10 2 3 3 3 3 3 3 3 3 2 12 10 10 5 5 5 5 6 6 3 12 10 3 6 2 4 6 9 8 5 3 2 9 2 1 9 3 2 2 3 2 3 2 2 2 9 9 9 9 8 9 8 9 8 9 9 6 3 9 8 4 4 4 149 4 3 2 1 3 13 12 2 9 8 8 2 8 1 3 1 1 7 6 5 111 149 4 4 4 4 4 4 4 4 1 4 4 4 4 4 4 4 4 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 5 5 5 4 4 5 37 37 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 | // SPDX-License-Identifier: GPL-2.0-only /* By Ross Biro 1/23/92 */ /* * Pentium III FXSR, SSE support * Gareth Hughes <gareth@valinux.com>, May 2000 */ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/sched/task_stack.h> #include <linux/mm.h> #include <linux/smp.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/ptrace.h> #include <linux/user.h> #include <linux/elf.h> #include <linux/security.h> #include <linux/audit.h> #include <linux/seccomp.h> #include <linux/signal.h> #include <linux/perf_event.h> #include <linux/hw_breakpoint.h> #include <linux/rcupdate.h> #include <linux/export.h> #include <linux/context_tracking.h> #include <linux/nospec.h> #include <linux/uaccess.h> #include <asm/processor.h> #include <asm/fpu/signal.h> #include <asm/fpu/regset.h> #include <asm/fpu/xstate.h> #include <asm/debugreg.h> #include <asm/ldt.h> #include <asm/desc.h> #include <asm/prctl.h> #include <asm/proto.h> #include <asm/hw_breakpoint.h> #include <asm/traps.h> #include <asm/syscall.h> #include <asm/fsgsbase.h> #include <asm/io_bitmap.h> #include "tls.h" enum x86_regset_32 { REGSET32_GENERAL, REGSET32_FP, REGSET32_XFP, REGSET32_XSTATE, REGSET32_TLS, REGSET32_IOPERM, }; enum x86_regset_64 { REGSET64_GENERAL, REGSET64_FP, REGSET64_IOPERM, REGSET64_XSTATE, REGSET64_SSP, }; #define REGSET_GENERAL \ ({ \ BUILD_BUG_ON((int)REGSET32_GENERAL != (int)REGSET64_GENERAL); \ REGSET32_GENERAL; \ }) #define REGSET_FP \ ({ \ BUILD_BUG_ON((int)REGSET32_FP != (int)REGSET64_FP); \ REGSET32_FP; \ }) struct pt_regs_offset { const char *name; int offset; }; #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)} #define REG_OFFSET_END {.name = NULL, .offset = 0} static const struct pt_regs_offset regoffset_table[] = { #ifdef CONFIG_X86_64 REG_OFFSET_NAME(r15), REG_OFFSET_NAME(r14), REG_OFFSET_NAME(r13), REG_OFFSET_NAME(r12), REG_OFFSET_NAME(r11), REG_OFFSET_NAME(r10), REG_OFFSET_NAME(r9), REG_OFFSET_NAME(r8), #endif REG_OFFSET_NAME(bx), REG_OFFSET_NAME(cx), REG_OFFSET_NAME(dx), REG_OFFSET_NAME(si), REG_OFFSET_NAME(di), REG_OFFSET_NAME(bp), REG_OFFSET_NAME(ax), #ifdef CONFIG_X86_32 REG_OFFSET_NAME(ds), REG_OFFSET_NAME(es), REG_OFFSET_NAME(fs), REG_OFFSET_NAME(gs), #endif REG_OFFSET_NAME(orig_ax), REG_OFFSET_NAME(ip), REG_OFFSET_NAME(cs), REG_OFFSET_NAME(flags), REG_OFFSET_NAME(sp), REG_OFFSET_NAME(ss), REG_OFFSET_END, }; /** * regs_query_register_offset() - query register offset from its name * @name: the name of a register * * regs_query_register_offset() returns the offset of a register in struct * pt_regs from its name. If the name is invalid, this returns -EINVAL; */ int regs_query_register_offset(const char *name) { const struct pt_regs_offset *roff; for (roff = regoffset_table; roff->name != NULL; roff++) if (!strcmp(roff->name, name)) return roff->offset; return -EINVAL; } /** * regs_query_register_name() - query register name from its offset * @offset: the offset of a register in struct pt_regs. * * regs_query_register_name() returns the name of a register from its * offset in struct pt_regs. If the @offset is invalid, this returns NULL; */ const char *regs_query_register_name(unsigned int offset) { const struct pt_regs_offset *roff; for (roff = regoffset_table; roff->name != NULL; roff++) if (roff->offset == offset) return roff->name; return NULL; } /* * does not yet catch signals sent when the child dies. * in exit.c or in signal.c. */ /* * Determines which flags the user has access to [1 = access, 0 = no access]. */ #define FLAG_MASK_32 ((unsigned long) \ (X86_EFLAGS_CF | X86_EFLAGS_PF | \ X86_EFLAGS_AF | X86_EFLAGS_ZF | \ X86_EFLAGS_SF | X86_EFLAGS_TF | \ X86_EFLAGS_DF | X86_EFLAGS_OF | \ X86_EFLAGS_RF | X86_EFLAGS_AC)) /* * Determines whether a value may be installed in a segment register. */ static inline bool invalid_selector(u16 value) { return unlikely(value != 0 && (value & SEGMENT_RPL_MASK) != USER_RPL); } #ifdef CONFIG_X86_32 #define FLAG_MASK FLAG_MASK_32 static unsigned long *pt_regs_access(struct pt_regs *regs, unsigned long regno) { BUILD_BUG_ON(offsetof(struct pt_regs, bx) != 0); return ®s->bx + (regno >> 2); } static u16 get_segment_reg(struct task_struct *task, unsigned long offset) { /* * Returning the value truncates it to 16 bits. */ unsigned int retval; if (offset != offsetof(struct user_regs_struct, gs)) retval = *pt_regs_access(task_pt_regs(task), offset); else { if (task == current) savesegment(gs, retval); else retval = task->thread.gs; } return retval; } static int set_segment_reg(struct task_struct *task, unsigned long offset, u16 value) { if (WARN_ON_ONCE(task == current)) return -EIO; /* * The value argument was already truncated to 16 bits. */ if (invalid_selector(value)) return -EIO; /* * For %cs and %ss we cannot permit a null selector. * We can permit a bogus selector as long as it has USER_RPL. * Null selectors are fine for other segment registers, but * we will never get back to user mode with invalid %cs or %ss * and will take the trap in iret instead. Much code relies * on user_mode() to distinguish a user trap frame (which can * safely use invalid selectors) from a kernel trap frame. */ switch (offset) { case offsetof(struct user_regs_struct, cs): case offsetof(struct user_regs_struct, ss): if (unlikely(value == 0)) return -EIO; fallthrough; default: *pt_regs_access(task_pt_regs(task), offset) = value; break; case offsetof(struct user_regs_struct, gs): task->thread.gs = value; } return 0; } #else /* CONFIG_X86_64 */ #define FLAG_MASK (FLAG_MASK_32 | X86_EFLAGS_NT) static unsigned long *pt_regs_access(struct pt_regs *regs, unsigned long offset) { BUILD_BUG_ON(offsetof(struct pt_regs, r15) != 0); return ®s->r15 + (offset / sizeof(regs->r15)); } static u16 get_segment_reg(struct task_struct *task, unsigned long offset) { /* * Returning the value truncates it to 16 bits. */ unsigned int seg; switch (offset) { case offsetof(struct user_regs_struct, fs): if (task == current) { /* Older gas can't assemble movq %?s,%r?? */ asm("movl %%fs,%0" : "=r" (seg)); return seg; } return task->thread.fsindex; case offsetof(struct user_regs_struct, gs): if (task == current) { asm("movl %%gs,%0" : "=r" (seg)); return seg; } return task->thread.gsindex; case offsetof(struct user_regs_struct, ds): if (task == current) { asm("movl %%ds,%0" : "=r" (seg)); return seg; } return task->thread.ds; case offsetof(struct user_regs_struct, es): if (task == current) { asm("movl %%es,%0" : "=r" (seg)); return seg; } return task->thread.es; case offsetof(struct user_regs_struct, cs): case offsetof(struct user_regs_struct, ss): break; } return *pt_regs_access(task_pt_regs(task), offset); } static int set_segment_reg(struct task_struct *task, unsigned long offset, u16 value) { if (WARN_ON_ONCE(task == current)) return -EIO; /* * The value argument was already truncated to 16 bits. */ if (invalid_selector(value)) return -EIO; /* * Writes to FS and GS will change the stored selector. Whether * this changes the segment base as well depends on whether * FSGSBASE is enabled. */ switch (offset) { case offsetof(struct user_regs_struct,fs): task->thread.fsindex = value; break; case offsetof(struct user_regs_struct,gs): task->thread.gsindex = value; break; case offsetof(struct user_regs_struct,ds): task->thread.ds = value; break; case offsetof(struct user_regs_struct,es): task->thread.es = value; break; /* * Can't actually change these in 64-bit mode. */ case offsetof(struct user_regs_struct,cs): if (unlikely(value == 0)) return -EIO; task_pt_regs(task)->cs = value; break; case offsetof(struct user_regs_struct,ss): if (unlikely(value == 0)) return -EIO; task_pt_regs(task)->ss = value; break; } return 0; } #endif /* CONFIG_X86_32 */ static unsigned long get_flags(struct task_struct *task) { unsigned long retval = task_pt_regs(task)->flags; /* * If the debugger set TF, hide it from the readout. */ if (test_tsk_thread_flag(task, TIF_FORCED_TF)) retval &= ~X86_EFLAGS_TF; return retval; } static int set_flags(struct task_struct *task, unsigned long value) { struct pt_regs *regs = task_pt_regs(task); /* * If the user value contains TF, mark that * it was not "us" (the debugger) that set it. * If not, make sure it stays set if we had. */ if (value & X86_EFLAGS_TF) clear_tsk_thread_flag(task, TIF_FORCED_TF); else if (test_tsk_thread_flag(task, TIF_FORCED_TF)) value |= X86_EFLAGS_TF; regs->flags = (regs->flags & ~FLAG_MASK) | (value & FLAG_MASK); return 0; } static int putreg(struct task_struct *child, unsigned long offset, unsigned long value) { switch (offset) { case offsetof(struct user_regs_struct, cs): case offsetof(struct user_regs_struct, ds): case offsetof(struct user_regs_struct, es): case offsetof(struct user_regs_struct, fs): case offsetof(struct user_regs_struct, gs): case offsetof(struct user_regs_struct, ss): return set_segment_reg(child, offset, value); case offsetof(struct user_regs_struct, flags): return set_flags(child, value); #ifdef CONFIG_X86_64 case offsetof(struct user_regs_struct,fs_base): if (value >= TASK_SIZE_MAX) return -EIO; x86_fsbase_write_task(child, value); return 0; case offsetof(struct user_regs_struct,gs_base): if (value >= TASK_SIZE_MAX) return -EIO; x86_gsbase_write_task(child, value); return 0; #endif } *pt_regs_access(task_pt_regs(child), offset) = value; return 0; } static unsigned long getreg(struct task_struct *task, unsigned long offset) { switch (offset) { case offsetof(struct user_regs_struct, cs): case offsetof(struct user_regs_struct, ds): case offsetof(struct user_regs_struct, es): case offsetof(struct user_regs_struct, fs): case offsetof(struct user_regs_struct, gs): case offsetof(struct user_regs_struct, ss): return get_segment_reg(task, offset); case offsetof(struct user_regs_struct, flags): return get_flags(task); #ifdef CONFIG_X86_64 case offsetof(struct user_regs_struct, fs_base): return x86_fsbase_read_task(task); case offsetof(struct user_regs_struct, gs_base): return x86_gsbase_read_task(task); #endif } return *pt_regs_access(task_pt_regs(task), offset); } static int genregs_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { int reg; for (reg = 0; to.left; reg++) membuf_store(&to, getreg(target, reg * sizeof(unsigned long))); return 0; } static int genregs_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { int ret = 0; if (kbuf) { const unsigned long *k = kbuf; while (count >= sizeof(*k) && !ret) { ret = putreg(target, pos, *k++); count -= sizeof(*k); pos += sizeof(*k); } } else { const unsigned long __user *u = ubuf; while (count >= sizeof(*u) && !ret) { unsigned long word; ret = __get_user(word, u++); if (ret) break; ret = putreg(target, pos, word); count -= sizeof(*u); pos += sizeof(*u); } } return ret; } static void ptrace_triggered(struct perf_event *bp, struct perf_sample_data *data, struct pt_regs *regs) { int i; struct thread_struct *thread = &(current->thread); /* * Store in the virtual DR6 register the fact that the breakpoint * was hit so the thread's debugger will see it. */ for (i = 0; i < HBP_NUM; i++) { if (thread->ptrace_bps[i] == bp) break; } thread->virtual_dr6 |= (DR_TRAP0 << i); } /* * Walk through every ptrace breakpoints for this thread and * build the dr7 value on top of their attributes. * */ static unsigned long ptrace_get_dr7(struct perf_event *bp[]) { int i; int dr7 = 0; struct arch_hw_breakpoint *info; for (i = 0; i < HBP_NUM; i++) { if (bp[i] && !bp[i]->attr.disabled) { info = counter_arch_bp(bp[i]); dr7 |= encode_dr7(i, info->len, info->type); } } return dr7; } static int ptrace_fill_bp_fields(struct perf_event_attr *attr, int len, int type, bool disabled) { int err, bp_len, bp_type; err = arch_bp_generic_fields(len, type, &bp_len, &bp_type); if (!err) { attr->bp_len = bp_len; attr->bp_type = bp_type; attr->disabled = disabled; } return err; } static struct perf_event * ptrace_register_breakpoint(struct task_struct *tsk, int len, int type, unsigned long addr, bool disabled) { struct perf_event_attr attr; int err; ptrace_breakpoint_init(&attr); attr.bp_addr = addr; err = ptrace_fill_bp_fields(&attr, len, type, disabled); if (err) return ERR_PTR(err); return register_user_hw_breakpoint(&attr, ptrace_triggered, NULL, tsk); } static int ptrace_modify_breakpoint(struct perf_event *bp, int len, int type, int disabled) { struct perf_event_attr attr = bp->attr; int err; err = ptrace_fill_bp_fields(&attr, len, type, disabled); if (err) return err; return modify_user_hw_breakpoint(bp, &attr); } /* * Handle ptrace writes to debug register 7. */ static int ptrace_write_dr7(struct task_struct *tsk, unsigned long data) { struct thread_struct *thread = &tsk->thread; unsigned long old_dr7; bool second_pass = false; int i, rc, ret = 0; data &= ~DR_CONTROL_RESERVED; old_dr7 = ptrace_get_dr7(thread->ptrace_bps); restore: rc = 0; for (i = 0; i < HBP_NUM; i++) { unsigned len, type; bool disabled = !decode_dr7(data, i, &len, &type); struct perf_event *bp = thread->ptrace_bps[i]; if (!bp) { if (disabled) continue; bp = ptrace_register_breakpoint(tsk, len, type, 0, disabled); if (IS_ERR(bp)) { rc = PTR_ERR(bp); break; } thread->ptrace_bps[i] = bp; continue; } rc = ptrace_modify_breakpoint(bp, len, type, disabled); if (rc) break; } /* Restore if the first pass failed, second_pass shouldn't fail. */ if (rc && !WARN_ON(second_pass)) { ret = rc; data = old_dr7; second_pass = true; goto restore; } return ret; } /* * Handle PTRACE_PEEKUSR calls for the debug register area. */ static unsigned long ptrace_get_debugreg(struct task_struct *tsk, int n) { struct thread_struct *thread = &tsk->thread; unsigned long val = 0; if (n < HBP_NUM) { int index = array_index_nospec(n, HBP_NUM); struct perf_event *bp = thread->ptrace_bps[index]; if (bp) val = bp->hw.info.address; } else if (n == 6) { val = thread->virtual_dr6 ^ DR6_RESERVED; /* Flip back to arch polarity */ } else if (n == 7) { val = thread->ptrace_dr7; } return val; } static int ptrace_set_breakpoint_addr(struct task_struct *tsk, int nr, unsigned long addr) { struct thread_struct *t = &tsk->thread; struct perf_event *bp = t->ptrace_bps[nr]; int err = 0; if (!bp) { /* * Put stub len and type to create an inactive but correct bp. * * CHECKME: the previous code returned -EIO if the addr wasn't * a valid task virtual addr. The new one will return -EINVAL in * this case. * -EINVAL may be what we want for in-kernel breakpoints users, * but -EIO looks better for ptrace, since we refuse a register * writing for the user. And anyway this is the previous * behaviour. */ bp = ptrace_register_breakpoint(tsk, X86_BREAKPOINT_LEN_1, X86_BREAKPOINT_WRITE, addr, true); if (IS_ERR(bp)) err = PTR_ERR(bp); else t->ptrace_bps[nr] = bp; } else { struct perf_event_attr attr = bp->attr; attr.bp_addr = addr; err = modify_user_hw_breakpoint(bp, &attr); } return err; } /* * Handle PTRACE_POKEUSR calls for the debug register area. */ static int ptrace_set_debugreg(struct task_struct *tsk, int n, unsigned long val) { struct thread_struct *thread = &tsk->thread; /* There are no DR4 or DR5 registers */ int rc = -EIO; if (n < HBP_NUM) { rc = ptrace_set_breakpoint_addr(tsk, n, val); } else if (n == 6) { thread->virtual_dr6 = val ^ DR6_RESERVED; /* Flip to positive polarity */ rc = 0; } else if (n == 7) { rc = ptrace_write_dr7(tsk, val); if (!rc) thread->ptrace_dr7 = val; } return rc; } /* * These access the current or another (stopped) task's io permission * bitmap for debugging or core dump. */ static int ioperm_active(struct task_struct *target, const struct user_regset *regset) { struct io_bitmap *iobm = target->thread.io_bitmap; return iobm ? DIV_ROUND_UP(iobm->max, regset->size) : 0; } static int ioperm_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { struct io_bitmap *iobm = target->thread.io_bitmap; if (!iobm) return -ENXIO; return membuf_write(&to, iobm->bitmap, IO_BITMAP_BYTES); } /* * Called by kernel/ptrace.c when detaching.. * * Make sure the single step bit is not set. */ void ptrace_disable(struct task_struct *child) { user_disable_single_step(child); } #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION static const struct user_regset_view user_x86_32_view; /* Initialized below. */ #endif #ifdef CONFIG_X86_64 static const struct user_regset_view user_x86_64_view; /* Initialized below. */ #endif long arch_ptrace(struct task_struct *child, long request, unsigned long addr, unsigned long data) { int ret; unsigned long __user *datap = (unsigned long __user *)data; #ifdef CONFIG_X86_64 /* This is native 64-bit ptrace() */ const struct user_regset_view *regset_view = &user_x86_64_view; #else /* This is native 32-bit ptrace() */ const struct user_regset_view *regset_view = &user_x86_32_view; #endif switch (request) { /* read the word at location addr in the USER area. */ case PTRACE_PEEKUSR: { unsigned long tmp; ret = -EIO; if ((addr & (sizeof(data) - 1)) || addr >= sizeof(struct user)) break; tmp = 0; /* Default return condition */ if (addr < sizeof(struct user_regs_struct)) tmp = getreg(child, addr); else if (addr >= offsetof(struct user, u_debugreg[0]) && addr <= offsetof(struct user, u_debugreg[7])) { addr -= offsetof(struct user, u_debugreg[0]); tmp = ptrace_get_debugreg(child, addr / sizeof(data)); } ret = put_user(tmp, datap); break; } case PTRACE_POKEUSR: /* write the word at location addr in the USER area */ ret = -EIO; if ((addr & (sizeof(data) - 1)) || addr >= sizeof(struct user)) break; if (addr < sizeof(struct user_regs_struct)) ret = putreg(child, addr, data); else if (addr >= offsetof(struct user, u_debugreg[0]) && addr <= offsetof(struct user, u_debugreg[7])) { addr -= offsetof(struct user, u_debugreg[0]); ret = ptrace_set_debugreg(child, addr / sizeof(data), data); } break; case PTRACE_GETREGS: /* Get all gp regs from the child. */ return copy_regset_to_user(child, regset_view, REGSET_GENERAL, 0, sizeof(struct user_regs_struct), datap); case PTRACE_SETREGS: /* Set all gp regs in the child. */ return copy_regset_from_user(child, regset_view, REGSET_GENERAL, 0, sizeof(struct user_regs_struct), datap); case PTRACE_GETFPREGS: /* Get the child FPU state. */ return copy_regset_to_user(child, regset_view, REGSET_FP, 0, sizeof(struct user_i387_struct), datap); case PTRACE_SETFPREGS: /* Set the child FPU state. */ return copy_regset_from_user(child, regset_view, REGSET_FP, 0, sizeof(struct user_i387_struct), datap); #ifdef CONFIG_X86_32 case PTRACE_GETFPXREGS: /* Get the child extended FPU state. */ return copy_regset_to_user(child, &user_x86_32_view, REGSET32_XFP, 0, sizeof(struct user_fxsr_struct), datap) ? -EIO : 0; case PTRACE_SETFPXREGS: /* Set the child extended FPU state. */ return copy_regset_from_user(child, &user_x86_32_view, REGSET32_XFP, 0, sizeof(struct user_fxsr_struct), datap) ? -EIO : 0; #endif #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION case PTRACE_GET_THREAD_AREA: if ((int) addr < 0) return -EIO; ret = do_get_thread_area(child, addr, (struct user_desc __user *)data); break; case PTRACE_SET_THREAD_AREA: if ((int) addr < 0) return -EIO; ret = do_set_thread_area(child, addr, (struct user_desc __user *)data, 0); break; #endif #ifdef CONFIG_X86_64 /* normal 64bit interface to access TLS data. Works just like arch_prctl, except that the arguments are reversed. */ case PTRACE_ARCH_PRCTL: ret = do_arch_prctl_64(child, data, addr); break; #endif default: ret = ptrace_request(child, request, addr, data); break; } return ret; } #ifdef CONFIG_IA32_EMULATION #include <linux/compat.h> #include <linux/syscalls.h> #include <asm/ia32.h> #include <asm/user32.h> #define R32(l,q) \ case offsetof(struct user32, regs.l): \ regs->q = value; break #define SEG32(rs) \ case offsetof(struct user32, regs.rs): \ return set_segment_reg(child, \ offsetof(struct user_regs_struct, rs), \ value); \ break static int putreg32(struct task_struct *child, unsigned regno, u32 value) { struct pt_regs *regs = task_pt_regs(child); int ret; switch (regno) { SEG32(cs); SEG32(ds); SEG32(es); /* * A 32-bit ptracer on a 64-bit kernel expects that writing * FS or GS will also update the base. This is needed for * operations like PTRACE_SETREGS to fully restore a saved * CPU state. */ case offsetof(struct user32, regs.fs): ret = set_segment_reg(child, offsetof(struct user_regs_struct, fs), value); if (ret == 0) child->thread.fsbase = x86_fsgsbase_read_task(child, value); return ret; case offsetof(struct user32, regs.gs): ret = set_segment_reg(child, offsetof(struct user_regs_struct, gs), value); if (ret == 0) child->thread.gsbase = x86_fsgsbase_read_task(child, value); return ret; SEG32(ss); R32(ebx, bx); R32(ecx, cx); R32(edx, dx); R32(edi, di); R32(esi, si); R32(ebp, bp); R32(eax, ax); R32(eip, ip); R32(esp, sp); case offsetof(struct user32, regs.orig_eax): /* * Warning: bizarre corner case fixup here. A 32-bit * debugger setting orig_eax to -1 wants to disable * syscall restart. Make sure that the syscall * restart code sign-extends orig_ax. Also make sure * we interpret the -ERESTART* codes correctly if * loaded into regs->ax in case the task is not * actually still sitting at the exit from a 32-bit * syscall with TS_COMPAT still set. */ regs->orig_ax = value; if (syscall_get_nr(child, regs) != -1) child->thread_info.status |= TS_I386_REGS_POKED; break; case offsetof(struct user32, regs.eflags): return set_flags(child, value); case offsetof(struct user32, u_debugreg[0]) ... offsetof(struct user32, u_debugreg[7]): regno -= offsetof(struct user32, u_debugreg[0]); return ptrace_set_debugreg(child, regno / 4, value); default: if (regno > sizeof(struct user32) || (regno & 3)) return -EIO; /* * Other dummy fields in the virtual user structure * are ignored */ break; } return 0; } #undef R32 #undef SEG32 #define R32(l,q) \ case offsetof(struct user32, regs.l): \ *val = regs->q; break #define SEG32(rs) \ case offsetof(struct user32, regs.rs): \ *val = get_segment_reg(child, \ offsetof(struct user_regs_struct, rs)); \ break static int getreg32(struct task_struct *child, unsigned regno, u32 *val) { struct pt_regs *regs = task_pt_regs(child); switch (regno) { SEG32(ds); SEG32(es); SEG32(fs); SEG32(gs); R32(cs, cs); R32(ss, ss); R32(ebx, bx); R32(ecx, cx); R32(edx, dx); R32(edi, di); R32(esi, si); R32(ebp, bp); R32(eax, ax); R32(orig_eax, orig_ax); R32(eip, ip); R32(esp, sp); case offsetof(struct user32, regs.eflags): *val = get_flags(child); break; case offsetof(struct user32, u_debugreg[0]) ... offsetof(struct user32, u_debugreg[7]): regno -= offsetof(struct user32, u_debugreg[0]); *val = ptrace_get_debugreg(child, regno / 4); break; default: if (regno > sizeof(struct user32) || (regno & 3)) return -EIO; /* * Other dummy fields in the virtual user structure * are ignored */ *val = 0; break; } return 0; } #undef R32 #undef SEG32 static int genregs32_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { int reg; for (reg = 0; to.left; reg++) { u32 val; getreg32(target, reg * 4, &val); membuf_store(&to, val); } return 0; } static int genregs32_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { int ret = 0; if (kbuf) { const compat_ulong_t *k = kbuf; while (count >= sizeof(*k) && !ret) { ret = putreg32(target, pos, *k++); count -= sizeof(*k); pos += sizeof(*k); } } else { const compat_ulong_t __user *u = ubuf; while (count >= sizeof(*u) && !ret) { compat_ulong_t word; ret = __get_user(word, u++); if (ret) break; ret = putreg32(target, pos, word); count -= sizeof(*u); pos += sizeof(*u); } } return ret; } static long ia32_arch_ptrace(struct task_struct *child, compat_long_t request, compat_ulong_t caddr, compat_ulong_t cdata) { unsigned long addr = caddr; unsigned long data = cdata; void __user *datap = compat_ptr(data); int ret; __u32 val; switch (request) { case PTRACE_PEEKUSR: ret = getreg32(child, addr, &val); if (ret == 0) ret = put_user(val, (__u32 __user *)datap); break; case PTRACE_POKEUSR: ret = putreg32(child, addr, data); break; case PTRACE_GETREGS: /* Get all gp regs from the child. */ return copy_regset_to_user(child, &user_x86_32_view, REGSET_GENERAL, 0, sizeof(struct user_regs_struct32), datap); case PTRACE_SETREGS: /* Set all gp regs in the child. */ return copy_regset_from_user(child, &user_x86_32_view, REGSET_GENERAL, 0, sizeof(struct user_regs_struct32), datap); case PTRACE_GETFPREGS: /* Get the child FPU state. */ return copy_regset_to_user(child, &user_x86_32_view, REGSET_FP, 0, sizeof(struct user_i387_ia32_struct), datap); case PTRACE_SETFPREGS: /* Set the child FPU state. */ return copy_regset_from_user( child, &user_x86_32_view, REGSET_FP, 0, sizeof(struct user_i387_ia32_struct), datap); case PTRACE_GETFPXREGS: /* Get the child extended FPU state. */ return copy_regset_to_user(child, &user_x86_32_view, REGSET32_XFP, 0, sizeof(struct user32_fxsr_struct), datap); case PTRACE_SETFPXREGS: /* Set the child extended FPU state. */ return copy_regset_from_user(child, &user_x86_32_view, REGSET32_XFP, 0, sizeof(struct user32_fxsr_struct), datap); case PTRACE_GET_THREAD_AREA: case PTRACE_SET_THREAD_AREA: return arch_ptrace(child, request, addr, data); default: return compat_ptrace_request(child, request, addr, data); } return ret; } #endif /* CONFIG_IA32_EMULATION */ #ifdef CONFIG_X86_X32_ABI static long x32_arch_ptrace(struct task_struct *child, compat_long_t request, compat_ulong_t caddr, compat_ulong_t cdata) { unsigned long addr = caddr; unsigned long data = cdata; void __user *datap = compat_ptr(data); int ret; switch (request) { /* Read 32bits at location addr in the USER area. Only allow to return the lower 32bits of segment and debug registers. */ case PTRACE_PEEKUSR: { u32 tmp; ret = -EIO; if ((addr & (sizeof(data) - 1)) || addr >= sizeof(struct user) || addr < offsetof(struct user_regs_struct, cs)) break; tmp = 0; /* Default return condition */ if (addr < sizeof(struct user_regs_struct)) tmp = getreg(child, addr); else if (addr >= offsetof(struct user, u_debugreg[0]) && addr <= offsetof(struct user, u_debugreg[7])) { addr -= offsetof(struct user, u_debugreg[0]); tmp = ptrace_get_debugreg(child, addr / sizeof(data)); } ret = put_user(tmp, (__u32 __user *)datap); break; } /* Write the word at location addr in the USER area. Only allow to update segment and debug registers with the upper 32bits zero-extended. */ case PTRACE_POKEUSR: ret = -EIO; if ((addr & (sizeof(data) - 1)) || addr >= sizeof(struct user) || addr < offsetof(struct user_regs_struct, cs)) break; if (addr < sizeof(struct user_regs_struct)) ret = putreg(child, addr, data); else if (addr >= offsetof(struct user, u_debugreg[0]) && addr <= offsetof(struct user, u_debugreg[7])) { addr -= offsetof(struct user, u_debugreg[0]); ret = ptrace_set_debugreg(child, addr / sizeof(data), data); } break; case PTRACE_GETREGS: /* Get all gp regs from the child. */ return copy_regset_to_user(child, &user_x86_64_view, REGSET_GENERAL, 0, sizeof(struct user_regs_struct), datap); case PTRACE_SETREGS: /* Set all gp regs in the child. */ return copy_regset_from_user(child, &user_x86_64_view, REGSET_GENERAL, 0, sizeof(struct user_regs_struct), datap); case PTRACE_GETFPREGS: /* Get the child FPU state. */ return copy_regset_to_user(child, &user_x86_64_view, REGSET_FP, 0, sizeof(struct user_i387_struct), datap); case PTRACE_SETFPREGS: /* Set the child FPU state. */ return copy_regset_from_user(child, &user_x86_64_view, REGSET_FP, 0, sizeof(struct user_i387_struct), datap); default: return compat_ptrace_request(child, request, addr, data); } return ret; } #endif #ifdef CONFIG_COMPAT long compat_arch_ptrace(struct task_struct *child, compat_long_t request, compat_ulong_t caddr, compat_ulong_t cdata) { #ifdef CONFIG_X86_X32_ABI if (!in_ia32_syscall()) return x32_arch_ptrace(child, request, caddr, cdata); #endif #ifdef CONFIG_IA32_EMULATION return ia32_arch_ptrace(child, request, caddr, cdata); #else return 0; #endif } #endif /* CONFIG_COMPAT */ #ifdef CONFIG_X86_64 static struct user_regset x86_64_regsets[] __ro_after_init = { [REGSET64_GENERAL] = { .core_note_type = NT_PRSTATUS, .n = sizeof(struct user_regs_struct) / sizeof(long), .size = sizeof(long), .align = sizeof(long), .regset_get = genregs_get, .set = genregs_set }, [REGSET64_FP] = { .core_note_type = NT_PRFPREG, .n = sizeof(struct fxregs_state) / sizeof(long), .size = sizeof(long), .align = sizeof(long), .active = regset_xregset_fpregs_active, .regset_get = xfpregs_get, .set = xfpregs_set }, [REGSET64_XSTATE] = { .core_note_type = NT_X86_XSTATE, .size = sizeof(u64), .align = sizeof(u64), .active = xstateregs_active, .regset_get = xstateregs_get, .set = xstateregs_set }, [REGSET64_IOPERM] = { .core_note_type = NT_386_IOPERM, .n = IO_BITMAP_LONGS, .size = sizeof(long), .align = sizeof(long), .active = ioperm_active, .regset_get = ioperm_get }, #ifdef CONFIG_X86_USER_SHADOW_STACK [REGSET64_SSP] = { .core_note_type = NT_X86_SHSTK, .n = 1, .size = sizeof(u64), .align = sizeof(u64), .active = ssp_active, .regset_get = ssp_get, .set = ssp_set }, #endif }; static const struct user_regset_view user_x86_64_view = { .name = "x86_64", .e_machine = EM_X86_64, .regsets = x86_64_regsets, .n = ARRAY_SIZE(x86_64_regsets) }; #else /* CONFIG_X86_32 */ #define user_regs_struct32 user_regs_struct #define genregs32_get genregs_get #define genregs32_set genregs_set #endif /* CONFIG_X86_64 */ #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION static struct user_regset x86_32_regsets[] __ro_after_init = { [REGSET32_GENERAL] = { .core_note_type = NT_PRSTATUS, .n = sizeof(struct user_regs_struct32) / sizeof(u32), .size = sizeof(u32), .align = sizeof(u32), .regset_get = genregs32_get, .set = genregs32_set }, [REGSET32_FP] = { .core_note_type = NT_PRFPREG, .n = sizeof(struct user_i387_ia32_struct) / sizeof(u32), .size = sizeof(u32), .align = sizeof(u32), .active = regset_fpregs_active, .regset_get = fpregs_get, .set = fpregs_set }, [REGSET32_XFP] = { .core_note_type = NT_PRXFPREG, .n = sizeof(struct fxregs_state) / sizeof(u32), .size = sizeof(u32), .align = sizeof(u32), .active = regset_xregset_fpregs_active, .regset_get = xfpregs_get, .set = xfpregs_set }, [REGSET32_XSTATE] = { .core_note_type = NT_X86_XSTATE, .size = sizeof(u64), .align = sizeof(u64), .active = xstateregs_active, .regset_get = xstateregs_get, .set = xstateregs_set }, [REGSET32_TLS] = { .core_note_type = NT_386_TLS, .n = GDT_ENTRY_TLS_ENTRIES, .bias = GDT_ENTRY_TLS_MIN, .size = sizeof(struct user_desc), .align = sizeof(struct user_desc), .active = regset_tls_active, .regset_get = regset_tls_get, .set = regset_tls_set }, [REGSET32_IOPERM] = { .core_note_type = NT_386_IOPERM, .n = IO_BITMAP_BYTES / sizeof(u32), .size = sizeof(u32), .align = sizeof(u32), .active = ioperm_active, .regset_get = ioperm_get }, }; static const struct user_regset_view user_x86_32_view = { .name = "i386", .e_machine = EM_386, .regsets = x86_32_regsets, .n = ARRAY_SIZE(x86_32_regsets) }; #endif /* * This represents bytes 464..511 in the memory layout exported through * the REGSET_XSTATE interface. */ u64 xstate_fx_sw_bytes[USER_XSTATE_FX_SW_WORDS]; void __init update_regset_xstate_info(unsigned int size, u64 xstate_mask) { #ifdef CONFIG_X86_64 x86_64_regsets[REGSET64_XSTATE].n = size / sizeof(u64); #endif #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION x86_32_regsets[REGSET32_XSTATE].n = size / sizeof(u64); #endif xstate_fx_sw_bytes[USER_XSTATE_XCR0_WORD] = xstate_mask; } /* * This is used by the core dump code to decide which regset to dump. The * core dump code writes out the resulting .e_machine and the corresponding * regsets. This is suboptimal if the task is messing around with its CS.L * field, but at worst the core dump will end up missing some information. * * Unfortunately, it is also used by the broken PTRACE_GETREGSET and * PTRACE_SETREGSET APIs. These APIs look at the .regsets field but have * no way to make sure that the e_machine they use matches the caller's * expectations. The result is that the data format returned by * PTRACE_GETREGSET depends on the returned CS field (and even the offset * of the returned CS field depends on its value!) and the data format * accepted by PTRACE_SETREGSET is determined by the old CS value. The * upshot is that it is basically impossible to use these APIs correctly. * * The best way to fix it in the long run would probably be to add new * improved ptrace() APIs to read and write registers reliably, possibly by * allowing userspace to select the ELF e_machine variant that they expect. */ const struct user_regset_view *task_user_regset_view(struct task_struct *task) { #ifdef CONFIG_IA32_EMULATION if (!user_64bit_mode(task_pt_regs(task))) #endif #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION return &user_x86_32_view; #endif #ifdef CONFIG_X86_64 return &user_x86_64_view; #endif } void send_sigtrap(struct pt_regs *regs, int error_code, int si_code) { struct task_struct *tsk = current; tsk->thread.trap_nr = X86_TRAP_DB; tsk->thread.error_code = error_code; /* Send us the fake SIGTRAP */ force_sig_fault(SIGTRAP, si_code, user_mode(regs) ? (void __user *)regs->ip : NULL); } void user_single_step_report(struct pt_regs *regs) { send_sigtrap(regs, 0, TRAP_BRKPT); } |
42 27 50 17 17 8 17 13 11 17 17 16 11 17 3 17 8 17 2 17 8 17 17 19 14 7 8 19 5 5 5 9 9 19 8 11 11 22 13 22 2 22 12 22 10 8 9 22 22 10 19 5 4 18 18 8 8 10 18 14 18 5 15 10 1 10 5 1 10 16 3 3 5 4 1 5 5 2 3 3 5 3 5 2 5 5 5 2 2 3 5 5 5 2 5 1 4 51 45 51 44 22 17 5 22 22 49 49 49 180 180 180 98 88 101 3 49 49 49 354 173 354 320 56 355 64 355 9 355 111 21 111 111 111 109 110 2 270 34 30 10 16 4 82 79 80 81 73 82 82 80 79 3 78 79 34 14 4 45 55 53 70 47 3 2 2 44 44 28 28 28 13 21 18 18 46 2 8 7 7 7 6 2 2 4 4 6 8 31 30 3 30 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 | // SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE * Copyright (C) 2016 - 2020 Christoph Hellwig */ #include <linux/init.h> #include <linux/mm.h> #include <linux/blkdev.h> #include <linux/buffer_head.h> #include <linux/mpage.h> #include <linux/uio.h> #include <linux/namei.h> #include <linux/task_io_accounting_ops.h> #include <linux/falloc.h> #include <linux/suspend.h> #include <linux/fs.h> #include <linux/iomap.h> #include <linux/module.h> #include <linux/io_uring/cmd.h> #include "blk.h" static inline struct inode *bdev_file_inode(struct file *file) { return file->f_mapping->host; } static blk_opf_t dio_bio_write_op(struct kiocb *iocb) { blk_opf_t opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; /* avoid the need for a I/O completion work item */ if (iocb_is_dsync(iocb)) opf |= REQ_FUA; return opf; } static bool blkdev_dio_invalid(struct block_device *bdev, struct kiocb *iocb, struct iov_iter *iter) { return iocb->ki_pos & (bdev_logical_block_size(bdev) - 1) || !bdev_iter_is_aligned(bdev, iter); } #define DIO_INLINE_BIO_VECS 4 static ssize_t __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter, struct block_device *bdev, unsigned int nr_pages) { struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs; loff_t pos = iocb->ki_pos; bool should_dirty = false; struct bio bio; ssize_t ret; WARN_ON_ONCE(iocb->ki_flags & IOCB_HAS_METADATA); if (nr_pages <= DIO_INLINE_BIO_VECS) vecs = inline_vecs; else { vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec), GFP_KERNEL); if (!vecs) return -ENOMEM; } if (iov_iter_rw(iter) == READ) { bio_init(&bio, bdev, vecs, nr_pages, REQ_OP_READ); if (user_backed_iter(iter)) should_dirty = true; } else { bio_init(&bio, bdev, vecs, nr_pages, dio_bio_write_op(iocb)); } bio.bi_iter.bi_sector = pos >> SECTOR_SHIFT; bio.bi_write_hint = file_inode(iocb->ki_filp)->i_write_hint; bio.bi_ioprio = iocb->ki_ioprio; if (iocb->ki_flags & IOCB_ATOMIC) bio.bi_opf |= REQ_ATOMIC; ret = bio_iov_iter_get_pages(&bio, iter); if (unlikely(ret)) goto out; ret = bio.bi_iter.bi_size; if (iov_iter_rw(iter) == WRITE) task_io_account_write(ret); if (iocb->ki_flags & IOCB_NOWAIT) bio.bi_opf |= REQ_NOWAIT; submit_bio_wait(&bio); bio_release_pages(&bio, should_dirty); if (unlikely(bio.bi_status)) ret = blk_status_to_errno(bio.bi_status); out: if (vecs != inline_vecs) kfree(vecs); bio_uninit(&bio); return ret; } enum { DIO_SHOULD_DIRTY = 1, DIO_IS_SYNC = 2, }; struct blkdev_dio { union { struct kiocb *iocb; struct task_struct *waiter; }; size_t size; atomic_t ref; unsigned int flags; struct bio bio ____cacheline_aligned_in_smp; }; static struct bio_set blkdev_dio_pool; static void blkdev_bio_end_io(struct bio *bio) { struct blkdev_dio *dio = bio->bi_private; bool should_dirty = dio->flags & DIO_SHOULD_DIRTY; bool is_sync = dio->flags & DIO_IS_SYNC; if (bio->bi_status && !dio->bio.bi_status) dio->bio.bi_status = bio->bi_status; if (!is_sync && (dio->iocb->ki_flags & IOCB_HAS_METADATA)) bio_integrity_unmap_user(bio); if (atomic_dec_and_test(&dio->ref)) { if (!is_sync) { struct kiocb *iocb = dio->iocb; ssize_t ret; WRITE_ONCE(iocb->private, NULL); if (likely(!dio->bio.bi_status)) { ret = dio->size; iocb->ki_pos += ret; } else { ret = blk_status_to_errno(dio->bio.bi_status); } dio->iocb->ki_complete(iocb, ret); bio_put(&dio->bio); } else { struct task_struct *waiter = dio->waiter; WRITE_ONCE(dio->waiter, NULL); blk_wake_io_task(waiter); } } if (should_dirty) { bio_check_pages_dirty(bio); } else { bio_release_pages(bio, false); bio_put(bio); } } static ssize_t __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, struct block_device *bdev, unsigned int nr_pages) { struct blk_plug plug; struct blkdev_dio *dio; struct bio *bio; bool is_read = (iov_iter_rw(iter) == READ), is_sync; blk_opf_t opf = is_read ? REQ_OP_READ : dio_bio_write_op(iocb); loff_t pos = iocb->ki_pos; int ret = 0; if (iocb->ki_flags & IOCB_ALLOC_CACHE) opf |= REQ_ALLOC_CACHE; bio = bio_alloc_bioset(bdev, nr_pages, opf, GFP_KERNEL, &blkdev_dio_pool); dio = container_of(bio, struct blkdev_dio, bio); atomic_set(&dio->ref, 1); /* * Grab an extra reference to ensure the dio structure which is embedded * into the first bio stays around. */ bio_get(bio); is_sync = is_sync_kiocb(iocb); if (is_sync) { dio->flags = DIO_IS_SYNC; dio->waiter = current; } else { dio->flags = 0; dio->iocb = iocb; } dio->size = 0; if (is_read && user_backed_iter(iter)) dio->flags |= DIO_SHOULD_DIRTY; blk_start_plug(&plug); for (;;) { bio->bi_iter.bi_sector = pos >> SECTOR_SHIFT; bio->bi_write_hint = file_inode(iocb->ki_filp)->i_write_hint; bio->bi_private = dio; bio->bi_end_io = blkdev_bio_end_io; bio->bi_ioprio = iocb->ki_ioprio; ret = bio_iov_iter_get_pages(bio, iter); if (unlikely(ret)) { bio->bi_status = BLK_STS_IOERR; bio_endio(bio); break; } if (iocb->ki_flags & IOCB_NOWAIT) { /* * This is nonblocking IO, and we need to allocate * another bio if we have data left to map. As we * cannot guarantee that one of the sub bios will not * fail getting issued FOR NOWAIT and as error results * are coalesced across all of them, be safe and ask for * a retry of this from blocking context. */ if (unlikely(iov_iter_count(iter))) { ret = -EAGAIN; goto fail; } bio->bi_opf |= REQ_NOWAIT; } if (!is_sync && (iocb->ki_flags & IOCB_HAS_METADATA)) { ret = bio_integrity_map_iter(bio, iocb->private); if (unlikely(ret)) goto fail; } if (is_read) { if (dio->flags & DIO_SHOULD_DIRTY) bio_set_pages_dirty(bio); } else { task_io_account_write(bio->bi_iter.bi_size); } dio->size += bio->bi_iter.bi_size; pos += bio->bi_iter.bi_size; nr_pages = bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS); if (!nr_pages) { submit_bio(bio); break; } atomic_inc(&dio->ref); submit_bio(bio); bio = bio_alloc(bdev, nr_pages, opf, GFP_KERNEL); } blk_finish_plug(&plug); if (!is_sync) return -EIOCBQUEUED; for (;;) { set_current_state(TASK_UNINTERRUPTIBLE); if (!READ_ONCE(dio->waiter)) break; blk_io_schedule(); } __set_current_state(TASK_RUNNING); if (!ret) ret = blk_status_to_errno(dio->bio.bi_status); if (likely(!ret)) ret = dio->size; bio_put(&dio->bio); return ret; fail: bio_release_pages(bio, false); bio_clear_flag(bio, BIO_REFFED); bio_put(bio); blk_finish_plug(&plug); return ret; } static void blkdev_bio_end_io_async(struct bio *bio) { struct blkdev_dio *dio = container_of(bio, struct blkdev_dio, bio); struct kiocb *iocb = dio->iocb; ssize_t ret; WRITE_ONCE(iocb->private, NULL); if (likely(!bio->bi_status)) { ret = dio->size; iocb->ki_pos += ret; } else { ret = blk_status_to_errno(bio->bi_status); } if (iocb->ki_flags & IOCB_HAS_METADATA) bio_integrity_unmap_user(bio); iocb->ki_complete(iocb, ret); if (dio->flags & DIO_SHOULD_DIRTY) { bio_check_pages_dirty(bio); } else { bio_release_pages(bio, false); bio_put(bio); } } static ssize_t __blkdev_direct_IO_async(struct kiocb *iocb, struct iov_iter *iter, struct block_device *bdev, unsigned int nr_pages) { bool is_read = iov_iter_rw(iter) == READ; blk_opf_t opf = is_read ? REQ_OP_READ : dio_bio_write_op(iocb); struct blkdev_dio *dio; struct bio *bio; loff_t pos = iocb->ki_pos; int ret = 0; if (iocb->ki_flags & IOCB_ALLOC_CACHE) opf |= REQ_ALLOC_CACHE; bio = bio_alloc_bioset(bdev, nr_pages, opf, GFP_KERNEL, &blkdev_dio_pool); dio = container_of(bio, struct blkdev_dio, bio); dio->flags = 0; dio->iocb = iocb; bio->bi_iter.bi_sector = pos >> SECTOR_SHIFT; bio->bi_write_hint = file_inode(iocb->ki_filp)->i_write_hint; bio->bi_end_io = blkdev_bio_end_io_async; bio->bi_ioprio = iocb->ki_ioprio; if (iov_iter_is_bvec(iter)) { /* * Users don't rely on the iterator being in any particular * state for async I/O returning -EIOCBQUEUED, hence we can * avoid expensive iov_iter_advance(). Bypass * bio_iov_iter_get_pages() and set the bvec directly. */ bio_iov_bvec_set(bio, iter); } else { ret = bio_iov_iter_get_pages(bio, iter); if (unlikely(ret)) goto out_bio_put; } dio->size = bio->bi_iter.bi_size; if (is_read) { if (user_backed_iter(iter)) { dio->flags |= DIO_SHOULD_DIRTY; bio_set_pages_dirty(bio); } } else { task_io_account_write(bio->bi_iter.bi_size); } if (iocb->ki_flags & IOCB_HAS_METADATA) { ret = bio_integrity_map_iter(bio, iocb->private); WRITE_ONCE(iocb->private, NULL); if (unlikely(ret)) goto out_bio_put; } if (iocb->ki_flags & IOCB_ATOMIC) bio->bi_opf |= REQ_ATOMIC; if (iocb->ki_flags & IOCB_NOWAIT) bio->bi_opf |= REQ_NOWAIT; if (iocb->ki_flags & IOCB_HIPRI) { bio->bi_opf |= REQ_POLLED; submit_bio(bio); WRITE_ONCE(iocb->private, bio); } else { submit_bio(bio); } return -EIOCBQUEUED; out_bio_put: bio_put(bio); return ret; } static ssize_t blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) { struct block_device *bdev = I_BDEV(iocb->ki_filp->f_mapping->host); unsigned int nr_pages; if (!iov_iter_count(iter)) return 0; if (blkdev_dio_invalid(bdev, iocb, iter)) return -EINVAL; nr_pages = bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS + 1); if (likely(nr_pages <= BIO_MAX_VECS)) { if (is_sync_kiocb(iocb)) return __blkdev_direct_IO_simple(iocb, iter, bdev, nr_pages); return __blkdev_direct_IO_async(iocb, iter, bdev, nr_pages); } else if (iocb->ki_flags & IOCB_ATOMIC) { return -EINVAL; } return __blkdev_direct_IO(iocb, iter, bdev, bio_max_segs(nr_pages)); } static int blkdev_iomap_begin(struct inode *inode, loff_t offset, loff_t length, unsigned int flags, struct iomap *iomap, struct iomap *srcmap) { struct block_device *bdev = I_BDEV(inode); loff_t isize = i_size_read(inode); if (offset >= isize) return -EIO; iomap->bdev = bdev; iomap->offset = ALIGN_DOWN(offset, bdev_logical_block_size(bdev)); iomap->type = IOMAP_MAPPED; iomap->addr = iomap->offset; iomap->length = isize - iomap->offset; iomap->flags |= IOMAP_F_BUFFER_HEAD; /* noop for !CONFIG_BUFFER_HEAD */ return 0; } static const struct iomap_ops blkdev_iomap_ops = { .iomap_begin = blkdev_iomap_begin, }; #ifdef CONFIG_BUFFER_HEAD static int blkdev_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh, int create) { bh->b_bdev = I_BDEV(inode); bh->b_blocknr = iblock; set_buffer_mapped(bh); return 0; } /* * We cannot call mpage_writepages() as it does not take the buffer lock. * We must use block_write_full_folio() directly which holds the buffer * lock. The buffer lock provides the synchronisation with writeback * that filesystems rely on when they use the blockdev's mapping. */ static int blkdev_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct blk_plug plug; int err; blk_start_plug(&plug); err = write_cache_pages(mapping, wbc, block_write_full_folio, blkdev_get_block); blk_finish_plug(&plug); return err; } static int blkdev_read_folio(struct file *file, struct folio *folio) { return block_read_full_folio(folio, blkdev_get_block); } static void blkdev_readahead(struct readahead_control *rac) { mpage_readahead(rac, blkdev_get_block); } static int blkdev_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, struct folio **foliop, void **fsdata) { return block_write_begin(mapping, pos, len, foliop, blkdev_get_block); } static int blkdev_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct folio *folio, void *fsdata) { int ret; ret = block_write_end(file, mapping, pos, len, copied, folio, fsdata); folio_unlock(folio); folio_put(folio); return ret; } const struct address_space_operations def_blk_aops = { .dirty_folio = block_dirty_folio, .invalidate_folio = block_invalidate_folio, .read_folio = blkdev_read_folio, .readahead = blkdev_readahead, .writepages = blkdev_writepages, .write_begin = blkdev_write_begin, .write_end = blkdev_write_end, .migrate_folio = buffer_migrate_folio_norefs, .is_dirty_writeback = buffer_check_dirty_writeback, }; #else /* CONFIG_BUFFER_HEAD */ static int blkdev_read_folio(struct file *file, struct folio *folio) { return iomap_read_folio(folio, &blkdev_iomap_ops); } static void blkdev_readahead(struct readahead_control *rac) { iomap_readahead(rac, &blkdev_iomap_ops); } static int blkdev_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode, loff_t offset, unsigned int len) { loff_t isize = i_size_read(inode); if (WARN_ON_ONCE(offset >= isize)) return -EIO; if (offset >= wpc->iomap.offset && offset < wpc->iomap.offset + wpc->iomap.length) return 0; return blkdev_iomap_begin(inode, offset, isize - offset, IOMAP_WRITE, &wpc->iomap, NULL); } static const struct iomap_writeback_ops blkdev_writeback_ops = { .map_blocks = blkdev_map_blocks, }; static int blkdev_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct iomap_writepage_ctx wpc = { }; return iomap_writepages(mapping, wbc, &wpc, &blkdev_writeback_ops); } const struct address_space_operations def_blk_aops = { .dirty_folio = filemap_dirty_folio, .release_folio = iomap_release_folio, .invalidate_folio = iomap_invalidate_folio, .read_folio = blkdev_read_folio, .readahead = blkdev_readahead, .writepages = blkdev_writepages, .is_partially_uptodate = iomap_is_partially_uptodate, .error_remove_folio = generic_error_remove_folio, .migrate_folio = filemap_migrate_folio, }; #endif /* CONFIG_BUFFER_HEAD */ /* * for a block special file file_inode(file)->i_size is zero * so we compute the size by hand (just as in block_read/write above) */ static loff_t blkdev_llseek(struct file *file, loff_t offset, int whence) { struct inode *bd_inode = bdev_file_inode(file); loff_t retval; inode_lock(bd_inode); retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); inode_unlock(bd_inode); return retval; } static int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) { struct block_device *bdev = I_BDEV(filp->f_mapping->host); int error; error = file_write_and_wait_range(filp, start, end); if (error) return error; /* * There is no need to serialise calls to blkdev_issue_flush with * i_mutex and doing so causes performance issues with concurrent * O_SYNC writers to a block device. */ error = blkdev_issue_flush(bdev); if (error == -EOPNOTSUPP) error = 0; return error; } /** * file_to_blk_mode - get block open flags from file flags * @file: file whose open flags should be converted * * Look at file open flags and generate corresponding block open flags from * them. The function works both for file just being open (e.g. during ->open * callback) and for file that is already open. This is actually non-trivial * (see comment in the function). */ blk_mode_t file_to_blk_mode(struct file *file) { blk_mode_t mode = 0; if (file->f_mode & FMODE_READ) mode |= BLK_OPEN_READ; if (file->f_mode & FMODE_WRITE) mode |= BLK_OPEN_WRITE; /* * do_dentry_open() clears O_EXCL from f_flags, use file->private_data * to determine whether the open was exclusive for already open files. */ if (file->private_data) mode |= BLK_OPEN_EXCL; else if (file->f_flags & O_EXCL) mode |= BLK_OPEN_EXCL; if (file->f_flags & O_NDELAY) mode |= BLK_OPEN_NDELAY; /* * If all bits in O_ACCMODE set (aka O_RDWR | O_WRONLY), the floppy * driver has historically allowed ioctls as if the file was opened for * writing, but does not allow and actual reads or writes. */ if ((file->f_flags & O_ACCMODE) == (O_RDWR | O_WRONLY)) mode |= BLK_OPEN_WRITE_IOCTL; return mode; } static int blkdev_open(struct inode *inode, struct file *filp) { struct block_device *bdev; blk_mode_t mode; int ret; mode = file_to_blk_mode(filp); /* Use the file as the holder. */ if (mode & BLK_OPEN_EXCL) filp->private_data = filp; ret = bdev_permission(inode->i_rdev, mode, filp->private_data); if (ret) return ret; bdev = blkdev_get_no_open(inode->i_rdev, true); if (!bdev) return -ENXIO; if (bdev_can_atomic_write(bdev)) filp->f_mode |= FMODE_CAN_ATOMIC_WRITE; ret = bdev_open(bdev, mode, filp->private_data, NULL, filp); if (ret) blkdev_put_no_open(bdev); return ret; } static int blkdev_release(struct inode *inode, struct file *filp) { bdev_release(filp); return 0; } static ssize_t blkdev_direct_write(struct kiocb *iocb, struct iov_iter *from) { size_t count = iov_iter_count(from); ssize_t written; written = kiocb_invalidate_pages(iocb, count); if (written) { if (written == -EBUSY) return 0; return written; } written = blkdev_direct_IO(iocb, from); if (written > 0) { kiocb_invalidate_post_direct_write(iocb, count); iocb->ki_pos += written; count -= written; } if (written != -EIOCBQUEUED) iov_iter_revert(from, count - iov_iter_count(from)); return written; } static ssize_t blkdev_buffered_write(struct kiocb *iocb, struct iov_iter *from) { return iomap_file_buffered_write(iocb, from, &blkdev_iomap_ops, NULL); } /* * Write data to the block device. Only intended for the block device itself * and the raw driver which basically is a fake block device. * * Does not take i_mutex for the write and thus is not for general purpose * use. */ static ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; struct inode *bd_inode = bdev_file_inode(file); struct block_device *bdev = I_BDEV(bd_inode); bool atomic = iocb->ki_flags & IOCB_ATOMIC; loff_t size = bdev_nr_bytes(bdev); size_t shorted = 0; ssize_t ret; if (bdev_read_only(bdev)) return -EPERM; if (IS_SWAPFILE(bd_inode) && !is_hibernate_resume_dev(bd_inode->i_rdev)) return -ETXTBSY; if (!iov_iter_count(from)) return 0; if (iocb->ki_pos >= size) return -ENOSPC; if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT) return -EOPNOTSUPP; if (atomic) { ret = generic_atomic_write_valid(iocb, from); if (ret) return ret; } size -= iocb->ki_pos; if (iov_iter_count(from) > size) { if (atomic) return -EINVAL; shorted = iov_iter_count(from) - size; iov_iter_truncate(from, size); } ret = file_update_time(file); if (ret) return ret; if (iocb->ki_flags & IOCB_DIRECT) { ret = blkdev_direct_write(iocb, from); if (ret >= 0 && iov_iter_count(from)) ret = direct_write_fallback(iocb, from, ret, blkdev_buffered_write(iocb, from)); } else { /* * Take i_rwsem and invalidate_lock to avoid racing with * set_blocksize changing i_blkbits/folio order and punching * out the pagecache. */ inode_lock_shared(bd_inode); ret = blkdev_buffered_write(iocb, from); inode_unlock_shared(bd_inode); } if (ret > 0) ret = generic_write_sync(iocb, ret); iov_iter_reexpand(from, iov_iter_count(from) + shorted); return ret; } static ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) { struct inode *bd_inode = bdev_file_inode(iocb->ki_filp); struct block_device *bdev = I_BDEV(iocb->ki_filp->f_mapping->host); loff_t size = bdev_nr_bytes(bdev); loff_t pos = iocb->ki_pos; size_t shorted = 0; ssize_t ret = 0; size_t count; if (unlikely(pos + iov_iter_count(to) > size)) { if (pos >= size) return 0; size -= pos; shorted = iov_iter_count(to) - size; iov_iter_truncate(to, size); } count = iov_iter_count(to); if (!count) goto reexpand; /* skip atime */ if (iocb->ki_flags & IOCB_DIRECT) { ret = kiocb_write_and_wait(iocb, count); if (ret < 0) goto reexpand; file_accessed(iocb->ki_filp); ret = blkdev_direct_IO(iocb, to); if (ret > 0) { iocb->ki_pos += ret; count -= ret; } if (ret != -EIOCBQUEUED) iov_iter_revert(to, count - iov_iter_count(to)); if (ret < 0 || !count) goto reexpand; } /* * Take i_rwsem and invalidate_lock to avoid racing with set_blocksize * changing i_blkbits/folio order and punching out the pagecache. */ inode_lock_shared(bd_inode); ret = filemap_read(iocb, to, ret); inode_unlock_shared(bd_inode); reexpand: if (unlikely(shorted)) iov_iter_reexpand(to, iov_iter_count(to) + shorted); return ret; } #define BLKDEV_FALLOC_FL_SUPPORTED \ (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ FALLOC_FL_ZERO_RANGE) static long blkdev_fallocate(struct file *file, int mode, loff_t start, loff_t len) { struct inode *inode = bdev_file_inode(file); struct block_device *bdev = I_BDEV(inode); loff_t end = start + len - 1; loff_t isize; int error; /* Fail if we don't recognize the flags. */ if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED) return -EOPNOTSUPP; /* Don't go off the end of the device. */ isize = bdev_nr_bytes(bdev); if (start >= isize) return -EINVAL; if (end >= isize) { if (mode & FALLOC_FL_KEEP_SIZE) { len = isize - start; end = start + len - 1; } else return -EINVAL; } /* * Don't allow IO that isn't aligned to logical block size. */ if ((start | len) & (bdev_logical_block_size(bdev) - 1)) return -EINVAL; inode_lock(inode); filemap_invalidate_lock(inode->i_mapping); /* * Invalidate the page cache, including dirty pages, for valid * de-allocate mode calls to fallocate(). */ switch (mode) { case FALLOC_FL_ZERO_RANGE: case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE: error = truncate_bdev_range(bdev, file_to_blk_mode(file), start, end); if (error) goto fail; error = blkdev_issue_zeroout(bdev, start >> SECTOR_SHIFT, len >> SECTOR_SHIFT, GFP_KERNEL, BLKDEV_ZERO_NOUNMAP); break; case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE: error = truncate_bdev_range(bdev, file_to_blk_mode(file), start, end); if (error) goto fail; error = blkdev_issue_zeroout(bdev, start >> SECTOR_SHIFT, len >> SECTOR_SHIFT, GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK); break; default: error = -EOPNOTSUPP; } fail: filemap_invalidate_unlock(inode->i_mapping); inode_unlock(inode); return error; } static int blkdev_mmap(struct file *file, struct vm_area_struct *vma) { struct inode *bd_inode = bdev_file_inode(file); if (bdev_read_only(I_BDEV(bd_inode))) return generic_file_readonly_mmap(file, vma); return generic_file_mmap(file, vma); } const struct file_operations def_blk_fops = { .open = blkdev_open, .release = blkdev_release, .llseek = blkdev_llseek, .read_iter = blkdev_read_iter, .write_iter = blkdev_write_iter, .iopoll = iocb_bio_iopoll, .mmap = blkdev_mmap, .fsync = blkdev_fsync, .unlocked_ioctl = blkdev_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = compat_blkdev_ioctl, #endif .splice_read = filemap_splice_read, .splice_write = iter_file_splice_write, .fallocate = blkdev_fallocate, .uring_cmd = blkdev_uring_cmd, .fop_flags = FOP_BUFFER_RASYNC, }; static __init int blkdev_init(void) { return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS|BIOSET_PERCPU_CACHE); } module_init(blkdev_init); |
102 102 102 101 1 161 161 108 108 108 108 108 108 6 215 161 161 161 160 161 160 161 154 154 152 154 154 26 110 217 206 160 205 206 206 143 154 206 211 116 116 110 110 218 161 161 133 132 130 133 133 133 132 47 74 74 19 19 74 133 132 133 133 133 132 133 133 97 5 97 97 84 84 83 83 84 7 83 84 84 84 84 84 17 84 1 1 1 1 1 1 41 41 41 41 41 41 41 41 41 79 75 79 41 41 41 41 43 43 102 43 43 43 43 43 43 43 43 41 41 41 41 41 41 41 41 41 41 43 174 174 102 102 102 102 102 102 102 102 102 79 78 79 79 79 79 79 79 76 79 79 79 79 79 1 1 1 1 1 1 1 1 1 1 174 102 78 79 1 1 403 402 401 171 174 6 5 6 6 92 92 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 | // SPDX-License-Identifier: GPL-2.0 /* * Functions related to segment and merge handling */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/bio.h> #include <linux/blkdev.h> #include <linux/blk-integrity.h> #include <linux/scatterlist.h> #include <linux/part_stat.h> #include <linux/blk-cgroup.h> #include <trace/events/block.h> #include "blk.h" #include "blk-mq-sched.h" #include "blk-rq-qos.h" #include "blk-throttle.h" static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv) { *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); } static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv) { struct bvec_iter iter = bio->bi_iter; int idx; bio_get_first_bvec(bio, bv); if (bv->bv_len == bio->bi_iter.bi_size) return; /* this bio only has a single bvec */ bio_advance_iter(bio, &iter, iter.bi_size); if (!iter.bi_bvec_done) idx = iter.bi_idx - 1; else /* in the middle of bvec */ idx = iter.bi_idx; *bv = bio->bi_io_vec[idx]; /* * iter.bi_bvec_done records actual length of the last bvec * if this bio ends in the middle of one io vector */ if (iter.bi_bvec_done) bv->bv_len = iter.bi_bvec_done; } static inline bool bio_will_gap(struct request_queue *q, struct request *prev_rq, struct bio *prev, struct bio *next) { struct bio_vec pb, nb; if (!bio_has_data(prev) || !queue_virt_boundary(q)) return false; /* * Don't merge if the 1st bio starts with non-zero offset, otherwise it * is quite difficult to respect the sg gap limit. We work hard to * merge a huge number of small single bios in case of mkfs. */ if (prev_rq) bio_get_first_bvec(prev_rq->bio, &pb); else bio_get_first_bvec(prev, &pb); if (pb.bv_offset & queue_virt_boundary(q)) return true; /* * We don't need to worry about the situation that the merged segment * ends in unaligned virt boundary: * * - if 'pb' ends aligned, the merged segment ends aligned * - if 'pb' ends unaligned, the next bio must include * one single bvec of 'nb', otherwise the 'nb' can't * merge with 'pb' */ bio_get_last_bvec(prev, &pb); bio_get_first_bvec(next, &nb); if (biovec_phys_mergeable(q, &pb, &nb)) return false; return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset); } static inline bool req_gap_back_merge(struct request *req, struct bio *bio) { return bio_will_gap(req->q, req, req->biotail, bio); } static inline bool req_gap_front_merge(struct request *req, struct bio *bio) { return bio_will_gap(req->q, NULL, bio, req->bio); } /* * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size * is defined as 'unsigned int', meantime it has to be aligned to with the * logical block size, which is the minimum accepted unit by hardware. */ static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim) { return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT; } static struct bio *bio_submit_split(struct bio *bio, int split_sectors) { if (unlikely(split_sectors < 0)) goto error; if (split_sectors) { struct bio *split; split = bio_split(bio, split_sectors, GFP_NOIO, &bio->bi_bdev->bd_disk->bio_split); if (IS_ERR(split)) { split_sectors = PTR_ERR(split); goto error; } split->bi_opf |= REQ_NOMERGE; blkcg_bio_issue_init(split); bio_chain(split, bio); trace_block_split(split, bio->bi_iter.bi_sector); WARN_ON_ONCE(bio_zone_write_plugging(bio)); submit_bio_noacct(bio); return split; } return bio; error: bio->bi_status = errno_to_blk_status(split_sectors); bio_endio(bio); return NULL; } struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim, unsigned *nsegs) { unsigned int max_discard_sectors, granularity; sector_t tmp; unsigned split_sectors; *nsegs = 1; granularity = max(lim->discard_granularity >> 9, 1U); max_discard_sectors = min(lim->max_discard_sectors, bio_allowed_max_sectors(lim)); max_discard_sectors -= max_discard_sectors % granularity; if (unlikely(!max_discard_sectors)) return bio; if (bio_sectors(bio) <= max_discard_sectors) return bio; split_sectors = max_discard_sectors; /* * If the next starting sector would be misaligned, stop the discard at * the previous aligned sector. */ tmp = bio->bi_iter.bi_sector + split_sectors - ((lim->discard_alignment >> 9) % granularity); tmp = sector_div(tmp, granularity); if (split_sectors > tmp) split_sectors -= tmp; return bio_submit_split(bio, split_sectors); } static inline unsigned int blk_boundary_sectors(const struct queue_limits *lim, bool is_atomic) { /* * chunk_sectors must be a multiple of atomic_write_boundary_sectors if * both non-zero. */ if (is_atomic && lim->atomic_write_boundary_sectors) return lim->atomic_write_boundary_sectors; return lim->chunk_sectors; } /* * Return the maximum number of sectors from the start of a bio that may be * submitted as a single request to a block device. If enough sectors remain, * align the end to the physical block size. Otherwise align the end to the * logical block size. This approach minimizes the number of non-aligned * requests that are submitted to a block device if the start of a bio is not * aligned to a physical block boundary. */ static inline unsigned get_max_io_size(struct bio *bio, const struct queue_limits *lim) { unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT; unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT; bool is_atomic = bio->bi_opf & REQ_ATOMIC; unsigned boundary_sectors = blk_boundary_sectors(lim, is_atomic); unsigned max_sectors, start, end; /* * We ignore lim->max_sectors for atomic writes because it may less * than the actual bio size, which we cannot tolerate. */ if (bio_op(bio) == REQ_OP_WRITE_ZEROES) max_sectors = lim->max_write_zeroes_sectors; else if (is_atomic) max_sectors = lim->atomic_write_max_sectors; else max_sectors = lim->max_sectors; if (boundary_sectors) { max_sectors = min(max_sectors, blk_boundary_sectors_left(bio->bi_iter.bi_sector, boundary_sectors)); } start = bio->bi_iter.bi_sector & (pbs - 1); end = (start + max_sectors) & ~(pbs - 1); if (end > start) return end - start; return max_sectors & ~(lbs - 1); } /** * get_max_segment_size() - maximum number of bytes to add as a single segment * @lim: Request queue limits. * @paddr: address of the range to add * @len: maximum length available to add at @paddr * * Returns the maximum number of bytes of the range starting at @paddr that can * be added to a single segment. */ static inline unsigned get_max_segment_size(const struct queue_limits *lim, phys_addr_t paddr, unsigned int len) { /* * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1 * after having calculated the minimum. */ return min_t(unsigned long, len, min(lim->seg_boundary_mask - (lim->seg_boundary_mask & paddr), (unsigned long)lim->max_segment_size - 1) + 1); } /** * bvec_split_segs - verify whether or not a bvec should be split in the middle * @lim: [in] queue limits to split based on * @bv: [in] bvec to examine * @nsegs: [in,out] Number of segments in the bio being built. Incremented * by the number of segments from @bv that may be appended to that * bio without exceeding @max_segs * @bytes: [in,out] Number of bytes in the bio being built. Incremented * by the number of bytes from @bv that may be appended to that * bio without exceeding @max_bytes * @max_segs: [in] upper bound for *@nsegs * @max_bytes: [in] upper bound for *@bytes * * When splitting a bio, it can happen that a bvec is encountered that is too * big to fit in a single segment and hence that it has to be split in the * middle. This function verifies whether or not that should happen. The value * %true is returned if and only if appending the entire @bv to a bio with * *@nsegs segments and *@sectors sectors would make that bio unacceptable for * the block driver. */ static bool bvec_split_segs(const struct queue_limits *lim, const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes, unsigned max_segs, unsigned max_bytes) { unsigned max_len = max_bytes - *bytes; unsigned len = min(bv->bv_len, max_len); unsigned total_len = 0; unsigned seg_size = 0; while (len && *nsegs < max_segs) { seg_size = get_max_segment_size(lim, bvec_phys(bv) + total_len, len); (*nsegs)++; total_len += seg_size; len -= seg_size; if ((bv->bv_offset + total_len) & lim->virt_boundary_mask) break; } *bytes += total_len; /* tell the caller to split the bvec if it is too big to fit */ return len > 0 || bv->bv_len > max_len; } static unsigned int bio_split_alignment(struct bio *bio, const struct queue_limits *lim) { if (op_is_write(bio_op(bio)) && lim->zone_write_granularity) return lim->zone_write_granularity; return lim->logical_block_size; } /** * bio_split_rw_at - check if and where to split a read/write bio * @bio: [in] bio to be split * @lim: [in] queue limits to split based on * @segs: [out] number of segments in the bio with the first half of the sectors * @max_bytes: [in] maximum number of bytes per bio * * Find out if @bio needs to be split to fit the queue limits in @lim and a * maximum size of @max_bytes. Returns a negative error number if @bio can't be * split, 0 if the bio doesn't have to be split, or a positive sector offset if * @bio needs to be split. */ int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim, unsigned *segs, unsigned max_bytes) { struct bio_vec bv, bvprv, *bvprvp = NULL; struct bvec_iter iter; unsigned nsegs = 0, bytes = 0; bio_for_each_bvec(bv, bio, iter) { /* * If the queue doesn't support SG gaps and adding this * offset would create a gap, disallow it. */ if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset)) goto split; if (nsegs < lim->max_segments && bytes + bv.bv_len <= max_bytes && bv.bv_offset + bv.bv_len <= lim->min_segment_size) { nsegs++; bytes += bv.bv_len; } else { if (bvec_split_segs(lim, &bv, &nsegs, &bytes, lim->max_segments, max_bytes)) goto split; } bvprv = bv; bvprvp = &bvprv; } *segs = nsegs; return 0; split: if (bio->bi_opf & REQ_ATOMIC) return -EINVAL; /* * We can't sanely support splitting for a REQ_NOWAIT bio. End it * with EAGAIN if splitting is required and return an error pointer. */ if (bio->bi_opf & REQ_NOWAIT) return -EAGAIN; *segs = nsegs; /* * Individual bvecs might not be logical block aligned. Round down the * split size so that each bio is properly block size aligned, even if * we do not use the full hardware limits. */ bytes = ALIGN_DOWN(bytes, bio_split_alignment(bio, lim)); /* * Bio splitting may cause subtle trouble such as hang when doing sync * iopoll in direct IO routine. Given performance gain of iopoll for * big IO can be trival, disable iopoll when split needed. */ bio_clear_polled(bio); return bytes >> SECTOR_SHIFT; } EXPORT_SYMBOL_GPL(bio_split_rw_at); struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim, unsigned *nr_segs) { return bio_submit_split(bio, bio_split_rw_at(bio, lim, nr_segs, get_max_io_size(bio, lim) << SECTOR_SHIFT)); } /* * REQ_OP_ZONE_APPEND bios must never be split by the block layer. * * But we want the nr_segs calculation provided by bio_split_rw_at, and having * a good sanity check that the submitter built the bio correctly is nice to * have as well. */ struct bio *bio_split_zone_append(struct bio *bio, const struct queue_limits *lim, unsigned *nr_segs) { int split_sectors; split_sectors = bio_split_rw_at(bio, lim, nr_segs, lim->max_zone_append_sectors << SECTOR_SHIFT); if (WARN_ON_ONCE(split_sectors > 0)) split_sectors = -EINVAL; return bio_submit_split(bio, split_sectors); } struct bio *bio_split_write_zeroes(struct bio *bio, const struct queue_limits *lim, unsigned *nsegs) { unsigned int max_sectors = get_max_io_size(bio, lim); *nsegs = 0; /* * An unset limit should normally not happen, as bio submission is keyed * off having a non-zero limit. But SCSI can clear the limit in the * I/O completion handler, and we can race and see this. Splitting to a * zero limit obviously doesn't make sense, so band-aid it here. */ if (!max_sectors) return bio; if (bio_sectors(bio) <= max_sectors) return bio; return bio_submit_split(bio, max_sectors); } /** * bio_split_to_limits - split a bio to fit the queue limits * @bio: bio to be split * * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and * if so split off a bio fitting the limits from the beginning of @bio and * return it. @bio is shortened to the remainder and re-submitted. * * The split bio is allocated from @q->bio_split, which is provided by the * block layer. */ struct bio *bio_split_to_limits(struct bio *bio) { unsigned int nr_segs; return __bio_split_to_limits(bio, bdev_limits(bio->bi_bdev), &nr_segs); } EXPORT_SYMBOL(bio_split_to_limits); unsigned int blk_recalc_rq_segments(struct request *rq) { unsigned int nr_phys_segs = 0; unsigned int bytes = 0; struct req_iterator iter; struct bio_vec bv; if (!rq->bio) return 0; switch (bio_op(rq->bio)) { case REQ_OP_DISCARD: case REQ_OP_SECURE_ERASE: if (queue_max_discard_segments(rq->q) > 1) { struct bio *bio = rq->bio; for_each_bio(bio) nr_phys_segs++; return nr_phys_segs; } return 1; case REQ_OP_WRITE_ZEROES: return 0; default: break; } rq_for_each_bvec(bv, rq, iter) bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes, UINT_MAX, UINT_MAX); return nr_phys_segs; } struct phys_vec { phys_addr_t paddr; u32 len; }; static bool blk_map_iter_next(struct request *req, struct req_iterator *iter, struct phys_vec *vec) { unsigned int max_size; struct bio_vec bv; if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { if (!iter->bio) return false; vec->paddr = bvec_phys(&req->special_vec); vec->len = req->special_vec.bv_len; iter->bio = NULL; return true; } if (!iter->iter.bi_size) return false; bv = mp_bvec_iter_bvec(iter->bio->bi_io_vec, iter->iter); vec->paddr = bvec_phys(&bv); max_size = get_max_segment_size(&req->q->limits, vec->paddr, UINT_MAX); bv.bv_len = min(bv.bv_len, max_size); bio_advance_iter_single(iter->bio, &iter->iter, bv.bv_len); /* * If we are entirely done with this bi_io_vec entry, check if the next * one could be merged into it. This typically happens when moving to * the next bio, but some callers also don't pack bvecs tight. */ while (!iter->iter.bi_size || !iter->iter.bi_bvec_done) { struct bio_vec next; if (!iter->iter.bi_size) { if (!iter->bio->bi_next) break; iter->bio = iter->bio->bi_next; iter->iter = iter->bio->bi_iter; } next = mp_bvec_iter_bvec(iter->bio->bi_io_vec, iter->iter); if (bv.bv_len + next.bv_len > max_size || !biovec_phys_mergeable(req->q, &bv, &next)) break; bv.bv_len += next.bv_len; bio_advance_iter_single(iter->bio, &iter->iter, next.bv_len); } vec->len = bv.bv_len; return true; } static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, struct scatterlist *sglist) { if (!*sg) return sglist; /* * If the driver previously mapped a shorter list, we could see a * termination bit prematurely unless it fully inits the sg table * on each mapping. We KNOW that there must be more entries here * or the driver would be buggy, so force clear the termination bit * to avoid doing a full sg_init_table() in drivers for each command. */ sg_unmark_end(*sg); return sg_next(*sg); } /* * Map a request to scatterlist, return number of sg entries setup. Caller * must make sure sg can hold rq->nr_phys_segments entries. */ int __blk_rq_map_sg(struct request *rq, struct scatterlist *sglist, struct scatterlist **last_sg) { struct req_iterator iter = { .bio = rq->bio, }; struct phys_vec vec; int nsegs = 0; /* the internal flush request may not have bio attached */ if (iter.bio) iter.iter = iter.bio->bi_iter; while (blk_map_iter_next(rq, &iter, &vec)) { *last_sg = blk_next_sg(last_sg, sglist); sg_set_page(*last_sg, phys_to_page(vec.paddr), vec.len, offset_in_page(vec.paddr)); nsegs++; } if (*last_sg) sg_mark_end(*last_sg); /* * Something must have been wrong if the figured number of * segment is bigger than number of req's physical segments */ WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); return nsegs; } EXPORT_SYMBOL(__blk_rq_map_sg); static inline unsigned int blk_rq_get_max_sectors(struct request *rq, sector_t offset) { struct request_queue *q = rq->q; struct queue_limits *lim = &q->limits; unsigned int max_sectors, boundary_sectors; bool is_atomic = rq->cmd_flags & REQ_ATOMIC; if (blk_rq_is_passthrough(rq)) return q->limits.max_hw_sectors; boundary_sectors = blk_boundary_sectors(lim, is_atomic); max_sectors = blk_queue_get_max_sectors(rq); if (!boundary_sectors || req_op(rq) == REQ_OP_DISCARD || req_op(rq) == REQ_OP_SECURE_ERASE) return max_sectors; return min(max_sectors, blk_boundary_sectors_left(offset, boundary_sectors)); } static inline int ll_new_hw_segment(struct request *req, struct bio *bio, unsigned int nr_phys_segs) { if (!blk_cgroup_mergeable(req, bio)) goto no_merge; if (blk_integrity_merge_bio(req->q, req, bio) == false) goto no_merge; /* discard request merge won't add new segment */ if (req_op(req) == REQ_OP_DISCARD) return 1; if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) goto no_merge; /* * This will form the start of a new hw segment. Bump both * counters. */ req->nr_phys_segments += nr_phys_segs; if (bio_integrity(bio)) req->nr_integrity_segments += blk_rq_count_integrity_sg(req->q, bio); return 1; no_merge: req_set_nomerge(req->q, req); return 0; } int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) { if (req_gap_back_merge(req, bio)) return 0; if (blk_integrity_rq(req) && integrity_req_gap_back_merge(req, bio)) return 0; if (!bio_crypt_ctx_back_mergeable(req, bio)) return 0; if (blk_rq_sectors(req) + bio_sectors(bio) > blk_rq_get_max_sectors(req, blk_rq_pos(req))) { req_set_nomerge(req->q, req); return 0; } return ll_new_hw_segment(req, bio, nr_segs); } static int ll_front_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) { if (req_gap_front_merge(req, bio)) return 0; if (blk_integrity_rq(req) && integrity_req_gap_front_merge(req, bio)) return 0; if (!bio_crypt_ctx_front_mergeable(req, bio)) return 0; if (blk_rq_sectors(req) + bio_sectors(bio) > blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { req_set_nomerge(req->q, req); return 0; } return ll_new_hw_segment(req, bio, nr_segs); } static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, struct request *next) { unsigned short segments = blk_rq_nr_discard_segments(req); if (segments >= queue_max_discard_segments(q)) goto no_merge; if (blk_rq_sectors(req) + bio_sectors(next->bio) > blk_rq_get_max_sectors(req, blk_rq_pos(req))) goto no_merge; req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); return true; no_merge: req_set_nomerge(q, req); return false; } static int ll_merge_requests_fn(struct request_queue *q, struct request *req, struct request *next) { int total_phys_segments; if (req_gap_back_merge(req, next->bio)) return 0; /* * Will it become too large? */ if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > blk_rq_get_max_sectors(req, blk_rq_pos(req))) return 0; total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; if (total_phys_segments > blk_rq_get_max_segments(req)) return 0; if (!blk_cgroup_mergeable(req, next->bio)) return 0; if (blk_integrity_merge_rq(q, req, next) == false) return 0; if (!bio_crypt_ctx_merge_rq(req, next)) return 0; /* Merge is OK... */ req->nr_phys_segments = total_phys_segments; req->nr_integrity_segments += next->nr_integrity_segments; return 1; } /** * blk_rq_set_mixed_merge - mark a request as mixed merge * @rq: request to mark as mixed merge * * Description: * @rq is about to be mixed merged. Make sure the attributes * which can be mixed are set in each bio and mark @rq as mixed * merged. */ static void blk_rq_set_mixed_merge(struct request *rq) { blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK; struct bio *bio; if (rq->rq_flags & RQF_MIXED_MERGE) return; /* * @rq will no longer represent mixable attributes for all the * contained bios. It will just track those of the first one. * Distributes the attributs to each bio. */ for (bio = rq->bio; bio; bio = bio->bi_next) { WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && (bio->bi_opf & REQ_FAILFAST_MASK) != ff); bio->bi_opf |= ff; } rq->rq_flags |= RQF_MIXED_MERGE; } static inline blk_opf_t bio_failfast(const struct bio *bio) { if (bio->bi_opf & REQ_RAHEAD) return REQ_FAILFAST_MASK; return bio->bi_opf & REQ_FAILFAST_MASK; } /* * After we are marked as MIXED_MERGE, any new RA bio has to be updated * as failfast, and request's failfast has to be updated in case of * front merge. */ static inline void blk_update_mixed_merge(struct request *req, struct bio *bio, bool front_merge) { if (req->rq_flags & RQF_MIXED_MERGE) { if (bio->bi_opf & REQ_RAHEAD) bio->bi_opf |= REQ_FAILFAST_MASK; if (front_merge) { req->cmd_flags &= ~REQ_FAILFAST_MASK; req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK; } } } static void blk_account_io_merge_request(struct request *req) { if (req->rq_flags & RQF_IO_STAT) { part_stat_lock(); part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); part_stat_local_dec(req->part, in_flight[op_is_write(req_op(req))]); part_stat_unlock(); } } static enum elv_merge blk_try_req_merge(struct request *req, struct request *next) { if (blk_discard_mergable(req)) return ELEVATOR_DISCARD_MERGE; else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) return ELEVATOR_BACK_MERGE; return ELEVATOR_NO_MERGE; } static bool blk_atomic_write_mergeable_rq_bio(struct request *rq, struct bio *bio) { return (rq->cmd_flags & REQ_ATOMIC) == (bio->bi_opf & REQ_ATOMIC); } static bool blk_atomic_write_mergeable_rqs(struct request *rq, struct request *next) { return (rq->cmd_flags & REQ_ATOMIC) == (next->cmd_flags & REQ_ATOMIC); } /* * For non-mq, this has to be called with the request spinlock acquired. * For mq with scheduling, the appropriate queue wide lock should be held. */ static struct request *attempt_merge(struct request_queue *q, struct request *req, struct request *next) { if (!rq_mergeable(req) || !rq_mergeable(next)) return NULL; if (req_op(req) != req_op(next)) return NULL; if (req->bio->bi_write_hint != next->bio->bi_write_hint) return NULL; if (req->bio->bi_ioprio != next->bio->bi_ioprio) return NULL; if (!blk_atomic_write_mergeable_rqs(req, next)) return NULL; /* * If we are allowed to merge, then append bio list * from next to rq and release next. merge_requests_fn * will have updated segment counts, update sector * counts here. Handle DISCARDs separately, as they * have separate settings. */ switch (blk_try_req_merge(req, next)) { case ELEVATOR_DISCARD_MERGE: if (!req_attempt_discard_merge(q, req, next)) return NULL; break; case ELEVATOR_BACK_MERGE: if (!ll_merge_requests_fn(q, req, next)) return NULL; break; default: return NULL; } /* * If failfast settings disagree or any of the two is already * a mixed merge, mark both as mixed before proceeding. This * makes sure that all involved bios have mixable attributes * set properly. */ if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || (req->cmd_flags & REQ_FAILFAST_MASK) != (next->cmd_flags & REQ_FAILFAST_MASK)) { blk_rq_set_mixed_merge(req); blk_rq_set_mixed_merge(next); } /* * At this point we have either done a back merge or front merge. We * need the smaller start_time_ns of the merged requests to be the * current request for accounting purposes. */ if (next->start_time_ns < req->start_time_ns) req->start_time_ns = next->start_time_ns; req->biotail->bi_next = next->bio; req->biotail = next->biotail; req->__data_len += blk_rq_bytes(next); if (!blk_discard_mergable(req)) elv_merge_requests(q, req, next); blk_crypto_rq_put_keyslot(next); /* * 'next' is going away, so update stats accordingly */ blk_account_io_merge_request(next); trace_block_rq_merge(next); /* * ownership of bio passed from next to req, return 'next' for * the caller to free */ next->bio = NULL; return next; } static struct request *attempt_back_merge(struct request_queue *q, struct request *rq) { struct request *next = elv_latter_request(q, rq); if (next) return attempt_merge(q, rq, next); return NULL; } static struct request *attempt_front_merge(struct request_queue *q, struct request *rq) { struct request *prev = elv_former_request(q, rq); if (prev) return attempt_merge(q, prev, rq); return NULL; } /* * Try to merge 'next' into 'rq'. Return true if the merge happened, false * otherwise. The caller is responsible for freeing 'next' if the merge * happened. */ bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, struct request *next) { return attempt_merge(q, rq, next); } bool blk_rq_merge_ok(struct request *rq, struct bio *bio) { if (!rq_mergeable(rq) || !bio_mergeable(bio)) return false; if (req_op(rq) != bio_op(bio)) return false; if (!blk_cgroup_mergeable(rq, bio)) return false; if (blk_integrity_merge_bio(rq->q, rq, bio) == false) return false; if (!bio_crypt_rq_ctx_compatible(rq, bio)) return false; if (rq->bio->bi_write_hint != bio->bi_write_hint) return false; if (rq->bio->bi_ioprio != bio->bi_ioprio) return false; if (blk_atomic_write_mergeable_rq_bio(rq, bio) == false) return false; return true; } enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) { if (blk_discard_mergable(rq)) return ELEVATOR_DISCARD_MERGE; else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) return ELEVATOR_BACK_MERGE; else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) return ELEVATOR_FRONT_MERGE; return ELEVATOR_NO_MERGE; } static void blk_account_io_merge_bio(struct request *req) { if (req->rq_flags & RQF_IO_STAT) { part_stat_lock(); part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); part_stat_unlock(); } } enum bio_merge_status bio_attempt_back_merge(struct request *req, struct bio *bio, unsigned int nr_segs) { const blk_opf_t ff = bio_failfast(bio); if (!ll_back_merge_fn(req, bio, nr_segs)) return BIO_MERGE_FAILED; trace_block_bio_backmerge(bio); rq_qos_merge(req->q, req, bio); if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) blk_rq_set_mixed_merge(req); blk_update_mixed_merge(req, bio, false); if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING) blk_zone_write_plug_bio_merged(bio); req->biotail->bi_next = bio; req->biotail = bio; req->__data_len += bio->bi_iter.bi_size; bio_crypt_free_ctx(bio); blk_account_io_merge_bio(req); return BIO_MERGE_OK; } static enum bio_merge_status bio_attempt_front_merge(struct request *req, struct bio *bio, unsigned int nr_segs) { const blk_opf_t ff = bio_failfast(bio); /* * A front merge for writes to sequential zones of a zoned block device * can happen only if the user submitted writes out of order. Do not * merge such write to let it fail. */ if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING) return BIO_MERGE_FAILED; if (!ll_front_merge_fn(req, bio, nr_segs)) return BIO_MERGE_FAILED; trace_block_bio_frontmerge(bio); rq_qos_merge(req->q, req, bio); if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) blk_rq_set_mixed_merge(req); blk_update_mixed_merge(req, bio, true); bio->bi_next = req->bio; req->bio = bio; req->__sector = bio->bi_iter.bi_sector; req->__data_len += bio->bi_iter.bi_size; bio_crypt_do_front_merge(req, bio); blk_account_io_merge_bio(req); return BIO_MERGE_OK; } static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, struct request *req, struct bio *bio) { unsigned short segments = blk_rq_nr_discard_segments(req); if (segments >= queue_max_discard_segments(q)) goto no_merge; if (blk_rq_sectors(req) + bio_sectors(bio) > blk_rq_get_max_sectors(req, blk_rq_pos(req))) goto no_merge; rq_qos_merge(q, req, bio); req->biotail->bi_next = bio; req->biotail = bio; req->__data_len += bio->bi_iter.bi_size; req->nr_phys_segments = segments + 1; blk_account_io_merge_bio(req); return BIO_MERGE_OK; no_merge: req_set_nomerge(q, req); return BIO_MERGE_FAILED; } static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, struct request *rq, struct bio *bio, unsigned int nr_segs, bool sched_allow_merge) { if (!blk_rq_merge_ok(rq, bio)) return BIO_MERGE_NONE; switch (blk_try_merge(rq, bio)) { case ELEVATOR_BACK_MERGE: if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) return bio_attempt_back_merge(rq, bio, nr_segs); break; case ELEVATOR_FRONT_MERGE: if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) return bio_attempt_front_merge(rq, bio, nr_segs); break; case ELEVATOR_DISCARD_MERGE: return bio_attempt_discard_merge(q, rq, bio); default: return BIO_MERGE_NONE; } return BIO_MERGE_FAILED; } /** * blk_attempt_plug_merge - try to merge with %current's plugged list * @q: request_queue new bio is being queued at * @bio: new bio being queued * @nr_segs: number of segments in @bio * from the passed in @q already in the plug list * * Determine whether @bio being queued on @q can be merged with the previous * request on %current's plugged list. Returns %true if merge was successful, * otherwise %false. * * Plugging coalesces IOs from the same issuer for the same purpose without * going through @q->queue_lock. As such it's more of an issuing mechanism * than scheduling, and the request, while may have elvpriv data, is not * added on the elevator at this point. In addition, we don't have * reliable access to the elevator outside queue lock. Only check basic * merging parameters without querying the elevator. * * Caller must ensure !blk_queue_nomerges(q) beforehand. */ bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs) { struct blk_plug *plug = current->plug; struct request *rq; if (!plug || rq_list_empty(&plug->mq_list)) return false; rq_list_for_each(&plug->mq_list, rq) { if (rq->q == q) { if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == BIO_MERGE_OK) return true; break; } /* * Only keep iterating plug list for merges if we have multiple * queues */ if (!plug->multiple_queues) break; } return false; } /* * Iterate list of requests and see if we can merge this bio with any * of them. */ bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, struct bio *bio, unsigned int nr_segs) { struct request *rq; int checked = 8; list_for_each_entry_reverse(rq, list, queuelist) { if (!checked--) break; switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { case BIO_MERGE_NONE: continue; case BIO_MERGE_OK: return true; case BIO_MERGE_FAILED: return false; } } return false; } EXPORT_SYMBOL_GPL(blk_bio_list_merge); bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, unsigned int nr_segs, struct request **merged_request) { struct request *rq; switch (elv_merge(q, &rq, bio)) { case ELEVATOR_BACK_MERGE: if (!blk_mq_sched_allow_merge(q, rq, bio)) return false; if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) return false; *merged_request = attempt_back_merge(q, rq); if (!*merged_request) elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); return true; case ELEVATOR_FRONT_MERGE: if (!blk_mq_sched_allow_merge(q, rq, bio)) return false; if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) return false; *merged_request = attempt_front_merge(q, rq); if (!*merged_request) elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); return true; case ELEVATOR_DISCARD_MERGE: return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; default: return false; } } EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); |
72 73 91 3 3 91 12 12 80 94 2 93 93 4 77 77 22 22 98 31 98 91 97 10 88 46 46 10 38 40 38 38 38 38 38 38 38 38 38 40 2 2 44 45 46 46 46 12 12 4 12 10 10 8 7 10 6 6 6 4 6 4 3 4 45 12 36 36 13 31 26 30 19 26 26 20 26 22 19 45 15 15 9 18 9 3 18 19 19 19 5 3 3 19 27 27 27 5 17 17 15 38 19 27 37 5 33 38 9 7 6 6 3 3 6 38 8 26 8 26 38 25 5 24 14 14 24 24 24 14 29 5 5 3 1 7 2 7 1 7 3 7 5 2 7 10 10 1 1 1 10 1 1 10 1 1 10 10 3 3 9 1 1 10 10 10 10 9 3 10 10 10 5 10 3 5 2 7 9 9 9 8 9 7 9 10 6 6 6 6 6 3 6 4 9 8 8 2 7 3 5 4 1 4 4 4 4 2 4 3 4 4 4 4 9 41 42 41 9 38 39 39 39 12 12 11 9 9 9 4 9 9 12 12 12 12 12 15 15 6 15 4 11 10 1 10 10 10 9 10 10 10 5 5 10 10 12 11 11 11 2 2 2 5 21 22 39 42 5 6 17 16 16 5 13 13 10 10 3 3 3 3 8 17 82 85 84 10 9 9 42 9 6 17 85 76 10 10 34 14 34 34 11 9 9 34 34 34 34 30 30 30 30 30 30 30 30 30 30 30 30 30 49 48 48 47 7 6 47 47 47 47 43 47 34 34 18 47 11 44 4 43 1 42 42 22 42 42 26 34 1 26 26 22 20 9 8 2 7 1 13 12 13 9 4 12 20 20 20 20 10 10 7 4 4 4 4 2 4 7 13 45 58 58 7 54 49 50 7 55 23 8 8 7 23 31 31 36 1168 42 42 41 1125 1170 114 63 113 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 | // SPDX-License-Identifier: GPL-2.0 /* * linux/ipc/sem.c * Copyright (C) 1992 Krishna Balasubramanian * Copyright (C) 1995 Eric Schenk, Bruno Haible * * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> * * SMP-threaded, sysctl's added * (c) 1999 Manfred Spraul <manfred@colorfullife.com> * Enforced range limit on SEM_UNDO * (c) 2001 Red Hat Inc * Lockless wakeup * (c) 2003 Manfred Spraul <manfred@colorfullife.com> * (c) 2016 Davidlohr Bueso <dave@stgolabs.net> * Further wakeup optimizations, documentation * (c) 2010 Manfred Spraul <manfred@colorfullife.com> * * support for audit of ipc object properties and permission changes * Dustin Kirkland <dustin.kirkland@us.ibm.com> * * namespaces support * OpenVZ, SWsoft Inc. * Pavel Emelianov <xemul@openvz.org> * * Implementation notes: (May 2010) * This file implements System V semaphores. * * User space visible behavior: * - FIFO ordering for semop() operations (just FIFO, not starvation * protection) * - multiple semaphore operations that alter the same semaphore in * one semop() are handled. * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and * SETALL calls. * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. * - undo adjustments at process exit are limited to 0..SEMVMX. * - namespace are supported. * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtime by writing * to /proc/sys/kernel/sem. * - statistics about the usage are reported in /proc/sysvipc/sem. * * Internals: * - scalability: * - all global variables are read-mostly. * - semop() calls and semctl(RMID) are synchronized by RCU. * - most operations do write operations (actually: spin_lock calls) to * the per-semaphore array structure. * Thus: Perfect SMP scaling between independent semaphore arrays. * If multiple semaphores in one array are used, then cache line * trashing on the semaphore array spinlock will limit the scaling. * - semncnt and semzcnt are calculated on demand in count_semcnt() * - the task that performs a successful semop() scans the list of all * sleeping tasks and completes any pending operations that can be fulfilled. * Semaphores are actively given to waiting tasks (necessary for FIFO). * (see update_queue()) * - To improve the scalability, the actual wake-up calls are performed after * dropping all locks. (see wake_up_sem_queue_prepare()) * - All work is done by the waker, the woken up task does not have to do * anything - not even acquiring a lock or dropping a refcount. * - A woken up task may not even touch the semaphore array anymore, it may * have been destroyed already by a semctl(RMID). * - UNDO values are stored in an array (one per process and per * semaphore array, lazily allocated). For backwards compatibility, multiple * modes for the UNDO variables are supported (per process, per thread) * (see copy_semundo, CLONE_SYSVSEM) * - There are two lists of the pending operations: a per-array list * and per-semaphore list (stored in the array). This allows to achieve FIFO * ordering without always scanning all pending operations. * The worst-case behavior is nevertheless O(N^2) for N wakeups. */ #include <linux/compat.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/init.h> #include <linux/proc_fs.h> #include <linux/time.h> #include <linux/security.h> #include <linux/syscalls.h> #include <linux/audit.h> #include <linux/capability.h> #include <linux/seq_file.h> #include <linux/rwsem.h> #include <linux/nsproxy.h> #include <linux/ipc_namespace.h> #include <linux/sched/wake_q.h> #include <linux/nospec.h> #include <linux/rhashtable.h> #include <linux/uaccess.h> #include "util.h" /* One semaphore structure for each semaphore in the system. */ struct sem { int semval; /* current value */ /* * PID of the process that last modified the semaphore. For * Linux, specifically these are: * - semop * - semctl, via SETVAL and SETALL. * - at task exit when performing undo adjustments (see exit_sem). */ struct pid *sempid; spinlock_t lock; /* spinlock for fine-grained semtimedop */ struct list_head pending_alter; /* pending single-sop operations */ /* that alter the semaphore */ struct list_head pending_const; /* pending single-sop operations */ /* that do not alter the semaphore*/ time64_t sem_otime; /* candidate for sem_otime */ } ____cacheline_aligned_in_smp; /* One sem_array data structure for each set of semaphores in the system. */ struct sem_array { struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */ time64_t sem_ctime; /* create/last semctl() time */ struct list_head pending_alter; /* pending operations */ /* that alter the array */ struct list_head pending_const; /* pending complex operations */ /* that do not alter semvals */ struct list_head list_id; /* undo requests on this array */ int sem_nsems; /* no. of semaphores in array */ int complex_count; /* pending complex operations */ unsigned int use_global_lock;/* >0: global lock required */ struct sem sems[]; } __randomize_layout; /* One queue for each sleeping process in the system. */ struct sem_queue { struct list_head list; /* queue of pending operations */ struct task_struct *sleeper; /* this process */ struct sem_undo *undo; /* undo structure */ struct pid *pid; /* process id of requesting process */ int status; /* completion status of operation */ struct sembuf *sops; /* array of pending operations */ struct sembuf *blocking; /* the operation that blocked */ int nsops; /* number of operations */ bool alter; /* does *sops alter the array? */ bool dupsop; /* sops on more than one sem_num */ }; /* Each task has a list of undo requests. They are executed automatically * when the process exits. */ struct sem_undo { struct list_head list_proc; /* per-process list: * * all undos from one process * rcu protected */ struct rcu_head rcu; /* rcu struct for sem_undo */ struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ struct list_head list_id; /* per semaphore array list: * all undos for one array */ int semid; /* semaphore set identifier */ short semadj[]; /* array of adjustments */ /* one per semaphore */ }; /* sem_undo_list controls shared access to the list of sem_undo structures * that may be shared among all a CLONE_SYSVSEM task group. */ struct sem_undo_list { refcount_t refcnt; spinlock_t lock; struct list_head list_proc; }; #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) static int newary(struct ipc_namespace *, struct ipc_params *); static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); #ifdef CONFIG_PROC_FS static int sysvipc_sem_proc_show(struct seq_file *s, void *it); #endif #define SEMMSL_FAST 256 /* 512 bytes on stack */ #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ /* * Switching from the mode suitable for simple ops * to the mode for complex ops is costly. Therefore: * use some hysteresis */ #define USE_GLOBAL_LOCK_HYSTERESIS 10 /* * Locking: * a) global sem_lock() for read/write * sem_undo.id_next, * sem_array.complex_count, * sem_array.pending{_alter,_const}, * sem_array.sem_undo * * b) global or semaphore sem_lock() for read/write: * sem_array.sems[i].pending_{const,alter}: * * c) special: * sem_undo_list.list_proc: * * undo_list->lock for write * * rcu for read * use_global_lock: * * global sem_lock() for write * * either local or global sem_lock() for read. * * Memory ordering: * Most ordering is enforced by using spin_lock() and spin_unlock(). * * Exceptions: * 1) use_global_lock: (SEM_BARRIER_1) * Setting it from non-zero to 0 is a RELEASE, this is ensured by * using smp_store_release(): Immediately after setting it to 0, * a simple op can start. * Testing if it is non-zero is an ACQUIRE, this is ensured by using * smp_load_acquire(). * Setting it from 0 to non-zero must be ordered with regards to * this smp_load_acquire(), this is guaranteed because the smp_load_acquire() * is inside a spin_lock() and after a write from 0 to non-zero a * spin_lock()+spin_unlock() is done. * To prevent the compiler/cpu temporarily writing 0 to use_global_lock, * READ_ONCE()/WRITE_ONCE() is used. * * 2) queue.status: (SEM_BARRIER_2) * Initialization is done while holding sem_lock(), so no further barrier is * required. * Setting it to a result code is a RELEASE, this is ensured by both a * smp_store_release() (for case a) and while holding sem_lock() * (for case b). * The ACQUIRE when reading the result code without holding sem_lock() is * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep(). * (case a above). * Reading the result code while holding sem_lock() needs no further barriers, * the locks inside sem_lock() enforce ordering (case b above) * * 3) current->state: * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock(). * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may * happen immediately after calling wake_q_add. As wake_q_add_safe() is called * when holding sem_lock(), no further barriers are required. * * See also ipc/mqueue.c for more details on the covered races. */ #define sc_semmsl sem_ctls[0] #define sc_semmns sem_ctls[1] #define sc_semopm sem_ctls[2] #define sc_semmni sem_ctls[3] void sem_init_ns(struct ipc_namespace *ns) { ns->sc_semmsl = SEMMSL; ns->sc_semmns = SEMMNS; ns->sc_semopm = SEMOPM; ns->sc_semmni = SEMMNI; ns->used_sems = 0; ipc_init_ids(&ns->ids[IPC_SEM_IDS]); } #ifdef CONFIG_IPC_NS void sem_exit_ns(struct ipc_namespace *ns) { free_ipcs(ns, &sem_ids(ns), freeary); idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht); } #endif void __init sem_init(void) { sem_init_ns(&init_ipc_ns); ipc_init_proc_interface("sysvipc/sem", " key semid perms nsems uid gid cuid cgid otime ctime\n", IPC_SEM_IDS, sysvipc_sem_proc_show); } /** * unmerge_queues - unmerge queues, if possible. * @sma: semaphore array * * The function unmerges the wait queues if complex_count is 0. * It must be called prior to dropping the global semaphore array lock. */ static void unmerge_queues(struct sem_array *sma) { struct sem_queue *q, *tq; /* complex operations still around? */ if (sma->complex_count) return; /* * We will switch back to simple mode. * Move all pending operation back into the per-semaphore * queues. */ list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { struct sem *curr; curr = &sma->sems[q->sops[0].sem_num]; list_add_tail(&q->list, &curr->pending_alter); } INIT_LIST_HEAD(&sma->pending_alter); } /** * merge_queues - merge single semop queues into global queue * @sma: semaphore array * * This function merges all per-semaphore queues into the global queue. * It is necessary to achieve FIFO ordering for the pending single-sop * operations when a multi-semop operation must sleep. * Only the alter operations must be moved, the const operations can stay. */ static void merge_queues(struct sem_array *sma) { int i; for (i = 0; i < sma->sem_nsems; i++) { struct sem *sem = &sma->sems[i]; list_splice_init(&sem->pending_alter, &sma->pending_alter); } } static void sem_rcu_free(struct rcu_head *head) { struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu); struct sem_array *sma = container_of(p, struct sem_array, sem_perm); security_sem_free(&sma->sem_perm); kvfree(sma); } /* * Enter the mode suitable for non-simple operations: * Caller must own sem_perm.lock. */ static void complexmode_enter(struct sem_array *sma) { int i; struct sem *sem; if (sma->use_global_lock > 0) { /* * We are already in global lock mode. * Nothing to do, just reset the * counter until we return to simple mode. */ WRITE_ONCE(sma->use_global_lock, USE_GLOBAL_LOCK_HYSTERESIS); return; } WRITE_ONCE(sma->use_global_lock, USE_GLOBAL_LOCK_HYSTERESIS); for (i = 0; i < sma->sem_nsems; i++) { sem = &sma->sems[i]; spin_lock(&sem->lock); spin_unlock(&sem->lock); } } /* * Try to leave the mode that disallows simple operations: * Caller must own sem_perm.lock. */ static void complexmode_tryleave(struct sem_array *sma) { if (sma->complex_count) { /* Complex ops are sleeping. * We must stay in complex mode */ return; } if (sma->use_global_lock == 1) { /* See SEM_BARRIER_1 for purpose/pairing */ smp_store_release(&sma->use_global_lock, 0); } else { WRITE_ONCE(sma->use_global_lock, sma->use_global_lock-1); } } #define SEM_GLOBAL_LOCK (-1) /* * If the request contains only one semaphore operation, and there are * no complex transactions pending, lock only the semaphore involved. * Otherwise, lock the entire semaphore array, since we either have * multiple semaphores in our own semops, or we need to look at * semaphores from other pending complex operations. */ static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, int nsops) { struct sem *sem; int idx; if (nsops != 1) { /* Complex operation - acquire a full lock */ ipc_lock_object(&sma->sem_perm); /* Prevent parallel simple ops */ complexmode_enter(sma); return SEM_GLOBAL_LOCK; } /* * Only one semaphore affected - try to optimize locking. * Optimized locking is possible if no complex operation * is either enqueued or processed right now. * * Both facts are tracked by use_global_mode. */ idx = array_index_nospec(sops->sem_num, sma->sem_nsems); sem = &sma->sems[idx]; /* * Initial check for use_global_lock. Just an optimization, * no locking, no memory barrier. */ if (!READ_ONCE(sma->use_global_lock)) { /* * It appears that no complex operation is around. * Acquire the per-semaphore lock. */ spin_lock(&sem->lock); /* see SEM_BARRIER_1 for purpose/pairing */ if (!smp_load_acquire(&sma->use_global_lock)) { /* fast path successful! */ return sops->sem_num; } spin_unlock(&sem->lock); } /* slow path: acquire the full lock */ ipc_lock_object(&sma->sem_perm); if (sma->use_global_lock == 0) { /* * The use_global_lock mode ended while we waited for * sma->sem_perm.lock. Thus we must switch to locking * with sem->lock. * Unlike in the fast path, there is no need to recheck * sma->use_global_lock after we have acquired sem->lock: * We own sma->sem_perm.lock, thus use_global_lock cannot * change. */ spin_lock(&sem->lock); ipc_unlock_object(&sma->sem_perm); return sops->sem_num; } else { /* * Not a false alarm, thus continue to use the global lock * mode. No need for complexmode_enter(), this was done by * the caller that has set use_global_mode to non-zero. */ return SEM_GLOBAL_LOCK; } } static inline void sem_unlock(struct sem_array *sma, int locknum) { if (locknum == SEM_GLOBAL_LOCK) { unmerge_queues(sma); complexmode_tryleave(sma); ipc_unlock_object(&sma->sem_perm); } else { struct sem *sem = &sma->sems[locknum]; spin_unlock(&sem->lock); } } /* * sem_lock_(check_) routines are called in the paths where the rwsem * is not held. * * The caller holds the RCU read lock. */ static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) { struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); if (IS_ERR(ipcp)) return ERR_CAST(ipcp); return container_of(ipcp, struct sem_array, sem_perm); } static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, int id) { struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); if (IS_ERR(ipcp)) return ERR_CAST(ipcp); return container_of(ipcp, struct sem_array, sem_perm); } static inline void sem_lock_and_putref(struct sem_array *sma) { sem_lock(sma, NULL, -1); ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); } static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) { ipc_rmid(&sem_ids(ns), &s->sem_perm); } static struct sem_array *sem_alloc(size_t nsems) { struct sem_array *sma; if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0])) return NULL; sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL_ACCOUNT); if (unlikely(!sma)) return NULL; return sma; } /** * newary - Create a new semaphore set * @ns: namespace * @params: ptr to the structure that contains key, semflg and nsems * * Called with sem_ids.rwsem held (as a writer) */ static int newary(struct ipc_namespace *ns, struct ipc_params *params) { int retval; struct sem_array *sma; key_t key = params->key; int nsems = params->u.nsems; int semflg = params->flg; int i; if (!nsems) return -EINVAL; if (ns->used_sems + nsems > ns->sc_semmns) return -ENOSPC; sma = sem_alloc(nsems); if (!sma) return -ENOMEM; sma->sem_perm.mode = (semflg & S_IRWXUGO); sma->sem_perm.key = key; sma->sem_perm.security = NULL; retval = security_sem_alloc(&sma->sem_perm); if (retval) { kvfree(sma); return retval; } for (i = 0; i < nsems; i++) { INIT_LIST_HEAD(&sma->sems[i].pending_alter); INIT_LIST_HEAD(&sma->sems[i].pending_const); spin_lock_init(&sma->sems[i].lock); } sma->complex_count = 0; sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS; INIT_LIST_HEAD(&sma->pending_alter); INIT_LIST_HEAD(&sma->pending_const); INIT_LIST_HEAD(&sma->list_id); sma->sem_nsems = nsems; sma->sem_ctime = ktime_get_real_seconds(); /* ipc_addid() locks sma upon success. */ retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); if (retval < 0) { ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); return retval; } ns->used_sems += nsems; sem_unlock(sma, -1); rcu_read_unlock(); return sma->sem_perm.id; } /* * Called with sem_ids.rwsem and ipcp locked. */ static int sem_more_checks(struct kern_ipc_perm *ipcp, struct ipc_params *params) { struct sem_array *sma; sma = container_of(ipcp, struct sem_array, sem_perm); if (params->u.nsems > sma->sem_nsems) return -EINVAL; return 0; } long ksys_semget(key_t key, int nsems, int semflg) { struct ipc_namespace *ns; static const struct ipc_ops sem_ops = { .getnew = newary, .associate = security_sem_associate, .more_checks = sem_more_checks, }; struct ipc_params sem_params; ns = current->nsproxy->ipc_ns; if (nsems < 0 || nsems > ns->sc_semmsl) return -EINVAL; sem_params.key = key; sem_params.flg = semflg; sem_params.u.nsems = nsems; return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); } SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) { return ksys_semget(key, nsems, semflg); } /** * perform_atomic_semop[_slow] - Attempt to perform semaphore * operations on a given array. * @sma: semaphore array * @q: struct sem_queue that describes the operation * * Caller blocking are as follows, based the value * indicated by the semaphore operation (sem_op): * * (1) >0 never blocks. * (2) 0 (wait-for-zero operation): semval is non-zero. * (3) <0 attempting to decrement semval to a value smaller than zero. * * Returns 0 if the operation was possible. * Returns 1 if the operation is impossible, the caller must sleep. * Returns <0 for error codes. */ static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q) { int result, sem_op, nsops; struct pid *pid; struct sembuf *sop; struct sem *curr; struct sembuf *sops; struct sem_undo *un; sops = q->sops; nsops = q->nsops; un = q->undo; for (sop = sops; sop < sops + nsops; sop++) { int idx = array_index_nospec(sop->sem_num, sma->sem_nsems); curr = &sma->sems[idx]; sem_op = sop->sem_op; result = curr->semval; if (!sem_op && result) goto would_block; result += sem_op; if (result < 0) goto would_block; if (result > SEMVMX) goto out_of_range; if (sop->sem_flg & SEM_UNDO) { int undo = un->semadj[sop->sem_num] - sem_op; /* Exceeding the undo range is an error. */ if (undo < (-SEMAEM - 1) || undo > SEMAEM) goto out_of_range; un->semadj[sop->sem_num] = undo; } curr->semval = result; } sop--; pid = q->pid; while (sop >= sops) { ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid); sop--; } return 0; out_of_range: result = -ERANGE; goto undo; would_block: q->blocking = sop; if (sop->sem_flg & IPC_NOWAIT) result = -EAGAIN; else result = 1; undo: sop--; while (sop >= sops) { sem_op = sop->sem_op; sma->sems[sop->sem_num].semval -= sem_op; if (sop->sem_flg & SEM_UNDO) un->semadj[sop->sem_num] += sem_op; sop--; } return result; } static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) { int result, sem_op, nsops; struct sembuf *sop; struct sem *curr; struct sembuf *sops; struct sem_undo *un; sops = q->sops; nsops = q->nsops; un = q->undo; if (unlikely(q->dupsop)) return perform_atomic_semop_slow(sma, q); /* * We scan the semaphore set twice, first to ensure that the entire * operation can succeed, therefore avoiding any pointless writes * to shared memory and having to undo such changes in order to block * until the operations can go through. */ for (sop = sops; sop < sops + nsops; sop++) { int idx = array_index_nospec(sop->sem_num, sma->sem_nsems); curr = &sma->sems[idx]; sem_op = sop->sem_op; result = curr->semval; if (!sem_op && result) goto would_block; /* wait-for-zero */ result += sem_op; if (result < 0) goto would_block; if (result > SEMVMX) return -ERANGE; if (sop->sem_flg & SEM_UNDO) { int undo = un->semadj[sop->sem_num] - sem_op; /* Exceeding the undo range is an error. */ if (undo < (-SEMAEM - 1) || undo > SEMAEM) return -ERANGE; } } for (sop = sops; sop < sops + nsops; sop++) { curr = &sma->sems[sop->sem_num]; sem_op = sop->sem_op; if (sop->sem_flg & SEM_UNDO) { int undo = un->semadj[sop->sem_num] - sem_op; un->semadj[sop->sem_num] = undo; } curr->semval += sem_op; ipc_update_pid(&curr->sempid, q->pid); } return 0; would_block: q->blocking = sop; return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1; } static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error, struct wake_q_head *wake_q) { struct task_struct *sleeper; sleeper = get_task_struct(q->sleeper); /* see SEM_BARRIER_2 for purpose/pairing */ smp_store_release(&q->status, error); wake_q_add_safe(wake_q, sleeper); } static void unlink_queue(struct sem_array *sma, struct sem_queue *q) { list_del(&q->list); if (q->nsops > 1) sma->complex_count--; } /** check_restart(sma, q) * @sma: semaphore array * @q: the operation that just completed * * update_queue is O(N^2) when it restarts scanning the whole queue of * waiting operations. Therefore this function checks if the restart is * really necessary. It is called after a previously waiting operation * modified the array. * Note that wait-for-zero operations are handled without restart. */ static inline int check_restart(struct sem_array *sma, struct sem_queue *q) { /* pending complex alter operations are too difficult to analyse */ if (!list_empty(&sma->pending_alter)) return 1; /* we were a sleeping complex operation. Too difficult */ if (q->nsops > 1) return 1; /* It is impossible that someone waits for the new value: * - complex operations always restart. * - wait-for-zero are handled separately. * - q is a previously sleeping simple operation that * altered the array. It must be a decrement, because * simple increments never sleep. * - If there are older (higher priority) decrements * in the queue, then they have observed the original * semval value and couldn't proceed. The operation * decremented to value - thus they won't proceed either. */ return 0; } /** * wake_const_ops - wake up non-alter tasks * @sma: semaphore array. * @semnum: semaphore that was modified. * @wake_q: lockless wake-queue head. * * wake_const_ops must be called after a semaphore in a semaphore array * was set to 0. If complex const operations are pending, wake_const_ops must * be called with semnum = -1, as well as with the number of each modified * semaphore. * The tasks that must be woken up are added to @wake_q. The return code * is stored in q->pid. * The function returns 1 if at least one operation was completed successfully. */ static int wake_const_ops(struct sem_array *sma, int semnum, struct wake_q_head *wake_q) { struct sem_queue *q, *tmp; struct list_head *pending_list; int semop_completed = 0; if (semnum == -1) pending_list = &sma->pending_const; else pending_list = &sma->sems[semnum].pending_const; list_for_each_entry_safe(q, tmp, pending_list, list) { int error = perform_atomic_semop(sma, q); if (error > 0) continue; /* operation completed, remove from queue & wakeup */ unlink_queue(sma, q); wake_up_sem_queue_prepare(q, error, wake_q); if (error == 0) semop_completed = 1; } return semop_completed; } /** * do_smart_wakeup_zero - wakeup all wait for zero tasks * @sma: semaphore array * @sops: operations that were performed * @nsops: number of operations * @wake_q: lockless wake-queue head * * Checks all required queue for wait-for-zero operations, based * on the actual changes that were performed on the semaphore array. * The function returns 1 if at least one operation was completed successfully. */ static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, int nsops, struct wake_q_head *wake_q) { int i; int semop_completed = 0; int got_zero = 0; /* first: the per-semaphore queues, if known */ if (sops) { for (i = 0; i < nsops; i++) { int num = sops[i].sem_num; if (sma->sems[num].semval == 0) { got_zero = 1; semop_completed |= wake_const_ops(sma, num, wake_q); } } } else { /* * No sops means modified semaphores not known. * Assume all were changed. */ for (i = 0; i < sma->sem_nsems; i++) { if (sma->sems[i].semval == 0) { got_zero = 1; semop_completed |= wake_const_ops(sma, i, wake_q); } } } /* * If one of the modified semaphores got 0, * then check the global queue, too. */ if (got_zero) semop_completed |= wake_const_ops(sma, -1, wake_q); return semop_completed; } /** * update_queue - look for tasks that can be completed. * @sma: semaphore array. * @semnum: semaphore that was modified. * @wake_q: lockless wake-queue head. * * update_queue must be called after a semaphore in a semaphore array * was modified. If multiple semaphores were modified, update_queue must * be called with semnum = -1, as well as with the number of each modified * semaphore. * The tasks that must be woken up are added to @wake_q. The return code * is stored in q->pid. * The function internally checks if const operations can now succeed. * * The function return 1 if at least one semop was completed successfully. */ static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q) { struct sem_queue *q, *tmp; struct list_head *pending_list; int semop_completed = 0; if (semnum == -1) pending_list = &sma->pending_alter; else pending_list = &sma->sems[semnum].pending_alter; again: list_for_each_entry_safe(q, tmp, pending_list, list) { int error, restart; /* If we are scanning the single sop, per-semaphore list of * one semaphore and that semaphore is 0, then it is not * necessary to scan further: simple increments * that affect only one entry succeed immediately and cannot * be in the per semaphore pending queue, and decrements * cannot be successful if the value is already 0. */ if (semnum != -1 && sma->sems[semnum].semval == 0) break; error = perform_atomic_semop(sma, q); /* Does q->sleeper still need to sleep? */ if (error > 0) continue; unlink_queue(sma, q); if (error) { restart = 0; } else { semop_completed = 1; do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q); restart = check_restart(sma, q); } wake_up_sem_queue_prepare(q, error, wake_q); if (restart) goto again; } return semop_completed; } /** * set_semotime - set sem_otime * @sma: semaphore array * @sops: operations that modified the array, may be NULL * * sem_otime is replicated to avoid cache line trashing. * This function sets one instance to the current time. */ static void set_semotime(struct sem_array *sma, struct sembuf *sops) { if (sops == NULL) { sma->sems[0].sem_otime = ktime_get_real_seconds(); } else { sma->sems[sops[0].sem_num].sem_otime = ktime_get_real_seconds(); } } /** * do_smart_update - optimized update_queue * @sma: semaphore array * @sops: operations that were performed * @nsops: number of operations * @otime: force setting otime * @wake_q: lockless wake-queue head * * do_smart_update() does the required calls to update_queue and wakeup_zero, * based on the actual changes that were performed on the semaphore array. * Note that the function does not do the actual wake-up: the caller is * responsible for calling wake_up_q(). * It is safe to perform this call after dropping all locks. */ static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, int otime, struct wake_q_head *wake_q) { int i; otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q); if (!list_empty(&sma->pending_alter)) { /* semaphore array uses the global queue - just process it. */ otime |= update_queue(sma, -1, wake_q); } else { if (!sops) { /* * No sops, thus the modified semaphores are not * known. Check all. */ for (i = 0; i < sma->sem_nsems; i++) otime |= update_queue(sma, i, wake_q); } else { /* * Check the semaphores that were increased: * - No complex ops, thus all sleeping ops are * decrease. * - if we decreased the value, then any sleeping * semaphore ops won't be able to run: If the * previous value was too small, then the new * value will be too small, too. */ for (i = 0; i < nsops; i++) { if (sops[i].sem_op > 0) { otime |= update_queue(sma, sops[i].sem_num, wake_q); } } } } if (otime) set_semotime(sma, sops); } /* * check_qop: Test if a queued operation sleeps on the semaphore semnum */ static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, bool count_zero) { struct sembuf *sop = q->blocking; /* * Linux always (since 0.99.10) reported a task as sleeping on all * semaphores. This violates SUS, therefore it was changed to the * standard compliant behavior. * Give the administrators a chance to notice that an application * might misbehave because it relies on the Linux behavior. */ pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" "The task %s (%d) triggered the difference, watch for misbehavior.\n", current->comm, task_pid_nr(current)); if (sop->sem_num != semnum) return 0; if (count_zero && sop->sem_op == 0) return 1; if (!count_zero && sop->sem_op < 0) return 1; return 0; } /* The following counts are associated to each semaphore: * semncnt number of tasks waiting on semval being nonzero * semzcnt number of tasks waiting on semval being zero * * Per definition, a task waits only on the semaphore of the first semop * that cannot proceed, even if additional operation would block, too. */ static int count_semcnt(struct sem_array *sma, ushort semnum, bool count_zero) { struct list_head *l; struct sem_queue *q; int semcnt; semcnt = 0; /* First: check the simple operations. They are easy to evaluate */ if (count_zero) l = &sma->sems[semnum].pending_const; else l = &sma->sems[semnum].pending_alter; list_for_each_entry(q, l, list) { /* all task on a per-semaphore list sleep on exactly * that semaphore */ semcnt++; } /* Then: check the complex operations. */ list_for_each_entry(q, &sma->pending_alter, list) { semcnt += check_qop(sma, semnum, q, count_zero); } if (count_zero) { list_for_each_entry(q, &sma->pending_const, list) { semcnt += check_qop(sma, semnum, q, count_zero); } } return semcnt; } /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem * remains locked on exit. */ static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) { struct sem_undo *un, *tu; struct sem_queue *q, *tq; struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); int i; DEFINE_WAKE_Q(wake_q); /* Free the existing undo structures for this semaphore set. */ ipc_assert_locked_object(&sma->sem_perm); list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { list_del(&un->list_id); spin_lock(&un->ulp->lock); un->semid = -1; list_del_rcu(&un->list_proc); spin_unlock(&un->ulp->lock); kvfree_rcu(un, rcu); } /* Wake up all pending processes and let them fail with EIDRM. */ list_for_each_entry_safe(q, tq, &sma->pending_const, list) { unlink_queue(sma, q); wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); } list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { unlink_queue(sma, q); wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); } for (i = 0; i < sma->sem_nsems; i++) { struct sem *sem = &sma->sems[i]; list_for_each_entry_safe(q, tq, &sem->pending_const, list) { unlink_queue(sma, q); wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); } list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { unlink_queue(sma, q); wake_up_sem_queue_prepare(q, -EIDRM, &wake_q); } ipc_update_pid(&sem->sempid, NULL); } /* Remove the semaphore set from the IDR */ sem_rmid(ns, sma); sem_unlock(sma, -1); rcu_read_unlock(); wake_up_q(&wake_q); ns->used_sems -= sma->sem_nsems; ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); } static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) { switch (version) { case IPC_64: return copy_to_user(buf, in, sizeof(*in)); case IPC_OLD: { struct semid_ds out; memset(&out, 0, sizeof(out)); ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); out.sem_otime = in->sem_otime; out.sem_ctime = in->sem_ctime; out.sem_nsems = in->sem_nsems; return copy_to_user(buf, &out, sizeof(out)); } default: return -EINVAL; } } static time64_t get_semotime(struct sem_array *sma) { int i; time64_t res; res = sma->sems[0].sem_otime; for (i = 1; i < sma->sem_nsems; i++) { time64_t to = sma->sems[i].sem_otime; if (to > res) res = to; } return res; } static int semctl_stat(struct ipc_namespace *ns, int semid, int cmd, struct semid64_ds *semid64) { struct sem_array *sma; time64_t semotime; int err; memset(semid64, 0, sizeof(*semid64)); rcu_read_lock(); if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) { sma = sem_obtain_object(ns, semid); if (IS_ERR(sma)) { err = PTR_ERR(sma); goto out_unlock; } } else { /* IPC_STAT */ sma = sem_obtain_object_check(ns, semid); if (IS_ERR(sma)) { err = PTR_ERR(sma); goto out_unlock; } } /* see comment for SHM_STAT_ANY */ if (cmd == SEM_STAT_ANY) audit_ipc_obj(&sma->sem_perm); else { err = -EACCES; if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) goto out_unlock; } err = security_sem_semctl(&sma->sem_perm, cmd); if (err) goto out_unlock; ipc_lock_object(&sma->sem_perm); if (!ipc_valid_object(&sma->sem_perm)) { ipc_unlock_object(&sma->sem_perm); err = -EIDRM; goto out_unlock; } kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm); semotime = get_semotime(sma); semid64->sem_otime = semotime; semid64->sem_ctime = sma->sem_ctime; #ifndef CONFIG_64BIT semid64->sem_otime_high = semotime >> 32; semid64->sem_ctime_high = sma->sem_ctime >> 32; #endif semid64->sem_nsems = sma->sem_nsems; if (cmd == IPC_STAT) { /* * As defined in SUS: * Return 0 on success */ err = 0; } else { /* * SEM_STAT and SEM_STAT_ANY (both Linux specific) * Return the full id, including the sequence number */ err = sma->sem_perm.id; } ipc_unlock_object(&sma->sem_perm); out_unlock: rcu_read_unlock(); return err; } static int semctl_info(struct ipc_namespace *ns, int semid, int cmd, void __user *p) { struct seminfo seminfo; int max_idx; int err; err = security_sem_semctl(NULL, cmd); if (err) return err; memset(&seminfo, 0, sizeof(seminfo)); seminfo.semmni = ns->sc_semmni; seminfo.semmns = ns->sc_semmns; seminfo.semmsl = ns->sc_semmsl; seminfo.semopm = ns->sc_semopm; seminfo.semvmx = SEMVMX; seminfo.semmnu = SEMMNU; seminfo.semmap = SEMMAP; seminfo.semume = SEMUME; down_read(&sem_ids(ns).rwsem); if (cmd == SEM_INFO) { seminfo.semusz = sem_ids(ns).in_use; seminfo.semaem = ns->used_sems; } else { seminfo.semusz = SEMUSZ; seminfo.semaem = SEMAEM; } max_idx = ipc_get_maxidx(&sem_ids(ns)); up_read(&sem_ids(ns).rwsem); if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) return -EFAULT; return (max_idx < 0) ? 0 : max_idx; } static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, int val) { struct sem_undo *un; struct sem_array *sma; struct sem *curr; int err; DEFINE_WAKE_Q(wake_q); if (val > SEMVMX || val < 0) return -ERANGE; rcu_read_lock(); sma = sem_obtain_object_check(ns, semid); if (IS_ERR(sma)) { rcu_read_unlock(); return PTR_ERR(sma); } if (semnum < 0 || semnum >= sma->sem_nsems) { rcu_read_unlock(); return -EINVAL; } if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { rcu_read_unlock(); return -EACCES; } err = security_sem_semctl(&sma->sem_perm, SETVAL); if (err) { rcu_read_unlock(); return -EACCES; } sem_lock(sma, NULL, -1); if (!ipc_valid_object(&sma->sem_perm)) { sem_unlock(sma, -1); rcu_read_unlock(); return -EIDRM; } semnum = array_index_nospec(semnum, sma->sem_nsems); curr = &sma->sems[semnum]; ipc_assert_locked_object(&sma->sem_perm); list_for_each_entry(un, &sma->list_id, list_id) un->semadj[semnum] = 0; curr->semval = val; ipc_update_pid(&curr->sempid, task_tgid(current)); sma->sem_ctime = ktime_get_real_seconds(); /* maybe some queued-up processes were waiting for this */ do_smart_update(sma, NULL, 0, 0, &wake_q); sem_unlock(sma, -1); rcu_read_unlock(); wake_up_q(&wake_q); return 0; } static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, int cmd, void __user *p) { struct sem_array *sma; struct sem *curr; int err, nsems; ushort fast_sem_io[SEMMSL_FAST]; ushort *sem_io = fast_sem_io; DEFINE_WAKE_Q(wake_q); rcu_read_lock(); sma = sem_obtain_object_check(ns, semid); if (IS_ERR(sma)) { rcu_read_unlock(); return PTR_ERR(sma); } nsems = sma->sem_nsems; err = -EACCES; if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) goto out_rcu_wakeup; err = security_sem_semctl(&sma->sem_perm, cmd); if (err) goto out_rcu_wakeup; switch (cmd) { case GETALL: { ushort __user *array = p; int i; sem_lock(sma, NULL, -1); if (!ipc_valid_object(&sma->sem_perm)) { err = -EIDRM; goto out_unlock; } if (nsems > SEMMSL_FAST) { if (!ipc_rcu_getref(&sma->sem_perm)) { err = -EIDRM; goto out_unlock; } sem_unlock(sma, -1); rcu_read_unlock(); sem_io = kvmalloc_array(nsems, sizeof(ushort), GFP_KERNEL); if (sem_io == NULL) { ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); return -ENOMEM; } rcu_read_lock(); sem_lock_and_putref(sma); if (!ipc_valid_object(&sma->sem_perm)) { err = -EIDRM; goto out_unlock; } } for (i = 0; i < sma->sem_nsems; i++) sem_io[i] = sma->sems[i].semval; sem_unlock(sma, -1); rcu_read_unlock(); err = 0; if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) err = -EFAULT; goto out_free; } case SETALL: { int i; struct sem_undo *un; if (!ipc_rcu_getref(&sma->sem_perm)) { err = -EIDRM; goto out_rcu_wakeup; } rcu_read_unlock(); if (nsems > SEMMSL_FAST) { sem_io = kvmalloc_array(nsems, sizeof(ushort), GFP_KERNEL); if (sem_io == NULL) { ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); return -ENOMEM; } } if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); err = -EFAULT; goto out_free; } for (i = 0; i < nsems; i++) { if (sem_io[i] > SEMVMX) { ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); err = -ERANGE; goto out_free; } } rcu_read_lock(); sem_lock_and_putref(sma); if (!ipc_valid_object(&sma->sem_perm)) { err = -EIDRM; goto out_unlock; } for (i = 0; i < nsems; i++) { sma->sems[i].semval = sem_io[i]; ipc_update_pid(&sma->sems[i].sempid, task_tgid(current)); } ipc_assert_locked_object(&sma->sem_perm); list_for_each_entry(un, &sma->list_id, list_id) { for (i = 0; i < nsems; i++) un->semadj[i] = 0; } sma->sem_ctime = ktime_get_real_seconds(); /* maybe some queued-up processes were waiting for this */ do_smart_update(sma, NULL, 0, 0, &wake_q); err = 0; goto out_unlock; } /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ } err = -EINVAL; if (semnum < 0 || semnum >= nsems) goto out_rcu_wakeup; sem_lock(sma, NULL, -1); if (!ipc_valid_object(&sma->sem_perm)) { err = -EIDRM; goto out_unlock; } semnum = array_index_nospec(semnum, nsems); curr = &sma->sems[semnum]; switch (cmd) { case GETVAL: err = curr->semval; goto out_unlock; case GETPID: err = pid_vnr(curr->sempid); goto out_unlock; case GETNCNT: err = count_semcnt(sma, semnum, 0); goto out_unlock; case GETZCNT: err = count_semcnt(sma, semnum, 1); goto out_unlock; } out_unlock: sem_unlock(sma, -1); out_rcu_wakeup: rcu_read_unlock(); wake_up_q(&wake_q); out_free: if (sem_io != fast_sem_io) kvfree(sem_io); return err; } static inline unsigned long copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) { switch (version) { case IPC_64: if (copy_from_user(out, buf, sizeof(*out))) return -EFAULT; return 0; case IPC_OLD: { struct semid_ds tbuf_old; if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) return -EFAULT; out->sem_perm.uid = tbuf_old.sem_perm.uid; out->sem_perm.gid = tbuf_old.sem_perm.gid; out->sem_perm.mode = tbuf_old.sem_perm.mode; return 0; } default: return -EINVAL; } } /* * This function handles some semctl commands which require the rwsem * to be held in write mode. * NOTE: no locks must be held, the rwsem is taken inside this function. */ static int semctl_down(struct ipc_namespace *ns, int semid, int cmd, struct semid64_ds *semid64) { struct sem_array *sma; int err; struct kern_ipc_perm *ipcp; down_write(&sem_ids(ns).rwsem); rcu_read_lock(); ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd, &semid64->sem_perm, 0); if (IS_ERR(ipcp)) { err = PTR_ERR(ipcp); goto out_unlock1; } sma = container_of(ipcp, struct sem_array, sem_perm); err = security_sem_semctl(&sma->sem_perm, cmd); if (err) goto out_unlock1; switch (cmd) { case IPC_RMID: sem_lock(sma, NULL, -1); /* freeary unlocks the ipc object and rcu */ freeary(ns, ipcp); goto out_up; case IPC_SET: sem_lock(sma, NULL, -1); err = ipc_update_perm(&semid64->sem_perm, ipcp); if (err) goto out_unlock0; sma->sem_ctime = ktime_get_real_seconds(); break; default: err = -EINVAL; goto out_unlock1; } out_unlock0: sem_unlock(sma, -1); out_unlock1: rcu_read_unlock(); out_up: up_write(&sem_ids(ns).rwsem); return err; } static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version) { struct ipc_namespace *ns; void __user *p = (void __user *)arg; struct semid64_ds semid64; int err; if (semid < 0) return -EINVAL; ns = current->nsproxy->ipc_ns; switch (cmd) { case IPC_INFO: case SEM_INFO: return semctl_info(ns, semid, cmd, p); case IPC_STAT: case SEM_STAT: case SEM_STAT_ANY: err = semctl_stat(ns, semid, cmd, &semid64); if (err < 0) return err; if (copy_semid_to_user(p, &semid64, version)) err = -EFAULT; return err; case GETALL: case GETVAL: case GETPID: case GETNCNT: case GETZCNT: case SETALL: return semctl_main(ns, semid, semnum, cmd, p); case SETVAL: { int val; #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) /* big-endian 64bit */ val = arg >> 32; #else /* 32bit or little-endian 64bit */ val = arg; #endif return semctl_setval(ns, semid, semnum, val); } case IPC_SET: if (copy_semid_from_user(&semid64, p, version)) return -EFAULT; fallthrough; case IPC_RMID: return semctl_down(ns, semid, cmd, &semid64); default: return -EINVAL; } } SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) { return ksys_semctl(semid, semnum, cmd, arg, IPC_64); } #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg) { int version = ipc_parse_version(&cmd); return ksys_semctl(semid, semnum, cmd, arg, version); } SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) { return ksys_old_semctl(semid, semnum, cmd, arg); } #endif #ifdef CONFIG_COMPAT struct compat_semid_ds { struct compat_ipc_perm sem_perm; old_time32_t sem_otime; old_time32_t sem_ctime; compat_uptr_t sem_base; compat_uptr_t sem_pending; compat_uptr_t sem_pending_last; compat_uptr_t undo; unsigned short sem_nsems; }; static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf, int version) { memset(out, 0, sizeof(*out)); if (version == IPC_64) { struct compat_semid64_ds __user *p = buf; return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm); } else { struct compat_semid_ds __user *p = buf; return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm); } } static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in, int version) { if (version == IPC_64) { struct compat_semid64_ds v; memset(&v, 0, sizeof(v)); to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm); v.sem_otime = lower_32_bits(in->sem_otime); v.sem_otime_high = upper_32_bits(in->sem_otime); v.sem_ctime = lower_32_bits(in->sem_ctime); v.sem_ctime_high = upper_32_bits(in->sem_ctime); v.sem_nsems = in->sem_nsems; return copy_to_user(buf, &v, sizeof(v)); } else { struct compat_semid_ds v; memset(&v, 0, sizeof(v)); to_compat_ipc_perm(&v.sem_perm, &in->sem_perm); v.sem_otime = in->sem_otime; v.sem_ctime = in->sem_ctime; v.sem_nsems = in->sem_nsems; return copy_to_user(buf, &v, sizeof(v)); } } static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version) { void __user *p = compat_ptr(arg); struct ipc_namespace *ns; struct semid64_ds semid64; int err; ns = current->nsproxy->ipc_ns; if (semid < 0) return -EINVAL; switch (cmd & (~IPC_64)) { case IPC_INFO: case SEM_INFO: return semctl_info(ns, semid, cmd, p); case IPC_STAT: case SEM_STAT: case SEM_STAT_ANY: err = semctl_stat(ns, semid, cmd, &semid64); if (err < 0) return err; if (copy_compat_semid_to_user(p, &semid64, version)) err = -EFAULT; return err; case GETVAL: case GETPID: case GETNCNT: case GETZCNT: case GETALL: case SETALL: return semctl_main(ns, semid, semnum, cmd, p); case SETVAL: return semctl_setval(ns, semid, semnum, arg); case IPC_SET: if (copy_compat_semid_from_user(&semid64, p, version)) return -EFAULT; fallthrough; case IPC_RMID: return semctl_down(ns, semid, cmd, &semid64); default: return -EINVAL; } } COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg) { return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64); } #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg) { int version = compat_ipc_parse_version(&cmd); return compat_ksys_semctl(semid, semnum, cmd, arg, version); } COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg) { return compat_ksys_old_semctl(semid, semnum, cmd, arg); } #endif #endif /* If the task doesn't already have a undo_list, then allocate one * here. We guarantee there is only one thread using this undo list, * and current is THE ONE * * If this allocation and assignment succeeds, but later * portions of this code fail, there is no need to free the sem_undo_list. * Just let it stay associated with the task, and it'll be freed later * at exit time. * * This can block, so callers must hold no locks. */ static inline int get_undo_list(struct sem_undo_list **undo_listp) { struct sem_undo_list *undo_list; undo_list = current->sysvsem.undo_list; if (!undo_list) { undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL_ACCOUNT); if (undo_list == NULL) return -ENOMEM; spin_lock_init(&undo_list->lock); refcount_set(&undo_list->refcnt, 1); INIT_LIST_HEAD(&undo_list->list_proc); current->sysvsem.undo_list = undo_list; } *undo_listp = undo_list; return 0; } static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) { struct sem_undo *un; list_for_each_entry_rcu(un, &ulp->list_proc, list_proc, spin_is_locked(&ulp->lock)) { if (un->semid == semid) return un; } return NULL; } static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) { struct sem_undo *un; assert_spin_locked(&ulp->lock); un = __lookup_undo(ulp, semid); if (un) { list_del_rcu(&un->list_proc); list_add_rcu(&un->list_proc, &ulp->list_proc); } return un; } /** * find_alloc_undo - lookup (and if not present create) undo array * @ns: namespace * @semid: semaphore array id * * The function looks up (and if not present creates) the undo structure. * The size of the undo structure depends on the size of the semaphore * array, thus the alloc path is not that straightforward. * Lifetime-rules: sem_undo is rcu-protected, on success, the function * performs a rcu_read_lock(). */ static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) { struct sem_array *sma; struct sem_undo_list *ulp; struct sem_undo *un, *new; int nsems, error; error = get_undo_list(&ulp); if (error) return ERR_PTR(error); rcu_read_lock(); spin_lock(&ulp->lock); un = lookup_undo(ulp, semid); spin_unlock(&ulp->lock); if (likely(un != NULL)) goto out; /* no undo structure around - allocate one. */ /* step 1: figure out the size of the semaphore array */ sma = sem_obtain_object_check(ns, semid); if (IS_ERR(sma)) { rcu_read_unlock(); return ERR_CAST(sma); } nsems = sma->sem_nsems; if (!ipc_rcu_getref(&sma->sem_perm)) { rcu_read_unlock(); un = ERR_PTR(-EIDRM); goto out; } rcu_read_unlock(); /* step 2: allocate new undo structure */ new = kvzalloc(struct_size(new, semadj, nsems), GFP_KERNEL_ACCOUNT); if (!new) { ipc_rcu_putref(&sma->sem_perm, sem_rcu_free); return ERR_PTR(-ENOMEM); } /* step 3: Acquire the lock on semaphore array */ rcu_read_lock(); sem_lock_and_putref(sma); if (!ipc_valid_object(&sma->sem_perm)) { sem_unlock(sma, -1); rcu_read_unlock(); kvfree(new); un = ERR_PTR(-EIDRM); goto out; } spin_lock(&ulp->lock); /* * step 4: check for races: did someone else allocate the undo struct? */ un = lookup_undo(ulp, semid); if (un) { spin_unlock(&ulp->lock); kvfree(new); goto success; } /* step 5: initialize & link new undo structure */ new->ulp = ulp; new->semid = semid; assert_spin_locked(&ulp->lock); list_add_rcu(&new->list_proc, &ulp->list_proc); ipc_assert_locked_object(&sma->sem_perm); list_add(&new->list_id, &sma->list_id); un = new; spin_unlock(&ulp->lock); success: sem_unlock(sma, -1); out: return un; } long __do_semtimedop(int semid, struct sembuf *sops, unsigned nsops, const struct timespec64 *timeout, struct ipc_namespace *ns) { int error = -EINVAL; struct sem_array *sma; struct sembuf *sop; struct sem_undo *un; int max, locknum; bool undos = false, alter = false, dupsop = false; struct sem_queue queue; unsigned long dup = 0; ktime_t expires, *exp = NULL; bool timed_out = false; if (nsops < 1 || semid < 0) return -EINVAL; if (nsops > ns->sc_semopm) return -E2BIG; if (timeout) { if (!timespec64_valid(timeout)) return -EINVAL; expires = ktime_add_safe(ktime_get(), timespec64_to_ktime(*timeout)); exp = &expires; } max = 0; for (sop = sops; sop < sops + nsops; sop++) { unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG); if (sop->sem_num >= max) max = sop->sem_num; if (sop->sem_flg & SEM_UNDO) undos = true; if (dup & mask) { /* * There was a previous alter access that appears * to have accessed the same semaphore, thus use * the dupsop logic. "appears", because the detection * can only check % BITS_PER_LONG. */ dupsop = true; } if (sop->sem_op != 0) { alter = true; dup |= mask; } } if (undos) { /* On success, find_alloc_undo takes the rcu_read_lock */ un = find_alloc_undo(ns, semid); if (IS_ERR(un)) { error = PTR_ERR(un); goto out; } } else { un = NULL; rcu_read_lock(); } sma = sem_obtain_object_check(ns, semid); if (IS_ERR(sma)) { rcu_read_unlock(); error = PTR_ERR(sma); goto out; } error = -EFBIG; if (max >= sma->sem_nsems) { rcu_read_unlock(); goto out; } error = -EACCES; if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) { rcu_read_unlock(); goto out; } error = security_sem_semop(&sma->sem_perm, sops, nsops, alter); if (error) { rcu_read_unlock(); goto out; } error = -EIDRM; locknum = sem_lock(sma, sops, nsops); /* * We eventually might perform the following check in a lockless * fashion, considering ipc_valid_object() locking constraints. * If nsops == 1 and there is no contention for sem_perm.lock, then * only a per-semaphore lock is held and it's OK to proceed with the * check below. More details on the fine grained locking scheme * entangled here and why it's RMID race safe on comments at sem_lock() */ if (!ipc_valid_object(&sma->sem_perm)) goto out_unlock; /* * semid identifiers are not unique - find_alloc_undo may have * allocated an undo structure, it was invalidated by an RMID * and now a new array with received the same id. Check and fail. * This case can be detected checking un->semid. The existence of * "un" itself is guaranteed by rcu. */ if (un && un->semid == -1) goto out_unlock; queue.sops = sops; queue.nsops = nsops; queue.undo = un; queue.pid = task_tgid(current); queue.alter = alter; queue.dupsop = dupsop; error = perform_atomic_semop(sma, &queue); if (error == 0) { /* non-blocking successful path */ DEFINE_WAKE_Q(wake_q); /* * If the operation was successful, then do * the required updates. */ if (alter) do_smart_update(sma, sops, nsops, 1, &wake_q); else set_semotime(sma, sops); sem_unlock(sma, locknum); rcu_read_unlock(); wake_up_q(&wake_q); goto out; } if (error < 0) /* non-blocking error path */ goto out_unlock; /* * We need to sleep on this operation, so we put the current * task into the pending queue and go to sleep. */ if (nsops == 1) { struct sem *curr; int idx = array_index_nospec(sops->sem_num, sma->sem_nsems); curr = &sma->sems[idx]; if (alter) { if (sma->complex_count) { list_add_tail(&queue.list, &sma->pending_alter); } else { list_add_tail(&queue.list, &curr->pending_alter); } } else { list_add_tail(&queue.list, &curr->pending_const); } } else { if (!sma->complex_count) merge_queues(sma); if (alter) list_add_tail(&queue.list, &sma->pending_alter); else list_add_tail(&queue.list, &sma->pending_const); sma->complex_count++; } do { /* memory ordering ensured by the lock in sem_lock() */ WRITE_ONCE(queue.status, -EINTR); queue.sleeper = current; /* memory ordering is ensured by the lock in sem_lock() */ __set_current_state(TASK_INTERRUPTIBLE); sem_unlock(sma, locknum); rcu_read_unlock(); timed_out = !schedule_hrtimeout_range(exp, current->timer_slack_ns, HRTIMER_MODE_ABS); /* * fastpath: the semop has completed, either successfully or * not, from the syscall pov, is quite irrelevant to us at this * point; we're done. * * We _do_ care, nonetheless, about being awoken by a signal or * spuriously. The queue.status is checked again in the * slowpath (aka after taking sem_lock), such that we can detect * scenarios where we were awakened externally, during the * window between wake_q_add() and wake_up_q(). */ rcu_read_lock(); error = READ_ONCE(queue.status); if (error != -EINTR) { /* see SEM_BARRIER_2 for purpose/pairing */ smp_acquire__after_ctrl_dep(); rcu_read_unlock(); goto out; } locknum = sem_lock(sma, sops, nsops); if (!ipc_valid_object(&sma->sem_perm)) goto out_unlock; /* * No necessity for any barrier: We are protect by sem_lock() */ error = READ_ONCE(queue.status); /* * If queue.status != -EINTR we are woken up by another process. * Leave without unlink_queue(), but with sem_unlock(). */ if (error != -EINTR) goto out_unlock; /* * If an interrupt occurred we have to clean up the queue. */ if (timed_out) error = -EAGAIN; } while (error == -EINTR && !signal_pending(current)); /* spurious */ unlink_queue(sma, &queue); out_unlock: sem_unlock(sma, locknum); rcu_read_unlock(); out: return error; } static long do_semtimedop(int semid, struct sembuf __user *tsops, unsigned nsops, const struct timespec64 *timeout) { struct sembuf fast_sops[SEMOPM_FAST]; struct sembuf *sops = fast_sops; struct ipc_namespace *ns; int ret; ns = current->nsproxy->ipc_ns; if (nsops > ns->sc_semopm) return -E2BIG; if (nsops < 1) return -EINVAL; if (nsops > SEMOPM_FAST) { sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL); if (sops == NULL) return -ENOMEM; } if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { ret = -EFAULT; goto out_free; } ret = __do_semtimedop(semid, sops, nsops, timeout, ns); out_free: if (sops != fast_sops) kvfree(sops); return ret; } long ksys_semtimedop(int semid, struct sembuf __user *tsops, unsigned int nsops, const struct __kernel_timespec __user *timeout) { if (timeout) { struct timespec64 ts; if (get_timespec64(&ts, timeout)) return -EFAULT; return do_semtimedop(semid, tsops, nsops, &ts); } return do_semtimedop(semid, tsops, nsops, NULL); } SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, unsigned int, nsops, const struct __kernel_timespec __user *, timeout) { return ksys_semtimedop(semid, tsops, nsops, timeout); } #ifdef CONFIG_COMPAT_32BIT_TIME long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems, unsigned int nsops, const struct old_timespec32 __user *timeout) { if (timeout) { struct timespec64 ts; if (get_old_timespec32(&ts, timeout)) return -EFAULT; return do_semtimedop(semid, tsems, nsops, &ts); } return do_semtimedop(semid, tsems, nsops, NULL); } SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems, unsigned int, nsops, const struct old_timespec32 __user *, timeout) { return compat_ksys_semtimedop(semid, tsems, nsops, timeout); } #endif SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, unsigned, nsops) { return do_semtimedop(semid, tsops, nsops, NULL); } /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between * parent and child tasks. */ int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) { struct sem_undo_list *undo_list; int error; if (clone_flags & CLONE_SYSVSEM) { error = get_undo_list(&undo_list); if (error) return error; refcount_inc(&undo_list->refcnt); tsk->sysvsem.undo_list = undo_list; } else tsk->sysvsem.undo_list = NULL; return 0; } /* * add semadj values to semaphores, free undo structures. * undo structures are not freed when semaphore arrays are destroyed * so some of them may be out of date. * IMPLEMENTATION NOTE: There is some confusion over whether the * set of adjustments that needs to be done should be done in an atomic * manner or not. That is, if we are attempting to decrement the semval * should we queue up and wait until we can do so legally? * The original implementation attempted to do this (queue and wait). * The current implementation does not do so. The POSIX standard * and SVID should be consulted to determine what behavior is mandated. */ void exit_sem(struct task_struct *tsk) { struct sem_undo_list *ulp; ulp = tsk->sysvsem.undo_list; if (!ulp) return; tsk->sysvsem.undo_list = NULL; if (!refcount_dec_and_test(&ulp->refcnt)) return; for (;;) { struct sem_array *sma; struct sem_undo *un; int semid, i; DEFINE_WAKE_Q(wake_q); cond_resched(); rcu_read_lock(); un = list_entry_rcu(ulp->list_proc.next, struct sem_undo, list_proc); if (&un->list_proc == &ulp->list_proc) { /* * We must wait for freeary() before freeing this ulp, * in case we raced with last sem_undo. There is a small * possibility where we exit while freeary() didn't * finish unlocking sem_undo_list. */ spin_lock(&ulp->lock); spin_unlock(&ulp->lock); rcu_read_unlock(); break; } spin_lock(&ulp->lock); semid = un->semid; spin_unlock(&ulp->lock); /* exit_sem raced with IPC_RMID, nothing to do */ if (semid == -1) { rcu_read_unlock(); continue; } sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid); /* exit_sem raced with IPC_RMID, nothing to do */ if (IS_ERR(sma)) { rcu_read_unlock(); continue; } sem_lock(sma, NULL, -1); /* exit_sem raced with IPC_RMID, nothing to do */ if (!ipc_valid_object(&sma->sem_perm)) { sem_unlock(sma, -1); rcu_read_unlock(); continue; } un = __lookup_undo(ulp, semid); if (un == NULL) { /* exit_sem raced with IPC_RMID+semget() that created * exactly the same semid. Nothing to do. */ sem_unlock(sma, -1); rcu_read_unlock(); continue; } /* remove un from the linked lists */ ipc_assert_locked_object(&sma->sem_perm); list_del(&un->list_id); spin_lock(&ulp->lock); list_del_rcu(&un->list_proc); spin_unlock(&ulp->lock); /* perform adjustments registered in un */ for (i = 0; i < sma->sem_nsems; i++) { struct sem *semaphore = &sma->sems[i]; if (un->semadj[i]) { semaphore->semval += un->semadj[i]; /* * Range checks of the new semaphore value, * not defined by sus: * - Some unices ignore the undo entirely * (e.g. HP UX 11i 11.22, Tru64 V5.1) * - some cap the value (e.g. FreeBSD caps * at 0, but doesn't enforce SEMVMX) * * Linux caps the semaphore value, both at 0 * and at SEMVMX. * * Manfred <manfred@colorfullife.com> */ if (semaphore->semval < 0) semaphore->semval = 0; if (semaphore->semval > SEMVMX) semaphore->semval = SEMVMX; ipc_update_pid(&semaphore->sempid, task_tgid(current)); } } /* maybe some queued-up processes were waiting for this */ do_smart_update(sma, NULL, 0, 1, &wake_q); sem_unlock(sma, -1); rcu_read_unlock(); wake_up_q(&wake_q); kvfree_rcu(un, rcu); } kfree(ulp); } #ifdef CONFIG_PROC_FS static int sysvipc_sem_proc_show(struct seq_file *s, void *it) { struct user_namespace *user_ns = seq_user_ns(s); struct kern_ipc_perm *ipcp = it; struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); time64_t sem_otime; /* * The proc interface isn't aware of sem_lock(), it calls * ipc_lock_object(), i.e. spin_lock(&sma->sem_perm.lock). * (in sysvipc_find_ipc) * In order to stay compatible with sem_lock(), we must * enter / leave complex_mode. */ complexmode_enter(sma); sem_otime = get_semotime(sma); seq_printf(s, "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n", sma->sem_perm.key, sma->sem_perm.id, sma->sem_perm.mode, sma->sem_nsems, from_kuid_munged(user_ns, sma->sem_perm.uid), from_kgid_munged(user_ns, sma->sem_perm.gid), from_kuid_munged(user_ns, sma->sem_perm.cuid), from_kgid_munged(user_ns, sma->sem_perm.cgid), sem_otime, sma->sem_ctime); complexmode_tryleave(sma); return 0; } #endif |
231 240 8 1 226 226 225 226 8 27 27 27 27 27 27 8 27 27 27 381 391 384 137 511 260 140 136 255 134 93 133 136 301 45 37 31 25 4 26 46 43 43 43 43 449 447 441 320 318 45 442 449 356 354 1 353 352 348 7 3 1 347 3 347 346 342 343 342 342 353 35 35 35 35 35 2 29 1 1 29 8 8 8 7 7 7 4 2 3 7 1 1 1 42 42 41 41 41 41 40 40 35 35 29 6 1 364 363 280 146 1 362 361 359 359 5 3 5 4 5 2 5 2 3 362 17 17 14 3 1 14 12 18 147 147 146 145 144 144 139 5 121 139 138 13 12 12 12 10 7 131 64 131 130 130 7 7 86 86 84 81 81 86 5 76 76 76 75 75 2 73 38 48 48 77 77 33 33 23 1 33 31 31 31 6 30 77 3 77 77 77 77 77 49 20 19 251 3 274 273 50 10 10 263 14 263 8 263 3 260 263 23 22 8 21 227 226 147 225 226 226 222 8 2 8 8 8 6 8 4 4 4 3 7 42 2 41 40 1 1 41 10 7 7 232 232 222 232 231 231 17 231 7 7 226 212 211 211 224 4 220 219 221 221 221 2 220 220 209 207 258 238 238 233 229 229 228 231 230 232 275 275 258 228 250 4 2 1 231 13 227 4 218 71 32 28 233 14 13 227 64 13 13 13 33 33 3 29 1 1 30 22 20 1 29 18 16 18 18 18 18 10 8 17 2 18 1 18 8 18 16 13 6 3 3 4 4 3 28 31 3 2 13 9 9 12 5 12 4 2 2 2 2 2 2 1 61 38 59 13 4 9 12 10 11 9 2 49 18 19 22 16 17 46 4 3 15 2 13 50 26 28 4 28 28 21 17 17 55 13 15 17 15 2 44 19 38 38 13 17 29 19 11 17 15 32 2 5 3 3 8 5 3 5 7 4 56 8 6 2 5 5 5 3 60 68 69 67 67 67 67 66 66 65 16 63 43 4 43 61 61 32 32 3 2 3 1 2 1 3 3 2 3 1 2 1 10 8 7 2 10 6 2 4 5 2 5 2 3 1 6 2 1 11 6 6 5 4 4 5 4 3 4 2 4 1 4 1 10 9 8 7 1 6 3 3 4 6 2 1 13 12 11 8 3 7 2 5 5 7 2 1 4 3 3 3 2 2 1 11 10 6 3 9 2 4 3 2 4 3 3 2 3 2 1 2 1 8 5 3 2 4 3 3 3 2 2 3 1 2 1 2 1 1 1 9 2 2 7 6 5 3 7 1 4 4 3 2 1 4 3 2 1 1 2 1 8 7 6 2 2 5 2 3 4 5 2 1 3 2 1 2 2 1 10 2 2 8 7 6 1 7 3 5 1 2 1 6 5 3 3 4 4 4 3 3 20 19 18 17 2 2 16 13 3 14 13 2 1 1 19 13 11 11 3 3 10 7 3 8 5 2 1 1 11 9 7 2 2 5 3 3 3 3 2 1 1 8 8 8 2 1 7 4 3 5 3 2 1 1 8 7 6 5 1 1 5 5 5 5 5 11 10 9 4 2 1 2 2 11 5 4 2 2 2 1 2 1 2 2 1 2 1 2 3 2 3 2 3 2 1 2 2 5 5 4 2 4 14 12 11 1 11 11 1 10 5 5 7 10 3 1 5 4 4 1 4 10 9 8 9 2 1 8 5 3 6 8 2 1 17 16 15 14 4 3 3 7 6 6 27 25 23 6 2 18 5 2 3 3 5 2 1 15 14 8 7 6 7 6 1 5 4 2 3 2 2 2 1 6 6 4 3 3 6 13 12 11 10 2 1 9 2 7 8 8 9 6 5 5 4 3 2 3 1 18 16 16 15 15 14 14 1 15 6 5 4 2 4 5 5 4 3 2 2 2 6 6 2 4 3 2 1 1 1 2 11 11 11 4 3 3 7 4 2 4 4 4 4 3 537 539 75 536 463 422 426 463 37 6 8 5 3 13 2 69 11 2 5 10 13 4 3 2 11 8 1 9 2 8 3 10 6 4 20 13 11 8 8 6 5 2 2 5 14 5 10 17 4 7 27 15 5 2 13 5 18 6 5 6 11 460 67 67 66 57 57 67 67 67 2 1 2 22 21 21 21 21 21 17 17 21 22 8 21 3 22 230 230 228 230 229 79 79 79 1 1 79 5 1 37 29 31 11 11 10 10 8 10 11 19 19 19 1 14 14 14 14 1 19 19 19 14 7 18 18 6 6 18 18 2 2 2 2 2 19 19 19 14 14 14 5 5 19 13 5 8 19 6 5 5 3 3 3 2 3 2 2 6 7 6 5 3 3 3 3 3 7 2 1 1 5 4 4 4 4 4 3 2 1 1 12 12 11 10 10 10 10 12 12 10 1 9 9 9 12 9 8 8 6 1 5 1 4 5 4 4 3 1 2 2 16 2 15 13 5 2 12 9 3 2 1 2 1 2 3 1 3 5 1 5 2 10 16 8 4 4 3 3 6 3 1 3 2 5 2 2 1 5 5 2 1 1 7 6 6 5 2 5 3 3 3 3 8 8 7 7 1 6 6 1 7 7 7 5 8 20 18 18 14 5 3 11 16 16 9 8 9 4 2 11 10 9 16 20 5 4 4 2 2 5 2 1 1 5 4 4 4 2 1 4 3 3 5 4 4 4 2 1 2 3 3 3 2 2 5 5 5 3 2 2 4 2 4 5 4 4 3 2 2 2 2 2 3 3 7 6 6 8 6 6 5 2 5 5 4 9 1 1 8 7 8 7 2 7 6 7 1 6 2 1 1 2 1 1 9 1 1 8 6 7 3 2 6 1 5 4 3 2 2 1 1 6 5 5 3 2 2 2 1 2 4 2 3 3 1 1 1 1 1 7 6 1 6 5 2 1 4 2 2 2 1 1 1 6 5 4 1 4 4 2 2 1 2 2 13 12 8 5 8 7 7 4 7 2 5 8 7 6 2 3 4 4 2 1 3 8 7 6 6 5 3 2 7 3 2 1 2 2 5 4 3 4 4 7 6 6 4 2 5 3 5 6 6 6 4 2 2 5 3 5 5 4 4 3 2 2 2 2 2 5 4 4 3 2 2 1 1 1 1 4 3 3 3 2 2 2 2 5 4 4 4 2 4 3 4 6 5 5 3 2 4 2 3 7 5 5 5 4 4 6 5 5 3 2 4 2 4 3 2 2 8 7 7 6 5 2 5 5 5 6 5 5 3 2 4 2 4 6 5 5 3 2 4 2 4 5 4 4 3 2 3 2 2 6 5 5 4 3 4 3 4 258 9 8 7 3 2 1 4 3 2 1 1 2 4 9 7 6 5 2 2 3 3 2 1 1 2 3 7 370 369 8 360 363 359 360 6 2 5 3 9 5 16 8 2 9 20 76 5 5 5 3 5 5 7 9 7 2 8 2 2 9 4 6 4 7 6 13 2 8 7 3 5 7 6 5 5 4 5 6 7 6 3 8 6 6 5 258 9 7 354 358 294 358 357 296 296 296 295 296 3 1 1 1 296 356 84 357 37 36 36 36 2 35 34 34 10 2 1 10 3 8 8 29 339 350 339 3 336 29 1 2 29 2 2 351 342 341 357 31 30 30 30 31 13 20 30 30 1 35 35 34 33 33 3 2 1 1 32 1 31 35 35 32 32 32 32 1 31 2 31 3 31 1 31 1 31 18 2 2 31 338 339 339 34 23 23 13 34 34 33 34 34 293 50 50 48 43 7 6 16 15 10 9 5 4 3 1 1 1 8 17 17 17 17 11 11 6 6 3 9 29 29 29 29 6 27 23 20 20 19 17 3 75 75 69 13 69 69 69 69 69 5 69 61 69 136 80 65 65 65 65 135 136 136 136 136 3 3 136 136 136 176 176 7 2 7 7 7 5 5 5 5 3 6 1 6 3 74 74 74 74 4 74 74 85 10 86 337 338 338 175 146 146 146 144 144 288 29 11 21 4 21 21 19 3 3 1 20 3 3 2 2 3 1 1 27 2 27 27 27 27 1 27 1 1 1 27 27 27 27 27 27 5 184 184 184 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 | // SPDX-License-Identifier: GPL-2.0-or-later /* SCTP kernel implementation * (C) Copyright IBM Corp. 2001, 2004 * Copyright (c) 1999-2000 Cisco, Inc. * Copyright (c) 1999-2001 Motorola, Inc. * Copyright (c) 2001-2003 Intel Corp. * Copyright (c) 2001-2002 Nokia, Inc. * Copyright (c) 2001 La Monte H.P. Yarroll * * This file is part of the SCTP kernel implementation * * These functions interface with the sockets layer to implement the * SCTP Extensions for the Sockets API. * * Note that the descriptions from the specification are USER level * functions--this file is the functions which populate the struct proto * for SCTP which is the BOTTOM of the sockets interface. * * Please send any bug reports or fixes you make to the * email address(es): * lksctp developers <linux-sctp@vger.kernel.org> * * Written or modified by: * La Monte H.P. Yarroll <piggy@acm.org> * Narasimha Budihal <narsi@refcode.org> * Karl Knutson <karl@athena.chicago.il.us> * Jon Grimm <jgrimm@us.ibm.com> * Xingang Guo <xingang.guo@intel.com> * Daisy Chang <daisyc@us.ibm.com> * Sridhar Samudrala <samudrala@us.ibm.com> * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> * Ardelle Fan <ardelle.fan@intel.com> * Ryan Layer <rmlayer@us.ibm.com> * Anup Pemmaiah <pemmaiah@cc.usu.edu> * Kevin Gao <kevin.gao@intel.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <crypto/hash.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/wait.h> #include <linux/time.h> #include <linux/sched/signal.h> #include <linux/ip.h> #include <linux/capability.h> #include <linux/fcntl.h> #include <linux/poll.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/file.h> #include <linux/compat.h> #include <linux/rhashtable.h> #include <net/ip.h> #include <net/icmp.h> #include <net/route.h> #include <net/ipv6.h> #include <net/inet_common.h> #include <net/busy_poll.h> #include <trace/events/sock.h> #include <linux/socket.h> /* for sa_family_t */ #include <linux/export.h> #include <net/sock.h> #include <net/sctp/sctp.h> #include <net/sctp/sm.h> #include <net/sctp/stream_sched.h> #include <net/rps.h> /* Forward declarations for internal helper functions. */ static bool sctp_writeable(const struct sock *sk); static void sctp_wfree(struct sk_buff *skb); static int sctp_wait_for_sndbuf(struct sctp_association *asoc, struct sctp_transport *transport, long *timeo_p, size_t msg_len); static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); static int sctp_wait_for_accept(struct sock *sk, long timeo); static void sctp_wait_for_close(struct sock *sk, long timeo); static void sctp_destruct_sock(struct sock *sk); static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, union sctp_addr *addr, int len); static int sctp_bindx_add(struct sock *, struct sockaddr *, int); static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); static int sctp_send_asconf(struct sctp_association *asoc, struct sctp_chunk *chunk); static int sctp_do_bind(struct sock *, union sctp_addr *, int); static int sctp_autobind(struct sock *sk); static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, struct sctp_association *assoc, enum sctp_socket_type type); static unsigned long sctp_memory_pressure; static atomic_long_t sctp_memory_allocated; static DEFINE_PER_CPU(int, sctp_memory_per_cpu_fw_alloc); struct percpu_counter sctp_sockets_allocated; static void sctp_enter_memory_pressure(struct sock *sk) { WRITE_ONCE(sctp_memory_pressure, 1); } /* Get the sndbuf space available at the time on the association. */ static inline int sctp_wspace(struct sctp_association *asoc) { struct sock *sk = asoc->base.sk; return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used : sk_stream_wspace(sk); } /* Increment the used sndbuf space count of the corresponding association by * the size of the outgoing data chunk. * Also, set the skb destructor for sndbuf accounting later. * * Since it is always 1-1 between chunk and skb, and also a new skb is always * allocated for chunk bundling in sctp_packet_transmit(), we can use the * destructor in the data chunk skb for the purpose of the sndbuf space * tracking. */ static inline void sctp_set_owner_w(struct sctp_chunk *chunk) { struct sctp_association *asoc = chunk->asoc; struct sock *sk = asoc->base.sk; /* The sndbuf space is tracked per association. */ sctp_association_hold(asoc); if (chunk->shkey) sctp_auth_shkey_hold(chunk->shkey); skb_set_owner_w(chunk->skb, sk); chunk->skb->destructor = sctp_wfree; /* Save the chunk pointer in skb for sctp_wfree to use later. */ skb_shinfo(chunk->skb)->destructor_arg = chunk; refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); sk_wmem_queued_add(sk, chunk->skb->truesize + sizeof(struct sctp_chunk)); sk_mem_charge(sk, chunk->skb->truesize); } static void sctp_clear_owner_w(struct sctp_chunk *chunk) { skb_orphan(chunk->skb); } #define traverse_and_process() \ do { \ msg = chunk->msg; \ if (msg == prev_msg) \ continue; \ list_for_each_entry(c, &msg->chunks, frag_list) { \ if ((clear && asoc->base.sk == c->skb->sk) || \ (!clear && asoc->base.sk != c->skb->sk)) \ cb(c); \ } \ prev_msg = msg; \ } while (0) static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, bool clear, void (*cb)(struct sctp_chunk *)) { struct sctp_datamsg *msg, *prev_msg = NULL; struct sctp_outq *q = &asoc->outqueue; struct sctp_chunk *chunk, *c; struct sctp_transport *t; list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) list_for_each_entry(chunk, &t->transmitted, transmitted_list) traverse_and_process(); list_for_each_entry(chunk, &q->retransmit, transmitted_list) traverse_and_process(); list_for_each_entry(chunk, &q->sacked, transmitted_list) traverse_and_process(); list_for_each_entry(chunk, &q->abandoned, transmitted_list) traverse_and_process(); list_for_each_entry(chunk, &q->out_chunk_list, list) traverse_and_process(); } static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, void (*cb)(struct sk_buff *, struct sock *)) { struct sk_buff *skb, *tmp; sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) cb(skb, sk); sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) cb(skb, sk); sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) cb(skb, sk); } /* Verify that this is a valid address. */ static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, int len) { struct sctp_af *af; /* Verify basic sockaddr. */ af = sctp_sockaddr_af(sctp_sk(sk), addr, len); if (!af) return -EINVAL; /* Is this a valid SCTP address? */ if (!af->addr_valid(addr, sctp_sk(sk), NULL)) return -EINVAL; if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) return -EINVAL; return 0; } /* Look up the association by its id. If this is not a UDP-style * socket, the ID field is always ignored. */ struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) { struct sctp_association *asoc = NULL; /* If this is not a UDP-style socket, assoc id should be ignored. */ if (!sctp_style(sk, UDP)) { /* Return NULL if the socket state is not ESTABLISHED. It * could be a TCP-style listening socket or a socket which * hasn't yet called connect() to establish an association. */ if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) return NULL; /* Get the first and the only association from the list. */ if (!list_empty(&sctp_sk(sk)->ep->asocs)) asoc = list_entry(sctp_sk(sk)->ep->asocs.next, struct sctp_association, asocs); return asoc; } /* Otherwise this is a UDP-style socket. */ if (id <= SCTP_ALL_ASSOC) return NULL; spin_lock_bh(&sctp_assocs_id_lock); asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); if (asoc && (asoc->base.sk != sk || asoc->base.dead)) asoc = NULL; spin_unlock_bh(&sctp_assocs_id_lock); return asoc; } /* Look up the transport from an address and an assoc id. If both address and * id are specified, the associations matching the address and the id should be * the same. */ static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, struct sockaddr_storage *addr, sctp_assoc_t id) { struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; struct sctp_af *af = sctp_get_af_specific(addr->ss_family); union sctp_addr *laddr = (union sctp_addr *)addr; struct sctp_transport *transport; if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) return NULL; addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, laddr, &transport); if (!addr_asoc) return NULL; id_asoc = sctp_id2assoc(sk, id); if (id_asoc && (id_asoc != addr_asoc)) return NULL; sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), (union sctp_addr *)addr); return transport; } /* API 3.1.2 bind() - UDP Style Syntax * The syntax of bind() is, * * ret = bind(int sd, struct sockaddr *addr, int addrlen); * * sd - the socket descriptor returned by socket(). * addr - the address structure (struct sockaddr_in or struct * sockaddr_in6 [RFC 2553]), * addr_len - the size of the address structure. */ static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) { int retval = 0; lock_sock(sk); pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, addr, addr_len); /* Disallow binding twice. */ if (!sctp_sk(sk)->ep->base.bind_addr.port) retval = sctp_do_bind(sk, (union sctp_addr *)addr, addr_len); else retval = -EINVAL; release_sock(sk); return retval; } static int sctp_get_port_local(struct sock *, union sctp_addr *); /* Verify this is a valid sockaddr. */ static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, union sctp_addr *addr, int len) { struct sctp_af *af; /* Check minimum size. */ if (len < sizeof (struct sockaddr)) return NULL; if (!opt->pf->af_supported(addr->sa.sa_family, opt)) return NULL; if (addr->sa.sa_family == AF_INET6) { if (len < SIN6_LEN_RFC2133) return NULL; /* V4 mapped address are really of AF_INET family */ if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && !opt->pf->af_supported(AF_INET, opt)) return NULL; } /* If we get this far, af is valid. */ af = sctp_get_af_specific(addr->sa.sa_family); if (len < af->sockaddr_len) return NULL; return af; } static void sctp_auto_asconf_init(struct sctp_sock *sp) { struct net *net = sock_net(&sp->inet.sk); if (net->sctp.default_auto_asconf) { spin_lock_bh(&net->sctp.addr_wq_lock); list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist); spin_unlock_bh(&net->sctp.addr_wq_lock); sp->do_auto_asconf = 1; } } /* Bind a local address either to an endpoint or to an association. */ static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) { struct net *net = sock_net(sk); struct sctp_sock *sp = sctp_sk(sk); struct sctp_endpoint *ep = sp->ep; struct sctp_bind_addr *bp = &ep->base.bind_addr; struct sctp_af *af; unsigned short snum; int ret = 0; /* Common sockaddr verification. */ af = sctp_sockaddr_af(sp, addr, len); if (!af) { pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", __func__, sk, addr, len); return -EINVAL; } snum = ntohs(addr->v4.sin_port); pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", __func__, sk, &addr->sa, bp->port, snum, len); /* PF specific bind() address verification. */ if (!sp->pf->bind_verify(sp, addr)) return -EADDRNOTAVAIL; /* We must either be unbound, or bind to the same port. * It's OK to allow 0 ports if we are already bound. * We'll just inhert an already bound port in this case */ if (bp->port) { if (!snum) snum = bp->port; else if (snum != bp->port) { pr_debug("%s: new port %d doesn't match existing port " "%d\n", __func__, snum, bp->port); return -EINVAL; } } if (snum && inet_port_requires_bind_service(net, snum) && !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) return -EACCES; /* See if the address matches any of the addresses we may have * already bound before checking against other endpoints. */ if (sctp_bind_addr_match(bp, addr, sp)) return -EINVAL; /* Make sure we are allowed to bind here. * The function sctp_get_port_local() does duplicate address * detection. */ addr->v4.sin_port = htons(snum); if (sctp_get_port_local(sk, addr)) return -EADDRINUSE; /* Refresh ephemeral port. */ if (!bp->port) { bp->port = inet_sk(sk)->inet_num; sctp_auto_asconf_init(sp); } /* Add the address to the bind address list. * Use GFP_ATOMIC since BHs will be disabled. */ ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, SCTP_ADDR_SRC, GFP_ATOMIC); if (ret) { sctp_put_port(sk); return ret; } /* Copy back into socket for getsockname() use. */ inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); sp->pf->to_sk_saddr(addr, sk); return ret; } /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks * * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged * at any one time. If a sender, after sending an ASCONF chunk, decides * it needs to transfer another ASCONF Chunk, it MUST wait until the * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a * subsequent ASCONF. Note this restriction binds each side, so at any * time two ASCONF may be in-transit on any given association (one sent * from each endpoint). */ static int sctp_send_asconf(struct sctp_association *asoc, struct sctp_chunk *chunk) { int retval = 0; /* If there is an outstanding ASCONF chunk, queue it for later * transmission. */ if (asoc->addip_last_asconf) { list_add_tail(&chunk->list, &asoc->addip_chunk_list); goto out; } /* Hold the chunk until an ASCONF_ACK is received. */ sctp_chunk_hold(chunk); retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); if (retval) sctp_chunk_free(chunk); else asoc->addip_last_asconf = chunk; out: return retval; } /* Add a list of addresses as bind addresses to local endpoint or * association. * * Basically run through each address specified in the addrs/addrcnt * array/length pair, determine if it is IPv6 or IPv4 and call * sctp_do_bind() on it. * * If any of them fails, then the operation will be reversed and the * ones that were added will be removed. * * Only sctp_setsockopt_bindx() is supposed to call this function. */ static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) { int cnt; int retval = 0; void *addr_buf; struct sockaddr *sa_addr; struct sctp_af *af; pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, addrs, addrcnt); addr_buf = addrs; for (cnt = 0; cnt < addrcnt; cnt++) { /* The list may contain either IPv4 or IPv6 address; * determine the address length for walking thru the list. */ sa_addr = addr_buf; af = sctp_get_af_specific(sa_addr->sa_family); if (!af) { retval = -EINVAL; goto err_bindx_add; } retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, af->sockaddr_len); addr_buf += af->sockaddr_len; err_bindx_add: if (retval < 0) { /* Failed. Cleanup the ones that have been added */ if (cnt > 0) sctp_bindx_rem(sk, addrs, cnt); return retval; } } return retval; } /* Send an ASCONF chunk with Add IP address parameters to all the peers of the * associations that are part of the endpoint indicating that a list of local * addresses are added to the endpoint. * * If any of the addresses is already in the bind address list of the * association, we do not send the chunk for that association. But it will not * affect other associations. * * Only sctp_setsockopt_bindx() is supposed to call this function. */ static int sctp_send_asconf_add_ip(struct sock *sk, struct sockaddr *addrs, int addrcnt) { struct sctp_sock *sp; struct sctp_endpoint *ep; struct sctp_association *asoc; struct sctp_bind_addr *bp; struct sctp_chunk *chunk; struct sctp_sockaddr_entry *laddr; union sctp_addr *addr; union sctp_addr saveaddr; void *addr_buf; struct sctp_af *af; struct list_head *p; int i; int retval = 0; sp = sctp_sk(sk); ep = sp->ep; if (!ep->asconf_enable) return retval; pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, addrs, addrcnt); list_for_each_entry(asoc, &ep->asocs, asocs) { if (!asoc->peer.asconf_capable) continue; if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) continue; if (!sctp_state(asoc, ESTABLISHED)) continue; /* Check if any address in the packed array of addresses is * in the bind address list of the association. If so, * do not send the asconf chunk to its peer, but continue with * other associations. */ addr_buf = addrs; for (i = 0; i < addrcnt; i++) { addr = addr_buf; af = sctp_get_af_specific(addr->v4.sin_family); if (!af) { retval = -EINVAL; goto out; } if (sctp_assoc_lookup_laddr(asoc, addr)) break; addr_buf += af->sockaddr_len; } if (i < addrcnt) continue; /* Use the first valid address in bind addr list of * association as Address Parameter of ASCONF CHUNK. */ bp = &asoc->base.bind_addr; p = bp->address_list.next; laddr = list_entry(p, struct sctp_sockaddr_entry, list); chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, addrcnt, SCTP_PARAM_ADD_IP); if (!chunk) { retval = -ENOMEM; goto out; } /* Add the new addresses to the bind address list with * use_as_src set to 0. */ addr_buf = addrs; for (i = 0; i < addrcnt; i++) { addr = addr_buf; af = sctp_get_af_specific(addr->v4.sin_family); memcpy(&saveaddr, addr, af->sockaddr_len); retval = sctp_add_bind_addr(bp, &saveaddr, sizeof(saveaddr), SCTP_ADDR_NEW, GFP_ATOMIC); addr_buf += af->sockaddr_len; } if (asoc->src_out_of_asoc_ok) { struct sctp_transport *trans; list_for_each_entry(trans, &asoc->peer.transport_addr_list, transports) { trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); trans->ssthresh = asoc->peer.i.a_rwnd; trans->rto = asoc->rto_initial; sctp_max_rto(asoc, trans); trans->rtt = trans->srtt = trans->rttvar = 0; /* Clear the source and route cache */ sctp_transport_route(trans, NULL, sctp_sk(asoc->base.sk)); } } retval = sctp_send_asconf(asoc, chunk); } out: return retval; } /* Remove a list of addresses from bind addresses list. Do not remove the * last address. * * Basically run through each address specified in the addrs/addrcnt * array/length pair, determine if it is IPv6 or IPv4 and call * sctp_del_bind() on it. * * If any of them fails, then the operation will be reversed and the * ones that were removed will be added back. * * At least one address has to be left; if only one address is * available, the operation will return -EBUSY. * * Only sctp_setsockopt_bindx() is supposed to call this function. */ static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_endpoint *ep = sp->ep; int cnt; struct sctp_bind_addr *bp = &ep->base.bind_addr; int retval = 0; void *addr_buf; union sctp_addr *sa_addr; struct sctp_af *af; pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, addrs, addrcnt); addr_buf = addrs; for (cnt = 0; cnt < addrcnt; cnt++) { /* If the bind address list is empty or if there is only one * bind address, there is nothing more to be removed (we need * at least one address here). */ if (list_empty(&bp->address_list) || (sctp_list_single_entry(&bp->address_list))) { retval = -EBUSY; goto err_bindx_rem; } sa_addr = addr_buf; af = sctp_get_af_specific(sa_addr->sa.sa_family); if (!af) { retval = -EINVAL; goto err_bindx_rem; } if (!af->addr_valid(sa_addr, sp, NULL)) { retval = -EADDRNOTAVAIL; goto err_bindx_rem; } if (sa_addr->v4.sin_port && sa_addr->v4.sin_port != htons(bp->port)) { retval = -EINVAL; goto err_bindx_rem; } if (!sa_addr->v4.sin_port) sa_addr->v4.sin_port = htons(bp->port); /* FIXME - There is probably a need to check if sk->sk_saddr and * sk->sk_rcv_addr are currently set to one of the addresses to * be removed. This is something which needs to be looked into * when we are fixing the outstanding issues with multi-homing * socket routing and failover schemes. Refer to comments in * sctp_do_bind(). -daisy */ retval = sctp_del_bind_addr(bp, sa_addr); addr_buf += af->sockaddr_len; err_bindx_rem: if (retval < 0) { /* Failed. Add the ones that has been removed back */ if (cnt > 0) sctp_bindx_add(sk, addrs, cnt); return retval; } } return retval; } /* Send an ASCONF chunk with Delete IP address parameters to all the peers of * the associations that are part of the endpoint indicating that a list of * local addresses are removed from the endpoint. * * If any of the addresses is already in the bind address list of the * association, we do not send the chunk for that association. But it will not * affect other associations. * * Only sctp_setsockopt_bindx() is supposed to call this function. */ static int sctp_send_asconf_del_ip(struct sock *sk, struct sockaddr *addrs, int addrcnt) { struct sctp_sock *sp; struct sctp_endpoint *ep; struct sctp_association *asoc; struct sctp_transport *transport; struct sctp_bind_addr *bp; struct sctp_chunk *chunk; union sctp_addr *laddr; void *addr_buf; struct sctp_af *af; struct sctp_sockaddr_entry *saddr; int i; int retval = 0; int stored = 0; chunk = NULL; sp = sctp_sk(sk); ep = sp->ep; if (!ep->asconf_enable) return retval; pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, addrs, addrcnt); list_for_each_entry(asoc, &ep->asocs, asocs) { if (!asoc->peer.asconf_capable) continue; if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) continue; if (!sctp_state(asoc, ESTABLISHED)) continue; /* Check if any address in the packed array of addresses is * not present in the bind address list of the association. * If so, do not send the asconf chunk to its peer, but * continue with other associations. */ addr_buf = addrs; for (i = 0; i < addrcnt; i++) { laddr = addr_buf; af = sctp_get_af_specific(laddr->v4.sin_family); if (!af) { retval = -EINVAL; goto out; } if (!sctp_assoc_lookup_laddr(asoc, laddr)) break; addr_buf += af->sockaddr_len; } if (i < addrcnt) continue; /* Find one address in the association's bind address list * that is not in the packed array of addresses. This is to * make sure that we do not delete all the addresses in the * association. */ bp = &asoc->base.bind_addr; laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, addrcnt, sp); if ((laddr == NULL) && (addrcnt == 1)) { if (asoc->asconf_addr_del_pending) continue; asoc->asconf_addr_del_pending = kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); if (asoc->asconf_addr_del_pending == NULL) { retval = -ENOMEM; goto out; } asoc->asconf_addr_del_pending->sa.sa_family = addrs->sa_family; asoc->asconf_addr_del_pending->v4.sin_port = htons(bp->port); if (addrs->sa_family == AF_INET) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)addrs; asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; } else if (addrs->sa_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)addrs; asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; } pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", __func__, asoc, &asoc->asconf_addr_del_pending->sa, asoc->asconf_addr_del_pending); asoc->src_out_of_asoc_ok = 1; stored = 1; goto skip_mkasconf; } if (laddr == NULL) return -EINVAL; /* We do not need RCU protection throughout this loop * because this is done under a socket lock from the * setsockopt call. */ chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, SCTP_PARAM_DEL_IP); if (!chunk) { retval = -ENOMEM; goto out; } skip_mkasconf: /* Reset use_as_src flag for the addresses in the bind address * list that are to be deleted. */ addr_buf = addrs; for (i = 0; i < addrcnt; i++) { laddr = addr_buf; af = sctp_get_af_specific(laddr->v4.sin_family); list_for_each_entry(saddr, &bp->address_list, list) { if (sctp_cmp_addr_exact(&saddr->a, laddr)) saddr->state = SCTP_ADDR_DEL; } addr_buf += af->sockaddr_len; } /* Update the route and saddr entries for all the transports * as some of the addresses in the bind address list are * about to be deleted and cannot be used as source addresses. */ list_for_each_entry(transport, &asoc->peer.transport_addr_list, transports) { sctp_transport_route(transport, NULL, sctp_sk(asoc->base.sk)); } if (stored) /* We don't need to transmit ASCONF */ continue; retval = sctp_send_asconf(asoc, chunk); } out: return retval; } /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) { struct sock *sk = sctp_opt2sk(sp); union sctp_addr *addr; struct sctp_af *af; /* It is safe to write port space in caller. */ addr = &addrw->a; addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); af = sctp_get_af_specific(addr->sa.sa_family); if (!af) return -EINVAL; if (sctp_verify_addr(sk, addr, af->sockaddr_len)) return -EINVAL; if (addrw->state == SCTP_ADDR_NEW) return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); else return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); } /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() * * API 8.1 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, * int flags); * * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. * If the sd is an IPv6 socket, the addresses passed can either be IPv4 * or IPv6 addresses. * * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see * Section 3.1.2 for this usage. * * addrs is a pointer to an array of one or more socket addresses. Each * address is contained in its appropriate structure (i.e. struct * sockaddr_in or struct sockaddr_in6) the family of the address type * must be used to distinguish the address length (note that this * representation is termed a "packed array" of addresses). The caller * specifies the number of addresses in the array with addrcnt. * * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns * -1, and sets errno to the appropriate error code. * * For SCTP, the port given in each socket address must be the same, or * sctp_bindx() will fail, setting errno to EINVAL. * * The flags parameter is formed from the bitwise OR of zero or more of * the following currently defined flags: * * SCTP_BINDX_ADD_ADDR * * SCTP_BINDX_REM_ADDR * * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given * addresses from the association. The two flags are mutually exclusive; * if both are given, sctp_bindx() will fail with EINVAL. A caller may * not remove all addresses from an association; sctp_bindx() will * reject such an attempt with EINVAL. * * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate * additional addresses with an endpoint after calling bind(). Or use * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening * socket is associated with so that no new association accepted will be * associated with those addresses. If the endpoint supports dynamic * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a * endpoint to send the appropriate message to the peer to change the * peers address lists. * * Adding and removing addresses from a connected association is * optional functionality. Implementations that do not support this * functionality should return EOPNOTSUPP. * * Basically do nothing but copying the addresses from user to kernel * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() * from userspace. * * On exit there is no need to do sockfd_put(), sys_setsockopt() does * it. * * sk The sk of the socket * addrs The pointer to the addresses * addrssize Size of the addrs buffer * op Operation to perform (add or remove, see the flags of * sctp_bindx) * * Returns 0 if ok, <0 errno code on error. */ static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs, int addrs_size, int op) { int err; int addrcnt = 0; int walk_size = 0; struct sockaddr *sa_addr; void *addr_buf = addrs; struct sctp_af *af; pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", __func__, sk, addr_buf, addrs_size, op); if (unlikely(addrs_size <= 0)) return -EINVAL; /* Walk through the addrs buffer and count the number of addresses. */ while (walk_size < addrs_size) { if (walk_size + sizeof(sa_family_t) > addrs_size) return -EINVAL; sa_addr = addr_buf; af = sctp_get_af_specific(sa_addr->sa_family); /* If the address family is not supported or if this address * causes the address buffer to overflow return EINVAL. */ if (!af || (walk_size + af->sockaddr_len) > addrs_size) return -EINVAL; addrcnt++; addr_buf += af->sockaddr_len; walk_size += af->sockaddr_len; } /* Do the work. */ switch (op) { case SCTP_BINDX_ADD_ADDR: /* Allow security module to validate bindx addresses. */ err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, addrs, addrs_size); if (err) return err; err = sctp_bindx_add(sk, addrs, addrcnt); if (err) return err; return sctp_send_asconf_add_ip(sk, addrs, addrcnt); case SCTP_BINDX_REM_ADDR: err = sctp_bindx_rem(sk, addrs, addrcnt); if (err) return err; return sctp_send_asconf_del_ip(sk, addrs, addrcnt); default: return -EINVAL; } } static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs, int addrlen) { int err; lock_sock(sk); err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR); release_sock(sk); return err; } static int sctp_connect_new_asoc(struct sctp_endpoint *ep, const union sctp_addr *daddr, const struct sctp_initmsg *init, struct sctp_transport **tp) { struct sctp_association *asoc; struct sock *sk = ep->base.sk; struct net *net = sock_net(sk); enum sctp_scope scope; int err; if (sctp_endpoint_is_peeled_off(ep, daddr)) return -EADDRNOTAVAIL; if (!ep->base.bind_addr.port) { if (sctp_autobind(sk)) return -EAGAIN; } else { if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) return -EACCES; } scope = sctp_scope(daddr); asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); if (!asoc) return -ENOMEM; err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); if (err < 0) goto free; *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); if (!*tp) { err = -ENOMEM; goto free; } if (!init) return 0; if (init->sinit_num_ostreams) { __u16 outcnt = init->sinit_num_ostreams; asoc->c.sinit_num_ostreams = outcnt; /* outcnt has been changed, need to re-init stream */ err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); if (err) goto free; } if (init->sinit_max_instreams) asoc->c.sinit_max_instreams = init->sinit_max_instreams; if (init->sinit_max_attempts) asoc->max_init_attempts = init->sinit_max_attempts; if (init->sinit_max_init_timeo) asoc->max_init_timeo = msecs_to_jiffies(init->sinit_max_init_timeo); return 0; free: sctp_association_free(asoc); return err; } static int sctp_connect_add_peer(struct sctp_association *asoc, union sctp_addr *daddr, int addr_len) { struct sctp_endpoint *ep = asoc->ep; struct sctp_association *old; struct sctp_transport *t; int err; err = sctp_verify_addr(ep->base.sk, daddr, addr_len); if (err) return err; old = sctp_endpoint_lookup_assoc(ep, daddr, &t); if (old && old != asoc) return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN : -EALREADY; if (sctp_endpoint_is_peeled_off(ep, daddr)) return -EADDRNOTAVAIL; t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); if (!t) return -ENOMEM; return 0; } /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) * * Common routine for handling connect() and sctp_connectx(). * Connect will come in with just a single address. */ static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, int addrs_size, int flags, sctp_assoc_t *assoc_id) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_endpoint *ep = sp->ep; struct sctp_transport *transport; struct sctp_association *asoc; void *addr_buf = kaddrs; union sctp_addr *daddr; struct sctp_af *af; int walk_size, err; long timeo; if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) return -EISCONN; daddr = addr_buf; af = sctp_get_af_specific(daddr->sa.sa_family); if (!af || af->sockaddr_len > addrs_size) return -EINVAL; err = sctp_verify_addr(sk, daddr, af->sockaddr_len); if (err) return err; asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); if (asoc) return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN : -EALREADY; err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); if (err) return err; asoc = transport->asoc; addr_buf += af->sockaddr_len; walk_size = af->sockaddr_len; while (walk_size < addrs_size) { err = -EINVAL; if (walk_size + sizeof(sa_family_t) > addrs_size) goto out_free; daddr = addr_buf; af = sctp_get_af_specific(daddr->sa.sa_family); if (!af || af->sockaddr_len + walk_size > addrs_size) goto out_free; if (asoc->peer.port != ntohs(daddr->v4.sin_port)) goto out_free; err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); if (err) goto out_free; addr_buf += af->sockaddr_len; walk_size += af->sockaddr_len; } /* In case the user of sctp_connectx() wants an association * id back, assign one now. */ if (assoc_id) { err = sctp_assoc_set_id(asoc, GFP_KERNEL); if (err < 0) goto out_free; } err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); if (err < 0) goto out_free; /* Initialize sk's dport and daddr for getpeername() */ inet_sk(sk)->inet_dport = htons(asoc->peer.port); sp->pf->to_sk_daddr(daddr, sk); sk->sk_err = 0; if (assoc_id) *assoc_id = asoc->assoc_id; timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); return sctp_wait_for_connect(asoc, &timeo); out_free: pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", __func__, asoc, kaddrs, err); sctp_association_free(asoc); return err; } /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() * * API 8.9 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, * sctp_assoc_t *asoc); * * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. * If the sd is an IPv6 socket, the addresses passed can either be IPv4 * or IPv6 addresses. * * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see * Section 3.1.2 for this usage. * * addrs is a pointer to an array of one or more socket addresses. Each * address is contained in its appropriate structure (i.e. struct * sockaddr_in or struct sockaddr_in6) the family of the address type * must be used to distengish the address length (note that this * representation is termed a "packed array" of addresses). The caller * specifies the number of addresses in the array with addrcnt. * * On success, sctp_connectx() returns 0. It also sets the assoc_id to * the association id of the new association. On failure, sctp_connectx() * returns -1, and sets errno to the appropriate error code. The assoc_id * is not touched by the kernel. * * For SCTP, the port given in each socket address must be the same, or * sctp_connectx() will fail, setting errno to EINVAL. * * An application can use sctp_connectx to initiate an association with * an endpoint that is multi-homed. Much like sctp_bindx() this call * allows a caller to specify multiple addresses at which a peer can be * reached. The way the SCTP stack uses the list of addresses to set up * the association is implementation dependent. This function only * specifies that the stack will try to make use of all the addresses in * the list when needed. * * Note that the list of addresses passed in is only used for setting up * the association. It does not necessarily equal the set of addresses * the peer uses for the resulting association. If the caller wants to * find out the set of peer addresses, it must use sctp_getpaddrs() to * retrieve them after the association has been set up. * * Basically do nothing but copying the addresses from user to kernel * land and invoking either sctp_connectx(). This is used for tunneling * the sctp_connectx() request through sctp_setsockopt() from userspace. * * On exit there is no need to do sockfd_put(), sys_setsockopt() does * it. * * sk The sk of the socket * addrs The pointer to the addresses * addrssize Size of the addrs buffer * * Returns >=0 if ok, <0 errno code on error. */ static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs, int addrs_size, sctp_assoc_t *assoc_id) { int err = 0, flags = 0; pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", __func__, sk, kaddrs, addrs_size); /* make sure the 1st addr's sa_family is accessible later */ if (unlikely(addrs_size < sizeof(sa_family_t))) return -EINVAL; /* Allow security module to validate connectx addresses. */ err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, (struct sockaddr *)kaddrs, addrs_size); if (err) return err; /* in-kernel sockets don't generally have a file allocated to them * if all they do is call sock_create_kern(). */ if (sk->sk_socket->file) flags = sk->sk_socket->file->f_flags; return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); } /* * This is an older interface. It's kept for backward compatibility * to the option that doesn't provide association id. */ static int sctp_setsockopt_connectx_old(struct sock *sk, struct sockaddr *kaddrs, int addrs_size) { return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL); } /* * New interface for the API. The since the API is done with a socket * option, to make it simple we feed back the association id is as a return * indication to the call. Error is always negative and association id is * always positive. */ static int sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs, int addrs_size) { sctp_assoc_t assoc_id = 0; int err = 0; err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id); if (err) return err; else return assoc_id; } /* * New (hopefully final) interface for the API. * We use the sctp_getaddrs_old structure so that use-space library * can avoid any unnecessary allocations. The only different part * is that we store the actual length of the address buffer into the * addrs_num structure member. That way we can re-use the existing * code. */ #ifdef CONFIG_COMPAT struct compat_sctp_getaddrs_old { sctp_assoc_t assoc_id; s32 addr_num; compat_uptr_t addrs; /* struct sockaddr * */ }; #endif static int sctp_getsockopt_connectx3(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_getaddrs_old param; sctp_assoc_t assoc_id = 0; struct sockaddr *kaddrs; int err = 0; #ifdef CONFIG_COMPAT if (in_compat_syscall()) { struct compat_sctp_getaddrs_old param32; if (len < sizeof(param32)) return -EINVAL; if (copy_from_user(¶m32, optval, sizeof(param32))) return -EFAULT; param.assoc_id = param32.assoc_id; param.addr_num = param32.addr_num; param.addrs = compat_ptr(param32.addrs); } else #endif { if (len < sizeof(param)) return -EINVAL; if (copy_from_user(¶m, optval, sizeof(param))) return -EFAULT; } kaddrs = memdup_user(param.addrs, param.addr_num); if (IS_ERR(kaddrs)) return PTR_ERR(kaddrs); err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id); kfree(kaddrs); if (err == 0 || err == -EINPROGRESS) { if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) return -EFAULT; if (put_user(sizeof(assoc_id), optlen)) return -EFAULT; } return err; } /* API 3.1.4 close() - UDP Style Syntax * Applications use close() to perform graceful shutdown (as described in * Section 10.1 of [SCTP]) on ALL the associations currently represented * by a UDP-style socket. * * The syntax is * * ret = close(int sd); * * sd - the socket descriptor of the associations to be closed. * * To gracefully shutdown a specific association represented by the * UDP-style socket, an application should use the sendmsg() call, * passing no user data, but including the appropriate flag in the * ancillary data (see Section xxxx). * * If sd in the close() call is a branched-off socket representing only * one association, the shutdown is performed on that association only. * * 4.1.6 close() - TCP Style Syntax * * Applications use close() to gracefully close down an association. * * The syntax is: * * int close(int sd); * * sd - the socket descriptor of the association to be closed. * * After an application calls close() on a socket descriptor, no further * socket operations will succeed on that descriptor. * * API 7.1.4 SO_LINGER * * An application using the TCP-style socket can use this option to * perform the SCTP ABORT primitive. The linger option structure is: * * struct linger { * int l_onoff; // option on/off * int l_linger; // linger time * }; * * To enable the option, set l_onoff to 1. If the l_linger value is set * to 0, calling close() is the same as the ABORT primitive. If the * value is set to a negative value, the setsockopt() call will return * an error. If the value is set to a positive value linger_time, the * close() can be blocked for at most linger_time ms. If the graceful * shutdown phase does not finish during this period, close() will * return but the graceful shutdown phase continues in the system. */ static void sctp_close(struct sock *sk, long timeout) { struct net *net = sock_net(sk); struct sctp_endpoint *ep; struct sctp_association *asoc; struct list_head *pos, *temp; unsigned int data_was_unread; pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); lock_sock_nested(sk, SINGLE_DEPTH_NESTING); sk->sk_shutdown = SHUTDOWN_MASK; inet_sk_set_state(sk, SCTP_SS_CLOSING); ep = sctp_sk(sk)->ep; /* Clean up any skbs sitting on the receive queue. */ data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); /* Walk all associations on an endpoint. */ list_for_each_safe(pos, temp, &ep->asocs) { asoc = list_entry(pos, struct sctp_association, asocs); if (sctp_style(sk, TCP)) { /* A closed association can still be in the list if * it belongs to a TCP-style listening socket that is * not yet accepted. If so, free it. If not, send an * ABORT or SHUTDOWN based on the linger options. */ if (sctp_state(asoc, CLOSED)) { sctp_association_free(asoc); continue; } } if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || !skb_queue_empty(&asoc->ulpq.reasm) || !skb_queue_empty(&asoc->ulpq.reasm_uo) || (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { struct sctp_chunk *chunk; chunk = sctp_make_abort_user(asoc, NULL, 0); sctp_primitive_ABORT(net, asoc, chunk); } else sctp_primitive_SHUTDOWN(net, asoc, NULL); } /* On a TCP-style socket, block for at most linger_time if set. */ if (sctp_style(sk, TCP) && timeout) sctp_wait_for_close(sk, timeout); /* This will run the backlog queue. */ release_sock(sk); /* Supposedly, no process has access to the socket, but * the net layers still may. * Also, sctp_destroy_sock() needs to be called with addr_wq_lock * held and that should be grabbed before socket lock. */ spin_lock_bh(&net->sctp.addr_wq_lock); bh_lock_sock_nested(sk); /* Hold the sock, since sk_common_release() will put sock_put() * and we have just a little more cleanup. */ sock_hold(sk); sk_common_release(sk); bh_unlock_sock(sk); spin_unlock_bh(&net->sctp.addr_wq_lock); sock_put(sk); SCTP_DBG_OBJCNT_DEC(sock); } /* Handle EPIPE error. */ static int sctp_error(struct sock *sk, int flags, int err) { if (err == -EPIPE) err = sock_error(sk) ? : -EPIPE; if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) send_sig(SIGPIPE, current, 0); return err; } /* API 3.1.3 sendmsg() - UDP Style Syntax * * An application uses sendmsg() and recvmsg() calls to transmit data to * and receive data from its peer. * * ssize_t sendmsg(int socket, const struct msghdr *message, * int flags); * * socket - the socket descriptor of the endpoint. * message - pointer to the msghdr structure which contains a single * user message and possibly some ancillary data. * * See Section 5 for complete description of the data * structures. * * flags - flags sent or received with the user message, see Section * 5 for complete description of the flags. * * Note: This function could use a rewrite especially when explicit * connect support comes in. */ /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs); static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, struct sctp_sndrcvinfo *srinfo, const struct msghdr *msg, size_t msg_len) { __u16 sflags; int err; if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) return -EPIPE; if (msg_len > sk->sk_sndbuf) return -EMSGSIZE; memset(cmsgs, 0, sizeof(*cmsgs)); err = sctp_msghdr_parse(msg, cmsgs); if (err) { pr_debug("%s: msghdr parse err:%x\n", __func__, err); return err; } memset(srinfo, 0, sizeof(*srinfo)); if (cmsgs->srinfo) { srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; } if (cmsgs->sinfo) { srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; srinfo->sinfo_context = cmsgs->sinfo->snd_context; srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; } if (cmsgs->prinfo) { srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; SCTP_PR_SET_POLICY(srinfo->sinfo_flags, cmsgs->prinfo->pr_policy); } sflags = srinfo->sinfo_flags; if (!sflags && msg_len) return 0; if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) return -EINVAL; if (((sflags & SCTP_EOF) && msg_len > 0) || (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) return -EINVAL; if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) return -EINVAL; return 0; } static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, struct sctp_cmsgs *cmsgs, union sctp_addr *daddr, struct sctp_transport **tp) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_association *asoc; struct cmsghdr *cmsg; __be32 flowinfo = 0; struct sctp_af *af; int err; *tp = NULL; if (sflags & (SCTP_EOF | SCTP_ABORT)) return -EINVAL; if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING))) return -EADDRNOTAVAIL; /* Label connection socket for first association 1-to-many * style for client sequence socket()->sendmsg(). This * needs to be done before sctp_assoc_add_peer() as that will * set up the initial packet that needs to account for any * security ip options (CIPSO/CALIPSO) added to the packet. */ af = sctp_get_af_specific(daddr->sa.sa_family); if (!af) return -EINVAL; err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, (struct sockaddr *)daddr, af->sockaddr_len); if (err < 0) return err; err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); if (err) return err; asoc = (*tp)->asoc; if (!cmsgs->addrs_msg) return 0; if (daddr->sa.sa_family == AF_INET6) flowinfo = daddr->v6.sin6_flowinfo; /* sendv addr list parse */ for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { union sctp_addr _daddr; int dlen; if (cmsg->cmsg_level != IPPROTO_SCTP || (cmsg->cmsg_type != SCTP_DSTADDRV4 && cmsg->cmsg_type != SCTP_DSTADDRV6)) continue; daddr = &_daddr; memset(daddr, 0, sizeof(*daddr)); dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); if (cmsg->cmsg_type == SCTP_DSTADDRV4) { if (dlen < sizeof(struct in_addr)) { err = -EINVAL; goto free; } dlen = sizeof(struct in_addr); daddr->v4.sin_family = AF_INET; daddr->v4.sin_port = htons(asoc->peer.port); memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); } else { if (dlen < sizeof(struct in6_addr)) { err = -EINVAL; goto free; } dlen = sizeof(struct in6_addr); daddr->v6.sin6_flowinfo = flowinfo; daddr->v6.sin6_family = AF_INET6; daddr->v6.sin6_port = htons(asoc->peer.port); memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); } err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); if (err) goto free; } return 0; free: sctp_association_free(asoc); return err; } static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, __u16 sflags, struct msghdr *msg, size_t msg_len) { struct sock *sk = asoc->base.sk; struct net *net = sock_net(sk); if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) return -EPIPE; if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && !sctp_state(asoc, ESTABLISHED)) return 0; if (sflags & SCTP_EOF) { pr_debug("%s: shutting down association:%p\n", __func__, asoc); sctp_primitive_SHUTDOWN(net, asoc, NULL); return 0; } if (sflags & SCTP_ABORT) { struct sctp_chunk *chunk; chunk = sctp_make_abort_user(asoc, msg, msg_len); if (!chunk) return -ENOMEM; pr_debug("%s: aborting association:%p\n", __func__, asoc); sctp_primitive_ABORT(net, asoc, chunk); iov_iter_revert(&msg->msg_iter, msg_len); return 0; } return 1; } static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, struct msghdr *msg, size_t msg_len, struct sctp_transport *transport, struct sctp_sndrcvinfo *sinfo) { struct sock *sk = asoc->base.sk; struct sctp_sock *sp = sctp_sk(sk); struct net *net = sock_net(sk); struct sctp_datamsg *datamsg; bool wait_connect = false; struct sctp_chunk *chunk; long timeo; int err; if (sinfo->sinfo_stream >= asoc->stream.outcnt) { err = -EINVAL; goto err; } if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); if (err) goto err; } if (sp->disable_fragments && msg_len > asoc->frag_point) { err = -EMSGSIZE; goto err; } if (asoc->pmtu_pending) { if (sp->param_flags & SPP_PMTUD_ENABLE) sctp_assoc_sync_pmtu(asoc); asoc->pmtu_pending = 0; } if (sctp_wspace(asoc) < (int)msg_len) sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); err = sctp_wait_for_sndbuf(asoc, transport, &timeo, msg_len); if (err) goto err; if (unlikely(sinfo->sinfo_stream >= asoc->stream.outcnt)) { err = -EINVAL; goto err; } } if (sctp_state(asoc, CLOSED)) { err = sctp_primitive_ASSOCIATE(net, asoc, NULL); if (err) goto err; if (asoc->ep->intl_enable) { timeo = sock_sndtimeo(sk, 0); err = sctp_wait_for_connect(asoc, &timeo); if (err) { err = -ESRCH; goto err; } } else { wait_connect = true; } pr_debug("%s: we associated primitively\n", __func__); } datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); if (IS_ERR(datamsg)) { err = PTR_ERR(datamsg); goto err; } asoc->force_delay = !!(msg->msg_flags & MSG_MORE); list_for_each_entry(chunk, &datamsg->chunks, frag_list) { sctp_chunk_hold(chunk); sctp_set_owner_w(chunk); chunk->transport = transport; } err = sctp_primitive_SEND(net, asoc, datamsg); if (err) { sctp_datamsg_free(datamsg); goto err; } pr_debug("%s: we sent primitively\n", __func__); sctp_datamsg_put(datamsg); if (unlikely(wait_connect)) { timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); sctp_wait_for_connect(asoc, &timeo); } err = msg_len; err: return err; } static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, const struct msghdr *msg, struct sctp_cmsgs *cmsgs) { union sctp_addr *daddr = NULL; int err; if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { int len = msg->msg_namelen; if (len > sizeof(*daddr)) len = sizeof(*daddr); daddr = (union sctp_addr *)msg->msg_name; err = sctp_verify_addr(sk, daddr, len); if (err) return ERR_PTR(err); } return daddr; } static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, struct sctp_sndrcvinfo *sinfo, struct sctp_cmsgs *cmsgs) { if (!cmsgs->srinfo && !cmsgs->sinfo) { sinfo->sinfo_stream = asoc->default_stream; sinfo->sinfo_ppid = asoc->default_ppid; sinfo->sinfo_context = asoc->default_context; sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); if (!cmsgs->prinfo) sinfo->sinfo_flags = asoc->default_flags; } if (!cmsgs->srinfo && !cmsgs->prinfo) sinfo->sinfo_timetolive = asoc->default_timetolive; if (cmsgs->authinfo) { /* Reuse sinfo_tsn to indicate that authinfo was set and * sinfo_ssn to save the keyid on tx path. */ sinfo->sinfo_tsn = 1; sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; } } static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_transport *transport = NULL; struct sctp_sndrcvinfo _sinfo, *sinfo; struct sctp_association *asoc, *tmp; struct sctp_cmsgs cmsgs; union sctp_addr *daddr; bool new = false; __u16 sflags; int err; /* Parse and get snd_info */ err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); if (err) goto out; sinfo = &_sinfo; sflags = sinfo->sinfo_flags; /* Get daddr from msg */ daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); if (IS_ERR(daddr)) { err = PTR_ERR(daddr); goto out; } lock_sock(sk); /* SCTP_SENDALL process */ if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); if (err == 0) continue; if (err < 0) goto out_unlock; sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, NULL, sinfo); if (err < 0) goto out_unlock; iov_iter_revert(&msg->msg_iter, err); } goto out_unlock; } /* Get and check or create asoc */ if (daddr) { asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); if (asoc) { err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); if (err <= 0) goto out_unlock; } else { err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, &transport); if (err) goto out_unlock; asoc = transport->asoc; new = true; } if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) transport = NULL; } else { asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); if (!asoc) { err = -EPIPE; goto out_unlock; } err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); if (err <= 0) goto out_unlock; } /* Update snd_info with the asoc */ sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); /* Send msg to the asoc */ err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); if (err < 0 && err != -ESRCH && new) sctp_association_free(asoc); out_unlock: release_sock(sk); out: return sctp_error(sk, msg->msg_flags, err); } /* This is an extended version of skb_pull() that removes the data from the * start of a skb even when data is spread across the list of skb's in the * frag_list. len specifies the total amount of data that needs to be removed. * when 'len' bytes could be removed from the skb, it returns 0. * If 'len' exceeds the total skb length, it returns the no. of bytes that * could not be removed. */ static int sctp_skb_pull(struct sk_buff *skb, int len) { struct sk_buff *list; int skb_len = skb_headlen(skb); int rlen; if (len <= skb_len) { __skb_pull(skb, len); return 0; } len -= skb_len; __skb_pull(skb, skb_len); skb_walk_frags(skb, list) { rlen = sctp_skb_pull(list, len); skb->len -= (len-rlen); skb->data_len -= (len-rlen); if (!rlen) return 0; len = rlen; } return len; } /* API 3.1.3 recvmsg() - UDP Style Syntax * * ssize_t recvmsg(int socket, struct msghdr *message, * int flags); * * socket - the socket descriptor of the endpoint. * message - pointer to the msghdr structure which contains a single * user message and possibly some ancillary data. * * See Section 5 for complete description of the data * structures. * * flags - flags sent or received with the user message, see Section * 5 for complete description of the flags. */ static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, int *addr_len) { struct sctp_ulpevent *event = NULL; struct sctp_sock *sp = sctp_sk(sk); struct sk_buff *skb, *head_skb; int copied; int err = 0; int skb_len; pr_debug("%s: sk:%p, msghdr:%p, len:%zd, flags:0x%x, addr_len:%p)\n", __func__, sk, msg, len, flags, addr_len); if (unlikely(flags & MSG_ERRQUEUE)) return inet_recv_error(sk, msg, len, addr_len); if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue)) sk_busy_loop(sk, flags & MSG_DONTWAIT); lock_sock(sk); if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { err = -ENOTCONN; goto out; } skb = sctp_skb_recv_datagram(sk, flags, &err); if (!skb) goto out; /* Get the total length of the skb including any skb's in the * frag_list. */ skb_len = skb->len; copied = skb_len; if (copied > len) copied = len; err = skb_copy_datagram_msg(skb, 0, msg, copied); event = sctp_skb2event(skb); if (err) goto out_free; if (event->chunk && event->chunk->head_skb) head_skb = event->chunk->head_skb; else head_skb = skb; sock_recv_cmsgs(msg, sk, head_skb); if (sctp_ulpevent_is_notification(event)) { msg->msg_flags |= MSG_NOTIFICATION; sp->pf->event_msgname(event, msg->msg_name, addr_len); } else { sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); } /* Check if we allow SCTP_NXTINFO. */ if (sp->recvnxtinfo) sctp_ulpevent_read_nxtinfo(event, msg, sk); /* Check if we allow SCTP_RCVINFO. */ if (sp->recvrcvinfo) sctp_ulpevent_read_rcvinfo(event, msg); /* Check if we allow SCTP_SNDRCVINFO. */ if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) sctp_ulpevent_read_sndrcvinfo(event, msg); err = copied; /* If skb's length exceeds the user's buffer, update the skb and * push it back to the receive_queue so that the next call to * recvmsg() will return the remaining data. Don't set MSG_EOR. */ if (skb_len > copied) { msg->msg_flags &= ~MSG_EOR; if (flags & MSG_PEEK) goto out_free; sctp_skb_pull(skb, copied); skb_queue_head(&sk->sk_receive_queue, skb); /* When only partial message is copied to the user, increase * rwnd by that amount. If all the data in the skb is read, * rwnd is updated when the event is freed. */ if (!sctp_ulpevent_is_notification(event)) sctp_assoc_rwnd_increase(event->asoc, copied); goto out; } else if ((event->msg_flags & MSG_NOTIFICATION) || (event->msg_flags & MSG_EOR)) msg->msg_flags |= MSG_EOR; else msg->msg_flags &= ~MSG_EOR; out_free: if (flags & MSG_PEEK) { /* Release the skb reference acquired after peeking the skb in * sctp_skb_recv_datagram(). */ kfree_skb(skb); } else { /* Free the event which includes releasing the reference to * the owner of the skb, freeing the skb and updating the * rwnd. */ sctp_ulpevent_free(event); } out: release_sock(sk); return err; } /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) * * This option is a on/off flag. If enabled no SCTP message * fragmentation will be performed. Instead if a message being sent * exceeds the current PMTU size, the message will NOT be sent and * instead a error will be indicated to the user. */ static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val, unsigned int optlen) { if (optlen < sizeof(int)) return -EINVAL; sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1; return 0; } static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; int i; if (optlen > sizeof(struct sctp_event_subscribe)) return -EINVAL; for (i = 0; i < optlen; i++) sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, sn_type[i]); list_for_each_entry(asoc, &sp->ep->asocs, asocs) asoc->subscribe = sctp_sk(sk)->subscribe; /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, * if there is no data to be sent or retransmit, the stack will * immediately send up this notification. */ if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { struct sctp_ulpevent *event; asoc = sctp_id2assoc(sk, 0); if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { event = sctp_ulpevent_make_sender_dry_event(asoc, GFP_USER | __GFP_NOWARN); if (!event) return -ENOMEM; asoc->stream.si->enqueue_event(&asoc->ulpq, event); } } return 0; } /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) * * This socket option is applicable to the UDP-style socket only. When * set it will cause associations that are idle for more than the * specified number of seconds to automatically close. An association * being idle is defined an association that has NOT sent or received * user data. The special value of '0' indicates that no automatic * close of any associations should be performed. The option expects an * integer defining the number of seconds of idle time before an * association is closed. */ static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct net *net = sock_net(sk); /* Applicable to UDP-style socket only */ if (sctp_style(sk, TCP)) return -EOPNOTSUPP; if (optlen != sizeof(int)) return -EINVAL; sp->autoclose = *optval; if (sp->autoclose > net->sctp.max_autoclose) sp->autoclose = net->sctp.max_autoclose; return 0; } /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) * * Applications can enable or disable heartbeats for any peer address of * an association, modify an address's heartbeat interval, force a * heartbeat to be sent immediately, and adjust the address's maximum * number of retransmissions sent before an address is considered * unreachable. The following structure is used to access and modify an * address's parameters: * * struct sctp_paddrparams { * sctp_assoc_t spp_assoc_id; * struct sockaddr_storage spp_address; * uint32_t spp_hbinterval; * uint16_t spp_pathmaxrxt; * uint32_t spp_pathmtu; * uint32_t spp_sackdelay; * uint32_t spp_flags; * uint32_t spp_ipv6_flowlabel; * uint8_t spp_dscp; * }; * * spp_assoc_id - (one-to-many style socket) This is filled in the * application, and identifies the association for * this query. * spp_address - This specifies which address is of interest. * spp_hbinterval - This contains the value of the heartbeat interval, * in milliseconds. If a value of zero * is present in this field then no changes are to * be made to this parameter. * spp_pathmaxrxt - This contains the maximum number of * retransmissions before this address shall be * considered unreachable. If a value of zero * is present in this field then no changes are to * be made to this parameter. * spp_pathmtu - When Path MTU discovery is disabled the value * specified here will be the "fixed" path mtu. * Note that if the spp_address field is empty * then all associations on this address will * have this fixed path mtu set upon them. * * spp_sackdelay - When delayed sack is enabled, this value specifies * the number of milliseconds that sacks will be delayed * for. This value will apply to all addresses of an * association if the spp_address field is empty. Note * also, that if delayed sack is enabled and this * value is set to 0, no change is made to the last * recorded delayed sack timer value. * * spp_flags - These flags are used to control various features * on an association. The flag field may contain * zero or more of the following options. * * SPP_HB_ENABLE - Enable heartbeats on the * specified address. Note that if the address * field is empty all addresses for the association * have heartbeats enabled upon them. * * SPP_HB_DISABLE - Disable heartbeats on the * speicifed address. Note that if the address * field is empty all addresses for the association * will have their heartbeats disabled. Note also * that SPP_HB_ENABLE and SPP_HB_DISABLE are * mutually exclusive, only one of these two should * be specified. Enabling both fields will have * undetermined results. * * SPP_HB_DEMAND - Request a user initiated heartbeat * to be made immediately. * * SPP_HB_TIME_IS_ZERO - Specify's that the time for * heartbeat delayis to be set to the value of 0 * milliseconds. * * SPP_PMTUD_ENABLE - This field will enable PMTU * discovery upon the specified address. Note that * if the address feild is empty then all addresses * on the association are effected. * * SPP_PMTUD_DISABLE - This field will disable PMTU * discovery upon the specified address. Note that * if the address feild is empty then all addresses * on the association are effected. Not also that * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually * exclusive. Enabling both will have undetermined * results. * * SPP_SACKDELAY_ENABLE - Setting this flag turns * on delayed sack. The time specified in spp_sackdelay * is used to specify the sack delay for this address. Note * that if spp_address is empty then all addresses will * enable delayed sack and take on the sack delay * value specified in spp_sackdelay. * SPP_SACKDELAY_DISABLE - Setting this flag turns * off delayed sack. If the spp_address field is blank then * delayed sack is disabled for the entire association. Note * also that this field is mutually exclusive to * SPP_SACKDELAY_ENABLE, setting both will have undefined * results. * * SPP_IPV6_FLOWLABEL: Setting this flag enables the * setting of the IPV6 flow label value. The value is * contained in the spp_ipv6_flowlabel field. * Upon retrieval, this flag will be set to indicate that * the spp_ipv6_flowlabel field has a valid value returned. * If a specific destination address is set (in the * spp_address field), then the value returned is that of * the address. If just an association is specified (and * no address), then the association's default flow label * is returned. If neither an association nor a destination * is specified, then the socket's default flow label is * returned. For non-IPv6 sockets, this flag will be left * cleared. * * SPP_DSCP: Setting this flag enables the setting of the * Differentiated Services Code Point (DSCP) value * associated with either the association or a specific * address. The value is obtained in the spp_dscp field. * Upon retrieval, this flag will be set to indicate that * the spp_dscp field has a valid value returned. If a * specific destination address is set when called (in the * spp_address field), then that specific destination * address's DSCP value is returned. If just an association * is specified, then the association's default DSCP is * returned. If neither an association nor a destination is * specified, then the socket's default DSCP is returned. * * spp_ipv6_flowlabel * - This field is used in conjunction with the * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. * The 20 least significant bits are used for the flow * label. This setting has precedence over any IPv6-layer * setting. * * spp_dscp - This field is used in conjunction with the SPP_DSCP flag * and contains the DSCP. The 6 most significant bits are * used for the DSCP. This setting has precedence over any * IPv4- or IPv6- layer setting. */ static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, struct sctp_transport *trans, struct sctp_association *asoc, struct sctp_sock *sp, int hb_change, int pmtud_change, int sackdelay_change) { int error; if (params->spp_flags & SPP_HB_DEMAND && trans) { error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, trans->asoc, trans); if (error) return error; } /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of * this field is ignored. Note also that a value of zero indicates * the current setting should be left unchanged. */ if (params->spp_flags & SPP_HB_ENABLE) { /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is * set. This lets us use 0 value when this flag * is set. */ if (params->spp_flags & SPP_HB_TIME_IS_ZERO) params->spp_hbinterval = 0; if (params->spp_hbinterval || (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { if (trans) { trans->hbinterval = msecs_to_jiffies(params->spp_hbinterval); sctp_transport_reset_hb_timer(trans); } else if (asoc) { asoc->hbinterval = msecs_to_jiffies(params->spp_hbinterval); } else { sp->hbinterval = params->spp_hbinterval; } } } if (hb_change) { if (trans) { trans->param_flags = (trans->param_flags & ~SPP_HB) | hb_change; } else if (asoc) { asoc->param_flags = (asoc->param_flags & ~SPP_HB) | hb_change; } else { sp->param_flags = (sp->param_flags & ~SPP_HB) | hb_change; } } /* When Path MTU discovery is disabled the value specified here will * be the "fixed" path mtu (i.e. the value of the spp_flags field must * include the flag SPP_PMTUD_DISABLE for this field to have any * effect). */ if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { if (trans) { trans->pathmtu = params->spp_pathmtu; sctp_assoc_sync_pmtu(asoc); } else if (asoc) { sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); } else { sp->pathmtu = params->spp_pathmtu; } } if (pmtud_change) { if (trans) { int update = (trans->param_flags & SPP_PMTUD_DISABLE) && (params->spp_flags & SPP_PMTUD_ENABLE); trans->param_flags = (trans->param_flags & ~SPP_PMTUD) | pmtud_change; if (update) { sctp_transport_pmtu(trans, sctp_opt2sk(sp)); sctp_assoc_sync_pmtu(asoc); } sctp_transport_pl_reset(trans); } else if (asoc) { asoc->param_flags = (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; } else { sp->param_flags = (sp->param_flags & ~SPP_PMTUD) | pmtud_change; } } /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the * value of this field is ignored. Note also that a value of zero * indicates the current setting should be left unchanged. */ if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { if (trans) { trans->sackdelay = msecs_to_jiffies(params->spp_sackdelay); } else if (asoc) { asoc->sackdelay = msecs_to_jiffies(params->spp_sackdelay); } else { sp->sackdelay = params->spp_sackdelay; } } if (sackdelay_change) { if (trans) { trans->param_flags = (trans->param_flags & ~SPP_SACKDELAY) | sackdelay_change; } else if (asoc) { asoc->param_flags = (asoc->param_flags & ~SPP_SACKDELAY) | sackdelay_change; } else { sp->param_flags = (sp->param_flags & ~SPP_SACKDELAY) | sackdelay_change; } } /* Note that a value of zero indicates the current setting should be left unchanged. */ if (params->spp_pathmaxrxt) { if (trans) { trans->pathmaxrxt = params->spp_pathmaxrxt; } else if (asoc) { asoc->pathmaxrxt = params->spp_pathmaxrxt; } else { sp->pathmaxrxt = params->spp_pathmaxrxt; } } if (params->spp_flags & SPP_IPV6_FLOWLABEL) { if (trans) { if (trans->ipaddr.sa.sa_family == AF_INET6) { trans->flowlabel = params->spp_ipv6_flowlabel & SCTP_FLOWLABEL_VAL_MASK; trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; } } else if (asoc) { struct sctp_transport *t; list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { if (t->ipaddr.sa.sa_family != AF_INET6) continue; t->flowlabel = params->spp_ipv6_flowlabel & SCTP_FLOWLABEL_VAL_MASK; t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; } asoc->flowlabel = params->spp_ipv6_flowlabel & SCTP_FLOWLABEL_VAL_MASK; asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { sp->flowlabel = params->spp_ipv6_flowlabel & SCTP_FLOWLABEL_VAL_MASK; sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; } } if (params->spp_flags & SPP_DSCP) { if (trans) { trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; trans->dscp |= SCTP_DSCP_SET_MASK; } else if (asoc) { struct sctp_transport *t; list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { t->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; t->dscp |= SCTP_DSCP_SET_MASK; } asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; asoc->dscp |= SCTP_DSCP_SET_MASK; } else { sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; sp->dscp |= SCTP_DSCP_SET_MASK; } } return 0; } static int sctp_setsockopt_peer_addr_params(struct sock *sk, struct sctp_paddrparams *params, unsigned int optlen) { struct sctp_transport *trans = NULL; struct sctp_association *asoc = NULL; struct sctp_sock *sp = sctp_sk(sk); int error; int hb_change, pmtud_change, sackdelay_change; if (optlen == ALIGN(offsetof(struct sctp_paddrparams, spp_ipv6_flowlabel), 4)) { if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) return -EINVAL; } else if (optlen != sizeof(*params)) { return -EINVAL; } /* Validate flags and value parameters. */ hb_change = params->spp_flags & SPP_HB; pmtud_change = params->spp_flags & SPP_PMTUD; sackdelay_change = params->spp_flags & SPP_SACKDELAY; if (hb_change == SPP_HB || pmtud_change == SPP_PMTUD || sackdelay_change == SPP_SACKDELAY || params->spp_sackdelay > 500 || (params->spp_pathmtu && params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) return -EINVAL; /* If an address other than INADDR_ANY is specified, and * no transport is found, then the request is invalid. */ if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) { trans = sctp_addr_id2transport(sk, ¶ms->spp_address, params->spp_assoc_id); if (!trans) return -EINVAL; } /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the * socket is a one to many style socket, and an association * was not found, then the id was invalid. */ asoc = sctp_id2assoc(sk, params->spp_assoc_id); if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; /* Heartbeat demand can only be sent on a transport or * association, but not a socket. */ if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc) return -EINVAL; /* Process parameters. */ error = sctp_apply_peer_addr_params(params, trans, asoc, sp, hb_change, pmtud_change, sackdelay_change); if (error) return error; /* If changes are for association, also apply parameters to each * transport. */ if (!trans && asoc) { list_for_each_entry(trans, &asoc->peer.transport_addr_list, transports) { sctp_apply_peer_addr_params(params, trans, asoc, sp, hb_change, pmtud_change, sackdelay_change); } } return 0; } static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) { return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; } static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) { return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; } static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, struct sctp_association *asoc) { struct sctp_transport *trans; if (params->sack_delay) { asoc->sackdelay = msecs_to_jiffies(params->sack_delay); asoc->param_flags = sctp_spp_sackdelay_enable(asoc->param_flags); } if (params->sack_freq == 1) { asoc->param_flags = sctp_spp_sackdelay_disable(asoc->param_flags); } else if (params->sack_freq > 1) { asoc->sackfreq = params->sack_freq; asoc->param_flags = sctp_spp_sackdelay_enable(asoc->param_flags); } list_for_each_entry(trans, &asoc->peer.transport_addr_list, transports) { if (params->sack_delay) { trans->sackdelay = msecs_to_jiffies(params->sack_delay); trans->param_flags = sctp_spp_sackdelay_enable(trans->param_flags); } if (params->sack_freq == 1) { trans->param_flags = sctp_spp_sackdelay_disable(trans->param_flags); } else if (params->sack_freq > 1) { trans->sackfreq = params->sack_freq; trans->param_flags = sctp_spp_sackdelay_enable(trans->param_flags); } } } /* * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) * * This option will effect the way delayed acks are performed. This * option allows you to get or set the delayed ack time, in * milliseconds. It also allows changing the delayed ack frequency. * Changing the frequency to 1 disables the delayed sack algorithm. If * the assoc_id is 0, then this sets or gets the endpoints default * values. If the assoc_id field is non-zero, then the set or get * effects the specified association for the one to many model (the * assoc_id field is ignored by the one to one model). Note that if * sack_delay or sack_freq are 0 when setting this option, then the * current values will remain unchanged. * * struct sctp_sack_info { * sctp_assoc_t sack_assoc_id; * uint32_t sack_delay; * uint32_t sack_freq; * }; * * sack_assoc_id - This parameter, indicates which association the user * is performing an action upon. Note that if this field's value is * zero then the endpoints default value is changed (effecting future * associations only). * * sack_delay - This parameter contains the number of milliseconds that * the user is requesting the delayed ACK timer be set to. Note that * this value is defined in the standard to be between 200 and 500 * milliseconds. * * sack_freq - This parameter contains the number of packets that must * be received before a sack is sent without waiting for the delay * timer to expire. The default value for this is 2, setting this * value to 1 will disable the delayed sack algorithm. */ static int __sctp_setsockopt_delayed_ack(struct sock *sk, struct sctp_sack_info *params) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; /* Validate value parameter. */ if (params->sack_delay > 500) return -EINVAL; /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the * socket is a one to many style socket, and an association * was not found, then the id was invalid. */ asoc = sctp_id2assoc(sk, params->sack_assoc_id); if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { sctp_apply_asoc_delayed_ack(params, asoc); return 0; } if (sctp_style(sk, TCP)) params->sack_assoc_id = SCTP_FUTURE_ASSOC; if (params->sack_assoc_id == SCTP_FUTURE_ASSOC || params->sack_assoc_id == SCTP_ALL_ASSOC) { if (params->sack_delay) { sp->sackdelay = params->sack_delay; sp->param_flags = sctp_spp_sackdelay_enable(sp->param_flags); } if (params->sack_freq == 1) { sp->param_flags = sctp_spp_sackdelay_disable(sp->param_flags); } else if (params->sack_freq > 1) { sp->sackfreq = params->sack_freq; sp->param_flags = sctp_spp_sackdelay_enable(sp->param_flags); } } if (params->sack_assoc_id == SCTP_CURRENT_ASSOC || params->sack_assoc_id == SCTP_ALL_ASSOC) list_for_each_entry(asoc, &sp->ep->asocs, asocs) sctp_apply_asoc_delayed_ack(params, asoc); return 0; } static int sctp_setsockopt_delayed_ack(struct sock *sk, struct sctp_sack_info *params, unsigned int optlen) { if (optlen == sizeof(struct sctp_assoc_value)) { struct sctp_assoc_value *v = (struct sctp_assoc_value *)params; struct sctp_sack_info p; pr_warn_ratelimited(DEPRECATED "%s (pid %d) " "Use of struct sctp_assoc_value in delayed_ack socket option.\n" "Use struct sctp_sack_info instead\n", current->comm, task_pid_nr(current)); p.sack_assoc_id = v->assoc_id; p.sack_delay = v->assoc_value; p.sack_freq = v->assoc_value ? 0 : 1; return __sctp_setsockopt_delayed_ack(sk, &p); } if (optlen != sizeof(struct sctp_sack_info)) return -EINVAL; if (params->sack_delay == 0 && params->sack_freq == 0) return 0; return __sctp_setsockopt_delayed_ack(sk, params); } /* 7.1.3 Initialization Parameters (SCTP_INITMSG) * * Applications can specify protocol parameters for the default association * initialization. The option name argument to setsockopt() and getsockopt() * is SCTP_INITMSG. * * Setting initialization parameters is effective only on an unconnected * socket (for UDP-style sockets only future associations are effected * by the change). With TCP-style sockets, this option is inherited by * sockets derived from a listener socket. */ static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); if (optlen != sizeof(struct sctp_initmsg)) return -EINVAL; if (sinit->sinit_num_ostreams) sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams; if (sinit->sinit_max_instreams) sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams; if (sinit->sinit_max_attempts) sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts; if (sinit->sinit_max_init_timeo) sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo; return 0; } /* * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) * * Applications that wish to use the sendto() system call may wish to * specify a default set of parameters that would normally be supplied * through the inclusion of ancillary data. This socket option allows * such an application to set the default sctp_sndrcvinfo structure. * The application that wishes to use this socket option simply passes * in to this call the sctp_sndrcvinfo structure defined in Section * 5.2.2) The input parameters accepted by this call include * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, * sinfo_timetolive. The user must provide the sinfo_assoc_id field in * to this call if the caller is using the UDP model. */ static int sctp_setsockopt_default_send_param(struct sock *sk, struct sctp_sndrcvinfo *info, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; if (optlen != sizeof(*info)) return -EINVAL; if (info->sinfo_flags & ~(SCTP_UNORDERED | SCTP_ADDR_OVER | SCTP_ABORT | SCTP_EOF)) return -EINVAL; asoc = sctp_id2assoc(sk, info->sinfo_assoc_id); if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { asoc->default_stream = info->sinfo_stream; asoc->default_flags = info->sinfo_flags; asoc->default_ppid = info->sinfo_ppid; asoc->default_context = info->sinfo_context; asoc->default_timetolive = info->sinfo_timetolive; return 0; } if (sctp_style(sk, TCP)) info->sinfo_assoc_id = SCTP_FUTURE_ASSOC; if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC || info->sinfo_assoc_id == SCTP_ALL_ASSOC) { sp->default_stream = info->sinfo_stream; sp->default_flags = info->sinfo_flags; sp->default_ppid = info->sinfo_ppid; sp->default_context = info->sinfo_context; sp->default_timetolive = info->sinfo_timetolive; } if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC || info->sinfo_assoc_id == SCTP_ALL_ASSOC) { list_for_each_entry(asoc, &sp->ep->asocs, asocs) { asoc->default_stream = info->sinfo_stream; asoc->default_flags = info->sinfo_flags; asoc->default_ppid = info->sinfo_ppid; asoc->default_context = info->sinfo_context; asoc->default_timetolive = info->sinfo_timetolive; } } return 0; } /* RFC6458, Section 8.1.31. Set/get Default Send Parameters * (SCTP_DEFAULT_SNDINFO) */ static int sctp_setsockopt_default_sndinfo(struct sock *sk, struct sctp_sndinfo *info, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; if (optlen != sizeof(*info)) return -EINVAL; if (info->snd_flags & ~(SCTP_UNORDERED | SCTP_ADDR_OVER | SCTP_ABORT | SCTP_EOF)) return -EINVAL; asoc = sctp_id2assoc(sk, info->snd_assoc_id); if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { asoc->default_stream = info->snd_sid; asoc->default_flags = info->snd_flags; asoc->default_ppid = info->snd_ppid; asoc->default_context = info->snd_context; return 0; } if (sctp_style(sk, TCP)) info->snd_assoc_id = SCTP_FUTURE_ASSOC; if (info->snd_assoc_id == SCTP_FUTURE_ASSOC || info->snd_assoc_id == SCTP_ALL_ASSOC) { sp->default_stream = info->snd_sid; sp->default_flags = info->snd_flags; sp->default_ppid = info->snd_ppid; sp->default_context = info->snd_context; } if (info->snd_assoc_id == SCTP_CURRENT_ASSOC || info->snd_assoc_id == SCTP_ALL_ASSOC) { list_for_each_entry(asoc, &sp->ep->asocs, asocs) { asoc->default_stream = info->snd_sid; asoc->default_flags = info->snd_flags; asoc->default_ppid = info->snd_ppid; asoc->default_context = info->snd_context; } } return 0; } /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) * * Requests that the local SCTP stack use the enclosed peer address as * the association primary. The enclosed address must be one of the * association peer's addresses. */ static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim, unsigned int optlen) { struct sctp_transport *trans; struct sctp_af *af; int err; if (optlen != sizeof(struct sctp_prim)) return -EINVAL; /* Allow security module to validate address but need address len. */ af = sctp_get_af_specific(prim->ssp_addr.ss_family); if (!af) return -EINVAL; err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, (struct sockaddr *)&prim->ssp_addr, af->sockaddr_len); if (err) return err; trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id); if (!trans) return -EINVAL; sctp_assoc_set_primary(trans->asoc, trans); return 0; } /* * 7.1.5 SCTP_NODELAY * * Turn on/off any Nagle-like algorithm. This means that packets are * generally sent as soon as possible and no unnecessary delays are * introduced, at the cost of more packets in the network. Expects an * integer boolean flag. */ static int sctp_setsockopt_nodelay(struct sock *sk, int *val, unsigned int optlen) { if (optlen < sizeof(int)) return -EINVAL; sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1; return 0; } /* * * 7.1.1 SCTP_RTOINFO * * The protocol parameters used to initialize and bound retransmission * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access * and modify these parameters. * All parameters are time values, in milliseconds. A value of 0, when * modifying the parameters, indicates that the current value should not * be changed. * */ static int sctp_setsockopt_rtoinfo(struct sock *sk, struct sctp_rtoinfo *rtoinfo, unsigned int optlen) { struct sctp_association *asoc; unsigned long rto_min, rto_max; struct sctp_sock *sp = sctp_sk(sk); if (optlen != sizeof (struct sctp_rtoinfo)) return -EINVAL; asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id); /* Set the values to the specific association */ if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; rto_max = rtoinfo->srto_max; rto_min = rtoinfo->srto_min; if (rto_max) rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; else rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; if (rto_min) rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; else rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; if (rto_min > rto_max) return -EINVAL; if (asoc) { if (rtoinfo->srto_initial != 0) asoc->rto_initial = msecs_to_jiffies(rtoinfo->srto_initial); asoc->rto_max = rto_max; asoc->rto_min = rto_min; } else { /* If there is no association or the association-id = 0 * set the values to the endpoint. */ if (rtoinfo->srto_initial != 0) sp->rtoinfo.srto_initial = rtoinfo->srto_initial; sp->rtoinfo.srto_max = rto_max; sp->rtoinfo.srto_min = rto_min; } return 0; } /* * * 7.1.2 SCTP_ASSOCINFO * * This option is used to tune the maximum retransmission attempts * of the association. * Returns an error if the new association retransmission value is * greater than the sum of the retransmission value of the peer. * See [SCTP] for more information. * */ static int sctp_setsockopt_associnfo(struct sock *sk, struct sctp_assocparams *assocparams, unsigned int optlen) { struct sctp_association *asoc; if (optlen != sizeof(struct sctp_assocparams)) return -EINVAL; asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id); if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; /* Set the values to the specific association */ if (asoc) { if (assocparams->sasoc_asocmaxrxt != 0) { __u32 path_sum = 0; int paths = 0; struct sctp_transport *peer_addr; list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, transports) { path_sum += peer_addr->pathmaxrxt; paths++; } /* Only validate asocmaxrxt if we have more than * one path/transport. We do this because path * retransmissions are only counted when we have more * then one path. */ if (paths > 1 && assocparams->sasoc_asocmaxrxt > path_sum) return -EINVAL; asoc->max_retrans = assocparams->sasoc_asocmaxrxt; } if (assocparams->sasoc_cookie_life != 0) asoc->cookie_life = ms_to_ktime(assocparams->sasoc_cookie_life); } else { /* Set the values to the endpoint */ struct sctp_sock *sp = sctp_sk(sk); if (assocparams->sasoc_asocmaxrxt != 0) sp->assocparams.sasoc_asocmaxrxt = assocparams->sasoc_asocmaxrxt; if (assocparams->sasoc_cookie_life != 0) sp->assocparams.sasoc_cookie_life = assocparams->sasoc_cookie_life; } return 0; } /* * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) * * This socket option is a boolean flag which turns on or off mapped V4 * addresses. If this option is turned on and the socket is type * PF_INET6, then IPv4 addresses will be mapped to V6 representation. * If this option is turned off, then no mapping will be done of V4 * addresses and a user will receive both PF_INET6 and PF_INET type * addresses on the socket. */ static int sctp_setsockopt_mappedv4(struct sock *sk, int *val, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); if (optlen < sizeof(int)) return -EINVAL; if (*val) sp->v4mapped = 1; else sp->v4mapped = 0; return 0; } /* * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) * This option will get or set the maximum size to put in any outgoing * SCTP DATA chunk. If a message is larger than this size it will be * fragmented by SCTP into the specified size. Note that the underlying * SCTP implementation may fragment into smaller sized chunks when the * PMTU of the underlying association is smaller than the value set by * the user. The default value for this option is '0' which indicates * the user is NOT limiting fragmentation and only the PMTU will effect * SCTP's choice of DATA chunk size. Note also that values set larger * than the maximum size of an IP datagram will effectively let SCTP * control fragmentation (i.e. the same as setting this option to 0). * * The following structure is used to access and modify this parameter: * * struct sctp_assoc_value { * sctp_assoc_t assoc_id; * uint32_t assoc_value; * }; * * assoc_id: This parameter is ignored for one-to-one style sockets. * For one-to-many style sockets this parameter indicates which * association the user is performing an action upon. Note that if * this field's value is zero then the endpoints default value is * changed (effecting future associations only). * assoc_value: This parameter specifies the maximum size in bytes. */ static int sctp_setsockopt_maxseg(struct sock *sk, struct sctp_assoc_value *params, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; sctp_assoc_t assoc_id; int val; if (optlen == sizeof(int)) { pr_warn_ratelimited(DEPRECATED "%s (pid %d) " "Use of int in maxseg socket option.\n" "Use struct sctp_assoc_value instead\n", current->comm, task_pid_nr(current)); assoc_id = SCTP_FUTURE_ASSOC; val = *(int *)params; } else if (optlen == sizeof(struct sctp_assoc_value)) { assoc_id = params->assoc_id; val = params->assoc_value; } else { return -EINVAL; } asoc = sctp_id2assoc(sk, assoc_id); if (!asoc && assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (val) { int min_len, max_len; __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : sizeof(struct sctp_data_chunk); min_len = sctp_min_frag_point(sp, datasize); max_len = SCTP_MAX_CHUNK_LEN - datasize; if (val < min_len || val > max_len) return -EINVAL; } if (asoc) { asoc->user_frag = val; sctp_assoc_update_frag_point(asoc); } else { sp->user_frag = val; } return 0; } /* * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) * * Requests that the peer mark the enclosed address as the association * primary. The enclosed address must be one of the association's * locally bound addresses. The following structure is used to make a * set primary request: */ static int sctp_setsockopt_peer_primary_addr(struct sock *sk, struct sctp_setpeerprim *prim, unsigned int optlen) { struct sctp_sock *sp; struct sctp_association *asoc = NULL; struct sctp_chunk *chunk; struct sctp_af *af; int err; sp = sctp_sk(sk); if (!sp->ep->asconf_enable) return -EPERM; if (optlen != sizeof(struct sctp_setpeerprim)) return -EINVAL; asoc = sctp_id2assoc(sk, prim->sspp_assoc_id); if (!asoc) return -EINVAL; if (!asoc->peer.asconf_capable) return -EPERM; if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) return -EPERM; if (!sctp_state(asoc, ESTABLISHED)) return -ENOTCONN; af = sctp_get_af_specific(prim->sspp_addr.ss_family); if (!af) return -EINVAL; if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL)) return -EADDRNOTAVAIL; if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr)) return -EADDRNOTAVAIL; /* Allow security module to validate address. */ err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, (struct sockaddr *)&prim->sspp_addr, af->sockaddr_len); if (err) return err; /* Create an ASCONF chunk with SET_PRIMARY parameter */ chunk = sctp_make_asconf_set_prim(asoc, (union sctp_addr *)&prim->sspp_addr); if (!chunk) return -ENOMEM; err = sctp_send_asconf(asoc, chunk); pr_debug("%s: we set peer primary addr primitively\n", __func__); return err; } static int sctp_setsockopt_adaptation_layer(struct sock *sk, struct sctp_setadaptation *adapt, unsigned int optlen) { if (optlen != sizeof(struct sctp_setadaptation)) return -EINVAL; sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind; return 0; } /* * 7.1.29. Set or Get the default context (SCTP_CONTEXT) * * The context field in the sctp_sndrcvinfo structure is normally only * used when a failed message is retrieved holding the value that was * sent down on the actual send call. This option allows the setting of * a default context on an association basis that will be received on * reading messages from the peer. This is especially helpful in the * one-2-many model for an application to keep some reference to an * internal state machine that is processing messages on the * association. Note that the setting of this value only effects * received messages from the peer and does not effect the value that is * saved with outbound messages. */ static int sctp_setsockopt_context(struct sock *sk, struct sctp_assoc_value *params, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; if (optlen != sizeof(struct sctp_assoc_value)) return -EINVAL; asoc = sctp_id2assoc(sk, params->assoc_id); if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { asoc->default_rcv_context = params->assoc_value; return 0; } if (sctp_style(sk, TCP)) params->assoc_id = SCTP_FUTURE_ASSOC; if (params->assoc_id == SCTP_FUTURE_ASSOC || params->assoc_id == SCTP_ALL_ASSOC) sp->default_rcv_context = params->assoc_value; if (params->assoc_id == SCTP_CURRENT_ASSOC || params->assoc_id == SCTP_ALL_ASSOC) list_for_each_entry(asoc, &sp->ep->asocs, asocs) asoc->default_rcv_context = params->assoc_value; return 0; } /* * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) * * This options will at a minimum specify if the implementation is doing * fragmented interleave. Fragmented interleave, for a one to many * socket, is when subsequent calls to receive a message may return * parts of messages from different associations. Some implementations * may allow you to turn this value on or off. If so, when turned off, * no fragment interleave will occur (which will cause a head of line * blocking amongst multiple associations sharing the same one to many * socket). When this option is turned on, then each receive call may * come from a different association (thus the user must receive data * with the extended calls (e.g. sctp_recvmsg) to keep track of which * association each receive belongs to. * * This option takes a boolean value. A non-zero value indicates that * fragmented interleave is on. A value of zero indicates that * fragmented interleave is off. * * Note that it is important that an implementation that allows this * option to be turned on, have it off by default. Otherwise an unaware * application using the one to many model may become confused and act * incorrectly. */ static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val, unsigned int optlen) { if (optlen != sizeof(int)) return -EINVAL; sctp_sk(sk)->frag_interleave = !!*val; if (!sctp_sk(sk)->frag_interleave) sctp_sk(sk)->ep->intl_enable = 0; return 0; } /* * 8.1.21. Set or Get the SCTP Partial Delivery Point * (SCTP_PARTIAL_DELIVERY_POINT) * * This option will set or get the SCTP partial delivery point. This * point is the size of a message where the partial delivery API will be * invoked to help free up rwnd space for the peer. Setting this to a * lower value will cause partial deliveries to happen more often. The * calls argument is an integer that sets or gets the partial delivery * point. Note also that the call will fail if the user attempts to set * this value larger than the socket receive buffer size. * * Note that any single message having a length smaller than or equal to * the SCTP partial delivery point will be delivered in one single read * call as long as the user provided buffer is large enough to hold the * message. */ static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val, unsigned int optlen) { if (optlen != sizeof(u32)) return -EINVAL; /* Note: We double the receive buffer from what the user sets * it to be, also initial rwnd is based on rcvbuf/2. */ if (*val > (sk->sk_rcvbuf >> 1)) return -EINVAL; sctp_sk(sk)->pd_point = *val; return 0; /* is this the right error code? */ } /* * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) * * This option will allow a user to change the maximum burst of packets * that can be emitted by this association. Note that the default value * is 4, and some implementations may restrict this setting so that it * can only be lowered. * * NOTE: This text doesn't seem right. Do this on a socket basis with * future associations inheriting the socket value. */ static int sctp_setsockopt_maxburst(struct sock *sk, struct sctp_assoc_value *params, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; sctp_assoc_t assoc_id; u32 assoc_value; if (optlen == sizeof(int)) { pr_warn_ratelimited(DEPRECATED "%s (pid %d) " "Use of int in max_burst socket option deprecated.\n" "Use struct sctp_assoc_value instead\n", current->comm, task_pid_nr(current)); assoc_id = SCTP_FUTURE_ASSOC; assoc_value = *((int *)params); } else if (optlen == sizeof(struct sctp_assoc_value)) { assoc_id = params->assoc_id; assoc_value = params->assoc_value; } else return -EINVAL; asoc = sctp_id2assoc(sk, assoc_id); if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { asoc->max_burst = assoc_value; return 0; } if (sctp_style(sk, TCP)) assoc_id = SCTP_FUTURE_ASSOC; if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC) sp->max_burst = assoc_value; if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC) list_for_each_entry(asoc, &sp->ep->asocs, asocs) asoc->max_burst = assoc_value; return 0; } /* * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) * * This set option adds a chunk type that the user is requesting to be * received only in an authenticated way. Changes to the list of chunks * will only effect future associations on the socket. */ static int sctp_setsockopt_auth_chunk(struct sock *sk, struct sctp_authchunk *val, unsigned int optlen) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; if (!ep->auth_enable) return -EACCES; if (optlen != sizeof(struct sctp_authchunk)) return -EINVAL; switch (val->sauth_chunk) { case SCTP_CID_INIT: case SCTP_CID_INIT_ACK: case SCTP_CID_SHUTDOWN_COMPLETE: case SCTP_CID_AUTH: return -EINVAL; } /* add this chunk id to the endpoint */ return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk); } /* * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) * * This option gets or sets the list of HMAC algorithms that the local * endpoint requires the peer to use. */ static int sctp_setsockopt_hmac_ident(struct sock *sk, struct sctp_hmacalgo *hmacs, unsigned int optlen) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; u32 idents; if (!ep->auth_enable) return -EACCES; if (optlen < sizeof(struct sctp_hmacalgo)) return -EINVAL; optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + SCTP_AUTH_NUM_HMACS * sizeof(u16)); idents = hmacs->shmac_num_idents; if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) return -EINVAL; return sctp_auth_ep_set_hmacs(ep, hmacs); } /* * 7.1.20. Set a shared key (SCTP_AUTH_KEY) * * This option will set a shared secret key which is used to build an * association shared key. */ static int sctp_setsockopt_auth_key(struct sock *sk, struct sctp_authkey *authkey, unsigned int optlen) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_association *asoc; int ret = -EINVAL; if (optlen <= sizeof(struct sctp_authkey)) return -EINVAL; /* authkey->sca_keylength is u16, so optlen can't be bigger than * this. */ optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); if (authkey->sca_keylength > optlen - sizeof(*authkey)) goto out; asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) goto out; if (asoc) { ret = sctp_auth_set_key(ep, asoc, authkey); goto out; } if (sctp_style(sk, TCP)) authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || authkey->sca_assoc_id == SCTP_ALL_ASSOC) { ret = sctp_auth_set_key(ep, asoc, authkey); if (ret) goto out; } ret = 0; if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || authkey->sca_assoc_id == SCTP_ALL_ASSOC) { list_for_each_entry(asoc, &ep->asocs, asocs) { int res = sctp_auth_set_key(ep, asoc, authkey); if (res && !ret) ret = res; } } out: memzero_explicit(authkey, optlen); return ret; } /* * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) * * This option will get or set the active shared key to be used to build * the association shared key. */ static int sctp_setsockopt_active_key(struct sock *sk, struct sctp_authkeyid *val, unsigned int optlen) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_association *asoc; int ret = 0; if (optlen != sizeof(struct sctp_authkeyid)) return -EINVAL; asoc = sctp_id2assoc(sk, val->scact_assoc_id); if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); if (sctp_style(sk, TCP)) val->scact_assoc_id = SCTP_FUTURE_ASSOC; if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || val->scact_assoc_id == SCTP_ALL_ASSOC) { ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); if (ret) return ret; } if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || val->scact_assoc_id == SCTP_ALL_ASSOC) { list_for_each_entry(asoc, &ep->asocs, asocs) { int res = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); if (res && !ret) ret = res; } } return ret; } /* * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) * * This set option will delete a shared secret key from use. */ static int sctp_setsockopt_del_key(struct sock *sk, struct sctp_authkeyid *val, unsigned int optlen) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_association *asoc; int ret = 0; if (optlen != sizeof(struct sctp_authkeyid)) return -EINVAL; asoc = sctp_id2assoc(sk, val->scact_assoc_id); if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); if (sctp_style(sk, TCP)) val->scact_assoc_id = SCTP_FUTURE_ASSOC; if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || val->scact_assoc_id == SCTP_ALL_ASSOC) { ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); if (ret) return ret; } if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || val->scact_assoc_id == SCTP_ALL_ASSOC) { list_for_each_entry(asoc, &ep->asocs, asocs) { int res = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); if (res && !ret) ret = res; } } return ret; } /* * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) * * This set option will deactivate a shared secret key. */ static int sctp_setsockopt_deactivate_key(struct sock *sk, struct sctp_authkeyid *val, unsigned int optlen) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_association *asoc; int ret = 0; if (optlen != sizeof(struct sctp_authkeyid)) return -EINVAL; asoc = sctp_id2assoc(sk, val->scact_assoc_id); if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); if (sctp_style(sk, TCP)) val->scact_assoc_id = SCTP_FUTURE_ASSOC; if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || val->scact_assoc_id == SCTP_ALL_ASSOC) { ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); if (ret) return ret; } if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || val->scact_assoc_id == SCTP_ALL_ASSOC) { list_for_each_entry(asoc, &ep->asocs, asocs) { int res = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); if (res && !ret) ret = res; } } return ret; } /* * 8.1.23 SCTP_AUTO_ASCONF * * This option will enable or disable the use of the automatic generation of * ASCONF chunks to add and delete addresses to an existing association. Note * that this option has two caveats namely: a) it only affects sockets that * are bound to all addresses available to the SCTP stack, and b) the system * administrator may have an overriding control that turns the ASCONF feature * off no matter what setting the socket option may have. * This option expects an integer boolean flag, where a non-zero value turns on * the option, and a zero value turns off the option. * Note. In this implementation, socket operation overrides default parameter * being set by sysctl as well as FreeBSD implementation */ static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); if (optlen < sizeof(int)) return -EINVAL; if (!sctp_is_ep_boundall(sk) && *val) return -EINVAL; if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf)) return 0; spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); if (*val == 0 && sp->do_auto_asconf) { list_del(&sp->auto_asconf_list); sp->do_auto_asconf = 0; } else if (*val && !sp->do_auto_asconf) { list_add_tail(&sp->auto_asconf_list, &sock_net(sk)->sctp.auto_asconf_splist); sp->do_auto_asconf = 1; } spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); return 0; } /* * SCTP_PEER_ADDR_THLDS * * This option allows us to alter the partially failed threshold for one or all * transports in an association. See Section 6.1 of: * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt */ static int sctp_setsockopt_paddr_thresholds(struct sock *sk, struct sctp_paddrthlds_v2 *val, unsigned int optlen, bool v2) { struct sctp_transport *trans; struct sctp_association *asoc; int len; len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds); if (optlen < len) return -EINVAL; if (v2 && val->spt_pathpfthld > val->spt_pathcpthld) return -EINVAL; if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) { trans = sctp_addr_id2transport(sk, &val->spt_address, val->spt_assoc_id); if (!trans) return -ENOENT; if (val->spt_pathmaxrxt) trans->pathmaxrxt = val->spt_pathmaxrxt; if (v2) trans->ps_retrans = val->spt_pathcpthld; trans->pf_retrans = val->spt_pathpfthld; return 0; } asoc = sctp_id2assoc(sk, val->spt_assoc_id); if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { list_for_each_entry(trans, &asoc->peer.transport_addr_list, transports) { if (val->spt_pathmaxrxt) trans->pathmaxrxt = val->spt_pathmaxrxt; if (v2) trans->ps_retrans = val->spt_pathcpthld; trans->pf_retrans = val->spt_pathpfthld; } if (val->spt_pathmaxrxt) asoc->pathmaxrxt = val->spt_pathmaxrxt; if (v2) asoc->ps_retrans = val->spt_pathcpthld; asoc->pf_retrans = val->spt_pathpfthld; } else { struct sctp_sock *sp = sctp_sk(sk); if (val->spt_pathmaxrxt) sp->pathmaxrxt = val->spt_pathmaxrxt; if (v2) sp->ps_retrans = val->spt_pathcpthld; sp->pf_retrans = val->spt_pathpfthld; } return 0; } static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val, unsigned int optlen) { if (optlen < sizeof(int)) return -EINVAL; sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1; return 0; } static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val, unsigned int optlen) { if (optlen < sizeof(int)) return -EINVAL; sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1; return 0; } static int sctp_setsockopt_pr_supported(struct sock *sk, struct sctp_assoc_value *params, unsigned int optlen) { struct sctp_association *asoc; if (optlen != sizeof(*params)) return -EINVAL; asoc = sctp_id2assoc(sk, params->assoc_id); if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value; return 0; } static int sctp_setsockopt_default_prinfo(struct sock *sk, struct sctp_default_prinfo *info, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; int retval = -EINVAL; if (optlen != sizeof(*info)) goto out; if (info->pr_policy & ~SCTP_PR_SCTP_MASK) goto out; if (info->pr_policy == SCTP_PR_SCTP_NONE) info->pr_value = 0; asoc = sctp_id2assoc(sk, info->pr_assoc_id); if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) goto out; retval = 0; if (asoc) { SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy); asoc->default_timetolive = info->pr_value; goto out; } if (sctp_style(sk, TCP)) info->pr_assoc_id = SCTP_FUTURE_ASSOC; if (info->pr_assoc_id == SCTP_FUTURE_ASSOC || info->pr_assoc_id == SCTP_ALL_ASSOC) { SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy); sp->default_timetolive = info->pr_value; } if (info->pr_assoc_id == SCTP_CURRENT_ASSOC || info->pr_assoc_id == SCTP_ALL_ASSOC) { list_for_each_entry(asoc, &sp->ep->asocs, asocs) { SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy); asoc->default_timetolive = info->pr_value; } } out: return retval; } static int sctp_setsockopt_reconfig_supported(struct sock *sk, struct sctp_assoc_value *params, unsigned int optlen) { struct sctp_association *asoc; int retval = -EINVAL; if (optlen != sizeof(*params)) goto out; asoc = sctp_id2assoc(sk, params->assoc_id); if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) goto out; sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value; retval = 0; out: return retval; } static int sctp_setsockopt_enable_strreset(struct sock *sk, struct sctp_assoc_value *params, unsigned int optlen) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_association *asoc; int retval = -EINVAL; if (optlen != sizeof(*params)) goto out; if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) goto out; asoc = sctp_id2assoc(sk, params->assoc_id); if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) goto out; retval = 0; if (asoc) { asoc->strreset_enable = params->assoc_value; goto out; } if (sctp_style(sk, TCP)) params->assoc_id = SCTP_FUTURE_ASSOC; if (params->assoc_id == SCTP_FUTURE_ASSOC || params->assoc_id == SCTP_ALL_ASSOC) ep->strreset_enable = params->assoc_value; if (params->assoc_id == SCTP_CURRENT_ASSOC || params->assoc_id == SCTP_ALL_ASSOC) list_for_each_entry(asoc, &ep->asocs, asocs) asoc->strreset_enable = params->assoc_value; out: return retval; } static int sctp_setsockopt_reset_streams(struct sock *sk, struct sctp_reset_streams *params, unsigned int optlen) { struct sctp_association *asoc; if (optlen < sizeof(*params)) return -EINVAL; /* srs_number_streams is u16, so optlen can't be bigger than this. */ optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(__u16) * sizeof(*params)); if (params->srs_number_streams * sizeof(__u16) > optlen - sizeof(*params)) return -EINVAL; asoc = sctp_id2assoc(sk, params->srs_assoc_id); if (!asoc) return -EINVAL; return sctp_send_reset_streams(asoc, params); } static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd, unsigned int optlen) { struct sctp_association *asoc; if (optlen != sizeof(*associd)) return -EINVAL; asoc = sctp_id2assoc(sk, *associd); if (!asoc) return -EINVAL; return sctp_send_reset_assoc(asoc); } static int sctp_setsockopt_add_streams(struct sock *sk, struct sctp_add_streams *params, unsigned int optlen) { struct sctp_association *asoc; if (optlen != sizeof(*params)) return -EINVAL; asoc = sctp_id2assoc(sk, params->sas_assoc_id); if (!asoc) return -EINVAL; return sctp_send_add_streams(asoc, params); } static int sctp_setsockopt_scheduler(struct sock *sk, struct sctp_assoc_value *params, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; int retval = 0; if (optlen < sizeof(*params)) return -EINVAL; if (params->assoc_value > SCTP_SS_MAX) return -EINVAL; asoc = sctp_id2assoc(sk, params->assoc_id); if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) return sctp_sched_set_sched(asoc, params->assoc_value); if (sctp_style(sk, TCP)) params->assoc_id = SCTP_FUTURE_ASSOC; if (params->assoc_id == SCTP_FUTURE_ASSOC || params->assoc_id == SCTP_ALL_ASSOC) sp->default_ss = params->assoc_value; if (params->assoc_id == SCTP_CURRENT_ASSOC || params->assoc_id == SCTP_ALL_ASSOC) { list_for_each_entry(asoc, &sp->ep->asocs, asocs) { int ret = sctp_sched_set_sched(asoc, params->assoc_value); if (ret && !retval) retval = ret; } } return retval; } static int sctp_setsockopt_scheduler_value(struct sock *sk, struct sctp_stream_value *params, unsigned int optlen) { struct sctp_association *asoc; int retval = -EINVAL; if (optlen < sizeof(*params)) goto out; asoc = sctp_id2assoc(sk, params->assoc_id); if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC && sctp_style(sk, UDP)) goto out; if (asoc) { retval = sctp_sched_set_value(asoc, params->stream_id, params->stream_value, GFP_KERNEL); goto out; } retval = 0; list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { int ret = sctp_sched_set_value(asoc, params->stream_id, params->stream_value, GFP_KERNEL); if (ret && !retval) /* try to return the 1st error. */ retval = ret; } out: return retval; } static int sctp_setsockopt_interleaving_supported(struct sock *sk, struct sctp_assoc_value *p, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; if (optlen < sizeof(*p)) return -EINVAL; asoc = sctp_id2assoc(sk, p->assoc_id); if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { return -EPERM; } sp->ep->intl_enable = !!p->assoc_value; return 0; } static int sctp_setsockopt_reuse_port(struct sock *sk, int *val, unsigned int optlen) { if (!sctp_style(sk, TCP)) return -EOPNOTSUPP; if (sctp_sk(sk)->ep->base.bind_addr.port) return -EFAULT; if (optlen < sizeof(int)) return -EINVAL; sctp_sk(sk)->reuse = !!*val; return 0; } static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, struct sctp_association *asoc) { struct sctp_ulpevent *event; sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { if (sctp_outq_is_empty(&asoc->outqueue)) { event = sctp_ulpevent_make_sender_dry_event(asoc, GFP_USER | __GFP_NOWARN); if (!event) return -ENOMEM; asoc->stream.si->enqueue_event(&asoc->ulpq, event); } } return 0; } static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param, unsigned int optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; int retval = 0; if (optlen < sizeof(*param)) return -EINVAL; if (param->se_type < SCTP_SN_TYPE_BASE || param->se_type > SCTP_SN_TYPE_MAX) return -EINVAL; asoc = sctp_id2assoc(sk, param->se_assoc_id); if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) return sctp_assoc_ulpevent_type_set(param, asoc); if (sctp_style(sk, TCP)) param->se_assoc_id = SCTP_FUTURE_ASSOC; if (param->se_assoc_id == SCTP_FUTURE_ASSOC || param->se_assoc_id == SCTP_ALL_ASSOC) sctp_ulpevent_type_set(&sp->subscribe, param->se_type, param->se_on); if (param->se_assoc_id == SCTP_CURRENT_ASSOC || param->se_assoc_id == SCTP_ALL_ASSOC) { list_for_each_entry(asoc, &sp->ep->asocs, asocs) { int ret = sctp_assoc_ulpevent_type_set(param, asoc); if (ret && !retval) retval = ret; } } return retval; } static int sctp_setsockopt_asconf_supported(struct sock *sk, struct sctp_assoc_value *params, unsigned int optlen) { struct sctp_association *asoc; struct sctp_endpoint *ep; int retval = -EINVAL; if (optlen != sizeof(*params)) goto out; asoc = sctp_id2assoc(sk, params->assoc_id); if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) goto out; ep = sctp_sk(sk)->ep; ep->asconf_enable = !!params->assoc_value; if (ep->asconf_enable && ep->auth_enable) { sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); } retval = 0; out: return retval; } static int sctp_setsockopt_auth_supported(struct sock *sk, struct sctp_assoc_value *params, unsigned int optlen) { struct sctp_association *asoc; struct sctp_endpoint *ep; int retval = -EINVAL; if (optlen != sizeof(*params)) goto out; asoc = sctp_id2assoc(sk, params->assoc_id); if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) goto out; ep = sctp_sk(sk)->ep; if (params->assoc_value) { retval = sctp_auth_init(ep, GFP_KERNEL); if (retval) goto out; if (ep->asconf_enable) { sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); } } ep->auth_enable = !!params->assoc_value; retval = 0; out: return retval; } static int sctp_setsockopt_ecn_supported(struct sock *sk, struct sctp_assoc_value *params, unsigned int optlen) { struct sctp_association *asoc; int retval = -EINVAL; if (optlen != sizeof(*params)) goto out; asoc = sctp_id2assoc(sk, params->assoc_id); if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) goto out; sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value; retval = 0; out: return retval; } static int sctp_setsockopt_pf_expose(struct sock *sk, struct sctp_assoc_value *params, unsigned int optlen) { struct sctp_association *asoc; int retval = -EINVAL; if (optlen != sizeof(*params)) goto out; if (params->assoc_value > SCTP_PF_EXPOSE_MAX) goto out; asoc = sctp_id2assoc(sk, params->assoc_id); if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) goto out; if (asoc) asoc->pf_expose = params->assoc_value; else sctp_sk(sk)->pf_expose = params->assoc_value; retval = 0; out: return retval; } static int sctp_setsockopt_encap_port(struct sock *sk, struct sctp_udpencaps *encap, unsigned int optlen) { struct sctp_association *asoc; struct sctp_transport *t; __be16 encap_port; if (optlen != sizeof(*encap)) return -EINVAL; /* If an address other than INADDR_ANY is specified, and * no transport is found, then the request is invalid. */ encap_port = (__force __be16)encap->sue_port; if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) { t = sctp_addr_id2transport(sk, &encap->sue_address, encap->sue_assoc_id); if (!t) return -EINVAL; t->encap_port = encap_port; return 0; } /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the * socket is a one to many style socket, and an association * was not found, then the id was invalid. */ asoc = sctp_id2assoc(sk, encap->sue_assoc_id); if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; /* If changes are for association, also apply encap_port to * each transport. */ if (asoc) { list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) t->encap_port = encap_port; asoc->encap_port = encap_port; return 0; } sctp_sk(sk)->encap_port = encap_port; return 0; } static int sctp_setsockopt_probe_interval(struct sock *sk, struct sctp_probeinterval *params, unsigned int optlen) { struct sctp_association *asoc; struct sctp_transport *t; __u32 probe_interval; if (optlen != sizeof(*params)) return -EINVAL; probe_interval = params->spi_interval; if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN) return -EINVAL; /* If an address other than INADDR_ANY is specified, and * no transport is found, then the request is invalid. */ if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spi_address)) { t = sctp_addr_id2transport(sk, ¶ms->spi_address, params->spi_assoc_id); if (!t) return -EINVAL; t->probe_interval = msecs_to_jiffies(probe_interval); sctp_transport_pl_reset(t); return 0; } /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the * socket is a one to many style socket, and an association * was not found, then the id was invalid. */ asoc = sctp_id2assoc(sk, params->spi_assoc_id); if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; /* If changes are for association, also apply probe_interval to * each transport. */ if (asoc) { list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { t->probe_interval = msecs_to_jiffies(probe_interval); sctp_transport_pl_reset(t); } asoc->probe_interval = msecs_to_jiffies(probe_interval); return 0; } sctp_sk(sk)->probe_interval = probe_interval; return 0; } /* API 6.2 setsockopt(), getsockopt() * * Applications use setsockopt() and getsockopt() to set or retrieve * socket options. Socket options are used to change the default * behavior of sockets calls. They are described in Section 7. * * The syntax is: * * ret = getsockopt(int sd, int level, int optname, void __user *optval, * int __user *optlen); * ret = setsockopt(int sd, int level, int optname, const void __user *optval, * int optlen); * * sd - the socket descript. * level - set to IPPROTO_SCTP for all SCTP options. * optname - the option name. * optval - the buffer to store the value of the option. * optlen - the size of the buffer. */ static int sctp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, unsigned int optlen) { void *kopt = NULL; int retval = 0; pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); /* I can hardly begin to describe how wrong this is. This is * so broken as to be worse than useless. The API draft * REALLY is NOT helpful here... I am not convinced that the * semantics of setsockopt() with a level OTHER THAN SOL_SCTP * are at all well-founded. */ if (level != SOL_SCTP) { struct sctp_af *af = sctp_sk(sk)->pf->af; return af->setsockopt(sk, level, optname, optval, optlen); } if (optlen > 0) { /* Trim it to the biggest size sctp sockopt may need if necessary */ optlen = min_t(unsigned int, optlen, PAGE_ALIGN(USHRT_MAX + sizeof(__u16) * sizeof(struct sctp_reset_streams))); kopt = memdup_sockptr(optval, optlen); if (IS_ERR(kopt)) return PTR_ERR(kopt); } lock_sock(sk); switch (optname) { case SCTP_SOCKOPT_BINDX_ADD: /* 'optlen' is the size of the addresses buffer. */ retval = sctp_setsockopt_bindx(sk, kopt, optlen, SCTP_BINDX_ADD_ADDR); break; case SCTP_SOCKOPT_BINDX_REM: /* 'optlen' is the size of the addresses buffer. */ retval = sctp_setsockopt_bindx(sk, kopt, optlen, SCTP_BINDX_REM_ADDR); break; case SCTP_SOCKOPT_CONNECTX_OLD: /* 'optlen' is the size of the addresses buffer. */ retval = sctp_setsockopt_connectx_old(sk, kopt, optlen); break; case SCTP_SOCKOPT_CONNECTX: /* 'optlen' is the size of the addresses buffer. */ retval = sctp_setsockopt_connectx(sk, kopt, optlen); break; case SCTP_DISABLE_FRAGMENTS: retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen); break; case SCTP_EVENTS: retval = sctp_setsockopt_events(sk, kopt, optlen); break; case SCTP_AUTOCLOSE: retval = sctp_setsockopt_autoclose(sk, kopt, optlen); break; case SCTP_PEER_ADDR_PARAMS: retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen); break; case SCTP_DELAYED_SACK: retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen); break; case SCTP_PARTIAL_DELIVERY_POINT: retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen); break; case SCTP_INITMSG: retval = sctp_setsockopt_initmsg(sk, kopt, optlen); break; case SCTP_DEFAULT_SEND_PARAM: retval = sctp_setsockopt_default_send_param(sk, kopt, optlen); break; case SCTP_DEFAULT_SNDINFO: retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen); break; case SCTP_PRIMARY_ADDR: retval = sctp_setsockopt_primary_addr(sk, kopt, optlen); break; case SCTP_SET_PEER_PRIMARY_ADDR: retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen); break; case SCTP_NODELAY: retval = sctp_setsockopt_nodelay(sk, kopt, optlen); break; case SCTP_RTOINFO: retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen); break; case SCTP_ASSOCINFO: retval = sctp_setsockopt_associnfo(sk, kopt, optlen); break; case SCTP_I_WANT_MAPPED_V4_ADDR: retval = sctp_setsockopt_mappedv4(sk, kopt, optlen); break; case SCTP_MAXSEG: retval = sctp_setsockopt_maxseg(sk, kopt, optlen); break; case SCTP_ADAPTATION_LAYER: retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen); break; case SCTP_CONTEXT: retval = sctp_setsockopt_context(sk, kopt, optlen); break; case SCTP_FRAGMENT_INTERLEAVE: retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen); break; case SCTP_MAX_BURST: retval = sctp_setsockopt_maxburst(sk, kopt, optlen); break; case SCTP_AUTH_CHUNK: retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen); break; case SCTP_HMAC_IDENT: retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen); break; case SCTP_AUTH_KEY: retval = sctp_setsockopt_auth_key(sk, kopt, optlen); break; case SCTP_AUTH_ACTIVE_KEY: retval = sctp_setsockopt_active_key(sk, kopt, optlen); break; case SCTP_AUTH_DELETE_KEY: retval = sctp_setsockopt_del_key(sk, kopt, optlen); break; case SCTP_AUTH_DEACTIVATE_KEY: retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen); break; case SCTP_AUTO_ASCONF: retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen); break; case SCTP_PEER_ADDR_THLDS: retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, false); break; case SCTP_PEER_ADDR_THLDS_V2: retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, true); break; case SCTP_RECVRCVINFO: retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen); break; case SCTP_RECVNXTINFO: retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen); break; case SCTP_PR_SUPPORTED: retval = sctp_setsockopt_pr_supported(sk, kopt, optlen); break; case SCTP_DEFAULT_PRINFO: retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen); break; case SCTP_RECONFIG_SUPPORTED: retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen); break; case SCTP_ENABLE_STREAM_RESET: retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen); break; case SCTP_RESET_STREAMS: retval = sctp_setsockopt_reset_streams(sk, kopt, optlen); break; case SCTP_RESET_ASSOC: retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen); break; case SCTP_ADD_STREAMS: retval = sctp_setsockopt_add_streams(sk, kopt, optlen); break; case SCTP_STREAM_SCHEDULER: retval = sctp_setsockopt_scheduler(sk, kopt, optlen); break; case SCTP_STREAM_SCHEDULER_VALUE: retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen); break; case SCTP_INTERLEAVING_SUPPORTED: retval = sctp_setsockopt_interleaving_supported(sk, kopt, optlen); break; case SCTP_REUSE_PORT: retval = sctp_setsockopt_reuse_port(sk, kopt, optlen); break; case SCTP_EVENT: retval = sctp_setsockopt_event(sk, kopt, optlen); break; case SCTP_ASCONF_SUPPORTED: retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen); break; case SCTP_AUTH_SUPPORTED: retval = sctp_setsockopt_auth_supported(sk, kopt, optlen); break; case SCTP_ECN_SUPPORTED: retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen); break; case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: retval = sctp_setsockopt_pf_expose(sk, kopt, optlen); break; case SCTP_REMOTE_UDP_ENCAPS_PORT: retval = sctp_setsockopt_encap_port(sk, kopt, optlen); break; case SCTP_PLPMTUD_PROBE_INTERVAL: retval = sctp_setsockopt_probe_interval(sk, kopt, optlen); break; default: retval = -ENOPROTOOPT; break; } release_sock(sk); kfree(kopt); return retval; } /* API 3.1.6 connect() - UDP Style Syntax * * An application may use the connect() call in the UDP model to initiate an * association without sending data. * * The syntax is: * * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); * * sd: the socket descriptor to have a new association added to. * * nam: the address structure (either struct sockaddr_in or struct * sockaddr_in6 defined in RFC2553 [7]). * * len: the size of the address. */ static int sctp_connect(struct sock *sk, struct sockaddr *addr, int addr_len, int flags) { struct sctp_af *af; int err = -EINVAL; lock_sock(sk); pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, addr, addr_len); /* Validate addr_len before calling common connect/connectx routine. */ af = sctp_get_af_specific(addr->sa_family); if (af && addr_len >= af->sockaddr_len) err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); release_sock(sk); return err; } int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags) { if (addr_len < sizeof(uaddr->sa_family)) return -EINVAL; if (uaddr->sa_family == AF_UNSPEC) return -EOPNOTSUPP; return sctp_connect(sock->sk, uaddr, addr_len, flags); } /* Only called when shutdown a listening SCTP socket. */ static int sctp_disconnect(struct sock *sk, int flags) { if (!sctp_style(sk, TCP)) return -EOPNOTSUPP; sk->sk_shutdown |= RCV_SHUTDOWN; return 0; } /* 4.1.4 accept() - TCP Style Syntax * * Applications use accept() call to remove an established SCTP * association from the accept queue of the endpoint. A new socket * descriptor will be returned from accept() to represent the newly * formed association. */ static struct sock *sctp_accept(struct sock *sk, struct proto_accept_arg *arg) { struct sctp_sock *sp; struct sctp_endpoint *ep; struct sock *newsk = NULL; struct sctp_association *asoc; long timeo; int error = 0; lock_sock(sk); sp = sctp_sk(sk); ep = sp->ep; if (!sctp_style(sk, TCP)) { error = -EOPNOTSUPP; goto out; } if (!sctp_sstate(sk, LISTENING) || (sk->sk_shutdown & RCV_SHUTDOWN)) { error = -EINVAL; goto out; } timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK); error = sctp_wait_for_accept(sk, timeo); if (error) goto out; /* We treat the list of associations on the endpoint as the accept * queue and pick the first association on the list. */ asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); newsk = sp->pf->create_accept_sk(sk, asoc, arg->kern); if (!newsk) { error = -ENOMEM; goto out; } /* Populate the fields of the newsk from the oldsk and migrate the * asoc to the newsk. */ error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); if (error) { sk_common_release(newsk); newsk = NULL; } out: release_sock(sk); arg->err = error; return newsk; } /* The SCTP ioctl handler. */ static int sctp_ioctl(struct sock *sk, int cmd, int *karg) { int rc = -ENOTCONN; lock_sock(sk); /* * SEQPACKET-style sockets in LISTENING state are valid, for * SCTP, so only discard TCP-style sockets in LISTENING state. */ if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) goto out; switch (cmd) { case SIOCINQ: { struct sk_buff *skb; *karg = 0; skb = skb_peek(&sk->sk_receive_queue); if (skb != NULL) { /* * We will only return the amount of this packet since * that is all that will be read. */ *karg = skb->len; } rc = 0; break; } default: rc = -ENOIOCTLCMD; break; } out: release_sock(sk); return rc; } /* This is the function which gets called during socket creation to * initialized the SCTP-specific portion of the sock. * The sock structure should already be zero-filled memory. */ static int sctp_init_sock(struct sock *sk) { struct net *net = sock_net(sk); struct sctp_sock *sp; pr_debug("%s: sk:%p\n", __func__, sk); sp = sctp_sk(sk); /* Initialize the SCTP per socket area. */ switch (sk->sk_type) { case SOCK_SEQPACKET: sp->type = SCTP_SOCKET_UDP; break; case SOCK_STREAM: sp->type = SCTP_SOCKET_TCP; break; default: return -ESOCKTNOSUPPORT; } sk->sk_gso_type = SKB_GSO_SCTP; /* Initialize default send parameters. These parameters can be * modified with the SCTP_DEFAULT_SEND_PARAM socket option. */ sp->default_stream = 0; sp->default_ppid = 0; sp->default_flags = 0; sp->default_context = 0; sp->default_timetolive = 0; sp->default_rcv_context = 0; sp->max_burst = net->sctp.max_burst; sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; /* Initialize default setup parameters. These parameters * can be modified with the SCTP_INITMSG socket option or * overridden by the SCTP_INIT CMSG. */ sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; sp->initmsg.sinit_max_instreams = sctp_max_instreams; sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; /* Initialize default RTO related parameters. These parameters can * be modified for with the SCTP_RTOINFO socket option. */ sp->rtoinfo.srto_initial = net->sctp.rto_initial; sp->rtoinfo.srto_max = net->sctp.rto_max; sp->rtoinfo.srto_min = net->sctp.rto_min; /* Initialize default association related parameters. These parameters * can be modified with the SCTP_ASSOCINFO socket option. */ sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; sp->assocparams.sasoc_number_peer_destinations = 0; sp->assocparams.sasoc_peer_rwnd = 0; sp->assocparams.sasoc_local_rwnd = 0; sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; /* Initialize default event subscriptions. By default, all the * options are off. */ sp->subscribe = 0; /* Default Peer Address Parameters. These defaults can * be modified via SCTP_PEER_ADDR_PARAMS */ sp->hbinterval = net->sctp.hb_interval; sp->udp_port = htons(net->sctp.udp_port); sp->encap_port = htons(net->sctp.encap_port); sp->pathmaxrxt = net->sctp.max_retrans_path; sp->pf_retrans = net->sctp.pf_retrans; sp->ps_retrans = net->sctp.ps_retrans; sp->pf_expose = net->sctp.pf_expose; sp->pathmtu = 0; /* allow default discovery */ sp->sackdelay = net->sctp.sack_timeout; sp->sackfreq = 2; sp->param_flags = SPP_HB_ENABLE | SPP_PMTUD_ENABLE | SPP_SACKDELAY_ENABLE; sp->default_ss = SCTP_SS_DEFAULT; /* If enabled no SCTP message fragmentation will be performed. * Configure through SCTP_DISABLE_FRAGMENTS socket option. */ sp->disable_fragments = 0; /* Enable Nagle algorithm by default. */ sp->nodelay = 0; sp->recvrcvinfo = 0; sp->recvnxtinfo = 0; /* Enable by default. */ sp->v4mapped = 1; /* Auto-close idle associations after the configured * number of seconds. A value of 0 disables this * feature. Configure through the SCTP_AUTOCLOSE socket option, * for UDP-style sockets only. */ sp->autoclose = 0; /* User specified fragmentation limit. */ sp->user_frag = 0; sp->adaptation_ind = 0; sp->pf = sctp_get_pf_specific(sk->sk_family); /* Control variables for partial data delivery. */ atomic_set(&sp->pd_mode, 0); skb_queue_head_init(&sp->pd_lobby); sp->frag_interleave = 0; sp->probe_interval = net->sctp.probe_interval; /* Create a per socket endpoint structure. Even if we * change the data structure relationships, this may still * be useful for storing pre-connect address information. */ sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); if (!sp->ep) return -ENOMEM; sp->hmac = NULL; sk->sk_destruct = sctp_destruct_sock; SCTP_DBG_OBJCNT_INC(sock); sk_sockets_allocated_inc(sk); sock_prot_inuse_add(net, sk->sk_prot, 1); return 0; } /* Cleanup any SCTP per socket resources. Must be called with * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true */ static void sctp_destroy_sock(struct sock *sk) { struct sctp_sock *sp; pr_debug("%s: sk:%p\n", __func__, sk); /* Release our hold on the endpoint. */ sp = sctp_sk(sk); /* This could happen during socket init, thus we bail out * early, since the rest of the below is not setup either. */ if (sp->ep == NULL) return; if (sp->do_auto_asconf) { sp->do_auto_asconf = 0; list_del(&sp->auto_asconf_list); } sctp_endpoint_free(sp->ep); sk_sockets_allocated_dec(sk); sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); } /* Triggered when there are no references on the socket anymore */ static void sctp_destruct_common(struct sock *sk) { struct sctp_sock *sp = sctp_sk(sk); /* Free up the HMAC transform. */ crypto_free_shash(sp->hmac); } static void sctp_destruct_sock(struct sock *sk) { sctp_destruct_common(sk); inet_sock_destruct(sk); } /* API 4.1.7 shutdown() - TCP Style Syntax * int shutdown(int socket, int how); * * sd - the socket descriptor of the association to be closed. * how - Specifies the type of shutdown. The values are * as follows: * SHUT_RD * Disables further receive operations. No SCTP * protocol action is taken. * SHUT_WR * Disables further send operations, and initiates * the SCTP shutdown sequence. * SHUT_RDWR * Disables further send and receive operations * and initiates the SCTP shutdown sequence. */ static void sctp_shutdown(struct sock *sk, int how) { struct net *net = sock_net(sk); struct sctp_endpoint *ep; if (!sctp_style(sk, TCP)) return; ep = sctp_sk(sk)->ep; if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { struct sctp_association *asoc; inet_sk_set_state(sk, SCTP_SS_CLOSING); asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); sctp_primitive_SHUTDOWN(net, asoc, NULL); } } int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, struct sctp_info *info) { struct sctp_transport *prim; struct list_head *pos; int mask; memset(info, 0, sizeof(*info)); if (!asoc) { struct sctp_sock *sp = sctp_sk(sk); info->sctpi_s_autoclose = sp->autoclose; info->sctpi_s_adaptation_ind = sp->adaptation_ind; info->sctpi_s_pd_point = sp->pd_point; info->sctpi_s_nodelay = sp->nodelay; info->sctpi_s_disable_fragments = sp->disable_fragments; info->sctpi_s_v4mapped = sp->v4mapped; info->sctpi_s_frag_interleave = sp->frag_interleave; info->sctpi_s_type = sp->type; return 0; } info->sctpi_tag = asoc->c.my_vtag; info->sctpi_state = asoc->state; info->sctpi_rwnd = asoc->a_rwnd; info->sctpi_unackdata = asoc->unack_data; info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); info->sctpi_instrms = asoc->stream.incnt; info->sctpi_outstrms = asoc->stream.outcnt; list_for_each(pos, &asoc->base.inqueue.in_chunk_list) info->sctpi_inqueue++; list_for_each(pos, &asoc->outqueue.out_chunk_list) info->sctpi_outqueue++; info->sctpi_overall_error = asoc->overall_error_count; info->sctpi_max_burst = asoc->max_burst; info->sctpi_maxseg = asoc->frag_point; info->sctpi_peer_rwnd = asoc->peer.rwnd; info->sctpi_peer_tag = asoc->c.peer_vtag; mask = asoc->peer.intl_capable << 1; mask = (mask | asoc->peer.ecn_capable) << 1; mask = (mask | asoc->peer.ipv4_address) << 1; mask = (mask | asoc->peer.ipv6_address) << 1; mask = (mask | asoc->peer.reconf_capable) << 1; mask = (mask | asoc->peer.asconf_capable) << 1; mask = (mask | asoc->peer.prsctp_capable) << 1; mask = (mask | asoc->peer.auth_capable); info->sctpi_peer_capable = mask; mask = asoc->peer.sack_needed << 1; mask = (mask | asoc->peer.sack_generation) << 1; mask = (mask | asoc->peer.zero_window_announced); info->sctpi_peer_sack = mask; info->sctpi_isacks = asoc->stats.isacks; info->sctpi_osacks = asoc->stats.osacks; info->sctpi_opackets = asoc->stats.opackets; info->sctpi_ipackets = asoc->stats.ipackets; info->sctpi_rtxchunks = asoc->stats.rtxchunks; info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; info->sctpi_idupchunks = asoc->stats.idupchunks; info->sctpi_gapcnt = asoc->stats.gapcnt; info->sctpi_ouodchunks = asoc->stats.ouodchunks; info->sctpi_iuodchunks = asoc->stats.iuodchunks; info->sctpi_oodchunks = asoc->stats.oodchunks; info->sctpi_iodchunks = asoc->stats.iodchunks; info->sctpi_octrlchunks = asoc->stats.octrlchunks; info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; prim = asoc->peer.primary_path; memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); info->sctpi_p_state = prim->state; info->sctpi_p_cwnd = prim->cwnd; info->sctpi_p_srtt = prim->srtt; info->sctpi_p_rto = jiffies_to_msecs(prim->rto); info->sctpi_p_hbinterval = prim->hbinterval; info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); info->sctpi_p_ssthresh = prim->ssthresh; info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; info->sctpi_p_flight_size = prim->flight_size; info->sctpi_p_error = prim->error_count; return 0; } EXPORT_SYMBOL_GPL(sctp_get_sctp_info); /* use callback to avoid exporting the core structure */ void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU) { rhltable_walk_enter(&sctp_transport_hashtable, iter); rhashtable_walk_start(iter); } void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU) { rhashtable_walk_stop(iter); rhashtable_walk_exit(iter); } struct sctp_transport *sctp_transport_get_next(struct net *net, struct rhashtable_iter *iter) { struct sctp_transport *t; t = rhashtable_walk_next(iter); for (; t; t = rhashtable_walk_next(iter)) { if (IS_ERR(t)) { if (PTR_ERR(t) == -EAGAIN) continue; break; } if (!sctp_transport_hold(t)) continue; if (net_eq(t->asoc->base.net, net) && t->asoc->peer.primary_path == t) break; sctp_transport_put(t); } return t; } struct sctp_transport *sctp_transport_get_idx(struct net *net, struct rhashtable_iter *iter, int pos) { struct sctp_transport *t; if (!pos) return SEQ_START_TOKEN; while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { if (!--pos) break; sctp_transport_put(t); } return t; } int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), void *p) { int err = 0; int hash = 0; struct sctp_endpoint *ep; struct sctp_hashbucket *head; for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; hash++, head++) { read_lock_bh(&head->lock); sctp_for_each_hentry(ep, &head->chain) { err = cb(ep, p); if (err) break; } read_unlock_bh(&head->lock); } return err; } EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); int sctp_transport_lookup_process(sctp_callback_t cb, struct net *net, const union sctp_addr *laddr, const union sctp_addr *paddr, void *p, int dif) { struct sctp_transport *transport; struct sctp_endpoint *ep; int err = -ENOENT; rcu_read_lock(); transport = sctp_addrs_lookup_transport(net, laddr, paddr, dif, dif); if (!transport) { rcu_read_unlock(); return err; } ep = transport->asoc->ep; if (!sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ sctp_transport_put(transport); rcu_read_unlock(); return err; } rcu_read_unlock(); err = cb(ep, transport, p); sctp_endpoint_put(ep); sctp_transport_put(transport); return err; } EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done, struct net *net, int *pos, void *p) { struct rhashtable_iter hti; struct sctp_transport *tsp; struct sctp_endpoint *ep; int ret; again: ret = 0; sctp_transport_walk_start(&hti); tsp = sctp_transport_get_idx(net, &hti, *pos + 1); for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { ep = tsp->asoc->ep; if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ ret = cb(ep, tsp, p); if (ret) break; sctp_endpoint_put(ep); } (*pos)++; sctp_transport_put(tsp); } sctp_transport_walk_stop(&hti); if (ret) { if (cb_done && !cb_done(ep, tsp, p)) { (*pos)++; sctp_endpoint_put(ep); sctp_transport_put(tsp); goto again; } sctp_endpoint_put(ep); sctp_transport_put(tsp); } return ret; } EXPORT_SYMBOL_GPL(sctp_transport_traverse_process); /* 7.2.1 Association Status (SCTP_STATUS) * Applications can retrieve current status information about an * association, including association state, peer receiver window size, * number of unacked data chunks, and number of data chunks pending * receipt. This information is read-only. */ static int sctp_getsockopt_sctp_status(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_status status; struct sctp_association *asoc = NULL; struct sctp_transport *transport; sctp_assoc_t associd; int retval = 0; if (len < sizeof(status)) { retval = -EINVAL; goto out; } len = sizeof(status); if (copy_from_user(&status, optval, len)) { retval = -EFAULT; goto out; } associd = status.sstat_assoc_id; asoc = sctp_id2assoc(sk, associd); if (!asoc) { retval = -EINVAL; goto out; } transport = asoc->peer.primary_path; status.sstat_assoc_id = sctp_assoc2id(asoc); status.sstat_state = sctp_assoc_to_state(asoc); status.sstat_rwnd = asoc->peer.rwnd; status.sstat_unackdata = asoc->unack_data; status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); status.sstat_instrms = asoc->stream.incnt; status.sstat_outstrms = asoc->stream.outcnt; status.sstat_fragmentation_point = asoc->frag_point; status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, transport->af_specific->sockaddr_len); /* Map ipv4 address into v4-mapped-on-v6 address. */ sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), (union sctp_addr *)&status.sstat_primary.spinfo_address); status.sstat_primary.spinfo_state = transport->state; status.sstat_primary.spinfo_cwnd = transport->cwnd; status.sstat_primary.spinfo_srtt = transport->srtt; status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); status.sstat_primary.spinfo_mtu = transport->pathmtu; if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) status.sstat_primary.spinfo_state = SCTP_ACTIVE; if (put_user(len, optlen)) { retval = -EFAULT; goto out; } pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", __func__, len, status.sstat_state, status.sstat_rwnd, status.sstat_assoc_id); if (copy_to_user(optval, &status, len)) { retval = -EFAULT; goto out; } out: return retval; } /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) * * Applications can retrieve information about a specific peer address * of an association, including its reachability state, congestion * window, and retransmission timer values. This information is * read-only. */ static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_paddrinfo pinfo; struct sctp_transport *transport; int retval = 0; if (len < sizeof(pinfo)) { retval = -EINVAL; goto out; } len = sizeof(pinfo); if (copy_from_user(&pinfo, optval, len)) { retval = -EFAULT; goto out; } transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, pinfo.spinfo_assoc_id); if (!transport) { retval = -EINVAL; goto out; } if (transport->state == SCTP_PF && transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { retval = -EACCES; goto out; } pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); pinfo.spinfo_state = transport->state; pinfo.spinfo_cwnd = transport->cwnd; pinfo.spinfo_srtt = transport->srtt; pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); pinfo.spinfo_mtu = transport->pathmtu; if (pinfo.spinfo_state == SCTP_UNKNOWN) pinfo.spinfo_state = SCTP_ACTIVE; if (put_user(len, optlen)) { retval = -EFAULT; goto out; } if (copy_to_user(optval, &pinfo, len)) { retval = -EFAULT; goto out; } out: return retval; } /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) * * This option is a on/off flag. If enabled no SCTP message * fragmentation will be performed. Instead if a message being sent * exceeds the current PMTU size, the message will NOT be sent and * instead a error will be indicated to the user. */ static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = (sctp_sk(sk)->disable_fragments == 1); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) * * This socket option is used to specify various notifications and * ancillary data the user wishes to receive. */ static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_event_subscribe subscribe; __u8 *sn_type = (__u8 *)&subscribe; int i; if (len == 0) return -EINVAL; if (len > sizeof(struct sctp_event_subscribe)) len = sizeof(struct sctp_event_subscribe); if (put_user(len, optlen)) return -EFAULT; for (i = 0; i < len; i++) sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, SCTP_SN_TYPE_BASE + i); if (copy_to_user(optval, &subscribe, len)) return -EFAULT; return 0; } /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) * * This socket option is applicable to the UDP-style socket only. When * set it will cause associations that are idle for more than the * specified number of seconds to automatically close. An association * being idle is defined an association that has NOT sent or received * user data. The special value of '0' indicates that no automatic * close of any associations should be performed. The option expects an * integer defining the number of seconds of idle time before an * association is closed. */ static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) { /* Applicable to UDP-style socket only */ if (sctp_style(sk, TCP)) return -EOPNOTSUPP; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); if (put_user(len, optlen)) return -EFAULT; if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) return -EFAULT; return 0; } /* Helper routine to branch off an association to a new socket. */ int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) { struct sctp_association *asoc = sctp_id2assoc(sk, id); struct sctp_sock *sp = sctp_sk(sk); struct socket *sock; int err = 0; /* Do not peel off from one netns to another one. */ if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) return -EINVAL; if (!asoc) return -EINVAL; /* An association cannot be branched off from an already peeled-off * socket, nor is this supported for tcp style sockets. */ if (!sctp_style(sk, UDP)) return -EINVAL; /* Create a new socket. */ err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); if (err < 0) return err; sctp_copy_sock(sock->sk, sk, asoc); /* Make peeled-off sockets more like 1-1 accepted sockets. * Set the daddr and initialize id to something more random and also * copy over any ip options. */ sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sock->sk); sp->pf->copy_ip_options(sk, sock->sk); /* Populate the fields of the newsk from the oldsk and migrate the * asoc to the newsk. */ err = sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); if (err) { sock_release(sock); sock = NULL; } *sockp = sock; return err; } EXPORT_SYMBOL(sctp_do_peeloff); static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, struct file **newfile, unsigned flags) { struct socket *newsock; int retval; retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); if (retval < 0) goto out; /* Map the socket to an unused fd that can be returned to the user. */ retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); if (retval < 0) { sock_release(newsock); goto out; } *newfile = sock_alloc_file(newsock, 0, NULL); if (IS_ERR(*newfile)) { put_unused_fd(retval); retval = PTR_ERR(*newfile); *newfile = NULL; return retval; } pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, retval); peeloff->sd = retval; if (flags & SOCK_NONBLOCK) (*newfile)->f_flags |= O_NONBLOCK; out: return retval; } static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) { sctp_peeloff_arg_t peeloff; struct file *newfile = NULL; int retval = 0; if (len < sizeof(sctp_peeloff_arg_t)) return -EINVAL; len = sizeof(sctp_peeloff_arg_t); if (copy_from_user(&peeloff, optval, len)) return -EFAULT; retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); if (retval < 0) goto out; /* Return the fd mapped to the new socket. */ if (put_user(len, optlen)) { fput(newfile); put_unused_fd(retval); return -EFAULT; } if (copy_to_user(optval, &peeloff, len)) { fput(newfile); put_unused_fd(retval); return -EFAULT; } fd_install(retval, newfile); out: return retval; } static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, char __user *optval, int __user *optlen) { sctp_peeloff_flags_arg_t peeloff; struct file *newfile = NULL; int retval = 0; if (len < sizeof(sctp_peeloff_flags_arg_t)) return -EINVAL; len = sizeof(sctp_peeloff_flags_arg_t); if (copy_from_user(&peeloff, optval, len)) return -EFAULT; retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, &newfile, peeloff.flags); if (retval < 0) goto out; /* Return the fd mapped to the new socket. */ if (put_user(len, optlen)) { fput(newfile); put_unused_fd(retval); return -EFAULT; } if (copy_to_user(optval, &peeloff, len)) { fput(newfile); put_unused_fd(retval); return -EFAULT; } fd_install(retval, newfile); out: return retval; } /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) * * Applications can enable or disable heartbeats for any peer address of * an association, modify an address's heartbeat interval, force a * heartbeat to be sent immediately, and adjust the address's maximum * number of retransmissions sent before an address is considered * unreachable. The following structure is used to access and modify an * address's parameters: * * struct sctp_paddrparams { * sctp_assoc_t spp_assoc_id; * struct sockaddr_storage spp_address; * uint32_t spp_hbinterval; * uint16_t spp_pathmaxrxt; * uint32_t spp_pathmtu; * uint32_t spp_sackdelay; * uint32_t spp_flags; * }; * * spp_assoc_id - (one-to-many style socket) This is filled in the * application, and identifies the association for * this query. * spp_address - This specifies which address is of interest. * spp_hbinterval - This contains the value of the heartbeat interval, * in milliseconds. If a value of zero * is present in this field then no changes are to * be made to this parameter. * spp_pathmaxrxt - This contains the maximum number of * retransmissions before this address shall be * considered unreachable. If a value of zero * is present in this field then no changes are to * be made to this parameter. * spp_pathmtu - When Path MTU discovery is disabled the value * specified here will be the "fixed" path mtu. * Note that if the spp_address field is empty * then all associations on this address will * have this fixed path mtu set upon them. * * spp_sackdelay - When delayed sack is enabled, this value specifies * the number of milliseconds that sacks will be delayed * for. This value will apply to all addresses of an * association if the spp_address field is empty. Note * also, that if delayed sack is enabled and this * value is set to 0, no change is made to the last * recorded delayed sack timer value. * * spp_flags - These flags are used to control various features * on an association. The flag field may contain * zero or more of the following options. * * SPP_HB_ENABLE - Enable heartbeats on the * specified address. Note that if the address * field is empty all addresses for the association * have heartbeats enabled upon them. * * SPP_HB_DISABLE - Disable heartbeats on the * speicifed address. Note that if the address * field is empty all addresses for the association * will have their heartbeats disabled. Note also * that SPP_HB_ENABLE and SPP_HB_DISABLE are * mutually exclusive, only one of these two should * be specified. Enabling both fields will have * undetermined results. * * SPP_HB_DEMAND - Request a user initiated heartbeat * to be made immediately. * * SPP_PMTUD_ENABLE - This field will enable PMTU * discovery upon the specified address. Note that * if the address feild is empty then all addresses * on the association are effected. * * SPP_PMTUD_DISABLE - This field will disable PMTU * discovery upon the specified address. Note that * if the address feild is empty then all addresses * on the association are effected. Not also that * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually * exclusive. Enabling both will have undetermined * results. * * SPP_SACKDELAY_ENABLE - Setting this flag turns * on delayed sack. The time specified in spp_sackdelay * is used to specify the sack delay for this address. Note * that if spp_address is empty then all addresses will * enable delayed sack and take on the sack delay * value specified in spp_sackdelay. * SPP_SACKDELAY_DISABLE - Setting this flag turns * off delayed sack. If the spp_address field is blank then * delayed sack is disabled for the entire association. Note * also that this field is mutually exclusive to * SPP_SACKDELAY_ENABLE, setting both will have undefined * results. * * SPP_IPV6_FLOWLABEL: Setting this flag enables the * setting of the IPV6 flow label value. The value is * contained in the spp_ipv6_flowlabel field. * Upon retrieval, this flag will be set to indicate that * the spp_ipv6_flowlabel field has a valid value returned. * If a specific destination address is set (in the * spp_address field), then the value returned is that of * the address. If just an association is specified (and * no address), then the association's default flow label * is returned. If neither an association nor a destination * is specified, then the socket's default flow label is * returned. For non-IPv6 sockets, this flag will be left * cleared. * * SPP_DSCP: Setting this flag enables the setting of the * Differentiated Services Code Point (DSCP) value * associated with either the association or a specific * address. The value is obtained in the spp_dscp field. * Upon retrieval, this flag will be set to indicate that * the spp_dscp field has a valid value returned. If a * specific destination address is set when called (in the * spp_address field), then that specific destination * address's DSCP value is returned. If just an association * is specified, then the association's default DSCP is * returned. If neither an association nor a destination is * specified, then the socket's default DSCP is returned. * * spp_ipv6_flowlabel * - This field is used in conjunction with the * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. * The 20 least significant bits are used for the flow * label. This setting has precedence over any IPv6-layer * setting. * * spp_dscp - This field is used in conjunction with the SPP_DSCP flag * and contains the DSCP. The 6 most significant bits are * used for the DSCP. This setting has precedence over any * IPv4- or IPv6- layer setting. */ static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_paddrparams params; struct sctp_transport *trans = NULL; struct sctp_association *asoc = NULL; struct sctp_sock *sp = sctp_sk(sk); if (len >= sizeof(params)) len = sizeof(params); else if (len >= ALIGN(offsetof(struct sctp_paddrparams, spp_ipv6_flowlabel), 4)) len = ALIGN(offsetof(struct sctp_paddrparams, spp_ipv6_flowlabel), 4); else return -EINVAL; if (copy_from_user(¶ms, optval, len)) return -EFAULT; /* If an address other than INADDR_ANY is specified, and * no transport is found, then the request is invalid. */ if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { trans = sctp_addr_id2transport(sk, ¶ms.spp_address, params.spp_assoc_id); if (!trans) { pr_debug("%s: failed no transport\n", __func__); return -EINVAL; } } /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the * socket is a one to many style socket, and an association * was not found, then the id was invalid. */ asoc = sctp_id2assoc(sk, params.spp_assoc_id); if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) { pr_debug("%s: failed no association\n", __func__); return -EINVAL; } if (trans) { /* Fetch transport values. */ params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); params.spp_pathmtu = trans->pathmtu; params.spp_pathmaxrxt = trans->pathmaxrxt; params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); /*draft-11 doesn't say what to return in spp_flags*/ params.spp_flags = trans->param_flags; if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { params.spp_ipv6_flowlabel = trans->flowlabel & SCTP_FLOWLABEL_VAL_MASK; params.spp_flags |= SPP_IPV6_FLOWLABEL; } if (trans->dscp & SCTP_DSCP_SET_MASK) { params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; params.spp_flags |= SPP_DSCP; } } else if (asoc) { /* Fetch association values. */ params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); params.spp_pathmtu = asoc->pathmtu; params.spp_pathmaxrxt = asoc->pathmaxrxt; params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); /*draft-11 doesn't say what to return in spp_flags*/ params.spp_flags = asoc->param_flags; if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { params.spp_ipv6_flowlabel = asoc->flowlabel & SCTP_FLOWLABEL_VAL_MASK; params.spp_flags |= SPP_IPV6_FLOWLABEL; } if (asoc->dscp & SCTP_DSCP_SET_MASK) { params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; params.spp_flags |= SPP_DSCP; } } else { /* Fetch socket values. */ params.spp_hbinterval = sp->hbinterval; params.spp_pathmtu = sp->pathmtu; params.spp_sackdelay = sp->sackdelay; params.spp_pathmaxrxt = sp->pathmaxrxt; /*draft-11 doesn't say what to return in spp_flags*/ params.spp_flags = sp->param_flags; if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { params.spp_ipv6_flowlabel = sp->flowlabel & SCTP_FLOWLABEL_VAL_MASK; params.spp_flags |= SPP_IPV6_FLOWLABEL; } if (sp->dscp & SCTP_DSCP_SET_MASK) { params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; params.spp_flags |= SPP_DSCP; } } if (copy_to_user(optval, ¶ms, len)) return -EFAULT; if (put_user(len, optlen)) return -EFAULT; return 0; } /* * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) * * This option will effect the way delayed acks are performed. This * option allows you to get or set the delayed ack time, in * milliseconds. It also allows changing the delayed ack frequency. * Changing the frequency to 1 disables the delayed sack algorithm. If * the assoc_id is 0, then this sets or gets the endpoints default * values. If the assoc_id field is non-zero, then the set or get * effects the specified association for the one to many model (the * assoc_id field is ignored by the one to one model). Note that if * sack_delay or sack_freq are 0 when setting this option, then the * current values will remain unchanged. * * struct sctp_sack_info { * sctp_assoc_t sack_assoc_id; * uint32_t sack_delay; * uint32_t sack_freq; * }; * * sack_assoc_id - This parameter, indicates which association the user * is performing an action upon. Note that if this field's value is * zero then the endpoints default value is changed (effecting future * associations only). * * sack_delay - This parameter contains the number of milliseconds that * the user is requesting the delayed ACK timer be set to. Note that * this value is defined in the standard to be between 200 and 500 * milliseconds. * * sack_freq - This parameter contains the number of packets that must * be received before a sack is sent without waiting for the delay * timer to expire. The default value for this is 2, setting this * value to 1 will disable the delayed sack algorithm. */ static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_sack_info params; struct sctp_association *asoc = NULL; struct sctp_sock *sp = sctp_sk(sk); if (len >= sizeof(struct sctp_sack_info)) { len = sizeof(struct sctp_sack_info); if (copy_from_user(¶ms, optval, len)) return -EFAULT; } else if (len == sizeof(struct sctp_assoc_value)) { pr_warn_ratelimited(DEPRECATED "%s (pid %d) " "Use of struct sctp_assoc_value in delayed_ack socket option.\n" "Use struct sctp_sack_info instead\n", current->comm, task_pid_nr(current)); if (copy_from_user(¶ms, optval, len)) return -EFAULT; } else return -EINVAL; /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the * socket is a one to many style socket, and an association * was not found, then the id was invalid. */ asoc = sctp_id2assoc(sk, params.sack_assoc_id); if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { /* Fetch association values. */ if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { params.sack_delay = jiffies_to_msecs(asoc->sackdelay); params.sack_freq = asoc->sackfreq; } else { params.sack_delay = 0; params.sack_freq = 1; } } else { /* Fetch socket values. */ if (sp->param_flags & SPP_SACKDELAY_ENABLE) { params.sack_delay = sp->sackdelay; params.sack_freq = sp->sackfreq; } else { params.sack_delay = 0; params.sack_freq = 1; } } if (copy_to_user(optval, ¶ms, len)) return -EFAULT; if (put_user(len, optlen)) return -EFAULT; return 0; } /* 7.1.3 Initialization Parameters (SCTP_INITMSG) * * Applications can specify protocol parameters for the default association * initialization. The option name argument to setsockopt() and getsockopt() * is SCTP_INITMSG. * * Setting initialization parameters is effective only on an unconnected * socket (for UDP-style sockets only future associations are effected * by the change). With TCP-style sockets, this option is inherited by * sockets derived from a listener socket. */ static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) { if (len < sizeof(struct sctp_initmsg)) return -EINVAL; len = sizeof(struct sctp_initmsg); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) return -EFAULT; return 0; } static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_association *asoc; int cnt = 0; struct sctp_getaddrs getaddrs; struct sctp_transport *from; void __user *to; union sctp_addr temp; struct sctp_sock *sp = sctp_sk(sk); int addrlen; size_t space_left; int bytes_copied; if (len < sizeof(struct sctp_getaddrs)) return -EINVAL; if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) return -EFAULT; /* For UDP-style sockets, id specifies the association to query. */ asoc = sctp_id2assoc(sk, getaddrs.assoc_id); if (!asoc) return -EINVAL; to = optval + offsetof(struct sctp_getaddrs, addrs); space_left = len - offsetof(struct sctp_getaddrs, addrs); list_for_each_entry(from, &asoc->peer.transport_addr_list, transports) { memcpy(&temp, &from->ipaddr, sizeof(temp)); addrlen = sctp_get_pf_specific(sk->sk_family) ->addr_to_user(sp, &temp); if (space_left < addrlen) return -ENOMEM; if (copy_to_user(to, &temp, addrlen)) return -EFAULT; to += addrlen; cnt++; space_left -= addrlen; } if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) return -EFAULT; bytes_copied = ((char __user *)to) - optval; if (put_user(bytes_copied, optlen)) return -EFAULT; return 0; } static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, size_t space_left, int *bytes_copied) { struct sctp_sockaddr_entry *addr; union sctp_addr temp; int cnt = 0; int addrlen; struct net *net = sock_net(sk); rcu_read_lock(); list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { if (!addr->valid) continue; if ((PF_INET == sk->sk_family) && (AF_INET6 == addr->a.sa.sa_family)) continue; if ((PF_INET6 == sk->sk_family) && inet_v6_ipv6only(sk) && (AF_INET == addr->a.sa.sa_family)) continue; memcpy(&temp, &addr->a, sizeof(temp)); if (!temp.v4.sin_port) temp.v4.sin_port = htons(port); addrlen = sctp_get_pf_specific(sk->sk_family) ->addr_to_user(sctp_sk(sk), &temp); if (space_left < addrlen) { cnt = -ENOMEM; break; } memcpy(to, &temp, addrlen); to += addrlen; cnt++; space_left -= addrlen; *bytes_copied += addrlen; } rcu_read_unlock(); return cnt; } static int sctp_getsockopt_local_addrs(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_bind_addr *bp; struct sctp_association *asoc; int cnt = 0; struct sctp_getaddrs getaddrs; struct sctp_sockaddr_entry *addr; void __user *to; union sctp_addr temp; struct sctp_sock *sp = sctp_sk(sk); int addrlen; int err = 0; size_t space_left; int bytes_copied = 0; void *addrs; void *buf; if (len < sizeof(struct sctp_getaddrs)) return -EINVAL; if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) return -EFAULT; /* * For UDP-style sockets, id specifies the association to query. * If the id field is set to the value '0' then the locally bound * addresses are returned without regard to any particular * association. */ if (0 == getaddrs.assoc_id) { bp = &sctp_sk(sk)->ep->base.bind_addr; } else { asoc = sctp_id2assoc(sk, getaddrs.assoc_id); if (!asoc) return -EINVAL; bp = &asoc->base.bind_addr; } to = optval + offsetof(struct sctp_getaddrs, addrs); space_left = len - offsetof(struct sctp_getaddrs, addrs); addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); if (!addrs) return -ENOMEM; /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid * addresses from the global local address list. */ if (sctp_list_single_entry(&bp->address_list)) { addr = list_entry(bp->address_list.next, struct sctp_sockaddr_entry, list); if (sctp_is_any(sk, &addr->a)) { cnt = sctp_copy_laddrs(sk, bp->port, addrs, space_left, &bytes_copied); if (cnt < 0) { err = cnt; goto out; } goto copy_getaddrs; } } buf = addrs; /* Protection on the bound address list is not needed since * in the socket option context we hold a socket lock and * thus the bound address list can't change. */ list_for_each_entry(addr, &bp->address_list, list) { memcpy(&temp, &addr->a, sizeof(temp)); addrlen = sctp_get_pf_specific(sk->sk_family) ->addr_to_user(sp, &temp); if (space_left < addrlen) { err = -ENOMEM; /*fixme: right error?*/ goto out; } memcpy(buf, &temp, addrlen); buf += addrlen; bytes_copied += addrlen; cnt++; space_left -= addrlen; } copy_getaddrs: if (copy_to_user(to, addrs, bytes_copied)) { err = -EFAULT; goto out; } if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { err = -EFAULT; goto out; } /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, * but we can't change it anymore. */ if (put_user(bytes_copied, optlen)) err = -EFAULT; out: kfree(addrs); return err; } /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) * * Requests that the local SCTP stack use the enclosed peer address as * the association primary. The enclosed address must be one of the * association peer's addresses. */ static int sctp_getsockopt_primary_addr(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_prim prim; struct sctp_association *asoc; struct sctp_sock *sp = sctp_sk(sk); if (len < sizeof(struct sctp_prim)) return -EINVAL; len = sizeof(struct sctp_prim); if (copy_from_user(&prim, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); if (!asoc) return -EINVAL; if (!asoc->peer.primary_path) return -ENOTCONN; memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, asoc->peer.primary_path->af_specific->sockaddr_len); sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, (union sctp_addr *)&prim.ssp_addr); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &prim, len)) return -EFAULT; return 0; } /* * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) * * Requests that the local endpoint set the specified Adaptation Layer * Indication parameter for all future INIT and INIT-ACK exchanges. */ static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_setadaptation adaptation; if (len < sizeof(struct sctp_setadaptation)) return -EINVAL; len = sizeof(struct sctp_setadaptation); adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &adaptation, len)) return -EFAULT; return 0; } /* * * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) * * Applications that wish to use the sendto() system call may wish to * specify a default set of parameters that would normally be supplied * through the inclusion of ancillary data. This socket option allows * such an application to set the default sctp_sndrcvinfo structure. * The application that wishes to use this socket option simply passes * in to this call the sctp_sndrcvinfo structure defined in Section * 5.2.2) The input parameters accepted by this call include * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, * sinfo_timetolive. The user must provide the sinfo_assoc_id field in * to this call if the caller is using the UDP model. * * For getsockopt, it get the default sctp_sndrcvinfo structure. */ static int sctp_getsockopt_default_send_param(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; struct sctp_sndrcvinfo info; if (len < sizeof(info)) return -EINVAL; len = sizeof(info); if (copy_from_user(&info, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { info.sinfo_stream = asoc->default_stream; info.sinfo_flags = asoc->default_flags; info.sinfo_ppid = asoc->default_ppid; info.sinfo_context = asoc->default_context; info.sinfo_timetolive = asoc->default_timetolive; } else { info.sinfo_stream = sp->default_stream; info.sinfo_flags = sp->default_flags; info.sinfo_ppid = sp->default_ppid; info.sinfo_context = sp->default_context; info.sinfo_timetolive = sp->default_timetolive; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &info, len)) return -EFAULT; return 0; } /* RFC6458, Section 8.1.31. Set/get Default Send Parameters * (SCTP_DEFAULT_SNDINFO) */ static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; struct sctp_sndinfo info; if (len < sizeof(info)) return -EINVAL; len = sizeof(info); if (copy_from_user(&info, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, info.snd_assoc_id); if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { info.snd_sid = asoc->default_stream; info.snd_flags = asoc->default_flags; info.snd_ppid = asoc->default_ppid; info.snd_context = asoc->default_context; } else { info.snd_sid = sp->default_stream; info.snd_flags = sp->default_flags; info.snd_ppid = sp->default_ppid; info.snd_context = sp->default_context; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &info, len)) return -EFAULT; return 0; } /* * * 7.1.5 SCTP_NODELAY * * Turn on/off any Nagle-like algorithm. This means that packets are * generally sent as soon as possible and no unnecessary delays are * introduced, at the cost of more packets in the network. Expects an * integer boolean flag. */ static int sctp_getsockopt_nodelay(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = (sctp_sk(sk)->nodelay == 1); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* * * 7.1.1 SCTP_RTOINFO * * The protocol parameters used to initialize and bound retransmission * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access * and modify these parameters. * All parameters are time values, in milliseconds. A value of 0, when * modifying the parameters, indicates that the current value should not * be changed. * */ static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_rtoinfo rtoinfo; struct sctp_association *asoc; if (len < sizeof (struct sctp_rtoinfo)) return -EINVAL; len = sizeof(struct sctp_rtoinfo); if (copy_from_user(&rtoinfo, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; /* Values corresponding to the specific association. */ if (asoc) { rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); } else { /* Values corresponding to the endpoint. */ struct sctp_sock *sp = sctp_sk(sk); rtoinfo.srto_initial = sp->rtoinfo.srto_initial; rtoinfo.srto_max = sp->rtoinfo.srto_max; rtoinfo.srto_min = sp->rtoinfo.srto_min; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &rtoinfo, len)) return -EFAULT; return 0; } /* * * 7.1.2 SCTP_ASSOCINFO * * This option is used to tune the maximum retransmission attempts * of the association. * Returns an error if the new association retransmission value is * greater than the sum of the retransmission value of the peer. * See [SCTP] for more information. * */ static int sctp_getsockopt_associnfo(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assocparams assocparams; struct sctp_association *asoc; struct list_head *pos; int cnt = 0; if (len < sizeof (struct sctp_assocparams)) return -EINVAL; len = sizeof(struct sctp_assocparams); if (copy_from_user(&assocparams, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; /* Values correspoinding to the specific association */ if (asoc) { assocparams.sasoc_asocmaxrxt = asoc->max_retrans; assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; assocparams.sasoc_local_rwnd = asoc->a_rwnd; assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); list_for_each(pos, &asoc->peer.transport_addr_list) { cnt++; } assocparams.sasoc_number_peer_destinations = cnt; } else { /* Values corresponding to the endpoint */ struct sctp_sock *sp = sctp_sk(sk); assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; assocparams.sasoc_cookie_life = sp->assocparams.sasoc_cookie_life; assocparams.sasoc_number_peer_destinations = sp->assocparams. sasoc_number_peer_destinations; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &assocparams, len)) return -EFAULT; return 0; } /* * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) * * This socket option is a boolean flag which turns on or off mapped V4 * addresses. If this option is turned on and the socket is type * PF_INET6, then IPv4 addresses will be mapped to V6 representation. * If this option is turned off, then no mapping will be done of V4 * addresses and a user will receive both PF_INET6 and PF_INET type * addresses on the socket. */ static int sctp_getsockopt_mappedv4(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val; struct sctp_sock *sp = sctp_sk(sk); if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = sp->v4mapped; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* * 7.1.29. Set or Get the default context (SCTP_CONTEXT) * (chapter and verse is quoted at sctp_setsockopt_context()) */ static int sctp_getsockopt_context(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; if (len < sizeof(struct sctp_assoc_value)) return -EINVAL; len = sizeof(struct sctp_assoc_value); if (copy_from_user(¶ms, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; params.assoc_value = asoc ? asoc->default_rcv_context : sctp_sk(sk)->default_rcv_context; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, ¶ms, len)) return -EFAULT; return 0; } /* * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) * This option will get or set the maximum size to put in any outgoing * SCTP DATA chunk. If a message is larger than this size it will be * fragmented by SCTP into the specified size. Note that the underlying * SCTP implementation may fragment into smaller sized chunks when the * PMTU of the underlying association is smaller than the value set by * the user. The default value for this option is '0' which indicates * the user is NOT limiting fragmentation and only the PMTU will effect * SCTP's choice of DATA chunk size. Note also that values set larger * than the maximum size of an IP datagram will effectively let SCTP * control fragmentation (i.e. the same as setting this option to 0). * * The following structure is used to access and modify this parameter: * * struct sctp_assoc_value { * sctp_assoc_t assoc_id; * uint32_t assoc_value; * }; * * assoc_id: This parameter is ignored for one-to-one style sockets. * For one-to-many style sockets this parameter indicates which * association the user is performing an action upon. Note that if * this field's value is zero then the endpoints default value is * changed (effecting future associations only). * assoc_value: This parameter specifies the maximum size in bytes. */ static int sctp_getsockopt_maxseg(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; if (len == sizeof(int)) { pr_warn_ratelimited(DEPRECATED "%s (pid %d) " "Use of int in maxseg socket option.\n" "Use struct sctp_assoc_value instead\n", current->comm, task_pid_nr(current)); params.assoc_id = SCTP_FUTURE_ASSOC; } else if (len >= sizeof(struct sctp_assoc_value)) { len = sizeof(struct sctp_assoc_value); if (copy_from_user(¶ms, optval, len)) return -EFAULT; } else return -EINVAL; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) params.assoc_value = asoc->frag_point; else params.assoc_value = sctp_sk(sk)->user_frag; if (put_user(len, optlen)) return -EFAULT; if (len == sizeof(int)) { if (copy_to_user(optval, ¶ms.assoc_value, len)) return -EFAULT; } else { if (copy_to_user(optval, ¶ms, len)) return -EFAULT; } return 0; } /* * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) */ static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = sctp_sk(sk)->frag_interleave; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* * 7.1.25. Set or Get the sctp partial delivery point * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) */ static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, char __user *optval, int __user *optlen) { u32 val; if (len < sizeof(u32)) return -EINVAL; len = sizeof(u32); val = sctp_sk(sk)->pd_point; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) * (chapter and verse is quoted at sctp_setsockopt_maxburst()) */ static int sctp_getsockopt_maxburst(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; if (len == sizeof(int)) { pr_warn_ratelimited(DEPRECATED "%s (pid %d) " "Use of int in max_burst socket option.\n" "Use struct sctp_assoc_value instead\n", current->comm, task_pid_nr(current)); params.assoc_id = SCTP_FUTURE_ASSOC; } else if (len >= sizeof(struct sctp_assoc_value)) { len = sizeof(struct sctp_assoc_value); if (copy_from_user(¶ms, optval, len)) return -EFAULT; } else return -EINVAL; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; if (len == sizeof(int)) { if (copy_to_user(optval, ¶ms.assoc_value, len)) return -EFAULT; } else { if (copy_to_user(optval, ¶ms, len)) return -EFAULT; } return 0; } static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_hmacalgo __user *p = (void __user *)optval; struct sctp_hmac_algo_param *hmacs; __u16 data_len = 0; u32 num_idents; int i; if (!ep->auth_enable) return -EACCES; hmacs = ep->auth_hmacs_list; data_len = ntohs(hmacs->param_hdr.length) - sizeof(struct sctp_paramhdr); if (len < sizeof(struct sctp_hmacalgo) + data_len) return -EINVAL; len = sizeof(struct sctp_hmacalgo) + data_len; num_idents = data_len / sizeof(u16); if (put_user(len, optlen)) return -EFAULT; if (put_user(num_idents, &p->shmac_num_idents)) return -EFAULT; for (i = 0; i < num_idents; i++) { __u16 hmacid = ntohs(hmacs->hmac_ids[i]); if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) return -EFAULT; } return 0; } static int sctp_getsockopt_active_key(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_authkeyid val; struct sctp_association *asoc; if (len < sizeof(struct sctp_authkeyid)) return -EINVAL; len = sizeof(struct sctp_authkeyid); if (copy_from_user(&val, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, val.scact_assoc_id); if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { if (!asoc->peer.auth_capable) return -EACCES; val.scact_keynumber = asoc->active_key_id; } else { if (!ep->auth_enable) return -EACCES; val.scact_keynumber = ep->active_key_id; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_authchunks __user *p = (void __user *)optval; struct sctp_authchunks val; struct sctp_association *asoc; struct sctp_chunks_param *ch; u32 num_chunks = 0; char __user *to; if (len < sizeof(struct sctp_authchunks)) return -EINVAL; if (copy_from_user(&val, optval, sizeof(val))) return -EFAULT; to = p->gauth_chunks; asoc = sctp_id2assoc(sk, val.gauth_assoc_id); if (!asoc) return -EINVAL; if (!asoc->peer.auth_capable) return -EACCES; ch = asoc->peer.peer_chunks; if (!ch) goto num; /* See if the user provided enough room for all the data */ num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); if (len < num_chunks) return -EINVAL; if (copy_to_user(to, ch->chunks, num_chunks)) return -EFAULT; num: len = sizeof(struct sctp_authchunks) + num_chunks; if (put_user(len, optlen)) return -EFAULT; if (put_user(num_chunks, &p->gauth_number_of_chunks)) return -EFAULT; return 0; } static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_endpoint *ep = sctp_sk(sk)->ep; struct sctp_authchunks __user *p = (void __user *)optval; struct sctp_authchunks val; struct sctp_association *asoc; struct sctp_chunks_param *ch; u32 num_chunks = 0; char __user *to; if (len < sizeof(struct sctp_authchunks)) return -EINVAL; if (copy_from_user(&val, optval, sizeof(val))) return -EFAULT; to = p->gauth_chunks; asoc = sctp_id2assoc(sk, val.gauth_assoc_id); if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { if (!asoc->peer.auth_capable) return -EACCES; ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; } else { if (!ep->auth_enable) return -EACCES; ch = ep->auth_chunk_list; } if (!ch) goto num; num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); if (len < sizeof(struct sctp_authchunks) + num_chunks) return -EINVAL; if (copy_to_user(to, ch->chunks, num_chunks)) return -EFAULT; num: len = sizeof(struct sctp_authchunks) + num_chunks; if (put_user(len, optlen)) return -EFAULT; if (put_user(num_chunks, &p->gauth_number_of_chunks)) return -EFAULT; return 0; } /* * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) * This option gets the current number of associations that are attached * to a one-to-many style socket. The option value is an uint32_t. */ static int sctp_getsockopt_assoc_number(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; u32 val = 0; if (sctp_style(sk, TCP)) return -EOPNOTSUPP; if (len < sizeof(u32)) return -EINVAL; len = sizeof(u32); list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { val++; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* * 8.1.23 SCTP_AUTO_ASCONF * See the corresponding setsockopt entry as description */ static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val = 0; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) val = 1; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* * 8.2.6. Get the Current Identifiers of Associations * (SCTP_GET_ASSOC_ID_LIST) * * This option gets the current list of SCTP association identifiers of * the SCTP associations handled by a one-to-many style socket. */ static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_association *asoc; struct sctp_assoc_ids *ids; size_t ids_size; u32 num = 0; if (sctp_style(sk, TCP)) return -EOPNOTSUPP; if (len < sizeof(struct sctp_assoc_ids)) return -EINVAL; list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { num++; } ids_size = struct_size(ids, gaids_assoc_id, num); if (len < ids_size) return -EINVAL; len = ids_size; ids = kmalloc(len, GFP_USER | __GFP_NOWARN); if (unlikely(!ids)) return -ENOMEM; ids->gaids_number_of_ids = num; num = 0; list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { ids->gaids_assoc_id[num++] = asoc->assoc_id; } if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { kfree(ids); return -EFAULT; } kfree(ids); return 0; } /* * SCTP_PEER_ADDR_THLDS * * This option allows us to fetch the partially failed threshold for one or all * transports in an association. See Section 6.1 of: * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt */ static int sctp_getsockopt_paddr_thresholds(struct sock *sk, char __user *optval, int len, int __user *optlen, bool v2) { struct sctp_paddrthlds_v2 val; struct sctp_transport *trans; struct sctp_association *asoc; int min; min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); if (len < min) return -EINVAL; len = min; if (copy_from_user(&val, optval, len)) return -EFAULT; if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { trans = sctp_addr_id2transport(sk, &val.spt_address, val.spt_assoc_id); if (!trans) return -ENOENT; val.spt_pathmaxrxt = trans->pathmaxrxt; val.spt_pathpfthld = trans->pf_retrans; val.spt_pathcpthld = trans->ps_retrans; goto out; } asoc = sctp_id2assoc(sk, val.spt_assoc_id); if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { val.spt_pathpfthld = asoc->pf_retrans; val.spt_pathmaxrxt = asoc->pathmaxrxt; val.spt_pathcpthld = asoc->ps_retrans; } else { struct sctp_sock *sp = sctp_sk(sk); val.spt_pathpfthld = sp->pf_retrans; val.spt_pathmaxrxt = sp->pathmaxrxt; val.spt_pathcpthld = sp->ps_retrans; } out: if (put_user(len, optlen) || copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* * SCTP_GET_ASSOC_STATS * * This option retrieves local per endpoint statistics. It is modeled * after OpenSolaris' implementation */ static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_stats sas; struct sctp_association *asoc = NULL; /* User must provide at least the assoc id */ if (len < sizeof(sctp_assoc_t)) return -EINVAL; /* Allow the struct to grow and fill in as much as possible */ len = min_t(size_t, len, sizeof(sas)); if (copy_from_user(&sas, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, sas.sas_assoc_id); if (!asoc) return -EINVAL; sas.sas_rtxchunks = asoc->stats.rtxchunks; sas.sas_gapcnt = asoc->stats.gapcnt; sas.sas_outofseqtsns = asoc->stats.outofseqtsns; sas.sas_osacks = asoc->stats.osacks; sas.sas_isacks = asoc->stats.isacks; sas.sas_octrlchunks = asoc->stats.octrlchunks; sas.sas_ictrlchunks = asoc->stats.ictrlchunks; sas.sas_oodchunks = asoc->stats.oodchunks; sas.sas_iodchunks = asoc->stats.iodchunks; sas.sas_ouodchunks = asoc->stats.ouodchunks; sas.sas_iuodchunks = asoc->stats.iuodchunks; sas.sas_idupchunks = asoc->stats.idupchunks; sas.sas_opackets = asoc->stats.opackets; sas.sas_ipackets = asoc->stats.ipackets; /* New high max rto observed, will return 0 if not a single * RTO update took place. obs_rto_ipaddr will be bogus * in such a case */ sas.sas_maxrto = asoc->stats.max_obs_rto; memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, sizeof(struct sockaddr_storage)); /* Mark beginning of a new observation period */ asoc->stats.max_obs_rto = asoc->rto_min; if (put_user(len, optlen)) return -EFAULT; pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); if (copy_to_user(optval, &sas, len)) return -EFAULT; return 0; } static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val = 0; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); if (sctp_sk(sk)->recvrcvinfo) val = 1; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val = 0; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); if (sctp_sk(sk)->recvnxtinfo) val = 1; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } static int sctp_getsockopt_pr_supported(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; int retval = -EFAULT; if (len < sizeof(params)) { retval = -EINVAL; goto out; } len = sizeof(params); if (copy_from_user(¶ms, optval, len)) goto out; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) { retval = -EINVAL; goto out; } params.assoc_value = asoc ? asoc->peer.prsctp_capable : sctp_sk(sk)->ep->prsctp_enable; if (put_user(len, optlen)) goto out; if (copy_to_user(optval, ¶ms, len)) goto out; retval = 0; out: return retval; } static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_default_prinfo info; struct sctp_association *asoc; int retval = -EFAULT; if (len < sizeof(info)) { retval = -EINVAL; goto out; } len = sizeof(info); if (copy_from_user(&info, optval, len)) goto out; asoc = sctp_id2assoc(sk, info.pr_assoc_id); if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) { retval = -EINVAL; goto out; } if (asoc) { info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); info.pr_value = asoc->default_timetolive; } else { struct sctp_sock *sp = sctp_sk(sk); info.pr_policy = SCTP_PR_POLICY(sp->default_flags); info.pr_value = sp->default_timetolive; } if (put_user(len, optlen)) goto out; if (copy_to_user(optval, &info, len)) goto out; retval = 0; out: return retval; } static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_prstatus params; struct sctp_association *asoc; int policy; int retval = -EINVAL; if (len < sizeof(params)) goto out; len = sizeof(params); if (copy_from_user(¶ms, optval, len)) { retval = -EFAULT; goto out; } policy = params.sprstat_policy; if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) goto out; asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); if (!asoc) goto out; if (policy == SCTP_PR_SCTP_ALL) { params.sprstat_abandoned_unsent = 0; params.sprstat_abandoned_sent = 0; for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { params.sprstat_abandoned_unsent += asoc->abandoned_unsent[policy]; params.sprstat_abandoned_sent += asoc->abandoned_sent[policy]; } } else { params.sprstat_abandoned_unsent = asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; params.sprstat_abandoned_sent = asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; } if (put_user(len, optlen)) { retval = -EFAULT; goto out; } if (copy_to_user(optval, ¶ms, len)) { retval = -EFAULT; goto out; } retval = 0; out: return retval; } static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_stream_out_ext *streamoute; struct sctp_association *asoc; struct sctp_prstatus params; int retval = -EINVAL; int policy; if (len < sizeof(params)) goto out; len = sizeof(params); if (copy_from_user(¶ms, optval, len)) { retval = -EFAULT; goto out; } policy = params.sprstat_policy; if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) goto out; asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) goto out; streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; if (!streamoute) { /* Not allocated yet, means all stats are 0 */ params.sprstat_abandoned_unsent = 0; params.sprstat_abandoned_sent = 0; retval = 0; goto out; } if (policy == SCTP_PR_SCTP_ALL) { params.sprstat_abandoned_unsent = 0; params.sprstat_abandoned_sent = 0; for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { params.sprstat_abandoned_unsent += streamoute->abandoned_unsent[policy]; params.sprstat_abandoned_sent += streamoute->abandoned_sent[policy]; } } else { params.sprstat_abandoned_unsent = streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; params.sprstat_abandoned_sent = streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; } if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { retval = -EFAULT; goto out; } retval = 0; out: return retval; } static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; int retval = -EFAULT; if (len < sizeof(params)) { retval = -EINVAL; goto out; } len = sizeof(params); if (copy_from_user(¶ms, optval, len)) goto out; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) { retval = -EINVAL; goto out; } params.assoc_value = asoc ? asoc->peer.reconf_capable : sctp_sk(sk)->ep->reconf_enable; if (put_user(len, optlen)) goto out; if (copy_to_user(optval, ¶ms, len)) goto out; retval = 0; out: return retval; } static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; int retval = -EFAULT; if (len < sizeof(params)) { retval = -EINVAL; goto out; } len = sizeof(params); if (copy_from_user(¶ms, optval, len)) goto out; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) { retval = -EINVAL; goto out; } params.assoc_value = asoc ? asoc->strreset_enable : sctp_sk(sk)->ep->strreset_enable; if (put_user(len, optlen)) goto out; if (copy_to_user(optval, ¶ms, len)) goto out; retval = 0; out: return retval; } static int sctp_getsockopt_scheduler(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; int retval = -EFAULT; if (len < sizeof(params)) { retval = -EINVAL; goto out; } len = sizeof(params); if (copy_from_user(¶ms, optval, len)) goto out; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) { retval = -EINVAL; goto out; } params.assoc_value = asoc ? sctp_sched_get_sched(asoc) : sctp_sk(sk)->default_ss; if (put_user(len, optlen)) goto out; if (copy_to_user(optval, ¶ms, len)) goto out; retval = 0; out: return retval; } static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_stream_value params; struct sctp_association *asoc; int retval = -EFAULT; if (len < sizeof(params)) { retval = -EINVAL; goto out; } len = sizeof(params); if (copy_from_user(¶ms, optval, len)) goto out; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc) { retval = -EINVAL; goto out; } retval = sctp_sched_get_value(asoc, params.stream_id, ¶ms.stream_value); if (retval) goto out; if (put_user(len, optlen)) { retval = -EFAULT; goto out; } if (copy_to_user(optval, ¶ms, len)) { retval = -EFAULT; goto out; } out: return retval; } static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; int retval = -EFAULT; if (len < sizeof(params)) { retval = -EINVAL; goto out; } len = sizeof(params); if (copy_from_user(¶ms, optval, len)) goto out; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) { retval = -EINVAL; goto out; } params.assoc_value = asoc ? asoc->peer.intl_capable : sctp_sk(sk)->ep->intl_enable; if (put_user(len, optlen)) goto out; if (copy_to_user(optval, ¶ms, len)) goto out; retval = 0; out: return retval; } static int sctp_getsockopt_reuse_port(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = sctp_sk(sk)->reuse; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_association *asoc; struct sctp_event param; __u16 subscribe; if (len < sizeof(param)) return -EINVAL; len = sizeof(param); if (copy_from_user(¶m, optval, len)) return -EFAULT; if (param.se_type < SCTP_SN_TYPE_BASE || param.se_type > SCTP_SN_TYPE_MAX) return -EINVAL; asoc = sctp_id2assoc(sk, param.se_assoc_id); if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) return -EINVAL; subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, ¶m, len)) return -EFAULT; return 0; } static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; int retval = -EFAULT; if (len < sizeof(params)) { retval = -EINVAL; goto out; } len = sizeof(params); if (copy_from_user(¶ms, optval, len)) goto out; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) { retval = -EINVAL; goto out; } params.assoc_value = asoc ? asoc->peer.asconf_capable : sctp_sk(sk)->ep->asconf_enable; if (put_user(len, optlen)) goto out; if (copy_to_user(optval, ¶ms, len)) goto out; retval = 0; out: return retval; } static int sctp_getsockopt_auth_supported(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; int retval = -EFAULT; if (len < sizeof(params)) { retval = -EINVAL; goto out; } len = sizeof(params); if (copy_from_user(¶ms, optval, len)) goto out; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) { retval = -EINVAL; goto out; } params.assoc_value = asoc ? asoc->peer.auth_capable : sctp_sk(sk)->ep->auth_enable; if (put_user(len, optlen)) goto out; if (copy_to_user(optval, ¶ms, len)) goto out; retval = 0; out: return retval; } static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; int retval = -EFAULT; if (len < sizeof(params)) { retval = -EINVAL; goto out; } len = sizeof(params); if (copy_from_user(¶ms, optval, len)) goto out; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) { retval = -EINVAL; goto out; } params.assoc_value = asoc ? asoc->peer.ecn_capable : sctp_sk(sk)->ep->ecn_enable; if (put_user(len, optlen)) goto out; if (copy_to_user(optval, ¶ms, len)) goto out; retval = 0; out: return retval; } static int sctp_getsockopt_pf_expose(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_association *asoc; int retval = -EFAULT; if (len < sizeof(params)) { retval = -EINVAL; goto out; } len = sizeof(params); if (copy_from_user(¶ms, optval, len)) goto out; asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) { retval = -EINVAL; goto out; } params.assoc_value = asoc ? asoc->pf_expose : sctp_sk(sk)->pf_expose; if (put_user(len, optlen)) goto out; if (copy_to_user(optval, ¶ms, len)) goto out; retval = 0; out: return retval; } static int sctp_getsockopt_encap_port(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_association *asoc; struct sctp_udpencaps encap; struct sctp_transport *t; __be16 encap_port; if (len < sizeof(encap)) return -EINVAL; len = sizeof(encap); if (copy_from_user(&encap, optval, len)) return -EFAULT; /* If an address other than INADDR_ANY is specified, and * no transport is found, then the request is invalid. */ if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) { t = sctp_addr_id2transport(sk, &encap.sue_address, encap.sue_assoc_id); if (!t) { pr_debug("%s: failed no transport\n", __func__); return -EINVAL; } encap_port = t->encap_port; goto out; } /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the * socket is a one to many style socket, and an association * was not found, then the id was invalid. */ asoc = sctp_id2assoc(sk, encap.sue_assoc_id); if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) { pr_debug("%s: failed no association\n", __func__); return -EINVAL; } if (asoc) { encap_port = asoc->encap_port; goto out; } encap_port = sctp_sk(sk)->encap_port; out: encap.sue_port = (__force uint16_t)encap_port; if (copy_to_user(optval, &encap, len)) return -EFAULT; if (put_user(len, optlen)) return -EFAULT; return 0; } static int sctp_getsockopt_probe_interval(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_probeinterval params; struct sctp_association *asoc; struct sctp_transport *t; __u32 probe_interval; if (len < sizeof(params)) return -EINVAL; len = sizeof(params); if (copy_from_user(¶ms, optval, len)) return -EFAULT; /* If an address other than INADDR_ANY is specified, and * no transport is found, then the request is invalid. */ if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spi_address)) { t = sctp_addr_id2transport(sk, ¶ms.spi_address, params.spi_assoc_id); if (!t) { pr_debug("%s: failed no transport\n", __func__); return -EINVAL; } probe_interval = jiffies_to_msecs(t->probe_interval); goto out; } /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the * socket is a one to many style socket, and an association * was not found, then the id was invalid. */ asoc = sctp_id2assoc(sk, params.spi_assoc_id); if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) { pr_debug("%s: failed no association\n", __func__); return -EINVAL; } if (asoc) { probe_interval = jiffies_to_msecs(asoc->probe_interval); goto out; } probe_interval = sctp_sk(sk)->probe_interval; out: params.spi_interval = probe_interval; if (copy_to_user(optval, ¶ms, len)) return -EFAULT; if (put_user(len, optlen)) return -EFAULT; return 0; } static int sctp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { int retval = 0; int len; pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); /* I can hardly begin to describe how wrong this is. This is * so broken as to be worse than useless. The API draft * REALLY is NOT helpful here... I am not convinced that the * semantics of getsockopt() with a level OTHER THAN SOL_SCTP * are at all well-founded. */ if (level != SOL_SCTP) { struct sctp_af *af = sctp_sk(sk)->pf->af; retval = af->getsockopt(sk, level, optname, optval, optlen); return retval; } if (get_user(len, optlen)) return -EFAULT; if (len < 0) return -EINVAL; lock_sock(sk); switch (optname) { case SCTP_STATUS: retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); break; case SCTP_DISABLE_FRAGMENTS: retval = sctp_getsockopt_disable_fragments(sk, len, optval, optlen); break; case SCTP_EVENTS: retval = sctp_getsockopt_events(sk, len, optval, optlen); break; case SCTP_AUTOCLOSE: retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); break; case SCTP_SOCKOPT_PEELOFF: retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); break; case SCTP_SOCKOPT_PEELOFF_FLAGS: retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); break; case SCTP_PEER_ADDR_PARAMS: retval = sctp_getsockopt_peer_addr_params(sk, len, optval, optlen); break; case SCTP_DELAYED_SACK: retval = sctp_getsockopt_delayed_ack(sk, len, optval, optlen); break; case SCTP_INITMSG: retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); break; case SCTP_GET_PEER_ADDRS: retval = sctp_getsockopt_peer_addrs(sk, len, optval, optlen); break; case SCTP_GET_LOCAL_ADDRS: retval = sctp_getsockopt_local_addrs(sk, len, optval, optlen); break; case SCTP_SOCKOPT_CONNECTX3: retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); break; case SCTP_DEFAULT_SEND_PARAM: retval = sctp_getsockopt_default_send_param(sk, len, optval, optlen); break; case SCTP_DEFAULT_SNDINFO: retval = sctp_getsockopt_default_sndinfo(sk, len, optval, optlen); break; case SCTP_PRIMARY_ADDR: retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); break; case SCTP_NODELAY: retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); break; case SCTP_RTOINFO: retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); break; case SCTP_ASSOCINFO: retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); break; case SCTP_I_WANT_MAPPED_V4_ADDR: retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); break; case SCTP_MAXSEG: retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); break; case SCTP_GET_PEER_ADDR_INFO: retval = sctp_getsockopt_peer_addr_info(sk, len, optval, optlen); break; case SCTP_ADAPTATION_LAYER: retval = sctp_getsockopt_adaptation_layer(sk, len, optval, optlen); break; case SCTP_CONTEXT: retval = sctp_getsockopt_context(sk, len, optval, optlen); break; case SCTP_FRAGMENT_INTERLEAVE: retval = sctp_getsockopt_fragment_interleave(sk, len, optval, optlen); break; case SCTP_PARTIAL_DELIVERY_POINT: retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, optlen); break; case SCTP_MAX_BURST: retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); break; case SCTP_AUTH_KEY: case SCTP_AUTH_CHUNK: case SCTP_AUTH_DELETE_KEY: case SCTP_AUTH_DEACTIVATE_KEY: retval = -EOPNOTSUPP; break; case SCTP_HMAC_IDENT: retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); break; case SCTP_AUTH_ACTIVE_KEY: retval = sctp_getsockopt_active_key(sk, len, optval, optlen); break; case SCTP_PEER_AUTH_CHUNKS: retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, optlen); break; case SCTP_LOCAL_AUTH_CHUNKS: retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, optlen); break; case SCTP_GET_ASSOC_NUMBER: retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); break; case SCTP_GET_ASSOC_ID_LIST: retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); break; case SCTP_AUTO_ASCONF: retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); break; case SCTP_PEER_ADDR_THLDS: retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen, false); break; case SCTP_PEER_ADDR_THLDS_V2: retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen, true); break; case SCTP_GET_ASSOC_STATS: retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); break; case SCTP_RECVRCVINFO: retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); break; case SCTP_RECVNXTINFO: retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); break; case SCTP_PR_SUPPORTED: retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); break; case SCTP_DEFAULT_PRINFO: retval = sctp_getsockopt_default_prinfo(sk, len, optval, optlen); break; case SCTP_PR_ASSOC_STATUS: retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, optlen); break; case SCTP_PR_STREAM_STATUS: retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, optlen); break; case SCTP_RECONFIG_SUPPORTED: retval = sctp_getsockopt_reconfig_supported(sk, len, optval, optlen); break; case SCTP_ENABLE_STREAM_RESET: retval = sctp_getsockopt_enable_strreset(sk, len, optval, optlen); break; case SCTP_STREAM_SCHEDULER: retval = sctp_getsockopt_scheduler(sk, len, optval, optlen); break; case SCTP_STREAM_SCHEDULER_VALUE: retval = sctp_getsockopt_scheduler_value(sk, len, optval, optlen); break; case SCTP_INTERLEAVING_SUPPORTED: retval = sctp_getsockopt_interleaving_supported(sk, len, optval, optlen); break; case SCTP_REUSE_PORT: retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); break; case SCTP_EVENT: retval = sctp_getsockopt_event(sk, len, optval, optlen); break; case SCTP_ASCONF_SUPPORTED: retval = sctp_getsockopt_asconf_supported(sk, len, optval, optlen); break; case SCTP_AUTH_SUPPORTED: retval = sctp_getsockopt_auth_supported(sk, len, optval, optlen); break; case SCTP_ECN_SUPPORTED: retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); break; case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); break; case SCTP_REMOTE_UDP_ENCAPS_PORT: retval = sctp_getsockopt_encap_port(sk, len, optval, optlen); break; case SCTP_PLPMTUD_PROBE_INTERVAL: retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen); break; default: retval = -ENOPROTOOPT; break; } release_sock(sk); return retval; } static bool sctp_bpf_bypass_getsockopt(int level, int optname) { if (level == SOL_SCTP) { switch (optname) { case SCTP_SOCKOPT_PEELOFF: case SCTP_SOCKOPT_PEELOFF_FLAGS: case SCTP_SOCKOPT_CONNECTX3: return true; default: return false; } } return false; } static int sctp_hash(struct sock *sk) { /* STUB */ return 0; } static void sctp_unhash(struct sock *sk) { /* STUB */ } /* Check if port is acceptable. Possibly find first available port. * * The port hash table (contained in the 'global' SCTP protocol storage * returned by struct sctp_protocol *sctp_get_protocol()). The hash * table is an array of 4096 lists (sctp_bind_hashbucket). Each * list (the list number is the port number hashed out, so as you * would expect from a hash function, all the ports in a given list have * such a number that hashes out to the same list number; you were * expecting that, right?); so each list has a set of ports, with a * link to the socket (struct sock) that uses it, the port number and * a fastreuse flag (FIXME: NPI ipg). */ static struct sctp_bind_bucket *sctp_bucket_create( struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) { struct sctp_sock *sp = sctp_sk(sk); bool reuse = (sk->sk_reuse || sp->reuse); struct sctp_bind_hashbucket *head; /* hash list */ struct net *net = sock_net(sk); kuid_t uid = sock_i_uid(sk); struct sctp_bind_bucket *pp; unsigned short snum; int ret; snum = ntohs(addr->v4.sin_port); pr_debug("%s: begins, snum:%d\n", __func__, snum); if (snum == 0) { /* Search for an available port. */ int low, high, remaining, index; unsigned int rover; inet_sk_get_local_port_range(sk, &low, &high); remaining = (high - low) + 1; rover = get_random_u32_below(remaining) + low; do { rover++; if ((rover < low) || (rover > high)) rover = low; if (inet_is_local_reserved_port(net, rover)) continue; index = sctp_phashfn(net, rover); head = &sctp_port_hashtable[index]; spin_lock_bh(&head->lock); sctp_for_each_hentry(pp, &head->chain) if ((pp->port == rover) && net_eq(net, pp->net)) goto next; break; next: spin_unlock_bh(&head->lock); cond_resched(); } while (--remaining > 0); /* Exhausted local port range during search? */ ret = 1; if (remaining <= 0) return ret; /* OK, here is the one we will use. HEAD (the port * hash table list entry) is non-NULL and we hold it's * mutex. */ snum = rover; } else { /* We are given an specific port number; we verify * that it is not being used. If it is used, we will * exahust the search in the hash list corresponding * to the port number (snum) - we detect that with the * port iterator, pp being NULL. */ head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; spin_lock_bh(&head->lock); sctp_for_each_hentry(pp, &head->chain) { if ((pp->port == snum) && net_eq(pp->net, net)) goto pp_found; } } pp = NULL; goto pp_not_found; pp_found: if (!hlist_empty(&pp->owner)) { /* We had a port hash table hit - there is an * available port (pp != NULL) and it is being * used by other socket (pp->owner not empty); that other * socket is going to be sk2. */ struct sock *sk2; pr_debug("%s: found a possible match\n", __func__); if ((pp->fastreuse && reuse && sk->sk_state != SCTP_SS_LISTENING) || (pp->fastreuseport && sk->sk_reuseport && uid_eq(pp->fastuid, uid))) goto success; /* Run through the list of sockets bound to the port * (pp->port) [via the pointers bind_next and * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, * we get the endpoint they describe and run through * the endpoint's list of IP (v4 or v6) addresses, * comparing each of the addresses with the address of * the socket sk. If we find a match, then that means * that this port/socket (sk) combination are already * in an endpoint. */ sk_for_each_bound(sk2, &pp->owner) { int bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if); struct sctp_sock *sp2 = sctp_sk(sk2); struct sctp_endpoint *ep2 = sp2->ep; if (sk == sk2 || (reuse && (sk2->sk_reuse || sp2->reuse) && sk2->sk_state != SCTP_SS_LISTENING) || (sk->sk_reuseport && sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)))) continue; if ((!sk->sk_bound_dev_if || !bound_dev_if2 || sk->sk_bound_dev_if == bound_dev_if2) && sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, sp2, sp)) { ret = 1; goto fail_unlock; } } pr_debug("%s: found a match\n", __func__); } pp_not_found: /* If there was a hash table miss, create a new port. */ ret = 1; if (!pp && !(pp = sctp_bucket_create(head, net, snum))) goto fail_unlock; /* In either case (hit or miss), make sure fastreuse is 1 only * if sk->sk_reuse is too (that is, if the caller requested * SO_REUSEADDR on this socket -sk-). */ if (hlist_empty(&pp->owner)) { if (reuse && sk->sk_state != SCTP_SS_LISTENING) pp->fastreuse = 1; else pp->fastreuse = 0; if (sk->sk_reuseport) { pp->fastreuseport = 1; pp->fastuid = uid; } else { pp->fastreuseport = 0; } } else { if (pp->fastreuse && (!reuse || sk->sk_state == SCTP_SS_LISTENING)) pp->fastreuse = 0; if (pp->fastreuseport && (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) pp->fastreuseport = 0; } /* We are set, so fill up all the data in the hash table * entry, tie the socket list information with the rest of the * sockets FIXME: Blurry, NPI (ipg). */ success: if (!sp->bind_hash) { inet_sk(sk)->inet_num = snum; sk_add_bind_node(sk, &pp->owner); sp->bind_hash = pp; } ret = 0; fail_unlock: spin_unlock_bh(&head->lock); return ret; } /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral * port is requested. */ static int sctp_get_port(struct sock *sk, unsigned short snum) { union sctp_addr addr; struct sctp_af *af = sctp_sk(sk)->pf->af; /* Set up a dummy address struct from the sk. */ af->from_sk(&addr, sk); addr.v4.sin_port = htons(snum); /* Note: sk->sk_num gets filled in if ephemeral port request. */ return sctp_get_port_local(sk, &addr); } /* * Move a socket to LISTENING state. */ static int sctp_listen_start(struct sock *sk, int backlog) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_endpoint *ep = sp->ep; struct crypto_shash *tfm = NULL; char alg[32]; int err; /* Allocate HMAC for generating cookie. */ if (!sp->hmac && sp->sctp_hmac_alg) { sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); tfm = crypto_alloc_shash(alg, 0, 0); if (IS_ERR(tfm)) { net_info_ratelimited("failed to load transform for %s: %ld\n", sp->sctp_hmac_alg, PTR_ERR(tfm)); return -ENOSYS; } sctp_sk(sk)->hmac = tfm; } /* * If a bind() or sctp_bindx() is not called prior to a listen() * call that allows new associations to be accepted, the system * picks an ephemeral port and will choose an address set equivalent * to binding with a wildcard address. * * This is not currently spelled out in the SCTP sockets * extensions draft, but follows the practice as seen in TCP * sockets. * */ inet_sk_set_state(sk, SCTP_SS_LISTENING); if (!ep->base.bind_addr.port) { if (sctp_autobind(sk)) { err = -EAGAIN; goto err; } } else { if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { err = -EADDRINUSE; goto err; } } WRITE_ONCE(sk->sk_max_ack_backlog, backlog); err = sctp_hash_endpoint(ep); if (err) goto err; return 0; err: inet_sk_set_state(sk, SCTP_SS_CLOSED); return err; } /* * 4.1.3 / 5.1.3 listen() * * By default, new associations are not accepted for UDP style sockets. * An application uses listen() to mark a socket as being able to * accept new associations. * * On TCP style sockets, applications use listen() to ready the SCTP * endpoint for accepting inbound associations. * * On both types of endpoints a backlog of '0' disables listening. * * Move a socket to LISTENING state. */ int sctp_inet_listen(struct socket *sock, int backlog) { struct sock *sk = sock->sk; struct sctp_endpoint *ep = sctp_sk(sk)->ep; int err = -EINVAL; if (unlikely(backlog < 0)) return err; lock_sock(sk); /* Peeled-off sockets are not allowed to listen(). */ if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) goto out; if (sock->state != SS_UNCONNECTED) goto out; if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) goto out; /* If backlog is zero, disable listening. */ if (!backlog) { if (sctp_sstate(sk, CLOSED)) goto out; err = 0; sctp_unhash_endpoint(ep); sk->sk_state = SCTP_SS_CLOSED; if (sk->sk_reuse || sctp_sk(sk)->reuse) sctp_sk(sk)->bind_hash->fastreuse = 1; goto out; } /* If we are already listening, just update the backlog */ if (sctp_sstate(sk, LISTENING)) WRITE_ONCE(sk->sk_max_ack_backlog, backlog); else { err = sctp_listen_start(sk, backlog); if (err) goto out; } err = 0; out: release_sock(sk); return err; } /* * This function is done by modeling the current datagram_poll() and the * tcp_poll(). Note that, based on these implementations, we don't * lock the socket in this function, even though it seems that, * ideally, locking or some other mechanisms can be used to ensure * the integrity of the counters (sndbuf and wmem_alloc) used * in this place. We assume that we don't need locks either until proven * otherwise. * * Another thing to note is that we include the Async I/O support * here, again, by modeling the current TCP/UDP code. We don't have * a good way to test with it yet. */ __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; struct sctp_sock *sp = sctp_sk(sk); __poll_t mask; poll_wait(file, sk_sleep(sk), wait); sock_rps_record_flow(sk); /* A TCP-style listening socket becomes readable when the accept queue * is not empty. */ if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) return (!list_empty(&sp->ep->asocs)) ? (EPOLLIN | EPOLLRDNORM) : 0; mask = 0; /* Is there any exceptional events? */ if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) mask |= EPOLLERR | (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); if (sk->sk_shutdown & RCV_SHUTDOWN) mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; if (sk->sk_shutdown == SHUTDOWN_MASK) mask |= EPOLLHUP; /* Is it readable? Reconsider this code with TCP-style support. */ if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) mask |= EPOLLIN | EPOLLRDNORM; /* The association is either gone or not ready. */ if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) return mask; /* Is it writable? */ if (sctp_writeable(sk)) { mask |= EPOLLOUT | EPOLLWRNORM; } else { sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); /* * Since the socket is not locked, the buffer * might be made available after the writeable check and * before the bit is set. This could cause a lost I/O * signal. tcp_poll() has a race breaker for this race * condition. Based on their implementation, we put * in the following code to cover it as well. */ if (sctp_writeable(sk)) mask |= EPOLLOUT | EPOLLWRNORM; } return mask; } /******************************************************************** * 2nd Level Abstractions ********************************************************************/ static struct sctp_bind_bucket *sctp_bucket_create( struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) { struct sctp_bind_bucket *pp; pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); if (pp) { SCTP_DBG_OBJCNT_INC(bind_bucket); pp->port = snum; pp->fastreuse = 0; INIT_HLIST_HEAD(&pp->owner); pp->net = net; hlist_add_head(&pp->node, &head->chain); } return pp; } /* Caller must hold hashbucket lock for this tb with local BH disabled */ static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) { if (pp && hlist_empty(&pp->owner)) { __hlist_del(&pp->node); kmem_cache_free(sctp_bucket_cachep, pp); SCTP_DBG_OBJCNT_DEC(bind_bucket); } } /* Release this socket's reference to a local port. */ static inline void __sctp_put_port(struct sock *sk) { struct sctp_bind_hashbucket *head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), inet_sk(sk)->inet_num)]; struct sctp_bind_bucket *pp; spin_lock(&head->lock); pp = sctp_sk(sk)->bind_hash; __sk_del_bind_node(sk); sctp_sk(sk)->bind_hash = NULL; inet_sk(sk)->inet_num = 0; sctp_bucket_destroy(pp); spin_unlock(&head->lock); } void sctp_put_port(struct sock *sk) { local_bh_disable(); __sctp_put_port(sk); local_bh_enable(); } /* * The system picks an ephemeral port and choose an address set equivalent * to binding with a wildcard address. * One of those addresses will be the primary address for the association. * This automatically enables the multihoming capability of SCTP. */ static int sctp_autobind(struct sock *sk) { union sctp_addr autoaddr; struct sctp_af *af; __be16 port; /* Initialize a local sockaddr structure to INADDR_ANY. */ af = sctp_sk(sk)->pf->af; port = htons(inet_sk(sk)->inet_num); af->inaddr_any(&autoaddr, port); return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); } /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. * * From RFC 2292 * 4.2 The cmsghdr Structure * * * When ancillary data is sent or received, any number of ancillary data * objects can be specified by the msg_control and msg_controllen members of * the msghdr structure, because each object is preceded by * a cmsghdr structure defining the object's length (the cmsg_len member). * Historically Berkeley-derived implementations have passed only one object * at a time, but this API allows multiple objects to be * passed in a single call to sendmsg() or recvmsg(). The following example * shows two ancillary data objects in a control buffer. * * |<--------------------------- msg_controllen -------------------------->| * | | * * |<----- ancillary data object ----->|<----- ancillary data object ----->| * * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| * | | | * * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | * * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | * | | | | | * * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| * * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| * * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ * ^ * | * * msg_control * points here */ static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) { struct msghdr *my_msg = (struct msghdr *)msg; struct cmsghdr *cmsg; for_each_cmsghdr(cmsg, my_msg) { if (!CMSG_OK(my_msg, cmsg)) return -EINVAL; /* Should we parse this header or ignore? */ if (cmsg->cmsg_level != IPPROTO_SCTP) continue; /* Strictly check lengths following example in SCM code. */ switch (cmsg->cmsg_type) { case SCTP_INIT: /* SCTP Socket API Extension * 5.3.1 SCTP Initiation Structure (SCTP_INIT) * * This cmsghdr structure provides information for * initializing new SCTP associations with sendmsg(). * The SCTP_INITMSG socket option uses this same data * structure. This structure is not used for * recvmsg(). * * cmsg_level cmsg_type cmsg_data[] * ------------ ------------ ---------------------- * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg */ if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) return -EINVAL; cmsgs->init = CMSG_DATA(cmsg); break; case SCTP_SNDRCV: /* SCTP Socket API Extension * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) * * This cmsghdr structure specifies SCTP options for * sendmsg() and describes SCTP header information * about a received message through recvmsg(). * * cmsg_level cmsg_type cmsg_data[] * ------------ ------------ ---------------------- * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo */ if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) return -EINVAL; cmsgs->srinfo = CMSG_DATA(cmsg); if (cmsgs->srinfo->sinfo_flags & ~(SCTP_UNORDERED | SCTP_ADDR_OVER | SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) return -EINVAL; break; case SCTP_SNDINFO: /* SCTP Socket API Extension * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) * * This cmsghdr structure specifies SCTP options for * sendmsg(). This structure and SCTP_RCVINFO replaces * SCTP_SNDRCV which has been deprecated. * * cmsg_level cmsg_type cmsg_data[] * ------------ ------------ --------------------- * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo */ if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) return -EINVAL; cmsgs->sinfo = CMSG_DATA(cmsg); if (cmsgs->sinfo->snd_flags & ~(SCTP_UNORDERED | SCTP_ADDR_OVER | SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) return -EINVAL; break; case SCTP_PRINFO: /* SCTP Socket API Extension * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) * * This cmsghdr structure specifies SCTP options for sendmsg(). * * cmsg_level cmsg_type cmsg_data[] * ------------ ------------ --------------------- * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo */ if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) return -EINVAL; cmsgs->prinfo = CMSG_DATA(cmsg); if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) return -EINVAL; if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) cmsgs->prinfo->pr_value = 0; break; case SCTP_AUTHINFO: /* SCTP Socket API Extension * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) * * This cmsghdr structure specifies SCTP options for sendmsg(). * * cmsg_level cmsg_type cmsg_data[] * ------------ ------------ --------------------- * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo */ if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) return -EINVAL; cmsgs->authinfo = CMSG_DATA(cmsg); break; case SCTP_DSTADDRV4: case SCTP_DSTADDRV6: /* SCTP Socket API Extension * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) * * This cmsghdr structure specifies SCTP options for sendmsg(). * * cmsg_level cmsg_type cmsg_data[] * ------------ ------------ --------------------- * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr * ------------ ------------ --------------------- * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr */ cmsgs->addrs_msg = my_msg; break; default: return -EINVAL; } } return 0; } /* * Wait for a packet.. * Note: This function is the same function as in core/datagram.c * with a few modifications to make lksctp work. */ static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) { int error; DEFINE_WAIT(wait); prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); /* Socket errors? */ error = sock_error(sk); if (error) goto out; if (!skb_queue_empty(&sk->sk_receive_queue)) goto ready; /* Socket shut down? */ if (sk->sk_shutdown & RCV_SHUTDOWN) goto out; /* Sequenced packets can come disconnected. If so we report the * problem. */ error = -ENOTCONN; /* Is there a good reason to think that we may receive some data? */ if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) goto out; /* Handle signals. */ if (signal_pending(current)) goto interrupted; /* Let another process have a go. Since we are going to sleep * anyway. Note: This may cause odd behaviors if the message * does not fit in the user's buffer, but this seems to be the * only way to honor MSG_DONTWAIT realistically. */ release_sock(sk); *timeo_p = schedule_timeout(*timeo_p); lock_sock(sk); ready: finish_wait(sk_sleep(sk), &wait); return 0; interrupted: error = sock_intr_errno(*timeo_p); out: finish_wait(sk_sleep(sk), &wait); *err = error; return error; } /* Receive a datagram. * Note: This is pretty much the same routine as in core/datagram.c * with a few changes to make lksctp work. */ struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int *err) { int error; struct sk_buff *skb; long timeo; timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, MAX_SCHEDULE_TIMEOUT); do { /* Again only user level code calls this function, * so nothing interrupt level * will suddenly eat the receive_queue. * * Look at current nfs client by the way... * However, this function was correct in any case. 8) */ if (flags & MSG_PEEK) { skb = skb_peek(&sk->sk_receive_queue); if (skb) refcount_inc(&skb->users); } else { skb = __skb_dequeue(&sk->sk_receive_queue); } if (skb) return skb; /* Caller is allowed not to check sk->sk_err before calling. */ error = sock_error(sk); if (error) goto no_packet; if (sk->sk_shutdown & RCV_SHUTDOWN) break; /* User doesn't want to wait. */ error = -EAGAIN; if (!timeo) goto no_packet; } while (sctp_wait_for_packet(sk, err, &timeo) == 0); return NULL; no_packet: *err = error; return NULL; } /* If sndbuf has changed, wake up per association sndbuf waiters. */ static void __sctp_write_space(struct sctp_association *asoc) { struct sock *sk = asoc->base.sk; if (sctp_wspace(asoc) <= 0) return; if (waitqueue_active(&asoc->wait)) wake_up_interruptible(&asoc->wait); if (sctp_writeable(sk)) { struct socket_wq *wq; rcu_read_lock(); wq = rcu_dereference(sk->sk_wq); if (wq) { if (waitqueue_active(&wq->wait)) wake_up_interruptible(&wq->wait); /* Note that we try to include the Async I/O support * here by modeling from the current TCP/UDP code. * We have not tested with it yet. */ if (!(sk->sk_shutdown & SEND_SHUTDOWN)) sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); } rcu_read_unlock(); } } static void sctp_wake_up_waiters(struct sock *sk, struct sctp_association *asoc) { struct sctp_association *tmp = asoc; /* We do accounting for the sndbuf space per association, * so we only need to wake our own association. */ if (asoc->ep->sndbuf_policy) return __sctp_write_space(asoc); /* If association goes down and is just flushing its * outq, then just normally notify others. */ if (asoc->base.dead) return sctp_write_space(sk); /* Accounting for the sndbuf space is per socket, so we * need to wake up others, try to be fair and in case of * other associations, let them have a go first instead * of just doing a sctp_write_space() call. * * Note that we reach sctp_wake_up_waiters() only when * associations free up queued chunks, thus we are under * lock and the list of associations on a socket is * guaranteed not to change. */ for (tmp = list_next_entry(tmp, asocs); 1; tmp = list_next_entry(tmp, asocs)) { /* Manually skip the head element. */ if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) continue; /* Wake up association. */ __sctp_write_space(tmp); /* We've reached the end. */ if (tmp == asoc) break; } } /* Do accounting for the sndbuf space. * Decrement the used sndbuf space of the corresponding association by the * data size which was just transmitted(freed). */ static void sctp_wfree(struct sk_buff *skb) { struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; struct sctp_association *asoc = chunk->asoc; struct sock *sk = asoc->base.sk; sk_mem_uncharge(sk, skb->truesize); sk_wmem_queued_add(sk, -(skb->truesize + sizeof(struct sctp_chunk))); asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc)); if (chunk->shkey) { struct sctp_shared_key *shkey = chunk->shkey; /* refcnt == 2 and !list_empty mean after this release, it's * not being used anywhere, and it's time to notify userland * that this shkey can be freed if it's been deactivated. */ if (shkey->deactivated && !list_empty(&shkey->key_list) && refcount_read(&shkey->refcnt) == 2) { struct sctp_ulpevent *ev; ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, SCTP_AUTH_FREE_KEY, GFP_KERNEL); if (ev) asoc->stream.si->enqueue_event(&asoc->ulpq, ev); } sctp_auth_shkey_release(chunk->shkey); } sock_wfree(skb); sctp_wake_up_waiters(sk, asoc); sctp_association_put(asoc); } /* Do accounting for the receive space on the socket. * Accounting for the association is done in ulpevent.c * We set this as a destructor for the cloned data skbs so that * accounting is done at the correct time. */ void sctp_sock_rfree(struct sk_buff *skb) { struct sock *sk = skb->sk; struct sctp_ulpevent *event = sctp_skb2event(skb); atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); /* * Mimic the behavior of sock_rfree */ sk_mem_uncharge(sk, event->rmem_len); } /* Helper function to wait for space in the sndbuf. */ static int sctp_wait_for_sndbuf(struct sctp_association *asoc, struct sctp_transport *transport, long *timeo_p, size_t msg_len) { struct sock *sk = asoc->base.sk; long current_timeo = *timeo_p; DEFINE_WAIT(wait); int err = 0; pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, *timeo_p, msg_len); /* Increment the transport and association's refcnt. */ if (transport) sctp_transport_hold(transport); sctp_association_hold(asoc); /* Wait on the association specific sndbuf space. */ for (;;) { prepare_to_wait_exclusive(&asoc->wait, &wait, TASK_INTERRUPTIBLE); if (asoc->base.dead) goto do_dead; if ((!*timeo_p) || (transport && transport->dead)) goto do_nonblock; if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) goto do_error; if (signal_pending(current)) goto do_interrupted; if ((int)msg_len <= sctp_wspace(asoc) && sk_wmem_schedule(sk, msg_len)) break; /* Let another process have a go. Since we are going * to sleep anyway. */ release_sock(sk); current_timeo = schedule_timeout(current_timeo); lock_sock(sk); if (sk != asoc->base.sk) goto do_error; *timeo_p = current_timeo; } out: finish_wait(&asoc->wait, &wait); /* Release the transport and association's refcnt. */ if (transport) sctp_transport_put(transport); sctp_association_put(asoc); return err; do_dead: err = -ESRCH; goto out; do_error: err = -EPIPE; goto out; do_interrupted: err = sock_intr_errno(*timeo_p); goto out; do_nonblock: err = -EAGAIN; goto out; } void sctp_data_ready(struct sock *sk) { struct socket_wq *wq; trace_sk_data_ready(sk); rcu_read_lock(); wq = rcu_dereference(sk->sk_wq); if (skwq_has_sleeper(wq)) wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLRDNORM | EPOLLRDBAND); sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN); rcu_read_unlock(); } /* If socket sndbuf has changed, wake up all per association waiters. */ void sctp_write_space(struct sock *sk) { struct sctp_association *asoc; /* Wake up the tasks in each wait queue. */ list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { __sctp_write_space(asoc); } } /* Is there any sndbuf space available on the socket? * * Note that sk_wmem_alloc is the sum of the send buffers on all of the * associations on the same socket. For a UDP-style socket with * multiple associations, it is possible for it to be "unwriteable" * prematurely. I assume that this is acceptable because * a premature "unwriteable" is better than an accidental "writeable" which * would cause an unwanted block under certain circumstances. For the 1-1 * UDP-style sockets or TCP-style sockets, this code should work. * - Daisy */ static bool sctp_writeable(const struct sock *sk) { return READ_ONCE(sk->sk_sndbuf) > READ_ONCE(sk->sk_wmem_queued); } /* Wait for an association to go into ESTABLISHED state. If timeout is 0, * returns immediately with EINPROGRESS. */ static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) { struct sock *sk = asoc->base.sk; int err = 0; long current_timeo = *timeo_p; DEFINE_WAIT(wait); pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); /* Increment the association's refcnt. */ sctp_association_hold(asoc); for (;;) { prepare_to_wait_exclusive(&asoc->wait, &wait, TASK_INTERRUPTIBLE); if (!*timeo_p) goto do_nonblock; if (sk->sk_shutdown & RCV_SHUTDOWN) break; if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || asoc->base.dead) goto do_error; if (signal_pending(current)) goto do_interrupted; if (sctp_state(asoc, ESTABLISHED)) break; /* Let another process have a go. Since we are going * to sleep anyway. */ release_sock(sk); current_timeo = schedule_timeout(current_timeo); lock_sock(sk); *timeo_p = current_timeo; } out: finish_wait(&asoc->wait, &wait); /* Release the association's refcnt. */ sctp_association_put(asoc); return err; do_error: if (asoc->init_err_counter + 1 > asoc->max_init_attempts) err = -ETIMEDOUT; else err = -ECONNREFUSED; goto out; do_interrupted: err = sock_intr_errno(*timeo_p); goto out; do_nonblock: err = -EINPROGRESS; goto out; } static int sctp_wait_for_accept(struct sock *sk, long timeo) { struct sctp_endpoint *ep; int err = 0; DEFINE_WAIT(wait); ep = sctp_sk(sk)->ep; for (;;) { prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); if (list_empty(&ep->asocs)) { release_sock(sk); timeo = schedule_timeout(timeo); lock_sock(sk); } err = -EINVAL; if (!sctp_sstate(sk, LISTENING) || (sk->sk_shutdown & RCV_SHUTDOWN)) break; err = 0; if (!list_empty(&ep->asocs)) break; err = sock_intr_errno(timeo); if (signal_pending(current)) break; err = -EAGAIN; if (!timeo) break; } finish_wait(sk_sleep(sk), &wait); return err; } static void sctp_wait_for_close(struct sock *sk, long timeout) { DEFINE_WAIT(wait); do { prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); if (list_empty(&sctp_sk(sk)->ep->asocs)) break; release_sock(sk); timeout = schedule_timeout(timeout); lock_sock(sk); } while (!signal_pending(current) && timeout); finish_wait(sk_sleep(sk), &wait); } static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) { struct sk_buff *frag; if (!skb->data_len) goto done; /* Don't forget the fragments. */ skb_walk_frags(skb, frag) sctp_skb_set_owner_r_frag(frag, sk); done: sctp_skb_set_owner_r(skb, sk); } void sctp_copy_sock(struct sock *newsk, struct sock *sk, struct sctp_association *asoc) { struct inet_sock *inet = inet_sk(sk); struct inet_sock *newinet; struct sctp_sock *sp = sctp_sk(sk); newsk->sk_type = sk->sk_type; newsk->sk_bound_dev_if = sk->sk_bound_dev_if; newsk->sk_flags = sk->sk_flags; newsk->sk_tsflags = sk->sk_tsflags; newsk->sk_no_check_tx = sk->sk_no_check_tx; newsk->sk_no_check_rx = sk->sk_no_check_rx; newsk->sk_reuse = sk->sk_reuse; sctp_sk(newsk)->reuse = sp->reuse; newsk->sk_shutdown = sk->sk_shutdown; newsk->sk_destruct = sk->sk_destruct; newsk->sk_family = sk->sk_family; newsk->sk_protocol = IPPROTO_SCTP; newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; newsk->sk_sndbuf = sk->sk_sndbuf; newsk->sk_rcvbuf = sk->sk_rcvbuf; newsk->sk_lingertime = sk->sk_lingertime; newsk->sk_rcvtimeo = sk->sk_rcvtimeo; newsk->sk_sndtimeo = sk->sk_sndtimeo; newsk->sk_rxhash = sk->sk_rxhash; newinet = inet_sk(newsk); /* Initialize sk's sport, dport, rcv_saddr and daddr for * getsockname() and getpeername() */ newinet->inet_sport = inet->inet_sport; newinet->inet_saddr = inet->inet_saddr; newinet->inet_rcv_saddr = inet->inet_rcv_saddr; newinet->inet_dport = htons(asoc->peer.port); newinet->pmtudisc = inet->pmtudisc; atomic_set(&newinet->inet_id, get_random_u16()); newinet->uc_ttl = inet->uc_ttl; inet_set_bit(MC_LOOP, newsk); newinet->mc_ttl = 1; newinet->mc_index = 0; newinet->mc_list = NULL; if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) net_enable_timestamp(); /* Set newsk security attributes from original sk and connection * security attribute from asoc. */ security_sctp_sk_clone(asoc, sk, newsk); } static inline void sctp_copy_descendant(struct sock *sk_to, const struct sock *sk_from) { size_t ancestor_size = sizeof(struct inet_sock); ancestor_size += sk_from->sk_prot->obj_size; ancestor_size -= offsetof(struct sctp_sock, pd_lobby); __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); } /* Populate the fields of the newsk from the oldsk and migrate the assoc * and its messages to the newsk. */ static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, struct sctp_association *assoc, enum sctp_socket_type type) { struct sctp_sock *oldsp = sctp_sk(oldsk); struct sctp_sock *newsp = sctp_sk(newsk); struct sctp_bind_bucket *pp; /* hash list port iterator */ struct sctp_endpoint *newep = newsp->ep; struct sk_buff *skb, *tmp; struct sctp_ulpevent *event; struct sctp_bind_hashbucket *head; int err; /* Migrate socket buffer sizes and all the socket level options to the * new socket. */ newsk->sk_sndbuf = oldsk->sk_sndbuf; newsk->sk_rcvbuf = oldsk->sk_rcvbuf; /* Brute force copy old sctp opt. */ sctp_copy_descendant(newsk, oldsk); /* Restore the ep value that was overwritten with the above structure * copy. */ newsp->ep = newep; newsp->hmac = NULL; /* Hook this new socket in to the bind_hash list. */ head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), inet_sk(oldsk)->inet_num)]; spin_lock_bh(&head->lock); pp = sctp_sk(oldsk)->bind_hash; sk_add_bind_node(newsk, &pp->owner); sctp_sk(newsk)->bind_hash = pp; inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; spin_unlock_bh(&head->lock); /* Copy the bind_addr list from the original endpoint to the new * endpoint so that we can handle restarts properly */ err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, &oldsp->ep->base.bind_addr, GFP_KERNEL); if (err) return err; /* New ep's auth_hmacs should be set if old ep's is set, in case * that net->sctp.auth_enable has been changed to 0 by users and * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). */ if (oldsp->ep->auth_hmacs) { err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); if (err) return err; } sctp_auto_asconf_init(newsp); /* Move any messages in the old socket's receive queue that are for the * peeled off association to the new socket's receive queue. */ sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { event = sctp_skb2event(skb); if (event->asoc == assoc) { __skb_unlink(skb, &oldsk->sk_receive_queue); __skb_queue_tail(&newsk->sk_receive_queue, skb); sctp_skb_set_owner_r_frag(skb, newsk); } } /* Clean up any messages pending delivery due to partial * delivery. Three cases: * 1) No partial deliver; no work. * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. */ atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { struct sk_buff_head *queue; /* Decide which queue to move pd_lobby skbs to. */ if (assoc->ulpq.pd_mode) { queue = &newsp->pd_lobby; } else queue = &newsk->sk_receive_queue; /* Walk through the pd_lobby, looking for skbs that * need moved to the new socket. */ sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { event = sctp_skb2event(skb); if (event->asoc == assoc) { __skb_unlink(skb, &oldsp->pd_lobby); __skb_queue_tail(queue, skb); sctp_skb_set_owner_r_frag(skb, newsk); } } /* Clear up any skbs waiting for the partial * delivery to finish. */ if (assoc->ulpq.pd_mode) sctp_clear_pd(oldsk, NULL); } sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); /* Set the type of socket to indicate that it is peeled off from the * original UDP-style socket or created with the accept() call on a * TCP-style socket.. */ newsp->type = type; /* Mark the new socket "in-use" by the user so that any packets * that may arrive on the association after we've moved it are * queued to the backlog. This prevents a potential race between * backlog processing on the old socket and new-packet processing * on the new socket. * * The caller has just allocated newsk so we can guarantee that other * paths won't try to lock it and then oldsk. */ lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w); sctp_assoc_migrate(assoc, newsk); sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w); /* If the association on the newsk is already closed before accept() * is called, set RCV_SHUTDOWN flag. */ if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { inet_sk_set_state(newsk, SCTP_SS_CLOSED); newsk->sk_shutdown |= RCV_SHUTDOWN; } else { inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); } release_sock(newsk); return 0; } /* This proto struct describes the ULP interface for SCTP. */ struct proto sctp_prot = { .name = "SCTP", .owner = THIS_MODULE, .close = sctp_close, .disconnect = sctp_disconnect, .accept = sctp_accept, .ioctl = sctp_ioctl, .init = sctp_init_sock, .destroy = sctp_destroy_sock, .shutdown = sctp_shutdown, .setsockopt = sctp_setsockopt, .getsockopt = sctp_getsockopt, .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt, .sendmsg = sctp_sendmsg, .recvmsg = sctp_recvmsg, .bind = sctp_bind, .bind_add = sctp_bind_add, .backlog_rcv = sctp_backlog_rcv, .hash = sctp_hash, .unhash = sctp_unhash, .no_autobind = true, .obj_size = sizeof(struct sctp_sock), .useroffset = offsetof(struct sctp_sock, subscribe), .usersize = offsetof(struct sctp_sock, initmsg) - offsetof(struct sctp_sock, subscribe) + sizeof_field(struct sctp_sock, initmsg), .sysctl_mem = sysctl_sctp_mem, .sysctl_rmem = sysctl_sctp_rmem, .sysctl_wmem = sysctl_sctp_wmem, .memory_pressure = &sctp_memory_pressure, .enter_memory_pressure = sctp_enter_memory_pressure, .memory_allocated = &sctp_memory_allocated, .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, .sockets_allocated = &sctp_sockets_allocated, }; #if IS_ENABLED(CONFIG_IPV6) static void sctp_v6_destruct_sock(struct sock *sk) { sctp_destruct_common(sk); inet6_sock_destruct(sk); } static int sctp_v6_init_sock(struct sock *sk) { int ret = sctp_init_sock(sk); if (!ret) sk->sk_destruct = sctp_v6_destruct_sock; return ret; } struct proto sctpv6_prot = { .name = "SCTPv6", .owner = THIS_MODULE, .close = sctp_close, .disconnect = sctp_disconnect, .accept = sctp_accept, .ioctl = sctp_ioctl, .init = sctp_v6_init_sock, .destroy = sctp_destroy_sock, .shutdown = sctp_shutdown, .setsockopt = sctp_setsockopt, .getsockopt = sctp_getsockopt, .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt, .sendmsg = sctp_sendmsg, .recvmsg = sctp_recvmsg, .bind = sctp_bind, .bind_add = sctp_bind_add, .backlog_rcv = sctp_backlog_rcv, .hash = sctp_hash, .unhash = sctp_unhash, .no_autobind = true, .obj_size = sizeof(struct sctp6_sock), .ipv6_pinfo_offset = offsetof(struct sctp6_sock, inet6), .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - offsetof(struct sctp6_sock, sctp.subscribe) + sizeof_field(struct sctp6_sock, sctp.initmsg), .sysctl_mem = sysctl_sctp_mem, .sysctl_rmem = sysctl_sctp_rmem, .sysctl_wmem = sysctl_sctp_wmem, .memory_pressure = &sctp_memory_pressure, .enter_memory_pressure = sctp_enter_memory_pressure, .memory_allocated = &sctp_memory_allocated, .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, .sockets_allocated = &sctp_sockets_allocated, }; #endif /* IS_ENABLED(CONFIG_IPV6) */ |
2 1 1 1 1 7 3 3 3 3 3 1 1 1 1 5 5 5 5 5 5 1 5 5 5 2 2 2 2 2 2 2 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 5 5 5 1 3 4 4 4 4 4 4 3 3 3 3 2 5 6 6 2 4 4 4 4 4 4 4 4 4 4 2 6 5 5 5 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 | // SPDX-License-Identifier: GPL-2.0+ /* * adutux - driver for ADU devices from Ontrak Control Systems * This is an experimental driver. Use at your own risk. * This driver is not supported by Ontrak Control Systems. * * Copyright (c) 2003 John Homppi (SCO, leave this notice here) * * derived from the Lego USB Tower driver 0.56: * Copyright (c) 2003 David Glance <davidgsf@sourceforge.net> * 2001 Juergen Stuber <stuber@loria.fr> * that was derived from USB Skeleton driver - 0.5 * Copyright (c) 2001 Greg Kroah-Hartman (greg@kroah.com) * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/sched/signal.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/usb.h> #include <linux/mutex.h> #include <linux/uaccess.h> #define DRIVER_AUTHOR "John Homppi" #define DRIVER_DESC "adutux (see www.ontrak.net)" /* Define these values to match your device */ #define ADU_VENDOR_ID 0x0a07 #define ADU_PRODUCT_ID 0x0064 /* table of devices that work with this driver */ static const struct usb_device_id device_table[] = { { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID) }, /* ADU100 */ { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+20) }, /* ADU120 */ { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+30) }, /* ADU130 */ { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+100) }, /* ADU200 */ { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+108) }, /* ADU208 */ { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+118) }, /* ADU218 */ { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, device_table); #ifdef CONFIG_USB_DYNAMIC_MINORS #define ADU_MINOR_BASE 0 #else #define ADU_MINOR_BASE 67 #endif /* we can have up to this number of device plugged in at once */ #define MAX_DEVICES 16 #define COMMAND_TIMEOUT (2*HZ) /* * The locking scheme is a vanilla 3-lock: * adu_device.buflock: A spinlock, covers what IRQs touch. * adutux_mutex: A Static lock to cover open_count. It would also cover * any globals, but we don't have them in 2.6. * adu_device.mtx: A mutex to hold across sleepers like copy_from_user. * It covers all of adu_device, except the open_count * and what .buflock covers. */ /* Structure to hold all of our device specific stuff */ struct adu_device { struct mutex mtx; struct usb_device *udev; /* save off the usb device pointer */ struct usb_interface *interface; unsigned int minor; /* the starting minor number for this device */ char serial_number[8]; int open_count; /* number of times this port has been opened */ unsigned long disconnected:1; char *read_buffer_primary; int read_buffer_length; char *read_buffer_secondary; int secondary_head; int secondary_tail; spinlock_t buflock; wait_queue_head_t read_wait; wait_queue_head_t write_wait; char *interrupt_in_buffer; struct usb_endpoint_descriptor *interrupt_in_endpoint; struct urb *interrupt_in_urb; int read_urb_finished; char *interrupt_out_buffer; struct usb_endpoint_descriptor *interrupt_out_endpoint; struct urb *interrupt_out_urb; int out_urb_finished; }; static DEFINE_MUTEX(adutux_mutex); static struct usb_driver adu_driver; static inline void adu_debug_data(struct device *dev, const char *function, int size, const unsigned char *data) { dev_dbg(dev, "%s - length = %d, data = %*ph\n", function, size, size, data); } /* * adu_abort_transfers * aborts transfers and frees associated data structures */ static void adu_abort_transfers(struct adu_device *dev) { unsigned long flags; if (dev->disconnected) return; /* shutdown transfer */ /* XXX Anchor these instead */ spin_lock_irqsave(&dev->buflock, flags); if (!dev->read_urb_finished) { spin_unlock_irqrestore(&dev->buflock, flags); usb_kill_urb(dev->interrupt_in_urb); } else spin_unlock_irqrestore(&dev->buflock, flags); spin_lock_irqsave(&dev->buflock, flags); if (!dev->out_urb_finished) { spin_unlock_irqrestore(&dev->buflock, flags); wait_event_timeout(dev->write_wait, dev->out_urb_finished, COMMAND_TIMEOUT); usb_kill_urb(dev->interrupt_out_urb); } else spin_unlock_irqrestore(&dev->buflock, flags); } static void adu_delete(struct adu_device *dev) { /* free data structures */ usb_free_urb(dev->interrupt_in_urb); usb_free_urb(dev->interrupt_out_urb); kfree(dev->read_buffer_primary); kfree(dev->read_buffer_secondary); kfree(dev->interrupt_in_buffer); kfree(dev->interrupt_out_buffer); usb_put_dev(dev->udev); kfree(dev); } static void adu_interrupt_in_callback(struct urb *urb) { struct adu_device *dev = urb->context; int status = urb->status; unsigned long flags; adu_debug_data(&dev->udev->dev, __func__, urb->actual_length, urb->transfer_buffer); spin_lock_irqsave(&dev->buflock, flags); if (status != 0) { if ((status != -ENOENT) && (status != -ECONNRESET) && (status != -ESHUTDOWN)) { dev_dbg(&dev->udev->dev, "%s : nonzero status received: %d\n", __func__, status); } goto exit; } if (urb->actual_length > 0 && dev->interrupt_in_buffer[0] != 0x00) { if (dev->read_buffer_length < (4 * usb_endpoint_maxp(dev->interrupt_in_endpoint)) - (urb->actual_length)) { memcpy (dev->read_buffer_primary + dev->read_buffer_length, dev->interrupt_in_buffer, urb->actual_length); dev->read_buffer_length += urb->actual_length; dev_dbg(&dev->udev->dev, "%s reading %d\n", __func__, urb->actual_length); } else { dev_dbg(&dev->udev->dev, "%s : read_buffer overflow\n", __func__); } } exit: dev->read_urb_finished = 1; spin_unlock_irqrestore(&dev->buflock, flags); /* always wake up so we recover from errors */ wake_up_interruptible(&dev->read_wait); } static void adu_interrupt_out_callback(struct urb *urb) { struct adu_device *dev = urb->context; int status = urb->status; unsigned long flags; adu_debug_data(&dev->udev->dev, __func__, urb->actual_length, urb->transfer_buffer); if (status != 0) { if ((status != -ENOENT) && (status != -ESHUTDOWN) && (status != -ECONNRESET)) { dev_dbg(&dev->udev->dev, "%s :nonzero status received: %d\n", __func__, status); } return; } spin_lock_irqsave(&dev->buflock, flags); dev->out_urb_finished = 1; wake_up(&dev->write_wait); spin_unlock_irqrestore(&dev->buflock, flags); } static int adu_open(struct inode *inode, struct file *file) { struct adu_device *dev = NULL; struct usb_interface *interface; int subminor; int retval; subminor = iminor(inode); retval = mutex_lock_interruptible(&adutux_mutex); if (retval) goto exit_no_lock; interface = usb_find_interface(&adu_driver, subminor); if (!interface) { pr_err("%s - error, can't find device for minor %d\n", __func__, subminor); retval = -ENODEV; goto exit_no_device; } dev = usb_get_intfdata(interface); if (!dev) { retval = -ENODEV; goto exit_no_device; } /* check that nobody else is using the device */ if (dev->open_count) { retval = -EBUSY; goto exit_no_device; } ++dev->open_count; dev_dbg(&dev->udev->dev, "%s: open count %d\n", __func__, dev->open_count); /* save device in the file's private structure */ file->private_data = dev; /* initialize in direction */ dev->read_buffer_length = 0; /* fixup first read by having urb waiting for it */ usb_fill_int_urb(dev->interrupt_in_urb, dev->udev, usb_rcvintpipe(dev->udev, dev->interrupt_in_endpoint->bEndpointAddress), dev->interrupt_in_buffer, usb_endpoint_maxp(dev->interrupt_in_endpoint), adu_interrupt_in_callback, dev, dev->interrupt_in_endpoint->bInterval); dev->read_urb_finished = 0; if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL)) dev->read_urb_finished = 1; /* we ignore failure */ /* end of fixup for first read */ /* initialize out direction */ dev->out_urb_finished = 1; retval = 0; exit_no_device: mutex_unlock(&adutux_mutex); exit_no_lock: return retval; } static void adu_release_internal(struct adu_device *dev) { /* decrement our usage count for the device */ --dev->open_count; dev_dbg(&dev->udev->dev, "%s : open count %d\n", __func__, dev->open_count); if (dev->open_count <= 0) { adu_abort_transfers(dev); dev->open_count = 0; } } static int adu_release(struct inode *inode, struct file *file) { struct adu_device *dev; int retval = 0; if (file == NULL) { retval = -ENODEV; goto exit; } dev = file->private_data; if (dev == NULL) { retval = -ENODEV; goto exit; } mutex_lock(&adutux_mutex); /* not interruptible */ if (dev->open_count <= 0) { dev_dbg(&dev->udev->dev, "%s : device not opened\n", __func__); retval = -ENODEV; goto unlock; } adu_release_internal(dev); if (dev->disconnected) { /* the device was unplugged before the file was released */ if (!dev->open_count) /* ... and we're the last user */ adu_delete(dev); } unlock: mutex_unlock(&adutux_mutex); exit: return retval; } static ssize_t adu_read(struct file *file, __user char *buffer, size_t count, loff_t *ppos) { struct adu_device *dev; size_t bytes_read = 0; size_t bytes_to_read = count; int retval = 0; int timeout = 0; int should_submit = 0; unsigned long flags; DECLARE_WAITQUEUE(wait, current); dev = file->private_data; if (mutex_lock_interruptible(&dev->mtx)) return -ERESTARTSYS; /* verify that the device wasn't unplugged */ if (dev->disconnected) { retval = -ENODEV; pr_err("No device or device unplugged %d\n", retval); goto exit; } /* verify that some data was requested */ if (count == 0) { dev_dbg(&dev->udev->dev, "%s : read request of 0 bytes\n", __func__); goto exit; } timeout = COMMAND_TIMEOUT; dev_dbg(&dev->udev->dev, "%s : about to start looping\n", __func__); while (bytes_to_read) { size_t data_in_secondary = dev->secondary_tail - dev->secondary_head; dev_dbg(&dev->udev->dev, "%s : while, data_in_secondary=%zu, status=%d\n", __func__, data_in_secondary, dev->interrupt_in_urb->status); if (data_in_secondary) { /* drain secondary buffer */ size_t amount = min(bytes_to_read, data_in_secondary); if (copy_to_user(buffer, dev->read_buffer_secondary+dev->secondary_head, amount)) { retval = -EFAULT; goto exit; } dev->secondary_head += amount; bytes_read += amount; bytes_to_read -= amount; } else { /* we check the primary buffer */ spin_lock_irqsave (&dev->buflock, flags); if (dev->read_buffer_length) { /* we secure access to the primary */ dev_dbg(&dev->udev->dev, "%s : swap, read_buffer_length = %d\n", __func__, dev->read_buffer_length); swap(dev->read_buffer_primary, dev->read_buffer_secondary); dev->secondary_head = 0; dev->secondary_tail = dev->read_buffer_length; dev->read_buffer_length = 0; spin_unlock_irqrestore(&dev->buflock, flags); /* we have a free buffer so use it */ should_submit = 1; } else { /* even the primary was empty - we may need to do IO */ if (!dev->read_urb_finished) { /* somebody is doing IO */ spin_unlock_irqrestore(&dev->buflock, flags); dev_dbg(&dev->udev->dev, "%s : submitted already\n", __func__); } else { /* we must initiate input */ dev_dbg(&dev->udev->dev, "%s : initiate input\n", __func__); dev->read_urb_finished = 0; spin_unlock_irqrestore(&dev->buflock, flags); usb_fill_int_urb(dev->interrupt_in_urb, dev->udev, usb_rcvintpipe(dev->udev, dev->interrupt_in_endpoint->bEndpointAddress), dev->interrupt_in_buffer, usb_endpoint_maxp(dev->interrupt_in_endpoint), adu_interrupt_in_callback, dev, dev->interrupt_in_endpoint->bInterval); retval = usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL); if (retval) { dev->read_urb_finished = 1; if (retval == -ENOMEM) { retval = bytes_read ? bytes_read : -ENOMEM; } dev_dbg(&dev->udev->dev, "%s : submit failed\n", __func__); goto exit; } } /* we wait for I/O to complete */ set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&dev->read_wait, &wait); spin_lock_irqsave(&dev->buflock, flags); if (!dev->read_urb_finished) { spin_unlock_irqrestore(&dev->buflock, flags); timeout = schedule_timeout(COMMAND_TIMEOUT); } else { spin_unlock_irqrestore(&dev->buflock, flags); set_current_state(TASK_RUNNING); } remove_wait_queue(&dev->read_wait, &wait); if (timeout <= 0) { dev_dbg(&dev->udev->dev, "%s : timeout\n", __func__); retval = bytes_read ? bytes_read : -ETIMEDOUT; goto exit; } if (signal_pending(current)) { dev_dbg(&dev->udev->dev, "%s : signal pending\n", __func__); retval = bytes_read ? bytes_read : -EINTR; goto exit; } } } } retval = bytes_read; /* if the primary buffer is empty then use it */ spin_lock_irqsave(&dev->buflock, flags); if (should_submit && dev->read_urb_finished) { dev->read_urb_finished = 0; spin_unlock_irqrestore(&dev->buflock, flags); usb_fill_int_urb(dev->interrupt_in_urb, dev->udev, usb_rcvintpipe(dev->udev, dev->interrupt_in_endpoint->bEndpointAddress), dev->interrupt_in_buffer, usb_endpoint_maxp(dev->interrupt_in_endpoint), adu_interrupt_in_callback, dev, dev->interrupt_in_endpoint->bInterval); if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL) != 0) dev->read_urb_finished = 1; /* we ignore failure */ } else { spin_unlock_irqrestore(&dev->buflock, flags); } exit: /* unlock the device */ mutex_unlock(&dev->mtx); return retval; } static ssize_t adu_write(struct file *file, const __user char *buffer, size_t count, loff_t *ppos) { DECLARE_WAITQUEUE(waita, current); struct adu_device *dev; size_t bytes_written = 0; size_t bytes_to_write; size_t buffer_size; unsigned long flags; int retval; dev = file->private_data; retval = mutex_lock_interruptible(&dev->mtx); if (retval) goto exit_nolock; /* verify that the device wasn't unplugged */ if (dev->disconnected) { retval = -ENODEV; pr_err("No device or device unplugged %d\n", retval); goto exit; } /* verify that we actually have some data to write */ if (count == 0) { dev_dbg(&dev->udev->dev, "%s : write request of 0 bytes\n", __func__); goto exit; } while (count > 0) { add_wait_queue(&dev->write_wait, &waita); set_current_state(TASK_INTERRUPTIBLE); spin_lock_irqsave(&dev->buflock, flags); if (!dev->out_urb_finished) { spin_unlock_irqrestore(&dev->buflock, flags); mutex_unlock(&dev->mtx); if (signal_pending(current)) { dev_dbg(&dev->udev->dev, "%s : interrupted\n", __func__); set_current_state(TASK_RUNNING); retval = -EINTR; goto exit_onqueue; } if (schedule_timeout(COMMAND_TIMEOUT) == 0) { dev_dbg(&dev->udev->dev, "%s - command timed out.\n", __func__); retval = -ETIMEDOUT; goto exit_onqueue; } remove_wait_queue(&dev->write_wait, &waita); retval = mutex_lock_interruptible(&dev->mtx); if (retval) { retval = bytes_written ? bytes_written : retval; goto exit_nolock; } dev_dbg(&dev->udev->dev, "%s : in progress, count = %zd\n", __func__, count); } else { spin_unlock_irqrestore(&dev->buflock, flags); set_current_state(TASK_RUNNING); remove_wait_queue(&dev->write_wait, &waita); dev_dbg(&dev->udev->dev, "%s : sending, count = %zd\n", __func__, count); /* write the data into interrupt_out_buffer from userspace */ buffer_size = usb_endpoint_maxp(dev->interrupt_out_endpoint); bytes_to_write = count > buffer_size ? buffer_size : count; dev_dbg(&dev->udev->dev, "%s : buffer_size = %zd, count = %zd, bytes_to_write = %zd\n", __func__, buffer_size, count, bytes_to_write); if (copy_from_user(dev->interrupt_out_buffer, buffer, bytes_to_write) != 0) { retval = -EFAULT; goto exit; } /* send off the urb */ usb_fill_int_urb( dev->interrupt_out_urb, dev->udev, usb_sndintpipe(dev->udev, dev->interrupt_out_endpoint->bEndpointAddress), dev->interrupt_out_buffer, bytes_to_write, adu_interrupt_out_callback, dev, dev->interrupt_out_endpoint->bInterval); dev->interrupt_out_urb->actual_length = bytes_to_write; dev->out_urb_finished = 0; retval = usb_submit_urb(dev->interrupt_out_urb, GFP_KERNEL); if (retval < 0) { dev->out_urb_finished = 1; dev_err(&dev->udev->dev, "Couldn't submit " "interrupt_out_urb %d\n", retval); goto exit; } buffer += bytes_to_write; count -= bytes_to_write; bytes_written += bytes_to_write; } } mutex_unlock(&dev->mtx); return bytes_written; exit: mutex_unlock(&dev->mtx); exit_nolock: return retval; exit_onqueue: remove_wait_queue(&dev->write_wait, &waita); return retval; } /* file operations needed when we register this driver */ static const struct file_operations adu_fops = { .owner = THIS_MODULE, .read = adu_read, .write = adu_write, .open = adu_open, .release = adu_release, .llseek = noop_llseek, }; /* * usb class driver info in order to get a minor number from the usb core, * and to have the device registered with devfs and the driver core */ static struct usb_class_driver adu_class = { .name = "usb/adutux%d", .fops = &adu_fops, .minor_base = ADU_MINOR_BASE, }; /* * adu_probe * * Called by the usb core when a new device is connected that it thinks * this driver might be interested in. */ static int adu_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(interface); struct adu_device *dev = NULL; int retval = -ENOMEM; int in_end_size; int out_end_size; int res; /* allocate memory for our device state and initialize it */ dev = kzalloc(sizeof(struct adu_device), GFP_KERNEL); if (!dev) return -ENOMEM; mutex_init(&dev->mtx); spin_lock_init(&dev->buflock); dev->udev = usb_get_dev(udev); init_waitqueue_head(&dev->read_wait); init_waitqueue_head(&dev->write_wait); res = usb_find_common_endpoints_reverse(interface->cur_altsetting, NULL, NULL, &dev->interrupt_in_endpoint, &dev->interrupt_out_endpoint); if (res) { dev_err(&interface->dev, "interrupt endpoints not found\n"); retval = res; goto error; } in_end_size = usb_endpoint_maxp(dev->interrupt_in_endpoint); out_end_size = usb_endpoint_maxp(dev->interrupt_out_endpoint); dev->read_buffer_primary = kmalloc((4 * in_end_size), GFP_KERNEL); if (!dev->read_buffer_primary) goto error; /* debug code prime the buffer */ memset(dev->read_buffer_primary, 'a', in_end_size); memset(dev->read_buffer_primary + in_end_size, 'b', in_end_size); memset(dev->read_buffer_primary + (2 * in_end_size), 'c', in_end_size); memset(dev->read_buffer_primary + (3 * in_end_size), 'd', in_end_size); dev->read_buffer_secondary = kmalloc((4 * in_end_size), GFP_KERNEL); if (!dev->read_buffer_secondary) goto error; /* debug code prime the buffer */ memset(dev->read_buffer_secondary, 'e', in_end_size); memset(dev->read_buffer_secondary + in_end_size, 'f', in_end_size); memset(dev->read_buffer_secondary + (2 * in_end_size), 'g', in_end_size); memset(dev->read_buffer_secondary + (3 * in_end_size), 'h', in_end_size); dev->interrupt_in_buffer = kmalloc(in_end_size, GFP_KERNEL); if (!dev->interrupt_in_buffer) goto error; /* debug code prime the buffer */ memset(dev->interrupt_in_buffer, 'i', in_end_size); dev->interrupt_in_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->interrupt_in_urb) goto error; dev->interrupt_out_buffer = kmalloc(out_end_size, GFP_KERNEL); if (!dev->interrupt_out_buffer) goto error; dev->interrupt_out_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->interrupt_out_urb) goto error; if (!usb_string(udev, udev->descriptor.iSerialNumber, dev->serial_number, sizeof(dev->serial_number))) { dev_err(&interface->dev, "Could not retrieve serial number\n"); retval = -EIO; goto error; } dev_dbg(&interface->dev, "serial_number=%s", dev->serial_number); /* we can register the device now, as it is ready */ usb_set_intfdata(interface, dev); retval = usb_register_dev(interface, &adu_class); if (retval) { /* something prevented us from registering this driver */ dev_err(&interface->dev, "Not able to get a minor for this device.\n"); usb_set_intfdata(interface, NULL); goto error; } dev->minor = interface->minor; /* let the user know what node this device is now attached to */ dev_info(&interface->dev, "ADU%d %s now attached to /dev/usb/adutux%d\n", le16_to_cpu(udev->descriptor.idProduct), dev->serial_number, (dev->minor - ADU_MINOR_BASE)); return 0; error: adu_delete(dev); return retval; } /* * adu_disconnect * * Called by the usb core when the device is removed from the system. */ static void adu_disconnect(struct usb_interface *interface) { struct adu_device *dev; dev = usb_get_intfdata(interface); usb_deregister_dev(interface, &adu_class); usb_poison_urb(dev->interrupt_in_urb); usb_poison_urb(dev->interrupt_out_urb); mutex_lock(&adutux_mutex); usb_set_intfdata(interface, NULL); mutex_lock(&dev->mtx); /* not interruptible */ dev->disconnected = 1; mutex_unlock(&dev->mtx); /* if the device is not opened, then we clean up right now */ if (!dev->open_count) adu_delete(dev); mutex_unlock(&adutux_mutex); } /* usb specific object needed to register this driver with the usb subsystem */ static struct usb_driver adu_driver = { .name = "adutux", .probe = adu_probe, .disconnect = adu_disconnect, .id_table = device_table, }; module_usb_driver(adu_driver); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL"); |
8 8 8 8 63 63 63 62 63 63 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Video for Linux Two * * A generic video device interface for the LINUX operating system * using a set of device structures/vectors for low level operations. * * This file replaces the videodev.c file that comes with the * regular kernel distribution. * * Author: Bill Dirks <bill@thedirks.org> * based on code by Alan Cox, <alan@cymru.net> */ /* * Video capture interface for Linux * * A generic video device interface for the LINUX operating system * using a set of device structures/vectors for low level operations. * * Author: Alan Cox, <alan@lxorguk.ukuu.org.uk> * * Fixes: */ /* * Video4linux 1/2 integration by Justin Schoeman * <justin@suntiger.ee.up.ac.za> * 2.4 PROCFS support ported from 2.4 kernels by * Iñaki GarcÃa Etxebarria <garetxe@euskalnet.net> * Makefile fix by "W. Michael Petullo" <mike@flyn.org> * 2.4 devfs support ported from 2.4 kernels by * Dan Merillat <dan@merillat.org> * Added Gerd Knorrs v4l1 enhancements (Justin Schoeman) */ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/uaccess.h> #include <asm/io.h> #include <asm/div64.h> #include <media/v4l2-common.h> #include <media/v4l2-device.h> #include <media/v4l2-ctrls.h> #include <linux/videodev2.h> /* * * V 4 L 2 D R I V E R H E L P E R A P I * */ /* * Video Standard Operations (contributed by Michael Schimek) */ /* Helper functions for control handling */ /* Fill in a struct v4l2_queryctrl */ int v4l2_ctrl_query_fill(struct v4l2_queryctrl *qctrl, s32 _min, s32 _max, s32 _step, s32 _def) { const char *name; s64 min = _min; s64 max = _max; u64 step = _step; s64 def = _def; v4l2_ctrl_fill(qctrl->id, &name, &qctrl->type, &min, &max, &step, &def, &qctrl->flags); if (name == NULL) return -EINVAL; qctrl->minimum = min; qctrl->maximum = max; qctrl->step = step; qctrl->default_value = def; qctrl->reserved[0] = qctrl->reserved[1] = 0; strscpy(qctrl->name, name, sizeof(qctrl->name)); return 0; } EXPORT_SYMBOL(v4l2_ctrl_query_fill); /* Clamp x to be between min and max, aligned to a multiple of 2^align. min * and max don't have to be aligned, but there must be at least one valid * value. E.g., min=17,max=31,align=4 is not allowed as there are no multiples * of 16 between 17 and 31. */ static unsigned int clamp_align(unsigned int x, unsigned int min, unsigned int max, unsigned int align) { /* Bits that must be zero to be aligned */ unsigned int mask = ~((1 << align) - 1); /* Clamp to aligned min and max */ x = clamp(x, (min + ~mask) & mask, max & mask); /* Round to nearest aligned value */ if (align) x = (x + (1 << (align - 1))) & mask; return x; } static unsigned int clamp_roundup(unsigned int x, unsigned int min, unsigned int max, unsigned int alignment) { x = clamp(x, min, max); if (alignment) x = round_up(x, alignment); return x; } void v4l_bound_align_image(u32 *w, unsigned int wmin, unsigned int wmax, unsigned int walign, u32 *h, unsigned int hmin, unsigned int hmax, unsigned int halign, unsigned int salign) { *w = clamp_align(*w, wmin, wmax, walign); *h = clamp_align(*h, hmin, hmax, halign); /* Usually we don't need to align the size and are done now. */ if (!salign) return; /* How much alignment do we have? */ walign = __ffs(*w); halign = __ffs(*h); /* Enough to satisfy the image alignment? */ if (walign + halign < salign) { /* Max walign where there is still a valid width */ unsigned int wmaxa = __fls(wmax ^ (wmin - 1)); /* Max halign where there is still a valid height */ unsigned int hmaxa = __fls(hmax ^ (hmin - 1)); /* up the smaller alignment until we have enough */ do { if (halign >= hmaxa || (walign <= halign && walign < wmaxa)) { *w = clamp_align(*w, wmin, wmax, walign + 1); walign = __ffs(*w); } else { *h = clamp_align(*h, hmin, hmax, halign + 1); halign = __ffs(*h); } } while (halign + walign < salign); } } EXPORT_SYMBOL_GPL(v4l_bound_align_image); const void * __v4l2_find_nearest_size(const void *array, size_t array_size, size_t entry_size, size_t width_offset, size_t height_offset, s32 width, s32 height) { u32 error, min_error = U32_MAX; const void *best = NULL; unsigned int i; if (!array) return NULL; for (i = 0; i < array_size; i++, array += entry_size) { const u32 *entry_width = array + width_offset; const u32 *entry_height = array + height_offset; error = abs(*entry_width - width) + abs(*entry_height - height); if (error > min_error) continue; min_error = error; best = array; if (!error) break; } return best; } EXPORT_SYMBOL_GPL(__v4l2_find_nearest_size); int v4l2_g_parm_cap(struct video_device *vdev, struct v4l2_subdev *sd, struct v4l2_streamparm *a) { struct v4l2_subdev_frame_interval ival = { 0 }; int ret; if (a->type != V4L2_BUF_TYPE_VIDEO_CAPTURE && a->type != V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE) return -EINVAL; if (vdev->device_caps & V4L2_CAP_READWRITE) a->parm.capture.readbuffers = 2; if (v4l2_subdev_has_op(sd, pad, get_frame_interval)) a->parm.capture.capability = V4L2_CAP_TIMEPERFRAME; ret = v4l2_subdev_call_state_active(sd, pad, get_frame_interval, &ival); if (!ret) a->parm.capture.timeperframe = ival.interval; return ret; } EXPORT_SYMBOL_GPL(v4l2_g_parm_cap); int v4l2_s_parm_cap(struct video_device *vdev, struct v4l2_subdev *sd, struct v4l2_streamparm *a) { struct v4l2_subdev_frame_interval ival = { .interval = a->parm.capture.timeperframe }; int ret; if (a->type != V4L2_BUF_TYPE_VIDEO_CAPTURE && a->type != V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE) return -EINVAL; memset(&a->parm, 0, sizeof(a->parm)); if (vdev->device_caps & V4L2_CAP_READWRITE) a->parm.capture.readbuffers = 2; else a->parm.capture.readbuffers = 0; if (v4l2_subdev_has_op(sd, pad, get_frame_interval)) a->parm.capture.capability = V4L2_CAP_TIMEPERFRAME; ret = v4l2_subdev_call_state_active(sd, pad, set_frame_interval, &ival); if (!ret) a->parm.capture.timeperframe = ival.interval; return ret; } EXPORT_SYMBOL_GPL(v4l2_s_parm_cap); const struct v4l2_format_info *v4l2_format_info(u32 format) { static const struct v4l2_format_info formats[] = { /* RGB formats */ { .format = V4L2_PIX_FMT_BGR24, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 3, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_RGB24, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 3, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_HSV24, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 3, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_BGR32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_XBGR32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_BGRX32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_RGB32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_XRGB32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_RGBX32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_HSV32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_ARGB32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_RGBA32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_ABGR32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_BGRA32, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_RGB565, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_RGB555, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_BGR666, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_BGR48_12, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 6, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_BGR48, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 6, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_RGB48, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 6, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_ABGR64_12, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 8, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_RGBA1010102, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_RGBX1010102, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_ARGB2101010, .pixel_enc = V4L2_PIXEL_ENC_RGB, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, /* YUV packed formats */ { .format = V4L2_PIX_FMT_YUYV, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 1 }, { .format = V4L2_PIX_FMT_YVYU, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 1 }, { .format = V4L2_PIX_FMT_UYVY, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 1 }, { .format = V4L2_PIX_FMT_VYUY, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 1 }, { .format = V4L2_PIX_FMT_Y210, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 1 }, { .format = V4L2_PIX_FMT_Y212, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 1 }, { .format = V4L2_PIX_FMT_Y216, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 1, .bpp = { 4, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 1 }, { .format = V4L2_PIX_FMT_YUV48_12, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 1, .bpp = { 6, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_MT2110T, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 2, .comp_planes = 2, .bpp = { 5, 10, 0, 0 }, .bpp_div = { 4, 4, 1, 1 }, .hdiv = 2, .vdiv = 2, .block_w = { 16, 8, 0, 0 }, .block_h = { 32, 16, 0, 0 }}, { .format = V4L2_PIX_FMT_MT2110R, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 2, .comp_planes = 2, .bpp = { 5, 10, 0, 0 }, .bpp_div = { 4, 4, 1, 1 }, .hdiv = 2, .vdiv = 2, .block_w = { 16, 8, 0, 0 }, .block_h = { 32, 16, 0, 0 }}, /* YUV planar formats */ { .format = V4L2_PIX_FMT_NV12, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 2 }, { .format = V4L2_PIX_FMT_NV21, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 2 }, { .format = V4L2_PIX_FMT_NV16, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 1 }, { .format = V4L2_PIX_FMT_NV61, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 1 }, { .format = V4L2_PIX_FMT_NV24, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_NV42, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_P010, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 2, .bpp = { 2, 2, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 1 }, { .format = V4L2_PIX_FMT_P012, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 2, .bpp = { 2, 4, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 2 }, { .format = V4L2_PIX_FMT_YUV410, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 4, .vdiv = 4 }, { .format = V4L2_PIX_FMT_YVU410, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 4, .vdiv = 4 }, { .format = V4L2_PIX_FMT_YUV411P, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 4, .vdiv = 1 }, { .format = V4L2_PIX_FMT_YUV420, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 2 }, { .format = V4L2_PIX_FMT_YVU420, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 2 }, { .format = V4L2_PIX_FMT_YUV422P, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 1 }, { .format = V4L2_PIX_FMT_GREY, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, /* Tiled YUV formats */ { .format = V4L2_PIX_FMT_NV12_4L4, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 2 }, { .format = V4L2_PIX_FMT_NV15_4L4, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 2, .bpp = { 5, 10, 0, 0 }, .bpp_div = { 4, 4, 1, 1 }, .hdiv = 2, .vdiv = 2, .block_w = { 4, 2, 0, 0 }, .block_h = { 1, 1, 0, 0 }}, { .format = V4L2_PIX_FMT_P010_4L4, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 1, .comp_planes = 2, .bpp = { 2, 4, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 2 }, /* YUV planar formats, non contiguous variant */ { .format = V4L2_PIX_FMT_YUV420M, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 3, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 2 }, { .format = V4L2_PIX_FMT_YVU420M, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 3, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 2 }, { .format = V4L2_PIX_FMT_YUV422M, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 3, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 1 }, { .format = V4L2_PIX_FMT_YVU422M, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 3, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 1 }, { .format = V4L2_PIX_FMT_YUV444M, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 3, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_YVU444M, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 3, .comp_planes = 3, .bpp = { 1, 1, 1, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_NV12M, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 2, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 2 }, { .format = V4L2_PIX_FMT_NV21M, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 2, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 2 }, { .format = V4L2_PIX_FMT_NV16M, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 2, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 1 }, { .format = V4L2_PIX_FMT_NV61M, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 2, .comp_planes = 2, .bpp = { 1, 2, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 1 }, { .format = V4L2_PIX_FMT_P012M, .pixel_enc = V4L2_PIXEL_ENC_YUV, .mem_planes = 2, .comp_planes = 2, .bpp = { 2, 4, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 2, .vdiv = 2 }, /* Bayer RGB formats */ { .format = V4L2_PIX_FMT_SBGGR8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_SGBRG8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_SGRBG8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_SRGGB8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_SBGGR10, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_SGBRG10, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_SGRBG10, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_SRGGB10, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_SBGGR10ALAW8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_SGBRG10ALAW8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_SGRBG10ALAW8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_SRGGB10ALAW8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_SBGGR10DPCM8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_SGBRG10DPCM8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_SGRBG10DPCM8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_SRGGB10DPCM8, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 1, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_SBGGR12, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_SGBRG12, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_SGRBG12, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, { .format = V4L2_PIX_FMT_SRGGB12, .pixel_enc = V4L2_PIXEL_ENC_BAYER, .mem_planes = 1, .comp_planes = 1, .bpp = { 2, 0, 0, 0 }, .bpp_div = { 1, 1, 1, 1 }, .hdiv = 1, .vdiv = 1 }, }; unsigned int i; for (i = 0; i < ARRAY_SIZE(formats); ++i) if (formats[i].format == format) return &formats[i]; return NULL; } EXPORT_SYMBOL(v4l2_format_info); static inline unsigned int v4l2_format_block_width(const struct v4l2_format_info *info, int plane) { if (!info->block_w[plane]) return 1; return info->block_w[plane]; } static inline unsigned int v4l2_format_block_height(const struct v4l2_format_info *info, int plane) { if (!info->block_h[plane]) return 1; return info->block_h[plane]; } void v4l2_apply_frmsize_constraints(u32 *width, u32 *height, const struct v4l2_frmsize_stepwise *frmsize) { if (!frmsize) return; /* * Clamp width/height to meet min/max constraints and round it up to * macroblock alignment. */ *width = clamp_roundup(*width, frmsize->min_width, frmsize->max_width, frmsize->step_width); *height = clamp_roundup(*height, frmsize->min_height, frmsize->max_height, frmsize->step_height); } EXPORT_SYMBOL_GPL(v4l2_apply_frmsize_constraints); int v4l2_fill_pixfmt_mp(struct v4l2_pix_format_mplane *pixfmt, u32 pixelformat, u32 width, u32 height) { const struct v4l2_format_info *info; struct v4l2_plane_pix_format *plane; int i; info = v4l2_format_info(pixelformat); if (!info) return -EINVAL; pixfmt->width = width; pixfmt->height = height; pixfmt->pixelformat = pixelformat; pixfmt->num_planes = info->mem_planes; if (info->mem_planes == 1) { plane = &pixfmt->plane_fmt[0]; plane->bytesperline = ALIGN(width, v4l2_format_block_width(info, 0)) * info->bpp[0] / info->bpp_div[0]; plane->sizeimage = 0; for (i = 0; i < info->comp_planes; i++) { unsigned int hdiv = (i == 0) ? 1 : info->hdiv; unsigned int vdiv = (i == 0) ? 1 : info->vdiv; unsigned int aligned_width; unsigned int aligned_height; aligned_width = ALIGN(width, v4l2_format_block_width(info, i)); aligned_height = ALIGN(height, v4l2_format_block_height(info, i)); plane->sizeimage += info->bpp[i] * DIV_ROUND_UP(aligned_width, hdiv) * DIV_ROUND_UP(aligned_height, vdiv) / info->bpp_div[i]; } } else { for (i = 0; i < info->comp_planes; i++) { unsigned int hdiv = (i == 0) ? 1 : info->hdiv; unsigned int vdiv = (i == 0) ? 1 : info->vdiv; unsigned int aligned_width; unsigned int aligned_height; aligned_width = ALIGN(width, v4l2_format_block_width(info, i)); aligned_height = ALIGN(height, v4l2_format_block_height(info, i)); plane = &pixfmt->plane_fmt[i]; plane->bytesperline = info->bpp[i] * DIV_ROUND_UP(aligned_width, hdiv) / info->bpp_div[i]; plane->sizeimage = plane->bytesperline * DIV_ROUND_UP(aligned_height, vdiv); } } return 0; } EXPORT_SYMBOL_GPL(v4l2_fill_pixfmt_mp); int v4l2_fill_pixfmt(struct v4l2_pix_format *pixfmt, u32 pixelformat, u32 width, u32 height) { const struct v4l2_format_info *info; int i; info = v4l2_format_info(pixelformat); if (!info) return -EINVAL; /* Single planar API cannot be used for multi plane formats. */ if (info->mem_planes > 1) return -EINVAL; pixfmt->width = width; pixfmt->height = height; pixfmt->pixelformat = pixelformat; pixfmt->bytesperline = ALIGN(width, v4l2_format_block_width(info, 0)) * info->bpp[0] / info->bpp_div[0]; pixfmt->sizeimage = 0; for (i = 0; i < info->comp_planes; i++) { unsigned int hdiv = (i == 0) ? 1 : info->hdiv; unsigned int vdiv = (i == 0) ? 1 : info->vdiv; unsigned int aligned_width; unsigned int aligned_height; aligned_width = ALIGN(width, v4l2_format_block_width(info, i)); aligned_height = ALIGN(height, v4l2_format_block_height(info, i)); pixfmt->sizeimage += info->bpp[i] * DIV_ROUND_UP(aligned_width, hdiv) * DIV_ROUND_UP(aligned_height, vdiv) / info->bpp_div[i]; } return 0; } EXPORT_SYMBOL_GPL(v4l2_fill_pixfmt); s64 __v4l2_get_link_freq_ctrl(struct v4l2_ctrl_handler *handler, unsigned int mul, unsigned int div) { struct v4l2_ctrl *ctrl; s64 freq; ctrl = v4l2_ctrl_find(handler, V4L2_CID_LINK_FREQ); if (ctrl) { struct v4l2_querymenu qm = { .id = V4L2_CID_LINK_FREQ }; int ret; qm.index = v4l2_ctrl_g_ctrl(ctrl); ret = v4l2_querymenu(handler, &qm); if (ret) return -ENOENT; freq = qm.value; } else { if (!mul || !div) return -ENOENT; ctrl = v4l2_ctrl_find(handler, V4L2_CID_PIXEL_RATE); if (!ctrl) return -ENOENT; freq = div_u64(v4l2_ctrl_g_ctrl_int64(ctrl) * mul, div); pr_warn("%s: Link frequency estimated using pixel rate: result might be inaccurate\n", __func__); pr_warn("%s: Consider implementing support for V4L2_CID_LINK_FREQ in the transmitter driver\n", __func__); } return freq > 0 ? freq : -EINVAL; } EXPORT_SYMBOL_GPL(__v4l2_get_link_freq_ctrl); #ifdef CONFIG_MEDIA_CONTROLLER s64 __v4l2_get_link_freq_pad(struct media_pad *pad, unsigned int mul, unsigned int div) { struct v4l2_mbus_config mbus_config = {}; struct v4l2_subdev *sd; int ret; sd = media_entity_to_v4l2_subdev(pad->entity); ret = v4l2_subdev_call(sd, pad, get_mbus_config, pad->index, &mbus_config); if (ret < 0 && ret != -ENOIOCTLCMD) return ret; if (mbus_config.link_freq) return mbus_config.link_freq; /* * Fall back to using the link frequency control if the media bus config * doesn't provide a link frequency. */ return __v4l2_get_link_freq_ctrl(sd->ctrl_handler, mul, div); } EXPORT_SYMBOL_GPL(__v4l2_get_link_freq_pad); #endif /* CONFIG_MEDIA_CONTROLLER */ /* * Simplify a fraction using a simple continued fraction decomposition. The * idea here is to convert fractions such as 333333/10000000 to 1/30 using * 32 bit arithmetic only. The algorithm is not perfect and relies upon two * arbitrary parameters to remove non-significative terms from the simple * continued fraction decomposition. Using 8 and 333 for n_terms and threshold * respectively seems to give nice results. */ void v4l2_simplify_fraction(u32 *numerator, u32 *denominator, unsigned int n_terms, unsigned int threshold) { u32 *an; u32 x, y, r; unsigned int i, n; an = kmalloc_array(n_terms, sizeof(*an), GFP_KERNEL); if (an == NULL) return; /* * Convert the fraction to a simple continued fraction. See * https://en.wikipedia.org/wiki/Continued_fraction * Stop if the current term is bigger than or equal to the given * threshold. */ x = *numerator; y = *denominator; for (n = 0; n < n_terms && y != 0; ++n) { an[n] = x / y; if (an[n] >= threshold) { if (n < 2) n++; break; } r = x - an[n] * y; x = y; y = r; } /* Expand the simple continued fraction back to an integer fraction. */ x = 0; y = 1; for (i = n; i > 0; --i) { r = y; y = an[i-1] * y + x; x = r; } *numerator = y; *denominator = x; kfree(an); } EXPORT_SYMBOL_GPL(v4l2_simplify_fraction); /* * Convert a fraction to a frame interval in 100ns multiples. The idea here is * to compute numerator / denominator * 10000000 using 32 bit fixed point * arithmetic only. */ u32 v4l2_fraction_to_interval(u32 numerator, u32 denominator) { u32 multiplier; /* Saturate the result if the operation would overflow. */ if (denominator == 0 || numerator/denominator >= ((u32)-1)/10000000) return (u32)-1; /* * Divide both the denominator and the multiplier by two until * numerator * multiplier doesn't overflow. If anyone knows a better * algorithm please let me know. */ multiplier = 10000000; while (numerator > ((u32)-1)/multiplier) { multiplier /= 2; denominator /= 2; } return denominator ? numerator * multiplier / denominator : 0; } EXPORT_SYMBOL_GPL(v4l2_fraction_to_interval); int v4l2_link_freq_to_bitmap(struct device *dev, const u64 *fw_link_freqs, unsigned int num_of_fw_link_freqs, const s64 *driver_link_freqs, unsigned int num_of_driver_link_freqs, unsigned long *bitmap) { unsigned int i; *bitmap = 0; if (!num_of_fw_link_freqs) { dev_err(dev, "no link frequencies in firmware\n"); return -ENODATA; } for (i = 0; i < num_of_fw_link_freqs; i++) { unsigned int j; for (j = 0; j < num_of_driver_link_freqs; j++) { if (fw_link_freqs[i] != driver_link_freqs[j]) continue; dev_dbg(dev, "enabling link frequency %lld Hz\n", driver_link_freqs[j]); *bitmap |= BIT(j); break; } } if (!*bitmap) { dev_err(dev, "no matching link frequencies found\n"); dev_dbg(dev, "specified in firmware:\n"); for (i = 0; i < num_of_fw_link_freqs; i++) dev_dbg(dev, "\t%llu Hz\n", fw_link_freqs[i]); dev_dbg(dev, "driver supported:\n"); for (i = 0; i < num_of_driver_link_freqs; i++) dev_dbg(dev, "\t%lld Hz\n", driver_link_freqs[i]); return -ENOENT; } return 0; } EXPORT_SYMBOL_GPL(v4l2_link_freq_to_bitmap); |
60 4 3 3 4 60 59 60 60 60 6 6 4 60 60 60 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 49 49 49 49 2 2 2 2 9 14 14 14 14 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 | // SPDX-License-Identifier: GPL-2.0-only /* * BSS client mode implementation * Copyright 2003-2008, Jouni Malinen <j@w1.fi> * Copyright 2004, Instant802 Networks, Inc. * Copyright 2005, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> * Copyright 2007, Michael Wu <flamingice@sourmilk.net> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright (C) 2015 - 2017 Intel Deutschland GmbH * Copyright (C) 2018 - 2025 Intel Corporation */ #include <linux/delay.h> #include <linux/fips.h> #include <linux/if_ether.h> #include <linux/skbuff.h> #include <linux/if_arp.h> #include <linux/etherdevice.h> #include <linux/moduleparam.h> #include <linux/rtnetlink.h> #include <linux/crc32.h> #include <linux/slab.h> #include <linux/export.h> #include <net/mac80211.h> #include <linux/unaligned.h> #include "ieee80211_i.h" #include "driver-ops.h" #include "rate.h" #include "led.h" #include "fils_aead.h" #include <kunit/static_stub.h> #define IEEE80211_AUTH_TIMEOUT (HZ / 5) #define IEEE80211_AUTH_TIMEOUT_LONG (HZ / 2) #define IEEE80211_AUTH_TIMEOUT_SHORT (HZ / 10) #define IEEE80211_AUTH_TIMEOUT_SAE (HZ * 2) #define IEEE80211_AUTH_MAX_TRIES 3 #define IEEE80211_AUTH_WAIT_ASSOC (HZ * 5) #define IEEE80211_AUTH_WAIT_SAE_RETRY (HZ * 2) #define IEEE80211_ASSOC_TIMEOUT (HZ / 5) #define IEEE80211_ASSOC_TIMEOUT_LONG (HZ / 2) #define IEEE80211_ASSOC_TIMEOUT_SHORT (HZ / 10) #define IEEE80211_ASSOC_MAX_TRIES 3 #define IEEE80211_ADV_TTLM_SAFETY_BUFFER_MS msecs_to_jiffies(100) #define IEEE80211_ADV_TTLM_ST_UNDERFLOW 0xff00 #define IEEE80211_NEG_TTLM_REQ_TIMEOUT (HZ / 5) static int max_nullfunc_tries = 2; module_param(max_nullfunc_tries, int, 0644); MODULE_PARM_DESC(max_nullfunc_tries, "Maximum nullfunc tx tries before disconnecting (reason 4)."); static int max_probe_tries = 5; module_param(max_probe_tries, int, 0644); MODULE_PARM_DESC(max_probe_tries, "Maximum probe tries before disconnecting (reason 4)."); /* * Beacon loss timeout is calculated as N frames times the * advertised beacon interval. This may need to be somewhat * higher than what hardware might detect to account for * delays in the host processing frames. But since we also * probe on beacon miss before declaring the connection lost * default to what we want. */ static int beacon_loss_count = 7; module_param(beacon_loss_count, int, 0644); MODULE_PARM_DESC(beacon_loss_count, "Number of beacon intervals before we decide beacon was lost."); /* * Time the connection can be idle before we probe * it to see if we can still talk to the AP. */ #define IEEE80211_CONNECTION_IDLE_TIME (30 * HZ) /* * Time we wait for a probe response after sending * a probe request because of beacon loss or for * checking the connection still works. */ static int probe_wait_ms = 500; module_param(probe_wait_ms, int, 0644); MODULE_PARM_DESC(probe_wait_ms, "Maximum time(ms) to wait for probe response" " before disconnecting (reason 4)."); /* * How many Beacon frames need to have been used in average signal strength * before starting to indicate signal change events. */ #define IEEE80211_SIGNAL_AVE_MIN_COUNT 4 /* * We can have multiple work items (and connection probing) * scheduling this timer, but we need to take care to only * reschedule it when it should fire _earlier_ than it was * asked for before, or if it's not pending right now. This * function ensures that. Note that it then is required to * run this function for all timeouts after the first one * has happened -- the work that runs from this timer will * do that. */ static void run_again(struct ieee80211_sub_if_data *sdata, unsigned long timeout) { lockdep_assert_wiphy(sdata->local->hw.wiphy); if (!timer_pending(&sdata->u.mgd.timer) || time_before(timeout, sdata->u.mgd.timer.expires)) mod_timer(&sdata->u.mgd.timer, timeout); } void ieee80211_sta_reset_beacon_monitor(struct ieee80211_sub_if_data *sdata) { if (sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER) return; if (ieee80211_hw_check(&sdata->local->hw, CONNECTION_MONITOR)) return; mod_timer(&sdata->u.mgd.bcn_mon_timer, round_jiffies_up(jiffies + sdata->u.mgd.beacon_timeout)); } void ieee80211_sta_reset_conn_monitor(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; if (unlikely(!ifmgd->associated)) return; if (ifmgd->probe_send_count) ifmgd->probe_send_count = 0; if (ieee80211_hw_check(&sdata->local->hw, CONNECTION_MONITOR)) return; mod_timer(&ifmgd->conn_mon_timer, round_jiffies_up(jiffies + IEEE80211_CONNECTION_IDLE_TIME)); } static int ecw2cw(int ecw) { return (1 << ecw) - 1; } static enum ieee80211_conn_mode ieee80211_determine_ap_chan(struct ieee80211_sub_if_data *sdata, struct ieee80211_channel *channel, u32 vht_cap_info, const struct ieee802_11_elems *elems, bool ignore_ht_channel_mismatch, const struct ieee80211_conn_settings *conn, struct cfg80211_chan_def *chandef) { const struct ieee80211_ht_operation *ht_oper = elems->ht_operation; const struct ieee80211_vht_operation *vht_oper = elems->vht_operation; const struct ieee80211_he_operation *he_oper = elems->he_operation; const struct ieee80211_eht_operation *eht_oper = elems->eht_operation; struct ieee80211_supported_band *sband = sdata->local->hw.wiphy->bands[channel->band]; struct cfg80211_chan_def vht_chandef; bool no_vht = false; u32 ht_cfreq; if (ieee80211_hw_check(&sdata->local->hw, STRICT)) ignore_ht_channel_mismatch = false; *chandef = (struct cfg80211_chan_def) { .chan = channel, .width = NL80211_CHAN_WIDTH_20_NOHT, .center_freq1 = channel->center_freq, .freq1_offset = channel->freq_offset, }; /* get special S1G case out of the way */ if (sband->band == NL80211_BAND_S1GHZ) { if (!ieee80211_chandef_s1g_oper(elems->s1g_oper, chandef)) { sdata_info(sdata, "Missing S1G Operation Element? Trying operating == primary\n"); chandef->width = ieee80211_s1g_channel_width(channel); } return IEEE80211_CONN_MODE_S1G; } /* get special 6 GHz case out of the way */ if (sband->band == NL80211_BAND_6GHZ) { enum ieee80211_conn_mode mode = IEEE80211_CONN_MODE_EHT; /* this is an error */ if (conn->mode < IEEE80211_CONN_MODE_HE) return IEEE80211_CONN_MODE_LEGACY; if (!elems->he_6ghz_capa || !elems->he_cap) { sdata_info(sdata, "HE 6 GHz AP is missing HE/HE 6 GHz band capability\n"); return IEEE80211_CONN_MODE_LEGACY; } if (!eht_oper || !elems->eht_cap) { eht_oper = NULL; mode = IEEE80211_CONN_MODE_HE; } if (!ieee80211_chandef_he_6ghz_oper(sdata->local, he_oper, eht_oper, chandef)) { sdata_info(sdata, "bad HE/EHT 6 GHz operation\n"); return IEEE80211_CONN_MODE_LEGACY; } return mode; } /* now we have the progression HT, VHT, ... */ if (conn->mode < IEEE80211_CONN_MODE_HT) return IEEE80211_CONN_MODE_LEGACY; if (!ht_oper || !elems->ht_cap_elem) return IEEE80211_CONN_MODE_LEGACY; chandef->width = NL80211_CHAN_WIDTH_20; ht_cfreq = ieee80211_channel_to_frequency(ht_oper->primary_chan, channel->band); /* check that channel matches the right operating channel */ if (!ignore_ht_channel_mismatch && channel->center_freq != ht_cfreq) { /* * It's possible that some APs are confused here; * Netgear WNDR3700 sometimes reports 4 higher than * the actual channel in association responses, but * since we look at probe response/beacon data here * it should be OK. */ sdata_info(sdata, "Wrong control channel: center-freq: %d ht-cfreq: %d ht->primary_chan: %d band: %d - Disabling HT\n", channel->center_freq, ht_cfreq, ht_oper->primary_chan, channel->band); return IEEE80211_CONN_MODE_LEGACY; } ieee80211_chandef_ht_oper(ht_oper, chandef); if (conn->mode < IEEE80211_CONN_MODE_VHT) return IEEE80211_CONN_MODE_HT; vht_chandef = *chandef; /* * having he_cap/he_oper parsed out implies we're at * least operating as HE STA */ if (elems->he_cap && he_oper && he_oper->he_oper_params & cpu_to_le32(IEEE80211_HE_OPERATION_VHT_OPER_INFO)) { struct ieee80211_vht_operation he_oper_vht_cap; /* * Set only first 3 bytes (other 2 aren't used in * ieee80211_chandef_vht_oper() anyway) */ memcpy(&he_oper_vht_cap, he_oper->optional, 3); he_oper_vht_cap.basic_mcs_set = cpu_to_le16(0); if (!ieee80211_chandef_vht_oper(&sdata->local->hw, vht_cap_info, &he_oper_vht_cap, ht_oper, &vht_chandef)) { sdata_info(sdata, "HE AP VHT information is invalid, disabling HE\n"); /* this will cause us to re-parse as VHT STA */ return IEEE80211_CONN_MODE_VHT; } } else if (!vht_oper || !elems->vht_cap_elem) { if (sband->band == NL80211_BAND_5GHZ) { sdata_info(sdata, "VHT information is missing, disabling VHT\n"); return IEEE80211_CONN_MODE_HT; } no_vht = true; } else if (sband->band == NL80211_BAND_2GHZ) { no_vht = true; } else if (!ieee80211_chandef_vht_oper(&sdata->local->hw, vht_cap_info, vht_oper, ht_oper, &vht_chandef)) { sdata_info(sdata, "AP VHT information is invalid, disabling VHT\n"); return IEEE80211_CONN_MODE_HT; } if (!cfg80211_chandef_compatible(chandef, &vht_chandef)) { sdata_info(sdata, "AP VHT information doesn't match HT, disabling VHT\n"); return IEEE80211_CONN_MODE_HT; } *chandef = vht_chandef; /* stick to current max mode if we or the AP don't have HE */ if (conn->mode < IEEE80211_CONN_MODE_HE || !elems->he_operation || !elems->he_cap) { if (no_vht) return IEEE80211_CONN_MODE_HT; return IEEE80211_CONN_MODE_VHT; } /* stick to HE if we or the AP don't have EHT */ if (conn->mode < IEEE80211_CONN_MODE_EHT || !eht_oper || !elems->eht_cap) return IEEE80211_CONN_MODE_HE; /* * handle the case that the EHT operation indicates that it holds EHT * operation information (in case that the channel width differs from * the channel width reported in HT/VHT/HE). */ if (eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT) { struct cfg80211_chan_def eht_chandef = *chandef; ieee80211_chandef_eht_oper((const void *)eht_oper->optional, &eht_chandef); eht_chandef.punctured = ieee80211_eht_oper_dis_subchan_bitmap(eht_oper); if (!cfg80211_chandef_valid(&eht_chandef)) { sdata_info(sdata, "AP EHT information is invalid, disabling EHT\n"); return IEEE80211_CONN_MODE_HE; } if (!cfg80211_chandef_compatible(chandef, &eht_chandef)) { sdata_info(sdata, "AP EHT information doesn't match HT/VHT/HE, disabling EHT\n"); return IEEE80211_CONN_MODE_HE; } *chandef = eht_chandef; } return IEEE80211_CONN_MODE_EHT; } static bool ieee80211_verify_sta_ht_mcs_support(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const struct ieee80211_ht_operation *ht_op) { struct ieee80211_sta_ht_cap sta_ht_cap; int i; if (sband->band == NL80211_BAND_6GHZ) return true; if (!ht_op) return false; memcpy(&sta_ht_cap, &sband->ht_cap, sizeof(sta_ht_cap)); ieee80211_apply_htcap_overrides(sdata, &sta_ht_cap); /* * P802.11REVme/D7.0 - 6.5.4.2.4 * ... * If the MLME of an HT STA receives an MLME-JOIN.request primitive * with the SelectedBSS parameter containing a Basic HT-MCS Set field * in the HT Operation parameter that contains any unsupported MCSs, * the MLME response in the resulting MLME-JOIN.confirm primitive shall * contain a ResultCode parameter that is not set to the value SUCCESS. * ... */ /* Simply check that all basic rates are in the STA RX mask */ for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) { if ((ht_op->basic_set[i] & sta_ht_cap.mcs.rx_mask[i]) != ht_op->basic_set[i]) return false; } return true; } static bool ieee80211_verify_sta_vht_mcs_support(struct ieee80211_sub_if_data *sdata, int link_id, struct ieee80211_supported_band *sband, const struct ieee80211_vht_operation *vht_op) { struct ieee80211_sta_vht_cap sta_vht_cap; u16 ap_min_req_set, sta_rx_mcs_map, sta_tx_mcs_map; int nss; if (sband->band != NL80211_BAND_5GHZ) return true; if (!vht_op) return false; memcpy(&sta_vht_cap, &sband->vht_cap, sizeof(sta_vht_cap)); ieee80211_apply_vhtcap_overrides(sdata, &sta_vht_cap); ap_min_req_set = le16_to_cpu(vht_op->basic_mcs_set); sta_rx_mcs_map = le16_to_cpu(sta_vht_cap.vht_mcs.rx_mcs_map); sta_tx_mcs_map = le16_to_cpu(sta_vht_cap.vht_mcs.tx_mcs_map); /* * Many APs are incorrectly advertising an all-zero value here, * which really means MCS 0-7 are required for 1-8 streams, but * they don't really mean it that way. * Some other APs are incorrectly advertising 3 spatial streams * with MCS 0-7 are required, but don't really mean it that way * and we'll connect only with HT, rather than even HE. * As a result, unfortunately the VHT basic MCS/NSS set cannot * be used at all, so check it only in strict mode. */ if (!ieee80211_hw_check(&sdata->local->hw, STRICT)) return true; /* * P802.11REVme/D7.0 - 6.5.4.2.4 * ... * If the MLME of a VHT STA receives an MLME-JOIN.request primitive * with a SelectedBSS parameter containing a Basic VHT-MCS And NSS Set * field in the VHT Operation parameter that contains any unsupported * <VHT-MCS, NSS> tuple, the MLME response in the resulting * MLME-JOIN.confirm primitive shall contain a ResultCode parameter * that is not set to the value SUCCESS. * ... */ for (nss = 8; nss > 0; nss--) { u8 ap_op_val = (ap_min_req_set >> (2 * (nss - 1))) & 3; u8 sta_rx_val; u8 sta_tx_val; if (ap_op_val == IEEE80211_HE_MCS_NOT_SUPPORTED) continue; sta_rx_val = (sta_rx_mcs_map >> (2 * (nss - 1))) & 3; sta_tx_val = (sta_tx_mcs_map >> (2 * (nss - 1))) & 3; if (sta_rx_val == IEEE80211_HE_MCS_NOT_SUPPORTED || sta_tx_val == IEEE80211_HE_MCS_NOT_SUPPORTED || sta_rx_val < ap_op_val || sta_tx_val < ap_op_val) { link_id_info(sdata, link_id, "Missing mandatory rates for %d Nss, rx %d, tx %d oper %d, disable VHT\n", nss, sta_rx_val, sta_tx_val, ap_op_val); return false; } } return true; } static bool ieee80211_verify_peer_he_mcs_support(struct ieee80211_sub_if_data *sdata, int link_id, const struct ieee80211_he_cap_elem *he_cap, const struct ieee80211_he_operation *he_op) { struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp; u16 mcs_80_map_tx, mcs_80_map_rx; u16 ap_min_req_set; int nss; if (!he_cap) return false; /* mcs_nss is right after he_cap info */ he_mcs_nss_supp = (void *)(he_cap + 1); mcs_80_map_tx = le16_to_cpu(he_mcs_nss_supp->tx_mcs_80); mcs_80_map_rx = le16_to_cpu(he_mcs_nss_supp->rx_mcs_80); /* P802.11-REVme/D0.3 * 27.1.1 Introduction to the HE PHY * ... * An HE STA shall support the following features: * ... * Single spatial stream HE-MCSs 0 to 7 (transmit and receive) in all * supported channel widths for HE SU PPDUs */ if ((mcs_80_map_tx & 0x3) == IEEE80211_HE_MCS_NOT_SUPPORTED || (mcs_80_map_rx & 0x3) == IEEE80211_HE_MCS_NOT_SUPPORTED) { link_id_info(sdata, link_id, "Missing mandatory rates for 1 Nss, rx 0x%x, tx 0x%x, disable HE\n", mcs_80_map_tx, mcs_80_map_rx); return false; } if (!he_op) return true; ap_min_req_set = le16_to_cpu(he_op->he_mcs_nss_set); /* * Apparently iPhone 13 (at least iOS version 15.3.1) sets this to all * zeroes, which is nonsense, and completely inconsistent with itself * (it doesn't have 8 streams). Accept the settings in this case anyway. */ if (!ieee80211_hw_check(&sdata->local->hw, STRICT) && !ap_min_req_set) return true; /* make sure the AP is consistent with itself * * P802.11-REVme/D0.3 * 26.17.1 Basic HE BSS operation * * A STA that is operating in an HE BSS shall be able to receive and * transmit at each of the <HE-MCS, NSS> tuple values indicated by the * Basic HE-MCS And NSS Set field of the HE Operation parameter of the * MLME-START.request primitive and shall be able to receive at each of * the <HE-MCS, NSS> tuple values indicated by the Supported HE-MCS and * NSS Set field in the HE Capabilities parameter of the MLMESTART.request * primitive */ for (nss = 8; nss > 0; nss--) { u8 ap_op_val = (ap_min_req_set >> (2 * (nss - 1))) & 3; u8 ap_rx_val; u8 ap_tx_val; if (ap_op_val == IEEE80211_HE_MCS_NOT_SUPPORTED) continue; ap_rx_val = (mcs_80_map_rx >> (2 * (nss - 1))) & 3; ap_tx_val = (mcs_80_map_tx >> (2 * (nss - 1))) & 3; if (ap_rx_val == IEEE80211_HE_MCS_NOT_SUPPORTED || ap_tx_val == IEEE80211_HE_MCS_NOT_SUPPORTED || ap_rx_val < ap_op_val || ap_tx_val < ap_op_val) { link_id_info(sdata, link_id, "Invalid rates for %d Nss, rx %d, tx %d oper %d, disable HE\n", nss, ap_rx_val, ap_tx_val, ap_op_val); return false; } } return true; } static bool ieee80211_verify_sta_he_mcs_support(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const struct ieee80211_he_operation *he_op) { const struct ieee80211_sta_he_cap *sta_he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); u16 ap_min_req_set; int i; if (!sta_he_cap || !he_op) return false; ap_min_req_set = le16_to_cpu(he_op->he_mcs_nss_set); /* * Apparently iPhone 13 (at least iOS version 15.3.1) sets this to all * zeroes, which is nonsense, and completely inconsistent with itself * (it doesn't have 8 streams). Accept the settings in this case anyway. */ if (!ieee80211_hw_check(&sdata->local->hw, STRICT) && !ap_min_req_set) return true; /* Need to go over for 80MHz, 160MHz and for 80+80 */ for (i = 0; i < 3; i++) { const struct ieee80211_he_mcs_nss_supp *sta_mcs_nss_supp = &sta_he_cap->he_mcs_nss_supp; u16 sta_mcs_map_rx = le16_to_cpu(((__le16 *)sta_mcs_nss_supp)[2 * i]); u16 sta_mcs_map_tx = le16_to_cpu(((__le16 *)sta_mcs_nss_supp)[2 * i + 1]); u8 nss; bool verified = true; /* * For each band there is a maximum of 8 spatial streams * possible. Each of the sta_mcs_map_* is a 16-bit struct built * of 2 bits per NSS (1-8), with the values defined in enum * ieee80211_he_mcs_support. Need to make sure STA TX and RX * capabilities aren't less than the AP's minimum requirements * for this HE BSS per SS. * It is enough to find one such band that meets the reqs. */ for (nss = 8; nss > 0; nss--) { u8 sta_rx_val = (sta_mcs_map_rx >> (2 * (nss - 1))) & 3; u8 sta_tx_val = (sta_mcs_map_tx >> (2 * (nss - 1))) & 3; u8 ap_val = (ap_min_req_set >> (2 * (nss - 1))) & 3; if (ap_val == IEEE80211_HE_MCS_NOT_SUPPORTED) continue; /* * Make sure the HE AP doesn't require MCSs that aren't * supported by the client as required by spec * * P802.11-REVme/D0.3 * 26.17.1 Basic HE BSS operation * * An HE STA shall not attempt to join * (MLME-JOIN.request primitive) * a BSS, unless it supports (i.e., is able to both transmit and * receive using) all of the <HE-MCS, NSS> tuples in the basic * HE-MCS and NSS set. */ if (sta_rx_val == IEEE80211_HE_MCS_NOT_SUPPORTED || sta_tx_val == IEEE80211_HE_MCS_NOT_SUPPORTED || (ap_val > sta_rx_val) || (ap_val > sta_tx_val)) { verified = false; break; } } if (verified) return true; } /* If here, STA doesn't meet AP's HE min requirements */ return false; } static u8 ieee80211_get_eht_cap_mcs_nss(const struct ieee80211_sta_he_cap *sta_he_cap, const struct ieee80211_sta_eht_cap *sta_eht_cap, unsigned int idx, int bw) { u8 he_phy_cap0 = sta_he_cap->he_cap_elem.phy_cap_info[0]; u8 eht_phy_cap0 = sta_eht_cap->eht_cap_elem.phy_cap_info[0]; /* handle us being a 20 MHz-only EHT STA - with four values * for MCS 0-7, 8-9, 10-11, 12-13. */ if (!(he_phy_cap0 & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL)) return sta_eht_cap->eht_mcs_nss_supp.only_20mhz.rx_tx_max_nss[idx]; /* the others have MCS 0-9 together, rather than separately from 0-7 */ if (idx > 0) idx--; switch (bw) { case 0: return sta_eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_max_nss[idx]; case 1: if (!(he_phy_cap0 & (IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G))) return 0xff; /* pass check */ return sta_eht_cap->eht_mcs_nss_supp.bw._160.rx_tx_max_nss[idx]; case 2: if (!(eht_phy_cap0 & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ)) return 0xff; /* pass check */ return sta_eht_cap->eht_mcs_nss_supp.bw._320.rx_tx_max_nss[idx]; } WARN_ON(1); return 0; } static bool ieee80211_verify_sta_eht_mcs_support(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const struct ieee80211_eht_operation *eht_op) { const struct ieee80211_sta_he_cap *sta_he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); const struct ieee80211_sta_eht_cap *sta_eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); const struct ieee80211_eht_mcs_nss_supp_20mhz_only *req; unsigned int i; if (!sta_he_cap || !sta_eht_cap || !eht_op) return false; req = &eht_op->basic_mcs_nss; for (i = 0; i < ARRAY_SIZE(req->rx_tx_max_nss); i++) { u8 req_rx_nss, req_tx_nss; unsigned int bw; req_rx_nss = u8_get_bits(req->rx_tx_max_nss[i], IEEE80211_EHT_MCS_NSS_RX); req_tx_nss = u8_get_bits(req->rx_tx_max_nss[i], IEEE80211_EHT_MCS_NSS_TX); for (bw = 0; bw < 3; bw++) { u8 have, have_rx_nss, have_tx_nss; have = ieee80211_get_eht_cap_mcs_nss(sta_he_cap, sta_eht_cap, i, bw); have_rx_nss = u8_get_bits(have, IEEE80211_EHT_MCS_NSS_RX); have_tx_nss = u8_get_bits(have, IEEE80211_EHT_MCS_NSS_TX); if (req_rx_nss > have_rx_nss || req_tx_nss > have_tx_nss) return false; } } return true; } static void ieee80211_get_rates(struct ieee80211_supported_band *sband, const u8 *supp_rates, unsigned int supp_rates_len, const u8 *ext_supp_rates, unsigned int ext_supp_rates_len, u32 *rates, u32 *basic_rates, unsigned long *unknown_rates_selectors, bool *have_higher_than_11mbit, int *min_rate, int *min_rate_index) { int i, j; for (i = 0; i < supp_rates_len + ext_supp_rates_len; i++) { u8 supp_rate = i < supp_rates_len ? supp_rates[i] : ext_supp_rates[i - supp_rates_len]; int rate = supp_rate & 0x7f; bool is_basic = !!(supp_rate & 0x80); if ((rate * 5) > 110 && have_higher_than_11mbit) *have_higher_than_11mbit = true; /* * Skip membership selectors since they're not rates. * * Note: Even though the membership selector and the basic * rate flag share the same bit, they are not exactly * the same. */ if (is_basic && rate >= BSS_MEMBERSHIP_SELECTOR_MIN) { if (unknown_rates_selectors) set_bit(rate, unknown_rates_selectors); continue; } for (j = 0; j < sband->n_bitrates; j++) { struct ieee80211_rate *br; int brate; br = &sband->bitrates[j]; brate = DIV_ROUND_UP(br->bitrate, 5); if (brate == rate) { if (rates) *rates |= BIT(j); if (is_basic && basic_rates) *basic_rates |= BIT(j); if (min_rate && (rate * 5) < *min_rate) { *min_rate = rate * 5; if (min_rate_index) *min_rate_index = j; } break; } } /* Handle an unknown entry as if it is an unknown selector */ if (is_basic && unknown_rates_selectors && j == sband->n_bitrates) set_bit(rate, unknown_rates_selectors); } } static bool ieee80211_chandef_usable(struct ieee80211_sub_if_data *sdata, const struct cfg80211_chan_def *chandef, u32 prohibited_flags) { if (!cfg80211_chandef_usable(sdata->local->hw.wiphy, chandef, prohibited_flags)) return false; if (chandef->punctured && ieee80211_hw_check(&sdata->local->hw, DISALLOW_PUNCTURING)) return false; if (chandef->punctured && chandef->chan->band == NL80211_BAND_5GHZ && ieee80211_hw_check(&sdata->local->hw, DISALLOW_PUNCTURING_5GHZ)) return false; return true; } static int ieee80211_chandef_num_subchans(const struct cfg80211_chan_def *c) { if (c->width == NL80211_CHAN_WIDTH_80P80) return 4 + 4; return cfg80211_chandef_get_width(c) / 20; } static int ieee80211_chandef_num_widths(const struct cfg80211_chan_def *c) { switch (c->width) { case NL80211_CHAN_WIDTH_20: case NL80211_CHAN_WIDTH_20_NOHT: return 1; case NL80211_CHAN_WIDTH_40: return 2; case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_80: return 3; case NL80211_CHAN_WIDTH_160: return 4; case NL80211_CHAN_WIDTH_320: return 5; default: WARN_ON(1); return 0; } } VISIBLE_IF_MAC80211_KUNIT int ieee80211_calc_chandef_subchan_offset(const struct cfg80211_chan_def *ap, u8 n_partial_subchans) { int n = ieee80211_chandef_num_subchans(ap); struct cfg80211_chan_def tmp = *ap; int offset = 0; /* * Given a chandef (in this context, it's the AP's) and a number * of subchannels that we want to look at ('n_partial_subchans'), * calculate the offset in number of subchannels between the full * and the subset with the desired width. */ /* same number of subchannels means no offset, obviously */ if (n == n_partial_subchans) return 0; /* don't WARN - misconfigured APs could cause this if their N > width */ if (n < n_partial_subchans) return 0; while (ieee80211_chandef_num_subchans(&tmp) > n_partial_subchans) { u32 prev = tmp.center_freq1; ieee80211_chandef_downgrade(&tmp, NULL); /* * if center_freq moved up, half the original channels * are gone now but were below, so increase offset */ if (prev < tmp.center_freq1) offset += ieee80211_chandef_num_subchans(&tmp); } /* * 80+80 with secondary 80 below primary - four subchannels for it * (we cannot downgrade *to* 80+80, so no need to consider 'tmp') */ if (ap->width == NL80211_CHAN_WIDTH_80P80 && ap->center_freq2 < ap->center_freq1) offset += 4; return offset; } EXPORT_SYMBOL_IF_MAC80211_KUNIT(ieee80211_calc_chandef_subchan_offset); VISIBLE_IF_MAC80211_KUNIT void ieee80211_rearrange_tpe_psd(struct ieee80211_parsed_tpe_psd *psd, const struct cfg80211_chan_def *ap, const struct cfg80211_chan_def *used) { u8 needed = ieee80211_chandef_num_subchans(used); u8 have = ieee80211_chandef_num_subchans(ap); u8 tmp[IEEE80211_TPE_PSD_ENTRIES_320MHZ]; u8 offset; if (!psd->valid) return; /* if N is zero, all defaults were used, no point in rearranging */ if (!psd->n) goto out; BUILD_BUG_ON(sizeof(tmp) != sizeof(psd->power)); /* * This assumes that 'N' is consistent with the HE channel, as * it should be (otherwise the AP is broken). * * In psd->power we have values in the order 0..N, 0..K, where * N+K should cover the entire channel per 'ap', but even if it * doesn't then we've pre-filled 'unlimited' as defaults. * * But this is all the wrong order, we want to have them in the * order of the 'used' channel. * * So for example, we could have a 320 MHz EHT AP, which has the * HE channel as 80 MHz (e.g. due to puncturing, which doesn't * seem to be considered for the TPE), as follows: * * EHT 320: | | | | | | | | | | | | | | | | | * HE 80: | | | | | * used 160: | | | | | | | | | * * N entries: |--|--|--|--| * K entries: |--|--|--|--|--|--|--|--| |--|--|--|--| * power idx: 4 5 6 7 8 9 10 11 0 1 2 3 12 13 14 15 * full chan: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 * used chan: 0 1 2 3 4 5 6 7 * * The idx in the power array ('power idx') is like this since it * comes directly from the element's N and K entries in their * element order, and those are this way for HE compatibility. * * Rearrange them as desired here, first by putting them into the * 'full chan' order, and then selecting the necessary subset for * the 'used chan'. */ /* first reorder according to AP channel */ offset = ieee80211_calc_chandef_subchan_offset(ap, psd->n); for (int i = 0; i < have; i++) { if (i < offset) tmp[i] = psd->power[i + psd->n]; else if (i < offset + psd->n) tmp[i] = psd->power[i - offset]; else tmp[i] = psd->power[i]; } /* * and then select the subset for the used channel * (set everything to defaults first in case a driver is confused) */ memset(psd->power, IEEE80211_TPE_PSD_NO_LIMIT, sizeof(psd->power)); offset = ieee80211_calc_chandef_subchan_offset(ap, needed); for (int i = 0; i < needed; i++) psd->power[i] = tmp[offset + i]; out: /* limit, but don't lie if there are defaults in the data */ if (needed < psd->count) psd->count = needed; } EXPORT_SYMBOL_IF_MAC80211_KUNIT(ieee80211_rearrange_tpe_psd); static void ieee80211_rearrange_tpe(struct ieee80211_parsed_tpe *tpe, const struct cfg80211_chan_def *ap, const struct cfg80211_chan_def *used) { /* ignore this completely for narrow/invalid channels */ if (!ieee80211_chandef_num_subchans(ap) || !ieee80211_chandef_num_subchans(used)) { ieee80211_clear_tpe(tpe); return; } for (int i = 0; i < 2; i++) { int needed_pwr_count; ieee80211_rearrange_tpe_psd(&tpe->psd_local[i], ap, used); ieee80211_rearrange_tpe_psd(&tpe->psd_reg_client[i], ap, used); /* limit this to the widths we actually need */ needed_pwr_count = ieee80211_chandef_num_widths(used); if (needed_pwr_count < tpe->max_local[i].count) tpe->max_local[i].count = needed_pwr_count; if (needed_pwr_count < tpe->max_reg_client[i].count) tpe->max_reg_client[i].count = needed_pwr_count; } } /* * The AP part of the channel request is used to distinguish settings * to the device used for wider bandwidth OFDMA. This is used in the * channel context code to assign two channel contexts even if they're * both for the same channel, if the AP bandwidths are incompatible. * If not EHT (or driver override) then ap.chan == NULL indicates that * there's no wider BW OFDMA used. */ static void ieee80211_set_chanreq_ap(struct ieee80211_sub_if_data *sdata, struct ieee80211_chan_req *chanreq, struct ieee80211_conn_settings *conn, struct cfg80211_chan_def *ap_chandef) { chanreq->ap.chan = NULL; if (conn->mode < IEEE80211_CONN_MODE_EHT) return; if (sdata->vif.driver_flags & IEEE80211_VIF_IGNORE_OFDMA_WIDER_BW) return; chanreq->ap = *ap_chandef; } VISIBLE_IF_MAC80211_KUNIT struct ieee802_11_elems * ieee80211_determine_chan_mode(struct ieee80211_sub_if_data *sdata, struct ieee80211_conn_settings *conn, struct cfg80211_bss *cbss, int link_id, struct ieee80211_chan_req *chanreq, struct cfg80211_chan_def *ap_chandef, unsigned long *userspace_selectors) { const struct cfg80211_bss_ies *ies = rcu_dereference(cbss->ies); struct ieee80211_bss *bss = (void *)cbss->priv; struct ieee80211_channel *channel = cbss->channel; struct ieee80211_elems_parse_params parse_params = { .link_id = -1, .from_ap = true, .start = ies->data, .len = ies->len, }; struct ieee802_11_elems *elems; struct ieee80211_supported_band *sband; enum ieee80211_conn_mode ap_mode; unsigned long unknown_rates_selectors[BITS_TO_LONGS(128)] = {}; unsigned long sta_selectors[BITS_TO_LONGS(128)] = {}; int ret; again: parse_params.mode = conn->mode; elems = ieee802_11_parse_elems_full(&parse_params); if (!elems) return ERR_PTR(-ENOMEM); ap_mode = ieee80211_determine_ap_chan(sdata, channel, bss->vht_cap_info, elems, false, conn, ap_chandef); /* this should be impossible since parsing depends on our mode */ if (WARN_ON(ap_mode > conn->mode)) { ret = -EINVAL; goto free; } if (conn->mode != ap_mode) { conn->mode = ap_mode; kfree(elems); goto again; } mlme_link_id_dbg(sdata, link_id, "determined AP %pM to be %s\n", cbss->bssid, ieee80211_conn_mode_str(ap_mode)); sband = sdata->local->hw.wiphy->bands[channel->band]; ieee80211_get_rates(sband, elems->supp_rates, elems->supp_rates_len, elems->ext_supp_rates, elems->ext_supp_rates_len, NULL, NULL, unknown_rates_selectors, NULL, NULL, NULL); switch (channel->band) { case NL80211_BAND_S1GHZ: if (WARN_ON(ap_mode != IEEE80211_CONN_MODE_S1G)) { ret = -EINVAL; goto free; } return elems; case NL80211_BAND_6GHZ: if (ap_mode < IEEE80211_CONN_MODE_HE) { link_id_info(sdata, link_id, "Rejecting non-HE 6/7 GHz connection"); ret = -EINVAL; goto free; } break; default: if (WARN_ON(ap_mode == IEEE80211_CONN_MODE_S1G)) { ret = -EINVAL; goto free; } } switch (ap_mode) { case IEEE80211_CONN_MODE_S1G: WARN_ON(1); ret = -EINVAL; goto free; case IEEE80211_CONN_MODE_LEGACY: conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; break; case IEEE80211_CONN_MODE_HT: conn->bw_limit = min_t(enum ieee80211_conn_bw_limit, conn->bw_limit, IEEE80211_CONN_BW_LIMIT_40); break; case IEEE80211_CONN_MODE_VHT: case IEEE80211_CONN_MODE_HE: conn->bw_limit = min_t(enum ieee80211_conn_bw_limit, conn->bw_limit, IEEE80211_CONN_BW_LIMIT_160); break; case IEEE80211_CONN_MODE_EHT: conn->bw_limit = min_t(enum ieee80211_conn_bw_limit, conn->bw_limit, IEEE80211_CONN_BW_LIMIT_320); break; } chanreq->oper = *ap_chandef; bitmap_copy(sta_selectors, userspace_selectors, 128); if (conn->mode >= IEEE80211_CONN_MODE_HT) set_bit(BSS_MEMBERSHIP_SELECTOR_HT_PHY, sta_selectors); if (conn->mode >= IEEE80211_CONN_MODE_VHT) set_bit(BSS_MEMBERSHIP_SELECTOR_VHT_PHY, sta_selectors); if (conn->mode >= IEEE80211_CONN_MODE_HE) set_bit(BSS_MEMBERSHIP_SELECTOR_HE_PHY, sta_selectors); if (conn->mode >= IEEE80211_CONN_MODE_EHT) set_bit(BSS_MEMBERSHIP_SELECTOR_EHT_PHY, sta_selectors); /* * We do not support EPD or GLK so never add them. * SAE_H2E is handled through userspace_selectors. */ /* Check if we support all required features */ if (!bitmap_subset(unknown_rates_selectors, sta_selectors, 128)) { link_id_info(sdata, link_id, "required basic rate or BSS membership selectors not supported or disabled, rejecting connection\n"); ret = -EINVAL; goto free; } ieee80211_set_chanreq_ap(sdata, chanreq, conn, ap_chandef); while (!ieee80211_chandef_usable(sdata, &chanreq->oper, IEEE80211_CHAN_DISABLED)) { if (WARN_ON(chanreq->oper.width == NL80211_CHAN_WIDTH_20_NOHT)) { ret = -EINVAL; goto free; } ieee80211_chanreq_downgrade(chanreq, conn); } if (conn->mode >= IEEE80211_CONN_MODE_HE && !cfg80211_chandef_usable(sdata->wdev.wiphy, &chanreq->oper, IEEE80211_CHAN_NO_HE)) { conn->mode = IEEE80211_CONN_MODE_VHT; conn->bw_limit = min_t(enum ieee80211_conn_bw_limit, conn->bw_limit, IEEE80211_CONN_BW_LIMIT_160); } if (conn->mode >= IEEE80211_CONN_MODE_EHT && !cfg80211_chandef_usable(sdata->wdev.wiphy, &chanreq->oper, IEEE80211_CHAN_NO_EHT)) { conn->mode = IEEE80211_CONN_MODE_HE; conn->bw_limit = min_t(enum ieee80211_conn_bw_limit, conn->bw_limit, IEEE80211_CONN_BW_LIMIT_160); } if (chanreq->oper.width != ap_chandef->width || ap_mode != conn->mode) link_id_info(sdata, link_id, "regulatory prevented using AP config, downgraded\n"); if (conn->mode >= IEEE80211_CONN_MODE_HT && !ieee80211_verify_sta_ht_mcs_support(sdata, sband, elems->ht_operation)) { conn->mode = IEEE80211_CONN_MODE_LEGACY; conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; link_id_info(sdata, link_id, "required MCSes not supported, disabling HT\n"); } if (conn->mode >= IEEE80211_CONN_MODE_VHT && !ieee80211_verify_sta_vht_mcs_support(sdata, link_id, sband, elems->vht_operation)) { conn->mode = IEEE80211_CONN_MODE_HT; conn->bw_limit = min_t(enum ieee80211_conn_bw_limit, conn->bw_limit, IEEE80211_CONN_BW_LIMIT_40); link_id_info(sdata, link_id, "required MCSes not supported, disabling VHT\n"); } if (conn->mode >= IEEE80211_CONN_MODE_HE && (!ieee80211_verify_peer_he_mcs_support(sdata, link_id, (void *)elems->he_cap, elems->he_operation) || !ieee80211_verify_sta_he_mcs_support(sdata, sband, elems->he_operation))) { conn->mode = IEEE80211_CONN_MODE_VHT; link_id_info(sdata, link_id, "required MCSes not supported, disabling HE\n"); } if (conn->mode >= IEEE80211_CONN_MODE_EHT && !ieee80211_verify_sta_eht_mcs_support(sdata, sband, elems->eht_operation)) { conn->mode = IEEE80211_CONN_MODE_HE; conn->bw_limit = min_t(enum ieee80211_conn_bw_limit, conn->bw_limit, IEEE80211_CONN_BW_LIMIT_160); link_id_info(sdata, link_id, "required MCSes not supported, disabling EHT\n"); } /* the mode can only decrease, so this must terminate */ if (ap_mode != conn->mode) { kfree(elems); goto again; } mlme_link_id_dbg(sdata, link_id, "connecting with %s mode, max bandwidth %d MHz\n", ieee80211_conn_mode_str(conn->mode), 20 * (1 << conn->bw_limit)); if (WARN_ON_ONCE(!cfg80211_chandef_valid(&chanreq->oper))) { ret = -EINVAL; goto free; } return elems; free: kfree(elems); return ERR_PTR(ret); } EXPORT_SYMBOL_IF_MAC80211_KUNIT(ieee80211_determine_chan_mode); static int ieee80211_config_bw(struct ieee80211_link_data *link, struct ieee802_11_elems *elems, bool update, u64 *changed, const char *frame) { struct ieee80211_channel *channel = link->conf->chanreq.oper.chan; struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_chan_req chanreq = {}; struct cfg80211_chan_def ap_chandef; enum ieee80211_conn_mode ap_mode; u32 vht_cap_info = 0; u16 ht_opmode; int ret; /* don't track any bandwidth changes in legacy/S1G modes */ if (link->u.mgd.conn.mode == IEEE80211_CONN_MODE_LEGACY || link->u.mgd.conn.mode == IEEE80211_CONN_MODE_S1G) return 0; if (elems->vht_cap_elem) vht_cap_info = le32_to_cpu(elems->vht_cap_elem->vht_cap_info); ap_mode = ieee80211_determine_ap_chan(sdata, channel, vht_cap_info, elems, true, &link->u.mgd.conn, &ap_chandef); if (ap_mode != link->u.mgd.conn.mode) { link_info(link, "AP %pM appears to change mode (expected %s, found %s) in %s, disconnect\n", link->u.mgd.bssid, ieee80211_conn_mode_str(link->u.mgd.conn.mode), ieee80211_conn_mode_str(ap_mode), frame); return -EINVAL; } chanreq.oper = ap_chandef; ieee80211_set_chanreq_ap(sdata, &chanreq, &link->u.mgd.conn, &ap_chandef); /* * if HT operation mode changed store the new one - * this may be applicable even if channel is identical */ if (elems->ht_operation) { ht_opmode = le16_to_cpu(elems->ht_operation->operation_mode); if (link->conf->ht_operation_mode != ht_opmode) { *changed |= BSS_CHANGED_HT; link->conf->ht_operation_mode = ht_opmode; } } /* * Downgrade the new channel if we associated with restricted * bandwidth capabilities. For example, if we associated as a * 20 MHz STA to a 40 MHz AP (due to regulatory, capabilities * or config reasons) then switching to a 40 MHz channel now * won't do us any good -- we couldn't use it with the AP. */ while (link->u.mgd.conn.bw_limit < ieee80211_min_bw_limit_from_chandef(&chanreq.oper)) ieee80211_chandef_downgrade(&chanreq.oper, NULL); if (ap_chandef.chan->band == NL80211_BAND_6GHZ && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HE) { ieee80211_rearrange_tpe(&elems->tpe, &ap_chandef, &chanreq.oper); if (memcmp(&link->conf->tpe, &elems->tpe, sizeof(elems->tpe))) { link->conf->tpe = elems->tpe; *changed |= BSS_CHANGED_TPE; } } if (ieee80211_chanreq_identical(&chanreq, &link->conf->chanreq)) return 0; link_info(link, "AP %pM changed bandwidth in %s, new used config is %d.%03d MHz, width %d (%d.%03d/%d MHz)\n", link->u.mgd.bssid, frame, chanreq.oper.chan->center_freq, chanreq.oper.chan->freq_offset, chanreq.oper.width, chanreq.oper.center_freq1, chanreq.oper.freq1_offset, chanreq.oper.center_freq2); if (!cfg80211_chandef_valid(&chanreq.oper)) { sdata_info(sdata, "AP %pM changed caps/bw in %s in a way we can't support - disconnect\n", link->u.mgd.bssid, frame); return -EINVAL; } if (!update) { link->conf->chanreq = chanreq; return 0; } /* * We're tracking the current AP here, so don't do any further checks * here. This keeps us from playing ping-pong with regulatory, without * it the following can happen (for example): * - connect to an AP with 80 MHz, world regdom allows 80 MHz * - AP advertises regdom US * - CRDA loads regdom US with 80 MHz prohibited (old database) * - we detect an unsupported channel and disconnect * - disconnect causes CRDA to reload world regdomain and the game * starts anew. * (see https://bugzilla.kernel.org/show_bug.cgi?id=70881) * * It seems possible that there are still scenarios with CSA or real * bandwidth changes where a this could happen, but those cases are * less common and wouldn't completely prevent using the AP. */ ret = ieee80211_link_change_chanreq(link, &chanreq, changed); if (ret) { sdata_info(sdata, "AP %pM changed bandwidth in %s to incompatible one - disconnect\n", link->u.mgd.bssid, frame); return ret; } cfg80211_schedule_channels_check(&sdata->wdev); return 0; } /* frame sending functions */ static void ieee80211_add_ht_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u8 ap_ht_param, struct ieee80211_supported_band *sband, struct ieee80211_channel *channel, enum ieee80211_smps_mode smps, const struct ieee80211_conn_settings *conn) { u8 *pos; u32 flags = channel->flags; u16 cap; struct ieee80211_sta_ht_cap ht_cap; BUILD_BUG_ON(sizeof(ht_cap) != sizeof(sband->ht_cap)); memcpy(&ht_cap, &sband->ht_cap, sizeof(ht_cap)); ieee80211_apply_htcap_overrides(sdata, &ht_cap); /* determine capability flags */ cap = ht_cap.cap; switch (ap_ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: if (flags & IEEE80211_CHAN_NO_HT40PLUS) { cap &= ~IEEE80211_HT_CAP_SUP_WIDTH_20_40; cap &= ~IEEE80211_HT_CAP_SGI_40; } break; case IEEE80211_HT_PARAM_CHA_SEC_BELOW: if (flags & IEEE80211_CHAN_NO_HT40MINUS) { cap &= ~IEEE80211_HT_CAP_SUP_WIDTH_20_40; cap &= ~IEEE80211_HT_CAP_SGI_40; } break; } /* * If 40 MHz was disabled associate as though we weren't * capable of 40 MHz -- some broken APs will never fall * back to trying to transmit in 20 MHz. */ if (conn->bw_limit <= IEEE80211_CONN_BW_LIMIT_20) { cap &= ~IEEE80211_HT_CAP_SUP_WIDTH_20_40; cap &= ~IEEE80211_HT_CAP_SGI_40; } /* set SM PS mode properly */ cap &= ~IEEE80211_HT_CAP_SM_PS; switch (smps) { case IEEE80211_SMPS_AUTOMATIC: case IEEE80211_SMPS_NUM_MODES: WARN_ON(1); fallthrough; case IEEE80211_SMPS_OFF: cap |= WLAN_HT_CAP_SM_PS_DISABLED << IEEE80211_HT_CAP_SM_PS_SHIFT; break; case IEEE80211_SMPS_STATIC: cap |= WLAN_HT_CAP_SM_PS_STATIC << IEEE80211_HT_CAP_SM_PS_SHIFT; break; case IEEE80211_SMPS_DYNAMIC: cap |= WLAN_HT_CAP_SM_PS_DYNAMIC << IEEE80211_HT_CAP_SM_PS_SHIFT; break; } /* reserve and fill IE */ pos = skb_put(skb, sizeof(struct ieee80211_ht_cap) + 2); ieee80211_ie_build_ht_cap(pos, &ht_cap, cap); } /* This function determines vht capability flags for the association * and builds the IE. * Note - the function returns true to own the MU-MIMO capability */ static bool ieee80211_add_vht_ie(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct ieee80211_supported_band *sband, struct ieee80211_vht_cap *ap_vht_cap, const struct ieee80211_conn_settings *conn) { struct ieee80211_local *local = sdata->local; u8 *pos; u32 cap; struct ieee80211_sta_vht_cap vht_cap; u32 mask, ap_bf_sts, our_bf_sts; bool mu_mimo_owner = false; BUILD_BUG_ON(sizeof(vht_cap) != sizeof(sband->vht_cap)); memcpy(&vht_cap, &sband->vht_cap, sizeof(vht_cap)); ieee80211_apply_vhtcap_overrides(sdata, &vht_cap); /* determine capability flags */ cap = vht_cap.cap; if (conn->bw_limit <= IEEE80211_CONN_BW_LIMIT_80) { cap &= ~IEEE80211_VHT_CAP_SHORT_GI_160; cap &= ~IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK; } /* * Some APs apparently get confused if our capabilities are better * than theirs, so restrict what we advertise in the assoc request. */ if (!ieee80211_hw_check(&local->hw, STRICT)) { if (!(ap_vht_cap->vht_cap_info & cpu_to_le32(IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE))) cap &= ~(IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE | IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE); else if (!(ap_vht_cap->vht_cap_info & cpu_to_le32(IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE))) cap &= ~IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; } /* * If some other vif is using the MU-MIMO capability we cannot associate * using MU-MIMO - this will lead to contradictions in the group-id * mechanism. * Ownership is defined since association request, in order to avoid * simultaneous associations with MU-MIMO. */ if (cap & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE) { bool disable_mu_mimo = false; struct ieee80211_sub_if_data *other; list_for_each_entry(other, &local->interfaces, list) { if (other->vif.bss_conf.mu_mimo_owner) { disable_mu_mimo = true; break; } } if (disable_mu_mimo) cap &= ~IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; else mu_mimo_owner = true; } mask = IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK; ap_bf_sts = le32_to_cpu(ap_vht_cap->vht_cap_info) & mask; our_bf_sts = cap & mask; if (ap_bf_sts < our_bf_sts) { cap &= ~mask; cap |= ap_bf_sts; } /* reserve and fill IE */ pos = skb_put(skb, sizeof(struct ieee80211_vht_cap) + 2); ieee80211_ie_build_vht_cap(pos, &vht_cap, cap); return mu_mimo_owner; } static void ieee80211_assoc_add_rates(struct ieee80211_local *local, struct sk_buff *skb, enum nl80211_chan_width width, struct ieee80211_supported_band *sband, struct ieee80211_mgd_assoc_data *assoc_data) { u32 rates; if (assoc_data->supp_rates_len && !ieee80211_hw_check(&local->hw, STRICT)) { /* * Get all rates supported by the device and the AP as * some APs don't like getting a superset of their rates * in the association request (e.g. D-Link DAP 1353 in * b-only mode)... */ ieee80211_parse_bitrates(width, sband, assoc_data->supp_rates, assoc_data->supp_rates_len, &rates); } else { /* * In case AP not provide any supported rates information * before association, we send information element(s) with * all rates that we support. */ rates = ~0; } ieee80211_put_srates_elem(skb, sband, 0, 0, ~rates, WLAN_EID_SUPP_RATES); ieee80211_put_srates_elem(skb, sband, 0, 0, ~rates, WLAN_EID_EXT_SUPP_RATES); } static size_t ieee80211_add_before_ht_elems(struct sk_buff *skb, const u8 *elems, size_t elems_len, size_t offset) { size_t noffset; static const u8 before_ht[] = { WLAN_EID_SSID, WLAN_EID_SUPP_RATES, WLAN_EID_EXT_SUPP_RATES, WLAN_EID_PWR_CAPABILITY, WLAN_EID_SUPPORTED_CHANNELS, WLAN_EID_RSN, WLAN_EID_QOS_CAPA, WLAN_EID_RRM_ENABLED_CAPABILITIES, WLAN_EID_MOBILITY_DOMAIN, WLAN_EID_FAST_BSS_TRANSITION, /* reassoc only */ WLAN_EID_RIC_DATA, /* reassoc only */ WLAN_EID_SUPPORTED_REGULATORY_CLASSES, }; static const u8 after_ric[] = { WLAN_EID_SUPPORTED_REGULATORY_CLASSES, WLAN_EID_HT_CAPABILITY, WLAN_EID_BSS_COEX_2040, /* luckily this is almost always there */ WLAN_EID_EXT_CAPABILITY, WLAN_EID_QOS_TRAFFIC_CAPA, WLAN_EID_TIM_BCAST_REQ, WLAN_EID_INTERWORKING, /* 60 GHz (Multi-band, DMG, MMS) can't happen */ WLAN_EID_VHT_CAPABILITY, WLAN_EID_OPMODE_NOTIF, }; if (!elems_len) return offset; noffset = ieee80211_ie_split_ric(elems, elems_len, before_ht, ARRAY_SIZE(before_ht), after_ric, ARRAY_SIZE(after_ric), offset); skb_put_data(skb, elems + offset, noffset - offset); return noffset; } static size_t ieee80211_add_before_vht_elems(struct sk_buff *skb, const u8 *elems, size_t elems_len, size_t offset) { static const u8 before_vht[] = { /* * no need to list the ones split off before HT * or generated here */ WLAN_EID_BSS_COEX_2040, WLAN_EID_EXT_CAPABILITY, WLAN_EID_QOS_TRAFFIC_CAPA, WLAN_EID_TIM_BCAST_REQ, WLAN_EID_INTERWORKING, /* 60 GHz (Multi-band, DMG, MMS) can't happen */ }; size_t noffset; if (!elems_len) return offset; /* RIC already taken care of in ieee80211_add_before_ht_elems() */ noffset = ieee80211_ie_split(elems, elems_len, before_vht, ARRAY_SIZE(before_vht), offset); skb_put_data(skb, elems + offset, noffset - offset); return noffset; } static size_t ieee80211_add_before_he_elems(struct sk_buff *skb, const u8 *elems, size_t elems_len, size_t offset) { static const u8 before_he[] = { /* * no need to list the ones split off before VHT * or generated here */ WLAN_EID_OPMODE_NOTIF, WLAN_EID_EXTENSION, WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE, /* 11ai elements */ WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_SESSION, WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_PUBLIC_KEY, WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_KEY_CONFIRM, WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_HLP_CONTAINER, WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN, /* TODO: add 11ah/11aj/11ak elements */ }; size_t noffset; if (!elems_len) return offset; /* RIC already taken care of in ieee80211_add_before_ht_elems() */ noffset = ieee80211_ie_split(elems, elems_len, before_he, ARRAY_SIZE(before_he), offset); skb_put_data(skb, elems + offset, noffset - offset); return noffset; } #define PRESENT_ELEMS_MAX 8 #define PRESENT_ELEM_EXT_OFFS 0x100 static void ieee80211_assoc_add_ml_elem(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u16 capab, const struct element *ext_capa, const u16 *present_elems, struct ieee80211_mgd_assoc_data *assoc_data); static size_t ieee80211_add_link_elems(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u16 *capab, const struct element *ext_capa, const u8 *extra_elems, size_t extra_elems_len, unsigned int link_id, struct ieee80211_link_data *link, u16 *present_elems, struct ieee80211_mgd_assoc_data *assoc_data) { enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); struct cfg80211_bss *cbss = assoc_data->link[link_id].bss; struct ieee80211_channel *chan = cbss->channel; const struct ieee80211_sband_iftype_data *iftd; struct ieee80211_local *local = sdata->local; struct ieee80211_supported_band *sband; enum nl80211_chan_width width = NL80211_CHAN_WIDTH_20; struct ieee80211_chanctx_conf *chanctx_conf; enum ieee80211_smps_mode smps_mode; u16 orig_capab = *capab; size_t offset = 0; int present_elems_len = 0; u8 *pos; int i; #define ADD_PRESENT_ELEM(id) do { \ /* need a last for termination - we use 0 == SSID */ \ if (!WARN_ON(present_elems_len >= PRESENT_ELEMS_MAX - 1)) \ present_elems[present_elems_len++] = (id); \ } while (0) #define ADD_PRESENT_EXT_ELEM(id) ADD_PRESENT_ELEM(PRESENT_ELEM_EXT_OFFS | (id)) if (link) smps_mode = link->smps_mode; else if (sdata->u.mgd.powersave) smps_mode = IEEE80211_SMPS_DYNAMIC; else smps_mode = IEEE80211_SMPS_OFF; if (link) { /* * 5/10 MHz scenarios are only viable without MLO, in which * case this pointer should be used ... All of this is a bit * unclear though, not sure this even works at all. */ rcu_read_lock(); chanctx_conf = rcu_dereference(link->conf->chanctx_conf); if (chanctx_conf) width = chanctx_conf->def.width; rcu_read_unlock(); } sband = local->hw.wiphy->bands[chan->band]; iftd = ieee80211_get_sband_iftype_data(sband, iftype); if (sband->band == NL80211_BAND_2GHZ) { *capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME; *capab |= WLAN_CAPABILITY_SHORT_PREAMBLE; } if ((cbss->capability & WLAN_CAPABILITY_SPECTRUM_MGMT) && ieee80211_hw_check(&local->hw, SPECTRUM_MGMT)) *capab |= WLAN_CAPABILITY_SPECTRUM_MGMT; if (sband->band != NL80211_BAND_S1GHZ) ieee80211_assoc_add_rates(local, skb, width, sband, assoc_data); if (*capab & WLAN_CAPABILITY_SPECTRUM_MGMT || *capab & WLAN_CAPABILITY_RADIO_MEASURE) { struct cfg80211_chan_def chandef = { .width = width, .chan = chan, }; pos = skb_put(skb, 4); *pos++ = WLAN_EID_PWR_CAPABILITY; *pos++ = 2; *pos++ = 0; /* min tx power */ /* max tx power */ *pos++ = ieee80211_chandef_max_power(&chandef); ADD_PRESENT_ELEM(WLAN_EID_PWR_CAPABILITY); } /* * Per spec, we shouldn't include the list of channels if we advertise * support for extended channel switching, but we've always done that; * (for now?) apply this restriction only on the (new) 6 GHz band. */ if (*capab & WLAN_CAPABILITY_SPECTRUM_MGMT && (sband->band != NL80211_BAND_6GHZ || !ext_capa || ext_capa->datalen < 1 || !(ext_capa->data[0] & WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING))) { /* TODO: get this in reg domain format */ pos = skb_put(skb, 2 * sband->n_channels + 2); *pos++ = WLAN_EID_SUPPORTED_CHANNELS; *pos++ = 2 * sband->n_channels; for (i = 0; i < sband->n_channels; i++) { int cf = sband->channels[i].center_freq; *pos++ = ieee80211_frequency_to_channel(cf); *pos++ = 1; /* one channel in the subband*/ } ADD_PRESENT_ELEM(WLAN_EID_SUPPORTED_CHANNELS); } /* if present, add any custom IEs that go before HT */ offset = ieee80211_add_before_ht_elems(skb, extra_elems, extra_elems_len, offset); if (sband->band != NL80211_BAND_6GHZ && assoc_data->link[link_id].conn.mode >= IEEE80211_CONN_MODE_HT) { ieee80211_add_ht_ie(sdata, skb, assoc_data->link[link_id].ap_ht_param, sband, chan, smps_mode, &assoc_data->link[link_id].conn); ADD_PRESENT_ELEM(WLAN_EID_HT_CAPABILITY); } /* if present, add any custom IEs that go before VHT */ offset = ieee80211_add_before_vht_elems(skb, extra_elems, extra_elems_len, offset); if (sband->band != NL80211_BAND_6GHZ && assoc_data->link[link_id].conn.mode >= IEEE80211_CONN_MODE_VHT && sband->vht_cap.vht_supported) { bool mu_mimo_owner = ieee80211_add_vht_ie(sdata, skb, sband, &assoc_data->link[link_id].ap_vht_cap, &assoc_data->link[link_id].conn); if (link) link->conf->mu_mimo_owner = mu_mimo_owner; ADD_PRESENT_ELEM(WLAN_EID_VHT_CAPABILITY); } /* if present, add any custom IEs that go before HE */ offset = ieee80211_add_before_he_elems(skb, extra_elems, extra_elems_len, offset); if (assoc_data->link[link_id].conn.mode >= IEEE80211_CONN_MODE_HE) { ieee80211_put_he_cap(skb, sdata, sband, &assoc_data->link[link_id].conn); ADD_PRESENT_EXT_ELEM(WLAN_EID_EXT_HE_CAPABILITY); ieee80211_put_he_6ghz_cap(skb, sdata, smps_mode); } /* * careful - need to know about all the present elems before * calling ieee80211_assoc_add_ml_elem(), so add this one if * we're going to put it after the ML element */ if (assoc_data->link[link_id].conn.mode >= IEEE80211_CONN_MODE_EHT) ADD_PRESENT_EXT_ELEM(WLAN_EID_EXT_EHT_CAPABILITY); if (link_id == assoc_data->assoc_link_id) ieee80211_assoc_add_ml_elem(sdata, skb, orig_capab, ext_capa, present_elems, assoc_data); /* crash if somebody gets it wrong */ present_elems = NULL; if (assoc_data->link[link_id].conn.mode >= IEEE80211_CONN_MODE_EHT) ieee80211_put_eht_cap(skb, sdata, sband, &assoc_data->link[link_id].conn); if (sband->band == NL80211_BAND_S1GHZ) { ieee80211_add_aid_request_ie(sdata, skb); ieee80211_add_s1g_capab_ie(sdata, &sband->s1g_cap, skb); } if (iftd && iftd->vendor_elems.data && iftd->vendor_elems.len) skb_put_data(skb, iftd->vendor_elems.data, iftd->vendor_elems.len); return offset; } static void ieee80211_add_non_inheritance_elem(struct sk_buff *skb, const u16 *outer, const u16 *inner) { unsigned int skb_len = skb->len; bool at_extension = false; bool added = false; int i, j; u8 *len, *list_len = NULL; skb_put_u8(skb, WLAN_EID_EXTENSION); len = skb_put(skb, 1); skb_put_u8(skb, WLAN_EID_EXT_NON_INHERITANCE); for (i = 0; i < PRESENT_ELEMS_MAX && outer[i]; i++) { u16 elem = outer[i]; bool have_inner = false; /* should at least be sorted in the sense of normal -> ext */ WARN_ON(at_extension && elem < PRESENT_ELEM_EXT_OFFS); /* switch to extension list */ if (!at_extension && elem >= PRESENT_ELEM_EXT_OFFS) { at_extension = true; if (!list_len) skb_put_u8(skb, 0); list_len = NULL; } for (j = 0; j < PRESENT_ELEMS_MAX && inner[j]; j++) { if (elem == inner[j]) { have_inner = true; break; } } if (have_inner) continue; if (!list_len) { list_len = skb_put(skb, 1); *list_len = 0; } *list_len += 1; skb_put_u8(skb, (u8)elem); added = true; } /* if we added a list but no extension list, make a zero-len one */ if (added && (!at_extension || !list_len)) skb_put_u8(skb, 0); /* if nothing added remove extension element completely */ if (!added) skb_trim(skb, skb_len); else *len = skb->len - skb_len - 2; } static void ieee80211_assoc_add_ml_elem(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u16 capab, const struct element *ext_capa, const u16 *outer_present_elems, struct ieee80211_mgd_assoc_data *assoc_data) { struct ieee80211_local *local = sdata->local; struct ieee80211_multi_link_elem *ml_elem; struct ieee80211_mle_basic_common_info *common; const struct wiphy_iftype_ext_capab *ift_ext_capa; __le16 eml_capa = 0, mld_capa_ops = 0; unsigned int link_id; u8 *ml_elem_len; void *capab_pos; if (!ieee80211_vif_is_mld(&sdata->vif)) return; ift_ext_capa = cfg80211_get_iftype_ext_capa(local->hw.wiphy, ieee80211_vif_type_p2p(&sdata->vif)); if (ift_ext_capa) { eml_capa = cpu_to_le16(ift_ext_capa->eml_capabilities); mld_capa_ops = cpu_to_le16(ift_ext_capa->mld_capa_and_ops); } skb_put_u8(skb, WLAN_EID_EXTENSION); ml_elem_len = skb_put(skb, 1); skb_put_u8(skb, WLAN_EID_EXT_EHT_MULTI_LINK); ml_elem = skb_put(skb, sizeof(*ml_elem)); ml_elem->control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC | IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP); common = skb_put(skb, sizeof(*common)); common->len = sizeof(*common) + 2; /* MLD capa/ops */ memcpy(common->mld_mac_addr, sdata->vif.addr, ETH_ALEN); /* add EML_CAPA only if needed, see Draft P802.11be_D2.1, 35.3.17 */ if (eml_capa & cpu_to_le16((IEEE80211_EML_CAP_EMLSR_SUPP | IEEE80211_EML_CAP_EMLMR_SUPPORT))) { common->len += 2; /* EML capabilities */ ml_elem->control |= cpu_to_le16(IEEE80211_MLC_BASIC_PRES_EML_CAPA); skb_put_data(skb, &eml_capa, sizeof(eml_capa)); } skb_put_data(skb, &mld_capa_ops, sizeof(mld_capa_ops)); /* Many APs have broken parsing of the extended MLD capa/ops field, * dropping (re-)association request frames or replying with association * response with a failure status if it's present. Without a clear * indication as to whether the AP supports parsing this field or not do * not include it in the common information unless strict mode is set. */ if (ieee80211_hw_check(&local->hw, STRICT) && assoc_data->ext_mld_capa_ops) { ml_elem->control |= cpu_to_le16(IEEE80211_MLC_BASIC_PRES_EXT_MLD_CAPA_OP); common->len += 2; skb_put_data(skb, &assoc_data->ext_mld_capa_ops, sizeof(assoc_data->ext_mld_capa_ops)); } for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { u16 link_present_elems[PRESENT_ELEMS_MAX] = {}; const u8 *extra_elems; size_t extra_elems_len; size_t extra_used; u8 *subelem_len = NULL; __le16 ctrl; if (!assoc_data->link[link_id].bss || link_id == assoc_data->assoc_link_id) continue; extra_elems = assoc_data->link[link_id].elems; extra_elems_len = assoc_data->link[link_id].elems_len; skb_put_u8(skb, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE); subelem_len = skb_put(skb, 1); ctrl = cpu_to_le16(link_id | IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE | IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT); skb_put_data(skb, &ctrl, sizeof(ctrl)); skb_put_u8(skb, 1 + ETH_ALEN); /* STA Info Length */ skb_put_data(skb, assoc_data->link[link_id].addr, ETH_ALEN); /* * Now add the contents of the (re)association request, * but the "listen interval" and "current AP address" * (if applicable) are skipped. So we only have * the capability field (remember the position and fill * later), followed by the elements added below by * calling ieee80211_add_link_elems(). */ capab_pos = skb_put(skb, 2); extra_used = ieee80211_add_link_elems(sdata, skb, &capab, ext_capa, extra_elems, extra_elems_len, link_id, NULL, link_present_elems, assoc_data); if (extra_elems) skb_put_data(skb, extra_elems + extra_used, extra_elems_len - extra_used); put_unaligned_le16(capab, capab_pos); ieee80211_add_non_inheritance_elem(skb, outer_present_elems, link_present_elems); ieee80211_fragment_element(skb, subelem_len, IEEE80211_MLE_SUBELEM_FRAGMENT); } ieee80211_fragment_element(skb, ml_elem_len, WLAN_EID_FRAGMENT); } static int ieee80211_link_common_elems_size(struct ieee80211_sub_if_data *sdata, enum nl80211_iftype iftype, struct cfg80211_bss *cbss, size_t elems_len) { struct ieee80211_local *local = sdata->local; const struct ieee80211_sband_iftype_data *iftd; struct ieee80211_supported_band *sband; size_t size = 0; if (!cbss) return size; sband = local->hw.wiphy->bands[cbss->channel->band]; /* add STA profile elements length */ size += elems_len; /* and supported rates length */ size += 4 + sband->n_bitrates; /* supported channels */ size += 2 + 2 * sband->n_channels; iftd = ieee80211_get_sband_iftype_data(sband, iftype); if (iftd) size += iftd->vendor_elems.len; /* power capability */ size += 4; /* HT, VHT, HE, EHT */ size += 2 + sizeof(struct ieee80211_ht_cap); size += 2 + sizeof(struct ieee80211_vht_cap); size += 2 + 1 + sizeof(struct ieee80211_he_cap_elem) + sizeof(struct ieee80211_he_mcs_nss_supp) + IEEE80211_HE_PPE_THRES_MAX_LEN; if (sband->band == NL80211_BAND_6GHZ) size += 2 + 1 + sizeof(struct ieee80211_he_6ghz_capa); size += 2 + 1 + sizeof(struct ieee80211_eht_cap_elem) + sizeof(struct ieee80211_eht_mcs_nss_supp) + IEEE80211_EHT_PPE_THRES_MAX_LEN; return size; } static int ieee80211_send_assoc(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_assoc_data *assoc_data = ifmgd->assoc_data; struct ieee80211_link_data *link; struct sk_buff *skb; struct ieee80211_mgmt *mgmt; u8 *pos, qos_info, *ie_start; size_t offset, noffset; u16 capab = 0, link_capab; __le16 listen_int; struct element *ext_capa = NULL; enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); struct ieee80211_prep_tx_info info = {}; unsigned int link_id, n_links = 0; u16 present_elems[PRESENT_ELEMS_MAX] = {}; void *capab_pos; size_t size; int ret; /* we know it's writable, cast away the const */ if (assoc_data->ie_len) ext_capa = (void *)cfg80211_find_elem(WLAN_EID_EXT_CAPABILITY, assoc_data->ie, assoc_data->ie_len); lockdep_assert_wiphy(sdata->local->hw.wiphy); size = local->hw.extra_tx_headroom + sizeof(*mgmt) + /* bit too much but doesn't matter */ 2 + assoc_data->ssid_len + /* SSID */ assoc_data->ie_len + /* extra IEs */ (assoc_data->fils_kek_len ? 16 /* AES-SIV */ : 0) + 9; /* WMM */ for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct cfg80211_bss *cbss = assoc_data->link[link_id].bss; size_t elems_len = assoc_data->link[link_id].elems_len; if (!cbss) continue; n_links++; size += ieee80211_link_common_elems_size(sdata, iftype, cbss, elems_len); /* non-inheritance element */ size += 2 + 2 + PRESENT_ELEMS_MAX; /* should be the same across all BSSes */ if (cbss->capability & WLAN_CAPABILITY_PRIVACY) capab |= WLAN_CAPABILITY_PRIVACY; } if (ieee80211_vif_is_mld(&sdata->vif)) { /* consider the multi-link element with STA profile */ size += sizeof(struct ieee80211_multi_link_elem); /* max common info field in basic multi-link element */ size += sizeof(struct ieee80211_mle_basic_common_info) + 2 + /* capa & op */ 2 + /* ext capa & op */ 2; /* EML capa */ /* * The capability elements were already considered above; * note this over-estimates a bit because there's no * STA profile for the assoc link. */ size += (n_links - 1) * (1 + 1 + /* subelement ID/length */ 2 + /* STA control */ 1 + ETH_ALEN + 2 /* STA Info field */); } link = sdata_dereference(sdata->link[assoc_data->assoc_link_id], sdata); if (WARN_ON(!link)) return -EINVAL; if (WARN_ON(!assoc_data->link[assoc_data->assoc_link_id].bss)) return -EINVAL; skb = alloc_skb(size, GFP_KERNEL); if (!skb) return -ENOMEM; skb_reserve(skb, local->hw.extra_tx_headroom); if (ifmgd->flags & IEEE80211_STA_ENABLE_RRM) capab |= WLAN_CAPABILITY_RADIO_MEASURE; /* Set MBSSID support for HE AP if needed */ if (ieee80211_hw_check(&local->hw, SUPPORTS_ONLY_HE_MULTI_BSSID) && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HE && ext_capa && ext_capa->datalen >= 3) ext_capa->data[2] |= WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT; mgmt = skb_put_zero(skb, 24); memcpy(mgmt->da, sdata->vif.cfg.ap_addr, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, sdata->vif.cfg.ap_addr, ETH_ALEN); listen_int = cpu_to_le16(assoc_data->s1g ? ieee80211_encode_usf(local->hw.conf.listen_interval) : local->hw.conf.listen_interval); if (!is_zero_ether_addr(assoc_data->prev_ap_addr)) { skb_put(skb, 10); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ); capab_pos = &mgmt->u.reassoc_req.capab_info; mgmt->u.reassoc_req.listen_interval = listen_int; memcpy(mgmt->u.reassoc_req.current_ap, assoc_data->prev_ap_addr, ETH_ALEN); info.subtype = IEEE80211_STYPE_REASSOC_REQ; } else { skb_put(skb, 4); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ); capab_pos = &mgmt->u.assoc_req.capab_info; mgmt->u.assoc_req.listen_interval = listen_int; info.subtype = IEEE80211_STYPE_ASSOC_REQ; } /* SSID */ pos = skb_put(skb, 2 + assoc_data->ssid_len); ie_start = pos; *pos++ = WLAN_EID_SSID; *pos++ = assoc_data->ssid_len; memcpy(pos, assoc_data->ssid, assoc_data->ssid_len); /* * This bit is technically reserved, so it shouldn't matter for either * the AP or us, but it also means we shouldn't set it. However, we've * always set it in the past, and apparently some EHT APs check that * we don't set it. To avoid interoperability issues with old APs that * for some reason check it and want it to be set, set the bit for all * pre-EHT connections as we used to do. */ if (link->u.mgd.conn.mode < IEEE80211_CONN_MODE_EHT && !ieee80211_hw_check(&local->hw, STRICT)) capab |= WLAN_CAPABILITY_ESS; /* add the elements for the assoc (main) link */ link_capab = capab; offset = ieee80211_add_link_elems(sdata, skb, &link_capab, ext_capa, assoc_data->ie, assoc_data->ie_len, assoc_data->assoc_link_id, link, present_elems, assoc_data); put_unaligned_le16(link_capab, capab_pos); /* if present, add any custom non-vendor IEs */ if (assoc_data->ie_len) { noffset = ieee80211_ie_split_vendor(assoc_data->ie, assoc_data->ie_len, offset); skb_put_data(skb, assoc_data->ie + offset, noffset - offset); offset = noffset; } if (assoc_data->wmm) { if (assoc_data->uapsd) { qos_info = ifmgd->uapsd_queues; qos_info |= (ifmgd->uapsd_max_sp_len << IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT); } else { qos_info = 0; } pos = ieee80211_add_wmm_info_ie(skb_put(skb, 9), qos_info); } /* add any remaining custom (i.e. vendor specific here) IEs */ if (assoc_data->ie_len) { noffset = assoc_data->ie_len; skb_put_data(skb, assoc_data->ie + offset, noffset - offset); } if (assoc_data->fils_kek_len) { ret = fils_encrypt_assoc_req(skb, assoc_data); if (ret < 0) { dev_kfree_skb(skb); return ret; } } pos = skb_tail_pointer(skb); kfree(ifmgd->assoc_req_ies); ifmgd->assoc_req_ies = kmemdup(ie_start, pos - ie_start, GFP_ATOMIC); if (!ifmgd->assoc_req_ies) { dev_kfree_skb(skb); return -ENOMEM; } ifmgd->assoc_req_ies_len = pos - ie_start; info.link_id = assoc_data->assoc_link_id; drv_mgd_prepare_tx(local, sdata, &info); IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS | IEEE80211_TX_INTFL_MLME_CONN_TX; ieee80211_tx_skb(sdata, skb); return 0; } void ieee80211_send_pspoll(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { struct ieee80211_pspoll *pspoll; struct sk_buff *skb; skb = ieee80211_pspoll_get(&local->hw, &sdata->vif); if (!skb) return; pspoll = (struct ieee80211_pspoll *) skb->data; pspoll->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM); IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; ieee80211_tx_skb(sdata, skb); } void ieee80211_send_nullfunc(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, bool powersave) { struct sk_buff *skb; struct ieee80211_hdr_3addr *nullfunc; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; skb = ieee80211_nullfunc_get(&local->hw, &sdata->vif, -1, !ieee80211_hw_check(&local->hw, DOESNT_SUPPORT_QOS_NDP)); if (!skb) return; nullfunc = (struct ieee80211_hdr_3addr *) skb->data; if (powersave) nullfunc->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM); IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | IEEE80211_TX_INTFL_OFFCHAN_TX_OK; if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; if (ifmgd->flags & IEEE80211_STA_CONNECTION_POLL) IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_USE_MINRATE; ieee80211_tx_skb(sdata, skb); } void ieee80211_send_4addr_nullfunc(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { struct sk_buff *skb; struct ieee80211_hdr *nullfunc; __le16 fc; if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) return; skb = dev_alloc_skb(local->hw.extra_tx_headroom + 30); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom); nullfunc = skb_put_zero(skb, 30); fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC | IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); nullfunc->frame_control = fc; memcpy(nullfunc->addr1, sdata->deflink.u.mgd.bssid, ETH_ALEN); memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); memcpy(nullfunc->addr3, sdata->deflink.u.mgd.bssid, ETH_ALEN); memcpy(nullfunc->addr4, sdata->vif.addr, ETH_ALEN); IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_USE_MINRATE; ieee80211_tx_skb(sdata, skb); } /* spectrum management related things */ static void ieee80211_csa_switch_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_link_data *link = container_of(work, struct ieee80211_link_data, u.mgd.csa.switch_work.work); struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; int ret; if (!ieee80211_sdata_running(sdata)) return; lockdep_assert_wiphy(local->hw.wiphy); if (!ifmgd->associated) return; if (!link->conf->csa_active) return; /* * If the link isn't active (now), we cannot wait for beacons, won't * have a reserved chanctx, etc. Just switch over the chandef and * update cfg80211 directly. */ if (!ieee80211_vif_link_active(&sdata->vif, link->link_id)) { link->conf->chanreq = link->csa.chanreq; cfg80211_ch_switch_notify(sdata->dev, &link->csa.chanreq.oper, link->link_id); return; } /* * using reservation isn't immediate as it may be deferred until later * with multi-vif. once reservation is complete it will re-schedule the * work with no reserved_chanctx so verify chandef to check if it * completed successfully */ if (link->reserved_chanctx) { /* * with multi-vif csa driver may call ieee80211_csa_finish() * many times while waiting for other interfaces to use their * reservations */ if (link->reserved_ready) return; ret = ieee80211_link_use_reserved_context(link); if (ret) { link_info(link, "failed to use reserved channel context, disconnecting (err=%d)\n", ret); wiphy_work_queue(sdata->local->hw.wiphy, &ifmgd->csa_connection_drop_work); } return; } if (!ieee80211_chanreq_identical(&link->conf->chanreq, &link->csa.chanreq)) { link_info(link, "failed to finalize channel switch, disconnecting\n"); wiphy_work_queue(sdata->local->hw.wiphy, &ifmgd->csa_connection_drop_work); return; } link->u.mgd.csa.waiting_bcn = true; /* apply new TPE restrictions immediately on the new channel */ if (link->u.mgd.csa.ap_chandef.chan->band == NL80211_BAND_6GHZ && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HE) { ieee80211_rearrange_tpe(&link->u.mgd.csa.tpe, &link->u.mgd.csa.ap_chandef, &link->conf->chanreq.oper); if (memcmp(&link->conf->tpe, &link->u.mgd.csa.tpe, sizeof(link->u.mgd.csa.tpe))) { link->conf->tpe = link->u.mgd.csa.tpe; ieee80211_link_info_change_notify(sdata, link, BSS_CHANGED_TPE); } } ieee80211_sta_reset_beacon_monitor(sdata); ieee80211_sta_reset_conn_monitor(sdata); } static void ieee80211_chswitch_post_beacon(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; int ret; lockdep_assert_wiphy(sdata->local->hw.wiphy); WARN_ON(!link->conf->csa_active); ieee80211_vif_unblock_queues_csa(sdata); link->conf->csa_active = false; link->u.mgd.csa.blocked_tx = false; link->u.mgd.csa.waiting_bcn = false; ret = drv_post_channel_switch(link); if (ret) { link_info(link, "driver post channel switch failed, disconnecting\n"); wiphy_work_queue(sdata->local->hw.wiphy, &ifmgd->csa_connection_drop_work); return; } cfg80211_ch_switch_notify(sdata->dev, &link->conf->chanreq.oper, link->link_id); } void ieee80211_chswitch_done(struct ieee80211_vif *vif, bool success, unsigned int link_id) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); trace_api_chswitch_done(sdata, success, link_id); rcu_read_lock(); if (!success) { sdata_info(sdata, "driver channel switch failed (link %d), disconnecting\n", link_id); wiphy_work_queue(sdata->local->hw.wiphy, &sdata->u.mgd.csa_connection_drop_work); } else { struct ieee80211_link_data *link = rcu_dereference(sdata->link[link_id]); if (WARN_ON(!link)) { rcu_read_unlock(); return; } wiphy_delayed_work_queue(sdata->local->hw.wiphy, &link->u.mgd.csa.switch_work, 0); } rcu_read_unlock(); } EXPORT_SYMBOL(ieee80211_chswitch_done); static void ieee80211_sta_abort_chanswitch(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; lockdep_assert_wiphy(local->hw.wiphy); if (!local->ops->abort_channel_switch) return; ieee80211_link_unreserve_chanctx(link); ieee80211_vif_unblock_queues_csa(sdata); link->conf->csa_active = false; link->u.mgd.csa.blocked_tx = false; drv_abort_channel_switch(link); } struct sta_csa_rnr_iter_data { struct ieee80211_link_data *link; struct ieee80211_channel *chan; u8 mld_id; }; static enum cfg80211_rnr_iter_ret ieee80211_sta_csa_rnr_iter(void *_data, u8 type, const struct ieee80211_neighbor_ap_info *info, const u8 *tbtt_info, u8 tbtt_info_len) { struct sta_csa_rnr_iter_data *data = _data; struct ieee80211_link_data *link = data->link; struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; const struct ieee80211_tbtt_info_ge_11 *ti; enum nl80211_band band; unsigned int center_freq; int link_id; if (type != IEEE80211_TBTT_INFO_TYPE_TBTT) return RNR_ITER_CONTINUE; if (tbtt_info_len < sizeof(*ti)) return RNR_ITER_CONTINUE; ti = (const void *)tbtt_info; if (ti->mld_params.mld_id != data->mld_id) return RNR_ITER_CONTINUE; link_id = le16_get_bits(ti->mld_params.params, IEEE80211_RNR_MLD_PARAMS_LINK_ID); if (link_id != data->link->link_id) return RNR_ITER_CONTINUE; /* we found the entry for our link! */ /* this AP is confused, it had this right before ... just disconnect */ if (!ieee80211_operating_class_to_band(info->op_class, &band)) { link_info(link, "AP now has invalid operating class in RNR, disconnect\n"); wiphy_work_queue(sdata->local->hw.wiphy, &ifmgd->csa_connection_drop_work); return RNR_ITER_BREAK; } center_freq = ieee80211_channel_to_frequency(info->channel, band); data->chan = ieee80211_get_channel(sdata->local->hw.wiphy, center_freq); return RNR_ITER_BREAK; } static void ieee80211_sta_other_link_csa_disappeared(struct ieee80211_link_data *link, struct ieee802_11_elems *elems) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct sta_csa_rnr_iter_data data = { .link = link, }; /* * If we get here, we see a beacon from another link without * CSA still being reported for it, so now we have to check * if the CSA was aborted or completed. This may not even be * perfectly possible if the CSA was only done for changing * the puncturing, but in that case if the link in inactive * we don't really care, and if it's an active link (or when * it's activated later) we'll get a beacon and adjust. */ if (WARN_ON(!elems->ml_basic)) return; data.mld_id = ieee80211_mle_get_mld_id((const void *)elems->ml_basic); /* * So in order to do this, iterate the RNR element(s) and see * what channel is reported now. */ cfg80211_iter_rnr(elems->ie_start, elems->total_len, ieee80211_sta_csa_rnr_iter, &data); if (!data.chan) { link_info(link, "couldn't find (valid) channel in RNR for CSA, disconnect\n"); wiphy_work_queue(sdata->local->hw.wiphy, &ifmgd->csa_connection_drop_work); return; } /* * If it doesn't match the CSA, then assume it aborted. This * may erroneously detect that it was _not_ aborted when it * was in fact aborted, but only changed the bandwidth or the * puncturing configuration, but we don't have enough data to * detect that. */ if (data.chan != link->csa.chanreq.oper.chan) ieee80211_sta_abort_chanswitch(link); } enum ieee80211_csa_source { IEEE80211_CSA_SOURCE_BEACON, IEEE80211_CSA_SOURCE_OTHER_LINK, IEEE80211_CSA_SOURCE_PROT_ACTION, IEEE80211_CSA_SOURCE_UNPROT_ACTION, }; static void ieee80211_sta_process_chanswitch(struct ieee80211_link_data *link, u64 timestamp, u32 device_timestamp, struct ieee802_11_elems *full_elems, struct ieee802_11_elems *csa_elems, enum ieee80211_csa_source source) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_chanctx *chanctx = NULL; struct ieee80211_chanctx_conf *conf; struct ieee80211_csa_ie csa_ie = {}; struct ieee80211_channel_switch ch_switch = { .link_id = link->link_id, .timestamp = timestamp, .device_timestamp = device_timestamp, }; unsigned long now; int res; lockdep_assert_wiphy(local->hw.wiphy); if (csa_elems) { struct cfg80211_bss *cbss = link->conf->bss; enum nl80211_band current_band; struct ieee80211_bss *bss; if (WARN_ON(!cbss)) return; current_band = cbss->channel->band; bss = (void *)cbss->priv; res = ieee80211_parse_ch_switch_ie(sdata, csa_elems, current_band, bss->vht_cap_info, &link->u.mgd.conn, link->u.mgd.bssid, source == IEEE80211_CSA_SOURCE_UNPROT_ACTION, &csa_ie); if (res == 0) { ch_switch.block_tx = csa_ie.mode; ch_switch.chandef = csa_ie.chanreq.oper; ch_switch.count = csa_ie.count; ch_switch.delay = csa_ie.max_switch_time; } link->u.mgd.csa.tpe = csa_elems->csa_tpe; } else { /* * If there was no per-STA profile for this link, we * get called with csa_elems == NULL. This of course means * there are no CSA elements, so set res=1 indicating * no more CSA. */ res = 1; } if (res < 0) { /* ignore this case, not a protected frame */ if (source == IEEE80211_CSA_SOURCE_UNPROT_ACTION) return; goto drop_connection; } if (link->conf->csa_active) { switch (source) { case IEEE80211_CSA_SOURCE_PROT_ACTION: case IEEE80211_CSA_SOURCE_UNPROT_ACTION: /* already processing - disregard action frames */ return; case IEEE80211_CSA_SOURCE_BEACON: if (link->u.mgd.csa.waiting_bcn) { ieee80211_chswitch_post_beacon(link); /* * If the CSA is still present after the switch * we need to consider it as a new CSA (possibly * to self). This happens by not returning here * so we'll get to the check below. */ } else if (res) { ieee80211_sta_abort_chanswitch(link); return; } else { drv_channel_switch_rx_beacon(sdata, &ch_switch); return; } break; case IEEE80211_CSA_SOURCE_OTHER_LINK: /* active link: we want to see the beacon to continue */ if (ieee80211_vif_link_active(&sdata->vif, link->link_id)) return; /* switch work ran, so just complete the process */ if (link->u.mgd.csa.waiting_bcn) { ieee80211_chswitch_post_beacon(link); /* * If the CSA is still present after the switch * we need to consider it as a new CSA (possibly * to self). This happens by not returning here * so we'll get to the check below. */ break; } /* link still has CSA but we already know, do nothing */ if (!res) return; /* check in the RNR if the CSA aborted */ ieee80211_sta_other_link_csa_disappeared(link, full_elems); return; } } /* no active CSA nor a new one */ if (res) { /* * However, we may have stopped queues when receiving a public * action frame that couldn't be protected, if it had the quiet * bit set. This is a trade-off, we want to be quiet as soon as * possible, but also don't trust the public action frame much, * as it can't be protected. */ if (unlikely(link->u.mgd.csa.blocked_tx)) { link->u.mgd.csa.blocked_tx = false; ieee80211_vif_unblock_queues_csa(sdata); } return; } /* * We don't really trust public action frames, but block queues (go to * quiet mode) for them anyway, we should get a beacon soon to either * know what the CSA really is, or figure out the public action frame * was actually an attack. */ if (source == IEEE80211_CSA_SOURCE_UNPROT_ACTION) { if (csa_ie.mode) { link->u.mgd.csa.blocked_tx = true; ieee80211_vif_block_queues_csa(sdata); } return; } if (link->conf->chanreq.oper.chan->band != csa_ie.chanreq.oper.chan->band) { link_info(link, "AP %pM switches to different band (%d MHz, width:%d, CF1/2: %d/%d MHz), disconnecting\n", link->u.mgd.bssid, csa_ie.chanreq.oper.chan->center_freq, csa_ie.chanreq.oper.width, csa_ie.chanreq.oper.center_freq1, csa_ie.chanreq.oper.center_freq2); goto drop_connection; } if (!cfg80211_chandef_usable(local->hw.wiphy, &csa_ie.chanreq.oper, IEEE80211_CHAN_DISABLED)) { link_info(link, "AP %pM switches to unsupported channel (%d.%03d MHz, width:%d, CF1/2: %d.%03d/%d MHz), disconnecting\n", link->u.mgd.bssid, csa_ie.chanreq.oper.chan->center_freq, csa_ie.chanreq.oper.chan->freq_offset, csa_ie.chanreq.oper.width, csa_ie.chanreq.oper.center_freq1, csa_ie.chanreq.oper.freq1_offset, csa_ie.chanreq.oper.center_freq2); goto drop_connection; } if (cfg80211_chandef_identical(&csa_ie.chanreq.oper, &link->conf->chanreq.oper) && (!csa_ie.mode || source != IEEE80211_CSA_SOURCE_BEACON)) { if (link->u.mgd.csa.ignored_same_chan) return; link_info(link, "AP %pM tries to chanswitch to same channel, ignore\n", link->u.mgd.bssid); link->u.mgd.csa.ignored_same_chan = true; return; } /* * Drop all TDLS peers on the affected link - either we disconnect or * move to a different channel from this point on. There's no telling * what our peer will do. * The TDLS WIDER_BW scenario is also problematic, as peers might now * have an incompatible wider chandef. */ ieee80211_teardown_tdls_peers(link); conf = rcu_dereference_protected(link->conf->chanctx_conf, lockdep_is_held(&local->hw.wiphy->mtx)); if (ieee80211_vif_link_active(&sdata->vif, link->link_id) && !conf) { link_info(link, "no channel context assigned to vif?, disconnecting\n"); goto drop_connection; } if (conf) chanctx = container_of(conf, struct ieee80211_chanctx, conf); if (!ieee80211_hw_check(&local->hw, CHANCTX_STA_CSA)) { link_info(link, "driver doesn't support chan-switch with channel contexts\n"); goto drop_connection; } if (drv_pre_channel_switch(sdata, &ch_switch)) { link_info(link, "preparing for channel switch failed, disconnecting\n"); goto drop_connection; } link->u.mgd.csa.ap_chandef = csa_ie.chanreq.ap; link->csa.chanreq.oper = csa_ie.chanreq.oper; ieee80211_set_chanreq_ap(sdata, &link->csa.chanreq, &link->u.mgd.conn, &csa_ie.chanreq.ap); if (chanctx) { res = ieee80211_link_reserve_chanctx(link, &link->csa.chanreq, chanctx->mode, false); if (res) { link_info(link, "failed to reserve channel context for channel switch, disconnecting (err=%d)\n", res); goto drop_connection; } } link->conf->csa_active = true; link->u.mgd.csa.ignored_same_chan = false; link->u.mgd.beacon_crc_valid = false; link->u.mgd.csa.blocked_tx = csa_ie.mode; if (csa_ie.mode) ieee80211_vif_block_queues_csa(sdata); cfg80211_ch_switch_started_notify(sdata->dev, &csa_ie.chanreq.oper, link->link_id, csa_ie.count, csa_ie.mode); /* we may have to handle timeout for deactivated link in software */ now = jiffies; link->u.mgd.csa.time = now + TU_TO_JIFFIES((max_t(int, csa_ie.count, 1) - 1) * link->conf->beacon_int); if (ieee80211_vif_link_active(&sdata->vif, link->link_id) && local->ops->channel_switch) { /* * Use driver's channel switch callback, the driver will * later call ieee80211_chswitch_done(). It may deactivate * the link as well, we handle that elsewhere and queue * the csa.switch_work for the calculated time then. */ drv_channel_switch(local, sdata, &ch_switch); return; } /* channel switch handled in software */ wiphy_delayed_work_queue(local->hw.wiphy, &link->u.mgd.csa.switch_work, link->u.mgd.csa.time - now); return; drop_connection: /* * This is just so that the disconnect flow will know that * we were trying to switch channel and failed. In case the * mode is 1 (we are not allowed to Tx), we will know not to * send a deauthentication frame. Those two fields will be * reset when the disconnection worker runs. */ link->conf->csa_active = true; link->u.mgd.csa.blocked_tx = csa_ie.mode; wiphy_work_queue(sdata->local->hw.wiphy, &ifmgd->csa_connection_drop_work); } struct sta_bss_param_ch_cnt_data { struct ieee80211_sub_if_data *sdata; u8 reporting_link_id; u8 mld_id; }; static enum cfg80211_rnr_iter_ret ieee80211_sta_bss_param_ch_cnt_iter(void *_data, u8 type, const struct ieee80211_neighbor_ap_info *info, const u8 *tbtt_info, u8 tbtt_info_len) { struct sta_bss_param_ch_cnt_data *data = _data; struct ieee80211_sub_if_data *sdata = data->sdata; const struct ieee80211_tbtt_info_ge_11 *ti; u8 bss_param_ch_cnt; int link_id; if (type != IEEE80211_TBTT_INFO_TYPE_TBTT) return RNR_ITER_CONTINUE; if (tbtt_info_len < sizeof(*ti)) return RNR_ITER_CONTINUE; ti = (const void *)tbtt_info; if (ti->mld_params.mld_id != data->mld_id) return RNR_ITER_CONTINUE; link_id = le16_get_bits(ti->mld_params.params, IEEE80211_RNR_MLD_PARAMS_LINK_ID); bss_param_ch_cnt = le16_get_bits(ti->mld_params.params, IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT); if (bss_param_ch_cnt != 255 && link_id < ARRAY_SIZE(sdata->link)) { struct ieee80211_link_data *link = sdata_dereference(sdata->link[link_id], sdata); if (link && link->conf->bss_param_ch_cnt != bss_param_ch_cnt) { link->conf->bss_param_ch_cnt = bss_param_ch_cnt; link->conf->bss_param_ch_cnt_link_id = data->reporting_link_id; } } return RNR_ITER_CONTINUE; } static void ieee80211_mgd_update_bss_param_ch_cnt(struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *bss_conf, struct ieee802_11_elems *elems) { struct sta_bss_param_ch_cnt_data data = { .reporting_link_id = bss_conf->link_id, .sdata = sdata, }; int bss_param_ch_cnt; if (!elems->ml_basic) return; data.mld_id = ieee80211_mle_get_mld_id((const void *)elems->ml_basic); cfg80211_iter_rnr(elems->ie_start, elems->total_len, ieee80211_sta_bss_param_ch_cnt_iter, &data); bss_param_ch_cnt = ieee80211_mle_get_bss_param_ch_cnt((const void *)elems->ml_basic); /* * Update bss_param_ch_cnt_link_id even if bss_param_ch_cnt * didn't change to indicate that we got a beacon on our own * link. */ if (bss_param_ch_cnt >= 0 && bss_param_ch_cnt != 255) { bss_conf->bss_param_ch_cnt = bss_param_ch_cnt; bss_conf->bss_param_ch_cnt_link_id = bss_conf->link_id; } } static bool ieee80211_find_80211h_pwr_constr(struct ieee80211_channel *channel, const u8 *country_ie, u8 country_ie_len, const u8 *pwr_constr_elem, int *chan_pwr, int *pwr_reduction) { struct ieee80211_country_ie_triplet *triplet; int chan = ieee80211_frequency_to_channel(channel->center_freq); int i, chan_increment; bool have_chan_pwr = false; /* Invalid IE */ if (country_ie_len % 2 || country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) return false; triplet = (void *)(country_ie + 3); country_ie_len -= 3; switch (channel->band) { default: WARN_ON_ONCE(1); fallthrough; case NL80211_BAND_2GHZ: case NL80211_BAND_60GHZ: case NL80211_BAND_LC: chan_increment = 1; break; case NL80211_BAND_5GHZ: chan_increment = 4; break; case NL80211_BAND_6GHZ: /* * In the 6 GHz band, the "maximum transmit power level" * field in the triplets is reserved, and thus will be * zero and we shouldn't use it to control TX power. * The actual TX power will be given in the transmit * power envelope element instead. */ return false; } /* find channel */ while (country_ie_len >= 3) { u8 first_channel = triplet->chans.first_channel; if (first_channel >= IEEE80211_COUNTRY_EXTENSION_ID) goto next; for (i = 0; i < triplet->chans.num_channels; i++) { if (first_channel + i * chan_increment == chan) { have_chan_pwr = true; *chan_pwr = triplet->chans.max_power; break; } } if (have_chan_pwr) break; next: triplet++; country_ie_len -= 3; } if (have_chan_pwr && pwr_constr_elem) *pwr_reduction = *pwr_constr_elem; else *pwr_reduction = 0; return have_chan_pwr; } static void ieee80211_find_cisco_dtpc(struct ieee80211_channel *channel, const u8 *cisco_dtpc_ie, int *pwr_level) { /* From practical testing, the first data byte of the DTPC element * seems to contain the requested dBm level, and the CLI on Cisco * APs clearly state the range is -127 to 127 dBm, which indicates * a signed byte, although it seemingly never actually goes negative. * The other byte seems to always be zero. */ *pwr_level = (__s8)cisco_dtpc_ie[4]; } static u64 ieee80211_handle_pwr_constr(struct ieee80211_link_data *link, struct ieee80211_channel *channel, struct ieee80211_mgmt *mgmt, const u8 *country_ie, u8 country_ie_len, const u8 *pwr_constr_ie, const u8 *cisco_dtpc_ie) { struct ieee80211_sub_if_data *sdata = link->sdata; bool has_80211h_pwr = false, has_cisco_pwr = false; int chan_pwr = 0, pwr_reduction_80211h = 0; int pwr_level_cisco, pwr_level_80211h; int new_ap_level; __le16 capab = mgmt->u.probe_resp.capab_info; if (ieee80211_is_s1g_beacon(mgmt->frame_control)) return 0; /* TODO */ if (country_ie && (capab & cpu_to_le16(WLAN_CAPABILITY_SPECTRUM_MGMT) || capab & cpu_to_le16(WLAN_CAPABILITY_RADIO_MEASURE))) { has_80211h_pwr = ieee80211_find_80211h_pwr_constr( channel, country_ie, country_ie_len, pwr_constr_ie, &chan_pwr, &pwr_reduction_80211h); pwr_level_80211h = max_t(int, 0, chan_pwr - pwr_reduction_80211h); } if (cisco_dtpc_ie) { ieee80211_find_cisco_dtpc( channel, cisco_dtpc_ie, &pwr_level_cisco); has_cisco_pwr = true; } if (!has_80211h_pwr && !has_cisco_pwr) return 0; /* If we have both 802.11h and Cisco DTPC, apply both limits * by picking the smallest of the two power levels advertised. */ if (has_80211h_pwr && (!has_cisco_pwr || pwr_level_80211h <= pwr_level_cisco)) { new_ap_level = pwr_level_80211h; if (link->ap_power_level == new_ap_level) return 0; sdata_dbg(sdata, "Limiting TX power to %d (%d - %d) dBm as advertised by %pM\n", pwr_level_80211h, chan_pwr, pwr_reduction_80211h, link->u.mgd.bssid); } else { /* has_cisco_pwr is always true here. */ new_ap_level = pwr_level_cisco; if (link->ap_power_level == new_ap_level) return 0; sdata_dbg(sdata, "Limiting TX power to %d dBm as advertised by %pM\n", pwr_level_cisco, link->u.mgd.bssid); } link->ap_power_level = new_ap_level; if (__ieee80211_recalc_txpower(link)) return BSS_CHANGED_TXPOWER; return 0; } /* powersave */ static void ieee80211_enable_ps(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata) { struct ieee80211_conf *conf = &local->hw.conf; /* * If we are scanning right now then the parameters will * take effect when scan finishes. */ if (local->scanning) return; if (conf->dynamic_ps_timeout > 0 && !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) { mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies(conf->dynamic_ps_timeout)); } else { if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) ieee80211_send_nullfunc(local, sdata, true); if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK) && ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) return; conf->flags |= IEEE80211_CONF_PS; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); } } static void ieee80211_change_ps(struct ieee80211_local *local) { struct ieee80211_conf *conf = &local->hw.conf; if (local->ps_sdata) { ieee80211_enable_ps(local, local->ps_sdata); } else if (conf->flags & IEEE80211_CONF_PS) { conf->flags &= ~IEEE80211_CONF_PS; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); timer_delete_sync(&local->dynamic_ps_timer); wiphy_work_cancel(local->hw.wiphy, &local->dynamic_ps_enable_work); } } static bool ieee80211_powersave_allowed(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *mgd = &sdata->u.mgd; struct sta_info *sta = NULL; bool authorized = false; if (!mgd->powersave) return false; if (mgd->broken_ap) return false; if (!mgd->associated) return false; if (mgd->flags & IEEE80211_STA_CONNECTION_POLL) return false; if (!(local->hw.wiphy->flags & WIPHY_FLAG_SUPPORTS_MLO) && !sdata->deflink.u.mgd.have_beacon) return false; rcu_read_lock(); sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr); if (sta) authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED); rcu_read_unlock(); return authorized; } /* need to hold RTNL or interface lock */ void ieee80211_recalc_ps(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata, *found = NULL; int count = 0; int timeout; if (!ieee80211_hw_check(&local->hw, SUPPORTS_PS) || ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) { local->ps_sdata = NULL; return; } list_for_each_entry(sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(sdata)) continue; if (sdata->vif.type == NL80211_IFTYPE_AP) { /* If an AP vif is found, then disable PS * by setting the count to zero thereby setting * ps_sdata to NULL. */ count = 0; break; } if (sdata->vif.type != NL80211_IFTYPE_STATION) continue; found = sdata; count++; } if (count == 1 && ieee80211_powersave_allowed(found)) { u8 dtimper = found->deflink.u.mgd.dtim_period; timeout = local->dynamic_ps_forced_timeout; if (timeout < 0) timeout = 100; local->hw.conf.dynamic_ps_timeout = timeout; /* If the TIM IE is invalid, pretend the value is 1 */ if (!dtimper) dtimper = 1; local->hw.conf.ps_dtim_period = dtimper; local->ps_sdata = found; } else { local->ps_sdata = NULL; } ieee80211_change_ps(local); } void ieee80211_recalc_ps_vif(struct ieee80211_sub_if_data *sdata) { bool ps_allowed = ieee80211_powersave_allowed(sdata); if (sdata->vif.cfg.ps != ps_allowed) { sdata->vif.cfg.ps = ps_allowed; ieee80211_vif_cfg_change_notify(sdata, BSS_CHANGED_PS); } } void ieee80211_dynamic_ps_disable_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_local *local = container_of(work, struct ieee80211_local, dynamic_ps_disable_work); if (local->hw.conf.flags & IEEE80211_CONF_PS) { local->hw.conf.flags &= ~IEEE80211_CONF_PS; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); } ieee80211_wake_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_PS, false); } void ieee80211_dynamic_ps_enable_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_local *local = container_of(work, struct ieee80211_local, dynamic_ps_enable_work); struct ieee80211_sub_if_data *sdata = local->ps_sdata; struct ieee80211_if_managed *ifmgd; unsigned long flags; int q; /* can only happen when PS was just disabled anyway */ if (!sdata) return; ifmgd = &sdata->u.mgd; if (local->hw.conf.flags & IEEE80211_CONF_PS) return; if (local->hw.conf.dynamic_ps_timeout > 0) { /* don't enter PS if TX frames are pending */ if (drv_tx_frames_pending(local)) { mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies( local->hw.conf.dynamic_ps_timeout)); return; } /* * transmission can be stopped by others which leads to * dynamic_ps_timer expiry. Postpone the ps timer if it * is not the actual idle state. */ spin_lock_irqsave(&local->queue_stop_reason_lock, flags); for (q = 0; q < local->hw.queues; q++) { if (local->queue_stop_reasons[q]) { spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies( local->hw.conf.dynamic_ps_timeout)); return; } } spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); } if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK) && !(ifmgd->flags & IEEE80211_STA_NULLFUNC_ACKED)) { if (drv_tx_frames_pending(local)) { mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies( local->hw.conf.dynamic_ps_timeout)); } else { ieee80211_send_nullfunc(local, sdata, true); /* Flush to get the tx status of nullfunc frame */ ieee80211_flush_queues(local, sdata, false); } } if (!(ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS) && ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) || (ifmgd->flags & IEEE80211_STA_NULLFUNC_ACKED)) { ifmgd->flags &= ~IEEE80211_STA_NULLFUNC_ACKED; local->hw.conf.flags |= IEEE80211_CONF_PS; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); } } void ieee80211_dynamic_ps_timer(struct timer_list *t) { struct ieee80211_local *local = from_timer(local, t, dynamic_ps_timer); wiphy_work_queue(local->hw.wiphy, &local->dynamic_ps_enable_work); } void ieee80211_dfs_cac_timer_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_link_data *link = container_of(work, struct ieee80211_link_data, dfs_cac_timer_work.work); struct cfg80211_chan_def chandef = link->conf->chanreq.oper; struct ieee80211_sub_if_data *sdata = link->sdata; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (sdata->wdev.links[link->link_id].cac_started) { ieee80211_link_release_channel(link); cfg80211_cac_event(sdata->dev, &chandef, NL80211_RADAR_CAC_FINISHED, GFP_KERNEL, link->link_id); } } static bool __ieee80211_sta_handle_tspec_ac_params(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; bool ret = false; int ac; if (local->hw.queues < IEEE80211_NUM_ACS) return false; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { struct ieee80211_sta_tx_tspec *tx_tspec = &ifmgd->tx_tspec[ac]; int non_acm_ac; unsigned long now = jiffies; if (tx_tspec->action == TX_TSPEC_ACTION_NONE && tx_tspec->admitted_time && time_after(now, tx_tspec->time_slice_start + HZ)) { tx_tspec->consumed_tx_time = 0; tx_tspec->time_slice_start = now; if (tx_tspec->downgraded) tx_tspec->action = TX_TSPEC_ACTION_STOP_DOWNGRADE; } switch (tx_tspec->action) { case TX_TSPEC_ACTION_STOP_DOWNGRADE: /* take the original parameters */ if (drv_conf_tx(local, &sdata->deflink, ac, &sdata->deflink.tx_conf[ac])) link_err(&sdata->deflink, "failed to set TX queue parameters for queue %d\n", ac); tx_tspec->action = TX_TSPEC_ACTION_NONE; tx_tspec->downgraded = false; ret = true; break; case TX_TSPEC_ACTION_DOWNGRADE: if (time_after(now, tx_tspec->time_slice_start + HZ)) { tx_tspec->action = TX_TSPEC_ACTION_NONE; ret = true; break; } /* downgrade next lower non-ACM AC */ for (non_acm_ac = ac + 1; non_acm_ac < IEEE80211_NUM_ACS; non_acm_ac++) if (!(sdata->wmm_acm & BIT(7 - 2 * non_acm_ac))) break; /* Usually the loop will result in using BK even if it * requires admission control, but such a configuration * makes no sense and we have to transmit somehow - the * AC selection does the same thing. * If we started out trying to downgrade from BK, then * the extra condition here might be needed. */ if (non_acm_ac >= IEEE80211_NUM_ACS) non_acm_ac = IEEE80211_AC_BK; if (drv_conf_tx(local, &sdata->deflink, ac, &sdata->deflink.tx_conf[non_acm_ac])) link_err(&sdata->deflink, "failed to set TX queue parameters for queue %d\n", ac); tx_tspec->action = TX_TSPEC_ACTION_NONE; ret = true; wiphy_delayed_work_queue(local->hw.wiphy, &ifmgd->tx_tspec_wk, tx_tspec->time_slice_start + HZ - now + 1); break; case TX_TSPEC_ACTION_NONE: /* nothing now */ break; } } return ret; } void ieee80211_sta_handle_tspec_ac_params(struct ieee80211_sub_if_data *sdata) { if (__ieee80211_sta_handle_tspec_ac_params(sdata)) ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_QOS); } static void ieee80211_sta_handle_tspec_ac_params_wk(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_sub_if_data *sdata; sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.tx_tspec_wk.work); ieee80211_sta_handle_tspec_ac_params(sdata); } void ieee80211_mgd_set_link_qos_params(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_tx_queue_params *params = link->tx_conf; u8 ac; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { mlme_dbg(sdata, "WMM AC=%d acm=%d aifs=%d cWmin=%d cWmax=%d txop=%d uapsd=%d, downgraded=%d\n", ac, params[ac].acm, params[ac].aifs, params[ac].cw_min, params[ac].cw_max, params[ac].txop, params[ac].uapsd, ifmgd->tx_tspec[ac].downgraded); if (!ifmgd->tx_tspec[ac].downgraded && drv_conf_tx(local, link, ac, ¶ms[ac])) link_err(link, "failed to set TX queue parameters for AC %d\n", ac); } } /* MLME */ static bool _ieee80211_sta_wmm_params(struct ieee80211_local *local, struct ieee80211_link_data *link, const u8 *wmm_param, size_t wmm_param_len, const struct ieee80211_mu_edca_param_set *mu_edca) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_tx_queue_params params[IEEE80211_NUM_ACS]; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; size_t left; int count, mu_edca_count, ac; const u8 *pos; u8 uapsd_queues = 0; if (!local->ops->conf_tx) return false; if (local->hw.queues < IEEE80211_NUM_ACS) return false; if (!wmm_param) return false; if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1) return false; if (ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED) uapsd_queues = ifmgd->uapsd_queues; count = wmm_param[6] & 0x0f; /* -1 is the initial value of ifmgd->mu_edca_last_param_set. * if mu_edca was preset before and now it disappeared tell * the driver about it. */ mu_edca_count = mu_edca ? mu_edca->mu_qos_info & 0x0f : -1; if (count == link->u.mgd.wmm_last_param_set && mu_edca_count == link->u.mgd.mu_edca_last_param_set) return false; link->u.mgd.wmm_last_param_set = count; link->u.mgd.mu_edca_last_param_set = mu_edca_count; pos = wmm_param + 8; left = wmm_param_len - 8; memset(¶ms, 0, sizeof(params)); sdata->wmm_acm = 0; for (; left >= 4; left -= 4, pos += 4) { int aci = (pos[0] >> 5) & 0x03; int acm = (pos[0] >> 4) & 0x01; bool uapsd = false; switch (aci) { case 1: /* AC_BK */ ac = IEEE80211_AC_BK; if (acm) sdata->wmm_acm |= BIT(1) | BIT(2); /* BK/- */ if (uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK) uapsd = true; params[ac].mu_edca = !!mu_edca; if (mu_edca) params[ac].mu_edca_param_rec = mu_edca->ac_bk; break; case 2: /* AC_VI */ ac = IEEE80211_AC_VI; if (acm) sdata->wmm_acm |= BIT(4) | BIT(5); /* CL/VI */ if (uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI) uapsd = true; params[ac].mu_edca = !!mu_edca; if (mu_edca) params[ac].mu_edca_param_rec = mu_edca->ac_vi; break; case 3: /* AC_VO */ ac = IEEE80211_AC_VO; if (acm) sdata->wmm_acm |= BIT(6) | BIT(7); /* VO/NC */ if (uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) uapsd = true; params[ac].mu_edca = !!mu_edca; if (mu_edca) params[ac].mu_edca_param_rec = mu_edca->ac_vo; break; case 0: /* AC_BE */ default: ac = IEEE80211_AC_BE; if (acm) sdata->wmm_acm |= BIT(0) | BIT(3); /* BE/EE */ if (uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE) uapsd = true; params[ac].mu_edca = !!mu_edca; if (mu_edca) params[ac].mu_edca_param_rec = mu_edca->ac_be; break; } params[ac].aifs = pos[0] & 0x0f; if (params[ac].aifs < 2) { link_info(link, "AP has invalid WMM params (AIFSN=%d for ACI %d), will use 2\n", params[ac].aifs, aci); params[ac].aifs = 2; } params[ac].cw_max = ecw2cw((pos[1] & 0xf0) >> 4); params[ac].cw_min = ecw2cw(pos[1] & 0x0f); params[ac].txop = get_unaligned_le16(pos + 2); params[ac].acm = acm; params[ac].uapsd = uapsd; if (params[ac].cw_min == 0 || params[ac].cw_min > params[ac].cw_max) { link_info(link, "AP has invalid WMM params (CWmin/max=%d/%d for ACI %d), using defaults\n", params[ac].cw_min, params[ac].cw_max, aci); return false; } ieee80211_regulatory_limit_wmm_params(sdata, ¶ms[ac], ac); } /* WMM specification requires all 4 ACIs. */ for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { if (params[ac].cw_min == 0) { link_info(link, "AP has invalid WMM params (missing AC %d), using defaults\n", ac); return false; } } for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) link->tx_conf[ac] = params[ac]; return true; } static bool ieee80211_sta_wmm_params(struct ieee80211_local *local, struct ieee80211_link_data *link, const u8 *wmm_param, size_t wmm_param_len, const struct ieee80211_mu_edca_param_set *mu_edca) { if (!_ieee80211_sta_wmm_params(local, link, wmm_param, wmm_param_len, mu_edca)) return false; ieee80211_mgd_set_link_qos_params(link); /* enable WMM or activate new settings */ link->conf->qos = true; return true; } static void __ieee80211_stop_poll(struct ieee80211_sub_if_data *sdata) { lockdep_assert_wiphy(sdata->local->hw.wiphy); sdata->u.mgd.flags &= ~IEEE80211_STA_CONNECTION_POLL; ieee80211_run_deferred_scan(sdata->local); } static void ieee80211_stop_poll(struct ieee80211_sub_if_data *sdata) { lockdep_assert_wiphy(sdata->local->hw.wiphy); __ieee80211_stop_poll(sdata); } static u64 ieee80211_handle_bss_capability(struct ieee80211_link_data *link, u16 capab, bool erp_valid, u8 erp) { struct ieee80211_bss_conf *bss_conf = link->conf; struct ieee80211_supported_band *sband; u64 changed = 0; bool use_protection; bool use_short_preamble; bool use_short_slot; sband = ieee80211_get_link_sband(link); if (!sband) return changed; if (erp_valid) { use_protection = (erp & WLAN_ERP_USE_PROTECTION) != 0; use_short_preamble = (erp & WLAN_ERP_BARKER_PREAMBLE) == 0; } else { use_protection = false; use_short_preamble = !!(capab & WLAN_CAPABILITY_SHORT_PREAMBLE); } use_short_slot = !!(capab & WLAN_CAPABILITY_SHORT_SLOT_TIME); if (sband->band == NL80211_BAND_5GHZ || sband->band == NL80211_BAND_6GHZ) use_short_slot = true; if (use_protection != bss_conf->use_cts_prot) { bss_conf->use_cts_prot = use_protection; changed |= BSS_CHANGED_ERP_CTS_PROT; } if (use_short_preamble != bss_conf->use_short_preamble) { bss_conf->use_short_preamble = use_short_preamble; changed |= BSS_CHANGED_ERP_PREAMBLE; } if (use_short_slot != bss_conf->use_short_slot) { bss_conf->use_short_slot = use_short_slot; changed |= BSS_CHANGED_ERP_SLOT; } return changed; } static u64 ieee80211_link_set_associated(struct ieee80211_link_data *link, struct cfg80211_bss *cbss) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_bss_conf *bss_conf = link->conf; struct ieee80211_bss *bss = (void *)cbss->priv; u64 changed = BSS_CHANGED_QOS; /* not really used in MLO */ sdata->u.mgd.beacon_timeout = usecs_to_jiffies(ieee80211_tu_to_usec(beacon_loss_count * bss_conf->beacon_int)); changed |= ieee80211_handle_bss_capability(link, bss_conf->assoc_capability, bss->has_erp_value, bss->erp_value); ieee80211_check_rate_mask(link); link->conf->bss = cbss; memcpy(link->u.mgd.bssid, cbss->bssid, ETH_ALEN); if (sdata->vif.p2p || sdata->vif.driver_flags & IEEE80211_VIF_GET_NOA_UPDATE) { const struct cfg80211_bss_ies *ies; rcu_read_lock(); ies = rcu_dereference(cbss->ies); if (ies) { int ret; ret = cfg80211_get_p2p_attr( ies->data, ies->len, IEEE80211_P2P_ATTR_ABSENCE_NOTICE, (u8 *) &bss_conf->p2p_noa_attr, sizeof(bss_conf->p2p_noa_attr)); if (ret >= 2) { link->u.mgd.p2p_noa_index = bss_conf->p2p_noa_attr.index; changed |= BSS_CHANGED_P2P_PS; } } rcu_read_unlock(); } if (link->u.mgd.have_beacon) { bss_conf->beacon_rate = bss->beacon_rate; changed |= BSS_CHANGED_BEACON_INFO; } else { bss_conf->beacon_rate = NULL; } /* Tell the driver to monitor connection quality (if supported) */ if (sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_CQM_RSSI && bss_conf->cqm_rssi_thold) changed |= BSS_CHANGED_CQM; return changed; } static void ieee80211_set_associated(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgd_assoc_data *assoc_data, u64 changed[IEEE80211_MLD_MAX_NUM_LINKS]) { struct ieee80211_local *local = sdata->local; struct ieee80211_vif_cfg *vif_cfg = &sdata->vif.cfg; u64 vif_changed = BSS_CHANGED_ASSOC; unsigned int link_id; lockdep_assert_wiphy(local->hw.wiphy); sdata->u.mgd.associated = true; for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct cfg80211_bss *cbss = assoc_data->link[link_id].bss; struct ieee80211_link_data *link; if (!cbss || assoc_data->link[link_id].status != WLAN_STATUS_SUCCESS) continue; if (ieee80211_vif_is_mld(&sdata->vif) && !(ieee80211_vif_usable_links(&sdata->vif) & BIT(link_id))) continue; link = sdata_dereference(sdata->link[link_id], sdata); if (WARN_ON(!link)) return; changed[link_id] |= ieee80211_link_set_associated(link, cbss); } /* just to be sure */ ieee80211_stop_poll(sdata); ieee80211_led_assoc(local, 1); vif_cfg->assoc = 1; /* Enable ARP filtering */ if (vif_cfg->arp_addr_cnt) vif_changed |= BSS_CHANGED_ARP_FILTER; if (ieee80211_vif_is_mld(&sdata->vif)) { for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct ieee80211_link_data *link; struct cfg80211_bss *cbss = assoc_data->link[link_id].bss; if (!cbss || !(BIT(link_id) & ieee80211_vif_usable_links(&sdata->vif)) || assoc_data->link[link_id].status != WLAN_STATUS_SUCCESS) continue; link = sdata_dereference(sdata->link[link_id], sdata); if (WARN_ON(!link)) return; ieee80211_link_info_change_notify(sdata, link, changed[link_id]); ieee80211_recalc_smps(sdata, link); } ieee80211_vif_cfg_change_notify(sdata, vif_changed); } else { ieee80211_bss_info_change_notify(sdata, vif_changed | changed[0]); } ieee80211_recalc_ps(local); /* leave this here to not change ordering in non-MLO cases */ if (!ieee80211_vif_is_mld(&sdata->vif)) ieee80211_recalc_smps(sdata, &sdata->deflink); ieee80211_recalc_ps_vif(sdata); netif_carrier_on(sdata->dev); } static void ieee80211_ml_reconf_reset(struct ieee80211_sub_if_data *sdata) { struct ieee80211_mgd_assoc_data *add_links_data = sdata->u.mgd.reconf.add_links_data; if (!ieee80211_vif_is_mld(&sdata->vif) || !(sdata->u.mgd.reconf.added_links | sdata->u.mgd.reconf.removed_links)) return; wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &sdata->u.mgd.reconf.wk); sdata->u.mgd.reconf.added_links = 0; sdata->u.mgd.reconf.removed_links = 0; sdata->u.mgd.reconf.dialog_token = 0; if (add_links_data) { struct cfg80211_mlo_reconf_done_data done_data = {}; u8 link_id; for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) done_data.links[link_id].bss = add_links_data->link[link_id].bss; cfg80211_mlo_reconf_add_done(sdata->dev, &done_data); kfree(sdata->u.mgd.reconf.add_links_data); sdata->u.mgd.reconf.add_links_data = NULL; } } static void ieee80211_set_disassoc(struct ieee80211_sub_if_data *sdata, u16 stype, u16 reason, bool tx, u8 *frame_buf) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_local *local = sdata->local; struct sta_info *ap_sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr); unsigned int link_id; u64 changed = 0; struct ieee80211_prep_tx_info info = { .subtype = stype, .was_assoc = true, .link_id = ffs(sdata->vif.active_links) - 1, }; lockdep_assert_wiphy(local->hw.wiphy); if (WARN_ON(!ap_sta)) return; if (WARN_ON_ONCE(tx && !frame_buf)) return; if (WARN_ON(!ifmgd->associated)) return; ieee80211_stop_poll(sdata); ifmgd->associated = false; if (tx) { bool tx_link_found = false; for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { struct ieee80211_link_data *link; if (!ieee80211_vif_link_active(&sdata->vif, link_id)) continue; link = sdata_dereference(sdata->link[link_id], sdata); if (WARN_ON_ONCE(!link)) continue; if (link->u.mgd.csa.blocked_tx) continue; tx_link_found = true; break; } tx = tx_link_found; } /* other links will be destroyed */ sdata->deflink.conf->bss = NULL; sdata->deflink.conf->epcs_support = false; sdata->deflink.smps_mode = IEEE80211_SMPS_OFF; netif_carrier_off(sdata->dev); /* * if we want to get out of ps before disassoc (why?) we have * to do it before sending disassoc, as otherwise the null-packet * won't be valid. */ if (local->hw.conf.flags & IEEE80211_CONF_PS) { local->hw.conf.flags &= ~IEEE80211_CONF_PS; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); } local->ps_sdata = NULL; /* disable per-vif ps */ ieee80211_recalc_ps_vif(sdata); /* make sure ongoing transmission finishes */ synchronize_net(); /* * drop any frame before deauth/disassoc, this can be data or * management frame. Since we are disconnecting, we should not * insist sending these frames which can take time and delay * the disconnection and possible the roaming. */ ieee80211_flush_queues(local, sdata, true); if (tx) { drv_mgd_prepare_tx(sdata->local, sdata, &info); ieee80211_send_deauth_disassoc(sdata, sdata->vif.cfg.ap_addr, sdata->vif.cfg.ap_addr, stype, reason, true, frame_buf); /* flush out frame - make sure the deauth was actually sent */ ieee80211_flush_queues(local, sdata, false); drv_mgd_complete_tx(sdata->local, sdata, &info); } else if (frame_buf) { ieee80211_send_deauth_disassoc(sdata, sdata->vif.cfg.ap_addr, sdata->vif.cfg.ap_addr, stype, reason, false, frame_buf); } /* clear AP addr only after building the needed mgmt frames */ eth_zero_addr(sdata->deflink.u.mgd.bssid); eth_zero_addr(sdata->vif.cfg.ap_addr); sdata->vif.cfg.ssid_len = 0; /* Remove TDLS peers */ __sta_info_flush(sdata, false, -1, ap_sta); if (sdata->vif.driver_flags & IEEE80211_VIF_REMOVE_AP_AFTER_DISASSOC) { /* Only move the AP state */ sta_info_move_state(ap_sta, IEEE80211_STA_NONE); } else { /* Remove AP peer */ sta_info_flush(sdata, -1); } /* finally reset all BSS / config parameters */ if (!ieee80211_vif_is_mld(&sdata->vif)) changed |= ieee80211_reset_erp_info(sdata); ieee80211_led_assoc(local, 0); changed |= BSS_CHANGED_ASSOC; sdata->vif.cfg.assoc = false; sdata->deflink.u.mgd.p2p_noa_index = -1; memset(&sdata->vif.bss_conf.p2p_noa_attr, 0, sizeof(sdata->vif.bss_conf.p2p_noa_attr)); /* on the next assoc, re-program HT/VHT parameters */ memset(&ifmgd->ht_capa, 0, sizeof(ifmgd->ht_capa)); memset(&ifmgd->ht_capa_mask, 0, sizeof(ifmgd->ht_capa_mask)); memset(&ifmgd->vht_capa, 0, sizeof(ifmgd->vht_capa)); memset(&ifmgd->vht_capa_mask, 0, sizeof(ifmgd->vht_capa_mask)); /* * reset MU-MIMO ownership and group data in default link, * if used, other links are destroyed */ memset(sdata->vif.bss_conf.mu_group.membership, 0, sizeof(sdata->vif.bss_conf.mu_group.membership)); memset(sdata->vif.bss_conf.mu_group.position, 0, sizeof(sdata->vif.bss_conf.mu_group.position)); if (!ieee80211_vif_is_mld(&sdata->vif)) changed |= BSS_CHANGED_MU_GROUPS; sdata->vif.bss_conf.mu_mimo_owner = false; sdata->deflink.ap_power_level = IEEE80211_UNSET_POWER_LEVEL; timer_delete_sync(&local->dynamic_ps_timer); wiphy_work_cancel(local->hw.wiphy, &local->dynamic_ps_enable_work); /* Disable ARP filtering */ if (sdata->vif.cfg.arp_addr_cnt) changed |= BSS_CHANGED_ARP_FILTER; sdata->vif.bss_conf.qos = false; if (!ieee80211_vif_is_mld(&sdata->vif)) { changed |= BSS_CHANGED_QOS; /* The BSSID (not really interesting) and HT changed */ changed |= BSS_CHANGED_BSSID | BSS_CHANGED_HT; ieee80211_bss_info_change_notify(sdata, changed); } else { ieee80211_vif_cfg_change_notify(sdata, changed); } if (sdata->vif.driver_flags & IEEE80211_VIF_REMOVE_AP_AFTER_DISASSOC) { /* * After notifying the driver about the disassoc, * remove the ap sta. */ sta_info_flush(sdata, -1); } /* disassociated - set to defaults now */ ieee80211_set_wmm_default(&sdata->deflink, false, false); timer_delete_sync(&sdata->u.mgd.conn_mon_timer); timer_delete_sync(&sdata->u.mgd.bcn_mon_timer); timer_delete_sync(&sdata->u.mgd.timer); sdata->vif.bss_conf.dtim_period = 0; sdata->vif.bss_conf.beacon_rate = NULL; sdata->deflink.u.mgd.have_beacon = false; sdata->deflink.u.mgd.tracking_signal_avg = false; sdata->deflink.u.mgd.disable_wmm_tracking = false; ifmgd->flags = 0; for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { struct ieee80211_link_data *link; link = sdata_dereference(sdata->link[link_id], sdata); if (!link) continue; ieee80211_link_release_channel(link); } sdata->vif.bss_conf.csa_active = false; sdata->deflink.u.mgd.csa.blocked_tx = false; sdata->deflink.u.mgd.csa.waiting_bcn = false; sdata->deflink.u.mgd.csa.ignored_same_chan = false; ieee80211_vif_unblock_queues_csa(sdata); /* existing TX TSPEC sessions no longer exist */ memset(ifmgd->tx_tspec, 0, sizeof(ifmgd->tx_tspec)); wiphy_delayed_work_cancel(local->hw.wiphy, &ifmgd->tx_tspec_wk); sdata->vif.bss_conf.power_type = IEEE80211_REG_UNSET_AP; sdata->vif.bss_conf.pwr_reduction = 0; ieee80211_clear_tpe(&sdata->vif.bss_conf.tpe); sdata->vif.cfg.eml_cap = 0; sdata->vif.cfg.eml_med_sync_delay = 0; sdata->vif.cfg.mld_capa_op = 0; memset(&sdata->u.mgd.ttlm_info, 0, sizeof(sdata->u.mgd.ttlm_info)); wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &ifmgd->ttlm_work); memset(&sdata->vif.neg_ttlm, 0, sizeof(sdata->vif.neg_ttlm)); wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &ifmgd->neg_ttlm_timeout_work); sdata->u.mgd.removed_links = 0; wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &sdata->u.mgd.ml_reconf_work); wiphy_work_cancel(sdata->local->hw.wiphy, &ifmgd->teardown_ttlm_work); /* if disconnection happens in the middle of the ML reconfiguration * flow, cfg80211 must called to release the BSS references obtained * when the flow started. */ ieee80211_ml_reconf_reset(sdata); ieee80211_vif_set_links(sdata, 0, 0); ifmgd->mcast_seq_last = IEEE80211_SN_MODULO; ifmgd->epcs.enabled = false; ifmgd->epcs.dialog_token = 0; memset(ifmgd->userspace_selectors, 0, sizeof(ifmgd->userspace_selectors)); } static void ieee80211_reset_ap_probe(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_local *local = sdata->local; lockdep_assert_wiphy(local->hw.wiphy); if (!(ifmgd->flags & IEEE80211_STA_CONNECTION_POLL)) return; __ieee80211_stop_poll(sdata); ieee80211_recalc_ps(local); if (ieee80211_hw_check(&sdata->local->hw, CONNECTION_MONITOR)) return; /* * We've received a probe response, but are not sure whether * we have or will be receiving any beacons or data, so let's * schedule the timers again, just in case. */ ieee80211_sta_reset_beacon_monitor(sdata); mod_timer(&ifmgd->conn_mon_timer, round_jiffies_up(jiffies + IEEE80211_CONNECTION_IDLE_TIME)); } static void ieee80211_sta_tx_wmm_ac_notify(struct ieee80211_sub_if_data *sdata, struct ieee80211_hdr *hdr, u16 tx_time) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u16 tid; int ac; struct ieee80211_sta_tx_tspec *tx_tspec; unsigned long now = jiffies; if (!ieee80211_is_data_qos(hdr->frame_control)) return; tid = ieee80211_get_tid(hdr); ac = ieee80211_ac_from_tid(tid); tx_tspec = &ifmgd->tx_tspec[ac]; if (likely(!tx_tspec->admitted_time)) return; if (time_after(now, tx_tspec->time_slice_start + HZ)) { tx_tspec->consumed_tx_time = 0; tx_tspec->time_slice_start = now; if (tx_tspec->downgraded) { tx_tspec->action = TX_TSPEC_ACTION_STOP_DOWNGRADE; wiphy_delayed_work_queue(sdata->local->hw.wiphy, &ifmgd->tx_tspec_wk, 0); } } if (tx_tspec->downgraded) return; tx_tspec->consumed_tx_time += tx_time; if (tx_tspec->consumed_tx_time >= tx_tspec->admitted_time) { tx_tspec->downgraded = true; tx_tspec->action = TX_TSPEC_ACTION_DOWNGRADE; wiphy_delayed_work_queue(sdata->local->hw.wiphy, &ifmgd->tx_tspec_wk, 0); } } void ieee80211_sta_tx_notify(struct ieee80211_sub_if_data *sdata, struct ieee80211_hdr *hdr, bool ack, u16 tx_time) { ieee80211_sta_tx_wmm_ac_notify(sdata, hdr, tx_time); if (!ieee80211_is_any_nullfunc(hdr->frame_control) || !sdata->u.mgd.probe_send_count) return; if (ack) sdata->u.mgd.probe_send_count = 0; else sdata->u.mgd.nullfunc_failed = true; wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); } static void ieee80211_mlme_send_probe_req(struct ieee80211_sub_if_data *sdata, const u8 *src, const u8 *dst, const u8 *ssid, size_t ssid_len, struct ieee80211_channel *channel) { struct sk_buff *skb; skb = ieee80211_build_probe_req(sdata, src, dst, (u32)-1, channel, ssid, ssid_len, NULL, 0, IEEE80211_PROBE_FLAG_DIRECTED); if (skb) ieee80211_tx_skb(sdata, skb); } static void ieee80211_mgd_probe_ap_send(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u8 *dst = sdata->vif.cfg.ap_addr; u8 unicast_limit = max(1, max_probe_tries - 3); struct sta_info *sta; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (WARN_ON(ieee80211_vif_is_mld(&sdata->vif))) return; /* * Try sending broadcast probe requests for the last three * probe requests after the first ones failed since some * buggy APs only support broadcast probe requests. */ if (ifmgd->probe_send_count >= unicast_limit) dst = NULL; /* * When the hardware reports an accurate Tx ACK status, it's * better to send a nullfunc frame instead of a probe request, * as it will kick us off the AP quickly if we aren't associated * anymore. The timeout will be reset if the frame is ACKed by * the AP. */ ifmgd->probe_send_count++; if (dst) { sta = sta_info_get(sdata, dst); if (!WARN_ON(!sta)) ieee80211_check_fast_rx(sta); } if (ieee80211_hw_check(&sdata->local->hw, REPORTS_TX_ACK_STATUS)) { ifmgd->nullfunc_failed = false; ieee80211_send_nullfunc(sdata->local, sdata, false); } else { ieee80211_mlme_send_probe_req(sdata, sdata->vif.addr, dst, sdata->vif.cfg.ssid, sdata->vif.cfg.ssid_len, sdata->deflink.conf->bss->channel); } ifmgd->probe_timeout = jiffies + msecs_to_jiffies(probe_wait_ms); run_again(sdata, ifmgd->probe_timeout); } static void ieee80211_mgd_probe_ap(struct ieee80211_sub_if_data *sdata, bool beacon) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; bool already = false; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (WARN_ON_ONCE(ieee80211_vif_is_mld(&sdata->vif))) return; if (!ieee80211_sdata_running(sdata)) return; if (!ifmgd->associated) return; if (sdata->local->tmp_channel || sdata->local->scanning) return; if (sdata->local->suspending) { /* reschedule after resume */ ieee80211_reset_ap_probe(sdata); return; } if (beacon) { mlme_dbg_ratelimited(sdata, "detected beacon loss from AP (missed %d beacons) - probing\n", beacon_loss_count); ieee80211_cqm_beacon_loss_notify(&sdata->vif, GFP_KERNEL); } /* * The driver/our work has already reported this event or the * connection monitoring has kicked in and we have already sent * a probe request. Or maybe the AP died and the driver keeps * reporting until we disassociate... * * In either case we have to ignore the current call to this * function (except for setting the correct probe reason bit) * because otherwise we would reset the timer every time and * never check whether we received a probe response! */ if (ifmgd->flags & IEEE80211_STA_CONNECTION_POLL) already = true; ifmgd->flags |= IEEE80211_STA_CONNECTION_POLL; if (already) return; ieee80211_recalc_ps(sdata->local); ifmgd->probe_send_count = 0; ieee80211_mgd_probe_ap_send(sdata); } struct sk_buff *ieee80211_ap_probereq_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct cfg80211_bss *cbss; struct sk_buff *skb; const struct element *ssid; int ssid_len; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION || ieee80211_vif_is_mld(&sdata->vif))) return NULL; if (ifmgd->associated) cbss = sdata->deflink.conf->bss; else if (ifmgd->auth_data) cbss = ifmgd->auth_data->bss; else if (ifmgd->assoc_data && ifmgd->assoc_data->link[0].bss) cbss = ifmgd->assoc_data->link[0].bss; else return NULL; rcu_read_lock(); ssid = ieee80211_bss_get_elem(cbss, WLAN_EID_SSID); if (WARN_ONCE(!ssid || ssid->datalen > IEEE80211_MAX_SSID_LEN, "invalid SSID element (len=%d)", ssid ? ssid->datalen : -1)) ssid_len = 0; else ssid_len = ssid->datalen; skb = ieee80211_build_probe_req(sdata, sdata->vif.addr, cbss->bssid, (u32) -1, cbss->channel, ssid->data, ssid_len, NULL, 0, IEEE80211_PROBE_FLAG_DIRECTED); rcu_read_unlock(); return skb; } EXPORT_SYMBOL(ieee80211_ap_probereq_get); static void ieee80211_report_disconnect(struct ieee80211_sub_if_data *sdata, const u8 *buf, size_t len, bool tx, u16 reason, bool reconnect) { struct ieee80211_event event = { .type = MLME_EVENT, .u.mlme.data = tx ? DEAUTH_TX_EVENT : DEAUTH_RX_EVENT, .u.mlme.reason = reason, }; if (tx) cfg80211_tx_mlme_mgmt(sdata->dev, buf, len, reconnect); else cfg80211_rx_mlme_mgmt(sdata->dev, buf, len); drv_event_callback(sdata->local, sdata, &event); } static void __ieee80211_disconnect(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; lockdep_assert_wiphy(local->hw.wiphy); if (!ifmgd->associated) return; if (!ifmgd->driver_disconnect) { unsigned int link_id; /* * AP is probably out of range (or not reachable for another * reason) so remove the bss structs for that AP. In the case * of multi-link, it's not clear that all of them really are * out of range, but if they weren't the driver likely would * have switched to just have a single link active? */ for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { struct ieee80211_link_data *link; link = sdata_dereference(sdata->link[link_id], sdata); if (!link || !link->conf->bss) continue; cfg80211_unlink_bss(local->hw.wiphy, link->conf->bss); link->conf->bss = NULL; } } ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH, ifmgd->driver_disconnect ? WLAN_REASON_DEAUTH_LEAVING : WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY, true, frame_buf); /* the other links will be destroyed */ sdata->vif.bss_conf.csa_active = false; sdata->deflink.u.mgd.csa.waiting_bcn = false; sdata->deflink.u.mgd.csa.blocked_tx = false; ieee80211_vif_unblock_queues_csa(sdata); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY, ifmgd->reconnect); ifmgd->reconnect = false; } static void ieee80211_beacon_connection_loss_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.beacon_connection_loss_work); struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; if (ifmgd->connection_loss) { sdata_info(sdata, "Connection to AP %pM lost\n", sdata->vif.cfg.ap_addr); __ieee80211_disconnect(sdata); ifmgd->connection_loss = false; } else if (ifmgd->driver_disconnect) { sdata_info(sdata, "Driver requested disconnection from AP %pM\n", sdata->vif.cfg.ap_addr); __ieee80211_disconnect(sdata); ifmgd->driver_disconnect = false; } else { if (ifmgd->associated) sdata->deflink.u.mgd.beacon_loss_count++; ieee80211_mgd_probe_ap(sdata, true); } } static void ieee80211_csa_connection_drop_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.csa_connection_drop_work); __ieee80211_disconnect(sdata); } void ieee80211_beacon_loss(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_hw *hw = &sdata->local->hw; trace_api_beacon_loss(sdata); sdata->u.mgd.connection_loss = false; wiphy_work_queue(hw->wiphy, &sdata->u.mgd.beacon_connection_loss_work); } EXPORT_SYMBOL(ieee80211_beacon_loss); void ieee80211_connection_loss(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata; struct ieee80211_hw *hw; KUNIT_STATIC_STUB_REDIRECT(ieee80211_connection_loss, vif); sdata = vif_to_sdata(vif); hw = &sdata->local->hw; trace_api_connection_loss(sdata); sdata->u.mgd.connection_loss = true; wiphy_work_queue(hw->wiphy, &sdata->u.mgd.beacon_connection_loss_work); } EXPORT_SYMBOL(ieee80211_connection_loss); void ieee80211_disconnect(struct ieee80211_vif *vif, bool reconnect) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_hw *hw = &sdata->local->hw; trace_api_disconnect(sdata, reconnect); if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) return; sdata->u.mgd.driver_disconnect = true; sdata->u.mgd.reconnect = reconnect; wiphy_work_queue(hw->wiphy, &sdata->u.mgd.beacon_connection_loss_work); } EXPORT_SYMBOL(ieee80211_disconnect); static void ieee80211_destroy_auth_data(struct ieee80211_sub_if_data *sdata, bool assoc) { struct ieee80211_mgd_auth_data *auth_data = sdata->u.mgd.auth_data; lockdep_assert_wiphy(sdata->local->hw.wiphy); sdata->u.mgd.auth_data = NULL; if (!assoc) { /* * we are not authenticated yet, the only timer that could be * running is the timeout for the authentication response which * which is not relevant anymore. */ timer_delete_sync(&sdata->u.mgd.timer); sta_info_destroy_addr(sdata, auth_data->ap_addr); /* other links are destroyed */ eth_zero_addr(sdata->deflink.u.mgd.bssid); ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_BSSID); sdata->u.mgd.flags = 0; ieee80211_link_release_channel(&sdata->deflink); ieee80211_vif_set_links(sdata, 0, 0); } cfg80211_put_bss(sdata->local->hw.wiphy, auth_data->bss); kfree(auth_data); } enum assoc_status { ASSOC_SUCCESS, ASSOC_REJECTED, ASSOC_TIMEOUT, ASSOC_ABANDON, }; static void ieee80211_destroy_assoc_data(struct ieee80211_sub_if_data *sdata, enum assoc_status status) { struct ieee80211_mgd_assoc_data *assoc_data = sdata->u.mgd.assoc_data; lockdep_assert_wiphy(sdata->local->hw.wiphy); sdata->u.mgd.assoc_data = NULL; if (status != ASSOC_SUCCESS) { /* * we are not associated yet, the only timer that could be * running is the timeout for the association response which * which is not relevant anymore. */ timer_delete_sync(&sdata->u.mgd.timer); sta_info_destroy_addr(sdata, assoc_data->ap_addr); eth_zero_addr(sdata->deflink.u.mgd.bssid); ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_BSSID); sdata->u.mgd.flags = 0; sdata->vif.bss_conf.mu_mimo_owner = false; if (status != ASSOC_REJECTED) { struct cfg80211_assoc_failure data = { .timeout = status == ASSOC_TIMEOUT, }; int i; BUILD_BUG_ON(ARRAY_SIZE(data.bss) != ARRAY_SIZE(assoc_data->link)); for (i = 0; i < ARRAY_SIZE(data.bss); i++) data.bss[i] = assoc_data->link[i].bss; if (ieee80211_vif_is_mld(&sdata->vif)) data.ap_mld_addr = assoc_data->ap_addr; cfg80211_assoc_failure(sdata->dev, &data); } ieee80211_link_release_channel(&sdata->deflink); ieee80211_vif_set_links(sdata, 0, 0); } kfree(assoc_data); } static void ieee80211_auth_challenge(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_local *local = sdata->local; struct ieee80211_mgd_auth_data *auth_data = sdata->u.mgd.auth_data; const struct element *challenge; u8 *pos; u32 tx_flags = 0; struct ieee80211_prep_tx_info info = { .subtype = IEEE80211_STYPE_AUTH, .link_id = auth_data->link_id, }; pos = mgmt->u.auth.variable; challenge = cfg80211_find_elem(WLAN_EID_CHALLENGE, pos, len - (pos - (u8 *)mgmt)); if (!challenge) return; auth_data->expected_transaction = 4; drv_mgd_prepare_tx(sdata->local, sdata, &info); if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) tx_flags = IEEE80211_TX_CTL_REQ_TX_STATUS | IEEE80211_TX_INTFL_MLME_CONN_TX; ieee80211_send_auth(sdata, 3, auth_data->algorithm, 0, (void *)challenge, challenge->datalen + sizeof(*challenge), auth_data->ap_addr, auth_data->ap_addr, auth_data->key, auth_data->key_len, auth_data->key_idx, tx_flags); } static bool ieee80211_mark_sta_auth(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; const u8 *ap_addr = ifmgd->auth_data->ap_addr; struct sta_info *sta; lockdep_assert_wiphy(sdata->local->hw.wiphy); sdata_info(sdata, "authenticated\n"); ifmgd->auth_data->done = true; ifmgd->auth_data->timeout = jiffies + IEEE80211_AUTH_WAIT_ASSOC; ifmgd->auth_data->timeout_started = true; run_again(sdata, ifmgd->auth_data->timeout); /* move station state to auth */ sta = sta_info_get(sdata, ap_addr); if (!sta) { WARN_ONCE(1, "%s: STA %pM not found", sdata->name, ap_addr); return false; } if (sta_info_move_state(sta, IEEE80211_STA_AUTH)) { sdata_info(sdata, "failed moving %pM to auth\n", ap_addr); return false; } return true; } static void ieee80211_rx_mgmt_auth(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u16 auth_alg, auth_transaction, status_code; struct ieee80211_event event = { .type = MLME_EVENT, .u.mlme.data = AUTH_EVENT, }; struct ieee80211_prep_tx_info info = { .subtype = IEEE80211_STYPE_AUTH, }; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (len < 24 + 6) return; if (!ifmgd->auth_data || ifmgd->auth_data->done) return; if (!ether_addr_equal(ifmgd->auth_data->ap_addr, mgmt->bssid)) return; auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg); auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction); status_code = le16_to_cpu(mgmt->u.auth.status_code); info.link_id = ifmgd->auth_data->link_id; if (auth_alg != ifmgd->auth_data->algorithm || (auth_alg != WLAN_AUTH_SAE && auth_transaction != ifmgd->auth_data->expected_transaction) || (auth_alg == WLAN_AUTH_SAE && (auth_transaction < ifmgd->auth_data->expected_transaction || auth_transaction > 2))) { sdata_info(sdata, "%pM unexpected authentication state: alg %d (expected %d) transact %d (expected %d)\n", mgmt->sa, auth_alg, ifmgd->auth_data->algorithm, auth_transaction, ifmgd->auth_data->expected_transaction); goto notify_driver; } if (status_code != WLAN_STATUS_SUCCESS) { cfg80211_rx_mlme_mgmt(sdata->dev, (u8 *)mgmt, len); if (auth_alg == WLAN_AUTH_SAE && (status_code == WLAN_STATUS_ANTI_CLOG_REQUIRED || (auth_transaction == 1 && (status_code == WLAN_STATUS_SAE_HASH_TO_ELEMENT || status_code == WLAN_STATUS_SAE_PK)))) { /* waiting for userspace now */ ifmgd->auth_data->waiting = true; ifmgd->auth_data->timeout = jiffies + IEEE80211_AUTH_WAIT_SAE_RETRY; ifmgd->auth_data->timeout_started = true; run_again(sdata, ifmgd->auth_data->timeout); goto notify_driver; } sdata_info(sdata, "%pM denied authentication (status %d)\n", mgmt->sa, status_code); ieee80211_destroy_auth_data(sdata, false); event.u.mlme.status = MLME_DENIED; event.u.mlme.reason = status_code; drv_event_callback(sdata->local, sdata, &event); goto notify_driver; } switch (ifmgd->auth_data->algorithm) { case WLAN_AUTH_OPEN: case WLAN_AUTH_LEAP: case WLAN_AUTH_FT: case WLAN_AUTH_SAE: case WLAN_AUTH_FILS_SK: case WLAN_AUTH_FILS_SK_PFS: case WLAN_AUTH_FILS_PK: break; case WLAN_AUTH_SHARED_KEY: if (ifmgd->auth_data->expected_transaction != 4) { ieee80211_auth_challenge(sdata, mgmt, len); /* need another frame */ return; } break; default: WARN_ONCE(1, "invalid auth alg %d", ifmgd->auth_data->algorithm); goto notify_driver; } event.u.mlme.status = MLME_SUCCESS; info.success = 1; drv_event_callback(sdata->local, sdata, &event); if (ifmgd->auth_data->algorithm != WLAN_AUTH_SAE || (auth_transaction == 2 && ifmgd->auth_data->expected_transaction == 2)) { if (!ieee80211_mark_sta_auth(sdata)) return; /* ignore frame -- wait for timeout */ } else if (ifmgd->auth_data->algorithm == WLAN_AUTH_SAE && auth_transaction == 2) { sdata_info(sdata, "SAE peer confirmed\n"); ifmgd->auth_data->peer_confirmed = true; } cfg80211_rx_mlme_mgmt(sdata->dev, (u8 *)mgmt, len); notify_driver: drv_mgd_complete_tx(sdata->local, sdata, &info); } #define case_WLAN(type) \ case WLAN_REASON_##type: return #type const char *ieee80211_get_reason_code_string(u16 reason_code) { switch (reason_code) { case_WLAN(UNSPECIFIED); case_WLAN(PREV_AUTH_NOT_VALID); case_WLAN(DEAUTH_LEAVING); case_WLAN(DISASSOC_DUE_TO_INACTIVITY); case_WLAN(DISASSOC_AP_BUSY); case_WLAN(CLASS2_FRAME_FROM_NONAUTH_STA); case_WLAN(CLASS3_FRAME_FROM_NONASSOC_STA); case_WLAN(DISASSOC_STA_HAS_LEFT); case_WLAN(STA_REQ_ASSOC_WITHOUT_AUTH); case_WLAN(DISASSOC_BAD_POWER); case_WLAN(DISASSOC_BAD_SUPP_CHAN); case_WLAN(INVALID_IE); case_WLAN(MIC_FAILURE); case_WLAN(4WAY_HANDSHAKE_TIMEOUT); case_WLAN(GROUP_KEY_HANDSHAKE_TIMEOUT); case_WLAN(IE_DIFFERENT); case_WLAN(INVALID_GROUP_CIPHER); case_WLAN(INVALID_PAIRWISE_CIPHER); case_WLAN(INVALID_AKMP); case_WLAN(UNSUPP_RSN_VERSION); case_WLAN(INVALID_RSN_IE_CAP); case_WLAN(IEEE8021X_FAILED); case_WLAN(CIPHER_SUITE_REJECTED); case_WLAN(DISASSOC_UNSPECIFIED_QOS); case_WLAN(DISASSOC_QAP_NO_BANDWIDTH); case_WLAN(DISASSOC_LOW_ACK); case_WLAN(DISASSOC_QAP_EXCEED_TXOP); case_WLAN(QSTA_LEAVE_QBSS); case_WLAN(QSTA_NOT_USE); case_WLAN(QSTA_REQUIRE_SETUP); case_WLAN(QSTA_TIMEOUT); case_WLAN(QSTA_CIPHER_NOT_SUPP); case_WLAN(MESH_PEER_CANCELED); case_WLAN(MESH_MAX_PEERS); case_WLAN(MESH_CONFIG); case_WLAN(MESH_CLOSE); case_WLAN(MESH_MAX_RETRIES); case_WLAN(MESH_CONFIRM_TIMEOUT); case_WLAN(MESH_INVALID_GTK); case_WLAN(MESH_INCONSISTENT_PARAM); case_WLAN(MESH_INVALID_SECURITY); case_WLAN(MESH_PATH_ERROR); case_WLAN(MESH_PATH_NOFORWARD); case_WLAN(MESH_PATH_DEST_UNREACHABLE); case_WLAN(MAC_EXISTS_IN_MBSS); case_WLAN(MESH_CHAN_REGULATORY); case_WLAN(MESH_CHAN); default: return "<unknown>"; } } static void ieee80211_rx_mgmt_deauth(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u16 reason_code = le16_to_cpu(mgmt->u.deauth.reason_code); lockdep_assert_wiphy(sdata->local->hw.wiphy); if (len < 24 + 2) return; if (!ether_addr_equal(mgmt->bssid, mgmt->sa)) { ieee80211_tdls_handle_disconnect(sdata, mgmt->sa, reason_code); return; } if (ifmgd->associated && ether_addr_equal(mgmt->bssid, sdata->vif.cfg.ap_addr)) { sdata_info(sdata, "deauthenticated from %pM (Reason: %u=%s)\n", sdata->vif.cfg.ap_addr, reason_code, ieee80211_get_reason_code_string(reason_code)); ieee80211_set_disassoc(sdata, 0, 0, false, NULL); ieee80211_report_disconnect(sdata, (u8 *)mgmt, len, false, reason_code, false); return; } if (ifmgd->assoc_data && ether_addr_equal(mgmt->bssid, ifmgd->assoc_data->ap_addr)) { sdata_info(sdata, "deauthenticated from %pM while associating (Reason: %u=%s)\n", ifmgd->assoc_data->ap_addr, reason_code, ieee80211_get_reason_code_string(reason_code)); ieee80211_destroy_assoc_data(sdata, ASSOC_ABANDON); cfg80211_rx_mlme_mgmt(sdata->dev, (u8 *)mgmt, len); return; } } static void ieee80211_rx_mgmt_disassoc(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u16 reason_code; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (len < 24 + 2) return; if (!ifmgd->associated || !ether_addr_equal(mgmt->bssid, sdata->vif.cfg.ap_addr)) return; reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code); if (!ether_addr_equal(mgmt->bssid, mgmt->sa)) { ieee80211_tdls_handle_disconnect(sdata, mgmt->sa, reason_code); return; } sdata_info(sdata, "disassociated from %pM (Reason: %u=%s)\n", sdata->vif.cfg.ap_addr, reason_code, ieee80211_get_reason_code_string(reason_code)); ieee80211_set_disassoc(sdata, 0, 0, false, NULL); ieee80211_report_disconnect(sdata, (u8 *)mgmt, len, false, reason_code, false); } static bool ieee80211_twt_req_supported(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, const struct link_sta_info *link_sta, const struct ieee802_11_elems *elems) { const struct ieee80211_sta_he_cap *own_he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); if (elems->ext_capab_len < 10) return false; if (!(elems->ext_capab[9] & WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT)) return false; return link_sta->pub->he_cap.he_cap_elem.mac_cap_info[0] & IEEE80211_HE_MAC_CAP0_TWT_RES && own_he_cap && (own_he_cap->he_cap_elem.mac_cap_info[0] & IEEE80211_HE_MAC_CAP0_TWT_REQ); } static u64 ieee80211_recalc_twt_req(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, struct ieee80211_link_data *link, struct link_sta_info *link_sta, struct ieee802_11_elems *elems) { bool twt = ieee80211_twt_req_supported(sdata, sband, link_sta, elems); if (link->conf->twt_requester != twt) { link->conf->twt_requester = twt; return BSS_CHANGED_TWT; } return 0; } static bool ieee80211_twt_bcast_support(struct ieee80211_sub_if_data *sdata, struct ieee80211_bss_conf *bss_conf, struct ieee80211_supported_band *sband, struct link_sta_info *link_sta) { const struct ieee80211_sta_he_cap *own_he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); return bss_conf->he_support && (link_sta->pub->he_cap.he_cap_elem.mac_cap_info[2] & IEEE80211_HE_MAC_CAP2_BCAST_TWT) && own_he_cap && (own_he_cap->he_cap_elem.mac_cap_info[2] & IEEE80211_HE_MAC_CAP2_BCAST_TWT); } static void ieee80211_epcs_changed(struct ieee80211_sub_if_data *sdata, bool enabled) { /* in any case this is called, dialog token should be reset */ sdata->u.mgd.epcs.dialog_token = 0; if (sdata->u.mgd.epcs.enabled == enabled) return; sdata->u.mgd.epcs.enabled = enabled; cfg80211_epcs_changed(sdata->dev, enabled); } static void ieee80211_epcs_teardown(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; u8 link_id; if (!sdata->u.mgd.epcs.enabled) return; lockdep_assert_wiphy(local->hw.wiphy); for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct ieee802_11_elems *elems; struct ieee80211_link_data *link; const struct cfg80211_bss_ies *ies; bool ret; rcu_read_lock(); link = sdata_dereference(sdata->link[link_id], sdata); if (!link || !link->conf || !link->conf->bss) { rcu_read_unlock(); continue; } if (link->u.mgd.disable_wmm_tracking) { rcu_read_unlock(); ieee80211_set_wmm_default(link, false, false); continue; } ies = rcu_dereference(link->conf->bss->beacon_ies); if (!ies) { rcu_read_unlock(); ieee80211_set_wmm_default(link, false, false); continue; } elems = ieee802_11_parse_elems(ies->data, ies->len, false, NULL); if (!elems) { rcu_read_unlock(); ieee80211_set_wmm_default(link, false, false); continue; } ret = _ieee80211_sta_wmm_params(local, link, elems->wmm_param, elems->wmm_param_len, elems->mu_edca_param_set); kfree(elems); rcu_read_unlock(); if (!ret) { ieee80211_set_wmm_default(link, false, false); continue; } ieee80211_mgd_set_link_qos_params(link); ieee80211_link_info_change_notify(sdata, link, BSS_CHANGED_QOS); } } static bool ieee80211_assoc_config_link(struct ieee80211_link_data *link, struct link_sta_info *link_sta, struct cfg80211_bss *cbss, struct ieee80211_mgmt *mgmt, const u8 *elem_start, unsigned int elem_len, u64 *changed) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_mgd_assoc_data *assoc_data = sdata->u.mgd.assoc_data ?: sdata->u.mgd.reconf.add_links_data; struct ieee80211_bss_conf *bss_conf = link->conf; struct ieee80211_local *local = sdata->local; unsigned int link_id = link->link_id; struct ieee80211_elems_parse_params parse_params = { .mode = link->u.mgd.conn.mode, .start = elem_start, .len = elem_len, .link_id = link_id == assoc_data->assoc_link_id ? -1 : link_id, .from_ap = true, }; bool is_5ghz = cbss->channel->band == NL80211_BAND_5GHZ; bool is_6ghz = cbss->channel->band == NL80211_BAND_6GHZ; bool is_s1g = cbss->channel->band == NL80211_BAND_S1GHZ; const struct cfg80211_bss_ies *bss_ies = NULL; struct ieee80211_supported_band *sband; struct ieee802_11_elems *elems; const __le16 prof_bss_param_ch_present = cpu_to_le16(IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT); u16 capab_info; bool ret; elems = ieee802_11_parse_elems_full(&parse_params); if (!elems) return false; if (link_id == assoc_data->assoc_link_id) { capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info); /* * we should not get to this flow unless the association was * successful, so set the status directly to success */ assoc_data->link[link_id].status = WLAN_STATUS_SUCCESS; if (elems->ml_basic) { int bss_param_ch_cnt = ieee80211_mle_get_bss_param_ch_cnt((const void *)elems->ml_basic); if (bss_param_ch_cnt < 0) { ret = false; goto out; } bss_conf->bss_param_ch_cnt = bss_param_ch_cnt; bss_conf->bss_param_ch_cnt_link_id = link_id; } } else if (elems->parse_error & IEEE80211_PARSE_ERR_DUP_NEST_ML_BASIC || !elems->prof || !(elems->prof->control & prof_bss_param_ch_present)) { ret = false; goto out; } else { const u8 *ptr = elems->prof->variable + elems->prof->sta_info_len - 1; int bss_param_ch_cnt; /* * During parsing, we validated that these fields exist, * otherwise elems->prof would have been set to NULL. */ capab_info = get_unaligned_le16(ptr); assoc_data->link[link_id].status = get_unaligned_le16(ptr + 2); bss_param_ch_cnt = ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(elems->prof); bss_conf->bss_param_ch_cnt = bss_param_ch_cnt; bss_conf->bss_param_ch_cnt_link_id = link_id; if (assoc_data->link[link_id].status != WLAN_STATUS_SUCCESS) { link_info(link, "association response status code=%u\n", assoc_data->link[link_id].status); ret = true; goto out; } } if (!is_s1g && !elems->supp_rates) { sdata_info(sdata, "no SuppRates element in AssocResp\n"); ret = false; goto out; } link->u.mgd.tdls_chan_switch_prohibited = elems->ext_capab && elems->ext_capab_len >= 5 && (elems->ext_capab[4] & WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED); /* * Some APs are erroneously not including some information in their * (re)association response frames. Try to recover by using the data * from the beacon or probe response. This seems to afflict mobile * 2G/3G/4G wifi routers, reported models include the "Onda PN51T", * "Vodafone PocketWiFi 2", "ZTE MF60" and a similar T-Mobile device. */ if (!ieee80211_hw_check(&local->hw, STRICT) && !is_6ghz && ((assoc_data->wmm && !elems->wmm_param) || (link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HT && (!elems->ht_cap_elem || !elems->ht_operation)) || (is_5ghz && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_VHT && (!elems->vht_cap_elem || !elems->vht_operation)))) { const struct cfg80211_bss_ies *ies; struct ieee802_11_elems *bss_elems; rcu_read_lock(); ies = rcu_dereference(cbss->ies); if (ies) bss_ies = kmemdup(ies, sizeof(*ies) + ies->len, GFP_ATOMIC); rcu_read_unlock(); if (!bss_ies) { ret = false; goto out; } parse_params.start = bss_ies->data; parse_params.len = bss_ies->len; parse_params.bss = cbss; parse_params.link_id = -1; bss_elems = ieee802_11_parse_elems_full(&parse_params); if (!bss_elems) { ret = false; goto out; } if (assoc_data->wmm && !elems->wmm_param && bss_elems->wmm_param) { elems->wmm_param = bss_elems->wmm_param; sdata_info(sdata, "AP bug: WMM param missing from AssocResp\n"); } /* * Also check if we requested HT/VHT, otherwise the AP doesn't * have to include the IEs in the (re)association response. */ if (!elems->ht_cap_elem && bss_elems->ht_cap_elem && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HT) { elems->ht_cap_elem = bss_elems->ht_cap_elem; sdata_info(sdata, "AP bug: HT capability missing from AssocResp\n"); } if (!elems->ht_operation && bss_elems->ht_operation && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HT) { elems->ht_operation = bss_elems->ht_operation; sdata_info(sdata, "AP bug: HT operation missing from AssocResp\n"); } if (is_5ghz) { if (!elems->vht_cap_elem && bss_elems->vht_cap_elem && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_VHT) { elems->vht_cap_elem = bss_elems->vht_cap_elem; sdata_info(sdata, "AP bug: VHT capa missing from AssocResp\n"); } if (!elems->vht_operation && bss_elems->vht_operation && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_VHT) { elems->vht_operation = bss_elems->vht_operation; sdata_info(sdata, "AP bug: VHT operation missing from AssocResp\n"); } } kfree(bss_elems); } /* * We previously checked these in the beacon/probe response, so * they should be present here. This is just a safety net. * Note that the ieee80211_config_bw() below would also check * for this (and more), but this has better error reporting. */ if (!is_6ghz && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HT && (!elems->wmm_param || !elems->ht_cap_elem || !elems->ht_operation)) { sdata_info(sdata, "HT AP is missing WMM params or HT capability/operation\n"); ret = false; goto out; } if (is_5ghz && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_VHT && (!elems->vht_cap_elem || !elems->vht_operation)) { sdata_info(sdata, "VHT AP is missing VHT capability/operation\n"); ret = false; goto out; } /* check/update if AP changed anything in assoc response vs. scan */ if (ieee80211_config_bw(link, elems, link_id == assoc_data->assoc_link_id, changed, "assoc response")) { ret = false; goto out; } if (WARN_ON(!link->conf->chanreq.oper.chan)) { ret = false; goto out; } sband = local->hw.wiphy->bands[link->conf->chanreq.oper.chan->band]; /* Set up internal HT/VHT capabilities */ if (elems->ht_cap_elem && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HT) ieee80211_ht_cap_ie_to_sta_ht_cap(sdata, sband, elems->ht_cap_elem, link_sta); if (elems->vht_cap_elem && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_VHT) { const struct ieee80211_vht_cap *bss_vht_cap = NULL; const struct cfg80211_bss_ies *ies; /* * Cisco AP module 9115 with FW 17.3 has a bug and sends a * too large maximum MPDU length in the association response * (indicating 12k) that it cannot actually process ... * Work around that. */ rcu_read_lock(); ies = rcu_dereference(cbss->ies); if (ies) { const struct element *elem; elem = cfg80211_find_elem(WLAN_EID_VHT_CAPABILITY, ies->data, ies->len); if (elem && elem->datalen >= sizeof(*bss_vht_cap)) bss_vht_cap = (const void *)elem->data; } if (ieee80211_hw_check(&local->hw, STRICT) && (!bss_vht_cap || memcmp(bss_vht_cap, elems->vht_cap_elem, sizeof(*bss_vht_cap)))) { rcu_read_unlock(); ret = false; link_info(link, "VHT capabilities mismatch\n"); goto out; } ieee80211_vht_cap_ie_to_sta_vht_cap(sdata, sband, elems->vht_cap_elem, bss_vht_cap, link_sta); rcu_read_unlock(); } if (elems->he_operation && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_HE && elems->he_cap) { ieee80211_he_cap_ie_to_sta_he_cap(sdata, sband, elems->he_cap, elems->he_cap_len, elems->he_6ghz_capa, link_sta); bss_conf->he_support = link_sta->pub->he_cap.has_he; if (elems->rsnx && elems->rsnx_len && (elems->rsnx[0] & WLAN_RSNX_CAPA_PROTECTED_TWT) && wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_PROTECTED_TWT)) bss_conf->twt_protected = true; else bss_conf->twt_protected = false; *changed |= ieee80211_recalc_twt_req(sdata, sband, link, link_sta, elems); if (elems->eht_operation && elems->eht_cap && link->u.mgd.conn.mode >= IEEE80211_CONN_MODE_EHT) { ieee80211_eht_cap_ie_to_sta_eht_cap(sdata, sband, elems->he_cap, elems->he_cap_len, elems->eht_cap, elems->eht_cap_len, link_sta); bss_conf->eht_support = link_sta->pub->eht_cap.has_eht; bss_conf->epcs_support = bss_conf->eht_support && !!(elems->eht_cap->fixed.mac_cap_info[0] & IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS); /* EPCS might be already enabled but a new added link * does not support EPCS. This should not really happen * in practice. */ if (sdata->u.mgd.epcs.enabled && !bss_conf->epcs_support) ieee80211_epcs_teardown(sdata); } else { bss_conf->eht_support = false; bss_conf->epcs_support = false; } } else { bss_conf->he_support = false; bss_conf->twt_requester = false; bss_conf->twt_protected = false; bss_conf->eht_support = false; bss_conf->epcs_support = false; } bss_conf->twt_broadcast = ieee80211_twt_bcast_support(sdata, bss_conf, sband, link_sta); if (bss_conf->he_support) { bss_conf->he_bss_color.color = le32_get_bits(elems->he_operation->he_oper_params, IEEE80211_HE_OPERATION_BSS_COLOR_MASK); bss_conf->he_bss_color.partial = le32_get_bits(elems->he_operation->he_oper_params, IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR); bss_conf->he_bss_color.enabled = !le32_get_bits(elems->he_operation->he_oper_params, IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); if (bss_conf->he_bss_color.enabled) *changed |= BSS_CHANGED_HE_BSS_COLOR; bss_conf->htc_trig_based_pkt_ext = le32_get_bits(elems->he_operation->he_oper_params, IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK); bss_conf->frame_time_rts_th = le32_get_bits(elems->he_operation->he_oper_params, IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); bss_conf->uora_exists = !!elems->uora_element; if (elems->uora_element) bss_conf->uora_ocw_range = elems->uora_element[0]; ieee80211_he_op_ie_to_bss_conf(&sdata->vif, elems->he_operation); ieee80211_he_spr_ie_to_bss_conf(&sdata->vif, elems->he_spr); /* TODO: OPEN: what happens if BSS color disable is set? */ } if (cbss->transmitted_bss) { bss_conf->nontransmitted = true; ether_addr_copy(bss_conf->transmitter_bssid, cbss->transmitted_bss->bssid); bss_conf->bssid_indicator = cbss->max_bssid_indicator; bss_conf->bssid_index = cbss->bssid_index; } /* * Some APs, e.g. Netgear WNDR3700, report invalid HT operation data * in their association response, so ignore that data for our own * configuration. If it changed since the last beacon, we'll get the * next beacon and update then. */ /* * If an operating mode notification IE is present, override the * NSS calculation (that would be done in rate_control_rate_init()) * and use the # of streams from that element. */ if (elems->opmode_notif && !(*elems->opmode_notif & IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF)) { u8 nss; nss = *elems->opmode_notif & IEEE80211_OPMODE_NOTIF_RX_NSS_MASK; nss >>= IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT; nss += 1; link_sta->pub->rx_nss = nss; } /* * Always handle WMM once after association regardless * of the first value the AP uses. Setting -1 here has * that effect because the AP values is an unsigned * 4-bit value. */ link->u.mgd.wmm_last_param_set = -1; link->u.mgd.mu_edca_last_param_set = -1; if (link->u.mgd.disable_wmm_tracking) { ieee80211_set_wmm_default(link, false, false); } else if (!ieee80211_sta_wmm_params(local, link, elems->wmm_param, elems->wmm_param_len, elems->mu_edca_param_set)) { /* still enable QoS since we might have HT/VHT */ ieee80211_set_wmm_default(link, false, true); /* disable WMM tracking in this case to disable * tracking WMM parameter changes in the beacon if * the parameters weren't actually valid. Doing so * avoids changing parameters very strangely when * the AP is going back and forth between valid and * invalid parameters. */ link->u.mgd.disable_wmm_tracking = true; } if (elems->max_idle_period_ie) { bss_conf->max_idle_period = le16_to_cpu(elems->max_idle_period_ie->max_idle_period); bss_conf->protected_keep_alive = !!(elems->max_idle_period_ie->idle_options & WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE); *changed |= BSS_CHANGED_KEEP_ALIVE; } else { bss_conf->max_idle_period = 0; bss_conf->protected_keep_alive = false; } /* set assoc capability (AID was already set earlier), * ieee80211_set_associated() will tell the driver */ bss_conf->assoc_capability = capab_info; ret = true; out: kfree(elems); kfree(bss_ies); return ret; } static int ieee80211_mgd_setup_link_sta(struct ieee80211_link_data *link, struct sta_info *sta, struct link_sta_info *link_sta, struct cfg80211_bss *cbss) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_bss *bss = (void *)cbss->priv; u32 rates = 0, basic_rates = 0; bool have_higher_than_11mbit = false; int min_rate = INT_MAX, min_rate_index = -1; struct ieee80211_supported_band *sband; memcpy(link_sta->addr, cbss->bssid, ETH_ALEN); memcpy(link_sta->pub->addr, cbss->bssid, ETH_ALEN); /* TODO: S1G Basic Rate Set is expressed elsewhere */ if (cbss->channel->band == NL80211_BAND_S1GHZ) { ieee80211_s1g_sta_rate_init(sta); return 0; } sband = local->hw.wiphy->bands[cbss->channel->band]; ieee80211_get_rates(sband, bss->supp_rates, bss->supp_rates_len, NULL, 0, &rates, &basic_rates, NULL, &have_higher_than_11mbit, &min_rate, &min_rate_index); /* * This used to be a workaround for basic rates missing * in the association response frame. Now that we no * longer use the basic rates from there, it probably * doesn't happen any more, but keep the workaround so * in case some *other* APs are buggy in different ways * we can connect -- with a warning. * Allow this workaround only in case the AP provided at least * one rate. */ if (min_rate_index < 0) { link_info(link, "No legacy rates in association response\n"); return -EINVAL; } else if (!basic_rates) { link_info(link, "No basic rates, using min rate instead\n"); basic_rates = BIT(min_rate_index); } if (rates) link_sta->pub->supp_rates[cbss->channel->band] = rates; else link_info(link, "No rates found, keeping mandatory only\n"); link->conf->basic_rates = basic_rates; /* cf. IEEE 802.11 9.2.12 */ link->operating_11g_mode = sband->band == NL80211_BAND_2GHZ && have_higher_than_11mbit; return 0; } static u8 ieee80211_max_rx_chains(struct ieee80211_link_data *link, struct cfg80211_bss *cbss) { struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp; const struct element *ht_cap_elem, *vht_cap_elem; const struct cfg80211_bss_ies *ies; const struct ieee80211_ht_cap *ht_cap; const struct ieee80211_vht_cap *vht_cap; const struct ieee80211_he_cap_elem *he_cap; const struct element *he_cap_elem; u16 mcs_80_map, mcs_160_map; int i, mcs_nss_size; bool support_160; u8 chains = 1; if (link->u.mgd.conn.mode < IEEE80211_CONN_MODE_HT) return chains; ht_cap_elem = ieee80211_bss_get_elem(cbss, WLAN_EID_HT_CAPABILITY); if (ht_cap_elem && ht_cap_elem->datalen >= sizeof(*ht_cap)) { ht_cap = (void *)ht_cap_elem->data; chains = ieee80211_mcs_to_chains(&ht_cap->mcs); /* * TODO: use "Tx Maximum Number Spatial Streams Supported" and * "Tx Unequal Modulation Supported" fields. */ } if (link->u.mgd.conn.mode < IEEE80211_CONN_MODE_VHT) return chains; vht_cap_elem = ieee80211_bss_get_elem(cbss, WLAN_EID_VHT_CAPABILITY); if (vht_cap_elem && vht_cap_elem->datalen >= sizeof(*vht_cap)) { u8 nss; u16 tx_mcs_map; vht_cap = (void *)vht_cap_elem->data; tx_mcs_map = le16_to_cpu(vht_cap->supp_mcs.tx_mcs_map); for (nss = 8; nss > 0; nss--) { if (((tx_mcs_map >> (2 * (nss - 1))) & 3) != IEEE80211_VHT_MCS_NOT_SUPPORTED) break; } /* TODO: use "Tx Highest Supported Long GI Data Rate" field? */ chains = max(chains, nss); } if (link->u.mgd.conn.mode < IEEE80211_CONN_MODE_HE) return chains; ies = rcu_dereference(cbss->ies); he_cap_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ies->data, ies->len); if (!he_cap_elem || he_cap_elem->datalen < sizeof(*he_cap)) return chains; /* skip one byte ext_tag_id */ he_cap = (void *)(he_cap_elem->data + 1); mcs_nss_size = ieee80211_he_mcs_nss_size(he_cap); /* invalid HE IE */ if (he_cap_elem->datalen < 1 + mcs_nss_size + sizeof(*he_cap)) return chains; /* mcs_nss is right after he_cap info */ he_mcs_nss_supp = (void *)(he_cap + 1); mcs_80_map = le16_to_cpu(he_mcs_nss_supp->tx_mcs_80); for (i = 7; i >= 0; i--) { u8 mcs_80 = mcs_80_map >> (2 * i) & 3; if (mcs_80 != IEEE80211_VHT_MCS_NOT_SUPPORTED) { chains = max_t(u8, chains, i + 1); break; } } support_160 = he_cap->phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; if (!support_160) return chains; mcs_160_map = le16_to_cpu(he_mcs_nss_supp->tx_mcs_160); for (i = 7; i >= 0; i--) { u8 mcs_160 = mcs_160_map >> (2 * i) & 3; if (mcs_160 != IEEE80211_VHT_MCS_NOT_SUPPORTED) { chains = max_t(u8, chains, i + 1); break; } } return chains; } static void ieee80211_determine_our_sta_mode(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, struct cfg80211_assoc_request *req, bool wmm_used, int link_id, struct ieee80211_conn_settings *conn) { struct ieee80211_sta_ht_cap sta_ht_cap = sband->ht_cap; bool is_5ghz = sband->band == NL80211_BAND_5GHZ; bool is_6ghz = sband->band == NL80211_BAND_6GHZ; const struct ieee80211_sta_he_cap *he_cap; const struct ieee80211_sta_eht_cap *eht_cap; struct ieee80211_sta_vht_cap vht_cap; if (sband->band == NL80211_BAND_S1GHZ) { conn->mode = IEEE80211_CONN_MODE_S1G; conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; mlme_dbg(sdata, "operating as S1G STA\n"); return; } conn->mode = IEEE80211_CONN_MODE_LEGACY; conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; ieee80211_apply_htcap_overrides(sdata, &sta_ht_cap); if (req && req->flags & ASSOC_REQ_DISABLE_HT) { mlme_link_id_dbg(sdata, link_id, "HT disabled by flag, limiting to legacy\n"); goto out; } if (!wmm_used) { mlme_link_id_dbg(sdata, link_id, "WMM/QoS not supported, limiting to legacy\n"); goto out; } if (req) { unsigned int i; for (i = 0; i < req->crypto.n_ciphers_pairwise; i++) { if (req->crypto.ciphers_pairwise[i] == WLAN_CIPHER_SUITE_WEP40 || req->crypto.ciphers_pairwise[i] == WLAN_CIPHER_SUITE_TKIP || req->crypto.ciphers_pairwise[i] == WLAN_CIPHER_SUITE_WEP104) { netdev_info(sdata->dev, "WEP/TKIP use, limiting to legacy\n"); goto out; } } } if (!sta_ht_cap.ht_supported && !is_6ghz) { mlme_link_id_dbg(sdata, link_id, "HT not supported (and not on 6 GHz), limiting to legacy\n"); goto out; } /* HT is fine */ conn->mode = IEEE80211_CONN_MODE_HT; conn->bw_limit = sta_ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 ? IEEE80211_CONN_BW_LIMIT_40 : IEEE80211_CONN_BW_LIMIT_20; memcpy(&vht_cap, &sband->vht_cap, sizeof(vht_cap)); ieee80211_apply_vhtcap_overrides(sdata, &vht_cap); if (req && req->flags & ASSOC_REQ_DISABLE_VHT) { mlme_link_id_dbg(sdata, link_id, "VHT disabled by flag, limiting to HT\n"); goto out; } if (vht_cap.vht_supported && is_5ghz) { bool have_80mhz = false; unsigned int i; if (conn->bw_limit == IEEE80211_CONN_BW_LIMIT_20) { mlme_link_id_dbg(sdata, link_id, "no 40 MHz support on 5 GHz, limiting to HT\n"); goto out; } /* Allow VHT if at least one channel on the sband supports 80 MHz */ for (i = 0; i < sband->n_channels; i++) { if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | IEEE80211_CHAN_NO_80MHZ)) continue; have_80mhz = true; break; } if (!have_80mhz) { mlme_link_id_dbg(sdata, link_id, "no 80 MHz channel support on 5 GHz, limiting to HT\n"); goto out; } } else if (is_5ghz) { /* !vht_supported but on 5 GHz */ mlme_link_id_dbg(sdata, link_id, "no VHT support on 5 GHz, limiting to HT\n"); goto out; } /* VHT - if we have - is fine, including 80 MHz, check 160 below again */ if (sband->band != NL80211_BAND_2GHZ) { conn->mode = IEEE80211_CONN_MODE_VHT; conn->bw_limit = IEEE80211_CONN_BW_LIMIT_160; } if (is_5ghz && !(vht_cap.cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ | IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ))) { conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; mlme_link_id_dbg(sdata, link_id, "no VHT 160 MHz capability on 5 GHz, limiting to 80 MHz"); } if (req && req->flags & ASSOC_REQ_DISABLE_HE) { mlme_link_id_dbg(sdata, link_id, "HE disabled by flag, limiting to HT/VHT\n"); goto out; } he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); if (!he_cap) { WARN_ON(is_6ghz); mlme_link_id_dbg(sdata, link_id, "no HE support, limiting to HT/VHT\n"); goto out; } /* so we have HE */ conn->mode = IEEE80211_CONN_MODE_HE; /* check bandwidth */ switch (sband->band) { default: case NL80211_BAND_2GHZ: if (he_cap->he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G) break; conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; mlme_link_id_dbg(sdata, link_id, "no 40 MHz HE cap in 2.4 GHz, limiting to 20 MHz\n"); break; case NL80211_BAND_5GHZ: if (!(he_cap->he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G)) { conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; mlme_link_id_dbg(sdata, link_id, "no 40/80 MHz HE cap in 5 GHz, limiting to 20 MHz\n"); break; } if (!(he_cap->he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)) { conn->bw_limit = min_t(enum ieee80211_conn_bw_limit, conn->bw_limit, IEEE80211_CONN_BW_LIMIT_80); mlme_link_id_dbg(sdata, link_id, "no 160 MHz HE cap in 5 GHz, limiting to 80 MHz\n"); } break; case NL80211_BAND_6GHZ: if (he_cap->he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) break; conn->bw_limit = min_t(enum ieee80211_conn_bw_limit, conn->bw_limit, IEEE80211_CONN_BW_LIMIT_80); mlme_link_id_dbg(sdata, link_id, "no 160 MHz HE cap in 6 GHz, limiting to 80 MHz\n"); break; } if (req && req->flags & ASSOC_REQ_DISABLE_EHT) { mlme_link_id_dbg(sdata, link_id, "EHT disabled by flag, limiting to HE\n"); goto out; } eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); if (!eht_cap) { mlme_link_id_dbg(sdata, link_id, "no EHT support, limiting to HE\n"); goto out; } /* we have EHT */ conn->mode = IEEE80211_CONN_MODE_EHT; /* check bandwidth */ if (is_6ghz && eht_cap->eht_cap_elem.phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) conn->bw_limit = IEEE80211_CONN_BW_LIMIT_320; else if (is_6ghz) mlme_link_id_dbg(sdata, link_id, "no EHT 320 MHz cap in 6 GHz, limiting to 160 MHz\n"); out: mlme_link_id_dbg(sdata, link_id, "determined local STA to be %s, BW limited to %d MHz\n", ieee80211_conn_mode_str(conn->mode), 20 * (1 << conn->bw_limit)); } static void ieee80211_determine_our_sta_mode_auth(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, struct cfg80211_auth_request *req, bool wmm_used, struct ieee80211_conn_settings *conn) { ieee80211_determine_our_sta_mode(sdata, sband, NULL, wmm_used, req->link_id > 0 ? req->link_id : 0, conn); } static void ieee80211_determine_our_sta_mode_assoc(struct ieee80211_sub_if_data *sdata, struct ieee80211_supported_band *sband, struct cfg80211_assoc_request *req, bool wmm_used, int link_id, struct ieee80211_conn_settings *conn) { struct ieee80211_conn_settings tmp; WARN_ON(!req); ieee80211_determine_our_sta_mode(sdata, sband, req, wmm_used, link_id, &tmp); conn->mode = min_t(enum ieee80211_conn_mode, conn->mode, tmp.mode); conn->bw_limit = min_t(enum ieee80211_conn_bw_limit, conn->bw_limit, tmp.bw_limit); } static enum ieee80211_ap_reg_power ieee80211_ap_power_type(u8 control) { switch (u8_get_bits(control, IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { case IEEE80211_6GHZ_CTRL_REG_LPI_AP: case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP: return IEEE80211_REG_LPI_AP; case IEEE80211_6GHZ_CTRL_REG_SP_AP: case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP: return IEEE80211_REG_SP_AP; case IEEE80211_6GHZ_CTRL_REG_VLP_AP: return IEEE80211_REG_VLP_AP; default: return IEEE80211_REG_UNSET_AP; } } static int ieee80211_prep_channel(struct ieee80211_sub_if_data *sdata, struct ieee80211_link_data *link, int link_id, struct cfg80211_bss *cbss, bool mlo, struct ieee80211_conn_settings *conn, unsigned long *userspace_selectors) { struct ieee80211_local *local = sdata->local; bool is_6ghz = cbss->channel->band == NL80211_BAND_6GHZ; struct ieee80211_chan_req chanreq = {}; struct cfg80211_chan_def ap_chandef; struct ieee802_11_elems *elems; int ret; lockdep_assert_wiphy(local->hw.wiphy); rcu_read_lock(); elems = ieee80211_determine_chan_mode(sdata, conn, cbss, link_id, &chanreq, &ap_chandef, userspace_selectors); if (IS_ERR(elems)) { rcu_read_unlock(); return PTR_ERR(elems); } if (mlo && !elems->ml_basic) { sdata_info(sdata, "Rejecting MLO as it is not supported by AP\n"); rcu_read_unlock(); kfree(elems); return -EINVAL; } if (link && is_6ghz && conn->mode >= IEEE80211_CONN_MODE_HE) { const struct ieee80211_he_6ghz_oper *he_6ghz_oper; if (elems->pwr_constr_elem) link->conf->pwr_reduction = *elems->pwr_constr_elem; he_6ghz_oper = ieee80211_he_6ghz_oper(elems->he_operation); if (he_6ghz_oper) link->conf->power_type = ieee80211_ap_power_type(he_6ghz_oper->control); else link_info(link, "HE 6 GHz operation missing (on %d MHz), expect issues\n", cbss->channel->center_freq); link->conf->tpe = elems->tpe; ieee80211_rearrange_tpe(&link->conf->tpe, &ap_chandef, &chanreq.oper); } rcu_read_unlock(); /* the element data was RCU protected so no longer valid anyway */ kfree(elems); elems = NULL; if (!link) return 0; rcu_read_lock(); link->needed_rx_chains = min(ieee80211_max_rx_chains(link, cbss), local->rx_chains); rcu_read_unlock(); /* * If this fails (possibly due to channel context sharing * on incompatible channels, e.g. 80+80 and 160 sharing the * same control channel) try to use a smaller bandwidth. */ ret = ieee80211_link_use_channel(link, &chanreq, IEEE80211_CHANCTX_SHARED); /* don't downgrade for 5 and 10 MHz channels, though. */ if (chanreq.oper.width == NL80211_CHAN_WIDTH_5 || chanreq.oper.width == NL80211_CHAN_WIDTH_10) return ret; while (ret && chanreq.oper.width != NL80211_CHAN_WIDTH_20_NOHT) { ieee80211_chanreq_downgrade(&chanreq, conn); ret = ieee80211_link_use_channel(link, &chanreq, IEEE80211_CHANCTX_SHARED); } return ret; } static bool ieee80211_get_dtim(const struct cfg80211_bss_ies *ies, u8 *dtim_count, u8 *dtim_period) { const u8 *tim_ie = cfg80211_find_ie(WLAN_EID_TIM, ies->data, ies->len); const u8 *idx_ie = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, ies->data, ies->len); const struct ieee80211_tim_ie *tim = NULL; const struct ieee80211_bssid_index *idx; bool valid = tim_ie && tim_ie[1] >= 2; if (valid) tim = (void *)(tim_ie + 2); if (dtim_count) *dtim_count = valid ? tim->dtim_count : 0; if (dtim_period) *dtim_period = valid ? tim->dtim_period : 0; /* Check if value is overridden by non-transmitted profile */ if (!idx_ie || idx_ie[1] < 3) return valid; idx = (void *)(idx_ie + 2); if (dtim_count) *dtim_count = idx->dtim_count; if (dtim_period) *dtim_period = idx->dtim_period; return true; } static bool ieee80211_assoc_success(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, struct ieee802_11_elems *elems, const u8 *elem_start, unsigned int elem_len) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_assoc_data *assoc_data = ifmgd->assoc_data; struct ieee80211_local *local = sdata->local; unsigned int link_id; struct sta_info *sta; u64 changed[IEEE80211_MLD_MAX_NUM_LINKS] = {}; u16 valid_links = 0, dormant_links = 0; int err; lockdep_assert_wiphy(sdata->local->hw.wiphy); /* * station info was already allocated and inserted before * the association and should be available to us */ sta = sta_info_get(sdata, assoc_data->ap_addr); if (WARN_ON(!sta)) goto out_err; sta->sta.spp_amsdu = assoc_data->spp_amsdu; if (ieee80211_vif_is_mld(&sdata->vif)) { for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { if (!assoc_data->link[link_id].bss) continue; valid_links |= BIT(link_id); if (assoc_data->link[link_id].disabled) dormant_links |= BIT(link_id); if (link_id != assoc_data->assoc_link_id) { err = ieee80211_sta_allocate_link(sta, link_id); if (err) goto out_err; } } ieee80211_vif_set_links(sdata, valid_links, dormant_links); } for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct cfg80211_bss *cbss = assoc_data->link[link_id].bss; struct ieee80211_link_data *link; struct link_sta_info *link_sta; if (!cbss) continue; link = sdata_dereference(sdata->link[link_id], sdata); if (WARN_ON(!link)) goto out_err; if (ieee80211_vif_is_mld(&sdata->vif)) link_info(link, "local address %pM, AP link address %pM%s\n", link->conf->addr, assoc_data->link[link_id].bss->bssid, link_id == assoc_data->assoc_link_id ? " (assoc)" : ""); link_sta = rcu_dereference_protected(sta->link[link_id], lockdep_is_held(&local->hw.wiphy->mtx)); if (WARN_ON(!link_sta)) goto out_err; if (!link->u.mgd.have_beacon) { const struct cfg80211_bss_ies *ies; rcu_read_lock(); ies = rcu_dereference(cbss->beacon_ies); if (ies) link->u.mgd.have_beacon = true; else ies = rcu_dereference(cbss->ies); ieee80211_get_dtim(ies, &link->conf->sync_dtim_count, &link->u.mgd.dtim_period); link->conf->beacon_int = cbss->beacon_interval; rcu_read_unlock(); } link->conf->dtim_period = link->u.mgd.dtim_period ?: 1; if (link_id != assoc_data->assoc_link_id) { link->u.mgd.conn = assoc_data->link[link_id].conn; err = ieee80211_prep_channel(sdata, link, link_id, cbss, true, &link->u.mgd.conn, sdata->u.mgd.userspace_selectors); if (err) { link_info(link, "prep_channel failed\n"); goto out_err; } } err = ieee80211_mgd_setup_link_sta(link, sta, link_sta, assoc_data->link[link_id].bss); if (err) goto out_err; if (!ieee80211_assoc_config_link(link, link_sta, assoc_data->link[link_id].bss, mgmt, elem_start, elem_len, &changed[link_id])) goto out_err; if (assoc_data->link[link_id].status != WLAN_STATUS_SUCCESS) { valid_links &= ~BIT(link_id); ieee80211_sta_remove_link(sta, link_id); continue; } if (link_id != assoc_data->assoc_link_id) { err = ieee80211_sta_activate_link(sta, link_id); if (err) goto out_err; } } /* links might have changed due to rejected ones, set them again */ ieee80211_vif_set_links(sdata, valid_links, dormant_links); rate_control_rate_init_all_links(sta); if (ifmgd->flags & IEEE80211_STA_MFP_ENABLED) { set_sta_flag(sta, WLAN_STA_MFP); sta->sta.mfp = true; } else { sta->sta.mfp = false; } ieee80211_sta_set_max_amsdu_subframes(sta, elems->ext_capab, elems->ext_capab_len); sta->sta.wme = (elems->wmm_param || elems->s1g_capab) && local->hw.queues >= IEEE80211_NUM_ACS; err = sta_info_move_state(sta, IEEE80211_STA_ASSOC); if (!err && !(ifmgd->flags & IEEE80211_STA_CONTROL_PORT)) err = sta_info_move_state(sta, IEEE80211_STA_AUTHORIZED); if (err) { sdata_info(sdata, "failed to move station %pM to desired state\n", sta->sta.addr); WARN_ON(__sta_info_destroy(sta)); goto out_err; } if (sdata->wdev.use_4addr) drv_sta_set_4addr(local, sdata, &sta->sta, true); ieee80211_set_associated(sdata, assoc_data, changed); /* * If we're using 4-addr mode, let the AP know that we're * doing so, so that it can create the STA VLAN on its side */ if (ifmgd->use_4addr) ieee80211_send_4addr_nullfunc(local, sdata); /* * Start timer to probe the connection to the AP now. * Also start the timer that will detect beacon loss. */ ieee80211_sta_reset_beacon_monitor(sdata); ieee80211_sta_reset_conn_monitor(sdata); return true; out_err: eth_zero_addr(sdata->vif.cfg.ap_addr); return false; } static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_assoc_data *assoc_data = ifmgd->assoc_data; u16 capab_info, status_code, aid; struct ieee80211_elems_parse_params parse_params = { .bss = NULL, .link_id = -1, .from_ap = true, }; struct ieee802_11_elems *elems; int ac; const u8 *elem_start; unsigned int elem_len; bool reassoc; struct ieee80211_event event = { .type = MLME_EVENT, .u.mlme.data = ASSOC_EVENT, }; struct ieee80211_prep_tx_info info = {}; struct cfg80211_rx_assoc_resp_data resp = { .uapsd_queues = -1, }; u8 ap_mld_addr[ETH_ALEN] __aligned(2); unsigned int link_id; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (!assoc_data) return; info.link_id = assoc_data->assoc_link_id; parse_params.mode = assoc_data->link[assoc_data->assoc_link_id].conn.mode; if (!ether_addr_equal(assoc_data->ap_addr, mgmt->bssid) || !ether_addr_equal(assoc_data->ap_addr, mgmt->sa)) return; /* * AssocResp and ReassocResp have identical structure, so process both * of them in this function. */ if (len < 24 + 6) return; reassoc = ieee80211_is_reassoc_resp(mgmt->frame_control); capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info); status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code); if (assoc_data->s1g) elem_start = mgmt->u.s1g_assoc_resp.variable; else elem_start = mgmt->u.assoc_resp.variable; /* * Note: this may not be perfect, AP might misbehave - if * anyone needs to rely on perfect complete notification * with the exact right subtype, then we need to track what * we actually transmitted. */ info.subtype = reassoc ? IEEE80211_STYPE_REASSOC_REQ : IEEE80211_STYPE_ASSOC_REQ; if (assoc_data->fils_kek_len && fils_decrypt_assoc_resp(sdata, (u8 *)mgmt, &len, assoc_data) < 0) return; elem_len = len - (elem_start - (u8 *)mgmt); parse_params.start = elem_start; parse_params.len = elem_len; elems = ieee802_11_parse_elems_full(&parse_params); if (!elems) goto notify_driver; if (elems->aid_resp) aid = le16_to_cpu(elems->aid_resp->aid); else if (assoc_data->s1g) aid = 0; /* TODO */ else aid = le16_to_cpu(mgmt->u.assoc_resp.aid); /* * The 5 MSB of the AID field are reserved * (802.11-2016 9.4.1.8 AID field) */ aid &= 0x7ff; sdata_info(sdata, "RX %sssocResp from %pM (capab=0x%x status=%d aid=%d)\n", reassoc ? "Rea" : "A", assoc_data->ap_addr, capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14)))); ifmgd->broken_ap = false; if (status_code == WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY && elems->timeout_int && elems->timeout_int->type == WLAN_TIMEOUT_ASSOC_COMEBACK) { u32 tu, ms; cfg80211_assoc_comeback(sdata->dev, assoc_data->ap_addr, le32_to_cpu(elems->timeout_int->value)); tu = le32_to_cpu(elems->timeout_int->value); ms = tu * 1024 / 1000; sdata_info(sdata, "%pM rejected association temporarily; comeback duration %u TU (%u ms)\n", assoc_data->ap_addr, tu, ms); assoc_data->timeout = jiffies + msecs_to_jiffies(ms); assoc_data->timeout_started = true; assoc_data->comeback = true; if (ms > IEEE80211_ASSOC_TIMEOUT) run_again(sdata, assoc_data->timeout); goto notify_driver; } if (status_code != WLAN_STATUS_SUCCESS) { sdata_info(sdata, "%pM denied association (code=%d)\n", assoc_data->ap_addr, status_code); event.u.mlme.status = MLME_DENIED; event.u.mlme.reason = status_code; drv_event_callback(sdata->local, sdata, &event); } else { if (aid == 0 || aid > IEEE80211_MAX_AID) { sdata_info(sdata, "invalid AID value %d (out of range), turn off PS\n", aid); aid = 0; ifmgd->broken_ap = true; } if (ieee80211_vif_is_mld(&sdata->vif)) { struct ieee80211_mle_basic_common_info *common; if (!elems->ml_basic) { sdata_info(sdata, "MLO association with %pM but no (basic) multi-link element in response!\n", assoc_data->ap_addr); goto abandon_assoc; } common = (void *)elems->ml_basic->variable; if (memcmp(assoc_data->ap_addr, common->mld_mac_addr, ETH_ALEN)) { sdata_info(sdata, "AP MLD MAC address mismatch: got %pM expected %pM\n", common->mld_mac_addr, assoc_data->ap_addr); goto abandon_assoc; } sdata->vif.cfg.eml_cap = ieee80211_mle_get_eml_cap((const void *)elems->ml_basic); sdata->vif.cfg.eml_med_sync_delay = ieee80211_mle_get_eml_med_sync_delay((const void *)elems->ml_basic); sdata->vif.cfg.mld_capa_op = ieee80211_mle_get_mld_capa_op((const void *)elems->ml_basic); } sdata->vif.cfg.aid = aid; if (!ieee80211_assoc_success(sdata, mgmt, elems, elem_start, elem_len)) { /* oops -- internal error -- send timeout for now */ ieee80211_destroy_assoc_data(sdata, ASSOC_TIMEOUT); goto notify_driver; } event.u.mlme.status = MLME_SUCCESS; drv_event_callback(sdata->local, sdata, &event); sdata_info(sdata, "associated\n"); info.success = 1; } for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct ieee80211_link_data *link; if (!assoc_data->link[link_id].bss) continue; resp.links[link_id].bss = assoc_data->link[link_id].bss; ether_addr_copy(resp.links[link_id].addr, assoc_data->link[link_id].addr); resp.links[link_id].status = assoc_data->link[link_id].status; link = sdata_dereference(sdata->link[link_id], sdata); if (!link) continue; /* get uapsd queues configuration - same for all links */ resp.uapsd_queues = 0; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) if (link->tx_conf[ac].uapsd) resp.uapsd_queues |= ieee80211_ac_to_qos_mask[ac]; } if (ieee80211_vif_is_mld(&sdata->vif)) { ether_addr_copy(ap_mld_addr, sdata->vif.cfg.ap_addr); resp.ap_mld_addr = ap_mld_addr; } ieee80211_destroy_assoc_data(sdata, status_code == WLAN_STATUS_SUCCESS ? ASSOC_SUCCESS : ASSOC_REJECTED); resp.buf = (u8 *)mgmt; resp.len = len; resp.req_ies = ifmgd->assoc_req_ies; resp.req_ies_len = ifmgd->assoc_req_ies_len; cfg80211_rx_assoc_resp(sdata->dev, &resp); notify_driver: drv_mgd_complete_tx(sdata->local, sdata, &info); kfree(elems); return; abandon_assoc: ieee80211_destroy_assoc_data(sdata, ASSOC_ABANDON); goto notify_driver; } static void ieee80211_rx_bss_info(struct ieee80211_link_data *link, struct ieee80211_mgmt *mgmt, size_t len, struct ieee80211_rx_status *rx_status) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; struct ieee80211_bss *bss; struct ieee80211_channel *channel; lockdep_assert_wiphy(sdata->local->hw.wiphy); channel = ieee80211_get_channel_khz(local->hw.wiphy, ieee80211_rx_status_to_khz(rx_status)); if (!channel) return; bss = ieee80211_bss_info_update(local, rx_status, mgmt, len, channel); if (bss) { link->conf->beacon_rate = bss->beacon_rate; ieee80211_rx_bss_put(local, bss); } } static void ieee80211_rx_mgmt_probe_resp(struct ieee80211_link_data *link, struct sk_buff *skb) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_mgmt *mgmt = (void *)skb->data; struct ieee80211_if_managed *ifmgd; struct ieee80211_rx_status *rx_status = (void *) skb->cb; struct ieee80211_channel *channel; size_t baselen, len = skb->len; ifmgd = &sdata->u.mgd; lockdep_assert_wiphy(sdata->local->hw.wiphy); /* * According to Draft P802.11ax D6.0 clause 26.17.2.3.2: * "If a 6 GHz AP receives a Probe Request frame and responds with * a Probe Response frame [..], the Address 1 field of the Probe * Response frame shall be set to the broadcast address [..]" * So, on 6GHz band we should also accept broadcast responses. */ channel = ieee80211_get_channel(sdata->local->hw.wiphy, rx_status->freq); if (!channel) return; if (!ether_addr_equal(mgmt->da, sdata->vif.addr) && (channel->band != NL80211_BAND_6GHZ || !is_broadcast_ether_addr(mgmt->da))) return; /* ignore ProbeResp to foreign address */ baselen = (u8 *) mgmt->u.probe_resp.variable - (u8 *) mgmt; if (baselen > len) return; ieee80211_rx_bss_info(link, mgmt, len, rx_status); if (ifmgd->associated && ether_addr_equal(mgmt->bssid, link->u.mgd.bssid)) ieee80211_reset_ap_probe(sdata); } /* * This is the canonical list of information elements we care about, * the filter code also gives us all changes to the Microsoft OUI * (00:50:F2) vendor IE which is used for WMM which we need to track, * as well as the DTPC IE (part of the Cisco OUI) used for signaling * changes to requested client power. * * We implement beacon filtering in software since that means we can * avoid processing the frame here and in cfg80211, and userspace * will not be able to tell whether the hardware supports it or not. * * XXX: This list needs to be dynamic -- userspace needs to be able to * add items it requires. It also needs to be able to tell us to * look out for other vendor IEs. */ static const u64 care_about_ies = (1ULL << WLAN_EID_COUNTRY) | (1ULL << WLAN_EID_ERP_INFO) | (1ULL << WLAN_EID_CHANNEL_SWITCH) | (1ULL << WLAN_EID_PWR_CONSTRAINT) | (1ULL << WLAN_EID_HT_CAPABILITY) | (1ULL << WLAN_EID_HT_OPERATION) | (1ULL << WLAN_EID_EXT_CHANSWITCH_ANN); static void ieee80211_handle_beacon_sig(struct ieee80211_link_data *link, struct ieee80211_if_managed *ifmgd, struct ieee80211_bss_conf *bss_conf, struct ieee80211_local *local, struct ieee80211_rx_status *rx_status) { struct ieee80211_sub_if_data *sdata = link->sdata; /* Track average RSSI from the Beacon frames of the current AP */ if (!link->u.mgd.tracking_signal_avg) { link->u.mgd.tracking_signal_avg = true; ewma_beacon_signal_init(&link->u.mgd.ave_beacon_signal); link->u.mgd.last_cqm_event_signal = 0; link->u.mgd.count_beacon_signal = 1; link->u.mgd.last_ave_beacon_signal = 0; } else { link->u.mgd.count_beacon_signal++; } ewma_beacon_signal_add(&link->u.mgd.ave_beacon_signal, -rx_status->signal); if (ifmgd->rssi_min_thold != ifmgd->rssi_max_thold && link->u.mgd.count_beacon_signal >= IEEE80211_SIGNAL_AVE_MIN_COUNT) { int sig = -ewma_beacon_signal_read(&link->u.mgd.ave_beacon_signal); int last_sig = link->u.mgd.last_ave_beacon_signal; struct ieee80211_event event = { .type = RSSI_EVENT, }; /* * if signal crosses either of the boundaries, invoke callback * with appropriate parameters */ if (sig > ifmgd->rssi_max_thold && (last_sig <= ifmgd->rssi_min_thold || last_sig == 0)) { link->u.mgd.last_ave_beacon_signal = sig; event.u.rssi.data = RSSI_EVENT_HIGH; drv_event_callback(local, sdata, &event); } else if (sig < ifmgd->rssi_min_thold && (last_sig >= ifmgd->rssi_max_thold || last_sig == 0)) { link->u.mgd.last_ave_beacon_signal = sig; event.u.rssi.data = RSSI_EVENT_LOW; drv_event_callback(local, sdata, &event); } } if (bss_conf->cqm_rssi_thold && link->u.mgd.count_beacon_signal >= IEEE80211_SIGNAL_AVE_MIN_COUNT && !(sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_CQM_RSSI)) { int sig = -ewma_beacon_signal_read(&link->u.mgd.ave_beacon_signal); int last_event = link->u.mgd.last_cqm_event_signal; int thold = bss_conf->cqm_rssi_thold; int hyst = bss_conf->cqm_rssi_hyst; if (sig < thold && (last_event == 0 || sig < last_event - hyst)) { link->u.mgd.last_cqm_event_signal = sig; ieee80211_cqm_rssi_notify( &sdata->vif, NL80211_CQM_RSSI_THRESHOLD_EVENT_LOW, sig, GFP_KERNEL); } else if (sig > thold && (last_event == 0 || sig > last_event + hyst)) { link->u.mgd.last_cqm_event_signal = sig; ieee80211_cqm_rssi_notify( &sdata->vif, NL80211_CQM_RSSI_THRESHOLD_EVENT_HIGH, sig, GFP_KERNEL); } } if (bss_conf->cqm_rssi_low && link->u.mgd.count_beacon_signal >= IEEE80211_SIGNAL_AVE_MIN_COUNT) { int sig = -ewma_beacon_signal_read(&link->u.mgd.ave_beacon_signal); int last_event = link->u.mgd.last_cqm_event_signal; int low = bss_conf->cqm_rssi_low; int high = bss_conf->cqm_rssi_high; if (sig < low && (last_event == 0 || last_event >= low)) { link->u.mgd.last_cqm_event_signal = sig; ieee80211_cqm_rssi_notify( &sdata->vif, NL80211_CQM_RSSI_THRESHOLD_EVENT_LOW, sig, GFP_KERNEL); } else if (sig > high && (last_event == 0 || last_event <= high)) { link->u.mgd.last_cqm_event_signal = sig; ieee80211_cqm_rssi_notify( &sdata->vif, NL80211_CQM_RSSI_THRESHOLD_EVENT_HIGH, sig, GFP_KERNEL); } } } static bool ieee80211_rx_our_beacon(const u8 *tx_bssid, struct cfg80211_bss *bss) { if (ether_addr_equal(tx_bssid, bss->bssid)) return true; if (!bss->transmitted_bss) return false; return ether_addr_equal(tx_bssid, bss->transmitted_bss->bssid); } static void ieee80211_ml_reconf_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.ml_reconf_work.work); u16 new_valid_links, new_active_links, new_dormant_links; int ret; if (!sdata->u.mgd.removed_links) return; sdata_info(sdata, "MLO Reconfiguration: work: valid=0x%x, removed=0x%x\n", sdata->vif.valid_links, sdata->u.mgd.removed_links); new_valid_links = sdata->vif.valid_links & ~sdata->u.mgd.removed_links; if (new_valid_links == sdata->vif.valid_links) return; if (!new_valid_links || !(new_valid_links & ~sdata->vif.dormant_links)) { sdata_info(sdata, "No valid links after reconfiguration\n"); ret = -EINVAL; goto out; } new_active_links = sdata->vif.active_links & ~sdata->u.mgd.removed_links; if (new_active_links != sdata->vif.active_links) { if (!new_active_links) new_active_links = BIT(ffs(new_valid_links & ~sdata->vif.dormant_links) - 1); ret = ieee80211_set_active_links(&sdata->vif, new_active_links); if (ret) { sdata_info(sdata, "Failed setting active links\n"); goto out; } } new_dormant_links = sdata->vif.dormant_links & ~sdata->u.mgd.removed_links; ret = ieee80211_vif_set_links(sdata, new_valid_links, new_dormant_links); if (ret) sdata_info(sdata, "Failed setting valid links\n"); ieee80211_vif_cfg_change_notify(sdata, BSS_CHANGED_MLD_VALID_LINKS); out: if (!ret) cfg80211_links_removed(sdata->dev, sdata->u.mgd.removed_links); else __ieee80211_disconnect(sdata); sdata->u.mgd.removed_links = 0; } static void ieee80211_ml_reconfiguration(struct ieee80211_sub_if_data *sdata, struct ieee802_11_elems *elems) { const struct element *sub; unsigned long removed_links = 0; u16 link_removal_timeout[IEEE80211_MLD_MAX_NUM_LINKS] = {}; u8 link_id; u32 delay; if (!ieee80211_vif_is_mld(&sdata->vif) || !elems->ml_reconf) return; /* Directly parse the sub elements as the common information doesn't * hold any useful information. */ for_each_mle_subelement(sub, (const u8 *)elems->ml_reconf, elems->ml_reconf_len) { struct ieee80211_mle_per_sta_profile *prof = (void *)sub->data; u8 *pos = prof->variable; u16 control; if (sub->id != IEEE80211_MLE_SUBELEM_PER_STA_PROFILE) continue; if (!ieee80211_mle_reconf_sta_prof_size_ok(sub->data, sub->datalen)) return; control = le16_to_cpu(prof->control); link_id = control & IEEE80211_MLE_STA_RECONF_CONTROL_LINK_ID; removed_links |= BIT(link_id); /* the MAC address should not be included, but handle it */ if (control & IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT) pos += 6; /* According to Draft P802.11be_D3.0, the control should * include the AP Removal Timer present. If the AP Removal Timer * is not present assume immediate removal. */ if (control & IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT) link_removal_timeout[link_id] = get_unaligned_le16(pos); } removed_links &= sdata->vif.valid_links; if (!removed_links) { /* In case the removal was cancelled, abort it */ if (sdata->u.mgd.removed_links) { sdata->u.mgd.removed_links = 0; wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &sdata->u.mgd.ml_reconf_work); } return; } delay = 0; for_each_set_bit(link_id, &removed_links, IEEE80211_MLD_MAX_NUM_LINKS) { struct ieee80211_bss_conf *link_conf = sdata_dereference(sdata->vif.link_conf[link_id], sdata); u32 link_delay; if (!link_conf) { removed_links &= ~BIT(link_id); continue; } if (link_removal_timeout[link_id] < 1) link_delay = 0; else link_delay = link_conf->beacon_int * (link_removal_timeout[link_id] - 1); if (!delay) delay = link_delay; else delay = min(delay, link_delay); } sdata->u.mgd.removed_links = removed_links; wiphy_delayed_work_queue(sdata->local->hw.wiphy, &sdata->u.mgd.ml_reconf_work, TU_TO_JIFFIES(delay)); } static int ieee80211_ttlm_set_links(struct ieee80211_sub_if_data *sdata, u16 active_links, u16 dormant_links, u16 suspended_links) { u64 changed = 0; int ret; if (!active_links) { ret = -EINVAL; goto out; } /* If there is an active negotiated TTLM, it should be discarded by * the new negotiated/advertised TTLM. */ if (sdata->vif.neg_ttlm.valid) { memset(&sdata->vif.neg_ttlm, 0, sizeof(sdata->vif.neg_ttlm)); sdata->vif.suspended_links = 0; changed = BSS_CHANGED_MLD_TTLM; } if (sdata->vif.active_links != active_links) { /* usable links are affected when active_links are changed, * so notify the driver about the status change */ changed |= BSS_CHANGED_MLD_VALID_LINKS; active_links &= sdata->vif.active_links; if (!active_links) active_links = BIT(__ffs(sdata->vif.valid_links & ~dormant_links)); ret = ieee80211_set_active_links(&sdata->vif, active_links); if (ret) { sdata_info(sdata, "Failed to set TTLM active links\n"); goto out; } } ret = ieee80211_vif_set_links(sdata, sdata->vif.valid_links, dormant_links); if (ret) { sdata_info(sdata, "Failed to set TTLM dormant links\n"); goto out; } sdata->vif.suspended_links = suspended_links; if (sdata->vif.suspended_links) changed |= BSS_CHANGED_MLD_TTLM; ieee80211_vif_cfg_change_notify(sdata, changed); out: if (ret) ieee80211_disconnect(&sdata->vif, false); return ret; } static void ieee80211_tid_to_link_map_work(struct wiphy *wiphy, struct wiphy_work *work) { u16 new_active_links, new_dormant_links; struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.ttlm_work.work); new_active_links = sdata->u.mgd.ttlm_info.map & sdata->vif.valid_links; new_dormant_links = ~sdata->u.mgd.ttlm_info.map & sdata->vif.valid_links; ieee80211_vif_set_links(sdata, sdata->vif.valid_links, 0); if (ieee80211_ttlm_set_links(sdata, new_active_links, new_dormant_links, 0)) return; sdata->u.mgd.ttlm_info.active = true; sdata->u.mgd.ttlm_info.switch_time = 0; } static u16 ieee80211_get_ttlm(u8 bm_size, u8 *data) { if (bm_size == 1) return *data; else return get_unaligned_le16(data); } static int ieee80211_parse_adv_t2l(struct ieee80211_sub_if_data *sdata, const struct ieee80211_ttlm_elem *ttlm, struct ieee80211_adv_ttlm_info *ttlm_info) { /* The element size was already validated in * ieee80211_tid_to_link_map_size_ok() */ u8 control, link_map_presence, map_size, tid; u8 *pos; memset(ttlm_info, 0, sizeof(*ttlm_info)); pos = (void *)ttlm->optional; control = ttlm->control; if ((control & IEEE80211_TTLM_CONTROL_DEF_LINK_MAP) || !(control & IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT)) return 0; if ((control & IEEE80211_TTLM_CONTROL_DIRECTION) != IEEE80211_TTLM_DIRECTION_BOTH) { sdata_info(sdata, "Invalid advertised T2L map direction\n"); return -EINVAL; } link_map_presence = *pos; pos++; ttlm_info->switch_time = get_unaligned_le16(pos); /* Since ttlm_info->switch_time == 0 means no switch time, bump it * by 1. */ if (!ttlm_info->switch_time) ttlm_info->switch_time = 1; pos += 2; if (control & IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT) { ttlm_info->duration = pos[0] | pos[1] << 8 | pos[2] << 16; pos += 3; } if (control & IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE) map_size = 1; else map_size = 2; /* According to Draft P802.11be_D3.0 clause 35.3.7.1.7, an AP MLD shall * not advertise a TID-to-link mapping that does not map all TIDs to the * same link set, reject frame if not all links have mapping */ if (link_map_presence != 0xff) { sdata_info(sdata, "Invalid advertised T2L mapping presence indicator\n"); return -EINVAL; } ttlm_info->map = ieee80211_get_ttlm(map_size, pos); if (!ttlm_info->map) { sdata_info(sdata, "Invalid advertised T2L map for TID 0\n"); return -EINVAL; } pos += map_size; for (tid = 1; tid < 8; tid++) { u16 map = ieee80211_get_ttlm(map_size, pos); if (map != ttlm_info->map) { sdata_info(sdata, "Invalid advertised T2L map for tid %d\n", tid); return -EINVAL; } pos += map_size; } return 0; } static void ieee80211_process_adv_ttlm(struct ieee80211_sub_if_data *sdata, struct ieee802_11_elems *elems, u64 beacon_ts) { u8 i; int ret; if (!ieee80211_vif_is_mld(&sdata->vif)) return; if (!elems->ttlm_num) { if (sdata->u.mgd.ttlm_info.switch_time) { /* if a planned TID-to-link mapping was cancelled - * abort it */ wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &sdata->u.mgd.ttlm_work); } else if (sdata->u.mgd.ttlm_info.active) { /* if no TID-to-link element, set to default mapping in * which all TIDs are mapped to all setup links */ ret = ieee80211_vif_set_links(sdata, sdata->vif.valid_links, 0); if (ret) { sdata_info(sdata, "Failed setting valid/dormant links\n"); return; } ieee80211_vif_cfg_change_notify(sdata, BSS_CHANGED_MLD_VALID_LINKS); } memset(&sdata->u.mgd.ttlm_info, 0, sizeof(sdata->u.mgd.ttlm_info)); return; } for (i = 0; i < elems->ttlm_num; i++) { struct ieee80211_adv_ttlm_info ttlm_info; u32 res; res = ieee80211_parse_adv_t2l(sdata, elems->ttlm[i], &ttlm_info); if (res) { __ieee80211_disconnect(sdata); return; } if (ttlm_info.switch_time) { u16 beacon_ts_tu, st_tu, delay; u32 delay_jiffies; u64 mask; /* The t2l map switch time is indicated with a partial * TSF value (bits 10 to 25), get the partial beacon TS * as well, and calc the delay to the start time. */ mask = GENMASK_ULL(25, 10); beacon_ts_tu = (beacon_ts & mask) >> 10; st_tu = ttlm_info.switch_time; delay = st_tu - beacon_ts_tu; /* * If the switch time is far in the future, then it * could also be the previous switch still being * announced. * We can simply ignore it for now, if it is a future * switch the AP will continue to announce it anyway. */ if (delay > IEEE80211_ADV_TTLM_ST_UNDERFLOW) return; delay_jiffies = TU_TO_JIFFIES(delay); /* Link switching can take time, so schedule it * 100ms before to be ready on time */ if (delay_jiffies > IEEE80211_ADV_TTLM_SAFETY_BUFFER_MS) delay_jiffies -= IEEE80211_ADV_TTLM_SAFETY_BUFFER_MS; else delay_jiffies = 0; sdata->u.mgd.ttlm_info = ttlm_info; wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &sdata->u.mgd.ttlm_work); wiphy_delayed_work_queue(sdata->local->hw.wiphy, &sdata->u.mgd.ttlm_work, delay_jiffies); return; } } } static void ieee80211_mgd_check_cross_link_csa(struct ieee80211_sub_if_data *sdata, int reporting_link_id, struct ieee802_11_elems *elems) { const struct element *sta_profiles[IEEE80211_MLD_MAX_NUM_LINKS] = {}; ssize_t sta_profiles_len[IEEE80211_MLD_MAX_NUM_LINKS] = {}; const struct element *sub; const u8 *subelems; size_t subelems_len; u8 common_size; int link_id; if (!ieee80211_mle_size_ok((u8 *)elems->ml_basic, elems->ml_basic_len)) return; common_size = ieee80211_mle_common_size((u8 *)elems->ml_basic); subelems = (u8 *)elems->ml_basic + common_size; subelems_len = elems->ml_basic_len - common_size; for_each_element_id(sub, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE, subelems, subelems_len) { struct ieee80211_mle_per_sta_profile *prof = (void *)sub->data; struct ieee80211_link_data *link; ssize_t len; if (!ieee80211_mle_basic_sta_prof_size_ok(sub->data, sub->datalen)) continue; link_id = le16_get_bits(prof->control, IEEE80211_MLE_STA_CONTROL_LINK_ID); /* need a valid link ID, but also not our own, both AP bugs */ if (link_id == reporting_link_id || link_id >= IEEE80211_MLD_MAX_NUM_LINKS) continue; link = sdata_dereference(sdata->link[link_id], sdata); if (!link) continue; len = cfg80211_defragment_element(sub, subelems, subelems_len, NULL, 0, IEEE80211_MLE_SUBELEM_FRAGMENT); if (WARN_ON(len < 0)) continue; sta_profiles[link_id] = sub; sta_profiles_len[link_id] = len; } for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct ieee80211_mle_per_sta_profile *prof; struct ieee802_11_elems *prof_elems; struct ieee80211_link_data *link; ssize_t len; if (link_id == reporting_link_id) continue; link = sdata_dereference(sdata->link[link_id], sdata); if (!link) continue; if (!sta_profiles[link_id]) { prof_elems = NULL; goto handle; } /* we can defragment in-place, won't use the buffer again */ len = cfg80211_defragment_element(sta_profiles[link_id], subelems, subelems_len, (void *)sta_profiles[link_id], sta_profiles_len[link_id], IEEE80211_MLE_SUBELEM_FRAGMENT); if (WARN_ON(len != sta_profiles_len[link_id])) continue; prof = (void *)sta_profiles[link_id]; prof_elems = ieee802_11_parse_elems(prof->variable + (prof->sta_info_len - 1), len - (prof->sta_info_len - 1), false, NULL); /* memory allocation failed - let's hope that's transient */ if (!prof_elems) continue; handle: /* * FIXME: the timings here are obviously incorrect, * but only older Intel drivers seem to care, and * those don't have MLO. If you really need this, * the problem is having to calculate it with the * TSF offset etc. The device_timestamp is still * correct, of course. */ ieee80211_sta_process_chanswitch(link, 0, 0, elems, prof_elems, IEEE80211_CSA_SOURCE_OTHER_LINK); kfree(prof_elems); } } static bool ieee80211_mgd_ssid_mismatch(struct ieee80211_sub_if_data *sdata, const struct ieee802_11_elems *elems) { struct ieee80211_vif_cfg *cfg = &sdata->vif.cfg; static u8 zero_ssid[IEEE80211_MAX_SSID_LEN]; if (!elems->ssid) return false; /* hidden SSID: zero length */ if (elems->ssid_len == 0) return false; if (elems->ssid_len != cfg->ssid_len) return true; /* hidden SSID: zeroed out */ if (!memcmp(elems->ssid, zero_ssid, elems->ssid_len)) return false; return memcmp(elems->ssid, cfg->ssid, cfg->ssid_len); } static void ieee80211_rx_mgmt_beacon(struct ieee80211_link_data *link, struct ieee80211_hdr *hdr, size_t len, struct ieee80211_rx_status *rx_status) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_bss_conf *bss_conf = link->conf; struct ieee80211_vif_cfg *vif_cfg = &sdata->vif.cfg; struct ieee80211_mgmt *mgmt = (void *) hdr; size_t baselen; struct ieee802_11_elems *elems; struct ieee80211_local *local = sdata->local; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_supported_band *sband; struct ieee80211_channel *chan; struct link_sta_info *link_sta; struct sta_info *sta; u64 changed = 0; bool erp_valid; u8 erp_value = 0; u32 ncrc = 0; u8 *bssid, *variable = mgmt->u.beacon.variable; u8 deauth_buf[IEEE80211_DEAUTH_FRAME_LEN]; struct ieee80211_elems_parse_params parse_params = { .mode = link->u.mgd.conn.mode, .link_id = -1, .from_ap = true, }; lockdep_assert_wiphy(local->hw.wiphy); /* Process beacon from the current BSS */ bssid = ieee80211_get_bssid(hdr, len, sdata->vif.type); if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { struct ieee80211_ext *ext = (void *) mgmt; if (ieee80211_is_s1g_short_beacon(ext->frame_control)) variable = ext->u.s1g_short_beacon.variable; else variable = ext->u.s1g_beacon.variable; } baselen = (u8 *) variable - (u8 *) mgmt; if (baselen > len) return; parse_params.start = variable; parse_params.len = len - baselen; rcu_read_lock(); chanctx_conf = rcu_dereference(bss_conf->chanctx_conf); if (!chanctx_conf) { rcu_read_unlock(); return; } if (ieee80211_rx_status_to_khz(rx_status) != ieee80211_channel_to_khz(chanctx_conf->def.chan)) { rcu_read_unlock(); return; } chan = chanctx_conf->def.chan; rcu_read_unlock(); if (ifmgd->assoc_data && ifmgd->assoc_data->need_beacon && !WARN_ON(ieee80211_vif_is_mld(&sdata->vif)) && ieee80211_rx_our_beacon(bssid, ifmgd->assoc_data->link[0].bss)) { parse_params.bss = ifmgd->assoc_data->link[0].bss; elems = ieee802_11_parse_elems_full(&parse_params); if (!elems) return; ieee80211_rx_bss_info(link, mgmt, len, rx_status); if (elems->dtim_period) link->u.mgd.dtim_period = elems->dtim_period; link->u.mgd.have_beacon = true; ifmgd->assoc_data->need_beacon = false; if (ieee80211_hw_check(&local->hw, TIMING_BEACON_ONLY) && !ieee80211_is_s1g_beacon(hdr->frame_control)) { bss_conf->sync_tsf = le64_to_cpu(mgmt->u.beacon.timestamp); bss_conf->sync_device_ts = rx_status->device_timestamp; bss_conf->sync_dtim_count = elems->dtim_count; } if (elems->mbssid_config_ie) bss_conf->profile_periodicity = elems->mbssid_config_ie->profile_periodicity; else bss_conf->profile_periodicity = 0; if (elems->ext_capab_len >= 11 && (elems->ext_capab[10] & WLAN_EXT_CAPA11_EMA_SUPPORT)) bss_conf->ema_ap = true; else bss_conf->ema_ap = false; /* continue assoc process */ ifmgd->assoc_data->timeout = jiffies; ifmgd->assoc_data->timeout_started = true; run_again(sdata, ifmgd->assoc_data->timeout); kfree(elems); return; } if (!ifmgd->associated || !ieee80211_rx_our_beacon(bssid, bss_conf->bss)) return; bssid = link->u.mgd.bssid; if (!(rx_status->flag & RX_FLAG_NO_SIGNAL_VAL)) ieee80211_handle_beacon_sig(link, ifmgd, bss_conf, local, rx_status); if (ifmgd->flags & IEEE80211_STA_CONNECTION_POLL) { mlme_dbg_ratelimited(sdata, "cancelling AP probe due to a received beacon\n"); ieee80211_reset_ap_probe(sdata); } /* * Push the beacon loss detection into the future since * we are processing a beacon from the AP just now. */ ieee80211_sta_reset_beacon_monitor(sdata); /* TODO: CRC urrently not calculated on S1G Beacon Compatibility * element (which carries the beacon interval). Don't forget to add a * bit to care_about_ies[] above if mac80211 is interested in a * changing S1G element. */ if (!ieee80211_is_s1g_beacon(hdr->frame_control)) ncrc = crc32_be(0, (void *)&mgmt->u.beacon.beacon_int, 4); parse_params.bss = bss_conf->bss; parse_params.filter = care_about_ies; parse_params.crc = ncrc; elems = ieee802_11_parse_elems_full(&parse_params); if (!elems) return; if (rx_status->flag & RX_FLAG_DECRYPTED && ieee80211_mgd_ssid_mismatch(sdata, elems)) { sdata_info(sdata, "SSID mismatch for AP %pM, disconnect\n", sdata->vif.cfg.ap_addr); __ieee80211_disconnect(sdata); return; } ncrc = elems->crc; if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK) && ieee80211_check_tim(elems->tim, elems->tim_len, vif_cfg->aid)) { if (local->hw.conf.dynamic_ps_timeout > 0) { if (local->hw.conf.flags & IEEE80211_CONF_PS) { local->hw.conf.flags &= ~IEEE80211_CONF_PS; ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS); } ieee80211_send_nullfunc(local, sdata, false); } else if (!local->pspolling && sdata->u.mgd.powersave) { local->pspolling = true; /* * Here is assumed that the driver will be * able to send ps-poll frame and receive a * response even though power save mode is * enabled, but some drivers might require * to disable power save here. This needs * to be investigated. */ ieee80211_send_pspoll(local, sdata); } } if (sdata->vif.p2p || sdata->vif.driver_flags & IEEE80211_VIF_GET_NOA_UPDATE) { struct ieee80211_p2p_noa_attr noa = {}; int ret; ret = cfg80211_get_p2p_attr(variable, len - baselen, IEEE80211_P2P_ATTR_ABSENCE_NOTICE, (u8 *) &noa, sizeof(noa)); if (ret >= 2) { if (link->u.mgd.p2p_noa_index != noa.index) { /* valid noa_attr and index changed */ link->u.mgd.p2p_noa_index = noa.index; memcpy(&bss_conf->p2p_noa_attr, &noa, sizeof(noa)); changed |= BSS_CHANGED_P2P_PS; /* * make sure we update all information, the CRC * mechanism doesn't look at P2P attributes. */ link->u.mgd.beacon_crc_valid = false; } } else if (link->u.mgd.p2p_noa_index != -1) { /* noa_attr not found and we had valid noa_attr before */ link->u.mgd.p2p_noa_index = -1; memset(&bss_conf->p2p_noa_attr, 0, sizeof(bss_conf->p2p_noa_attr)); changed |= BSS_CHANGED_P2P_PS; link->u.mgd.beacon_crc_valid = false; } } /* * Update beacon timing and dtim count on every beacon appearance. This * will allow the driver to use the most updated values. Do it before * comparing this one with last received beacon. * IMPORTANT: These parameters would possibly be out of sync by the time * the driver will use them. The synchronized view is currently * guaranteed only in certain callbacks. */ if (ieee80211_hw_check(&local->hw, TIMING_BEACON_ONLY) && !ieee80211_is_s1g_beacon(hdr->frame_control)) { bss_conf->sync_tsf = le64_to_cpu(mgmt->u.beacon.timestamp); bss_conf->sync_device_ts = rx_status->device_timestamp; bss_conf->sync_dtim_count = elems->dtim_count; } if ((ncrc == link->u.mgd.beacon_crc && link->u.mgd.beacon_crc_valid) || ieee80211_is_s1g_short_beacon(mgmt->frame_control)) goto free; link->u.mgd.beacon_crc = ncrc; link->u.mgd.beacon_crc_valid = true; ieee80211_rx_bss_info(link, mgmt, len, rx_status); ieee80211_sta_process_chanswitch(link, rx_status->mactime, rx_status->device_timestamp, elems, elems, IEEE80211_CSA_SOURCE_BEACON); /* note that after this elems->ml_basic can no longer be used fully */ ieee80211_mgd_check_cross_link_csa(sdata, rx_status->link_id, elems); ieee80211_mgd_update_bss_param_ch_cnt(sdata, bss_conf, elems); if (!sdata->u.mgd.epcs.enabled && !link->u.mgd.disable_wmm_tracking && ieee80211_sta_wmm_params(local, link, elems->wmm_param, elems->wmm_param_len, elems->mu_edca_param_set)) changed |= BSS_CHANGED_QOS; /* * If we haven't had a beacon before, tell the driver about the * DTIM period (and beacon timing if desired) now. */ if (!link->u.mgd.have_beacon) { /* a few bogus AP send dtim_period = 0 or no TIM IE */ bss_conf->dtim_period = elems->dtim_period ?: 1; changed |= BSS_CHANGED_BEACON_INFO; link->u.mgd.have_beacon = true; ieee80211_recalc_ps(local); ieee80211_recalc_ps_vif(sdata); } if (elems->erp_info) { erp_valid = true; erp_value = elems->erp_info[0]; } else { erp_valid = false; } if (!ieee80211_is_s1g_beacon(hdr->frame_control)) changed |= ieee80211_handle_bss_capability(link, le16_to_cpu(mgmt->u.beacon.capab_info), erp_valid, erp_value); sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr); if (WARN_ON(!sta)) { goto free; } link_sta = rcu_dereference_protected(sta->link[link->link_id], lockdep_is_held(&local->hw.wiphy->mtx)); if (WARN_ON(!link_sta)) { goto free; } if (WARN_ON(!bss_conf->chanreq.oper.chan)) goto free; sband = local->hw.wiphy->bands[bss_conf->chanreq.oper.chan->band]; changed |= ieee80211_recalc_twt_req(sdata, sband, link, link_sta, elems); if (ieee80211_config_bw(link, elems, true, &changed, "beacon")) { ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH, WLAN_REASON_DEAUTH_LEAVING, true, deauth_buf); ieee80211_report_disconnect(sdata, deauth_buf, sizeof(deauth_buf), true, WLAN_REASON_DEAUTH_LEAVING, false); goto free; } if (elems->opmode_notif) ieee80211_vht_handle_opmode(sdata, link_sta, *elems->opmode_notif, rx_status->band); changed |= ieee80211_handle_pwr_constr(link, chan, mgmt, elems->country_elem, elems->country_elem_len, elems->pwr_constr_elem, elems->cisco_dtpc_elem); ieee80211_ml_reconfiguration(sdata, elems); ieee80211_process_adv_ttlm(sdata, elems, le64_to_cpu(mgmt->u.beacon.timestamp)); ieee80211_link_info_change_notify(sdata, link, changed); free: kfree(elems); } static void ieee80211_apply_neg_ttlm(struct ieee80211_sub_if_data *sdata, struct ieee80211_neg_ttlm neg_ttlm) { u16 new_active_links, new_dormant_links, new_suspended_links, map = 0; u8 i; for (i = 0; i < IEEE80211_TTLM_NUM_TIDS; i++) map |= neg_ttlm.downlink[i] | neg_ttlm.uplink[i]; /* If there is an active TTLM, unset previously suspended links */ if (sdata->vif.neg_ttlm.valid) sdata->vif.dormant_links &= ~sdata->vif.suspended_links; /* exclude links that are already disabled by advertised TTLM */ new_active_links = map & sdata->vif.valid_links & ~sdata->vif.dormant_links; new_suspended_links = (~map & sdata->vif.valid_links) & ~sdata->vif.dormant_links; new_dormant_links = sdata->vif.dormant_links | new_suspended_links; if (ieee80211_ttlm_set_links(sdata, new_active_links, new_dormant_links, new_suspended_links)) return; sdata->vif.neg_ttlm = neg_ttlm; sdata->vif.neg_ttlm.valid = true; } static void ieee80211_neg_ttlm_timeout_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.neg_ttlm_timeout_work.work); sdata_info(sdata, "No negotiated TTLM response from AP, disconnecting.\n"); __ieee80211_disconnect(sdata); } static void ieee80211_neg_ttlm_add_suggested_map(struct sk_buff *skb, struct ieee80211_neg_ttlm *neg_ttlm) { u8 i, direction[IEEE80211_TTLM_MAX_CNT]; if (memcmp(neg_ttlm->downlink, neg_ttlm->uplink, sizeof(neg_ttlm->downlink))) { direction[0] = IEEE80211_TTLM_DIRECTION_DOWN; direction[1] = IEEE80211_TTLM_DIRECTION_UP; } else { direction[0] = IEEE80211_TTLM_DIRECTION_BOTH; } for (i = 0; i < ARRAY_SIZE(direction); i++) { u8 tid, len, map_ind = 0, *len_pos, *map_ind_pos, *pos; __le16 map; len = sizeof(struct ieee80211_ttlm_elem) + 1 + 1; pos = skb_put(skb, len + 2); *pos++ = WLAN_EID_EXTENSION; len_pos = pos++; *pos++ = WLAN_EID_EXT_TID_TO_LINK_MAPPING; *pos++ = direction[i]; map_ind_pos = pos++; for (tid = 0; tid < IEEE80211_TTLM_NUM_TIDS; tid++) { map = direction[i] == IEEE80211_TTLM_DIRECTION_UP ? cpu_to_le16(neg_ttlm->uplink[tid]) : cpu_to_le16(neg_ttlm->downlink[tid]); if (!map) continue; len += 2; map_ind |= BIT(tid); skb_put_data(skb, &map, sizeof(map)); } *map_ind_pos = map_ind; *len_pos = len; if (direction[i] == IEEE80211_TTLM_DIRECTION_BOTH) break; } } static void ieee80211_send_neg_ttlm_req(struct ieee80211_sub_if_data *sdata, struct ieee80211_neg_ttlm *neg_ttlm, u8 dialog_token) { struct ieee80211_local *local = sdata->local; struct ieee80211_mgmt *mgmt; struct sk_buff *skb; int hdr_len = offsetofend(struct ieee80211_mgmt, u.action.u.ttlm_req); int ttlm_max_len = 2 + 1 + sizeof(struct ieee80211_ttlm_elem) + 1 + 2 * 2 * IEEE80211_TTLM_NUM_TIDS; skb = dev_alloc_skb(local->tx_headroom + hdr_len + ttlm_max_len); if (!skb) return; skb_reserve(skb, local->tx_headroom); mgmt = skb_put_zero(skb, hdr_len); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); memcpy(mgmt->da, sdata->vif.cfg.ap_addr, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, sdata->vif.cfg.ap_addr, ETH_ALEN); mgmt->u.action.category = WLAN_CATEGORY_PROTECTED_EHT; mgmt->u.action.u.ttlm_req.action_code = WLAN_PROTECTED_EHT_ACTION_TTLM_REQ; mgmt->u.action.u.ttlm_req.dialog_token = dialog_token; ieee80211_neg_ttlm_add_suggested_map(skb, neg_ttlm); ieee80211_tx_skb(sdata, skb); } int ieee80211_req_neg_ttlm(struct ieee80211_sub_if_data *sdata, struct cfg80211_ttlm_params *params) { struct ieee80211_neg_ttlm neg_ttlm = {}; u8 i; if (!ieee80211_vif_is_mld(&sdata->vif) || !(sdata->vif.cfg.mld_capa_op & IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP)) return -EINVAL; for (i = 0; i < IEEE80211_TTLM_NUM_TIDS; i++) { if ((params->dlink[i] & ~sdata->vif.valid_links) || (params->ulink[i] & ~sdata->vif.valid_links)) return -EINVAL; neg_ttlm.downlink[i] = params->dlink[i]; neg_ttlm.uplink[i] = params->ulink[i]; } if (drv_can_neg_ttlm(sdata->local, sdata, &neg_ttlm) != NEG_TTLM_RES_ACCEPT) return -EINVAL; ieee80211_apply_neg_ttlm(sdata, neg_ttlm); sdata->u.mgd.dialog_token_alloc++; ieee80211_send_neg_ttlm_req(sdata, &sdata->vif.neg_ttlm, sdata->u.mgd.dialog_token_alloc); wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &sdata->u.mgd.neg_ttlm_timeout_work); wiphy_delayed_work_queue(sdata->local->hw.wiphy, &sdata->u.mgd.neg_ttlm_timeout_work, IEEE80211_NEG_TTLM_REQ_TIMEOUT); return 0; } static void ieee80211_send_neg_ttlm_res(struct ieee80211_sub_if_data *sdata, enum ieee80211_neg_ttlm_res ttlm_res, u8 dialog_token, struct ieee80211_neg_ttlm *neg_ttlm) { struct ieee80211_local *local = sdata->local; struct ieee80211_mgmt *mgmt; struct sk_buff *skb; int hdr_len = offsetofend(struct ieee80211_mgmt, u.action.u.ttlm_res); int ttlm_max_len = 2 + 1 + sizeof(struct ieee80211_ttlm_elem) + 1 + 2 * 2 * IEEE80211_TTLM_NUM_TIDS; u16 status_code; skb = dev_alloc_skb(local->tx_headroom + hdr_len + ttlm_max_len); if (!skb) return; skb_reserve(skb, local->tx_headroom); mgmt = skb_put_zero(skb, hdr_len); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); memcpy(mgmt->da, sdata->vif.cfg.ap_addr, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, sdata->vif.cfg.ap_addr, ETH_ALEN); mgmt->u.action.category = WLAN_CATEGORY_PROTECTED_EHT; mgmt->u.action.u.ttlm_res.action_code = WLAN_PROTECTED_EHT_ACTION_TTLM_RES; mgmt->u.action.u.ttlm_res.dialog_token = dialog_token; switch (ttlm_res) { default: WARN_ON(1); fallthrough; case NEG_TTLM_RES_REJECT: status_code = WLAN_STATUS_DENIED_TID_TO_LINK_MAPPING; break; case NEG_TTLM_RES_ACCEPT: status_code = WLAN_STATUS_SUCCESS; break; case NEG_TTLM_RES_SUGGEST_PREFERRED: status_code = WLAN_STATUS_PREF_TID_TO_LINK_MAPPING_SUGGESTED; ieee80211_neg_ttlm_add_suggested_map(skb, neg_ttlm); break; } mgmt->u.action.u.ttlm_res.status_code = cpu_to_le16(status_code); ieee80211_tx_skb(sdata, skb); } static int ieee80211_parse_neg_ttlm(struct ieee80211_sub_if_data *sdata, const struct ieee80211_ttlm_elem *ttlm, struct ieee80211_neg_ttlm *neg_ttlm, u8 *direction) { u8 control, link_map_presence, map_size, tid; u8 *pos; /* The element size was already validated in * ieee80211_tid_to_link_map_size_ok() */ pos = (void *)ttlm->optional; control = ttlm->control; /* mapping switch time and expected duration fields are not expected * in case of negotiated TTLM */ if (control & (IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT | IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT)) { mlme_dbg(sdata, "Invalid TTLM element in negotiated TTLM request\n"); return -EINVAL; } if (control & IEEE80211_TTLM_CONTROL_DEF_LINK_MAP) { for (tid = 0; tid < IEEE80211_TTLM_NUM_TIDS; tid++) { neg_ttlm->downlink[tid] = sdata->vif.valid_links; neg_ttlm->uplink[tid] = sdata->vif.valid_links; } *direction = IEEE80211_TTLM_DIRECTION_BOTH; return 0; } *direction = u8_get_bits(control, IEEE80211_TTLM_CONTROL_DIRECTION); if (*direction != IEEE80211_TTLM_DIRECTION_DOWN && *direction != IEEE80211_TTLM_DIRECTION_UP && *direction != IEEE80211_TTLM_DIRECTION_BOTH) return -EINVAL; link_map_presence = *pos; pos++; if (control & IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE) map_size = 1; else map_size = 2; for (tid = 0; tid < IEEE80211_TTLM_NUM_TIDS; tid++) { u16 map; if (link_map_presence & BIT(tid)) { map = ieee80211_get_ttlm(map_size, pos); if (!map) { mlme_dbg(sdata, "No active links for TID %d", tid); return -EINVAL; } } else { map = 0; } switch (*direction) { case IEEE80211_TTLM_DIRECTION_BOTH: neg_ttlm->downlink[tid] = map; neg_ttlm->uplink[tid] = map; break; case IEEE80211_TTLM_DIRECTION_DOWN: neg_ttlm->downlink[tid] = map; break; case IEEE80211_TTLM_DIRECTION_UP: neg_ttlm->uplink[tid] = map; break; default: return -EINVAL; } pos += map_size; } return 0; } void ieee80211_process_neg_ttlm_req(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { u8 dialog_token, direction[IEEE80211_TTLM_MAX_CNT] = {}, i; size_t ies_len; enum ieee80211_neg_ttlm_res ttlm_res = NEG_TTLM_RES_ACCEPT; struct ieee802_11_elems *elems = NULL; struct ieee80211_neg_ttlm neg_ttlm = {}; BUILD_BUG_ON(ARRAY_SIZE(direction) != ARRAY_SIZE(elems->ttlm)); if (!ieee80211_vif_is_mld(&sdata->vif)) return; dialog_token = mgmt->u.action.u.ttlm_req.dialog_token; ies_len = len - offsetof(struct ieee80211_mgmt, u.action.u.ttlm_req.variable); elems = ieee802_11_parse_elems(mgmt->u.action.u.ttlm_req.variable, ies_len, true, NULL); if (!elems) { ttlm_res = NEG_TTLM_RES_REJECT; goto out; } for (i = 0; i < elems->ttlm_num; i++) { if (ieee80211_parse_neg_ttlm(sdata, elems->ttlm[i], &neg_ttlm, &direction[i]) || (direction[i] == IEEE80211_TTLM_DIRECTION_BOTH && elems->ttlm_num != 1)) { ttlm_res = NEG_TTLM_RES_REJECT; goto out; } } if (!elems->ttlm_num || (elems->ttlm_num == 2 && direction[0] == direction[1])) { ttlm_res = NEG_TTLM_RES_REJECT; goto out; } for (i = 0; i < IEEE80211_TTLM_NUM_TIDS; i++) { if ((neg_ttlm.downlink[i] && (neg_ttlm.downlink[i] & ~sdata->vif.valid_links)) || (neg_ttlm.uplink[i] && (neg_ttlm.uplink[i] & ~sdata->vif.valid_links))) { ttlm_res = NEG_TTLM_RES_REJECT; goto out; } } ttlm_res = drv_can_neg_ttlm(sdata->local, sdata, &neg_ttlm); if (ttlm_res != NEG_TTLM_RES_ACCEPT) goto out; ieee80211_apply_neg_ttlm(sdata, neg_ttlm); out: kfree(elems); ieee80211_send_neg_ttlm_res(sdata, ttlm_res, dialog_token, &neg_ttlm); } void ieee80211_process_neg_ttlm_res(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { if (!ieee80211_vif_is_mld(&sdata->vif) || mgmt->u.action.u.ttlm_req.dialog_token != sdata->u.mgd.dialog_token_alloc) return; wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &sdata->u.mgd.neg_ttlm_timeout_work); /* MLD station sends a TID to link mapping request, mainly to handle * BTM (BSS transition management) request, in which case it needs to * restrict the active links set. * In this case it's not expected that the MLD AP will reject the * negotiated TTLM request. * This can be better implemented in the future, to handle request * rejections. */ if (le16_to_cpu(mgmt->u.action.u.ttlm_res.status_code) != WLAN_STATUS_SUCCESS) __ieee80211_disconnect(sdata); } void ieee80211_process_ttlm_teardown(struct ieee80211_sub_if_data *sdata) { u16 new_dormant_links; if (!sdata->vif.neg_ttlm.valid) return; memset(&sdata->vif.neg_ttlm, 0, sizeof(sdata->vif.neg_ttlm)); new_dormant_links = sdata->vif.dormant_links & ~sdata->vif.suspended_links; sdata->vif.suspended_links = 0; ieee80211_vif_set_links(sdata, sdata->vif.valid_links, new_dormant_links); ieee80211_vif_cfg_change_notify(sdata, BSS_CHANGED_MLD_TTLM | BSS_CHANGED_MLD_VALID_LINKS); } static void ieee80211_teardown_ttlm_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.teardown_ttlm_work); ieee80211_process_ttlm_teardown(sdata); } void ieee80211_send_teardown_neg_ttlm(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_local *local = sdata->local; struct ieee80211_mgmt *mgmt; struct sk_buff *skb; int frame_len = offsetofend(struct ieee80211_mgmt, u.action.u.ttlm_tear_down); struct ieee80211_tx_info *info; skb = dev_alloc_skb(local->hw.extra_tx_headroom + frame_len); if (!skb) return; skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = skb_put_zero(skb, frame_len); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); memcpy(mgmt->da, sdata->vif.cfg.ap_addr, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, sdata->vif.cfg.ap_addr, ETH_ALEN); mgmt->u.action.category = WLAN_CATEGORY_PROTECTED_EHT; mgmt->u.action.u.ttlm_tear_down.action_code = WLAN_PROTECTED_EHT_ACTION_TTLM_TEARDOWN; info = IEEE80211_SKB_CB(skb); info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; info->status_data = IEEE80211_STATUS_TYPE_NEG_TTLM; ieee80211_tx_skb(sdata, skb); } EXPORT_SYMBOL(ieee80211_send_teardown_neg_ttlm); void ieee80211_sta_rx_queued_ext(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_link_data *link = &sdata->deflink; struct ieee80211_rx_status *rx_status; struct ieee80211_hdr *hdr; u16 fc; lockdep_assert_wiphy(sdata->local->hw.wiphy); rx_status = (struct ieee80211_rx_status *) skb->cb; hdr = (struct ieee80211_hdr *) skb->data; fc = le16_to_cpu(hdr->frame_control); switch (fc & IEEE80211_FCTL_STYPE) { case IEEE80211_STYPE_S1G_BEACON: ieee80211_rx_mgmt_beacon(link, hdr, skb->len, rx_status); break; } } void ieee80211_sta_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) { struct ieee80211_link_data *link = &sdata->deflink; struct ieee80211_rx_status *rx_status; struct ieee802_11_elems *elems; struct ieee80211_mgmt *mgmt; u16 fc; int ies_len; lockdep_assert_wiphy(sdata->local->hw.wiphy); rx_status = (struct ieee80211_rx_status *) skb->cb; mgmt = (struct ieee80211_mgmt *) skb->data; fc = le16_to_cpu(mgmt->frame_control); if (rx_status->link_valid) { link = sdata_dereference(sdata->link[rx_status->link_id], sdata); if (!link) return; } switch (fc & IEEE80211_FCTL_STYPE) { case IEEE80211_STYPE_BEACON: ieee80211_rx_mgmt_beacon(link, (void *)mgmt, skb->len, rx_status); break; case IEEE80211_STYPE_PROBE_RESP: ieee80211_rx_mgmt_probe_resp(link, skb); break; case IEEE80211_STYPE_AUTH: ieee80211_rx_mgmt_auth(sdata, mgmt, skb->len); break; case IEEE80211_STYPE_DEAUTH: ieee80211_rx_mgmt_deauth(sdata, mgmt, skb->len); break; case IEEE80211_STYPE_DISASSOC: ieee80211_rx_mgmt_disassoc(sdata, mgmt, skb->len); break; case IEEE80211_STYPE_ASSOC_RESP: case IEEE80211_STYPE_REASSOC_RESP: ieee80211_rx_mgmt_assoc_resp(sdata, mgmt, skb->len); break; case IEEE80211_STYPE_ACTION: if (!sdata->u.mgd.associated || !ether_addr_equal(mgmt->bssid, sdata->vif.cfg.ap_addr)) break; switch (mgmt->u.action.category) { case WLAN_CATEGORY_SPECTRUM_MGMT: ies_len = skb->len - offsetof(struct ieee80211_mgmt, u.action.u.chan_switch.variable); if (ies_len < 0) break; /* CSA IE cannot be overridden, no need for BSSID */ elems = ieee802_11_parse_elems( mgmt->u.action.u.chan_switch.variable, ies_len, true, NULL); if (elems && !elems->parse_error) { enum ieee80211_csa_source src = IEEE80211_CSA_SOURCE_PROT_ACTION; ieee80211_sta_process_chanswitch(link, rx_status->mactime, rx_status->device_timestamp, elems, elems, src); } kfree(elems); break; case WLAN_CATEGORY_PUBLIC: case WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION: ies_len = skb->len - offsetof(struct ieee80211_mgmt, u.action.u.ext_chan_switch.variable); if (ies_len < 0) break; /* * extended CSA IE can't be overridden, no need for * BSSID */ elems = ieee802_11_parse_elems( mgmt->u.action.u.ext_chan_switch.variable, ies_len, true, NULL); if (elems && !elems->parse_error) { enum ieee80211_csa_source src; if (mgmt->u.action.category == WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION) src = IEEE80211_CSA_SOURCE_PROT_ACTION; else src = IEEE80211_CSA_SOURCE_UNPROT_ACTION; /* for the handling code pretend it was an IE */ elems->ext_chansw_ie = &mgmt->u.action.u.ext_chan_switch.data; ieee80211_sta_process_chanswitch(link, rx_status->mactime, rx_status->device_timestamp, elems, elems, src); } kfree(elems); break; } break; } } static void ieee80211_sta_timer(struct timer_list *t) { struct ieee80211_sub_if_data *sdata = from_timer(sdata, t, u.mgd.timer); wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); } void ieee80211_sta_connection_lost(struct ieee80211_sub_if_data *sdata, u8 reason, bool tx) { u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH, reason, tx, frame_buf); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, reason, false); } static int ieee80211_auth(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_auth_data *auth_data = ifmgd->auth_data; u32 tx_flags = 0; u16 trans = 1; u16 status = 0; struct ieee80211_prep_tx_info info = { .subtype = IEEE80211_STYPE_AUTH, }; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (WARN_ON_ONCE(!auth_data)) return -EINVAL; auth_data->tries++; if (auth_data->tries > IEEE80211_AUTH_MAX_TRIES) { sdata_info(sdata, "authentication with %pM timed out\n", auth_data->ap_addr); /* * Most likely AP is not in the range so remove the * bss struct for that AP. */ cfg80211_unlink_bss(local->hw.wiphy, auth_data->bss); return -ETIMEDOUT; } if (auth_data->algorithm == WLAN_AUTH_SAE) info.duration = jiffies_to_msecs(IEEE80211_AUTH_TIMEOUT_SAE); info.link_id = auth_data->link_id; drv_mgd_prepare_tx(local, sdata, &info); sdata_info(sdata, "send auth to %pM (try %d/%d)\n", auth_data->ap_addr, auth_data->tries, IEEE80211_AUTH_MAX_TRIES); auth_data->expected_transaction = 2; if (auth_data->algorithm == WLAN_AUTH_SAE) { trans = auth_data->sae_trans; status = auth_data->sae_status; auth_data->expected_transaction = trans; } if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) tx_flags = IEEE80211_TX_CTL_REQ_TX_STATUS | IEEE80211_TX_INTFL_MLME_CONN_TX; ieee80211_send_auth(sdata, trans, auth_data->algorithm, status, auth_data->data, auth_data->data_len, auth_data->ap_addr, auth_data->ap_addr, NULL, 0, 0, tx_flags); if (tx_flags == 0) { if (auth_data->algorithm == WLAN_AUTH_SAE) auth_data->timeout = jiffies + IEEE80211_AUTH_TIMEOUT_SAE; else auth_data->timeout = jiffies + IEEE80211_AUTH_TIMEOUT; } else { auth_data->timeout = round_jiffies_up(jiffies + IEEE80211_AUTH_TIMEOUT_LONG); } auth_data->timeout_started = true; run_again(sdata, auth_data->timeout); return 0; } static int ieee80211_do_assoc(struct ieee80211_sub_if_data *sdata) { struct ieee80211_mgd_assoc_data *assoc_data = sdata->u.mgd.assoc_data; struct ieee80211_local *local = sdata->local; int ret; lockdep_assert_wiphy(sdata->local->hw.wiphy); assoc_data->tries++; assoc_data->comeback = false; if (assoc_data->tries > IEEE80211_ASSOC_MAX_TRIES) { sdata_info(sdata, "association with %pM timed out\n", assoc_data->ap_addr); /* * Most likely AP is not in the range so remove the * bss struct for that AP. */ cfg80211_unlink_bss(local->hw.wiphy, assoc_data->link[assoc_data->assoc_link_id].bss); return -ETIMEDOUT; } sdata_info(sdata, "associate with %pM (try %d/%d)\n", assoc_data->ap_addr, assoc_data->tries, IEEE80211_ASSOC_MAX_TRIES); ret = ieee80211_send_assoc(sdata); if (ret) return ret; if (!ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { assoc_data->timeout = jiffies + IEEE80211_ASSOC_TIMEOUT; assoc_data->timeout_started = true; run_again(sdata, assoc_data->timeout); } else { assoc_data->timeout = round_jiffies_up(jiffies + IEEE80211_ASSOC_TIMEOUT_LONG); assoc_data->timeout_started = true; run_again(sdata, assoc_data->timeout); } return 0; } void ieee80211_mgd_conn_tx_status(struct ieee80211_sub_if_data *sdata, __le16 fc, bool acked) { struct ieee80211_local *local = sdata->local; sdata->u.mgd.status_fc = fc; sdata->u.mgd.status_acked = acked; sdata->u.mgd.status_received = true; wiphy_work_queue(local->hw.wiphy, &sdata->work); } void ieee80211_sta_work(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (ifmgd->status_received) { __le16 fc = ifmgd->status_fc; bool status_acked = ifmgd->status_acked; ifmgd->status_received = false; if (ifmgd->auth_data && ieee80211_is_auth(fc)) { if (status_acked) { if (ifmgd->auth_data->algorithm == WLAN_AUTH_SAE) ifmgd->auth_data->timeout = jiffies + IEEE80211_AUTH_TIMEOUT_SAE; else ifmgd->auth_data->timeout = jiffies + IEEE80211_AUTH_TIMEOUT_SHORT; run_again(sdata, ifmgd->auth_data->timeout); } else { ifmgd->auth_data->timeout = jiffies - 1; } ifmgd->auth_data->timeout_started = true; } else if (ifmgd->assoc_data && !ifmgd->assoc_data->comeback && (ieee80211_is_assoc_req(fc) || ieee80211_is_reassoc_req(fc))) { /* * Update association timeout based on the TX status * for the (Re)Association Request frame. Skip this if * we have already processed a (Re)Association Response * frame that indicated need for association comeback * at a specific time in the future. This could happen * if the TX status information is delayed enough for * the response to be received and processed first. */ if (status_acked) { ifmgd->assoc_data->timeout = jiffies + IEEE80211_ASSOC_TIMEOUT_SHORT; run_again(sdata, ifmgd->assoc_data->timeout); } else { ifmgd->assoc_data->timeout = jiffies - 1; } ifmgd->assoc_data->timeout_started = true; } } if (ifmgd->auth_data && ifmgd->auth_data->timeout_started && time_after(jiffies, ifmgd->auth_data->timeout)) { if (ifmgd->auth_data->done || ifmgd->auth_data->waiting) { /* * ok ... we waited for assoc or continuation but * userspace didn't do it, so kill the auth data */ ieee80211_destroy_auth_data(sdata, false); } else if (ieee80211_auth(sdata)) { u8 ap_addr[ETH_ALEN]; struct ieee80211_event event = { .type = MLME_EVENT, .u.mlme.data = AUTH_EVENT, .u.mlme.status = MLME_TIMEOUT, }; memcpy(ap_addr, ifmgd->auth_data->ap_addr, ETH_ALEN); ieee80211_destroy_auth_data(sdata, false); cfg80211_auth_timeout(sdata->dev, ap_addr); drv_event_callback(sdata->local, sdata, &event); } } else if (ifmgd->auth_data && ifmgd->auth_data->timeout_started) run_again(sdata, ifmgd->auth_data->timeout); if (ifmgd->assoc_data && ifmgd->assoc_data->timeout_started && time_after(jiffies, ifmgd->assoc_data->timeout)) { if ((ifmgd->assoc_data->need_beacon && !sdata->deflink.u.mgd.have_beacon) || ieee80211_do_assoc(sdata)) { struct ieee80211_event event = { .type = MLME_EVENT, .u.mlme.data = ASSOC_EVENT, .u.mlme.status = MLME_TIMEOUT, }; ieee80211_destroy_assoc_data(sdata, ASSOC_TIMEOUT); drv_event_callback(sdata->local, sdata, &event); } } else if (ifmgd->assoc_data && ifmgd->assoc_data->timeout_started) run_again(sdata, ifmgd->assoc_data->timeout); if (ifmgd->flags & IEEE80211_STA_CONNECTION_POLL && ifmgd->associated) { u8 *bssid = sdata->deflink.u.mgd.bssid; int max_tries; if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) max_tries = max_nullfunc_tries; else max_tries = max_probe_tries; /* ACK received for nullfunc probing frame */ if (!ifmgd->probe_send_count) ieee80211_reset_ap_probe(sdata); else if (ifmgd->nullfunc_failed) { if (ifmgd->probe_send_count < max_tries) { mlme_dbg(sdata, "No ack for nullfunc frame to AP %pM, try %d/%i\n", bssid, ifmgd->probe_send_count, max_tries); ieee80211_mgd_probe_ap_send(sdata); } else { mlme_dbg(sdata, "No ack for nullfunc frame to AP %pM, disconnecting.\n", bssid); ieee80211_sta_connection_lost(sdata, WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY, false); } } else if (time_is_after_jiffies(ifmgd->probe_timeout)) run_again(sdata, ifmgd->probe_timeout); else if (ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { mlme_dbg(sdata, "Failed to send nullfunc to AP %pM after %dms, disconnecting\n", bssid, probe_wait_ms); ieee80211_sta_connection_lost(sdata, WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY, false); } else if (ifmgd->probe_send_count < max_tries) { mlme_dbg(sdata, "No probe response from AP %pM after %dms, try %d/%i\n", bssid, probe_wait_ms, ifmgd->probe_send_count, max_tries); ieee80211_mgd_probe_ap_send(sdata); } else { /* * We actually lost the connection ... or did we? * Let's make sure! */ mlme_dbg(sdata, "No probe response from AP %pM after %dms, disconnecting.\n", bssid, probe_wait_ms); ieee80211_sta_connection_lost(sdata, WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY, false); } } } static void ieee80211_sta_bcn_mon_timer(struct timer_list *t) { struct ieee80211_sub_if_data *sdata = from_timer(sdata, t, u.mgd.bcn_mon_timer); if (WARN_ON(ieee80211_vif_is_mld(&sdata->vif))) return; if (sdata->vif.bss_conf.csa_active && !sdata->deflink.u.mgd.csa.waiting_bcn) return; if (sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER) return; sdata->u.mgd.connection_loss = false; wiphy_work_queue(sdata->local->hw.wiphy, &sdata->u.mgd.beacon_connection_loss_work); } static void ieee80211_sta_conn_mon_timer(struct timer_list *t) { struct ieee80211_sub_if_data *sdata = from_timer(sdata, t, u.mgd.conn_mon_timer); struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_local *local = sdata->local; struct sta_info *sta; unsigned long timeout; if (WARN_ON(ieee80211_vif_is_mld(&sdata->vif))) return; if (sdata->vif.bss_conf.csa_active && !sdata->deflink.u.mgd.csa.waiting_bcn) return; sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr); if (!sta) return; timeout = sta->deflink.status_stats.last_ack; if (time_before(sta->deflink.status_stats.last_ack, sta->deflink.rx_stats.last_rx)) timeout = sta->deflink.rx_stats.last_rx; timeout += IEEE80211_CONNECTION_IDLE_TIME; /* If timeout is after now, then update timer to fire at * the later date, but do not actually probe at this time. */ if (time_is_after_jiffies(timeout)) { mod_timer(&ifmgd->conn_mon_timer, round_jiffies_up(timeout)); return; } wiphy_work_queue(local->hw.wiphy, &sdata->u.mgd.monitor_work); } static void ieee80211_sta_monitor_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.monitor_work); ieee80211_mgd_probe_ap(sdata, false); } static void ieee80211_restart_sta_timer(struct ieee80211_sub_if_data *sdata) { if (sdata->vif.type == NL80211_IFTYPE_STATION) { __ieee80211_stop_poll(sdata); /* let's probe the connection once */ if (!ieee80211_hw_check(&sdata->local->hw, CONNECTION_MONITOR)) wiphy_work_queue(sdata->local->hw.wiphy, &sdata->u.mgd.monitor_work); } } #ifdef CONFIG_PM void ieee80211_mgd_quiesce(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (ifmgd->auth_data || ifmgd->assoc_data) { const u8 *ap_addr = ifmgd->auth_data ? ifmgd->auth_data->ap_addr : ifmgd->assoc_data->ap_addr; /* * If we are trying to authenticate / associate while suspending, * cfg80211 won't know and won't actually abort those attempts, * thus we need to do that ourselves. */ ieee80211_send_deauth_disassoc(sdata, ap_addr, ap_addr, IEEE80211_STYPE_DEAUTH, WLAN_REASON_DEAUTH_LEAVING, false, frame_buf); if (ifmgd->assoc_data) ieee80211_destroy_assoc_data(sdata, ASSOC_ABANDON); if (ifmgd->auth_data) ieee80211_destroy_auth_data(sdata, false); cfg80211_tx_mlme_mgmt(sdata->dev, frame_buf, IEEE80211_DEAUTH_FRAME_LEN, false); } /* This is a bit of a hack - we should find a better and more generic * solution to this. Normally when suspending, cfg80211 will in fact * deauthenticate. However, it doesn't (and cannot) stop an ongoing * auth (not so important) or assoc (this is the problem) process. * * As a consequence, it can happen that we are in the process of both * associating and suspending, and receive an association response * after cfg80211 has checked if it needs to disconnect, but before * we actually set the flag to drop incoming frames. This will then * cause the workqueue flush to process the association response in * the suspend, resulting in a successful association just before it * tries to remove the interface from the driver, which now though * has a channel context assigned ... this results in issues. * * To work around this (for now) simply deauth here again if we're * now connected. */ if (ifmgd->associated && !sdata->local->wowlan) { u8 bssid[ETH_ALEN]; struct cfg80211_deauth_request req = { .reason_code = WLAN_REASON_DEAUTH_LEAVING, .bssid = bssid, }; memcpy(bssid, sdata->vif.cfg.ap_addr, ETH_ALEN); ieee80211_mgd_deauth(sdata, &req); } } #endif void ieee80211_sta_restart(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (!ifmgd->associated) return; if (sdata->flags & IEEE80211_SDATA_DISCONNECT_RESUME) { sdata->flags &= ~IEEE80211_SDATA_DISCONNECT_RESUME; mlme_dbg(sdata, "driver requested disconnect after resume\n"); ieee80211_sta_connection_lost(sdata, WLAN_REASON_UNSPECIFIED, true); return; } if (sdata->flags & IEEE80211_SDATA_DISCONNECT_HW_RESTART) { sdata->flags &= ~IEEE80211_SDATA_DISCONNECT_HW_RESTART; mlme_dbg(sdata, "driver requested disconnect after hardware restart\n"); ieee80211_sta_connection_lost(sdata, WLAN_REASON_UNSPECIFIED, true); return; } } static void ieee80211_request_smps_mgd_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_link_data *link = container_of(work, struct ieee80211_link_data, u.mgd.request_smps_work); __ieee80211_request_smps_mgd(link->sdata, link, link->u.mgd.driver_smps_mode); } static void ieee80211_ml_sta_reconf_timeout(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_sub_if_data *sdata = container_of(work, struct ieee80211_sub_if_data, u.mgd.reconf.wk.work); if (!sdata->u.mgd.reconf.added_links && !sdata->u.mgd.reconf.removed_links) return; sdata_info(sdata, "mlo: reconf: timeout: added=0x%x, removed=0x%x\n", sdata->u.mgd.reconf.added_links, sdata->u.mgd.reconf.removed_links); __ieee80211_disconnect(sdata); } /* interface setup */ void ieee80211_sta_setup_sdata(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; wiphy_work_init(&ifmgd->monitor_work, ieee80211_sta_monitor_work); wiphy_work_init(&ifmgd->beacon_connection_loss_work, ieee80211_beacon_connection_loss_work); wiphy_work_init(&ifmgd->csa_connection_drop_work, ieee80211_csa_connection_drop_work); wiphy_delayed_work_init(&ifmgd->tdls_peer_del_work, ieee80211_tdls_peer_del_work); wiphy_delayed_work_init(&ifmgd->ml_reconf_work, ieee80211_ml_reconf_work); wiphy_delayed_work_init(&ifmgd->reconf.wk, ieee80211_ml_sta_reconf_timeout); timer_setup(&ifmgd->timer, ieee80211_sta_timer, 0); timer_setup(&ifmgd->bcn_mon_timer, ieee80211_sta_bcn_mon_timer, 0); timer_setup(&ifmgd->conn_mon_timer, ieee80211_sta_conn_mon_timer, 0); wiphy_delayed_work_init(&ifmgd->tx_tspec_wk, ieee80211_sta_handle_tspec_ac_params_wk); wiphy_delayed_work_init(&ifmgd->ttlm_work, ieee80211_tid_to_link_map_work); wiphy_delayed_work_init(&ifmgd->neg_ttlm_timeout_work, ieee80211_neg_ttlm_timeout_work); wiphy_work_init(&ifmgd->teardown_ttlm_work, ieee80211_teardown_ttlm_work); ifmgd->flags = 0; ifmgd->powersave = sdata->wdev.ps; ifmgd->uapsd_queues = sdata->local->hw.uapsd_queues; ifmgd->uapsd_max_sp_len = sdata->local->hw.uapsd_max_sp_len; /* Setup TDLS data */ spin_lock_init(&ifmgd->teardown_lock); ifmgd->teardown_skb = NULL; ifmgd->orig_teardown_skb = NULL; ifmgd->mcast_seq_last = IEEE80211_SN_MODULO; } static void ieee80211_recalc_smps_work(struct wiphy *wiphy, struct wiphy_work *work) { struct ieee80211_link_data *link = container_of(work, struct ieee80211_link_data, u.mgd.recalc_smps); ieee80211_recalc_smps(link->sdata, link); } void ieee80211_mgd_setup_link(struct ieee80211_link_data *link) { struct ieee80211_sub_if_data *sdata = link->sdata; struct ieee80211_local *local = sdata->local; unsigned int link_id = link->link_id; link->u.mgd.p2p_noa_index = -1; link->conf->bssid = link->u.mgd.bssid; link->smps_mode = IEEE80211_SMPS_OFF; wiphy_work_init(&link->u.mgd.request_smps_work, ieee80211_request_smps_mgd_work); wiphy_work_init(&link->u.mgd.recalc_smps, ieee80211_recalc_smps_work); if (local->hw.wiphy->features & NL80211_FEATURE_DYNAMIC_SMPS) link->u.mgd.req_smps = IEEE80211_SMPS_AUTOMATIC; else link->u.mgd.req_smps = IEEE80211_SMPS_OFF; wiphy_delayed_work_init(&link->u.mgd.csa.switch_work, ieee80211_csa_switch_work); ieee80211_clear_tpe(&link->conf->tpe); if (sdata->u.mgd.assoc_data) ether_addr_copy(link->conf->addr, sdata->u.mgd.assoc_data->link[link_id].addr); else if (sdata->u.mgd.reconf.add_links_data) ether_addr_copy(link->conf->addr, sdata->u.mgd.reconf.add_links_data->link[link_id].addr); else if (!is_valid_ether_addr(link->conf->addr)) eth_random_addr(link->conf->addr); } /* scan finished notification */ void ieee80211_mlme_notify_scan_completed(struct ieee80211_local *local) { struct ieee80211_sub_if_data *sdata; /* Restart STA timers */ rcu_read_lock(); list_for_each_entry_rcu(sdata, &local->interfaces, list) { if (ieee80211_sdata_running(sdata)) ieee80211_restart_sta_timer(sdata); } rcu_read_unlock(); } static int ieee80211_prep_connection(struct ieee80211_sub_if_data *sdata, struct cfg80211_bss *cbss, s8 link_id, const u8 *ap_mld_addr, bool assoc, struct ieee80211_conn_settings *conn, bool override, unsigned long *userspace_selectors) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_bss *bss = (void *)cbss->priv; struct sta_info *new_sta = NULL; struct ieee80211_link_data *link; bool have_sta = false; bool mlo; int err; if (link_id >= 0) { mlo = true; if (WARN_ON(!ap_mld_addr)) return -EINVAL; err = ieee80211_vif_set_links(sdata, BIT(link_id), 0); } else { if (WARN_ON(ap_mld_addr)) return -EINVAL; ap_mld_addr = cbss->bssid; err = ieee80211_vif_set_links(sdata, 0, 0); link_id = 0; mlo = false; } if (err) return err; link = sdata_dereference(sdata->link[link_id], sdata); if (WARN_ON(!link)) { err = -ENOLINK; goto out_err; } if (WARN_ON(!ifmgd->auth_data && !ifmgd->assoc_data)) { err = -EINVAL; goto out_err; } /* If a reconfig is happening, bail out */ if (local->in_reconfig) { err = -EBUSY; goto out_err; } if (assoc) { rcu_read_lock(); have_sta = sta_info_get(sdata, ap_mld_addr); rcu_read_unlock(); } if (!have_sta) { if (mlo) new_sta = sta_info_alloc_with_link(sdata, ap_mld_addr, link_id, cbss->bssid, GFP_KERNEL); else new_sta = sta_info_alloc(sdata, ap_mld_addr, GFP_KERNEL); if (!new_sta) { err = -ENOMEM; goto out_err; } new_sta->sta.mlo = mlo; } /* * Set up the information for the new channel before setting the * new channel. We can't - completely race-free - change the basic * rates bitmap and the channel (sband) that it refers to, but if * we set it up before we at least avoid calling into the driver's * bss_info_changed() method with invalid information (since we do * call that from changing the channel - only for IDLE and perhaps * some others, but ...). * * So to avoid that, just set up all the new information before the * channel, but tell the driver to apply it only afterwards, since * it might need the new channel for that. */ if (new_sta) { const struct cfg80211_bss_ies *ies; struct link_sta_info *link_sta; rcu_read_lock(); link_sta = rcu_dereference(new_sta->link[link_id]); if (WARN_ON(!link_sta)) { rcu_read_unlock(); sta_info_free(local, new_sta); err = -EINVAL; goto out_err; } err = ieee80211_mgd_setup_link_sta(link, new_sta, link_sta, cbss); if (err) { rcu_read_unlock(); sta_info_free(local, new_sta); goto out_err; } memcpy(link->u.mgd.bssid, cbss->bssid, ETH_ALEN); /* set timing information */ link->conf->beacon_int = cbss->beacon_interval; ies = rcu_dereference(cbss->beacon_ies); if (ies) { link->conf->sync_tsf = ies->tsf; link->conf->sync_device_ts = bss->device_ts_beacon; ieee80211_get_dtim(ies, &link->conf->sync_dtim_count, NULL); } else if (!ieee80211_hw_check(&sdata->local->hw, TIMING_BEACON_ONLY)) { ies = rcu_dereference(cbss->proberesp_ies); /* must be non-NULL since beacon IEs were NULL */ link->conf->sync_tsf = ies->tsf; link->conf->sync_device_ts = bss->device_ts_presp; link->conf->sync_dtim_count = 0; } else { link->conf->sync_tsf = 0; link->conf->sync_device_ts = 0; link->conf->sync_dtim_count = 0; } rcu_read_unlock(); } if (new_sta || override) { /* * Only set this if we're also going to calculate the AP * settings etc., otherwise this was set before in a * previous call. Note override is set to %true in assoc * if the settings were changed. */ link->u.mgd.conn = *conn; err = ieee80211_prep_channel(sdata, link, link->link_id, cbss, mlo, &link->u.mgd.conn, userspace_selectors); if (err) { if (new_sta) sta_info_free(local, new_sta); goto out_err; } /* pass out for use in assoc */ *conn = link->u.mgd.conn; } if (new_sta) { /* * tell driver about BSSID, basic rates and timing * this was set up above, before setting the channel */ ieee80211_link_info_change_notify(sdata, link, BSS_CHANGED_BSSID | BSS_CHANGED_BASIC_RATES | BSS_CHANGED_BEACON_INT); if (assoc) sta_info_pre_move_state(new_sta, IEEE80211_STA_AUTH); err = sta_info_insert(new_sta); new_sta = NULL; if (err) { sdata_info(sdata, "failed to insert STA entry for the AP (error %d)\n", err); goto out_release_chan; } } else WARN_ON_ONCE(!ether_addr_equal(link->u.mgd.bssid, cbss->bssid)); /* Cancel scan to ensure that nothing interferes with connection */ if (local->scanning) ieee80211_scan_cancel(local); return 0; out_release_chan: ieee80211_link_release_channel(link); out_err: ieee80211_vif_set_links(sdata, 0, 0); return err; } static bool ieee80211_mgd_csa_present(struct ieee80211_sub_if_data *sdata, const struct cfg80211_bss_ies *ies, u8 cur_channel, bool ignore_ecsa) { const struct element *csa_elem, *ecsa_elem; struct ieee80211_channel_sw_ie *csa = NULL; struct ieee80211_ext_chansw_ie *ecsa = NULL; if (!ies) return false; csa_elem = cfg80211_find_elem(WLAN_EID_CHANNEL_SWITCH, ies->data, ies->len); if (csa_elem && csa_elem->datalen == sizeof(*csa)) csa = (void *)csa_elem->data; ecsa_elem = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN, ies->data, ies->len); if (ecsa_elem && ecsa_elem->datalen == sizeof(*ecsa)) ecsa = (void *)ecsa_elem->data; if (csa && csa->count == 0) csa = NULL; if (csa && !csa->mode && csa->new_ch_num == cur_channel) csa = NULL; if (ecsa && ecsa->count == 0) ecsa = NULL; if (ecsa && !ecsa->mode && ecsa->new_ch_num == cur_channel) ecsa = NULL; if (ignore_ecsa && ecsa) { sdata_info(sdata, "Ignoring ECSA in probe response - was considered stuck!\n"); return csa; } return csa || ecsa; } static bool ieee80211_mgd_csa_in_process(struct ieee80211_sub_if_data *sdata, struct cfg80211_bss *bss) { u8 cur_channel; bool ret; cur_channel = ieee80211_frequency_to_channel(bss->channel->center_freq); rcu_read_lock(); if (ieee80211_mgd_csa_present(sdata, rcu_dereference(bss->beacon_ies), cur_channel, false)) { ret = true; goto out; } if (ieee80211_mgd_csa_present(sdata, rcu_dereference(bss->proberesp_ies), cur_channel, bss->proberesp_ecsa_stuck)) { ret = true; goto out; } ret = false; out: rcu_read_unlock(); return ret; } static void ieee80211_parse_cfg_selectors(unsigned long *userspace_selectors, const u8 *supported_selectors, u8 supported_selectors_len) { if (supported_selectors) { for (int i = 0; i < supported_selectors_len; i++) { set_bit(supported_selectors[i], userspace_selectors); } } else { /* Assume SAE_H2E support for backward compatibility. */ set_bit(BSS_MEMBERSHIP_SELECTOR_SAE_H2E, userspace_selectors); } } /* config hooks */ int ieee80211_mgd_auth(struct ieee80211_sub_if_data *sdata, struct cfg80211_auth_request *req) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_auth_data *auth_data; struct ieee80211_conn_settings conn; struct ieee80211_link_data *link; struct ieee80211_supported_band *sband; struct ieee80211_bss *bss; u16 auth_alg; int err; bool cont_auth, wmm_used; lockdep_assert_wiphy(sdata->local->hw.wiphy); /* prepare auth data structure */ switch (req->auth_type) { case NL80211_AUTHTYPE_OPEN_SYSTEM: auth_alg = WLAN_AUTH_OPEN; break; case NL80211_AUTHTYPE_SHARED_KEY: if (fips_enabled) return -EOPNOTSUPP; auth_alg = WLAN_AUTH_SHARED_KEY; break; case NL80211_AUTHTYPE_FT: auth_alg = WLAN_AUTH_FT; break; case NL80211_AUTHTYPE_NETWORK_EAP: auth_alg = WLAN_AUTH_LEAP; break; case NL80211_AUTHTYPE_SAE: auth_alg = WLAN_AUTH_SAE; break; case NL80211_AUTHTYPE_FILS_SK: auth_alg = WLAN_AUTH_FILS_SK; break; case NL80211_AUTHTYPE_FILS_SK_PFS: auth_alg = WLAN_AUTH_FILS_SK_PFS; break; case NL80211_AUTHTYPE_FILS_PK: auth_alg = WLAN_AUTH_FILS_PK; break; default: return -EOPNOTSUPP; } if (ifmgd->assoc_data) return -EBUSY; if (ieee80211_mgd_csa_in_process(sdata, req->bss)) { sdata_info(sdata, "AP is in CSA process, reject auth\n"); return -EINVAL; } auth_data = kzalloc(sizeof(*auth_data) + req->auth_data_len + req->ie_len, GFP_KERNEL); if (!auth_data) return -ENOMEM; memcpy(auth_data->ap_addr, req->ap_mld_addr ?: req->bss->bssid, ETH_ALEN); auth_data->bss = req->bss; auth_data->link_id = req->link_id; if (req->auth_data_len >= 4) { if (req->auth_type == NL80211_AUTHTYPE_SAE) { __le16 *pos = (__le16 *) req->auth_data; auth_data->sae_trans = le16_to_cpu(pos[0]); auth_data->sae_status = le16_to_cpu(pos[1]); } memcpy(auth_data->data, req->auth_data + 4, req->auth_data_len - 4); auth_data->data_len += req->auth_data_len - 4; } /* Check if continuing authentication or trying to authenticate with the * same BSS that we were in the process of authenticating with and avoid * removal and re-addition of the STA entry in * ieee80211_prep_connection(). */ cont_auth = ifmgd->auth_data && req->bss == ifmgd->auth_data->bss && ifmgd->auth_data->link_id == req->link_id; if (req->ie && req->ie_len) { memcpy(&auth_data->data[auth_data->data_len], req->ie, req->ie_len); auth_data->data_len += req->ie_len; } if (req->key && req->key_len) { auth_data->key_len = req->key_len; auth_data->key_idx = req->key_idx; memcpy(auth_data->key, req->key, req->key_len); } ieee80211_parse_cfg_selectors(auth_data->userspace_selectors, req->supported_selectors, req->supported_selectors_len); auth_data->algorithm = auth_alg; /* try to authenticate/probe */ if (ifmgd->auth_data) { if (cont_auth && req->auth_type == NL80211_AUTHTYPE_SAE) { auth_data->peer_confirmed = ifmgd->auth_data->peer_confirmed; } ieee80211_destroy_auth_data(sdata, cont_auth); } /* prep auth_data so we don't go into idle on disassoc */ ifmgd->auth_data = auth_data; /* If this is continuation of an ongoing SAE authentication exchange * (i.e., request to send SAE Confirm) and the peer has already * confirmed, mark authentication completed since we are about to send * out SAE Confirm. */ if (cont_auth && req->auth_type == NL80211_AUTHTYPE_SAE && auth_data->peer_confirmed && auth_data->sae_trans == 2) ieee80211_mark_sta_auth(sdata); if (ifmgd->associated) { u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; sdata_info(sdata, "disconnect from AP %pM for new auth to %pM\n", sdata->vif.cfg.ap_addr, auth_data->ap_addr); ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH, WLAN_REASON_UNSPECIFIED, false, frame_buf); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, WLAN_REASON_UNSPECIFIED, false); } /* needed for transmitting the auth frame(s) properly */ memcpy(sdata->vif.cfg.ap_addr, auth_data->ap_addr, ETH_ALEN); bss = (void *)req->bss->priv; wmm_used = bss->wmm_used && (local->hw.queues >= IEEE80211_NUM_ACS); sband = local->hw.wiphy->bands[req->bss->channel->band]; ieee80211_determine_our_sta_mode_auth(sdata, sband, req, wmm_used, &conn); err = ieee80211_prep_connection(sdata, req->bss, req->link_id, req->ap_mld_addr, cont_auth, &conn, false, auth_data->userspace_selectors); if (err) goto err_clear; if (req->link_id >= 0) link = sdata_dereference(sdata->link[req->link_id], sdata); else link = &sdata->deflink; if (WARN_ON(!link)) { err = -ENOLINK; goto err_clear; } sdata_info(sdata, "authenticate with %pM (local address=%pM)\n", auth_data->ap_addr, link->conf->addr); err = ieee80211_auth(sdata); if (err) { sta_info_destroy_addr(sdata, auth_data->ap_addr); goto err_clear; } /* hold our own reference */ cfg80211_ref_bss(local->hw.wiphy, auth_data->bss); return 0; err_clear: if (!ieee80211_vif_is_mld(&sdata->vif)) { eth_zero_addr(sdata->deflink.u.mgd.bssid); ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_BSSID); ieee80211_link_release_channel(&sdata->deflink); } ifmgd->auth_data = NULL; kfree(auth_data); return err; } static void ieee80211_setup_assoc_link(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgd_assoc_data *assoc_data, struct cfg80211_assoc_request *req, struct ieee80211_conn_settings *conn, unsigned int link_id) { struct ieee80211_local *local = sdata->local; const struct cfg80211_bss_ies *bss_ies; struct ieee80211_supported_band *sband; struct ieee80211_link_data *link; struct cfg80211_bss *cbss; struct ieee80211_bss *bss; cbss = assoc_data->link[link_id].bss; if (WARN_ON(!cbss)) return; bss = (void *)cbss->priv; sband = local->hw.wiphy->bands[cbss->channel->band]; if (WARN_ON(!sband)) return; link = sdata_dereference(sdata->link[link_id], sdata); if (WARN_ON(!link)) return; /* for MLO connections assume advertising all rates is OK */ if (!req->ap_mld_addr) { assoc_data->supp_rates = bss->supp_rates; assoc_data->supp_rates_len = bss->supp_rates_len; } /* copy and link elems for the STA profile */ if (req->links[link_id].elems_len) { memcpy(assoc_data->ie_pos, req->links[link_id].elems, req->links[link_id].elems_len); assoc_data->link[link_id].elems = assoc_data->ie_pos; assoc_data->link[link_id].elems_len = req->links[link_id].elems_len; assoc_data->ie_pos += req->links[link_id].elems_len; } link->u.mgd.beacon_crc_valid = false; link->u.mgd.dtim_period = 0; link->u.mgd.have_beacon = false; /* override HT configuration only if the AP and we support it */ if (conn->mode >= IEEE80211_CONN_MODE_HT) { struct ieee80211_sta_ht_cap sta_ht_cap; memcpy(&sta_ht_cap, &sband->ht_cap, sizeof(sta_ht_cap)); ieee80211_apply_htcap_overrides(sdata, &sta_ht_cap); } rcu_read_lock(); bss_ies = rcu_dereference(cbss->beacon_ies); if (bss_ies) { u8 dtim_count = 0; ieee80211_get_dtim(bss_ies, &dtim_count, &link->u.mgd.dtim_period); sdata->deflink.u.mgd.have_beacon = true; if (ieee80211_hw_check(&local->hw, TIMING_BEACON_ONLY)) { link->conf->sync_tsf = bss_ies->tsf; link->conf->sync_device_ts = bss->device_ts_beacon; link->conf->sync_dtim_count = dtim_count; } } else { bss_ies = rcu_dereference(cbss->ies); } if (bss_ies) { const struct element *elem; elem = cfg80211_find_ext_elem(WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION, bss_ies->data, bss_ies->len); if (elem && elem->datalen >= 3) link->conf->profile_periodicity = elem->data[2]; else link->conf->profile_periodicity = 0; elem = cfg80211_find_elem(WLAN_EID_EXT_CAPABILITY, bss_ies->data, bss_ies->len); if (elem && elem->datalen >= 11 && (elem->data[10] & WLAN_EXT_CAPA11_EMA_SUPPORT)) link->conf->ema_ap = true; else link->conf->ema_ap = false; } rcu_read_unlock(); if (bss->corrupt_data) { char *corrupt_type = "data"; if (bss->corrupt_data & IEEE80211_BSS_CORRUPT_BEACON) { if (bss->corrupt_data & IEEE80211_BSS_CORRUPT_PROBE_RESP) corrupt_type = "beacon and probe response"; else corrupt_type = "beacon"; } else if (bss->corrupt_data & IEEE80211_BSS_CORRUPT_PROBE_RESP) { corrupt_type = "probe response"; } sdata_info(sdata, "associating to AP %pM with corrupt %s\n", cbss->bssid, corrupt_type); } if (link->u.mgd.req_smps == IEEE80211_SMPS_AUTOMATIC) { if (sdata->u.mgd.powersave) link->smps_mode = IEEE80211_SMPS_DYNAMIC; else link->smps_mode = IEEE80211_SMPS_OFF; } else { link->smps_mode = link->u.mgd.req_smps; } } static int ieee80211_mgd_get_ap_ht_vht_capa(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgd_assoc_data *assoc_data, int link_id) { struct cfg80211_bss *cbss = assoc_data->link[link_id].bss; enum nl80211_band band = cbss->channel->band; struct ieee80211_supported_band *sband; const struct element *elem; int err; /* neither HT nor VHT elements used on 6 GHz */ if (band == NL80211_BAND_6GHZ) return 0; if (assoc_data->link[link_id].conn.mode < IEEE80211_CONN_MODE_HT) return 0; rcu_read_lock(); elem = ieee80211_bss_get_elem(cbss, WLAN_EID_HT_OPERATION); if (!elem || elem->datalen < sizeof(struct ieee80211_ht_operation)) { mlme_link_id_dbg(sdata, link_id, "no HT operation on BSS %pM\n", cbss->bssid); err = -EINVAL; goto out_rcu; } assoc_data->link[link_id].ap_ht_param = ((struct ieee80211_ht_operation *)(elem->data))->ht_param; rcu_read_unlock(); if (assoc_data->link[link_id].conn.mode < IEEE80211_CONN_MODE_VHT) return 0; /* some drivers want to support VHT on 2.4 GHz even */ sband = sdata->local->hw.wiphy->bands[band]; if (!sband->vht_cap.vht_supported) return 0; rcu_read_lock(); elem = ieee80211_bss_get_elem(cbss, WLAN_EID_VHT_CAPABILITY); /* but even then accept it not being present on the AP */ if (!elem && band == NL80211_BAND_2GHZ) { err = 0; goto out_rcu; } if (!elem || elem->datalen < sizeof(struct ieee80211_vht_cap)) { mlme_link_id_dbg(sdata, link_id, "no VHT capa on BSS %pM\n", cbss->bssid); err = -EINVAL; goto out_rcu; } memcpy(&assoc_data->link[link_id].ap_vht_cap, elem->data, sizeof(struct ieee80211_vht_cap)); rcu_read_unlock(); return 0; out_rcu: rcu_read_unlock(); return err; } int ieee80211_mgd_assoc(struct ieee80211_sub_if_data *sdata, struct cfg80211_assoc_request *req) { unsigned int assoc_link_id = req->link_id < 0 ? 0 : req->link_id; struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_assoc_data *assoc_data; const struct element *ssid_elem; struct ieee80211_vif_cfg *vif_cfg = &sdata->vif.cfg; struct ieee80211_link_data *link; struct cfg80211_bss *cbss; bool override, uapsd_supported; bool match_auth; int i, err; size_t size = sizeof(*assoc_data) + req->ie_len; for (i = 0; i < IEEE80211_MLD_MAX_NUM_LINKS; i++) size += req->links[i].elems_len; /* FIXME: no support for 4-addr MLO yet */ if (sdata->u.mgd.use_4addr && req->link_id >= 0) return -EOPNOTSUPP; assoc_data = kzalloc(size, GFP_KERNEL); if (!assoc_data) return -ENOMEM; cbss = req->link_id < 0 ? req->bss : req->links[req->link_id].bss; if (ieee80211_mgd_csa_in_process(sdata, cbss)) { sdata_info(sdata, "AP is in CSA process, reject assoc\n"); err = -EINVAL; goto err_free; } rcu_read_lock(); ssid_elem = ieee80211_bss_get_elem(cbss, WLAN_EID_SSID); if (!ssid_elem || ssid_elem->datalen > sizeof(assoc_data->ssid)) { rcu_read_unlock(); err = -EINVAL; goto err_free; } memcpy(assoc_data->ssid, ssid_elem->data, ssid_elem->datalen); assoc_data->ssid_len = ssid_elem->datalen; rcu_read_unlock(); if (req->ap_mld_addr) memcpy(assoc_data->ap_addr, req->ap_mld_addr, ETH_ALEN); else memcpy(assoc_data->ap_addr, cbss->bssid, ETH_ALEN); assoc_data->ext_mld_capa_ops = cpu_to_le16(req->ext_mld_capa_ops); if (ifmgd->associated) { u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; sdata_info(sdata, "disconnect from AP %pM for new assoc to %pM\n", sdata->vif.cfg.ap_addr, assoc_data->ap_addr); ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH, WLAN_REASON_UNSPECIFIED, false, frame_buf); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, WLAN_REASON_UNSPECIFIED, false); } memset(sdata->u.mgd.userspace_selectors, 0, sizeof(sdata->u.mgd.userspace_selectors)); ieee80211_parse_cfg_selectors(sdata->u.mgd.userspace_selectors, req->supported_selectors, req->supported_selectors_len); memcpy(&ifmgd->ht_capa, &req->ht_capa, sizeof(ifmgd->ht_capa)); memcpy(&ifmgd->ht_capa_mask, &req->ht_capa_mask, sizeof(ifmgd->ht_capa_mask)); memcpy(&ifmgd->vht_capa, &req->vht_capa, sizeof(ifmgd->vht_capa)); memcpy(&ifmgd->vht_capa_mask, &req->vht_capa_mask, sizeof(ifmgd->vht_capa_mask)); memcpy(&ifmgd->s1g_capa, &req->s1g_capa, sizeof(ifmgd->s1g_capa)); memcpy(&ifmgd->s1g_capa_mask, &req->s1g_capa_mask, sizeof(ifmgd->s1g_capa_mask)); /* keep some setup (AP STA, channel, ...) if matching */ match_auth = ifmgd->auth_data && ether_addr_equal(ifmgd->auth_data->ap_addr, assoc_data->ap_addr) && ifmgd->auth_data->link_id == req->link_id; if (req->ap_mld_addr) { uapsd_supported = true; if (req->flags & (ASSOC_REQ_DISABLE_HT | ASSOC_REQ_DISABLE_VHT | ASSOC_REQ_DISABLE_HE | ASSOC_REQ_DISABLE_EHT)) { err = -EINVAL; goto err_free; } for (i = 0; i < IEEE80211_MLD_MAX_NUM_LINKS; i++) { struct ieee80211_supported_band *sband; struct cfg80211_bss *link_cbss = req->links[i].bss; struct ieee80211_bss *bss; if (!link_cbss) continue; bss = (void *)link_cbss->priv; if (!bss->wmm_used) { err = -EINVAL; req->links[i].error = err; goto err_free; } if (link_cbss->channel->band == NL80211_BAND_S1GHZ) { err = -EINVAL; req->links[i].error = err; goto err_free; } link = sdata_dereference(sdata->link[i], sdata); if (link) ether_addr_copy(assoc_data->link[i].addr, link->conf->addr); else eth_random_addr(assoc_data->link[i].addr); sband = local->hw.wiphy->bands[link_cbss->channel->band]; if (match_auth && i == assoc_link_id && link) assoc_data->link[i].conn = link->u.mgd.conn; else assoc_data->link[i].conn = ieee80211_conn_settings_unlimited; ieee80211_determine_our_sta_mode_assoc(sdata, sband, req, true, i, &assoc_data->link[i].conn); assoc_data->link[i].bss = link_cbss; assoc_data->link[i].disabled = req->links[i].disabled; if (!bss->uapsd_supported) uapsd_supported = false; if (assoc_data->link[i].conn.mode < IEEE80211_CONN_MODE_EHT) { err = -EINVAL; req->links[i].error = err; goto err_free; } err = ieee80211_mgd_get_ap_ht_vht_capa(sdata, assoc_data, i); if (err) { err = -EINVAL; req->links[i].error = err; goto err_free; } } assoc_data->wmm = true; } else { struct ieee80211_supported_band *sband; struct ieee80211_bss *bss = (void *)cbss->priv; memcpy(assoc_data->link[0].addr, sdata->vif.addr, ETH_ALEN); assoc_data->s1g = cbss->channel->band == NL80211_BAND_S1GHZ; assoc_data->wmm = bss->wmm_used && (local->hw.queues >= IEEE80211_NUM_ACS); if (cbss->channel->band == NL80211_BAND_6GHZ && req->flags & (ASSOC_REQ_DISABLE_HT | ASSOC_REQ_DISABLE_VHT | ASSOC_REQ_DISABLE_HE)) { err = -EINVAL; goto err_free; } sband = local->hw.wiphy->bands[cbss->channel->band]; assoc_data->link[0].bss = cbss; if (match_auth) assoc_data->link[0].conn = sdata->deflink.u.mgd.conn; else assoc_data->link[0].conn = ieee80211_conn_settings_unlimited; ieee80211_determine_our_sta_mode_assoc(sdata, sband, req, assoc_data->wmm, 0, &assoc_data->link[0].conn); uapsd_supported = bss->uapsd_supported; err = ieee80211_mgd_get_ap_ht_vht_capa(sdata, assoc_data, 0); if (err) goto err_free; } assoc_data->spp_amsdu = req->flags & ASSOC_REQ_SPP_AMSDU; if (ifmgd->auth_data && !ifmgd->auth_data->done) { err = -EBUSY; goto err_free; } if (ifmgd->assoc_data) { err = -EBUSY; goto err_free; } /* Cleanup is delayed if auth_data matches */ if (ifmgd->auth_data && !match_auth) ieee80211_destroy_auth_data(sdata, false); if (req->ie && req->ie_len) { memcpy(assoc_data->ie, req->ie, req->ie_len); assoc_data->ie_len = req->ie_len; assoc_data->ie_pos = assoc_data->ie + assoc_data->ie_len; } else { assoc_data->ie_pos = assoc_data->ie; } if (req->fils_kek) { /* should already be checked in cfg80211 - so warn */ if (WARN_ON(req->fils_kek_len > FILS_MAX_KEK_LEN)) { err = -EINVAL; goto err_free; } memcpy(assoc_data->fils_kek, req->fils_kek, req->fils_kek_len); assoc_data->fils_kek_len = req->fils_kek_len; } if (req->fils_nonces) memcpy(assoc_data->fils_nonces, req->fils_nonces, 2 * FILS_NONCE_LEN); /* default timeout */ assoc_data->timeout = jiffies; assoc_data->timeout_started = true; assoc_data->assoc_link_id = assoc_link_id; if (req->ap_mld_addr) { /* if there was no authentication, set up the link */ err = ieee80211_vif_set_links(sdata, BIT(assoc_link_id), 0); if (err) goto err_clear; } link = sdata_dereference(sdata->link[assoc_link_id], sdata); if (WARN_ON(!link)) { err = -EINVAL; goto err_clear; } override = link->u.mgd.conn.mode != assoc_data->link[assoc_link_id].conn.mode || link->u.mgd.conn.bw_limit != assoc_data->link[assoc_link_id].conn.bw_limit; link->u.mgd.conn = assoc_data->link[assoc_link_id].conn; ieee80211_setup_assoc_link(sdata, assoc_data, req, &link->u.mgd.conn, assoc_link_id); if (WARN((sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_UAPSD) && ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK), "U-APSD not supported with HW_PS_NULLFUNC_STACK\n")) sdata->vif.driver_flags &= ~IEEE80211_VIF_SUPPORTS_UAPSD; if (assoc_data->wmm && uapsd_supported && (sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_UAPSD)) { assoc_data->uapsd = true; ifmgd->flags |= IEEE80211_STA_UAPSD_ENABLED; } else { assoc_data->uapsd = false; ifmgd->flags &= ~IEEE80211_STA_UAPSD_ENABLED; } if (req->prev_bssid) memcpy(assoc_data->prev_ap_addr, req->prev_bssid, ETH_ALEN); if (req->use_mfp) { ifmgd->mfp = IEEE80211_MFP_REQUIRED; ifmgd->flags |= IEEE80211_STA_MFP_ENABLED; } else { ifmgd->mfp = IEEE80211_MFP_DISABLED; ifmgd->flags &= ~IEEE80211_STA_MFP_ENABLED; } if (req->flags & ASSOC_REQ_USE_RRM) ifmgd->flags |= IEEE80211_STA_ENABLE_RRM; else ifmgd->flags &= ~IEEE80211_STA_ENABLE_RRM; if (req->crypto.control_port) ifmgd->flags |= IEEE80211_STA_CONTROL_PORT; else ifmgd->flags &= ~IEEE80211_STA_CONTROL_PORT; sdata->control_port_protocol = req->crypto.control_port_ethertype; sdata->control_port_no_encrypt = req->crypto.control_port_no_encrypt; sdata->control_port_over_nl80211 = req->crypto.control_port_over_nl80211; sdata->control_port_no_preauth = req->crypto.control_port_no_preauth; /* kick off associate process */ ifmgd->assoc_data = assoc_data; for (i = 0; i < ARRAY_SIZE(assoc_data->link); i++) { if (!assoc_data->link[i].bss) continue; if (i == assoc_data->assoc_link_id) continue; /* only calculate the mode, hence link == NULL */ err = ieee80211_prep_channel(sdata, NULL, i, assoc_data->link[i].bss, true, &assoc_data->link[i].conn, sdata->u.mgd.userspace_selectors); if (err) { req->links[i].error = err; goto err_clear; } } memcpy(vif_cfg->ssid, assoc_data->ssid, assoc_data->ssid_len); vif_cfg->ssid_len = assoc_data->ssid_len; /* needed for transmitting the assoc frames properly */ memcpy(sdata->vif.cfg.ap_addr, assoc_data->ap_addr, ETH_ALEN); err = ieee80211_prep_connection(sdata, cbss, req->link_id, req->ap_mld_addr, true, &assoc_data->link[assoc_link_id].conn, override, sdata->u.mgd.userspace_selectors); if (err) goto err_clear; if (ieee80211_hw_check(&sdata->local->hw, NEED_DTIM_BEFORE_ASSOC)) { const struct cfg80211_bss_ies *beacon_ies; rcu_read_lock(); beacon_ies = rcu_dereference(req->bss->beacon_ies); if (!beacon_ies) { /* * Wait up to one beacon interval ... * should this be more if we miss one? */ sdata_info(sdata, "waiting for beacon from %pM\n", link->u.mgd.bssid); assoc_data->timeout = TU_TO_EXP_TIME(req->bss->beacon_interval); assoc_data->timeout_started = true; assoc_data->need_beacon = true; } rcu_read_unlock(); } run_again(sdata, assoc_data->timeout); /* We are associating, clean up auth_data */ if (ifmgd->auth_data) ieee80211_destroy_auth_data(sdata, true); return 0; err_clear: if (!ifmgd->auth_data) { eth_zero_addr(sdata->deflink.u.mgd.bssid); ieee80211_link_info_change_notify(sdata, &sdata->deflink, BSS_CHANGED_BSSID); } ifmgd->assoc_data = NULL; err_free: kfree(assoc_data); return err; } int ieee80211_mgd_deauth(struct ieee80211_sub_if_data *sdata, struct cfg80211_deauth_request *req) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; bool tx = !req->local_state_change; struct ieee80211_prep_tx_info info = { .subtype = IEEE80211_STYPE_DEAUTH, }; if (ifmgd->auth_data && ether_addr_equal(ifmgd->auth_data->ap_addr, req->bssid)) { sdata_info(sdata, "aborting authentication with %pM by local choice (Reason: %u=%s)\n", req->bssid, req->reason_code, ieee80211_get_reason_code_string(req->reason_code)); info.link_id = ifmgd->auth_data->link_id; drv_mgd_prepare_tx(sdata->local, sdata, &info); ieee80211_send_deauth_disassoc(sdata, req->bssid, req->bssid, IEEE80211_STYPE_DEAUTH, req->reason_code, tx, frame_buf); ieee80211_destroy_auth_data(sdata, false); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, req->reason_code, false); drv_mgd_complete_tx(sdata->local, sdata, &info); return 0; } if (ifmgd->assoc_data && ether_addr_equal(ifmgd->assoc_data->ap_addr, req->bssid)) { sdata_info(sdata, "aborting association with %pM by local choice (Reason: %u=%s)\n", req->bssid, req->reason_code, ieee80211_get_reason_code_string(req->reason_code)); info.link_id = ifmgd->assoc_data->assoc_link_id; drv_mgd_prepare_tx(sdata->local, sdata, &info); ieee80211_send_deauth_disassoc(sdata, req->bssid, req->bssid, IEEE80211_STYPE_DEAUTH, req->reason_code, tx, frame_buf); ieee80211_destroy_assoc_data(sdata, ASSOC_ABANDON); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, req->reason_code, false); drv_mgd_complete_tx(sdata->local, sdata, &info); return 0; } if (ifmgd->associated && ether_addr_equal(sdata->vif.cfg.ap_addr, req->bssid)) { sdata_info(sdata, "deauthenticating from %pM by local choice (Reason: %u=%s)\n", req->bssid, req->reason_code, ieee80211_get_reason_code_string(req->reason_code)); ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DEAUTH, req->reason_code, tx, frame_buf); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, req->reason_code, false); return 0; } return -ENOTCONN; } int ieee80211_mgd_disassoc(struct ieee80211_sub_if_data *sdata, struct cfg80211_disassoc_request *req) { u8 frame_buf[IEEE80211_DEAUTH_FRAME_LEN]; if (!sdata->u.mgd.associated || memcmp(sdata->vif.cfg.ap_addr, req->ap_addr, ETH_ALEN)) return -ENOTCONN; sdata_info(sdata, "disassociating from %pM by local choice (Reason: %u=%s)\n", req->ap_addr, req->reason_code, ieee80211_get_reason_code_string(req->reason_code)); ieee80211_set_disassoc(sdata, IEEE80211_STYPE_DISASSOC, req->reason_code, !req->local_state_change, frame_buf); ieee80211_report_disconnect(sdata, frame_buf, sizeof(frame_buf), true, req->reason_code, false); return 0; } void ieee80211_mgd_stop_link(struct ieee80211_link_data *link) { wiphy_work_cancel(link->sdata->local->hw.wiphy, &link->u.mgd.request_smps_work); wiphy_work_cancel(link->sdata->local->hw.wiphy, &link->u.mgd.recalc_smps); wiphy_delayed_work_cancel(link->sdata->local->hw.wiphy, &link->u.mgd.csa.switch_work); } void ieee80211_mgd_stop(struct ieee80211_sub_if_data *sdata) { struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; /* * Make sure some work items will not run after this, * they will not do anything but might not have been * cancelled when disconnecting. */ wiphy_work_cancel(sdata->local->hw.wiphy, &ifmgd->monitor_work); wiphy_work_cancel(sdata->local->hw.wiphy, &ifmgd->beacon_connection_loss_work); wiphy_work_cancel(sdata->local->hw.wiphy, &ifmgd->csa_connection_drop_work); wiphy_delayed_work_cancel(sdata->local->hw.wiphy, &ifmgd->tdls_peer_del_work); if (ifmgd->assoc_data) ieee80211_destroy_assoc_data(sdata, ASSOC_TIMEOUT); if (ifmgd->auth_data) ieee80211_destroy_auth_data(sdata, false); spin_lock_bh(&ifmgd->teardown_lock); if (ifmgd->teardown_skb) { kfree_skb(ifmgd->teardown_skb); ifmgd->teardown_skb = NULL; ifmgd->orig_teardown_skb = NULL; } kfree(ifmgd->assoc_req_ies); ifmgd->assoc_req_ies = NULL; ifmgd->assoc_req_ies_len = 0; spin_unlock_bh(&ifmgd->teardown_lock); timer_delete_sync(&ifmgd->timer); } void ieee80211_cqm_rssi_notify(struct ieee80211_vif *vif, enum nl80211_cqm_rssi_threshold_event rssi_event, s32 rssi_level, gfp_t gfp) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); trace_api_cqm_rssi_notify(sdata, rssi_event, rssi_level); cfg80211_cqm_rssi_notify(sdata->dev, rssi_event, rssi_level, gfp); } EXPORT_SYMBOL(ieee80211_cqm_rssi_notify); void ieee80211_cqm_beacon_loss_notify(struct ieee80211_vif *vif, gfp_t gfp) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); trace_api_cqm_beacon_loss_notify(sdata->local, sdata); cfg80211_cqm_beacon_loss_notify(sdata->dev, gfp); } EXPORT_SYMBOL(ieee80211_cqm_beacon_loss_notify); static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata, int rssi_min_thold, int rssi_max_thold) { trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) return; /* * Scale up threshold values before storing it, as the RSSI averaging * algorithm uses a scaled up value as well. Change this scaling * factor if the RSSI averaging algorithm changes. */ sdata->u.mgd.rssi_min_thold = rssi_min_thold*16; sdata->u.mgd.rssi_max_thold = rssi_max_thold*16; } void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, int rssi_min_thold, int rssi_max_thold) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); WARN_ON(rssi_min_thold == rssi_max_thold || rssi_min_thold > rssi_max_thold); _ieee80211_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); } EXPORT_SYMBOL(ieee80211_enable_rssi_reports); void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); _ieee80211_enable_rssi_reports(sdata, 0, 0); } EXPORT_SYMBOL(ieee80211_disable_rssi_reports); void ieee80211_process_ml_reconf_resp(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee80211_local *local = sdata->local; struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; struct ieee80211_mgd_assoc_data *add_links_data = ifmgd->reconf.add_links_data; struct sta_info *sta; struct cfg80211_mlo_reconf_done_data done_data = {}; u16 sta_changed_links = sdata->u.mgd.reconf.added_links | sdata->u.mgd.reconf.removed_links; u16 link_mask, valid_links; unsigned int link_id; size_t orig_len = len; u8 i, group_key_data_len; u8 *pos; if (!ieee80211_vif_is_mld(&sdata->vif) || len < offsetofend(typeof(*mgmt), u.action.u.ml_reconf_resp) || mgmt->u.action.u.ml_reconf_resp.dialog_token != sdata->u.mgd.reconf.dialog_token || !sta_changed_links) return; pos = mgmt->u.action.u.ml_reconf_resp.variable; len -= offsetofend(typeof(*mgmt), u.action.u.ml_reconf_resp); /* each status duple is 3 octets */ if (len < mgmt->u.action.u.ml_reconf_resp.count * 3) { sdata_info(sdata, "mlo: reconf: unexpected len=%zu, count=%u\n", len, mgmt->u.action.u.ml_reconf_resp.count); goto disconnect; } link_mask = sta_changed_links; for (i = 0; i < mgmt->u.action.u.ml_reconf_resp.count; i++) { u16 status = get_unaligned_le16(pos + 1); link_id = *pos; if (!(link_mask & BIT(link_id))) { sdata_info(sdata, "mlo: reconf: unexpected link: %u, changed=0x%x\n", link_id, sta_changed_links); goto disconnect; } /* clear the corresponding link, to detect the case that * the same link was included more than one time */ link_mask &= ~BIT(link_id); /* Handle failure to remove links here. Failure to remove added * links will be done later in the flow. */ if (status != WLAN_STATUS_SUCCESS) { sdata_info(sdata, "mlo: reconf: failed on link=%u, status=%u\n", link_id, status); /* The AP MLD failed to remove a link that was already * removed locally. As this is not expected behavior, * disconnect */ if (sdata->u.mgd.reconf.removed_links & BIT(link_id)) goto disconnect; /* The AP MLD failed to add a link. Remove it from the * added links. */ sdata->u.mgd.reconf.added_links &= ~BIT(link_id); } pos += 3; len -= 3; } if (link_mask) { sdata_info(sdata, "mlo: reconf: no response for links=0x%x\n", link_mask); goto disconnect; } if (!sdata->u.mgd.reconf.added_links) goto out; if (len < 1 || len < 1 + *pos) { sdata_info(sdata, "mlo: reconf: invalid group key data length"); goto disconnect; } /* The Group Key Data field must be present when links are added. This * field should be processed by userland. */ group_key_data_len = *pos++; pos += group_key_data_len; len -= group_key_data_len + 1; /* Process the information for the added links */ sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr); if (WARN_ON(!sta)) goto disconnect; valid_links = sdata->vif.valid_links; for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { if (!add_links_data->link[link_id].bss || !(sdata->u.mgd.reconf.added_links & BIT(link_id))) continue; valid_links |= BIT(link_id); if (ieee80211_sta_allocate_link(sta, link_id)) goto disconnect; } ieee80211_vif_set_links(sdata, valid_links, sdata->vif.dormant_links); link_mask = 0; for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct cfg80211_bss *cbss = add_links_data->link[link_id].bss; struct ieee80211_link_data *link; struct link_sta_info *link_sta; u64 changed = 0; if (!cbss) continue; link = sdata_dereference(sdata->link[link_id], sdata); if (WARN_ON(!link)) goto disconnect; link_info(link, "mlo: reconf: local address %pM, AP link address %pM\n", add_links_data->link[link_id].addr, add_links_data->link[link_id].bss->bssid); link_sta = rcu_dereference_protected(sta->link[link_id], lockdep_is_held(&local->hw.wiphy->mtx)); if (WARN_ON(!link_sta)) goto disconnect; if (!link->u.mgd.have_beacon) { const struct cfg80211_bss_ies *ies; rcu_read_lock(); ies = rcu_dereference(cbss->beacon_ies); if (ies) link->u.mgd.have_beacon = true; else ies = rcu_dereference(cbss->ies); ieee80211_get_dtim(ies, &link->conf->sync_dtim_count, &link->u.mgd.dtim_period); link->conf->beacon_int = cbss->beacon_interval; rcu_read_unlock(); } link->conf->dtim_period = link->u.mgd.dtim_period ?: 1; link->u.mgd.conn = add_links_data->link[link_id].conn; if (ieee80211_prep_channel(sdata, link, link_id, cbss, true, &link->u.mgd.conn, sdata->u.mgd.userspace_selectors)) { link_info(link, "mlo: reconf: prep_channel failed\n"); goto disconnect; } if (ieee80211_mgd_setup_link_sta(link, sta, link_sta, add_links_data->link[link_id].bss)) goto disconnect; if (!ieee80211_assoc_config_link(link, link_sta, add_links_data->link[link_id].bss, mgmt, pos, len, &changed)) goto disconnect; /* The AP MLD indicated success for this link, but the station * profile status indicated otherwise. Since there is an * inconsistency in the ML reconfiguration response, disconnect */ if (add_links_data->link[link_id].status != WLAN_STATUS_SUCCESS) goto disconnect; ieee80211_sta_init_nss(link_sta); if (ieee80211_sta_activate_link(sta, link_id)) goto disconnect; changed |= ieee80211_link_set_associated(link, cbss); ieee80211_link_info_change_notify(sdata, link, changed); ieee80211_recalc_smps(sdata, link); link_mask |= BIT(link_id); } sdata_info(sdata, "mlo: reconf: current valid_links=0x%x, added=0x%x\n", valid_links, link_mask); /* links might have changed due to rejected ones, set them again */ ieee80211_vif_set_links(sdata, valid_links, sdata->vif.dormant_links); ieee80211_vif_cfg_change_notify(sdata, BSS_CHANGED_MLD_VALID_LINKS); ieee80211_recalc_ps(local); ieee80211_recalc_ps_vif(sdata); done_data.buf = (const u8 *)mgmt; done_data.len = orig_len; done_data.added_links = link_mask; for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { done_data.links[link_id].bss = add_links_data->link[link_id].bss; done_data.links[link_id].addr = add_links_data->link[link_id].addr; } cfg80211_mlo_reconf_add_done(sdata->dev, &done_data); kfree(sdata->u.mgd.reconf.add_links_data); sdata->u.mgd.reconf.add_links_data = NULL; out: ieee80211_ml_reconf_reset(sdata); return; disconnect: __ieee80211_disconnect(sdata); } static struct sk_buff * ieee80211_build_ml_reconf_req(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgd_assoc_data *add_links_data, u16 removed_links, __le16 ext_mld_capa_ops) { struct ieee80211_local *local = sdata->local; struct ieee80211_mgmt *mgmt; struct ieee80211_multi_link_elem *ml_elem; struct ieee80211_mle_basic_common_info *common; enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); struct sk_buff *skb; size_t size; unsigned int link_id; __le16 eml_capa = 0, mld_capa_ops = 0; struct ieee80211_tx_info *info; u8 common_size, var_common_size; u8 *ml_elem_len; u16 capab = 0; size = local->hw.extra_tx_headroom + sizeof(*mgmt); /* Consider the maximal length of the reconfiguration ML element */ size += sizeof(struct ieee80211_multi_link_elem); /* The Basic ML element and the Reconfiguration ML element have the same * fixed common information fields in the context of ML reconfiguration * action frame. The AP MLD MAC address must always be present */ common_size = sizeof(*common); /* when adding links, the MLD capabilities must be present */ var_common_size = 0; if (add_links_data) { const struct wiphy_iftype_ext_capab *ift_ext_capa = cfg80211_get_iftype_ext_capa(local->hw.wiphy, ieee80211_vif_type_p2p(&sdata->vif)); if (ift_ext_capa) { eml_capa = cpu_to_le16(ift_ext_capa->eml_capabilities); mld_capa_ops = cpu_to_le16(ift_ext_capa->mld_capa_and_ops); } /* MLD capabilities and operation */ var_common_size += 2; /* EML capabilities */ if (eml_capa & cpu_to_le16((IEEE80211_EML_CAP_EMLSR_SUPP | IEEE80211_EML_CAP_EMLMR_SUPPORT))) var_common_size += 2; } if (ext_mld_capa_ops) var_common_size += 2; /* Add the common information length */ size += common_size + var_common_size; for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct cfg80211_bss *cbss; size_t elems_len; if (removed_links & BIT(link_id)) { size += sizeof(struct ieee80211_mle_per_sta_profile) + ETH_ALEN; continue; } if (!add_links_data || !add_links_data->link[link_id].bss) continue; elems_len = add_links_data->link[link_id].elems_len; cbss = add_links_data->link[link_id].bss; /* should be the same across all BSSes */ if (cbss->capability & WLAN_CAPABILITY_PRIVACY) capab |= WLAN_CAPABILITY_PRIVACY; size += 2 + sizeof(struct ieee80211_mle_per_sta_profile) + ETH_ALEN; /* WMM */ size += 9; size += ieee80211_link_common_elems_size(sdata, iftype, cbss, elems_len); } skb = alloc_skb(size, GFP_KERNEL); if (!skb) return NULL; skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = skb_put_zero(skb, offsetofend(struct ieee80211_mgmt, u.action.u.ml_reconf_req)); /* Add the MAC header */ mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); memcpy(mgmt->da, sdata->vif.cfg.ap_addr, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, sdata->vif.cfg.ap_addr, ETH_ALEN); /* Add the action frame fixed fields */ mgmt->u.action.category = WLAN_CATEGORY_PROTECTED_EHT; mgmt->u.action.u.ml_reconf_req.action_code = WLAN_PROTECTED_EHT_ACTION_LINK_RECONFIG_REQ; /* allocate a dialog token and store it */ sdata->u.mgd.reconf.dialog_token = ++sdata->u.mgd.dialog_token_alloc; mgmt->u.action.u.ml_reconf_req.dialog_token = sdata->u.mgd.reconf.dialog_token; /* Add the ML reconfiguration element and the common information */ skb_put_u8(skb, WLAN_EID_EXTENSION); ml_elem_len = skb_put(skb, 1); skb_put_u8(skb, WLAN_EID_EXT_EHT_MULTI_LINK); ml_elem = skb_put(skb, sizeof(*ml_elem)); ml_elem->control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_RECONF | IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR); common = skb_put(skb, common_size); common->len = common_size + var_common_size; memcpy(common->mld_mac_addr, sdata->vif.addr, ETH_ALEN); if (add_links_data) { if (eml_capa & cpu_to_le16((IEEE80211_EML_CAP_EMLSR_SUPP | IEEE80211_EML_CAP_EMLMR_SUPPORT))) { ml_elem->control |= cpu_to_le16(IEEE80211_MLC_RECONF_PRES_EML_CAPA); skb_put_data(skb, &eml_capa, sizeof(eml_capa)); } ml_elem->control |= cpu_to_le16(IEEE80211_MLC_RECONF_PRES_MLD_CAPA_OP); skb_put_data(skb, &mld_capa_ops, sizeof(mld_capa_ops)); } if (ext_mld_capa_ops) { ml_elem->control |= cpu_to_le16(IEEE80211_MLC_RECONF_PRES_EXT_MLD_CAPA_OP); skb_put_data(skb, &ext_mld_capa_ops, sizeof(ext_mld_capa_ops)); } if (sdata->u.mgd.flags & IEEE80211_STA_ENABLE_RRM) capab |= WLAN_CAPABILITY_RADIO_MEASURE; /* Add the per station profile */ for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { u8 *subelem_len = NULL; u16 ctrl; const u8 *addr; /* Skip links that are not changing */ if (!(removed_links & BIT(link_id)) && (!add_links_data || !add_links_data->link[link_id].bss)) continue; ctrl = link_id | IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT; if (removed_links & BIT(link_id)) { struct ieee80211_bss_conf *conf = sdata_dereference(sdata->vif.link_conf[link_id], sdata); if (!conf) continue; addr = conf->addr; ctrl |= u16_encode_bits(IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_DEL_LINK, IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE); } else { addr = add_links_data->link[link_id].addr; ctrl |= IEEE80211_MLE_STA_RECONF_CONTROL_COMPLETE_PROFILE | u16_encode_bits(IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE_ADD_LINK, IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_TYPE); } skb_put_u8(skb, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE); subelem_len = skb_put(skb, 1); put_unaligned_le16(ctrl, skb_put(skb, sizeof(ctrl))); skb_put_u8(skb, 1 + ETH_ALEN); skb_put_data(skb, addr, ETH_ALEN); if (!(removed_links & BIT(link_id))) { u16 link_present_elems[PRESENT_ELEMS_MAX] = {}; size_t extra_used; void *capab_pos; u8 qos_info; capab_pos = skb_put(skb, 2); extra_used = ieee80211_add_link_elems(sdata, skb, &capab, NULL, add_links_data->link[link_id].elems, add_links_data->link[link_id].elems_len, link_id, NULL, link_present_elems, add_links_data); if (add_links_data->link[link_id].elems) skb_put_data(skb, add_links_data->link[link_id].elems + extra_used, add_links_data->link[link_id].elems_len - extra_used); if (sdata->u.mgd.flags & IEEE80211_STA_UAPSD_ENABLED) { qos_info = sdata->u.mgd.uapsd_queues; qos_info |= (sdata->u.mgd.uapsd_max_sp_len << IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT); } else { qos_info = 0; } ieee80211_add_wmm_info_ie(skb_put(skb, 9), qos_info); put_unaligned_le16(capab, capab_pos); } ieee80211_fragment_element(skb, subelem_len, IEEE80211_MLE_SUBELEM_FRAGMENT); } ieee80211_fragment_element(skb, ml_elem_len, WLAN_EID_FRAGMENT); info = IEEE80211_SKB_CB(skb); info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; return skb; } int ieee80211_mgd_assoc_ml_reconf(struct ieee80211_sub_if_data *sdata, struct cfg80211_ml_reconf_req *req) { struct ieee80211_local *local = sdata->local; struct ieee80211_mgd_assoc_data *data = NULL; struct sta_info *sta; struct sk_buff *skb; u16 added_links, new_valid_links; int link_id, err; if (!ieee80211_vif_is_mld(&sdata->vif) || !(sdata->vif.cfg.mld_capa_op & IEEE80211_MLD_CAP_OP_LINK_RECONF_SUPPORT)) return -EINVAL; /* No support for concurrent ML reconfiguration operation */ if (sdata->u.mgd.reconf.added_links || sdata->u.mgd.reconf.removed_links) return -EBUSY; added_links = 0; for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { if (!req->add_links[link_id].bss) continue; added_links |= BIT(link_id); } sta = sta_info_get(sdata, sdata->vif.cfg.ap_addr); if (WARN_ON(!sta)) return -ENOLINK; /* Adding links to the set of valid link is done only after a successful * ML reconfiguration frame exchange. Here prepare the data for the ML * reconfiguration frame construction and allocate the required * resources */ if (added_links) { bool uapsd_supported; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->assoc_link_id = -1; data->wmm = true; uapsd_supported = true; for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { struct ieee80211_supported_band *sband; struct cfg80211_bss *link_cbss = req->add_links[link_id].bss; struct ieee80211_bss *bss; if (!link_cbss) continue; bss = (void *)link_cbss->priv; if (!bss->wmm_used) { err = -EINVAL; goto err_free; } if (link_cbss->channel->band == NL80211_BAND_S1GHZ) { err = -EINVAL; goto err_free; } eth_random_addr(data->link[link_id].addr); data->link[link_id].conn = ieee80211_conn_settings_unlimited; sband = local->hw.wiphy->bands[link_cbss->channel->band]; ieee80211_determine_our_sta_mode(sdata, sband, NULL, true, link_id, &data->link[link_id].conn); data->link[link_id].bss = link_cbss; data->link[link_id].disabled = req->add_links[link_id].disabled; data->link[link_id].elems = (u8 *)req->add_links[link_id].elems; data->link[link_id].elems_len = req->add_links[link_id].elems_len; if (!bss->uapsd_supported) uapsd_supported = false; if (data->link[link_id].conn.mode < IEEE80211_CONN_MODE_EHT) { err = -EINVAL; goto err_free; } err = ieee80211_mgd_get_ap_ht_vht_capa(sdata, data, link_id); if (err) { err = -EINVAL; goto err_free; } } /* Require U-APSD support if we enabled it */ if (sdata->u.mgd.flags & IEEE80211_STA_UAPSD_ENABLED && !uapsd_supported) { err = -EINVAL; sdata_info(sdata, "U-APSD on but not available on (all) new links\n"); goto err_free; } for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { if (!data->link[link_id].bss) continue; /* only used to verify the mode, nothing is allocated */ err = ieee80211_prep_channel(sdata, NULL, link_id, data->link[link_id].bss, true, &data->link[link_id].conn, sdata->u.mgd.userspace_selectors); if (err) goto err_free; } } /* link removal is done before the ML reconfiguration frame exchange so * that these links will not be used between their removal by the AP MLD * and before the station got the ML reconfiguration response. Based on * Section 35.3.6.4 in Draft P802.11be_D7.0 the AP MLD should accept the * link removal request. */ if (req->rem_links) { u16 new_active_links = sdata->vif.active_links & ~req->rem_links; new_valid_links = sdata->vif.valid_links & ~req->rem_links; /* Should not be left with no valid links to perform the * ML reconfiguration */ if (!new_valid_links || !(new_valid_links & ~sdata->vif.dormant_links)) { sdata_info(sdata, "mlo: reconf: no valid links\n"); err = -EINVAL; goto err_free; } if (new_active_links != sdata->vif.active_links) { if (!new_active_links) new_active_links = BIT(__ffs(new_valid_links & ~sdata->vif.dormant_links)); err = ieee80211_set_active_links(&sdata->vif, new_active_links); if (err) { sdata_info(sdata, "mlo: reconf: failed set active links\n"); goto err_free; } } } /* Build the SKB before the link removal as the construction of the * station info for removed links requires the local address. * Invalidate the removed links, so that the transmission of the ML * reconfiguration request frame would not be done using them, as the AP * is expected to send the ML reconfiguration response frame on the link * on which the request was received. */ skb = ieee80211_build_ml_reconf_req(sdata, data, req->rem_links, cpu_to_le16(req->ext_mld_capa_ops)); if (!skb) { err = -ENOMEM; goto err_free; } if (req->rem_links) { u16 new_dormant_links = sdata->vif.dormant_links & ~req->rem_links; err = ieee80211_vif_set_links(sdata, new_valid_links, new_dormant_links); if (err) { sdata_info(sdata, "mlo: reconf: failed set valid links\n"); kfree_skb(skb); goto err_free; } for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; link_id++) { if (!(req->rem_links & BIT(link_id))) continue; ieee80211_sta_remove_link(sta, link_id); } /* notify the driver and upper layers */ ieee80211_vif_cfg_change_notify(sdata, BSS_CHANGED_MLD_VALID_LINKS); cfg80211_links_removed(sdata->dev, req->rem_links); } sdata_info(sdata, "mlo: reconf: adding=0x%x, removed=0x%x\n", added_links, req->rem_links); ieee80211_tx_skb(sdata, skb); sdata->u.mgd.reconf.added_links = added_links; sdata->u.mgd.reconf.add_links_data = data; sdata->u.mgd.reconf.removed_links = req->rem_links; wiphy_delayed_work_queue(sdata->local->hw.wiphy, &sdata->u.mgd.reconf.wk, IEEE80211_ASSOC_TIMEOUT_SHORT); return 0; err_free: kfree(data); return err; } static bool ieee80211_mgd_epcs_supp(struct ieee80211_sub_if_data *sdata) { unsigned long valid_links = sdata->vif.valid_links; u8 link_id; lockdep_assert_wiphy(sdata->local->hw.wiphy); if (!ieee80211_vif_is_mld(&sdata->vif)) return false; for_each_set_bit(link_id, &valid_links, IEEE80211_MLD_MAX_NUM_LINKS) { struct ieee80211_bss_conf *bss_conf = sdata_dereference(sdata->vif.link_conf[link_id], sdata); if (WARN_ON(!bss_conf) || !bss_conf->epcs_support) return false; } return true; } int ieee80211_mgd_set_epcs(struct ieee80211_sub_if_data *sdata, bool enable) { struct ieee80211_local *local = sdata->local; struct ieee80211_mgmt *mgmt; struct sk_buff *skb; int frame_len = offsetofend(struct ieee80211_mgmt, u.action.u.epcs) + (enable ? 1 : 0); if (!ieee80211_mgd_epcs_supp(sdata)) return -EINVAL; if (sdata->u.mgd.epcs.enabled == enable && !sdata->u.mgd.epcs.dialog_token) return 0; /* Do not allow enabling EPCS if the AP didn't respond yet. * However, allow disabling EPCS in such a case. */ if (sdata->u.mgd.epcs.dialog_token && enable) return -EALREADY; skb = dev_alloc_skb(local->hw.extra_tx_headroom + frame_len); if (!skb) return -ENOBUFS; skb_reserve(skb, local->hw.extra_tx_headroom); mgmt = skb_put_zero(skb, frame_len); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); memcpy(mgmt->da, sdata->vif.cfg.ap_addr, ETH_ALEN); memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); memcpy(mgmt->bssid, sdata->vif.cfg.ap_addr, ETH_ALEN); mgmt->u.action.category = WLAN_CATEGORY_PROTECTED_EHT; if (enable) { u8 *pos = mgmt->u.action.u.epcs.variable; mgmt->u.action.u.epcs.action_code = WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_REQ; *pos = ++sdata->u.mgd.dialog_token_alloc; sdata->u.mgd.epcs.dialog_token = *pos; } else { mgmt->u.action.u.epcs.action_code = WLAN_PROTECTED_EHT_ACTION_EPCS_ENABLE_TEARDOWN; ieee80211_epcs_teardown(sdata); ieee80211_epcs_changed(sdata, false); } ieee80211_tx_skb(sdata, skb); return 0; } static void ieee80211_ml_epcs(struct ieee80211_sub_if_data *sdata, struct ieee802_11_elems *elems) { const struct element *sub; size_t scratch_len = elems->ml_epcs_len; u8 *scratch __free(kfree) = kzalloc(scratch_len, GFP_KERNEL); lockdep_assert_wiphy(sdata->local->hw.wiphy); if (!ieee80211_vif_is_mld(&sdata->vif) || !elems->ml_epcs) return; if (WARN_ON(!scratch)) return; /* Directly parse the sub elements as the common information doesn't * hold any useful information. */ for_each_mle_subelement(sub, (const u8 *)elems->ml_epcs, elems->ml_epcs_len) { struct ieee80211_link_data *link; struct ieee802_11_elems *link_elems __free(kfree); u8 *pos = (void *)sub->data; u16 control; ssize_t len; u8 link_id; if (sub->id != IEEE80211_MLE_SUBELEM_PER_STA_PROFILE) continue; if (sub->datalen < sizeof(control)) break; control = get_unaligned_le16(pos); link_id = control & IEEE80211_MLE_STA_EPCS_CONTROL_LINK_ID; link = sdata_dereference(sdata->link[link_id], sdata); if (!link) continue; len = cfg80211_defragment_element(sub, (u8 *)elems->ml_epcs, elems->ml_epcs_len, scratch, scratch_len, IEEE80211_MLE_SUBELEM_FRAGMENT); if (len < (ssize_t)sizeof(control)) continue; pos = scratch + sizeof(control); len -= sizeof(control); link_elems = ieee802_11_parse_elems(pos, len, false, NULL); if (!link_elems) continue; if (ieee80211_sta_wmm_params(sdata->local, link, link_elems->wmm_param, link_elems->wmm_param_len, link_elems->mu_edca_param_set)) ieee80211_link_info_change_notify(sdata, link, BSS_CHANGED_QOS); } } void ieee80211_process_epcs_ena_resp(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { struct ieee802_11_elems *elems __free(kfree) = NULL; size_t ies_len; u16 status_code; u8 *pos, dialog_token; if (!ieee80211_mgd_epcs_supp(sdata)) return; /* Handle dialog token and status code */ pos = mgmt->u.action.u.epcs.variable; dialog_token = *pos; status_code = get_unaligned_le16(pos + 1); /* An EPCS enable response with dialog token == 0 is an unsolicited * notification from the AP MLD. In such a case, EPCS should already be * enabled and status must be success */ if (!dialog_token && (!sdata->u.mgd.epcs.enabled || status_code != WLAN_STATUS_SUCCESS)) return; if (sdata->u.mgd.epcs.dialog_token != dialog_token) return; sdata->u.mgd.epcs.dialog_token = 0; if (status_code != WLAN_STATUS_SUCCESS) return; pos += IEEE80211_EPCS_ENA_RESP_BODY_LEN; ies_len = len - offsetof(struct ieee80211_mgmt, u.action.u.epcs.variable) - IEEE80211_EPCS_ENA_RESP_BODY_LEN; elems = ieee802_11_parse_elems(pos, ies_len, true, NULL); if (!elems) return; ieee80211_ml_epcs(sdata, elems); ieee80211_epcs_changed(sdata, true); } void ieee80211_process_epcs_teardown(struct ieee80211_sub_if_data *sdata, struct ieee80211_mgmt *mgmt, size_t len) { if (!ieee80211_vif_is_mld(&sdata->vif) || !sdata->u.mgd.epcs.enabled) return; ieee80211_epcs_teardown(sdata); ieee80211_epcs_changed(sdata, false); } |
7 47 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | /* SPDX-License-Identifier: GPL-2.0 */ #if !defined(_DRM_TRACE_H_) || defined(TRACE_HEADER_MULTI_READ) #define _DRM_TRACE_H_ #include <linux/stringify.h> #include <linux/types.h> #include <linux/tracepoint.h> struct drm_file; #undef TRACE_SYSTEM #define TRACE_SYSTEM drm #define TRACE_INCLUDE_FILE drm_trace TRACE_EVENT(drm_vblank_event, TP_PROTO(int crtc, unsigned int seq, ktime_t time, bool high_prec), TP_ARGS(crtc, seq, time, high_prec), TP_STRUCT__entry( __field(int, crtc) __field(unsigned int, seq) __field(ktime_t, time) __field(bool, high_prec) ), TP_fast_assign( __entry->crtc = crtc; __entry->seq = seq; __entry->time = time; __entry->high_prec = high_prec; ), TP_printk("crtc=%d, seq=%u, time=%lld, high-prec=%s", __entry->crtc, __entry->seq, __entry->time, __entry->high_prec ? "true" : "false") ); TRACE_EVENT(drm_vblank_event_queued, TP_PROTO(struct drm_file *file, int crtc, unsigned int seq), TP_ARGS(file, crtc, seq), TP_STRUCT__entry( __field(struct drm_file *, file) __field(int, crtc) __field(unsigned int, seq) ), TP_fast_assign( __entry->file = file; __entry->crtc = crtc; __entry->seq = seq; ), TP_printk("file=%p, crtc=%d, seq=%u", __entry->file, __entry->crtc, \ __entry->seq) ); TRACE_EVENT(drm_vblank_event_delivered, TP_PROTO(struct drm_file *file, int crtc, unsigned int seq), TP_ARGS(file, crtc, seq), TP_STRUCT__entry( __field(struct drm_file *, file) __field(int, crtc) __field(unsigned int, seq) ), TP_fast_assign( __entry->file = file; __entry->crtc = crtc; __entry->seq = seq; ), TP_printk("file=%p, crtc=%d, seq=%u", __entry->file, __entry->crtc, \ __entry->seq) ); #endif /* _DRM_TRACE_H_ */ /* This part must be outside protection */ #undef TRACE_INCLUDE_PATH #define TRACE_INCLUDE_PATH ../../drivers/gpu/drm #include <trace/define_trace.h> |
12 2 12 12 1 12 12 32 28 20 11 25 18 14 18 17 13 30 30 26 5 27 28 22 27 27 13 13 11 13 13 8 3 8 8 8 8 18 18 18 8 18 18 2 18 18 18 16 16 16 16 9 16 16 16 16 7 16 3 3 3 3 3 1 2 2 3 9 3 3 8 2 9 3 9 10 10 10 10 10 10 10 145 146 3 146 146 3 15 7 15 15 7 10 15 15 9 9 9 9 21 21 10 10 10 10 9 9 6 6 9 9 146 145 57 8 8 14 14 5 4 5 3 5 7 7 7 7 7 7 7 7 1 1 7 7 15 15 15 15 15 15 15 15 14 15 15 15 14 14 14 15 15 3 3 3 3 3 3 9 9 9 9 9 9 3 9 9 8 8 8 8 8 8 13 13 13 13 8 13 13 13 13 13 1 1 1 1 1 146 145 176 176 176 176 116 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 | // SPDX-License-Identifier: GPL-2.0 /* Multipath TCP * * Copyright (c) 2019, Intel Corporation. */ #define pr_fmt(fmt) "MPTCP: " fmt #include <linux/rculist.h> #include <linux/spinlock.h> #include "protocol.h" #include "mib.h" #define ADD_ADDR_RETRANS_MAX 3 struct mptcp_pm_add_entry { struct list_head list; struct mptcp_addr_info addr; u8 retrans_times; struct timer_list add_timer; struct mptcp_sock *sock; }; static DEFINE_SPINLOCK(mptcp_pm_list_lock); static LIST_HEAD(mptcp_pm_list); /* path manager helpers */ /* if sk is ipv4 or ipv6_only allows only same-family local and remote addresses, * otherwise allow any matching local/remote pair */ bool mptcp_pm_addr_families_match(const struct sock *sk, const struct mptcp_addr_info *loc, const struct mptcp_addr_info *rem) { bool mptcp_is_v4 = sk->sk_family == AF_INET; #if IS_ENABLED(CONFIG_MPTCP_IPV6) bool loc_is_v4 = loc->family == AF_INET || ipv6_addr_v4mapped(&loc->addr6); bool rem_is_v4 = rem->family == AF_INET || ipv6_addr_v4mapped(&rem->addr6); if (mptcp_is_v4) return loc_is_v4 && rem_is_v4; if (ipv6_only_sock(sk)) return !loc_is_v4 && !rem_is_v4; return loc_is_v4 == rem_is_v4; #else return mptcp_is_v4 && loc->family == AF_INET && rem->family == AF_INET; #endif } bool mptcp_addresses_equal(const struct mptcp_addr_info *a, const struct mptcp_addr_info *b, bool use_port) { bool addr_equals = false; if (a->family == b->family) { if (a->family == AF_INET) addr_equals = a->addr.s_addr == b->addr.s_addr; #if IS_ENABLED(CONFIG_MPTCP_IPV6) else addr_equals = ipv6_addr_equal(&a->addr6, &b->addr6); } else if (a->family == AF_INET) { if (ipv6_addr_v4mapped(&b->addr6)) addr_equals = a->addr.s_addr == b->addr6.s6_addr32[3]; } else if (b->family == AF_INET) { if (ipv6_addr_v4mapped(&a->addr6)) addr_equals = a->addr6.s6_addr32[3] == b->addr.s_addr; #endif } if (!addr_equals) return false; if (!use_port) return true; return a->port == b->port; } void mptcp_local_address(const struct sock_common *skc, struct mptcp_addr_info *addr) { addr->family = skc->skc_family; addr->port = htons(skc->skc_num); if (addr->family == AF_INET) addr->addr.s_addr = skc->skc_rcv_saddr; #if IS_ENABLED(CONFIG_MPTCP_IPV6) else if (addr->family == AF_INET6) addr->addr6 = skc->skc_v6_rcv_saddr; #endif } void mptcp_remote_address(const struct sock_common *skc, struct mptcp_addr_info *addr) { addr->family = skc->skc_family; addr->port = skc->skc_dport; if (addr->family == AF_INET) addr->addr.s_addr = skc->skc_daddr; #if IS_ENABLED(CONFIG_MPTCP_IPV6) else if (addr->family == AF_INET6) addr->addr6 = skc->skc_v6_daddr; #endif } static bool mptcp_pm_is_init_remote_addr(struct mptcp_sock *msk, const struct mptcp_addr_info *remote) { struct mptcp_addr_info mpc_remote; mptcp_remote_address((struct sock_common *)msk, &mpc_remote); return mptcp_addresses_equal(&mpc_remote, remote, remote->port); } bool mptcp_lookup_subflow_by_saddr(const struct list_head *list, const struct mptcp_addr_info *saddr) { struct mptcp_subflow_context *subflow; struct mptcp_addr_info cur; struct sock_common *skc; list_for_each_entry(subflow, list, node) { skc = (struct sock_common *)mptcp_subflow_tcp_sock(subflow); mptcp_local_address(skc, &cur); if (mptcp_addresses_equal(&cur, saddr, saddr->port)) return true; } return false; } static struct mptcp_pm_add_entry * mptcp_lookup_anno_list_by_saddr(const struct mptcp_sock *msk, const struct mptcp_addr_info *addr) { struct mptcp_pm_add_entry *entry; lockdep_assert_held(&msk->pm.lock); list_for_each_entry(entry, &msk->pm.anno_list, list) { if (mptcp_addresses_equal(&entry->addr, addr, true)) return entry; } return NULL; } bool mptcp_remove_anno_list_by_saddr(struct mptcp_sock *msk, const struct mptcp_addr_info *addr) { struct mptcp_pm_add_entry *entry; entry = mptcp_pm_del_add_timer(msk, addr, false); kfree(entry); return entry; } bool mptcp_pm_sport_in_anno_list(struct mptcp_sock *msk, const struct sock *sk) { struct mptcp_pm_add_entry *entry; struct mptcp_addr_info saddr; bool ret = false; mptcp_local_address((struct sock_common *)sk, &saddr); spin_lock_bh(&msk->pm.lock); list_for_each_entry(entry, &msk->pm.anno_list, list) { if (mptcp_addresses_equal(&entry->addr, &saddr, true)) { ret = true; goto out; } } out: spin_unlock_bh(&msk->pm.lock); return ret; } static void __mptcp_pm_send_ack(struct mptcp_sock *msk, struct mptcp_subflow_context *subflow, bool prio, bool backup) { struct sock *ssk = mptcp_subflow_tcp_sock(subflow); bool slow; pr_debug("send ack for %s\n", prio ? "mp_prio" : (mptcp_pm_should_add_signal(msk) ? "add_addr" : "rm_addr")); slow = lock_sock_fast(ssk); if (prio) { subflow->send_mp_prio = 1; subflow->request_bkup = backup; } __mptcp_subflow_send_ack(ssk); unlock_sock_fast(ssk, slow); } void mptcp_pm_send_ack(struct mptcp_sock *msk, struct mptcp_subflow_context *subflow, bool prio, bool backup) { spin_unlock_bh(&msk->pm.lock); __mptcp_pm_send_ack(msk, subflow, prio, backup); spin_lock_bh(&msk->pm.lock); } void mptcp_pm_addr_send_ack(struct mptcp_sock *msk) { struct mptcp_subflow_context *subflow, *alt = NULL; msk_owned_by_me(msk); lockdep_assert_held(&msk->pm.lock); if (!mptcp_pm_should_add_signal(msk) && !mptcp_pm_should_rm_signal(msk)) return; mptcp_for_each_subflow(msk, subflow) { if (__mptcp_subflow_active(subflow)) { if (!subflow->stale) { mptcp_pm_send_ack(msk, subflow, false, false); return; } if (!alt) alt = subflow; } } if (alt) mptcp_pm_send_ack(msk, alt, false, false); } int mptcp_pm_mp_prio_send_ack(struct mptcp_sock *msk, struct mptcp_addr_info *addr, struct mptcp_addr_info *rem, u8 bkup) { struct mptcp_subflow_context *subflow; pr_debug("bkup=%d\n", bkup); mptcp_for_each_subflow(msk, subflow) { struct sock *ssk = mptcp_subflow_tcp_sock(subflow); struct mptcp_addr_info local, remote; mptcp_local_address((struct sock_common *)ssk, &local); if (!mptcp_addresses_equal(&local, addr, addr->port)) continue; if (rem && rem->family != AF_UNSPEC) { mptcp_remote_address((struct sock_common *)ssk, &remote); if (!mptcp_addresses_equal(&remote, rem, rem->port)) continue; } __mptcp_pm_send_ack(msk, subflow, true, bkup); return 0; } return -EINVAL; } static void mptcp_pm_add_timer(struct timer_list *timer) { struct mptcp_pm_add_entry *entry = from_timer(entry, timer, add_timer); struct mptcp_sock *msk = entry->sock; struct sock *sk = (struct sock *)msk; pr_debug("msk=%p\n", msk); if (!msk) return; if (inet_sk_state_load(sk) == TCP_CLOSE) return; if (!entry->addr.id) return; if (mptcp_pm_should_add_signal_addr(msk)) { sk_reset_timer(sk, timer, jiffies + TCP_RTO_MAX / 8); goto out; } spin_lock_bh(&msk->pm.lock); if (!mptcp_pm_should_add_signal_addr(msk)) { pr_debug("retransmit ADD_ADDR id=%d\n", entry->addr.id); mptcp_pm_announce_addr(msk, &entry->addr, false); mptcp_pm_add_addr_send_ack(msk); entry->retrans_times++; } if (entry->retrans_times < ADD_ADDR_RETRANS_MAX) sk_reset_timer(sk, timer, jiffies + mptcp_get_add_addr_timeout(sock_net(sk))); spin_unlock_bh(&msk->pm.lock); if (entry->retrans_times == ADD_ADDR_RETRANS_MAX) mptcp_pm_subflow_established(msk); out: __sock_put(sk); } struct mptcp_pm_add_entry * mptcp_pm_del_add_timer(struct mptcp_sock *msk, const struct mptcp_addr_info *addr, bool check_id) { struct mptcp_pm_add_entry *entry; struct sock *sk = (struct sock *)msk; struct timer_list *add_timer = NULL; spin_lock_bh(&msk->pm.lock); entry = mptcp_lookup_anno_list_by_saddr(msk, addr); if (entry && (!check_id || entry->addr.id == addr->id)) { entry->retrans_times = ADD_ADDR_RETRANS_MAX; add_timer = &entry->add_timer; } if (!check_id && entry) list_del(&entry->list); spin_unlock_bh(&msk->pm.lock); /* no lock, because sk_stop_timer_sync() is calling timer_delete_sync() */ if (add_timer) sk_stop_timer_sync(sk, add_timer); return entry; } bool mptcp_pm_alloc_anno_list(struct mptcp_sock *msk, const struct mptcp_addr_info *addr) { struct mptcp_pm_add_entry *add_entry = NULL; struct sock *sk = (struct sock *)msk; struct net *net = sock_net(sk); lockdep_assert_held(&msk->pm.lock); add_entry = mptcp_lookup_anno_list_by_saddr(msk, addr); if (add_entry) { if (WARN_ON_ONCE(mptcp_pm_is_kernel(msk))) return false; sk_reset_timer(sk, &add_entry->add_timer, jiffies + mptcp_get_add_addr_timeout(net)); return true; } add_entry = kmalloc(sizeof(*add_entry), GFP_ATOMIC); if (!add_entry) return false; list_add(&add_entry->list, &msk->pm.anno_list); add_entry->addr = *addr; add_entry->sock = msk; add_entry->retrans_times = 0; timer_setup(&add_entry->add_timer, mptcp_pm_add_timer, 0); sk_reset_timer(sk, &add_entry->add_timer, jiffies + mptcp_get_add_addr_timeout(net)); return true; } static void mptcp_pm_free_anno_list(struct mptcp_sock *msk) { struct mptcp_pm_add_entry *entry, *tmp; struct sock *sk = (struct sock *)msk; LIST_HEAD(free_list); pr_debug("msk=%p\n", msk); spin_lock_bh(&msk->pm.lock); list_splice_init(&msk->pm.anno_list, &free_list); spin_unlock_bh(&msk->pm.lock); list_for_each_entry_safe(entry, tmp, &free_list, list) { sk_stop_timer_sync(sk, &entry->add_timer); kfree(entry); } } /* path manager command handlers */ int mptcp_pm_announce_addr(struct mptcp_sock *msk, const struct mptcp_addr_info *addr, bool echo) { u8 add_addr = READ_ONCE(msk->pm.addr_signal); pr_debug("msk=%p, local_id=%d, echo=%d\n", msk, addr->id, echo); lockdep_assert_held(&msk->pm.lock); if (add_addr & (echo ? BIT(MPTCP_ADD_ADDR_ECHO) : BIT(MPTCP_ADD_ADDR_SIGNAL))) { MPTCP_INC_STATS(sock_net((struct sock *)msk), echo ? MPTCP_MIB_ECHOADDTXDROP : MPTCP_MIB_ADDADDRTXDROP); return -EINVAL; } if (echo) { msk->pm.remote = *addr; add_addr |= BIT(MPTCP_ADD_ADDR_ECHO); } else { msk->pm.local = *addr; add_addr |= BIT(MPTCP_ADD_ADDR_SIGNAL); } WRITE_ONCE(msk->pm.addr_signal, add_addr); return 0; } int mptcp_pm_remove_addr(struct mptcp_sock *msk, const struct mptcp_rm_list *rm_list) { u8 rm_addr = READ_ONCE(msk->pm.addr_signal); pr_debug("msk=%p, rm_list_nr=%d\n", msk, rm_list->nr); if (rm_addr) { MPTCP_ADD_STATS(sock_net((struct sock *)msk), MPTCP_MIB_RMADDRTXDROP, rm_list->nr); return -EINVAL; } msk->pm.rm_list_tx = *rm_list; rm_addr |= BIT(MPTCP_RM_ADDR_SIGNAL); WRITE_ONCE(msk->pm.addr_signal, rm_addr); mptcp_pm_addr_send_ack(msk); return 0; } /* path manager event handlers */ void mptcp_pm_new_connection(struct mptcp_sock *msk, const struct sock *ssk, int server_side) { struct mptcp_pm_data *pm = &msk->pm; pr_debug("msk=%p, token=%u side=%d\n", msk, READ_ONCE(msk->token), server_side); WRITE_ONCE(pm->server_side, server_side); mptcp_event(MPTCP_EVENT_CREATED, msk, ssk, GFP_ATOMIC); } bool mptcp_pm_allow_new_subflow(struct mptcp_sock *msk) { struct mptcp_pm_data *pm = &msk->pm; unsigned int subflows_max; int ret = 0; if (mptcp_pm_is_userspace(msk)) { if (mptcp_userspace_pm_active(msk)) { spin_lock_bh(&pm->lock); pm->subflows++; spin_unlock_bh(&pm->lock); return true; } return false; } subflows_max = mptcp_pm_get_subflows_max(msk); pr_debug("msk=%p subflows=%d max=%d allow=%d\n", msk, pm->subflows, subflows_max, READ_ONCE(pm->accept_subflow)); /* try to avoid acquiring the lock below */ if (!READ_ONCE(pm->accept_subflow)) return false; spin_lock_bh(&pm->lock); if (READ_ONCE(pm->accept_subflow)) { ret = pm->subflows < subflows_max; if (ret && ++pm->subflows == subflows_max) WRITE_ONCE(pm->accept_subflow, false); } spin_unlock_bh(&pm->lock); return ret; } /* return true if the new status bit is currently cleared, that is, this event * can be server, eventually by an already scheduled work */ static bool mptcp_pm_schedule_work(struct mptcp_sock *msk, enum mptcp_pm_status new_status) { pr_debug("msk=%p status=%x new=%lx\n", msk, msk->pm.status, BIT(new_status)); if (msk->pm.status & BIT(new_status)) return false; msk->pm.status |= BIT(new_status); mptcp_schedule_work((struct sock *)msk); return true; } void mptcp_pm_fully_established(struct mptcp_sock *msk, const struct sock *ssk) { struct mptcp_pm_data *pm = &msk->pm; bool announce = false; pr_debug("msk=%p\n", msk); spin_lock_bh(&pm->lock); /* mptcp_pm_fully_established() can be invoked by multiple * racing paths - accept() and check_fully_established() * be sure to serve this event only once. */ if (READ_ONCE(pm->work_pending) && !(pm->status & BIT(MPTCP_PM_ALREADY_ESTABLISHED))) mptcp_pm_schedule_work(msk, MPTCP_PM_ESTABLISHED); if ((pm->status & BIT(MPTCP_PM_ALREADY_ESTABLISHED)) == 0) announce = true; pm->status |= BIT(MPTCP_PM_ALREADY_ESTABLISHED); spin_unlock_bh(&pm->lock); if (announce) mptcp_event(MPTCP_EVENT_ESTABLISHED, msk, ssk, GFP_ATOMIC); } void mptcp_pm_connection_closed(struct mptcp_sock *msk) { pr_debug("msk=%p\n", msk); if (msk->token) mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); } void mptcp_pm_subflow_established(struct mptcp_sock *msk) { struct mptcp_pm_data *pm = &msk->pm; pr_debug("msk=%p\n", msk); if (!READ_ONCE(pm->work_pending)) return; spin_lock_bh(&pm->lock); if (READ_ONCE(pm->work_pending)) mptcp_pm_schedule_work(msk, MPTCP_PM_SUBFLOW_ESTABLISHED); spin_unlock_bh(&pm->lock); } void mptcp_pm_subflow_check_next(struct mptcp_sock *msk, const struct mptcp_subflow_context *subflow) { struct mptcp_pm_data *pm = &msk->pm; bool update_subflows; update_subflows = subflow->request_join || subflow->mp_join; if (mptcp_pm_is_userspace(msk)) { if (update_subflows) { spin_lock_bh(&pm->lock); pm->subflows--; spin_unlock_bh(&pm->lock); } return; } if (!READ_ONCE(pm->work_pending) && !update_subflows) return; spin_lock_bh(&pm->lock); if (update_subflows) __mptcp_pm_close_subflow(msk); /* Even if this subflow is not really established, tell the PM to try * to pick the next ones, if possible. */ if (mptcp_pm_nl_check_work_pending(msk)) mptcp_pm_schedule_work(msk, MPTCP_PM_SUBFLOW_ESTABLISHED); spin_unlock_bh(&pm->lock); } void mptcp_pm_add_addr_received(const struct sock *ssk, const struct mptcp_addr_info *addr) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); struct mptcp_sock *msk = mptcp_sk(subflow->conn); struct mptcp_pm_data *pm = &msk->pm; pr_debug("msk=%p remote_id=%d accept=%d\n", msk, addr->id, READ_ONCE(pm->accept_addr)); mptcp_event_addr_announced(ssk, addr); spin_lock_bh(&pm->lock); if (mptcp_pm_is_userspace(msk)) { if (mptcp_userspace_pm_active(msk)) { mptcp_pm_announce_addr(msk, addr, true); mptcp_pm_add_addr_send_ack(msk); } else { __MPTCP_INC_STATS(sock_net((struct sock *)msk), MPTCP_MIB_ADDADDRDROP); } /* id0 should not have a different address */ } else if ((addr->id == 0 && !mptcp_pm_is_init_remote_addr(msk, addr)) || (addr->id > 0 && !READ_ONCE(pm->accept_addr))) { mptcp_pm_announce_addr(msk, addr, true); mptcp_pm_add_addr_send_ack(msk); } else if (mptcp_pm_schedule_work(msk, MPTCP_PM_ADD_ADDR_RECEIVED)) { pm->remote = *addr; } else { __MPTCP_INC_STATS(sock_net((struct sock *)msk), MPTCP_MIB_ADDADDRDROP); } spin_unlock_bh(&pm->lock); } void mptcp_pm_add_addr_echoed(struct mptcp_sock *msk, const struct mptcp_addr_info *addr) { struct mptcp_pm_data *pm = &msk->pm; pr_debug("msk=%p\n", msk); if (!READ_ONCE(pm->work_pending)) return; spin_lock_bh(&pm->lock); if (mptcp_lookup_anno_list_by_saddr(msk, addr) && READ_ONCE(pm->work_pending)) mptcp_pm_schedule_work(msk, MPTCP_PM_SUBFLOW_ESTABLISHED); spin_unlock_bh(&pm->lock); } void mptcp_pm_add_addr_send_ack(struct mptcp_sock *msk) { if (!mptcp_pm_should_add_signal(msk)) return; mptcp_pm_schedule_work(msk, MPTCP_PM_ADD_ADDR_SEND_ACK); } static void mptcp_pm_rm_addr_or_subflow(struct mptcp_sock *msk, const struct mptcp_rm_list *rm_list, enum linux_mptcp_mib_field rm_type) { struct mptcp_subflow_context *subflow, *tmp; struct sock *sk = (struct sock *)msk; u8 i; pr_debug("%s rm_list_nr %d\n", rm_type == MPTCP_MIB_RMADDR ? "address" : "subflow", rm_list->nr); msk_owned_by_me(msk); if (sk->sk_state == TCP_LISTEN) return; if (!rm_list->nr) return; if (list_empty(&msk->conn_list)) return; for (i = 0; i < rm_list->nr; i++) { u8 rm_id = rm_list->ids[i]; bool removed = false; mptcp_for_each_subflow_safe(msk, subflow, tmp) { struct sock *ssk = mptcp_subflow_tcp_sock(subflow); u8 remote_id = READ_ONCE(subflow->remote_id); int how = RCV_SHUTDOWN | SEND_SHUTDOWN; u8 id = subflow_get_local_id(subflow); if ((1 << inet_sk_state_load(ssk)) & (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSING | TCPF_CLOSE)) continue; if (rm_type == MPTCP_MIB_RMADDR && remote_id != rm_id) continue; if (rm_type == MPTCP_MIB_RMSUBFLOW && id != rm_id) continue; pr_debug(" -> %s rm_list_ids[%d]=%u local_id=%u remote_id=%u mpc_id=%u\n", rm_type == MPTCP_MIB_RMADDR ? "address" : "subflow", i, rm_id, id, remote_id, msk->mpc_endpoint_id); spin_unlock_bh(&msk->pm.lock); mptcp_subflow_shutdown(sk, ssk, how); removed |= subflow->request_join; /* the following takes care of updating the subflows counter */ mptcp_close_ssk(sk, ssk, subflow); spin_lock_bh(&msk->pm.lock); if (rm_type == MPTCP_MIB_RMSUBFLOW) __MPTCP_INC_STATS(sock_net(sk), rm_type); } if (rm_type == MPTCP_MIB_RMADDR) { __MPTCP_INC_STATS(sock_net(sk), rm_type); if (removed && mptcp_pm_is_kernel(msk)) mptcp_pm_nl_rm_addr(msk, rm_id); } } } static void mptcp_pm_rm_addr_recv(struct mptcp_sock *msk) { mptcp_pm_rm_addr_or_subflow(msk, &msk->pm.rm_list_rx, MPTCP_MIB_RMADDR); } void mptcp_pm_rm_subflow(struct mptcp_sock *msk, const struct mptcp_rm_list *rm_list) { mptcp_pm_rm_addr_or_subflow(msk, rm_list, MPTCP_MIB_RMSUBFLOW); } void mptcp_pm_rm_addr_received(struct mptcp_sock *msk, const struct mptcp_rm_list *rm_list) { struct mptcp_pm_data *pm = &msk->pm; u8 i; pr_debug("msk=%p remote_ids_nr=%d\n", msk, rm_list->nr); for (i = 0; i < rm_list->nr; i++) mptcp_event_addr_removed(msk, rm_list->ids[i]); spin_lock_bh(&pm->lock); if (mptcp_pm_schedule_work(msk, MPTCP_PM_RM_ADDR_RECEIVED)) pm->rm_list_rx = *rm_list; else __MPTCP_INC_STATS(sock_net((struct sock *)msk), MPTCP_MIB_RMADDRDROP); spin_unlock_bh(&pm->lock); } void mptcp_pm_mp_prio_received(struct sock *ssk, u8 bkup) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); struct sock *sk = subflow->conn; struct mptcp_sock *msk; pr_debug("subflow->backup=%d, bkup=%d\n", subflow->backup, bkup); msk = mptcp_sk(sk); if (subflow->backup != bkup) subflow->backup = bkup; mptcp_event(MPTCP_EVENT_SUB_PRIORITY, msk, ssk, GFP_ATOMIC); } void mptcp_pm_mp_fail_received(struct sock *sk, u64 fail_seq) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); struct mptcp_sock *msk = mptcp_sk(subflow->conn); pr_debug("fail_seq=%llu\n", fail_seq); if (!READ_ONCE(msk->allow_infinite_fallback)) return; if (!subflow->fail_tout) { pr_debug("send MP_FAIL response and infinite map\n"); subflow->send_mp_fail = 1; subflow->send_infinite_map = 1; tcp_send_ack(sk); } else { pr_debug("MP_FAIL response received\n"); WRITE_ONCE(subflow->fail_tout, 0); } } bool mptcp_pm_add_addr_signal(struct mptcp_sock *msk, const struct sk_buff *skb, unsigned int opt_size, unsigned int remaining, struct mptcp_addr_info *addr, bool *echo, bool *drop_other_suboptions) { int ret = false; u8 add_addr; u8 family; bool port; spin_lock_bh(&msk->pm.lock); /* double check after the lock is acquired */ if (!mptcp_pm_should_add_signal(msk)) goto out_unlock; /* always drop every other options for pure ack ADD_ADDR; this is a * plain dup-ack from TCP perspective. The other MPTCP-relevant info, * if any, will be carried by the 'original' TCP ack */ if (skb && skb_is_tcp_pure_ack(skb)) { remaining += opt_size; *drop_other_suboptions = true; } *echo = mptcp_pm_should_add_signal_echo(msk); port = !!(*echo ? msk->pm.remote.port : msk->pm.local.port); family = *echo ? msk->pm.remote.family : msk->pm.local.family; if (remaining < mptcp_add_addr_len(family, *echo, port)) goto out_unlock; if (*echo) { *addr = msk->pm.remote; add_addr = msk->pm.addr_signal & ~BIT(MPTCP_ADD_ADDR_ECHO); } else { *addr = msk->pm.local; add_addr = msk->pm.addr_signal & ~BIT(MPTCP_ADD_ADDR_SIGNAL); } WRITE_ONCE(msk->pm.addr_signal, add_addr); ret = true; out_unlock: spin_unlock_bh(&msk->pm.lock); return ret; } bool mptcp_pm_rm_addr_signal(struct mptcp_sock *msk, unsigned int remaining, struct mptcp_rm_list *rm_list) { int ret = false, len; u8 rm_addr; spin_lock_bh(&msk->pm.lock); /* double check after the lock is acquired */ if (!mptcp_pm_should_rm_signal(msk)) goto out_unlock; rm_addr = msk->pm.addr_signal & ~BIT(MPTCP_RM_ADDR_SIGNAL); len = mptcp_rm_addr_len(&msk->pm.rm_list_tx); if (len < 0) { WRITE_ONCE(msk->pm.addr_signal, rm_addr); goto out_unlock; } if (remaining < len) goto out_unlock; *rm_list = msk->pm.rm_list_tx; WRITE_ONCE(msk->pm.addr_signal, rm_addr); ret = true; out_unlock: spin_unlock_bh(&msk->pm.lock); return ret; } int mptcp_pm_get_local_id(struct mptcp_sock *msk, struct sock_common *skc) { struct mptcp_pm_addr_entry skc_local = { 0 }; struct mptcp_addr_info msk_local; if (WARN_ON_ONCE(!msk)) return -1; /* The 0 ID mapping is defined by the first subflow, copied into the msk * addr */ mptcp_local_address((struct sock_common *)msk, &msk_local); mptcp_local_address((struct sock_common *)skc, &skc_local.addr); if (mptcp_addresses_equal(&msk_local, &skc_local.addr, false)) return 0; skc_local.addr.id = 0; skc_local.flags = MPTCP_PM_ADDR_FLAG_IMPLICIT; if (mptcp_pm_is_userspace(msk)) return mptcp_userspace_pm_get_local_id(msk, &skc_local); return mptcp_pm_nl_get_local_id(msk, &skc_local); } bool mptcp_pm_is_backup(struct mptcp_sock *msk, struct sock_common *skc) { struct mptcp_addr_info skc_local; mptcp_local_address((struct sock_common *)skc, &skc_local); if (mptcp_pm_is_userspace(msk)) return mptcp_userspace_pm_is_backup(msk, &skc_local); return mptcp_pm_nl_is_backup(msk, &skc_local); } static void mptcp_pm_subflows_chk_stale(const struct mptcp_sock *msk, struct sock *ssk) { struct mptcp_subflow_context *iter, *subflow = mptcp_subflow_ctx(ssk); struct sock *sk = (struct sock *)msk; unsigned int active_max_loss_cnt; struct net *net = sock_net(sk); unsigned int stale_loss_cnt; bool slow; stale_loss_cnt = mptcp_stale_loss_cnt(net); if (subflow->stale || !stale_loss_cnt || subflow->stale_count <= stale_loss_cnt) return; /* look for another available subflow not in loss state */ active_max_loss_cnt = max_t(int, stale_loss_cnt - 1, 1); mptcp_for_each_subflow(msk, iter) { if (iter != subflow && mptcp_subflow_active(iter) && iter->stale_count < active_max_loss_cnt) { /* we have some alternatives, try to mark this subflow as idle ...*/ slow = lock_sock_fast(ssk); if (!tcp_rtx_and_write_queues_empty(ssk)) { subflow->stale = 1; __mptcp_retransmit_pending_data(sk); MPTCP_INC_STATS(net, MPTCP_MIB_SUBFLOWSTALE); } unlock_sock_fast(ssk, slow); /* always try to push the pending data regardless of re-injections: * we can possibly use backup subflows now, and subflow selection * is cheap under the msk socket lock */ __mptcp_push_pending(sk, 0); return; } } } void mptcp_pm_subflow_chk_stale(const struct mptcp_sock *msk, struct sock *ssk) { struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); u32 rcv_tstamp = READ_ONCE(tcp_sk(ssk)->rcv_tstamp); /* keep track of rtx periods with no progress */ if (!subflow->stale_count) { subflow->stale_rcv_tstamp = rcv_tstamp; subflow->stale_count++; } else if (subflow->stale_rcv_tstamp == rcv_tstamp) { if (subflow->stale_count < U8_MAX) subflow->stale_count++; mptcp_pm_subflows_chk_stale(msk, ssk); } else { subflow->stale_count = 0; mptcp_subflow_set_active(subflow); } } void mptcp_pm_worker(struct mptcp_sock *msk) { struct mptcp_pm_data *pm = &msk->pm; msk_owned_by_me(msk); if (!(pm->status & MPTCP_PM_WORK_MASK)) return; spin_lock_bh(&msk->pm.lock); pr_debug("msk=%p status=%x\n", msk, pm->status); if (pm->status & BIT(MPTCP_PM_ADD_ADDR_SEND_ACK)) { pm->status &= ~BIT(MPTCP_PM_ADD_ADDR_SEND_ACK); mptcp_pm_addr_send_ack(msk); } if (pm->status & BIT(MPTCP_PM_RM_ADDR_RECEIVED)) { pm->status &= ~BIT(MPTCP_PM_RM_ADDR_RECEIVED); mptcp_pm_rm_addr_recv(msk); } __mptcp_pm_kernel_worker(msk); spin_unlock_bh(&msk->pm.lock); } void mptcp_pm_destroy(struct mptcp_sock *msk) { mptcp_pm_free_anno_list(msk); if (mptcp_pm_is_userspace(msk)) mptcp_userspace_pm_free_local_addr_list(msk); } void mptcp_pm_data_reset(struct mptcp_sock *msk) { u8 pm_type = mptcp_get_pm_type(sock_net((struct sock *)msk)); struct mptcp_pm_data *pm = &msk->pm; memset(&pm->reset, 0, sizeof(pm->reset)); pm->rm_list_tx.nr = 0; pm->rm_list_rx.nr = 0; WRITE_ONCE(pm->pm_type, pm_type); if (pm_type == MPTCP_PM_TYPE_KERNEL) { bool subflows_allowed = !!mptcp_pm_get_subflows_max(msk); /* pm->work_pending must be only be set to 'true' when * pm->pm_type is set to MPTCP_PM_TYPE_KERNEL */ WRITE_ONCE(pm->work_pending, (!!mptcp_pm_get_local_addr_max(msk) && subflows_allowed) || !!mptcp_pm_get_add_addr_signal_max(msk)); WRITE_ONCE(pm->accept_addr, !!mptcp_pm_get_add_addr_accept_max(msk) && subflows_allowed); WRITE_ONCE(pm->accept_subflow, subflows_allowed); bitmap_fill(pm->id_avail_bitmap, MPTCP_PM_MAX_ADDR_ID + 1); } } void mptcp_pm_data_init(struct mptcp_sock *msk) { spin_lock_init(&msk->pm.lock); INIT_LIST_HEAD(&msk->pm.anno_list); INIT_LIST_HEAD(&msk->pm.userspace_pm_local_addr_list); mptcp_pm_data_reset(msk); } void __init mptcp_pm_init(void) { mptcp_pm_kernel_register(); mptcp_pm_userspace_register(); mptcp_pm_nl_init(); } /* Must be called with rcu read lock held */ struct mptcp_pm_ops *mptcp_pm_find(const char *name) { struct mptcp_pm_ops *pm_ops; list_for_each_entry_rcu(pm_ops, &mptcp_pm_list, list) { if (!strcmp(pm_ops->name, name)) return pm_ops; } return NULL; } int mptcp_pm_validate(struct mptcp_pm_ops *pm_ops) { return 0; } int mptcp_pm_register(struct mptcp_pm_ops *pm_ops) { int ret; ret = mptcp_pm_validate(pm_ops); if (ret) return ret; spin_lock(&mptcp_pm_list_lock); if (mptcp_pm_find(pm_ops->name)) { spin_unlock(&mptcp_pm_list_lock); return -EEXIST; } list_add_tail_rcu(&pm_ops->list, &mptcp_pm_list); spin_unlock(&mptcp_pm_list_lock); pr_debug("%s registered\n", pm_ops->name); return 0; } void mptcp_pm_unregister(struct mptcp_pm_ops *pm_ops) { /* skip unregistering the default path manager */ if (WARN_ON_ONCE(pm_ops == &mptcp_pm_kernel)) return; spin_lock(&mptcp_pm_list_lock); list_del_rcu(&pm_ops->list); spin_unlock(&mptcp_pm_list_lock); } /* Build string with list of available path manager values. * Similar to tcp_get_available_congestion_control() */ void mptcp_pm_get_available(char *buf, size_t maxlen) { struct mptcp_pm_ops *pm_ops; size_t offs = 0; rcu_read_lock(); list_for_each_entry_rcu(pm_ops, &mptcp_pm_list, list) { offs += snprintf(buf + offs, maxlen - offs, "%s%s", offs == 0 ? "" : " ", pm_ops->name); if (WARN_ON_ONCE(offs >= maxlen)) break; } rcu_read_unlock(); } |
228 103 103 18 43 18 18 229 230 230 230 227 228 1 229 23 23 23 103 103 103 25 25 25 25 25 25 25 92 25 91 1981 1981 1978 16 16 16 16 16 15 2038 2036 2037 2033 26 92 124 124 121 121 124 98 1 92 92 92 92 92 76 76 92 25 25 25 25 92 92 171 55 215 24 24 23 23 26 26 120 120 121 121 121 71 71 71 71 71 2 2 2 2 2 16 16 4 4 4 4 4192 4201 16 16 16 16 16 16 2 16 16 4 4 16 16 16 39 4 36 40 39 27 27 15 16 16 2 2 2 16 40 24 24 24 24 24 24 24 24 24 2244 2253 2245 2240 2 2 2 2246 2236 19 2246 2238 98 4 2245 2017 2014 1973 2017 2016 13 2017 1942 230 230 1 228 229 1 230 230 228 103 103 1839 1838 1838 91 91 90 23 91 23 23 23 23 23 23 23 23 91 91 238 215 151 1 1 212 215 238 92 92 91 27 25 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 | // SPDX-License-Identifier: GPL-2.0-only /* * fs/fs-writeback.c * * Copyright (C) 2002, Linus Torvalds. * * Contains all the functions related to writing back and waiting * upon dirty inodes against superblocks, and writing back dirty * pages against inodes. ie: data writeback. Writeout of the * inode itself is not handled here. * * 10Apr2002 Andrew Morton * Split out of fs/inode.c * Additions for address_space-based writeback */ #include <linux/kernel.h> #include <linux/export.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/fs.h> #include <linux/mm.h> #include <linux/pagemap.h> #include <linux/kthread.h> #include <linux/writeback.h> #include <linux/blkdev.h> #include <linux/backing-dev.h> #include <linux/tracepoint.h> #include <linux/device.h> #include <linux/memcontrol.h> #include "internal.h" /* * 4MB minimal write chunk size */ #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) /* * Passed into wb_writeback(), essentially a subset of writeback_control */ struct wb_writeback_work { long nr_pages; struct super_block *sb; enum writeback_sync_modes sync_mode; unsigned int tagged_writepages:1; unsigned int for_kupdate:1; unsigned int range_cyclic:1; unsigned int for_background:1; unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ unsigned int auto_free:1; /* free on completion */ enum wb_reason reason; /* why was writeback initiated? */ struct list_head list; /* pending work list */ struct wb_completion *done; /* set if the caller waits */ }; /* * If an inode is constantly having its pages dirtied, but then the * updates stop dirtytime_expire_interval seconds in the past, it's * possible for the worst case time between when an inode has its * timestamps updated and when they finally get written out to be two * dirtytime_expire_intervals. We set the default to 12 hours (in * seconds), which means most of the time inodes will have their * timestamps written to disk after 12 hours, but in the worst case a * few inodes might not their timestamps updated for 24 hours. */ static unsigned int dirtytime_expire_interval = 12 * 60 * 60; static inline struct inode *wb_inode(struct list_head *head) { return list_entry(head, struct inode, i_io_list); } /* * Include the creation of the trace points after defining the * wb_writeback_work structure and inline functions so that the definition * remains local to this file. */ #define CREATE_TRACE_POINTS #include <trace/events/writeback.h> EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); static bool wb_io_lists_populated(struct bdi_writeback *wb) { if (wb_has_dirty_io(wb)) { return false; } else { set_bit(WB_has_dirty_io, &wb->state); WARN_ON_ONCE(!wb->avg_write_bandwidth); atomic_long_add(wb->avg_write_bandwidth, &wb->bdi->tot_write_bandwidth); return true; } } static void wb_io_lists_depopulated(struct bdi_writeback *wb) { if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { clear_bit(WB_has_dirty_io, &wb->state); WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, &wb->bdi->tot_write_bandwidth) < 0); } } /** * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list * @inode: inode to be moved * @wb: target bdi_writeback * @head: one of @wb->b_{dirty|io|more_io|dirty_time} * * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. * Returns %true if @inode is the first occupant of the !dirty_time IO * lists; otherwise, %false. */ static bool inode_io_list_move_locked(struct inode *inode, struct bdi_writeback *wb, struct list_head *head) { assert_spin_locked(&wb->list_lock); assert_spin_locked(&inode->i_lock); WARN_ON_ONCE(inode->i_state & I_FREEING); list_move(&inode->i_io_list, head); /* dirty_time doesn't count as dirty_io until expiration */ if (head != &wb->b_dirty_time) return wb_io_lists_populated(wb); wb_io_lists_depopulated(wb); return false; } static void wb_wakeup(struct bdi_writeback *wb) { spin_lock_irq(&wb->work_lock); if (test_bit(WB_registered, &wb->state)) mod_delayed_work(bdi_wq, &wb->dwork, 0); spin_unlock_irq(&wb->work_lock); } /* * This function is used when the first inode for this wb is marked dirty. It * wakes-up the corresponding bdi thread which should then take care of the * periodic background write-out of dirty inodes. Since the write-out would * starts only 'dirty_writeback_interval' centisecs from now anyway, we just * set up a timer which wakes the bdi thread up later. * * Note, we wouldn't bother setting up the timer, but this function is on the * fast-path (used by '__mark_inode_dirty()'), so we save few context switches * by delaying the wake-up. * * We have to be careful not to postpone flush work if it is scheduled for * earlier. Thus we use queue_delayed_work(). */ static void wb_wakeup_delayed(struct bdi_writeback *wb) { unsigned long timeout; timeout = msecs_to_jiffies(dirty_writeback_interval * 10); spin_lock_irq(&wb->work_lock); if (test_bit(WB_registered, &wb->state)) queue_delayed_work(bdi_wq, &wb->dwork, timeout); spin_unlock_irq(&wb->work_lock); } static void finish_writeback_work(struct wb_writeback_work *work) { struct wb_completion *done = work->done; if (work->auto_free) kfree(work); if (done) { wait_queue_head_t *waitq = done->waitq; /* @done can't be accessed after the following dec */ if (atomic_dec_and_test(&done->cnt)) wake_up_all(waitq); } } static void wb_queue_work(struct bdi_writeback *wb, struct wb_writeback_work *work) { trace_writeback_queue(wb, work); if (work->done) atomic_inc(&work->done->cnt); spin_lock_irq(&wb->work_lock); if (test_bit(WB_registered, &wb->state)) { list_add_tail(&work->list, &wb->work_list); mod_delayed_work(bdi_wq, &wb->dwork, 0); } else finish_writeback_work(work); spin_unlock_irq(&wb->work_lock); } /** * wb_wait_for_completion - wait for completion of bdi_writeback_works * @done: target wb_completion * * Wait for one or more work items issued to @bdi with their ->done field * set to @done, which should have been initialized with * DEFINE_WB_COMPLETION(). This function returns after all such work items * are completed. Work items which are waited upon aren't freed * automatically on completion. */ void wb_wait_for_completion(struct wb_completion *done) { atomic_dec(&done->cnt); /* put down the initial count */ wait_event(*done->waitq, !atomic_read(&done->cnt)); } #ifdef CONFIG_CGROUP_WRITEBACK /* * Parameters for foreign inode detection, see wbc_detach_inode() to see * how they're used. * * These paramters are inherently heuristical as the detection target * itself is fuzzy. All we want to do is detaching an inode from the * current owner if it's being written to by some other cgroups too much. * * The current cgroup writeback is built on the assumption that multiple * cgroups writing to the same inode concurrently is very rare and a mode * of operation which isn't well supported. As such, the goal is not * taking too long when a different cgroup takes over an inode while * avoiding too aggressive flip-flops from occasional foreign writes. * * We record, very roughly, 2s worth of IO time history and if more than * half of that is foreign, trigger the switch. The recording is quantized * to 16 slots. To avoid tiny writes from swinging the decision too much, * writes smaller than 1/8 of avg size are ignored. */ #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) /* each slot's duration is 2s / 16 */ #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) /* if foreign slots >= 8, switch */ #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) /* one round can affect upto 5 slots */ #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ /* * Maximum inodes per isw. A specific value has been chosen to make * struct inode_switch_wbs_context fit into 1024 bytes kmalloc. */ #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \ / sizeof(struct inode *)) static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); static struct workqueue_struct *isw_wq; void __inode_attach_wb(struct inode *inode, struct folio *folio) { struct backing_dev_info *bdi = inode_to_bdi(inode); struct bdi_writeback *wb = NULL; if (inode_cgwb_enabled(inode)) { struct cgroup_subsys_state *memcg_css; if (folio) { memcg_css = mem_cgroup_css_from_folio(folio); wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); } else { /* must pin memcg_css, see wb_get_create() */ memcg_css = task_get_css(current, memory_cgrp_id); wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); css_put(memcg_css); } } if (!wb) wb = &bdi->wb; /* * There may be multiple instances of this function racing to * update the same inode. Use cmpxchg() to tell the winner. */ if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) wb_put(wb); } /** * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list * @inode: inode of interest with i_lock held * @wb: target bdi_writeback * * Remove the inode from wb's io lists and if necessarily put onto b_attached * list. Only inodes attached to cgwb's are kept on this list. */ static void inode_cgwb_move_to_attached(struct inode *inode, struct bdi_writeback *wb) { assert_spin_locked(&wb->list_lock); assert_spin_locked(&inode->i_lock); WARN_ON_ONCE(inode->i_state & I_FREEING); inode->i_state &= ~I_SYNC_QUEUED; if (wb != &wb->bdi->wb) list_move(&inode->i_io_list, &wb->b_attached); else list_del_init(&inode->i_io_list); wb_io_lists_depopulated(wb); } /** * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it * @inode: inode of interest with i_lock held * * Returns @inode's wb with its list_lock held. @inode->i_lock must be * held on entry and is released on return. The returned wb is guaranteed * to stay @inode's associated wb until its list_lock is released. */ static struct bdi_writeback * locked_inode_to_wb_and_lock_list(struct inode *inode) __releases(&inode->i_lock) __acquires(&wb->list_lock) { while (true) { struct bdi_writeback *wb = inode_to_wb(inode); /* * inode_to_wb() association is protected by both * @inode->i_lock and @wb->list_lock but list_lock nests * outside i_lock. Drop i_lock and verify that the * association hasn't changed after acquiring list_lock. */ wb_get(wb); spin_unlock(&inode->i_lock); spin_lock(&wb->list_lock); /* i_wb may have changed inbetween, can't use inode_to_wb() */ if (likely(wb == inode->i_wb)) { wb_put(wb); /* @inode already has ref */ return wb; } spin_unlock(&wb->list_lock); wb_put(wb); cpu_relax(); spin_lock(&inode->i_lock); } } /** * inode_to_wb_and_lock_list - determine an inode's wb and lock it * @inode: inode of interest * * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held * on entry. */ static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) __acquires(&wb->list_lock) { spin_lock(&inode->i_lock); return locked_inode_to_wb_and_lock_list(inode); } struct inode_switch_wbs_context { struct rcu_work work; /* * Multiple inodes can be switched at once. The switching procedure * consists of two parts, separated by a RCU grace period. To make * sure that the second part is executed for each inode gone through * the first part, all inode pointers are placed into a NULL-terminated * array embedded into struct inode_switch_wbs_context. Otherwise * an inode could be left in a non-consistent state. */ struct bdi_writeback *new_wb; struct inode *inodes[]; }; static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { down_write(&bdi->wb_switch_rwsem); } static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { up_write(&bdi->wb_switch_rwsem); } static bool inode_do_switch_wbs(struct inode *inode, struct bdi_writeback *old_wb, struct bdi_writeback *new_wb) { struct address_space *mapping = inode->i_mapping; XA_STATE(xas, &mapping->i_pages, 0); struct folio *folio; bool switched = false; spin_lock(&inode->i_lock); xa_lock_irq(&mapping->i_pages); /* * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction * path owns the inode and we shouldn't modify ->i_io_list. */ if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE))) goto skip_switch; trace_inode_switch_wbs(inode, old_wb, new_wb); /* * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to * folios actually under writeback. */ xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) { if (folio_test_dirty(folio)) { long nr = folio_nr_pages(folio); wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr); wb_stat_mod(new_wb, WB_RECLAIMABLE, nr); } } xas_set(&xas, 0); xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { long nr = folio_nr_pages(folio); WARN_ON_ONCE(!folio_test_writeback(folio)); wb_stat_mod(old_wb, WB_WRITEBACK, -nr); wb_stat_mod(new_wb, WB_WRITEBACK, nr); } if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) { atomic_dec(&old_wb->writeback_inodes); atomic_inc(&new_wb->writeback_inodes); } wb_get(new_wb); /* * Transfer to @new_wb's IO list if necessary. If the @inode is dirty, * the specific list @inode was on is ignored and the @inode is put on * ->b_dirty which is always correct including from ->b_dirty_time. * The transfer preserves @inode->dirtied_when ordering. If the @inode * was clean, it means it was on the b_attached list, so move it onto * the b_attached list of @new_wb. */ if (!list_empty(&inode->i_io_list)) { inode->i_wb = new_wb; if (inode->i_state & I_DIRTY_ALL) { struct inode *pos; list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) if (time_after_eq(inode->dirtied_when, pos->dirtied_when)) break; inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev); } else { inode_cgwb_move_to_attached(inode, new_wb); } } else { inode->i_wb = new_wb; } /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ inode->i_wb_frn_winner = 0; inode->i_wb_frn_avg_time = 0; inode->i_wb_frn_history = 0; switched = true; skip_switch: /* * Paired with load_acquire in unlocked_inode_to_wb_begin() and * ensures that the new wb is visible if they see !I_WB_SWITCH. */ smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); xa_unlock_irq(&mapping->i_pages); spin_unlock(&inode->i_lock); return switched; } static void inode_switch_wbs_work_fn(struct work_struct *work) { struct inode_switch_wbs_context *isw = container_of(to_rcu_work(work), struct inode_switch_wbs_context, work); struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]); struct bdi_writeback *old_wb = isw->inodes[0]->i_wb; struct bdi_writeback *new_wb = isw->new_wb; unsigned long nr_switched = 0; struct inode **inodep; /* * If @inode switches cgwb membership while sync_inodes_sb() is * being issued, sync_inodes_sb() might miss it. Synchronize. */ down_read(&bdi->wb_switch_rwsem); /* * By the time control reaches here, RCU grace period has passed * since I_WB_SWITCH assertion and all wb stat update transactions * between unlocked_inode_to_wb_begin/end() are guaranteed to be * synchronizing against the i_pages lock. * * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock * gives us exclusion against all wb related operations on @inode * including IO list manipulations and stat updates. */ if (old_wb < new_wb) { spin_lock(&old_wb->list_lock); spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); } else { spin_lock(&new_wb->list_lock); spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); } for (inodep = isw->inodes; *inodep; inodep++) { WARN_ON_ONCE((*inodep)->i_wb != old_wb); if (inode_do_switch_wbs(*inodep, old_wb, new_wb)) nr_switched++; } spin_unlock(&new_wb->list_lock); spin_unlock(&old_wb->list_lock); up_read(&bdi->wb_switch_rwsem); if (nr_switched) { wb_wakeup(new_wb); wb_put_many(old_wb, nr_switched); } for (inodep = isw->inodes; *inodep; inodep++) iput(*inodep); wb_put(new_wb); kfree(isw); atomic_dec(&isw_nr_in_flight); } static bool inode_prepare_wbs_switch(struct inode *inode, struct bdi_writeback *new_wb) { /* * Paired with smp_mb() in cgroup_writeback_umount(). * isw_nr_in_flight must be increased before checking SB_ACTIVE and * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0 * in cgroup_writeback_umount() and the isw_wq will be not flushed. */ smp_mb(); if (IS_DAX(inode)) return false; /* while holding I_WB_SWITCH, no one else can update the association */ spin_lock(&inode->i_lock); if (!(inode->i_sb->s_flags & SB_ACTIVE) || inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) || inode_to_wb(inode) == new_wb) { spin_unlock(&inode->i_lock); return false; } inode->i_state |= I_WB_SWITCH; __iget(inode); spin_unlock(&inode->i_lock); return true; } /** * inode_switch_wbs - change the wb association of an inode * @inode: target inode * @new_wb_id: ID of the new wb * * Switch @inode's wb association to the wb identified by @new_wb_id. The * switching is performed asynchronously and may fail silently. */ static void inode_switch_wbs(struct inode *inode, int new_wb_id) { struct backing_dev_info *bdi = inode_to_bdi(inode); struct cgroup_subsys_state *memcg_css; struct inode_switch_wbs_context *isw; /* noop if seems to be already in progress */ if (inode->i_state & I_WB_SWITCH) return; /* avoid queueing a new switch if too many are already in flight */ if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) return; isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC); if (!isw) return; atomic_inc(&isw_nr_in_flight); /* find and pin the new wb */ rcu_read_lock(); memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); if (memcg_css && !css_tryget(memcg_css)) memcg_css = NULL; rcu_read_unlock(); if (!memcg_css) goto out_free; isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); css_put(memcg_css); if (!isw->new_wb) goto out_free; if (!inode_prepare_wbs_switch(inode, isw->new_wb)) goto out_free; isw->inodes[0] = inode; /* * In addition to synchronizing among switchers, I_WB_SWITCH tells * the RCU protected stat update paths to grab the i_page * lock so that stat transfer can synchronize against them. * Let's continue after I_WB_SWITCH is guaranteed to be visible. */ INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); queue_rcu_work(isw_wq, &isw->work); return; out_free: atomic_dec(&isw_nr_in_flight); if (isw->new_wb) wb_put(isw->new_wb); kfree(isw); } static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw, struct list_head *list, int *nr) { struct inode *inode; list_for_each_entry(inode, list, i_io_list) { if (!inode_prepare_wbs_switch(inode, isw->new_wb)) continue; isw->inodes[*nr] = inode; (*nr)++; if (*nr >= WB_MAX_INODES_PER_ISW - 1) return true; } return false; } /** * cleanup_offline_cgwb - detach associated inodes * @wb: target wb * * Switch all inodes attached to @wb to a nearest living ancestor's wb in order * to eventually release the dying @wb. Returns %true if not all inodes were * switched and the function has to be restarted. */ bool cleanup_offline_cgwb(struct bdi_writeback *wb) { struct cgroup_subsys_state *memcg_css; struct inode_switch_wbs_context *isw; int nr; bool restart = false; isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW), GFP_KERNEL); if (!isw) return restart; atomic_inc(&isw_nr_in_flight); for (memcg_css = wb->memcg_css->parent; memcg_css; memcg_css = memcg_css->parent) { isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL); if (isw->new_wb) break; } if (unlikely(!isw->new_wb)) isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */ nr = 0; spin_lock(&wb->list_lock); /* * In addition to the inodes that have completed writeback, also switch * cgwbs for those inodes only with dirty timestamps. Otherwise, those * inodes won't be written back for a long time when lazytime is * enabled, and thus pinning the dying cgwbs. It won't break the * bandwidth restrictions, as writeback of inode metadata is not * accounted for. */ restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr); if (!restart) restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr); spin_unlock(&wb->list_lock); /* no attached inodes? bail out */ if (nr == 0) { atomic_dec(&isw_nr_in_flight); wb_put(isw->new_wb); kfree(isw); return restart; } /* * In addition to synchronizing among switchers, I_WB_SWITCH tells * the RCU protected stat update paths to grab the i_page * lock so that stat transfer can synchronize against them. * Let's continue after I_WB_SWITCH is guaranteed to be visible. */ INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); queue_rcu_work(isw_wq, &isw->work); return restart; } /** * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it * @wbc: writeback_control of interest * @inode: target inode * * @inode is locked and about to be written back under the control of @wbc. * Record @inode's writeback context into @wbc and unlock the i_lock. On * writeback completion, wbc_detach_inode() should be called. This is used * to track the cgroup writeback context. */ static void wbc_attach_and_unlock_inode(struct writeback_control *wbc, struct inode *inode) __releases(&inode->i_lock) { if (!inode_cgwb_enabled(inode)) { spin_unlock(&inode->i_lock); return; } wbc->wb = inode_to_wb(inode); wbc->inode = inode; wbc->wb_id = wbc->wb->memcg_css->id; wbc->wb_lcand_id = inode->i_wb_frn_winner; wbc->wb_tcand_id = 0; wbc->wb_bytes = 0; wbc->wb_lcand_bytes = 0; wbc->wb_tcand_bytes = 0; wb_get(wbc->wb); spin_unlock(&inode->i_lock); /* * A dying wb indicates that either the blkcg associated with the * memcg changed or the associated memcg is dying. In the first * case, a replacement wb should already be available and we should * refresh the wb immediately. In the second case, trying to * refresh will keep failing. */ if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) inode_switch_wbs(inode, wbc->wb_id); } /** * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite * @wbc: writeback_control of interest * @inode: target inode * * This function is to be used by __filemap_fdatawrite_range(), which is an * alternative entry point into writeback code, and first ensures @inode is * associated with a bdi_writeback and attaches it to @wbc. */ void wbc_attach_fdatawrite_inode(struct writeback_control *wbc, struct inode *inode) { spin_lock(&inode->i_lock); inode_attach_wb(inode, NULL); wbc_attach_and_unlock_inode(wbc, inode); } EXPORT_SYMBOL_GPL(wbc_attach_fdatawrite_inode); /** * wbc_detach_inode - disassociate wbc from inode and perform foreign detection * @wbc: writeback_control of the just finished writeback * * To be called after a writeback attempt of an inode finishes and undoes * wbc_attach_and_unlock_inode(). Can be called under any context. * * As concurrent write sharing of an inode is expected to be very rare and * memcg only tracks page ownership on first-use basis severely confining * the usefulness of such sharing, cgroup writeback tracks ownership * per-inode. While the support for concurrent write sharing of an inode * is deemed unnecessary, an inode being written to by different cgroups at * different points in time is a lot more common, and, more importantly, * charging only by first-use can too readily lead to grossly incorrect * behaviors (single foreign page can lead to gigabytes of writeback to be * incorrectly attributed). * * To resolve this issue, cgroup writeback detects the majority dirtier of * an inode and transfers the ownership to it. To avoid unnecessary * oscillation, the detection mechanism keeps track of history and gives * out the switch verdict only if the foreign usage pattern is stable over * a certain amount of time and/or writeback attempts. * * On each writeback attempt, @wbc tries to detect the majority writer * using Boyer-Moore majority vote algorithm. In addition to the byte * count from the majority voting, it also counts the bytes written for the * current wb and the last round's winner wb (max of last round's current * wb, the winner from two rounds ago, and the last round's majority * candidate). Keeping track of the historical winner helps the algorithm * to semi-reliably detect the most active writer even when it's not the * absolute majority. * * Once the winner of the round is determined, whether the winner is * foreign or not and how much IO time the round consumed is recorded in * inode->i_wb_frn_history. If the amount of recorded foreign IO time is * over a certain threshold, the switch verdict is given. */ void wbc_detach_inode(struct writeback_control *wbc) { struct bdi_writeback *wb = wbc->wb; struct inode *inode = wbc->inode; unsigned long avg_time, max_bytes, max_time; u16 history; int max_id; if (!wb) return; history = inode->i_wb_frn_history; avg_time = inode->i_wb_frn_avg_time; /* pick the winner of this round */ if (wbc->wb_bytes >= wbc->wb_lcand_bytes && wbc->wb_bytes >= wbc->wb_tcand_bytes) { max_id = wbc->wb_id; max_bytes = wbc->wb_bytes; } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { max_id = wbc->wb_lcand_id; max_bytes = wbc->wb_lcand_bytes; } else { max_id = wbc->wb_tcand_id; max_bytes = wbc->wb_tcand_bytes; } /* * Calculate the amount of IO time the winner consumed and fold it * into the running average kept per inode. If the consumed IO * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for * deciding whether to switch or not. This is to prevent one-off * small dirtiers from skewing the verdict. */ max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, wb->avg_write_bandwidth); if (avg_time) avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - (avg_time >> WB_FRN_TIME_AVG_SHIFT); else avg_time = max_time; /* immediate catch up on first run */ if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { int slots; /* * The switch verdict is reached if foreign wb's consume * more than a certain proportion of IO time in a * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot * history mask where each bit represents one sixteenth of * the period. Determine the number of slots to shift into * history from @max_time. */ slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), (unsigned long)WB_FRN_HIST_MAX_SLOTS); history <<= slots; if (wbc->wb_id != max_id) history |= (1U << slots) - 1; if (history) trace_inode_foreign_history(inode, wbc, history); /* * Switch if the current wb isn't the consistent winner. * If there are multiple closely competing dirtiers, the * inode may switch across them repeatedly over time, which * is okay. The main goal is avoiding keeping an inode on * the wrong wb for an extended period of time. */ if (hweight16(history) > WB_FRN_HIST_THR_SLOTS) inode_switch_wbs(inode, max_id); } /* * Multiple instances of this function may race to update the * following fields but we don't mind occassional inaccuracies. */ inode->i_wb_frn_winner = max_id; inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); inode->i_wb_frn_history = history; wb_put(wbc->wb); wbc->wb = NULL; } EXPORT_SYMBOL_GPL(wbc_detach_inode); /** * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership * @wbc: writeback_control of the writeback in progress * @folio: folio being written out * @bytes: number of bytes being written out * * @bytes from @folio are about to written out during the writeback * controlled by @wbc. Keep the book for foreign inode detection. See * wbc_detach_inode(). */ void wbc_account_cgroup_owner(struct writeback_control *wbc, struct folio *folio, size_t bytes) { struct cgroup_subsys_state *css; int id; /* * pageout() path doesn't attach @wbc to the inode being written * out. This is intentional as we don't want the function to block * behind a slow cgroup. Ultimately, we want pageout() to kick off * regular writeback instead of writing things out itself. */ if (!wbc->wb || wbc->no_cgroup_owner) return; css = mem_cgroup_css_from_folio(folio); /* dead cgroups shouldn't contribute to inode ownership arbitration */ if (!(css->flags & CSS_ONLINE)) return; id = css->id; if (id == wbc->wb_id) { wbc->wb_bytes += bytes; return; } if (id == wbc->wb_lcand_id) wbc->wb_lcand_bytes += bytes; /* Boyer-Moore majority vote algorithm */ if (!wbc->wb_tcand_bytes) wbc->wb_tcand_id = id; if (id == wbc->wb_tcand_id) wbc->wb_tcand_bytes += bytes; else wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); } EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); /** * wb_split_bdi_pages - split nr_pages to write according to bandwidth * @wb: target bdi_writeback to split @nr_pages to * @nr_pages: number of pages to write for the whole bdi * * Split @wb's portion of @nr_pages according to @wb's write bandwidth in * relation to the total write bandwidth of all wb's w/ dirty inodes on * @wb->bdi. */ static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) { unsigned long this_bw = wb->avg_write_bandwidth; unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); if (nr_pages == LONG_MAX) return LONG_MAX; /* * This may be called on clean wb's and proportional distribution * may not make sense, just use the original @nr_pages in those * cases. In general, we wanna err on the side of writing more. */ if (!tot_bw || this_bw >= tot_bw) return nr_pages; else return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); } /** * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi * @bdi: target backing_dev_info * @base_work: wb_writeback_work to issue * @skip_if_busy: skip wb's which already have writeback in progress * * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's * distributed to the busy wbs according to each wb's proportion in the * total active write bandwidth of @bdi. */ static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, struct wb_writeback_work *base_work, bool skip_if_busy) { struct bdi_writeback *last_wb = NULL; struct bdi_writeback *wb = list_entry(&bdi->wb_list, struct bdi_writeback, bdi_node); might_sleep(); restart: rcu_read_lock(); list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { DEFINE_WB_COMPLETION(fallback_work_done, bdi); struct wb_writeback_work fallback_work; struct wb_writeback_work *work; long nr_pages; if (last_wb) { wb_put(last_wb); last_wb = NULL; } /* SYNC_ALL writes out I_DIRTY_TIME too */ if (!wb_has_dirty_io(wb) && (base_work->sync_mode == WB_SYNC_NONE || list_empty(&wb->b_dirty_time))) continue; if (skip_if_busy && writeback_in_progress(wb)) continue; nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); work = kmalloc(sizeof(*work), GFP_ATOMIC); if (work) { *work = *base_work; work->nr_pages = nr_pages; work->auto_free = 1; wb_queue_work(wb, work); continue; } /* * If wb_tryget fails, the wb has been shutdown, skip it. * * Pin @wb so that it stays on @bdi->wb_list. This allows * continuing iteration from @wb after dropping and * regrabbing rcu read lock. */ if (!wb_tryget(wb)) continue; /* alloc failed, execute synchronously using on-stack fallback */ work = &fallback_work; *work = *base_work; work->nr_pages = nr_pages; work->auto_free = 0; work->done = &fallback_work_done; wb_queue_work(wb, work); last_wb = wb; rcu_read_unlock(); wb_wait_for_completion(&fallback_work_done); goto restart; } rcu_read_unlock(); if (last_wb) wb_put(last_wb); } /** * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs * @bdi_id: target bdi id * @memcg_id: target memcg css id * @reason: reason why some writeback work initiated * @done: target wb_completion * * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id * with the specified parameters. */ int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, enum wb_reason reason, struct wb_completion *done) { struct backing_dev_info *bdi; struct cgroup_subsys_state *memcg_css; struct bdi_writeback *wb; struct wb_writeback_work *work; unsigned long dirty; int ret; /* lookup bdi and memcg */ bdi = bdi_get_by_id(bdi_id); if (!bdi) return -ENOENT; rcu_read_lock(); memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); if (memcg_css && !css_tryget(memcg_css)) memcg_css = NULL; rcu_read_unlock(); if (!memcg_css) { ret = -ENOENT; goto out_bdi_put; } /* * And find the associated wb. If the wb isn't there already * there's nothing to flush, don't create one. */ wb = wb_get_lookup(bdi, memcg_css); if (!wb) { ret = -ENOENT; goto out_css_put; } /* * The caller is attempting to write out most of * the currently dirty pages. Let's take the current dirty page * count and inflate it by 25% which should be large enough to * flush out most dirty pages while avoiding getting livelocked by * concurrent dirtiers. * * BTW the memcg stats are flushed periodically and this is best-effort * estimation, so some potential error is ok. */ dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY); dirty = dirty * 10 / 8; /* issue the writeback work */ work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); if (work) { work->nr_pages = dirty; work->sync_mode = WB_SYNC_NONE; work->range_cyclic = 1; work->reason = reason; work->done = done; work->auto_free = 1; wb_queue_work(wb, work); ret = 0; } else { ret = -ENOMEM; } wb_put(wb); out_css_put: css_put(memcg_css); out_bdi_put: bdi_put(bdi); return ret; } /** * cgroup_writeback_umount - flush inode wb switches for umount * @sb: target super_block * * This function is called when a super_block is about to be destroyed and * flushes in-flight inode wb switches. An inode wb switch goes through * RCU and then workqueue, so the two need to be flushed in order to ensure * that all previously scheduled switches are finished. As wb switches are * rare occurrences and synchronize_rcu() can take a while, perform * flushing iff wb switches are in flight. */ void cgroup_writeback_umount(struct super_block *sb) { if (!(sb->s_bdi->capabilities & BDI_CAP_WRITEBACK)) return; /* * SB_ACTIVE should be reliably cleared before checking * isw_nr_in_flight, see generic_shutdown_super(). */ smp_mb(); if (atomic_read(&isw_nr_in_flight)) { /* * Use rcu_barrier() to wait for all pending callbacks to * ensure that all in-flight wb switches are in the workqueue. */ rcu_barrier(); flush_workqueue(isw_wq); } } static int __init cgroup_writeback_init(void) { isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); if (!isw_wq) return -ENOMEM; return 0; } fs_initcall(cgroup_writeback_init); #else /* CONFIG_CGROUP_WRITEBACK */ static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } static void inode_cgwb_move_to_attached(struct inode *inode, struct bdi_writeback *wb) { assert_spin_locked(&wb->list_lock); assert_spin_locked(&inode->i_lock); WARN_ON_ONCE(inode->i_state & I_FREEING); inode->i_state &= ~I_SYNC_QUEUED; list_del_init(&inode->i_io_list); wb_io_lists_depopulated(wb); } static struct bdi_writeback * locked_inode_to_wb_and_lock_list(struct inode *inode) __releases(&inode->i_lock) __acquires(&wb->list_lock) { struct bdi_writeback *wb = inode_to_wb(inode); spin_unlock(&inode->i_lock); spin_lock(&wb->list_lock); return wb; } static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) __acquires(&wb->list_lock) { struct bdi_writeback *wb = inode_to_wb(inode); spin_lock(&wb->list_lock); return wb; } static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) { return nr_pages; } static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, struct wb_writeback_work *base_work, bool skip_if_busy) { might_sleep(); if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { base_work->auto_free = 0; wb_queue_work(&bdi->wb, base_work); } } static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc, struct inode *inode) __releases(&inode->i_lock) { spin_unlock(&inode->i_lock); } #endif /* CONFIG_CGROUP_WRITEBACK */ /* * Add in the number of potentially dirty inodes, because each inode * write can dirty pagecache in the underlying blockdev. */ static unsigned long get_nr_dirty_pages(void) { return global_node_page_state(NR_FILE_DIRTY) + get_nr_dirty_inodes(); } static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) { if (!wb_has_dirty_io(wb)) return; /* * All callers of this function want to start writeback of all * dirty pages. Places like vmscan can call this at a very * high frequency, causing pointless allocations of tons of * work items and keeping the flusher threads busy retrieving * that work. Ensure that we only allow one of them pending and * inflight at the time. */ if (test_bit(WB_start_all, &wb->state) || test_and_set_bit(WB_start_all, &wb->state)) return; wb->start_all_reason = reason; wb_wakeup(wb); } /** * wb_start_background_writeback - start background writeback * @wb: bdi_writback to write from * * Description: * This makes sure WB_SYNC_NONE background writeback happens. When * this function returns, it is only guaranteed that for given wb * some IO is happening if we are over background dirty threshold. * Caller need not hold sb s_umount semaphore. */ void wb_start_background_writeback(struct bdi_writeback *wb) { /* * We just wake up the flusher thread. It will perform background * writeback as soon as there is no other work to do. */ trace_writeback_wake_background(wb); wb_wakeup(wb); } /* * Remove the inode from the writeback list it is on. */ void inode_io_list_del(struct inode *inode) { struct bdi_writeback *wb; wb = inode_to_wb_and_lock_list(inode); spin_lock(&inode->i_lock); inode->i_state &= ~I_SYNC_QUEUED; list_del_init(&inode->i_io_list); wb_io_lists_depopulated(wb); spin_unlock(&inode->i_lock); spin_unlock(&wb->list_lock); } EXPORT_SYMBOL(inode_io_list_del); /* * mark an inode as under writeback on the sb */ void sb_mark_inode_writeback(struct inode *inode) { struct super_block *sb = inode->i_sb; unsigned long flags; if (list_empty(&inode->i_wb_list)) { spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); if (list_empty(&inode->i_wb_list)) { list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); trace_sb_mark_inode_writeback(inode); } spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); } } /* * clear an inode as under writeback on the sb */ void sb_clear_inode_writeback(struct inode *inode) { struct super_block *sb = inode->i_sb; unsigned long flags; if (!list_empty(&inode->i_wb_list)) { spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); if (!list_empty(&inode->i_wb_list)) { list_del_init(&inode->i_wb_list); trace_sb_clear_inode_writeback(inode); } spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); } } /* * Redirty an inode: set its when-it-was dirtied timestamp and move it to the * furthest end of its superblock's dirty-inode list. * * Before stamping the inode's ->dirtied_when, we check to see whether it is * already the most-recently-dirtied inode on the b_dirty list. If that is * the case then the inode must have been redirtied while it was being written * out and we don't reset its dirtied_when. */ static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) { assert_spin_locked(&inode->i_lock); inode->i_state &= ~I_SYNC_QUEUED; /* * When the inode is being freed just don't bother with dirty list * tracking. Flush worker will ignore this inode anyway and it will * trigger assertions in inode_io_list_move_locked(). */ if (inode->i_state & I_FREEING) { list_del_init(&inode->i_io_list); wb_io_lists_depopulated(wb); return; } if (!list_empty(&wb->b_dirty)) { struct inode *tail; tail = wb_inode(wb->b_dirty.next); if (time_before(inode->dirtied_when, tail->dirtied_when)) inode->dirtied_when = jiffies; } inode_io_list_move_locked(inode, wb, &wb->b_dirty); } static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) { spin_lock(&inode->i_lock); redirty_tail_locked(inode, wb); spin_unlock(&inode->i_lock); } /* * requeue inode for re-scanning after bdi->b_io list is exhausted. */ static void requeue_io(struct inode *inode, struct bdi_writeback *wb) { inode_io_list_move_locked(inode, wb, &wb->b_more_io); } static void inode_sync_complete(struct inode *inode) { assert_spin_locked(&inode->i_lock); inode->i_state &= ~I_SYNC; /* If inode is clean an unused, put it into LRU now... */ inode_add_lru(inode); /* Called with inode->i_lock which ensures memory ordering. */ inode_wake_up_bit(inode, __I_SYNC); } static bool inode_dirtied_after(struct inode *inode, unsigned long t) { bool ret = time_after(inode->dirtied_when, t); #ifndef CONFIG_64BIT /* * For inodes being constantly redirtied, dirtied_when can get stuck. * It _appears_ to be in the future, but is actually in distant past. * This test is necessary to prevent such wrapped-around relative times * from permanently stopping the whole bdi writeback. */ ret = ret && time_before_eq(inode->dirtied_when, jiffies); #endif return ret; } /* * Move expired (dirtied before dirtied_before) dirty inodes from * @delaying_queue to @dispatch_queue. */ static int move_expired_inodes(struct list_head *delaying_queue, struct list_head *dispatch_queue, unsigned long dirtied_before) { LIST_HEAD(tmp); struct list_head *pos, *node; struct super_block *sb = NULL; struct inode *inode; int do_sb_sort = 0; int moved = 0; while (!list_empty(delaying_queue)) { inode = wb_inode(delaying_queue->prev); if (inode_dirtied_after(inode, dirtied_before)) break; spin_lock(&inode->i_lock); list_move(&inode->i_io_list, &tmp); moved++; inode->i_state |= I_SYNC_QUEUED; spin_unlock(&inode->i_lock); if (sb_is_blkdev_sb(inode->i_sb)) continue; if (sb && sb != inode->i_sb) do_sb_sort = 1; sb = inode->i_sb; } /* just one sb in list, splice to dispatch_queue and we're done */ if (!do_sb_sort) { list_splice(&tmp, dispatch_queue); goto out; } /* * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue', * we don't take inode->i_lock here because it is just a pointless overhead. * Inode is already marked as I_SYNC_QUEUED so writeback list handling is * fully under our control. */ while (!list_empty(&tmp)) { sb = wb_inode(tmp.prev)->i_sb; list_for_each_prev_safe(pos, node, &tmp) { inode = wb_inode(pos); if (inode->i_sb == sb) list_move(&inode->i_io_list, dispatch_queue); } } out: return moved; } /* * Queue all expired dirty inodes for io, eldest first. * Before * newly dirtied b_dirty b_io b_more_io * =============> gf edc BA * After * newly dirtied b_dirty b_io b_more_io * =============> g fBAedc * | * +--> dequeue for IO */ static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, unsigned long dirtied_before) { int moved; unsigned long time_expire_jif = dirtied_before; assert_spin_locked(&wb->list_lock); list_splice_init(&wb->b_more_io, &wb->b_io); moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); if (!work->for_sync) time_expire_jif = jiffies - dirtytime_expire_interval * HZ; moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, time_expire_jif); if (moved) wb_io_lists_populated(wb); trace_writeback_queue_io(wb, work, dirtied_before, moved); } static int write_inode(struct inode *inode, struct writeback_control *wbc) { int ret; if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { trace_writeback_write_inode_start(inode, wbc); ret = inode->i_sb->s_op->write_inode(inode, wbc); trace_writeback_write_inode(inode, wbc); return ret; } return 0; } /* * Wait for writeback on an inode to complete. Called with i_lock held. * Caller must make sure inode cannot go away when we drop i_lock. */ void inode_wait_for_writeback(struct inode *inode) { struct wait_bit_queue_entry wqe; struct wait_queue_head *wq_head; assert_spin_locked(&inode->i_lock); if (!(inode->i_state & I_SYNC)) return; wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC); for (;;) { prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */ if (!(inode->i_state & I_SYNC)) break; spin_unlock(&inode->i_lock); schedule(); spin_lock(&inode->i_lock); } finish_wait(wq_head, &wqe.wq_entry); } /* * Sleep until I_SYNC is cleared. This function must be called with i_lock * held and drops it. It is aimed for callers not holding any inode reference * so once i_lock is dropped, inode can go away. */ static void inode_sleep_on_writeback(struct inode *inode) __releases(inode->i_lock) { struct wait_bit_queue_entry wqe; struct wait_queue_head *wq_head; bool sleep; assert_spin_locked(&inode->i_lock); wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC); prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE); /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */ sleep = !!(inode->i_state & I_SYNC); spin_unlock(&inode->i_lock); if (sleep) schedule(); finish_wait(wq_head, &wqe.wq_entry); } /* * Find proper writeback list for the inode depending on its current state and * possibly also change of its state while we were doing writeback. Here we * handle things such as livelock prevention or fairness of writeback among * inodes. This function can be called only by flusher thread - noone else * processes all inodes in writeback lists and requeueing inodes behind flusher * thread's back can have unexpected consequences. */ static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, struct writeback_control *wbc, unsigned long dirtied_before) { if (inode->i_state & I_FREEING) return; /* * Sync livelock prevention. Each inode is tagged and synced in one * shot. If still dirty, it will be redirty_tail()'ed below. Update * the dirty time to prevent enqueue and sync it again. */ if ((inode->i_state & I_DIRTY) && (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) inode->dirtied_when = jiffies; if (wbc->pages_skipped) { /* * Writeback is not making progress due to locked buffers. * Skip this inode for now. Although having skipped pages * is odd for clean inodes, it can happen for some * filesystems so handle that gracefully. */ if (inode->i_state & I_DIRTY_ALL) redirty_tail_locked(inode, wb); else inode_cgwb_move_to_attached(inode, wb); return; } if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { /* * We didn't write back all the pages. nfs_writepages() * sometimes bales out without doing anything. */ if (wbc->nr_to_write <= 0 && !inode_dirtied_after(inode, dirtied_before)) { /* Slice used up. Queue for next turn. */ requeue_io(inode, wb); } else { /* * Writeback blocked by something other than * congestion. Delay the inode for some time to * avoid spinning on the CPU (100% iowait) * retrying writeback of the dirty page/inode * that cannot be performed immediately. */ redirty_tail_locked(inode, wb); } } else if (inode->i_state & I_DIRTY) { /* * Filesystems can dirty the inode during writeback operations, * such as delayed allocation during submission or metadata * updates after data IO completion. */ redirty_tail_locked(inode, wb); } else if (inode->i_state & I_DIRTY_TIME) { inode->dirtied_when = jiffies; inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); inode->i_state &= ~I_SYNC_QUEUED; } else { /* The inode is clean. Remove from writeback lists. */ inode_cgwb_move_to_attached(inode, wb); } } /* * Write out an inode and its dirty pages (or some of its dirty pages, depending * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state. * * This doesn't remove the inode from the writeback list it is on, except * potentially to move it from b_dirty_time to b_dirty due to timestamp * expiration. The caller is otherwise responsible for writeback list handling. * * The caller is also responsible for setting the I_SYNC flag beforehand and * calling inode_sync_complete() to clear it afterwards. */ static int __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) { struct address_space *mapping = inode->i_mapping; long nr_to_write = wbc->nr_to_write; unsigned dirty; int ret; WARN_ON(!(inode->i_state & I_SYNC)); trace_writeback_single_inode_start(inode, wbc, nr_to_write); ret = do_writepages(mapping, wbc); /* * Make sure to wait on the data before writing out the metadata. * This is important for filesystems that modify metadata on data * I/O completion. We don't do it for sync(2) writeback because it has a * separate, external IO completion path and ->sync_fs for guaranteeing * inode metadata is written back correctly. */ if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { int err = filemap_fdatawait(mapping); if (ret == 0) ret = err; } /* * If the inode has dirty timestamps and we need to write them, call * mark_inode_dirty_sync() to notify the filesystem about it and to * change I_DIRTY_TIME into I_DIRTY_SYNC. */ if ((inode->i_state & I_DIRTY_TIME) && (wbc->sync_mode == WB_SYNC_ALL || time_after(jiffies, inode->dirtied_time_when + dirtytime_expire_interval * HZ))) { trace_writeback_lazytime(inode); mark_inode_dirty_sync(inode); } /* * Get and clear the dirty flags from i_state. This needs to be done * after calling writepages because some filesystems may redirty the * inode during writepages due to delalloc. It also needs to be done * after handling timestamp expiration, as that may dirty the inode too. */ spin_lock(&inode->i_lock); dirty = inode->i_state & I_DIRTY; inode->i_state &= ~dirty; /* * Paired with smp_mb() in __mark_inode_dirty(). This allows * __mark_inode_dirty() to test i_state without grabbing i_lock - * either they see the I_DIRTY bits cleared or we see the dirtied * inode. * * I_DIRTY_PAGES is always cleared together above even if @mapping * still has dirty pages. The flag is reinstated after smp_mb() if * necessary. This guarantees that either __mark_inode_dirty() * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. */ smp_mb(); if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) inode->i_state |= I_DIRTY_PAGES; else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) { if (!(inode->i_state & I_DIRTY_PAGES)) { inode->i_state &= ~I_PINNING_NETFS_WB; wbc->unpinned_netfs_wb = true; dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */ } } spin_unlock(&inode->i_lock); /* Don't write the inode if only I_DIRTY_PAGES was set */ if (dirty & ~I_DIRTY_PAGES) { int err = write_inode(inode, wbc); if (ret == 0) ret = err; } wbc->unpinned_netfs_wb = false; trace_writeback_single_inode(inode, wbc, nr_to_write); return ret; } /* * Write out an inode's dirty data and metadata on-demand, i.e. separately from * the regular batched writeback done by the flusher threads in * writeback_sb_inodes(). @wbc controls various aspects of the write, such as * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE). * * To prevent the inode from going away, either the caller must have a reference * to the inode, or the inode must have I_WILL_FREE or I_FREEING set. */ static int writeback_single_inode(struct inode *inode, struct writeback_control *wbc) { struct bdi_writeback *wb; int ret = 0; spin_lock(&inode->i_lock); if (!atomic_read(&inode->i_count)) WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); else WARN_ON(inode->i_state & I_WILL_FREE); if (inode->i_state & I_SYNC) { /* * Writeback is already running on the inode. For WB_SYNC_NONE, * that's enough and we can just return. For WB_SYNC_ALL, we * must wait for the existing writeback to complete, then do * writeback again if there's anything left. */ if (wbc->sync_mode != WB_SYNC_ALL) goto out; inode_wait_for_writeback(inode); } WARN_ON(inode->i_state & I_SYNC); /* * If the inode is already fully clean, then there's nothing to do. * * For data-integrity syncs we also need to check whether any pages are * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If * there are any such pages, we'll need to wait for them. */ if (!(inode->i_state & I_DIRTY_ALL) && (wbc->sync_mode != WB_SYNC_ALL || !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) goto out; inode->i_state |= I_SYNC; wbc_attach_and_unlock_inode(wbc, inode); ret = __writeback_single_inode(inode, wbc); wbc_detach_inode(wbc); wb = inode_to_wb_and_lock_list(inode); spin_lock(&inode->i_lock); /* * If the inode is freeing, its i_io_list shoudn't be updated * as it can be finally deleted at this moment. */ if (!(inode->i_state & I_FREEING)) { /* * If the inode is now fully clean, then it can be safely * removed from its writeback list (if any). Otherwise the * flusher threads are responsible for the writeback lists. */ if (!(inode->i_state & I_DIRTY_ALL)) inode_cgwb_move_to_attached(inode, wb); else if (!(inode->i_state & I_SYNC_QUEUED)) { if ((inode->i_state & I_DIRTY)) redirty_tail_locked(inode, wb); else if (inode->i_state & I_DIRTY_TIME) { inode->dirtied_when = jiffies; inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); } } } spin_unlock(&wb->list_lock); inode_sync_complete(inode); out: spin_unlock(&inode->i_lock); return ret; } static long writeback_chunk_size(struct bdi_writeback *wb, struct wb_writeback_work *work) { long pages; /* * WB_SYNC_ALL mode does livelock avoidance by syncing dirty * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX * here avoids calling into writeback_inodes_wb() more than once. * * The intended call sequence for WB_SYNC_ALL writeback is: * * wb_writeback() * writeback_sb_inodes() <== called only once * write_cache_pages() <== called once for each inode * (quickly) tag currently dirty pages * (maybe slowly) sync all tagged pages */ if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) pages = LONG_MAX; else { pages = min(wb->avg_write_bandwidth / 2, global_wb_domain.dirty_limit / DIRTY_SCOPE); pages = min(pages, work->nr_pages); pages = round_down(pages + MIN_WRITEBACK_PAGES, MIN_WRITEBACK_PAGES); } return pages; } /* * Write a portion of b_io inodes which belong to @sb. * * Return the number of pages and/or inodes written. * * NOTE! This is called with wb->list_lock held, and will * unlock and relock that for each inode it ends up doing * IO for. */ static long writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb, struct wb_writeback_work *work) { struct writeback_control wbc = { .sync_mode = work->sync_mode, .tagged_writepages = work->tagged_writepages, .for_kupdate = work->for_kupdate, .for_background = work->for_background, .for_sync = work->for_sync, .range_cyclic = work->range_cyclic, .range_start = 0, .range_end = LLONG_MAX, }; unsigned long start_time = jiffies; long write_chunk; long total_wrote = 0; /* count both pages and inodes */ unsigned long dirtied_before = jiffies; if (work->for_kupdate) dirtied_before = jiffies - msecs_to_jiffies(dirty_expire_interval * 10); while (!list_empty(&wb->b_io)) { struct inode *inode = wb_inode(wb->b_io.prev); struct bdi_writeback *tmp_wb; long wrote; if (inode->i_sb != sb) { if (work->sb) { /* * We only want to write back data for this * superblock, move all inodes not belonging * to it back onto the dirty list. */ redirty_tail(inode, wb); continue; } /* * The inode belongs to a different superblock. * Bounce back to the caller to unpin this and * pin the next superblock. */ break; } /* * Don't bother with new inodes or inodes being freed, first * kind does not need periodic writeout yet, and for the latter * kind writeout is handled by the freer. */ spin_lock(&inode->i_lock); if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { redirty_tail_locked(inode, wb); spin_unlock(&inode->i_lock); continue; } if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { /* * If this inode is locked for writeback and we are not * doing writeback-for-data-integrity, move it to * b_more_io so that writeback can proceed with the * other inodes on s_io. * * We'll have another go at writing back this inode * when we completed a full scan of b_io. */ requeue_io(inode, wb); spin_unlock(&inode->i_lock); trace_writeback_sb_inodes_requeue(inode); continue; } spin_unlock(&wb->list_lock); /* * We already requeued the inode if it had I_SYNC set and we * are doing WB_SYNC_NONE writeback. So this catches only the * WB_SYNC_ALL case. */ if (inode->i_state & I_SYNC) { /* Wait for I_SYNC. This function drops i_lock... */ inode_sleep_on_writeback(inode); /* Inode may be gone, start again */ spin_lock(&wb->list_lock); continue; } inode->i_state |= I_SYNC; wbc_attach_and_unlock_inode(&wbc, inode); write_chunk = writeback_chunk_size(wb, work); wbc.nr_to_write = write_chunk; wbc.pages_skipped = 0; /* * We use I_SYNC to pin the inode in memory. While it is set * evict_inode() will wait so the inode cannot be freed. */ __writeback_single_inode(inode, &wbc); wbc_detach_inode(&wbc); work->nr_pages -= write_chunk - wbc.nr_to_write; wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped; wrote = wrote < 0 ? 0 : wrote; total_wrote += wrote; if (need_resched()) { /* * We're trying to balance between building up a nice * long list of IOs to improve our merge rate, and * getting those IOs out quickly for anyone throttling * in balance_dirty_pages(). cond_resched() doesn't * unplug, so get our IOs out the door before we * give up the CPU. */ blk_flush_plug(current->plug, false); cond_resched(); } /* * Requeue @inode if still dirty. Be careful as @inode may * have been switched to another wb in the meantime. */ tmp_wb = inode_to_wb_and_lock_list(inode); spin_lock(&inode->i_lock); if (!(inode->i_state & I_DIRTY_ALL)) total_wrote++; requeue_inode(inode, tmp_wb, &wbc, dirtied_before); inode_sync_complete(inode); spin_unlock(&inode->i_lock); if (unlikely(tmp_wb != wb)) { spin_unlock(&tmp_wb->list_lock); spin_lock(&wb->list_lock); } /* * bail out to wb_writeback() often enough to check * background threshold and other termination conditions. */ if (total_wrote) { if (time_is_before_jiffies(start_time + HZ / 10UL)) break; if (work->nr_pages <= 0) break; } } return total_wrote; } static long __writeback_inodes_wb(struct bdi_writeback *wb, struct wb_writeback_work *work) { unsigned long start_time = jiffies; long wrote = 0; while (!list_empty(&wb->b_io)) { struct inode *inode = wb_inode(wb->b_io.prev); struct super_block *sb = inode->i_sb; if (!super_trylock_shared(sb)) { /* * super_trylock_shared() may fail consistently due to * s_umount being grabbed by someone else. Don't use * requeue_io() to avoid busy retrying the inode/sb. */ redirty_tail(inode, wb); continue; } wrote += writeback_sb_inodes(sb, wb, work); up_read(&sb->s_umount); /* refer to the same tests at the end of writeback_sb_inodes */ if (wrote) { if (time_is_before_jiffies(start_time + HZ / 10UL)) break; if (work->nr_pages <= 0) break; } } /* Leave any unwritten inodes on b_io */ return wrote; } static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, enum wb_reason reason) { struct wb_writeback_work work = { .nr_pages = nr_pages, .sync_mode = WB_SYNC_NONE, .range_cyclic = 1, .reason = reason, }; struct blk_plug plug; blk_start_plug(&plug); spin_lock(&wb->list_lock); if (list_empty(&wb->b_io)) queue_io(wb, &work, jiffies); __writeback_inodes_wb(wb, &work); spin_unlock(&wb->list_lock); blk_finish_plug(&plug); return nr_pages - work.nr_pages; } /* * Explicit flushing or periodic writeback of "old" data. * * Define "old": the first time one of an inode's pages is dirtied, we mark the * dirtying-time in the inode's address_space. So this periodic writeback code * just walks the superblock inode list, writing back any inodes which are * older than a specific point in time. * * Try to run once per dirty_writeback_interval. But if a writeback event * takes longer than a dirty_writeback_interval interval, then leave a * one-second gap. * * dirtied_before takes precedence over nr_to_write. So we'll only write back * all dirty pages if they are all attached to "old" mappings. */ static long wb_writeback(struct bdi_writeback *wb, struct wb_writeback_work *work) { long nr_pages = work->nr_pages; unsigned long dirtied_before = jiffies; struct inode *inode; long progress; struct blk_plug plug; bool queued = false; blk_start_plug(&plug); for (;;) { /* * Stop writeback when nr_pages has been consumed */ if (work->nr_pages <= 0) break; /* * Background writeout and kupdate-style writeback may * run forever. Stop them if there is other work to do * so that e.g. sync can proceed. They'll be restarted * after the other works are all done. */ if ((work->for_background || work->for_kupdate) && !list_empty(&wb->work_list)) break; /* * For background writeout, stop when we are below the * background dirty threshold */ if (work->for_background && !wb_over_bg_thresh(wb)) break; spin_lock(&wb->list_lock); trace_writeback_start(wb, work); if (list_empty(&wb->b_io)) { /* * Kupdate and background works are special and we want * to include all inodes that need writing. Livelock * avoidance is handled by these works yielding to any * other work so we are safe. */ if (work->for_kupdate) { dirtied_before = jiffies - msecs_to_jiffies(dirty_expire_interval * 10); } else if (work->for_background) dirtied_before = jiffies; queue_io(wb, work, dirtied_before); queued = true; } if (work->sb) progress = writeback_sb_inodes(work->sb, wb, work); else progress = __writeback_inodes_wb(wb, work); trace_writeback_written(wb, work); /* * Did we write something? Try for more * * Dirty inodes are moved to b_io for writeback in batches. * The completion of the current batch does not necessarily * mean the overall work is done. So we keep looping as long * as made some progress on cleaning pages or inodes. */ if (progress || !queued) { spin_unlock(&wb->list_lock); continue; } /* * No more inodes for IO, bail */ if (list_empty(&wb->b_more_io)) { spin_unlock(&wb->list_lock); break; } /* * Nothing written. Wait for some inode to * become available for writeback. Otherwise * we'll just busyloop. */ trace_writeback_wait(wb, work); inode = wb_inode(wb->b_more_io.prev); spin_lock(&inode->i_lock); spin_unlock(&wb->list_lock); /* This function drops i_lock... */ inode_sleep_on_writeback(inode); } blk_finish_plug(&plug); return nr_pages - work->nr_pages; } /* * Return the next wb_writeback_work struct that hasn't been processed yet. */ static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) { struct wb_writeback_work *work = NULL; spin_lock_irq(&wb->work_lock); if (!list_empty(&wb->work_list)) { work = list_entry(wb->work_list.next, struct wb_writeback_work, list); list_del_init(&work->list); } spin_unlock_irq(&wb->work_lock); return work; } static long wb_check_background_flush(struct bdi_writeback *wb) { if (wb_over_bg_thresh(wb)) { struct wb_writeback_work work = { .nr_pages = LONG_MAX, .sync_mode = WB_SYNC_NONE, .for_background = 1, .range_cyclic = 1, .reason = WB_REASON_BACKGROUND, }; return wb_writeback(wb, &work); } return 0; } static long wb_check_old_data_flush(struct bdi_writeback *wb) { unsigned long expired; long nr_pages; /* * When set to zero, disable periodic writeback */ if (!dirty_writeback_interval) return 0; expired = wb->last_old_flush + msecs_to_jiffies(dirty_writeback_interval * 10); if (time_before(jiffies, expired)) return 0; wb->last_old_flush = jiffies; nr_pages = get_nr_dirty_pages(); if (nr_pages) { struct wb_writeback_work work = { .nr_pages = nr_pages, .sync_mode = WB_SYNC_NONE, .for_kupdate = 1, .range_cyclic = 1, .reason = WB_REASON_PERIODIC, }; return wb_writeback(wb, &work); } return 0; } static long wb_check_start_all(struct bdi_writeback *wb) { long nr_pages; if (!test_bit(WB_start_all, &wb->state)) return 0; nr_pages = get_nr_dirty_pages(); if (nr_pages) { struct wb_writeback_work work = { .nr_pages = wb_split_bdi_pages(wb, nr_pages), .sync_mode = WB_SYNC_NONE, .range_cyclic = 1, .reason = wb->start_all_reason, }; nr_pages = wb_writeback(wb, &work); } clear_bit(WB_start_all, &wb->state); return nr_pages; } /* * Retrieve work items and do the writeback they describe */ static long wb_do_writeback(struct bdi_writeback *wb) { struct wb_writeback_work *work; long wrote = 0; set_bit(WB_writeback_running, &wb->state); while ((work = get_next_work_item(wb)) != NULL) { trace_writeback_exec(wb, work); wrote += wb_writeback(wb, work); finish_writeback_work(work); } /* * Check for a flush-everything request */ wrote += wb_check_start_all(wb); /* * Check for periodic writeback, kupdated() style */ wrote += wb_check_old_data_flush(wb); wrote += wb_check_background_flush(wb); clear_bit(WB_writeback_running, &wb->state); return wrote; } /* * Handle writeback of dirty data for the device backed by this bdi. Also * reschedules periodically and does kupdated style flushing. */ void wb_workfn(struct work_struct *work) { struct bdi_writeback *wb = container_of(to_delayed_work(work), struct bdi_writeback, dwork); long pages_written; set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); if (likely(!current_is_workqueue_rescuer() || !test_bit(WB_registered, &wb->state))) { /* * The normal path. Keep writing back @wb until its * work_list is empty. Note that this path is also taken * if @wb is shutting down even when we're running off the * rescuer as work_list needs to be drained. */ do { pages_written = wb_do_writeback(wb); trace_writeback_pages_written(pages_written); } while (!list_empty(&wb->work_list)); } else { /* * bdi_wq can't get enough workers and we're running off * the emergency worker. Don't hog it. Hopefully, 1024 is * enough for efficient IO. */ pages_written = writeback_inodes_wb(wb, 1024, WB_REASON_FORKER_THREAD); trace_writeback_pages_written(pages_written); } if (!list_empty(&wb->work_list)) wb_wakeup(wb); else if (wb_has_dirty_io(wb) && dirty_writeback_interval) wb_wakeup_delayed(wb); } /* * Start writeback of all dirty pages on this bdi. */ static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, enum wb_reason reason) { struct bdi_writeback *wb; if (!bdi_has_dirty_io(bdi)) return; list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) wb_start_writeback(wb, reason); } void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, enum wb_reason reason) { rcu_read_lock(); __wakeup_flusher_threads_bdi(bdi, reason); rcu_read_unlock(); } /* * Wakeup the flusher threads to start writeback of all currently dirty pages */ void wakeup_flusher_threads(enum wb_reason reason) { struct backing_dev_info *bdi; /* * If we are expecting writeback progress we must submit plugged IO. */ blk_flush_plug(current->plug, true); rcu_read_lock(); list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) __wakeup_flusher_threads_bdi(bdi, reason); rcu_read_unlock(); } /* * Wake up bdi's periodically to make sure dirtytime inodes gets * written back periodically. We deliberately do *not* check the * b_dirtytime list in wb_has_dirty_io(), since this would cause the * kernel to be constantly waking up once there are any dirtytime * inodes on the system. So instead we define a separate delayed work * function which gets called much more rarely. (By default, only * once every 12 hours.) * * If there is any other write activity going on in the file system, * this function won't be necessary. But if the only thing that has * happened on the file system is a dirtytime inode caused by an atime * update, we need this infrastructure below to make sure that inode * eventually gets pushed out to disk. */ static void wakeup_dirtytime_writeback(struct work_struct *w); static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); static void wakeup_dirtytime_writeback(struct work_struct *w) { struct backing_dev_info *bdi; rcu_read_lock(); list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { struct bdi_writeback *wb; list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) if (!list_empty(&wb->b_dirty_time)) wb_wakeup(wb); } rcu_read_unlock(); schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); } static int dirtytime_interval_handler(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { int ret; ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); if (ret == 0 && write) mod_delayed_work(system_wq, &dirtytime_work, 0); return ret; } static const struct ctl_table vm_fs_writeback_table[] = { { .procname = "dirtytime_expire_seconds", .data = &dirtytime_expire_interval, .maxlen = sizeof(dirtytime_expire_interval), .mode = 0644, .proc_handler = dirtytime_interval_handler, .extra1 = SYSCTL_ZERO, }, }; static int __init start_dirtytime_writeback(void) { schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); register_sysctl_init("vm", vm_fs_writeback_table); return 0; } __initcall(start_dirtytime_writeback); /** * __mark_inode_dirty - internal function to mark an inode dirty * * @inode: inode to mark * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined * with I_DIRTY_PAGES. * * Mark an inode as dirty. We notify the filesystem, then update the inode's * dirty flags. Then, if needed we add the inode to the appropriate dirty list. * * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync() * instead of calling this directly. * * CAREFUL! We only add the inode to the dirty list if it is hashed or if it * refers to a blockdev. Unhashed inodes will never be added to the dirty list * even if they are later hashed, as they will have been marked dirty already. * * In short, ensure you hash any inodes _before_ you start marking them dirty. * * Note that for blockdevs, inode->dirtied_when represents the dirtying time of * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of * the kernel-internal blockdev inode represents the dirtying time of the * blockdev's pages. This is why for I_DIRTY_PAGES we always use * page->mapping->host, so the page-dirtying time is recorded in the internal * blockdev inode. */ void __mark_inode_dirty(struct inode *inode, int flags) { struct super_block *sb = inode->i_sb; int dirtytime = 0; struct bdi_writeback *wb = NULL; trace_writeback_mark_inode_dirty(inode, flags); if (flags & I_DIRTY_INODE) { /* * Inode timestamp update will piggback on this dirtying. * We tell ->dirty_inode callback that timestamps need to * be updated by setting I_DIRTY_TIME in flags. */ if (inode->i_state & I_DIRTY_TIME) { spin_lock(&inode->i_lock); if (inode->i_state & I_DIRTY_TIME) { inode->i_state &= ~I_DIRTY_TIME; flags |= I_DIRTY_TIME; } spin_unlock(&inode->i_lock); } /* * Notify the filesystem about the inode being dirtied, so that * (if needed) it can update on-disk fields and journal the * inode. This is only needed when the inode itself is being * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not * for just I_DIRTY_PAGES or I_DIRTY_TIME. */ trace_writeback_dirty_inode_start(inode, flags); if (sb->s_op->dirty_inode) sb->s_op->dirty_inode(inode, flags & (I_DIRTY_INODE | I_DIRTY_TIME)); trace_writeback_dirty_inode(inode, flags); /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ flags &= ~I_DIRTY_TIME; } else { /* * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing. * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME * in one call to __mark_inode_dirty().) */ dirtytime = flags & I_DIRTY_TIME; WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME); } /* * Paired with smp_mb() in __writeback_single_inode() for the * following lockless i_state test. See there for details. */ smp_mb(); if ((inode->i_state & flags) == flags) return; spin_lock(&inode->i_lock); if ((inode->i_state & flags) != flags) { const int was_dirty = inode->i_state & I_DIRTY; inode_attach_wb(inode, NULL); inode->i_state |= flags; /* * Grab inode's wb early because it requires dropping i_lock and we * need to make sure following checks happen atomically with dirty * list handling so that we don't move inodes under flush worker's * hands. */ if (!was_dirty) { wb = locked_inode_to_wb_and_lock_list(inode); spin_lock(&inode->i_lock); } /* * If the inode is queued for writeback by flush worker, just * update its dirty state. Once the flush worker is done with * the inode it will place it on the appropriate superblock * list, based upon its state. */ if (inode->i_state & I_SYNC_QUEUED) goto out_unlock; /* * Only add valid (hashed) inodes to the superblock's * dirty list. Add blockdev inodes as well. */ if (!S_ISBLK(inode->i_mode)) { if (inode_unhashed(inode)) goto out_unlock; } if (inode->i_state & I_FREEING) goto out_unlock; /* * If the inode was already on b_dirty/b_io/b_more_io, don't * reposition it (that would break b_dirty time-ordering). */ if (!was_dirty) { struct list_head *dirty_list; bool wakeup_bdi = false; inode->dirtied_when = jiffies; if (dirtytime) inode->dirtied_time_when = jiffies; if (inode->i_state & I_DIRTY) dirty_list = &wb->b_dirty; else dirty_list = &wb->b_dirty_time; wakeup_bdi = inode_io_list_move_locked(inode, wb, dirty_list); spin_unlock(&wb->list_lock); spin_unlock(&inode->i_lock); trace_writeback_dirty_inode_enqueue(inode); /* * If this is the first dirty inode for this bdi, * we have to wake-up the corresponding bdi thread * to make sure background write-back happens * later. */ if (wakeup_bdi && (wb->bdi->capabilities & BDI_CAP_WRITEBACK)) wb_wakeup_delayed(wb); return; } } out_unlock: if (wb) spin_unlock(&wb->list_lock); spin_unlock(&inode->i_lock); } EXPORT_SYMBOL(__mark_inode_dirty); /* * The @s_sync_lock is used to serialise concurrent sync operations * to avoid lock contention problems with concurrent wait_sb_inodes() calls. * Concurrent callers will block on the s_sync_lock rather than doing contending * walks. The queueing maintains sync(2) required behaviour as all the IO that * has been issued up to the time this function is enter is guaranteed to be * completed by the time we have gained the lock and waited for all IO that is * in progress regardless of the order callers are granted the lock. */ static void wait_sb_inodes(struct super_block *sb) { LIST_HEAD(sync_list); /* * We need to be protected against the filesystem going from * r/o to r/w or vice versa. */ WARN_ON(!rwsem_is_locked(&sb->s_umount)); mutex_lock(&sb->s_sync_lock); /* * Splice the writeback list onto a temporary list to avoid waiting on * inodes that have started writeback after this point. * * Use rcu_read_lock() to keep the inodes around until we have a * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as * the local list because inodes can be dropped from either by writeback * completion. */ rcu_read_lock(); spin_lock_irq(&sb->s_inode_wblist_lock); list_splice_init(&sb->s_inodes_wb, &sync_list); /* * Data integrity sync. Must wait for all pages under writeback, because * there may have been pages dirtied before our sync call, but which had * writeout started before we write it out. In which case, the inode * may not be on the dirty list, but we still have to wait for that * writeout. */ while (!list_empty(&sync_list)) { struct inode *inode = list_first_entry(&sync_list, struct inode, i_wb_list); struct address_space *mapping = inode->i_mapping; /* * Move each inode back to the wb list before we drop the lock * to preserve consistency between i_wb_list and the mapping * writeback tag. Writeback completion is responsible to remove * the inode from either list once the writeback tag is cleared. */ list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); /* * The mapping can appear untagged while still on-list since we * do not have the mapping lock. Skip it here, wb completion * will remove it. */ if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) continue; spin_unlock_irq(&sb->s_inode_wblist_lock); spin_lock(&inode->i_lock); if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { spin_unlock(&inode->i_lock); spin_lock_irq(&sb->s_inode_wblist_lock); continue; } __iget(inode); spin_unlock(&inode->i_lock); rcu_read_unlock(); /* * We keep the error status of individual mapping so that * applications can catch the writeback error using fsync(2). * See filemap_fdatawait_keep_errors() for details. */ filemap_fdatawait_keep_errors(mapping); cond_resched(); iput(inode); rcu_read_lock(); spin_lock_irq(&sb->s_inode_wblist_lock); } spin_unlock_irq(&sb->s_inode_wblist_lock); rcu_read_unlock(); mutex_unlock(&sb->s_sync_lock); } static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, enum wb_reason reason, bool skip_if_busy) { struct backing_dev_info *bdi = sb->s_bdi; DEFINE_WB_COMPLETION(done, bdi); struct wb_writeback_work work = { .sb = sb, .sync_mode = WB_SYNC_NONE, .tagged_writepages = 1, .done = &done, .nr_pages = nr, .reason = reason, }; if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) return; WARN_ON(!rwsem_is_locked(&sb->s_umount)); bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); wb_wait_for_completion(&done); } /** * writeback_inodes_sb_nr - writeback dirty inodes from given super_block * @sb: the superblock * @nr: the number of pages to write * @reason: reason why some writeback work initiated * * Start writeback on some inodes on this super_block. No guarantees are made * on how many (if any) will be written, and this function does not wait * for IO completion of submitted IO. */ void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, enum wb_reason reason) { __writeback_inodes_sb_nr(sb, nr, reason, false); } EXPORT_SYMBOL(writeback_inodes_sb_nr); /** * writeback_inodes_sb - writeback dirty inodes from given super_block * @sb: the superblock * @reason: reason why some writeback work was initiated * * Start writeback on some inodes on this super_block. No guarantees are made * on how many (if any) will be written, and this function does not wait * for IO completion of submitted IO. */ void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) { writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); } EXPORT_SYMBOL(writeback_inodes_sb); /** * try_to_writeback_inodes_sb - try to start writeback if none underway * @sb: the superblock * @reason: reason why some writeback work was initiated * * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. */ void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) { if (!down_read_trylock(&sb->s_umount)) return; __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); up_read(&sb->s_umount); } EXPORT_SYMBOL(try_to_writeback_inodes_sb); /** * sync_inodes_sb - sync sb inode pages * @sb: the superblock * * This function writes and waits on any dirty inode belonging to this * super_block. */ void sync_inodes_sb(struct super_block *sb) { struct backing_dev_info *bdi = sb->s_bdi; DEFINE_WB_COMPLETION(done, bdi); struct wb_writeback_work work = { .sb = sb, .sync_mode = WB_SYNC_ALL, .nr_pages = LONG_MAX, .range_cyclic = 0, .done = &done, .reason = WB_REASON_SYNC, .for_sync = 1, }; /* * Can't skip on !bdi_has_dirty() because we should wait for !dirty * inodes under writeback and I_DIRTY_TIME inodes ignored by * bdi_has_dirty() need to be written out too. */ if (bdi == &noop_backing_dev_info) return; WARN_ON(!rwsem_is_locked(&sb->s_umount)); /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ bdi_down_write_wb_switch_rwsem(bdi); bdi_split_work_to_wbs(bdi, &work, false); wb_wait_for_completion(&done); bdi_up_write_wb_switch_rwsem(bdi); wait_sb_inodes(sb); } EXPORT_SYMBOL(sync_inodes_sb); /** * write_inode_now - write an inode to disk * @inode: inode to write to disk * @sync: whether the write should be synchronous or not * * This function commits an inode to disk immediately if it is dirty. This is * primarily needed by knfsd. * * The caller must either have a ref on the inode or must have set I_WILL_FREE. */ int write_inode_now(struct inode *inode, int sync) { struct writeback_control wbc = { .nr_to_write = LONG_MAX, .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, .range_start = 0, .range_end = LLONG_MAX, }; if (!mapping_can_writeback(inode->i_mapping)) wbc.nr_to_write = 0; might_sleep(); return writeback_single_inode(inode, &wbc); } EXPORT_SYMBOL(write_inode_now); /** * sync_inode_metadata - write an inode to disk * @inode: the inode to sync * @wait: wait for I/O to complete. * * Write an inode to disk and adjust its dirty state after completion. * * Note: only writes the actual inode, no associated data or other metadata. */ int sync_inode_metadata(struct inode *inode, int wait) { struct writeback_control wbc = { .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, .nr_to_write = 0, /* metadata-only */ }; return writeback_single_inode(inode, &wbc); } EXPORT_SYMBOL(sync_inode_metadata); |
105 91 92 92 105 110 8 7 6 1 8 6 6 6 4 4 4 2 2 4 16 13 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | // SPDX-License-Identifier: GPL-2.0-or-later /* user_defined.c: user defined key type * * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #include <linux/export.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/seq_file.h> #include <linux/err.h> #include <keys/user-type.h> #include <linux/uaccess.h> #include "internal.h" static int logon_vet_description(const char *desc); /* * user defined keys take an arbitrary string as the description and an * arbitrary blob of data as the payload */ struct key_type key_type_user = { .name = "user", .preparse = user_preparse, .free_preparse = user_free_preparse, .instantiate = generic_key_instantiate, .update = user_update, .revoke = user_revoke, .destroy = user_destroy, .describe = user_describe, .read = user_read, }; EXPORT_SYMBOL_GPL(key_type_user); /* * This key type is essentially the same as key_type_user, but it does * not define a .read op. This is suitable for storing username and * password pairs in the keyring that you do not want to be readable * from userspace. */ struct key_type key_type_logon = { .name = "logon", .preparse = user_preparse, .free_preparse = user_free_preparse, .instantiate = generic_key_instantiate, .update = user_update, .revoke = user_revoke, .destroy = user_destroy, .describe = user_describe, .vet_description = logon_vet_description, }; EXPORT_SYMBOL_GPL(key_type_logon); /* * Preparse a user defined key payload */ int user_preparse(struct key_preparsed_payload *prep) { struct user_key_payload *upayload; size_t datalen = prep->datalen; if (datalen <= 0 || datalen > 32767 || !prep->data) return -EINVAL; upayload = kmalloc(sizeof(*upayload) + datalen, GFP_KERNEL); if (!upayload) return -ENOMEM; /* attach the data */ prep->quotalen = datalen; prep->payload.data[0] = upayload; upayload->datalen = datalen; memcpy(upayload->data, prep->data, datalen); return 0; } EXPORT_SYMBOL_GPL(user_preparse); /* * Free a preparse of a user defined key payload */ void user_free_preparse(struct key_preparsed_payload *prep) { kfree_sensitive(prep->payload.data[0]); } EXPORT_SYMBOL_GPL(user_free_preparse); static void user_free_payload_rcu(struct rcu_head *head) { struct user_key_payload *payload; payload = container_of(head, struct user_key_payload, rcu); kfree_sensitive(payload); } /* * update a user defined key * - the key's semaphore is write-locked */ int user_update(struct key *key, struct key_preparsed_payload *prep) { struct user_key_payload *zap = NULL; int ret; /* check the quota and attach the new data */ ret = key_payload_reserve(key, prep->datalen); if (ret < 0) return ret; /* attach the new data, displacing the old */ key->expiry = prep->expiry; if (key_is_positive(key)) zap = dereference_key_locked(key); rcu_assign_keypointer(key, prep->payload.data[0]); prep->payload.data[0] = NULL; if (zap) call_rcu(&zap->rcu, user_free_payload_rcu); return ret; } EXPORT_SYMBOL_GPL(user_update); /* * dispose of the links from a revoked keyring * - called with the key sem write-locked */ void user_revoke(struct key *key) { struct user_key_payload *upayload = user_key_payload_locked(key); /* clear the quota */ key_payload_reserve(key, 0); if (upayload) { rcu_assign_keypointer(key, NULL); call_rcu(&upayload->rcu, user_free_payload_rcu); } } EXPORT_SYMBOL(user_revoke); /* * dispose of the data dangling from the corpse of a user key */ void user_destroy(struct key *key) { struct user_key_payload *upayload = key->payload.data[0]; kfree_sensitive(upayload); } EXPORT_SYMBOL_GPL(user_destroy); /* * describe the user key */ void user_describe(const struct key *key, struct seq_file *m) { seq_puts(m, key->description); if (key_is_positive(key)) seq_printf(m, ": %u", key->datalen); } EXPORT_SYMBOL_GPL(user_describe); /* * read the key data * - the key's semaphore is read-locked */ long user_read(const struct key *key, char *buffer, size_t buflen) { const struct user_key_payload *upayload; long ret; upayload = user_key_payload_locked(key); ret = upayload->datalen; /* we can return the data as is */ if (buffer && buflen > 0) { if (buflen > upayload->datalen) buflen = upayload->datalen; memcpy(buffer, upayload->data, buflen); } return ret; } EXPORT_SYMBOL_GPL(user_read); /* Vet the description for a "logon" key */ static int logon_vet_description(const char *desc) { char *p; /* require a "qualified" description string */ p = strchr(desc, ':'); if (!p) return -EINVAL; /* also reject description with ':' as first char */ if (p == desc) return -EINVAL; return 0; } |
2 2 2 2 2 2 2 2 1 2 2 1 1 2 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 | // SPDX-License-Identifier: GPL-2.0-or-later /* * SPCA501 chip based cameras initialization data * * V4L2 by Jean-Francois Moine <http://moinejf.free.fr> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #define MODULE_NAME "spca501" #include "gspca.h" MODULE_AUTHOR("Michel Xhaard <mxhaard@users.sourceforge.net>"); MODULE_DESCRIPTION("GSPCA/SPCA501 USB Camera Driver"); MODULE_LICENSE("GPL"); /* specific webcam descriptor */ struct sd { struct gspca_dev gspca_dev; /* !! must be the first item */ unsigned short contrast; __u8 brightness; __u8 colors; __u8 blue_balance; __u8 red_balance; char subtype; #define Arowana300KCMOSCamera 0 #define IntelCreateAndShare 1 #define KodakDVC325 2 #define MystFromOriUnknownCamera 3 #define SmileIntlCamera 4 #define ThreeComHomeConnectLite 5 #define ViewQuestM318B 6 }; static const struct v4l2_pix_format vga_mode[] = { {160, 120, V4L2_PIX_FMT_SPCA501, V4L2_FIELD_NONE, .bytesperline = 160, .sizeimage = 160 * 120 * 3 / 2, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 2}, {320, 240, V4L2_PIX_FMT_SPCA501, V4L2_FIELD_NONE, .bytesperline = 320, .sizeimage = 320 * 240 * 3 / 2, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 1}, {640, 480, V4L2_PIX_FMT_SPCA501, V4L2_FIELD_NONE, .bytesperline = 640, .sizeimage = 640 * 480 * 3 / 2, .colorspace = V4L2_COLORSPACE_SRGB, .priv = 0}, }; #define SPCA50X_REG_USB 0x2 /* spca505 501 */ /* * Data to initialize a SPCA501. From a capture file provided by Bill Roehl * With SPCA501 chip description */ #define CCDSP_SET /* set CCDSP parameters */ #define TG_SET /* set time generator set */ #undef DSPWIN_SET /* set DSP windows parameters */ #undef ALTER_GAMA /* Set alternate set to YUV transform coeffs. */ #define SPCA501_SNAPBIT 0x80 #define SPCA501_SNAPCTRL 0x10 /* Frame packet header offsets for the spca501 */ #define SPCA501_OFFSET_GPIO 1 #define SPCA501_OFFSET_TYPE 2 #define SPCA501_OFFSET_TURN3A 3 #define SPCA501_OFFSET_FRAMSEQ 4 #define SPCA501_OFFSET_COMPRESS 5 #define SPCA501_OFFSET_QUANT 6 #define SPCA501_OFFSET_QUANT2 7 #define SPCA501_OFFSET_DATA 8 #define SPCA501_PROP_COMP_ENABLE(d) ((d) & 1) #define SPCA501_PROP_SNAP(d) ((d) & 0x40) #define SPCA501_PROP_SNAP_CTRL(d) ((d) & 0x10) #define SPCA501_PROP_COMP_THRESH(d) (((d) & 0x0e) >> 1) #define SPCA501_PROP_COMP_QUANT(d) (((d) & 0x70) >> 4) /* SPCA501 CCDSP control */ #define SPCA501_REG_CCDSP 0x01 /* SPCA501 control/status registers */ #define SPCA501_REG_CTLRL 0x02 /* registers for color correction and YUV transformation */ #define SPCA501_A11 0x08 #define SPCA501_A12 0x09 #define SPCA501_A13 0x0A #define SPCA501_A21 0x0B #define SPCA501_A22 0x0C #define SPCA501_A23 0x0D #define SPCA501_A31 0x0E #define SPCA501_A32 0x0F #define SPCA501_A33 0x10 /* Data for video camera initialization before capturing */ static const __u16 spca501_open_data[][3] = { /* bmRequest,value,index */ {0x2, 0x50, 0x00}, /* C/S enable soft reset */ {0x2, 0x40, 0x00}, /* C/S disable soft reset */ {0x2, 0x02, 0x05}, /* C/S general purpose I/O data */ {0x2, 0x03, 0x05}, /* C/S general purpose I/O data */ #ifdef CCDSP_SET {0x1, 0x38, 0x01}, /* CCDSP options */ {0x1, 0x05, 0x02}, /* CCDSP Optical black level for user settings */ {0x1, 0xC0, 0x03}, /* CCDSP Optical black settings */ {0x1, 0x67, 0x07}, {0x1, 0x63, 0x3f}, /* CCDSP CCD gamma enable */ {0x1, 0x03, 0x56}, /* Add gamma correction */ {0x1, 0xFF, 0x15}, /* CCDSP High luminance for white balance */ {0x1, 0x01, 0x16}, /* CCDSP Low luminance for white balance */ /* Color correction and RGB-to-YUV transformation coefficients changing */ #ifdef ALTER_GAMA {0x0, 0x00, 0x08}, /* A11 */ {0x0, 0x00, 0x09}, /* A12 */ {0x0, 0x90, 0x0A}, /* A13 */ {0x0, 0x12, 0x0B}, /* A21 */ {0x0, 0x00, 0x0C}, /* A22 */ {0x0, 0x00, 0x0D}, /* A23 */ {0x0, 0x00, 0x0E}, /* A31 */ {0x0, 0x02, 0x0F}, /* A32 */ {0x0, 0x00, 0x10}, /* A33 */ #else {0x1, 0x2a, 0x08}, /* A11 0x31 */ {0x1, 0xf8, 0x09}, /* A12 f8 */ {0x1, 0xf8, 0x0A}, /* A13 f8 */ {0x1, 0xf8, 0x0B}, /* A21 f8 */ {0x1, 0x14, 0x0C}, /* A22 0x14 */ {0x1, 0xf8, 0x0D}, /* A23 f8 */ {0x1, 0xf8, 0x0E}, /* A31 f8 */ {0x1, 0xf8, 0x0F}, /* A32 f8 */ {0x1, 0x20, 0x10}, /* A33 0x20 */ #endif {0x1, 0x00, 0x11}, /* R offset */ {0x1, 0x00, 0x12}, /* G offset */ {0x1, 0x00, 0x13}, /* B offset */ {0x1, 0x00, 0x14}, /* GB offset */ #endif #ifdef TG_SET /* Time generator manipulations */ {0x0, 0xfc, 0x0}, /* Set up high bits of shutter speed */ {0x0, 0x01, 0x1}, /* Set up low bits of shutter speed */ {0x0, 0xe4, 0x04}, /* DCLK*2 clock phase adjustment */ {0x0, 0x08, 0x05}, /* ADCK phase adjustment, inv. ext. VB */ {0x0, 0x03, 0x06}, /* FR phase adjustment */ {0x0, 0x01, 0x07}, /* FCDS phase adjustment */ {0x0, 0x39, 0x08}, /* FS phase adjustment */ {0x0, 0x88, 0x0a}, /* FH1 phase and delay adjustment */ {0x0, 0x03, 0x0f}, /* pixel identification */ {0x0, 0x00, 0x11}, /* clock source selection (default) */ /*VERY strange manipulations with * select DMCLP or OBPX to be ADCLP output (0x0C) * OPB always toggle or not (0x0D) but they allow * us to set up brightness */ {0x0, 0x01, 0x0c}, {0x0, 0xe0, 0x0d}, /* Done */ #endif #ifdef DSPWIN_SET {0x1, 0xa0, 0x01}, /* Setting image processing parameters */ {0x1, 0x1c, 0x17}, /* Changing Windows positions X1 */ {0x1, 0xe2, 0x19}, /* X2 */ {0x1, 0x1c, 0x1b}, /* X3 */ {0x1, 0xe2, 0x1d}, /* X4 */ {0x1, 0x5f, 0x1f}, /* X5 */ {0x1, 0x32, 0x20}, /* Y5 */ {0x1, 0x01, 0x10}, /* Changing A33 */ #endif {0x2, 0x204a, 0x07},/* Setting video compression & resolution 160x120 */ {0x2, 0x94, 0x06}, /* Setting video no compression */ {} }; /* The SPCAxxx docs from Sunplus document these values in tables, one table per register number. In the data below, dmRequest is the register number, index is the Addr, and value is a combination of Bit values. Bit Value (hex) 0 01 1 02 2 04 3 08 4 10 5 20 6 40 7 80 */ /* Data for chip initialization (set default values) */ static const __u16 spca501_init_data[][3] = { /* Set all the values to powerup defaults */ /* bmRequest,value,index */ {0x0, 0xAA, 0x00}, {0x0, 0x02, 0x01}, {0x0, 0x01, 0x02}, {0x0, 0x02, 0x03}, {0x0, 0xCE, 0x04}, {0x0, 0x00, 0x05}, {0x0, 0x00, 0x06}, {0x0, 0x00, 0x07}, {0x0, 0x00, 0x08}, {0x0, 0x00, 0x09}, {0x0, 0x90, 0x0A}, {0x0, 0x12, 0x0B}, {0x0, 0x00, 0x0C}, {0x0, 0x00, 0x0D}, {0x0, 0x00, 0x0E}, {0x0, 0x02, 0x0F}, {0x0, 0x00, 0x10}, {0x0, 0x00, 0x11}, {0x0, 0x00, 0x12}, {0x0, 0x00, 0x13}, {0x0, 0x00, 0x14}, {0x0, 0x00, 0x15}, {0x0, 0x00, 0x16}, {0x0, 0x00, 0x17}, {0x0, 0x00, 0x18}, {0x0, 0x00, 0x19}, {0x0, 0x00, 0x1A}, {0x0, 0x00, 0x1B}, {0x0, 0x00, 0x1C}, {0x0, 0x00, 0x1D}, {0x0, 0x00, 0x1E}, {0x0, 0x00, 0x1F}, {0x0, 0x00, 0x20}, {0x0, 0x00, 0x21}, {0x0, 0x00, 0x22}, {0x0, 0x00, 0x23}, {0x0, 0x00, 0x24}, {0x0, 0x00, 0x25}, {0x0, 0x00, 0x26}, {0x0, 0x00, 0x27}, {0x0, 0x00, 0x28}, {0x0, 0x00, 0x29}, {0x0, 0x00, 0x2A}, {0x0, 0x00, 0x2B}, {0x0, 0x00, 0x2C}, {0x0, 0x00, 0x2D}, {0x0, 0x00, 0x2E}, {0x0, 0x00, 0x2F}, {0x0, 0x00, 0x30}, {0x0, 0x00, 0x31}, {0x0, 0x00, 0x32}, {0x0, 0x00, 0x33}, {0x0, 0x00, 0x34}, {0x0, 0x00, 0x35}, {0x0, 0x00, 0x36}, {0x0, 0x00, 0x37}, {0x0, 0x00, 0x38}, {0x0, 0x00, 0x39}, {0x0, 0x00, 0x3A}, {0x0, 0x00, 0x3B}, {0x0, 0x00, 0x3C}, {0x0, 0x00, 0x3D}, {0x0, 0x00, 0x3E}, {0x0, 0x00, 0x3F}, {0x0, 0x00, 0x40}, {0x0, 0x00, 0x41}, {0x0, 0x00, 0x42}, {0x0, 0x00, 0x43}, {0x0, 0x00, 0x44}, {0x0, 0x00, 0x45}, {0x0, 0x00, 0x46}, {0x0, 0x00, 0x47}, {0x0, 0x00, 0x48}, {0x0, 0x00, 0x49}, {0x0, 0x00, 0x4A}, {0x0, 0x00, 0x4B}, {0x0, 0x00, 0x4C}, {0x0, 0x00, 0x4D}, {0x0, 0x00, 0x4E}, {0x0, 0x00, 0x4F}, {0x0, 0x00, 0x50}, {0x0, 0x00, 0x51}, {0x0, 0x00, 0x52}, {0x0, 0x00, 0x53}, {0x0, 0x00, 0x54}, {0x0, 0x00, 0x55}, {0x0, 0x00, 0x56}, {0x0, 0x00, 0x57}, {0x0, 0x00, 0x58}, {0x0, 0x00, 0x59}, {0x0, 0x00, 0x5A}, {0x0, 0x00, 0x5B}, {0x0, 0x00, 0x5C}, {0x0, 0x00, 0x5D}, {0x0, 0x00, 0x5E}, {0x0, 0x00, 0x5F}, {0x0, 0x00, 0x60}, {0x0, 0x00, 0x61}, {0x0, 0x00, 0x62}, {0x0, 0x00, 0x63}, {0x0, 0x00, 0x64}, {0x0, 0x00, 0x65}, {0x0, 0x00, 0x66}, {0x0, 0x00, 0x67}, {0x0, 0x00, 0x68}, {0x0, 0x00, 0x69}, {0x0, 0x00, 0x6A}, {0x0, 0x00, 0x6B}, {0x0, 0x00, 0x6C}, {0x0, 0x00, 0x6D}, {0x0, 0x00, 0x6E}, {0x0, 0x00, 0x6F}, {0x0, 0x00, 0x70}, {0x0, 0x00, 0x71}, {0x0, 0x00, 0x72}, {0x0, 0x00, 0x73}, {0x0, 0x00, 0x74}, {0x0, 0x00, 0x75}, {0x0, 0x00, 0x76}, {0x0, 0x00, 0x77}, {0x0, 0x00, 0x78}, {0x0, 0x00, 0x79}, {0x0, 0x00, 0x7A}, {0x0, 0x00, 0x7B}, {0x0, 0x00, 0x7C}, {0x0, 0x00, 0x7D}, {0x0, 0x00, 0x7E}, {0x0, 0x00, 0x7F}, {0x0, 0x00, 0x80}, {0x0, 0x00, 0x81}, {0x0, 0x00, 0x82}, {0x0, 0x00, 0x83}, {0x0, 0x00, 0x84}, {0x0, 0x00, 0x85}, {0x0, 0x00, 0x86}, {0x0, 0x00, 0x87}, {0x0, 0x00, 0x88}, {0x0, 0x00, 0x89}, {0x0, 0x00, 0x8A}, {0x0, 0x00, 0x8B}, {0x0, 0x00, 0x8C}, {0x0, 0x00, 0x8D}, {0x0, 0x00, 0x8E}, {0x0, 0x00, 0x8F}, {0x0, 0x00, 0x90}, {0x0, 0x00, 0x91}, {0x0, 0x00, 0x92}, {0x0, 0x00, 0x93}, {0x0, 0x00, 0x94}, {0x0, 0x00, 0x95}, {0x0, 0x00, 0x96}, {0x0, 0x00, 0x97}, {0x0, 0x00, 0x98}, {0x0, 0x00, 0x99}, {0x0, 0x00, 0x9A}, {0x0, 0x00, 0x9B}, {0x0, 0x00, 0x9C}, {0x0, 0x00, 0x9D}, {0x0, 0x00, 0x9E}, {0x0, 0x00, 0x9F}, {0x0, 0x00, 0xA0}, {0x0, 0x00, 0xA1}, {0x0, 0x00, 0xA2}, {0x0, 0x00, 0xA3}, {0x0, 0x00, 0xA4}, {0x0, 0x00, 0xA5}, {0x0, 0x00, 0xA6}, {0x0, 0x00, 0xA7}, {0x0, 0x00, 0xA8}, {0x0, 0x00, 0xA9}, {0x0, 0x00, 0xAA}, {0x0, 0x00, 0xAB}, {0x0, 0x00, 0xAC}, {0x0, 0x00, 0xAD}, {0x0, 0x00, 0xAE}, {0x0, 0x00, 0xAF}, {0x0, 0x00, 0xB0}, {0x0, 0x00, 0xB1}, {0x0, 0x00, 0xB2}, {0x0, 0x00, 0xB3}, {0x0, 0x00, 0xB4}, {0x0, 0x00, 0xB5}, {0x0, 0x00, 0xB6}, {0x0, 0x00, 0xB7}, {0x0, 0x00, 0xB8}, {0x0, 0x00, 0xB9}, {0x0, 0x00, 0xBA}, {0x0, 0x00, 0xBB}, {0x0, 0x00, 0xBC}, {0x0, 0x00, 0xBD}, {0x0, 0x00, 0xBE}, {0x0, 0x00, 0xBF}, {0x0, 0x00, 0xC0}, {0x0, 0x00, 0xC1}, {0x0, 0x00, 0xC2}, {0x0, 0x00, 0xC3}, {0x0, 0x00, 0xC4}, {0x0, 0x00, 0xC5}, {0x0, 0x00, 0xC6}, {0x0, 0x00, 0xC7}, {0x0, 0x00, 0xC8}, {0x0, 0x00, 0xC9}, {0x0, 0x00, 0xCA}, {0x0, 0x00, 0xCB}, {0x0, 0x00, 0xCC}, {0x1, 0xF4, 0x00}, {0x1, 0x38, 0x01}, {0x1, 0x40, 0x02}, {0x1, 0x0A, 0x03}, {0x1, 0x40, 0x04}, {0x1, 0x40, 0x05}, {0x1, 0x40, 0x06}, {0x1, 0x67, 0x07}, {0x1, 0x31, 0x08}, {0x1, 0x00, 0x09}, {0x1, 0x00, 0x0A}, {0x1, 0x00, 0x0B}, {0x1, 0x14, 0x0C}, {0x1, 0x00, 0x0D}, {0x1, 0x00, 0x0E}, {0x1, 0x00, 0x0F}, {0x1, 0x1E, 0x10}, {0x1, 0x00, 0x11}, {0x1, 0x00, 0x12}, {0x1, 0x00, 0x13}, {0x1, 0x00, 0x14}, {0x1, 0xFF, 0x15}, {0x1, 0x01, 0x16}, {0x1, 0x32, 0x17}, {0x1, 0x23, 0x18}, {0x1, 0xCE, 0x19}, {0x1, 0x23, 0x1A}, {0x1, 0x32, 0x1B}, {0x1, 0x8D, 0x1C}, {0x1, 0xCE, 0x1D}, {0x1, 0x8D, 0x1E}, {0x1, 0x00, 0x1F}, {0x1, 0x00, 0x20}, {0x1, 0xFF, 0x3E}, {0x1, 0x02, 0x3F}, {0x1, 0x00, 0x40}, {0x1, 0x00, 0x41}, {0x1, 0x00, 0x42}, {0x1, 0x00, 0x43}, {0x1, 0x00, 0x44}, {0x1, 0x00, 0x45}, {0x1, 0x00, 0x46}, {0x1, 0x00, 0x47}, {0x1, 0x00, 0x48}, {0x1, 0x00, 0x49}, {0x1, 0x00, 0x4A}, {0x1, 0x00, 0x4B}, {0x1, 0x00, 0x4C}, {0x1, 0x00, 0x4D}, {0x1, 0x00, 0x4E}, {0x1, 0x00, 0x4F}, {0x1, 0x00, 0x50}, {0x1, 0x00, 0x51}, {0x1, 0x00, 0x52}, {0x1, 0x00, 0x53}, {0x1, 0x00, 0x54}, {0x1, 0x00, 0x55}, {0x1, 0x00, 0x56}, {0x1, 0x00, 0x57}, {0x1, 0x00, 0x58}, {0x1, 0x00, 0x59}, {0x1, 0x00, 0x5A}, {0x2, 0x03, 0x00}, {0x2, 0x00, 0x01}, {0x2, 0x00, 0x05}, {0x2, 0x00, 0x06}, {0x2, 0x00, 0x07}, {0x2, 0x00, 0x10}, {0x2, 0x00, 0x11}, /* Strange - looks like the 501 driver doesn't do anything * at insert time except read the EEPROM */ {} }; /* Data for video camera init before capture. * Capture and decoding by Colin Peart. * This is for the 3com HomeConnect Lite which is spca501a based. */ static const __u16 spca501_3com_open_data[][3] = { /* bmRequest,value,index */ {0x2, 0x0050, 0x0000}, /* C/S Enable TG soft reset, timing mode=010 */ {0x2, 0x0043, 0x0000}, /* C/S Disable TG soft reset, timing mode=010 */ {0x2, 0x0002, 0x0005}, /* C/S GPIO */ {0x2, 0x0003, 0x0005}, /* C/S GPIO */ #ifdef CCDSP_SET {0x1, 0x0020, 0x0001}, /* CCDSP Options */ {0x1, 0x0020, 0x0002}, /* CCDSP Black Level */ {0x1, 0x006e, 0x0007}, /* CCDSP Gamma options */ {0x1, 0x0090, 0x0015}, /* CCDSP Luminance Low */ {0x1, 0x00ff, 0x0016}, /* CCDSP Luminance High */ {0x1, 0x0003, 0x003F}, /* CCDSP Gamma correction toggle */ #ifdef ALTER_GAMMA {0x1, 0x0010, 0x0008}, /* CCDSP YUV A11 */ {0x1, 0x0000, 0x0009}, /* CCDSP YUV A12 */ {0x1, 0x0000, 0x000a}, /* CCDSP YUV A13 */ {0x1, 0x0000, 0x000b}, /* CCDSP YUV A21 */ {0x1, 0x0010, 0x000c}, /* CCDSP YUV A22 */ {0x1, 0x0000, 0x000d}, /* CCDSP YUV A23 */ {0x1, 0x0000, 0x000e}, /* CCDSP YUV A31 */ {0x1, 0x0000, 0x000f}, /* CCDSP YUV A32 */ {0x1, 0x0010, 0x0010}, /* CCDSP YUV A33 */ {0x1, 0x0000, 0x0011}, /* CCDSP R Offset */ {0x1, 0x0000, 0x0012}, /* CCDSP G Offset */ {0x1, 0x0001, 0x0013}, /* CCDSP B Offset */ {0x1, 0x0001, 0x0014}, /* CCDSP BG Offset */ {0x1, 0x003f, 0x00C1}, /* CCDSP Gamma Correction Enable */ #endif #endif #ifdef TG_SET {0x0, 0x00fc, 0x0000}, /* TG Shutter Speed High Bits */ {0x0, 0x0000, 0x0001}, /* TG Shutter Speed Low Bits */ {0x0, 0x00e4, 0x0004}, /* TG DCLK*2 Adjust */ {0x0, 0x0008, 0x0005}, /* TG ADCK Adjust */ {0x0, 0x0003, 0x0006}, /* TG FR Phase Adjust */ {0x0, 0x0001, 0x0007}, /* TG FCDS Phase Adjust */ {0x0, 0x0039, 0x0008}, /* TG FS Phase Adjust */ {0x0, 0x0088, 0x000a}, /* TG MH1 */ {0x0, 0x0003, 0x000f}, /* TG Pixel ID */ /* Like below, unexplained toglleing */ {0x0, 0x0080, 0x000c}, {0x0, 0x0000, 0x000d}, {0x0, 0x0080, 0x000c}, {0x0, 0x0004, 0x000d}, {0x0, 0x0000, 0x000c}, {0x0, 0x0000, 0x000d}, {0x0, 0x0040, 0x000c}, {0x0, 0x0017, 0x000d}, {0x0, 0x00c0, 0x000c}, {0x0, 0x0000, 0x000d}, {0x0, 0x0080, 0x000c}, {0x0, 0x0006, 0x000d}, {0x0, 0x0080, 0x000c}, {0x0, 0x0004, 0x000d}, {0x0, 0x0002, 0x0003}, #endif #ifdef DSPWIN_SET {0x1, 0x001c, 0x0017}, /* CCDSP W1 Start X */ {0x1, 0x00e2, 0x0019}, /* CCDSP W2 Start X */ {0x1, 0x001c, 0x001b}, /* CCDSP W3 Start X */ {0x1, 0x00e2, 0x001d}, /* CCDSP W4 Start X */ {0x1, 0x00aa, 0x001f}, /* CCDSP W5 Start X */ {0x1, 0x0070, 0x0020}, /* CCDSP W5 Start Y */ #endif {0x0, 0x0001, 0x0010}, /* TG Start Clock */ /* {0x2, 0x006a, 0x0001}, * C/S Enable ISOSYNCH Packet Engine */ {0x2, 0x0068, 0x0001}, /* C/S Disable ISOSYNCH Packet Engine */ {0x2, 0x0000, 0x0005}, {0x2, 0x0043, 0x0000}, /* C/S Set Timing Mode, Disable TG soft reset */ {0x2, 0x0043, 0x0000}, /* C/S Set Timing Mode, Disable TG soft reset */ {0x2, 0x0002, 0x0005}, /* C/S GPIO */ {0x2, 0x0003, 0x0005}, /* C/S GPIO */ {0x2, 0x006a, 0x0001}, /* C/S Enable ISOSYNCH Packet Engine */ {} }; /* * Data used to initialize a SPCA501C with HV7131B sensor. * From a capture file taken with USBSnoop v 1.5 * I have a "SPCA501C pc camera chipset" manual by sunplus, but some * of the value meanings are obscure or simply "reserved". * to do list: * 1) Understand what every value means * 2) Understand why some values seem to appear more than once * 3) Write a small comment for each line of the following arrays. */ static const __u16 spca501c_arowana_open_data[][3] = { /* bmRequest,value,index */ {0x02, 0x0007, 0x0005}, {0x02, 0xa048, 0x0000}, {0x05, 0x0022, 0x0004}, {0x01, 0x0006, 0x0011}, {0x01, 0x00ff, 0x0012}, {0x01, 0x0014, 0x0013}, {0x01, 0x0000, 0x0014}, {0x01, 0x0042, 0x0051}, {0x01, 0x0040, 0x0052}, {0x01, 0x0051, 0x0053}, {0x01, 0x0040, 0x0054}, {0x01, 0x0000, 0x0055}, {0x00, 0x0025, 0x0000}, {0x00, 0x0026, 0x0000}, {0x00, 0x0001, 0x0000}, {0x00, 0x0027, 0x0000}, {0x00, 0x008a, 0x0000}, {} }; static const __u16 spca501c_arowana_init_data[][3] = { /* bmRequest,value,index */ {0x02, 0x0007, 0x0005}, {0x02, 0xa048, 0x0000}, {0x05, 0x0022, 0x0004}, {0x01, 0x0006, 0x0011}, {0x01, 0x00ff, 0x0012}, {0x01, 0x0014, 0x0013}, {0x01, 0x0000, 0x0014}, {0x01, 0x0042, 0x0051}, {0x01, 0x0040, 0x0052}, {0x01, 0x0051, 0x0053}, {0x01, 0x0040, 0x0054}, {0x01, 0x0000, 0x0055}, {0x00, 0x0025, 0x0000}, {0x00, 0x0026, 0x0000}, {0x00, 0x0001, 0x0000}, {0x00, 0x0027, 0x0000}, {0x00, 0x008a, 0x0000}, {0x02, 0x0000, 0x0005}, {0x02, 0x0007, 0x0005}, {0x02, 0x2000, 0x0000}, {0x05, 0x0022, 0x0004}, {0x05, 0x0015, 0x0001}, {0x05, 0x00ea, 0x0000}, {0x05, 0x0021, 0x0001}, {0x05, 0x00d2, 0x0000}, {0x05, 0x0023, 0x0001}, {0x05, 0x0003, 0x0000}, {0x05, 0x0030, 0x0001}, {0x05, 0x002b, 0x0000}, {0x05, 0x0031, 0x0001}, {0x05, 0x0023, 0x0000}, {0x05, 0x0032, 0x0001}, {0x05, 0x0023, 0x0000}, {0x05, 0x0033, 0x0001}, {0x05, 0x0023, 0x0000}, {0x05, 0x0034, 0x0001}, {0x05, 0x0002, 0x0000}, {0x05, 0x0050, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0051, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0052, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0054, 0x0001}, {0x05, 0x0001, 0x0000}, {0x00, 0x0000, 0x0001}, {0x00, 0x0000, 0x0002}, {0x00, 0x000c, 0x0003}, {0x00, 0x0000, 0x0004}, {0x00, 0x0090, 0x0005}, {0x00, 0x0000, 0x0006}, {0x00, 0x0040, 0x0007}, {0x00, 0x00c0, 0x0008}, {0x00, 0x004a, 0x0009}, {0x00, 0x0000, 0x000a}, {0x00, 0x0000, 0x000b}, {0x00, 0x0001, 0x000c}, {0x00, 0x0001, 0x000d}, {0x00, 0x0000, 0x000e}, {0x00, 0x0002, 0x000f}, {0x00, 0x0001, 0x0010}, {0x00, 0x0000, 0x0011}, {0x00, 0x0000, 0x0012}, {0x00, 0x0002, 0x0020}, {0x00, 0x0080, 0x0021}, {0x00, 0x0001, 0x0022}, {0x00, 0x00e0, 0x0023}, {0x00, 0x0000, 0x0024}, {0x00, 0x00d5, 0x0025}, {0x00, 0x0000, 0x0026}, {0x00, 0x000b, 0x0027}, {0x00, 0x0000, 0x0046}, {0x00, 0x0000, 0x0047}, {0x00, 0x0000, 0x0048}, {0x00, 0x0000, 0x0049}, {0x00, 0x0008, 0x004a}, {0xff, 0x0000, 0x00d0}, {0xff, 0x00d8, 0x00d1}, {0xff, 0x0000, 0x00d4}, {0xff, 0x0000, 0x00d5}, {0x01, 0x00a6, 0x0000}, {0x01, 0x0028, 0x0001}, {0x01, 0x0000, 0x0002}, {0x01, 0x000a, 0x0003}, {0x01, 0x0040, 0x0004}, {0x01, 0x0066, 0x0007}, {0x01, 0x0011, 0x0008}, {0x01, 0x0032, 0x0009}, {0x01, 0x00fd, 0x000a}, {0x01, 0x0038, 0x000b}, {0x01, 0x00d1, 0x000c}, {0x01, 0x00f7, 0x000d}, {0x01, 0x00ed, 0x000e}, {0x01, 0x00d8, 0x000f}, {0x01, 0x0038, 0x0010}, {0x01, 0x00ff, 0x0015}, {0x01, 0x0001, 0x0016}, {0x01, 0x0032, 0x0017}, {0x01, 0x0023, 0x0018}, {0x01, 0x00ce, 0x0019}, {0x01, 0x0023, 0x001a}, {0x01, 0x0032, 0x001b}, {0x01, 0x008d, 0x001c}, {0x01, 0x00ce, 0x001d}, {0x01, 0x008d, 0x001e}, {0x01, 0x0000, 0x001f}, {0x01, 0x0000, 0x0020}, {0x01, 0x00ff, 0x003e}, {0x01, 0x0003, 0x003f}, {0x01, 0x0000, 0x0040}, {0x01, 0x0035, 0x0041}, {0x01, 0x0053, 0x0042}, {0x01, 0x0069, 0x0043}, {0x01, 0x007c, 0x0044}, {0x01, 0x008c, 0x0045}, {0x01, 0x009a, 0x0046}, {0x01, 0x00a8, 0x0047}, {0x01, 0x00b4, 0x0048}, {0x01, 0x00bf, 0x0049}, {0x01, 0x00ca, 0x004a}, {0x01, 0x00d4, 0x004b}, {0x01, 0x00dd, 0x004c}, {0x01, 0x00e7, 0x004d}, {0x01, 0x00ef, 0x004e}, {0x01, 0x00f8, 0x004f}, {0x01, 0x00ff, 0x0050}, {0x01, 0x0001, 0x0056}, {0x01, 0x0060, 0x0057}, {0x01, 0x0040, 0x0058}, {0x01, 0x0011, 0x0059}, {0x01, 0x0001, 0x005a}, {0x02, 0x0007, 0x0005}, {0x02, 0xa048, 0x0000}, {0x02, 0x0007, 0x0005}, {0x02, 0x0015, 0x0006}, {0x02, 0x100a, 0x0007}, {0x02, 0xa048, 0x0000}, {0x02, 0xc002, 0x0001}, {0x02, 0x000f, 0x0005}, {0x02, 0xa048, 0x0000}, {0x05, 0x0022, 0x0004}, {0x05, 0x0025, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0026, 0x0001}, {0x05, 0x0001, 0x0000}, {0x05, 0x0027, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0001, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0021, 0x0001}, {0x05, 0x00d2, 0x0000}, {0x05, 0x0020, 0x0001}, {0x05, 0x0000, 0x0000}, {0x00, 0x0090, 0x0005}, {0x01, 0x00a6, 0x0000}, {0x02, 0x0007, 0x0005}, {0x02, 0x2000, 0x0000}, {0x05, 0x0022, 0x0004}, {0x05, 0x0015, 0x0001}, {0x05, 0x00ea, 0x0000}, {0x05, 0x0021, 0x0001}, {0x05, 0x00d2, 0x0000}, {0x05, 0x0023, 0x0001}, {0x05, 0x0003, 0x0000}, {0x05, 0x0030, 0x0001}, {0x05, 0x002b, 0x0000}, {0x05, 0x0031, 0x0001}, {0x05, 0x0023, 0x0000}, {0x05, 0x0032, 0x0001}, {0x05, 0x0023, 0x0000}, {0x05, 0x0033, 0x0001}, {0x05, 0x0023, 0x0000}, {0x05, 0x0034, 0x0001}, {0x05, 0x0002, 0x0000}, {0x05, 0x0050, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0051, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0052, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0054, 0x0001}, {0x05, 0x0001, 0x0000}, {0x00, 0x0000, 0x0001}, {0x00, 0x0000, 0x0002}, {0x00, 0x000c, 0x0003}, {0x00, 0x0000, 0x0004}, {0x00, 0x0090, 0x0005}, {0x00, 0x0000, 0x0006}, {0x00, 0x0040, 0x0007}, {0x00, 0x00c0, 0x0008}, {0x00, 0x004a, 0x0009}, {0x00, 0x0000, 0x000a}, {0x00, 0x0000, 0x000b}, {0x00, 0x0001, 0x000c}, {0x00, 0x0001, 0x000d}, {0x00, 0x0000, 0x000e}, {0x00, 0x0002, 0x000f}, {0x00, 0x0001, 0x0010}, {0x00, 0x0000, 0x0011}, {0x00, 0x0000, 0x0012}, {0x00, 0x0002, 0x0020}, {0x00, 0x0080, 0x0021}, {0x00, 0x0001, 0x0022}, {0x00, 0x00e0, 0x0023}, {0x00, 0x0000, 0x0024}, {0x00, 0x00d5, 0x0025}, {0x00, 0x0000, 0x0026}, {0x00, 0x000b, 0x0027}, {0x00, 0x0000, 0x0046}, {0x00, 0x0000, 0x0047}, {0x00, 0x0000, 0x0048}, {0x00, 0x0000, 0x0049}, {0x00, 0x0008, 0x004a}, {0xff, 0x0000, 0x00d0}, {0xff, 0x00d8, 0x00d1}, {0xff, 0x0000, 0x00d4}, {0xff, 0x0000, 0x00d5}, {0x01, 0x00a6, 0x0000}, {0x01, 0x0028, 0x0001}, {0x01, 0x0000, 0x0002}, {0x01, 0x000a, 0x0003}, {0x01, 0x0040, 0x0004}, {0x01, 0x0066, 0x0007}, {0x01, 0x0011, 0x0008}, {0x01, 0x0032, 0x0009}, {0x01, 0x00fd, 0x000a}, {0x01, 0x0038, 0x000b}, {0x01, 0x00d1, 0x000c}, {0x01, 0x00f7, 0x000d}, {0x01, 0x00ed, 0x000e}, {0x01, 0x00d8, 0x000f}, {0x01, 0x0038, 0x0010}, {0x01, 0x00ff, 0x0015}, {0x01, 0x0001, 0x0016}, {0x01, 0x0032, 0x0017}, {0x01, 0x0023, 0x0018}, {0x01, 0x00ce, 0x0019}, {0x01, 0x0023, 0x001a}, {0x01, 0x0032, 0x001b}, {0x01, 0x008d, 0x001c}, {0x01, 0x00ce, 0x001d}, {0x01, 0x008d, 0x001e}, {0x01, 0x0000, 0x001f}, {0x01, 0x0000, 0x0020}, {0x01, 0x00ff, 0x003e}, {0x01, 0x0003, 0x003f}, {0x01, 0x0000, 0x0040}, {0x01, 0x0035, 0x0041}, {0x01, 0x0053, 0x0042}, {0x01, 0x0069, 0x0043}, {0x01, 0x007c, 0x0044}, {0x01, 0x008c, 0x0045}, {0x01, 0x009a, 0x0046}, {0x01, 0x00a8, 0x0047}, {0x01, 0x00b4, 0x0048}, {0x01, 0x00bf, 0x0049}, {0x01, 0x00ca, 0x004a}, {0x01, 0x00d4, 0x004b}, {0x01, 0x00dd, 0x004c}, {0x01, 0x00e7, 0x004d}, {0x01, 0x00ef, 0x004e}, {0x01, 0x00f8, 0x004f}, {0x01, 0x00ff, 0x0050}, {0x01, 0x0001, 0x0056}, {0x01, 0x0060, 0x0057}, {0x01, 0x0040, 0x0058}, {0x01, 0x0011, 0x0059}, {0x01, 0x0001, 0x005a}, {0x02, 0x0007, 0x0005}, {0x02, 0xa048, 0x0000}, {0x02, 0x0007, 0x0005}, {0x02, 0x0015, 0x0006}, {0x02, 0x100a, 0x0007}, {0x02, 0xa048, 0x0000}, {0x02, 0xc002, 0x0001}, {0x02, 0x000f, 0x0005}, {0x02, 0xa048, 0x0000}, {0x05, 0x0022, 0x0004}, {0x05, 0x0025, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0026, 0x0001}, {0x05, 0x0001, 0x0000}, {0x05, 0x0027, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0001, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0021, 0x0001}, {0x05, 0x00d2, 0x0000}, {0x05, 0x0020, 0x0001}, {0x05, 0x0000, 0x0000}, {0x00, 0x0090, 0x0005}, {0x01, 0x00a6, 0x0000}, {0x01, 0x0003, 0x003f}, {0x01, 0x0001, 0x0056}, {0x01, 0x0011, 0x0008}, {0x01, 0x0032, 0x0009}, {0x01, 0xfffd, 0x000a}, {0x01, 0x0023, 0x000b}, {0x01, 0xffea, 0x000c}, {0x01, 0xfff4, 0x000d}, {0x01, 0xfffc, 0x000e}, {0x01, 0xffe3, 0x000f}, {0x01, 0x001f, 0x0010}, {0x01, 0x00a8, 0x0001}, {0x01, 0x0067, 0x0007}, {0x01, 0x0032, 0x0017}, {0x01, 0x0023, 0x0018}, {0x01, 0x00ce, 0x0019}, {0x01, 0x0023, 0x001a}, {0x01, 0x0032, 0x001b}, {0x01, 0x008d, 0x001c}, {0x01, 0x00ce, 0x001d}, {0x01, 0x008d, 0x001e}, {0x01, 0x00c8, 0x0015}, {0x01, 0x0032, 0x0016}, {0x01, 0x0000, 0x0011}, {0x01, 0x0000, 0x0012}, {0x01, 0x0000, 0x0013}, {0x01, 0x000a, 0x0003}, {0x02, 0xc002, 0x0001}, {0x02, 0x0007, 0x0005}, {0x02, 0xc000, 0x0001}, {0x02, 0x0000, 0x0005}, {0x02, 0x0007, 0x0005}, {0x02, 0x2000, 0x0000}, {0x05, 0x0022, 0x0004}, {0x05, 0x0015, 0x0001}, {0x05, 0x00ea, 0x0000}, {0x05, 0x0021, 0x0001}, {0x05, 0x00d2, 0x0000}, {0x05, 0x0023, 0x0001}, {0x05, 0x0003, 0x0000}, {0x05, 0x0030, 0x0001}, {0x05, 0x002b, 0x0000}, {0x05, 0x0031, 0x0001}, {0x05, 0x0023, 0x0000}, {0x05, 0x0032, 0x0001}, {0x05, 0x0023, 0x0000}, {0x05, 0x0033, 0x0001}, {0x05, 0x0023, 0x0000}, {0x05, 0x0034, 0x0001}, {0x05, 0x0002, 0x0000}, {0x05, 0x0050, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0051, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0052, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0054, 0x0001}, {0x05, 0x0001, 0x0000}, {0x00, 0x0000, 0x0001}, {0x00, 0x0000, 0x0002}, {0x00, 0x000c, 0x0003}, {0x00, 0x0000, 0x0004}, {0x00, 0x0090, 0x0005}, {0x00, 0x0000, 0x0006}, {0x00, 0x0040, 0x0007}, {0x00, 0x00c0, 0x0008}, {0x00, 0x004a, 0x0009}, {0x00, 0x0000, 0x000a}, {0x00, 0x0000, 0x000b}, {0x00, 0x0001, 0x000c}, {0x00, 0x0001, 0x000d}, {0x00, 0x0000, 0x000e}, {0x00, 0x0002, 0x000f}, {0x00, 0x0001, 0x0010}, {0x00, 0x0000, 0x0011}, {0x00, 0x0000, 0x0012}, {0x00, 0x0002, 0x0020}, {0x00, 0x0080, 0x0021}, {0x00, 0x0001, 0x0022}, {0x00, 0x00e0, 0x0023}, {0x00, 0x0000, 0x0024}, {0x00, 0x00d5, 0x0025}, {0x00, 0x0000, 0x0026}, {0x00, 0x000b, 0x0027}, {0x00, 0x0000, 0x0046}, {0x00, 0x0000, 0x0047}, {0x00, 0x0000, 0x0048}, {0x00, 0x0000, 0x0049}, {0x00, 0x0008, 0x004a}, {0xff, 0x0000, 0x00d0}, {0xff, 0x00d8, 0x00d1}, {0xff, 0x0000, 0x00d4}, {0xff, 0x0000, 0x00d5}, {0x01, 0x00a6, 0x0000}, {0x01, 0x0028, 0x0001}, {0x01, 0x0000, 0x0002}, {0x01, 0x000a, 0x0003}, {0x01, 0x0040, 0x0004}, {0x01, 0x0066, 0x0007}, {0x01, 0x0011, 0x0008}, {0x01, 0x0032, 0x0009}, {0x01, 0x00fd, 0x000a}, {0x01, 0x0038, 0x000b}, {0x01, 0x00d1, 0x000c}, {0x01, 0x00f7, 0x000d}, {0x01, 0x00ed, 0x000e}, {0x01, 0x00d8, 0x000f}, {0x01, 0x0038, 0x0010}, {0x01, 0x00ff, 0x0015}, {0x01, 0x0001, 0x0016}, {0x01, 0x0032, 0x0017}, {0x01, 0x0023, 0x0018}, {0x01, 0x00ce, 0x0019}, {0x01, 0x0023, 0x001a}, {0x01, 0x0032, 0x001b}, {0x01, 0x008d, 0x001c}, {0x01, 0x00ce, 0x001d}, {0x01, 0x008d, 0x001e}, {0x01, 0x0000, 0x001f}, {0x01, 0x0000, 0x0020}, {0x01, 0x00ff, 0x003e}, {0x01, 0x0003, 0x003f}, {0x01, 0x0000, 0x0040}, {0x01, 0x0035, 0x0041}, {0x01, 0x0053, 0x0042}, {0x01, 0x0069, 0x0043}, {0x01, 0x007c, 0x0044}, {0x01, 0x008c, 0x0045}, {0x01, 0x009a, 0x0046}, {0x01, 0x00a8, 0x0047}, {0x01, 0x00b4, 0x0048}, {0x01, 0x00bf, 0x0049}, {0x01, 0x00ca, 0x004a}, {0x01, 0x00d4, 0x004b}, {0x01, 0x00dd, 0x004c}, {0x01, 0x00e7, 0x004d}, {0x01, 0x00ef, 0x004e}, {0x01, 0x00f8, 0x004f}, {0x01, 0x00ff, 0x0050}, {0x01, 0x0001, 0x0056}, {0x01, 0x0060, 0x0057}, {0x01, 0x0040, 0x0058}, {0x01, 0x0011, 0x0059}, {0x01, 0x0001, 0x005a}, {0x02, 0x0007, 0x0005}, {0x02, 0xa048, 0x0000}, {0x02, 0x0007, 0x0005}, {0x02, 0x0015, 0x0006}, {0x02, 0x100a, 0x0007}, {0x02, 0xa048, 0x0000}, {0x02, 0xc002, 0x0001}, {0x02, 0x000f, 0x0005}, {0x02, 0xa048, 0x0000}, {0x05, 0x0022, 0x0004}, {0x05, 0x0025, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0026, 0x0001}, {0x05, 0x0001, 0x0000}, {0x05, 0x0027, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0001, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0021, 0x0001}, {0x05, 0x00d2, 0x0000}, {0x05, 0x0020, 0x0001}, {0x05, 0x0000, 0x0000}, {0x00, 0x0090, 0x0005}, {0x01, 0x00a6, 0x0000}, {0x02, 0x0007, 0x0005}, {0x02, 0x2000, 0x0000}, {0x05, 0x0022, 0x0004}, {0x05, 0x0015, 0x0001}, {0x05, 0x00ea, 0x0000}, {0x05, 0x0021, 0x0001}, {0x05, 0x00d2, 0x0000}, {0x05, 0x0023, 0x0001}, {0x05, 0x0003, 0x0000}, {0x05, 0x0030, 0x0001}, {0x05, 0x002b, 0x0000}, {0x05, 0x0031, 0x0001}, {0x05, 0x0023, 0x0000}, {0x05, 0x0032, 0x0001}, {0x05, 0x0023, 0x0000}, {0x05, 0x0033, 0x0001}, {0x05, 0x0023, 0x0000}, {0x05, 0x0034, 0x0001}, {0x05, 0x0002, 0x0000}, {0x05, 0x0050, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0051, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0052, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0054, 0x0001}, {0x05, 0x0001, 0x0000}, {0x00, 0x0000, 0x0001}, {0x00, 0x0000, 0x0002}, {0x00, 0x000c, 0x0003}, {0x00, 0x0000, 0x0004}, {0x00, 0x0090, 0x0005}, {0x00, 0x0000, 0x0006}, {0x00, 0x0040, 0x0007}, {0x00, 0x00c0, 0x0008}, {0x00, 0x004a, 0x0009}, {0x00, 0x0000, 0x000a}, {0x00, 0x0000, 0x000b}, {0x00, 0x0001, 0x000c}, {0x00, 0x0001, 0x000d}, {0x00, 0x0000, 0x000e}, {0x00, 0x0002, 0x000f}, {0x00, 0x0001, 0x0010}, {0x00, 0x0000, 0x0011}, {0x00, 0x0000, 0x0012}, {0x00, 0x0002, 0x0020}, {0x00, 0x0080, 0x0021}, {0x00, 0x0001, 0x0022}, {0x00, 0x00e0, 0x0023}, {0x00, 0x0000, 0x0024}, {0x00, 0x00d5, 0x0025}, {0x00, 0x0000, 0x0026}, {0x00, 0x000b, 0x0027}, {0x00, 0x0000, 0x0046}, {0x00, 0x0000, 0x0047}, {0x00, 0x0000, 0x0048}, {0x00, 0x0000, 0x0049}, {0x00, 0x0008, 0x004a}, {0xff, 0x0000, 0x00d0}, {0xff, 0x00d8, 0x00d1}, {0xff, 0x0000, 0x00d4}, {0xff, 0x0000, 0x00d5}, {0x01, 0x00a6, 0x0000}, {0x01, 0x0028, 0x0001}, {0x01, 0x0000, 0x0002}, {0x01, 0x000a, 0x0003}, {0x01, 0x0040, 0x0004}, {0x01, 0x0066, 0x0007}, {0x01, 0x0011, 0x0008}, {0x01, 0x0032, 0x0009}, {0x01, 0x00fd, 0x000a}, {0x01, 0x0038, 0x000b}, {0x01, 0x00d1, 0x000c}, {0x01, 0x00f7, 0x000d}, {0x01, 0x00ed, 0x000e}, {0x01, 0x00d8, 0x000f}, {0x01, 0x0038, 0x0010}, {0x01, 0x00ff, 0x0015}, {0x01, 0x0001, 0x0016}, {0x01, 0x0032, 0x0017}, {0x01, 0x0023, 0x0018}, {0x01, 0x00ce, 0x0019}, {0x01, 0x0023, 0x001a}, {0x01, 0x0032, 0x001b}, {0x01, 0x008d, 0x001c}, {0x01, 0x00ce, 0x001d}, {0x01, 0x008d, 0x001e}, {0x01, 0x0000, 0x001f}, {0x01, 0x0000, 0x0020}, {0x01, 0x00ff, 0x003e}, {0x01, 0x0003, 0x003f}, {0x01, 0x0000, 0x0040}, {0x01, 0x0035, 0x0041}, {0x01, 0x0053, 0x0042}, {0x01, 0x0069, 0x0043}, {0x01, 0x007c, 0x0044}, {0x01, 0x008c, 0x0045}, {0x01, 0x009a, 0x0046}, {0x01, 0x00a8, 0x0047}, {0x01, 0x00b4, 0x0048}, {0x01, 0x00bf, 0x0049}, {0x01, 0x00ca, 0x004a}, {0x01, 0x00d4, 0x004b}, {0x01, 0x00dd, 0x004c}, {0x01, 0x00e7, 0x004d}, {0x01, 0x00ef, 0x004e}, {0x01, 0x00f8, 0x004f}, {0x01, 0x00ff, 0x0050}, {0x01, 0x0001, 0x0056}, {0x01, 0x0060, 0x0057}, {0x01, 0x0040, 0x0058}, {0x01, 0x0011, 0x0059}, {0x01, 0x0001, 0x005a}, {0x02, 0x0007, 0x0005}, {0x02, 0xa048, 0x0000}, {0x02, 0x0007, 0x0005}, {0x02, 0x0015, 0x0006}, {0x02, 0x100a, 0x0007}, {0x02, 0xa048, 0x0000}, {0x02, 0xc002, 0x0001}, {0x02, 0x000f, 0x0005}, {0x02, 0xa048, 0x0000}, {0x05, 0x0022, 0x0004}, {0x05, 0x0025, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0026, 0x0001}, {0x05, 0x0001, 0x0000}, {0x05, 0x0027, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0001, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0021, 0x0001}, {0x05, 0x00d2, 0x0000}, {0x05, 0x0020, 0x0001}, {0x05, 0x0000, 0x0000}, {0x00, 0x0090, 0x0005}, {0x01, 0x00a6, 0x0000}, {0x05, 0x0026, 0x0001}, {0x05, 0x0001, 0x0000}, {0x05, 0x0027, 0x0001}, {0x05, 0x000f, 0x0000}, {0x01, 0x0003, 0x003f}, {0x01, 0x0001, 0x0056}, {0x01, 0x0011, 0x0008}, {0x01, 0x0032, 0x0009}, {0x01, 0xfffd, 0x000a}, {0x01, 0x0023, 0x000b}, {0x01, 0xffea, 0x000c}, {0x01, 0xfff4, 0x000d}, {0x01, 0xfffc, 0x000e}, {0x01, 0xffe3, 0x000f}, {0x01, 0x001f, 0x0010}, {0x01, 0x00a8, 0x0001}, {0x01, 0x0067, 0x0007}, {0x01, 0x0042, 0x0051}, {0x01, 0x0051, 0x0053}, {0x01, 0x000a, 0x0003}, {0x02, 0xc002, 0x0001}, {0x02, 0x0007, 0x0005}, {0x02, 0xc000, 0x0001}, {0x02, 0x0000, 0x0005}, {0x02, 0x0007, 0x0005}, {0x02, 0x2000, 0x0000}, {0x05, 0x0022, 0x0004}, {0x05, 0x0015, 0x0001}, {0x05, 0x00ea, 0x0000}, {0x05, 0x0021, 0x0001}, {0x05, 0x00d2, 0x0000}, {0x05, 0x0023, 0x0001}, {0x05, 0x0003, 0x0000}, {0x05, 0x0030, 0x0001}, {0x05, 0x002b, 0x0000}, {0x05, 0x0031, 0x0001}, {0x05, 0x0023, 0x0000}, {0x05, 0x0032, 0x0001}, {0x05, 0x0023, 0x0000}, {0x05, 0x0033, 0x0001}, {0x05, 0x0023, 0x0000}, {0x05, 0x0034, 0x0001}, {0x05, 0x0002, 0x0000}, {0x05, 0x0050, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0051, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0052, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0054, 0x0001}, {0x05, 0x0001, 0x0000}, {0x00, 0x0000, 0x0001}, {0x00, 0x0000, 0x0002}, {0x00, 0x000c, 0x0003}, {0x00, 0x0000, 0x0004}, {0x00, 0x0090, 0x0005}, {0x00, 0x0000, 0x0006}, {0x00, 0x0040, 0x0007}, {0x00, 0x00c0, 0x0008}, {0x00, 0x004a, 0x0009}, {0x00, 0x0000, 0x000a}, {0x00, 0x0000, 0x000b}, {0x00, 0x0001, 0x000c}, {0x00, 0x0001, 0x000d}, {0x00, 0x0000, 0x000e}, {0x00, 0x0002, 0x000f}, {0x00, 0x0001, 0x0010}, {0x00, 0x0000, 0x0011}, {0x00, 0x0000, 0x0012}, {0x00, 0x0002, 0x0020}, {0x00, 0x0080, 0x0021}, {0x00, 0x0001, 0x0022}, {0x00, 0x00e0, 0x0023}, {0x00, 0x0000, 0x0024}, {0x00, 0x00d5, 0x0025}, {0x00, 0x0000, 0x0026}, {0x00, 0x000b, 0x0027}, {0x00, 0x0000, 0x0046}, {0x00, 0x0000, 0x0047}, {0x00, 0x0000, 0x0048}, {0x00, 0x0000, 0x0049}, {0x00, 0x0008, 0x004a}, {0xff, 0x0000, 0x00d0}, {0xff, 0x00d8, 0x00d1}, {0xff, 0x0000, 0x00d4}, {0xff, 0x0000, 0x00d5}, {0x01, 0x00a6, 0x0000}, {0x01, 0x0028, 0x0001}, {0x01, 0x0000, 0x0002}, {0x01, 0x000a, 0x0003}, {0x01, 0x0040, 0x0004}, {0x01, 0x0066, 0x0007}, {0x01, 0x0011, 0x0008}, {0x01, 0x0032, 0x0009}, {0x01, 0x00fd, 0x000a}, {0x01, 0x0038, 0x000b}, {0x01, 0x00d1, 0x000c}, {0x01, 0x00f7, 0x000d}, {0x01, 0x00ed, 0x000e}, {0x01, 0x00d8, 0x000f}, {0x01, 0x0038, 0x0010}, {0x01, 0x00ff, 0x0015}, {0x01, 0x0001, 0x0016}, {0x01, 0x0032, 0x0017}, {0x01, 0x0023, 0x0018}, {0x01, 0x00ce, 0x0019}, {0x01, 0x0023, 0x001a}, {0x01, 0x0032, 0x001b}, {0x01, 0x008d, 0x001c}, {0x01, 0x00ce, 0x001d}, {0x01, 0x008d, 0x001e}, {0x01, 0x0000, 0x001f}, {0x01, 0x0000, 0x0020}, {0x01, 0x00ff, 0x003e}, {0x01, 0x0003, 0x003f}, {0x01, 0x0000, 0x0040}, {0x01, 0x0035, 0x0041}, {0x01, 0x0053, 0x0042}, {0x01, 0x0069, 0x0043}, {0x01, 0x007c, 0x0044}, {0x01, 0x008c, 0x0045}, {0x01, 0x009a, 0x0046}, {0x01, 0x00a8, 0x0047}, {0x01, 0x00b4, 0x0048}, {0x01, 0x00bf, 0x0049}, {0x01, 0x00ca, 0x004a}, {0x01, 0x00d4, 0x004b}, {0x01, 0x00dd, 0x004c}, {0x01, 0x00e7, 0x004d}, {0x01, 0x00ef, 0x004e}, {0x01, 0x00f8, 0x004f}, {0x01, 0x00ff, 0x0050}, {0x01, 0x0001, 0x0056}, {0x01, 0x0060, 0x0057}, {0x01, 0x0040, 0x0058}, {0x01, 0x0011, 0x0059}, {0x01, 0x0001, 0x005a}, {0x02, 0x0007, 0x0005}, {0x02, 0xa048, 0x0000}, {0x02, 0x0007, 0x0005}, {0x02, 0x0015, 0x0006}, {0x02, 0x100a, 0x0007}, {0x02, 0xa048, 0x0000}, {0x02, 0xc002, 0x0001}, {0x02, 0x000f, 0x0005}, {0x02, 0xa048, 0x0000}, {0x05, 0x0022, 0x0004}, {0x05, 0x0025, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0026, 0x0001}, {0x05, 0x0001, 0x0000}, {0x05, 0x0027, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0001, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0021, 0x0001}, {0x05, 0x00d2, 0x0000}, {0x05, 0x0020, 0x0001}, {0x05, 0x0000, 0x0000}, {0x00, 0x0090, 0x0005}, {0x01, 0x00a6, 0x0000}, {0x02, 0x0007, 0x0005}, {0x02, 0x2000, 0x0000}, {0x05, 0x0022, 0x0004}, {0x05, 0x0015, 0x0001}, {0x05, 0x00ea, 0x0000}, {0x05, 0x0021, 0x0001}, {0x05, 0x00d2, 0x0000}, {0x05, 0x0023, 0x0001}, {0x05, 0x0003, 0x0000}, {0x05, 0x0030, 0x0001}, {0x05, 0x002b, 0x0000}, {0x05, 0x0031, 0x0001}, {0x05, 0x0023, 0x0000}, {0x05, 0x0032, 0x0001}, {0x05, 0x0023, 0x0000}, {0x05, 0x0033, 0x0001}, {0x05, 0x0023, 0x0000}, {0x05, 0x0034, 0x0001}, {0x05, 0x0002, 0x0000}, {0x05, 0x0050, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0051, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0052, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0054, 0x0001}, {0x05, 0x0001, 0x0000}, {0x00, 0x0000, 0x0001}, {0x00, 0x0000, 0x0002}, {0x00, 0x000c, 0x0003}, {0x00, 0x0000, 0x0004}, {0x00, 0x0090, 0x0005}, {0x00, 0x0000, 0x0006}, {0x00, 0x0040, 0x0007}, {0x00, 0x00c0, 0x0008}, {0x00, 0x004a, 0x0009}, {0x00, 0x0000, 0x000a}, {0x00, 0x0000, 0x000b}, {0x00, 0x0001, 0x000c}, {0x00, 0x0001, 0x000d}, {0x00, 0x0000, 0x000e}, {0x00, 0x0002, 0x000f}, {0x00, 0x0001, 0x0010}, {0x00, 0x0000, 0x0011}, {0x00, 0x0000, 0x0012}, {0x00, 0x0002, 0x0020}, {0x00, 0x0080, 0x0021}, {0x00, 0x0001, 0x0022}, {0x00, 0x00e0, 0x0023}, {0x00, 0x0000, 0x0024}, {0x00, 0x00d5, 0x0025}, {0x00, 0x0000, 0x0026}, {0x00, 0x000b, 0x0027}, {0x00, 0x0000, 0x0046}, {0x00, 0x0000, 0x0047}, {0x00, 0x0000, 0x0048}, {0x00, 0x0000, 0x0049}, {0x00, 0x0008, 0x004a}, {0xff, 0x0000, 0x00d0}, {0xff, 0x00d8, 0x00d1}, {0xff, 0x0000, 0x00d4}, {0xff, 0x0000, 0x00d5}, {0x01, 0x00a6, 0x0000}, {0x01, 0x0028, 0x0001}, {0x01, 0x0000, 0x0002}, {0x01, 0x000a, 0x0003}, {0x01, 0x0040, 0x0004}, {0x01, 0x0066, 0x0007}, {0x01, 0x0011, 0x0008}, {0x01, 0x0032, 0x0009}, {0x01, 0x00fd, 0x000a}, {0x01, 0x0038, 0x000b}, {0x01, 0x00d1, 0x000c}, {0x01, 0x00f7, 0x000d}, {0x01, 0x00ed, 0x000e}, {0x01, 0x00d8, 0x000f}, {0x01, 0x0038, 0x0010}, {0x01, 0x00ff, 0x0015}, {0x01, 0x0001, 0x0016}, {0x01, 0x0032, 0x0017}, {0x01, 0x0023, 0x0018}, {0x01, 0x00ce, 0x0019}, {0x01, 0x0023, 0x001a}, {0x01, 0x0032, 0x001b}, {0x01, 0x008d, 0x001c}, {0x01, 0x00ce, 0x001d}, {0x01, 0x008d, 0x001e}, {0x01, 0x0000, 0x001f}, {0x01, 0x0000, 0x0020}, {0x01, 0x00ff, 0x003e}, {0x01, 0x0003, 0x003f}, {0x01, 0x0000, 0x0040}, {0x01, 0x0035, 0x0041}, {0x01, 0x0053, 0x0042}, {0x01, 0x0069, 0x0043}, {0x01, 0x007c, 0x0044}, {0x01, 0x008c, 0x0045}, {0x01, 0x009a, 0x0046}, {0x01, 0x00a8, 0x0047}, {0x01, 0x00b4, 0x0048}, {0x01, 0x00bf, 0x0049}, {0x01, 0x00ca, 0x004a}, {0x01, 0x00d4, 0x004b}, {0x01, 0x00dd, 0x004c}, {0x01, 0x00e7, 0x004d}, {0x01, 0x00ef, 0x004e}, {0x01, 0x00f8, 0x004f}, {0x01, 0x00ff, 0x0050}, {0x01, 0x0001, 0x0056}, {0x01, 0x0060, 0x0057}, {0x01, 0x0040, 0x0058}, {0x01, 0x0011, 0x0059}, {0x01, 0x0001, 0x005a}, {0x02, 0x0007, 0x0005}, {0x02, 0xa048, 0x0000}, {0x02, 0x0007, 0x0005}, {0x02, 0x0015, 0x0006}, {0x02, 0x100a, 0x0007}, {0x02, 0xa048, 0x0000}, {0x02, 0xc002, 0x0001}, {0x02, 0x000f, 0x0005}, {0x02, 0xa048, 0x0000}, {0x05, 0x0022, 0x0004}, {0x05, 0x0025, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0026, 0x0001}, {0x05, 0x0001, 0x0000}, {0x05, 0x0027, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0001, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0021, 0x0001}, {0x05, 0x00d2, 0x0000}, {0x05, 0x0020, 0x0001}, {0x05, 0x0000, 0x0000}, {0x00, 0x0090, 0x0005}, {0x01, 0x00a6, 0x0000}, {0x05, 0x0026, 0x0001}, {0x05, 0x0001, 0x0000}, {0x05, 0x0027, 0x0001}, {0x05, 0x001e, 0x0000}, {0x01, 0x0003, 0x003f}, {0x01, 0x0001, 0x0056}, {0x01, 0x0011, 0x0008}, {0x01, 0x0032, 0x0009}, {0x01, 0xfffd, 0x000a}, {0x01, 0x0023, 0x000b}, {0x01, 0xffea, 0x000c}, {0x01, 0xfff4, 0x000d}, {0x01, 0xfffc, 0x000e}, {0x01, 0xffe3, 0x000f}, {0x01, 0x001f, 0x0010}, {0x01, 0x00a8, 0x0001}, {0x01, 0x0067, 0x0007}, {0x01, 0x0042, 0x0051}, {0x01, 0x0051, 0x0053}, {0x01, 0x000a, 0x0003}, {0x02, 0xc002, 0x0001}, {0x02, 0x0007, 0x0005}, {0x01, 0x0042, 0x0051}, {0x01, 0x0051, 0x0053}, {0x05, 0x0026, 0x0001}, {0x05, 0x0001, 0x0000}, {0x05, 0x0027, 0x0001}, {0x05, 0x002d, 0x0000}, {0x01, 0x0003, 0x003f}, {0x01, 0x0001, 0x0056}, {0x02, 0xc000, 0x0001}, {0x02, 0x0000, 0x0005}, {} }; /* Unknown camera from Ori Usbid 0x0000:0x0000 */ /* Based on snoops from Ori Cohen */ static const __u16 spca501c_mysterious_open_data[][3] = { {0x02, 0x000f, 0x0005}, {0x02, 0xa048, 0x0000}, {0x05, 0x0022, 0x0004}, /* DSP Registers */ {0x01, 0x0016, 0x0011}, /* RGB offset */ {0x01, 0x0000, 0x0012}, {0x01, 0x0006, 0x0013}, {0x01, 0x0078, 0x0051}, {0x01, 0x0040, 0x0052}, {0x01, 0x0046, 0x0053}, {0x01, 0x0040, 0x0054}, {0x00, 0x0025, 0x0000}, /* {0x00, 0x0000, 0x0000 }, */ /* Part 2 */ /* TG Registers */ {0x00, 0x0026, 0x0000}, {0x00, 0x0001, 0x0000}, {0x00, 0x0027, 0x0000}, {0x00, 0x008a, 0x0000}, {0x02, 0x0007, 0x0005}, {0x02, 0x2000, 0x0000}, {0x05, 0x0022, 0x0004}, {0x05, 0x0015, 0x0001}, {0x05, 0x00ea, 0x0000}, {0x05, 0x0021, 0x0001}, {0x05, 0x00d2, 0x0000}, {0x05, 0x0023, 0x0001}, {0x05, 0x0003, 0x0000}, {0x05, 0x0030, 0x0001}, {0x05, 0x002b, 0x0000}, {0x05, 0x0031, 0x0001}, {0x05, 0x0023, 0x0000}, {0x05, 0x0032, 0x0001}, {0x05, 0x0023, 0x0000}, {0x05, 0x0033, 0x0001}, {0x05, 0x0023, 0x0000}, {0x05, 0x0034, 0x0001}, {0x05, 0x0002, 0x0000}, {0x05, 0x0050, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0051, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0052, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0054, 0x0001}, {0x05, 0x0001, 0x0000}, {} }; /* Based on snoops from Ori Cohen */ static const __u16 spca501c_mysterious_init_data[][3] = { /* Part 3 */ /* TG registers */ /* {0x00, 0x0000, 0x0000}, */ {0x00, 0x0000, 0x0001}, {0x00, 0x0000, 0x0002}, {0x00, 0x0006, 0x0003}, {0x00, 0x0000, 0x0004}, {0x00, 0x0090, 0x0005}, {0x00, 0x0000, 0x0006}, {0x00, 0x0040, 0x0007}, {0x00, 0x00c0, 0x0008}, {0x00, 0x004a, 0x0009}, {0x00, 0x0000, 0x000a}, {0x00, 0x0000, 0x000b}, {0x00, 0x0001, 0x000c}, {0x00, 0x0001, 0x000d}, {0x00, 0x0000, 0x000e}, {0x00, 0x0002, 0x000f}, {0x00, 0x0001, 0x0010}, {0x00, 0x0000, 0x0011}, {0x00, 0x0001, 0x0012}, {0x00, 0x0002, 0x0020}, {0x00, 0x0080, 0x0021}, /* 640 */ {0x00, 0x0001, 0x0022}, {0x00, 0x00e0, 0x0023}, /* 480 */ {0x00, 0x0000, 0x0024}, /* Offset H hight */ {0x00, 0x00d3, 0x0025}, /* low */ {0x00, 0x0000, 0x0026}, /* Offset V */ {0x00, 0x000d, 0x0027}, /* low */ {0x00, 0x0000, 0x0046}, {0x00, 0x0000, 0x0047}, {0x00, 0x0000, 0x0048}, {0x00, 0x0000, 0x0049}, {0x00, 0x0008, 0x004a}, /* DSP Registers */ {0x01, 0x00a6, 0x0000}, {0x01, 0x0028, 0x0001}, {0x01, 0x0000, 0x0002}, {0x01, 0x000a, 0x0003}, /* Level Calc bit7 ->1 Auto */ {0x01, 0x0040, 0x0004}, {0x01, 0x0066, 0x0007}, {0x01, 0x000f, 0x0008}, /* A11 Color correction coeff */ {0x01, 0x002d, 0x0009}, /* A12 */ {0x01, 0x0005, 0x000a}, /* A13 */ {0x01, 0x0023, 0x000b}, /* A21 */ {0x01, 0x00e0, 0x000c}, /* A22 */ {0x01, 0x00fd, 0x000d}, /* A23 */ {0x01, 0x00f4, 0x000e}, /* A31 */ {0x01, 0x00e4, 0x000f}, /* A32 */ {0x01, 0x0028, 0x0010}, /* A33 */ {0x01, 0x00ff, 0x0015}, /* Reserved */ {0x01, 0x0001, 0x0016}, /* Reserved */ {0x01, 0x0032, 0x0017}, /* Win1 Start begin */ {0x01, 0x0023, 0x0018}, {0x01, 0x00ce, 0x0019}, {0x01, 0x0023, 0x001a}, {0x01, 0x0032, 0x001b}, {0x01, 0x008d, 0x001c}, {0x01, 0x00ce, 0x001d}, {0x01, 0x008d, 0x001e}, {0x01, 0x0000, 0x001f}, {0x01, 0x0000, 0x0020}, /* Win1 Start end */ {0x01, 0x00ff, 0x003e}, /* Reserved begin */ {0x01, 0x0002, 0x003f}, {0x01, 0x0000, 0x0040}, {0x01, 0x0035, 0x0041}, {0x01, 0x0053, 0x0042}, {0x01, 0x0069, 0x0043}, {0x01, 0x007c, 0x0044}, {0x01, 0x008c, 0x0045}, {0x01, 0x009a, 0x0046}, {0x01, 0x00a8, 0x0047}, {0x01, 0x00b4, 0x0048}, {0x01, 0x00bf, 0x0049}, {0x01, 0x00ca, 0x004a}, {0x01, 0x00d4, 0x004b}, {0x01, 0x00dd, 0x004c}, {0x01, 0x00e7, 0x004d}, {0x01, 0x00ef, 0x004e}, {0x01, 0x00f8, 0x004f}, {0x01, 0x00ff, 0x0050}, {0x01, 0x0003, 0x0056}, /* Reserved end */ {0x01, 0x0060, 0x0057}, /* Edge Gain */ {0x01, 0x0040, 0x0058}, {0x01, 0x0011, 0x0059}, /* Edge Bandwidth */ {0x01, 0x0001, 0x005a}, {0x02, 0x0007, 0x0005}, {0x02, 0xa048, 0x0000}, {0x02, 0x0007, 0x0005}, {0x02, 0x0015, 0x0006}, {0x02, 0x200a, 0x0007}, {0x02, 0xa048, 0x0000}, {0x02, 0xc000, 0x0001}, {0x02, 0x000f, 0x0005}, {0x02, 0xa048, 0x0000}, {0x05, 0x0022, 0x0004}, {0x05, 0x0025, 0x0001}, {0x05, 0x0000, 0x0000}, /* Part 4 */ {0x05, 0x0026, 0x0001}, {0x05, 0x0001, 0x0000}, {0x05, 0x0027, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0001, 0x0001}, {0x05, 0x0000, 0x0000}, {0x05, 0x0021, 0x0001}, {0x05, 0x00d2, 0x0000}, {0x05, 0x0020, 0x0001}, {0x05, 0x0000, 0x0000}, {0x00, 0x0090, 0x0005}, {0x01, 0x00a6, 0x0000}, {0x02, 0x0000, 0x0005}, {0x05, 0x0026, 0x0001}, {0x05, 0x0001, 0x0000}, {0x05, 0x0027, 0x0001}, {0x05, 0x004e, 0x0000}, /* Part 5 */ {0x01, 0x0003, 0x003f}, {0x01, 0x0001, 0x0056}, {0x01, 0x000f, 0x0008}, {0x01, 0x002d, 0x0009}, {0x01, 0x0005, 0x000a}, {0x01, 0x0023, 0x000b}, {0x01, 0xffe0, 0x000c}, {0x01, 0xfffd, 0x000d}, {0x01, 0xfff4, 0x000e}, {0x01, 0xffe4, 0x000f}, {0x01, 0x0028, 0x0010}, {0x01, 0x00a8, 0x0001}, {0x01, 0x0066, 0x0007}, {0x01, 0x0032, 0x0017}, {0x01, 0x0023, 0x0018}, {0x01, 0x00ce, 0x0019}, {0x01, 0x0023, 0x001a}, {0x01, 0x0032, 0x001b}, {0x01, 0x008d, 0x001c}, {0x01, 0x00ce, 0x001d}, {0x01, 0x008d, 0x001e}, {0x01, 0x00c8, 0x0015}, /* c8 Poids fort Luma */ {0x01, 0x0032, 0x0016}, /* 32 */ {0x01, 0x0016, 0x0011}, /* R 00 */ {0x01, 0x0016, 0x0012}, /* G 00 */ {0x01, 0x0016, 0x0013}, /* B 00 */ {0x01, 0x000a, 0x0003}, {0x02, 0xc002, 0x0001}, {0x02, 0x0007, 0x0005}, {} }; static int reg_write(struct gspca_dev *gspca_dev, __u16 req, __u16 index, __u16 value) { int ret; struct usb_device *dev = gspca_dev->dev; ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), req, USB_TYPE_VENDOR | USB_RECIP_DEVICE, value, index, NULL, 0, 500); gspca_dbg(gspca_dev, D_USBO, "reg write: 0x%02x 0x%02x 0x%02x\n", req, index, value); if (ret < 0) pr_err("reg write: error %d\n", ret); return ret; } static int write_vector(struct gspca_dev *gspca_dev, const __u16 data[][3]) { int ret, i = 0; while (data[i][0] != 0 || data[i][1] != 0 || data[i][2] != 0) { ret = reg_write(gspca_dev, data[i][0], data[i][2], data[i][1]); if (ret < 0) { gspca_err(gspca_dev, "Reg write failed for 0x%02x,0x%02x,0x%02x\n", data[i][0], data[i][1], data[i][2]); return ret; } i++; } return 0; } static void setbrightness(struct gspca_dev *gspca_dev, s32 val) { reg_write(gspca_dev, SPCA501_REG_CCDSP, 0x12, val); } static void setcontrast(struct gspca_dev *gspca_dev, s32 val) { reg_write(gspca_dev, 0x00, 0x00, (val >> 8) & 0xff); reg_write(gspca_dev, 0x00, 0x01, val & 0xff); } static void setcolors(struct gspca_dev *gspca_dev, s32 val) { reg_write(gspca_dev, SPCA501_REG_CCDSP, 0x0c, val); } static void setblue_balance(struct gspca_dev *gspca_dev, s32 val) { reg_write(gspca_dev, SPCA501_REG_CCDSP, 0x11, val); } static void setred_balance(struct gspca_dev *gspca_dev, s32 val) { reg_write(gspca_dev, SPCA501_REG_CCDSP, 0x13, val); } /* this function is called at probe time */ static int sd_config(struct gspca_dev *gspca_dev, const struct usb_device_id *id) { struct sd *sd = (struct sd *) gspca_dev; struct cam *cam; cam = &gspca_dev->cam; cam->cam_mode = vga_mode; cam->nmodes = ARRAY_SIZE(vga_mode); sd->subtype = id->driver_info; return 0; } /* this function is called at probe and resume time */ static int sd_init(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; switch (sd->subtype) { case Arowana300KCMOSCamera: case SmileIntlCamera: /* Arowana 300k CMOS Camera data */ if (write_vector(gspca_dev, spca501c_arowana_init_data)) goto error; break; case MystFromOriUnknownCamera: /* Unknown Ori CMOS Camera data */ if (write_vector(gspca_dev, spca501c_mysterious_open_data)) goto error; break; default: /* generic spca501 init data */ if (write_vector(gspca_dev, spca501_init_data)) goto error; break; } gspca_dbg(gspca_dev, D_STREAM, "Initializing SPCA501 finished\n"); return 0; error: return -EINVAL; } static int sd_start(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; int mode; switch (sd->subtype) { case ThreeComHomeConnectLite: /* Special handling for 3com data */ write_vector(gspca_dev, spca501_3com_open_data); break; case Arowana300KCMOSCamera: case SmileIntlCamera: /* Arowana 300k CMOS Camera data */ write_vector(gspca_dev, spca501c_arowana_open_data); break; case MystFromOriUnknownCamera: /* Unknown CMOS Camera data */ write_vector(gspca_dev, spca501c_mysterious_init_data); break; default: /* Generic 501 open data */ write_vector(gspca_dev, spca501_open_data); } /* memorize the wanted pixel format */ mode = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv; /* Enable ISO packet machine CTRL reg=2, * index=1 bitmask=0x2 (bit ordinal 1) */ reg_write(gspca_dev, SPCA50X_REG_USB, 0x6, 0x94); switch (mode) { case 0: /* 640x480 */ reg_write(gspca_dev, SPCA50X_REG_USB, 0x07, 0x004a); break; case 1: /* 320x240 */ reg_write(gspca_dev, SPCA50X_REG_USB, 0x07, 0x104a); break; default: /* case 2: * 160x120 */ reg_write(gspca_dev, SPCA50X_REG_USB, 0x07, 0x204a); break; } reg_write(gspca_dev, SPCA501_REG_CTLRL, 0x01, 0x02); return 0; } static void sd_stopN(struct gspca_dev *gspca_dev) { /* Disable ISO packet * machine CTRL reg=2, index=1 bitmask=0x0 (bit ordinal 1) */ reg_write(gspca_dev, SPCA501_REG_CTLRL, 0x01, 0x00); } /* called on streamoff with alt 0 and on disconnect */ static void sd_stop0(struct gspca_dev *gspca_dev) { if (!gspca_dev->present) return; reg_write(gspca_dev, SPCA501_REG_CTLRL, 0x05, 0x00); } static void sd_pkt_scan(struct gspca_dev *gspca_dev, u8 *data, /* isoc packet */ int len) /* iso packet length */ { switch (data[0]) { case 0: /* start of frame */ gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0); data += SPCA501_OFFSET_DATA; len -= SPCA501_OFFSET_DATA; gspca_frame_add(gspca_dev, FIRST_PACKET, data, len); return; case 0xff: /* drop */ /* gspca_dev->last_packet_type = DISCARD_PACKET; */ return; } data++; len--; gspca_frame_add(gspca_dev, INTER_PACKET, data, len); } static int sd_s_ctrl(struct v4l2_ctrl *ctrl) { struct gspca_dev *gspca_dev = container_of(ctrl->handler, struct gspca_dev, ctrl_handler); gspca_dev->usb_err = 0; if (!gspca_dev->streaming) return 0; switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: setbrightness(gspca_dev, ctrl->val); break; case V4L2_CID_CONTRAST: setcontrast(gspca_dev, ctrl->val); break; case V4L2_CID_SATURATION: setcolors(gspca_dev, ctrl->val); break; case V4L2_CID_BLUE_BALANCE: setblue_balance(gspca_dev, ctrl->val); break; case V4L2_CID_RED_BALANCE: setred_balance(gspca_dev, ctrl->val); break; } return gspca_dev->usb_err; } static const struct v4l2_ctrl_ops sd_ctrl_ops = { .s_ctrl = sd_s_ctrl, }; static int sd_init_controls(struct gspca_dev *gspca_dev) { struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler; gspca_dev->vdev.ctrl_handler = hdl; v4l2_ctrl_handler_init(hdl, 5); v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_BRIGHTNESS, 0, 127, 1, 0); v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_CONTRAST, 0, 64725, 1, 64725); v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_SATURATION, 0, 63, 1, 20); v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_BLUE_BALANCE, 0, 127, 1, 0); v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_RED_BALANCE, 0, 127, 1, 0); if (hdl->error) { pr_err("Could not initialize controls\n"); return hdl->error; } return 0; } /* sub-driver description */ static const struct sd_desc sd_desc = { .name = MODULE_NAME, .config = sd_config, .init = sd_init, .init_controls = sd_init_controls, .start = sd_start, .stopN = sd_stopN, .stop0 = sd_stop0, .pkt_scan = sd_pkt_scan, }; /* -- module initialisation -- */ static const struct usb_device_id device_table[] = { {USB_DEVICE(0x040a, 0x0002), .driver_info = KodakDVC325}, {USB_DEVICE(0x0497, 0xc001), .driver_info = SmileIntlCamera}, {USB_DEVICE(0x0506, 0x00df), .driver_info = ThreeComHomeConnectLite}, {USB_DEVICE(0x0733, 0x0401), .driver_info = IntelCreateAndShare}, {USB_DEVICE(0x0733, 0x0402), .driver_info = ViewQuestM318B}, {USB_DEVICE(0x1776, 0x501c), .driver_info = Arowana300KCMOSCamera}, {USB_DEVICE(0x0000, 0x0000), .driver_info = MystFromOriUnknownCamera}, {} }; MODULE_DEVICE_TABLE(usb, device_table); /* -- device connect -- */ static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id) { return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd), THIS_MODULE); } static struct usb_driver sd_driver = { .name = MODULE_NAME, .id_table = device_table, .probe = sd_probe, .disconnect = gspca_disconnect, #ifdef CONFIG_PM .suspend = gspca_suspend, .resume = gspca_resume, .reset_resume = gspca_resume, #endif }; module_usb_driver(sd_driver); |
3957 3948 3963 3963 2289 2286 2290 3964 3962 3963 3964 3969 2285 2285 3962 2877 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 | // SPDX-License-Identifier: GPL-2.0-only /* * Link physical devices with ACPI devices support * * Copyright (c) 2005 David Shaohua Li <shaohua.li@intel.com> * Copyright (c) 2005 Intel Corp. */ #define pr_fmt(fmt) "ACPI: " fmt #include <linux/acpi_iort.h> #include <linux/export.h> #include <linux/init.h> #include <linux/list.h> #include <linux/device.h> #include <linux/slab.h> #include <linux/rwsem.h> #include <linux/acpi.h> #include <linux/dma-mapping.h> #include <linux/pci.h> #include <linux/pci-acpi.h> #include <linux/platform_device.h> #include "internal.h" static LIST_HEAD(bus_type_list); static DECLARE_RWSEM(bus_type_sem); #define PHYSICAL_NODE_STRING "physical_node" #define PHYSICAL_NODE_NAME_SIZE (sizeof(PHYSICAL_NODE_STRING) + 10) int register_acpi_bus_type(struct acpi_bus_type *type) { if (acpi_disabled) return -ENODEV; if (type && type->match && type->find_companion) { down_write(&bus_type_sem); list_add_tail(&type->list, &bus_type_list); up_write(&bus_type_sem); pr_info("bus type %s registered\n", type->name); return 0; } return -ENODEV; } EXPORT_SYMBOL_GPL(register_acpi_bus_type); int unregister_acpi_bus_type(struct acpi_bus_type *type) { if (acpi_disabled) return 0; if (type) { down_write(&bus_type_sem); list_del_init(&type->list); up_write(&bus_type_sem); pr_info("bus type %s unregistered\n", type->name); return 0; } return -ENODEV; } EXPORT_SYMBOL_GPL(unregister_acpi_bus_type); static struct acpi_bus_type *acpi_get_bus_type(struct device *dev) { struct acpi_bus_type *tmp, *ret = NULL; down_read(&bus_type_sem); list_for_each_entry(tmp, &bus_type_list, list) { if (tmp->match(dev)) { ret = tmp; break; } } up_read(&bus_type_sem); return ret; } #define FIND_CHILD_MIN_SCORE 1 #define FIND_CHILD_MID_SCORE 2 #define FIND_CHILD_MAX_SCORE 3 static int match_any(struct acpi_device *adev, void *not_used) { return 1; } static bool acpi_dev_has_children(struct acpi_device *adev) { return acpi_dev_for_each_child(adev, match_any, NULL) > 0; } static int find_child_checks(struct acpi_device *adev, bool check_children) { unsigned long long sta; acpi_status status; if (check_children && !acpi_dev_has_children(adev)) return -ENODEV; status = acpi_evaluate_integer(adev->handle, "_STA", NULL, &sta); if (status == AE_NOT_FOUND) { /* * Special case: backlight device objects without _STA are * preferred to other objects with the same _ADR value, because * it is more likely that they are actually useful. */ if (adev->pnp.type.backlight) return FIND_CHILD_MID_SCORE; return FIND_CHILD_MIN_SCORE; } if (ACPI_FAILURE(status) || !(sta & ACPI_STA_DEVICE_ENABLED)) return -ENODEV; /* * If the device has a _HID returning a valid ACPI/PNP device ID, it is * better to make it look less attractive here, so that the other device * with the same _ADR value (that may not have a valid device ID) can be * matched going forward. [This means a second spec violation in a row, * so whatever we do here is best effort anyway.] */ if (adev->pnp.type.platform_id) return FIND_CHILD_MIN_SCORE; return FIND_CHILD_MAX_SCORE; } struct find_child_walk_data { struct acpi_device *adev; u64 address; int score; bool check_sta; bool check_children; }; static int check_one_child(struct acpi_device *adev, void *data) { struct find_child_walk_data *wd = data; int score; if (!adev->pnp.type.bus_address || acpi_device_adr(adev) != wd->address) return 0; if (!wd->adev) { /* * This is the first matching object, so save it. If it is not * necessary to look for any other matching objects, stop the * search. */ wd->adev = adev; return !(wd->check_sta || wd->check_children); } /* * There is more than one matching device object with the same _ADR * value. That really is unexpected, so we are kind of beyond the scope * of the spec here. We have to choose which one to return, though. * * First, get the score for the previously found object and terminate * the walk if it is maximum. */ if (!wd->score) { score = find_child_checks(wd->adev, wd->check_children); if (score == FIND_CHILD_MAX_SCORE) return 1; wd->score = score; } /* * Second, if the object that has just been found has a better score, * replace the previously found one with it and terminate the walk if * the new score is maximum. */ score = find_child_checks(adev, wd->check_children); if (score > wd->score) { wd->adev = adev; if (score == FIND_CHILD_MAX_SCORE) return 1; wd->score = score; } /* Continue, because there may be better matches. */ return 0; } static struct acpi_device *acpi_find_child(struct acpi_device *parent, u64 address, bool check_children, bool check_sta) { struct find_child_walk_data wd = { .address = address, .check_children = check_children, .check_sta = check_sta, .adev = NULL, .score = 0, }; if (parent) acpi_dev_for_each_child(parent, check_one_child, &wd); return wd.adev; } struct acpi_device *acpi_find_child_device(struct acpi_device *parent, u64 address, bool check_children) { return acpi_find_child(parent, address, check_children, true); } EXPORT_SYMBOL_GPL(acpi_find_child_device); struct acpi_device *acpi_find_child_by_adr(struct acpi_device *adev, acpi_bus_address adr) { return acpi_find_child(adev, adr, false, false); } EXPORT_SYMBOL_GPL(acpi_find_child_by_adr); static void acpi_physnode_link_name(char *buf, unsigned int node_id) { if (node_id > 0) snprintf(buf, PHYSICAL_NODE_NAME_SIZE, PHYSICAL_NODE_STRING "%u", node_id); else strcpy(buf, PHYSICAL_NODE_STRING); } int acpi_bind_one(struct device *dev, struct acpi_device *acpi_dev) { struct acpi_device_physical_node *physical_node, *pn; char physical_node_name[PHYSICAL_NODE_NAME_SIZE]; struct list_head *physnode_list; unsigned int node_id; int retval = -EINVAL; if (has_acpi_companion(dev)) { if (acpi_dev) { dev_warn(dev, "ACPI companion already set\n"); return -EINVAL; } else { acpi_dev = ACPI_COMPANION(dev); } } if (!acpi_dev) return -EINVAL; acpi_dev_get(acpi_dev); get_device(dev); physical_node = kzalloc(sizeof(*physical_node), GFP_KERNEL); if (!physical_node) { retval = -ENOMEM; goto err; } mutex_lock(&acpi_dev->physical_node_lock); /* * Keep the list sorted by node_id so that the IDs of removed nodes can * be recycled easily. */ physnode_list = &acpi_dev->physical_node_list; node_id = 0; list_for_each_entry(pn, &acpi_dev->physical_node_list, node) { /* Sanity check. */ if (pn->dev == dev) { mutex_unlock(&acpi_dev->physical_node_lock); dev_warn(dev, "Already associated with ACPI node\n"); kfree(physical_node); if (ACPI_COMPANION(dev) != acpi_dev) goto err; put_device(dev); acpi_dev_put(acpi_dev); return 0; } if (pn->node_id == node_id) { physnode_list = &pn->node; node_id++; } } physical_node->node_id = node_id; physical_node->dev = dev; list_add(&physical_node->node, physnode_list); acpi_dev->physical_node_count++; if (!has_acpi_companion(dev)) ACPI_COMPANION_SET(dev, acpi_dev); acpi_physnode_link_name(physical_node_name, node_id); retval = sysfs_create_link(&acpi_dev->dev.kobj, &dev->kobj, physical_node_name); if (retval) dev_err(&acpi_dev->dev, "Failed to create link %s (%d)\n", physical_node_name, retval); retval = sysfs_create_link(&dev->kobj, &acpi_dev->dev.kobj, "firmware_node"); if (retval) dev_err(dev, "Failed to create link firmware_node (%d)\n", retval); mutex_unlock(&acpi_dev->physical_node_lock); if (acpi_dev->wakeup.flags.valid) device_set_wakeup_capable(dev, true); return 0; err: ACPI_COMPANION_SET(dev, NULL); put_device(dev); acpi_dev_put(acpi_dev); return retval; } EXPORT_SYMBOL_GPL(acpi_bind_one); int acpi_unbind_one(struct device *dev) { struct acpi_device *acpi_dev = ACPI_COMPANION(dev); struct acpi_device_physical_node *entry; if (!acpi_dev) return 0; mutex_lock(&acpi_dev->physical_node_lock); list_for_each_entry(entry, &acpi_dev->physical_node_list, node) if (entry->dev == dev) { char physnode_name[PHYSICAL_NODE_NAME_SIZE]; list_del(&entry->node); acpi_dev->physical_node_count--; acpi_physnode_link_name(physnode_name, entry->node_id); sysfs_remove_link(&acpi_dev->dev.kobj, physnode_name); sysfs_remove_link(&dev->kobj, "firmware_node"); ACPI_COMPANION_SET(dev, NULL); /* Drop references taken by acpi_bind_one(). */ put_device(dev); acpi_dev_put(acpi_dev); kfree(entry); break; } mutex_unlock(&acpi_dev->physical_node_lock); return 0; } EXPORT_SYMBOL_GPL(acpi_unbind_one); void acpi_device_notify(struct device *dev) { struct acpi_device *adev; int ret; ret = acpi_bind_one(dev, NULL); if (ret) { struct acpi_bus_type *type = acpi_get_bus_type(dev); if (!type) goto err; adev = type->find_companion(dev); if (!adev) { dev_dbg(dev, "ACPI companion not found\n"); goto err; } ret = acpi_bind_one(dev, adev); if (ret) goto err; if (type->setup) { type->setup(dev); goto done; } } else { adev = ACPI_COMPANION(dev); if (dev_is_pci(dev)) { pci_acpi_setup(dev, adev); goto done; } else if (dev_is_platform(dev)) { acpi_configure_pmsi_domain(dev); } } if (adev->handler && adev->handler->bind) adev->handler->bind(dev); done: acpi_handle_debug(ACPI_HANDLE(dev), "Bound to device %s\n", dev_name(dev)); return; err: dev_dbg(dev, "No ACPI support\n"); } void acpi_device_notify_remove(struct device *dev) { struct acpi_device *adev = ACPI_COMPANION(dev); if (!adev) return; if (dev_is_pci(dev)) pci_acpi_cleanup(dev, adev); else if (adev->handler && adev->handler->unbind) adev->handler->unbind(dev); acpi_unbind_one(dev); } |
1147 1145 1151 1149 1151 3 3 1 1 7 46 7 7 12 12 11 4 3 10 12 3 2 1 1 3 3 3 3 3 3 3 3 3 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 | // SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019 Facebook */ #include <linux/rculist.h> #include <linux/list.h> #include <linux/hash.h> #include <linux/types.h> #include <linux/spinlock.h> #include <linux/bpf.h> #include <linux/btf.h> #include <linux/btf_ids.h> #include <linux/bpf_local_storage.h> #include <net/bpf_sk_storage.h> #include <net/sock.h> #include <uapi/linux/sock_diag.h> #include <uapi/linux/btf.h> #include <linux/rcupdate_trace.h> DEFINE_BPF_STORAGE_CACHE(sk_cache); static struct bpf_local_storage_data * bpf_sk_storage_lookup(struct sock *sk, struct bpf_map *map, bool cacheit_lockit) { struct bpf_local_storage *sk_storage; struct bpf_local_storage_map *smap; sk_storage = rcu_dereference_check(sk->sk_bpf_storage, bpf_rcu_lock_held()); if (!sk_storage) return NULL; smap = (struct bpf_local_storage_map *)map; return bpf_local_storage_lookup(sk_storage, smap, cacheit_lockit); } static int bpf_sk_storage_del(struct sock *sk, struct bpf_map *map) { struct bpf_local_storage_data *sdata; sdata = bpf_sk_storage_lookup(sk, map, false); if (!sdata) return -ENOENT; bpf_selem_unlink(SELEM(sdata), false); return 0; } /* Called by __sk_destruct() & bpf_sk_storage_clone() */ void bpf_sk_storage_free(struct sock *sk) { struct bpf_local_storage *sk_storage; migrate_disable(); rcu_read_lock(); sk_storage = rcu_dereference(sk->sk_bpf_storage); if (!sk_storage) goto out; bpf_local_storage_destroy(sk_storage); out: rcu_read_unlock(); migrate_enable(); } static void bpf_sk_storage_map_free(struct bpf_map *map) { bpf_local_storage_map_free(map, &sk_cache, NULL); } static struct bpf_map *bpf_sk_storage_map_alloc(union bpf_attr *attr) { return bpf_local_storage_map_alloc(attr, &sk_cache, false); } static int notsupp_get_next_key(struct bpf_map *map, void *key, void *next_key) { return -ENOTSUPP; } static void *bpf_fd_sk_storage_lookup_elem(struct bpf_map *map, void *key) { struct bpf_local_storage_data *sdata; struct socket *sock; int fd, err; fd = *(int *)key; sock = sockfd_lookup(fd, &err); if (sock) { sdata = bpf_sk_storage_lookup(sock->sk, map, true); sockfd_put(sock); return sdata ? sdata->data : NULL; } return ERR_PTR(err); } static long bpf_fd_sk_storage_update_elem(struct bpf_map *map, void *key, void *value, u64 map_flags) { struct bpf_local_storage_data *sdata; struct socket *sock; int fd, err; fd = *(int *)key; sock = sockfd_lookup(fd, &err); if (sock) { sdata = bpf_local_storage_update( sock->sk, (struct bpf_local_storage_map *)map, value, map_flags, false, GFP_ATOMIC); sockfd_put(sock); return PTR_ERR_OR_ZERO(sdata); } return err; } static long bpf_fd_sk_storage_delete_elem(struct bpf_map *map, void *key) { struct socket *sock; int fd, err; fd = *(int *)key; sock = sockfd_lookup(fd, &err); if (sock) { err = bpf_sk_storage_del(sock->sk, map); sockfd_put(sock); return err; } return err; } static struct bpf_local_storage_elem * bpf_sk_storage_clone_elem(struct sock *newsk, struct bpf_local_storage_map *smap, struct bpf_local_storage_elem *selem) { struct bpf_local_storage_elem *copy_selem; copy_selem = bpf_selem_alloc(smap, newsk, NULL, true, false, GFP_ATOMIC); if (!copy_selem) return NULL; if (btf_record_has_field(smap->map.record, BPF_SPIN_LOCK)) copy_map_value_locked(&smap->map, SDATA(copy_selem)->data, SDATA(selem)->data, true); else copy_map_value(&smap->map, SDATA(copy_selem)->data, SDATA(selem)->data); return copy_selem; } int bpf_sk_storage_clone(const struct sock *sk, struct sock *newsk) { struct bpf_local_storage *new_sk_storage = NULL; struct bpf_local_storage *sk_storage; struct bpf_local_storage_elem *selem; int ret = 0; RCU_INIT_POINTER(newsk->sk_bpf_storage, NULL); migrate_disable(); rcu_read_lock(); sk_storage = rcu_dereference(sk->sk_bpf_storage); if (!sk_storage || hlist_empty(&sk_storage->list)) goto out; hlist_for_each_entry_rcu(selem, &sk_storage->list, snode) { struct bpf_local_storage_elem *copy_selem; struct bpf_local_storage_map *smap; struct bpf_map *map; smap = rcu_dereference(SDATA(selem)->smap); if (!(smap->map.map_flags & BPF_F_CLONE)) continue; /* Note that for lockless listeners adding new element * here can race with cleanup in bpf_local_storage_map_free. * Try to grab map refcnt to make sure that it's still * alive and prevent concurrent removal. */ map = bpf_map_inc_not_zero(&smap->map); if (IS_ERR(map)) continue; copy_selem = bpf_sk_storage_clone_elem(newsk, smap, selem); if (!copy_selem) { ret = -ENOMEM; bpf_map_put(map); goto out; } if (new_sk_storage) { bpf_selem_link_map(smap, copy_selem); bpf_selem_link_storage_nolock(new_sk_storage, copy_selem); } else { ret = bpf_local_storage_alloc(newsk, smap, copy_selem, GFP_ATOMIC); if (ret) { bpf_selem_free(copy_selem, smap, true); atomic_sub(smap->elem_size, &newsk->sk_omem_alloc); bpf_map_put(map); goto out; } new_sk_storage = rcu_dereference(copy_selem->local_storage); } bpf_map_put(map); } out: rcu_read_unlock(); migrate_enable(); /* In case of an error, don't free anything explicitly here, the * caller is responsible to call bpf_sk_storage_free. */ return ret; } /* *gfp_flags* is a hidden argument provided by the verifier */ BPF_CALL_5(bpf_sk_storage_get, struct bpf_map *, map, struct sock *, sk, void *, value, u64, flags, gfp_t, gfp_flags) { struct bpf_local_storage_data *sdata; WARN_ON_ONCE(!bpf_rcu_lock_held()); if (!sk || !sk_fullsock(sk) || flags > BPF_SK_STORAGE_GET_F_CREATE) return (unsigned long)NULL; sdata = bpf_sk_storage_lookup(sk, map, true); if (sdata) return (unsigned long)sdata->data; if (flags == BPF_SK_STORAGE_GET_F_CREATE && /* Cannot add new elem to a going away sk. * Otherwise, the new elem may become a leak * (and also other memory issues during map * destruction). */ refcount_inc_not_zero(&sk->sk_refcnt)) { sdata = bpf_local_storage_update( sk, (struct bpf_local_storage_map *)map, value, BPF_NOEXIST, false, gfp_flags); /* sk must be a fullsock (guaranteed by verifier), * so sock_gen_put() is unnecessary. */ sock_put(sk); return IS_ERR(sdata) ? (unsigned long)NULL : (unsigned long)sdata->data; } return (unsigned long)NULL; } BPF_CALL_2(bpf_sk_storage_delete, struct bpf_map *, map, struct sock *, sk) { WARN_ON_ONCE(!bpf_rcu_lock_held()); if (!sk || !sk_fullsock(sk)) return -EINVAL; if (refcount_inc_not_zero(&sk->sk_refcnt)) { int err; err = bpf_sk_storage_del(sk, map); sock_put(sk); return err; } return -ENOENT; } static int bpf_sk_storage_charge(struct bpf_local_storage_map *smap, void *owner, u32 size) { struct sock *sk = (struct sock *)owner; int optmem_max; optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); /* same check as in sock_kmalloc() */ if (size <= optmem_max && atomic_read(&sk->sk_omem_alloc) + size < optmem_max) { atomic_add(size, &sk->sk_omem_alloc); return 0; } return -ENOMEM; } static void bpf_sk_storage_uncharge(struct bpf_local_storage_map *smap, void *owner, u32 size) { struct sock *sk = owner; atomic_sub(size, &sk->sk_omem_alloc); } static struct bpf_local_storage __rcu ** bpf_sk_storage_ptr(void *owner) { struct sock *sk = owner; return &sk->sk_bpf_storage; } const struct bpf_map_ops sk_storage_map_ops = { .map_meta_equal = bpf_map_meta_equal, .map_alloc_check = bpf_local_storage_map_alloc_check, .map_alloc = bpf_sk_storage_map_alloc, .map_free = bpf_sk_storage_map_free, .map_get_next_key = notsupp_get_next_key, .map_lookup_elem = bpf_fd_sk_storage_lookup_elem, .map_update_elem = bpf_fd_sk_storage_update_elem, .map_delete_elem = bpf_fd_sk_storage_delete_elem, .map_check_btf = bpf_local_storage_map_check_btf, .map_btf_id = &bpf_local_storage_map_btf_id[0], .map_local_storage_charge = bpf_sk_storage_charge, .map_local_storage_uncharge = bpf_sk_storage_uncharge, .map_owner_storage_ptr = bpf_sk_storage_ptr, .map_mem_usage = bpf_local_storage_map_mem_usage, }; const struct bpf_func_proto bpf_sk_storage_get_proto = { .func = bpf_sk_storage_get, .gpl_only = false, .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .arg3_type = ARG_PTR_TO_MAP_VALUE_OR_NULL, .arg4_type = ARG_ANYTHING, }; const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto = { .func = bpf_sk_storage_get, .gpl_only = false, .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_CTX, /* context is 'struct sock' */ .arg3_type = ARG_PTR_TO_MAP_VALUE_OR_NULL, .arg4_type = ARG_ANYTHING, }; const struct bpf_func_proto bpf_sk_storage_delete_proto = { .func = bpf_sk_storage_delete, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, }; static bool bpf_sk_storage_tracing_allowed(const struct bpf_prog *prog) { if (prog->aux->dst_prog) return false; /* Ensure the tracing program is not tracing * any bpf_sk_storage*() function and also * use the bpf_sk_storage_(get|delete) helper. */ switch (prog->expected_attach_type) { case BPF_TRACE_ITER: case BPF_TRACE_RAW_TP: /* bpf_sk_storage has no trace point */ return true; case BPF_TRACE_FENTRY: case BPF_TRACE_FEXIT: return !!strncmp(prog->aux->attach_func_name, "bpf_sk_storage", strlen("bpf_sk_storage")); default: return false; } return false; } /* *gfp_flags* is a hidden argument provided by the verifier */ BPF_CALL_5(bpf_sk_storage_get_tracing, struct bpf_map *, map, struct sock *, sk, void *, value, u64, flags, gfp_t, gfp_flags) { WARN_ON_ONCE(!bpf_rcu_lock_held()); if (in_hardirq() || in_nmi()) return (unsigned long)NULL; return (unsigned long)____bpf_sk_storage_get(map, sk, value, flags, gfp_flags); } BPF_CALL_2(bpf_sk_storage_delete_tracing, struct bpf_map *, map, struct sock *, sk) { WARN_ON_ONCE(!bpf_rcu_lock_held()); if (in_hardirq() || in_nmi()) return -EPERM; return ____bpf_sk_storage_delete(map, sk); } const struct bpf_func_proto bpf_sk_storage_get_tracing_proto = { .func = bpf_sk_storage_get_tracing, .gpl_only = false, .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL, .arg2_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], .arg3_type = ARG_PTR_TO_MAP_VALUE_OR_NULL, .arg4_type = ARG_ANYTHING, .allowed = bpf_sk_storage_tracing_allowed, }; const struct bpf_func_proto bpf_sk_storage_delete_tracing_proto = { .func = bpf_sk_storage_delete_tracing, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL, .arg2_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], .allowed = bpf_sk_storage_tracing_allowed, }; struct bpf_sk_storage_diag { u32 nr_maps; struct bpf_map *maps[]; }; /* The reply will be like: * INET_DIAG_BPF_SK_STORAGES (nla_nest) * SK_DIAG_BPF_STORAGE (nla_nest) * SK_DIAG_BPF_STORAGE_MAP_ID (nla_put_u32) * SK_DIAG_BPF_STORAGE_MAP_VALUE (nla_reserve_64bit) * SK_DIAG_BPF_STORAGE (nla_nest) * SK_DIAG_BPF_STORAGE_MAP_ID (nla_put_u32) * SK_DIAG_BPF_STORAGE_MAP_VALUE (nla_reserve_64bit) * .... */ static int nla_value_size(u32 value_size) { /* SK_DIAG_BPF_STORAGE (nla_nest) * SK_DIAG_BPF_STORAGE_MAP_ID (nla_put_u32) * SK_DIAG_BPF_STORAGE_MAP_VALUE (nla_reserve_64bit) */ return nla_total_size(0) + nla_total_size(sizeof(u32)) + nla_total_size_64bit(value_size); } void bpf_sk_storage_diag_free(struct bpf_sk_storage_diag *diag) { u32 i; if (!diag) return; for (i = 0; i < diag->nr_maps; i++) bpf_map_put(diag->maps[i]); kfree(diag); } EXPORT_SYMBOL_GPL(bpf_sk_storage_diag_free); static bool diag_check_dup(const struct bpf_sk_storage_diag *diag, const struct bpf_map *map) { u32 i; for (i = 0; i < diag->nr_maps; i++) { if (diag->maps[i] == map) return true; } return false; } struct bpf_sk_storage_diag * bpf_sk_storage_diag_alloc(const struct nlattr *nla_stgs) { struct bpf_sk_storage_diag *diag; struct nlattr *nla; u32 nr_maps = 0; int rem, err; /* bpf_local_storage_map is currently limited to CAP_SYS_ADMIN as * the map_alloc_check() side also does. */ if (!bpf_capable()) return ERR_PTR(-EPERM); nla_for_each_nested_type(nla, SK_DIAG_BPF_STORAGE_REQ_MAP_FD, nla_stgs, rem) { if (nla_len(nla) != sizeof(u32)) return ERR_PTR(-EINVAL); nr_maps++; } diag = kzalloc(struct_size(diag, maps, nr_maps), GFP_KERNEL); if (!diag) return ERR_PTR(-ENOMEM); nla_for_each_nested_type(nla, SK_DIAG_BPF_STORAGE_REQ_MAP_FD, nla_stgs, rem) { int map_fd = nla_get_u32(nla); struct bpf_map *map = bpf_map_get(map_fd); if (IS_ERR(map)) { err = PTR_ERR(map); goto err_free; } if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) { bpf_map_put(map); err = -EINVAL; goto err_free; } if (diag_check_dup(diag, map)) { bpf_map_put(map); err = -EEXIST; goto err_free; } diag->maps[diag->nr_maps++] = map; } return diag; err_free: bpf_sk_storage_diag_free(diag); return ERR_PTR(err); } EXPORT_SYMBOL_GPL(bpf_sk_storage_diag_alloc); static int diag_get(struct bpf_local_storage_data *sdata, struct sk_buff *skb) { struct nlattr *nla_stg, *nla_value; struct bpf_local_storage_map *smap; /* It cannot exceed max nlattr's payload */ BUILD_BUG_ON(U16_MAX - NLA_HDRLEN < BPF_LOCAL_STORAGE_MAX_VALUE_SIZE); nla_stg = nla_nest_start(skb, SK_DIAG_BPF_STORAGE); if (!nla_stg) return -EMSGSIZE; smap = rcu_dereference(sdata->smap); if (nla_put_u32(skb, SK_DIAG_BPF_STORAGE_MAP_ID, smap->map.id)) goto errout; nla_value = nla_reserve_64bit(skb, SK_DIAG_BPF_STORAGE_MAP_VALUE, smap->map.value_size, SK_DIAG_BPF_STORAGE_PAD); if (!nla_value) goto errout; if (btf_record_has_field(smap->map.record, BPF_SPIN_LOCK)) copy_map_value_locked(&smap->map, nla_data(nla_value), sdata->data, true); else copy_map_value(&smap->map, nla_data(nla_value), sdata->data); nla_nest_end(skb, nla_stg); return 0; errout: nla_nest_cancel(skb, nla_stg); return -EMSGSIZE; } static int bpf_sk_storage_diag_put_all(struct sock *sk, struct sk_buff *skb, int stg_array_type, unsigned int *res_diag_size) { /* stg_array_type (e.g. INET_DIAG_BPF_SK_STORAGES) */ unsigned int diag_size = nla_total_size(0); struct bpf_local_storage *sk_storage; struct bpf_local_storage_elem *selem; struct bpf_local_storage_map *smap; struct nlattr *nla_stgs; unsigned int saved_len; int err = 0; rcu_read_lock(); sk_storage = rcu_dereference(sk->sk_bpf_storage); if (!sk_storage || hlist_empty(&sk_storage->list)) { rcu_read_unlock(); return 0; } nla_stgs = nla_nest_start(skb, stg_array_type); if (!nla_stgs) /* Continue to learn diag_size */ err = -EMSGSIZE; saved_len = skb->len; hlist_for_each_entry_rcu(selem, &sk_storage->list, snode) { smap = rcu_dereference(SDATA(selem)->smap); diag_size += nla_value_size(smap->map.value_size); if (nla_stgs && diag_get(SDATA(selem), skb)) /* Continue to learn diag_size */ err = -EMSGSIZE; } rcu_read_unlock(); if (nla_stgs) { if (saved_len == skb->len) nla_nest_cancel(skb, nla_stgs); else nla_nest_end(skb, nla_stgs); } if (diag_size == nla_total_size(0)) { *res_diag_size = 0; return 0; } *res_diag_size = diag_size; return err; } int bpf_sk_storage_diag_put(struct bpf_sk_storage_diag *diag, struct sock *sk, struct sk_buff *skb, int stg_array_type, unsigned int *res_diag_size) { /* stg_array_type (e.g. INET_DIAG_BPF_SK_STORAGES) */ unsigned int diag_size = nla_total_size(0); struct bpf_local_storage *sk_storage; struct bpf_local_storage_data *sdata; struct nlattr *nla_stgs; unsigned int saved_len; int err = 0; u32 i; *res_diag_size = 0; /* No map has been specified. Dump all. */ if (!diag->nr_maps) return bpf_sk_storage_diag_put_all(sk, skb, stg_array_type, res_diag_size); rcu_read_lock(); sk_storage = rcu_dereference(sk->sk_bpf_storage); if (!sk_storage || hlist_empty(&sk_storage->list)) { rcu_read_unlock(); return 0; } nla_stgs = nla_nest_start(skb, stg_array_type); if (!nla_stgs) /* Continue to learn diag_size */ err = -EMSGSIZE; saved_len = skb->len; for (i = 0; i < diag->nr_maps; i++) { sdata = bpf_local_storage_lookup(sk_storage, (struct bpf_local_storage_map *)diag->maps[i], false); if (!sdata) continue; diag_size += nla_value_size(diag->maps[i]->value_size); if (nla_stgs && diag_get(sdata, skb)) /* Continue to learn diag_size */ err = -EMSGSIZE; } rcu_read_unlock(); if (nla_stgs) { if (saved_len == skb->len) nla_nest_cancel(skb, nla_stgs); else nla_nest_end(skb, nla_stgs); } if (diag_size == nla_total_size(0)) { *res_diag_size = 0; return 0; } *res_diag_size = diag_size; return err; } EXPORT_SYMBOL_GPL(bpf_sk_storage_diag_put); struct bpf_iter_seq_sk_storage_map_info { struct bpf_map *map; unsigned int bucket_id; unsigned skip_elems; }; static struct bpf_local_storage_elem * bpf_sk_storage_map_seq_find_next(struct bpf_iter_seq_sk_storage_map_info *info, struct bpf_local_storage_elem *prev_selem) __acquires(RCU) __releases(RCU) { struct bpf_local_storage *sk_storage; struct bpf_local_storage_elem *selem; u32 skip_elems = info->skip_elems; struct bpf_local_storage_map *smap; u32 bucket_id = info->bucket_id; u32 i, count, n_buckets; struct bpf_local_storage_map_bucket *b; smap = (struct bpf_local_storage_map *)info->map; n_buckets = 1U << smap->bucket_log; if (bucket_id >= n_buckets) return NULL; /* try to find next selem in the same bucket */ selem = prev_selem; count = 0; while (selem) { selem = hlist_entry_safe(rcu_dereference(hlist_next_rcu(&selem->map_node)), struct bpf_local_storage_elem, map_node); if (!selem) { /* not found, unlock and go to the next bucket */ b = &smap->buckets[bucket_id++]; rcu_read_unlock(); skip_elems = 0; break; } sk_storage = rcu_dereference(selem->local_storage); if (sk_storage) { info->skip_elems = skip_elems + count; return selem; } count++; } for (i = bucket_id; i < (1U << smap->bucket_log); i++) { b = &smap->buckets[i]; rcu_read_lock(); count = 0; hlist_for_each_entry_rcu(selem, &b->list, map_node) { sk_storage = rcu_dereference(selem->local_storage); if (sk_storage && count >= skip_elems) { info->bucket_id = i; info->skip_elems = count; return selem; } count++; } rcu_read_unlock(); skip_elems = 0; } info->bucket_id = i; info->skip_elems = 0; return NULL; } static void *bpf_sk_storage_map_seq_start(struct seq_file *seq, loff_t *pos) { struct bpf_local_storage_elem *selem; selem = bpf_sk_storage_map_seq_find_next(seq->private, NULL); if (!selem) return NULL; if (*pos == 0) ++*pos; return selem; } static void *bpf_sk_storage_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct bpf_iter_seq_sk_storage_map_info *info = seq->private; ++*pos; ++info->skip_elems; return bpf_sk_storage_map_seq_find_next(seq->private, v); } struct bpf_iter__bpf_sk_storage_map { __bpf_md_ptr(struct bpf_iter_meta *, meta); __bpf_md_ptr(struct bpf_map *, map); __bpf_md_ptr(struct sock *, sk); __bpf_md_ptr(void *, value); }; DEFINE_BPF_ITER_FUNC(bpf_sk_storage_map, struct bpf_iter_meta *meta, struct bpf_map *map, struct sock *sk, void *value) static int __bpf_sk_storage_map_seq_show(struct seq_file *seq, struct bpf_local_storage_elem *selem) { struct bpf_iter_seq_sk_storage_map_info *info = seq->private; struct bpf_iter__bpf_sk_storage_map ctx = {}; struct bpf_local_storage *sk_storage; struct bpf_iter_meta meta; struct bpf_prog *prog; int ret = 0; meta.seq = seq; prog = bpf_iter_get_info(&meta, selem == NULL); if (prog) { ctx.meta = &meta; ctx.map = info->map; if (selem) { sk_storage = rcu_dereference(selem->local_storage); ctx.sk = sk_storage->owner; ctx.value = SDATA(selem)->data; } ret = bpf_iter_run_prog(prog, &ctx); } return ret; } static int bpf_sk_storage_map_seq_show(struct seq_file *seq, void *v) { return __bpf_sk_storage_map_seq_show(seq, v); } static void bpf_sk_storage_map_seq_stop(struct seq_file *seq, void *v) __releases(RCU) { if (!v) (void)__bpf_sk_storage_map_seq_show(seq, v); else rcu_read_unlock(); } static int bpf_iter_init_sk_storage_map(void *priv_data, struct bpf_iter_aux_info *aux) { struct bpf_iter_seq_sk_storage_map_info *seq_info = priv_data; bpf_map_inc_with_uref(aux->map); seq_info->map = aux->map; return 0; } static void bpf_iter_fini_sk_storage_map(void *priv_data) { struct bpf_iter_seq_sk_storage_map_info *seq_info = priv_data; bpf_map_put_with_uref(seq_info->map); } static int bpf_iter_attach_map(struct bpf_prog *prog, union bpf_iter_link_info *linfo, struct bpf_iter_aux_info *aux) { struct bpf_map *map; int err = -EINVAL; if (!linfo->map.map_fd) return -EBADF; map = bpf_map_get_with_uref(linfo->map.map_fd); if (IS_ERR(map)) return PTR_ERR(map); if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) goto put_map; if (prog->aux->max_rdwr_access > map->value_size) { err = -EACCES; goto put_map; } aux->map = map; return 0; put_map: bpf_map_put_with_uref(map); return err; } static void bpf_iter_detach_map(struct bpf_iter_aux_info *aux) { bpf_map_put_with_uref(aux->map); } static const struct seq_operations bpf_sk_storage_map_seq_ops = { .start = bpf_sk_storage_map_seq_start, .next = bpf_sk_storage_map_seq_next, .stop = bpf_sk_storage_map_seq_stop, .show = bpf_sk_storage_map_seq_show, }; static const struct bpf_iter_seq_info iter_seq_info = { .seq_ops = &bpf_sk_storage_map_seq_ops, .init_seq_private = bpf_iter_init_sk_storage_map, .fini_seq_private = bpf_iter_fini_sk_storage_map, .seq_priv_size = sizeof(struct bpf_iter_seq_sk_storage_map_info), }; static struct bpf_iter_reg bpf_sk_storage_map_reg_info = { .target = "bpf_sk_storage_map", .attach_target = bpf_iter_attach_map, .detach_target = bpf_iter_detach_map, .show_fdinfo = bpf_iter_map_show_fdinfo, .fill_link_info = bpf_iter_map_fill_link_info, .ctx_arg_info_size = 2, .ctx_arg_info = { { offsetof(struct bpf_iter__bpf_sk_storage_map, sk), PTR_TO_BTF_ID_OR_NULL }, { offsetof(struct bpf_iter__bpf_sk_storage_map, value), PTR_TO_BUF | PTR_MAYBE_NULL }, }, .seq_info = &iter_seq_info, }; static int __init bpf_sk_storage_map_iter_init(void) { bpf_sk_storage_map_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK]; return bpf_iter_reg_target(&bpf_sk_storage_map_reg_info); } late_initcall(bpf_sk_storage_map_iter_init); |
2 1 2 4 4 10 10 10 10 10 10 10 10 10 10 10 10 1094 1098 15 17 17 17 16 17 17 13 17 17 7 7 7 7 7 7 8 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 | // SPDX-License-Identifier: GPL-2.0-only #include <linux/ethtool_netlink.h> #include <linux/net_tstamp.h> #include <linux/phy.h> #include <linux/rtnetlink.h> #include <linux/ptp_clock_kernel.h> #include <linux/phy_link_topology.h> #include <net/netdev_queues.h> #include "netlink.h" #include "common.h" #include "../core/dev.h" const char netdev_features_strings[NETDEV_FEATURE_COUNT][ETH_GSTRING_LEN] = { [NETIF_F_SG_BIT] = "tx-scatter-gather", [NETIF_F_IP_CSUM_BIT] = "tx-checksum-ipv4", [NETIF_F_HW_CSUM_BIT] = "tx-checksum-ip-generic", [NETIF_F_IPV6_CSUM_BIT] = "tx-checksum-ipv6", [NETIF_F_HIGHDMA_BIT] = "highdma", [NETIF_F_FRAGLIST_BIT] = "tx-scatter-gather-fraglist", [NETIF_F_HW_VLAN_CTAG_TX_BIT] = "tx-vlan-hw-insert", [NETIF_F_HW_VLAN_CTAG_RX_BIT] = "rx-vlan-hw-parse", [NETIF_F_HW_VLAN_CTAG_FILTER_BIT] = "rx-vlan-filter", [NETIF_F_HW_VLAN_STAG_TX_BIT] = "tx-vlan-stag-hw-insert", [NETIF_F_HW_VLAN_STAG_RX_BIT] = "rx-vlan-stag-hw-parse", [NETIF_F_HW_VLAN_STAG_FILTER_BIT] = "rx-vlan-stag-filter", [NETIF_F_VLAN_CHALLENGED_BIT] = "vlan-challenged", [NETIF_F_GSO_BIT] = "tx-generic-segmentation", [NETIF_F_GRO_BIT] = "rx-gro", [NETIF_F_GRO_HW_BIT] = "rx-gro-hw", [NETIF_F_LRO_BIT] = "rx-lro", [NETIF_F_TSO_BIT] = "tx-tcp-segmentation", [NETIF_F_GSO_ROBUST_BIT] = "tx-gso-robust", [NETIF_F_TSO_ECN_BIT] = "tx-tcp-ecn-segmentation", [NETIF_F_GSO_ACCECN_BIT] = "tx-tcp-accecn-segmentation", [NETIF_F_TSO_MANGLEID_BIT] = "tx-tcp-mangleid-segmentation", [NETIF_F_TSO6_BIT] = "tx-tcp6-segmentation", [NETIF_F_FSO_BIT] = "tx-fcoe-segmentation", [NETIF_F_GSO_GRE_BIT] = "tx-gre-segmentation", [NETIF_F_GSO_GRE_CSUM_BIT] = "tx-gre-csum-segmentation", [NETIF_F_GSO_IPXIP4_BIT] = "tx-ipxip4-segmentation", [NETIF_F_GSO_IPXIP6_BIT] = "tx-ipxip6-segmentation", [NETIF_F_GSO_UDP_TUNNEL_BIT] = "tx-udp_tnl-segmentation", [NETIF_F_GSO_UDP_TUNNEL_CSUM_BIT] = "tx-udp_tnl-csum-segmentation", [NETIF_F_GSO_PARTIAL_BIT] = "tx-gso-partial", [NETIF_F_GSO_TUNNEL_REMCSUM_BIT] = "tx-tunnel-remcsum-segmentation", [NETIF_F_GSO_SCTP_BIT] = "tx-sctp-segmentation", [NETIF_F_GSO_ESP_BIT] = "tx-esp-segmentation", [NETIF_F_GSO_UDP_L4_BIT] = "tx-udp-segmentation", [NETIF_F_GSO_FRAGLIST_BIT] = "tx-gso-list", [NETIF_F_FCOE_CRC_BIT] = "tx-checksum-fcoe-crc", [NETIF_F_SCTP_CRC_BIT] = "tx-checksum-sctp", [NETIF_F_NTUPLE_BIT] = "rx-ntuple-filter", [NETIF_F_RXHASH_BIT] = "rx-hashing", [NETIF_F_RXCSUM_BIT] = "rx-checksum", [NETIF_F_NOCACHE_COPY_BIT] = "tx-nocache-copy", [NETIF_F_LOOPBACK_BIT] = "loopback", [NETIF_F_RXFCS_BIT] = "rx-fcs", [NETIF_F_RXALL_BIT] = "rx-all", [NETIF_F_HW_L2FW_DOFFLOAD_BIT] = "l2-fwd-offload", [NETIF_F_HW_TC_BIT] = "hw-tc-offload", [NETIF_F_HW_ESP_BIT] = "esp-hw-offload", [NETIF_F_HW_ESP_TX_CSUM_BIT] = "esp-tx-csum-hw-offload", [NETIF_F_RX_UDP_TUNNEL_PORT_BIT] = "rx-udp_tunnel-port-offload", [NETIF_F_HW_TLS_RECORD_BIT] = "tls-hw-record", [NETIF_F_HW_TLS_TX_BIT] = "tls-hw-tx-offload", [NETIF_F_HW_TLS_RX_BIT] = "tls-hw-rx-offload", [NETIF_F_GRO_FRAGLIST_BIT] = "rx-gro-list", [NETIF_F_HW_MACSEC_BIT] = "macsec-hw-offload", [NETIF_F_GRO_UDP_FWD_BIT] = "rx-udp-gro-forwarding", [NETIF_F_HW_HSR_TAG_INS_BIT] = "hsr-tag-ins-offload", [NETIF_F_HW_HSR_TAG_RM_BIT] = "hsr-tag-rm-offload", [NETIF_F_HW_HSR_FWD_BIT] = "hsr-fwd-offload", [NETIF_F_HW_HSR_DUP_BIT] = "hsr-dup-offload", }; const char rss_hash_func_strings[ETH_RSS_HASH_FUNCS_COUNT][ETH_GSTRING_LEN] = { [ETH_RSS_HASH_TOP_BIT] = "toeplitz", [ETH_RSS_HASH_XOR_BIT] = "xor", [ETH_RSS_HASH_CRC32_BIT] = "crc32", }; const char tunable_strings[__ETHTOOL_TUNABLE_COUNT][ETH_GSTRING_LEN] = { [ETHTOOL_ID_UNSPEC] = "Unspec", [ETHTOOL_RX_COPYBREAK] = "rx-copybreak", [ETHTOOL_TX_COPYBREAK] = "tx-copybreak", [ETHTOOL_PFC_PREVENTION_TOUT] = "pfc-prevention-tout", [ETHTOOL_TX_COPYBREAK_BUF_SIZE] = "tx-copybreak-buf-size", }; const char phy_tunable_strings[__ETHTOOL_PHY_TUNABLE_COUNT][ETH_GSTRING_LEN] = { [ETHTOOL_ID_UNSPEC] = "Unspec", [ETHTOOL_PHY_DOWNSHIFT] = "phy-downshift", [ETHTOOL_PHY_FAST_LINK_DOWN] = "phy-fast-link-down", [ETHTOOL_PHY_EDPD] = "phy-energy-detect-power-down", }; #define __LINK_MODE_NAME(speed, type, duplex) \ #speed "base" #type "/" #duplex #define __DEFINE_LINK_MODE_NAME(speed, type, duplex) \ [ETHTOOL_LINK_MODE(speed, type, duplex)] = \ __LINK_MODE_NAME(speed, type, duplex) #define __DEFINE_SPECIAL_MODE_NAME(_mode, _name) \ [ETHTOOL_LINK_MODE_ ## _mode ## _BIT] = _name const char link_mode_names[][ETH_GSTRING_LEN] = { __DEFINE_LINK_MODE_NAME(10, T, Half), __DEFINE_LINK_MODE_NAME(10, T, Full), __DEFINE_LINK_MODE_NAME(100, T, Half), __DEFINE_LINK_MODE_NAME(100, T, Full), __DEFINE_LINK_MODE_NAME(1000, T, Half), __DEFINE_LINK_MODE_NAME(1000, T, Full), __DEFINE_SPECIAL_MODE_NAME(Autoneg, "Autoneg"), __DEFINE_SPECIAL_MODE_NAME(TP, "TP"), __DEFINE_SPECIAL_MODE_NAME(AUI, "AUI"), __DEFINE_SPECIAL_MODE_NAME(MII, "MII"), __DEFINE_SPECIAL_MODE_NAME(FIBRE, "FIBRE"), __DEFINE_SPECIAL_MODE_NAME(BNC, "BNC"), __DEFINE_LINK_MODE_NAME(10000, T, Full), __DEFINE_SPECIAL_MODE_NAME(Pause, "Pause"), __DEFINE_SPECIAL_MODE_NAME(Asym_Pause, "Asym_Pause"), __DEFINE_LINK_MODE_NAME(2500, X, Full), __DEFINE_SPECIAL_MODE_NAME(Backplane, "Backplane"), __DEFINE_LINK_MODE_NAME(1000, KX, Full), __DEFINE_LINK_MODE_NAME(10000, KX4, Full), __DEFINE_LINK_MODE_NAME(10000, KR, Full), __DEFINE_SPECIAL_MODE_NAME(10000baseR_FEC, "10000baseR_FEC"), __DEFINE_LINK_MODE_NAME(20000, MLD2, Full), __DEFINE_LINK_MODE_NAME(20000, KR2, Full), __DEFINE_LINK_MODE_NAME(40000, KR4, Full), __DEFINE_LINK_MODE_NAME(40000, CR4, Full), __DEFINE_LINK_MODE_NAME(40000, SR4, Full), __DEFINE_LINK_MODE_NAME(40000, LR4, Full), __DEFINE_LINK_MODE_NAME(56000, KR4, Full), __DEFINE_LINK_MODE_NAME(56000, CR4, Full), __DEFINE_LINK_MODE_NAME(56000, SR4, Full), __DEFINE_LINK_MODE_NAME(56000, LR4, Full), __DEFINE_LINK_MODE_NAME(25000, CR, Full), __DEFINE_LINK_MODE_NAME(25000, KR, Full), __DEFINE_LINK_MODE_NAME(25000, SR, Full), __DEFINE_LINK_MODE_NAME(50000, CR2, Full), __DEFINE_LINK_MODE_NAME(50000, KR2, Full), __DEFINE_LINK_MODE_NAME(100000, KR4, Full), __DEFINE_LINK_MODE_NAME(100000, SR4, Full), __DEFINE_LINK_MODE_NAME(100000, CR4, Full), __DEFINE_LINK_MODE_NAME(100000, LR4_ER4, Full), __DEFINE_LINK_MODE_NAME(50000, SR2, Full), __DEFINE_LINK_MODE_NAME(1000, X, Full), __DEFINE_LINK_MODE_NAME(10000, CR, Full), __DEFINE_LINK_MODE_NAME(10000, SR, Full), __DEFINE_LINK_MODE_NAME(10000, LR, Full), __DEFINE_LINK_MODE_NAME(10000, LRM, Full), __DEFINE_LINK_MODE_NAME(10000, ER, Full), __DEFINE_LINK_MODE_NAME(2500, T, Full), __DEFINE_LINK_MODE_NAME(5000, T, Full), __DEFINE_SPECIAL_MODE_NAME(FEC_NONE, "None"), __DEFINE_SPECIAL_MODE_NAME(FEC_RS, "RS"), __DEFINE_SPECIAL_MODE_NAME(FEC_BASER, "BASER"), __DEFINE_LINK_MODE_NAME(50000, KR, Full), __DEFINE_LINK_MODE_NAME(50000, SR, Full), __DEFINE_LINK_MODE_NAME(50000, CR, Full), __DEFINE_LINK_MODE_NAME(50000, LR_ER_FR, Full), __DEFINE_LINK_MODE_NAME(50000, DR, Full), __DEFINE_LINK_MODE_NAME(100000, KR2, Full), __DEFINE_LINK_MODE_NAME(100000, SR2, Full), __DEFINE_LINK_MODE_NAME(100000, CR2, Full), __DEFINE_LINK_MODE_NAME(100000, LR2_ER2_FR2, Full), __DEFINE_LINK_MODE_NAME(100000, DR2, Full), __DEFINE_LINK_MODE_NAME(200000, KR4, Full), __DEFINE_LINK_MODE_NAME(200000, SR4, Full), __DEFINE_LINK_MODE_NAME(200000, LR4_ER4_FR4, Full), __DEFINE_LINK_MODE_NAME(200000, DR4, Full), __DEFINE_LINK_MODE_NAME(200000, CR4, Full), __DEFINE_LINK_MODE_NAME(100, T1, Full), __DEFINE_LINK_MODE_NAME(1000, T1, Full), __DEFINE_LINK_MODE_NAME(400000, KR8, Full), __DEFINE_LINK_MODE_NAME(400000, SR8, Full), __DEFINE_LINK_MODE_NAME(400000, LR8_ER8_FR8, Full), __DEFINE_LINK_MODE_NAME(400000, DR8, Full), __DEFINE_LINK_MODE_NAME(400000, CR8, Full), __DEFINE_SPECIAL_MODE_NAME(FEC_LLRS, "LLRS"), __DEFINE_LINK_MODE_NAME(100000, KR, Full), __DEFINE_LINK_MODE_NAME(100000, SR, Full), __DEFINE_LINK_MODE_NAME(100000, LR_ER_FR, Full), __DEFINE_LINK_MODE_NAME(100000, DR, Full), __DEFINE_LINK_MODE_NAME(100000, CR, Full), __DEFINE_LINK_MODE_NAME(200000, KR2, Full), __DEFINE_LINK_MODE_NAME(200000, SR2, Full), __DEFINE_LINK_MODE_NAME(200000, LR2_ER2_FR2, Full), __DEFINE_LINK_MODE_NAME(200000, DR2, Full), __DEFINE_LINK_MODE_NAME(200000, CR2, Full), __DEFINE_LINK_MODE_NAME(400000, KR4, Full), __DEFINE_LINK_MODE_NAME(400000, SR4, Full), __DEFINE_LINK_MODE_NAME(400000, LR4_ER4_FR4, Full), __DEFINE_LINK_MODE_NAME(400000, DR4, Full), __DEFINE_LINK_MODE_NAME(400000, CR4, Full), __DEFINE_LINK_MODE_NAME(100, FX, Half), __DEFINE_LINK_MODE_NAME(100, FX, Full), __DEFINE_LINK_MODE_NAME(10, T1L, Full), __DEFINE_LINK_MODE_NAME(800000, CR8, Full), __DEFINE_LINK_MODE_NAME(800000, KR8, Full), __DEFINE_LINK_MODE_NAME(800000, DR8, Full), __DEFINE_LINK_MODE_NAME(800000, DR8_2, Full), __DEFINE_LINK_MODE_NAME(800000, SR8, Full), __DEFINE_LINK_MODE_NAME(800000, VR8, Full), __DEFINE_LINK_MODE_NAME(10, T1S, Full), __DEFINE_LINK_MODE_NAME(10, T1S, Half), __DEFINE_LINK_MODE_NAME(10, T1S_P2MP, Half), __DEFINE_LINK_MODE_NAME(10, T1BRR, Full), __DEFINE_LINK_MODE_NAME(200000, CR, Full), __DEFINE_LINK_MODE_NAME(200000, KR, Full), __DEFINE_LINK_MODE_NAME(200000, DR, Full), __DEFINE_LINK_MODE_NAME(200000, DR_2, Full), __DEFINE_LINK_MODE_NAME(200000, SR, Full), __DEFINE_LINK_MODE_NAME(200000, VR, Full), __DEFINE_LINK_MODE_NAME(400000, CR2, Full), __DEFINE_LINK_MODE_NAME(400000, KR2, Full), __DEFINE_LINK_MODE_NAME(400000, DR2, Full), __DEFINE_LINK_MODE_NAME(400000, DR2_2, Full), __DEFINE_LINK_MODE_NAME(400000, SR2, Full), __DEFINE_LINK_MODE_NAME(400000, VR2, Full), __DEFINE_LINK_MODE_NAME(800000, CR4, Full), __DEFINE_LINK_MODE_NAME(800000, KR4, Full), __DEFINE_LINK_MODE_NAME(800000, DR4, Full), __DEFINE_LINK_MODE_NAME(800000, DR4_2, Full), __DEFINE_LINK_MODE_NAME(800000, SR4, Full), __DEFINE_LINK_MODE_NAME(800000, VR4, Full), }; static_assert(ARRAY_SIZE(link_mode_names) == __ETHTOOL_LINK_MODE_MASK_NBITS); #define __LINK_MODE_LANES_CR 1 #define __LINK_MODE_LANES_CR2 2 #define __LINK_MODE_LANES_CR4 4 #define __LINK_MODE_LANES_CR8 8 #define __LINK_MODE_LANES_DR 1 #define __LINK_MODE_LANES_DR_2 1 #define __LINK_MODE_LANES_DR2 2 #define __LINK_MODE_LANES_DR2_2 2 #define __LINK_MODE_LANES_DR4 4 #define __LINK_MODE_LANES_DR4_2 4 #define __LINK_MODE_LANES_DR8 8 #define __LINK_MODE_LANES_KR 1 #define __LINK_MODE_LANES_KR2 2 #define __LINK_MODE_LANES_KR4 4 #define __LINK_MODE_LANES_KR8 8 #define __LINK_MODE_LANES_SR 1 #define __LINK_MODE_LANES_SR2 2 #define __LINK_MODE_LANES_SR4 4 #define __LINK_MODE_LANES_SR8 8 #define __LINK_MODE_LANES_ER 1 #define __LINK_MODE_LANES_KX 1 #define __LINK_MODE_LANES_KX4 4 #define __LINK_MODE_LANES_LR 1 #define __LINK_MODE_LANES_LR4 4 #define __LINK_MODE_LANES_LR4_ER4 4 #define __LINK_MODE_LANES_LR_ER_FR 1 #define __LINK_MODE_LANES_LR2_ER2_FR2 2 #define __LINK_MODE_LANES_LR4_ER4_FR4 4 #define __LINK_MODE_LANES_LR8_ER8_FR8 8 #define __LINK_MODE_LANES_LRM 1 #define __LINK_MODE_LANES_MLD2 2 #define __LINK_MODE_LANES_T 1 #define __LINK_MODE_LANES_T1 1 #define __LINK_MODE_LANES_X 1 #define __LINK_MODE_LANES_FX 1 #define __LINK_MODE_LANES_T1L 1 #define __LINK_MODE_LANES_T1S 1 #define __LINK_MODE_LANES_T1S_P2MP 1 #define __LINK_MODE_LANES_VR 1 #define __LINK_MODE_LANES_VR2 2 #define __LINK_MODE_LANES_VR4 4 #define __LINK_MODE_LANES_VR8 8 #define __LINK_MODE_LANES_DR8_2 8 #define __LINK_MODE_LANES_T1BRR 1 #define __DEFINE_LINK_MODE_PARAMS(_speed, _type, _duplex) \ [ETHTOOL_LINK_MODE(_speed, _type, _duplex)] = { \ .speed = SPEED_ ## _speed, \ .lanes = __LINK_MODE_LANES_ ## _type, \ .duplex = __DUPLEX_ ## _duplex \ } #define __DUPLEX_Half DUPLEX_HALF #define __DUPLEX_Full DUPLEX_FULL #define __DEFINE_SPECIAL_MODE_PARAMS(_mode) \ [ETHTOOL_LINK_MODE_ ## _mode ## _BIT] = { \ .speed = SPEED_UNKNOWN, \ .lanes = 0, \ .duplex = DUPLEX_UNKNOWN, \ } const struct link_mode_info link_mode_params[] = { __DEFINE_LINK_MODE_PARAMS(10, T, Half), __DEFINE_LINK_MODE_PARAMS(10, T, Full), __DEFINE_LINK_MODE_PARAMS(100, T, Half), __DEFINE_LINK_MODE_PARAMS(100, T, Full), __DEFINE_LINK_MODE_PARAMS(1000, T, Half), __DEFINE_LINK_MODE_PARAMS(1000, T, Full), __DEFINE_SPECIAL_MODE_PARAMS(Autoneg), __DEFINE_SPECIAL_MODE_PARAMS(TP), __DEFINE_SPECIAL_MODE_PARAMS(AUI), __DEFINE_SPECIAL_MODE_PARAMS(MII), __DEFINE_SPECIAL_MODE_PARAMS(FIBRE), __DEFINE_SPECIAL_MODE_PARAMS(BNC), __DEFINE_LINK_MODE_PARAMS(10000, T, Full), __DEFINE_SPECIAL_MODE_PARAMS(Pause), __DEFINE_SPECIAL_MODE_PARAMS(Asym_Pause), __DEFINE_LINK_MODE_PARAMS(2500, X, Full), __DEFINE_SPECIAL_MODE_PARAMS(Backplane), __DEFINE_LINK_MODE_PARAMS(1000, KX, Full), __DEFINE_LINK_MODE_PARAMS(10000, KX4, Full), __DEFINE_LINK_MODE_PARAMS(10000, KR, Full), [ETHTOOL_LINK_MODE_10000baseR_FEC_BIT] = { .speed = SPEED_10000, .lanes = 1, .duplex = DUPLEX_FULL, }, __DEFINE_LINK_MODE_PARAMS(20000, MLD2, Full), __DEFINE_LINK_MODE_PARAMS(20000, KR2, Full), __DEFINE_LINK_MODE_PARAMS(40000, KR4, Full), __DEFINE_LINK_MODE_PARAMS(40000, CR4, Full), __DEFINE_LINK_MODE_PARAMS(40000, SR4, Full), __DEFINE_LINK_MODE_PARAMS(40000, LR4, Full), __DEFINE_LINK_MODE_PARAMS(56000, KR4, Full), __DEFINE_LINK_MODE_PARAMS(56000, CR4, Full), __DEFINE_LINK_MODE_PARAMS(56000, SR4, Full), __DEFINE_LINK_MODE_PARAMS(56000, LR4, Full), __DEFINE_LINK_MODE_PARAMS(25000, CR, Full), __DEFINE_LINK_MODE_PARAMS(25000, KR, Full), __DEFINE_LINK_MODE_PARAMS(25000, SR, Full), __DEFINE_LINK_MODE_PARAMS(50000, CR2, Full), __DEFINE_LINK_MODE_PARAMS(50000, KR2, Full), __DEFINE_LINK_MODE_PARAMS(100000, KR4, Full), __DEFINE_LINK_MODE_PARAMS(100000, SR4, Full), __DEFINE_LINK_MODE_PARAMS(100000, CR4, Full), __DEFINE_LINK_MODE_PARAMS(100000, LR4_ER4, Full), __DEFINE_LINK_MODE_PARAMS(50000, SR2, Full), __DEFINE_LINK_MODE_PARAMS(1000, X, Full), __DEFINE_LINK_MODE_PARAMS(10000, CR, Full), __DEFINE_LINK_MODE_PARAMS(10000, SR, Full), __DEFINE_LINK_MODE_PARAMS(10000, LR, Full), __DEFINE_LINK_MODE_PARAMS(10000, LRM, Full), __DEFINE_LINK_MODE_PARAMS(10000, ER, Full), __DEFINE_LINK_MODE_PARAMS(2500, T, Full), __DEFINE_LINK_MODE_PARAMS(5000, T, Full), __DEFINE_SPECIAL_MODE_PARAMS(FEC_NONE), __DEFINE_SPECIAL_MODE_PARAMS(FEC_RS), __DEFINE_SPECIAL_MODE_PARAMS(FEC_BASER), __DEFINE_LINK_MODE_PARAMS(50000, KR, Full), __DEFINE_LINK_MODE_PARAMS(50000, SR, Full), __DEFINE_LINK_MODE_PARAMS(50000, CR, Full), __DEFINE_LINK_MODE_PARAMS(50000, LR_ER_FR, Full), __DEFINE_LINK_MODE_PARAMS(50000, DR, Full), __DEFINE_LINK_MODE_PARAMS(100000, KR2, Full), __DEFINE_LINK_MODE_PARAMS(100000, SR2, Full), __DEFINE_LINK_MODE_PARAMS(100000, CR2, Full), __DEFINE_LINK_MODE_PARAMS(100000, LR2_ER2_FR2, Full), __DEFINE_LINK_MODE_PARAMS(100000, DR2, Full), __DEFINE_LINK_MODE_PARAMS(200000, KR4, Full), __DEFINE_LINK_MODE_PARAMS(200000, SR4, Full), __DEFINE_LINK_MODE_PARAMS(200000, LR4_ER4_FR4, Full), __DEFINE_LINK_MODE_PARAMS(200000, DR4, Full), __DEFINE_LINK_MODE_PARAMS(200000, CR4, Full), __DEFINE_LINK_MODE_PARAMS(100, T1, Full), __DEFINE_LINK_MODE_PARAMS(1000, T1, Full), __DEFINE_LINK_MODE_PARAMS(400000, KR8, Full), __DEFINE_LINK_MODE_PARAMS(400000, SR8, Full), __DEFINE_LINK_MODE_PARAMS(400000, LR8_ER8_FR8, Full), __DEFINE_LINK_MODE_PARAMS(400000, DR8, Full), __DEFINE_LINK_MODE_PARAMS(400000, CR8, Full), __DEFINE_SPECIAL_MODE_PARAMS(FEC_LLRS), __DEFINE_LINK_MODE_PARAMS(100000, KR, Full), __DEFINE_LINK_MODE_PARAMS(100000, SR, Full), __DEFINE_LINK_MODE_PARAMS(100000, LR_ER_FR, Full), __DEFINE_LINK_MODE_PARAMS(100000, DR, Full), __DEFINE_LINK_MODE_PARAMS(100000, CR, Full), __DEFINE_LINK_MODE_PARAMS(200000, KR2, Full), __DEFINE_LINK_MODE_PARAMS(200000, SR2, Full), __DEFINE_LINK_MODE_PARAMS(200000, LR2_ER2_FR2, Full), __DEFINE_LINK_MODE_PARAMS(200000, DR2, Full), __DEFINE_LINK_MODE_PARAMS(200000, CR2, Full), __DEFINE_LINK_MODE_PARAMS(400000, KR4, Full), __DEFINE_LINK_MODE_PARAMS(400000, SR4, Full), __DEFINE_LINK_MODE_PARAMS(400000, LR4_ER4_FR4, Full), __DEFINE_LINK_MODE_PARAMS(400000, DR4, Full), __DEFINE_LINK_MODE_PARAMS(400000, CR4, Full), __DEFINE_LINK_MODE_PARAMS(100, FX, Half), __DEFINE_LINK_MODE_PARAMS(100, FX, Full), __DEFINE_LINK_MODE_PARAMS(10, T1L, Full), __DEFINE_LINK_MODE_PARAMS(800000, CR8, Full), __DEFINE_LINK_MODE_PARAMS(800000, KR8, Full), __DEFINE_LINK_MODE_PARAMS(800000, DR8, Full), __DEFINE_LINK_MODE_PARAMS(800000, DR8_2, Full), __DEFINE_LINK_MODE_PARAMS(800000, SR8, Full), __DEFINE_LINK_MODE_PARAMS(800000, VR8, Full), __DEFINE_LINK_MODE_PARAMS(10, T1S, Full), __DEFINE_LINK_MODE_PARAMS(10, T1S, Half), __DEFINE_LINK_MODE_PARAMS(10, T1S_P2MP, Half), __DEFINE_LINK_MODE_PARAMS(10, T1BRR, Full), __DEFINE_LINK_MODE_PARAMS(200000, CR, Full), __DEFINE_LINK_MODE_PARAMS(200000, KR, Full), __DEFINE_LINK_MODE_PARAMS(200000, DR, Full), __DEFINE_LINK_MODE_PARAMS(200000, DR_2, Full), __DEFINE_LINK_MODE_PARAMS(200000, SR, Full), __DEFINE_LINK_MODE_PARAMS(200000, VR, Full), __DEFINE_LINK_MODE_PARAMS(400000, CR2, Full), __DEFINE_LINK_MODE_PARAMS(400000, KR2, Full), __DEFINE_LINK_MODE_PARAMS(400000, DR2, Full), __DEFINE_LINK_MODE_PARAMS(400000, DR2_2, Full), __DEFINE_LINK_MODE_PARAMS(400000, SR2, Full), __DEFINE_LINK_MODE_PARAMS(400000, VR2, Full), __DEFINE_LINK_MODE_PARAMS(800000, CR4, Full), __DEFINE_LINK_MODE_PARAMS(800000, KR4, Full), __DEFINE_LINK_MODE_PARAMS(800000, DR4, Full), __DEFINE_LINK_MODE_PARAMS(800000, DR4_2, Full), __DEFINE_LINK_MODE_PARAMS(800000, SR4, Full), __DEFINE_LINK_MODE_PARAMS(800000, VR4, Full), }; static_assert(ARRAY_SIZE(link_mode_params) == __ETHTOOL_LINK_MODE_MASK_NBITS); EXPORT_SYMBOL_GPL(link_mode_params); const char netif_msg_class_names[][ETH_GSTRING_LEN] = { [NETIF_MSG_DRV_BIT] = "drv", [NETIF_MSG_PROBE_BIT] = "probe", [NETIF_MSG_LINK_BIT] = "link", [NETIF_MSG_TIMER_BIT] = "timer", [NETIF_MSG_IFDOWN_BIT] = "ifdown", [NETIF_MSG_IFUP_BIT] = "ifup", [NETIF_MSG_RX_ERR_BIT] = "rx_err", [NETIF_MSG_TX_ERR_BIT] = "tx_err", [NETIF_MSG_TX_QUEUED_BIT] = "tx_queued", [NETIF_MSG_INTR_BIT] = "intr", [NETIF_MSG_TX_DONE_BIT] = "tx_done", [NETIF_MSG_RX_STATUS_BIT] = "rx_status", [NETIF_MSG_PKTDATA_BIT] = "pktdata", [NETIF_MSG_HW_BIT] = "hw", [NETIF_MSG_WOL_BIT] = "wol", }; static_assert(ARRAY_SIZE(netif_msg_class_names) == NETIF_MSG_CLASS_COUNT); const char wol_mode_names[][ETH_GSTRING_LEN] = { [const_ilog2(WAKE_PHY)] = "phy", [const_ilog2(WAKE_UCAST)] = "ucast", [const_ilog2(WAKE_MCAST)] = "mcast", [const_ilog2(WAKE_BCAST)] = "bcast", [const_ilog2(WAKE_ARP)] = "arp", [const_ilog2(WAKE_MAGIC)] = "magic", [const_ilog2(WAKE_MAGICSECURE)] = "magicsecure", [const_ilog2(WAKE_FILTER)] = "filter", }; static_assert(ARRAY_SIZE(wol_mode_names) == WOL_MODE_COUNT); const char sof_timestamping_names[][ETH_GSTRING_LEN] = { [const_ilog2(SOF_TIMESTAMPING_TX_HARDWARE)] = "hardware-transmit", [const_ilog2(SOF_TIMESTAMPING_TX_SOFTWARE)] = "software-transmit", [const_ilog2(SOF_TIMESTAMPING_RX_HARDWARE)] = "hardware-receive", [const_ilog2(SOF_TIMESTAMPING_RX_SOFTWARE)] = "software-receive", [const_ilog2(SOF_TIMESTAMPING_SOFTWARE)] = "software-system-clock", [const_ilog2(SOF_TIMESTAMPING_SYS_HARDWARE)] = "hardware-legacy-clock", [const_ilog2(SOF_TIMESTAMPING_RAW_HARDWARE)] = "hardware-raw-clock", [const_ilog2(SOF_TIMESTAMPING_OPT_ID)] = "option-id", [const_ilog2(SOF_TIMESTAMPING_TX_SCHED)] = "sched-transmit", [const_ilog2(SOF_TIMESTAMPING_TX_ACK)] = "ack-transmit", [const_ilog2(SOF_TIMESTAMPING_OPT_CMSG)] = "option-cmsg", [const_ilog2(SOF_TIMESTAMPING_OPT_TSONLY)] = "option-tsonly", [const_ilog2(SOF_TIMESTAMPING_OPT_STATS)] = "option-stats", [const_ilog2(SOF_TIMESTAMPING_OPT_PKTINFO)] = "option-pktinfo", [const_ilog2(SOF_TIMESTAMPING_OPT_TX_SWHW)] = "option-tx-swhw", [const_ilog2(SOF_TIMESTAMPING_BIND_PHC)] = "bind-phc", [const_ilog2(SOF_TIMESTAMPING_OPT_ID_TCP)] = "option-id-tcp", [const_ilog2(SOF_TIMESTAMPING_OPT_RX_FILTER)] = "option-rx-filter", [const_ilog2(SOF_TIMESTAMPING_TX_COMPLETION)] = "tx-completion", }; static_assert(ARRAY_SIZE(sof_timestamping_names) == __SOF_TIMESTAMPING_CNT); const char ts_tx_type_names[][ETH_GSTRING_LEN] = { [HWTSTAMP_TX_OFF] = "off", [HWTSTAMP_TX_ON] = "on", [HWTSTAMP_TX_ONESTEP_SYNC] = "onestep-sync", [HWTSTAMP_TX_ONESTEP_P2P] = "onestep-p2p", }; static_assert(ARRAY_SIZE(ts_tx_type_names) == __HWTSTAMP_TX_CNT); const char ts_rx_filter_names[][ETH_GSTRING_LEN] = { [HWTSTAMP_FILTER_NONE] = "none", [HWTSTAMP_FILTER_ALL] = "all", [HWTSTAMP_FILTER_SOME] = "some", [HWTSTAMP_FILTER_PTP_V1_L4_EVENT] = "ptpv1-l4-event", [HWTSTAMP_FILTER_PTP_V1_L4_SYNC] = "ptpv1-l4-sync", [HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ] = "ptpv1-l4-delay-req", [HWTSTAMP_FILTER_PTP_V2_L4_EVENT] = "ptpv2-l4-event", [HWTSTAMP_FILTER_PTP_V2_L4_SYNC] = "ptpv2-l4-sync", [HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ] = "ptpv2-l4-delay-req", [HWTSTAMP_FILTER_PTP_V2_L2_EVENT] = "ptpv2-l2-event", [HWTSTAMP_FILTER_PTP_V2_L2_SYNC] = "ptpv2-l2-sync", [HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ] = "ptpv2-l2-delay-req", [HWTSTAMP_FILTER_PTP_V2_EVENT] = "ptpv2-event", [HWTSTAMP_FILTER_PTP_V2_SYNC] = "ptpv2-sync", [HWTSTAMP_FILTER_PTP_V2_DELAY_REQ] = "ptpv2-delay-req", [HWTSTAMP_FILTER_NTP_ALL] = "ntp-all", }; static_assert(ARRAY_SIZE(ts_rx_filter_names) == __HWTSTAMP_FILTER_CNT); const char ts_flags_names[][ETH_GSTRING_LEN] = { [const_ilog2(HWTSTAMP_FLAG_BONDED_PHC_INDEX)] = "bonded-phc-index", }; static_assert(ARRAY_SIZE(ts_flags_names) == __HWTSTAMP_FLAG_CNT); const char udp_tunnel_type_names[][ETH_GSTRING_LEN] = { [ETHTOOL_UDP_TUNNEL_TYPE_VXLAN] = "vxlan", [ETHTOOL_UDP_TUNNEL_TYPE_GENEVE] = "geneve", [ETHTOOL_UDP_TUNNEL_TYPE_VXLAN_GPE] = "vxlan-gpe", }; static_assert(ARRAY_SIZE(udp_tunnel_type_names) == __ETHTOOL_UDP_TUNNEL_TYPE_CNT); /* return false if legacy contained non-0 deprecated fields * maxtxpkt/maxrxpkt. rest of ksettings always updated */ bool convert_legacy_settings_to_link_ksettings( struct ethtool_link_ksettings *link_ksettings, const struct ethtool_cmd *legacy_settings) { bool retval = true; memset(link_ksettings, 0, sizeof(*link_ksettings)); /* This is used to tell users that driver is still using these * deprecated legacy fields, and they should not use * %ETHTOOL_GLINKSETTINGS/%ETHTOOL_SLINKSETTINGS */ if (legacy_settings->maxtxpkt || legacy_settings->maxrxpkt) retval = false; ethtool_convert_legacy_u32_to_link_mode( link_ksettings->link_modes.supported, legacy_settings->supported); ethtool_convert_legacy_u32_to_link_mode( link_ksettings->link_modes.advertising, legacy_settings->advertising); ethtool_convert_legacy_u32_to_link_mode( link_ksettings->link_modes.lp_advertising, legacy_settings->lp_advertising); link_ksettings->base.speed = ethtool_cmd_speed(legacy_settings); link_ksettings->base.duplex = legacy_settings->duplex; link_ksettings->base.port = legacy_settings->port; link_ksettings->base.phy_address = legacy_settings->phy_address; link_ksettings->base.autoneg = legacy_settings->autoneg; link_ksettings->base.mdio_support = legacy_settings->mdio_support; link_ksettings->base.eth_tp_mdix = legacy_settings->eth_tp_mdix; link_ksettings->base.eth_tp_mdix_ctrl = legacy_settings->eth_tp_mdix_ctrl; return retval; } int __ethtool_get_link(struct net_device *dev) { if (!dev->ethtool_ops->get_link) return -EOPNOTSUPP; return netif_running(dev) && dev->ethtool_ops->get_link(dev); } static int ethtool_get_rxnfc_rule_count(struct net_device *dev) { const struct ethtool_ops *ops = dev->ethtool_ops; struct ethtool_rxnfc info = { .cmd = ETHTOOL_GRXCLSRLCNT, }; int err; err = ops->get_rxnfc(dev, &info, NULL); if (err) return err; return info.rule_cnt; } /* Max offset for one RSS context */ static u32 ethtool_get_rss_ctx_max_channel(struct ethtool_rxfh_context *ctx) { u32 max_ring = 0; u32 i, *tbl; if (WARN_ON_ONCE(!ctx)) return 0; tbl = ethtool_rxfh_context_indir(ctx); for (i = 0; i < ctx->indir_size; i++) max_ring = max(max_ring, tbl[i]); return max_ring; } static int ethtool_get_max_rxnfc_channel(struct net_device *dev, u64 *max) { const struct ethtool_ops *ops = dev->ethtool_ops; struct ethtool_rxnfc *info; int err, i, rule_cnt; u64 max_ring = 0; if (!ops->get_rxnfc) return -EOPNOTSUPP; rule_cnt = ethtool_get_rxnfc_rule_count(dev); if (rule_cnt <= 0) return -EINVAL; info = kvzalloc(struct_size(info, rule_locs, rule_cnt), GFP_KERNEL); if (!info) return -ENOMEM; info->cmd = ETHTOOL_GRXCLSRLALL; info->rule_cnt = rule_cnt; err = ops->get_rxnfc(dev, info, info->rule_locs); if (err) goto err_free_info; for (i = 0; i < rule_cnt; i++) { struct ethtool_rxnfc rule_info = { .cmd = ETHTOOL_GRXCLSRULE, .fs.location = info->rule_locs[i], }; err = ops->get_rxnfc(dev, &rule_info, NULL); if (err) goto err_free_info; if (rule_info.fs.ring_cookie != RX_CLS_FLOW_DISC && rule_info.fs.ring_cookie != RX_CLS_FLOW_WAKE && !ethtool_get_flow_spec_ring_vf(rule_info.fs.ring_cookie)) { u64 ring = rule_info.fs.ring_cookie; if (rule_info.flow_type & FLOW_RSS) { struct ethtool_rxfh_context *ctx; ctx = xa_load(&dev->ethtool->rss_ctx, rule_info.rss_context); ring += ethtool_get_rss_ctx_max_channel(ctx); } max_ring = max_t(u64, max_ring, ring); } } kvfree(info); *max = max_ring; return 0; err_free_info: kvfree(info); return err; } /* Max offset across all of a device's RSS contexts */ static u32 ethtool_get_max_rss_ctx_channel(struct net_device *dev) { struct ethtool_rxfh_context *ctx; unsigned long context; u32 max_ring = 0; mutex_lock(&dev->ethtool->rss_lock); xa_for_each(&dev->ethtool->rss_ctx, context, ctx) max_ring = max(max_ring, ethtool_get_rss_ctx_max_channel(ctx)); mutex_unlock(&dev->ethtool->rss_lock); return max_ring; } static u32 ethtool_get_max_rxfh_channel(struct net_device *dev) { struct ethtool_rxfh_param rxfh = {}; u32 dev_size, current_max = 0; int ret; /* While we do track whether RSS context has an indirection * table explicitly set by the user, no driver looks at that bit. * Assume drivers won't auto-regenerate the additional tables, * to be safe. */ current_max = ethtool_get_max_rss_ctx_channel(dev); if (!netif_is_rxfh_configured(dev)) return current_max; if (!dev->ethtool_ops->get_rxfh_indir_size || !dev->ethtool_ops->get_rxfh) return current_max; dev_size = dev->ethtool_ops->get_rxfh_indir_size(dev); if (dev_size == 0) return current_max; rxfh.indir = kcalloc(dev_size, sizeof(rxfh.indir[0]), GFP_USER); if (!rxfh.indir) return U32_MAX; ret = dev->ethtool_ops->get_rxfh(dev, &rxfh); if (ret) { current_max = U32_MAX; goto out_free; } while (dev_size--) current_max = max(current_max, rxfh.indir[dev_size]); out_free: kfree(rxfh.indir); return current_max; } int ethtool_check_max_channel(struct net_device *dev, struct ethtool_channels channels, struct genl_info *info) { u64 max_rxnfc_in_use; u32 max_rxfh_in_use; int max_mp_in_use; /* ensure the new Rx count fits within the configured Rx flow * indirection table/rxnfc settings */ if (ethtool_get_max_rxnfc_channel(dev, &max_rxnfc_in_use)) max_rxnfc_in_use = 0; max_rxfh_in_use = ethtool_get_max_rxfh_channel(dev); if (channels.combined_count + channels.rx_count <= max_rxfh_in_use) { if (info) GENL_SET_ERR_MSG_FMT(info, "requested channel counts are too low for existing indirection table (%d)", max_rxfh_in_use); return -EINVAL; } if (channels.combined_count + channels.rx_count <= max_rxnfc_in_use) { if (info) GENL_SET_ERR_MSG(info, "requested channel counts are too low for existing ntuple filter settings"); return -EINVAL; } max_mp_in_use = dev_get_min_mp_channel_count(dev); if (channels.combined_count + channels.rx_count <= max_mp_in_use) { if (info) GENL_SET_ERR_MSG_FMT(info, "requested channel counts are too low for existing memory provider setting (%d)", max_mp_in_use); return -EINVAL; } return 0; } int ethtool_check_rss_ctx_busy(struct net_device *dev, u32 rss_context) { const struct ethtool_ops *ops = dev->ethtool_ops; struct ethtool_rxnfc *info; int rc, i, rule_cnt; if (!ops->get_rxnfc) return 0; rule_cnt = ethtool_get_rxnfc_rule_count(dev); if (!rule_cnt) return 0; if (rule_cnt < 0) return -EINVAL; info = kvzalloc(struct_size(info, rule_locs, rule_cnt), GFP_KERNEL); if (!info) return -ENOMEM; info->cmd = ETHTOOL_GRXCLSRLALL; info->rule_cnt = rule_cnt; rc = ops->get_rxnfc(dev, info, info->rule_locs); if (rc) goto out_free; for (i = 0; i < rule_cnt; i++) { struct ethtool_rxnfc rule_info = { .cmd = ETHTOOL_GRXCLSRULE, .fs.location = info->rule_locs[i], }; rc = ops->get_rxnfc(dev, &rule_info, NULL); if (rc) goto out_free; if (rule_info.fs.flow_type & FLOW_RSS && rule_info.rss_context == rss_context) { rc = -EBUSY; goto out_free; } } out_free: kvfree(info); return rc; } int ethtool_check_ops(const struct ethtool_ops *ops) { if (WARN_ON(ops->set_coalesce && !ops->supported_coalesce_params)) return -EINVAL; if (WARN_ON(ops->rxfh_max_num_contexts == 1)) return -EINVAL; /* NOTE: sufficiently insane drivers may swap ethtool_ops at runtime, * the fact that ops are checked at registration time does not * mean the ops attached to a netdev later on are sane. */ return 0; } void ethtool_ringparam_get_cfg(struct net_device *dev, struct ethtool_ringparam *param, struct kernel_ethtool_ringparam *kparam, struct netlink_ext_ack *extack) { memset(param, 0, sizeof(*param)); memset(kparam, 0, sizeof(*kparam)); param->cmd = ETHTOOL_GRINGPARAM; dev->ethtool_ops->get_ringparam(dev, param, kparam, extack); /* Driver gives us current state, we want to return current config */ kparam->tcp_data_split = dev->cfg->hds_config; kparam->hds_thresh = dev->cfg->hds_thresh; } static void ethtool_init_tsinfo(struct kernel_ethtool_ts_info *info) { memset(info, 0, sizeof(*info)); info->cmd = ETHTOOL_GET_TS_INFO; info->phc_index = -1; } int ethtool_net_get_ts_info_by_phc(struct net_device *dev, struct kernel_ethtool_ts_info *info, struct hwtstamp_provider_desc *hwprov_desc) { const struct ethtool_ops *ops = dev->ethtool_ops; int err; if (!ops->get_ts_info) return -ENODEV; /* Does ptp comes from netdev */ ethtool_init_tsinfo(info); info->phc_qualifier = hwprov_desc->qualifier; err = ops->get_ts_info(dev, info); if (err) return err; if (info->phc_index == hwprov_desc->index && net_support_hwtstamp_qualifier(dev, hwprov_desc->qualifier)) return 0; return -ENODEV; } struct phy_device * ethtool_phy_get_ts_info_by_phc(struct net_device *dev, struct kernel_ethtool_ts_info *info, struct hwtstamp_provider_desc *hwprov_desc) { int err; /* Only precise qualifier is supported in phydev */ if (hwprov_desc->qualifier != HWTSTAMP_PROVIDER_QUALIFIER_PRECISE) return ERR_PTR(-ENODEV); /* Look in the phy topology */ if (dev->link_topo) { struct phy_devi |