*seq_show)(struct seq_file *, void *)); void bt_procfs_cleanup(struct net *net, const char *name); extern struct dentry *bt_debugfs; int l2cap_init(void); void l2cap_exit(void); #if IS_ENABLED(CONFIG_BT_BREDR) int sco_init(void); void sco_exit(void); #else static inline int sco_init(void) { return 0; } static inline void sco_exit(void) { } #endif int mgmt_init(void); void mgmt_exit(void); void bt_sock_reclassify_lock(struct sock *sk, int proto); #endif /* __BLUETOOTH_H */ |
40 40 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Wireless configuration interface internals. * * Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net> * Copyright (C) 2018-2021 Intel Corporation */ #ifndef __NET_WIRELESS_CORE_H #define __NET_WIRELESS_CORE_H #include <linux/list.h> #include <linux/netdevice.h> #include <linux/rbtree.h> #include <linux/debugfs.h> #include <linux/rfkill.h> #include <linux/workqueue.h> #include <linux/rtnetlink.h> #include <net/genetlink.h> #include <net/cfg80211.h> #include "reg.h" #define WIPHY_IDX_INVALID -1 struct cfg80211_registered_device { const struct cfg80211_ops *ops; struct list_head list; /* rfkill support */ struct rfkill_ops rfkill_ops; struct work_struct rfkill_block; /* ISO / IEC 3166 alpha2 for which this device is receiving * country IEs on, this can help disregard country IEs from APs * on the same alpha2 quickly. The alpha2 may differ from * cfg80211_regdomain's alpha2 when an intersection has occurred. * If the AP is reconfigured this can also be used to tell us if * the country on the country IE changed. */ char country_ie_alpha2[2]; /* * the driver requests the regulatory core to set this regulatory * domain as the wiphy's. Only used for %REGULATORY_WIPHY_SELF_MANAGED * devices using the regulatory_set_wiphy_regd() API */ const struct ieee80211_regdomain *requested_regd; /* If a Country IE has been received this tells us the environment * which its telling us its in. This defaults to ENVIRON_ANY */ enum environment_cap env; /* wiphy index, internal only */ int wiphy_idx; /* protected by RTNL */ int devlist_generation, wdev_id; int opencount; wait_queue_head_t dev_wait; struct list_head beacon_registrations; spinlock_t beacon_registrations_lock; /* protected by RTNL only */ int num_running_ifaces; int num_running_monitor_ifaces; u64 cookie_counter; /* BSSes/scanning */ spinlock_t bss_lock; struct list_head bss_list; struct rb_root bss_tree; u32 bss_generation; u32 bss_entries; struct cfg80211_scan_request *scan_req; /* protected by RTNL */ struct cfg80211_scan_request *int_scan_req; struct sk_buff *scan_msg; struct list_head sched_scan_req_list; time64_t suspend_at; struct work_struct scan_done_wk; struct genl_info *cur_cmd_info; struct work_struct conn_work; struct work_struct event_work; struct delayed_work dfs_update_channels_wk; /* netlink port which started critical protocol (0 means not started) */ u32 crit_proto_nlportid; struct cfg80211_coalesce *coalesce; struct work_struct destroy_work; struct work_struct sched_scan_stop_wk; struct work_struct sched_scan_res_wk; struct cfg80211_chan_def radar_chandef; struct work_struct propagate_radar_detect_wk; struct cfg80211_chan_def cac_done_chandef; struct work_struct propagate_cac_done_wk; struct work_struct mgmt_registrations_update_wk; /* lock for all wdev lists */ spinlock_t mgmt_registrations_lock; /* must be last because of the way we do wiphy_priv(), * and it should at least be aligned to NETDEV_ALIGN */ struct wiphy wiphy __aligned(NETDEV_ALIGN); }; static inline struct cfg80211_registered_device *wiphy_to_rdev(struct wiphy *wiphy) { BUG_ON(!wiphy); return container_of(wiphy, struct cfg80211_registered_device, wiphy); } static inline void cfg80211_rdev_free_wowlan(struct cfg80211_registered_device *rdev) { #ifdef CONFIG_PM int i; if (!rdev->wiphy.wowlan_config) return; for (i = 0; i < rdev->wiphy.wowlan_config->n_patterns; i++) kfree(rdev->wiphy.wowlan_config->patterns[i].mask); kfree(rdev->wiphy.wowlan_config->patterns); if (rdev->wiphy.wowlan_config->tcp && rdev->wiphy.wowlan_config->tcp->sock) sock_release(rdev->wiphy.wowlan_config->tcp->sock); kfree(rdev->wiphy.wowlan_config->tcp); kfree(rdev->wiphy.wowlan_config->nd_config); kfree(rdev->wiphy.wowlan_config); #endif } static inline u64 cfg80211_assign_cookie(struct cfg80211_registered_device *rdev) { u64 r = ++rdev->cookie_counter; if (WARN_ON(r == 0)) r = ++rdev->cookie_counter; return r; } extern struct workqueue_struct *cfg80211_wq; extern struct list_head cfg80211_rdev_list; extern int cfg80211_rdev_list_generation; struct cfg80211_internal_bss { struct list_head list; struct list_head hidden_list; struct rb_node rbn; u64 ts_boottime; unsigned long ts; unsigned long refcount; atomic_t hold; /* time at the start of the reception of the first octet of the * timestamp field of the last beacon/probe received for this BSS. * The time is the TSF of the BSS specified by %parent_bssid. */ u64 parent_tsf; /* the BSS according to which %parent_tsf is set. This is set to * the BSS that the interface that requested the scan was connected to * when the beacon/probe was received. */ u8 parent_bssid[ETH_ALEN] __aligned(2); /* must be last because of priv member */ struct cfg80211_bss pub; }; static inline struct cfg80211_internal_bss *bss_from_pub(struct cfg80211_bss *pub) { return container_of(pub, struct cfg80211_internal_bss, pub); } static inline void cfg80211_hold_bss(struct cfg80211_internal_bss *bss) { atomic_inc(&bss->hold); if (bss->pub.transmitted_bss) { bss = container_of(bss->pub.transmitted_bss, struct cfg80211_internal_bss, pub); atomic_inc(&bss->hold); } } static inline void cfg80211_unhold_bss(struct cfg80211_internal_bss *bss) { int r = atomic_dec_return(&bss->hold); WARN_ON(r < 0); if (bss->pub.transmitted_bss) { bss = container_of(bss->pub.transmitted_bss, struct cfg80211_internal_bss, pub); r = atomic_dec_return(&bss->hold); WARN_ON(r < 0); } } struct cfg80211_registered_device *cfg80211_rdev_by_wiphy_idx(int wiphy_idx); int get_wiphy_idx(struct wiphy *wiphy); struct wiphy *wiphy_idx_to_wiphy(int wiphy_idx); int cfg80211_switch_netns(struct cfg80211_registered_device *rdev, struct net *net); void cfg80211_init_wdev(struct wireless_dev *wdev); void cfg80211_register_wdev(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); static inline void wdev_lock(struct wireless_dev *wdev) __acquires(wdev) { mutex_lock(&wdev->mtx); __acquire(wdev->mtx); } static inline void wdev_unlock(struct wireless_dev *wdev) __releases(wdev) { __release(wdev->mtx); mutex_unlock(&wdev->mtx); } #define ASSERT_WDEV_LOCK(wdev) lockdep_assert_held(&(wdev)->mtx) static inline bool cfg80211_has_monitors_only(struct cfg80211_registered_device *rdev) { lockdep_assert_held(&rdev->wiphy.mtx); return rdev->num_running_ifaces == rdev->num_running_monitor_ifaces && rdev->num_running_ifaces > 0; } enum cfg80211_event_type { EVENT_CONNECT_RESULT, EVENT_ROAMED, EVENT_DISCONNECTED, EVENT_IBSS_JOINED, EVENT_STOPPED, EVENT_PORT_AUTHORIZED, }; struct cfg80211_event { struct list_head list; enum cfg80211_event_type type; union { struct cfg80211_connect_resp_params cr; struct cfg80211_roam_info rm; struct { const u8 *ie; size_t ie_len; u16 reason; bool locally_generated; } dc; struct { u8 bssid[ETH_ALEN]; struct ieee80211_channel *channel; } ij; struct { u8 bssid[ETH_ALEN]; } pa; }; }; struct cfg80211_cached_keys { struct key_params params[CFG80211_MAX_WEP_KEYS]; u8 data[CFG80211_MAX_WEP_KEYS][WLAN_KEY_LEN_WEP104]; int def; }; enum cfg80211_chan_mode { CHAN_MODE_UNDEFINED, CHAN_MODE_SHARED, CHAN_MODE_EXCLUSIVE, }; struct cfg80211_beacon_registration { struct list_head list; u32 nlportid; }; struct cfg80211_cqm_config { u32 rssi_hyst; s32 last_rssi_event_value; int n_rssi_thresholds; s32 rssi_thresholds[]; }; void cfg80211_destroy_ifaces(struct cfg80211_registered_device *rdev); /* free object */ void cfg80211_dev_free(struct cfg80211_registered_device *rdev); int cfg80211_dev_rename(struct cfg80211_registered_device *rdev, char *newname); void ieee80211_set_bitrate_flags(struct wiphy *wiphy); void cfg80211_bss_expire(struct cfg80211_registered_device *rdev); void cfg80211_bss_age(struct cfg80211_registered_device *rdev, unsigned long age_secs); void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, struct ieee80211_channel *channel); /* IBSS */ int __cfg80211_join_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_ibss_params *params, struct cfg80211_cached_keys *connkeys); void cfg80211_clear_ibss(struct net_device *dev, bool nowext); int __cfg80211_leave_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, bool nowext); int cfg80211_leave_ibss(struct cfg80211_registered_device *rdev, struct net_device *dev, bool nowext); void __cfg80211_ibss_joined(struct net_device *dev, const u8 *bssid, struct ieee80211_channel *channel); int cfg80211_ibss_wext_join(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); /* mesh */ extern const struct mesh_config default_mesh_config; extern const struct mesh_setup default_mesh_setup; int __cfg80211_join_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev, struct mesh_setup *setup, const struct mesh_config *conf); int __cfg80211_leave_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_leave_mesh(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_set_mesh_channel(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_chan_def *chandef); /* OCB */ int __cfg80211_join_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ocb_setup *setup); int cfg80211_join_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ocb_setup *setup); int __cfg80211_leave_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_leave_ocb(struct cfg80211_registered_device *rdev, struct net_device *dev); /* AP */ int __cfg80211_stop_ap(struct cfg80211_registered_device *rdev, struct net_device *dev, bool notify); int cfg80211_stop_ap(struct cfg80211_registered_device *rdev, struct net_device *dev, bool notify); /* MLME */ int cfg80211_mlme_auth(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_channel *chan, enum nl80211_auth_type auth_type, const u8 *bssid, const u8 *ssid, int ssid_len, const u8 *ie, int ie_len, const u8 *key, int key_len, int key_idx, const u8 *auth_data, int auth_data_len); int cfg80211_mlme_assoc(struct cfg80211_registered_device *rdev, struct net_device *dev, struct ieee80211_channel *chan, const u8 *bssid, const u8 *ssid, int ssid_len, struct cfg80211_assoc_request *req); int cfg80211_mlme_deauth(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *bssid, const u8 *ie, int ie_len, u16 reason, bool local_state_change); int cfg80211_mlme_disassoc(struct cfg80211_registered_device *rdev, struct net_device *dev, const u8 *bssid, const u8 *ie, int ie_len, u16 reason, bool local_state_change); void cfg80211_mlme_down(struct cfg80211_registered_device *rdev, struct net_device *dev); int cfg80211_mlme_register_mgmt(struct wireless_dev *wdev, u32 snd_pid, u16 frame_type, const u8 *match_data, int match_len, bool multicast_rx, struct netlink_ext_ack *extack); void cfg80211_mgmt_registrations_update_wk(struct work_struct *wk); void cfg80211_mlme_unregister_socket(struct wireless_dev *wdev, u32 nlpid); void cfg80211_mlme_purge_registrations(struct wireless_dev *wdev); int cfg80211_mlme_mgmt_tx(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie); void cfg80211_oper_and_ht_capa(struct ieee80211_ht_cap *ht_capa, const struct ieee80211_ht_cap *ht_capa_mask); void cfg80211_oper_and_vht_capa(struct ieee80211_vht_cap *vht_capa, const struct ieee80211_vht_cap *vht_capa_mask); /* SME events */ int cfg80211_connect(struct cfg80211_registered_device *rdev, struct net_device *dev, struct cfg80211_connect_params *connect, struct cfg80211_cached_keys *connkeys, const u8 *prev_bssid); void __cfg80211_connect_result(struct net_device *dev, struct cfg80211_connect_resp_params *params, bool wextev); void __cfg80211_disconnected(struct net_device *dev, const u8 *ie, size_t ie_len, u16 reason, bool from_ap); int cfg80211_disconnect(struct cfg80211_registered_device *rdev, struct net_device *dev, u16 reason, bool wextev); void __cfg80211_roamed(struct wireless_dev *wdev, struct cfg80211_roam_info *info); void __cfg80211_port_authorized(struct wireless_dev *wdev, const u8 *bssid); int cfg80211_mgd_wext_connect(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_autodisconnect_wk(struct work_struct *work); /* SME implementation */ void cfg80211_conn_work(struct work_struct *work); void cfg80211_sme_scan_done(struct net_device *dev); bool cfg80211_sme_rx_assoc_resp(struct wireless_dev *wdev, u16 status); void cfg80211_sme_rx_auth(struct wireless_dev *wdev, const u8 *buf, size_t len); void cfg80211_sme_disassoc(struct wireless_dev *wdev); void cfg80211_sme_deauth(struct wireless_dev *wdev); void cfg80211_sme_auth_timeout(struct wireless_dev *wdev); void cfg80211_sme_assoc_timeout(struct wireless_dev *wdev); void cfg80211_sme_abandon_assoc(struct wireless_dev *wdev); /* internal helpers */ bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher); bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, int key_idx, bool pairwise); int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, struct key_params *params, int key_idx, bool pairwise, const u8 *mac_addr); void __cfg80211_scan_done(struct work_struct *wk); void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, bool send_message); void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, struct cfg80211_sched_scan_request *req); int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, bool want_multi); void cfg80211_sched_scan_results_wk(struct work_struct *work); int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, struct cfg80211_sched_scan_request *req, bool driver_initiated); int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, u64 reqid, bool driver_initiated); void cfg80211_upload_connect_keys(struct wireless_dev *wdev); int cfg80211_change_iface(struct cfg80211_registered_device *rdev, struct net_device *dev, enum nl80211_iftype ntype, struct vif_params *params); void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev); void cfg80211_process_wdev_events(struct wireless_dev *wdev); bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, u32 center_freq_khz, u32 bw_khz); int cfg80211_scan(struct cfg80211_registered_device *rdev); extern struct work_struct cfg80211_disconnect_work; /** * cfg80211_chandef_dfs_usable - checks if chandef is DFS usable * @wiphy: the wiphy to validate against * @chandef: the channel definition to check * * Checks if chandef is usable and we can/need start CAC on such channel. * * Return: true if all channels available and at least * one channel requires CAC (NL80211_DFS_USABLE) */ bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef); void cfg80211_set_dfs_state(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef, enum nl80211_dfs_state dfs_state); void cfg80211_dfs_channels_update_work(struct work_struct *work); unsigned int cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy, const struct cfg80211_chan_def *chandef); void cfg80211_sched_dfs_chan_update(struct cfg80211_registered_device *rdev); bool cfg80211_any_wiphy_oper_chan(struct wiphy *wiphy, struct ieee80211_channel *chan); bool cfg80211_beaconing_iface_active(struct wireless_dev *wdev); bool cfg80211_is_sub_chan(struct cfg80211_chan_def *chandef, struct ieee80211_channel *chan); static inline unsigned int elapsed_jiffies_msecs(unsigned long start) { unsigned long end = jiffies; if (end >= start) return jiffies_to_msecs(end - start); return jiffies_to_msecs(end + (ULONG_MAX - start) + 1); } void cfg80211_get_chan_state(struct wireless_dev *wdev, struct ieee80211_channel **chan, enum cfg80211_chan_mode *chanmode, u8 *radar_detect); int cfg80211_set_monitor_channel(struct cfg80211_registered_device *rdev, struct cfg80211_chan_def *chandef); int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, const u8 *rates, unsigned int n_rates, u32 *mask); int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, enum nl80211_iftype iftype, u32 beacon_int); void cfg80211_update_iface_num(struct cfg80211_registered_device *rdev, enum nl80211_iftype iftype, int num); void __cfg80211_leave(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_leave(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_stop_p2p_device(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); void cfg80211_stop_nan(struct cfg80211_registered_device *rdev, struct wireless_dev *wdev); struct cfg80211_internal_bss * cfg80211_bss_update(struct cfg80211_registered_device *rdev, struct cfg80211_internal_bss *tmp, bool signal_valid, unsigned long ts); #ifdef CONFIG_CFG80211_DEVELOPER_WARNINGS #define CFG80211_DEV_WARN_ON(cond) WARN_ON(cond) #else /* * Trick to enable using it as a condition, * and also not give a warning when it's * not used that way. */ #define CFG80211_DEV_WARN_ON(cond) ({bool __r = (cond); __r; }) #endif void cfg80211_cqm_config_free(struct wireless_dev *wdev); void cfg80211_release_pmsr(struct wireless_dev *wdev, u32 portid); void cfg80211_pmsr_wdev_down(struct wireless_dev *wdev); void cfg80211_pmsr_free_wk(struct work_struct *work); #endif /* __NET_WIRELESS_CORE_H */ |
7 9751 46 250 250 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 | /* SPDX-License-Identifier: GPL-2.0 */ #undef TRACE_SYSTEM #define TRACE_SYSTEM x86_fpu #if !defined(_TRACE_FPU_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_FPU_H #include <linux/tracepoint.h> DECLARE_EVENT_CLASS(x86_fpu, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu), TP_STRUCT__entry( __field(struct fpu *, fpu) __field(bool, load_fpu) __field(u64, xfeatures) __field(u64, xcomp_bv) ), TP_fast_assign( __entry->fpu = fpu; __entry->load_fpu = test_thread_flag(TIF_NEED_FPU_LOAD); if (boot_cpu_has(X86_FEATURE_OSXSAVE)) { __entry->xfeatures = fpu->state.xsave.header.xfeatures; __entry->xcomp_bv = fpu->state.xsave.header.xcomp_bv; } ), TP_printk("x86/fpu: %p load: %d xfeatures: %llx xcomp_bv: %llx", __entry->fpu, __entry->load_fpu, __entry->xfeatures, __entry->xcomp_bv ) ); DEFINE_EVENT(x86_fpu, x86_fpu_before_save, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_after_save, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_before_restore, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_after_restore, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_regs_activated, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_regs_deactivated, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_init_state, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_dropped, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_copy_src, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_copy_dst, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); DEFINE_EVENT(x86_fpu, x86_fpu_xstate_check_failed, TP_PROTO(struct fpu *fpu), TP_ARGS(fpu) ); #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH asm/trace/ #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_FILE fpu #endif /* _TRACE_FPU_H */ /* This part must be outside protection */ #include <trace/define_trace.h> |
6 6 7 3 1 2 8 1 7 7 7 7 7 7 11 11 5 6 5 6 6 5 1 1 2 2 2 11 1 2 9 4 5 5 5 5 3 5 1 1 6 6 6 6 6 6 6 6 15 15 8 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) ST-Ericsson AB 2010 * Author: Sjur Brendeland */ #define pr_fmt(fmt) KBUILD_MODNAME ":%s(): " fmt, __func__ #include <linux/fs.h> #include <linux/init.h> #include <linux/module.h> #include <linux/sched/signal.h> #include <linux/spinlock.h> #include <linux/mutex.h> #include <linux/list.h> #include <linux/wait.h> #include <linux/poll.h> #include <linux/tcp.h> #include <linux/uaccess.h> #include <linux/debugfs.h> #include <linux/caif/caif_socket.h> #include <linux/pkt_sched.h> #include <net/sock.h> #include <net/tcp_states.h> #include <net/caif/caif_layer.h> #include <net/caif/caif_dev.h> #include <net/caif/cfpkt.h> MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(AF_CAIF); /* * CAIF state is re-using the TCP socket states. * caif_states stored in sk_state reflect the state as reported by * the CAIF stack, while sk_socket->state is the state of the socket. */ enum caif_states { CAIF_CONNECTED = TCP_ESTABLISHED, CAIF_CONNECTING = TCP_SYN_SENT, CAIF_DISCONNECTED = TCP_CLOSE }; #define TX_FLOW_ON_BIT 1 #define RX_FLOW_ON_BIT 2 struct caifsock { struct sock sk; /* must be first member */ struct cflayer layer; u32 flow_state; struct caif_connect_request conn_req; struct mutex readlock; struct dentry *debugfs_socket_dir; int headroom, tailroom, maxframe; }; static int rx_flow_is_on(struct caifsock *cf_sk) { return test_bit(RX_FLOW_ON_BIT, (void *) &cf_sk->flow_state); } static int tx_flow_is_on(struct caifsock *cf_sk) { return test_bit(TX_FLOW_ON_BIT, (void *) &cf_sk->flow_state); } static void set_rx_flow_off(struct caifsock *cf_sk) { clear_bit(RX_FLOW_ON_BIT, (void *) &cf_sk->flow_state); } static void set_rx_flow_on(struct caifsock *cf_sk) { set_bit(RX_FLOW_ON_BIT, (void *) &cf_sk->flow_state); } static void set_tx_flow_off(struct caifsock *cf_sk) { clear_bit(TX_FLOW_ON_BIT, (void *) &cf_sk->flow_state); } static void set_tx_flow_on(struct caifsock *cf_sk) { set_bit(TX_FLOW_ON_BIT, (void *) &cf_sk->flow_state); } static void caif_read_lock(struct sock *sk) { struct caifsock *cf_sk; cf_sk = container_of(sk, struct caifsock, sk); mutex_lock(&cf_sk->readlock); } static void caif_read_unlock(struct sock *sk) { struct caifsock *cf_sk; cf_sk = container_of(sk, struct caifsock, sk); mutex_unlock(&cf_sk->readlock); } static int sk_rcvbuf_lowwater(struct caifsock *cf_sk) { /* A quarter of full buffer is used a low water mark */ return cf_sk->sk.sk_rcvbuf / 4; } static void caif_flow_ctrl(struct sock *sk, int mode) { struct caifsock *cf_sk; cf_sk = container_of(sk, struct caifsock, sk); if (cf_sk->layer.dn && cf_sk->layer.dn->modemcmd) cf_sk->layer.dn->modemcmd(cf_sk->layer.dn, mode); } /* * Copied from sock.c:sock_queue_rcv_skb(), but changed so packets are * not dropped, but CAIF is sending flow off instead. */ static void caif_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) { int err; unsigned long flags; struct sk_buff_head *list = &sk->sk_receive_queue; struct caifsock *cf_sk = container_of(sk, struct caifsock, sk); bool queued = false; if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= (unsigned int)sk->sk_rcvbuf && rx_flow_is_on(cf_sk)) { net_dbg_ratelimited("sending flow OFF (queue len = %d %d)\n", atomic_read(&cf_sk->sk.sk_rmem_alloc), sk_rcvbuf_lowwater(cf_sk)); set_rx_flow_off(cf_sk); caif_flow_ctrl(sk, CAIF_MODEMCMD_FLOW_OFF_REQ); } err = sk_filter(sk, skb); if (err) goto out; if (!sk_rmem_schedule(sk, skb, skb->truesize) && rx_flow_is_on(cf_sk)) { set_rx_flow_off(cf_sk); net_dbg_ratelimited("sending flow OFF due to rmem_schedule\n"); caif_flow_ctrl(sk, CAIF_MODEMCMD_FLOW_OFF_REQ); } skb->dev = NULL; skb_set_owner_r(skb, sk); spin_lock_irqsave(&list->lock, flags); queued = !sock_flag(sk, SOCK_DEAD); if (queued) __skb_queue_tail(list, skb); spin_unlock_irqrestore(&list->lock, flags); out: if (queued) sk->sk_data_ready(sk); else kfree_skb(skb); } /* Packet Receive Callback function called from CAIF Stack */ static int caif_sktrecv_cb(struct cflayer *layr, struct cfpkt *pkt) { struct caifsock *cf_sk; struct sk_buff *skb; cf_sk = container_of(layr, struct caifsock, layer); skb = cfpkt_tonative(pkt); if (unlikely(cf_sk->sk.sk_state != CAIF_CONNECTED)) { kfree_skb(skb); return 0; } caif_queue_rcv_skb(&cf_sk->sk, skb); return 0; } static void cfsk_hold(struct cflayer *layr) { struct caifsock *cf_sk = container_of(layr, struct caifsock, layer); sock_hold(&cf_sk->sk); } static void cfsk_put(struct cflayer *layr) { struct caifsock *cf_sk = container_of(layr, struct caifsock, layer); sock_put(&cf_sk->sk); } /* Packet Control Callback function called from CAIF */ static void caif_ctrl_cb(struct cflayer *layr, enum caif_ctrlcmd flow, int phyid) { struct caifsock *cf_sk = container_of(layr, struct caifsock, layer); switch (flow) { case CAIF_CTRLCMD_FLOW_ON_IND: /* OK from modem to start sending again */ set_tx_flow_on(cf_sk); cf_sk->sk.sk_state_change(&cf_sk->sk); break; case CAIF_CTRLCMD_FLOW_OFF_IND: /* Modem asks us to shut up */ set_tx_flow_off(cf_sk); cf_sk->sk.sk_state_change(&cf_sk->sk); break; case CAIF_CTRLCMD_INIT_RSP: /* We're now connected */ caif_client_register_refcnt(&cf_sk->layer, cfsk_hold, cfsk_put); cf_sk->sk.sk_state = CAIF_CONNECTED; set_tx_flow_on(cf_sk); cf_sk->sk.sk_shutdown = 0; cf_sk->sk.sk_state_change(&cf_sk->sk); break; case CAIF_CTRLCMD_DEINIT_RSP: /* We're now disconnected */ cf_sk->sk.sk_state = CAIF_DISCONNECTED; cf_sk->sk.sk_state_change(&cf_sk->sk); break; case CAIF_CTRLCMD_INIT_FAIL_RSP: /* Connect request failed */ cf_sk->sk.sk_err = ECONNREFUSED; cf_sk->sk.sk_state = CAIF_DISCONNECTED; cf_sk->sk.sk_shutdown = SHUTDOWN_MASK; /* * Socket "standards" seems to require POLLOUT to * be set at connect failure. */ set_tx_flow_on(cf_sk); cf_sk->sk.sk_state_change(&cf_sk->sk); break; case CAIF_CTRLCMD_REMOTE_SHUTDOWN_IND: /* Modem has closed this connection, or device is down. */ cf_sk->sk.sk_shutdown = SHUTDOWN_MASK; cf_sk->sk.sk_err = ECONNRESET; set_rx_flow_on(cf_sk); sk_error_report(&cf_sk->sk); break; default: pr_debug("Unexpected flow command %d\n", flow); } } static void caif_check_flow_release(struct sock *sk) { struct caifsock *cf_sk = container_of(sk, struct caifsock, sk); if (rx_flow_is_on(cf_sk)) return; if (atomic_read(&sk->sk_rmem_alloc) <= sk_rcvbuf_lowwater(cf_sk)) { set_rx_flow_on(cf_sk); caif_flow_ctrl(sk, CAIF_MODEMCMD_FLOW_ON_REQ); } } /* * Copied from unix_dgram_recvmsg, but removed credit checks, * changed locking, address handling and added MSG_TRUNC. */ static int caif_seqpkt_recvmsg(struct socket *sock, struct msghdr *m, size_t len, int flags) { struct sock *sk = sock->sk; struct sk_buff *skb; int ret; int copylen; ret = -EOPNOTSUPP; if (flags & MSG_OOB) goto read_error; skb = skb_recv_datagram(sk, flags, 0 , &ret); if (!skb) goto read_error; copylen = skb->len; if (len < copylen) { m->msg_flags |= MSG_TRUNC; copylen = len; } ret = skb_copy_datagram_msg(skb, 0, m, copylen); if (ret) goto out_free; ret = (flags & MSG_TRUNC) ? skb->len : copylen; out_free: skb_free_datagram(sk, skb); caif_check_flow_release(sk); return ret; read_error: return ret; } /* Copied from unix_stream_wait_data, identical except for lock call. */ static long caif_stream_data_wait(struct sock *sk, long timeo) { DEFINE_WAIT(wait); lock_sock(sk); for (;;) { prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); if (!skb_queue_empty(&sk->sk_receive_queue) || sk->sk_err || sk->sk_state != CAIF_CONNECTED || sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN) || signal_pending(current) || !timeo) break; sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); release_sock(sk); timeo = schedule_timeout(timeo); lock_sock(sk); if (sock_flag(sk, SOCK_DEAD)) break; sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); } finish_wait(sk_sleep(sk), &wait); release_sock(sk); return timeo; } /* * Copied from unix_stream_recvmsg, but removed credit checks, * changed locking calls, changed address handling. */ static int caif_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; int copied = 0; int target; int err = 0; long timeo; err = -EOPNOTSUPP; if (flags&MSG_OOB) goto out; /* * Lock the socket to prevent queue disordering * while sleeps in memcpy_tomsg */ err = -EAGAIN; if (sk->sk_state == CAIF_CONNECTING) goto out; caif_read_lock(sk); target = sock_rcvlowat(sk, flags&MSG_WAITALL, size); timeo = sock_rcvtimeo(sk, flags&MSG_DONTWAIT); do { int chunk; struct sk_buff *skb; lock_sock(sk); if (sock_flag(sk, SOCK_DEAD)) { err = -ECONNRESET; goto unlock; } skb = skb_dequeue(&sk->sk_receive_queue); caif_check_flow_release(sk); if (skb == NULL) { if (copied >= target) goto unlock; /* * POSIX 1003.1g mandates this order. */ err = sock_error(sk); if (err) goto unlock; err = -ECONNRESET; if (sk->sk_shutdown & RCV_SHUTDOWN) goto unlock; err = -EPIPE; if (sk->sk_state != CAIF_CONNECTED) goto unlock; if (sock_flag(sk, SOCK_DEAD)) goto unlock; release_sock(sk); err = -EAGAIN; if (!timeo) break; caif_read_unlock(sk); timeo = caif_stream_data_wait(sk, timeo); if (signal_pending(current)) { err = sock_intr_errno(timeo); goto out; } caif_read_lock(sk); continue; unlock: release_sock(sk); break; } release_sock(sk); chunk = min_t(unsigned int, skb->len, size); if (memcpy_to_msg(msg, skb->data, chunk)) { skb_queue_head(&sk->sk_receive_queue, skb); if (copied == 0) copied = -EFAULT; break; } copied += chunk; size -= chunk; /* Mark read part of skb as used */ if (!(flags & MSG_PEEK)) { skb_pull(skb, chunk); /* put the skb back if we didn't use it up. */ if (skb->len) { skb_queue_head(&sk->sk_receive_queue, skb); break; } kfree_skb(skb); } else { /* * It is questionable, see note in unix_dgram_recvmsg. */ /* put message back and return */ skb_queue_head(&sk->sk_receive_queue, skb); break; } } while (size); caif_read_unlock(sk); out: return copied ? : err; } /* * Copied from sock.c:sock_wait_for_wmem, but change to wait for * CAIF flow-on and sock_writable. */ static long caif_wait_for_flow_on(struct caifsock *cf_sk, int wait_writeable, long timeo, int *err) { struct sock *sk = &cf_sk->sk; DEFINE_WAIT(wait); for (;;) { *err = 0; if (tx_flow_is_on(cf_sk) && (!wait_writeable || sock_writeable(&cf_sk->sk))) break; *err = -ETIMEDOUT; if (!timeo) break; *err = -ERESTARTSYS; if (signal_pending(current)) break; prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); *err = -ECONNRESET; if (sk->sk_shutdown & SHUTDOWN_MASK) break; *err = -sk->sk_err; if (sk->sk_err) break; *err = -EPIPE; if (cf_sk->sk.sk_state != CAIF_CONNECTED) break; timeo = schedule_timeout(timeo); } finish_wait(sk_sleep(sk), &wait); return timeo; } /* * Transmit a SKB. The device may temporarily request re-transmission * by returning EAGAIN. */ static int transmit_skb(struct sk_buff *skb, struct caifsock *cf_sk, int noblock, long timeo) { struct cfpkt *pkt; pkt = cfpkt_fromnative(CAIF_DIR_OUT, skb); memset(skb->cb, 0, sizeof(struct caif_payload_info)); cfpkt_set_prio(pkt, cf_sk->sk.sk_priority); if (cf_sk->layer.dn == NULL) { kfree_skb(skb); return -EINVAL; } return cf_sk->layer.dn->transmit(cf_sk->layer.dn, pkt); } /* Copied from af_unix:unix_dgram_sendmsg, and adapted to CAIF */ static int caif_seqpkt_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct caifsock *cf_sk = container_of(sk, struct caifsock, sk); int buffer_size; int ret = 0; struct sk_buff *skb = NULL; int noblock; long timeo; caif_assert(cf_sk); ret = sock_error(sk); if (ret) goto err; ret = -EOPNOTSUPP; if (msg->msg_flags&MSG_OOB) goto err; ret = -EOPNOTSUPP; if (msg->msg_namelen) goto err; ret = -EINVAL; if (unlikely(msg->msg_iter.nr_segs == 0) || unlikely(msg->msg_iter.iov->iov_base == NULL)) goto err; noblock = msg->msg_flags & MSG_DONTWAIT; timeo = sock_sndtimeo(sk, noblock); timeo = caif_wait_for_flow_on(container_of(sk, struct caifsock, sk), 1, timeo, &ret); if (ret) goto err; ret = -EPIPE; if (cf_sk->sk.sk_state != CAIF_CONNECTED || sock_flag(sk, SOCK_DEAD) || (sk->sk_shutdown & RCV_SHUTDOWN)) goto err; /* Error if trying to write more than maximum frame size. */ ret = -EMSGSIZE; if (len > cf_sk->maxframe && cf_sk->sk.sk_protocol != CAIFPROTO_RFM) goto err; buffer_size = len + cf_sk->headroom + cf_sk->tailroom; ret = -ENOMEM; skb = sock_alloc_send_skb(sk, buffer_size, noblock, &ret); if (!skb || skb_tailroom(skb) < buffer_size) goto err; skb_reserve(skb, cf_sk->headroom); ret = memcpy_from_msg(skb_put(skb, len), msg, len); if (ret) goto err; ret = transmit_skb(skb, cf_sk, noblock, timeo); if (ret < 0) /* skb is already freed */ return ret; return len; err: kfree_skb(skb); return ret; } /* * Copied from unix_stream_sendmsg and adapted to CAIF: * Changed removed permission handling and added waiting for flow on * and other minor adaptations. */ static int caif_stream_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct caifsock *cf_sk = container_of(sk, struct caifsock, sk); int err, size; struct sk_buff *skb; int sent = 0; long timeo; err = -EOPNOTSUPP; if (unlikely(msg->msg_flags&MSG_OOB)) goto out_err; if (unlikely(msg->msg_namelen)) goto out_err; timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); timeo = caif_wait_for_flow_on(cf_sk, 1, timeo, &err); if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN)) goto pipe_err; while (sent < len) { size = len-sent; if (size > cf_sk->maxframe) size = cf_sk->maxframe; /* If size is more than half of sndbuf, chop up message */ if (size > ((sk->sk_sndbuf >> 1) - 64)) size = (sk->sk_sndbuf >> 1) - 64; if (size > SKB_MAX_ALLOC) size = SKB_MAX_ALLOC; skb = sock_alloc_send_skb(sk, size + cf_sk->headroom + cf_sk->tailroom, msg->msg_flags&MSG_DONTWAIT, &err); if (skb == NULL) goto out_err; skb_reserve(skb, cf_sk->headroom); /* * If you pass two values to the sock_alloc_send_skb * it tries to grab the large buffer with GFP_NOFS * (which can fail easily), and if it fails grab the * fallback size buffer which is under a page and will * succeed. [Alan] */ size = min_t(int, size, skb_tailroom(skb)); err = memcpy_from_msg(skb_put(skb, size), msg, size); if (err) { kfree_skb(skb); goto out_err; } err = transmit_skb(skb, cf_sk, msg->msg_flags&MSG_DONTWAIT, timeo); if (err < 0) /* skb is already freed */ goto pipe_err; sent += size; } return sent; pipe_err: if (sent == 0 && !(msg->msg_flags&MSG_NOSIGNAL)) send_sig(SIGPIPE, current, 0); err = -EPIPE; out_err: return sent ? : err; } static int setsockopt(struct socket *sock, int lvl, int opt, sockptr_t ov, unsigned int ol) { struct sock *sk = sock->sk; struct caifsock *cf_sk = container_of(sk, struct caifsock, sk); int linksel; if (cf_sk->sk.sk_socket->state != SS_UNCONNECTED) return -ENOPROTOOPT; switch (opt) { case CAIFSO_LINK_SELECT: if (ol < sizeof(int)) return -EINVAL; if (lvl != SOL_CAIF) goto bad_sol; if (copy_from_sockptr(&linksel, ov, sizeof(int))) return -EINVAL; lock_sock(&(cf_sk->sk)); cf_sk->conn_req.link_selector = linksel; release_sock(&cf_sk->sk); return 0; case CAIFSO_REQ_PARAM: if (lvl != SOL_CAIF) goto bad_sol; if (cf_sk->sk.sk_protocol != CAIFPROTO_UTIL) return -ENOPROTOOPT; lock_sock(&(cf_sk->sk)); if (ol > sizeof(cf_sk->conn_req.param.data) || copy_from_sockptr(&cf_sk->conn_req.param.data, ov, ol)) { release_sock(&cf_sk->sk); return -EINVAL; } cf_sk->conn_req.param.size = ol; release_sock(&cf_sk->sk); return 0; default: return -ENOPROTOOPT; } return 0; bad_sol: return -ENOPROTOOPT; } /* * caif_connect() - Connect a CAIF Socket * Copied and modified af_irda.c:irda_connect(). * * Note : by consulting "errno", the user space caller may learn the cause * of the failure. Most of them are visible in the function, others may come * from subroutines called and are listed here : * o -EAFNOSUPPORT: bad socket family or type. * o -ESOCKTNOSUPPORT: bad socket type or protocol * o -EINVAL: bad socket address, or CAIF link type * o -ECONNREFUSED: remote end refused the connection. * o -EINPROGRESS: connect request sent but timed out (or non-blocking) * o -EISCONN: already connected. * o -ETIMEDOUT: Connection timed out (send timeout) * o -ENODEV: No link layer to send request * o -ECONNRESET: Received Shutdown indication or lost link layer * o -ENOMEM: Out of memory * * State Strategy: * o sk_state: holds the CAIF_* protocol state, it's updated by * caif_ctrl_cb. * o sock->state: holds the SS_* socket state and is updated by connect and * disconnect. */ static int caif_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags) { struct sock *sk = sock->sk; struct caifsock *cf_sk = container_of(sk, struct caifsock, sk); long timeo; int err; int ifindex, headroom, tailroom; unsigned int mtu; struct net_device *dev; lock_sock(sk); err = -EINVAL; if (addr_len < offsetofend(struct sockaddr, sa_family)) goto out; err = -EAFNOSUPPORT; if (uaddr->sa_family != AF_CAIF) goto out; switch (sock->state) { case SS_UNCONNECTED: /* Normal case, a fresh connect */ caif_assert(sk->sk_state == CAIF_DISCONNECTED); break; case SS_CONNECTING: switch (sk->sk_state) { case CAIF_CONNECTED: sock->state = SS_CONNECTED; err = -EISCONN; goto out; case CAIF_DISCONNECTED: /* Reconnect allowed */ break; case CAIF_CONNECTING: err = -EALREADY; if (flags & O_NONBLOCK) goto out; goto wait_connect; } break; case SS_CONNECTED: caif_assert(sk->sk_state == CAIF_CONNECTED || sk->sk_state == CAIF_DISCONNECTED); if (sk->sk_shutdown & SHUTDOWN_MASK) { /* Allow re-connect after SHUTDOWN_IND */ caif_disconnect_client(sock_net(sk), &cf_sk->layer); caif_free_client(&cf_sk->layer); break; } /* No reconnect on a seqpacket socket */ err = -EISCONN; goto out; case SS_DISCONNECTING: case SS_FREE: caif_assert(1); /*Should never happen */ break; } sk->sk_state = CAIF_DISCONNECTED; sock->state = SS_UNCONNECTED; sk_stream_kill_queues(&cf_sk->sk); err = -EINVAL; if (addr_len != sizeof(struct sockaddr_caif)) goto out; memcpy(&cf_sk->conn_req.sockaddr, uaddr, sizeof(struct sockaddr_caif)); /* Move to connecting socket, start sending Connect Requests */ sock->state = SS_CONNECTING; sk->sk_state = CAIF_CONNECTING; /* Check priority value comming from socket */ /* if priority value is out of range it will be ajusted */ if (cf_sk->sk.sk_priority > CAIF_PRIO_MAX) cf_sk->conn_req.priority = CAIF_PRIO_MAX; else if (cf_sk->sk.sk_priority < CAIF_PRIO_MIN) cf_sk->conn_req.priority = CAIF_PRIO_MIN; else cf_sk->conn_req.priority = cf_sk->sk.sk_priority; /*ifindex = id of the interface.*/ cf_sk->conn_req.ifindex = cf_sk->sk.sk_bound_dev_if; cf_sk->layer.receive = caif_sktrecv_cb; err = caif_connect_client(sock_net(sk), &cf_sk->conn_req, &cf_sk->layer, &ifindex, &headroom, &tailroom); if (err < 0) { cf_sk->sk.sk_socket->state = SS_UNCONNECTED; cf_sk->sk.sk_state = CAIF_DISCONNECTED; goto out; } err = -ENODEV; rcu_read_lock(); dev = dev_get_by_index_rcu(sock_net(sk), ifindex); if (!dev) { rcu_read_unlock(); goto out; } cf_sk->headroom = LL_RESERVED_SPACE_EXTRA(dev, headroom); mtu = dev->mtu; rcu_read_unlock(); cf_sk->tailroom = tailroom; cf_sk->maxframe = mtu - (headroom + tailroom); if (cf_sk->maxframe < 1) { pr_warn("CAIF Interface MTU too small (%d)\n", dev->mtu); err = -ENODEV; goto out; } err = -EINPROGRESS; wait_connect: if (sk->sk_state != CAIF_CONNECTED && (flags & O_NONBLOCK)) goto out; timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); release_sock(sk); err = -ERESTARTSYS; timeo = wait_event_interruptible_timeout(*sk_sleep(sk), sk->sk_state != CAIF_CONNECTING, timeo); lock_sock(sk); if (timeo < 0) goto out; /* -ERESTARTSYS */ err = -ETIMEDOUT; if (timeo == 0 && sk->sk_state != CAIF_CONNECTED) goto out; if (sk->sk_state != CAIF_CONNECTED) { sock->state = SS_UNCONNECTED; err = sock_error(sk); if (!err) err = -ECONNREFUSED; goto out; } sock->state = SS_CONNECTED; err = 0; out: release_sock(sk); return err; } /* * caif_release() - Disconnect a CAIF Socket * Copied and modified af_irda.c:irda_release(). */ static int caif_release(struct socket *sock) { struct sock *sk = sock->sk; struct caifsock *cf_sk = container_of(sk, struct caifsock, sk); if (!sk) return 0; set_tx_flow_off(cf_sk); /* * Ensure that packets are not queued after this point in time. * caif_queue_rcv_skb checks SOCK_DEAD holding the queue lock, * this ensures no packets when sock is dead. */ spin_lock_bh(&sk->sk_receive_queue.lock); sock_set_flag(sk, SOCK_DEAD); spin_unlock_bh(&sk->sk_receive_queue.lock); sock->sk = NULL; WARN_ON(IS_ERR(cf_sk->debugfs_socket_dir)); debugfs_remove_recursive(cf_sk->debugfs_socket_dir); lock_sock(&(cf_sk->sk)); sk->sk_state = CAIF_DISCONNECTED; sk->sk_shutdown = SHUTDOWN_MASK; caif_disconnect_client(sock_net(sk), &cf_sk->layer); cf_sk->sk.sk_socket->state = SS_DISCONNECTING; wake_up_interruptible_poll(sk_sleep(sk), EPOLLERR|EPOLLHUP); sock_orphan(sk); sk_stream_kill_queues(&cf_sk->sk); release_sock(sk); sock_put(sk); return 0; } /* Copied from af_unix.c:unix_poll(), added CAIF tx_flow handling */ static __poll_t caif_poll(struct file *file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; __poll_t mask; struct caifsock *cf_sk = container_of(sk, struct caifsock, sk); sock_poll_wait(file, sock, wait); mask = 0; /* exceptional events? */ if (sk->sk_err) mask |= EPOLLERR; if (sk->sk_shutdown == SHUTDOWN_MASK) mask |= EPOLLHUP; if (sk->sk_shutdown & RCV_SHUTDOWN) mask |= EPOLLRDHUP; /* readable? */ if (!skb_queue_empty_lockless(&sk->sk_receive_queue) || (sk->sk_shutdown & RCV_SHUTDOWN)) mask |= EPOLLIN | EPOLLRDNORM; /* * we set writable also when the other side has shut down the * connection. This prevents stuck sockets. */ if (sock_writeable(sk) && tx_flow_is_on(cf_sk)) mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND; return mask; } static const struct proto_ops caif_seqpacket_ops = { .family = PF_CAIF, .owner = THIS_MODULE, .release = caif_release, .bind = sock_no_bind, .connect = caif_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = sock_no_getname, .poll = caif_poll, .ioctl = sock_no_ioctl, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = setsockopt, .sendmsg = caif_seqpkt_sendmsg, .recvmsg = caif_seqpkt_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static const struct proto_ops caif_stream_ops = { .family = PF_CAIF, .owner = THIS_MODULE, .release = caif_release, .bind = sock_no_bind, .connect = caif_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = sock_no_getname, .poll = caif_poll, .ioctl = sock_no_ioctl, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = setsockopt, .sendmsg = caif_stream_sendmsg, .recvmsg = caif_stream_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; /* This function is called when a socket is finally destroyed. */ static void caif_sock_destructor(struct sock *sk) { struct caifsock *cf_sk = container_of(sk, struct caifsock, sk); caif_assert(!refcount_read(&sk->sk_wmem_alloc)); caif_assert(sk_unhashed(sk)); caif_assert(!sk->sk_socket); if (!sock_flag(sk, SOCK_DEAD)) { pr_debug("Attempt to release alive CAIF socket: %p\n", sk); return; } sk_stream_kill_queues(&cf_sk->sk); WARN_ON(sk->sk_forward_alloc); caif_free_client(&cf_sk->layer); } static int caif_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk = NULL; struct caifsock *cf_sk = NULL; static struct proto prot = {.name = "PF_CAIF", .owner = THIS_MODULE, .obj_size = sizeof(struct caifsock), .useroffset = offsetof(struct caifsock, conn_req.param), .usersize = sizeof_field(struct caifsock, conn_req.param) }; if (!capable(CAP_SYS_ADMIN) && !capable(CAP_NET_ADMIN)) return -EPERM; /* * The sock->type specifies the socket type to use. * The CAIF socket is a packet stream in the sense * that it is packet based. CAIF trusts the reliability * of the link, no resending is implemented. */ if (sock->type == SOCK_SEQPACKET) sock->ops = &caif_seqpacket_ops; else if (sock->type == SOCK_STREAM) sock->ops = &caif_stream_ops; else return -ESOCKTNOSUPPORT; if (protocol < 0 || protocol >= CAIFPROTO_MAX) return -EPROTONOSUPPORT; /* * Set the socket state to unconnected. The socket state * is really not used at all in the net/core or socket.c but the * initialization makes sure that sock->state is not uninitialized. */ sk = sk_alloc(net, PF_CAIF, GFP_KERNEL, &prot, kern); if (!sk) return -ENOMEM; cf_sk = container_of(sk, struct caifsock, sk); /* Store the protocol */ sk->sk_protocol = (unsigned char) protocol; /* Initialize default priority for well-known cases */ switch (protocol) { case CAIFPROTO_AT: sk->sk_priority = TC_PRIO_CONTROL; break; case CAIFPROTO_RFM: sk->sk_priority = TC_PRIO_INTERACTIVE_BULK; break; default: sk->sk_priority = TC_PRIO_BESTEFFORT; } /* * Lock in order to try to stop someone from opening the socket * too early. */ lock_sock(&(cf_sk->sk)); /* Initialize the nozero default sock structure data. */ sock_init_data(sock, sk); sk->sk_destruct = caif_sock_destructor; mutex_init(&cf_sk->readlock); /* single task reading lock */ cf_sk->layer.ctrlcmd = caif_ctrl_cb; cf_sk->sk.sk_socket->state = SS_UNCONNECTED; cf_sk->sk.sk_state = CAIF_DISCONNECTED; set_tx_flow_off(cf_sk); set_rx_flow_on(cf_sk); /* Set default options on configuration */ cf_sk->conn_req.link_selector = CAIF_LINK_LOW_LATENCY; cf_sk->conn_req.protocol = protocol; release_sock(&cf_sk->sk); return 0; } static const struct net_proto_family caif_family_ops = { .family = PF_CAIF, .create = caif_create, .owner = THIS_MODULE, }; static int __init caif_sktinit_module(void) { return sock_register(&caif_family_ops); } static void __exit caif_sktexit_module(void) { sock_unregister(PF_CAIF); } module_init(caif_sktinit_module); module_exit(caif_sktexit_module); |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | /* SPDX-License-Identifier: GPL-2.0 */ /* include/net/dsfield.h - Manipulation of the Differentiated Services field */ /* Written 1998-2000 by Werner Almesberger, EPFL ICA */ #ifndef __NET_DSFIELD_H #define __NET_DSFIELD_H #include <linux/types.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <asm/byteorder.h> static inline __u8 ipv4_get_dsfield(const struct iphdr *iph) { return iph->tos; } static inline __u8 ipv6_get_dsfield(const struct ipv6hdr *ipv6h) { return ntohs(*(__force const __be16 *)ipv6h) >> 4; } static inline void ipv4_change_dsfield(struct iphdr *iph,__u8 mask, __u8 value) { __u32 check = ntohs((__force __be16)iph->check); __u8 dsfield; dsfield = (iph->tos & mask) | value; check += iph->tos; if ((check+1) >> 16) check = (check+1) & 0xffff; check -= dsfield; check += check >> 16; /* adjust carry */ iph->check = (__force __sum16)htons(check); iph->tos = dsfield; } static inline void ipv6_change_dsfield(struct ipv6hdr *ipv6h,__u8 mask, __u8 value) { __be16 *p = (__force __be16 *)ipv6h; *p = (*p & htons((((u16)mask << 4) | 0xf00f))) | htons((u16)value << 4); } #endif |
433 434 434 431 432 430 433 429 434 432 430 434 3 3 3 38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 | // SPDX-License-Identifier: GPL-2.0-only /* * Packet matching code. * * Copyright (C) 1999 Paul `Rusty' Russell & Michael J. Neuling * Copyright (C) 2000-2005 Netfilter Core Team <coreteam@netfilter.org> * Copyright (C) 2006-2010 Patrick McHardy <kaber@trash.net> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/cache.h> #include <linux/capability.h> #include <linux/skbuff.h> #include <linux/kmod.h> #include <linux/vmalloc.h> #include <linux/netdevice.h> #include <linux/module.h> #include <linux/icmp.h> #include <net/ip.h> #include <net/compat.h> #include <linux/uaccess.h> #include <linux/mutex.h> #include <linux/proc_fs.h> #include <linux/err.h> #include <linux/cpumask.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter_ipv4/ip_tables.h> #include <net/netfilter/nf_log.h> #include "../../netfilter/xt_repldata.h" MODULE_LICENSE("GPL"); MODULE_AUTHOR("Netfilter Core Team <coreteam@netfilter.org>"); MODULE_DESCRIPTION("IPv4 packet filter"); MODULE_ALIAS("ipt_icmp"); void *ipt_alloc_initial_table(const struct xt_table *info) { return xt_alloc_initial_table(ipt, IPT); } EXPORT_SYMBOL_GPL(ipt_alloc_initial_table); /* Returns whether matches rule or not. */ /* Performance critical - called for every packet */ static inline bool ip_packet_match(const struct iphdr *ip, const char *indev, const char *outdev, const struct ipt_ip *ipinfo, int isfrag) { unsigned long ret; if (NF_INVF(ipinfo, IPT_INV_SRCIP, (ip->saddr & ipinfo->smsk.s_addr) != ipinfo->src.s_addr) || NF_INVF(ipinfo, IPT_INV_DSTIP, (ip->daddr & ipinfo->dmsk.s_addr) != ipinfo->dst.s_addr)) return false; ret = ifname_compare_aligned(indev, ipinfo->iniface, ipinfo->iniface_mask); if (NF_INVF(ipinfo, IPT_INV_VIA_IN, ret != 0)) return false; ret = ifname_compare_aligned(outdev, ipinfo->outiface, ipinfo->outiface_mask); if (NF_INVF(ipinfo, IPT_INV_VIA_OUT, ret != 0)) return false; /* Check specific protocol */ if (ipinfo->proto && NF_INVF(ipinfo, IPT_INV_PROTO, ip->protocol != ipinfo->proto)) return false; /* If we have a fragment rule but the packet is not a fragment * then we return zero */ if (NF_INVF(ipinfo, IPT_INV_FRAG, (ipinfo->flags & IPT_F_FRAG) && !isfrag)) return false; return true; } static bool ip_checkentry(const struct ipt_ip *ip) { if (ip->flags & ~IPT_F_MASK) return false; if (ip->invflags & ~IPT_INV_MASK) return false; return true; } static unsigned int ipt_error(struct sk_buff *skb, const struct xt_action_param *par) { net_info_ratelimited("error: `%s'\n", (const char *)par->targinfo); return NF_DROP; } /* Performance critical */ static inline struct ipt_entry * get_entry(const void *base, unsigned int offset) { return (struct ipt_entry *)(base + offset); } /* All zeroes == unconditional rule. */ /* Mildly perf critical (only if packet tracing is on) */ static inline bool unconditional(const struct ipt_entry *e) { static const struct ipt_ip uncond; return e->target_offset == sizeof(struct ipt_entry) && memcmp(&e->ip, &uncond, sizeof(uncond)) == 0; } /* for const-correctness */ static inline const struct xt_entry_target * ipt_get_target_c(const struct ipt_entry *e) { return ipt_get_target((struct ipt_entry *)e); } #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) static const char *const hooknames[] = { [NF_INET_PRE_ROUTING] = "PREROUTING", [NF_INET_LOCAL_IN] = "INPUT", [NF_INET_FORWARD] = "FORWARD", [NF_INET_LOCAL_OUT] = "OUTPUT", [NF_INET_POST_ROUTING] = "POSTROUTING", }; enum nf_ip_trace_comments { NF_IP_TRACE_COMMENT_RULE, NF_IP_TRACE_COMMENT_RETURN, NF_IP_TRACE_COMMENT_POLICY, }; static const char *const comments[] = { [NF_IP_TRACE_COMMENT_RULE] = "rule", [NF_IP_TRACE_COMMENT_RETURN] = "return", [NF_IP_TRACE_COMMENT_POLICY] = "policy", }; static const struct nf_loginfo trace_loginfo = { .type = NF_LOG_TYPE_LOG, .u = { .log = { .level = 4, .logflags = NF_LOG_DEFAULT_MASK, }, }, }; /* Mildly perf critical (only if packet tracing is on) */ static inline int get_chainname_rulenum(const struct ipt_entry *s, const struct ipt_entry *e, const char *hookname, const char **chainname, const char **comment, unsigned int *rulenum) { const struct xt_standard_target *t = (void *)ipt_get_target_c(s); if (strcmp(t->target.u.kernel.target->name, XT_ERROR_TARGET) == 0) { /* Head of user chain: ERROR target with chainname */ *chainname = t->target.data; (*rulenum) = 0; } else if (s == e) { (*rulenum)++; if (unconditional(s) && strcmp(t->target.u.kernel.target->name, XT_STANDARD_TARGET) == 0 && t->verdict < 0) { /* Tail of chains: STANDARD target (return/policy) */ *comment = *chainname == hookname ? comments[NF_IP_TRACE_COMMENT_POLICY] : comments[NF_IP_TRACE_COMMENT_RETURN]; } return 1; } else (*rulenum)++; return 0; } static void trace_packet(struct net *net, const struct sk_buff *skb, unsigned int hook, const struct net_device *in, const struct net_device *out, const char *tablename, const struct xt_table_info *private, const struct ipt_entry *e) { const struct ipt_entry *root; const char *hookname, *chainname, *comment; const struct ipt_entry *iter; unsigned int rulenum = 0; root = get_entry(private->entries, private->hook_entry[hook]); hookname = chainname = hooknames[hook]; comment = comments[NF_IP_TRACE_COMMENT_RULE]; xt_entry_foreach(iter, root, private->size - private->hook_entry[hook]) if (get_chainname_rulenum(iter, e, hookname, &chainname, &comment, &rulenum) != 0) break; nf_log_trace(net, AF_INET, hook, skb, in, out, &trace_loginfo, "TRACE: %s:%s:%s:%u ", tablename, chainname, comment, rulenum); } #endif static inline struct ipt_entry *ipt_next_entry(const struct ipt_entry *entry) { return (void *)entry + entry->next_offset; } /* Returns one of the generic firewall policies, like NF_ACCEPT. */ unsigned int ipt_do_table(struct sk_buff *skb, const struct nf_hook_state *state, struct xt_table *table) { unsigned int hook = state->hook; static const char nulldevname[IFNAMSIZ] __attribute__((aligned(sizeof(long)))); const struct iphdr *ip; /* Initializing verdict to NF_DROP keeps gcc happy. */ unsigned int verdict = NF_DROP; const char *indev, *outdev; const void *table_base; struct ipt_entry *e, **jumpstack; unsigned int stackidx, cpu; const struct xt_table_info *private; struct xt_action_param acpar; unsigned int addend; /* Initialization */ stackidx = 0; ip = ip_hdr(skb); indev = state->in ? state->in->name : nulldevname; outdev = state->out ? state->out->name : nulldevname; /* We handle fragments by dealing with the first fragment as * if it was a normal packet. All other fragments are treated * normally, except that they will NEVER match rules that ask * things we don't know, ie. tcp syn flag or ports). If the * rule is also a fragment-specific rule, non-fragments won't * match it. */ acpar.fragoff = ntohs(ip->frag_off) & IP_OFFSET; acpar.thoff = ip_hdrlen(skb); acpar.hotdrop = false; acpar.state = state; WARN_ON(!(table->valid_hooks & (1 << hook))); local_bh_disable(); addend = xt_write_recseq_begin(); private = READ_ONCE(table->private); /* Address dependency. */ cpu = smp_processor_id(); table_base = private->entries; jumpstack = (struct ipt_entry **)private->jumpstack[cpu]; /* Switch to alternate jumpstack if we're being invoked via TEE. * TEE issues XT_CONTINUE verdict on original skb so we must not * clobber the jumpstack. * * For recursion via REJECT or SYNPROXY the stack will be clobbered * but it is no problem since absolute verdict is issued by these. */ if (static_key_false(&xt_tee_enabled)) jumpstack += private->stacksize * __this_cpu_read(nf_skb_duplicated); e = get_entry(table_base, private->hook_entry[hook]); do { const struct xt_entry_target *t; const struct xt_entry_match *ematch; struct xt_counters *counter; WARN_ON(!e); if (!ip_packet_match(ip, indev, outdev, &e->ip, acpar.fragoff)) { no_match: e = ipt_next_entry(e); continue; } xt_ematch_foreach(ematch, e) { acpar.match = ematch->u.kernel.match; acpar.matchinfo = ematch->data; if (!acpar.match->match(skb, &acpar)) goto no_match; } counter = xt_get_this_cpu_counter(&e->counters); ADD_COUNTER(*counter, skb->len, 1); t = ipt_get_target_c(e); WARN_ON(!t->u.kernel.target); #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) /* The packet is traced: log it */ if (unlikely(skb->nf_trace)) trace_packet(state->net, skb, hook, state->in, state->out, table->name, private, e); #endif /* Standard target? */ if (!t->u.kernel.target->target) { int v; v = ((struct xt_standard_target *)t)->verdict; if (v < 0) { /* Pop from stack? */ if (v != XT_RETURN) { verdict = (unsigned int)(-v) - 1; break; } if (stackidx == 0) { e = get_entry(table_base, private->underflow[hook]); } else { e = jumpstack[--stackidx]; e = ipt_next_entry(e); } continue; } if (table_base + v != ipt_next_entry(e) && !(e->ip.flags & IPT_F_GOTO)) { if (unlikely(stackidx >= private->stacksize)) { verdict = NF_DROP; break; } jumpstack[stackidx++] = e; } e = get_entry(table_base, v); continue; } acpar.target = t->u.kernel.target; acpar.targinfo = t->data; verdict = t->u.kernel.target->target(skb, &acpar); if (verdict == XT_CONTINUE) { /* Target might have changed stuff. */ ip = ip_hdr(skb); e = ipt_next_entry(e); } else { /* Verdict */ break; } } while (!acpar.hotdrop); xt_write_recseq_end(addend); local_bh_enable(); if (acpar.hotdrop) return NF_DROP; else return verdict; } /* Figures out from what hook each rule can be called: returns 0 if there are loops. Puts hook bitmask in comefrom. */ static int mark_source_chains(const struct xt_table_info *newinfo, unsigned int valid_hooks, void *entry0, unsigned int *offsets) { unsigned int hook; /* No recursion; use packet counter to save back ptrs (reset to 0 as we leave), and comefrom to save source hook bitmask */ for (hook = 0; hook < NF_INET_NUMHOOKS; hook++) { unsigned int pos = newinfo->hook_entry[hook]; struct ipt_entry *e = entry0 + pos; if (!(valid_hooks & (1 << hook))) continue; /* Set initial back pointer. */ e->counters.pcnt = pos; for (;;) { const struct xt_standard_target *t = (void *)ipt_get_target_c(e); int visited = e->comefrom & (1 << hook); if (e->comefrom & (1 << NF_INET_NUMHOOKS)) return 0; e->comefrom |= ((1 << hook) | (1 << NF_INET_NUMHOOKS)); /* Unconditional return/END. */ if ((unconditional(e) && (strcmp(t->target.u.user.name, XT_STANDARD_TARGET) == 0) && t->verdict < 0) || visited) { unsigned int oldpos, size; /* Return: backtrack through the last big jump. */ do { e->comefrom ^= (1<<NF_INET_NUMHOOKS); oldpos = pos; pos = e->counters.pcnt; e->counters.pcnt = 0; /* We're at the start. */ if (pos == oldpos) goto next; e = entry0 + pos; } while (oldpos == pos + e->next_offset); /* Move along one */ size = e->next_offset; e = entry0 + pos + size; if (pos + size >= newinfo->size) return 0; e->counters.pcnt = pos; pos += size; } else { int newpos = t->verdict; if (strcmp(t->target.u.user.name, XT_STANDARD_TARGET) == 0 && newpos >= 0) { /* This a jump; chase it. */ if (!xt_find_jump_offset(offsets, newpos, newinfo->number)) return 0; } else { /* ... this is a fallthru */ newpos = pos + e->next_offset; if (newpos >= newinfo->size) return 0; } e = entry0 + newpos; e->counters.pcnt = pos; pos = newpos; } } next: ; } return 1; } static void cleanup_match(struct xt_entry_match *m, struct net *net) { struct xt_mtdtor_param par; par.net = net; par.match = m->u.kernel.match; par.matchinfo = m->data; par.family = NFPROTO_IPV4; if (par.match->destroy != NULL) par.match->destroy(&par); module_put(par.match->me); } static int check_match(struct xt_entry_match *m, struct xt_mtchk_param *par) { const struct ipt_ip *ip = par->entryinfo; par->match = m->u.kernel.match; par->matchinfo = m->data; return xt_check_match(par, m->u.match_size - sizeof(*m), ip->proto, ip->invflags & IPT_INV_PROTO); } static int find_check_match(struct xt_entry_match *m, struct xt_mtchk_param *par) { struct xt_match *match; int ret; match = xt_request_find_match(NFPROTO_IPV4, m->u.user.name, m->u.user.revision); if (IS_ERR(match)) return PTR_ERR(match); m->u.kernel.match = match; ret = check_match(m, par); if (ret) goto err; return 0; err: module_put(m->u.kernel.match->me); return ret; } static int check_target(struct ipt_entry *e, struct net *net, const char *name) { struct xt_entry_target *t = ipt_get_target(e); struct xt_tgchk_param par = { .net = net, .table = name, .entryinfo = e, .target = t->u.kernel.target, .targinfo = t->data, .hook_mask = e->comefrom, .family = NFPROTO_IPV4, }; return xt_check_target(&par, t->u.target_size - sizeof(*t), e->ip.proto, e->ip.invflags & IPT_INV_PROTO); } static int find_check_entry(struct ipt_entry *e, struct net *net, const char *name, unsigned int size, struct xt_percpu_counter_alloc_state *alloc_state) { struct xt_entry_target *t; struct xt_target *target; int ret; unsigned int j; struct xt_mtchk_param mtpar; struct xt_entry_match *ematch; if (!xt_percpu_counter_alloc(alloc_state, &e->counters)) return -ENOMEM; j = 0; memset(&mtpar, 0, sizeof(mtpar)); mtpar.net = net; mtpar.table = name; mtpar.entryinfo = &e->ip; mtpar.hook_mask = e->comefrom; mtpar.family = NFPROTO_IPV4; xt_ematch_foreach(ematch, e) { ret = find_check_match(ematch, &mtpar); if (ret != 0) goto cleanup_matches; ++j; } t = ipt_get_target(e); target = xt_request_find_target(NFPROTO_IPV4, t->u.user.name, t->u.user.revision); if (IS_ERR(target)) { ret = PTR_ERR(target); goto cleanup_matches; } t->u.kernel.target = target; ret = check_target(e, net, name); if (ret) goto err; return 0; err: module_put(t->u.kernel.target->me); cleanup_matches: xt_ematch_foreach(ematch, e) { if (j-- == 0) break; cleanup_match(ematch, net); } xt_percpu_counter_free(&e->counters); return ret; } static bool check_underflow(const struct ipt_entry *e) { const struct xt_entry_target *t; unsigned int verdict; if (!unconditional(e)) return false; t = ipt_get_target_c(e); if (strcmp(t->u.user.name, XT_STANDARD_TARGET) != 0) return false; verdict = ((struct xt_standard_target *)t)->verdict; verdict = -verdict - 1; return verdict == NF_DROP || verdict == NF_ACCEPT; } static int check_entry_size_and_hooks(struct ipt_entry *e, struct xt_table_info *newinfo, const unsigned char *base, const unsigned char *limit, const unsigned int *hook_entries, const unsigned int *underflows, unsigned int valid_hooks) { unsigned int h; int err; if ((unsigned long)e % __alignof__(struct ipt_entry) != 0 || (unsigned char *)e + sizeof(struct ipt_entry) >= limit || (unsigned char *)e + e->next_offset > limit) return -EINVAL; if (e->next_offset < sizeof(struct ipt_entry) + sizeof(struct xt_entry_target)) return -EINVAL; if (!ip_checkentry(&e->ip)) return -EINVAL; err = xt_check_entry_offsets(e, e->elems, e->target_offset, e->next_offset); if (err) return err; /* Check hooks & underflows */ for (h = 0; h < NF_INET_NUMHOOKS; h++) { if (!(valid_hooks & (1 << h))) continue; if ((unsigned char *)e - base == hook_entries[h]) newinfo->hook_entry[h] = hook_entries[h]; if ((unsigned char *)e - base == underflows[h]) { if (!check_underflow(e)) return -EINVAL; newinfo->underflow[h] = underflows[h]; } } /* Clear counters and comefrom */ e->counters = ((struct xt_counters) { 0, 0 }); e->comefrom = 0; return 0; } static void cleanup_entry(struct ipt_entry *e, struct net *net) { struct xt_tgdtor_param par; struct xt_entry_target *t; struct xt_entry_match *ematch; /* Cleanup all matches */ xt_ematch_foreach(ematch, e) cleanup_match(ematch, net); t = ipt_get_target(e); par.net = net; par.target = t->u.kernel.target; par.targinfo = t->data; par.family = NFPROTO_IPV4; if (par.target->destroy != NULL) par.target->destroy(&par); module_put(par.target->me); xt_percpu_counter_free(&e->counters); } /* Checks and translates the user-supplied table segment (held in newinfo) */ static int translate_table(struct net *net, struct xt_table_info *newinfo, void *entry0, const struct ipt_replace *repl) { struct xt_percpu_counter_alloc_state alloc_state = { 0 }; struct ipt_entry *iter; unsigned int *offsets; unsigned int i; int ret = 0; newinfo->size = repl->size; newinfo->number = repl->num_entries; /* Init all hooks to impossible value. */ for (i = 0; i < NF_INET_NUMHOOKS; i++) { newinfo->hook_entry[i] = 0xFFFFFFFF; newinfo->underflow[i] = 0xFFFFFFFF; } offsets = xt_alloc_entry_offsets(newinfo->number); if (!offsets) return -ENOMEM; i = 0; /* Walk through entries, checking offsets. */ xt_entry_foreach(iter, entry0, newinfo->size) { ret = check_entry_size_and_hooks(iter, newinfo, entry0, entry0 + repl->size, repl->hook_entry, repl->underflow, repl->valid_hooks); if (ret != 0) goto out_free; if (i < repl->num_entries) offsets[i] = (void *)iter - entry0; ++i; if (strcmp(ipt_get_target(iter)->u.user.name, XT_ERROR_TARGET) == 0) ++newinfo->stacksize; } ret = -EINVAL; if (i != repl->num_entries) goto out_free; ret = xt_check_table_hooks(newinfo, repl->valid_hooks); if (ret) goto out_free; if (!mark_source_chains(newinfo, repl->valid_hooks, entry0, offsets)) { ret = -ELOOP; goto out_free; } kvfree(offsets); /* Finally, each sanity check must pass */ i = 0; xt_entry_foreach(iter, entry0, newinfo->size) { ret = find_check_entry(iter, net, repl->name, repl->size, &alloc_state); if (ret != 0) break; ++i; } if (ret != 0) { xt_entry_foreach(iter, entry0, newinfo->size) { if (i-- == 0) break; cleanup_entry(iter, net); } return ret; } return ret; out_free: kvfree(offsets); return ret; } static void get_counters(const struct xt_table_info *t, struct xt_counters counters[]) { struct ipt_entry *iter; unsigned int cpu; unsigned int i; for_each_possible_cpu(cpu) { seqcount_t *s = &per_cpu(xt_recseq, cpu); i = 0; xt_entry_foreach(iter, t->entries, t->size) { struct xt_counters *tmp; u64 bcnt, pcnt; unsigned int start; tmp = xt_get_per_cpu_counter(&iter->counters, cpu); do { start = read_seqcount_begin(s); bcnt = tmp->bcnt; pcnt = tmp->pcnt; } while (read_seqcount_retry(s, start)); ADD_COUNTER(counters[i], bcnt, pcnt); ++i; /* macro does multi eval of i */ cond_resched(); } } } static void get_old_counters(const struct xt_table_info *t, struct xt_counters counters[]) { struct ipt_entry *iter; unsigned int cpu, i; for_each_possible_cpu(cpu) { i = 0; xt_entry_foreach(iter, t->entries, t->size) { const struct xt_counters *tmp; tmp = xt_get_per_cpu_counter(&iter->counters, cpu); ADD_COUNTER(counters[i], tmp->bcnt, tmp->pcnt); ++i; /* macro does multi eval of i */ } cond_resched(); } } static struct xt_counters *alloc_counters(const struct xt_table *table) { unsigned int countersize; struct xt_counters *counters; const struct xt_table_info *private = table->private; /* We need atomic snapshot of counters: rest doesn't change (other than comefrom, which userspace doesn't care about). */ countersize = sizeof(struct xt_counters) * private->number; counters = vzalloc(countersize); if (counters == NULL) return ERR_PTR(-ENOMEM); get_counters(private, counters); return counters; } static int copy_entries_to_user(unsigned int total_size, const struct xt_table *table, void __user *userptr) { unsigned int off, num; const struct ipt_entry *e; struct xt_counters *counters; const struct xt_table_info *private = table->private; int ret = 0; const void *loc_cpu_entry; counters = alloc_counters(table); if (IS_ERR(counters)) return PTR_ERR(counters); loc_cpu_entry = private->entries; /* FIXME: use iterator macros --RR */ /* ... then go back and fix counters and names */ for (off = 0, num = 0; off < total_size; off += e->next_offset, num++){ unsigned int i; const struct xt_entry_match *m; const struct xt_entry_target *t; e = loc_cpu_entry + off; if (copy_to_user(userptr + off, e, sizeof(*e))) { ret = -EFAULT; goto free_counters; } if (copy_to_user(userptr + off + offsetof(struct ipt_entry, counters), &counters[num], sizeof(counters[num])) != 0) { ret = -EFAULT; goto free_counters; } for (i = sizeof(struct ipt_entry); i < e->target_offset; i += m->u.match_size) { m = (void *)e + i; if (xt_match_to_user(m, userptr + off + i)) { ret = -EFAULT; goto free_counters; } } t = ipt_get_target_c(e); if (xt_target_to_user(t, userptr + off + e->target_offset)) { ret = -EFAULT; goto free_counters; } } free_counters: vfree(counters); return ret; } #ifdef CONFIG_NETFILTER_XTABLES_COMPAT static void compat_standard_from_user(void *dst, const void *src) { int v = *(compat_int_t *)src; if (v > 0) v += xt_compat_calc_jump(AF_INET, v); memcpy(dst, &v, sizeof(v)); } static int compat_standard_to_user(void __user *dst, const void *src) { compat_int_t cv = *(int *)src; if (cv > 0) cv -= xt_compat_calc_jump(AF_INET, cv); return copy_to_user(dst, &cv, sizeof(cv)) ? -EFAULT : 0; } static int compat_calc_entry(const struct ipt_entry *e, const struct xt_table_info *info, const void *base, struct xt_table_info *newinfo) { const struct xt_entry_match *ematch; const struct xt_entry_target *t; unsigned int entry_offset; int off, i, ret; off = sizeof(struct ipt_entry) - sizeof(struct compat_ipt_entry); entry_offset = (void *)e - base; xt_ematch_foreach(ematch, e) off += xt_compat_match_offset(ematch->u.kernel.match); t = ipt_get_target_c(e); off += xt_compat_target_offset(t->u.kernel.target); newinfo->size -= off; ret = xt_compat_add_offset(AF_INET, entry_offset, off); if (ret) return ret; for (i = 0; i < NF_INET_NUMHOOKS; i++) { if (info->hook_entry[i] && (e < (struct ipt_entry *)(base + info->hook_entry[i]))) newinfo->hook_entry[i] -= off; if (info->underflow[i] && (e < (struct ipt_entry *)(base + info->underflow[i]))) newinfo->underflow[i] -= off; } return 0; } static int compat_table_info(const struct xt_table_info *info, struct xt_table_info *newinfo) { struct ipt_entry *iter; const void *loc_cpu_entry; int ret; if (!newinfo || !info) return -EINVAL; /* we dont care about newinfo->entries */ memcpy(newinfo, info, offsetof(struct xt_table_info, entries)); newinfo->initial_entries = 0; loc_cpu_entry = info->entries; ret = xt_compat_init_offsets(AF_INET, info->number); if (ret) return ret; xt_entry_foreach(iter, loc_cpu_entry, info->size) { ret = compat_calc_entry(iter, info, loc_cpu_entry, newinfo); if (ret != 0) return ret; } return 0; } #endif static int get_info(struct net *net, void __user *user, const int *len) { char name[XT_TABLE_MAXNAMELEN]; struct xt_table *t; int ret; if (*len != sizeof(struct ipt_getinfo)) return -EINVAL; if (copy_from_user(name, user, sizeof(name)) != 0) return -EFAULT; name[XT_TABLE_MAXNAMELEN-1] = '\0'; #ifdef CONFIG_NETFILTER_XTABLES_COMPAT if (in_compat_syscall()) xt_compat_lock(AF_INET); #endif t = xt_request_find_table_lock(net, AF_INET, name); if (!IS_ERR(t)) { struct ipt_getinfo info; const struct xt_table_info *private = t->private; #ifdef CONFIG_NETFILTER_XTABLES_COMPAT struct xt_table_info tmp; if (in_compat_syscall()) { ret = compat_table_info(private, &tmp); xt_compat_flush_offsets(AF_INET); private = &tmp; } #endif memset(&info, 0, sizeof(info)); info.valid_hooks = t->valid_hooks; memcpy(info.hook_entry, private->hook_entry, sizeof(info.hook_entry)); memcpy(info.underflow, private->underflow, sizeof(info.underflow)); info.num_entries = private->number; info.size = private->size; strcpy(info.name, name); if (copy_to_user(user, &info, *len) != 0) ret = -EFAULT; else ret = 0; xt_table_unlock(t); module_put(t->me); } else ret = PTR_ERR(t); #ifdef CONFIG_NETFILTER_XTABLES_COMPAT if (in_compat_syscall()) xt_compat_unlock(AF_INET); #endif return ret; } static int get_entries(struct net *net, struct ipt_get_entries __user *uptr, const int *len) { int ret; struct ipt_get_entries get; struct xt_table *t; if (*len < sizeof(get)) return -EINVAL; if (copy_from_user(&get, uptr, sizeof(get)) != 0) return -EFAULT; if (*len != sizeof(struct ipt_get_entries) + get.size) return -EINVAL; get.name[sizeof(get.name) - 1] = '\0'; t = xt_find_table_lock(net, AF_INET, get.name); if (!IS_ERR(t)) { const struct xt_table_info *private = t->private; if (get.size == private->size) ret = copy_entries_to_user(private->size, t, uptr->entrytable); else ret = -EAGAIN; module_put(t->me); xt_table_unlock(t); } else ret = PTR_ERR(t); return ret; } static int __do_replace(struct net *net, const char *name, unsigned int valid_hooks, struct xt_table_info *newinfo, unsigned int num_counters, void __user *counters_ptr) { int ret; struct xt_table *t; struct xt_table_info *oldinfo; struct xt_counters *counters; struct ipt_entry *iter; counters = xt_counters_alloc(num_counters); if (!counters) { ret = -ENOMEM; goto out; } t = xt_request_find_table_lock(net, AF_INET, name); if (IS_ERR(t)) { ret = PTR_ERR(t); goto free_newinfo_counters_untrans; } /* You lied! */ if (valid_hooks != t->valid_hooks) { ret = -EINVAL; goto put_module; } oldinfo = xt_replace_table(t, num_counters, newinfo, &ret); if (!oldinfo) goto put_module; /* Update module usage count based on number of rules */ if ((oldinfo->number > oldinfo->initial_entries) || (newinfo->number <= oldinfo->initial_entries)) module_put(t->me); if ((oldinfo->number > oldinfo->initial_entries) && (newinfo->number <= oldinfo->initial_entries)) module_put(t->me); xt_table_unlock(t); get_old_counters(oldinfo, counters); /* Decrease module usage counts and free resource */ xt_entry_foreach(iter, oldinfo->entries, oldinfo->size) cleanup_entry(iter, net); xt_free_table_info(oldinfo); if (copy_to_user(counters_ptr, counters, sizeof(struct xt_counters) * num_counters) != 0) { /* Silent error, can't fail, new table is already in place */ net_warn_ratelimited("iptables: counters copy to user failed while replacing table\n"); } vfree(counters); return 0; put_module: module_put(t->me); xt_table_unlock(t); free_newinfo_counters_untrans: vfree(counters); out: return ret; } static int do_replace(struct net *net, sockptr_t arg, unsigned int len) { int ret; struct ipt_replace tmp; struct xt_table_info *newinfo; void *loc_cpu_entry; struct ipt_entry *iter; if (len < sizeof(tmp)) return -EINVAL; if (copy_from_sockptr(&tmp, arg, sizeof(tmp)) != 0) return -EFAULT; /* overflow check */ if (tmp.num_counters >= INT_MAX / sizeof(struct xt_counters)) return -ENOMEM; if (tmp.num_counters == 0) return -EINVAL; if ((u64)len < (u64)tmp.size + sizeof(tmp)) return -EINVAL; tmp.name[sizeof(tmp.name)-1] = 0; newinfo = xt_alloc_table_info(tmp.size); if (!newinfo) return -ENOMEM; loc_cpu_entry = newinfo->entries; if (copy_from_sockptr_offset(loc_cpu_entry, arg, sizeof(tmp), tmp.size) != 0) { ret = -EFAULT; goto free_newinfo; } ret = translate_table(net, newinfo, loc_cpu_entry, &tmp); if (ret != 0) goto free_newinfo; ret = __do_replace(net, tmp.name, tmp.valid_hooks, newinfo, tmp.num_counters, tmp.counters); if (ret) goto free_newinfo_untrans; return 0; free_newinfo_untrans: xt_entry_foreach(iter, loc_cpu_entry, newinfo->size) cleanup_entry(iter, net); free_newinfo: xt_free_table_info(newinfo); return ret; } static int do_add_counters(struct net *net, sockptr_t arg, unsigned int len) { unsigned int i; struct xt_counters_info tmp; struct xt_counters *paddc; struct xt_table *t; const struct xt_table_info *private; int ret = 0; struct ipt_entry *iter; unsigned int addend; paddc = xt_copy_counters(arg, len, &tmp); if (IS_ERR(paddc)) return PTR_ERR(paddc); t = xt_find_table_lock(net, AF_INET, tmp.name); if (IS_ERR(t)) { ret = PTR_ERR(t); goto free; } local_bh_disable(); private = t->private; if (private->number != tmp.num_counters) { ret = -EINVAL; goto unlock_up_free; } i = 0; addend = xt_write_recseq_begin(); xt_entry_foreach(iter, private->entries, private->size) { struct xt_counters *tmp; tmp = xt_get_this_cpu_counter(&iter->counters); ADD_COUNTER(*tmp, paddc[i].bcnt, paddc[i].pcnt); ++i; } xt_write_recseq_end(addend); unlock_up_free: local_bh_enable(); xt_table_unlock(t); module_put(t->me); free: vfree(paddc); return ret; } #ifdef CONFIG_NETFILTER_XTABLES_COMPAT struct compat_ipt_replace { char name[XT_TABLE_MAXNAMELEN]; u32 valid_hooks; u32 num_entries; u32 size; u32 hook_entry[NF_INET_NUMHOOKS]; u32 underflow[NF_INET_NUMHOOKS]; u32 num_counters; compat_uptr_t counters; /* struct xt_counters * */ struct compat_ipt_entry entries[]; }; static int compat_copy_entry_to_user(struct ipt_entry *e, void __user **dstptr, unsigned int *size, struct xt_counters *counters, unsigned int i) { struct xt_entry_target *t; struct compat_ipt_entry __user *ce; u_int16_t target_offset, next_offset; compat_uint_t origsize; const struct xt_entry_match *ematch; int ret = 0; origsize = *size; ce = *dstptr; if (copy_to_user(ce, e, sizeof(struct ipt_entry)) != 0 || copy_to_user(&ce->counters, &counters[i], sizeof(counters[i])) != 0) return -EFAULT; *dstptr += sizeof(struct compat_ipt_entry); *size -= sizeof(struct ipt_entry) - sizeof(struct compat_ipt_entry); xt_ematch_foreach(ematch, e) { ret = xt_compat_match_to_user(ematch, dstptr, size); if (ret != 0) return ret; } target_offset = e->target_offset - (origsize - *size); t = ipt_get_target(e); ret = xt_compat_target_to_user(t, dstptr, size); if (ret) return ret; next_offset = e->next_offset - (origsize - *size); if (put_user(target_offset, &ce->target_offset) != 0 || put_user(next_offset, &ce->next_offset) != 0) return -EFAULT; return 0; } static int compat_find_calc_match(struct xt_entry_match *m, const struct ipt_ip *ip, int *size) { struct xt_match *match; match = xt_request_find_match(NFPROTO_IPV4, m->u.user.name, m->u.user.revision); if (IS_ERR(match)) return PTR_ERR(match); m->u.kernel.match = match; *size += xt_compat_match_offset(match); return 0; } static void compat_release_entry(struct compat_ipt_entry *e) { struct xt_entry_target *t; struct xt_entry_match *ematch; /* Cleanup all matches */ xt_ematch_foreach(ematch, e) module_put(ematch->u.kernel.match->me); t = compat_ipt_get_target(e); module_put(t->u.kernel.target->me); } static int check_compat_entry_size_and_hooks(struct compat_ipt_entry *e, struct xt_table_info *newinfo, unsigned int *size, const unsigned char *base, const unsigned char *limit) { struct xt_entry_match *ematch; struct xt_entry_target *t; struct xt_target *target; unsigned int entry_offset; unsigned int j; int ret, off; if ((unsigned long)e % __alignof__(struct compat_ipt_entry) != 0 || (unsigned char *)e + sizeof(struct compat_ipt_entry) >= limit || (unsigned char *)e + e->next_offset > limit) return -EINVAL; if (e->next_offset < sizeof(struct compat_ipt_entry) + sizeof(struct compat_xt_entry_target)) return -EINVAL; if (!ip_checkentry(&e->ip)) return -EINVAL; ret = xt_compat_check_entry_offsets(e, e->elems, e->target_offset, e->next_offset); if (ret) return ret; off = sizeof(struct ipt_entry) - sizeof(struct compat_ipt_entry); entry_offset = (void *)e - (void *)base; j = 0; xt_ematch_foreach(ematch, e) { ret = compat_find_calc_match(ematch, &e->ip, &off); if (ret != 0) goto release_matches; ++j; } t = compat_ipt_get_target(e); target = xt_request_find_target(NFPROTO_IPV4, t->u.user.name, t->u.user.revision); if (IS_ERR(target)) { ret = PTR_ERR(target); goto release_matches; } t->u.kernel.target = target; off += xt_compat_target_offset(target); *size += off; ret = xt_compat_add_offset(AF_INET, entry_offset, off); if (ret) goto out; return 0; out: module_put(t->u.kernel.target->me); release_matches: xt_ematch_foreach(ematch, e) { if (j-- == 0) break; module_put(ematch->u.kernel.match->me); } return ret; } static void compat_copy_entry_from_user(struct compat_ipt_entry *e, void **dstptr, unsigned int *size, struct xt_table_info *newinfo, unsigned char *base) { struct xt_entry_target *t; struct ipt_entry *de; unsigned int origsize; int h; struct xt_entry_match *ematch; origsize = *size; de = *dstptr; memcpy(de, e, sizeof(struct ipt_entry)); memcpy(&de->counters, &e->counters, sizeof(e->counters)); *dstptr += sizeof(struct ipt_entry); *size += sizeof(struct ipt_entry) - sizeof(struct compat_ipt_entry); xt_ematch_foreach(ematch, e) xt_compat_match_from_user(ematch, dstptr, size); de->target_offset = e->target_offset - (origsize - *size); t = compat_ipt_get_target(e); xt_compat_target_from_user(t, dstptr, size); de->next_offset = e->next_offset - (origsize - *size); for (h = 0; h < NF_INET_NUMHOOKS; h++) { if ((unsigned char *)de - base < newinfo->hook_entry[h]) newinfo->hook_entry[h] -= origsize - *size; if ((unsigned char *)de - base < newinfo->underflow[h]) newinfo->underflow[h] -= origsize - *size; } } static int translate_compat_table(struct net *net, struct xt_table_info **pinfo, void **pentry0, const struct compat_ipt_replace *compatr) { unsigned int i, j; struct xt_table_info *newinfo, *info; void *pos, *entry0, *entry1; struct compat_ipt_entry *iter0; struct ipt_replace repl; unsigned int size; int ret; info = *pinfo; entry0 = *pentry0; size = compatr->size; info->number = compatr->num_entries; j = 0; xt_compat_lock(AF_INET); ret = xt_compat_init_offsets(AF_INET, compatr->num_entries); if (ret) goto out_unlock; /* Walk through entries, checking offsets. */ xt_entry_foreach(iter0, entry0, compatr->size) { ret = check_compat_entry_size_and_hooks(iter0, info, &size, entry0, entry0 + compatr->size); if (ret != 0) goto out_unlock; ++j; } ret = -EINVAL; if (j != compatr->num_entries) goto out_unlock; ret = -ENOMEM; newinfo = xt_alloc_table_info(size); if (!newinfo) goto out_unlock; memset(newinfo->entries, 0, size); newinfo->number = compatr->num_entries; for (i = 0; i < NF_INET_NUMHOOKS; i++) { newinfo->hook_entry[i] = compatr->hook_entry[i]; newinfo->underflow[i] = compatr->underflow[i]; } entry1 = newinfo->entries; pos = entry1; size = compatr->size; xt_entry_foreach(iter0, entry0, compatr->size) compat_copy_entry_from_user(iter0, &pos, &size, newinfo, entry1); /* all module references in entry0 are now gone. * entry1/newinfo contains a 64bit ruleset that looks exactly as * generated by 64bit userspace. * * Call standard translate_table() to validate all hook_entrys, * underflows, check for loops, etc. */ xt_compat_flush_offsets(AF_INET); xt_compat_unlock(AF_INET); memcpy(&repl, compatr, sizeof(*compatr)); for (i = 0; i < NF_INET_NUMHOOKS; i++) { repl.hook_entry[i] = newinfo->hook_entry[i]; repl.underflow[i] = newinfo->underflow[i]; } repl.num_counters = 0; repl.counters = NULL; repl.size = newinfo->size; ret = translate_table(net, newinfo, entry1, &repl); if (ret) goto free_newinfo; *pinfo = newinfo; *pentry0 = entry1; xt_free_table_info(info); return 0; free_newinfo: xt_free_table_info(newinfo); return ret; out_unlock: xt_compat_flush_offsets(AF_INET); xt_compat_unlock(AF_INET); xt_entry_foreach(iter0, entry0, compatr->size) { if (j-- == 0) break; compat_release_entry(iter0); } return ret; } static int compat_do_replace(struct net *net, sockptr_t arg, unsigned int len) { int ret; struct compat_ipt_replace tmp; struct xt_table_info *newinfo; void *loc_cpu_entry; struct ipt_entry *iter; if (len < sizeof(tmp)) return -EINVAL; if (copy_from_sockptr(&tmp, arg, sizeof(tmp)) != 0) return -EFAULT; /* overflow check */ if (tmp.num_counters >= INT_MAX / sizeof(struct xt_counters)) return -ENOMEM; if (tmp.num_counters == 0) return -EINVAL; if ((u64)len < (u64)tmp.size + sizeof(tmp)) return -EINVAL; tmp.name[sizeof(tmp.name)-1] = 0; newinfo = xt_alloc_table_info(tmp.size); if (!newinfo) return -ENOMEM; loc_cpu_entry = newinfo->entries; if (copy_from_sockptr_offset(loc_cpu_entry, arg, sizeof(tmp), tmp.size) != 0) { ret = -EFAULT; goto free_newinfo; } ret = translate_compat_table(net, &newinfo, &loc_cpu_entry, &tmp); if (ret != 0) goto free_newinfo; ret = __do_replace(net, tmp.name, tmp.valid_hooks, newinfo, tmp.num_counters, compat_ptr(tmp.counters)); if (ret) goto free_newinfo_untrans; return 0; free_newinfo_untrans: xt_entry_foreach(iter, loc_cpu_entry, newinfo->size) cleanup_entry(iter, net); free_newinfo: xt_free_table_info(newinfo); return ret; } struct compat_ipt_get_entries { char name[XT_TABLE_MAXNAMELEN]; compat_uint_t size; struct compat_ipt_entry entrytable[]; }; static int compat_copy_entries_to_user(unsigned int total_size, struct xt_table *table, void __user *userptr) { struct xt_counters *counters; const struct xt_table_info *private = table->private; void __user *pos; unsigned int size; int ret = 0; unsigned int i = 0; struct ipt_entry *iter; counters = alloc_counters(table); if (IS_ERR(counters)) return PTR_ERR(counters); pos = userptr; size = total_size; xt_entry_foreach(iter, private->entries, total_size) { ret = compat_copy_entry_to_user(iter, &pos, &size, counters, i++); if (ret != 0) break; } vfree(counters); return ret; } static int compat_get_entries(struct net *net, struct compat_ipt_get_entries __user *uptr, int *len) { int ret; struct compat_ipt_get_entries get; struct xt_table *t; if (*len < sizeof(get)) return -EINVAL; if (copy_from_user(&get, uptr, sizeof(get)) != 0) return -EFAULT; if (*len != sizeof(struct compat_ipt_get_entries) + get.size) return -EINVAL; get.name[sizeof(get.name) - 1] = '\0'; xt_compat_lock(AF_INET); t = xt_find_table_lock(net, AF_INET, get.name); if (!IS_ERR(t)) { const struct xt_table_info *private = t->private; struct xt_table_info info; ret = compat_table_info(private, &info); if (!ret && get.size == info.size) ret = compat_copy_entries_to_user(private->size, t, uptr->entrytable); else if (!ret) ret = -EAGAIN; xt_compat_flush_offsets(AF_INET); module_put(t->me); xt_table_unlock(t); } else ret = PTR_ERR(t); xt_compat_unlock(AF_INET); return ret; } #endif static int do_ipt_set_ctl(struct sock *sk, int cmd, sockptr_t arg, unsigned int len) { int ret; if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) return -EPERM; switch (cmd) { case IPT_SO_SET_REPLACE: #ifdef CONFIG_NETFILTER_XTABLES_COMPAT if (in_compat_syscall()) ret = compat_do_replace(sock_net(sk), arg, len); else #endif ret = do_replace(sock_net(sk), arg, len); break; case IPT_SO_SET_ADD_COUNTERS: ret = do_add_counters(sock_net(sk), arg, len); break; default: ret = -EINVAL; } return ret; } static int do_ipt_get_ctl(struct sock *sk, int cmd, void __user *user, int *len) { int ret; if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) return -EPERM; switch (cmd) { case IPT_SO_GET_INFO: ret = get_info(sock_net(sk), user, len); break; case IPT_SO_GET_ENTRIES: #ifdef CONFIG_NETFILTER_XTABLES_COMPAT if (in_compat_syscall()) ret = compat_get_entries(sock_net(sk), user, len); else #endif ret = get_entries(sock_net(sk), user, len); break; case IPT_SO_GET_REVISION_MATCH: case IPT_SO_GET_REVISION_TARGET: { struct xt_get_revision rev; int target; if (*len != sizeof(rev)) { ret = -EINVAL; break; } if (copy_from_user(&rev, user, sizeof(rev)) != 0) { ret = -EFAULT; break; } rev.name[sizeof(rev.name)-1] = 0; if (cmd == IPT_SO_GET_REVISION_TARGET) target = 1; else target = 0; try_then_request_module(xt_find_revision(AF_INET, rev.name, rev.revision, target, &ret), "ipt_%s", rev.name); break; } default: ret = -EINVAL; } return ret; } static void __ipt_unregister_table(struct net *net, struct xt_table *table) { struct xt_table_info *private; void *loc_cpu_entry; struct module *table_owner = table->me; struct ipt_entry *iter; private = xt_unregister_table(table); /* Decrease module usage counts and free resources */ loc_cpu_entry = private->entries; xt_entry_foreach(iter, loc_cpu_entry, private->size) cleanup_entry(iter, net); if (private->number > private->initial_entries) module_put(table_owner); xt_free_table_info(private); } int ipt_register_table(struct net *net, const struct xt_table *table, const struct ipt_replace *repl, const struct nf_hook_ops *template_ops) { struct nf_hook_ops *ops; unsigned int num_ops; int ret, i; struct xt_table_info *newinfo; struct xt_table_info bootstrap = {0}; void *loc_cpu_entry; struct xt_table *new_table; newinfo = xt_alloc_table_info(repl->size); if (!newinfo) return -ENOMEM; loc_cpu_entry = newinfo->entries; memcpy(loc_cpu_entry, repl->entries, repl->size); ret = translate_table(net, newinfo, loc_cpu_entry, repl); if (ret != 0) { xt_free_table_info(newinfo); return ret; } new_table = xt_register_table(net, table, &bootstrap, newinfo); if (IS_ERR(new_table)) { struct ipt_entry *iter; xt_entry_foreach(iter, loc_cpu_entry, newinfo->size) cleanup_entry(iter, net); xt_free_table_info(newinfo); return PTR_ERR(new_table); } /* No template? No need to do anything. This is used by 'nat' table, it registers * with the nat core instead of the netfilter core. */ if (!template_ops) return 0; num_ops = hweight32(table->valid_hooks); if (num_ops == 0) { ret = -EINVAL; goto out_free; } ops = kmemdup(template_ops, sizeof(*ops) * num_ops, GFP_KERNEL); if (!ops) { ret = -ENOMEM; goto out_free; } for (i = 0; i < num_ops; i++) ops[i].priv = new_table; new_table->ops = ops; ret = nf_register_net_hooks(net, ops, num_ops); if (ret != 0) goto out_free; return ret; out_free: __ipt_unregister_table(net, new_table); return ret; } void ipt_unregister_table_pre_exit(struct net *net, const char *name) { struct xt_table *table = xt_find_table(net, NFPROTO_IPV4, name); if (table) nf_unregister_net_hooks(net, table->ops, hweight32(table->valid_hooks)); } void ipt_unregister_table_exit(struct net *net, const char *name) { struct xt_table *table = xt_find_table(net, NFPROTO_IPV4, name); if (table) __ipt_unregister_table(net, table); } /* Returns 1 if the type and code is matched by the range, 0 otherwise */ static inline bool icmp_type_code_match(u_int8_t test_type, u_int8_t min_code, u_int8_t max_code, u_int8_t type, u_int8_t code, bool invert) { return ((test_type == 0xFF) || (type == test_type && code >= min_code && code <= max_code)) ^ invert; } static bool icmp_match(const struct sk_buff *skb, struct xt_action_param *par) { const struct icmphdr *ic; struct icmphdr _icmph; const struct ipt_icmp *icmpinfo = par->matchinfo; /* Must not be a fragment. */ if (par->fragoff != 0) return false; ic = skb_header_pointer(skb, par->thoff, sizeof(_icmph), &_icmph); if (ic == NULL) { /* We've been asked to examine this packet, and we * can't. Hence, no choice but to drop. */ par->hotdrop = true; return false; } return icmp_type_code_match(icmpinfo->type, icmpinfo->code[0], icmpinfo->code[1], ic->type, ic->code, !!(icmpinfo->invflags&IPT_ICMP_INV)); } static int icmp_checkentry(const struct xt_mtchk_param *par) { const struct ipt_icmp *icmpinfo = par->matchinfo; /* Must specify no unknown invflags */ return (icmpinfo->invflags & ~IPT_ICMP_INV) ? -EINVAL : 0; } static struct xt_target ipt_builtin_tg[] __read_mostly = { { .name = XT_STANDARD_TARGET, .targetsize = sizeof(int), .family = NFPROTO_IPV4, #ifdef CONFIG_NETFILTER_XTABLES_COMPAT .compatsize = sizeof(compat_int_t), .compat_from_user = compat_standard_from_user, .compat_to_user = compat_standard_to_user, #endif }, { .name = XT_ERROR_TARGET, .target = ipt_error, .targetsize = XT_FUNCTION_MAXNAMELEN, .family = NFPROTO_IPV4, }, }; static struct nf_sockopt_ops ipt_sockopts = { .pf = PF_INET, .set_optmin = IPT_BASE_CTL, .set_optmax = IPT_SO_SET_MAX+1, .set = do_ipt_set_ctl, .get_optmin = IPT_BASE_CTL, .get_optmax = IPT_SO_GET_MAX+1, .get = do_ipt_get_ctl, .owner = THIS_MODULE, }; static struct xt_match ipt_builtin_mt[] __read_mostly = { { .name = "icmp", .match = icmp_match, .matchsize = sizeof(struct ipt_icmp), .checkentry = icmp_checkentry, .proto = IPPROTO_ICMP, .family = NFPROTO_IPV4, .me = THIS_MODULE, }, }; static int __net_init ip_tables_net_init(struct net *net) { return xt_proto_init(net, NFPROTO_IPV4); } static void __net_exit ip_tables_net_exit(struct net *net) { xt_proto_fini(net, NFPROTO_IPV4); } static struct pernet_operations ip_tables_net_ops = { .init = ip_tables_net_init, .exit = ip_tables_net_exit, }; static int __init ip_tables_init(void) { int ret; ret = register_pernet_subsys(&ip_tables_net_ops); if (ret < 0) goto err1; /* No one else will be downing sem now, so we won't sleep */ ret = xt_register_targets(ipt_builtin_tg, ARRAY_SIZE(ipt_builtin_tg)); if (ret < 0) goto err2; ret = xt_register_matches(ipt_builtin_mt, ARRAY_SIZE(ipt_builtin_mt)); if (ret < 0) goto err4; /* Register setsockopt */ ret = nf_register_sockopt(&ipt_sockopts); if (ret < 0) goto err5; return 0; err5: xt_unregister_matches(ipt_builtin_mt, ARRAY_SIZE(ipt_builtin_mt)); err4: xt_unregister_targets(ipt_builtin_tg, ARRAY_SIZE(ipt_builtin_tg)); err2: unregister_pernet_subsys(&ip_tables_net_ops); err1: return ret; } static void __exit ip_tables_fini(void) { nf_unregister_sockopt(&ipt_sockopts); xt_unregister_matches(ipt_builtin_mt, ARRAY_SIZE(ipt_builtin_mt)); xt_unregister_targets(ipt_builtin_tg, ARRAY_SIZE(ipt_builtin_tg)); unregister_pernet_subsys(&ip_tables_net_ops); } EXPORT_SYMBOL(ipt_register_table); EXPORT_SYMBOL(ipt_unregister_table_pre_exit); EXPORT_SYMBOL(ipt_unregister_table_exit); EXPORT_SYMBOL(ipt_do_table); module_init(ip_tables_init); module_exit(ip_tables_fini); |
1 4 5 4 1 5 14 14 1 13 1 11 5 7 2 5 5 5 5 5 2 38 38 38 38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 | // SPDX-License-Identifier: GPL-2.0-or-later /* * IPv6 fragment reassembly * Linux INET6 implementation * * Authors: * Pedro Roque <roque@di.fc.ul.pt> * * Based on: net/ipv4/ip_fragment.c */ /* * Fixes: * Andi Kleen Make it work with multiple hosts. * More RFC compliance. * * Horst von Brand Add missing #include <linux/string.h> * Alexey Kuznetsov SMP races, threading, cleanup. * Patrick McHardy LRU queue of frag heads for evictor. * Mitsuru KANDA @USAGI Register inet6_protocol{}. * David Stevens and * YOSHIFUJI,H. @USAGI Always remove fragment header to * calculate ICV correctly. */ #define pr_fmt(fmt) "IPv6: " fmt #include <linux/errno.h> #include <linux/types.h> #include <linux/string.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/jiffies.h> #include <linux/net.h> #include <linux/list.h> #include <linux/netdevice.h> #include <linux/in6.h> #include <linux/ipv6.h> #include <linux/icmpv6.h> #include <linux/random.h> #include <linux/jhash.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/export.h> #include <linux/tcp.h> #include <linux/udp.h> #include <net/sock.h> #include <net/snmp.h> #include <net/ipv6.h> #include <net/ip6_route.h> #include <net/protocol.h> #include <net/transp_v6.h> #include <net/rawv6.h> #include <net/ndisc.h> #include <net/addrconf.h> #include <net/ipv6_frag.h> #include <net/inet_ecn.h> static const char ip6_frag_cache_name[] = "ip6-frags"; static u8 ip6_frag_ecn(const struct ipv6hdr *ipv6h) { return 1 << (ipv6_get_dsfield(ipv6h) & INET_ECN_MASK); } static struct inet_frags ip6_frags; static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *skb, struct sk_buff *prev_tail, struct net_device *dev); static void ip6_frag_expire(struct timer_list *t) { struct inet_frag_queue *frag = from_timer(frag, t, timer); struct frag_queue *fq; fq = container_of(frag, struct frag_queue, q); ip6frag_expire_frag_queue(fq->q.fqdir->net, fq); } static struct frag_queue * fq_find(struct net *net, __be32 id, const struct ipv6hdr *hdr, int iif) { struct frag_v6_compare_key key = { .id = id, .saddr = hdr->saddr, .daddr = hdr->daddr, .user = IP6_DEFRAG_LOCAL_DELIVER, .iif = iif, }; struct inet_frag_queue *q; if (!(ipv6_addr_type(&hdr->daddr) & (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL))) key.iif = 0; q = inet_frag_find(net->ipv6.fqdir, &key); if (!q) return NULL; return container_of(q, struct frag_queue, q); } static int ip6_frag_queue(struct frag_queue *fq, struct sk_buff *skb, struct frag_hdr *fhdr, int nhoff, u32 *prob_offset) { struct net *net = dev_net(skb_dst(skb)->dev); int offset, end, fragsize; struct sk_buff *prev_tail; struct net_device *dev; int err = -ENOENT; u8 ecn; if (fq->q.flags & INET_FRAG_COMPLETE) goto err; err = -EINVAL; offset = ntohs(fhdr->frag_off) & ~0x7; end = offset + (ntohs(ipv6_hdr(skb)->payload_len) - ((u8 *)(fhdr + 1) - (u8 *)(ipv6_hdr(skb) + 1))); if ((unsigned int)end > IPV6_MAXPLEN) { *prob_offset = (u8 *)&fhdr->frag_off - skb_network_header(skb); /* note that if prob_offset is set, the skb is freed elsewhere, * we do not free it here. */ return -1; } ecn = ip6_frag_ecn(ipv6_hdr(skb)); if (skb->ip_summed == CHECKSUM_COMPLETE) { const unsigned char *nh = skb_network_header(skb); skb->csum = csum_sub(skb->csum, csum_partial(nh, (u8 *)(fhdr + 1) - nh, 0)); } /* Is this the final fragment? */ if (!(fhdr->frag_off & htons(IP6_MF))) { /* If we already have some bits beyond end * or have different end, the segment is corrupted. */ if (end < fq->q.len || ((fq->q.flags & INET_FRAG_LAST_IN) && end != fq->q.len)) goto discard_fq; fq->q.flags |= INET_FRAG_LAST_IN; fq->q.len = end; } else { /* Check if the fragment is rounded to 8 bytes. * Required by the RFC. */ if (end & 0x7) { /* RFC2460 says always send parameter problem in * this case. -DaveM */ *prob_offset = offsetof(struct ipv6hdr, payload_len); return -1; } if (end > fq->q.len) { /* Some bits beyond end -> corruption. */ if (fq->q.flags & INET_FRAG_LAST_IN) goto discard_fq; fq->q.len = end; } } if (end == offset) goto discard_fq; err = -ENOMEM; /* Point into the IP datagram 'data' part. */ if (!pskb_pull(skb, (u8 *) (fhdr + 1) - skb->data)) goto discard_fq; err = pskb_trim_rcsum(skb, end - offset); if (err) goto discard_fq; /* Note : skb->rbnode and skb->dev share the same location. */ dev = skb->dev; /* Makes sure compiler wont do silly aliasing games */ barrier(); prev_tail = fq->q.fragments_tail; err = inet_frag_queue_insert(&fq->q, skb, offset, end); if (err) goto insert_error; if (dev) fq->iif = dev->ifindex; fq->q.stamp = skb->tstamp; fq->q.meat += skb->len; fq->ecn |= ecn; add_frag_mem_limit(fq->q.fqdir, skb->truesize); fragsize = -skb_network_offset(skb) + skb->len; if (fragsize > fq->q.max_size) fq->q.max_size = fragsize; /* The first fragment. * nhoffset is obtained from the first fragment, of course. */ if (offset == 0) { fq->nhoffset = nhoff; fq->q.flags |= INET_FRAG_FIRST_IN; } if (fq->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) && fq->q.meat == fq->q.len) { unsigned long orefdst = skb->_skb_refdst; skb->_skb_refdst = 0UL; err = ip6_frag_reasm(fq, skb, prev_tail, dev); skb->_skb_refdst = orefdst; return err; } skb_dst_drop(skb); return -EINPROGRESS; insert_error: if (err == IPFRAG_DUP) { kfree_skb(skb); return -EINVAL; } err = -EINVAL; __IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_REASM_OVERLAPS); discard_fq: inet_frag_kill(&fq->q); __IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_REASMFAILS); err: kfree_skb(skb); return err; } /* * Check if this packet is complete. * * It is called with locked fq, and caller must check that * queue is eligible for reassembly i.e. it is not COMPLETE, * the last and the first frames arrived and all the bits are here. */ static int ip6_frag_reasm(struct frag_queue *fq, struct sk_buff *skb, struct sk_buff *prev_tail, struct net_device *dev) { struct net *net = fq->q.fqdir->net; unsigned int nhoff; void *reasm_data; int payload_len; u8 ecn; inet_frag_kill(&fq->q); ecn = ip_frag_ecn_table[fq->ecn]; if (unlikely(ecn == 0xff)) goto out_fail; reasm_data = inet_frag_reasm_prepare(&fq->q, skb, prev_tail); if (!reasm_data) goto out_oom; payload_len = ((skb->data - skb_network_header(skb)) - sizeof(struct ipv6hdr) + fq->q.len - sizeof(struct frag_hdr)); if (payload_len > IPV6_MAXPLEN) goto out_oversize; /* We have to remove fragment header from datagram and to relocate * header in order to calculate ICV correctly. */ nhoff = fq->nhoffset; skb_network_header(skb)[nhoff] = skb_transport_header(skb)[0]; memmove(skb->head + sizeof(struct frag_hdr), skb->head, (skb->data - skb->head) - sizeof(struct frag_hdr)); if (skb_mac_header_was_set(skb)) skb->mac_header += sizeof(struct frag_hdr); skb->network_header += sizeof(struct frag_hdr); skb_reset_transport_header(skb); inet_frag_reasm_finish(&fq->q, skb, reasm_data, true); skb->dev = dev; ipv6_hdr(skb)->payload_len = htons(payload_len); ipv6_change_dsfield(ipv6_hdr(skb), 0xff, ecn); IP6CB(skb)->nhoff = nhoff; IP6CB(skb)->flags |= IP6SKB_FRAGMENTED; IP6CB(skb)->frag_max_size = fq->q.max_size; /* Yes, and fold redundant checksum back. 8) */ skb_postpush_rcsum(skb, skb_network_header(skb), skb_network_header_len(skb)); rcu_read_lock(); __IP6_INC_STATS(net, __in6_dev_stats_get(dev, skb), IPSTATS_MIB_REASMOKS); rcu_read_unlock(); fq->q.rb_fragments = RB_ROOT; fq->q.fragments_tail = NULL; fq->q.last_run_head = NULL; return 1; out_oversize: net_dbg_ratelimited("ip6_frag_reasm: payload len = %d\n", payload_len); goto out_fail; out_oom: net_dbg_ratelimited("ip6_frag_reasm: no memory for reassembly\n"); out_fail: rcu_read_lock(); __IP6_INC_STATS(net, __in6_dev_stats_get(dev, skb), IPSTATS_MIB_REASMFAILS); rcu_read_unlock(); inet_frag_kill(&fq->q); return -1; } static int ipv6_frag_rcv(struct sk_buff *skb) { struct frag_hdr *fhdr; struct frag_queue *fq; const struct ipv6hdr *hdr = ipv6_hdr(skb); struct net *net = dev_net(skb_dst(skb)->dev); u8 nexthdr; int iif; if (IP6CB(skb)->flags & IP6SKB_FRAGMENTED) goto fail_hdr; __IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_REASMREQDS); /* Jumbo payload inhibits frag. header */ if (hdr->payload_len == 0) goto fail_hdr; if (!pskb_may_pull(skb, (skb_transport_offset(skb) + sizeof(struct frag_hdr)))) goto fail_hdr; hdr = ipv6_hdr(skb); fhdr = (struct frag_hdr *)skb_transport_header(skb); if (!(fhdr->frag_off & htons(IP6_OFFSET | IP6_MF))) { /* It is not a fragmented frame */ skb->transport_header += sizeof(struct frag_hdr); __IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_REASMOKS); IP6CB(skb)->nhoff = (u8 *)fhdr - skb_network_header(skb); IP6CB(skb)->flags |= IP6SKB_FRAGMENTED; IP6CB(skb)->frag_max_size = ntohs(hdr->payload_len) + sizeof(struct ipv6hdr); return 1; } /* RFC 8200, Section 4.5 Fragment Header: * If the first fragment does not include all headers through an * Upper-Layer header, then that fragment should be discarded and * an ICMP Parameter Problem, Code 3, message should be sent to * the source of the fragment, with the Pointer field set to zero. */ nexthdr = hdr->nexthdr; if (ipv6frag_thdr_truncated(skb, skb_network_offset(skb) + sizeof(struct ipv6hdr), &nexthdr)) { __IP6_INC_STATS(net, __in6_dev_get_safely(skb->dev), IPSTATS_MIB_INHDRERRORS); icmpv6_param_prob(skb, ICMPV6_HDR_INCOMP, 0); return -1; } iif = skb->dev ? skb->dev->ifindex : 0; fq = fq_find(net, fhdr->identification, hdr, iif); if (fq) { u32 prob_offset = 0; int ret; spin_lock(&fq->q.lock); fq->iif = iif; ret = ip6_frag_queue(fq, skb, fhdr, IP6CB(skb)->nhoff, &prob_offset); spin_unlock(&fq->q.lock); inet_frag_put(&fq->q); if (prob_offset) { __IP6_INC_STATS(net, __in6_dev_get_safely(skb->dev), IPSTATS_MIB_INHDRERRORS); /* icmpv6_param_prob() calls kfree_skb(skb) */ icmpv6_param_prob(skb, ICMPV6_HDR_FIELD, prob_offset); } return ret; } __IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_REASMFAILS); kfree_skb(skb); return -1; fail_hdr: __IP6_INC_STATS(net, __in6_dev_get_safely(skb->dev), IPSTATS_MIB_INHDRERRORS); icmpv6_param_prob(skb, ICMPV6_HDR_FIELD, skb_network_header_len(skb)); return -1; } static const struct inet6_protocol frag_protocol = { .handler = ipv6_frag_rcv, .flags = INET6_PROTO_NOPOLICY, }; #ifdef CONFIG_SYSCTL static struct ctl_table ip6_frags_ns_ctl_table[] = { { .procname = "ip6frag_high_thresh", .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = proc_doulongvec_minmax, }, { .procname = "ip6frag_low_thresh", .maxlen = sizeof(unsigned long), .mode = 0644, .proc_handler = proc_doulongvec_minmax, }, { .procname = "ip6frag_time", .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { } }; /* secret interval has been deprecated */ static int ip6_frags_secret_interval_unused; static struct ctl_table ip6_frags_ctl_table[] = { { .procname = "ip6frag_secret_interval", .data = &ip6_frags_secret_interval_unused, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { } }; static int __net_init ip6_frags_ns_sysctl_register(struct net *net) { struct ctl_table *table; struct ctl_table_header *hdr; table = ip6_frags_ns_ctl_table; if (!net_eq(net, &init_net)) { table = kmemdup(table, sizeof(ip6_frags_ns_ctl_table), GFP_KERNEL); if (!table) goto err_alloc; } table[0].data = &net->ipv6.fqdir->high_thresh; table[0].extra1 = &net->ipv6.fqdir->low_thresh; table[1].data = &net->ipv6.fqdir->low_thresh; table[1].extra2 = &net->ipv6.fqdir->high_thresh; table[2].data = &net->ipv6.fqdir->timeout; hdr = register_net_sysctl(net, "net/ipv6", table); if (!hdr) goto err_reg; net->ipv6.sysctl.frags_hdr = hdr; return 0; err_reg: if (!net_eq(net, &init_net)) kfree(table); err_alloc: return -ENOMEM; } static void __net_exit ip6_frags_ns_sysctl_unregister(struct net *net) { struct ctl_table *table; table = net->ipv6.sysctl.frags_hdr->ctl_table_arg; unregister_net_sysctl_table(net->ipv6.sysctl.frags_hdr); if (!net_eq(net, &init_net)) kfree(table); } static struct ctl_table_header *ip6_ctl_header; static int ip6_frags_sysctl_register(void) { ip6_ctl_header = register_net_sysctl(&init_net, "net/ipv6", ip6_frags_ctl_table); return ip6_ctl_header == NULL ? -ENOMEM : 0; } static void ip6_frags_sysctl_unregister(void) { unregister_net_sysctl_table(ip6_ctl_header); } #else static int ip6_frags_ns_sysctl_register(struct net *net) { return 0; } static void ip6_frags_ns_sysctl_unregister(struct net *net) { } static int ip6_frags_sysctl_register(void) { return 0; } static void ip6_frags_sysctl_unregister(void) { } #endif static int __net_init ipv6_frags_init_net(struct net *net) { int res; res = fqdir_init(&net->ipv6.fqdir, &ip6_frags, net); if (res < 0) return res; net->ipv6.fqdir->high_thresh = IPV6_FRAG_HIGH_THRESH; net->ipv6.fqdir->low_thresh = IPV6_FRAG_LOW_THRESH; net->ipv6.fqdir->timeout = IPV6_FRAG_TIMEOUT; res = ip6_frags_ns_sysctl_register(net); if (res < 0) fqdir_exit(net->ipv6.fqdir); return res; } static void __net_exit ipv6_frags_pre_exit_net(struct net *net) { fqdir_pre_exit(net->ipv6.fqdir); } static void __net_exit ipv6_frags_exit_net(struct net *net) { ip6_frags_ns_sysctl_unregister(net); fqdir_exit(net->ipv6.fqdir); } static struct pernet_operations ip6_frags_ops = { .init = ipv6_frags_init_net, .pre_exit = ipv6_frags_pre_exit_net, .exit = ipv6_frags_exit_net, }; static const struct rhashtable_params ip6_rhash_params = { .head_offset = offsetof(struct inet_frag_queue, node), .hashfn = ip6frag_key_hashfn, .obj_hashfn = ip6frag_obj_hashfn, .obj_cmpfn = ip6frag_obj_cmpfn, .automatic_shrinking = true, }; int __init ipv6_frag_init(void) { int ret; ip6_frags.constructor = ip6frag_init; ip6_frags.destructor = NULL; ip6_frags.qsize = sizeof(struct frag_queue); ip6_frags.frag_expire = ip6_frag_expire; ip6_frags.frags_cache_name = ip6_frag_cache_name; ip6_frags.rhash_params = ip6_rhash_params; ret = inet_frags_init(&ip6_frags); if (ret) goto out; ret = inet6_add_protocol(&frag_protocol, IPPROTO_FRAGMENT); if (ret) goto err_protocol; ret = ip6_frags_sysctl_register(); if (ret) goto err_sysctl; ret = register_pernet_subsys(&ip6_frags_ops); if (ret) goto err_pernet; out: return ret; err_pernet: ip6_frags_sysctl_unregister(); err_sysctl: inet6_del_protocol(&frag_protocol, IPPROTO_FRAGMENT); err_protocol: inet_frags_fini(&ip6_frags); goto out; } void ipv6_frag_exit(void) { ip6_frags_sysctl_unregister(); unregister_pernet_subsys(&ip6_frags_ops); inet6_del_protocol(&frag_protocol, IPPROTO_FRAGMENT); inet_frags_fini(&ip6_frags); } |
34 34 34 34 38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 | // SPDX-License-Identifier: GPL-2.0-or-later /* * ebtables * * Author: * Bart De Schuymer <bdschuym@pandora.be> * * ebtables.c,v 2.0, July, 2002 * * This code is strongly inspired by the iptables code which is * Copyright (C) 1999 Paul `Rusty' Russell & Michael J. Neuling */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kmod.h> #include <linux/module.h> #include <linux/vmalloc.h> #include <linux/netfilter/x_tables.h> #include <linux/netfilter_bridge/ebtables.h> #include <linux/spinlock.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/smp.h> #include <linux/cpumask.h> #include <linux/audit.h> #include <net/sock.h> #include <net/netns/generic.h> /* needed for logical [in,out]-dev filtering */ #include "../br_private.h" /* Each cpu has its own set of counters, so there is no need for write_lock in * the softirq * For reading or updating the counters, the user context needs to * get a write_lock */ /* The size of each set of counters is altered to get cache alignment */ #define SMP_ALIGN(x) (((x) + SMP_CACHE_BYTES-1) & ~(SMP_CACHE_BYTES-1)) #define COUNTER_OFFSET(n) (SMP_ALIGN(n * sizeof(struct ebt_counter))) #define COUNTER_BASE(c, n, cpu) ((struct ebt_counter *)(((char *)c) + \ COUNTER_OFFSET(n) * cpu)) struct ebt_pernet { struct list_head tables; }; struct ebt_template { struct list_head list; char name[EBT_TABLE_MAXNAMELEN]; struct module *owner; /* called when table is needed in the given netns */ int (*table_init)(struct net *net); }; static unsigned int ebt_pernet_id __read_mostly; static LIST_HEAD(template_tables); static DEFINE_MUTEX(ebt_mutex); #ifdef CONFIG_NETFILTER_XTABLES_COMPAT static void ebt_standard_compat_from_user(void *dst, const void *src) { int v = *(compat_int_t *)src; if (v >= 0) v += xt_compat_calc_jump(NFPROTO_BRIDGE, v); memcpy(dst, &v, sizeof(v)); } static int ebt_standard_compat_to_user(void __user *dst, const void *src) { compat_int_t cv = *(int *)src; if (cv >= 0) cv -= xt_compat_calc_jump(NFPROTO_BRIDGE, cv); return copy_to_user(dst, &cv, sizeof(cv)) ? -EFAULT : 0; } #endif static struct xt_target ebt_standard_target = { .name = "standard", .revision = 0, .family = NFPROTO_BRIDGE, .targetsize = sizeof(int), #ifdef CONFIG_NETFILTER_XTABLES_COMPAT .compatsize = sizeof(compat_int_t), .compat_from_user = ebt_standard_compat_from_user, .compat_to_user = ebt_standard_compat_to_user, #endif }; static inline int ebt_do_watcher(const struct ebt_entry_watcher *w, struct sk_buff *skb, struct xt_action_param *par) { par->target = w->u.watcher; par->targinfo = w->data; w->u.watcher->target(skb, par); /* watchers don't give a verdict */ return 0; } static inline int ebt_do_match(struct ebt_entry_match *m, const struct sk_buff *skb, struct xt_action_param *par) { par->match = m->u.match; par->matchinfo = m->data; return !m->u.match->match(skb, par); } static inline int ebt_dev_check(const char *entry, const struct net_device *device) { int i = 0; const char *devname; if (*entry == '\0') return 0; if (!device) return 1; devname = device->name; /* 1 is the wildcard token */ while (entry[i] != '\0' && entry[i] != 1 && entry[i] == devname[i]) i++; return devname[i] != entry[i] && entry[i] != 1; } /* process standard matches */ static inline int ebt_basic_match(const struct ebt_entry *e, const struct sk_buff *skb, const struct net_device *in, const struct net_device *out) { const struct ethhdr *h = eth_hdr(skb); const struct net_bridge_port *p; __be16 ethproto; if (skb_vlan_tag_present(skb)) ethproto = htons(ETH_P_8021Q); else ethproto = h->h_proto; if (e->bitmask & EBT_802_3) { if (NF_INVF(e, EBT_IPROTO, eth_proto_is_802_3(ethproto))) return 1; } else if (!(e->bitmask & EBT_NOPROTO) && NF_INVF(e, EBT_IPROTO, e->ethproto != ethproto)) return 1; if (NF_INVF(e, EBT_IIN, ebt_dev_check(e->in, in))) return 1; if (NF_INVF(e, EBT_IOUT, ebt_dev_check(e->out, out))) return 1; /* rcu_read_lock()ed by nf_hook_thresh */ if (in && (p = br_port_get_rcu(in)) != NULL && NF_INVF(e, EBT_ILOGICALIN, ebt_dev_check(e->logical_in, p->br->dev))) return 1; if (out && (p = br_port_get_rcu(out)) != NULL && NF_INVF(e, EBT_ILOGICALOUT, ebt_dev_check(e->logical_out, p->br->dev))) return 1; if (e->bitmask & EBT_SOURCEMAC) { if (NF_INVF(e, EBT_ISOURCE, !ether_addr_equal_masked(h->h_source, e->sourcemac, e->sourcemsk))) return 1; } if (e->bitmask & EBT_DESTMAC) { if (NF_INVF(e, EBT_IDEST, !ether_addr_equal_masked(h->h_dest, e->destmac, e->destmsk))) return 1; } return 0; } static inline struct ebt_entry *ebt_next_entry(const struct ebt_entry *entry) { return (void *)entry + entry->next_offset; } static inline const struct ebt_entry_target * ebt_get_target_c(const struct ebt_entry *e) { return ebt_get_target((struct ebt_entry *)e); } /* Do some firewalling */ unsigned int ebt_do_table(struct sk_buff *skb, const struct nf_hook_state *state, struct ebt_table *table) { unsigned int hook = state->hook; int i, nentries; struct ebt_entry *point; struct ebt_counter *counter_base, *cb_base; const struct ebt_entry_target *t; int verdict, sp = 0; struct ebt_chainstack *cs; struct ebt_entries *chaininfo; const char *base; const struct ebt_table_info *private; struct xt_action_param acpar; acpar.state = state; acpar.hotdrop = false; read_lock_bh(&table->lock); private = table->private; cb_base = COUNTER_BASE(private->counters, private->nentries, smp_processor_id()); if (private->chainstack) cs = private->chainstack[smp_processor_id()]; else cs = NULL; chaininfo = private->hook_entry[hook]; nentries = private->hook_entry[hook]->nentries; point = (struct ebt_entry *)(private->hook_entry[hook]->data); counter_base = cb_base + private->hook_entry[hook]->counter_offset; /* base for chain jumps */ base = private->entries; i = 0; while (i < nentries) { if (ebt_basic_match(point, skb, state->in, state->out)) goto letscontinue; if (EBT_MATCH_ITERATE(point, ebt_do_match, skb, &acpar) != 0) goto letscontinue; if (acpar.hotdrop) { read_unlock_bh(&table->lock); return NF_DROP; } ADD_COUNTER(*(counter_base + i), skb->len, 1); /* these should only watch: not modify, nor tell us * what to do with the packet */ EBT_WATCHER_ITERATE(point, ebt_do_watcher, skb, &acpar); t = ebt_get_target_c(point); /* standard target */ if (!t->u.target->target) verdict = ((struct ebt_standard_target *)t)->verdict; else { acpar.target = t->u.target; acpar.targinfo = t->data; verdict = t->u.target->target(skb, &acpar); } if (verdict == EBT_ACCEPT) { read_unlock_bh(&table->lock); return NF_ACCEPT; } if (verdict == EBT_DROP) { read_unlock_bh(&table->lock); return NF_DROP; } if (verdict == EBT_RETURN) { letsreturn: if (WARN(sp == 0, "RETURN on base chain")) { /* act like this is EBT_CONTINUE */ goto letscontinue; } sp--; /* put all the local variables right */ i = cs[sp].n; chaininfo = cs[sp].chaininfo; nentries = chaininfo->nentries; point = cs[sp].e; counter_base = cb_base + chaininfo->counter_offset; continue; } if (verdict == EBT_CONTINUE) goto letscontinue; if (WARN(verdict < 0, "bogus standard verdict\n")) { read_unlock_bh(&table->lock); return NF_DROP; } /* jump to a udc */ cs[sp].n = i + 1; cs[sp].chaininfo = chaininfo; cs[sp].e = ebt_next_entry(point); i = 0; chaininfo = (struct ebt_entries *) (base + verdict); if (WARN(chaininfo->distinguisher, "jump to non-chain\n")) { read_unlock_bh(&table->lock); return NF_DROP; } nentries = chaininfo->nentries; point = (struct ebt_entry *)chaininfo->data; counter_base = cb_base + chaininfo->counter_offset; sp++; continue; letscontinue: point = ebt_next_entry(point); i++; } /* I actually like this :) */ if (chaininfo->policy == EBT_RETURN) goto letsreturn; if (chaininfo->policy == EBT_ACCEPT) { read_unlock_bh(&table->lock); return NF_ACCEPT; } read_unlock_bh(&table->lock); return NF_DROP; } /* If it succeeds, returns element and locks mutex */ static inline void * find_inlist_lock_noload(struct net *net, const char *name, int *error, struct mutex *mutex) { struct ebt_pernet *ebt_net = net_generic(net, ebt_pernet_id); struct ebt_template *tmpl; struct ebt_table *table; mutex_lock(mutex); list_for_each_entry(table, &ebt_net->tables, list) { if (strcmp(table->name, name) == 0) return table; } list_for_each_entry(tmpl, &template_tables, list) { if (strcmp(name, tmpl->name) == 0) { struct module *owner = tmpl->owner; if (!try_module_get(owner)) goto out; mutex_unlock(mutex); *error = tmpl->table_init(net); if (*error) { module_put(owner); return NULL; } mutex_lock(mutex); module_put(owner); break; } } list_for_each_entry(table, &ebt_net->tables, list) { if (strcmp(table->name, name) == 0) return table; } out: *error = -ENOENT; mutex_unlock(mutex); return NULL; } static void * find_inlist_lock(struct net *net, const char *name, const char *prefix, int *error, struct mutex *mutex) { return try_then_request_module( find_inlist_lock_noload(net, name, error, mutex), "%s%s", prefix, name); } static inline struct ebt_table * find_table_lock(struct net *net, const char *name, int *error, struct mutex *mutex) { return find_inlist_lock(net, name, "ebtable_", error, mutex); } static inline void ebt_free_table_info(struct ebt_table_info *info) { int i; if (info->chainstack) { for_each_possible_cpu(i) vfree(info->chainstack[i]); vfree(info->chainstack); } } static inline int ebt_check_match(struct ebt_entry_match *m, struct xt_mtchk_param *par, unsigned int *cnt) { const struct ebt_entry *e = par->entryinfo; struct xt_match *match; size_t left = ((char *)e + e->watchers_offset) - (char *)m; int ret; if (left < sizeof(struct ebt_entry_match) || left - sizeof(struct ebt_entry_match) < m->match_size) return -EINVAL; match = xt_find_match(NFPROTO_BRIDGE, m->u.name, m->u.revision); if (IS_ERR(match) || match->family != NFPROTO_BRIDGE) { if (!IS_ERR(match)) module_put(match->me); request_module("ebt_%s", m->u.name); match = xt_find_match(NFPROTO_BRIDGE, m->u.name, m->u.revision); } if (IS_ERR(match)) return PTR_ERR(match); m->u.match = match; par->match = match; par->matchinfo = m->data; ret = xt_check_match(par, m->match_size, ntohs(e->ethproto), e->invflags & EBT_IPROTO); if (ret < 0) { module_put(match->me); return ret; } (*cnt)++; return 0; } static inline int ebt_check_watcher(struct ebt_entry_watcher *w, struct xt_tgchk_param *par, unsigned int *cnt) { const struct ebt_entry *e = par->entryinfo; struct xt_target *watcher; size_t left = ((char *)e + e->target_offset) - (char *)w; int ret; if (left < sizeof(struct ebt_entry_watcher) || left - sizeof(struct ebt_entry_watcher) < w->watcher_size) return -EINVAL; watcher = xt_request_find_target(NFPROTO_BRIDGE, w->u.name, 0); if (IS_ERR(watcher)) return PTR_ERR(watcher); if (watcher->family != NFPROTO_BRIDGE) { module_put(watcher->me); return -ENOENT; } w->u.watcher = watcher; par->target = watcher; par->targinfo = w->data; ret = xt_check_target(par, w->watcher_size, ntohs(e->ethproto), e->invflags & EBT_IPROTO); if (ret < 0) { module_put(watcher->me); return ret; } (*cnt)++; return 0; } static int ebt_verify_pointers(const struct ebt_replace *repl, struct ebt_table_info *newinfo) { unsigned int limit = repl->entries_size; unsigned int valid_hooks = repl->valid_hooks; unsigned int offset = 0; int i; for (i = 0; i < NF_BR_NUMHOOKS; i++) newinfo->hook_entry[i] = NULL; newinfo->entries_size = repl->entries_size; newinfo->nentries = repl->nentries; while (offset < limit) { size_t left = limit - offset; struct ebt_entry *e = (void *)newinfo->entries + offset; if (left < sizeof(unsigned int)) break; for (i = 0; i < NF_BR_NUMHOOKS; i++) { if ((valid_hooks & (1 << i)) == 0) continue; if ((char __user *)repl->hook_entry[i] == repl->entries + offset) break; } if (i != NF_BR_NUMHOOKS || !(e->bitmask & EBT_ENTRY_OR_ENTRIES)) { if (e->bitmask != 0) { /* we make userspace set this right, * so there is no misunderstanding */ return -EINVAL; } if (i != NF_BR_NUMHOOKS) newinfo->hook_entry[i] = (struct ebt_entries *)e; if (left < sizeof(struct ebt_entries)) break; offset += sizeof(struct ebt_entries); } else { if (left < sizeof(struct ebt_entry)) break; if (left < e->next_offset) break; if (e->next_offset < sizeof(struct ebt_entry)) return -EINVAL; offset += e->next_offset; } } if (offset != limit) return -EINVAL; /* check if all valid hooks have a chain */ for (i = 0; i < NF_BR_NUMHOOKS; i++) { if (!newinfo->hook_entry[i] && (valid_hooks & (1 << i))) return -EINVAL; } return 0; } /* this one is very careful, as it is the first function * to parse the userspace data */ static inline int ebt_check_entry_size_and_hooks(const struct ebt_entry *e, const struct ebt_table_info *newinfo, unsigned int *n, unsigned int *cnt, unsigned int *totalcnt, unsigned int *udc_cnt) { int i; for (i = 0; i < NF_BR_NUMHOOKS; i++) { if ((void *)e == (void *)newinfo->hook_entry[i]) break; } /* beginning of a new chain * if i == NF_BR_NUMHOOKS it must be a user defined chain */ if (i != NF_BR_NUMHOOKS || !e->bitmask) { /* this checks if the previous chain has as many entries * as it said it has */ if (*n != *cnt) return -EINVAL; if (((struct ebt_entries *)e)->policy != EBT_DROP && ((struct ebt_entries *)e)->policy != EBT_ACCEPT) { /* only RETURN from udc */ if (i != NF_BR_NUMHOOKS || ((struct ebt_entries *)e)->policy != EBT_RETURN) return -EINVAL; } if (i == NF_BR_NUMHOOKS) /* it's a user defined chain */ (*udc_cnt)++; if (((struct ebt_entries *)e)->counter_offset != *totalcnt) return -EINVAL; *n = ((struct ebt_entries *)e)->nentries; *cnt = 0; return 0; } /* a plain old entry, heh */ if (sizeof(struct ebt_entry) > e->watchers_offset || e->watchers_offset > e->target_offset || e->target_offset >= e->next_offset) return -EINVAL; /* this is not checked anywhere else */ if (e->next_offset - e->target_offset < sizeof(struct ebt_entry_target)) return -EINVAL; (*cnt)++; (*totalcnt)++; return 0; } struct ebt_cl_stack { struct ebt_chainstack cs; int from; unsigned int hookmask; }; /* We need these positions to check that the jumps to a different part of the * entries is a jump to the beginning of a new chain. */ static inline int ebt_get_udc_positions(struct ebt_entry *e, struct ebt_table_info *newinfo, unsigned int *n, struct ebt_cl_stack *udc) { int i; /* we're only interested in chain starts */ if (e->bitmask) return 0; for (i = 0; i < NF_BR_NUMHOOKS; i++) { if (newinfo->hook_entry[i] == (struct ebt_entries *)e) break; } /* only care about udc */ if (i != NF_BR_NUMHOOKS) return 0; udc[*n].cs.chaininfo = (struct ebt_entries *)e; /* these initialisations are depended on later in check_chainloops() */ udc[*n].cs.n = 0; udc[*n].hookmask = 0; (*n)++; return 0; } static inline int ebt_cleanup_match(struct ebt_entry_match *m, struct net *net, unsigned int *i) { struct xt_mtdtor_param par; if (i && (*i)-- == 0) return 1; par.net = net; par.match = m->u.match; par.matchinfo = m->data; par.family = NFPROTO_BRIDGE; if (par.match->destroy != NULL) par.match->destroy(&par); module_put(par.match->me); return 0; } static inline int ebt_cleanup_watcher(struct ebt_entry_watcher *w, struct net *net, unsigned int *i) { struct xt_tgdtor_param par; if (i && (*i)-- == 0) return 1; par.net = net; par.target = w->u.watcher; par.targinfo = w->data; par.family = NFPROTO_BRIDGE; if (par.target->destroy != NULL) par.target->destroy(&par); module_put(par.target->me); return 0; } static inline int ebt_cleanup_entry(struct ebt_entry *e, struct net *net, unsigned int *cnt) { struct xt_tgdtor_param par; struct ebt_entry_target *t; if (e->bitmask == 0) return 0; /* we're done */ if (cnt && (*cnt)-- == 0) return 1; EBT_WATCHER_ITERATE(e, ebt_cleanup_watcher, net, NULL); EBT_MATCH_ITERATE(e, ebt_cleanup_match, net, NULL); t = ebt_get_target(e); par.net = net; par.target = t->u.target; par.targinfo = t->data; par.family = NFPROTO_BRIDGE; if (par.target->destroy != NULL) par.target->destroy(&par); module_put(par.target->me); return 0; } static inline int ebt_check_entry(struct ebt_entry *e, struct net *net, const struct ebt_table_info *newinfo, const char *name, unsigned int *cnt, struct ebt_cl_stack *cl_s, unsigned int udc_cnt) { struct ebt_entry_target *t; struct xt_target *target; unsigned int i, j, hook = 0, hookmask = 0; size_t gap; int ret; struct xt_mtchk_param mtpar; struct xt_tgchk_param tgpar; /* don't mess with the struct ebt_entries */ if (e->bitmask == 0) return 0; if (e->bitmask & ~EBT_F_MASK) return -EINVAL; if (e->invflags & ~EBT_INV_MASK) return -EINVAL; if ((e->bitmask & EBT_NOPROTO) && (e->bitmask & EBT_802_3)) return -EINVAL; /* what hook do we belong to? */ for (i = 0; i < NF_BR_NUMHOOKS; i++) { if (!newinfo->hook_entry[i]) continue; if ((char *)newinfo->hook_entry[i] < (char *)e) hook = i; else break; } /* (1 << NF_BR_NUMHOOKS) tells the check functions the rule is on * a base chain */ if (i < NF_BR_NUMHOOKS) hookmask = (1 << hook) | (1 << NF_BR_NUMHOOKS); else { for (i = 0; i < udc_cnt; i++) if ((char *)(cl_s[i].cs.chaininfo) > (char *)e) break; if (i == 0) hookmask = (1 << hook) | (1 << NF_BR_NUMHOOKS); else hookmask = cl_s[i - 1].hookmask; } i = 0; memset(&mtpar, 0, sizeof(mtpar)); memset(&tgpar, 0, sizeof(tgpar)); mtpar.net = tgpar.net = net; mtpar.table = tgpar.table = name; mtpar.entryinfo = tgpar.entryinfo = e; mtpar.hook_mask = tgpar.hook_mask = hookmask; mtpar.family = tgpar.family = NFPROTO_BRIDGE; ret = EBT_MATCH_ITERATE(e, ebt_check_match, &mtpar, &i); if (ret != 0) goto cleanup_matches; j = 0; ret = EBT_WATCHER_ITERATE(e, ebt_check_watcher, &tgpar, &j); if (ret != 0) goto cleanup_watchers; t = ebt_get_target(e); gap = e->next_offset - e->target_offset; target = xt_request_find_target(NFPROTO_BRIDGE, t->u.name, 0); if (IS_ERR(target)) { ret = PTR_ERR(target); goto cleanup_watchers; } /* Reject UNSPEC, xtables verdicts/return values are incompatible */ if (target->family != NFPROTO_BRIDGE) { module_put(target->me); ret = -ENOENT; goto cleanup_watchers; } t->u.target = target; if (t->u.target == &ebt_standard_target) { if (gap < sizeof(struct ebt_standard_target)) { ret = -EFAULT; goto cleanup_watchers; } if (((struct ebt_standard_target *)t)->verdict < -NUM_STANDARD_TARGETS) { ret = -EFAULT; goto cleanup_watchers; } } else if (t->target_size > gap - sizeof(struct ebt_entry_target)) { module_put(t->u.target->me); ret = -EFAULT; goto cleanup_watchers; } tgpar.target = target; tgpar.targinfo = t->data; ret = xt_check_target(&tgpar, t->target_size, ntohs(e->ethproto), e->invflags & EBT_IPROTO); if (ret < 0) { module_put(target->me); goto cleanup_watchers; } (*cnt)++; return 0; cleanup_watchers: EBT_WATCHER_ITERATE(e, ebt_cleanup_watcher, net, &j); cleanup_matches: EBT_MATCH_ITERATE(e, ebt_cleanup_match, net, &i); return ret; } /* checks for loops and sets the hook mask for udc * the hook mask for udc tells us from which base chains the udc can be * accessed. This mask is a parameter to the check() functions of the extensions */ static int check_chainloops(const struct ebt_entries *chain, struct ebt_cl_stack *cl_s, unsigned int udc_cnt, unsigned int hooknr, char *base) { int i, chain_nr = -1, pos = 0, nentries = chain->nentries, verdict; const struct ebt_entry *e = (struct ebt_entry *)chain->data; const struct ebt_entry_target *t; while (pos < nentries || chain_nr != -1) { /* end of udc, go back one 'recursion' step */ if (pos == nentries) { /* put back values of the time when this chain was called */ e = cl_s[chain_nr].cs.e; if (cl_s[chain_nr].from != -1) nentries = cl_s[cl_s[chain_nr].from].cs.chaininfo->nentries; else nentries = chain->nentries; pos = cl_s[chain_nr].cs.n; /* make sure we won't see a loop that isn't one */ cl_s[chain_nr].cs.n = 0; chain_nr = cl_s[chain_nr].from; if (pos == nentries) continue; } t = ebt_get_target_c(e); if (strcmp(t->u.name, EBT_STANDARD_TARGET)) goto letscontinue; if (e->target_offset + sizeof(struct ebt_standard_target) > e->next_offset) return -1; verdict = ((struct ebt_standard_target *)t)->verdict; if (verdict >= 0) { /* jump to another chain */ struct ebt_entries *hlp2 = (struct ebt_entries *)(base + verdict); for (i = 0; i < udc_cnt; i++) if (hlp2 == cl_s[i].cs.chaininfo) break; /* bad destination or loop */ if (i == udc_cnt) return -1; if (cl_s[i].cs.n) return -1; if (cl_s[i].hookmask & (1 << hooknr)) goto letscontinue; /* this can't be 0, so the loop test is correct */ cl_s[i].cs.n = pos + 1; pos = 0; cl_s[i].cs.e = ebt_next_entry(e); e = (struct ebt_entry *)(hlp2->data); nentries = hlp2->nentries; cl_s[i].from = chain_nr; chain_nr = i; /* this udc is accessible from the base chain for hooknr */ cl_s[i].hookmask |= (1 << hooknr); continue; } letscontinue: e = ebt_next_entry(e); pos++; } return 0; } /* do the parsing of the table/chains/entries/matches/watchers/targets, heh */ static int translate_table(struct net *net, const char *name, struct ebt_table_info *newinfo) { unsigned int i, j, k, udc_cnt; int ret; struct ebt_cl_stack *cl_s = NULL; /* used in the checking for chain loops */ i = 0; while (i < NF_BR_NUMHOOKS && !newinfo->hook_entry[i]) i++; if (i == NF_BR_NUMHOOKS) return -EINVAL; if (newinfo->hook_entry[i] != (struct ebt_entries *)newinfo->entries) return -EINVAL; /* make sure chains are ordered after each other in same order * as their corresponding hooks */ for (j = i + 1; j < NF_BR_NUMHOOKS; j++) { if (!newinfo->hook_entry[j]) continue; if (newinfo->hook_entry[j] <= newinfo->hook_entry[i]) return -EINVAL; i = j; } /* do some early checkings and initialize some things */ i = 0; /* holds the expected nr. of entries for the chain */ j = 0; /* holds the up to now counted entries for the chain */ k = 0; /* holds the total nr. of entries, should equal * newinfo->nentries afterwards */ udc_cnt = 0; /* will hold the nr. of user defined chains (udc) */ ret = EBT_ENTRY_ITERATE(newinfo->entries, newinfo->entries_size, ebt_check_entry_size_and_hooks, newinfo, &i, &j, &k, &udc_cnt); if (ret != 0) return ret; if (i != j) return -EINVAL; if (k != newinfo->nentries) return -EINVAL; /* get the location of the udc, put them in an array * while we're at it, allocate the chainstack */ if (udc_cnt) { /* this will get free'd in do_replace()/ebt_register_table() * if an error occurs */ newinfo->chainstack = vmalloc(array_size(nr_cpu_ids, sizeof(*(newinfo->chainstack)))); if (!newinfo->chainstack) return -ENOMEM; for_each_possible_cpu(i) { newinfo->chainstack[i] = vmalloc_node(array_size(udc_cnt, sizeof(*(newinfo->chainstack[0]))), cpu_to_node(i)); if (!newinfo->chainstack[i]) { while (i) vfree(newinfo->chainstack[--i]); vfree(newinfo->chainstack); newinfo->chainstack = NULL; return -ENOMEM; } } cl_s = vmalloc(array_size(udc_cnt, sizeof(*cl_s))); if (!cl_s) return -ENOMEM; i = 0; /* the i'th udc */ EBT_ENTRY_ITERATE(newinfo->entries, newinfo->entries_size, ebt_get_udc_positions, newinfo, &i, cl_s); /* sanity check */ if (i != udc_cnt) { vfree(cl_s); return -EFAULT; } } /* Check for loops */ for (i = 0; i < NF_BR_NUMHOOKS; i++) if (newinfo->hook_entry[i]) if (check_chainloops(newinfo->hook_entry[i], cl_s, udc_cnt, i, newinfo->entries)) { vfree(cl_s); return -EINVAL; } /* we now know the following (along with E=mc²): * - the nr of entries in each chain is right * - the size of the allocated space is right * - all valid hooks have a corresponding chain * - there are no loops * - wrong data can still be on the level of a single entry * - could be there are jumps to places that are not the * beginning of a chain. This can only occur in chains that * are not accessible from any base chains, so we don't care. */ /* used to know what we need to clean up if something goes wrong */ i = 0; ret = EBT_ENTRY_ITERATE(newinfo->entries, newinfo->entries_size, ebt_check_entry, net, newinfo, name, &i, cl_s, udc_cnt); if (ret != 0) { EBT_ENTRY_ITERATE(newinfo->entries, newinfo->entries_size, ebt_cleanup_entry, net, &i); } vfree(cl_s); return ret; } /* called under write_lock */ static void get_counters(const struct ebt_counter *oldcounters, struct ebt_counter *counters, unsigned int nentries) { int i, cpu; struct ebt_counter *counter_base; /* counters of cpu 0 */ memcpy(counters, oldcounters, sizeof(struct ebt_counter) * nentries); /* add other counters to those of cpu 0 */ for_each_possible_cpu(cpu) { if (cpu == 0) continue; counter_base = COUNTER_BASE(oldcounters, nentries, cpu); for (i = 0; i < nentries; i++) ADD_COUNTER(counters[i], counter_base[i].bcnt, counter_base[i].pcnt); } } static int do_replace_finish(struct net *net, struct ebt_replace *repl, struct ebt_table_info *newinfo) { int ret; struct ebt_counter *counterstmp = NULL; /* used to be able to unlock earlier */ struct ebt_table_info *table; struct ebt_table *t; /* the user wants counters back * the check on the size is done later, when we have the lock */ if (repl->num_counters) { unsigned long size = repl->num_counters * sizeof(*counterstmp); counterstmp = vmalloc(size); if (!counterstmp) return -ENOMEM; } newinfo->chainstack = NULL; ret = ebt_verify_pointers(repl, newinfo); if (ret != 0) goto free_counterstmp; ret = translate_table(net, repl->name, newinfo); if (ret != 0) goto free_counterstmp; t = find_table_lock(net, repl->name, &ret, &ebt_mutex); if (!t) { ret = -ENOENT; goto free_iterate; } if (repl->valid_hooks != t->valid_hooks) { ret = -EINVAL; goto free_unlock; } if (repl->num_counters && repl->num_counters != t->private->nentries) { ret = -EINVAL; goto free_unlock; } /* we have the mutex lock, so no danger in reading this pointer */ table = t->private; /* make sure the table can only be rmmod'ed if it contains no rules */ if (!table->nentries && newinfo->nentries && !try_module_get(t->me)) { ret = -ENOENT; goto free_unlock; } else if (table->nentries && !newinfo->nentries) module_put(t->me); /* we need an atomic snapshot of the counters */ write_lock_bh(&t->lock); if (repl->num_counters) get_counters(t->private->counters, counterstmp, t->private->nentries); t->private = newinfo; write_unlock_bh(&t->lock); mutex_unlock(&ebt_mutex); /* so, a user can change the chains while having messed up her counter * allocation. Only reason why this is done is because this way the lock * is held only once, while this doesn't bring the kernel into a * dangerous state. */ if (repl->num_counters && copy_to_user(repl->counters, counterstmp, repl->num_counters * sizeof(struct ebt_counter))) { /* Silent error, can't fail, new table is already in place */ net_warn_ratelimited("ebtables: counters copy to user failed while replacing table\n"); } /* decrease module count and free resources */ EBT_ENTRY_ITERATE(table->entries, table->entries_size, ebt_cleanup_entry, net, NULL); vfree(table->entries); ebt_free_table_info(table); vfree(table); vfree(counterstmp); audit_log_nfcfg(repl->name, AF_BRIDGE, repl->nentries, AUDIT_XT_OP_REPLACE, GFP_KERNEL); return 0; free_unlock: mutex_unlock(&ebt_mutex); free_iterate: EBT_ENTRY_ITERATE(newinfo->entries, newinfo->entries_size, ebt_cleanup_entry, net, NULL); free_counterstmp: vfree(counterstmp); /* can be initialized in translate_table() */ ebt_free_table_info(newinfo); return ret; } /* replace the table */ static int do_replace(struct net *net, sockptr_t arg, unsigned int len) { int ret, countersize; struct ebt_table_info *newinfo; struct ebt_replace tmp; if (len < sizeof(tmp)) return -EINVAL; if (copy_from_sockptr(&tmp, arg, sizeof(tmp)) != 0) return -EFAULT; if (len != sizeof(tmp) + tmp.entries_size) return -EINVAL; if (tmp.entries_size == 0) return -EINVAL; /* overflow check */ if (tmp.nentries >= ((INT_MAX - sizeof(struct ebt_table_info)) / NR_CPUS - SMP_CACHE_BYTES) / sizeof(struct ebt_counter)) return -ENOMEM; if (tmp.num_counters >= INT_MAX / sizeof(struct ebt_counter)) return -ENOMEM; tmp.name[sizeof(tmp.name) - 1] = 0; countersize = COUNTER_OFFSET(tmp.nentries) * nr_cpu_ids; newinfo = __vmalloc(sizeof(*newinfo) + countersize, GFP_KERNEL_ACCOUNT); if (!newinfo) return -ENOMEM; if (countersize) memset(newinfo->counters, 0, countersize); newinfo->entries = __vmalloc(tmp.entries_size, GFP_KERNEL_ACCOUNT); if (!newinfo->entries) { ret = -ENOMEM; goto free_newinfo; } if (copy_from_user( newinfo->entries, tmp.entries, tmp.entries_size) != 0) { ret = -EFAULT; goto free_entries; } ret = do_replace_finish(net, &tmp, newinfo); if (ret == 0) return ret; free_entries: vfree(newinfo->entries); free_newinfo: vfree(newinfo); return ret; } static void __ebt_unregister_table(struct net *net, struct ebt_table *table) { mutex_lock(&ebt_mutex); list_del(&table->list); mutex_unlock(&ebt_mutex); audit_log_nfcfg(table->name, AF_BRIDGE, table->private->nentries, AUDIT_XT_OP_UNREGISTER, GFP_KERNEL); EBT_ENTRY_ITERATE(table->private->entries, table->private->entries_size, ebt_cleanup_entry, net, NULL); if (table->private->nentries) module_put(table->me); vfree(table->private->entries); ebt_free_table_info(table->private); vfree(table->private); kfree(table->ops); kfree(table); } int ebt_register_table(struct net *net, const struct ebt_table *input_table, const struct nf_hook_ops *template_ops) { struct ebt_pernet *ebt_net = net_generic(net, ebt_pernet_id); struct ebt_table_info *newinfo; struct ebt_table *t, *table; struct nf_hook_ops *ops; unsigned int num_ops; struct ebt_replace_kernel *repl; int ret, i, countersize; void *p; if (input_table == NULL || (repl = input_table->table) == NULL || repl->entries == NULL || repl->entries_size == 0 || repl->counters != NULL || input_table->private != NULL) return -EINVAL; /* Don't add one table to multiple lists. */ table = kmemdup(input_table, sizeof(struct ebt_table), GFP_KERNEL); if (!table) { ret = -ENOMEM; goto out; } countersize = COUNTER_OFFSET(repl->nentries) * nr_cpu_ids; newinfo = vmalloc(sizeof(*newinfo) + countersize); ret = -ENOMEM; if (!newinfo) goto free_table; p = vmalloc(repl->entries_size); if (!p) goto free_newinfo; memcpy(p, repl->entries, repl->entries_size); newinfo->entries = p; newinfo->entries_size = repl->entries_size; newinfo->nentries = repl->nentries; if (countersize) memset(newinfo->counters, 0, countersize); /* fill in newinfo and parse the entries */ newinfo->chainstack = NULL; for (i = 0; i < NF_BR_NUMHOOKS; i++) { if ((repl->valid_hooks & (1 << i)) == 0) newinfo->hook_entry[i] = NULL; else newinfo->hook_entry[i] = p + ((char *)repl->hook_entry[i] - repl->entries); } ret = translate_table(net, repl->name, newinfo); if (ret != 0) goto free_chainstack; table->private = newinfo; rwlock_init(&table->lock); mutex_lock(&ebt_mutex); list_for_each_entry(t, &ebt_net->tables, list) { if (strcmp(t->name, table->name) == 0) { ret = -EEXIST; goto free_unlock; } } /* Hold a reference count if the chains aren't empty */ if (newinfo->nentries && !try_module_get(table->me)) { ret = -ENOENT; goto free_unlock; } num_ops = hweight32(table->valid_hooks); if (num_ops == 0) { ret = -EINVAL; goto free_unlock; } ops = kmemdup(template_ops, sizeof(*ops) * num_ops, GFP_KERNEL); if (!ops) { ret = -ENOMEM; if (newinfo->nentries) module_put(table->me); goto free_unlock; } for (i = 0; i < num_ops; i++) ops[i].priv = table; list_add(&table->list, &ebt_net->tables); mutex_unlock(&ebt_mutex); table->ops = ops; ret = nf_register_net_hooks(net, ops, num_ops); if (ret) __ebt_unregister_table(net, table); audit_log_nfcfg(repl->name, AF_BRIDGE, repl->nentries, AUDIT_XT_OP_REGISTER, GFP_KERNEL); return ret; free_unlock: mutex_unlock(&ebt_mutex); free_chainstack: ebt_free_table_info(newinfo); vfree(newinfo->entries); free_newinfo: vfree(newinfo); free_table: kfree(table); out: return ret; } int ebt_register_template(const struct ebt_table *t, int (*table_init)(struct net *net)) { struct ebt_template *tmpl; mutex_lock(&ebt_mutex); list_for_each_entry(tmpl, &template_tables, list) { if (WARN_ON_ONCE(strcmp(t->name, tmpl->name) == 0)) { mutex_unlock(&ebt_mutex); return -EEXIST; } } tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL); if (!tmpl) { mutex_unlock(&ebt_mutex); return -ENOMEM; } tmpl->table_init = table_init; strscpy(tmpl->name, t->name, sizeof(tmpl->name)); tmpl->owner = t->me; list_add(&tmpl->list, &template_tables); mutex_unlock(&ebt_mutex); return 0; } EXPORT_SYMBOL(ebt_register_template); void ebt_unregister_template(const struct ebt_table *t) { struct ebt_template *tmpl; mutex_lock(&ebt_mutex); list_for_each_entry(tmpl, &template_tables, list) { if (strcmp(t->name, tmpl->name)) continue; list_del(&tmpl->list); mutex_unlock(&ebt_mutex); kfree(tmpl); return; } mutex_unlock(&ebt_mutex); WARN_ON_ONCE(1); } EXPORT_SYMBOL(ebt_unregister_template); static struct ebt_table *__ebt_find_table(struct net *net, const char *name) { struct ebt_pernet *ebt_net = net_generic(net, ebt_pernet_id); struct ebt_table *t; mutex_lock(&ebt_mutex); list_for_each_entry(t, &ebt_net->tables, list) { if (strcmp(t->name, name) == 0) { mutex_unlock(&ebt_mutex); return t; } } mutex_unlock(&ebt_mutex); return NULL; } void ebt_unregister_table_pre_exit(struct net *net, const char *name) { struct ebt_table *table = __ebt_find_table(net, name); if (table) nf_unregister_net_hooks(net, table->ops, hweight32(table->valid_hooks)); } EXPORT_SYMBOL(ebt_unregister_table_pre_exit); void ebt_unregister_table(struct net *net, const char *name) { struct ebt_table *table = __ebt_find_table(net, name); if (table) __ebt_unregister_table(net, table); } /* userspace just supplied us with counters */ static int do_update_counters(struct net *net, const char *name, struct ebt_counter __user *counters, unsigned int num_counters, unsigned int len) { int i, ret; struct ebt_counter *tmp; struct ebt_table *t; if (num_counters == 0) return -EINVAL; tmp = vmalloc(array_size(num_counters, sizeof(*tmp))); if (!tmp) return -ENOMEM; t = find_table_lock(net, name, &ret, &ebt_mutex); if (!t) goto free_tmp; if (num_counters != t->private->nentries) { ret = -EINVAL; goto unlock_mutex; } if (copy_from_user(tmp, counters, num_counters * sizeof(*counters))) { ret = -EFAULT; goto unlock_mutex; } /* we want an atomic add of the counters */ write_lock_bh(&t->lock); /* we add to the counters of the first cpu */ for (i = 0; i < num_counters; i++) ADD_COUNTER(t->private->counters[i], tmp[i].bcnt, tmp[i].pcnt); write_unlock_bh(&t->lock); ret = 0; unlock_mutex: mutex_unlock(&ebt_mutex); free_tmp: vfree(tmp); return ret; } static int update_counters(struct net *net, sockptr_t arg, unsigned int len) { struct ebt_replace hlp; if (len < sizeof(hlp)) return -EINVAL; if (copy_from_sockptr(&hlp, arg, sizeof(hlp))) return -EFAULT; if (len != sizeof(hlp) + hlp.num_counters * sizeof(struct ebt_counter)) return -EINVAL; return do_update_counters(net, hlp.name, hlp.counters, hlp.num_counters, len); } static inline int ebt_obj_to_user(char __user *um, const char *_name, const char *data, int entrysize, int usersize, int datasize, u8 revision) { char name[EBT_EXTENSION_MAXNAMELEN] = {0}; /* ebtables expects 31 bytes long names but xt_match names are 29 bytes * long. Copy 29 bytes and fill remaining bytes with zeroes. */ strlcpy(name, _name, sizeof(name)); if (copy_to_user(um, name, EBT_EXTENSION_MAXNAMELEN) || put_user(revision, (u8 __user *)(um + EBT_EXTENSION_MAXNAMELEN)) || put_user(datasize, (int __user *)(um + EBT_EXTENSION_MAXNAMELEN + 1)) || xt_data_to_user(um + entrysize, data, usersize, datasize, XT_ALIGN(datasize))) return -EFAULT; return 0; } static inline int ebt_match_to_user(const struct ebt_entry_match *m, const char *base, char __user *ubase) { return ebt_obj_to_user(ubase + ((char *)m - base), m->u.match->name, m->data, sizeof(*m), m->u.match->usersize, m->match_size, m->u.match->revision); } static inline int ebt_watcher_to_user(const struct ebt_entry_watcher *w, const char *base, char __user *ubase) { return ebt_obj_to_user(ubase + ((char *)w - base), w->u.watcher->name, w->data, sizeof(*w), w->u.watcher->usersize, w->watcher_size, w->u.watcher->revision); } static inline int ebt_entry_to_user(struct ebt_entry *e, const char *base, char __user *ubase) { int ret; char __user *hlp; const struct ebt_entry_target *t; if (e->bitmask == 0) { /* special case !EBT_ENTRY_OR_ENTRIES */ if (copy_to_user(ubase + ((char *)e - base), e, sizeof(struct ebt_entries))) return -EFAULT; return 0; } if (copy_to_user(ubase + ((char *)e - base), e, sizeof(*e))) return -EFAULT; hlp = ubase + (((char *)e + e->target_offset) - base); t = ebt_get_target_c(e); ret = EBT_MATCH_ITERATE(e, ebt_match_to_user, base, ubase); if (ret != 0) return ret; ret = EBT_WATCHER_ITERATE(e, ebt_watcher_to_user, base, ubase); if (ret != 0) return ret; ret = ebt_obj_to_user(hlp, t->u.target->name, t->data, sizeof(*t), t->u.target->usersize, t->target_size, t->u.target->revision); if (ret != 0) return ret; return 0; } static int copy_counters_to_user(struct ebt_table *t, const struct ebt_counter *oldcounters, void __user *user, unsigned int num_counters, unsigned int nentries) { struct ebt_counter *counterstmp; int ret = 0; /* userspace might not need the counters */ if (num_counters == 0) return 0; if (num_counters != nentries) return -EINVAL; counterstmp = vmalloc(array_size(nentries, sizeof(*counterstmp))); if (!counterstmp) return -ENOMEM; write_lock_bh(&t->lock); get_counters(oldcounters, counterstmp, nentries); write_unlock_bh(&t->lock); if (copy_to_user(user, counterstmp, nentries * sizeof(struct ebt_counter))) ret = -EFAULT; vfree(counterstmp); return ret; } /* called with ebt_mutex locked */ static int copy_everything_to_user(struct ebt_table *t, void __user *user, const int *len, int cmd) { struct ebt_replace tmp; const struct ebt_counter *oldcounters; unsigned int entries_size, nentries; int ret; char *entries; if (cmd == EBT_SO_GET_ENTRIES) { entries_size = t->private->entries_size; nentries = t->private->nentries; entries = t->private->entries; oldcounters = t->private->counters; } else { entries_size = t->table->entries_size; nentries = t->table->nentries; entries = t->table->entries; oldcounters = t->table->counters; } if (copy_from_user(&tmp, user, sizeof(tmp))) return -EFAULT; if (*len != sizeof(struct ebt_replace) + entries_size + (tmp.num_counters ? nentries * sizeof(struct ebt_counter) : 0)) return -EINVAL; if (tmp.nentries != nentries) return -EINVAL; if (tmp.entries_size != entries_size) return -EINVAL; ret = copy_counters_to_user(t, oldcounters, tmp.counters, tmp.num_counters, nentries); if (ret) return ret; /* set the match/watcher/target names right */ return EBT_ENTRY_ITERATE(entries, entries_size, ebt_entry_to_user, entries, tmp.entries); } #ifdef CONFIG_NETFILTER_XTABLES_COMPAT /* 32 bit-userspace compatibility definitions. */ struct compat_ebt_replace { char name[EBT_TABLE_MAXNAMELEN]; compat_uint_t valid_hooks; compat_uint_t nentries; compat_uint_t entries_size; /* start of the chains */ compat_uptr_t hook_entry[NF_BR_NUMHOOKS]; /* nr of counters userspace expects back */ compat_uint_t num_counters; /* where the kernel will put the old counters. */ compat_uptr_t counters; compat_uptr_t entries; }; /* struct ebt_entry_match, _target and _watcher have same layout */ struct compat_ebt_entry_mwt { union { struct { char name[EBT_EXTENSION_MAXNAMELEN]; u8 revision; }; compat_uptr_t ptr; } u; compat_uint_t match_size; compat_uint_t data[] __aligned(__alignof__(struct compat_ebt_replace)); }; /* account for possible padding between match_size and ->data */ static int ebt_compat_entry_padsize(void) { BUILD_BUG_ON(sizeof(struct ebt_entry_match) < sizeof(struct compat_ebt_entry_mwt)); return (int) sizeof(struct ebt_entry_match) - sizeof(struct compat_ebt_entry_mwt); } static int ebt_compat_match_offset(const struct xt_match *match, unsigned int userlen) { /* ebt_among needs special handling. The kernel .matchsize is * set to -1 at registration time; at runtime an EBT_ALIGN()ed * value is expected. * Example: userspace sends 4500, ebt_among.c wants 4504. */ if (unlikely(match->matchsize == -1)) return XT_ALIGN(userlen) - COMPAT_XT_ALIGN(userlen); return xt_compat_match_offset(match); } static int compat_match_to_user(struct ebt_entry_match *m, void __user **dstptr, unsigned int *size) { const struct xt_match *match = m->u.match; struct compat_ebt_entry_mwt __user *cm = *dstptr; int off = ebt_compat_match_offset(match, m->match_size); compat_uint_t msize = m->match_size - off; if (WARN_ON(off >= m->match_size)) return -EINVAL; if (copy_to_user(cm->u.name, match->name, strlen(match->name) + 1) || put_user(match->revision, &cm->u.revision) || put_user(msize, &cm->match_size)) return -EFAULT; if (match->compat_to_user) { if (match->compat_to_user(cm->data, m->data)) return -EFAULT; } else { if (xt_data_to_user(cm->data, m->data, match->usersize, msize, COMPAT_XT_ALIGN(msize))) return -EFAULT; } *size -= ebt_compat_entry_padsize() + off; *dstptr = cm->data; *dstptr += msize; return 0; } static int compat_target_to_user(struct ebt_entry_target *t, void __user **dstptr, unsigned int *size) { const struct xt_target *target = t->u.target; struct compat_ebt_entry_mwt __user *cm = *dstptr; int off = xt_compat_target_offset(target); compat_uint_t tsize = t->target_size - off; if (WARN_ON(off >= t->target_size)) return -EINVAL; if (copy_to_user(cm->u.name, target->name, strlen(target->name) + 1) || put_user(target->revision, &cm->u.revision) || put_user(tsize, &cm->match_size)) return -EFAULT; if (target->compat_to_user) { if (target->compat_to_user(cm->data, t->data)) return -EFAULT; } else { if (xt_data_to_user(cm->data, t->data, target->usersize, tsize, COMPAT_XT_ALIGN(tsize))) return -EFAULT; } *size -= ebt_compat_entry_padsize() + off; *dstptr = cm->data; *dstptr += tsize; return 0; } static int compat_watcher_to_user(struct ebt_entry_watcher *w, void __user **dstptr, unsigned int *size) { return compat_target_to_user((struct ebt_entry_target *)w, dstptr, size); } static int compat_copy_entry_to_user(struct ebt_entry *e, void __user **dstptr, unsigned int *size) { struct ebt_entry_target *t; struct ebt_entry __user *ce; u32 watchers_offset, target_offset, next_offset; compat_uint_t origsize; int ret; if (e->bitmask == 0) { if (*size < sizeof(struct ebt_entries)) return -EINVAL; if (copy_to_user(*dstptr, e, sizeof(struct ebt_entries))) return -EFAULT; *dstptr += sizeof(struct ebt_entries); *size -= sizeof(struct ebt_entries); return 0; } if (*size < sizeof(*ce)) return -EINVAL; ce = *dstptr; if (copy_to_user(ce, e, sizeof(*ce))) return -EFAULT; origsize = *size; *dstptr += sizeof(*ce); ret = EBT_MATCH_ITERATE(e, compat_match_to_user, dstptr, size); if (ret) return ret; watchers_offset = e->watchers_offset - (origsize - *size); ret = EBT_WATCHER_ITERATE(e, compat_watcher_to_user, dstptr, size); if (ret) return ret; target_offset = e->target_offset - (origsize - *size); t = ebt_get_target(e); ret = compat_target_to_user(t, dstptr, size); if (ret) return ret; next_offset = e->next_offset - (origsize - *size); if (put_user(watchers_offset, &ce->watchers_offset) || put_user(target_offset, &ce->target_offset) || put_user(next_offset, &ce->next_offset)) return -EFAULT; *size -= sizeof(*ce); return 0; } static int compat_calc_match(struct ebt_entry_match *m, int *off) { *off += ebt_compat_match_offset(m->u.match, m->match_size); *off += ebt_compat_entry_padsize(); return 0; } static int compat_calc_watcher(struct ebt_entry_watcher *w, int *off) { *off += xt_compat_target_offset(w->u.watcher); *off += ebt_compat_entry_padsize(); return 0; } static int compat_calc_entry(const struct ebt_entry *e, const struct ebt_table_info *info, const void *base, struct compat_ebt_replace *newinfo) { const struct ebt_entry_target *t; unsigned int entry_offset; int off, ret, i; if (e->bitmask == 0) return 0; off = 0; entry_offset = (void *)e - base; EBT_MATCH_ITERATE(e, compat_calc_match, &off); EBT_WATCHER_ITERATE(e, compat_calc_watcher, &off); t = ebt_get_target_c(e); off += xt_compat_target_offset(t->u.target); off += ebt_compat_entry_padsize(); newinfo->entries_size -= off; ret = xt_compat_add_offset(NFPROTO_BRIDGE, entry_offset, off); if (ret) return ret; for (i = 0; i < NF_BR_NUMHOOKS; i++) { const void *hookptr = info->hook_entry[i]; if (info->hook_entry[i] && (e < (struct ebt_entry *)(base - hookptr))) { newinfo->hook_entry[i] -= off; pr_debug("0x%08X -> 0x%08X\n", newinfo->hook_entry[i] + off, newinfo->hook_entry[i]); } } return 0; } static int ebt_compat_init_offsets(unsigned int number) { if (number > INT_MAX) return -EINVAL; /* also count the base chain policies */ number += NF_BR_NUMHOOKS; return xt_compat_init_offsets(NFPROTO_BRIDGE, number); } static int compat_table_info(const struct ebt_table_info *info, struct compat_ebt_replace *newinfo) { unsigned int size = info->entries_size; const void *entries = info->entries; int ret; newinfo->entries_size = size; ret = ebt_compat_init_offsets(info->nentries); if (ret) return ret; return EBT_ENTRY_ITERATE(entries, size, compat_calc_entry, info, entries, newinfo); } static int compat_copy_everything_to_user(struct ebt_table *t, void __user *user, int *len, int cmd) { struct compat_ebt_replace repl, tmp; struct ebt_counter *oldcounters; struct ebt_table_info tinfo; int ret; void __user *pos; memset(&tinfo, 0, sizeof(tinfo)); if (cmd == EBT_SO_GET_ENTRIES) { tinfo.entries_size = t->private->entries_size; tinfo.nentries = t->private->nentries; tinfo.entries = t->private->entries; oldcounters = t->private->counters; } else { tinfo.entries_size = t->table->entries_size; tinfo.nentries = t->table->nentries; tinfo.entries = t->table->entries; oldcounters = t->table->counters; } if (copy_from_user(&tmp, user, sizeof(tmp))) return -EFAULT; if (tmp.nentries != tinfo.nentries || (tmp.num_counters && tmp.num_counters != tinfo.nentries)) return -EINVAL; memcpy(&repl, &tmp, sizeof(repl)); if (cmd == EBT_SO_GET_ENTRIES) ret = compat_table_info(t->private, &repl); else ret = compat_table_info(&tinfo, &repl); if (ret) return ret; if (*len != sizeof(tmp) + repl.entries_size + (tmp.num_counters? tinfo.nentries * sizeof(struct ebt_counter): 0)) { pr_err("wrong size: *len %d, entries_size %u, replsz %d\n", *len, tinfo.entries_size, repl.entries_size); return -EINVAL; } /* userspace might not need the counters */ ret = copy_counters_to_user(t, oldcounters, compat_ptr(tmp.counters), tmp.num_counters, tinfo.nentries); if (ret) return ret; pos = compat_ptr(tmp.entries); return EBT_ENTRY_ITERATE(tinfo.entries, tinfo.entries_size, compat_copy_entry_to_user, &pos, &tmp.entries_size); } struct ebt_entries_buf_state { char *buf_kern_start; /* kernel buffer to copy (translated) data to */ u32 buf_kern_len; /* total size of kernel buffer */ u32 buf_kern_offset; /* amount of data copied so far */ u32 buf_user_offset; /* read position in userspace buffer */ }; static int ebt_buf_count(struct ebt_entries_buf_state *state, unsigned int sz) { state->buf_kern_offset += sz; return state->buf_kern_offset >= sz ? 0 : -EINVAL; } static int ebt_buf_add(struct ebt_entries_buf_state *state, const void *data, unsigned int sz) { if (state->buf_kern_start == NULL) goto count_only; if (WARN_ON(state->buf_kern_offset + sz > state->buf_kern_len)) return -EINVAL; memcpy(state->buf_kern_start + state->buf_kern_offset, data, sz); count_only: state->buf_user_offset += sz; return ebt_buf_count(state, sz); } static int ebt_buf_add_pad(struct ebt_entries_buf_state *state, unsigned int sz) { char *b = state->buf_kern_start; if (WARN_ON(b && state->buf_kern_offset > state->buf_kern_len)) return -EINVAL; if (b != NULL && sz > 0) memset(b + state->buf_kern_offset, 0, sz); /* do not adjust ->buf_user_offset here, we added kernel-side padding */ return ebt_buf_count(state, sz); } enum compat_mwt { EBT_COMPAT_MATCH, EBT_COMPAT_WATCHER, EBT_COMPAT_TARGET, }; static int compat_mtw_from_user(const struct compat_ebt_entry_mwt *mwt, enum compat_mwt compat_mwt, struct ebt_entries_buf_state *state, const unsigned char *base) { char name[EBT_EXTENSION_MAXNAMELEN]; struct xt_match *match; struct xt_target *wt; void *dst = NULL; int off, pad = 0; unsigned int size_kern, match_size = mwt->match_size; if (strscpy(name, mwt->u.name, sizeof(name)) < 0) return -EINVAL; if (state->buf_kern_start) dst = state->buf_kern_start + state->buf_kern_offset; switch (compat_mwt) { case EBT_COMPAT_MATCH: match = xt_request_find_match(NFPROTO_BRIDGE, name, mwt->u.revision); if (IS_ERR(match)) return PTR_ERR(match); off = ebt_compat_match_offset(match, match_size); if (dst) { if (match->compat_from_user) match->compat_from_user(dst, mwt->data); else memcpy(dst, mwt->data, match_size); } size_kern = match->matchsize; if (unlikely(size_kern == -1)) size_kern = match_size; module_put(match->me); break; case EBT_COMPAT_WATCHER: case EBT_COMPAT_TARGET: wt = xt_request_find_target(NFPROTO_BRIDGE, name, mwt->u.revision); if (IS_ERR(wt)) return PTR_ERR(wt); off = xt_compat_target_offset(wt); if (dst) { if (wt->compat_from_user) wt->compat_from_user(dst, mwt->data); else memcpy(dst, mwt->data, match_size); } size_kern = wt->targetsize; module_put(wt->me); break; default: return -EINVAL; } state->buf_kern_offset += match_size + off; state->buf_user_offset += match_size; pad = XT_ALIGN(size_kern) - size_kern; if (pad > 0 && dst) { if (WARN_ON(state->buf_kern_len <= pad)) return -EINVAL; if (WARN_ON(state->buf_kern_offset - (match_size + off) + size_kern > state->buf_kern_len - pad)) return -EINVAL; memset(dst + size_kern, 0, pad); } return off + match_size; } /* return size of all matches, watchers or target, including necessary * alignment and padding. */ static int ebt_size_mwt(const struct compat_ebt_entry_mwt *match32, unsigned int size_left, enum compat_mwt type, struct ebt_entries_buf_state *state, const void *base) { const char *buf = (const char *)match32; int growth = 0; if (size_left == 0) return 0; do { struct ebt_entry_match *match_kern; int ret; if (size_left < sizeof(*match32)) return -EINVAL; match_kern = (struct ebt_entry_match *) state->buf_kern_start; if (match_kern) { char *tmp; tmp = state->buf_kern_start + state->buf_kern_offset; match_kern = (struct ebt_entry_match *) tmp; } ret = ebt_buf_add(state, buf, sizeof(*match32)); if (ret < 0) return ret; size_left -= sizeof(*match32); /* add padding before match->data (if any) */ ret = ebt_buf_add_pad(state, ebt_compat_entry_padsize()); if (ret < 0) return ret; if (match32->match_size > size_left) return -EINVAL; size_left -= match32->match_size; ret = compat_mtw_from_user(match32, type, state, base); if (ret < 0) return ret; if (WARN_ON(ret < match32->match_size)) return -EINVAL; growth += ret - match32->match_size; growth += ebt_compat_entry_padsize(); buf += sizeof(*match32); buf += match32->match_size; if (match_kern) match_kern->match_size = ret; match32 = (struct compat_ebt_entry_mwt *) buf; } while (size_left); return growth; } /* called for all ebt_entry structures. */ static int size_entry_mwt(const struct ebt_entry *entry, const unsigned char *base, unsigned int *total, struct ebt_entries_buf_state *state) { unsigned int i, j, startoff, next_expected_off, new_offset = 0; /* stores match/watchers/targets & offset of next struct ebt_entry: */ unsigned int offsets[4]; unsigned int *offsets_update = NULL; int ret; char *buf_start; if (*total < sizeof(struct ebt_entries)) return -EINVAL; if (!entry->bitmask) { *total -= sizeof(struct ebt_entries); return ebt_buf_add(state, entry, sizeof(struct ebt_entries)); } if (*total < sizeof(*entry) || entry->next_offset < sizeof(*entry)) return -EINVAL; startoff = state->buf_user_offset; /* pull in most part of ebt_entry, it does not need to be changed. */ ret = ebt_buf_add(state, entry, offsetof(struct ebt_entry, watchers_offset)); if (ret < 0) return ret; offsets[0] = sizeof(struct ebt_entry); /* matches come first */ memcpy(&offsets[1], &entry->offsets, sizeof(entry->offsets)); if (state->buf_kern_start) { buf_start = state->buf_kern_start + state->buf_kern_offset; offsets_update = (unsigned int *) buf_start; } ret = ebt_buf_add(state, &offsets[1], sizeof(offsets) - sizeof(offsets[0])); if (ret < 0) return ret; buf_start = (char *) entry; /* 0: matches offset, always follows ebt_entry. * 1: watchers offset, from ebt_entry structure * 2: target offset, from ebt_entry structure * 3: next ebt_entry offset, from ebt_entry structure * * offsets are relative to beginning of struct ebt_entry (i.e., 0). */ for (i = 0; i < 4 ; ++i) { if (offsets[i] > *total) return -EINVAL; if (i < 3 && offsets[i] == *total) return -EINVAL; if (i == 0) continue; if (offsets[i-1] > offsets[i]) return -EINVAL; } for (i = 0, j = 1 ; j < 4 ; j++, i++) { struct compat_ebt_entry_mwt *match32; unsigned int size; char *buf = buf_start + offsets[i]; if (offsets[i] > offsets[j]) return -EINVAL; match32 = (struct compat_ebt_entry_mwt *) buf; size = offsets[j] - offsets[i]; ret = ebt_size_mwt(match32, size, i, state, base); if (ret < 0) return ret; new_offset += ret; if (offsets_update && new_offset) { pr_debug("change offset %d to %d\n", offsets_update[i], offsets[j] + new_offset); offsets_update[i] = offsets[j] + new_offset; } } if (state->buf_kern_start == NULL) { unsigned int offset = buf_start - (char *) base; ret = xt_compat_add_offset(NFPROTO_BRIDGE, offset, new_offset); if (ret < 0) return ret; } next_expected_off = state->buf_user_offset - startoff; if (next_expected_off != entry->next_offset) return -EINVAL; if (*total < entry->next_offset) return -EINVAL; *total -= entry->next_offset; return 0; } /* repl->entries_size is the size of the ebt_entry blob in userspace. * It might need more memory when copied to a 64 bit kernel in case * userspace is 32-bit. So, first task: find out how much memory is needed. * * Called before validation is performed. */ static int compat_copy_entries(unsigned char *data, unsigned int size_user, struct ebt_entries_buf_state *state) { unsigned int size_remaining = size_user; int ret; ret = EBT_ENTRY_ITERATE(data, size_user, size_entry_mwt, data, &size_remaining, state); if (ret < 0) return ret; if (size_remaining) return -EINVAL; return state->buf_kern_offset; } static int compat_copy_ebt_replace_from_user(struct ebt_replace *repl, sockptr_t arg, unsigned int len) { struct compat_ebt_replace tmp; int i; if (len < sizeof(tmp)) return -EINVAL; if (copy_from_sockptr(&tmp, arg, sizeof(tmp))) return -EFAULT; if (len != sizeof(tmp) + tmp.entries_size) return -EINVAL; if (tmp.entries_size == 0) return -EINVAL; if (tmp.nentries >= ((INT_MAX - sizeof(struct ebt_table_info)) / NR_CPUS - SMP_CACHE_BYTES) / sizeof(struct ebt_counter)) return -ENOMEM; if (tmp.num_counters >= INT_MAX / sizeof(struct ebt_counter)) return -ENOMEM; memcpy(repl, &tmp, offsetof(struct ebt_replace, hook_entry)); /* starting with hook_entry, 32 vs. 64 bit structures are different */ for (i = 0; i < NF_BR_NUMHOOKS; i++) repl->hook_entry[i] = compat_ptr(tmp.hook_entry[i]); repl->num_counters = tmp.num_counters; repl->counters = compat_ptr(tmp.counters); repl->entries = compat_ptr(tmp.entries); return 0; } static int compat_do_replace(struct net *net, sockptr_t arg, unsigned int len) { int ret, i, countersize, size64; struct ebt_table_info *newinfo; struct ebt_replace tmp; struct ebt_entries_buf_state state; void *entries_tmp; ret = compat_copy_ebt_replace_from_user(&tmp, arg, len); if (ret) { /* try real handler in case userland supplied needed padding */ if (ret == -EINVAL && do_replace(net, arg, len) == 0) ret = 0; return ret; } countersize = COUNTER_OFFSET(tmp.nentries) * nr_cpu_ids; newinfo = vmalloc(sizeof(*newinfo) + countersize); if (!newinfo) return -ENOMEM; if (countersize) memset(newinfo->counters, 0, countersize); memset(&state, 0, sizeof(state)); newinfo->entries = vmalloc(tmp.entries_size); if (!newinfo->entries) { ret = -ENOMEM; goto free_newinfo; } if (copy_from_user( newinfo->entries, tmp.entries, tmp.entries_size) != 0) { ret = -EFAULT; goto free_entries; } entries_tmp = newinfo->entries; xt_compat_lock(NFPROTO_BRIDGE); ret = ebt_compat_init_offsets(tmp.nentries); if (ret < 0) goto out_unlock; ret = compat_copy_entries(entries_tmp, tmp.entries_size, &state); if (ret < 0) goto out_unlock; pr_debug("tmp.entries_size %d, kern off %d, user off %d delta %d\n", tmp.entries_size, state.buf_kern_offset, state.buf_user_offset, xt_compat_calc_jump(NFPROTO_BRIDGE, tmp.entries_size)); size64 = ret; newinfo->entries = vmalloc(size64); if (!newinfo->entries) { vfree(entries_tmp); ret = -ENOMEM; goto out_unlock; } memset(&state, 0, sizeof(state)); state.buf_kern_start = newinfo->entries; state.buf_kern_len = size64; ret = compat_copy_entries(entries_tmp, tmp.entries_size, &state); if (WARN_ON(ret < 0)) { vfree(entries_tmp); goto out_unlock; } vfree(entries_tmp); tmp.entries_size = size64; for (i = 0; i < NF_BR_NUMHOOKS; i++) { char __user *usrptr; if (tmp.hook_entry[i]) { unsigned int delta; usrptr = (char __user *) tmp.hook_entry[i]; delta = usrptr - tmp.entries; usrptr += xt_compat_calc_jump(NFPROTO_BRIDGE, delta); tmp.hook_entry[i] = (struct ebt_entries __user *)usrptr; } } xt_compat_flush_offsets(NFPROTO_BRIDGE); xt_compat_unlock(NFPROTO_BRIDGE); ret = do_replace_finish(net, &tmp, newinfo); if (ret == 0) return ret; free_entries: vfree(newinfo->entries); free_newinfo: vfree(newinfo); return ret; out_unlock: xt_compat_flush_offsets(NFPROTO_BRIDGE); xt_compat_unlock(NFPROTO_BRIDGE); goto free_entries; } static int compat_update_counters(struct net *net, sockptr_t arg, unsigned int len) { struct compat_ebt_replace hlp; if (len < sizeof(hlp)) return -EINVAL; if (copy_from_sockptr(&hlp, arg, sizeof(hlp))) return -EFAULT; /* try real handler in case userland supplied needed padding */ if (len != sizeof(hlp) + hlp.num_counters * sizeof(struct ebt_counter)) return update_counters(net, arg, len); return do_update_counters(net, hlp.name, compat_ptr(hlp.counters), hlp.num_counters, len); } static int compat_do_ebt_get_ctl(struct sock *sk, int cmd, void __user *user, int *len) { int ret; struct compat_ebt_replace tmp; struct ebt_table *t; struct net *net = sock_net(sk); if ((cmd == EBT_SO_GET_INFO || cmd == EBT_SO_GET_INIT_INFO) && *len != sizeof(struct compat_ebt_replace)) return -EINVAL; if (copy_from_user(&tmp, user, sizeof(tmp))) return -EFAULT; tmp.name[sizeof(tmp.name) - 1] = '\0'; t = find_table_lock(net, tmp.name, &ret, &ebt_mutex); if (!t) return ret; xt_compat_lock(NFPROTO_BRIDGE); switch (cmd) { case EBT_SO_GET_INFO: tmp.nentries = t->private->nentries; ret = compat_table_info(t->private, &tmp); if (ret) goto out; tmp.valid_hooks = t->valid_hooks; if (copy_to_user(user, &tmp, *len) != 0) { ret = -EFAULT; break; } ret = 0; break; case EBT_SO_GET_INIT_INFO: tmp.nentries = t->table->nentries; tmp.entries_size = t->table->entries_size; tmp.valid_hooks = t->table->valid_hooks; if (copy_to_user(user, &tmp, *len) != 0) { ret = -EFAULT; break; } ret = 0; break; case EBT_SO_GET_ENTRIES: case EBT_SO_GET_INIT_ENTRIES: /* try real handler first in case of userland-side padding. * in case we are dealing with an 'ordinary' 32 bit binary * without 64bit compatibility padding, this will fail right * after copy_from_user when the *len argument is validated. * * the compat_ variant needs to do one pass over the kernel * data set to adjust for size differences before it the check. */ if (copy_everything_to_user(t, user, len, cmd) == 0) ret = 0; else ret = compat_copy_everything_to_user(t, user, len, cmd); break; default: ret = -EINVAL; } out: xt_compat_flush_offsets(NFPROTO_BRIDGE); xt_compat_unlock(NFPROTO_BRIDGE); mutex_unlock(&ebt_mutex); return ret; } #endif static int do_ebt_get_ctl(struct sock *sk, int cmd, void __user *user, int *len) { struct net *net = sock_net(sk); struct ebt_replace tmp; struct ebt_table *t; int ret; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) return -EPERM; #ifdef CONFIG_NETFILTER_XTABLES_COMPAT /* try real handler in case userland supplied needed padding */ if (in_compat_syscall() && ((cmd != EBT_SO_GET_INFO && cmd != EBT_SO_GET_INIT_INFO) || *len != sizeof(tmp))) return compat_do_ebt_get_ctl(sk, cmd, user, len); #endif if (copy_from_user(&tmp, user, sizeof(tmp))) return -EFAULT; tmp.name[sizeof(tmp.name) - 1] = '\0'; t = find_table_lock(net, tmp.name, &ret, &ebt_mutex); if (!t) return ret; switch (cmd) { case EBT_SO_GET_INFO: case EBT_SO_GET_INIT_INFO: if (*len != sizeof(struct ebt_replace)) { ret = -EINVAL; mutex_unlock(&ebt_mutex); break; } if (cmd == EBT_SO_GET_INFO) { tmp.nentries = t->private->nentries; tmp.entries_size = t->private->entries_size; tmp.valid_hooks = t->valid_hooks; } else { tmp.nentries = t->table->nentries; tmp.entries_size = t->table->entries_size; tmp.valid_hooks = t->table->valid_hooks; } mutex_unlock(&ebt_mutex); if (copy_to_user(user, &tmp, *len) != 0) { ret = -EFAULT; break; } ret = 0; break; case EBT_SO_GET_ENTRIES: case EBT_SO_GET_INIT_ENTRIES: ret = copy_everything_to_user(t, user, len, cmd); mutex_unlock(&ebt_mutex); break; default: mutex_unlock(&ebt_mutex); ret = -EINVAL; } return ret; } static int do_ebt_set_ctl(struct sock *sk, int cmd, sockptr_t arg, unsigned int len) { struct net *net = sock_net(sk); int ret; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) return -EPERM; switch (cmd) { case EBT_SO_SET_ENTRIES: #ifdef CONFIG_NETFILTER_XTABLES_COMPAT if (in_compat_syscall()) ret = compat_do_replace(net, arg, len); else #endif ret = do_replace(net, arg, len); break; case EBT_SO_SET_COUNTERS: #ifdef CONFIG_NETFILTER_XTABLES_COMPAT if (in_compat_syscall()) ret = compat_update_counters(net, arg, len); else #endif ret = update_counters(net, arg, len); break; default: ret = -EINVAL; } return ret; } static struct nf_sockopt_ops ebt_sockopts = { .pf = PF_INET, .set_optmin = EBT_BASE_CTL, .set_optmax = EBT_SO_SET_MAX + 1, .set = do_ebt_set_ctl, .get_optmin = EBT_BASE_CTL, .get_optmax = EBT_SO_GET_MAX + 1, .get = do_ebt_get_ctl, .owner = THIS_MODULE, }; static int __net_init ebt_pernet_init(struct net *net) { struct ebt_pernet *ebt_net = net_generic(net, ebt_pernet_id); INIT_LIST_HEAD(&ebt_net->tables); return 0; } static struct pernet_operations ebt_net_ops = { .init = ebt_pernet_init, .id = &ebt_pernet_id, .size = sizeof(struct ebt_pernet), }; static int __init ebtables_init(void) { int ret; ret = xt_register_target(&ebt_standard_target); if (ret < 0) return ret; ret = nf_register_sockopt(&ebt_sockopts); if (ret < 0) { xt_unregister_target(&ebt_standard_target); return ret; } ret = register_pernet_subsys(&ebt_net_ops); if (ret < 0) { nf_unregister_sockopt(&ebt_sockopts); xt_unregister_target(&ebt_standard_target); return ret; } return 0; } static void ebtables_fini(void) { nf_unregister_sockopt(&ebt_sockopts); xt_unregister_target(&ebt_standard_target); unregister_pernet_subsys(&ebt_net_ops); } EXPORT_SYMBOL(ebt_register_table); EXPORT_SYMBOL(ebt_unregister_table); EXPORT_SYMBOL(ebt_do_table); module_init(ebtables_init); module_exit(ebtables_fini); MODULE_LICENSE("GPL"); |
17 17 2 2 1 2 21 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 | /* SPDX-License-Identifier: GPL-2.0 */ /* * Definitions for the UDP-Lite (RFC 3828) code. */ #ifndef _UDPLITE_H #define _UDPLITE_H #include <net/ip6_checksum.h> /* UDP-Lite socket options */ #define UDPLITE_SEND_CSCOV 10 /* sender partial coverage (as sent) */ #define UDPLITE_RECV_CSCOV 11 /* receiver partial coverage (threshold ) */ extern struct proto udplite_prot; extern struct udp_table udplite_table; /* * Checksum computation is all in software, hence simpler getfrag. */ static __inline__ int udplite_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) { struct msghdr *msg = from; return copy_from_iter_full(to, len, &msg->msg_iter) ? 0 : -EFAULT; } /* * Checksumming routines */ static inline int udplite_checksum_init(struct sk_buff *skb, struct udphdr *uh) { u16 cscov; /* In UDPv4 a zero checksum means that the transmitter generated no * checksum. UDP-Lite (like IPv6) mandates checksums, hence packets * with a zero checksum field are illegal. */ if (uh->check == 0) { net_dbg_ratelimited("UDPLite: zeroed checksum field\n"); return 1; } cscov = ntohs(uh->len); if (cscov == 0) /* Indicates that full coverage is required. */ ; else if (cscov < 8 || cscov > skb->len) { /* * Coverage length violates RFC 3828: log and discard silently. */ net_dbg_ratelimited("UDPLite: bad csum coverage %d/%d\n", cscov, skb->len); return 1; } else if (cscov < skb->len) { UDP_SKB_CB(skb)->partial_cov = 1; UDP_SKB_CB(skb)->cscov = cscov; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->ip_summed = CHECKSUM_NONE; skb->csum_valid = 0; } return 0; } /* Slow-path computation of checksum. Socket is locked. */ static inline __wsum udplite_csum_outgoing(struct sock *sk, struct sk_buff *skb) { const struct udp_sock *up = udp_sk(skb->sk); int cscov = up->len; __wsum csum = 0; if (up->pcflag & UDPLITE_SEND_CC) { /* * Sender has set `partial coverage' option on UDP-Lite socket. * The special case "up->pcslen == 0" signifies full coverage. */ if (up->pcslen < up->len) { if (0 < up->pcslen) cscov = up->pcslen; udp_hdr(skb)->len = htons(up->pcslen); } /* * NOTE: Causes for the error case `up->pcslen > up->len': * (i) Application error (will not be penalized). * (ii) Payload too big for send buffer: data is split * into several packets, each with its own header. * In this case (e.g. last segment), coverage may * exceed packet length. * Since packets with coverage length > packet length are * illegal, we fall back to the defaults here. */ } skb->ip_summed = CHECKSUM_NONE; /* no HW support for checksumming */ skb_queue_walk(&sk->sk_write_queue, skb) { const int off = skb_transport_offset(skb); const int len = skb->len - off; csum = skb_checksum(skb, off, (cscov > len)? len : cscov, csum); if ((cscov -= len) <= 0) break; } return csum; } /* Fast-path computation of checksum. Socket may not be locked. */ static inline __wsum udplite_csum(struct sk_buff *skb) { const struct udp_sock *up = udp_sk(skb->sk); const int off = skb_transport_offset(skb); int len = skb->len - off; if ((up->pcflag & UDPLITE_SEND_CC) && up->pcslen < len) { if (0 < up->pcslen) len = up->pcslen; udp_hdr(skb)->len = htons(up->pcslen); } skb->ip_summed = CHECKSUM_NONE; /* no HW support for checksumming */ return skb_checksum(skb, off, len, 0); } void udplite4_register(void); int udplite_get_port(struct sock *sk, unsigned short snum, int (*scmp)(const struct sock *, const struct sock *)); #endif /* _UDPLITE_H */ |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 | #ifndef __LINUX_MROUTE_BASE_H #define __LINUX_MROUTE_BASE_H #include <linux/netdevice.h> #include <linux/rhashtable-types.h> #include <linux/spinlock.h> #include <net/net_namespace.h> #include <net/sock.h> #include <net/fib_notifier.h> #include <net/ip_fib.h> /** * struct vif_device - interface representor for multicast routing * @dev: network device being used * @bytes_in: statistic; bytes ingressing * @bytes_out: statistic; bytes egresing * @pkt_in: statistic; packets ingressing * @pkt_out: statistic; packets egressing * @rate_limit: Traffic shaping (NI) * @threshold: TTL threshold * @flags: Control flags * @link: Physical interface index * @dev_parent_id: device parent id * @local: Local address * @remote: Remote address for tunnels */ struct vif_device { struct net_device *dev; unsigned long bytes_in, bytes_out; unsigned long pkt_in, pkt_out; unsigned long rate_limit; unsigned char threshold; unsigned short flags; int link; /* Currently only used by ipmr */ struct netdev_phys_item_id dev_parent_id; __be32 local, remote; }; struct vif_entry_notifier_info { struct fib_notifier_info info; struct net_device *dev; unsigned short vif_index; unsigned short vif_flags; u32 tb_id; }; static inline int mr_call_vif_notifier(struct notifier_block *nb, unsigned short family, enum fib_event_type event_type, struct vif_device *vif, unsigned short vif_index, u32 tb_id, struct netlink_ext_ack *extack) { struct vif_entry_notifier_info info = { .info = { .family = family, .extack = extack, }, .dev = vif->dev, .vif_index = vif_index, .vif_flags = vif->flags, .tb_id = tb_id, }; return call_fib_notifier(nb, event_type, &info.info); } static inline int mr_call_vif_notifiers(struct net *net, unsigned short family, enum fib_event_type event_type, struct vif_device *vif, unsigned short vif_index, u32 tb_id, unsigned int *ipmr_seq) { struct vif_entry_notifier_info info = { .info = { .family = family, }, .dev = vif->dev, .vif_index = vif_index, .vif_flags = vif->flags, .tb_id = tb_id, }; ASSERT_RTNL(); (*ipmr_seq)++; return call_fib_notifiers(net, event_type, &info.info); } #ifndef MAXVIFS /* This one is nasty; value is defined in uapi using different symbols for * mroute and morute6 but both map into same 32. */ #define MAXVIFS 32 #endif #define VIF_EXISTS(_mrt, _idx) (!!((_mrt)->vif_table[_idx].dev)) /* mfc_flags: * MFC_STATIC - the entry was added statically (not by a routing daemon) * MFC_OFFLOAD - the entry was offloaded to the hardware */ enum { MFC_STATIC = BIT(0), MFC_OFFLOAD = BIT(1), }; /** * struct mr_mfc - common multicast routing entries * @mnode: rhashtable list * @mfc_parent: source interface (iif) * @mfc_flags: entry flags * @expires: unresolved entry expire time * @unresolved: unresolved cached skbs * @last_assert: time of last assert * @minvif: minimum VIF id * @maxvif: maximum VIF id * @bytes: bytes that have passed for this entry * @pkt: packets that have passed for this entry * @wrong_if: number of wrong source interface hits * @lastuse: time of last use of the group (traffic or update) * @ttls: OIF TTL threshold array * @refcount: reference count for this entry * @list: global entry list * @rcu: used for entry destruction * @free: Operation used for freeing an entry under RCU */ struct mr_mfc { struct rhlist_head mnode; unsigned short mfc_parent; int mfc_flags; union { struct { unsigned long expires; struct sk_buff_head unresolved; } unres; struct { unsigned long last_assert; int minvif; int maxvif; unsigned long bytes; unsigned long pkt; unsigned long wrong_if; unsigned long lastuse; unsigned char ttls[MAXVIFS]; refcount_t refcount; } res; } mfc_un; struct list_head list; struct rcu_head rcu; void (*free)(struct rcu_head *head); }; static inline void mr_cache_put(struct mr_mfc *c) { if (refcount_dec_and_test(&c->mfc_un.res.refcount)) call_rcu(&c->rcu, c->free); } static inline void mr_cache_hold(struct mr_mfc *c) { refcount_inc(&c->mfc_un.res.refcount); } struct mfc_entry_notifier_info { struct fib_notifier_info info; struct mr_mfc *mfc; u32 tb_id; }; static inline int mr_call_mfc_notifier(struct notifier_block *nb, unsigned short family, enum fib_event_type event_type, struct mr_mfc *mfc, u32 tb_id, struct netlink_ext_ack *extack) { struct mfc_entry_notifier_info info = { .info = { .family = family, .extack = extack, }, .mfc = mfc, .tb_id = tb_id }; return call_fib_notifier(nb, event_type, &info.info); } static inline int mr_call_mfc_notifiers(struct net *net, unsigned short family, enum fib_event_type event_type, struct mr_mfc *mfc, u32 tb_id, unsigned int *ipmr_seq) { struct mfc_entry_notifier_info info = { .info = { .family = family, }, .mfc = mfc, .tb_id = tb_id }; ASSERT_RTNL(); (*ipmr_seq)++; return call_fib_notifiers(net, event_type, &info.info); } struct mr_table; /** * struct mr_table_ops - callbacks and info for protocol-specific ops * @rht_params: parameters for accessing the MFC hash * @cmparg_any: a hash key to be used for matching on (*,*) routes */ struct mr_table_ops { const struct rhashtable_params *rht_params; void *cmparg_any; }; /** * struct mr_table - a multicast routing table * @list: entry within a list of multicast routing tables * @net: net where this table belongs * @ops: protocol specific operations * @id: identifier of the table * @mroute_sk: socket associated with the table * @ipmr_expire_timer: timer for handling unresolved routes * @mfc_unres_queue: list of unresolved MFC entries * @vif_table: array containing all possible vifs * @mfc_hash: Hash table of all resolved routes for easy lookup * @mfc_cache_list: list of resovled routes for possible traversal * @maxvif: Identifier of highest value vif currently in use * @cache_resolve_queue_len: current size of unresolved queue * @mroute_do_assert: Whether to inform userspace on wrong ingress * @mroute_do_pim: Whether to receive IGMP PIMv1 * @mroute_reg_vif_num: PIM-device vif index */ struct mr_table { struct list_head list; possible_net_t net; struct mr_table_ops ops; u32 id; struct sock __rcu *mroute_sk; struct timer_list ipmr_expire_timer; struct list_head mfc_unres_queue; struct vif_device vif_table[MAXVIFS]; struct rhltable mfc_hash; struct list_head mfc_cache_list; int maxvif; atomic_t cache_resolve_queue_len; bool mroute_do_assert; bool mroute_do_pim; bool mroute_do_wrvifwhole; int mroute_reg_vif_num; }; #ifdef CONFIG_IP_MROUTE_COMMON void vif_device_init(struct vif_device *v, struct net_device *dev, unsigned long rate_limit, unsigned char threshold, unsigned short flags, unsigned short get_iflink_mask); struct mr_table * mr_table_alloc(struct net *net, u32 id, struct mr_table_ops *ops, void (*expire_func)(struct timer_list *t), void (*table_set)(struct mr_table *mrt, struct net *net)); /* These actually return 'struct mr_mfc *', but to avoid need for explicit * castings they simply return void. */ void *mr_mfc_find_parent(struct mr_table *mrt, void *hasharg, int parent); void *mr_mfc_find_any_parent(struct mr_table *mrt, int vifi); void *mr_mfc_find_any(struct mr_table *mrt, int vifi, void *hasharg); int mr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, struct mr_mfc *c, struct rtmsg *rtm); int mr_table_dump(struct mr_table *mrt, struct sk_buff *skb, struct netlink_callback *cb, int (*fill)(struct mr_table *mrt, struct sk_buff *skb, u32 portid, u32 seq, struct mr_mfc *c, int cmd, int flags), spinlock_t *lock, struct fib_dump_filter *filter); int mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb, struct mr_table *(*iter)(struct net *net, struct mr_table *mrt), int (*fill)(struct mr_table *mrt, struct sk_buff *skb, u32 portid, u32 seq, struct mr_mfc *c, int cmd, int flags), spinlock_t *lock, struct fib_dump_filter *filter); int mr_dump(struct net *net, struct notifier_block *nb, unsigned short family, int (*rules_dump)(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack), struct mr_table *(*mr_iter)(struct net *net, struct mr_table *mrt), rwlock_t *mrt_lock, struct netlink_ext_ack *extack); #else static inline void vif_device_init(struct vif_device *v, struct net_device *dev, unsigned long rate_limit, unsigned char threshold, unsigned short flags, unsigned short get_iflink_mask) { } static inline void *mr_mfc_find_parent(struct mr_table *mrt, void *hasharg, int parent) { return NULL; } static inline void *mr_mfc_find_any_parent(struct mr_table *mrt, int vifi) { return NULL; } static inline struct mr_mfc *mr_mfc_find_any(struct mr_table *mrt, int vifi, void *hasharg) { return NULL; } static inline int mr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, struct mr_mfc *c, struct rtmsg *rtm) { return -EINVAL; } static inline int mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb, struct mr_table *(*iter)(struct net *net, struct mr_table *mrt), int (*fill)(struct mr_table *mrt, struct sk_buff *skb, u32 portid, u32 seq, struct mr_mfc *c, int cmd, int flags), spinlock_t *lock, struct fib_dump_filter *filter) { return -EINVAL; } static inline int mr_dump(struct net *net, struct notifier_block *nb, unsigned short family, int (*rules_dump)(struct net *net, struct notifier_block *nb, struct netlink_ext_ack *extack), struct mr_table *(*mr_iter)(struct net *net, struct mr_table *mrt), rwlock_t *mrt_lock, struct netlink_ext_ack *extack) { return -EINVAL; } #endif static inline void *mr_mfc_find(struct mr_table *mrt, void *hasharg) { return mr_mfc_find_parent(mrt, hasharg, -1); } #ifdef CONFIG_PROC_FS struct mr_vif_iter { struct seq_net_private p; struct mr_table *mrt; int ct; }; struct mr_mfc_iter { struct seq_net_private p; struct mr_table *mrt; struct list_head *cache; /* Lock protecting the mr_table's unresolved queue */ spinlock_t *lock; }; #ifdef CONFIG_IP_MROUTE_COMMON void *mr_vif_seq_idx(struct net *net, struct mr_vif_iter *iter, loff_t pos); void *mr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos); static inline void *mr_vif_seq_start(struct seq_file *seq, loff_t *pos) { return *pos ? mr_vif_seq_idx(seq_file_net(seq), seq->private, *pos - 1) : SEQ_START_TOKEN; } /* These actually return 'struct mr_mfc *', but to avoid need for explicit * castings they simply return void. */ void *mr_mfc_seq_idx(struct net *net, struct mr_mfc_iter *it, loff_t pos); void *mr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos); static inline void *mr_mfc_seq_start(struct seq_file *seq, loff_t *pos, struct mr_table *mrt, spinlock_t *lock) { struct mr_mfc_iter *it = seq->private; it->mrt = mrt; it->cache = NULL; it->lock = lock; return *pos ? mr_mfc_seq_idx(seq_file_net(seq), seq->private, *pos - 1) : SEQ_START_TOKEN; } static inline void mr_mfc_seq_stop(struct seq_file *seq, void *v) { struct mr_mfc_iter *it = seq->private; struct mr_table *mrt = it->mrt; if (it->cache == &mrt->mfc_unres_queue) spin_unlock_bh(it->lock); else if (it->cache == &mrt->mfc_cache_list) rcu_read_unlock(); } #else static inline void *mr_vif_seq_idx(struct net *net, struct mr_vif_iter *iter, loff_t pos) { return NULL; } static inline void *mr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos) { return NULL; } static inline void *mr_vif_seq_start(struct seq_file *seq, loff_t *pos) { return NULL; } static inline void *mr_mfc_seq_idx(struct net *net, struct mr_mfc_iter *it, loff_t pos) { return NULL; } static inline void *mr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos) { return NULL; } static inline void *mr_mfc_seq_start(struct seq_file *seq, loff_t *pos, struct mr_table *mrt, spinlock_t *lock) { return NULL; } static inline void mr_mfc_seq_stop(struct seq_file *seq, void *v) { } #endif #endif #endif |
16 16 16 16 16 16 16 7 7 7 7 124 123 123 124 123 124 45 45 45 91 91 90 9 9 9 9 9 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 | // SPDX-License-Identifier: GPL-2.0-only /* * Pluggable TCP congestion control support and newReno * congestion control. * Based on ideas from I/O scheduler support and Web100. * * Copyright (C) 2005 Stephen Hemminger <shemminger@osdl.org> */ #define pr_fmt(fmt) "TCP: " fmt #include <linux/module.h> #include <linux/mm.h> #include <linux/types.h> #include <linux/list.h> #include <linux/gfp.h> #include <linux/jhash.h> #include <net/tcp.h> static DEFINE_SPINLOCK(tcp_cong_list_lock); static LIST_HEAD(tcp_cong_list); /* Simple linear search, don't expect many entries! */ struct tcp_congestion_ops *tcp_ca_find(const char *name) { struct tcp_congestion_ops *e; list_for_each_entry_rcu(e, &tcp_cong_list, list) { if (strcmp(e->name, name) == 0) return e; } return NULL; } /* Must be called with rcu lock held */ static struct tcp_congestion_ops *tcp_ca_find_autoload(struct net *net, const char *name) { struct tcp_congestion_ops *ca = tcp_ca_find(name); #ifdef CONFIG_MODULES if (!ca && capable(CAP_NET_ADMIN)) { rcu_read_unlock(); request_module("tcp_%s", name); rcu_read_lock(); ca = tcp_ca_find(name); } #endif return ca; } /* Simple linear search, not much in here. */ struct tcp_congestion_ops *tcp_ca_find_key(u32 key) { struct tcp_congestion_ops *e; list_for_each_entry_rcu(e, &tcp_cong_list, list) { if (e->key == key) return e; } return NULL; } /* * Attach new congestion control algorithm to the list * of available options. */ int tcp_register_congestion_control(struct tcp_congestion_ops *ca) { int ret = 0; /* all algorithms must implement these */ if (!ca->ssthresh || !ca->undo_cwnd || !(ca->cong_avoid || ca->cong_control)) { pr_err("%s does not implement required ops\n", ca->name); return -EINVAL; } ca->key = jhash(ca->name, sizeof(ca->name), strlen(ca->name)); spin_lock(&tcp_cong_list_lock); if (ca->key == TCP_CA_UNSPEC || tcp_ca_find_key(ca->key)) { pr_notice("%s already registered or non-unique key\n", ca->name); ret = -EEXIST; } else { list_add_tail_rcu(&ca->list, &tcp_cong_list); pr_debug("%s registered\n", ca->name); } spin_unlock(&tcp_cong_list_lock); return ret; } EXPORT_SYMBOL_GPL(tcp_register_congestion_control); /* * Remove congestion control algorithm, called from * the module's remove function. Module ref counts are used * to ensure that this can't be done till all sockets using * that method are closed. */ void tcp_unregister_congestion_control(struct tcp_congestion_ops *ca) { spin_lock(&tcp_cong_list_lock); list_del_rcu(&ca->list); spin_unlock(&tcp_cong_list_lock); /* Wait for outstanding readers to complete before the * module gets removed entirely. * * A try_module_get() should fail by now as our module is * in "going" state since no refs are held anymore and * module_exit() handler being called. */ synchronize_rcu(); } EXPORT_SYMBOL_GPL(tcp_unregister_congestion_control); u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca) { const struct tcp_congestion_ops *ca; u32 key = TCP_CA_UNSPEC; might_sleep(); rcu_read_lock(); ca = tcp_ca_find_autoload(net, name); if (ca) { key = ca->key; *ecn_ca = ca->flags & TCP_CONG_NEEDS_ECN; } rcu_read_unlock(); return key; } EXPORT_SYMBOL_GPL(tcp_ca_get_key_by_name); char *tcp_ca_get_name_by_key(u32 key, char *buffer) { const struct tcp_congestion_ops *ca; char *ret = NULL; rcu_read_lock(); ca = tcp_ca_find_key(key); if (ca) ret = strncpy(buffer, ca->name, TCP_CA_NAME_MAX); rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(tcp_ca_get_name_by_key); /* Assign choice of congestion control. */ void tcp_assign_congestion_control(struct sock *sk) { struct net *net = sock_net(sk); struct inet_connection_sock *icsk = inet_csk(sk); const struct tcp_congestion_ops *ca; rcu_read_lock(); ca = rcu_dereference(net->ipv4.tcp_congestion_control); if (unlikely(!bpf_try_module_get(ca, ca->owner))) ca = &tcp_reno; icsk->icsk_ca_ops = ca; rcu_read_unlock(); memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); if (ca->flags & TCP_CONG_NEEDS_ECN) INET_ECN_xmit(sk); else INET_ECN_dontxmit(sk); } void tcp_init_congestion_control(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); tcp_sk(sk)->prior_ssthresh = 0; if (icsk->icsk_ca_ops->init) icsk->icsk_ca_ops->init(sk); if (tcp_ca_needs_ecn(sk)) INET_ECN_xmit(sk); else INET_ECN_dontxmit(sk); icsk->icsk_ca_initialized = 1; } static void tcp_reinit_congestion_control(struct sock *sk, const struct tcp_congestion_ops *ca) { struct inet_connection_sock *icsk = inet_csk(sk); tcp_cleanup_congestion_control(sk); icsk->icsk_ca_ops = ca; icsk->icsk_ca_setsockopt = 1; memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); if (ca->flags & TCP_CONG_NEEDS_ECN) INET_ECN_xmit(sk); else INET_ECN_dontxmit(sk); if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) tcp_init_congestion_control(sk); } /* Manage refcounts on socket close. */ void tcp_cleanup_congestion_control(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); if (icsk->icsk_ca_ops->release) icsk->icsk_ca_ops->release(sk); bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); } /* Used by sysctl to change default congestion control */ int tcp_set_default_congestion_control(struct net *net, const char *name) { struct tcp_congestion_ops *ca; const struct tcp_congestion_ops *prev; int ret; rcu_read_lock(); ca = tcp_ca_find_autoload(net, name); if (!ca) { ret = -ENOENT; } else if (!bpf_try_module_get(ca, ca->owner)) { ret = -EBUSY; } else if (!net_eq(net, &init_net) && !(ca->flags & TCP_CONG_NON_RESTRICTED)) { /* Only init netns can set default to a restricted algorithm */ ret = -EPERM; } else { prev = xchg(&net->ipv4.tcp_congestion_control, ca); if (prev) bpf_module_put(prev, prev->owner); ca->flags |= TCP_CONG_NON_RESTRICTED; ret = 0; } rcu_read_unlock(); return ret; } /* Set default value from kernel configuration at bootup */ static int __init tcp_congestion_default(void) { return tcp_set_default_congestion_control(&init_net, CONFIG_DEFAULT_TCP_CONG); } late_initcall(tcp_congestion_default); /* Build string with list of available congestion control values */ void tcp_get_available_congestion_control(char *buf, size_t maxlen) { struct tcp_congestion_ops *ca; size_t offs = 0; rcu_read_lock(); list_for_each_entry_rcu(ca, &tcp_cong_list, list) { offs += snprintf(buf + offs, maxlen - offs, "%s%s", offs == 0 ? "" : " ", ca->name); if (WARN_ON_ONCE(offs >= maxlen)) break; } rcu_read_unlock(); } /* Get current default congestion control */ void tcp_get_default_congestion_control(struct net *net, char *name) { const struct tcp_congestion_ops *ca; rcu_read_lock(); ca = rcu_dereference(net->ipv4.tcp_congestion_control); strncpy(name, ca->name, TCP_CA_NAME_MAX); rcu_read_unlock(); } /* Built list of non-restricted congestion control values */ void tcp_get_allowed_congestion_control(char *buf, size_t maxlen) { struct tcp_congestion_ops *ca; size_t offs = 0; *buf = '\0'; rcu_read_lock(); list_for_each_entry_rcu(ca, &tcp_cong_list, list) { if (!(ca->flags & TCP_CONG_NON_RESTRICTED)) continue; offs += snprintf(buf + offs, maxlen - offs, "%s%s", offs == 0 ? "" : " ", ca->name); if (WARN_ON_ONCE(offs >= maxlen)) break; } rcu_read_unlock(); } /* Change list of non-restricted congestion control */ int tcp_set_allowed_congestion_control(char *val) { struct tcp_congestion_ops *ca; char *saved_clone, *clone, *name; int ret = 0; saved_clone = clone = kstrdup(val, GFP_USER); if (!clone) return -ENOMEM; spin_lock(&tcp_cong_list_lock); /* pass 1 check for bad entries */ while ((name = strsep(&clone, " ")) && *name) { ca = tcp_ca_find(name); if (!ca) { ret = -ENOENT; goto out; } } /* pass 2 clear old values */ list_for_each_entry_rcu(ca, &tcp_cong_list, list) ca->flags &= ~TCP_CONG_NON_RESTRICTED; /* pass 3 mark as allowed */ while ((name = strsep(&val, " ")) && *name) { ca = tcp_ca_find(name); WARN_ON(!ca); if (ca) ca->flags |= TCP_CONG_NON_RESTRICTED; } out: spin_unlock(&tcp_cong_list_lock); kfree(saved_clone); return ret; } /* Change congestion control for socket. If load is false, then it is the * responsibility of the caller to call tcp_init_congestion_control or * tcp_reinit_congestion_control (if the current congestion control was * already initialized. */ int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool cap_net_admin) { struct inet_connection_sock *icsk = inet_csk(sk); const struct tcp_congestion_ops *ca; int err = 0; if (icsk->icsk_ca_dst_locked) return -EPERM; rcu_read_lock(); if (!load) ca = tcp_ca_find(name); else ca = tcp_ca_find_autoload(sock_net(sk), name); /* No change asking for existing value */ if (ca == icsk->icsk_ca_ops) { icsk->icsk_ca_setsockopt = 1; goto out; } if (!ca) err = -ENOENT; else if (!((ca->flags & TCP_CONG_NON_RESTRICTED) || cap_net_admin)) err = -EPERM; else if (!bpf_try_module_get(ca, ca->owner)) err = -EBUSY; else tcp_reinit_congestion_control(sk, ca); out: rcu_read_unlock(); return err; } /* Slow start is used when congestion window is no greater than the slow start * threshold. We base on RFC2581 and also handle stretch ACKs properly. * We do not implement RFC3465 Appropriate Byte Counting (ABC) per se but * something better;) a packet is only considered (s)acked in its entirety to * defend the ACK attacks described in the RFC. Slow start processes a stretch * ACK of degree N as if N acks of degree 1 are received back to back except * ABC caps N to 2. Slow start exits when cwnd grows over ssthresh and * returns the leftover acks to adjust cwnd in congestion avoidance mode. */ u32 tcp_slow_start(struct tcp_sock *tp, u32 acked) { u32 cwnd = min(tcp_snd_cwnd(tp) + acked, tp->snd_ssthresh); acked -= cwnd - tcp_snd_cwnd(tp); tcp_snd_cwnd_set(tp, min(cwnd, tp->snd_cwnd_clamp)); return acked; } EXPORT_SYMBOL_GPL(tcp_slow_start); /* In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd (or alternative w), * for every packet that was ACKed. */ void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked) { /* If credits accumulated at a higher w, apply them gently now. */ if (tp->snd_cwnd_cnt >= w) { tp->snd_cwnd_cnt = 0; tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); } tp->snd_cwnd_cnt += acked; if (tp->snd_cwnd_cnt >= w) { u32 delta = tp->snd_cwnd_cnt / w; tp->snd_cwnd_cnt -= delta * w; tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + delta); } tcp_snd_cwnd_set(tp, min(tcp_snd_cwnd(tp), tp->snd_cwnd_clamp)); } EXPORT_SYMBOL_GPL(tcp_cong_avoid_ai); /* * TCP Reno congestion control * This is special case used for fallback as well. */ /* This is Jacobson's slow start and congestion avoidance. * SIGCOMM '88, p. 328. */ void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked) { struct tcp_sock *tp = tcp_sk(sk); if (!tcp_is_cwnd_limited(sk)) return; /* In "safe" area, increase. */ if (tcp_in_slow_start(tp)) { acked = tcp_slow_start(tp, acked); if (!acked) return; } /* In dangerous area, increase slowly. */ tcp_cong_avoid_ai(tp, tcp_snd_cwnd(tp), acked); } EXPORT_SYMBOL_GPL(tcp_reno_cong_avoid); /* Slow start threshold is half the congestion window (min 2) */ u32 tcp_reno_ssthresh(struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); return max(tcp_snd_cwnd(tp) >> 1U, 2U); } EXPORT_SYMBOL_GPL(tcp_reno_ssthresh); u32 tcp_reno_undo_cwnd(struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); return max(tcp_snd_cwnd(tp), tp->prior_cwnd); } EXPORT_SYMBOL_GPL(tcp_reno_undo_cwnd); struct tcp_congestion_ops tcp_reno = { .flags = TCP_CONG_NON_RESTRICTED, .name = "reno", .owner = THIS_MODULE, .ssthresh = tcp_reno_ssthresh, .cong_avoid = tcp_reno_cong_avoid, .undo_cwnd = tcp_reno_undo_cwnd, }; |
678 725 678 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | /* SPDX-License-Identifier: GPL-2.0-only */ /* * (C) 2008 Krzysztof Piotr Oledzki <ole@ans.pl> */ #ifndef _NF_CONNTRACK_ACCT_H #define _NF_CONNTRACK_ACCT_H #include <net/net_namespace.h> #include <linux/netfilter/nf_conntrack_common.h> #include <linux/netfilter/nf_conntrack_tuple_common.h> #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_extend.h> struct nf_conn_counter { atomic64_t packets; atomic64_t bytes; }; struct nf_conn_acct { struct nf_conn_counter counter[IP_CT_DIR_MAX]; }; static inline struct nf_conn_acct *nf_conn_acct_find(const struct nf_conn *ct) { return nf_ct_ext_find(ct, NF_CT_EXT_ACCT); } static inline struct nf_conn_acct *nf_ct_acct_ext_add(struct nf_conn *ct, gfp_t gfp) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) struct net *net = nf_ct_net(ct); struct nf_conn_acct *acct; if (!net->ct.sysctl_acct) return NULL; acct = nf_ct_ext_add(ct, NF_CT_EXT_ACCT, gfp); if (!acct) pr_debug("failed to add accounting extension area"); return acct; #else return NULL; #endif } /* Check if connection tracking accounting is enabled */ static inline bool nf_ct_acct_enabled(struct net *net) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) return net->ct.sysctl_acct != 0; #else return false; #endif } /* Enable/disable connection tracking accounting */ static inline void nf_ct_set_acct(struct net *net, bool enable) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) net->ct.sysctl_acct = enable; #endif } void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets, unsigned int bytes); static inline void nf_ct_acct_update(struct nf_conn *ct, u32 dir, unsigned int bytes) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) nf_ct_acct_add(ct, dir, 1, bytes); #endif } void nf_conntrack_acct_pernet_init(struct net *net); int nf_conntrack_acct_init(void); void nf_conntrack_acct_fini(void); #endif /* _NF_CONNTRACK_ACCT_H */ |
1 38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 | // SPDX-License-Identifier: GPL-2.0-or-later /* * UDPLITE An implementation of the UDP-Lite protocol (RFC 3828). * * Authors: Gerrit Renker <gerrit@erg.abdn.ac.uk> * * Changes: * Fixes: */ #define pr_fmt(fmt) "UDPLite: " fmt #include <linux/export.h> #include <linux/proc_fs.h> #include "udp_impl.h" struct udp_table udplite_table __read_mostly; EXPORT_SYMBOL(udplite_table); /* Designate sk as UDP-Lite socket */ static int udplite_sk_init(struct sock *sk) { udp_init_sock(sk); udp_sk(sk)->pcflag = UDPLITE_BIT; return 0; } static int udplite_rcv(struct sk_buff *skb) { return __udp4_lib_rcv(skb, &udplite_table, IPPROTO_UDPLITE); } static int udplite_err(struct sk_buff *skb, u32 info) { return __udp4_lib_err(skb, info, &udplite_table); } static const struct net_protocol udplite_protocol = { .handler = udplite_rcv, .err_handler = udplite_err, .no_policy = 1, }; struct proto udplite_prot = { .name = "UDP-Lite", .owner = THIS_MODULE, .close = udp_lib_close, .connect = ip4_datagram_connect, .disconnect = udp_disconnect, .ioctl = udp_ioctl, .init = udplite_sk_init, .destroy = udp_destroy_sock, .setsockopt = udp_setsockopt, .getsockopt = udp_getsockopt, .sendmsg = udp_sendmsg, .recvmsg = udp_recvmsg, .sendpage = udp_sendpage, .hash = udp_lib_hash, .unhash = udp_lib_unhash, .rehash = udp_v4_rehash, .get_port = udp_v4_get_port, .memory_allocated = &udp_memory_allocated, .sysctl_mem = sysctl_udp_mem, .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), .obj_size = sizeof(struct udp_sock), .h.udp_table = &udplite_table, }; EXPORT_SYMBOL(udplite_prot); static struct inet_protosw udplite4_protosw = { .type = SOCK_DGRAM, .protocol = IPPROTO_UDPLITE, .prot = &udplite_prot, .ops = &inet_dgram_ops, .flags = INET_PROTOSW_PERMANENT, }; #ifdef CONFIG_PROC_FS static struct udp_seq_afinfo udplite4_seq_afinfo = { .family = AF_INET, .udp_table = &udplite_table, }; static int __net_init udplite4_proc_init_net(struct net *net) { if (!proc_create_net_data("udplite", 0444, net->proc_net, &udp_seq_ops, sizeof(struct udp_iter_state), &udplite4_seq_afinfo)) return -ENOMEM; return 0; } static void __net_exit udplite4_proc_exit_net(struct net *net) { remove_proc_entry("udplite", net->proc_net); } static struct pernet_operations udplite4_net_ops = { .init = udplite4_proc_init_net, .exit = udplite4_proc_exit_net, }; static __init int udplite4_proc_init(void) { return register_pernet_subsys(&udplite4_net_ops); } #else static inline int udplite4_proc_init(void) { return 0; } #endif void __init udplite4_register(void) { udp_table_init(&udplite_table, "UDP-Lite"); if (proto_register(&udplite_prot, 1)) goto out_register_err; if (inet_add_protocol(&udplite_protocol, IPPROTO_UDPLITE) < 0) goto out_unregister_proto; inet_register_protosw(&udplite4_protosw); if (udplite4_proc_init()) pr_err("%s: Cannot register /proc!\n", __func__); return; out_unregister_proto: proto_unregister(&udplite_prot); out_register_err: pr_crit("%s: Cannot add UDP-Lite protocol\n", __func__); } |
296 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 | /* SPDX-License-Identifier: GPL-2.0 */ /* Rewritten and vastly simplified by Rusty Russell for in-kernel * module loader: * Copyright 2002 Rusty Russell <rusty@rustcorp.com.au> IBM Corporation */ #ifndef _LINUX_KALLSYMS_H #define _LINUX_KALLSYMS_H #include <linux/errno.h> #include <linux/buildid.h> #include <linux/kernel.h> #include <linux/stddef.h> #include <linux/mm.h> #include <linux/module.h> #include <asm/sections.h> #define KSYM_NAME_LEN 128 #define KSYM_SYMBOL_LEN (sizeof("%s+%#lx/%#lx [%s %s]") + \ (KSYM_NAME_LEN - 1) + \ 2*(BITS_PER_LONG*3/10) + (MODULE_NAME_LEN - 1) + \ (BUILD_ID_SIZE_MAX * 2) + 1) struct cred; struct module; static inline int is_kernel_inittext(unsigned long addr) { if (addr >= (unsigned long)_sinittext && addr <= (unsigned long)_einittext) return 1; return 0; } static inline int is_kernel_text(unsigned long addr) { if ((addr >= (unsigned long)_stext && addr <= (unsigned long)_etext) || arch_is_kernel_text(addr)) return 1; return in_gate_area_no_mm(addr); } static inline int is_kernel(unsigned long addr) { if (addr >= (unsigned long)_stext && addr <= (unsigned long)_end) return 1; return in_gate_area_no_mm(addr); } static inline int is_ksym_addr(unsigned long addr) { if (IS_ENABLED(CONFIG_KALLSYMS_ALL)) return is_kernel(addr); return is_kernel_text(addr) || is_kernel_inittext(addr); } static inline void *dereference_symbol_descriptor(void *ptr) { #ifdef HAVE_DEREFERENCE_FUNCTION_DESCRIPTOR struct module *mod; ptr = dereference_kernel_function_descriptor(ptr); if (is_ksym_addr((unsigned long)ptr)) return ptr; preempt_disable(); mod = __module_address((unsigned long)ptr); preempt_enable(); if (mod) ptr = dereference_module_function_descriptor(mod, ptr); #endif return ptr; } #ifdef CONFIG_KALLSYMS int kallsyms_on_each_symbol(int (*fn)(void *, const char *, struct module *, unsigned long), void *data); /* Lookup the address for a symbol. Returns 0 if not found. */ unsigned long kallsyms_lookup_name(const char *name); extern int kallsyms_lookup_size_offset(unsigned long addr, unsigned long *symbolsize, unsigned long *offset); /* Lookup an address. modname is set to NULL if it's in the kernel. */ const char *kallsyms_lookup(unsigned long addr, unsigned long *symbolsize, unsigned long *offset, char **modname, char *namebuf); /* Look up a kernel symbol and return it in a text buffer. */ extern int sprint_symbol(char *buffer, unsigned long address); extern int sprint_symbol_build_id(char *buffer, unsigned long address); extern int sprint_symbol_no_offset(char *buffer, unsigned long address); extern int sprint_backtrace(char *buffer, unsigned long address); extern int sprint_backtrace_build_id(char *buffer, unsigned long address); int lookup_symbol_name(unsigned long addr, char *symname); int lookup_symbol_attrs(unsigned long addr, unsigned long *size, unsigned long *offset, char *modname, char *name); /* How and when do we show kallsyms values? */ extern bool kallsyms_show_value(const struct cred *cred); #else /* !CONFIG_KALLSYMS */ static inline unsigned long kallsyms_lookup_name(const char *name) { return 0; } static inline int kallsyms_lookup_size_offset(unsigned long addr, unsigned long *symbolsize, unsigned long *offset) { |